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Abstract. Distributed applications are composed of multiple objects
and each object is replicated in order to increase reliability, availabil-
ity, and performance. On the other hand, the larger amount of electric
energy is consumed in a system since multiple replicas of each object
are manipulated on multiple servers. In this paper, the energy efficient
quorum selection (EEQS) algorithm is proposed to construct a quorum
for each method issued by a transaction in the quorum based locking
protocol so that the total electric energy consumption of servers to per-
form methods can be reduced. We show the total energy consumption of
servers, the average execution time of each transaction, and the number
of aborted transactions can be reduced in the EEQS algorithm compared
with the random algorithm in the evaluation.

Keywords: Energy-aware information systems · Quorum-based locking
protocol · Object-based systems · EEQS algorithm · Data management

1 Introduction

In object-based systems [1,5], applications manipulate objects distributed on
multiple servers. Each object is a unit of computation resource like a file and
is an encapsulation of data and methods to manipulate the data in the object.
A transaction is an atomic sequence of methods [3] to manipulate objects. A
collection of conflicting transactions are required to be serializable [4] to keep
objects consistent. In order to provide reliable application services [2], each object
is replicated on multiple servers. Replicas of each object have to be mutually
consistent. In the two-phase locking (2PL) protocol [3], one of the replicas of an
object for a read method and all the replicas for a write method are locked before
manipulating the object to keep the replicas mutually consistent, i.e. read-one-
write-all scheme. However, the 2PL protocol is not efficient in write-dominated
application, since all the replicas have to be locked for every write method.
On the other hand, numbers nQr and nQw of replicas of an object are locked
in the quorum-based protocol [5,6] for read and write methods, respectively.
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Subsets of replicas locked for read and write methods are referred to as read
and write quorums, respectively. The quorum numbers nQr and nQw have to
be “nQr + nQw > N” where N is the total number of replicas. Here, the more
number of write methods are issued, the smaller number of write quorum can be
taken. As a result, the overhead to perform write methods can be reduced. On
the other hand, since methods issued to each object are performed on multiple
replicas, the total amount of electric energy consumed in a system is larger
than non-replication systems. It is critical to not only realize the fault-tolerant
application service but also reduce the total energy consumption of an object-
based system as discuss in the Green computing [7,8].

In this paper, an energy efficient quorum selection (EEQS) algorithm is pro-
posed to construct a quorum for each method issued by a transaction in the
quorum based locking protocol so that the total electric energy consumption of
servers to perform methods can be reduced. We evaluate the EEQS algorithm
in terms of the total energy consumption of servers, the average execution time
of each transaction, and the number of aborted transactions compared with the
random algorithm. The evaluation results show the total energy consumption
of servers, the average execution time of each transaction, and the number of
aborted transactions in the EEQS algorithm can be maximumly reduced to 31%,
40%, and 65% of the random algorithm, respectively.

In Sect. 2, we discuss the data access model and power consumption model
of a server. In Sect. 3, we discuss the EEQS algorithm. In Sect. 4, we evaluate
the EEQS algorithm compared with random algorithm.

2 System Model

2.1 Objects and Transactions

A system is composed of multiple servers s1, ..., sn (n ≥ 1) interconnected in
reliable networks. That is, messages can be delivered to their destinations in the
sending order and without message loss. Let S be a cluster of servers s1, ..., sn

(n ≥ 1). Let O be a set of objects o1, ..., om (m ≥ 1) [1]. Each object oh is a unit
of computation resource like a file and is an encapsulation of data and methods
to manipulate the data in the object oh. In this paper, we assume each object oh

supports read (r) and write (w) methods for manipulating data in the object
oh. Let op(oh) be a state obtained by performing a method op (∈ {r, w}) on an
object oh. A pair of methods op1 and op2 on an object oh are compatible if and
only if (iff) op1 ◦ op2(oh) = op2 ◦ op1(oh). Otherwise, a method op1 conflicts
with another method op2. For example, a pair of read methods r1 and r2 are
compatible on an object oh. On the other hand, a write method conflicts with
read and write methods on an object oh.

Each object oh is replicated on multiple servers to make the system more
reliable and available. Let R(oh) be a set of replicas o1h, ..., ol

h (l ≥ 1) [2] of an
object oh. Let nR(oh) be the total number of replicas of an object oh, i.e. nR(oh)
= |R(oh)|. Replicas of each object oh are distributed on multiple servers in a
server cluster S. Let Sh be a subset of servers which hold a replica of an object
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oh in a server cluster S (Sh ⊆ S). For example, a server cluster S is composed of
five servers s1, ..., s5 as shown in Fig. 1. There are three objects o1, o2, and o3.
There are three replicas of each object oh, i.e. nR(oh) = 3 (h = 1, ..., 3). Here,
S1 = {s1, s2, s5} since replicas o11, o21, and o31 of the object o1 are stored in the
servers s1, s2, and s5.

s1 s2 s3 s4 s5

o1
1 o2

1 o3
1

o1
2 o2

2 o3
2

o1
3 o2

3 o3
3

o1

o2

o3

replicas of an object o1.

replicas of an object o2.

replicas of an object o3.

Fig. 1. A server cluster S and objects.

A transaction is an atomic sequence of methods [3]. A transaction Ti is initi-
ated in a client cli and issues r and w methods to manipulate replicas of objects.
Multiple conflicting transactions are required to be serializable [3,4] to keep
object mutually consistent. Let T be a set of {T1, ..., Tk} (k ≥ 1) of transac-
tions. Let H be a schedule of the transactions in T, i.e. a sequence of methods
performed in T. A transaction Ti precedes another transaction Tj (Ti →H Tj)
in a schedule H iff a method opi from the transaction Ti is performed before a
method opj from the transaction Tj and opi conflicts with opj . A schedule H is
serializable iff the precedent relation →H is acyclic.

2.2 Quorum-Based Locking Protocol

In this paper, multiple conflicting transactions are serialized by using the
quorum-based locking protocol [5,6]. Let Qop

h (op ∈ {r, w}) be a subset of
replicas of an object oh to be locked by a method op, named a quorum of the
method op on the object oh (Qop

h ⊆ R(oh)). Let nQop
h be the quorum number

of a method op on a object oh, i.e. nQop
h = |Qop

h |. The quorums have to satisfy
the following constraints: (1) Qr

h ⊆ R(oh), Qw
h ⊆ R(oh), and Qr

h ∪ Qw
h = R(oh).

(2) nQr
h + nQw

h > nR(oh), i.e. Qr
h ∩ Qw

h 	= φ. (3) nQw
h > nR(oh)/2. Let μ(op)

be a lock mode of a method op (∈ {r, w}). If op1 is compatible with op2 on an
object oh, the lock mode μ(op1) is compatible with μ(op2). Otherwise, a lock
mode μ(op1) conflicts with another lock mode μ(op2).

A transaction Ti locks replicas of an object oh by using the following quorum-
based locking protocol [5] before manipulating the replicas with a method op.

[Quorum-based locking protocol]

1. A quorum Qop
h for a method op is constructed by selecting nQop

h replicas in
a set R(oh) of replicas.

2. If every replica in a quorum Qop
h can be locked by a lock mode μ(op), the

replicas in the quorum Qop
h are manipulated by the method op.
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3. When the transaction Ti commits or aborts, the locks on the replicas in the
quorum Qop

h are released.

Each replica oq
h has a version number vq

h. Suppose a transaction Ti reads
an object oh. The transaction Ti selects nQr

h replicas in the set R(oh), i.e. read
(r) quorum Qr

h. If every replica in the r-quorum Qr
h can be locked by a lock

mode μ(r), the transaction Ti reads data in a replica oq
h whose version number

vq
h is the maximum in the r-quorum Qr

h. Every r-quorum surely includes at least
one newest replica since nQr

h + nQw
h > nR(oh). Next, suppose a transaction Ti

writes data in an object oh. The transaction Ti selects nQw
h replicas in the set

R(oh), i.e. write (w) quorum Qw
h . If every replica in the w-quorum Qw

h can be
locked by a lock mode μ(w), the transaction Ti writes data in a replica oq

h whose
version number vq

h is maximum in the w-quorum Qw
h and the version number vq

h

of the replica oq
h is incremented by one. The updated data and version number

vq
h of the replica oq

h are sent to every other replica in the w-quorum Qw
h . Then,

data and version number of each replica in the w-quorum Qw
h are replaced with

the newest values. When a transaction Ti commits or aborts, the locks on every
replica in a quorum Qop

h (op ∈ {r, w}) are released.

2.3 Data Access Model

Methods which are being performed and already terminate are current and
previous at time τ , respectively. Let RPt(τ) and WPt(τ) be sets of current read
(r) and write (w) methods on a server st at time τ , respectively. Let Pt(τ) be
a set of current r and w methods on a server st at time τ , i.e. Pt(τ) = RPt(τ)
∪ WPt(τ). Let rti(o

q
h) and wti(o

q
h) be methods issued by a transaction Ti to

read and write data in a replica oq
h on a server st, respectively. By each method

rti(o
q
h) in a set RPt(τ), data is read in a replica oq

h at rate RRti(τ) [B/sec] at
time τ . By each method wti(o

q
h) in a set WPt(τ), data is written in a replica oq

h

at rate WRti(τ) [B/sec] at time τ . Let maxRRt and maxWRt be the maximum
read and write rates [B/sec] of r and w methods on a server st, respectively. The
read rate RRti(τ) (≤ maxRRt) and write rate WRti(τ) (≤ maxWRt) are given
as follows:

RRti(τ) = frt(τ) · maxRRt. WRti(τ) = fwt(τ) · maxWRt. (1)

Here, frt(τ) and fwt(τ) are degradation ratios. 0 ≤ frt(τ) ≤ 1 and 0 ≤ fwt(τ)
≤ 1. The degradation ratios frt(τ) and fwt(τ) are given as follows:

frt(τ) =
1

|RPt(τ)| + rwt · |WPt(τ)| . fwt(τ) =
1

wrt · |RPt(τ)| + |WPt(τ)| . (2)

Here, 0 ≤ rwt ≤ 1 and 0 ≤ wrt ≤ 1.
The read laxity lrti(τ) [B] and write laxity lwti(τ) [B] of methods rti(o

q
h)

and wti(o
q
h) show how much amount of data are read and written in a replica oq

h

by the methods rti(o
q
h) and wti(o

q
h) at time τ , respectively. Suppose that methods

rti(o
q
h) and wti(o

q
h) start on a server st at time stti, respectively. At time stti,
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the read laxity lrti(τ) = rbq
h [B] where rbq

h is the size of data in a replica oq
h.

The write laxity lwti(τ) = wbq
h [B] where wbq

h is the size of data to be written
in a replica oq

h. The read laxity lrti(τ) and write laxity lwti(τ) at time τ are
given as lrti(τ) = rbq

h − Στ
τ=sttiRRti(τ) and lwti(τ) = wbq

h − Στ
τ=sttiWRti(τ),

respectively.

2.4 Power Consumption Model of a Server

Let Et(τ) be the electric power [W] of a server st at time τ . maxEt and minEt

show the maximum and minimum electric power [W] of the server st, respec-
tively. The power consumption model for a storage server (PCS model) [7]
to perform storage and computation process are proposed. In this paper, we
assume only r and w methods are performed on a server st. According to the
PCS model, the electric power Et(τ) [W] of a server st to perform multiple r
and w methods at time τ is given as follows:

Et(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WEt if |WPt(τ)| ≥ 1 and |RPt(τ)| = 0.

WREt(α) if |WPt(τ)| ≥ 1 and |RPt(τ)| ≥ 1.

REt if |WPt(τ)| = 0 and |RPt(τ)| ≥ 1.

minEt if |WPt(τ)| = |RPt(τ)| = 0.

(3)

A server st consumes the minimum electric power minEt [W] if no method is
performed on the server st, i.e. the electric power in the idle state of the server st.
The server st consumes the electric power REt [W] if |WPt(τ)| = 0 and |RPt(τ)|
≥ 1, i.e. only and at least one r method is performed on the server st. The server
st consumes the electric power WEt [W] if |WPt(τ)| ≥ 1 and |RPt(τ)| = 0, i.e.
only and at least one w method is performed on the server st. The server st

consumes the electric power WREt(α) [W] = α · REt + (1 − α) · WEt [W]
where α = |RPt(τ)| / (|RPt(τ)| + |WPt(τ)|) if |WPt(τ)| ≥ 1 and |RPt(τ)| ≥
1, i.e. both at least one r method and at least one w method are concurrently
performed. Here, minEt ≤ REt ≤ WREt(α) ≤ WEt ≤ maxEt.

The total energy consumption TEt(τ1, τ2) [J] of a server st from time τ1 to
τ2 is Στ2

τ=τ1 Et(τ). The processing power PEt(τ) [W] of a server st at time τ
is Et(τ) − minEt. The total processing energy consumption TPEt(τ1, τ2) of a
server st from time τ1 to τ2 is given as TPEt(τ1, τ2) = Στ2

τ=τ1PEt(τ). The total
processing energy consumption laxity tpeclt(τ) shows how much electric energy
a server st has to consume to perform every current r and w methods on the
server st at time τ . The total processing energy consumption laxity tpeclt(τ) of
a server st at time τ is obtained by the following TPECLt procedure:

TPECLt(τ) {
if RPt(τ) = φ and WPt(τ) = φ, return(0);
laxity = Et(τ) - minEt; /* PEt(τ) of a server st at time τ */

for each r-method rti(o
q
h) in RPt(τ), {

lrti(τ + 1) = lrti(τ) - RRti;
if lrti(τ + 1) = 0, RPt(τ + 1) = RPt(τ) - {rti(o

q
h)};
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}
for each w-method wti(o

q
h) in WPt(τ), {

lwti(τ + 1) = lwti(τ) - WRti;
if lwti(τ + 1) = 0, WPt(τ + 1) = WPt(τ) - {wit(o

q
h)};

}
return(laxity + TPECLt(τ + 1));

}
In the TPECLt procedure, each time τ data is read in a replica oq

h by a
method rti(o

q
h), the read laxity lrti(τ) of the method rti(o

q
h) is decremented

by read rate RRti. Similarly, the write laxity lwti(τ) of a method wti(o
q
h) is

decremented by write rate WRti each time τ data is written in a replica oq
h by

the method wti(o
q
h). If the read laxity lrti(τ + 1) and write laxity lwti(τ + 1)

get 0, every data is read and written in the replica oq
h by the methods rti(o

q
h)

and wti(o
q
h), respectively, and the methods terminate at time τ .

3 Quorum Selection Algorithm

We propose an energy-efficient quorum selection (EEQS ) algorithm to select
replicas to be members of a quorum of each method in the quorum-based locking
protocol so that the total energy consumption of a server cluster S to perform
read and write methods can be reduced. Suppose a transaction Ti issues a method
op (op = {r, w}) to manipulate an object oh at time τ . Each transaction Ti

selects a subset Sop
h (⊆ Sh) of nQop

h servers in a subset Sh by following EEQS
procedure:

EEQS(op, oh, τ) { /* op ∈ {r, w} */

Sop
h = φ;

while (nQop
h > 0) {

for each server st in Sh, {
if op = r, RPt(τ) = RPt(τ) ∪ {op};
else WPt(τ) = WPt(τ) ∪ {op}; /* op = w */

TPEt(τ) = TPECLt(τ);
}
server = a server st where TPEt(τ) is the minimum;
Sop

h = Sop
h ∪ {server}; Sh = Sh - {server}; nQop

h = nQop
h - 1;

}
return(Sop

h );
}

Suppose a server cluster S is composed of five servers s1, ..., s5 and replicas
of three objects o1, o2, and o3 are distributed on multiple servers in the server
cluster S as shown in Fig. 1, i.e. S1 = {s1, s2, s5}, S2 = {s2, s3, s4}, and S3 =
{s3, s4, s5}. Every server st (t = 1, ..., 5) follows the same data access model
and power consumption model as shown in Table 1. The size of data in every
object oh (h = 1, ..., 3) is 80 [MB]. There are three replicas for each object oh,
i.e. nR(oh) = 3. The quorum numbers nQw

h and nQr
h for every object oh are

two, i.e. nQw
h = nQr

h = 2.
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Table 1. Homogeneous cluster S

Server st maxRRt maxWRt rwt wrt minEt WEt REt

st 80 [MB/sec] 45 [MB/sec] 0.5 0.5 39 [W] 53 [W] 43 [W]

At time τ0, a pair of replicas o11 and o31 stored in the servers s1 and s5 are
being locked by a transaction T1 with a lock mode μ(w) and a pair of write
methods w11(o11) and w51(o31) are being performed on the servers s1 and s5,
respectively, as shown in Fig. 2. Let Ti.Q

op
h be a quorum to perform a method op

issued by a transaction Ti. Let Ti.S
op
h be a subset of servers which hold replicas

in a quorum Ti.Q
op
h constructed by a transaction Ti. The w-quorum T1.Qw

1 is
{o11, o31} since the quorum number nQw

1 = 2. The subset T1.Sw
1 is {s1, s5} since

a pair of replicas o11 and o31 are stored in the servers s1 and s5, respectively. A
pair of write laxities lw11(τ0) and lw51(τ0) are 45 [MB], respectively, at time τ0.

Suppose a transaction T2 issues a write method to the object o3 at time τ0.
The size of data to be written in the object o3 by the write method issued by the
transaction T2 is 45 [MB], i.e. the write laxity lwt2(τ0) = 45 [MB]. Here, R(o3) =
{o13, o23, o33} and S3 = {s3, s4, s5} as shown in Fig. 1. First, the transaction T2

constructs a w-quorum T2.Qw
3 by the procedure EEQS(w, o3, τ0). Suppose a

write method w32(o13) is issued to a replica o13 stored in the server s3 at time
τ0. No method is performed on the server s3 at time τ0. Hence, WP3(τ0) =
WP3(τ0) ∪ {w32(o13)} = {w32(o13)}. Since only one write method w32(o13) is
performed on the server s3 at time τ0, the degradation ratio fw3(τ0) is 1/(wr3
· |RP3(τ0)| + |WP3(τ0)|) = 1/(0.5 · 0 + 1) = 1 and the write method w32(o13)
is performed on the server s3 at write rate WR32(τ0) = fw3(τ0) · maxWR3 =
1 · 45 = 45 [MB/sec]. Hence, the write laxity lw32(τ1) gets 0 since lw32(τ0) −
WR32(τ0) = 45 [MB] − 45 [MB] = 0 at time τ1. Here, the write method w32(o13)
terminates at time τ1 and no method is performed after time τ1. Similarly, if a
write method w42(o23) is issued to a replica o23 stored in the server s4 at time
τ0 as shown in Fig. 2, the write method w42(o23) terminates at time τ1 since
no method is performed on the server s4 at time τ0. Suppose a write method
w52(o33) is issued to a replica o33 stored in the server s5 at time τ0. Here, a pair
of write methods w51(o31) and w52(o33) are concurrently performed on the server
s5 at time τ0, i.e. WP5(τ0) = {w51(o31), w52(o33)} and |WP5(τ0)| = 2. Here, the
degradation ratio fw5(τ0) is 1/(wr5 · |RP5(τ0)| + |WP5(τ0)|) = 1/(0.5 · 0 + 2) =
0.5. A pair of the write methods w51(o31) and w52(o33) are concurrently performed
on the server s5 at write rate WR51(τ0) = WR52(τ0) = fw5(τ0) · maxWR5 =
0.5 · 45 = 22.5 [MB/sec], respectively. Hence, the write laxity lw51(τ1) is 22.5
[MB/sec] at time τ1 since lw51(τ0) − WR51(τ0) = 45 [MB] − 22.5 [MB] = 22.5
[MB]. Similarly, the write laxity lw52(τ1) is 22.5 [MB] at time τ1. At time τ1, a
pair of the write methods w51(o31) and w52(o33) are still concurrently performed
on the server s5 at write rate 22.5 [MB/sec]. The write laxity lw51(τ2) gets 0 at
time τ2 since lw51(τ1) − WR51(τ1) = 22.5 [MB] − 22.5 [MB] = 0. Similarly, the
write laxity lw52(τ2) gets 0 at time τ1. Here, a pair of write methods w51(o31)
and w52(o33) terminate at time τ2.
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Fig. 2. Example of method execution.

time τ

time τ

time τ

s3

s4

s5

53 [W]
14 [Ws]

τ0 τ1 τ2

53 [W]

53 [W]

1 1

14 [Ws]

28 [Ws]

minE3 = 39 [W]

minE4 = 39 [W]

minE5 = 39 [W]

E3(τ) [W]

E4(τ) [W]

E5(τ) [W]

Fig. 3. Total processing energy con-
sumption laxity [J].

Figure 3 shows the electric power [W] of the servers s3, s4, and s5 to perform
the write methods as shown in Fig. 2. The electric power Et(τ) [W] of a server
st at time τ is given in formula (3). At time τ0 to τ1, only the write method
w32(o13) is performed on the server s3, i.e. |WR3(τ0)| = 1 and |RP3(τ0)| = 0.
Hence, the electric power consumption E3(τ0) = WE3 = 53 [W]. Similarly,
E4(τ0) = WE4 = 53 [W] in the server s4. In the server s5, only a pair of write
methods w51(o31) and w52(o33) are performed, i.e. |WR5(τ0)| = 2 and |RP5(τ0)| =
0. Hence, the electric power consumption E5(τ0) = WE5 = 53 [W]. The total
processing power consumption TPE3(τ0, τ1) is E3(τ0) − minE3 = 53 − 39 =
14 [W]. Similarly, TPE4(τ0, τ1) and TPE5(τ0, τ1) are 14 [W], respectively. At
time τ1 to τ2, a pair of write methods w51(o31) and w52(o33) are performed on the
server s5, i.e. |WR5(τ1)| = 2 and |RP5(τ1)| = 0. Hence, E5(τ1) = WE5 = 53
[W] and TPE5(τ1, τ2) = 53 − 39 = 14 [W].

The hatched area shows the total processing energy consumption laxity
tpeclt(τ0) [J] of each server st (t = {3, 4, 5}) where the write method wt2(o3)
issued by the transaction T2 is performed on the server st at time τ0. Here,
tpecl3(τ0) = TPE3(τ0, τ1) = 14 [J]. tpecl4(τ0) = TPE4(τ0, τ1) = 14 [J].
tpecl5(τ0) = TPE5(τ0, τ1) + TPE5(τ1, τ2) = 14 + 14 = 28 [J]. Here, a w-quorum
T2,Qw

3 is constructed by a pair of replicas o13 and o23 stored in the servers s3 and
s4 since nQw

3 = 2 and tpecl3(τ0) = tpecl4(τ0) < tpecl5(τ0), i.e. T2.Qw
3 = {o13, o23}

and T2.Sw
3 = {s3, s4}.
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4 Evaluation

4.1 Environment

We evaluate the EEQS algorithm in terms of the total energy consumption of a
server cluster S, the average execution time of each transaction, and the average
number of aborted transactions compared with the random algorithm. In the
random algorithm, a quorum for each method is randomly selected. In this eval-
uation, a homogeneous server cluster S which is composed of ten homogeneous
servers s1, ..., s10 (n = 10) is considered. In the server cluster S, every server
st (t = 1, ..., 10) follows the same data access model and power consumption
model as shown in Table 1. Parameters of each server st are given based on the
experimentations [7]. There are fifty objects o1, ..., o50 in a system, i.e. O =
{o1, ..., o50}. The size of data in each object oh is randomly selected between 50
and 100 [MB]. Each object oh supports read (r) and write (w) methods. The
total number of replicas for every object is five, i.e. nR(oh) = 5 and R(oh) =
{o1h, ..., o5h} (h = 1, ..., 50). Replicas of each object are randomly distributed on
five servers in the server cluster S. The quorum number nQw

h of a w method on
every object oh is three, i.e. nQw

h = 3. The quorum number nQr
h of a r method

on every object oh is three, nQr
h = 3.

The number m of transactions are issues to manipulate objects in a sys-
tem. Each transaction issues three methods randomly selected from one-hundred
methods on the fifty objects. By each r and w method issued by a transaction
Ti to a replica oq

h of an object oh, the total amount of data of the replica oq
h are

fully read and written, respectively. The starting time of each transaction Ti is
randomly selected in a unit of one second between 1 and 360 [sec].

4.2 Average Execution Time of Each Transaction

We evaluate the EEQS algorithm in terms of the average execution time [sec] of
each transaction. Let ETi be the execution time [sec] of a transaction Ti where
the transaction Ti commits. For example, suppose a transaction Ti starts at time
sti and commits at time eti. Here, the execution time ETi of the transaction Ti

is eti − sti [sec]. The execution time ETi for each transaction Ti is measured
ten times for each total number m of transactions (0 ≤ m ≤ 500). Let ET tm

i

be the execution time ETi obtained in tm-th simulation. The average execution
time AET [sec] of each transaction for each total number m of transactions is
∑10

tm=1

∑m
i=1 ET tm

i /(m · 10).
Figure 4 shows the average execution time AET [sec] in the server cluster S

to perform the total number m of transaction in the EEQS and random algo-
rithms. In the EEQS and random algorithms, the average execution time AET
increases as the total number m of transactions increases since more number of
transactions are concurrently performed. For 0 < m ≤ 500, the average execu-
tion time AET can be more shorter in the EEQS algorithm than the random
algorithm. This means that the data access resources in the server cluster S can
be more efficiently utilized in the EEQS algorithm than the random algorithm.
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Fig. 4. Average execution time AET [sec]
of each transaction.
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Fig. 5. Average number of aborts for each
transaction

4.3 Average Number of Aborted Transaction Instances

If a transaction Ti could not lock every replica in an r-quorum Qr
h and w-

quorum Qw
h , the transaction Ti aborts. Then, the transaction Ti is restarted

after δ time units. The time units δ [sec] is randomly selected between twenty
and thirty seconds in this evaluation. Every transaction Ti is restarted until
the transaction Ti commits. Each execution of a transaction is referred to as
transaction instance. We measure how many number of transaction instances
are aborted until each transaction commits. Let ATi be the number of aborted
instances of a transaction Ti. The number of aborted instances ATi for each
transaction Ti is measured ten times for each total number m of transactions
(0 ≤ m ≤ 500). Let AT tm

i be the number of aborted transaction instances ATi

obtained in tmth simulation. The average number of aborted instances AAT
of each transaction for each total number m of transactions is

∑10
tm=1

∑m
i=1

AT tm
i /(m · 10).
Figure 5 shows the average number of aborted transaction instances AAT

in the server cluster S to perform the total number m of transactions in the
EEQS and random algorithms. In the EEQS and random algorithms, the aver-
age number of aborted transaction instances AAT increases as the total number
m of transactions increases. The more number of transactions are concurrently
performed, the more number of transactions cannot lock replicas. Hence, the
number of aborted transactions instance increases in the EEQS and random
algorithms. For 0 < m ≤ 500, the average number of aborted instances AAT of
each transaction can be more reduced in the EEQS algorithm than the random
algorithm. The data access resources in the server cluster S can be more effi-
ciently utilized in the EEQS algorithm than the random algorithm. Hence, the
average execution time of each transaction can be shorter in the EEQS algorithm
than the random algorithm. As a result, the number of aborted transactions can
be more reduced in the EEQS algorithm than the random algorithm since the
number of transaction to be concurrently performed can be reduced.
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4.4 Average Total Energy Consumption of a Server Cluster

We evaluate the EEQS algorithm in terms of the average total energy con-
sumption [J] of the homogeneous server cluster S to perform the number m of
transactions. Let TECtm be the total energy consumption [J] to perform the
number m of transactions (0 ≤ m ≤ 500) in the server cluster S obtained in the
tm-th simulation. The total energy consumption TECtm is measured ten times
for each number m of transactions. Then, the average total energy consumption
ATEC [J] of the server cluster S is calculated as

∑10
tm=1 TECtm/10 for each

number m of transactions.
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Fig. 6. Average total energy consumption (ATEC) [KJ].

Figure 6 shows the average total energy consumption ATEC of the server
cluster S to perform the number m of transactions in the EEQS and random
algorithms. In the EEQS and random algorithms, the average total energy con-
sumption ATEC of the server cluster S increases as the number m of transac-
tions increases. For 0 ≤ m ≤ 500, the average total energy consumption ATEC
of the server cluster S can be more reduced in the EEQS algorithm than the
random algorithm. In the EEQS algorithm, each time a transaction Ti issues a
method op (∈ {r, w}) to an object oh, the transaction Ti selects a subset nSop

h

(⊆ Sh) of nQop
h servers which hold a replica oq

h of the object oh so that the
total processing energy consumption laxity of a server cluster S is the minimum.
In addition, the average execution time and the number of aborted instances
of each transaction can be more reduced in the EEQS algorithm than the ran-
dom algorithm. As a result, the average total energy consumption ATEC of the
server cluster S to perform the number m of transactions can be more reduced
in the EEQS algorithm than the random algorithm.

Following the evaluation, the total energy consumption of a server cluster,
the average execution time of each transaction, and the number of aborted trans-
actions in the EEQS algorithm can be maximumly reduced to 31%, 40%, and
65% of the random algorithm, respectively. Hence, the EEQS algorithm is more
useful than the random algorithm.
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5 Concluding Remarks

In this paper, we newly proposed the EEQS algorithm to select a quorum for
each method issued by a transaction in the quorum based locking protocol so
that the total energy consumption of a server cluster to perform methods issued
by transactions can be reduced. We evaluated the EEQS algorithm in terms
of the total energy consumption of a server cluster, the average execution time
of each transaction, and the number of aborted transactions compared with
the random algorithm. The evaluation results show the average total energy
consumption of a server cluster, the average execution time of each transaction,
and the average number of aborted transaction instances can be more reduced
in the EEQS algorithm than the random algorithm. Hence, the EEQS algorithm
is more useful than the random algorithm.
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