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Abstract. The proliferation of biological research data generated and
shared openly online is of huge benefit to the scientific community, but
there are often significant challenges to overcome before it can be inte-
grated from different sources and re-used to gain new knowledge. This
paper introduces BioGrakn, which is a graph-based deductive data-
base, combining the power of knowledge graphs and machine reason-
ing. BioGrakn illustrates how data can be aggregated and integrated,
modelled in all its complexity and contextual specificity, and extended
as needed. Built upon GRAKN.AI, it provides an integrated, intelligent
database for researchers handling complex data.
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1 Introduction

Nowadays, the amount of biological data available online has proliferated, but
this has been accompanied by enormous challenges arising from the need to
integrate and connect related information from different sources [1].

Common problems include locating resources, differing data formats, ambi-
guity and duplication, relationships between data and the sheer volume and
granularity of the information. As yet, there is no standard memorization and
query format for this kind of data, so each resource usually requires a different
approach to be properly handled.

Several classes of bio-molecular data, such as transcriptional regulatory net-
works and protein-protein interaction networks, interact as complex networks.
They can usually be modeled as graphs, where nodes (and their attributes)
model biological entities and edges contain relationships between these entities.
Since query languages play a key role in the success of databases, in order to
allow for efficient queries, these graphs can be stored either in relational or graph
databases [2], where the latter by their nature seem to be a natural choice.

Examples of the adoption of graph databases in bioinformatics are given by
ncRNA-DB [3], Bio4J [4], and BioGraphDB [5].
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ncRNA-DB is a NoSQL database based on OrientDB [6] that combines many
biological resources to deal with several classes of ncRNA such as miRNA, long-
noncoding RNA (lncRNA), circular RNA (circRNA) and their interactions with
genes and diseases.

Bio4j is based on a Java library and is an integrated cloud-based data plat-
form, built upon a graph structure on top of Neo4J [7]. For now, it includes data
about proteins, GO and enzymes.

Lastly, BioGraphDB integrates several types of data sources to perform bioin-
formatics analysis using a comprehensive system built on top of OrientDB. It
includes data about genes, proteins, microRNAs, molecular pathways, functional
annotations, and associations between microRNAs and cancer diseases.

No matter the chosen underlying architecture (relational or NoSQL graphs),
every solution should also address the major issue of semantic integrity, that is,
interpreting the real meaning of data derived from multiple sources or manipu-
lated by various tools [8].

In the biological sciences, Semantic Web database technologies have seen
significant adoption over the past decade, with some of the most fundamental
and broadly known resources are being the EBI RDF platform [9], BioPortal
[10], and Pathway Commons [11]. The uptake of these types of system has been
summarized by Pasquier [12], who goes on to analyze the improvements needed
before the Semantic Web is taken up by the majority of life science researchers.

Similarly, Livingston et al. describe the problems that persist in data inte-
gration, providing a case study of a knowledge base built on 18 large biomedical
data sources [13]. KaBOB (the Knowledge Base of Biomedicine) is an integrated
knowledge base of biomedical data and allows the underlying data to be queried
in terms of biomedical concepts (e.g., genes and gene products, interactions and
processes). KaBOB illustrates the concepts of shared identity and shared mean-
ing across heterogeneous biomedical data sources.

Here, we introduce BioGrakn, based on GRAKN.AI [14], which is a deductive
database in the form of a knowledge graph, allowing complex data modelling,
verification, scaling, querying and analysis.

The database behind GRAKN.AI uses an ontology to facilitate the mod-
elling of extremely complex datasets, functioning as a data schema constraint to
guarantee information consistency. GRAKN.AI stores data in a way that allows
machines to understand the meaning of information in the complete context of
their relationships. Consequently, the semantic layer of Grakn allows computers
to process complex information more intelligently, with less human intervention.

2 GRAKN.AI

GRAKN.AI is composed of two parts: Grakn (the storage), and Graql (a declar-
ative query language).
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2.1 Grakn

Grakn is built using several graph computing and distributed computing plat-
forms, such as Apache TinkerPop and Apache Spark. Grakn is designed to be
sharded and replicated over a network of distributed machines. The underlying
data structure of Grakn is that of a labelled, directed hypergraph (Fig. 1).

Fig. 1. The GRAKN.AI architecture

Grakn exposes a high-level knowledge model, allowing developers to repre-
sent their application domain as an ontology, specifying it in terms of entities,
resources, relations, and roles. Grakn’s ontology modelling constructs include,
but are not limited to, data type hierarchy, relation type hierarchy, bi-directional
relationships, multi-type relationships, N-ary relationships, relationships in rela-
tionships, and so on. Therefore, Grakn can model the real world and all the
hierarchies and hyper-relationships contained within it.

2.2 Graql

Graql is a declarative, knowledge-oriented graph query language that uses
machine reasoning to retrieve explicitly stored and implicitly derived knowledge
from Grakn.

When using legacy systems, database queries have to define explicitly the
data patterns they are looking for. Graql, on the other hand, will translate a
query pattern into all its logical equivalents and evaluate them against the data-
base. This includes, but is not limited to, the inference of types, relationships,
context, and pattern combination. In this way, Graql can derive implicit informa-
tion with concise and intuitive statements, reducing the complexity of expressing
intelligent questions.
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In Graql, there are different types of queries available: for matching patterns
in the graph, inserting or deleting types and instances, and for computing useful
information about the graph, such as statistics or shortest path between nodes.1

Two inference mechanisms are supported: type inference, based on the seman-
tics defined in the ontology, and rule-based inference, that involves rules defined
by expressions of the form lhs G1 rhs G2, where G1 and G2 are a pair of Graql
patterns. Whenever the left-hand-side (lhs) pattern G1 is found in the data,
the right-hand-side (rhs) pattern G2 can be assumed to exist and optionally
materialized (inserted).

3 Data Sources

The data sources selected for database population are almost the same as those
used by BioGraphDB. This way, we can build an integrated database containing
resources related to genes, proteins, miRNAs, and metabolic pathways.

Getting into the details, we have considered the following:

(1) NCBI Entrez Gene [15]: provides a lot of genes data, such as interactions
with other genes, genomic context, annotated pathways, and so on.

(2) Gene Ontology (GO) [16]: provides annotations for gene products in bio-
logical processes, cellular components and molecular functions.

(3) UniProt Knowledgebase (UniprotKB) [17]: the largest public collection of
annotated functional information on proteins.

(4) Reactome [18]: contains validated metabolic pathways, each annotated as
a set of biological events, dealing with genes and proteins.

(5) miRBase [19]: provides all the known miRNAs sequences and annotations,
associated with names, keywords, genomic locations, and references.

(6) mirCancer [20]: contains associations between miRNAs and human cancers.
(7) miRNASNP [21]: aims to provide a resource of the miRNA-related muta-

tions (SNPs) for human and other species.
(8) mirTarBase [22]: list of experimentally validated miRNA-target interac-

tions.
(9) miRanda [23]: list of putative miRNA-target interactions.

(10) HGNC [24]: the HUGO Gene Nomenclature Committee database contains,
for each gene symbol, a list of synonyms and a list of corresponding entries
in the most popular genes databases.

Many of the above are supplied in tab-separated values (TSV) format, a
simple text format for storing data in a tabular structure where each record in
the table is one line of the text file, and each field value of a record is separated
from the next by a tab character. By contrast, miRBase, GO, and UniprotKB
are distributed as EMBL text file format [25] and XML format, respectively.

1 Further information about syntax and keywords used by Graql can be found in
https://grakn.ai/pages/documentation/graql/graql-overview.html.

https://grakn.ai/pages/documentation/graql/graql-overview.html
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4 BioGrakn

4.1 The Ontology

The ontology is a formal specification (in Graql) of all the relevant concepts and
their meaningful associations in our domain. It must be clearly defined before
loading data into the graph. This allows objects and relationships to be cate-
gorized into distinct types, enabling automatic reasoning over the represented
knowledge, such as inference (extraction of implicit information from explicit
data) and validation (discovery of inconsistencies in the data).

Grakn ontologies use four types of concepts for modeling domain knowledge.
The categorization of concept types is enforced by declaring every concept type
as a subtype of exactly one of the four corresponding built-in concept types:
entity, relation, role, and resource.

Given the data sources considered in this work, our biological information
has been associated to concepts, such as the ad-hoc defined subtypes shown in
Table 1.

Table 1. Associations between Graql concepts, subtypes and biological information

Concept Defined subtype Biological information Source

Entity gene genes NCBI Entrez Genes

go functional annotations Gene Ontology

protein proteins UniProtKB

pathway pathways Reactome

mirna miRNA precursors miRBase

mirnaMature miRNA matures miRBase

mirnaSNP miRNA SNPs miRNASNP

cancer cancers mirCancer

proteinAccession proteins accessions UniProtKB

geneName genes symbols HGNC

interaction miRNA-target interactions mirTarBase, miRanda

Relation annotation links to annotated entities Gene Ontology

containing links to entities contained in
pathways

reactome

precursorOf precursors-matures relations miRBase

regulation regulations of miRNAs in
cancers

mirCancer

snpMutation miRNA-mutations relations miRNASNP

entity Reference relations for entities synonyms UniProtKB, HGNC

encoding genes-proteins coding HGNC

interactionMiRNA miRNAs-interactions relations mirTarBase, miRanda

interaction—Gene genes-interactions relations mirTarBase, miRanda
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4.2 Data Import

Two ways are supported for migrate data into a Grakn graph, the native migra-
tion capabilities and the Loader Client API. Both require the preliminary defi-
nition of an ontology for the data in Graql.

The former currently supports migration of CSV, JSON, OWL and SQL
data. First, in order to map the data to the ontology, some Graql templates
must be created. Then, it is possible to invoke the Grakn migration facilities
through the shell or the migration API.

Even though most of the considered data sources are supplied in TSV format,
a variant of CSV, their complexity and the extreme abundance of data and
external references haven’t allowed us to create related templates easily and
quickly. Also, EMBL and XML source data files are not supported.

For this reason, we have developed an ad-hoc set of Extract-Transform-Load
(ETL) tools. They have been written in Java and use the Loader Client API, in
order to load large quantities of data into BioGrakn using multithreaded batch
loading.

Data consistency and proper relations between entities are guaranteed by
precise order of execution of the ETLs. This way, when a data source also refers
to others, the presence in the database of all the depending resources is assured.

5 Results

In this section, we briefly introduce some illustrative queries and results repre-
senting typical bioinformatics problems, starting from the simplest.

5.1 Search for Genes Linked to a Particular Gene Ontology
Annotation

Let’s consider the Gene Ontology annotation “platelet activating factor biosyn-
thetic process”, that has GO:0006663 as identifier. In order to find annotated
genes, the annotation relation, with the functional annotation member equal to
our starting identifier, points out all the related annotated entities, from which
we extract the genes, printing their symbols and names. The following Graql
query returns the desired results, shown in Fig. 2 in graph form:

5.2 Search for Pathways Linked to a Particular Gene

At a first sight, this seems like the previous problem. However, genes cannot
be directly linked to pathways, because Reactome just provides pathway-to-
proteins associations. Therefore, we have to go through two relations: encoding,
that links genes to proteins, and containing, that links pathways to proteins.
Thus, the Graql query is formed as follows (Fig. 3):
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Fig. 2. Graphic results of a search for genes linked to GO annotation GO:0006663.

Fig. 3. Graphic results of a search for pathways linked to gene LYPLA1.

5.3 Differentially Expressed miRNAs Having SNPs in Cancer

Starting from a specific cancer, such as, for example, the colorectal cancer, we
want to find all the up-regulated differentially expressed (DE) miRNAs that
also have validated mutations. Because we are just interested in SNPs existence
instead of their details, we can exclude them in the output, by selecting only
entities of interest. Results for the following query are shown in Fig. 4:
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Fig. 4. Looking for DE miRNAs having SNPs for “colorectal cancer”.

5.4 Reasoning on Our Biological Data

It is interesting to note how queries can be rearranged when using inference
rules, especially the ones corresponding to typical query templates used in the
domain of biological sciences.

For instance, considering the example in Subsect. 5.2, we have the following
statements, that can be seen as a set of premises:

Thus, it is possible to infer the following fact :

Therefore, we can write an inference rule that infers genes-pathways links:

This rule allows us to rewrite the query reported in Subsect. 5.2 this way:

As expected, the graphic results now show direct links from gene to pathways
(Fig. 5).

Similarly, we can heavily rewrite the query in Subsect. 5.4 thanks to an infer-
ence rule like this:



BioGrakn 307

Fig. 5. Graphic results of reasoning on gene-pathways links.

The rewritten query and its results are shown below (Fig. 6).

Fig. 6. Graphic results of reasoning on cancers and miRNAs with SNPs.

6 Conclusions and Future Works

In this paper, we propose BioGrakn, a graph-based semantic database that takes
advantage of the power of knowledge graphs and machine reasoning, to solve
problems in the domain of biomedical science. The database has been designed
to overcome problems related to the lack of a structural organization and interop-
erability of publicly available biological resources, ensuring the semantic integrity
of data by design.
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BioGrakn has been built on top of GRAKN.AI, a distributed knowledge
graph database which allows complex data modeling, verification, scaling, query-
ing and analysis. A key step is the definition of an ontology, which facilitates the
modeling of complex datasets and guarantees information consistency.

Inference rules allow the extraction of implicit information from explicit data,
to achieve logical reasoning over the represented knowledge.

In the short term, further developments are expected, such as the integration
of other publicly available biological resources, the use of the native GRAKN.AI
migration tools for data migration procedures, and the deployment of an user-
friendly web interface.
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