
Chapter 3
Regularity Theory for Local and Nonlocal
Minimal Surfaces: An Overview

Matteo Cozzi and Alessio Figalli

Abstract These notes record the lectures for the CIME Summer Course held by
the second author in Cetraro during the week of July 4–8, 2016. The goal is to
give an overview of some classical results for minimal surfaces, and describe recent
developments in the nonlocal setting.

3.1 Introduction

Let 1 6 k 6 n � 1 be two integers and � � R
n be a .k � 1/-dimensional, smooth

manifold without boundary. The classical Plateau problem consists in finding a k-
dimensional set † with @† D � such that

Area.†/ D min
n

Area.†0/ W @†0 D �
o
: (3.1)

Here, with the notation Area.�/ we denote a general “area-type functional” that we
shall specify later. We will consider two main examples: one where the area is the
standard Hausdorff k-dimensional measure, and one in which it represents a recently
introduced notion of nonlocal (or fractional) perimeter.

We stress that we do not have a well-defined nonlocal perimeter for
k-dimensional manifolds with k 6 n � 2. Moreover, even in the codimension 1

case, we need † to be the boundary of some set in order to be able to define its
fractional perimeter. Therefore, to make the parallel between the local and the
nonlocal theories more evident, we shall always focus on the setting

k D n � 1 and † D @E; with E � R
n n-dimensional:
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In the forthcoming sections, we will outline several issues and solutions relevant
to this minimization problem.

Most of these notes will be devoted to presenting the main ideas involved in the
case of the traditional area functional. Then, in the last section, we will briefly touch
on the main challenges that arise in the nonlocal setting.

Remark 3.1.1 In these notes, we shall say that a surface is “minimal” if it minimizes
the area functional. This notation is not universal: some authors call a surface
“minimal” if it is a critical point of the area functional, and call it “area minimizing”
when it is a minimizer.

3.1.1 The Minimization Problem

Given a bounded open set � � R
n with smooth boundary and a .n�2/-dimensional

smooth manifold � without boundary, we want to find a set E � R
n satisfying the

boundary constraint

@E \ @� D �;

and minimizing

Area.@E \ �/;

among all sets E0 � R
n such that @E0 \ @� D � .

Note that it is very difficult to give a precise sense to the intersection @E \ @�

when E has a rough boundary. In order to avoid unnecessary technical complications
related to this issue, we argue as follows. For simplicity, we shall assume from now
on that � is equal to the unit ball B1, but of course this discussion can be easily
extended to the general case.

Fix a smooth n-dimensional set F � R
n such that @F \ @B1 D � . Instead of

prescribing the boundary of our set E on @B1, we will require it to coincide with F
on the complement of B1. That is, we study the equivalent minimization problem

min
n

Area.@E \ B1/ W E n B1 D F n B1

o
: (3.2)

Still, there is another issue. It may happen that a non-negligible part of @E is not
insideB1, but on the boundary of B1 (see Fig. 3.1). As a consequence, this part would
either contribute or not contribute to Area.@E\B1/, depending on our understanding
of B1 as open or closed.

In order to overcome this ambiguity, we consider the slightly different minimiza-
tion problem

min
n

Area.@E \ B2/ W E n B1 D F n B1

o
: (3.3)
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Fig. 3.1 An example of a boundary @E that sticks to the sphere @B1 on a non-negligible portion of
it

Observe that, in contrast to (3.2), we are now minimizing the area inside the larger
open ball B2. In this way, we do not have anymore troubles with sticking boundaries.
On the other hand, we prescribe the constraint outside of the smaller ball B1. Hence,
in (3.3) we are just adding terms which are the same for all competitors, namely the
area of @F inside B2 n B1. Notice that (3.3) is equivalent to

min
n

Area.@E \ B1/ W E n B1 D F n B1

o
:

However, as we shall see later, (3.3) is “analytically” better because the area inside
an open set will be shown to be lower-semicontinuous under L1

loc-convergence (see
Proposition 3.2.3).

Now, the main question becomes: what is the area? For smooth boundaries, this
is not an issue, since there is a classical notion of surface area. On the other hand,
if in (3.3) we are only allowed to minimize among smooth sets, then it is not clear
whether a minimizer exists in such class of sets. Actually, as we shall see later,
minimizers are not necessarily smooth! Thus, we need a good definition of area for
non-smooth sets.

3.2 Sets of Finite Perimeter

The main idea is the following: If E has smooth boundary, then it is not hard to
verify that

Area.@E/ D sup

�Z

@E
X � �E W X 2 C1

c .R
nIRn/; jXj 6 1

�
; (3.4)
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where �E denotes the unit normal vector field of @E, pointing outward of E. Indeed,
if @E is smooth, one can extend �E to a smooth vector field N defined on the
whole R

n and satisfying jNj 6 1. By setting X D �RN, with �R a cutoff function
supported inside the ball BR, and letting R ! 1, one is easily led to (3.4).

Since, by the divergence theorem,

Z

@E
X � �E D

Z

E
divX;

we can rewrite (3.4) as

Area.@E/ D sup

�Z

E
divX W X 2 C1

c .R
nIRn/; jXj 6 1

�
:

Notice that we do not need any regularity assumption on @E for the right-hand side
of the formula above to be well-defined. Hence, one can use the right-hand side as
the definition of perimeter for a non-smooth set.

More generally, given any open set � � R
n, the same considerations as above

show that

Area.@E \ �/ D sup

�Z

E
divX W X 2 C1

c .�IRn/; jXj 6 1

�
: (3.5)

Again, this fact holds true when E has smooth boundary. Conversely, for a general
set E, we can use (3.5) as a definition.

Definition 3.2.1 Let � � R
n be open and E � R

n be a Borel set. The perimeter
of E inside � is given by

Per.EI �/ WD sup

�Z

E
divX W X 2 C1

c.�IRn/; jXj 6 1

�
:

When � D R
n, we write simply Per.E/ to indicate Per.EIRn/.

Note that Per.EI �/ is well-defined for any Borel set, but it might be infinite. For
this reason, we will restrict ourselves to a smaller class of sets.

Definition 3.2.2 Let � � R
n be open and E � R

n be a Borel set. The set E is said
to have finite perimeter inside ˝ if Per.EI ˝/ < C1. When ˝ D R

n, we simply
say that E has finite perimeter.

With these definitions, the minimization problem becomes

min
n

Per.EIB2/ W E n B1 D F n B1

o
: (3.6)

Of course, since F is a competitor and Per.F;B2/ < C1, in the above minimization
problem it is enough to consider only sets of finite perimeter.
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In the remaining part of this section we examine two fundamental properties of
the perimeter that will turn out to be crucial for the existence of minimizers: lower
semicontinuity and compactness.

3.2.1 Lower Semicontinuity

In this subsection, we show that the perimeter is lower semicontinuous with respect
to the L1

loc topology. We recall that a sequence of measurable sets fEkg is said to
converge in L1.�/ to a measurable set E if

�Ek �! �E in L1.�/;

as k ! C1. Similarly, the convergence in L1
loc is understood in the above sense.

The statement concerning the semicontinuity of Per is as follows.

Proposition 3.2.3 Let � � R
n be an open set. Let fEkg be a sequence of Borel sets,

converging in L1
loc.�/ to a set E. Then,

Per.EI �/ 6 lim inf
k!C1 Per.EkI �/:

Proof Clearly, we can assume that each Ek has finite perimeter inside �. Fix any
vector field X 2 C1

c.�IRn/ such that jXj 6 1. Then,

Z

E
divX D

Z

�

�E divX D lim
k!C1

Z

�

�Ek divX D lim
k!C1

Z

Ek

divX:

Since by definition

Z

Ek

divX 6 Per.EkI �/ for any k 2 N;

this yields

Z

E
divX 6 lim inf

k!C1 Per.EkI �/:

The conclusion follows by taking the supremum over all the admissible vector
fields X on the left-hand side of the above inequality. ut

Lower semicontinuity is the first fundamental property that one needs in order to
prove the existence of minimal surfaces. However, alone it is not enough. We need
another key ingredient.
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3.2.2 Compactness

Here we focus on a second important property enjoyed by the perimeter. We prove
that a sequence of sets having perimeters uniformly bounded is precompact in
the L1

loc topology. That is, the next result holds true.

Proposition 3.2.4 Let � � R
n be an open set. Let fEkgk2N be a sequence of Borel

subsets of � such that

Per.EkI �/ 6 C (3.7)

for some constant C > 0 independent of k. Then, up to a subsequence, Ek converges
in L1

loc.�/ to a Borel set E � �.
The proof of the compactness result is more involved than that of the semiconti-

nuity. We split it in several steps.
First, we recall the following version of the Poincaré’s inequality. We denote

by .u/A the integral mean of u over a set A with finite measure, that is

.u/A WD �
Z

A
u D 1

jAj
Z

A
u:

Also, Qr denotes a given (closed) cube of sides of length r > 0.

Lemma 3.2.5 Let r > 0 and u 2 C1.Qr/. Then,

Z

Qr

ju � .u/Qr j 6 Cnr
Z

Qr

jruj;

for some dimensional constant Cn > 0.

Proof Up to a translation, we may assume that Qr D Œ0; r�n. Moreover, we initially
suppose that r D 1.

We first prove the result with n D 1. In this case, note that for any x; y 2 Œ0; 1�,
we have

ju.x/ � u. y/j 6
Z y

x
jru.z/j dz 6

Z 1

0

jru.z/jdz:

Choosing y 2 Œ0; 1� such that u. y/ D .u/Œ0;1� (note that such a point exists thanks
to the mean value theorem) and integrating the inequality above with respect to
x 2 Œ0; 1�, we conclude that

Z 1

0

ju � .u/Œ0;1�j 6
Z 1

0

jruj;

which proves the result with C1 D 1.
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Now, assume by induction that the result is true up to dimension n � 1. Then,
given a C1 function u W Œ0; 1�n ! R, we can define the function Nu W Œ0; 1�n�1 ! R

given by

Nu.x0/ D
Z 1

0

u.x0; xn/dxn:

With this definition, the one-dimensional argument above applied to the family of
functions fu.x0; �/gx02Œ0;1�n�1 shows that

Z 1

0

ju.x0; xn/ � Nu.x0/jdxn 6
Z 1

0

j@nu.x0; xn/jdxn for any x0 2 Œ0; 1�n�1:

Hence, integrating with respect to x0, we get

Z

Œ0;1�n
ju � Nuj 6

Z

Œ0;1�n
j@nuj: (3.8)

We now observe that, by the inductive hypothesis,

Z

Œ0;1�n�1

jNu � .Nu/Œ0;1�n�1 j 6 Cn�1

Z

Œ0;1�n�1

jrx0 Nuj: (3.9)

Noticing that

.Nu/Œ0;1�n�1 D .u/Œ0;1�n and
Z

Œ0;1�n�1

jrx0 Nuj 6
Z

Œ0;1�n
jrx0uj;

combining (3.8) and (3.9) we get

Z

Œ0;1�n
ju � .u/Œ0;1�n j 6

Z

Œ0;1�n
j@nuj C Cn�1

Z

Œ0;1�n
jrx0uj;

which proves the result with Cn D 1 C Cn�1.
Finally, the general case follows by a simple scaling argument. Indeed, if u 2

C1.Qr/, then the rescaled function ur.x/ WD u.rx/ belongs to C1.Q1/. Moreover, we
have that

Z

Qr

ju � .u/Qr j D rn
Z

Q1

jur � .ur/Q1 j;

and
Z

Qr

jruj D rn�1

Z

Q1

jrurj:
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The conclusion then follows from the case r D 1 applied to ur. ut
We now plan to deduce a Poincaré-type inequality for the characteristic func-

tion �E of a bounded set E having finite perimeter. Of course, �E … C1 and
Lemma 3.2.5 cannot be applied directly to it. Instead, we need to work with suitable
approximations.

Given r > 0, consider a countable family of disjoint open cubes fQjg of sides r
such that [jQ j D R

n. We order this family so that

jQj \ Ej > jQjj
2

for any integer j D 1; : : : ;N;

jQj \ Ej <
jQjj

2
for any integer j > N;

(3.10)

for some uniquely determined N 2 N. Notice that such N exists since E is bounded.
We then write

TE;r WD
N[
jD1

Qj; (3.11)

see Fig. 3.2.

Lemma 3.2.6 Let r > 0 and E � R
n be a bounded set with finite perimeter. Then,

k�E � �TE;rkL1.Rn/ 6 Cnr Per.E/;

with Cn as in Lemma 3.2.5.

Fig. 3.2 The grid made up of cubes of sides r, the set E (in light green) and the resulting set TE;r

(in dark green)
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Proof Consider a family f�"g of radially symmetric smooth convolution kernels,
and define u" WD �E � �". Clearly, u" 2 C1

c .Rn/ and u" ! �E in L1.Rn/,
as " ! 0C. Furthermore, by considerations analogous to the ones at the beginning
of Sect. 3.2, it is not hard to see that

Z

Rn
jru"j D sup

�
�
Z

Rn
ru" � X W X 2 C1

c.R
nIRn/; jXj 6 1

�
:

Integrating by parts and exploiting well-known properties of the convolution
operator, we find that

�
Z

Rn
ru" � X D

Z

Rn
u" divX D

Z

Rn
.�E � �"/ divX

D
Z

Rn
�E.�" � divX/ D

Z

E
div.X � �"/:

Since jXj 6 1, it follows that jX � �"j 6 1. Therefore, by taking into account
Definition 3.2.1, we obtain

Z

Rn
jru"j 6 Per.E/: (3.12)

Recall now the partition (up to a set of measure zero) of R
n into the family of

cubes fQjg introduced earlier. Applying the Poincaré’s inequality of Lemma 3.2.5
to u" in each cube Qj, we get

Cnr
Z

Rn
jru"j D Cnr

X
j2N

Z

Qj
jru"j >

X
j2N

Z

Qj
ju" � .u"/Qj j: (3.13)

On the other hand, for any j 2 N,

lim
"!0C

Z

Qj
ju" � .u"/Qj j D

Z

Qj
j�E � .�E/Qj j D

Z

Qj

ˇ̌
ˇ̌�E � jQj \ Ej

jQjj
ˇ̌
ˇ̌

D jQj \ Ej jQ
jj � jQj \ Ej

jQjj C jQj n Ej jQ
j \ Ej
jQjj

D 2
jQj \ EjjQj n Ej

jQjj :

Using this in combination with (3.12) and (3.13), we obtain that

Cnr Per.E/ > 2
X
j2N

jQj \ EjjQj n Ej
jQjj :
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But then, recalling (3.10) and (3.11), we conclude that

Cnr Per.E/ >
NX
jD1

�
2

jQj \ Ej
jQjj

�
jQj n Ej C

C1X
jDNC1

�
2

jQj n Ej
jQjj

�
jQj \ Ej

>
NX
jD1

jQj n Ej C
C1X

jDNC1

jQj \ Ej D jTE;r n Ej C jE n TE;rj

D k�E � �TE;rkL1.Rn/;

which concludes the proof. ut
By virtue of Lemma 3.2.6, we see that TE;r converges to E in L1.Rn/, as r goes

to 0, with a rate that is controlled by Per.E/. Knowing this fact, we are now in
position to deal with the proof of Proposition 3.2.4. The main step is represented by
the next:

Lemma 3.2.7 Let C;R > 0 be fixed. Let fEkg be a sequence of sets such that

Ek � BR; (3.14)

and

Per.Ek/ 6 C;

for any k 2 N. Then, up to a subsequence, Ek converges in L1.Rn/ to a set E.
Notice that this result is slightly weaker than the one claimed by Proposition 3.2.4

(with � D R
n), since the Ek’s are supposed to be uniformly bounded sets.

Proof of Lemma 3.2.7 Consider the following class of sets

XR;C WD
n
F � BR W F is Borel; Per.F/ 6 C

o
;

and endow it with the metric defined by

d.E;F/ WD k�E � �FkL1.Rn/; for any E;F 2 XR;C:

Observe that the lemma will be proved if we show that the metric space .XR;C; d/ is
compact.

We first claim that

.XR;C; d/ is complete: (3.15)

Note that .XR;C; d/ may be seen as a subspace of L1.Rn/, via the identification of
a set E with its characteristic function �E. Therefore, it suffices to prove that X
is closed in L1.Rn/. To see this, let fFkg � XR;C be a sequence such that �Fk
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converges to some function f in L1.Rn/. Clearly f D �F for some set F � BR,
since a subsequence of f�Fkg converges to f a.e. in R

n. In addition, Proposition 3.2.3
implies that

Per.F/ 6 lim inf
k!C1 Per.Fk/ 6 C:

This proves that F 2 XR;C, hence XR;C is closed in L1.Rn/ and (3.15) follows.
We now claim that

.XR;C; d/ is totally bounded: (3.16)

To check (3.16), we need to show the existence of a finite "-net. That is, for any " >

0, we need to find a finite number of sets F1; : : : ;FN" , for some N" 2 N, such that,
for any F 2 XR;C,

d.F;Fi/ < "; for some i 2 f1; : : : ;N"g:

Fix " > 0 and set

r" WD "

2CCn
;

with Cn as in Lemma 3.2.5. Given any F 2 XR;C, we consider the set TF;r" introduced
in (3.11). By Lemma 3.2.6, we have that

d.F;TF;r"/ D k�F � �TF;r"
kL1.Rn/ 6 Cnr" Per.F/ 6 CCnr" < ":

Since the cardinality of

n
TF;r" W F 2 XR;C

o
;

is finite (as a quick inspection of definition (3.11) reveals), we have found the
desired "-net and (3.16) follows.

In view of (3.15) and (3.16), we know that .XR;C; d/ is closed and totally
bounded. It is a standard fact in topology that this is in turn equivalent to the
compactness of .XR;C; d/. Hence, Lemma 3.2.7 holds true. ut

With the help of Lemma 3.2.7, we can now conclude this subsection by proving
the validity of our compactness statement in its full generality.

Proof of Proposition 3.2.4 We plan to obtain the result combining Lemma 3.2.7
with a suitable diagonal argument. To do this, consider first f�`g an exhaustion
of � made of open bounded sets with smooth boundaries, so that, in particular,
the perimeter of each set �` is finite. Moreover, we may assume without loss of
generality that �` � B`.
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For any ` 2 N, we define

E`
k WD Ek \ �`:

For any fixed `, it holds E`
k � �` � B` for any k 2 N. In particular, E`

k
satisfies (3.14) with R D `. Moreover, using (3.7), it is not hard to check that

Per.E`
k/ 6 Per.EkI �`/ C Per.�`/ 6 Per.EkI �/ C Per.�`/ 6 C`;

for some constant C` > 0 independent of k.
In light of these facts, the sequence fE`

kgk2N satisfies the hypotheses of
Lemma 3.2.7. Hence, we infer that, for any fixed `, there exists a diverging
sequence K` D f'`. j/gj2N of natural numbers such that E`

'`. j/
converges in L1.Rn/

to a set E` � �`, as j ! C1. By a diagonal argument we can suppose
that Km � K` if ` 6 m. Furthermore, it is easy to see that Em \ �` D E`,
if ` 6 m. We then define

E WD
[
`2N

E`;

and notice that E \ �` D E` for any `. Set k` WD '`.`/, for any ` 2 N. Clearly, fk`g
is a subsequence of each Km, up to a finite number of indices `. Hence, for any
fixed m 2 N, we have

lim
`!C1 k�Ek`

� �EkL1.�m/ D lim
`!C1 k�Em

k`
� �EmkL1.Rn/

D lim
j!C1 k�Em

'm. j/
� �EmkL1.Rn/

D 0:

This proves that Ek`
! E in L1

loc.�/ as ` ! C1, completing the proof. ut

3.3 Existence of Minimal Surfaces

With the help of the lower semicontinuity of the perimeter and the compactness
property established in the previous section, we can now easily prove the existence
of a solution to the minimization problem (3.6).

Theorem 3.3.1 Let F be a set with finite perimeter inside B2. Then, there exists a
set E of finite perimeter inside B2 such that E n B1 D F n B1 and

Per.EIB2/ 6 Per.E0IB2/

for any set E0 such that E0 n B1 D F n B1.
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Proof Our argument is based on the direct method of the calculus of variations. Set

˛ WD inf
n
P.E0IB2/ W E0 n B1 D F n B1

o
: (3.17)

Note that ˛ is finite since ˛ 6 P.FIB2/.
Take a sequence fEkg of sets of finite perimeter such that Ek n B1 D F n B1 for

any k 2 N and

lim
k!C1 Per.EkIB2/ D ˛:

Clearly, we can assume without loss of generality that

Per.EkIB2/ 6 ˛ C 1 for any k 2 N:

Therefore, by Proposition 3.2.4, we conclude that there exists a subsequence Ekj

converging to a set E in L1
loc.B2/, as j ! C1. Consequently, Proposition 3.2.3

yields

Per.EIB2/ 6 lim
j!C1 Per.Ekj IB2/ D ˛:

Since E nB1 D limj!C1 Ekj nB1 D F nB1, the set E is admissible in (3.17) and we
conclude that

Per.EIB2/ D ˛:

The set E is thus the desired minimizer. ut
In the following sections, our goal will be to show that the minimizers just

obtained are more than just sets with finite perimeter. That is, we will develop an
appropriate regularity theory for minimal surfaces. However, to do that, we first
need to describe some important facts about sets of finite perimeter.

3.4 Fine Properties of Sets of Finite Perimeter

In this section, we introduce a different concept of boundary for sets of finite
perimeter: the reduced boundary. As we shall see, up to a “small” component,
this new boundary is always contained in a collection of .n � 1/-dimensional
hypersurfaces of class C1. Moreover, through this definition, one can compute the
perimeter of a set in a more direct way via the Hausdorff measure.

We begin by recalling the definition of Hausdorff measure.
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Fig. 3.3 The spiral-like set E
is covered by the
ball E1 D Bı=2. If ı is
comparable to the diameter
of E, the covering consisting
only of the set E1 cannot
capture the geometry of E

3.4.1 Hausdorff Measure

The aim is to define a 	-dimensional surface measure for general non-smooth
subsets of the space Rn.

Fix 	 > 0 and ı > 0. Given a set E, we cover it with a countable family of
sets fEkg having diameter smaller or equal than ı. Then, the quantity

X
k2N

.diam.Ek//
	

represents more or less a notion of 	-dimensional measure of E, provided we take ı

sufficiently small. Of course, if ı is not chosen small enough, we might lose the
geometry of the set E (see Fig. 3.3).

We give the following definition.

Definition 3.4.1 Let 	 > 0 and ı > 0. Given any E � R
n, we set

H	
ı .E/ WD inf

�
!	

X
k2N

�
diam.Ek/

2

�	

W E �
[
k2N

Ek; diam.Ek/ 6 ı

�
;

where

!	 WD 

	
2

�. 	
2

C 1/
;

and � is Euler’s Gamma function. Then, we define the s-dimensional Hausdorff
measure of E by

H	 .E/ WD lim
ı!0C

H	
ı .E/:
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The factor !	 is a normalization constant that makes the Hausdorff measure
consistent with the standard Lebesgue measure of Rn. In particular, !n is precisely
the volume of the n-dimensional unit ball.

It is immediate to check that the limit defining the Hausdorff measure H	 always
exists. Indeed, since H	

ı is non-increasing in ı,

H	 .E/ D sup
ı>0

H	
ı .E/:

Finally, it can be proved that, when k > 0 is an integer, Hk coincides with the
classical k-dimensional measure on smooth k-dimensional surfaces of Rn (see for
instance [20, Sects. 3.3.2 and 3.3.4.C] or [25, Chap. 11]).

3.4.2 De Giorgi’s Rectifiability Theorem

Having recalled the definition of Hausdorff measure, we may now present the main
result of this section, referring to [25, Chap. 15] for a proof.

Theorem 3.4.2 (De Giorgi’s Rectifiability Theorem) Let E be a set of finite
perimeter. Then, there exists a set @�E � @E, such that:

(i) we have

@�E �
[
i2N

†i [ N;

for a countable collection f†ig of .n � 1/-dimensional C1 hypersurfaces and
some set N with Hn�1.N/ D 0;

(ii) for any open set A, it holds

Per.EIA/ D Hn�1.@�E \ A/:

Notice that, thanks to (3.4.2), we have now an easier way to compute the
perimeter of any set.

The object @�E introduced in the above theorem is usually called reduced
boundary. Typically, it differs from the usual topological boundary, which may be
very rough for general Borel sets.

Example 3.4.3 Let fxkg be a sequence of points dense in R
n. For N 2 N, define

EN WD
N[

kD1

B2�k .xk/:
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Then,

Per.EN/ 6
NX

kD1

Per.B2�k / D cn

NX
kD1

2�k.n�1/ 6 Qcn;

for some dimensional constants cn; Qcn > 0. Since

EN ! E1 WD
C1[
kD1

B2�k.xk/ in L1.Rn/;

Proposition 3.2.3 implies that

Per.E1/ 6 Qcn;

that is E1 is a set of finite perimeter. On the other hand, the topological boundary
of E1 is very large: indeed, while

jE1j 6
C1X
kD1

jB2�k j < C1;

since E1 is dense in R
n we have NE1 D R

n, thus j@E1j D C1. Also, although it
does not follow immediately from the definition, it is possible to prove that

@�E1 �
C1[
ND1

@�EN �
C1[
kD1

@B2�k.xk/:

This example shows that the topological boundary may be a very bad notion in
the context of perimeters.

Luckily, this is not always the case for minimizers of the perimeter. In fact,
we will shortly prove partial regularity results (i.e., smoothness outside a lower
dimensional set) for the topological boundary of minimizers of the perimeter.

3.5 Regularity of Minimal Graphs

After the brief parenthesis of Sect. 3.4, we now focus on the regularity properties
enjoyed by the minimizers of problem (3.6), whose existence has been established
in Theorem 3.3.1.

We first restrict ourselves to minimal surfaces which can be written as graphs
with respect to one fixed direction.
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Consider the cylinder

C1 WD Bn�1
1 � R;

with

Bn�1
1 WD

n
.x0; 0/ 2 R

n�1 � R W jx0j < 1
o
:

Given g W @Bn�1
1 ! R, we denote by � � @C1 the graph of g.

The following result shows that minimizing the area among graphs is the same
as minimizing the area among all sets.

Lemma 3.5.1 Let † D graph.u/ for some u W NBn�1
1 ! R such that u D g on @Bn�1

1 .
Then, † is a minimal surface if and only if it satisfies

Hn�1.†/ 6 Hn�1.graph.v//;

for any v W NBn�1
1 ! R such that v D g on @Bn�1

1 .

Sketch of the Proof Clearly, we just need to show that if † is a minimizer among
graphs, then it also solves problem (3.1).

Let K be a convex set and denote with 
K W Rn ! R
n the projection from R

n

ontoK. It is well-known that 
K is 1-Lipschitz (see for instance [21, Lemma A.3.8]).
Hence, since distances (and therefore also areas) decrease under 1-Lipschitz maps,

Hn�1.
K.†0// 6 Hn�1.†0/

(see for instance [21, Lemma A.7] applied with L D 1). By applying this with K D
C1, it follows that we can restrict ourselves to consider only competitors †0 which
are contained in C1.

We now show that the area decreases under vertical rearrangements. To explain
this concept, we describe it in a simple example. So, we suppose for simplicity
that n D 2 and †0 is as in Fig. 3.4, so that

†0 \ C1 D graph. f1/ [ graph. f2/ [ graph. f3/;

for some smooth functions fi W Œ�1; 1� ! R, i D 1; 2; 3. Then it holds.

H1.†0/ D
3X

iD1

Z 1

�1

q
1 C . f 0

i /
2:

Consider now the function h WD f1 � f2 C f3. Note that h is geometrically obtained
as follows: given x 2 Œ�1; 1�, consider the vertical segment Ix WD fxg � Œ f2.x/; f3.x/�
and shift it vertically unit it touches fxg � .�1; f1.x/�. Then the set constructed in
this way coincides with the epigraph of h.
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Fig. 3.4 The curve †0, given by the union of the graphs of f1, f2 and f3

We note that, thanks to the numerical inequality

p
1 C .a C b C c/2 6

p
1 C a2 C

p
1 C b2 C

p
1 C c2 for any a; b; c > 0;

it follows that

H1.graph.h/ \ C1/ D
Z 1

�1

q
1 C . f 0

1 � f 0
2 C f 0

3/2

6
Z 1

�1

q
1 C �jf 0

1j C jf 0
2j C jf 0

3j�2

6
3X

iD1

Z 1

�1

q
1 C . f 0

i /
2

D H1.†0/:

In other words, the area decreases under vertical rearrangement.
We note that this procedure can be generalized to arbitrary dimension and to any

set E � C1, allowing us to construct a function hE W Bn�1
1 ! R whose epigraph

has boundary with less area than @E. However, to make this argument rigorous one
should notice that the function hE may jump at some points (see Fig. 3.5). Hence,
one needs to introduce the concept of BV functions and discuss the area of the
graph of such a function. Since this would be rather long and technical, we refer the
interested reader to [24, Chaps. 14–16]. ut

In view of the above result, we may limit ourselves to minimize area among
graphs, i.e., we may restrict to the problem

min

�Z

Bn�1
1

p
1 C jruj2 W u D g on @Bn�1

1

�
: (3.18)
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Fig. 3.5 On the left is the original set E, while on the right is its vertical rearrangement, given as
the epigraph of the function hE . In gray are depicted the segments Ix (on the left), and their vertical
translations (on the right). As it is clear from the picture, the graph of hE may have jumps

Note that the existence of a solution to such problem is not trivial, as the functional
has linear growth at infinity, which may determine a lack of compactness since
the Sobolev space W1;1 is not weakly compact. We shall not discuss the existence
problem here and we refer to [24] for more details.

The following comparison principle is easily established.

Lemma 3.5.2 Suppose that g is bounded. Then, the solution u to the minimizing
problem (3.18) is bounded as well, and it holds

kukL1.Bn�1
1 / 6 kgkL1.@Bn�1

1 /:

Proof Let M WD kgkL1.@Bn�1
1 /. Then, uM WD .u ^ M/ _ �M D g on @Bn�1

1 . Also,

since 1 D p
1 C jruMj 6 p

1 C jruj inside fjuj > Mg,

Hn�1 .graph.uM// D
Z

f�M<u<Mg

p
1 C jruj2 C jfjuj > Mgj

6
Z

Bn�1
1

p
1 C jruj2

D Hn�1.graph.u//:

By the minimality of u, it follows that the above inequality is in fact an identity.
Hence, juj 6 M. ut

Starting from this, the regularity theory for minimal graphs can be briefly
described as follows. First of all, the well-known gradient estimate of Bombieri
et al. [6] ensures that minimizers are locally Lipschitz functions.

Theorem 3.5.3 Let u be a bounded solution to the minimizing problem (3.18).
Then, u is locally Lipschitz inside Bn�1

1 .
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Knowing that u is locally Lipschitz, we may differentiate the area functional
to infer more information on the smoothness of u. Fix ' 2 C1

c .Bn�1
1 /. By the

minimality of u, we have that

0 D d

d"

ˇ̌
ˇ̌
"D0

Z

Bn�1
1

p
1 C jru C "r'j2:

From this, we deduce that

Z

Bn�1
1

rup
1 C jruj2 � r' D 0 for any ' 2 C1

c .Bn�1
1 /;

which is the weak formulation of the Euler-Lagrange equation

div

� rup
1 C jruj2

�
D 0: (3.19)

Write now F. p/ WD p
1 C jpj2 for any p 2 R

n�1. Since DF.q/ D q=
p

1 C jqj2, we
see that (3.19) may be read as

div .DF.ru// D 0:

By differentiating this equation with respect to the direction e`, we get1

div
�
D2F.ru/ � r.@`u/

� D 0;

for any ` D 1; : : : n � 1. Setting now A.x/ WD D2F.ru.x// and v WD @`u, the above
equation becomes

div .A.x/rv/ D 0:

Note that, because u is locally Lipschitz, given any ball Br.x/ � Bn�1
1 , there exists a

constant Lx;r such that jruj 6 Lx;r inside Br.x/. Hence, since

0 < �x;rIdn�1 6 D2F.q/ 6 ƒx;rIdn�1 for any jqj 6 Lx;r;

we deduce that

�x;rIdn�1 6 A. y/ D D2F.ru. y// 6 ƒx;rIdn�1 for any y 2 Br.x/:

1Of course, to make this rigorous one should first check that u 2 W2;2. This can be done in
a standard way, starting from Eq. (3.19) and exploiting the Lipschitz character of u to prove a
Caccioppoli inequality on the incremental quotients of ru.
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This proves that A is measurable and uniformly elliptic, therefore we may apply
the De Giorgi-Nash-Moser theory [13, 26, 27] and conclude that @`u D v 2 C0;˛

loc , for
some ˛ 2 .0; 1/. Hence, u 2 C1;˛

loc and consequently A D D2F.ru/ 2 C0;˛
loc . Then, by

Schauder theory (see e.g. [23]), we get that v 2 C1;˛
loc , i.e. u 2 C2;˛

loc . Accordingly,A 2
C1;˛

loc and we can keep iterating this procedure to show that u is of class C1. Actually,
by elliptic regularity, one can even prove that u is analytic. Hence, we obtain the
following result.

Theorem 3.5.4 Let u W NBn�1
1 ! R be a bounded solution to problem (3.18). Then u

is analytic inside Bn�1
1 .

We have therefore proved that minimal graphs are smooth. This is no longer true
for general minimal sets, as we will see in the next section.

3.6 Regularity of General Minimal Surfaces

We deal here with the regularity of minimal sets which are not necessarily graphs.
Let E be a minimal surface. By De Giorgi’s rectifiability theorem (Theo-

rem 3.4.2), we have the tools to work as if @E were already smooth (of course, there
are technicalities involved, but the philosophy is the same). Thus, for simplicity we
shall make computations are if @E were smooth, and we will prove estimates that
are independent of the smoothness of @E.

3.6.1 Density Estimates

In this subsection we show that, nearby boundary points, minimal sets occupy fat
portions of the space, at any scale. That is, we rule out the behavior displayed in
Fig. 3.6.

Lemma 3.6.1 There exists a dimensional constant c? > 0 such that

jBr.x/ \ Ej > c?r
n and jBr.x/ n Ej > c?r

n; (3.20)

for any x 2 @E and any r > 0.

Proof First, recall the isoperimetric inequality: there is a dimensional constant cn >

0 such that

cn Per.F/ > jFj n�1
n ; (3.21)

for any bounded set F � R
n. One can show (3.21) via Sobolev inequality.

Indeed, let f'"g be a family of smooth convolution kernels and apply e.g. [19,
Sect. 5.6.1,Theorem 1] to the function �F � �", for any " > 0. Recalling also (3.12),
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Fig. 3.6 An example of a set E which cannot be area minimizing. In fact, the measure of E\Br.x/
is too small

Fig. 3.7 The set E\Br.x/ (in light green) and EnBr.x/ (in dark green). Then, one uses EnBr.x/ as
competitor in the minimality of E. The boundary of Br.x/\E is the union of the two sets @Br.x/\E
and @E \ Br.x/

we get

k�F � �"kL n
n�1 .Rn/

6 cnkr.�F � �"/kL1.Rn/ 6 cn Per.F/:

Inequality (3.21) follows by letting " ! 0C.
Let V.r/ WD jBr.x/ \ Ej. By the minimality of E, we have that (see Fig. 3.7)

Hn�1.Br.x/ \ @E/ 6 Hn�1.@Br.x/ \ E/:
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Therefore, by this and (3.21), we obtain

V.r/
n�1
n 6 cn

�Hn�1.Br.x/ \ @E/ C Hn�1.@Br.x/ \ E/
	

6 2cnHn�1.@Br.x/ \ E/:
(3.22)

Using polar coordinates, we write

V.r/ D
Z r

0

Hn�1.@Bs.x/ \ E/ ds:

Accordingly,

V 0.r/ D Hn�1.@Br.x/ \ E/;

and hence, by (3.22), we are led to the differential inequality

V.r/
n�1
n 6 2cnV

0.r/:

By this, we find that



V

1
n .r/

�0 D 1

n

V 0.r/
V

n�1
n .r/

> 1

2ncn
;

and thus, since V.0/ D 0, we conclude that

V
1
n .r/ > r

2ncn
:

This is equivalent to the first estimate in (3.20). The second one is readily obtained
by applying the former to R

n n E (note that if E is minimal, so is Rn n E). ut
An immediate corollary of the density estimates of Lemma 3.6.1 is given by the

following result.

Corollary 3.6.2 Let fEkg be a sequence of minimal surfaces, converging in L1
loc to

another minimal surface E. Then Ek converges to E in L1
loc.

Notice that convergence in L1
loc means that the boundaries of Ek and E are

(locally) uniformly close.

Proof of Corollary 3.6.2 Fix a compact set K � R
n. We need to prove that, for

any " > 0, there exists N 2 N such that

K \ @Ek �
n
x 2 K W dist.x; @E/ < "

o
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and

K \ @E �
n
x 2 K W dist.x; @Ek/ < "

o

for any k > N. We just prove the first inclusion, the proof of the second one being
analogous.

We argue by contradiction, and suppose that there exist a diverging sequence fkjg
of integers and a sequence of points fxjg � K such that xj 2 @Ekj and dist.xj; @E/ >
", for any j 2 N. Up to a subsequence, fxjg converges to a point Nx 2 K.
Clearly, dist.x; @E/ > " and thus, in particular,

either B"=2.x/ � VE or B"=2.x/ � R
n n NE:

Suppose without loss of generality that the latter possibility occurs, i.e., that

B"=2.x/ � R
n n NE:

By this, Lemma 3.6.1, and the L1
loc convergence of the Ek’s, we get

c?


 "

2

�n
6 lim

j!C1 jB"=2.xj/ \ Ekj j D lim
j!C1

Z

B"=2.xj/
�Ekj

D
Z

B"=2.x/
�E D 0;

which is a contradiction. The proof is therefore complete. ut
The regularity theory in this case does not proceed as the one for minimal graphs

(see Sect. 3.5). In fact, we need a more refined strategy.

3.6.2 "-Regularity Theory

The aim of this subsection is to prove the following deep result, due to De Giorgi
[14].

Theorem 3.6.3 There exists a dimensional constant " > 0 such that, if

@E \ Br � fjxnj 6 "rg

for some radius r > 0 and 0 2 @E, then

@E \ Br=2 is a C
1;˛graph

for some ˛ 2 .0; 1/.
Theorem 3.6.3 ensures that, if a minimal surface is sufficiently flat in one given

direction, then it is a C1;˛ graph. The proof presented here is based on several ideas
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contained in the work [28] by Savin. The key step is represented by the following
lemma.

Lemma 3.6.4 Let � 2 .0; 1/. There exist �; � 2 .0; 1/ and "0 > 0 such that, if

@E \ B1 � fjxnj 6 "g ;

for some " 2 .0; "0/, and 0 2 @E, then

@E \ B� � fjx � ej 6 ��"g ;

for some unit vector e 2 S
n�1.

Lemma 3.6.4 yields a so-called improvement of flatness for the minimal sur-
face @E. Indeed, it tells that, shrinking from the ball B1 to the smaller B�, the
oscillation of @E around some hyperplane is dumped by a factor � smaller than 1,
possibly changing the direction of the hyperplane under consideration. Of course,
even if @E is a smooth surface, its normal at the origin may not be en. Hence, we
really need to tilt our reference frame in some new direction e 2 S

n�1 in order to
capture the C1;˛ behavior of @E at the origin.

We now suppose the validity of Lemma 3.6.4 and show how Theorem 3.6.3 can
be deduced from it.

Sketch of the Proof of Theorem 3.6.3 First of all, we only consider the case of rD 1,
as one can replace E with r�1E. To this regard, observe that the minimality of a set
is preserved under dilations.

We then suppose for simplicity that the rotation that sends en to e may be avoided
in Lemma 3.6.4. That is, we assume that we can prove that

@E \ B1 � fjxnj 6 "g implies @E \ B� � fjxnj 6 ��"g ; (3.23)

provided that " 6 "0. As pointed out before, this clearly cannot be true. Never-
theless, we argue supposing the validity of (3.23), since the general case may be
obtained using the same ideas and only slightly more care.

Thanks to the hypothesis of the theorem, we may apply (3.23) and deduce that

@E \ B� � fjxnj 6 ��"g :

Consider now the rescaled set E1 WD ��1E. The previous inclusion can be read as

@E1 \ B1 � fjxnj 6 �"g :

Since �" 6 " 6 "0, we can apply (3.23) to E1 WD ��1E, and we get

@E1 \ B� � ˚jxnj 6 �2�"
�

:
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Getting back to E, this becomes

@E \ B�2 � ˚jxnj 6 �2�2"
�

:

By iterating this procedure, we find that, for any k 2 N,

@E \ B�k � ˚jxnj 6 �k�k"
� D ˚jxnj 6 �.1C˛/k"

�
; (3.24)

where ˛ > 0 is chosen so that �˛ D �. Now, given s 2 .0; 1/, there exists k 2 N

such that �k 6 s 6 �k�1. Hence

@E \ Bs � @E \ B�k�1 � ˚jxnj 6 �.1C˛/.k�1/"
�

D ˚jxnj 6 ��.1C˛/�.1C˛/k"
� � ˚jxnj 6 ��.1C˛/s1C˛"

�

Thus, we deduce that

@E \ Bs � ˚jxnj 6 C"s1C˛
�

;

for any s 2 .0; 1�, where C WD ��.1C˛/.
As mentioned above, this estimate is obtained forgetting about the fact that one

needs to tilt the system of coordinates. If one takes into account such tilting, instead
of (3.24) one would obtain an inclusion of the type

@E \ B�k � ˚jx � ekj 6 �.1C˛/k"
�

;

for some sequence fekg � S
n�1. However, at each step the inner product ekC1 � ek

cannot be too far from 1 (see Fig. 3.8). By obtaining a quantification of this defect,

Fig. 3.8 The boundary of a minimal set E may be trapped in slabs of different orientations inside
balls of different radii. However, the discrepancy between these orientations cannot be too large
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one can show that the tiltings fekg converge at some geometric rate to some unit
vector e0. Hence, the correct bound is

@E \ Bs � ˚jx � e0j 6 C"s1C˛
�

for any s 2 .0; 1�, for some e0 2 S
n�1:

(3.25)

Let now z be any point in B1=2 \ @E. As B1=2.z/ � B1, we clearly have that

@E \ B1=2.z/ � fjxnj 6 "g :

Assume that " 6 "0=2. Then the set Ez WD 2.E � z/ satisfies

@Ez \ B1 � fjxnj 6 2"g :

This allows us to repeat the argument above with Ez in place of E and conclude that

@E \ Bs.z/ � ˚j.x � z/ � ezj 6 2C"s1C˛
�

for some ez 2 S
n�1;

for any z 2 B1=2 \@E and any s 2 .0; 1=2/: With this in hand, one can then conclude
that @E is a C1;˛ graph. ut

In order to finish the proof of the "-regularity theorem, we are therefore only
left to show the validity of Lemma 3.6.4. We do this in the remaining part of the
subsection.

To prove Lemma 3.6.4 we argue by contradiction and suppose that, given two
real numbers �; � 2 .0; 1/ to be fixed later, there exist an infinitesimal sequence f"kg
of positive real numbers and a sequence of minimizers fEkg for which 0 2 @Ek,

@Ek \ B1 � fjxnj 6 "kg ;

but

@Ek \ B� 6� fjx � ej 6 ��"kg for any e 2 S
n�1: (3.26)

Consider the changes of coordinates ‰k W Rn ! R
n given by

‰k.x
0; xn/ WD

�
x0;

xn
"k

�
;

and define QEk WD ‰k.Ek/. Observe that the new sets QEk are not minimizers, as
stretching in one variable does not preserve minimality. However, thanks to the
following result, the surfaces QEk are precompact:

Lemma 3.6.5 (Savin [28]) Up to a subsequence, the surfaces f@ QEkg converge
in L1

loc to the graph of some function u.
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What can we say about u? Let us deal with the easier case in which the original
boundaries @Ek are already the graphs of some functions uk. This is of course not
always the case, but the Lipschitz approximation theorem for minimal surfaces (see
for instance [25, Theorem 23.7]) tells that a flat minimal surface is a Lipschitz graph
at many points (the measure of the points being more and more as the surface gets
flatter and flatter).

Under this assumption, we have that @ QEk D graph.Quk/, with Quk WD "�1
k uk.

Observe that jQukj 6 1, since @ QEk \ B1 � fjxnj 6 1g. In view of the minimality
of @Ek, we compute

0 D 1

"k
div

 
rukp

1 C jrukj2

!
D div

0
B@ r Qukq

1 C "2
k jr Qukj2

1
CA :

Assuming that jr Qukj is bounded, by taking the limit as k ! C1 in the above
expression, we find that u solves

(
�u D 0 in Bn�1

1

kukL1.Bn�1
1 / 6 1:

(3.27)

(In order to rigorously obtain the claimed equation for u, one needs to use the
concept of viscosity solutions that we shall not discuss here. We refer to [9, 28]
for more details.)

From (3.27), it follows by regularity theory for harmonic functions
that kukC2.B3=4/ 6 NCn, for some dimensional constant NCn > 0. Therefore,

ju.x0/ � u.0/ � ru.0/ � x0j 6 NCn�
2 for any x0 2 Bn�1

2� :

Taking � 6 �=.4 NCn/ and observing that u.0/ D 0, this becomes

ju.x0/ � ru.0/ � x0j 6 ��

2
for any x0 2 Bn�1

2� :

As @ QEk converges uniformly to graph.u/ in L1
loc, the above estimate implies that

@ QEk \


Bn�1

� � R

�
� fjx � Qvj 6 ��g ; with Qv WD .�ru.0/; 1/;

for k � 1. Dilating back we easily obtain

@Ek \ B� � fjx � Qekj 6 ��"kg with Qek WD .�"kru.0/; 1/q
1 C "2

kjru.0/j2
2 S

n�1;

in contradiction with (3.26).
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We have therefore proved Theorem 3.6.3 in its entirety (up to the compactness
result in Lemma 3.6.5, and some small technical details). By this result, we know
that if a minimal surface is sufficiently flat around a point, then it is locally the graph
of a C1;˛ function. Note that, by the regularity theory discussed in Sect. 3.5, such a
function will actually be analytic.

In order to proceed further in the understanding of the regularity theory, the next
question becomes: at how many points minimal surfaces are flat?

An answer to this question is provided via the so-called blow-up procedure.

3.6.3 Blow-Up Technique

The idea is to look at points of @E from closer and closer. More precisely, for a
fixed x 2 @E, we define the family of minimal surfaces fEx;rg as

Ex;r WD E � x

r
; (3.28)

for any r > 0. By taking the limit as r ! 0C of such close-ups, one reduces to
problem of counting flat points to that of classifying limits of blow-ups.

In order to rigorously describe the above anticipated blow-up procedure, we first
need some preliminary results.

We recall that a set C is said to be a cone with respect to a point x if

y 2 C implies that �. y � x/ 2 C � x for any � > 0:

Theorem 3.6.6 (Monotonicity Formula) The function

‰E.r/ WD Hn�1.@E \ Br.x//

rn�1
;

is monotone non-decreasing in r.

Proof Let †r be the cone centered at x and such that

†r \ @Br.x/ D @E \ @Br.x/: (3.29)

Set f .r/ WD Hn�1.@E \ Br.x//. By minimality,

f .r/ 6 Hn�1.†r \ Br.x//:
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Using polar coordinates, the fact that †r is a cone, and again (3.29), we compute

Hn�1.†r \ Br.x// D
Z r

0

Hn�2.†r \ @Bs.x// ds

D Hn�2.†r \ @Br.x//

rn�2

Z r

0

sn�2 ds

D rHn�2.@E \ @Br.x//

n � 1
:

As Hn�2.@E \ @Br.x// D f 0.r/, we conclude that

f .r/ 6 r

n � 1
f 0.r/:

This in turn implies that

‰0
E.r/ D

�
f .r/

rn�1

�0
D rf 0.r/ � .n � 1/f .r/

rn
> 0;

and the monotonicity follows. ut
By a more careful inspection of the proof, one can show that ‰E is constant if

and only if E is a cone with respect to the point x.

Proposition 3.6.7 There exists an infinitesimal sequence frjg of positive real num-
bers such that fEx;rjg converges to a set F in L1

loc.R
n/, as j ! C1. Furthermore,

(i) @F is a minimal surface;
(ii) F is a cone.

Sketch of the Proof By scaling and Theorem 3.6.6, given R > 0, for any r 2
.0; 1=R� we estimate

Per.Ex;rIBR/ D Hn�1.@Ex;r\BR/ D Hn�1.@E \ BrR.x//

rn�1
6 Rn�1Hn�1.@E\B1.x//:

This proves that the perimeter of @Ex;r in BR is uniformly bounded for all r 2
.0; 1=R�. Accordingly, by Proposition 3.2.4 the family fEx;rg is compact in L1

loc.BR/.
Since this is true for any R > 0, a diagonal argument yields the existence of an
infinitesimal sequence frjg such that

Ex;rj �! F in L1
loc.R

n/;

for some set F � R
n. Since the sets Ex;r are minimal, exploiting the lower

semicontinuity of the perimeter (see Proposition 3.2.3) it is not difficult to show
that @F is a minimal surface and that Hn�1.@Ex;rj \ Bs/ ! Hn�1.@F \ Bs/ for a.e. s
(see, for instance, [24, Lemma 9.1]).
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We now prove that F is a cone. For any s > 0, we have

‰F.s/ D Hn�1.@F \ Bs/

sn�1
D lim

j!C1
Hn�1.@Ex;rj \ Bs/

sn�1

D lim
j!C1

Hn�1.@E \ Brjs.x//

.rjs/n�1
D lim

�!0C

Hn�1.@E \ B�.x//

�n�1
:

Thus, ‰F.s/ is constant, which implies that F is a cone. ut
We have thus established that the blow-up sequence (3.28) converges to a mini-

mal cone. Notice now that halfspaces are particular examples of cones. Also, if F is
a halfspace and Ex;r is close to F in L1

loc (and hence in L1
loc, see Corollary 3.6.2),

then @Ex;r becomes flatter and flatter as r ! 0C. In particular, we may apply
Theorem 3.6.3 to Ex;r for some r sufficiently small to deduce the smoothness of @E
around x. Hence, the goal now is to understand whether minimal cones are always
halfplanes or not. The desired classification result is given by the following theorem.

Theorem 3.6.8 If n 6 7, all minimal cones are halfplanes. If n > 8, then there exist
minimal cones which are not halfplanes.

Theorem 3.6.8 has been obtained by De Giorgi [15] for n D 3, by Almgren [2]
for n D 4 and, finally, by Simons [30] in any dimension n 6 7. The counterexample
in dimension n D 8 is given by the so-called Simons cone

C WD f.x; y/ 2 R
4 � R

4 W jxj < jyjg:

Simons conjectured in [30] that the above set was a minimal cone in dimension 8,
and this was proved by Bombieri et al. [5].

Notice that the case n D 2 of Theorem 3.6.8 is trivial. Indeed, the cone on the
left of Fig. 3.9 cannot be minimal, as the competitor showed on the right has less
perimeter (by the triangle inequality).

In conclusion, the discussion above shows that minimal surfaces are smooth up
to dimension 7. Although in higher dimension minimal surfaces may develop a
singular set S, an argument due to Federer (called “Federer reduction argument”)

Fig. 3.9 The cone on the left is not minimal, since the perturbation on the right has lower perimeter
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allows one to exploit the absence of singular minimal cones in dimension 7 to give
a bound on dimension of S. We can summarize this in the following result (see [24,
Chap. 11] or [25, Chap. 28] for more details):

Corollary 3.6.9 Let E � R
n be minimal. We have:

(i) if n 6 7, then @E is analytic;
(ii) if n > 8, then there exists S � @E such that S is closed, @E n S is analytic,

andH	 .S/ D 0 for any 	 > n � 8.

3.7 Nonlocal Minimal Surfaces

In this last section, we consider a different nonlocal notion of area, introduced
by Caffarelli et al. in [9]. After briefly motivating its definition, we discuss which
of the results and approaches described up to now can be carried over to this new
setting.

To begin with, we should ask ourselves why we study perimeters. Of course,
perimeters model surface tension, as for example in soap bubbles. Moreover,
perimeters naturally arise in phase transition problems. Suppose that we have
two different media (e.g. water and ice, or water and oil) that are put together
in the same container. Of course, the system pays an energy for having an
interface between them. Since nature tends to minimize such an energy, interfaces
must be (almost) minimal surfaces (e.g. spheres of oil in water, planar regions,
etc.).

Hence, perimeters are useful for interpreting in simple ways several complex
events that take place in our world. In general, perimeters give good local
descriptions of intrinsically nonlocal phenomena. We now address the problem
of establishing a truly nonlocal energy that may hopefully better model the physical
situation.

Let E be a subset of Rn, representing the region occupied by some substance.
In order to obtain an energy that incorporates the full interplay between E and its
complement—that we think to be filled with a different composite—we suppose
that each point x of E interacts with each point y of Rn n E. Of course, we need
to weigh this interaction, so that closer points interact more strongly than farther
ones. Moreover, E must not interact with itself, and similarly for its complement.
Finally, because the regularity theory only depends on the interaction for extremely
close-by points, it is natural to consider energies that have some scaling invariance.
In the end, one comes up with the following notion of a fractional perimeter
of E:

Pers.E/ WD
Z

Rn

Z

Rn

j�E.x/ � �E. y/j
jx � yjnCs

dx dy D 2

Z

E

Z

RnnE
dx dy

jx � yjnCs
;
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for any fixed s 2 .0; 1/. Notice that, since we chose a homogeneous weight,
rescalings of minimal surfaces are still minimal, as for the standard perimeter. But
why did we restrict to the above range for the power s?

To answer this question, we first need to define a preliminary restricted version
of the fractional perimeter. Consider the quantity

PerB1
s .E/ WD

Z

B1

Z

B1

j�E.x/ � �E. y/j
jx � yjnCs

dx dy: (3.30)

Observe that PerB1
s .E/ sums up all the interactions between E and its complement

that occur inside B1. If we take s < 0, then

PerB1
s .E/ 6 2

Z

B1

Z

B1

dx dy

jx � yjnCs
6 Cn

Z 2

0

d�

�1Cs
< C1;

that is, PerB1
s .E/ is always finite, no matter how rough the boundary of E is. Hence,

this would lead to a too weak notion of perimeter.
On the other hand, suppose that s > 1. Then, if we take as E the upper halfspace

fxn > 0g, a simple computation reveals that

PerB1
s .E/ D 2

Z

B1\fxn>0g

Z

B1\fxn<0g
dx dy

jx � yjnCs

> 2

Z p

2
2

0

Z 0

�
p

2
2

Z

Bn�1
p

2
2

Z

Bn�1
p

2
2

dx0 dy0 dxn dyn
Œjx0 � y0j2 C .xn � yn/2�

nCs
2

> cn

Z p

2
4

0

dt

t1Cs
D C1:

Thus, halfspaces have infinite s-perimeter in the ball B1 if s > 1. As halfspaces
represents the simplest examples of surfaces, this is clearly something we do
not want to allow for. Consequently, we restrict ourselves to consider weights
corresponding to s 2 .0; 1/.2

It can be easily seen that Pers.E/ D C1 if E is a halfspace, even for s 2 .0; 1/.
This is due to the fact that Pers takes into account also interactions coming from
infinity (actually this happens also in the case of classical perimeters, as the
perimeter of a halfspace in the whole Rn is not finite). Therefore, we need to restrict
our definition (3.30) to bounded containers.

2Although the choice s D 0 is in principle admissible for the restricted perimeter PerB1
s , we discard

it anyway. In fact, it determines a weight with too fat tails at infinity, which would not be suitable
for the full fractional perimeter Pers.
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Fix an open set �, and prescribe E outside ˝ , i.e., suppose that E n ˝ D F n ˝

for some given set F. Then,

Pers.E/ D
Z

�

Z

˝

j�E.x/ � �E. y/j
jx � yjnCs

dx dy C 2

Z

˝

�Z

Rnn˝

j�E.x/ � �E. y/j
jx � yjnCs

dy

�
dx

C
Z

Rnn�

Z

Rnn˝

j�E.x/ � �E. y/j
jx � yjnCs

dx dy

D
Z

�

Z

�

j�E.x/ � �E. y/j
jx � yjnCs

dx dy C 2

Z

�

�Z

Rnn˝

j�E.x/ � �E. y/j
jx � yjnCs

dy

�
dx

C
Z

Rnn�

Z

Rnn˝

j�F.x/ � �F. y/j
jx � yjnCs

dx dy:

Notice that the last integral only sees outside of B1 and is hence independent of E
once the boundary datum F is fixed. Thus, when minimizing Pers.E/, it is enough
to restrict ourselves to the two other terms. Thus, given a bounded open set �, we
define

Pers.EI �/ WD
Z

�

Z

˝

j�E.x/ � �E. y/j
jx � yjnCs

dx dy C 2

Z

˝

Z

Rnn˝

j�E.x/ � �E. y/j
jx � �yjnCs

dx dy:

(3.31)

One can check that, with this definition, halfspaces have finite s-perimeters inside
any bounded set �.

Accordingly, we have the following notion of minimal surface for Pers.

Definition 3.7.1 (Caffarelli et al. [9]) Given a bounded open set �, a measurable
set E � R

n is said to be a nonlocal s-minimal surface inside � if

Pers.EI �/ 6 Pers.E0I �/

for any measurable E0 such that E0 n � D E n �.
In the following subsections, we proceed to investigate some important properties

shared by nonlocal minimal surfaces.

3.7.1 Existence of s-Minimal Surfaces

We begin by showing the existence of s-minimal surfaces. Assuming for simplicity
that � D B1, we have the following result.

Theorem 3.7.2 Let F be a set with locally finite s-perimeter. Then, there exists a s-
minimal surface E in B1 with E n B1 D F n B1.
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As in Sect. 3.3, the proof of the existence of minimal surfaces is based on the
semicontinuity of Pers and on a compactness result similar to Proposition 3.2.4.
The lower semicontinuity of Pers in L1

loc can be easily established right from
definition (3.31), using for instance Fatou’s lemma. On the other hand, the needed
compactness statement amounts to show that

Pers.EkIB1/ 6 C implies that fEkg is precompact in L1.B1/: (3.32)

To check this fact, we first notice that

Pers.FIB1/ >
Z

B1

Z

B1

j�F.x/ � �F. y/j
jx � yjnCs

dx dy

D
Z

B1

Z

B1

j�F.x/ � �F. y/j2
jx � yjnCs

dx dy

D Œ�F �2Hs=2.B1/
;

where Œ � �Hs=2 denotes the Gagliardo seminorm of the fractional Sobolev space Hs=2.
By the compact fractional Sobolev embedding (see e.g. [16, Theorem 7.1]), the
uniform boundedness of f�Ekg in Hs=2.B1/ implies that, up to a subsequence, it
converges in L1.B1/ to �F , for some measurable set F. Hence, (3.32) is true.

3.7.2 Euler-Lagrange Equation

Suppose that E is a nonlocal minimal surface in B1 and let fE"g be a continuous
family of perturbations of E, with E" n B1 D E n B1 for any ". From the minimality
of E, we have that

0 D d

d"

ˇ̌
ˇ̌
"D0

Pers.E"IB1/:

Eventually, we are led to the equation

Z

Rn

�E. y/ � �RnnE. y/

jx � yjnCs
dy D 0 for any x 2 @E \ B1 (3.33)

(see [9, Sect. 5]). Heuristically, this means that

Z

E

dy

jx � yjnCs
D
Z

RnnE
dy

jx � yjnCs
;

at any point x 2 @E \ B1. In other words, each point x 2 @E interacts in the same
way both with E and with R

n nE. However, the above identity cannot be interpret in
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a rigorous way, as both integrals do not converge. Hence, (3.33) must be understood
in the principal value sense, that is

0 D P.V.
Z

Rn

�E. y/ � �RnnE. y/

jx � yjnCs
dy D lim

ı!0C

Z

RnnBı .x/

�E. y/ � �RnnE. y/

jx � yjnCs
dy:

When E is the (global) subgraph of a function u W Rn�1 ! R, this can be written
as a nonlocal equation for u: more precisely, if we assume that u is small enough so
that we neglect nonlinear terms, we find that

0 D IŒu�.x/ ' .��/
1Cs

2 u.x/ D P.V.
Z

Rn�1

u.x/ � u. y/

jx � yj.n�1/C.1Cs/
dy;

where I denotes a suitable integral operator (cp. [9, Lemma 6.11] and [4, Sect. 3]).
The fact that IŒu� is close to the fractional Laplacian of order 1Cs

2
when the Lipschitz

norm of u is small should be compared with the classical mean curvature operator
appearing in (3.19), which is close to the classical Laplacian when ru is small.

3.7.3 s-Minimal Graphs

As we did before, we begin by addressing the problem of obtaining regularity results
for minimal surfaces in the case when they are (locally) the graph of a function u.
So, we consider a s-minimal surface E in the infinite cylinder C1 D Bn�1

1 � R such
that

E \ C1 D
n
.x0; xn/ 2 C1 W xn < u.x0/

o
; (3.34)

for some function u W Bn�1
1 ! R, with u.0/ D 0.

In Sect. 3.5, we saw that bounded classical minimal graphs are smooth functions.
The first step in the proof of this result was the gradient estimate of [6], which
established their Lipschitz character. From this, additional regularity then followed
by the De Giorgi-Nash-Moser and Schauder theories.

In the nonlocal setting, we are still missing the initial step of this argument. In
fact, we can propose the following open problem.

Open Problem Suppose that u is bounded. What can be said of the regularity of u
in the ball Bn�1

1=2 ? Is it locally Lipschitz?
When u is already Lipschitz, then its smoothness follows. This is achieved in two

essential steps. First, we have:

Theorem 3.7.3 (Figalli-Valdinoci [22]) If u is Lipschitz, then u is C1;˛ for
any ˛ < s.

Then, the following Schauder-type result allows one to conclude:



3 Regularity Theory for Local and Nonlocal Minimal Surfaces 153

Theorem 3.7.4 (Barrios et al. [4]) If u is C1;˛ for some ˛ > s=2, then u is C1.
At the moment it is not known whether smooth s-minimal graphs are actually
analytic. The results in [1] show that they enjoy some Gevrey regularity.

We conclude the subsection by observing that s-minimal surfaces with graph
properties as (3.34) indeed exist, for instance when their boundary data are graphs
too.

Theorem 3.7.5 (Dipierro et al. [18]) Suppose that E is a s-minimal surface in C1

such that

E n C1 D
n
.x0; xn/ 2 .Rn n Bn�1

1 / � R W xn < v.x0/
o
;

for some bounded, continuous function v W Rn�1 ! R. Then, (3.34) holds true for
some continuous function u W NBn�1

1 ! R.

3.7.4 Regularity of General s-Minimal Sets

The regularity theory for nonlocal minimal surfaces established in [9] follows an
analogous strategy to that outlined in Sect. 3.6.

The density estimates follow via the same argument of the proof of Lemma 3.6.1,
using the fractional Sobolev inequality in place of the isoperimetric inequality (see
[9, Sect. 4]).

The "-regularity theory is also similar [9, Sect. 6], but we need to check what
happens with the behavior at infinity of the s-minimal surface. The key step is
represented by the following improvement of flatness result.

Lemma 3.7.6 Let E be a s-minimal surface in B1. For any fixed ˛ 2 .0; s/, there
exists k0 2 N such that if

@E \ B2�k � ˚jx � ekj 6 2�k.1C˛/
�

;

for some unit vector ek 2 S
n�1 and for any k D 0; : : : ; k0, then

@E \ B2�k0�1 � ˚jx � ek0C1j 6 2�.k0C1/.1C˛/
�

;

for some ek0C1 2 S
n�1.

Lemma 3.7.6 tells that if @E is sufficiently flat for a sufficiently large number of
geometric scales, then it is flatter and flatter at all smaller scales. Compare this with
Lemma 3.6.4: in the local case it was sufficient to check the flatness of the boundary
of E at only one scale to deduce its improvement at smaller scales.

We can rephrase the above statement by rescaling everything by a factor 2k0 (in
other words, replacing E by 2k0E). Lemma 3.7.6 is then equivalent to prove that

@E \ B2 j � ˚jx � ejj 6 ".2j/1C˛
�

;
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for any j D 0; : : : ; k0 and with " D 2�k0˛, implies that

@E \ B1=2 � ˚jx � Nej 6 "2�1�˛
�

:

From this formulation, the role played by the nonlocality of Pers is even more
evident: to obtain information inside the ball B1=2 we need to have it already in B2k0 ,
with k0 sufficiently large.

To prove the improvement of flatness that we just stated, we argue by contradic-
tion. As in Sect. 3.6.2, we pick two sequences of s-minimal surfaces Em and positive
real numbers "m, with "m ! 0. We suppose that each Em violates the implication
above, with " D "m and k0 D j log "mj=.˛ log 2/. It can be shown that suitable
rescalings of the sets Em (analogue to the rescaling in Sect. 3.6.2) converge to the
graph of a function u that satisfies

8
<
:

.��/
1Cs

2 u D 0 in R
n�1

ju.x/j 6 C
�
1 C jxj1C˛

�
for any x 2 R

n�1;
(3.35)

for some C > 0. The conclusive step of the proof of Lemma 3.7.6 is then provided
by the next general Liouville-type result.

Lemma 3.7.7 Suppose that u satisfies (3.35) for some ˛ 2 .0; s/ and s 2 .0; 1�.
Then, u is affine.

Sketch of the Proof We include the proof of the lemma in the classical case s D
1. The argument for the fractional powers of the Laplacian is analogous (see [9,
Proposition 6.7]).

Fix R > 1 and set uR.x/ WD R�1�˛u.Rx/. Clearly, �uR D 0 and kuRkL1.B1/ 6 C.
Consequently, by elliptic regularity, we have that kD2uRkL1.B1=2/ 6 CnC. But

D2uR.x/ D R1�˛D2u.Rx/;

and therefore we get that

kD2ukL1.BR=2/ 6
CnC

R1�˛
:

The result follows by letting R ! C1. ut
In view of the "-regularity theory outlined above, we know that flat s-minimal

surfaces are smooth.
The next step is then to use blow-ups in order to understand at how many

points a nonlocal minimal surface is flat. To this aim, we first need an appropriate
monotonicity formula, as in Theorem 3.6.6. Instead of working with the nonlocal
perimeter Pers as defined in (3.30), we consider a slightly different energy coming
from the so-called extension problem (see [7, 9]).
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Let RnC1
C denote the upper halfspace f.x; y/ 2 R

n�R W y > 0g and u W NRnC1
C ! R

be the unique solution to the problem

(
divRnC1

�
y1�srRnC1u

� D 0 in R
nC1
C

ujyD0 D �E � �RnnE on R
n:

Then, define

ˆE.r/ WD 1

rn�s

Z

BC

r

y1�s jrRnC1uj2 ;

for any r > 0. The notationBC
r is used here to indicate the upper half-ball of radius r,

centered at the origin of RnC1, i.e. BC
r WD BnC1

r \ R
nC1
C . We have the following:

Theorem 3.7.8 (Caffarelli et al. [9]) The function ˆE is monotone non-decreasing
in r.

With the help of this monotonicity result, we can successfully perform the
standard blow-up procedure.

Proposition 3.7.9 Let E be a s-minimal surface and let x 2 @E. For small r > 0,
set Ex;r WD r�1.E � x/. Then, up to a subsequence,

Ex;r �! F in L1
loc;

as r ! 0C, with F a s-minimal cone.
As in the classical case, to complete our investigation on the regularity properties

of minimal surfaces we are left with the problem of classifying minimal cones. This
task turns out to be not trivial at all, even in the plane. In fact, here one cannot argue
as easily as for the standard perimeter (recall Fig. 3.9). However, a more refined
approach can be developed to show that in R

2 there are no non-trivial s-minimal
cones.

Theorem 3.7.10 (Savin-Valdinoci [29]) If E is a s-minimal cone in R
2, then E is

a halfspace. In particular, s-minimal surfaces in R2 are smooth.
This result has been recently improved, via quantitative flatness estimates, in

[10].
Another way to attack the problem of the regularity for s-minimal surfaces,

when s is close to 1, is by taking advantage of the classical regularity theory. First,
we recall the following result due to Davila [11] (see also [3, 8]).

Theorem 3.7.11 There exists a dimensional constant c? > 0 such that

.1 � s/ Pers.EIB1/ �! c? Per.EIB1/;

as s ! 1�.
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In view of the above theorem, (a suitable rescaling of) the nonlocal perimeter
converges to the standard one as s ! 1�. Similarly, nonlocal minimal
surfaces approaches classical ones in the same limit. Hence, as we already
know that classical minimal surfaces are smooth up to dimension n D 7,
the same is true for s-minimal surfaces, provided s is sufficiently close
to 1. More precisely, the following result holds as a consequence of Theo-
rem 3.7.11:

Corollary 3.7.12 Let n > 2, and let E � R
n be s-minimal. There exists sn 2 .0; 1/

close to 1 such that, if s > sn, then:

(1) if n 6 7, then @E 2 C1 (in particular, the only s-minimal cones are halfspaces);
(2) if n > 8, then there exists S � @E such that S is closed, @E n S is smooth,

andH	.S/ D 0 for any 	 > n � 8.

On the contrary, as s ! 0C, a suitable rescaling of Pers converges to the volume
[17]. In this respect, Pers is a very natural way to interpolate between the volume
and the perimeter.

We note that, if s is small, there is an example of a cone F � R
7 such that, for

any continuous family fF"g of perturbations of F, it holds

d

d"

ˇ̌
ˇ̌
"D0

Pers.F"IB1/ D 0 and
d2

d"2

ˇ̌
ˇ̌
"D0

Pers.F"IB1/ > 0:

That is, F is a stable solution of (3.33). If one could prove that F actually minimizes
the s-perimeter, then one would have found a counterexample to the above corollary
when s is far from 1. We refer the interested reader to [12] for more details on this
construction.

In conclusion, the regularity theory for nonlocal minimal surfaces that we
just described is often based on ideas that also work for classical ones. Often
these methods are simpler and work better in the local scenario, but there
are some tools and techniques that are naturally better suited for nonlocal
objects.

For instance, as we saw in Sect. 3.5 the proof that classical Lipschitz minimal
graphs are C1;˛ is based on the De Giorgi-Nash-Moser theory for elliptic PDEs
with bounded measurable coefficients. On the other hand, this strategy does
not seem to work for nonlocal minimal surfaces. Conversely, a new geomet-
ric argument can be successfully applied and the same regularity result is true
[22].

As one can see, several important questions in this theory are still open (the
most fundamental one being the classification of minimal cones). We hope that new
results will come in the next few years.
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