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Abstract. First standardization initiatives of the Cyber-Physical Systems
(CPS) paradigm face a type of solutions with a top-down approach. In this view,
user services and applications are transformed, decomposed and delegated until
they are finally executed by hardware devices. However, most works do not
describe the final execution phase, when a certain device is selected to perform an
action. Therefore, in this paper we describe a management solution to coordinate
the execution of low-level services in CPS. The solution employs a probabilistic
selection technique based on the concept of Cost and Quality-of-Service, and
includes both an orchestration algorithm and a choreography procedure. The
proposal includes, moreover, a general framework explaining all the manage-
ment levels and an experimental validation which evaluates the performance of
the proposed technology.
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1 Introduction

Cyber-Physical Systems (CPS) are integrations of physical and computational pro-
cesses [1]. This general definition, however, does not allow describing a uniform
architecture or implementation, so several proposals may be found [2, 3]. In this
context, various authors and standard organizations are trying to fix the CPS paradigm
defining different reference architectures. One of the most important it is the NIST
architecture [4]. On the other hand, all these proposals follow a top-down approach. In
these systems, firstly, user applications and services are defined at high-level and, later,
they are transformed, decomposed and delegated in order to request hardware devices
to perform the corresponding actions [5].
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Most steps in this execution process have been discussed previously in many
articles. Several contributions about task delegation [6], workflow decomposition [7] or
service matchmaking [8] may be found. However, all these proposals are, at the end,
based on a virtualized hardware platform which is implemented, traditionally, in a
gateway or controller [5]. This component receives service invocations through a
uniform interface and resolves the execution using the virtual hardware. This solution,
nevertheless, does not meet the requirements of a real scenario, where real hardware
devices with very heterogeneous and (most time) proprietary interfaces are included.
Moreover, current systems tend to be ubiquitous, so hardware platforms present many
redundancies (devices with the same functions). In this context, a solution to manage
the service execution at low-level it is needed. The proposed solution should be able to
collect information about hardware devices and, using it, decide the particular element
which must execute each action (sending the corresponding order to it, using the
adequate message and/or interface).

Therefore, in this paper a technology to manage the low-level service execution in
CPS is proposed. The solution considers a first data collection process employed to
determine the execution cost and the Quality-of-Service (QoS) offered by each device.
Then, using a probabilistic selection procedure it is dynamically selected the device in
charge of executing each action. Depending on the implementation, selected devices
may delegate the execution (a paradigm usually named as choreography) or the
hardware manager (see Fig. 2) must coordinate the entire process (orchestration).

The rest of the paper is organized as follows: Sect. 2 describes the technical pro-
posal including a first general framework and a mathematical formalization. Section 3
includes the experimental validation of the proposed technology, and Sect. 4 shows the
obtained results. Finally, Sect. 5 presents some conclusions.

2 Formalization of the Proposed Solution

In the most general scenario, Cyber-Physical Systems implement the architecture
showed on Fig. 1(a). Each CPS acts as a networked autonomous system, connected
with other CPS by means of the called Cyber-Physical Internet (CPI). Basically, the
CPI includes a central service management infrastructure containing a service reposi-
tory and a service manager. These components maintain the list of available services,
publicly offered by CPS to be invoked from other CPS. The manager must (among
other functionalities) determine (using, for example, semantic annotations [10]) if
different services are really the same and response the queries about the stored services
in the repository. The CPI, moreover, represents the backbone (usually the public
Internet) which connects and communicates the different CPS among them and with the
CPI infrastructure.

Then, each individual CPS relates with the CPI through an Intersystem commu-
nication interface which feeds the Execution system, together with the local Domain
expert environment. Finally, a physical platform is in charge of the final execution. This
layer may include different types of hardware devices (sensors, actuators, legacy sys-
tems, etc.) and different controllers. In this context, a service management solution for
CPS should be composed of three different layers (see Fig. 1(b)). The Connection level
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represents all the required procedures to integrate the peripherals with the central
microcontroller of each device (physical connection) [9]; and the solution which
connects each device with the other cyber-physical devices and with the hardware
manager (interoperability). Interoperability mechanisms may be implemented in the
microcontroller of each device or in an external broker (or hardware controller). The
second level (Logical level) includes the coordination technologies employed by the
hardware manager (see Fig. 2) to execute low-level services using the underlying
hardware platform (or virtual components if also considered). Logical solutions include
device selection, low-level service delegation, etc.

The proposed technology in this paper belongs to this level. Finally, service level
integrates all the service-focused technologies which transform low-level services
(sometimes called hardware services) into more abstracted entities nearest human
comprehension (Local management level) and share resources publicly with other CPS
through the CPI (Cyber-Physical Internet). Typically, three different service abstraction
layers are considered: production level (which integrates services with a direct corre-
spondence with hardware services), business level (representing services expressed into
any technical executable language) and prosumer level (where services are described
using any domain description language). As said above, mapping the previously
described works (see the Introduction) into the proposed architecture for service
management in CPS, it may be proved that the cited gap in CPS research corresponds
exactly with the Logical level. Therefore, this paper describes a logical level tech-
nology. This technology includes three different procedures: hardware monitoring,
service execution through individual management and service execution through group
management.

Fig. 1. (a) Typical CPS architecture (b) architecture of a service management solution in CPS

862 B. Bordel et al.



2.1 Hardware Monitoring

The proposed technology follows the best effort paradigm, as it is considered that
services do not include any indication about the QoS. However, in order to optimize the
resource consumption, the proposed device selection for service execution it is not
random, but it considers the current state of the hardware platform. Then a hardware
monitoring process must be considered. Two types of information are included: the
execution cost Q and a collection of hardware operation quality indicators R (such as
availability). Figure 2 presents a functional architecture of the application scenario.

Information about hardware is provided by hardware controllers (the components
which implement the interoperability functions), so costs are different for each service
and location (i.e. hardware controller). Mathematically, then, costs are a set of sets (1)
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where N is the number of hardware controllers andMi the number of services in the i-th
hardware controller. Thus qij is the execution cost of the j-th service in the i-th location.

On the other hand, for each location and service, a set of values is employed as

hardware operation quality indicators (2). Thus, mathematically, a triple nested list
represents the quality indicators (3)
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where R is the number of considered indicators. Quality indicators (such as response
time or availability) may be directly measured, and/or present very well-known

Fig. 2. Functional architecture of the application scenario
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expressions [11]. However, the execution cost must be obtained through a proprietary
procedure (4).

qij ¼ fcost qijuser ; q
i
jhardware

� �
ð4Þ

The cost of the j-th service in the i-th location is obtained through a cost function
which considers two contributions: a cost specified by the administrator qijuser (employed
to penalize certain equipment, do load balancing, etc.) and a hardware cost representing
the resource consumption qijhardware . Depending if both contributions are independent or
if they can compensate each other, the cost function may be a weighted arithmetic
mean (5) or a geometric mean (6).

fcost �; �ð Þ ¼ k1q
i
juser þ k2q

i
jhardware ð5Þ

fcost �; �ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qijuser � qijhardware

q
ð6Þ

Finally, the hardware cost is obtained as a weighted mean of a collection of
resource consumption indicators wk (such as the battery consumption or the required
processing time). These indicators must be defined to take values in the interval 0; 1½ �,
being 1 the value indication a higher cost (7).

qijhardware ¼
X
k

bk � wk ð7Þ

In Sect. 3 we propose some particular examples of the named resource consump-
tion indicators.

2.2 Service Execution Through Individual Management

Low-level services may be classified into various different classes attending to it
geographical requirements (see Fig. 3).

Fig. 3. Service classification depending on the geographic requirements
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Unitary services are those which must be executed entirely in the same location (i.e.
by the same hardware controller). Services which may be decomposed in parts to be
executed in different controllers are divisible. On the other hand, geographic services
must be executed in one particular location (geographically strict services) or in any of
the location belonging to a certain group (geographically limited services). Geographic
services must be complemented with metadata about the geographic restrictions.
Non-geographic services may be executed in any location or hardware controller.

When a service invocation arrives to the hardware manager, it determines the group
of locations L which may execute the service (depending on the geographic restrictions
and the capabilities of each controller). Then, the set of locations L is considered as the
sample space of a multidimensional random variable X . Each one of the dimensions in
this random variable corresponds with one quality indicator (see subsection A) or with
the execution cost. Then the variable X presents Rþ 1 dimensions. As physically all
dimensions are independent, they are also statistically independent, and (then) the
probability density function for the i-th service may be easily calculated (8).

fX ‘j
� � ¼ q j

iP
j q

j
i

�
YR
k¼1

ri;jkP
j r

i;j
k

ð8Þ

In order to make all quantities comparable, all indicators and cost should be
mapped into the same interval. Once built the probability function, different strategies
may be followed to execute the service. In this section we are considering the hardware
manager interacts individually with the hardware controllers.

Figure 4 represents various message sequence charts describing the whole proce-
dure. We are explaining briefly each step:

1. The hardware manager selects the execution location (i.e. the hardware controller)
following the probability function previously calculated.

2. The hardware manager sends the proper execution order to the selected hardware
controller using the adequate data format and communication technology. Typi-
cally, a byte-oriented proprietary protocol [12] and low-energy communications
(such as 802.15.4 [13]) will be employed.

3. If the selected hardware controller can execute the requested service, then the
execution is successful in one step (Case A, see Fig. 4). It performs the proper
actions and returns the result to the hardware manager.

4. If the execution order cannot be executed, but the controller has resources to
manage the petition, two different possibilities appear. If, at the interoperability
level, a choreography algorithm is implemented, then the hardware controller may
delegate the service execution to other location (if exists). This secondary hardware
controller (HC) will execute the service and will send the result to the hardware
manager (case B). If choreography algorithms are not available, the selected
hardware controller (hardware controller #k on Fig. 4) should send a rejection
message to the hardware manager (HM). At this point, the HM acts as orchestrator
and removes this HC from the list of possible execution locations L, recalculates the
probability function and performs a new selection (case C). This process may be
repeated as many times as needed.
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5. Sometimes, HCs may get congested and execution orders cannot be neither per-
formed nor managed. No response to the hardware manager is then sent. In order to
resolve these situations, each time an execution order is sent, the HM activates a
timer. If at the timeout no response is received (case D), the state of the hardware
platform is updated (services offered by that HC are declared unavailable, the
timeout is increased, etc.); and a new selection (removing the unavailable location)
is performed.

6. Finally, in some occasions, the HC may send a result to the hardware manager after
the timeout (case E). At the reception, this results is discarded (a new execution
order was sent), but the hardware platform state in updated once more (declaring
available the services of this HC but with a greater response time).

As main advantage of this solution, the execution effort is very balanced among all
the available devices, and the execution time of a low-level service may be reduced to a
minimum (for a successful execution in one step). However, this execution time is very
variable, and grows much if it is necessary to order the same execution several times.
Equation (9) represents a general expression for the mean execution time when using
this first proposal.

Texe ¼ 1� pð Þ 2Tcom þ Tproc
� �þ Xn�1

k¼1

1� pð Þpk 2Tcom þ Tproc þ k Tfail
� �þ pnn Tfail 8n� 2 ð9Þ

Where p is the probability that a HC refuses or that it does not answer to an
execution order. Tcom is the required time to communicate a HC and the HM. Tproc is
the needed time by a HC to perform the actions related to a certain service. And Tfail is

Fig. 4. Message sequence charts (service execution through individual management)
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the mean time needed by the HM to notice a HC is not going to execute a service (for
example, Tfail ¼ 2Tcom if a rejection message is sent). Finally, n is the number of HC
which may execute the low-level service. Figure 5(a) represents graphically Eq. (9) for
different values of n and p. As can be seen, the execution time may grow up a 230%
(p ¼ 0:85). Some applications, however, do not tolerate these variations in the exe-
cution time, and a more stable solution is required. This problem is addressed with the
second proposed algorithm.

2.3 Service Execution Through Group Management

The basic idea of this second procedure is to introduce a first additional phase, where
the hardware manager asks various hardware controllers if they are able to execute a
certain low-level service.

When a service invocation arrives to the HM, it selects a group of U hardware
controller which may execute this service (following the probability function described
in the previous section). If the total amount of HC which may execute the service in the

system is V , then a total of
U
V

	 

groups can be defined. Then (see Fig. 6) an exe-

cution petition is sent to all these HC. The hardware manager waits for the responses (a
timer is launched in order to avoid blocking situations) which may accept the petition
(offering some additional information, the expected processing time, for example) or
reject the offer. Depending in the responses, the hardware platform state may be
updated.

Finally, considering the HC which accept the execution petition it is constructed (in
the HM) a new probability function in order to determine the device which must
execute the service. From this point, the procedure continues as described in the case of
a service execution through individual management

The additional initial phase makes the mean execution time greater, but much more
stable (10–12). Figure 5(b) represents graphically the evolution of the mean execution

Fig. 5. (a) Graphical representation of the execution time: Eq. (9) (b) graphical representation of
the execution time: Eqs. (10–12)
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time for different values of m and p. As can be seen, in this case, there is only a 25%
variation between the best and the worst situation (in the previous procedure the
equivalent value was around a 250%), although times are higher.

Texe ¼ 1� qð ÞTsuccess þ
Xm�1

k¼1

1� qð Þqk Tsuccess þ k Tfail
� �þmTfail 8m� 2 ð10Þ

Tsuccess ¼ ð2Tcom þ TprocÞþ 2Tcom þ Tdec ð11Þ

q ¼
YU
k¼1

p ð12Þ

Where Tdec is the time employed by the HM to construct the additional probability
functions, andm is the number of groups whichmay be createdwith theU HCswhich can
execute a service. Considering any of the proposed management procedures, if no
hardware controller may execute the service there are two alternatives. If the service is
unitary, then the invocation is refused and an error is returned to the higher level.
However, if the service is divisible, then, the HMmay decompose the service and employ
any of the previously described procedures which its parts. Any case, if any of the parts
cannot be executed, the entire invocation is refused and an error is returned by the HM.

3 Experimental Validation

An experimental validation was designed in order to validate the proposal and analyze
the performance of the proposed technology. The experimental validation consisted of
a simulated scenario based on the NS3 simulator. The deployed architecture contained

Fig. 6. Message sequence chart (service execution through group management)
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one hardware manager, fifteen hardware controllers and one hundred and ten
(110) sensors and actuators (homogeneously distributed among the hardware
controllers).

In order to implement the described procedures in the components of the simulated
scenario, each node in the NS3 simulator was provided with ghost node connecting
with a tap bridge. These noes and bridges are able to connect an internal NS3 com-
ponent with an external entity, which allows implementing in a very easy way complex
algorithms and other proprietary solutions for which there are no libraries. In particular,
the hardware manager and the hardware controller were connected with virtual Linux
machines based on the KVM technology. Sensors and actuators were created by means
of Simulink software and deployed in a new virtual Linux machine connected with the
NS3 nodes.

Hardware controllers were connected with hardware manager by means of a
Bluetooth backbone. An XML-based solution was employed as data format for this
communications (HM-HC). The connection among sensors and hardware controller
was resolved using the IEEE 1451 technology [14]. Figure 7 represents the planned
scenario and the simulator configuration. All costs defined by users were fixed to the
value of the unit quser ¼ 1. Contributions in the cost calculation were considered
independent, so the cost function fcost �; �ð Þ was defined as the arithmetic mean.

The cost due to hardware considerations was understood as the arithmetic mean of
two indicators: the battery consumption wbat and the occupied memory wmem (13, 14).
All services in the system were defined as unitary and non-geographic.

wbat ¼
reduction in the battery charge

total battery capacity
ð13Þ

wmem ¼ occupied memory
total installed memory

ð14Þ

Finally, two different experiments were performed. During the first experiment
connections among components were considered permanent, and losses in the Blue-
tooth backbone were increased progressively. The execution time was monitored when
employing an individual management approach. During the second experiment,

Fig. 7. Simulation scenario
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connections were considered ephemeral. The number of successful communications
and the service execution time were monitored when employing both described pro-
cedures. Results were compared.

4 Results

In this section we present the results obtained in the experimental validation. Figure 8
(a) represents the results of the first experiment. As can be seen, the execution time
grows monotonously. As the losses rate goes up, the number of necessary iterations to
perform a successful execution grows, so the execution time increases. The variation is,
as indicated in theory, near two magnitude orders. The evolution law is almost linear.
On the other hand, in regular situations (networks without congestion) the execution
time is very low (around 0.1 normalized temporal units).

In Fig. 8(b), the results of the second experiment compare the evolution in the
execution time obtained for the first procedure (individual management) and for the

Fig. 8. (a) Results of the first experiment (b) results of the second experiment (execution time)
(c) results of the second experiment (successful executions)
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second one (group management). Groups of hardware controllers are made of five
elements. As seen in theory, the execution time is higher when considering group
management (in the best situation the execution time grows seven times). However, as
showed on Fig. 8(b), the evolution law is almost constant, so almost no variations in
the execution time are suffered.

This approach is very useful in scenarios involving ephemeral connections (as in
mobile wireless sensor networks). These connections may tolerate a higher execution
time, but variations are badly supported. Figure 8(c) shows the improvement in the
number of successful communications (around a 50% increase).

5 Conclusions

Cyber-physical Systems require a solution for low-level service management. This
solution must address the required procedures to finally associate a service execution
with a hardware device.

In this paper we have proposed a low-level service management technology based
on three different procedures. This solution belongs to the level named as “logic” in the
proposed general framework. The first procedure considers a hardware monitoring
process in order to evaluate the hardware platform state. The second one describes a
service management and execution method based on individual management. Finally, a
solution for service execution based on group managements is also proposed.

The experimental validation showed that individual management provides a very
low execution time in the best case, but this time grows very fast if the situation of the
hardware platform gets worse. In this cases a group management generates a higher
execution times but much more stable.
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