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Abstract. CoSSMic was an European project that developed a multi-
agent solution for smart management of energy from shared photovoltaic
panels by photovoltaic panels. Software agents implements collaborating
consumer and producer devices negotiating energy over a peer-to-peer
(P2P) overlay. The emergent behavior of the multi-agent system was an
optimal schedule of energy consumption. This paper summarize main
results of the project including techniques, open source technologies and
data.
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1 Introduction

The world is facing a climate crisis forcing us all to move away from fossil fuel
to renewable energies. However, integrating a large fraction of locally produced
and difficult to control renewable energy into the public electric energy grid is
challenging [7]. There are many ways renewable energy can be generated, and
the economical feasibility depends on local conditions. Wind and waves are often
abundant in coastal regions, and most of the world’s population lives in areas
where insolation is abundant. However, a major obstacle to the profitability of
photovoltaic (PV) systems is the misalignment of mid-day peak production and
evening and night time energy consumption since this misalignment is normally
mitigated by expensive batteries.

The CoSSMic project has investigated how “energy smart neighbourhoods”
could contribute to alleviating this problem. An energy smart neighbourhood
means a neighbourhood where the buildings coordinate to maximize the self-
consumption of the locally produced electrical energy and reduce consumption
and feed-in peaks towards the public grid. The project has developed a prototype
Cyber-Physical System of coordinated smart micro-grids where human users and
intelligent devices collaborate to realize energy smart neighbourhoods, and a

c© Springer International Publishing AG 2018
L. Barolli and O. Terzo (eds.), Complex, Intelligent, and Software Intensive Systems,
Advances in Intelligent Systems and Computing 611, DOI 10.1007/978-3-319-61566-0 79



Smart Communities of Intelligent Software Agents 835

simulation facility where the system can be executed in a simulated environment
to study the effects of such collaborative behaviour [11]. The core idea is to
increase the consumption of green energy produced by photovoltaic panels by
demand side management of electrical loads that can be shifted in time. The
objective is to start the loads at times where they can run only on solar energy
given the weather forecast predicted energy production. The monitoring and data
collecting part of the system has been installed in a number of buildings for more
than a year collecting detailed data about energy consumption and production,
and this data has been used to simulate the effect of the coordinated scheduling
of flexible appliances. The software platform has been implemented using open
source technologies, and is available as open source. Different deployment models
have been investigated, to exploit the flexibility of Cloud [2], while at the same
time taking into account security issues.

2 Architecture

The CoSSMic architecture adopts a highly distributed agent based P2P approach
where each consuming and producing device in the neighborhood is represented
by an agent. Batteries are represented by a coupled pair of agents, one respon-
sible for the charging and one responsible for the discharging. The agents of a
neighborhood negotiate to adapt the consumption to the predicted production
shifting loads in time within constraints set by the inhabitants. This architec-
ture has several advantages. It allows for easy creation and evolution of energy
smart neighborhoods not requiring central organizational or computing support.
It reports device failures. It implements a scalable solution by partitioning the
optimization problem scaling exponentially in the number of devices. It avoids
privacy concern confining private data inside each household. A household is
considered as a microgrid and can be a building, a group of buildings or a part
of a building. The household has a home gateway, which executes the intelli-
gence based on distributed computing and is also responsible for communication
both with devices within the household and with other neighbours. Intercon-
nected gateways represent collaborating microgrids that form neighborhoods.
Each microgrid is an autonomous subsystem until it joins a neighborhood. The
agents in a neighborhood make up a multi-agent system (MAS) and they com-
municate with each other directly, e.g., a consumer agent can negotiate with any
producer agent in the whole neighborhood. The MAS forms a P2P overlay to
support communication and negotiation among agents as well as neighborhood
management. The overall architecture for a microgrid is depicted in Fig. 1. The
Graphical user interface allows users to (re-)plan tasks, configure the system,
set policies, preferences and constraints, monitor the energy usage of the house-
hold and status of the neighborhood, and see how the household contributes to
and the benefits from participating in the neighborhood. The Prediction compo-
nent computes forecasts for the PV production and the prices for electric power
exchange with the public grid, based on third party services and knowledge about
the house and its PV installations. The Task manager serves as the master agent
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Fig. 1. Overview of components and interfaces

of the multi-agent system negotiating the load scheduling. It creates producer
and consumer agents to represent the producer and consumer devices of the
household, and manages a list of planned tasks for the household. The Sched-
uler implements distributed load scheduling and is responsible for negotiating
load scheduling in the whole neighborhood. It consists of Consumer and Pro-
ducer agents. The Consumer agents negotiate power delivery agreements with
the Producer agents of the whole neighborhood and scheduling of the loads with
the other households, and returns assigned start times for the loads. The Load
controller executes the loads according to their schedule. The Mediator provides
device management and data storage services. The Device drivers are respon-
sible for the low-level integration and communication with the various devices
connected to the system. The User and neighborhood management component
is in charge of keeping track of the users of the system and their roles and priv-
ileges, and the other households that are members of the neighborhood. A more
complete description of the architecture is provided in [11].

3 Results and Achievements

3.1 Platform

The CoSSMic technological platform has been conceived to run both on general
purpose computers and on embedded systems like Raspberry. At lower level a
number of device drivers have been developed using different technologies. JAVA
and Python programs, but also bash scripts have been implemented to inter-
face the heterogeneous devices installed at the trial sites. Examples of devices
are smart meters, smart plugs or inverter of photovoltaic plants. Consuming
devices like air conditioners, freezes, fridges, or washing machines installed in
the household did not provide open interface and they have always been con-
nected via smart plugs. Drivers implement different communication protocols
and connect by heterogeneous interfaces. The CoSSMic mediator is based on
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Emoncms1, a powerful open-source web-app for processing, logging and visu-
alising energy, temperature and other environmental data, developed in PHP.
The original software has been extended by integrating new functionalities to
the core modules, and developing new modules. In particular the new modules
implement the CoSSMic graphical user interface; the installation and manage-
ment of smart devices; virtual devices, learning capabilities, and the API for
load management and communication with the multi-agent system. These new
modules complement the API of Emoncms with the CoSSMic API.

The multi-agent system of the CoSSMic platform has been developed using
two different technologies, Python and C++. All agents communicate by the
XMPP protocol. A light XMPP server runs in each CoSSMic platform provid-
ing the needed communication services and to allowing for the execution of a
single instance of the platform. In this condition the schedule includes just the
local devices and the energy exchange is optimized between local consumer and
the household’s PV plant, if it exists. Two instances of the CoSSMic platform
communicate via XMPP server-to-server connections. The SPADE22 Python
library provides to the developers a set of API to develop agents based appli-
cations and a light XMPP server itself. One of the python agents is responsible
to interface with the mediator. It uses the CoSSMic API and accepts REST-
full HTTP requests to receive from the mediator requests, which are forwarded
to other agents. Consumer and producer agents are instead different threads
of one process. They have been developed in C++ as a Theron3 application.
They implement the one-to-one energy negotiation described in Sect. 3.4 that
produces, as emergent behaviour of the whole neighborhood, the optimal sched-
ule of consumptions. The platform has been published open source at4 as a set
of public repositories, each one documented by its own wiki.

3.2 Semantic Interoperability

The CoSSMic platform will include a semantic layer that will provide abstract
description of the functionalities offered and the data exchanged by IoT enabled
devices, appliances and sensors with the CoSSMic software components by means
of a semantic model realized through ontologies.

Actually IoT enabled devices, appliances and sensors have interfaces that
often are proprietary and not standardised. To allow such devices to be seam-
lessly integrated within the CoSSMic infrastructure, it is necessary to translate
their Application Programming Interfaces (APIs) into a homogeneous and inter-
operable form. This translation has to be specific to the protocol used by every
device (and appliance and sensors), and in principle it needs one translator
for each device interfaced. Such translators will typically in the future be pro-
vided by the device manufacturers, or third parties can develop and sell them

1 http://www.emoncms.org.
2 https://github.com/javipalanca/spade.
3 http://www.theron-library.com.
4 http://bitbucket.org/cossmic release
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to system integrators developing applications accessing such devices. CoSSMic
is bootstrapping this ecosystem by developing such translators for the devices
needed for the end-user demonstrations within the project. The main innovation
in this activity is the definition of a semantic representation based on the avail-
able ontologies for the Smart Energy domain. Despite the multitude of available
ontologies, the integration of these for heterogeneous sources of information and
various domains is non-trivial. We are surveying available ontologies, and will
select, evaluate and combine the most promising of these for the purpose of
application integration. Furthermore we are integrating the existing ontologies
by complementing them with additional information able to represent the APIs
of the involved devices, appliances and sensors, in an agnostic way with respect
to the vendor specific protocols and interfaces. Such integrated ontology will be
the reference model to enable the definition of agnostic (non-vendor specific)
APIs, and (hopefully automated) production of adapters and wrappers allow-
ing a seamless integration and interoperability with the software layer of the
CoSSMic platform, and exposing services to external platforms.

3.3 Learning Capability

Learning capabilities allows the CoSSMic platform to model and predict the
energy profiles of the user’s consuming appliances. In particular different device
categories have been designed, and for each of them a learning model has been
defined. We defined as single-run devices those, those devices which have not a
periodic behavior and are not usually interrupted, like washing machines and
dish-washers. Continuously-run devices have instead periodic behaviors. In this
case the internal controller periodically switches on the device according to other
parameters like the temperature in case of freezers and heat-pumps. Finally elec-
tric vehicles are considered as energy storages, which can be charged until they
are full or the charge reaches a target level at a different power rate that is
between a minimum value and a maximum one. The learning process is imple-
mented as an automata that follows the status of the appliances. The automata
input is the power consumed by the device. The transaction from a status to
another one is triggered comparing the power value and a threshold that iden-
tifies the noise. The automata detects the starting and the stopping time and
the stop of the device, or can be moved to a waiting status if the run must
be delayed. Others parameters, like the necessary time under the threshold to
detect the switch off, are used to configure the learning process. For single-run
devices the life-cycle of the learning automata updated the consumption profile
at the end of any run. Collected energy samples during the last runs are used.
The learned profile is represented as a B-spine, that approximates the interleaved
samples by a set of polynomial curves which minimize the mean square error,
described in [9]. In the case of continuously run device the lack of open interface
to monitor temperature and other parameters, and the unfeasible interaction of
the internal controller, motivated the design of a different learning technique. In
particular the next working cycle is predicted to be equal to the previous one.
With this assumption the switch on of the device can be delayed after the next
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predicted start time according to the scheduler indication. A maximum delay
is allowed and also the daily cumulative delay cannot exceed a fixed threshold.
The tuning of these parameters is another issue that has been investigated by
experience, analyzing the collected measures. Devices are controlled by switching
off and on the same smart-plug that provides energy information. These original
learning models and their open source implementation, both as component of the
CoSSMic platform and as tools for off-line analysis of collected data are results
of the project. Such tools allow for analyzing time-series, for identifying auto-
matically runs and for their supervised clustering to distinguish automatically
programs and to filter erroneous detections.

3.4 Optimization Model

The core of the system is a distributed multi-agent system [3,4] where software
agents collaborate to produce as emergent behaviour the optimal schedule of
executions of users’ appliances in accordance with constraints defined by the
users [1]. One to one negotiations are used as a solution for the distributed
optimization of device schedule [6,13]. For this reason it can be defined as a
virtual market for energy negotiation and brokering [5]. The CoSSMic approach
consists of two steps described in the following sections.

When a load is submitted, a consumer agent is created in the system, and it
will select a producer to provide the energy needed by the load. If this producer
has sufficient energy according to its prediction to start the load between the
load’s earliest start time and its latest start time, it will assign a start time to
the load. If not, it will refuse the allocation, and the consumer agent will select
another producer. It could happen that this new load will make a more optimal
consumption of a producer’s predicted energy production than its current set
of load assignments. In this case the producer could cancel any of the previ-
ously assigned loads. Each of these rejected consumer agents will then have to
select other producers to serve their needs. The selection process repeats until
every load has assigned a start time from a producer. As the consumer agents
act autonomously, this is a game where each play corresponds to a consumer
selecting a producer, and the epoch of the game is the number of plays needed
to have a new solution when the system is perturbed by either a new predic-
tion or the arrival of a new load to the system. A particular set of assignments,
i.e. bindings of loads to producers, is called a configuration of the game. The
game will always converge to a configuration provided that the grid accepts to
start any load within its allowed start time interval given by the load’s earli-
est start time and its latest start time. This condition must be met even if one
uses a grid model that is artificially limited in order to avoid peaks, meaning
that peak avoidance cannot be guaranteed if there is no feasible schedule for
the loads that have selected the grid as their producer under the maximum grid
peak limit. Furthermore, the game is cooperative [10], because all the involved
consumers and producers jointly tries to minimise the grid energy consumed by
the neighbourhood.
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A consumer’s selection of a producer is carried out using a variable struc-
ture stochastic automaton (VSSA) [12]: A consumer has a probability vector
p = [p1, . . . , pn]T with one probability for each producer, the grid inclusive. This
vector represents a probability distribution with

∑
i pi = 1. For each play, the

consumer agent selects a candidate producer according to this empirical proba-
bility distribution, and this Producer Agent either accepts to provide energy to
the consumer, or rejects it. Should the system be loaded, and all PV producers
refuse the consumer, the grid is the only candidate producer and will be selected
with probability one.

Classical scheduling originated in manufacturing disciplines and considers
the problem of assigning a set of n jobs onto m machines. Each job j is assumed
to have a known processing time on machine i. It should be noted that classical
scheduling only implicitly considers the resources provided by the machine, i.e.
the capacity of the machine is reflected in the time it takes to complete the job
on that machine. The situation considered here is different in that the “machine”
is a PV system that provides time variant resources, and the scheduling problem
is to start the time variant “jobs” that are the assigned loads according to the
resource availability on the “machine”. The load profiles are continuous and once
a load has started it will have to run to completion, i.e. the problem is a non-
premptive single-machine scheduling problem. In contrast to classical scheduling
problems, the PV Producer Agent may start two or more loads with overlapping
execution periods if the predicted production profile allow this. In contrast to
the combinatorial assignment problem, a relaxed form of the problem is consid-
ered here where it is possible to acquire additional resources for PV Producer
Agent to supply the loads with energy since it can supplement with energy from
the grid. This will guarantee that the problem has a solution, and transform the
problem to non-linear programme to find the schedule that minimises the cost
of the additional resources, i.e. the grid energy [8]. Each PV Producer Agent
solves independently an optimisation problem to find the schedule for the loads
assigned to it given its predicted energy production, and the distributed optimi-
sation allows better scaling in the number of consumer tasks than a centralised
optimisation problem.

3.5 Trials and Data

The CoSSMic platform has been deployed at two different trials sites, in province
of Caserta (Italy) and in City of Konstanz (Germany). In all installations the
CoSSMic platform executed on Raspberry P2 or on Raspberry P3, using respec-
tively the Linux distribution Raspbian Wheezy or Jessie. Delays and bureau-
cratic constraints limited the installation in province of Caserta to one private
building, three public schools and a public swimming pool. Also the kind and
the number of monitored devices were limited. A smart meter and a smart plug
was installed in the private house and two or three smart-meters were installed
in each public building to measure consumptions. such devices communicate
via zigbee to a wifi gateway that allows for reading data of each meter using
a Modbus protocol over TCP. The energy production by photo-voltaic plants



Smart Communities of Intelligent Software Agents 841

was measured by using the web interface of the inverters, which were equipped
with a network interface. The CoSSMic installations in Konstanz were under the
responsibility of (ISC) (International Solar Energy Research Center Konstanz ).
Trials are more heterogeneous and include a larger number of devices and build-
ings. Trials include 4 industries, 2 schools and 6 private houses, In Table 1 a
summary of trials information is provided. We collected data for more than one
year in Konstanz and for a much more limited period in province of Caserta.
The first column shows the trial identifications (IDs), while the second column
contains the number of monitored devices. Then we have the starting date and
the last date of the observation period. Finally we have the sum of monitored
days and hours for each trial. They are not equal to the duration of the observa-
tion period multiplied for the number of devices because of downtime, voluntary
disconnection of power grid in the school during nights and in weekends, because
some devices have been installed later or because other kind of system failures
or maintenance.

Table 1. Summary of trials results

Trial-id Devices From To #days #hours

ce01 2 October 20, 2016 January 11, 2017 1 18

ce02 4 October 17, 2016 January 27, 2017 738 17

ce03 3 October 26, 2016 January 11, 2017 145 13

ce04 2 October 19, 2016 January 11, 2017 96 6

kn01 3 October 13, 2015 February 8, 2017 1012 14

kn03 6 October 29, 2015 February 9, 2017 1707 14

kn04 20 October 13, 2015 February 8, 2017 8802 14

kn05 1 October 3, 2015 October 17, 2016 368 13

kn06 1 October 21, 2016 January 17, 2017 43 6

kn07 6 April 22, 2015 February 8, 2017 3332 11

kn08 5 April 1, 2015 February 8, 2017 2079 8

kn09 8 December 11, 2014 February 8, 2017 3959 13

kn10 9 October 3, 2015 February 8, 2017 4277 14

kn11 4 October 26, 2015 February 8, 2017 1768 12

kn012 7 October 24, 2015 February 8, 2017 2350 10

3.6 Simulation and Emulation Tools

The deployment of CoSSMic software on real trials for testing and evaluation
purpose introduces a number of drawbacks. On one hand the support of the
user to run the devices or to reproduce some relevant conditions for testing or
evaluation purpose is needed. However the user is already annoyed during the
usual utilization because of faults and limitations that characterize a research
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prototype. On the other hand, even if only real trials can be used for collecting
data, the existing installations provide limitations in terms of number of devices,
heterogeneity of devices, number of households and non-deterministic conditions
for reproducing testing condition. However, for testing purposes the platform can
be configured to read data collected in the past, and to write them in the system
would be running at the current time. The configuration allows for selecting
which devices must be emulated and for each device a different starting date-
time can be set. This allows both to emulate the execution of a trials in the past,
but also to let it run in laboratory with additional real devices, or virtual ones.
In fact application which simulate virtual devices have been developed at the
beginning of the project to test the platform without real installations. They are
also available as an open source package.

A simulation tool was designed to overcome the limited representativeness of
our real trials, finding out more about how the collective and individual benefits
of the approach depends on the configuration of the neighbourhood, the accuracy
of weather forecasts, the price models of the energy providers, and so on. In
this way the analysis of the collected data in the trials could be complemented
with data coming from a simulator, where we can replay the observed user and
device behaviors, varying a number of other factors, such as the configuration of
the neighborhood, the number of PVs, the capacity of the storage systems, the
frequency of weather forecasts updates, the price models of the public grid, etc. In
addition, using the simulation approach, it could be possible to investigate how
the CoSSMic distributed system scales with increasing number of households and
devices in a neighborhood. Since the main goal of the simulator is to generate
more data for the evaluation stage of the project, the key design constraint of
the tool has been to obtain a model that exactly reproduces (i.e. reusing the
developed software components) the main steps of the real prototype software
such as: the creation of the shift able loads; the negotiation and optimization
stage using a distributed algorithm; the production of the scheduled loads. The
simulator is a discrete event simulator (DES) where the system events appear at
different times. Each event has marked with a timestamp and produces a change
of state in the system.

4 Conclusion

This paper provided an overview about the results achieved by the research activ-
ity of the CoSSMic project. We presented an innovative system architecture for
energy smart neighbourhoods that has been implemented by an open source pro-
totype. Data has been collected from trial installations in 17 buildings where the
monitoring part of the prototype has been installed for up to more than a year
gathering detailed data on local energy production and use. The development
activities provided open source tools facilitating the execution and observation of
the prototype implementation in a simulated environment. Other results include
the analysis of regulations, cost models and tariffs for the electric energy sector
and their relationship to CoSSMic energy smart neighbourhoods. The proposed
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P2P solution demonstrated to be scalable, by partitioning an optimisation prob-
lem of exponential complexity, but still providing good improvements in terms
of optimality. Future work aims at improving the degree of desired stability for
further involving the users without annoying them and the engineering of the
platform that would enable the road-map designed for exploitation.
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