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Preface

We are honoured to have been the scientific organizers of the 2016 CIME Course
“Nonlocal and nonlinear diffusions and interactions. New methods and directions”,
which took place in Cetraro (Cosenza, Italy) on July 4–8, 2016, with the following
sets of lectures:

• José Antonio Carrillo, Imperial College London, United Kingdom:
Swarming Models with Repulsive-Attractive Effects:
Derivation, Model Hierarchies and Pattern Stability

• Manuel del Pino, Universidad de Chile, Chile:
Bubbling blow-up in critical parabolic problems

• Alessio Figalli, ETH Zürich, Switzerland:
Regularity results for local and nonlocal energy interactions

• Giuseppe Mingione, Università Parma, Italy:
Recent progresses in nonlinear potential theory

• Juan Luis Vázquez, Universidad Autónoma de Madrid, Spain:
Nonlinear Diffusion Equations with Fractional Laplacian Operators

During the school, there has been a special dinner to celebrate the 70th birthday
of Juan Luis Vázquez. Juan Luis has always had a big involvement in Italian
mathematics.

This CIME course has brought together some of the leading scholars in nonlinear
partial differential equations (PDEs), with a special emphasis on rapidly developing
topics which are of great and increasing interest both from the theoretical point
of view and as concerns applications. This summer course has been a success
even beyond our expectation. We are indebted to the distinguished speakers for
giving such high-level lectures and also for the effort of writing this excellent
quality set of lecture notes. We counted numerous attendance; there were more
than 60 participants, mostly doctoral or postdoctoral students coming from more
than 10 different countries. We would like also to thank them; without their active
participation, this event would not have been so meaningful.

v



vi Preface

Throughout the whole week, the atmosphere has been especially nice, friendly
and scientifically stimulating, mostly because of the active involvement of both the
speakers and the participants.

We believe that the scientific level achieved in this course has been outstanding,
but also quite adequate and accessible to the heterogeneous audience. We have
received an extremely good feedback from the participants regarding both the
practical organization and especially the high level of the courses and the very nice
and stimulating atmosphere. It is worth mentioning that the speakers were not only
amongst the top-level mathematicians in the respective fields, but also they were
quite open to discussions with the students, friendly discussing with them after the
lessons as well as in other moments.
We now briefly describe the single contributions included in this set of lecture notes.

José Antonio Carrillo contributed with a paper entitled “The geometry of diffus-
ing and self-attracting particles in a one-dimensional fair-competition regime”. The
authors consider aggregation-diffusion equations modelling particle interactions
with nonlinear diffusion and nonlocal attraction, leading to variants of the Keller-
Segel model of chemotaxis. Their analysis deals with the one-dimensional case,
providing an almost complete classification. Amongst the topics dealt with, we
stress the uniqueness of stationary states via suitable functional inequalities, asymp-
totic behaviour of solutions, convergence to equilibrium in Wasserstein distance in
the critical singular kernel case and convergence to self-similarity for subcritical
interaction strength. Interesting numerical simulations naturally complement the
analytical part.

Manuel del Pino contributed with a paper entitled “Bubbling blow-up in critical
parabolic problems”. The paper is devoted to the analysis of the blowup of solutions
for some parabolic equations that involve bubbling phenomena. The term bubbling
refers to the presence of families of solutions which at main order look like scalings
of a single stationary solution which in the limit become singular but at the same
time have an approximately constant energy level. This arise in various problems
where critical loss of compactness for the underlying energy appears. Three main
equations are studied, namely, the Sobolev critical semilinear heat equation in R

n,
the harmonic map flow from R

2 into S2 and the Patlak-Keller-Segel system in R
2.

Alessio Figalli contributed with the paper “Regularity theory for local and
nonlocal minimal surfaces: an overview”. This review paper begins with a very
useful general introduction to the classical theory of local minimal boundaries,
explaining the main ideas behind the existence and regularity theory. This is
extremely useful as it provides, in the second part of the note, a natural guideline
in order to address the same kind of problems in the nonlocal context. Amongst the
important results discussed in this note are (1) the existence of minimal surfaces, (2)
the regularity theory of minimal graphs, (3) the regularity of flat minimal surfaces
and (4) the analysis of blowups and minimal cones.

Giuseppe Mingione contributed with a paper entitled “Short Tales from Non-
linear Calderón-Zygmund Theory”. The paper is a very useful review of nonlinear
Calderón-Zygmund theory, which aims at reproducing, in the nonlinear setting, the
classical linear theory. This topic has large intersections with nonlinear potential
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theory. A central theme of the paper relies on the idea that linear potential theory
tools like Riesz potential can still be used to study fine properties of solutions to
nonlinear equations.

Juan Luis Vázquez contributed with a paper entitled “The mathematical theories
of diffusion. Nonlinear and fractional diffusion”. The paper begins with an historical
survey on linear and nonlinear diffusions whose prototypes are the heat equation
and the porous medium equation. Then the attention turns to new nonlinear and
nonlocal diffusion models, coming from anomalous diffusions in physics that take
into account long-range interactions and have also further applications in areas
like biology, image processing or finance. The main points of the theory have
been outlined: existence, uniqueness, regularity and asymptotic behaviour, focusing
attention on the different techniques used in the proofs. The occurrence of stable
diffusive patterns was stressed.

We had in Cetraro an interesting, rich and friendly atmosphere, created by the
speakers, the participants and the CIME Organizers, in particular Elvira Mascolo
(CIME Director) and Paolo Salani (CIME Secretary). We thank all of them warmly.

Madrid, Spain Matteo Bonforte
Milano, Italy Gabriele Grillo
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Chapter 1
The Geometry of Diffusing and Self-Attracting
Particles in a One-Dimensional
Fair-Competition Regime

Vincent Calvez, José Antonio Carrillo, and Franca Hoffmann

Abstract We consider an aggregation-diffusion equation modelling particle inter-
action with non-linear diffusion and non-local attractive interaction using a homo-
geneous kernel (singular and non-singular) leading to variants of the Keller-Segel
model of chemotaxis. We analyse the fair-competition regime in which both
homogeneities scale the same with respect to dilations. Our analysis here deals
with the one-dimensional case, building on the work in Calvez et al. (Equilibria of
homogeneous functionals in the fair-competition regime), and provides an almost
complete classification. In the singular kernel case and for critical interaction
strength, we prove uniqueness of stationary states via a variant of the Hardy-
Littlewood-Sobolev inequality. Using the same methods, we show uniqueness of
self-similar profiles in the sub-critical case by proving a new type of functional
inequality. Surprisingly, the same results hold true for any interaction strength in
the non-singular kernel case. Further, we investigate the asymptotic behaviour of
solutions, proving convergence to equilibrium in Wasserstein distance in the critical
singular kernel case, and convergence to self-similarity for sub-critical interaction
strength, both under a uniform stability condition. Moreover, solutions converge to
a unique self-similar profile in the non-singular kernel case. Finally, we provide a
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2 V. Calvez et al.

numerical overview for the asymptotic behaviour of solutions in the full parameter
space demonstrating the above results. We also discuss a number of phenomena
appearing in the numerical explorations for the diffusion-dominated and attraction-
dominated regimes.

1.1 Introduction

Mean field macroscopic models for interacting particle systems have been derived in
the literature [66, 69] with the objective of explaining the large time behaviour, the
qualitative properties and the stabilisation of systems composed by a large number
of particles with competing effects such as repulsion and attraction between parti-
cles. They find natural applications in mathematical biology, gravitational collapse,
granular media and self-assembly of nanoparticles, see [33, 39, 56, 58, 60, 78] and
the references therein. These basic models start from particle dynamics in which
their interaction is modelled via pairwise potentials. By assuming the right scaling
between the typical interaction length and the number of particles per unit area one
can obtain different mean field equations, see for instance [14]. In the mean-field
scaling they lead to non-local equations with velocity fields obtained as an average
force from a macroscopic density encoding both repulsion and attraction, see [2, 12]
and the references therein. However, if the repulsion strength is very large at the
origin, one can model repulsive effects by (non-linear) diffusion while attraction is
considered via non-local long-range forces [66, 78].

In this work, we concentrate on this last approximation: repulsion is modelled
by diffusion and attraction by non-local forces. We will make a survey of the
main results in this topic exemplifying them in the one dimensional setting while
at the same time we will provide new material in one dimension with alternative
proofs and information about long time asymptotics which are not known yet in
higher dimensions. In order to understand the interplay between repulsion via non-
linear diffusion and attraction via non-local forces, we concentrate on the simplest
possible situation in which both the diffusion and the non-local attractive potential
are homogeneous functions. We will focus on models with a variational structure
that dissipate the free energy of the system. This free energy is a natural quantity
that is already dissipated at the underlying particle systems.

The plan for this work is twofold. In a first part we shall investigate some
properties of the following class of homogeneous functionals, defined for centered
probability densities �.x/, belonging to suitable weighted Lp-spaces, and some
interaction strength coefficient � > 0 and diffusion power m > 0:

Fm;kŒ�� D
Z
R

Um .�.x// dx C �

“
R�R

�.x/Wk.x � y/�.y/ dxdy WD UmŒ��C �WkŒ�� ;

(1.1)

�.x/ � 0 ;

Z
R

�.x/ dx D 1 ;

Z
R

x�.x/ dx D 0 ;
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with

Um.�/ D
8<
:

1

m � 1
�m ; if m ¤ 1

� log � ; if m D 1
;

and

Wk.x/ D
8<
:

jxjk
k
; if k 2 .�1; 1/ n f0g

log jxj ; if k D 0
: (1.2)

The center of mass of the density � is assumed to be zero since the free energy
functional is invariant by translation. Taking mass preserving dilations, one can see
that UmŒ�� scales with a power m � 1, whilst WkŒ�� scales with power �k, indicating
that the relation between the parameters k and m plays a crucial role here. And
indeed, one observes different types of behaviour depending on which of the two
forces dominates, non-linear diffusion or non-local attraction. This motivates the
definition of three different regimes: the diffusion-dominated regime m�1 > �k, the
fair-competition regime m � 1 D �k, and the attraction-dominated regime m � 1 <
�k. We will here concentrate mostly on the fair-competition regime.

This work can be viewed as a continuation of the seminal paper by McCann
[65] in a non-convex setting. Indeed McCann used the very powerful toolbox of
Euclidean optimal transportation to analyse functionals like (1.1) in the case m � 0

and for a convex interaction kernel Wk. He discovered that such functionals are
equipped with an underlying convexity structure, for which the interpolant Œ�0; �1�t
follows the line of optimal transportation [81]. This provides many interesting
features among which a natural framework to show uniqueness of the ground state
as soon as it exists. In this paper we deal with concave homogeneous interaction
kernels Wk given by (1.2) for which McCann’s results [65] do not apply. Actually,
the conditions on k imply that the interaction kernel Wk is locally integrable on
R and concave on RC, which means that WkŒ�� is displacement concave as shown
in [35]. We explain in this paper how some ideas from [65] can be extended to
some convex-concave competing effects. Our main statement is that the functional
(1.1)—the sum of a convex and a concave functional—behaves almost like a convex
functional in some good cases detailed below. In particular, existence of a critical
point implies uniqueness (up to translations and dilations). The bad functional
contribution is somehow absorbed by the convex part for certain homogeneity
relations and parameters �.

The analysis of these free energy functionals and their respective gradient flows is
closely related to some functional inequalities of Hardy-Littlewood-Sobolev (HLS)
type [12, 29, 53, 62]. To give a flavour, we highlight the case .m D 1; k D 0/,
called the logarithmic case. It is known from [9, 50] using [5, 28] that the functional
F1;0 is bounded from below if and only if 0 < � � 1. Moreover, F1;0 achieves
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its minimum if and only if � D 1 and the extremal functions are mass-preserving
dilations of Cauchy’s density:

N�0.x/ D 1

�

�
1

1C jxj2
�
: (1.3)

In [28] authors have proved the uniqueness (up to dilations and translations) of
this logarithmic HLS inequality based on a competing-symmetries argument. We
develop in the present paper an alternative argument based on some accurate use
of the Jensen’s inequality to get similar results in the porous medium case �1 <
k < 0. This goal will be achieved for some variant of the HLS inequality as in [12],
indeed being a combination of the HLS inequality and interpolation estimates, see
Theorem 1.3.1. The case 0 < k < 1 has been a lot less studied, and we will show
here that no critical interaction strength exists as there is no � > 0 for which Fm;k

admits global minimisers. On the other hand, we observe certain similarities with
the behaviour of the fast diffusion equation (0 < m < 1, � D 0) [79]. The mass-
preserving dilation homogeneity of the functional Fm;k is shared by the range of
parameters .m; k/with N.m�1/Ck D 0 for all dimensions,m > 0 and k 2 .�N;N/.
This general fair-competition regime, has recently been studied in [24].

In a second stage, here we also tackle the behaviour of the following family
of partial differential equations modelling self-attracting diffusive particles at the
macroscopic scale,

�
@t� D @xx .�

m/C 2�@x .� @xSk/ ; t > 0 ; x 2 R ;

�.t D 0; x/ D �0.x/ :
(1.4)

where we define the mean-field potential Sk.x/ WD Wk.x/ � �.x/. For k > 0, the
gradient @xSk WD @x .Wk � �/ is well defined. For k < 0 however, it becomes a
singular integral, and we thus define it via a Cauchy principal value. Hence, the
mean-field potential gradient in Eq. (1.4) is given by

@xSk.x/ WD

8̂
<
:̂
@xWk � � ; if 0 < k < 1 ;Z
R

@xWk.x � y/ .�.y/� �.x// dy ; if � 1 < k < 0 :
(1.5)

Further, it is straightforward to check that Eq. (1.4) formally preserves positivity,
mass and centre of mass, and so we can choose to impose

�0.x/ � 0 ;

Z
�0.x/ dx D 1 ;

Z
x�0.x/ dx D 0 :

This class of PDEs are one of the prime examples for competition between the
diffusion (possibly non-linear), and the non-local, quadratic non-linearity which is
due to the self-attraction of the particles through the mean-field potential Sk.x/.
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The parameter � > 0 measures the strength of the interaction. We would like
to point out that we are here not concerned with the regularity of solutions or
existence/uniqueness results for Eq. (1.4), allowing ourselves to assume solutions
are ‘nice’ enough in space and time for our analysis to hold (for more details on
regularity assumptions, see Sect. 1.4).

There exists a strong link between the PDE (1.4) and the functional (1.1). Not
only is Fm;k decreasing along the trajectories of the system, but more importantly,
system (1.4) is the formal gradient flow of the free energy functional (1.1) when the
space of probability measures is endowed with the Euclidean Wasserstein metric W:

@t�.t/ D �rWFm;kŒ�.t/� : (1.6)

This illuminating statement has been clarified in the seminal paper by Otto
[70]. We also refer to the books by Villani [81] and Ambrosio et al. [1] for a
comprehensive presentation of this theory of gradient flows in Wasserstein metric
spaces, particularly in the convex case. Performing gradient flows of a convex
functional is a natural task, and suitable estimates from below on the Hessian
of Fm;k in (1.1) translate into a rate of convergence towards equilibrium for the
PDE [33, 34, 81]. However, performing gradient flow of functionals with convex
and concave contributions is more delicate, and one has to seek compensations.
Such compensations do exist in our case, and one can prove convergence in
Wasserstein distance towards some stationary state under suitable assumptions, in
some cases with an explicit rate of convergence. It is of course extremely important
to understand how the convex and the concave contributions are entangled.

The results obtained in the fully convex case generally consider each contribution
separately, resp. internal energy, potential confinement energy or interaction energy,
see [1, 33, 34, 81]. It happens however that adding two contributions provides better
convexity estimates. In [33] for instance the authors prove exponential speed of
convergence towards equilibrium when a degenerate convex potential Wk is coupled
with strong enough diffusion, see [15] for improvements.

The family of non-local PDEs (1.4) has been intensively studied in various
contexts arising in physics and biology. The two-dimensional logarithmic case
.m D 1; k D 0/ is the so-called Keller-Segel system in its simplest formulation
[9, 57–59, 68, 71]. It has been proposed as a model for chemotaxis in cell
populations. The three-dimensional configuration .m D 1; k D �1/ is the so-called
Smoluchowski-Poisson system arising in gravitational physics [39–41]. It describes
macroscopically a density of particles subject to a self-sustained gravitational field.

Let us describe in more details the two-dimensional Keller-Segel system, as the
analysis of its peculiar structure will serve as a guideline to understand other cases.
The corresponding gradient flow is subject to a remarkable dichotomy, see [9, 44,
50, 52, 57, 67] . The density exists globally in time if � < 1 (diffusion overcomes
self-attraction), whereas blow-up occurs in finite time when � > 1 (self-attraction
overwhelms diffusion). In the sub-critical case, it has been proved that solutions
decay to self-similarity solutions exponentially fast in suitable rescaled variables
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[25, 26, 51]. In the super-critical case, solutions blow-up in finite time with by now
well studied blow-up profiles for close enough to critical cases, see [55, 72].

Substituting linear diffusion by non-linear diffusion with m > 1 in two
dimensions and higher is a way of regularising the Keller-Segel model as proved
in [18, 76] where it is shown that solutions exist globally in time regardless of the
value of the parameter � > 0. It corresponds to the diffusion-dominated case in two
dimensions for which the existence of compactly supported stationary states and
global minimisers of the free energy has only been obtained quite recently in [38].
The fair-competition case for Newtonian interaction k D 2 � N was first clarified
in [12], see also [75], where the authors find that there is a similar dichotomy to the
two-dimensional classical Keller-Segel case .N D 2;m D 1; k D 0/, choosing the
non-local term as the Newtonian potential, .N � 3;m D 2 � 2=N; k D 2� N/. The
main difference is that the stationary states found for the critical case are compactly
supported. We will see that such dichotomy also happens for k < 0 in our case while
for k > 0 the system behaves totally differently. In fact, exponential convergence
towards equilibrium seems to be the generic behaviour in rescaled variables as
observed in Fig. 1.1.

The paper is structured as follows: in Sect. 1.2, we give an analytic framework
with all necessary definitions and assumptions. In cases where no stationary states
exist for the aggregation-diffusion equation (1.4), we look for self-similar profiles
instead. Self-similar profiles can be studied by changing variables in (1.4) so that
stationary states of the rescaled equation correspond to self-similar profiles of the
original system. Further, we give some main results of optimal transportation needed
for the analysis of Sects. 1.3 and 1.4. In Sect. 1.3, we establish several functional

Fig. 1.1 Density evolution for parameter choices � D 0:7, k D �0:2, m D 1:2 following the
PDE (1.4) in rescaled variables from a characteristic supported on B.0; 1=2/ (black) converging to
a unique stationary state (red). For more details, see Fig. 1.6 and the explanations in Sect. 1.5
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inequalities of HLS type that allow us to make a connection between minimisers
of Fm;k and stationary states of (1.4), with similar results for the rescaled system.
Section 1.4 investigates the long-time asymptotics where we demonstrate conver-
gence to equilibrium in Wasserstein distance under certain conditions, in some
cases with an explicit rate. Finally, in Sect. 1.5, we provide numerical simulations of
system (1.4) to illustrate the properties of equilibria and self-similar profiles in the
different parameter regimes for the fair-competition regime. In Sect. 1.6, we use the
numerical scheme to explore the asymptotic behaviour of solutions in the diffusion-
and attraction-dominated regimes.

1.2 Preliminaries

1.2.1 Stationary States: Definition and Basic Properties

Let us define precisely the notion of stationary states to the aggregation-diffusion
equation (1.4).

Definition 1.2.1 Given N� 2 L1C .R/ \ L1 .R/ with jj N�jj1 D 1, it is a stationary
state for the evolution equation (1.4) if N�m 2 W1;2

loc .R/, @x NSk 2 L1loc .R/, and it
satisfies

@x N�m D �2� N�@x NSk
in the sense of distributions in R. If k 2 .�1; 0/, we further require N� 2 C0;˛ .R/
with ˛ 2 .�k; 1/.

In fact, the function Sk and its gradient defined in (1.5) satisfy even more than the
regularity @xSk 2 L1loc .R/ required in Definition 1.2.1. We have from [24]:

Lemma 1.2.2 Let � 2 L1C .R/ \ L1 .R/ with jj�jj1 D 1. If k 2 .0; 1/, we
additionally assume jxjk� 2 L1 .R/. Then the following regularity properties
hold:

(i) Sk 2 L1
loc .R/ for 0 < k < 1 and Sk 2 L1 .R/ for �1 < k < 0.

(ii) @xSk 2 L1 .R/ for k 2 .�1; 1/nf0g, assuming additionally � 2 C0;˛ .R/ with
˛ 2 .�k; 1/ in the range �1 < k < 0.

Furthermore, for certain cases, see [24], there are no stationary states to (1.4) in
the sense of Definition 1.2.1 (for a dynamical proof of this fact, see Remark 1.4.1
in Sect. 1.4.1.2), and so the scale invariance of (1.4) motivates us to look for self-
similar solutions instead. To this end, we rescale Eq. (1.4) to a non-linear Fokker-
Planck type equation as in [32]. Let us define

u.t; x/ WD ˛.t/� .ˇ.t/; ˛.t/x/ ;
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where �.t; x/ solves (1.4) and the functions ˛.t/, ˇ.t/ are to be determined. If we
assume u.0; x/ D �.0; x/, then u.t; x/ satisfies the rescaled drift-diffusion equation

8<
:
@tu D @xxum C 2�@x .u @xSk/C @x .xu/ ; t > 0 ; x 2 R ;

u.t D 0; x/ D �0.x/ � 0 ;

Z 1

�1
�0.x/ dx D 1 ;

Z 1

�1
x�0.x/ dx D 0 ;

(1.7)

for the choices

˛.t/ D et; ˇ.t/ D
(

1
2�k

�
e.2�k/t � 1

�
; if k ¤ 2 ;

t; if k D 2 ;
(1.8)

and with @xSk given by (1.5) with u instead of �. By differentiating the centre of
mass of u, we see easily that

Z
R

xu.t; x/ dx D e�t
Z
R

x�0.x/ dx D 0 ; 8t > 0 ;

and so the initial zero centre of mass is preserved for all times. Self-similar solutions
to (1.4) now correspond to stationary solutions of (1.7). Similar to Definition 1.2.1,
we state what we exactly mean by stationary states to the aggregation-diffusion
equation (1.7).

Definition 1.2.3 Given Nu 2 L1C .R/ \ L1 .R/ with jjNujj1 D 1, it is a stationary
state for the evolution equation (1.7) if Num 2 W1;2

loc .R/, @x NSk 2 L1loc .R/, and it
satisfies

@x Num D �2� Nu@x NSk � x Nu

in the sense of distributions in R. If �1 < k < 0, we further require Nu 2 C0;˛ .R/
with ˛ 2 .�k; 1/.
From now on, we switch notation from u to � for simplicity, it should be clear from
the context if we are in original or rescaled variables. In fact, stationary states as
defined above have even more regularity:

Lemma 1.2.4 Let k 2 .�1; 1/nf0g and � > 0.
(i) If N� is a stationary state of Eq. (1.4) with jxjk N� 2 L1 .R/ in the case 0 < k < 1,

then N� is continuous on R.
(ii) If N�resc is a stationary state of Eq. (1.7) with jxjk N�resc 2 L1 .R/ in the case 0 <

k < 1, then N�resc is continuous on R.
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In the case k < 0, we furthermore have a non-linear algebraic equation for
stationary states [24]:

Corollary 1.2.5 (Necessary Condition for Stationary States) Let k 2 .�1; 0/
and � > 0.

(i) If N� is a stationary state of Eq. (1.4), then N� 2 W1;1 .R/ and it satisfies

N�.x/m�1 D .m � 1/

m

�
CkŒ N��.x/ � 2� NSk.x/

�
C ; 8 x 2 R ;

where CkŒ N��.x/ is constant on each connected component of supp. N�/.
(ii) If N�resc is a stationary state of Eq. (1.7), then N�resc 2 W1;1

loc .R/ and it satisfies

N�resc.x/
m�1 D .m � 1/

m

�
Ck;rescŒ N��.x/ � 2� NSk.x/ � jxj2

2

�
C
; 8 x 2 R ;

where Ck;rescŒ N��.x/ is constant on each connected component of supp. N�resc/.

1.2.2 Definition of the Different Regimes

It is worth noting that the functional Fm;kŒ�� possesses remarkable homogeneity
properties. Indeed, the mass-preserving dilation ��.x/ D ��.�x/ transforms the
functionals as follows:

Um Œ��� D
(
�.m�1/UmŒ�� ; if m ¤ 1 ;

UmŒ��C log� ; if m D 1 ;

and,

Wk Œ��� D
(
��kWkŒ�� ; if k ¤ 0 ;

WkŒ�� � log� ; if k D 0 :

This motivates the following classification:

Definition 1.2.6 (Three Different Regimes)

m C k D 1 This is the fair-competition regime, where homogeneities of the two
competing contributions exactly balance. If k < 0, or equivalently m >
1, then we will have a dichotomy according to � (see Definition 1.2.7
below). Some variants of the HLS inequalities are very related to this
dichotomy. This was already proven in [9, 26, 50, 51] for the Keller-
Segel case in N D 2, and in [12] for the Keller-Segel case in N � 3. If
k > 0, that is m < 1, no critical � exists as we will prove in Sect. 1.3.2.
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m C k > 1 This is the diffusion-dominated regime. Diffusion is strong, and is
expected to overcome aggregation, whatever � > 0 is. This domination
effect means that solutions exist globally in time and are bounded
uniformly in time [18, 75, 76]. Stationary states were found by min-
imisation of the free energy functional in two and three dimensions
[31, 37, 73] in the case of attractive Newtonian potentials. Stationary
states are radially symmetric if 2 � N � k < 0 as proven in [38].
Moreover, in the particular case of N D 2, k D 0, and m > 1 it has been
proved in [38] that the asymptotic behaviour is given by compactly
supported stationary solutions independently of �.

m C k < 1 This is the attraction-dominated regime. This regime is less under-
stood. Self-attraction is strong, and can overcome the regularising
effect of diffusion whatever � > 0 is, but there also exist global
in time regular solutions under some smallness assumptions, see
[6, 20, 42, 43, 48, 63, 74, 77]. However, there is no complete criteria in
the literature up to date distinguishing between the two behaviours.

We will here only concentrate on the fair-competition regime, and denote the
corresponding energy functional by FkŒ�� D F1�k;kŒ��. From now on, we assume
m C k D 1. Notice that the functional Fk is homogeneous in this regime, i.e.,

FkŒ��� D ��kFkŒ�� :

In this work, we will first do a review of the main results known in one dimension
about the stationary states and minimisers of the aggregation-diffusion equation in
the fair-competition case. The novelties will be showing the functional inequalities
independently of the flow and studying the long-time asymptotics of Eqs. (1.4) and
(1.7) by exploiting the one dimensional setting. The analysis in the fair-competition
regime depends on the sign of k:

Definition 1.2.7 (Three Different Cases in the Fair-Competition Regime)

k < 0 This is the porous medium case with m 2 .1; 2/, where diffusion is small
in regions of small densities. The classical porous medium equation, i.e.
� D 0, is very well studied, see [80] and the references therein. For � > 0,
we have a dichotomy for existence of stationary states and global minimisers
of the energy functional Fk depending on a critical parameter �c which will
be defined in (1.18), and hence separate the sub-critical, the critical and the
super-critical case, according to � 7 �c. These are the one dimensional
counterparts to the case studied in [12] where minimisers for the free energy
functional were clarified. The case k < 0 is discussed in Sect. 1.3.1.

k D 0 This is the logarithmic case. There exists an explicit extremal density N�0
which realises the minimum of the functional F0 when � D 1. Moreover,
the functional F0 is bounded below but does not achieve its infimum for
0 < � < 1 while it is not bounded below for � > 1. Hence, �c D 1 is the
critical parameter in the logarithmic case whose asymptotic behaviour was
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analysed in [19] in one dimension and radial initial data in two dimensions.
We refer to the results in [26, 51] for the two dimensional case.

k > 0 This is the fast diffusion case with m 2 .0; 1/, where diffusion is strong
in regions of small densities. For any � > 0, no radially symmetric non-
increasing stationary states with bounded kth moment exist, and Fk has no
radially symmetric non-increasing minimisers. However, we have existence
of self-similar profiles independently of � > 0. The fast diffusion case is
discussed in Sect. 1.3.2.

When dealing with the energy functional Fk, we work in the set of non-negative
normalised densities,

Y WD
�
� 2 L1C .R/ \ Lm .R/ W jj�jj1 D 1 ;

Z
x�.x/ dx D 0

�
:

In rescaled variables, Eq. (1.7) is the formal gradient flow of the rescaled free energy
functional Fk;resc, which is complemented with an additional quadratic confinement
potential,

Fk;rescŒ�� D FkŒ��C 1

2
V Œ�� ; V Œ�� D

Z
R

jxj2�.x/ dx :

Defining the set Y2 WD f� 2 Y W V Œ�� < 1g, we see that Fk;resc is well-defined
and finite on Y2. Thanks to the formal gradient flow structure in the Euclidean
Wasserstein metric W, we can write the rescaled equation (1.7) as

@t� D �rWFk;rescŒ�� :

In what follows, we will make use of a different characterisation of stationary
states based on some integral reformulation of the necessary condition stated in
Corollary 1.2.5. This characterisation was also the key idea in [19] to improve on the
knowledge of the asymptotic stability of steady states and the functional inequalities
behind.

Lemma 1.2.8 (Characterisation of Stationary States) Let k 2 .�1; 1/nf0g, m D
1 � k and � > 0.

(i) Any stationary state N�k 2 Y of system (1.4) can be written in the form

N�k. p/m D �

Z
R

Z 1

0

jqj1�m N�k. p � sq/ N�k. p � sq C q/ dsdq : (1.9)

Moreover, if such a stationary state exists, it satisfies FkŒ N�k� D 0.
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(ii) Any stationary state N�k;resc 2 Y2 of system (1.7) can be written in the form

N�k;resc. p/
m D

Z
R

Z 1

0

�
�jqj1�m C jqj2

2

�
N�k;resc. p� sq/ N�k;resc. p� sqC q/ dsdq :

(1.10)

Moreover, it satisfies

Fk;rescŒ N�k;resc� D m C 1

2.m � 1/
V Œ N�k;resc� D

�
1

2
� 1

k

�
V Œ N�k;resc� : (1.11)

Proof We can apply the same methodology as for the logarithmic case (Lemma 2.3,
[19]). We will only prove (1.9), identity (1.10) can be deduced in a similar manner.
We can see directly from the equation that all stationary states of (1.4) in Y satisfy

@x
� N�mk

�C 2� N�k@x NSk D 0 :

Hence, if k 2 .0; 1/, we can write for any test function ' 2 C1
c .R/

0 D �
Z
R

' 0. p/ N�mk . p/ dp C 2�

“
R�R

'.x/jx � yjk�2.x � y/ N�k.x/ N�k.y/ dxdy

D �
Z
R

' 0. p/ N�mk . p/ dp C �

“
R�R

�
'.x/� '.y/

x � y

�
jx � yjk N�k.x/ N�k.y/ dxdy :

For k 2 .�1; 0/, the term @x NSk is a singular integral, and thus writes

@x NSk.x/ D lim
"!0

Z
Bc.x;"/

jx � yjk�2.x � y/ N�k.y/ dy

D
Z
R

jx � yjk�2.x � y/ . N�k.y/ � N�k.x// dy :

The singularity disappears when integrating against a test function ' 2 C1
c .R/,

Z
R

'.x/@x NSk.x/ dx D 1

2

“
R�R

�
'.x/ � '.y/

x � y

�
jx � yjk N�k.x/ N�k.y/ dxdy : (1.12)

In order to prove (1.12), let us define

f".x/ WD '.x/
Z
Bc.x;"/

@xWk.x � y/ N�k.y/ dy:

Then by definition of the Cauchy principle value, f".x/ converges to '.x/@x NSk.x/
pointwise for almost every x 2 R as " ! 0. Further, we use the fact that
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N�k 2 C0;˛.R/ for some ˛ 2 .�k; 1/ to obtain the uniform in " estimate

j f".x/j �
�
2C k C ˛

k C ˛

�
j'.x/j ; 8 0 < " < 1 ;

and therefore by Lebesgue’s dominated convergence theorem,

Z
R

'.x/@x NSk.x/ dx D
Z
R

lim
"!0

f".x/ N�k.x/ dx D lim
"!0

Z
R

f".x/ N�k.x/ dx

D lim
"!0

“
jx�yj�"

'.x/jx � yjk�2.x � y/ N�k.x/ N�k.y/ dxdy

D 1

2
lim
"!0

“
jx�yj�"

�
'.x/� '.y/

x � y

�
jx � yjk N�k.x/ N�k.y/ dxdy

D 1

2

“
R�R

�
'.x/ � '.y/

x � y

�
jx � yjk N�k.x/ N�k.y/ dxdy :

This concludes the proof of (1.12). Hence, we obtain for any k 2 .�1; 1/nf0g,

0 D �
Z
R

'0. p/ N�mk . p/ dp C �

“
R�R

�
'.x/� '.y/

x � y

�
jx � yjk N�k.x/ N�k.y/ dxdy

D �
Z
R

'0. p/ N�mk . p/ dp C �

“
R�R

Z 1

0

'0 ..1 � s/x C sy/ jx � yjk N�k.x/ N�k.y/ dsdxdy

D �
Z
R

'0. p/ N�mk . p/ dp C �

Z
R

'0. p/

�Z
R

Z 1

0

jqjk N�k. p � sq/ N�k. p � sq C q/ dsdq

�
dp

and so (1.9) follows up to a constant. Since both sides of (1.9) have mass one, the
constant is zero. To see that FkŒ N�k� D 0, we substitute (1.9) into (1.1) and use the
same change of variables as above.

Finally, identity (1.11) is a consequence of various homogeneities. For every
stationary state N�k;resc of (1.7), the first variation ıFk;resc

ı�
Œ N�k;resc� D m=.m�1/ N�m�1

k;resc C
2�Wk � N�k;resc C jxj2=2 vanishes on the support of N�k;resc and hence it follows that
for dilations N��.x/ WD � N�k;resc.�x/ of the stationary state N�k;resc:

�kFk;rescŒ N�k;resc�C
�
k

2
� 1

�
V Œ N�k;resc� D d

d�
Fk;rescŒ N���

ˇ̌
ˇ̌
�D1

D
Z
R

�
ıFk;resc

ı�
Œ N���.x/ d N��

d�
.x/

�
dx

ˇ̌
ˇ̌
�D1

D 0:

In the fair-competition regime, attractive and repulsive forces are in balance mCk D
1, and so (1.11) follows. ut
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Recall that stationary states in rescaled variables are self-similar solutions in
original variables. Tables 1.1, 1.2 and 1.3 provide an overview of results proved
in this paper and in [24] in one dimension.

1.2.3 Optimal Transport Tools

This sub-section summarises the main results of optimal transportation we will
need. They were already used for the case of logarithmic HLS inequalities and
the classical Keller-Segel model in 1D and radial 2D, see [19], where we refer for
detailed proofs.

Let Q� and � be two density probabilities. According to [17, 64], there exists a
convex function whose gradient pushes forward the measure Q�.a/da onto �.x/dx:
 0# . Q�.a/da/ D �.x/dx. This convex function satisfies the Monge-Ampère equation
in the weak sense: for any test function ' 2 Cb.R/, the following identity holds true

Z
R

'. 0.a// Q�.a/ da D
Z
R

'.x/�.x/ dx : (1.13)

The convex map is unique a.e. with respect to � and it gives a way of interpolating
measures. In fact, the interpolating curve �s, s 2 Œ0; 1�, with �0 D � and �1 D Q�
can be defined as �s.x/ dx D .s 0 C .1 � s/id/.x/#�.x/ dx where id stands for
the identity map in R. This interpolating curve is actually the minimal geodesic
joining the measures �.x/dx and Q�.x/dx. The notion of convexity associated to
these interpolating curves is nothing else than convexity along geodesics, introduced
and called displacement convexity in [65]. In one dimension the displacement
convexity/concavity of functionals is easier to check as seen in [30, 35]. The
convexity of the functionals involved can be summarised as follows [35, 65]:

Theorem 1.2.9 The functional UmŒ�� is displacement-convex provided that m � 0.
The functionalWkŒ�� is displacement-concave if k 2 .�1; 1/.
This means we have to deal with convex-concave compensations. On the other hand,
regularity of the transport map is a complicated matter. Here, as it was already
done in [19], we will only use the fact that the Hessian measure detHD2 .a/da
can be decomposed in an absolute continuous part detAD2 .a/da and a positive
singular measure (Chap. 4, [81]). Moreover, it is known that a convex function has
Aleksandrov second derivative D2A .a/ almost everywhere and that detAD2 .a/ D
detD2A .a/. In particular we have detHD2 .a/ � detAD2 .a/. The formula for
the change of variables will be important when dealing with the internal energy
contribution. For any measurable function U, bounded below such that U.0/ D 0

we have [65]

Z
R

U. Q�.x// dx D
Z
R

U

�
�.a/

detAD2 .a/

�
detAD

2 .a/ da : (1.14)
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Table 1.1 Overview of results in one dimension for �1 < k < 0

� < �c.k/ � D �c.k/ � > �c.k/

Functional inequalities: Functional inequalities: Functional inequalities:
• There are no stationary

states in original vari-
ables, there are no min-
imisers for Fk [24, Theo-
rem 2.9]..

• In rescaled variables,
all stationary states are
continuous and compactly
supported [24, Theorem
2.9].

• There exists a minimiser
of Fk;resc. Minimisers are
symmetric non-increasing
and uniformly bounded.
Minimisers are stationary
states in rescaled vari-
ables [24, Theorem 2.9].

• If N�resc is a stationary
state in rescaled variables,
then all solutions of the
rescaled equation satisfy
Fk;rescŒ�� � Fk;rescŒ N�resc�

(Theorem 1.3.4).
• Stationary states in

rescaled variables and
minimisers of Fk;resc are
unique (Corollary 1.3.6).

• There exists a minimiser
of Fk. Minimisers
are symmetric non-
increasing, compactly
supported and uniformly
bounded. Minimisers
are stationary states in
original variables [24,
Theorem 2.8].

• There are no stationary
states in rescaled vari-
ables in Y2, and there are
no minimisers of Fk;resc in
Y2 (Corollary 1.3.8(ii)).

• If N� is a stationary state in
original variables, then all
solutions satisfy FkŒ�� �
FkŒ N�� D 0, which cor-
responds to a variation of
the HLS inequality (The-
orem 1.3.2).

• Stationary states in orig-
inal variables and min-
imisers of Fk are unique
up to dilations (Corol-
lary 1.3.3), and they coin-
cide with the equality
cases of FkŒ�� � 0.

• There are no stationary
states in original variables
in Y , and there are no
minimisers of Fk in Y
(Corollary 1.3.8(i)).

• There are no stationary
states in rescaled vari-
ables in Y2, and there are
no minimisers of Fk;resc in
Y2 (Corollary 1.3.8(ii)).

Asymptotics: Asymptotics: Asymptotics:

• Under a stability
condition solutions
converge exponentially
fast in Wasserstein
distance towards the
unique stationary state in
rescaled variables with
rate 1 (Proposition 1.4.4).

• Under a stability condi-
tion and for solutions with
second moment bounded
in time, we have con-
vergence in Wasserstein
distance (without explicit
rate) to a unique (up to
dilation) stationary state
(Proposition 1.4.2).

Asymptotics are not well
understood yet.

• If there exists a time t0 �
0 such that FkŒ�.t0/� < 0,
then � blows up in finite
time [12, 74].

• Numerics suggest that the
energy of any solution
becomes negative in finite
time, but no analytical
proof is known.
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Table 1.2 Overview of results in one dimension for k D 0

� < 1 � D 1 � > 1

Functional inequalities: Functional inequalities: Functional inequalities:
• There are no stationary

states in original
variables, but self-similar
profiles [9, 25, 26, 50, 51].

• If N� is a stationary state in
original variables, then all
solutions satisfy FkŒ�� �
Fk Œ N��, which corresponds
to the logarithmic HLS
inequality [9, 19, 50].

• Stationary states are
given by dilations
of Cauchy’s density,
N�.x/ D 1=.�.1 C jxj2//,
which coincide with
the equality cases of
the logarithmic HLS
inequality. They all have
infinite second moment
[9, 19, 50].

• Smooth fast-decaying solu-
tions do not exist globally in
time [7, 9, 23, 67].

• There are no stationary states
in original variables and there
are no minimisers of F0 in Y
(Remark 1.3.2).

Asymptotics: Asymptotics: Asymptotics:
• Solutions converge expo-

nentially fast in Wasser-
stein distance towards the
unique stationary state in
rescaled variables [19].

• Solutions converge in
Wasserstein distance to
a dilation of Cauchy’s
density (without explicit
rate) if the initial second
moment is infinite, and to
a Dirac mass otherwise
[8, 11, 13, 19, 27].

• All solutions blow up in
finite time provided the sec-
ond moment is initially finite
[55, 72].

Luckily, the complexity of Brenier’s transport problem dramatically reduces in
one dimension. More precisely, the transport map  0 is a non-decreasing function,
therefore it is differentiable a.e. and it has a countable number of jump singularities.
The singular part of the positive measure  00.x/ dx corresponds to having holes in
the support of the density �. Also, the Aleksandrov second derivative of coincides
with the absolutely continuous part of the positive measure  00.x/ dx that will be
denoted by  00

ac.x/ dx. Moreover, the a.e. representative  0 can be chosen to be the
distribution function of the measure  00.x/ dx and it is of bounded variation locally,
with lateral derivatives existing at all points and therefore, we can always write for
all a < b

 0.b/�  0.a/ D
Z
.a;b�

 00.x/ dx �
Z b

a
 00

ac.x/ dx

for a well chosen representative of  0.
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Table 1.3 Overview of results in one dimension for 0 < k < 1

No criticality for �

Functional inequalities:
• There are no stationary states in original variables (Remark 1.4.2). In rescaled variables, there

exists a continuous symmetric non-increasing stationary state [24, Theorem 2.11].
• There are no symmetric non-increasing global minimisers of Fk. Global minimisers of Fk;resc

can only exist in the range 0 < k < 2
3

[24, Theorem 2.11].
• If N�resc is a stationary state in rescaled variables, then all solutions of the rescaled equation

satisfy Fk;rescŒ�� � Fk;rescŒ N�resc� (Theorem 1.3.9). Hence, for 0 < k < 2
3
, there exists a global

minimiser for Fk;resc.
• For 0 < k < 2

3
, stationary states in rescaled variables and global minimisers of Fk;resc are

unique (Corollary 1.3.11).

Asymptotics:
• Solutions converge exponentially fast in Wasserstein distance to the unique stationary state in

rescaled variables with rate 1 (Proposition 1.4.6).

The following Lemma proved in [19] will be used to estimate the interaction
contribution in the free energy, and in the evolution of the Wasserstein distance.

Lemma 1.2.10 LetK W .0;1/ ! R be an increasing and strictly concave function.
Then, for any .a; b/

K
�
 0.b/�  0.a/

b � a

�
�
Z 1

0

K � 00
ac.Œa; b�s/

�
ds ; (1.15)

where the convex combination of a and b is given by Œa; b�s D .1�s/aCsb. Equality
is achieved in (1.15) if and only if the distributional derivative of the transport map
 00 is a constant function.

Optimal transport is a powerful tool for reducing functional inequalities onto
pointwise inequalities (e.g. matrix inequalities). In other words, to pass from
microscopic inequalities between particle locations to macroscopic inequalities
involving densities. We highlight for example the seminal paper by McCann [65]
where the displacement convexity issue for some energy functional is reduced
to the concavity of the determinant. We also refer to the works of Barthe [3, 4]
and Cordero-Erausquin et al. [47]. The previous lemma will allow us to connect
microscopic to macroscopic inequalities by simple variations of the classical Jensen
inequality.
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1.3 Functional Inequalities

The first part of analysing the aggregation-diffusion equations (1.4) and (1.7)
is devoted to the derivation of functional inequalities which are all variants of
the Hardy-Littlewood-Sobolev (HLS) inequality also known as the weak Young’s
inequality [62, Theorem 4.3]:

“
R�R

f .x/jx � yjkf .y/ dxdy � CHLS. p; q; �/k fkLpk fkLq ; (1.16)

1

p
C 1

q
D 2C k ; p; q > 1 ; k 2 .�1; 0/ :

Theorem 1.3.1 (Variation of HLS) Let k 2 .�1; 0/ and m D 1 � k. For f 2
L1.R/ \ Lm.R/, we have

ˇ̌
ˇ̌“

R�R

f .x/jx � yjkf .y/dxdy
ˇ̌
ˇ̌ � C�jj f jj1Ck

1 jj f jjmm; (1.17)

where C� D C�.k/ is the best constant.

Proof The inequality is a direct consequence of the standard HLS inequality (1.16)
by choosing p D q D 2

2Ck , and of Hölder’s inequality. For k 2 .�1; 0/ and for any
f 2 L1.R/\ Lm.R/, we have

ˇ̌
ˇ̌
“

R�R

f .x/jx � yjkf .y/dxdy
ˇ̌
ˇ̌ � CHLSjj f jj2p � CHLSjj f jj1Ck

1 jj f jjmm:

Consequently, C� is finite and bounded from above by CHLS. ut
For instance inequality (1.17) is a consequence of interpolation between L1

and Lm. We develop in this section another strategy which enables to recover
inequality (1.17), as well as further variations which contain an additional quadratic
confinement potential. This method involves two main ingredients:

• First it is required to know a priori that the inequality possesses some extremal
function denoted e.g. by N�.x/ (characterised as a critical point of the energy
functional). This is not an obvious task due to the intricacy of the equation
satisfied by N�.x/. Without this a priori knowledge, the proof of the inequality
remains incomplete. The situation is in fact similar to the case of convex
functionals, where the existence of a critical point ensures that it is a global
minimiser of the functional. The existence of optimisers was shown in [24].

• Second we invoke some simple lemma at the microscopic level. It is nothing
but the Jensen’s inequality for the case of inequality (1.17) (which is somehow
degenerated). It is a variation of Jensen’s inequality in the rescaled case.
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1.3.1 Porous Medium Case k < 0

In the porous medium case, we have k 2 .�1; 0/ and hence m 2 .1; 2/. For
� D 0, this corresponds to the well-studied porous medium equation (see [80] and
references therein). It follows directly from Theorem 1.3.1, that for all � 2 Y and
for any � > 0,

FkŒ�� � 1 � �C�
m � 1

jj�jjmm ;

where C� D C�.k/ is the optimal constant defined in (1.17). Since global minimis-
ers have always smaller or equal energy than stationary states, and stationary states
have zero energy by Lemma 1.2.8, it follows that � � 1=C�. We define the critical
interaction strength by

�c.k/ WD 1

C�.k/
; (1.18)

and so for � D �c.k/, all stationary states of Eq. (1.4) are global minimisers of Fk.
From [24, Theorem 2.8], we further know that there exist global minimisers of Fk

only for critical interaction strength � D �c.k/ and they are radially symmetric non-
increasing, compactly supported and uniformly bounded. Further, all minimisers of
Fk are stationary states of Eq. (1.4).

From the above, we can also directly see that for 0 < � < �c.k/, no stationary
states exist for Eq. (1.4). Further, there are no minimisers of Fk. However, there exist
global minimisers of the rescaled free energy Fk;resc and they are radially symmetric
non-increasing and uniformly bounded stationary states of the rescaled equation
(1.7) [24, Theorem 2.9].

Theorem 1.3.2 Let k 2 .�1; 0/ and m D 1� k. If (1.4) admits a stationary density
N�k in Y , then for any � > 0

FkŒ�� � 0; 8� 2 Y

with the equality cases given dilations of N�k. In other words, for critical interaction
strength � D �c.k/, inequality (1.17) holds true for all f 2 L1.R/ \ Lm.R/.

Proof For a given stationary state N�k 2 Y and solution � 2 Y of (1.4), we denote by
 the convex function whose gradient pushes forward the measure N�k.a/da onto
�.x/dx:  0# . N�k.a/da/ D �.x/dx. Using (1.14), the functional FkŒ�� rewrites as
follows:

FkŒ�� D 1

m � 1

Z
R

� N�k.a/
 00
ac.a/

�m�1
N�k.a/ da

C �

k

“
R�R

�
 0.a/�  0.b/

a � b

�k

ja � bjk N�k.a/ N�k.b/ dadb
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D 1

m � 1

Z
R

�
 00
ac.a/

�1�m N�k.a/m da

C �

1 � m

“
R�R

�
 0.a/�  0.b/

a � b

�1�m

ja � bj1�m N�k.a/ N�k.b/ dadb ;

where  0 non-decreasing. By Lemma 1.2.8(i), we can write for any � 2 R,

Z
R

. 00
ac.a//

�� N�k.a/m da D �

“
R�R

˝
 00
ac.Œa; b�/

�� ˛ja � bj1�m N�k.a/ N�k.b/ dadb ;

where

˝
u.Œa; b�/

˛ D
Z 1

0

u.Œa; b�s/ ds

and Œa; b�s D .1 � s/a C sb for any a; b 2 R and u W R ! RC. Hence, choosing
� D m � 1,

FkŒ�� D �

m � 1

“
R�R

( ˝
 00
ac.Œa; b�/

1�m
˛ �

�
 0.a/�  0.b/

a � b

�1�m
)

� ja � bj1�m N�k.a/ N�k.b/ dadb :

Using the strict concavity and increasing character of the power function �.�/1�m

and Lemma 1.2.10, we deduceFkŒ�� � 0. Equality arises if and only if the derivative
of the transport map  00 is a constant function, i.e. when � is a dilation of N�k.

We conclude that if (1.4) admits a stationary state N�k 2 Y , then Fk.�/ � 0 for any
� 2 Y . This functional inequality is equivalent to (1.17) if we choose � D �c.k/.

ut
Remark 1.3.1 (Comments on the Inequality Proof) In the case of critical interaction
strength � D �c.k/, Theorem 1.3.2 provides an alternative proof for the variant of
the HLS inequality Theorem 1.3.1 assuming the existence of a stationary density
for (1.4). More precisely, the inequalities FkŒ�� � 0 and (1.17) are equivalent if
� D �c.k/. However, the existence proof [24, Proposition 3.4] crucially uses the
HLS type inequality (1.17). If we were able to show the existence of a stationary
density by alternative methods, e.g. fixed point arguments, we would obtain a full
alternative proof of inequality (1.17).

Remark 1.3.2 (Logarithmic Case) There are no global minimisers of F0 in the
logarithmic case k D 0, m D 1 except for critical interaction strength � D 1. To
see this, note that the characterisation of stationary states [19, Lemma 2.3] which
corresponds to Lemma 1.2.8(i) for the case k ¤ 0, holds true for any � > 0.
Similarly, the result that the existence of a stationary state N� implies the inequality
F0Œ�� > F0Œ N�� [19, Theorem 1.1] holds true for any � > 0, and corresponds
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to Theorem 1.3.2 in the case k ¤ 0. Taking dilations of Cauchy’s density (1.3),
��.x/ D � N�0 .�x/, we have F0Œ��� D .1 � �/ log� C F0Œ N�0�, and letting � ! 1
for super-critical interaction strengths � > 1, we see that F0 is not bounded below.
Similarly, for sub-critical interaction strengths 0 < � < 1, we take the limit � ! 0

to see that F0 is not bounded below. Hence, there are no global minimisers of F0
and also no stationary states (by equivalence of the two) except if � D 1.

Further, we obtain the following uniqueness result:

Corollary 1.3.3 (Uniqueness in the Critical Case) Let k 2 .�1; 0/ andm D 1�k.
If � D �c.k/, then there exists a unique stationary state (up to dilations) to Eq. (1.4),
with second moment bounded, and a unique minimiser (up to dilations) for Fk in Y .
Proof By Calvez et al. [24, Theorem 2.8], there exists a minimiser of Fk in Y , which
is a stationary state of Eq. (1.4). Assume (1.4) admits two stationary states N�1 and
N�2. By Lemma 1.2.8, FkŒ N�1� D FkŒ N�2� D 0. It follows from Theorem 1.3.2 that N�1
and N�2 are dilations of each other. ut

A functional inequality similar to (1.17) holds true for sub-critical interaction
strengths in rescaled variables:

Theorem 1.3.4 (Rescaled Variation of HLS) For any � > 0, let k 2 .�1; 0/ and
m D 1�k. If N�k;resc 2 Y2 is a stationary state of (1.7), then we have for any solution
� 2 Y2,

Fk;rescŒ�� � Fk;rescŒ N�k;resc�

with the equality cases given by � D N�k;resc.
The proof is based on two lemmatas: the characterisation of steady states
Lemma 1.2.8 and a microscopic inequality. The difference with the critical case
lies in the nature of this microscopic inequality: Jensen’s inequality needs to be
replaced here as homogeneity has been broken. To simplify the notation, we denote
by uac.s/ WD  00

ac .Œa; b�s/ as above with Œa; b�s WD .1 � s/a C sb for any a; b 2 R.
We also introduce the notation

˝
u
˛ WD  0.a/�  0.b/

a � b
D
Z 1

0

 00.Œa; b�s/ ds

with u.s/ WD  00 .Œa; b�s/. Both notations coincide when  00 has no singular part.
Note there is a little abuse of notation since  00 is a measure and not a function, but
this notation allows us for simpler computations below.

Lemma 1.3.5 Let ˛; ˇ > 0 and m > 1. For any a; b 2 R and any convex function
 W R ! R:

˛
˝
 00.Œa; b�/

˛1�mCˇ.1�m/
˝
 00.Œa; b�/

˛2 � .˛C2ˇ/˝ � 00
ac.Œa; b�/

�1�m ˛�ˇ.mC1/ ;
(1.19)

where equality arises if and only if  00 � 1 a.e.
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Proof We have again by Lemma 1.2.10,

.˛ C 2ˇ/
˝
u
˛1�m � .˛ C 2ˇ/

˝
u1�m
ac

˛
;

thus

˛
˝
u
˛1�m C ˇ.1� m/

˝
u
˛2 � .˛ C 2ˇ/

˝
u1�m
ac

˛ � ˇ h2˝u˛1�m C .m � 1/˝u˛2i :
We conclude since the quantity in square brackets verifies

8X > 0 W 2X1�m C .m � 1/X2 � m C 1 :

Equality arises if and only if u is almost everywhere constant and
˝
u
˛ D 1. ut

Proof (Proof of Theorem 1.3.4) We denote by N� D N�k;resc 2 Y2 a stationary state
of (1.7) for the sake of clarity. Then for any solution � 2 Y2 of (1.7), there exists a
convex function  whose gradient pushes forward the measure N�.a/da onto �.x/dx,

 0# . N�.a/da/ D �.x/dx:

Similarly to the proof of Theorem 1.3.2, the functionalFk;rescŒ�� rewrites as follows:

Fk;rescŒ�� D 1

m � 1

Z
R

. 00
ac.a//

1�m N�.a/m da

C �

k

“
R�R

�
 0.a/�  0.b/

a � b

�k

ja � bjk N�.a/ N�.b/ dadb

C 1

4

“
R�R

�
 0.a/�  0.b/

a � b

�2
ja � bj2 N�.a/ N�.b/ dadb :

From the characterisation of steady states Lemma 1.2.8(ii), we know that for all
� 2 R:

Z
R

. 00
ac.a//

�� N�.a/m da D
“

R�R

˝
 00
ac.Œa; b�/

�� ˛ ��ja � bj1�m C ja � bj2
2

�

� N�.a/ N�.b/ dadb :

Choosing � D m � 1, we can rewrite the energy functional as

.m � 1/Fk;rescŒ�� D
“

R�R

˝
 00

ac.Œa; b�/
1�m˛ ��ja � bj1�m C ja � bj2

2

�
N�.a/ N�.b/ dadb

�
“

R�R

�˝
 00.Œa; b�/

˛1�m
�ja � bj1�m
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C˝ 00.Œa; b�/
˛2
.1 � m/

ja � bj2
4

�
N�.a/ N�.b/ dadb

� .m C 1/

“
R�R

ja � bj2
4

N�.a/ N�.b/ dadb

D m C 1

2

Z
R

jaj2 N�.a/ da D .m � 1/Fk;rescŒ N�� :

Here, we use the variant of Jensen’s inequality (1.19) and for the final step, identity
(1.11). Again equality holds true if and only if  00 is identically one. ut
Remark 1.3.3 (New Inequality) Up to our knowledge, the functional inequality in
Theorem 1.3.2 is not known in the literature. Theorem 1.3.4 makes a connection
between Eq. (1.7) and this new general functional inequality by showing that
stationary states of the rescaled equation (1.7) correspond to global minimisers of
the free energy functional Fk;resc. The converse was shown in [24, Theorem 2.9].
As a direct consequence of Theorem 1.3.4 and the scaling given by (1.8), we obtain
the following corollaries:

Corollary 1.3.6 (Uniqueness in the Sub-Critical Case) Let k 2 .�1; 0/ and m D
1 � k. If 0 < � < �c.k/, then there exists a unique stationary state with second
moment bounded to the rescaled equation (1.7), and a unique minimiser for Fk;resc

in Y2.
Proof By Calvez et al. [24, Theorem 2.9], there exists a minimiser of Fk;resc in Y2
for sub-critical interaction strengths 0 < � < �c.k/, which is a stationary state of
Eq. (1.7). Assume (1.7) admits two stationary states N�1 and N�2. By Theorem 1.3.4,
Fk;rescŒ N�1� D Fk;rescŒ N�2� and it follows that N�1 and N�2 are dilations of each other. ut
Corollary 1.3.7 (Self-Similar Profiles) For 0 < � < �c.k/, let k 2 .�1; 0/ and
m D 1 � k. There exists a unique (up to dilations) self-similar solution � to (1.4)
given by

�.t; x/ D ..2 � k/t C 1/
1

k�2 u
�
..2 � k/t C 1/

1
k�2 x

	
;

where u is the unique minimiser of Fk;resc in Y2.
Corollary 1.3.8 (Non-existence Super-Critical and Critical Case)

(i) If � > �c.k/, there are no stationary states of Eq. (1.4) in Y , and the free energy
functionalFk does not admit minimisers in Y .

(ii) If � � �c.k/, there are no stationary states of the rescaled equation (1.7) in Y2,
and the rescaled free energy functional Fk;resc does not admit minimisers in Y2.



24 V. Calvez et al.

Proof For critical �c.k/, there exists a minimiser N� 2 Y of Fk by Calvez et al. [24,
Theorem 2.8], which is a stationary state of Eq. (1.4) by Calvez et al. [24, Theorem
3.14]. For � > �c.k/, we have

FkŒ N�� D UmŒ N��C �WkŒ N�� < UmŒ N��C �c.k/WkŒ N�� D 0

since stationary states have zero energy by Lemma 1.2.8(i). However, by Theo-
rem 1.3.2, if there exists a stationary state for � > �c.k/, then all � 2 Y satisfy
FkŒ�� � 0, which contradicts the above. Therefore, the assumptions of the theorem
cannot hold and so there are no stationary states in original variables. Further, taking
dilations ��.x/ D � N� .�x/, we have FkŒ��� D ��kFkŒ N�� < 0, and letting � ! 1,
we see that inf�2Y FkŒ�� D �1, and so (i) follows.

In order to prove (ii), observe that the minimiser N� for critical � D �c.k/ is in
Y2 as it is compactly supported [24, Corollary 3.9]. We obtain for the rescaled free
energy of its dilations

Fk;rescŒ��� D ��kFkŒ N��C ��2

2
V Œ N�� ! �1 ; as � ! 1 :

Hence, Fk;resc is not bounded below in Y2. Similarly, for � D �c.k/,

Fk;rescŒ��� D ��2

2
V Œ N�� ! 0 ; as � ! 1 ;

and so for a minimiser Q� 2 Y2 to exist, it should satisfy Fk;rescŒ Q�� � 0. However,
it follows from Theorem 1.3.1 that Fk;rescŒ�� � 1

2
V Œ�� > 0 for any � 2 Y2, and

therefore, Fk;resc does not admit minimisers in Y2 for � D �c.k/.
Further, if Eq. (1.7) admitted stationary states in Y2 for any � � �c.k/, then
they would be minimisers of Fk;resc by Theorem 1.3.4, which contradicts the non-
existence of minimisers. ut
Remark 1.3.4 (Linearisation Around the Stationary Density) We linearise the
functional Fk around the stationary distribution N�k of Eq. (1.4). For the perturbed
measure �" D .id C "	0/# N�k, with d N�k.x/ D N�k.x/ dx and d�".x/ D �".x/ dx, we
have

FkŒ�"� D "2

2
m


Z
R

	00.a/2 N�k.a/m da

��c.k/
“

R�R

�
	0.a/ � 	0.b/

a � b

�2
ja � bj1�m N�k.a/ N�k.b/ dadb

#
C o."2/

D "2

2
m�c.k/

“
R�R

n˝
	00.Œa; b�/2

˛ � ˝
	00.Œa; b�/

˛2o ja � bj1�m N�k.a/ N�k.b/ dadb

C o."2/ :
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We define the local oscillations (in L2) of functions over intervals as

osc.a;b/.v/ WD
Z 1

tD0
˚
v.Œa; b�t/� ˝

v.Œa; b�/
˛�2

dt � 0 :

The Hessian of the functional Fk evaluated at the stationary density N�k then reads

D2FkŒ N�k�.	; 	/ D m�c.k/
“

R�R

osc.a;b/.	
00/ja � bj1�m N�k.a/ N�k.b/ dadb � 0:

Similarly, we obtain for the rescaled free energy

Fk;rescŒ�"� D Fk;rescŒ N�k�C "2

2
m
Z
R

	00.a/2 N�k.a/m da

� "2

2
m�

“
R�R

�
	0.a/ � 	0.b/

a � b

�2
ja � bj1�m N�k.a/ N�k.b/ dadb

C "2

4

“
R�R

�
	0.a/ � 	0.b/

a � b

�2
ja � bj2 N�k.a/ N�k.b/ dadb C o."2/

D Fk;rescŒ N�k�

C "2

2



m�

“
R�R

n˝
	00.Œa; b�/2

˛ � ˝
	00.Œa; b�/

˛2o ja � bj1�m N�k.a/ N�k.b/ dadb

C
“

R�R

�
m

2

˝
	00.Œa; b�/2

˛C 1

2

˝
	00.Œa; b�/

˛2� ja � bj2 N�k.a/ N�k.b/ dadb
�

C o."2/

to finally conclude

Fk;rescŒ�"� D Fk;rescŒ N�k�

C "2

2


“
R�R

osc.a;b/.	
00/
�
m�ja � bj1�m C m

2
ja � bj2

	
N�k.a/ N�k.b/ dadb

C m C 1

2

“
R�R

�
	0.a/� 	0.b/

�2 N�k.a/ N�k.b/ dadb
�

C o."2/ ;

and hence, the Hessian evaluated at the stationary state N�k of (1.7) is given by the
expression

D2Fk;rescŒ N�k�.	; 	/ D
“

R�R

osc.a;b/.	
00/
�
m�ja � bj1�m C m

2
ja � bj2

	
N�k.a/ N�k.b/ dadb

C .m C 1/

Z
R

	0.a/2 N�k.a/ da � 0 :
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We have naturally that the functional Fk;resc is locally uniformly convex, with the
coercivity constant mC1. However, the local variations of Fk;resc can be large in the
directions where the Brenier’s map 	 is large in the C3 norm. Interestingly enough
the coercivity constant does not depend on �, even in the limit � % �c.k/.

1.3.2 Fast Diffusion Case k > 0

Not very much is known about the fast diffusion case where k 2 .0; 1/ and hence
m D 1 � k 2 .0; 1/, that is diffusion is fast in regions where the density of
particles is low. In [24], we showed that Eq. (1.4) has no radially symmetric non-
increasing stationary states with kth moment bounded, and there are no radially
symmetric non-increasing global minimisers for the energy functional Fk for any
� > 0. By Calvez et al. [24, Theorem 2.11], there exists a continuous radially
symmetric non-increasing stationary state of the rescaled equation (1.7) for all
� > 0. In this sense, there is no criticality for the parameter �. We provide here a full
proof of non-criticality by optimal transport techniques involving the analysis of the
minimisation problem in rescaled variables, showing that global minimisers exist in
the right functional spaces for all values of the critical parameter and that they are
indeed stationary states—as long as diffusion is not too fast. More precisely, global
minimisers with finite energy Fk;resc can only exist in the range 0 < k < 2

3
, that is

1
3
< m < 1 [24]. This restriction is exactly what we would expect looking at the

behaviour of the fast diffusion equation (� D 0) [79]. In particular, for k 2 .0; 1/ and
m D 1�k 2 .0; 1/, radially symmetric non-increasing stationary states, if they exist,
are integrable and have bounded kth moment [24, Remarks 4.6 and 4.9]. By Calvez
et al. [24, Remark 4.11] however, their second moment is bounded and �m 2 L1 .R/
if and only if k < 2=3, in which case they belong to Y2 and their rescaled free
energy is finite. This restriction corresponds to 1

3
< m < 1 and coincides with the

regime of the one-dimensional fast diffusion equation (� D 0) where the Barenblatt
profile has second moment bounded and its mth power is integrable [16]. Intuitively,
adding attractive interaction to the dynamics helps to counteract the escape of mass
to infinity. However, the quadratic confinement due to the rescaling of the fast-
diffusion equation is already stronger than the additional attractive force since k < 2
and hence, we expect that the behaviour of the tails is dominated by the non-linear
diffusion effects even for � > 0 as for the classical fast-diffusion equation.

Using completely different methods, the non-criticality of � has also been
observed in [45, 46] for the limiting case in one dimension taking m D 0,
corresponding to logarithmic diffusion, and k D 1. The authors showed that
solutions to (1.4) with .m D 0; k D 1/ are globally defined in time for all values of
the parameter � > 0.

In order to establish equivalence between global minimisers and stationary states
in one dimension, we prove a type of reversed HLS inequality providing a bound
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on
R
�m in terms of the interaction term

R
.Wk � �/�. The inequality gives a lower

bound on the rescaled energy Fk;resc:

Theorem 1.3.9 Let k 2 .0; 1/, m D 1 � k and � > 0. Then N� 2 Y2;k is a stationary
state of (1.7) if and only if for any solution � 2 Y2;k we have the inequality

Fk;rescŒ�� � Fk;rescŒ N��

with the equality cases given by � D N�.
The above theorem implies that stationary states in Y2;k of the rescaled equation
(1.7) are minimisers of the rescaled free energy Fk;resc. Since the converse is true
by Calvez et al. [24, Theorem 2.11], it allows us to establish equivalence between
stationary states of (1.7) and minimisers of Fk;resc. To prove Theorem 1.3.9, we need
a result similar to Lemma 1.3.5:

Lemma 1.3.10 Let ˛; ˇ > 0 and m 2 .0; 1/. For any a; b 2 R and any convex
function  W R ! R:

.˛ C ˇ/
˝ �
 00

ac.Œa; b�/
�1�m ˛ � ˛

˝
 00.Œa; b�/

˛1�mCˇ.1 � m/

2

˝
 00.Œa; b�/

˛2Cˇ.m C 1/

2
;

(1.20)

where equality arises if and only if  00 � 1 a.e.

Proof Denote u.s/ WD  00 .Œa; b�s/ with Œa; b�s WD .1� s/aC sb and we write uac for
the absolutely continuous part of u. We have by Lemma 1.2.10,

.˛ C ˇ/
˝
u1�m
ac

˛ � .˛ C ˇ/
˝
u
˛1�m

:

Further by direct inspection,

8X > 0 W 1

m � 1
X1�m C 1

2
X2 � m C 1

2.m � 1/
;

thus

.˛ C ˇ/
˝
uac
˛1�m � ˛

˝
u
˛1�m C ˇ.1� m/

2

˝
u
˛2 C ˇ.m C 1/

2

and equality arises if and only if u is almost everywhere constant and
˝
u
˛ D 1. ut

Proof (Proof of Theorem 1.3.9) For a stationary state N� 2 Y2;k and any solution
� 2 Y2;k of (1.7), there exists a convex function  whose gradient pushes forward
the measure N�.a/da onto �.x/dx

 0# . N�.a/da/ D �.x/dx:



28 V. Calvez et al.

From characterisation (1.10) we have for any � 2 R,

Z
R

�
 00
ac.t; a/

��� N�k.a/m da D
“

R�R

�
�ja � bj1�m C ja � bj2

2

�

� ˝ 00
ac.t; .a; b//

�� ˛ N�k.a/ N�k.b/ dadb :

Choosing � D m � 1, the functional Fk;rescŒ�� rewrites similarly to the proof of
Theorem 1.3.4:

Fk;rescŒ�� D 1

m � 1
Z
R

. 00

ac.a//
1�m N�.a/m da

C �

1 � m

“
R�R

�
 0.a/�  0.b/

a � b

�1�m

ja � bj1�m N�.a/ N�.b/ dadb

C 1

4

“
R�R

�
 0.a/ �  0.b/

a � b

�2
ja � bj2 N�.a/ N�.b/ dadb

D 1

m � 1
“

R�R

˝
 00

ac.Œa; b�/
1�m

˛ �
�ja � bj1�m C ja � bj2

2

�
N�.a/ N�.b/ dadb

� 1

m � 1
“

R�R

�˝
 00.Œa; b�/

˛1�m
�ja � bj1�m

C˝ 00.Œa; b�/
˛2
.1 � m/

ja � bj2
4

�
N�.a/ N�.b/ dadb

Now, using the variant of Jensen’s inequality (1.20) of Lemma 1.3.10, this simplifies
to

Fk;rescŒ�� � m C 1

m � 1
“

R�R

ja � bj2
4

N�.a/ N�.b/ dadb

D m C 1

2.m � 1/
Z
R

jaj2 N�.a/ da D Fk;rescŒ N�� :

Here, we used identity (1.11) for the final step. Again equality holds true if and only
if  00 is identically one. ut
Remark 1.3.5 (Sign of the Rescaled Free Energy) In fact, Fk;rescŒ N�� � 0. Choosing
��.x/ D � N�.�x/ a dilation of the stationary state, we obtain thanks to the
homogeneity properties of the energy functional,

��kUmŒ N��C ��kWkŒ N��C ��2V Œ N�� D Fk;rescŒ��� � Fk;rescŒ N��;

and so we conclude that Fk;rescŒ N�� must be non-positive for any stationary state
N� 2 Y2 by taking the limit � ! 1.
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Corollary 1.3.11 (Uniqueness) Let k 2 �0; 2
3

�
and m D 1�k. For any� > 0, there

exists a unique stationary state with second and kth moment bounded to Eq. (1.7),
and a unique minimiser for Fk;resc in Y2;k.
Proof By Calvez et al. [24, Theorem 2.11], there exists a minimiser of Fk;resc in
Y2;k, which is a stationary state of Eq. (1.7). Assume (1.7) admits two stationary
states N�1 and N�2 in Y2;k . By Theorem 1.3.9, Fk;rescŒ N�1� D Fk;rescŒ N�2� and so N�1 D N�2.

ut
Corollary 1.3.12 (Self-Similar Profiles) Let k 2 .0; 1/ and m D 1 � k. For any
� > 0, if u is a symmetric stationary state of the rescaled equation (1.7), then there
exists a self-similar solution to (1.4) given by

�.t; x/ D ..2� k/t C 1/
1

k�2 u
�
..2 � k/t C 1/

1
k�2 x

	
:

1.4 Long-Time Asymptotics

This part is devoted to the asymptotic behaviour of solutions, adapting the above
computations, ensuring e.g. uniqueness of the functional ground state, at the level
of the gradient flow dynamics. We will demonstrate convergence towards these
ground states in Wasserstein distance under certain conditions, in some cases with
an explicit rate. Our results rely on the fact that there is a simple expression for
the Wasserstein distance in one dimension. Therefore, our methodology cannot be
extended to dimension two or more so far except possibly under radial symmetry
assumptions, which we would like to explore in future work.

We assume here that solutions are smooth enough so that the operations in
this section are well-defined. Firstly, we require the mean-field potential gradient
@xSk.t; x/ to be well-defined for all t > 0 which is guaranteed if �.t; x/ has at
least the same regularity at each time t > 0 as provided by Definition 1.2.1 for
stationary states. From now on, we assume that solutions of (1.4) satisfy �.t; x/ 2
C
�
Œ0;T�;C0;˛loc .R/ \ Y \ L1 .R/

	
with ˛ 2 .�k; 1/.

Secondly, certain computations in this section remain formal unless the convex
Brenier map  satisfying �.t; x/dx D @x .t; x/# N�k.x/dx is regular enough. In
the fast diffusion regime k > 0, stationary states are everywhere positive [24],
and thus  00 is absolutely continuous. However, in the porous medium regime
k < 0, stationary states are compactly supported [24], and therefore, the following
computations remain formal depending on the regularity and properties of the
solutions of the evolution problem. From now on, we assume that  00 is absolutely
continuous whenever we talk about solutions of the evolution problems (1.4) or
(1.7).
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1.4.1 Porous Medium Asymptotics

1.4.1.1 The Critical Case � D �c.k/

In the critical case, the set of global minimisers coincides with the set of stationary
states of Eq. (1.4) [24, Theorem 2.8], but as we will see, it is not clear whether
this set is a global attractor in the Wasserstein sense or not. We will prove here
a convergence result under some conditions, which provides a dynamical proof
of uniqueness up to dilations. Recall that in the fair-competition regime, we have
FkŒ��� D ��kFkŒ�� for any dilation ��.x/ D ��.�x/, � 2 R of a density � 2 Y ,
and so every stationary state provides in fact a family of stationary states by scale
invariance. Given a density � 2 Y , jxj2�.x/ 2 L1C.R/, we define the rescaling �1 by

�1.x/ WD 
�.
x/ ; 
2 D V Œ�� D
Z
R

jxj2�.x/ dx ; (1.21)

and so any stationary state N�k with finite second moment has a dilation N�k;1 with
normalised second moment V Œ N�k;1� D 1. In particular, N�k;1 provides a convenient
representative for the family of stationary states formed by dilations of N�k. Our aim
here is to show that although uniqueness is degenerate due to homogeneity, we have
a unique representative N�k;1 with second moment equal to one. We will present here
a discussion of partial results and open questions around the long-time behaviour of
solutions in the critical case.

We first recall the logarithmic case .m D 1; k D 0/, where the ground state is
explicitly given by Cauchy’s density N�0 (1.3). The second momentum is thus infinite,
and the Wasserstein distance to some ground state cannot be finite if the initial datum
has finite second momentum. For a �.t/ satisfying (1.4), we have the estimate [19]

d

dt
W.�.t/; N�0/2 � 0 ;

where equality holds if and only if �.t/ is a dilation of N�0. This makes sense only
if �.0/ has infinite second momentum, and is at finite distance from one of the
equilibrium configurations. Notice that possible ground states (dilations of Cauchy’s
density) are all infinitely far from each other with respect to the Wasserstein
distance,

W .��1 ; ��2 /
2 D .�1 � �2/

2

�1�2
V Œ N�0� D 1:

Dynamics have been described in [11] when the initial datum has finite second
momentum: the solution converges to a Dirac mass as time goes to C1. However,
this does not hold true in the porous medium case k 2 .�1; 0/, m D 1 � k, since
stationary states are compactly supported by Calvez et al. [24, Corollary 3.9]. The
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case where the initial data is at a finite distance from some dilation of a thick-tail
stationary state has been investigated in [13] in two dimensions.

Proposition 1.4.1 For � D �c.k/, let �.t/ satisfy (1.4) in the porous medium case
k 2 .�1; 0/ and m D 1 � k. If N�k is a stationary state of (1.4), then the evolution of
the Wasserstein distance to equilibrium can be estimated by

d

dt
W.�.t/; N�k/2 � .m � 1/FkŒ�.t/� ; (1.22)

where equality holds if and only if �.t/ is a dilation of N�k.
Proof Let � be the convex Brenier map such that N�k.x/dx D @x�.t; x/#�.t; x/dx
and denote by @x .t; x/ the reverse transport map, @x�.t; @x .t; a// D a. Following
[19, 81] and using the regularity of �.t; x/ together with the argument as in the proof
of Lemma 1.2.8 that allows for the singularity of the mean-field potential gradient
to disappear, we have

1

2

d

dt
W.�.t/; N�k/2 �

Z
R

.�0.t; x/ � x/

�
@

@x

� m

m � 1�.t; x/
m�1

	

C2�c.k/@xSk.t; x// �.t; x/ dx

D �
Z
R

�00.t; x/�.t; x/m dx

C �c.k/
“

R�R

�
�0.t; x/ � �0.t; y/

x � y

�
jx � yjk�.t; x/�.t; y/ dxdy

C .m � 1/FkŒ�.t/�

D �
Z
R

�
 00.t; a/

�
�1 �

 00.t; a/
�1�m N�k.a/m da

C �c.k/
“

R�R

�
 0.t; a/ �  0.t; b/

a � b

�k�1

ja � bjk N�k.a/ N�k.b/ dadb

C .m � 1/FkŒ�.t/�

to finally conclude that

1

2

d

dt
W.�.t/; N�k/2 � �

Z
R

�
 00.t; a/

�
�m N�k.a/m da

C �c.k/

“
R�R

Z 1

sD0

�
 00.t; Œa; b�s/

�
�m ja � bjk N�k.a/ N�k.b/ dsdadb

C .m � 1/FkŒ�.t/� ;
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where we have crucially used the convexity of .�/�m in the last step. We conclude as
for the proof of Theorem 1.3.2 thanks to the characterisation (1.9). ut

By definition of the critical value �c.k/, the functional Fk is everywhere non-
negative. It vanishes if and only if � is a dilation of some critical density. Therefore
we cannot deduce from (1.22) that the density �.t/ converges to some dilation of N�k.
However, we can show convergence in Wasserstein distance if we assume a rather
restrictive uniformW2;1.R/-stability estimate on the Brenier map connecting the
solution density to the stationary state:

 00.t; x/ 2 L1 .RC;L1.R// such that jj 00jjL1.RC;L1.R// � 1C 1

m
:

(1.23)

This condition is equivalent to

8t > 0 ˝
 00.t; .x; y//

˛ WD
Z 1

0

 00.t; Œx; y�s/ ds 2
�
0; 1C 1

m

�
;

for a.e. x; y 2 R ; 8t > 0 : (1.24)

where Œx; y�s WD .1� s/x C sy. If we want to show convergence of a solution �.t/ to
a stationary state N�k in Wasserstein distance, we need to investigate quantities that
are comparable.

Proposition 1.4.2 For � D �c.k/, let N�k be a stationary state of (1.4) in the porous
medium case k 2 .�1; 0/, m D 1 � k. Let �.t/ be a solution such that

V1 WD lim
t!1V Œ�.t/� < 1 ;

and we denote by  the transport map from N�k onto the solution,

�.t; x/dx D @x .t; x/# N�k.x/dx :

If  satisfies the uniform stability estimate (1.23), then

d

dt
W.�.t/; N�k/2 � 0 ;

where equality holds if and only if �.t/ is a dilation of N�k.
Proof Note that V Œ N�k� < 1 since N�k is compactly supported [24, Corollary 3.9].
We compute the evolution of the Wasserstein distance along the gradient flow,
denoting by � the inverse transport map, @x�.t; x/ D @x .t; x/�1, we proceed as
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in Proposition 1.4.1:

1

2

d

dt
W.�.t/; N�k/2 � �

Z
R

�00.t; x/�.t; x/m dx

C �c.k/
“

R�R

�
�0.t; x/ � �0.t; y/

x � y

�
jx � yjk�.t; x/�.t; y/ dxdy

C
Z
R

�.t; x/m dx � �c.k/
“

R�R

jx � yjk�.t; x/�.t; y/ dxdy ;

which we can rewrite in terms of the transport map  0 as

1

2

d

dt
W.�.t/; N�k/2 � �

Z
R

�
 00.t; a/

��m N�k.a/m da

C �c.k/
“

R�R

˝
 00.t; .a; b//

˛�mja � bj1�m N�k.a/ N�k.b/ dadb

C
Z
R

�
 00.t; a/

�1�m N�k.a/m da

� �c.k/
“

R�R

˝
 00.t; .a; b//

˛1�mja � bj1�m N�k.a/ N�k.b/ dadb :

Using the characterisation (1.9), we obtain for any � 2 R,

Z
R

�
 00.t; a/

�
�� N�k.a/m da D �c.k/

“
R�R

˝
 00.t; .a; b//��

˛ja � bj1�m N�k.a/ N�k.b/ dadb :

Hence, the dissipation of the distance to equilibrium can be written as

1

2

d

dt
W.�.t/; N�k/2 � �c.k/

“
R�R

ja � bjk
�

� ˝
 00.t; .a; b//�m

˛C ˝
 00.t; .a; b//1�m

˛

C ˝
 00.t; .a; b//

˛�m � ˝
 00.t; .a; b//

˛1�m
	

N�k.a/ N�k.b/ dadb :

We now examinate the sign of the microscopic functional JmŒu� defined for non-
negative functions u W .0; 1/ ! RC by

JmŒu� WD �˝u�m
˛C ˝

u1�m
˛C ˝

u
˛�m � ˝

u
˛1�m

:

The first two terms can be written as

�˝u�m
˛C ˝

u1�m
˛ D �˛˝u˛�m C ˇ

˝
u
˛1�m

;
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where ˛ D ˝
u
˛m˝

u�m
˛

and ˇ D ˝
u
˛m�1˝

u1�m
˛
. By Jensen’s inequality we have ˛ � 1,

ˇ � 1, and by interpolation we have ˇ � ˛m=.mC1/. Therefore,

JmŒu� � jm.hui/ D max
˛�1

n
�˛˝u˛�m C ˛m=.mC1/˝u˛1�m

o
C ˝

u
˛�m � ˝

u
˛1�m

:

We can compute explicitly the maximal value in the above expression. The first
order condition gives

˛max WD
�

m

m C 1

˝
u
˛�mC1

:

Since the function

g.˛/ WD �˛˝u˛�m C ˛m=.mC1/˝u˛1�m

achieves its maximum at ˛max � 1 for
˝
u
˛ � 1C 1=m and is strictly decreasing for

˛ > ˛max, we have

max
˛�1 g.˛/ D g.1/; for

˝
u
˛ � 1C 1=m

and so we conclude jm.hui/ D 0 for
˝
u
˛ � 1C 1=m. Therefore

1

2

d

dt
W.�.t/; N�k/2 � �c.k/

“
R�R

ja � bjkJmŒ 00.t; .a; b//� N�k.a/ N�k.b/ dadb

� �c.k/
“

R�R

ja � bjkjmŒ
˝
 00.t; .a; b//

˛
� N�k.a/ N�k.b/ dadb D 0

thanks to the stability estimate (1.24). To investigate the equality cases, note that
ˇ D ˛m=.mC1/ if and only if u � 1 (looking at the equality cases in Hölder’s
inequality). Moreover, hui 2 .0; 1C 1=m� implies

JmŒu� � �˛˝u˛�m C ˛m=.mC1/˝u˛1�m C ˝
u
˛�m � ˝

u
˛1�m � 0 ;

using ˛ � 1. Hence, if JmŒu� D 0, then we must have ˇ D ˛m=.mC1/, and so u � 1.
The converse is trivial by substituting into the expression for JmŒu�. Taking u to be
the Brenier map 00, we conclude that d

dtW.�.t/; N�k/2 D 0 if and only if � D N�k. ut
The utility of the previous result for understanding the asymptotic behaviour of

solutions depends of course on the set of initial data for which solutions satisfy the
stability estimate (1.23) at all times. This set is rather difficult to characterise, and
we do not know its size.

Let us now explore what we can say about the long-time behaviour of solutions in
the general case. The first insight consists in calculating the evolution of the second
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moment. It follows from homogeneity that

d

dt
V Œ�.t/� D 2.m � 1/FkŒ�.t/� : (1.25)

Identity (1.25) implies that the second moment is non-decreasing, and it converges
to some value V1 2 RC [ fC1g. Following [12] we discuss the dichotomy of
V1 < C1 and V1 D C1. Let �.t/ 2 Y be a solution of (1.4) such that jxj2�.t/ 2
L1C.R/ for all t > 0. Let N�k be a stationary state of (1.4) according to Definition 1.2.1.
Note that V Œ N�k� < 1 since N�k is compactly supported by Calvez et al. [24, Corollary
3.9].

Case 1: V1 < C1 If the second moment V Œ�.t/� converges to V1 < C1,
then we deduce from (1.25) that the energy functional FkŒ�.t/� converges to
FkŒ N�k� D 0 sinceFk is non-increasing along trajectories. This is however not enough
to conclude convergence of �.t/ to N�k and the question remains open. Note further
that in order to have convergence, we need to choose a dilation of N�k with second
moment equal to V1. For any dilation N��k of N�k, we have V Œ N��k � D V Œ N�k�=�2, and so
there exists a unique �� such that V Œ N���

k � D V1. This would be the natural candidate
for the asymptotic behaviour of the solution �.t/.

Case 2: V1 D C1 If the second moment V Œ�.t/� diverges to V1 D C1
however, the discussion is more subtle and we can give some further intuition. First
of all, let us remark that one has to seek a convergence other than in Wasserstein
distance since 1 D V1 ¤ V Œ N�k� < 1. We can not exclude this case a priori
however since a convergence in another sense may be possible in principle. We use
the homogeneity properties of the flow to derive refined inequalities. To do this, we
renormalise the density as in (1.21), but now with a time dependency in 
 :

O�.t; y/ D 
.t/�.t; 
.t/y/ ; 
.t/2 D V Œ�.t/� D
Z
R

jxj2�.t; x/ dx : (1.26)

Then O� satisfies the equation

@t O�.t; y/ D
.t/@t�.t; x/ C P
.t/ .�.t; x/ C x � @x�.t; x//

D
.t/
n

.t/�2�m@yy O�.t; y/m C 2�c.k/
.t/

�3Ck@y
� O�.t; y/@y.Wk.y/ � O�.t; y//�o

C P
.t/

.t/

� O�.t; y/C y � @y O�.t; y/� :

By homogeneity of Fk, we have

FkŒ�.t/� D 
.t/1�mFkŒ O�.t/� ; (1.27)
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and so it follows from (1.25) that 2
.t/ P
.t/ D 2.m � 1/FkŒ�.t/� D 2.m �
1/
.t/1�mFkŒ O�.t/�. We deduce

@t O�.t; y/ D
.t/�1�m
˚
@yy O�.t; y/m C 2�c.k/@y

� O�.t; y/@y.Wk.y/ � O�.t; y//��
C 
.t/�1�m.m � 1/FkŒ O�.t/�

� O�.t; y/C y � @y O�.t; y/� :
Alternatively, we get

d

dt
FkŒ O�.t/� D d

dt

˚

.t/m�1FkŒ�.t/�

�

D �
.t/m�1

Z
R

�.t; x/
ˇ̌
ˇ@x

� m

m � 1
�.t; x/m�1 C 2�c.k/Wk.x/ � �.t; x/

	ˇ̌
ˇ2 dx

C .m � 1/2
.t/m�2
.t/�mFkŒ O�.t/�FkŒ�.t/�

D 
.t/�1�mGŒ O�� ; (1.28)

where

GŒ O�� WD �
Z
R

ˇ̌
ˇ@y
� m

m � 1 O�.y/m�1 C 2�c.k/Wk.y/ � O�.y/
	ˇ̌
ˇ2 O�.y/ dyC.m�1/2FkŒ O��2 :

Proposition 1.4.3 The functional H defined by HŒ�� WD GŒ O�� on Y2 is zero-
homogeneous, and everywhere non-positive. Moreover, HŒ�� D 0 if and only if �
is a stationary state of Eq. (1.4).

Proof Homogeneity follows from the very definition of H. Non-positivity is a
consequence of the Cauchy-Schwarz inequality:

j.m � 1/FkŒ O��j2 D
ˇ̌
ˇ̌�
Z
R

y � @y
� m

m � 1 O�.y/m�1 C 2�c.k/Wk.y/ � O�.y/
	

O�.y/ dy
ˇ̌
ˇ̌2

�
�Z

R

jyj2 O�.y/ dy
��Z

R

ˇ̌
ˇ@y
� m

m � 1 O�.y/m�1

C2�c.k/Wk.y/ � O�.y//j2 O�.y/ dy
	
: (1.29)

If � is a stationary state of Eq. (1.4), so is O� and it follows from (1.28) that GŒ O�� D
0. Conversely, if GŒ O�� D 0, then we can achieve equality in the Cauchy-Schwarz
inequality (1.29) above, and so the two functions y and

@y

� m

m � 1
O�.y/m�1 C 2�c.k/Wk.y/ � O�.y/
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are proportional to each other. In other words, there exists a constant O� such that for
all y 2 R,

@y

� m

m � 1 O�.y/m�1 C 2�c.k/Wk.y/ � O�.y/
	

C O�y D 0 : (1.30)

This equation is the Euler-Langrange condition of the gradient flow given by the
energy functional Fk C O�V :

@tu D @y

�
u @y

�
ı

ıu
.Fk C O�V/ Œu�

��
; (1.31)

and since O� satisfies (1.30), it is a stationary state of Eq. (1.31). Testing this equation
against y O�.y/, we obtain

O� D .m � 1/FkŒ O�� � 0 :

Non-negativity of O� follows from the variant of the HLS inequality Theorem 1.3.1
since FkŒ�� � 0 for any � 2 Y if � D �c.k/. We will show O� D 0 by contradiction.
Assume O� > 0. Applying Theorem 1.3.4 for FkŒ��C O�V Œ�� instead of FkŒ��C 1

2
V Œ��,

we deduce that O� is a minimiser of the rescaled energy FkŒ��C O�V Œ��. In particular,
this means that we have for any u 2 Y2,

FkŒu�C O�V Œu� � FkŒ O��C O�V Œ O�� D O�=.m � 1/C O� > O� :

However, [24, Proposition 3.4(i), Corollary 3.9] and homogeneity of Fk provide a
stationary state N�k;1 2 Y2 with unit second moment, which is also a global minimiser
by Calvez et al. [24, Theorem 2.8]. Then choosing u D N�k;1 in the above inequality
yields FkŒ N�k;1�C O�V Œ N�k;1� D 0C O� , a contradiction. Therefore we necessarily have
O� D 0 and so FkŒ O�� D 0. By (1.27), FkŒ�� D 0 and this implies that � is a global
minimiser of Fk by Theorem 1.3.1, and consequently it is a stationary state of (1.4)
by Calvez et al. [24, Theorem 2.8]. ut

It would be desirable to be able to show that HŒ�.t/� ! HŒ N�k;1� as t ! 1 to
make appropriate use of the new energy functional H. But even then, similar to the
first case, we are lacking a stability result for H to prove that in fact O�.t/ converges
to N�k;1. Here, in addition, we do not know at which rate the second moment goes to
C1.

We conjecture that only the first case V1 < C1 is admissible. The motivation
for this claim is the following: F and H have both constant signs, and vanish only
when O� D N�k;1. If the stability inequality

	FkŒ O�� � �HŒ��; 8� (1.32)

were satisfied for some 	 > 0, then we would be able to prove that V1 < C1. To
see this, we derive a second-order differential inequality for !.t/ WD 
.t/mC1. We
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have

P!.t/ D .m C 1/
.t/m P
.t/ D .m C 1/.m � 1/FkŒ O�.t/� � 0 ;

and so by (1.28),

R!.t/ D .m C 1/.m � 1/!.t/�1HŒ�.t/� � 0 :

Here, non-positivity of R!.t/ follows from Proposition 1.4.3. Therefore, the stability
estimate (1.32), if true, would imply that R!.t/ � �	!.t/�1 P!.t/, hence

P!.t/ � C � 	 log!.t/:

Consequently, !.t/ would be bounded, and so we arrive at a contradiction with the
assumption V1 D C1.

1.4.1.2 The Sub-Critical Case � < �c

We know that in the logarithmic case (m D 1; k D 0), solutions to (1.4) converge
exponentially fast towards a unique self-similar profile as t ! 1, provided that the
parameter � is sub-critical (� < 1) [19]. A similar argument works in the porous
medium regime k 2 .�1; 0/ under certain regularity assumptions as we will show
below. Surprisingly enough, convergence is uniform as the rate of convergence does
not depend on the parameter �. In particular, it was shown in [19] for k D 0 that
we have uniform convergence in Wasserstein distance of any solution �.t/ for the
rescaled system (1.7) to the equilibrium distribution N�0 of (1.7),

d

dt
W.�.t/; N�0/2 � �2W.�.t/; N�0/2 :

A similar result has been obtained in two dimension in [26].
Studying the long-time behaviour of the system in the porous medium case k < 0

is more subtle than the logarithmic case and we cannot deduce exponentially fast
convergence from our calculations without assuming a uniform stability estimate,
which coincides with (1.24). But as in the critical case, we do not know how
many initial data actually satisfy this condition. Note also that due to the additional
confining potential, homogeneity has been broken, and so we cannot renormalise the
second moment of minimisers as we did in the critical case. As in the critical case,
stationary states of the rescaled equation (1.7) are compactly supported by Calvez
et al. [24, Corollary 3.9].

Proposition 1.4.4 For sub-critical interaction strength 0 < � < �c.k/, let �.t/
be a solution to (1.7) in the porous medium case k 2 .�1; 0/, m D 1 � k
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and N�k a stationary state of (1.7). If the transport map  given by �.t; x/dx D
@x .t; x/# N�k.x/dx satisfies the uniform stability estimate (1.23), then

d

dt
W.�.t/; N�k/2 � �2W.�.t/; N�k/2 ;

where equality holds if and only if �.t/ is a dilation of N�k. It follows that

lim
t!1V Œ�.t/� D V Œ N�k� :

Proof We compute the evolution of the Wasserstein distance along the gradient flow
similar to the proof of Proposition 1.4.2, denoting by � the inverse transport map,
@x�.t; x/ D @x .t; x/�1,

1

2

d

dt
W.�.t/; N�k/2 � �

Z
R

�00.t; x/�.t; x/m dx

C �

“
R�R

�
�0.t; x/ � �0.t; y/

x � y

�
jx � yjk�.t; x/�.t; y/ dxdy

C
Z
R

�.t; x/m dx � �
“

R�R

jx � yjk�.t; x/�.t; y/ dxdy

C 1

2

“
R�R

.�0.t; x/ � �0.t; y//.x � y/�.t; x/�.t; y/ dxdy

�
Z
R

jxj2�.t; x/ dx ;

where we have used the fact that the centre of mass is zero at all times to double the
variables:

Z
R

�0.t; x/x�.t; x/ dx D 1

2

“
R�R

.�0.t; x/ � �0.t; y//.x � y/�.t; x/�.t; y/ dxdy :

This rewrites as follows in terms of the transport map  0:

1

2

d

dt
W.�.t/; N�k/2 � �

Z
R

�
 00.t; a/

��m N�k.a/m da

C �

“
R�R

˝
 00.t; .a; b//

˛�mja � bj1�m N�.a/ N�k.b/ dadb

C
Z
R

�
 00.t; a/

�1�m N�k.a/m da

� �

“
R�R

˝
 00.t; .a; b//

˛1�mja � bj1�m N�k.a/ N�k.b/ dadb
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C 1

2

“
R�R

˝
 00.t; .a; b//

˛ja � bj2 N�k.a/ N�k.b/ dadb

� 1

2

“
R�R

˝
 00.t; .a; b//

˛2ja � bj2 N�k.a/ N�k.b/ dadb :

Using the characterisation (1.10), we obtain for any � 2 R,

Z
R

�
 00.t; a/

��� N�k.a/m da

D
“

R�R

�
�ja � bj1�m C ja � bj2

2

� ˝
 00.t; .a; b//��

˛ N�k.a/ N�k.b/ dadb :

Hence, the dissipation of the distance to equilibrium can be written as

1

2

d

dt
W.�.t/; N�k/2 � �

“
R�R

ja � bjk ˚�˝ 00.t; .a; b//�m
˛C ˝

 00.t; .a; b//1�m
˛

C ˝
 00.t; .a; b//

˛�m � ˝
 00.t; .a; b//

˛1�m
o

N�k.a/ N�k.b/ dadb

C 1

2

“
R�R

ja � bj2 ˚�˝ 00.t; .a; b//�m
˛C ˝

 00.t; .a; b//1�m
˛

C ˝
 00.t; .a; b//

˛� ˝
 00.t; .a; b//

˛2o N�k.a/ N�k.b/ dadb :

We now examinate the signs of the microscopic functionals JmŒu� and Jm;2Œu� defined
as follows for non-negative functions u W .0; 1/ ! RC,

JmŒu� WD �˝u�m
˛C ˝

u1�m
˛C ˝

u
˛�m � ˝

u
˛1�m

; (1.33)

Jm;2Œu� WD �˝u�m
˛C ˝

u1�m
˛C ˝

u
˛ � ˝

u
˛2
: (1.34)

The first two terms in the functionals Jm and Jm;2 are common. We can rewrite them
as

�˝u�m
˛C ˝

u1�m
˛ D �˛˝u˛�m C ˇ

˝
u
˛1�m

;

where ˛ D ˝
u
˛m˝

u�m
˛

and ˇ D ˝
u
˛m�1˝

u1�m
˛
. By Jensen’s inequality we have ˛ � 1,

ˇ � 1, and by interpolation we have ˇ � ˛m=.mC1/. Therefore,

JmŒu� � jm.hui/ WD max
˛�1 g.˛/C ˝

u
˛�m � ˝

u
˛1�m

;

Jm;2Œu� � jm;2.hui/ WD max
˛�1 g.˛/C ˝

u
˛� ˝

u
˛2
;
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where

g.˛/ WD �˛˝u˛�m C ˛m=.mC1/˝u˛1�m
:

We can compute explicitly the maximal value of g, and as before the first order
condition gives

˛max D
�

m

m C 1

˝
u
˛�mC1

:

It is straight forward to see that

max
˛�1 g.˛/ D g.1/ for

˝
u
˛ � 1C 1=m ;

and hence we obtain

jm.hui/ D

8̂
<
:̂
0; if

˝
u
˛ � 1C 1

m�
m

m C 1

�m
1

m C 1

˝
u
˛C ˝

u
˛�m � ˝

u
˛1�m

; if
˝
u
˛ � 1C 1

m

;

(1.35)

jm;2.hui/ D

8̂
<
:̂

�˝u˛�m C ˝
u
˛1�m C ˝

u
˛� ˝

u
˛2
; if

˝
u
˛ � 1C 1

m�
m

m C 1

�m
1

m C 1

˝
u
˛C ˝

u
˛ � ˝

u
˛2
; if

˝
u
˛ � 1C 1

m

: (1.36)

We have limC1 jm D C1, and limC1 jm;2 D �1. In addition, the function j2;m is
non-positive and uniformly strictly concave:

8 hui 2
�
0; 1C 1

m

�
j00m;2.hui/ D m hui�m�2 .�.m C 1/C .m � 1/ hui/ � 2

� �.m C 1/ hui�m�2 � 2 :
Thus, 8 hui 2 RC, j00m;2.hui/ � �2 and so the following coercivity estimate holds
true:

8 hui 2
�
0; 1C 1

m

�
; jm;2.hui/ � � �˝u˛� 1

�2
: (1.37)

Furthermore, the function jm is everywhere non-negative. The above analysis allows
us to rewrite the dissipation in Wasserstein distance as

1

2

d

dt
W.�.t/; N�k/2 �

“
R�R

�ja � bjkJmŒ 00.t; .a; b//� N�k.a/ N�k.b/ dadb

C 1

2

“
R�R

ja � bj2Jm;2Œ 00.t; .a; b//� N�k.a/ N�k.b/ dadb
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�
“

R�R

�ja � bjkjmŒ
˝
 00.t; .a; b//

˛
� N�k.a/ N�k.b/ dadb

C 1

2

“
R�R

ja � bj2jm;2Œ
˝
 00.t; .a; b//

˛
� N�k.a/ N�k.b/ dadb

to finally conclude that

1

2

d

dt
W.�.t/; N�k/2 � �1

2

“
R�R

ja � bj2 �˝ 00.t; .a; b//
˛ � 1�2 N�k.a/ N�k.b/ dadb;

where the last inequality follows from (1.35) and the coercivity property (1.37)
thanks to the stability estimate (1.24). This concludes the proof,

d

dt
W.�.t/; N�k/2 � �

“
R�R

ja � bj2 �˝ 00.t; .a; b//
˛ � 1�2 N�k.a/ N�k.b/ dadb

D �
“

R�R

�
 0.a/� a � �

 0.b/� b
��2 N�k.a/ N�k.b/ dadb;

D �2
Z
R

�
 0.a/� a

�2 N�k.a/ da;D �2W.�.t/; N�k/2;

using the fact that �.t/ and N�k both have zero centre of mass. ut
Remark 1.4.1 (Non-existence of Stationary States) Proposition 1.4.4 motivates the
rescaling in the sub-critical case since it means that there are no stationary states
in original variables. Indeed, assume Nu is a stationary states of Eq. (1.4), then its
rescaling �.t; x/ D et Nu.etx/ is a solution to (1.7) and converges to ı0 as t ! 1.
Calvez et al. [24, Proposition 3.4(ii)] on the other hand provides a stationary state
N�k, and the transport map @x .t; x/ pushing forward N�k onto �.t; x/ can be written
as  .t; x/ D e�t�.x/ for some convex function �. Hence, for large enough t > 0,
 .t; x/ satisfies the stability estimate (1.23) and so eventually �.t; x/ converges to
N�k by Proposition 1.4.4 which is not possible.

1.4.1.3 The Super-Critical Case � > �c

Here, we investigate the possible blow-up dynamics of the solution in the super-
critical case. In contrast to the logarithmic case .m D 1; k D 0/, for which all
solutions blow-up when � > �c, provided the second momentum is initially finite,
see [9], the picture is not so clear in the fair-competition regime with negative
homogeneity k < 0. There, the key identity is (1.25), which states in particular
that the second momentum is a concave function.

It has been observed in [12] that if the free energy is negative for some time
t0, FkŒ�.t0/� < 0, then the second momentum is a decreasing concave function for
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t > t0. So, it cannot remain non-negative for all time. Necessarily, the solution
blows up in finite time. Whether or not the free energy could remain non-negative
for all time was left open. In [82], the author proved that solutions blow-up without
condition on the sign of the free energy at initial time, but for the special case of the
Newtonian potential, for which comparison principles are at hand.

In [21], a continuous time, finite dimensional, Lagrangian numerical scheme
of [10] was analysed. This scheme preserves the gradient flow structure of the
equation. It was proven that, except for a finite number of values of �, the free
energy necessarily becomes negative after finite time. Thus, blow-up seems to be a
generic feature of (1.4) in the super-critical case. However, we could not extend the
proof of [21] to the continuous case for two reasons: firstly, we lack compactness
estimates, secondly, the set of values of � to be excluded gets dense as the number
of particles in the Lagrangian discretisation goes to 1.

Below, we transpose the analysis of [21] to the continuous level. We highlight the
missing pieces. Let us define the renormalised density O� as in (1.26). The following
statement is the analogue of Proposition 1.4.3 in the super-critical case.

Proposition 1.4.5 The functional H defined by HŒ�� WD GŒ O�� on Y2 is zero-
homogeneous, and everywhere non-positive. Moreover, it cannot vanish in the cone
of non-negative energy:

.F Œ�� � 0/ H) .HŒ�� < 0/ : (1.38)

Proof We proceed as in the proof of Proposition 1.4.3. Zero-homogeneity follows
from the definition of H, and non-positivity is a direct consequence of the Cauchy-
Schwarz inequality. It remains to show (1.38). Assume that � is such that F Œ�� � 0

and HŒ�� D 0. The latter condition ensures that there exists a constant O� such that
O� is a critical point of the energy functional F C O�V :

@y

� m

m � 1 O�.y/m�1 C 2�Wk.y/ � O�.y/
	

C O�y D 0 :

Testing this equation against y O�.y/, we obtain

O� D .m � 1/FkŒ O�� D .m � 1/
.t/m�1FkŒ�� � 0 :

Applying as in the proof of Proposition 1.4.3 a variant of Theorem 1.3.4, we obtain
that O� is a global minimiser of the energy functional F C O�V . Here, the amplitude
of the confinement potential O� plays no role, but the sign O� � 0 is crucial. By
Calvez et al. [24, Theorem 2.8], there exists a stationary state N� 2 Y2 for critical
interaction strength � D �c.k/. If � > �c.k/, we have FkŒ N�� D UmŒ N��C �WkŒ N�� <
UmŒ N��C�c.k/WkŒ N�� D 0. Taking mass-preserving dilations of N�, we see immediately
that the functional F C O�V is not bounded below in the super-critical case. This is a
contradiction with O� being a minimiser. Hence, HŒ�� < 0 and (1.38) holds true. ut
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As in Sect. 1.4.1.1, the following non-linear function of the second momentum,

!.t/ D 
.t/mC1 D
�Z

R

jxj2�.t; x/ dx
� mC1

2

;

satisfies the second order differential inequality,

R!.t/ D .m2 � 1/!.t/�1HŒ�.t/� � 0 : (1.39)

In view of the property (1.38) of the zero-homogeneous functional H, it seems
natural to ask whether there exists a positive constant ı > 0, such that

.F Œ�� � 0/ H) .HŒ�� < �ı/ : (1.40)

If this would be the case, then (1.39) could be processed as follows: assume that
P!.t/ � 0 for all t. This is equivalent to say that the free energy remains non-negative
for all t � 0 using (1.25). Hence, assuming (1.40) holds, (1.39) becomes

R!.t/ < �ı.m2 � 1/!.t/�1 < 0: (1.41)

Multiplying by P!.t/ � 0, and integrating between 0 and T, we would get

1

2
P!.T/2 C ı.m2 � 1/ log .!.T// � 1

2
P!.0/2 C ı.m2 � 1/ log .!.0// :

Hence, for any t > 0,

!.t/ � !.0/ exp

� P!.0/2
2ı.m2 � 1/

�
:

Back to estimate (1.41), we would conclude that ! is uniformly concave,

R!.t/ � �
�
ı.m2 � 1/
!.0/

�
exp

�
� P!.0/2
2ı.m2 � 1/

�
< 0 :

Therefore, d
dtV Œ�.t/� would become negative in finite time. This would be a

contradiction with the everywhere non-negativity of the free energy by (1.25). As
a conclusion, the existence of positive ı > 0 as in (1.40) implies unconditional
blow-up. In [21], existence of such ı is proven for a finite dimensional Lagrangian
discretisation of Fk, and accordingly H, except for a finite set of values for �.
Numerical simulations using the numerical scheme proposed in [10] clearly show
that the energy has the tendency to become negative, even for positive initial data.
Proving (1.40) remains an open problem.



1 The One-Dimensional Fair-Competition Regime 45

1.4.2 Fast Diffusion Asymptotics

In the fast diffusion case k > 0, we are able to show a much stronger result: every
stationary state of (1.7) is in fact a global attractor for any choice of interaction
strength � > 0. Investigating the evolution of the Wasserstein distance to equilib-
rium yields exponential convergence with an explicit rate which is independent of
the interaction strength � > 0. In contrast to the porous medium case, where we
required a stability estimate on Brenier’s map, we do not need such an estimate
here. As a consequence, we obtain an alternative proof of uniqueness of stationary
states by a dynamical argument.

Proposition 1.4.6 (Long-Time Asymptotics) For k 2 .0; 1/ and m D 1 � k, if
�.t/ has zero centre of mass initially and satisfies (1.7), then the evolution of the
Wasserstein distance to the stationary states N�k of (1.7) can be estimated by

d

dt
W.�.t/; N�k/2 � �2W.�.t/; N�k/2 (1.42)

for any interaction strength � > 0. As a consequence, stationary states are unique
if they exist.

Proof We compute the evolution of the Wasserstein distance along the gradient flow,
denoting by � the inverse transport map, @x�.t; x/ D @x .t; x/�1. Proceeding as
in the proof of Proposition 1.4.4, we can write the dissipation of the distance to
equilibrium as

1

2

d

dt
W.�.t/; N�k/2 � �

“
R�R

ja � bjk ˚�˝ 00.t; .a; b//�m
˛C ˝

 00.t; .a; b//1�m
˛

C˝ 00.t; .a; b//
˛�m � ˝

 00.t; .a; b//
˛1�m

o
N�k.a/ N�k.b/ dadb

C 1

2

“
R�R

ja � bj2 ˚�˝ 00.t; .a; b//�m
˛C ˝

 00.t; .a; b//1�m
˛

C˝ 00.t; .a; b//
˛� ˝

 00.t; .a; b//
˛2o N�k.a/ N�k.b/ dadb :

We now examine the signs of the microscopic functionals JmŒu� and Jm;2Œu� defined
as in (1.33) and (1.34) for non-negative functions u W .0; 1/ ! RC by

JmŒu� WD �˝u�m
˛C ˝

u1�m
˛C ˝

u
˛�m � ˝

u
˛1�m

;

Jm;2Œu� WD �˝u�m
˛C ˝

u1�m
˛C ˝

u
˛ � ˝

u
˛2
:

However, since m < 1 we now have by convexity
˝
u
˛�m � ˝

u�m
˛ � 0 and

˝
u1�m

˛ �˝
u
˛1�m � 0, hence

JmŒu� � 0; m 2 .0; 1/: (1.43)
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For the functional Jm;2, the first two terms can be written as

�˝u�m
˛C ˝

u1�m
˛ D �˛˝u˛�m C ˇ

˝
u
˛1�m

;

where ˛ D ˝
u
˛m˝

u�m
˛

and ˇ D ˝
u
˛m�1˝

u1�m
˛
. As opposed to the proof of

Proposition 1.4.4, we now have ˇ � 1 � ˛ by Jensen’s inequality since m < 1,
and therefore,

8 hui 2 RC; Jm;2Œu� � jm;2.hui/ WD �˝u˛�m C ˝
u
˛1�m C ˝

u
˛� ˝

u
˛2
:

Note that limC1 jm;2 D �1. In addition, the function j2;m is non-positive and
uniformly strictly concave:

8 hui 2 RC; j00m;2.hui/ D �m.1C m/ hui�m�2 � m.1� m/ hui�m�1 � 2 � �2 ;

and hence

8 hui 2 RC; jm;2.hui/ � � .hui � 1/2 : (1.44)

From these estimates, we can deduce the exponential speed of convergence for the
stationary state N�k by rewriting the dissipation to equilibrium as

1

2

d

dt
W.�.t/; N�k/2 �

“
R�R

�ja � bjkJmŒ 00.t; .a; b//� N�k.a/ N�k.b/ dadb

C
“

R�R

1

2
ja � bj2Jm;2Œ 00.t; .a; b//� N�k.a/ N�k.b/ dadb

�
“

R�R

1

2
ja � bj2jm;2Œ

˝
 00.t; .a; b//

˛
� N�k.a/ N�k.b/ dadb

� �1
2

“
R�R

ja � bj2 �˝ 00.t; .a; b//
˛ � 1�2 N�k.a/ N�k.b/ dadb;

where the last inequality follows from (1.43) and (1.44). This concludes the proof,

d

dt
W.�.t/; N�k/2 � �

“
R�R

ja � bj2 �˝ 00.t; .a; b//
˛ � 1�2 N�k.a/ N�k.b/ dadb

D �
“

R�R

�
 0.a/� a � �

 0.b/� b
��2 N�k.a/ N�k.b/ dadb;

D �2
Z
R

�
 0.a/� a

�2 N�k.a/ da;D �2W.�.t/; N�k/2;

using the fact that �.t/ and N�k both have zero centre of mass. ut
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Remark 1.4.2 (Non-existence of Stationary States) This result also provides a
dynamical proof for the non-existence of stationary states for k 2 .0; 2=3/ in original
variables. Indeed, if Nu were a stationary state of Eq. (1.4), then its rescaled density
�.t; x/ would converge to ı0 for large times. This contradicts the existence of a
stationary state in rescaled variables [24, Theorem 4.10] for k 2 .0; 2=3/ together
with exponential convergence to equilibrium Proposition 1.4.6.

1.5 Numerical Simulations

There exists an illuminating way to rewrite the energy functional FkŒ�� due to the
particular form of the transport map. We use the Lagrangian transformation � 7! X,
where X W .0; 1/ ! R denotes the pseudo-inverse of the cumulative distribution
function (cdf) associated with � [10, 19, 54, 81],

X.	/ D F�1.	/ WD inf fx W F.x/ � 	g ; F.x/ WD
Z x

�1
�.y/ dy :

We introduce the parameter r 2 f0; 1g as we are interested in both original (r D 0)
and rescaled (r D 1) variables. Integrating Eqs. (1.4) and (1.7) over .�1;X.t; 	//
with respect to the space variable yields

@t

Z X.t;	/

�1
�.t; y/ dy D Œ@x�

m C 2��@x .Wk � �/C rx��jxDX.t;	/ : (1.45)

Differentiating the identity F.t;X.t; 	// D 	 with respect to 	 twice yields

�.t;X.t; 	// D �
@	X.t; 	/

�
�1 and @x�.t;X.t; 	// D �@		X.t; 	/=

�
@	X.t; 	/

�3
:

Differentiating with respect to time, we obtain @tF.t;X.t; 	// D �@tX.t; 	/=@	
X.t; 	/. This allows us to simplify (1.45),

@tX.t; 	/ D �@	 ��@	X.t; 	/��m�

�2�
Z 1

0

jX.t; 	/� X.t; Q	/jk�2 .X.t; 	/� X.t; Q	// d Q	� rX.t; 	/ :

Similarly, the functionals Gk;0 WD Fk and Gk;1 WD Fk;resc read equivalently

Gk;rŒX� D 1

m � 1
Z 1

0

.@	X.	//
1�m d	

C �

Z 1

0

Z 1

0

jX.	/ � X. Q	/jk
k

d	d Q	C r

2

Z 1

0

jX.	/j2 d	 :
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for k 2 .�1; 1/nf0g, and

G0;rŒX� D �
Z 1

0

log

�
dX

d	
.	/

�
d	

C�
Z 1

0

Z 1

0

log jX.	/ � X. Q	/j d	d Q	C r

2

Z 1

0

jX.	/j2 d	 :

in the logarithmic case k D 0. Intuitively, X encodes the position of particles with
respect to the partial mass 	 2 .0; 1/, and the same homogeneity is preserved:
Gk;0Œ�X� D �kGk;0ŒX�.

In Sect. 1.3, we showed uniqueness of minimisers of the rescaled energy
functional Fk;rescŒ�� for 0 < k < 2=3 and any � > 0 (Corollary 1.3.11) and also for
the sub-critical porous medium case �1 < k < 0, � < �c.k/ (Corollary 1.3.6). One
may take these results as an indication that Fk;rescŒ�� could in fact be displacement
convex. As discussed in Sect. 1.2.3, Fk;rescŒ�� is a sum of displacement convex
and concave contributions and we do not know its overall convexity properties.
We recall that the functionals related to the classical Keller-Segel models in two
dimensions are displacement convex once restricted to bounded densities [36]. We
will give some heuristics for the power-law potential case. If Gk;1ŒX� were convex,
then Fk;rescŒ�� would be displacement convex [30, 81] and uniqueness of minimisers
directly follows [65]. Taylor expanding Gk;1 around X yields for any test function
' 2 C1

c .Œ0; 1�/,

Gk;1ŒX C �'� D Gk;1ŒX�C �D'Gk;1ŒX�C �2

2
D2'Gk;1ŒX�C O.�3/;

where D'Gk;1ŒX� D R 1
0 ıGk;1ŒX�.	/ '.	/ d	 with the first variation ıGk;1

ıX ŒX�.	/ given
by
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��m�C 2�
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0
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for k 2 .�1; 1/=f0g. However, the Hessian
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does not have a sign. In other words, we cannot use this strategy to conclude overall
convexity/concavity properties of the rescaled energy functional Fk;resc. It is an
interesting problem to explore convexity properties of Gk;r in a restricted set of
densities such as bounded densities as in [36, 49].
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1.5.1 Numerical Scheme

To simulate the dynamics of X we use a numerical scheme which was proposed
in [10, 21] for the logarithmic case, and generalised to the one-dimensional fair-
competition regime for the porous medium case k 2 .�1; 0/ in [22]. It can easily
be extended to rescaled variables adding a confining potential, and works just in the
same way in the fast diffusion case k 2 .0; 1/. We discretise the energy functional
via a finite difference approximation of X.	/ on a regular grid. If .Xi/1�i�n are the
positions of n ordered particles sharing equal mass 	 D 1=n such that X1 < X2 <
� � � < Xn, then we define the discretised energy functional by

Gn
k;r Œ.Xi/� D .	/m

m � 1
n�1X
iD1

.XiC1 � Xi/
1�mC� .	/2

X
1�i¤j�n

ˇ̌
Xj � Xi

ˇ̌k
k

Cr
	

2

nX
iD1

jXij2

for k 2 .�1; 1/nf0g, and by

Gn
0;r Œ.Xi/� D �	

n�1X
iD1

log

�
XiC1 � Xi

	

�
C� .	/2

X
1�i¤j�n

log
ˇ̌
Xj � Xi

ˇ̌Cr
	

2

nX
iD1

jXij2

in the logarithmic case k D 0. The Euclidean gradient flow of Gn
k;r writes for 1 <

i < n

PXi D � .	/m�1 ..XiC1 � Xi/
�m � .Xi � Xi�1/�m/

� 2�	
X

1�j¤i�n

sign.i � j/
ˇ̌
Xi � Xj

ˇ̌k�1 � rXi ; (1.46)

complemented with the dynamics of the extremal points

PX1 D �.	/m�1 .X2 � X1/
�m C 2�	

X
j¤1

ˇ̌
Xj � X1

ˇ̌k�1 � rX1 ; (1.47)

PXn D .	/m�1 .Xn � Xn�1/�m � 2�	
X
j¤n

ˇ̌
Xj � Xn

ˇ̌k�1 � rXn : (1.48)

Equations (1.47)–(1.48) follow from imposing X0 D �1 and XnC1 D C1 so that
the initial centre of mass

Pn
iD1 Xi D 0 is conserved. Working with the pseudo-

inverse of the cumulative distribution function of � also has the advantage that
we can express the Wasserstein distance between two densities � and Q� in a more
tractable way. More precisely, if  0 is the optimal map which transports Q� onto �,
then the Monge-Ampére equation (1.13) is an increasing rearrangement. LetF and QF
be the cumulative distribution function of � and Q� respectively, with pseudo-inverses
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X and QX. Then we have

QF.x/ D
Z x

�1
Q�.y/ dy D

Z  0.x/

�1
�.y/ dy D F ı  0.x/ :

Hence the transport map is given explicitly by  0 D F�1 ı QF, and we have for the
Wasserstein distance

W.�; Q�/2 D
Z 1

0

ˇ̌ QF�1.	/ � F�1.	/
ˇ̌2

d	 D
Z 1

0

ˇ̌ QX.	/ � X.	/
ˇ̌2

d	 D jj QX � Xjj22 :
(1.49)

This means that this numerical scheme can be viewed formally as the time
discretisation of the abstract gradient flow equation (1.6) in the Wasserstein-2 metric
space, which corresponds to a gradient flow in L2 ..0; 1// for the pseudo-inverse X,

PX.t/ D �rL2Gk;rŒX.t/� :

Discretising (1.46)–(1.47)–(1.48) by an implicit in time Euler scheme, this numeri-
cal scheme then coincides with a Jordan-Kinderlehrer-Otto (JKO) steepest descent
scheme (see [10, 70] and references therein). The solution at each time step of
the non-linear system of equations is obtained by an iterative Newton-Raphson
procedure.

1.5.2 Results

For the logarithmic case k D 0, m D 1, we know that the critical interaction strength
is given by �c D 1 separating the blow-up regime from the regime where self-
similar solutions exist [8, 9, 50]. As shown in [24], there is no critical interaction
strength for the fast diffusion regime k > 0, however the dichotomy appears in the
porous medium regime k < 0 [12, 24]. It is not known how to compute the critical
parameter �c.k/ explicitly for k < 0, however, we can make use of the numerical
scheme described in Sect. 1.5.1 to compute �c.k/ numerically.

Figure 1.2 gives an overview of the behaviour of solutions. In the grey region, we
observe finite-time blow-up of solutions, whereas for a choice of .k; �/ in the white
region, solutions converge exponentially fast to a unique self-similar profile. The
critical regime is characterised by the black line �c.k/, �1 < k � 0, separating the
grey from the white region. Note that numerically we have �c.�0:99/ D 0:11 and
�c.0/ D 1. Figure 1.2 has been created by solving the rescaled equation (1.7) using
the numerical scheme described above with particles equally spaced at a distance
	 D 10�2. For all choices of k 2 .�1; 0/ and � 2 .0; 1:5/, we choose as initial
condition a centered normalised Gaussian with variance 
2 D 0:32, from where
we let the solution evolve with time steps of size t D 10�3. We terminate the
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Fig. 1.2 Regions of blow-up (grey) and convergence to self-similarity (white). The notation refers
to subsequent figures as follows: Lines L1, L2 and L3 show the asymptotic profiles over the range
k 2 .�1; 1/ for � D 0:05, � D 0:8 and � D 1:2 respectively (Fig. 1.3). Point A shows the density
evolution at .k; �/ D .�0:5; 0:2/ in original variables (Fig. 1.4), and Point B for the same choice
of parameters .k; �/ D .�0:5; 0:2/ in rescaled variables (Fig. 1.5). Points C, D and E correspond
to simulations at .�0:2; 0:7/ (Fig. 1.6), .0:2; 0:8/ (Fig. 1.7) and .0:2; 1:2/ (Fig. 1.8) respectively in
the parameter space .k; �/, all in rescaled variables. Point F corresponds to simulations at .k; �/ D
.�0:5; 1:0/ in original variables (Fig. 1.9)

time evolution of the density distribution if one of the following two conditions is
fulfilled: either the L2-error between two consecutive solutions is less than a certain
tolerance (i.e. we consider that the solution converged to a stationary state), or the
Newton-Raphson procedure does not converge for �.t; x/ at some time t < tmax
because the mass is too concentrated (i.e. the solution sufficiently approached a
Dirac Delta to assume blow-up). We choose tmax large enough, and	 andt small
enough so that one of the two cases occurs. For Fig. 1.2, we set the maximal time
to tmax D 10 and the tolerance to 10�5. For a fixed k, we start with � D 0:01 and
increase the interaction strength by 0:01 each run until � D 1:5. This is repeated for
each k from �0:99 to 0 in 0:01 steps. For a given k, the numerical critical interaction
strength �c.k/ is defined to be the largest � for which the numerical solution can be
computed without blow-up until the L2-error between two consecutive solutions is
less than the specified tolerance. In what follows, we investigate the behaviour of
solutions in more detail for chosen points in the parameter space Fig. 1.2.

1.5.2.1 Lines L1, L2 and L3

Apart from points A � F shown in Fig. 1.2, it is also interesting to observe how
the asymptotic profile changes more globally as we move through the parameter
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space. To this purpose, we choose three different values of � and investigate how the
stationary profile in rescaled variables changes with k. Three representative choices
of interaction strengths are given by lines L1, L2 and L3 as indicated in Fig. 1.2,
where L1 corresponds to � D 0:05 and lies entirely in the self-similarity region
(white), L2 corresponds to � D 0:8 and captures part of the sub-critical region in
the porous medium regime k < 0 (white), as well as some of the blow-up regime
(grey), and finally line L3 which corresponds to � D 1:2 and therefore captures the
jump from the self-similarity (white) to the blow-up region (grey) at k D 0. Note
also that points D and E are chosen to lie on lines L2 and L3 respectively as to give
a more detailed view of the behaviour on these two lines for the same k-value. The
asymptotic profiles over the range k 2 .�1; 1/ for lines L1, L2 and L3 are shown in
Fig. 1.3, all with the same choice of parameters using time step size t D 10�3 and
equally spaced particles at distance 	 D 10�2.

Fig. 1.3 Profiles of stationary states in rescaled variables (r D 1) corresponding to lines L1, L2
and L3 in Fig. 1.2 for (a) � D 0:05, (b) � D 0:8 and (c) � D 1:2 with k ranging from 0:95 to (a)
�0:95, (b) �0:1 and (c) 0:1 in 0:05 steps respectively. All stationary states are centered at zero,
but are here displayed shifted so that they are centered at their corresponding value of k. The black
curve indicates the stationary state for k D 0
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For each choice of interaction strength �, we start with k D 0:95 and decrease k
in 0:05 steps for each simulation either until k D �0:95 is reached, or until blow-
up occurs and .k; �/ lies within the grey region. For each simulation, we choose as
initial condition the stationary state of the previous k-value (starting with a centered
normalised Gaussian distribution with variance 
2 D 0:32 for k D 0:95). As for
Fig. 1.2, we terminate the time evolution of the density distribution for a given
choice of k and � if either the L2-error between two consecutive solutions is less
than the tolerance 10�5, or the Newton-Raphson procedure does not converge. All
stationary states are centered at zero. To better display how the profile changes for
different choices of k, we shift each stationary state in Fig. 1.3 so that it is centered
at the corresponding value of k. The black curve indicates the stationary profile for
k D 0.

In Fig. 1.3a, we observe corners close to the edge of the support of the stationary
profiles for k < 0. This could be avoided by taking 	 and t smaller, which we
chose not to do here, firstly to be consistent with Fig. 1.2 and secondly to avoid
excessive computation times. For interaction strength � D 0:8, the smallest k for
which the solution converges numerically to a stationary state is k D �0:1 (see
Fig. 1.3b). This fits with what is predicted by the critical curve �c.k/ in Fig. 1.2 (line
L2).

In Fig. 1.3b, c, we see that the stationary profiles become more and more
concentrated for k approaching the critical parameter k D k� with � D �c.k�/,
which is to be expected as we know that the stationary state N�k converges to a Dirac
Delta as k approaches the blow-up region. In fact, for � D 1:2 the numerical scheme
stops converging for k D 0:05 already since the mass is too concentrated, and so we
only display profiles up to k D 0:1 in Fig. 1.3c. Further, in all three cases � D 0:05,
� D 0:8 and � D 1:2 we observe that the stationary profiles become more and
more concentrated as k ! 1. This reflects the fact that attractive forces dominate as
the diffusivity m converges to zero. Finally, note that we have chosen here to show
only a part of the full picture for Fig. 1.3b, c, cutting the upper part. More precisely,
the maximum of the stationary state for k D 0:95 and � D 0:8 in Fig. 1.3b lies at
75:7474, whereas it is at 3216:8 for parameter choices k D 0:95 and � D 1:2 shown
in Fig. 1.3c.

1.5.2.2 Points A-F

Let us now investigate in more detail the time-evolution behaviour at the points A–
F in Fig. 1.2. For k D �0:5 in the porous medium regime and sub-critical � D
0:2 (point A in Fig. 1.2), the diffusion dominates and the density goes pointwise to
zero as t ! 1 in original variables. Figure 1.4a, b show the inverse cumulative
distribution function and the density profile for .k; �/ D .�0:5; 0:2/ respectively,
from time t D 0 (black) to time t D 100 (red) in time steps of size t D 10�3
and with 	 D 10�2. We choose a centered normalised Gaussian with variance

2 D 0:32 as initial condition. Figure 1.4c shows the evolution of the free energy
(1.1) over time, which continues to decay as expected.
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Fig. 1.4 Point A: � D 0:2, k D �0:5, r D 0. (a) Inverse cumulative distribution function, (b)
solution density, (c) free energy

For exactly the same choice of parameters .k; �/ D .�0:5; 0:2/ and the same
initial condition we then investigate the evolution in rescaled variables (point
B in Fig. 1.2), and as predicted by Proposition 1.4.4, the solution converges to
a stationary state. See Fig. 1.5a, b for the evolution of the inverse cumulative
distribution function and the density distribution with t D 10�3 and 	 D 10�3
from t D 0 (black) to the stationary state N� (red). Again, we terminate the evolution
as soon as the L2-distance between the numerical solution at two consecutive time
steps is less than a certain tolerance, chosen at 10�5. We see that the solution
converges very quickly both in relative energy jFkŒ�.t/� � FkŒ N��j (Fig. 1.5c) and
in terms of the Wasserstein distance to the solution at the last time step W .�.t/; N�/
(Fig. 1.5e). To check that the convergence is indeed exponential as predicted by
Proposition 1.4.4, we fit a line to the logplot of both the relative free energy (between
times t D 0 and t D 0:9), see Fig. 1.5d, and to the logplot of the Wasserstein distance
to equilibrium, see Fig. 1.5f. In both cases, we obtain a fitted line y D �a � t C b
with some constant b and rate a D 7:6965 for the relative free energy and rate
a D 4:392 for the Wasserstein distance to equilibrium. Recall that the L2-error
between two solutions X.	/ and QX.	/ is equal to the Wasserstein distance between
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Fig. 1.5 Point B: � D 0:2, k D �0:5, r D 1. (a) Inverse cumulative distribution function from
initial condition (black) to the profile at the last time step (red), (b) solution density from initial
condition (black) to the profile at the last time step (red), (c) relative free energy, (d) log(relative
free energy) and fitted line between times 0 and 0.9 with slope �7:6965 (red), (e) L2-error between
the solutions at time t and at the last time step, (f) log(L2-error) and fitted line with slope �4:392
(red)

the corresponding densities �.x/ and Q�.x/ as described in (1.49). We observe a rate
of convergence that is in agreement with [19, 26, 51] for the logarithmic case k D 0.

For parameter choices k D �0:2 and � D 0:7 (point C in Fig. 1.2), we are
again in the sub-critical regime where solutions converge to a stationary state in
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Fig. 1.6 Point C: � D 0:7, k D �0:2, r D 1. (a) Inverse cumulative distribution function from
initial condition (black) to the profile at the last time step (red), (b) solution density from initial
condition (black) to the profile at the last time step (red), (c) relative free energy, (d) log(relative
free energy) and fitted line between times 0 and 1.8 with slope �3:2522 (red), (e) L2-error between
the solutions at time t and at the last time step, (f) log(L2-error) and fitted line with slope �1:8325
(red)

rescaled variables according to Proposition 1.4.4, see Fig. 1.6a, b. However, point
C is closer to the critical interaction strength �c.k/ than point B (numerically, we
have �c.�0:2/ D 0:71), and as a result we can observe that the stationary density N�
in Fig. 1.6b (red) is more concentrated than in Fig. 1.5b. Here, we choose as initial
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condition a characteristic function supported on the ball centered at zero with radius
1=2 (black, Fig. 1.6b), and fix t D 10�3, 	 D 5 � 10�3 with tolerance 10�5.
We observe that the solution converges very quickly to a stationary state both in
relative free energy jFkŒ�.t/� � FkŒ N��j (Fig. 1.6c) and in terms of the Wasserstein
distance to equilibrium W.�.t/; N�/ (Fig. 1.6e). To investigate the exponential rate of
convergence, we fit again a line to the logplot of both the relative free energy (here
between times t D 0 and t D 1:8) see Fig. 1.6d, and the Wasserstein distance to
equilibrium, see Fig. 1.6f. We obtain fitted lines y D �a � t C b with some constant
b and rate a D 3:2407 for the relative free energy, whereas the rate is a D 1:8325

for the Wasserstein distance to equilibrium.
Next, we are looking at point D in Fig. 1.2, which corresponds to the choice

.k; �/ D .0:2; 0:8/ and is part of line L2 (see Fig. 1.3b). Since point D lies in the
fast diffusion regime k > 0, no critical interaction strength exists [24], and so we
look at convergence to self-similarity. Figure 1.7a, b display the evolution of the
inverse cumulative distribution function and the density distribution from t D 0

(black) to the stationary state N� (red) in rescaled variables including the solutions
at 50 intermediate time steps. We start with a characteristic function supported on
a centered ball of radius 1=2. Choosing t D 10�3 and 	 D 10�2 is enough.
The density instantaneously becomes supported on the whole space for any t > 0

as shown in the proof of [24, Corollary 4.4], which cannot be fully represented
numerically since the tails are cut by numerical approximation, see Fig. 1.7a, b.
Again, we observe very fast convergence both in relative energy (Fig. 1.7c, d) and in
Wasserstein distance to equilibrium (Fig. 1.7e, f) as predicted by Proposition 1.4.6.
A logplot of the relative free energy (Fig. 1.7d) and the Wasserstein distance to
equilibrium (Fig. 1.7f) show exponential rates of convergence with rates a D 3:6904

and a D 1:9148 respectively for the fitted line y D �a � t C b with some constant b
and for times 0:2 � t � 3:8.

For the same choice of k D 0:2 in the fast diffusion regime, but with higher
interaction strength � D 1:2 (point E in Fig. 1.2, which is part of line L3, see
Fig. 1.3c), we obtain a similar behaviour. Figure 1.8a, b show the inverse cumulative
distribution function and the density distribution, both for the initial data (black),
a characteristic supported on the centered ball of radius 1=2, and for the stationary
state N� (red). Here we choose as beforet D 10�3 and	 D 10�2. We observe that
the stationary state for � D 1:2 (Fig. 1.8b) is more concentrated than for � D 0:8

(Fig. 1.7b), which is exactly what we would expect for decreasing k as N� approaches
a Dirac Delta for k ! 0 if � D 1:2, whereas it becomes compactly supported if
� D 0:8 as k crosses the �-axis (see [24, Corollary 3.9]). Again, we observe very
fast convergence both in relative energy (Fig. 1.8c, d) and in Wasserstein distance to
equilibrium (Fig. 1.8e, f) as predicted by Proposition 1.4.6. A logplot of the relative
free energy (Fig. 1.8d) and the Wasserstein distance to equilibrium (Fig. 1.8f) show
exponential rates of convergence with rates a D 3:6898 and a D 1:9593 respectively
for the fitted lines y D �a� tCb and some constant b between times 0:3 � t � 3:5.
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Fig. 1.7 Point D: � D 0:8, k D 0:2, r D 1. (a) Inverse cumulative distribution function from
initial condition (black) to the profile at the last time step (red), (b) solution density from initial
condition (black) to the profile at the last time step (red), (c) relative free energy, (d) log(relative
free energy) and fitted line between times 0.2 and 3.8 with slope �3:6904 (red), (e) L2-error
between the solutions at time t and at the last time step, (f) log(L2-error) and fitted line between
times 0.2 and 3.8 with slope �1:9148 (red)

Finally, let us investigate the behaviour for .k; �/ D .�0:5; 1/ in original
variables (point F in Fig. 1.2). Point F lies in the porous medium regime and
we expect blow-up as �c.�0:5/ < 1, see Sect. 1.4.1.3. If the mass becomes too
concentrated, the Newton-Raphson procedure does not converge and the simulation
stops. We have therefore adapted the numerical scheme to better capture the blow-
up. We fix t D 10�3 and 	 D 10�3 and take a centered normalised Gaussian
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Fig. 1.8 Point E: � D 1:2, k D 0:2, r D 1. (a) Inverse cumulative distribution function from
initial condition (black) to the profile at the last time step (red), (b) solution density from initial
condition (black) to the profile at the last time step (red), (c) relative free energy, (d) log(relative
free energy) and fitted line between times 0:3 and 3:5 with slope �3:6898 (red), (e) L2-error
between the solutions at time t and at the last time step, (f) log(L2-error) and fitted line between
times 0:3 and 3:5 with slope �1:9593 (red)

with variance 
2 D 0:32 as initial data. When the simulation stops, we divide the
time step size t by two and repeat the simulation, taking as initial condition the
last density profile before blow-up. This process can be repeated any number of
times, each time improving the approximation of an emerging Dirac Delta. The
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Fig. 1.9 Point F: � D 1, k D �0:5, r D 0. (a) Inverse cumulative distribution function from
initial condition (black) to the profile at the last time step (red), (b) solution density from initial
condition (black) to the profile at the last time step (red), (c) free energy

formation of a Dirac Delta in Fig. 1.9b corresponds to the formation of a plateaux
in Fig. 1.9a. As expected from the analysis in Sect. 1.4.1.3, the free energy diverges
to �1 (Fig. 1.9c).

1.6 Explorations in Other Regimes

1.6.1 Diffusion-Dominated Regime in One Dimension

The numerical scheme described here gives us a tool to explore the asymptotic
behaviour of solutions for parameter choices that are less understood. For example,
choosing � D 0:3, k D �0:5 and m D 1:6 in original variables (r D 0), we
observe convergence to a compactly supported stationary state, see Fig. 1.10. This
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Fig. 1.10 Diffusion-dominated regime: � D 0:3, k D �0:5, m D 1:6, r D 0. (a) Inverse
cumulative distribution function from initial condition (black) to the profile at the last time step
(red), (b) solution density from initial condition (black) to the profile at the last time step (red), (c)
relative free energy, (d) log(relative free energy)

choice of parameters is within the diffusion-dominated regime since mC k > 1 (see
Definition 1.2.6). We choose as initial condition a normalised characteristic function
supported on B.0; 15/ from where we let the solution evolve with time steps of size
t D 10�2 and particles spaced at 	 D 10�2. We let the density solution evolve
until the L2-error between two consecutive solutions is less than 10�7. Note that here
m C k D 1:1 is close to the fair-competition regime, for which �c .�0:5/ D 0:39

(see Fig. 1.2).

1.6.2 Attraction-Dominated Regime in Any Dimension

In the attraction-dominated regime N.m � 1/ C k < 0 (corresponding to Defini-
tion 1.2.6) both global existence of solutions and blow-up can occur in original
variables in dimension N � 1 depending on the choice of initial data [6, 20, 42,
43, 48, 63, 74, 77]. Using the numerical scheme introduced in Sect. 1.5, we can
demonstrate this change of behaviour numerically in one dimension, see Figs. 1.11
(dispersion) and 1.12 (blow-up).
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Fig. 1.11 Attraction-dominated regime: � D 0:35, k D �1=2, m D 4=3, r D 0 with initial data
�.t D 0; x/ D �HLS;�0;c0 .x/ < �HLS;�0;c� .x/ for all x 2 R with c0 D 0:4c�. (a) Solution density
from initial condition (black) to the profile at the last time step (red), (b) zoom of Figure (a), (c)
inverse cumulative distribution function from initial condition (black) to the profile at the last time
step (red), (d) free energy, (e) log-log plot of the L2-error difference between two consecutive
solutions and fitted line with slope �0:37987, (f) time evolution of maxx �.t; x/
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We will now investigate in more detail a special parameter choice (m, k) that
belongs to the attraction-dominated regime. Instead of fixing m and k such that
attractive and repulsive forces are in balance (N.m � 1/C k D 0), one may choose
instead to investigate the regime where the free energy functional (1.1) is conformal
invariant, corresponding to m D 2N=.2N C k/. For k < 0, this corresponds to the
case p D q D m in the HLS inequality (1.16) for which the optimisers �HLS and the
optimal constant CHLS are known explicitly [61]. We have the following existence
result:

Theorem 1.6.1 Let � > 0, k 2 .�N; 0/ and m D 2N=.2N C k/ 2 .1; 2/. Then the
free energy functional Fk admits a critical point in Y .
Proof Following the approach in [43], we rewrite the free energy functional (1.1)
as a sum of two functionals

FkŒ�� D F1
k Œ��C F2

k Œ�� ;

where

F1
k Œ�� WD 1

N.m � 1/
jj�jjmm

�
1 � �CHLS

N.m � 1/
.�k/

jj�jj2�m
m

�

D2N C k

N.�k/
jj�jjmm

�
1� �CHLS

N

2N C k
jj�jj2�m

m

�
; (1.50)

and

F2
k Œ�� WD �

.�k/

�
CHLSjj�jj2m �

“
RN�RN

jx � yjk�.x/�.y/ dxdy
�
: (1.51)

By the HLS inequality (1.16), the second functional (1.51) is bounded below for any
� > 0,

F2
k Œ�� � 0 ; 8� 2 Y ;

and by Lieb [61, Theorem 3.1], there exists a family of optimisers �HLS;�;c,

�HLS;�;c.x/ D c

�
�

�2 C jxj2
�N=m

; � > 0; c > 0 (1.52)

satisfying F2
k Œ�HLS;�;c� D 0 with the optimal constant CHLS given by

CHLS WD ��k=2

 
�
�
NCk
2

�
�
�
N C k

2

�
! 

�
�
N
2

�
� .N/

!�.NCk/=N

:
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The parameter � > 0 in (1.52) corresponds to the scaling that leaves the Lm-norm
of �HLS;�;c invariant. Since the first variation of the functional F1

k defined in (1.50)
is given by

ıF1
k

ı�
Œ��.x/ D 2

.�k/

�
1 � �CHLSjj�jj2�m

m

�
�m�1.x/

and since the Lm-norm of the optimiser can be calculated explicitly,

jj�HLS;�;cjjm D c

 
21�N�

NC1
2

�
�
NC1
2

�
!1=m

;

there exists a unique choice of .�; c/ D .��; c�/ for each � > 0 such that

ıF1
k

ı�
Œ�HLS;�� ;c� �.x/ D 0 and

Z
RN
�HLS;�� ;c�.x/ dx D 1

given by

c�.�/ WD
0
@21�N�

NC1
2

�
�
NC1
2

	
1
A

�1=m

.�CHLS/
1=.m�2/ ; ��.�/ WD

�Z
RN
�HLS;1;c�.�/.x/ dx

�2=k
:

(1.53)

Hence �HLS;�� ;c� is a critical point of Fk in Y . ut
We can choose to leave � > 0 as a free parameter in (1.52), only fixing c D

c�.�/ so that �HLS;�;c� is a critical point of Fk with arbitrary mass. We conjecture
that a similar result to [43, Theorem 2.1] holds true for general k 2 .�N; 0/ and
m D 2N=.2N C k/ for radially symmetric initial data:

Conjecture 1.6.2 (Global Existence vs Blow-Up) Let � > 0, k 2 .�N; 0/ and
m D 2N=.2N C k/ in dimension N � 1. Assume the initial datum �0 2 Y is radially
symmetric.

(i) If there exists �0 > 0 such that

�0.r/ < �HLS;�0;c�.r/ ; 8 r � 0; ;

then any radially symmetric solution �.t; r/ of (1.4) with initial datum �.0; r/ D
�0.r/ is vanishing in L1loc

�
R

N
�

as t ! 1.
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(ii) If there exists �0 > 0 such that

�0.r/ > �HLS;�0;c�.r/ ; 8 r � 0 ;

then any radially symmetric solution �.t; r/ of (1.4) with initial datum �.0; r/ D
�0.r/ must blow-up at a finite time T� or has a mass concentration at r D 0 as
time goes to infinity in the sense that there exist R.t/ ! 0 as t ! 1 and a
positive constant C > 0 such that

Z
B.0;R.t//

�.t; x/ dx � C :

Further, we expect the following to be true analogous to [43]:

Conjecture 1.6.3 (Unstable Stationary State) For any � > 0, the density
�HLS;�� ;c� 2 Y with .��; c�/ given by (1.53) is an unstable stationary state of
Eq. (1.4).

Numerically, we indeed observe the behaviour predicted in Conjecture 1.6.2 for
N D 1. Using the scheme introduced in Sect. 1.5, we choose as initial data the
density �HLS;�0 ;c0 given by the optimisers of the HLS inequality (1.52). For any
choice of c0 > 0, we fix �0 > 0 such that �HLS;�0 ;c0 has unit mass and is therefore in
Y . Note that �HLS;�0;c0 is not a critical point of Fk unless c0 D c�. Comparing with
the stationary state �HLS;�0 ;c� , we have

sign
�
c� � c0

� D sign .�HLS;�0 ;c�.x/� �HLS;�0;c0 .x// ; 8x 2 R :

Note that the mass of the stationary state �HLS;�0;c� is given by

Z
RN
�HLS;�0 ;c�.�/.x/ dx D �

�k=2
0

Z
RN
�HLS;1;c�.�/.x/ dx ;

which is equal to one if and only if �0 D ��, that is c0 D c�. If we choose c0 < c�,
then �0 WD �HLS;�0;c0 < �HLS;�0 ;c� and according to Conjecture 1.6.2(i), we would
expect the solution �.t; r/ to vanish in L1loc .R/. This is exactly what can be observed
in Fig. 1.11 for the choice of parameters � D 0:35, k D �1=2, m D 4=3 in original
variables (r D 0) and with c0 D 0:4 c�. Here, we chose time steps of sizet D 10�2
and particles spaced at 	 D 10�2. We let the density solution evolve until the
L2-error between two consecutive solutions is less than 10�4 (plotting every 1000
iterations).
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Fig. 1.12 Attraction-dominated regime: � D 0:35, k D �1=2, m D 4=3, r D 0 with initial data
�.t D 0; x/ D �HLS;�0;c0 .x/ > �HLS;�0;c� .x/ for all x 2 R with c0 D 1:1c�. (a) Solution density
from initial condition (black) to the profile at the last time step (red), (b) zoom of Figure (a),
(c) inverse cumulative distribution function from initial condition (black) to the profile at the last
time step (red), (d) free energy

For the same choice of initial data, but with c0 D 1:1 c� > c� we observe
numerically that the solution density concentrates at x D 0 as predicted by Con-
jecture 1.6.2(ii), see Fig. 1.12. The Newton-Raphson procedure stops converging
once the mass it too concentrated. Here, we chose time steps of size t D 10�3 and
particles spaced at 	 D 2 � 10�3.

One may also take as initial condition exactly the steady state �0 D �HLS;�� ;c� ,
see Fig. 1.13. However, the numerical approximation of the initial data is only
accurate up to	 D 10�2 and we observe indeed pointwise convergence to zero, in
accordance with the statement of Conjecture 1.6.3 that the stationary state �HLS;�� ;c�

is unstable. Again, we let the Newton-Raphson procedure evolve with time steps of
sizet D 10�2 until the L2-error between two consecutive solutions is less than the
tolerance 10�4.
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Fig. 1.13 Attraction-dominated regime: � D 0:35, k D �1=2, m D 4=3, r D 0 with initial data
�.t D 0; x/ D �HLS;��;c� .x/ given in (1.52). (a) Solution density from initial condition (black) to
the profile at the last time step (red), (b) zoom of Figure (a), (c) inverse cumulative distribution
function from initial condition (black) to the profile at the last time step (red), (d) free energy,
(e) log-log plot of the L2-error difference between two consecutive solutions and fitted line with
slope �0:52817, (f) log-log plot of maxx �.t; x/ and fitted line with slope �0:45431

Acknowledgements VC received funding for this project from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 639638). JAC was partially supported by the Royal Society via a Wolfson Research
Merit Award. FH acknowledges support from the EPSRC grant number EP/H023348/1 for the



68 V. Calvez et al.

Cambridge Centre for Analysis. The authors are very grateful to the Mittag-Leffler Institute for
providing a fruitful working environment during the special semester Interactions between Partial
Differential Equations & Functional Inequalities.

References

1. L.A. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of
Probability Measures. Lectures in Mathematics (Birkhäuser, Basel, 2005)

2. D. Balagué, J.A. Carrillo, T. Laurent, G. Raoul, Dimensionality of local minimizers of the
interaction energy. Arch. Ration. Mech. Anal. 209(3), 1055–1088 (2013)

3. F. Barthe, Inégalités de Brascamp-Lieb et convexité. C. R. Math. Acad. Sci. Paris 324, 885–888
(1997)

4. F. Barthe, On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 310, 685–693
(1998)

5. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality.
Ann. Math. 138, 213–242 (1993)

6. S. Bian, J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with
diffusion exponent m > 0. Commun. Math. Phys. 323(3), 1017–1070 (2013)

7. P. Biler, T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational
interaction of particles. Colloq. Math. 66, 319–334 (1994)

8. P. Biler, G. Karch, P. Laurençot, T. Nadzieja, The 8�-problem for radially symmetric solutions
of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29(13), 1563–1583 (2006)

9. A. Blanchet, J. Dolbeault, B. Perthame, Two dimensional Keller-Segel model in R
2: optimal

critical mass and qualitative properties of the solution. Electron. J. Differ. Equ. 2006(44), 1–33
(electronic) (2006)

10. A. Blanchet, V. Calvez, J.A. Carrillo, Convergence of the mass-transport steepest descent
scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46(2), 691–721
(2008)

11. A. Blanchet, J.A. Carrillo, N. Masmoudi, Infinite time aggregation for the critical Patlak-
Keller-Segel model in R

2. Commun. Pure Appl. Math. 61(10), 1449–1481 (2008)
12. A. Blanchet, J.A. Carrillo, P. Laurençot, Critical mass for a Patlak-Keller-Segel model with

degenerate diffusion in higher dimensions. Calc. Var. Partial Differ. Equ. 35(2), 133–168
(2009)

13. A. Blanchet, E.A. Carlen, J.A. Carrillo, Functional inequalities, thick tails and asymptotics for
the critical mass Patlak-Keller-Segel model. J. Funct. Anal. 262(5), 2142–2230 (2012)

14. M. Bodnar, J.J.L. Velázquez, Friction dominated dynamics of interacting particles locally close
to a crystallographic lattice. Math. Methods Appl. Sci. 36(10), 1206–1228 (2013)

15. F. Bolley, I. Gentil, A. Guillin, Uniform convergence to equilibrium for granular media. Arch.
Ration. Mech. Anal. 208(2), 429–445 (2013)

16. M. Bonforte, J. Dolbeault, G. Grillo, J.L. Vázquez, Sharp rates of decay of solutions to
the nonlinear fast diffusion equation via functional inequalities. Proc. Natl. Acad. Sci. USA
107(38), 16459–16464 (2010)

17. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions.
Commun. Pure Appl. Math. 44, 375–417 (1991)

18. V. Calvez, J.A. Carrillo, Volume effects in the Keller-Segel model: energy estimates preventing
blow-up. J. Math. Pures Appl. 86, 155–175 (2006)

19. V. Calvez, J.A. Carrillo, Refined asymptotics for the subcritical Keller-Segel system and related
functional inequalities. Proc. Am. Math. Soc. 140(10), 3515–3530 (2012)

20. V. Calvez, L. Corrias, Blow-up dynamics of self-attracting diffusive particles driven by
competing convexities. Discrete Contin. Dyn. Syst. Ser. B 18(8), 2029–2050 (2013)



1 The One-Dimensional Fair-Competition Regime 69

21. V. Calvez, T.O. Gallouët, Particle approximation of the one dimensional Keller-Segel equation,
stability and rigidity of the blow-up. Discrete Contin. Dyn. Syst. 36(3), 1175–1208 (2016)

22. V. Calvez, T.O. Gallouët, Blow-up phenomena for gradient flows of discrete homogeneous
functionals. Preprint arXiv:1603.05380v2

23. V. Calvez, B. Perthame, M. Sharifi tabar, Modified Keller-Segel system and critical mass for the
log interaction kernel, in Stochastic Analysis and Partial Differential Equations. Contemporary
Mathematics, vol. 429, pp. 45–62 (American Mathematical Society, Providence, RI, 2007)

24. V. Calvez, J.A. Carrillo, F. Hoffmann, Equilibria of homogeneous functionals in the fair-
competition regime. Preprint arXiv:1610.00939.

25. J.F. Campos, J. Dolbeault, A functional framework for the Keller-Segel system: logarithmic
Hardy-Littlewood-Sobolev and related spectral gap inequalities. C. R. Math. Acad. Sci. Paris
350(21–22), 949–954 (2012)

26. J.F. Campos, J. Dolbeault, Asymptotic estimates for the parabolic-elliptic Keller-Segel model
in the plane. Commun. Partial Differ. Equ. 39(5), 806–841 (2014)

27. E.A. Carlen, A. Figalli, Stability for a GNS inequality and the log-HLS inequality, with
application to the critical mass Keller-Segel equation. Duke Math. J. 162(3), 579–625 (2013)

28. E.A. Carlen, M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri’s
inequality on S

n. Geom. Funct. Anal. 2, 90–104 (1992)
29. E.A. Carlen, J.A. Carrillo, M. Loss, Hardy-Littlewood-Sobolev inequalities via fast diffusion

flows. Proc. Natl. Acad. Sci. USA 107(46), 19696–19701 (2010)
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Chapter 2
Bubbling Blow-Up in Critical Parabolic
Problems

Manuel del Pino

Abstract These lecture notes are devoted to the analysis of blow-up of solutions
for some parabolic equations that involve bubbling phenomena. The term bubbling
refers to the presence of families of solutions which at main order look like scalings
of a single stationary solution which in the limit become singular but at the same
time have an approximately constant energy level. This arise in various problems
where critical loss of compactness for the underlying energy appears. Three main
equations are studied, namely: the Sobolev critical semilinear heat equation in R

n,
the harmonic map flow from R

2 into S2, the Patlak-Keller-Segel system in R
2.

2.1 Introduction

These notes are devoted to the analysis of blow-up of solutions for some parabolic
equations, classical in the literature, that involve so-called bubbling phenomena.
The term bubbling in a variational problem refers to the presence of families of
solutions which at main order look like scalings of a single stationary solution which
in the limit become singular but at the same time have an approximately constant
energy level. This arise in various problems where critical loss of compactness
for the underlying energy appears. In time dependent versions of these problems,
one expects that blow-up by bubbling in finite or infinite time for specific solutions
appears. Those solutions are usually asymptotically not self-similar and, while not
generic, their presence is among the most important features of the full dynamics
since they correspond to threshold solutions between different generic regimes. In
these lectures we will consider the following three problems:

1. The Sobolev critical semilinear heat equation in Rn.

ut D �u C u
nC2
n�2 in � � .0;1/; (2.1)
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u D 0 on @� � .0;1/;

u.�; 0/ D u0 in �:

Here � designates a smooth domain in R
n, n � 3 and u0 is a positive, smooth

initial datum.
2. The harmonic map flow from R

2 into S2

ut D �u C jruj2u in � � .0;T/ (2.2)

u D ' on @� � .0;T/
u.�; 0/ D u0 in �

for a function u W � � Œ0;T/ ! S2, where � be a bounded smooth domain in R
2

and S2 denotes the standard 2-sphere. Here u0 W N� ! S2 is a given smooth map
and ' D u0

ˇ̌
@�

.
3. The Patlak-Keller-Segel system in R2.

ut D�u � r � .urv/ in R
2 � .0;1/ (2.3)

v D.��/�1u WD 1

2�
log

1

j � j � u

u.�; 0/ Du0 > 0 in R
2

A salient common feature of these problems is the presence of Lyapunov
functionals. In fact we let

E1.u/ D 1

2

Z
jruj2dx � 1

p C 1

Z
jujpC1dx ; p D n C 2

n � 2
where the spacial domain is understood in the integral symbol. Then we compute,
for sufficiently smooth solutions u.x; t/ of (2.1)

@tE1.u.�; t// D �
Z

jutj2dx :

Similarly, for solutions of u.x; t/ of (2.2) we have that

@tE2.u.�; t// D �
Z

jutj2dx :

where

E2.u/ D 1

2

Z
jruj2dx :
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These functionals are therefore decreasing along trajectories. In fact, we can
interpret Eqs. (2.1) and (2.2) as negative L2-gradient flows respectively for the
energies E1 and E2.

Problem (2.3) also has a Lyapunov functional, which is less obvious. Let us write
(2.3) in divergence form as

ut D r � .ur.log u � .��/�1u//

Then setting

E3.u/ WD
Z

u.log u � .��/�1u/ dx

we see that for a solution of (2.3) with sufficient regularity and space decay,

@tE3.u.�; t// D �
Z

ujr.log u � .��/�1u/j2dx � 0:

Problem (2.3) can also be interpreted as a negative gradient flow for E3 with respect
to Wasserstein’s metric, see [4].

The three problems above also have in common the presence of a continuum of
energy invariant steady states in entire space which is what is behind the possibility
of bubbling blow-up phenomena. Indeed, the steady-state equation for (2.1) in entire
space is

�u C u
nC2
n�2 D 0; u > 0 in R

n:

It is solved by

U.x/ D ˛n

�
1

1C jxj2
� n�2

2

;˛n D .n.n � 2//
1

n�2 ;

and so are solutions the scalings

U�;x0 .x/ D 1

�
n�2
2

U
�x � x0

�

	
D ˛n

�
�

�2 C jx � x0j2
� n�2

2

: (2.4)

We have that

E1.U�;x0 / D E1.U/ for all �; x0:

Similarly, for (2.2) the steady state problem in R
2 is

�u C jruj2u D 0; juj D 1 in R
2
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which is solved by the 1-corrotational harmonic map

U.x/ D
 

2x
1Cjxj2
jxj2�1
1Cjxj2

!
; x 2 R

2:

We observe that the equation is also solved by

U�;x0;Q.x/ D QU
�x � x0

�

	
(2.5)

with Q a linear orthogonal transformation of R3. We see that

E2.U�;x0;Q/ D E2.U/ for all �; x0:

Similarly, for (2.3) we have that the equation

�u � r � .ur.��/�1u/ D 0 in R
2

is solved by

U.x/ D 8

.1C jxj2/2 x 2 R
2;

and also by the scalings, singular as � ! 0,

U�;x0 .x/ D ��2U
�x � x0

�

	
D 8�2

.�2 C jx � x0j2/2 : (2.6)

We see that

E3.U�;x0 / D E3.U/ for all �; x0:

The presence of these steady states represents loss of compactness for the respective
energies, for as � ! 0C they become singular, so that their limits do not belong
to the natural energy space. In this way, we have the presence of non-convergent
Palais-Smale sequences for the respective energies.

Our purpose in the remaining of these notes is to construct solutions of the time-
dependent problems (2.1)–(2.3) that at main order look like one of the associated
scalings, around one or more points, with time-dependent parameters, so that the
scaling �.t/ becomes zero in the limit. This is a bubbling blow-up solution. We will
set up an adequate framework for each of the problems, with a common scheme.
We shall do this in a rather detailed manner in Problem (2.1) and present a sketch
in the case of Problems (2.2) and state the corresponding result in (2.3). In Problem
(2.1) we will construct solutions with infinite time blow-up around a given arbitrary
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number of points of the domain. In Problem (2.2) we construct such objects but in
a finite time. In (2.3) we consider the so-called critical-mass case for a fast-decay
initial condition and analyze the infinite-time singularity created.

2.2 Infinite-Time Blow-Up in the Critical Heat Equation

In this section we will construct infinite time blow-up solutions to Problem (2.1).

2.2.1 Discussion and Statement of Main Result

We begin with a discussion on the blow-up topic for the more general problem

ut D �u C up in � � .0;T/; (2.7)

u D 0 on @� � .0;T/;
u.�; 0/ D u0 > 0 in �:

Here � be a smooth domain in R
n, n � 1, p > 1 and 0 < T � C1.

The role of the exponent pS WD nC2
n�2 when n � 3 is fundamental in the different

phenomena arising in this equation. Let us first review the steady state problem

�u C up D 0 in �; (2.8)

u > 0 in �;

u D 0 on @�:

When 1 < p < pS, Problem (2.8) is always solvable. In fact the best Sobolev
constant

Sp.�/ D inf
0¤u2H10.�/

R
�

jruj2�R
�

jujpC1� 2
pC1

is achieved by a positive function which solves (2.8) thanks to the compactness of
the Sobolev embedding H1

0.�/ ,! LpC1.�/. An alternative way to find a solution
of Problem (2.8) is as a mountain pass of the energy functional

Ep.u/ D 1

2

Z
�

jruj2 � 1

p C 1

Z
�

jujpC1: (2.9)

This functional satisfies the Palais-Smale condition: if un 2 H1
0.�/ is such that

E.un/ ! c 2 R; rE.un/ ! 0 in H�1.�/
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then un has a convergent subsequence in H1
0.�/. When p D pS we have that

SpS.�/ D SpS.R
n/ DW Sn > 0

and it is not attained if �   R
n. In R

n. The best Sobolev constant Sn is achieved
precisely by (scalar multiples of) the functions

U�;�.x/ D �� n�2
2 U

�
x � �

�

�
D ˛n

�
�

�2 C jxj2
� n�2

2

: (2.10)

where

U.y/ D ˛n

�
1

1C jyj2
� n�2

2

; ˛n D .n.n � 2//
1

n�2 : (2.11)

called the Aubin-Talenti bubbles, see [34]. By a result of Caffarelli-Gidas-Spruck,
these functions correspond to all positive solutions of the equation

�u C u
nC2
n�2 D 0 in R

n:

namely positive critical points of the energy

E.u/ WD EpS.u/ D 1

2

Z
Rn

jruj2 � n � 2
2n

Z
Rn

juj 2n
n�2 :

The family (2.10) is energy invariant: for all �; �,

E.U�;�/ D E.U/ DW Sn > 0: (2.12)

The presence of this asymptotically singular family of critical points of E in entire
space precisely reflect its loss of compactness in a bounded domain �:

A Palais-Smale sequence in H1
0.�/ must asymptotically be, passing to a subse-

quence, of the form (called the bubble resolution)

un D u1 C
kX

iD1
U�i

n;�
i
n

C o.1/; (2.13)

for some k � 0, a critical point u1 2 H1
0.�/ of E, � in 2 �, �i

n ! 0 after a result by
Struwe [31].

The fact that the Sobolev constant is not achieved is not just a technical
obstruction for existence of solutions of (2.8): If the domain� is star-shaped around
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a point x0 2 � an u solves (2.8) then Pohozaev’s identity [25] yields

�
2 � n

2
� n

p C 1

�Z
�

upC1 D 1

2

Z
@�

jruj2.x � x0/ � � > 0

hence necessarily p < nC2
n�2 D pS and thus no solutions at all exist if p � pS. In

particular u1 D 0 in the bubble-resolution.
As for the problem in entire space,

�u C up D 0; u > 0 in R
n;

we have that no positive entire solution exists if p < pS, while if p D pS all solutions
are the Aubin-Talenti bubbles For p > pS there are positive solutions (in fact radially

symmetric with u.x/ 	 jxj� 2
p�1 ) but they do not have finite energy.

Coming back to the parabolic problem (2.7), let us consider a function '.x/
positive and smooth function in �, with boundary value zero. Let u˛.x; t/ be the
unique (local) smooth solution of (2.7) with initial condition

u˛.x; 0/ D ˛'.x/; ˛ > 0:

We claim that for all sufficiently small " we have that u.x; t/ ! 0 uniformly as
t ! 1. To see this, let �1 be the first eigenvalue of �� in � under Dirichlet
boundary conditions and �1 a positive first eigenfunction. Let " > 0 and consider
the function

Nu.x; t/ D "e�� t�1.x/

where 0 < � < �1. Then we see that

Nut ��Nu � Nup D "�1e
�� tŒ.�1 � �/ � "p�1�p�1

1 � > 0

and hence Nu.x; t/ is a supersolution of (2.7) if " is fixed sufficiently small. Then for
all 0 < ˛ < ˛0, we have that u˛.x; 0/ D ˛'.x/ � Nu.x; 0/ and hence

u˛.x; t/ � Ce�� t ! 0 as t ! C1:

The claim is proven. Next, we claim that for all large ˛, u˛.x; t/ blows-up in finite
time. Indeed, assume that u˛.x; t/ is defined in Œ0;T/ and use �1.x/ as a test function.
We get

@

@t

Z
�

�1u˛.�; t/ D ��1
Z
�

�1u˛.�; t/ C
Z
�

�1u˛.�; t/p:
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If we let q.t/ D R
� �1u˛.�; t/ then

q0.t/ � ��1q.t/C Cq.t/p:

On the other hand

q.0/ D ˛

Z
�

�1' dx

Then for any ˛ > ˛1 we have that ��1q.0/C Cq.0/p > 0. Then we easily see that
q0.t/ > 0 for all t and hence

T �
Z 1

q.0/

dq

��1q C Cqp
< C1:

Two types of finite-time blow-up are present. Blow-up at time T for a solution
u.x; t/ to (2.7) is said to be

• Type I if

lim
t!T

.T � t/
1

p�1 ku.�; t/k1 < C1

• Type II if

lim
t!T

.T � t/
1

p�1 ku.�; t/k1 D C1:

Type I means a blow-up rate that goes along with the natural scaling of (2.7)

� 7! �
� 1

p�1 u.�� 1
2 x; ��1t/:

Said in a different way, Type I blow-up is one in which reaction overtakes diffusion
effect, so that the blow-up mechanism is driven by the ODE

du

dt
.t/ D 0C u.t/p

whose solution with blow up at time T is precisely

u.t/ D cp.T � t/�
1

p�1 ; cp D . p � 1/
� 1

p�1 :

The following facts are known:

• Type I blow-up is the only one that can arise in the subcritical case p < pS (at
least for convex domains). Giga and Kohn [19].
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• Type II blow-up is rare but it exists. (A radial example was found by Herrero
and Velazquez [21].) One needs p > pJL where pJL > pS is the Joseph-Lundgren
exponent, a number which is only well-defined for dimension n � 11.

• Matano-Merle [23] proved that the set of values ˛ for which type-II blow-up in
u˛.x; t/ may exists is just finite in the radially symmetric case.

• Still in the radial case, the condition p > pJL is necessary for blow-up type II
to occur [17]. As seen by Galaktionov and Vázquez, type II radial blowing-up
can be naturally continued beyond blow-up time for p > pJL. In fact this radial
blow-up can only take place for a given radial solution a finite number of times.

2.2.1.1 The Threshold Solution

In summary, u˛.x; t/ blows-up in finite time for all ˛ large and it goes to zero for
small ˛. As a conclusion, the following number is well-defined:

˛� D supf˛ > 0 = lim
t!1 ku˛.�; t/k1 D 0g;

in fact 0 < ˛� < C1. Ni et al. [24] found that u˛�
.x; t/ is a well-defined L1-weak

solution of (2.7).
u˛�

is a type of solution which loosely speaking lies in the dynamic threshold
between solutions globally defined in time and those that blow-up in finite time.

It is not clear that u˛� will be smooth at all times. In fact, it will not be in general
the case.

• When 1 < p < pS, u˛�.x; t/ is smooth. Indeed it is uniformly bounded
(Cazenave-Lions [7]), and up to subsequences it converges to a (positive) solution
of Eq. (2.8).

• When p > pS, � a ball and radially symmetric solutions, it turns out that
u˛�.x; t/ ! 0 as t ! C1, see Quittner-Souplet [28].

• The case p D pS is special. In fact in this case the threshold solution u˛�
in the

radial case does have infinite-blow up time, namely

lim
t!C1 ku.�; t/k1 D C1:

We can mention in addition that by results by Du and Suzuki [13, 33]: along
sequences tn ! C1, u˛�

.x; t/ does have a bubble resolution of the type of a Palais-
Smale sequence when p D pS.

u˛�
.x; tn/ D u1 C

kX
iD1

U�i
n;�

i
n

C o.1/; (2.14)

for some k � 0, a critical point u1 2 H1
0.�/ of, � in 2 �, �i

n ! 0.
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For any p > 1 the energy

Ep.u/ D 1

2

Z
�

jruj2 � 1

p C 1

Z
�

jujpC1:

defines a Lyapunov functional for Eq. (2.7). Indeed, we readily compute, for a
solution u.x; t/ of (2.7),

d

dt
Ep.u.�; t// D �

Z
�

jutj2dx

In the case p D pS the k-bubble resolution would yield

lim
n!C1E.u.�; tn// D kSn C E.u1/:

where we recall, necessarily u1 D 0 if � is star-shaped.
Galaktionov and Vázquez [17] found that in the case that � D B.0; 1/ and the

threshold solution u˛� is radially symmetric, then no finite time singularities for
u˛�.r; t/ occur and it must become unbounded as t ! C1, thus exhibiting infinite-
time blow up. Galaktionov and King discovered in [16] that this radial blow-up
solution does have a bubbling asymptotic profile as t ! C1 of the form

u˛�
.r; t/ 
 ˛n

�
�.t/

�.t/2 C r2

� n�2
2

; r D jxj: (2.15)

where for n � 5, �.t/ 	 t� 1
n�4 ! 0. For ˛ > ˛� blow-up in finite time of

u˛�
.r; t/ occurs while, it goes to zero when ˛ < ˛�. Understanding this threshold

phenomenon is central in capturing the global dynamics of Problem (2.1). These
solutions are unstable, while intuitively codimension-one stable in the space of
initial conditions containing ˛�'.

Nothing seems to be known however on existence of infinite-time bubbling
solutions in the nonradial case, or about their degree of stability. Our main goal
is to build solutions with single or multiple blow-up points as t ! C1 in problem
(2.1) when � is arbitrary and n � 5, providing precise account of their asymptotic
form and investigate their stability.

Our construction unveils the interesting role played by the (elliptic) Green
function of the domain �. In what follows we denote by G.x; y/ Green’s function
for the boundary value problem

��xG.x; y/ D cnı.x � y/ in �; G.�; y/ D 0 on @�;

where ı.x/ is the Dirac mass at the origin and cn is the number such that

��x�.x/ D cnı.x/; �.x/ D ˛n

jxjn�2 ; (2.16)
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namely cn D .n�2/!n˛n with !n the surface area of the unit sphere in R
n and ˛n the

number in (2.15). We let H.x; y/ be the regular part of G.x; y/ namely the solution
of the problem

��xH.x; y/ D 0 in �; H.�; y/ D �.� � y/ in @�: (2.17)

The diagonal H.x; x/ is called the Robin function of �. It is well known that it
satisfies

H.x; x/ ! C1 as dist .x; @�/ ! 0: (2.18)

Let q D .q1; : : : ; qk) be an array of k distinct points in�, and define the k�k matrix

G.q/ D

2
6664

H.q1; q1/ �G.q1; q2/ � � � �G.q1; qk/
�G.q1; q2/ H.q2; q2/ �G.q2; q3/ � � � �G.q3; qk/

:::
: : :

:::

�G.q1; qk/ � � � �G.qk�1; qk/ H.qk; qk/

3
7775 (2.19)

Our main result states that a global solution to (2.1) which blows-up at exactly k
given points qj exists if q lies in the open region of �k where the matrix G.q/ is
positive definite.

Theorem 1 ([11]) Assume n � 5. Let q1; � � � ; qk be distinct points in � such that
the matrix G.q/ is positive definite. Then there exist an initial datum u0 and smooth
functions �j.t/ ! qj and 0 < �j.t/ ! 0, as t ! C1, j D 1; : : : ; k, such that the
solution uq of Problem (2.1) has the form

uq.x; t/ D
kX

jD1
˛n

�
�j.t/

�j.t/2 C jx � �j.t/j2
� n�2

2

� �j.t/
n�2
2 H.x; qj/C �j.t/

n�2
2 �.x; t/;

(2.20)

where �.x; t/ is bounded, and �.x; t/ ! 0 as t ! C1, uniformly away from the
points qj. In addition, for certain positive constants ˇj depending on q.

�j.t/ D ˇjt
� 1

n�4 .1C o.1//; �j.t/ � qj D O.t�
2

n�4 / as t ! C1

Our construction of the solution uq.x; t/ in Theorem 1 yields the codimension
k-stability of its bubbling phenomenon.

Our construction of the solution uq.x; t/ yields the codimension k-stability of its
bubbling phenomenon in the following sense.
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Corollary 2.2.1 There exists a codimension k manifold in C1. N�/ that contains
uq.x; 0/ such that if u.x; 0/ lies in that manifold and it is sufficiently close to uq.x; 0/,
then the solution u.x; t/ of (2.1) has exactly k bubbling points Qqj, j D 1; : : : ; k which
lie close to the qj.

Positive definiteness of G.q/ trivially holds if k D 1. For k D 2 this condition
holds if and only if

H.q1; q1/H.q2; q2/� G.q1; q2/
2 > 0;

in particular it does not hold if both points q1 and q2 are too close to a given point
in �. Given k > 1, using that

H.x; x/ ! C1 as dist .x; @�/ ! 0:

we can always find k points where G.q/ is positive definite.
The proof of the above result consists of building a first approximation to the

solution, then solving for a small remainder by means of linearization and fixed
point arguments. First we construct a first approximation of the desired form. We
shall compute the error and see that in order to improve the approximation we
need certain solvability conditions for the elliptic linearized operator around the
bubble. These relations yield a system of ODEs for the scaling parameters, of which
we find a suitable solution.

2.2.2 Construction of the Approximate Solution and Error
Computations

We consider the Talenti bubbles

U.y/ D ˛n

�
1

1C jyj2
� n�2

2

; ˛n D .n.n � 2//
n�2
4 ;

and

U�;�.x/ D �� n�2
2 U

�
x � �

�

�
; � > 0; � 2 R

n:

Given k points q1; : : : ; qk 2 R
n, we want to find a solution u.x; t/ of equation (P)

with

u.x; t/ 

kX

jD1
U�j.t/;�j.t/.x/ (2.21)
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where �j.t/ ! qj and �j.t/ ! 0 as t ! 1 for each j D 1; : : : ; k. The functions �j.t/
and �j.t/ cannot of course be arbitrary.

We assume that the vanishing speed of all functions �j.t/ is the same. More
precisely that for a function �0.t/ ! 0 and positive constants b1; : : : ; bk we have

�j.t/ D bj�0.t/C O.�20.t// as t ! 1:

Also, we assume

�j.t/ � qj D O.�20.t// as t ! 1:

If a solution to (2.1) satisfies u.x; t/ 
 Pk
jD1U�j;�j.x/ then

ut 
 �u C
kX

jD1
U�j;q.x/

p

Besides, we see that

Z
�

U�j;q.x/
pdx 
 �

n�2
2

j an; an WD
Z
Rn

U.y/pdy;

and hence away from the points qj

ut 
 �u C cn�
n�2
2

0

kX
jD1

b
n�2
2

j ıqj in � � .0;1/

where ıq designates the Dirac mass at the point q.

Letting u D �
n�2
2

0 v.x; t/ we get

vt 
 �v � n � 2

2
��1
0 P�0v C cn

kX
jD1

b
n�2
2

j ıqj in � � .0;1/:

We assume that ��1
0 P�0 ! 0, so that

vt 
 �v C an

kX
jD1

b
n�2
2

j ıqj in � � .0;1/;

v D 0 on @� � .0;1/:
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So that away from the qj we should have

v.x; t/ 
 an

kX
jD1

b
n�2
2

j G.x; qj/;

u.x; t/ 

kX

jD1

˛n�
n�2
2

j

jx � qjjn�2 � � n�2
2

j H.x; qj/:

Observing that for x away from the point qj, we precisely have

U�j;�j.x/ 
 ˛n�
n�2
2

j

jx � qjjn�2

we see that a better global approximation to a solution u.x; t/ to our problem is given
by the corrected k-bubble

u�;�.x; t/ WD
kX

jD1
uj.x; t/; uj.x; t/ WD U�j;�j.x/� �

n�2
2

j H.x; qj/: (2.22)

We have obtained this correction term out of a rough analysis to what is
happening away from the blow-up points. Let us now analyze the region near them.
That will allow us to identify the function�0.t/ and the constants bj. It is convenient
to write

S.u/ WD �ut C�xu C up:

We consider the error of approximation S.u0/. We have

S.u�;�/ D �
kX

iD1
@tui C

 
kX

iD1
ui

!p

�
kX

iD1
Up
�i;�i

:

We obtain the following estimate near a given concentration point qj, from where
the formal asymptotic derivation of the unknown parameters will be a rather direct
consequence.

Given j, assuming that

jx � qjj � 1

2
min
i¤l

jqi � qlj

and setting

yj WD x � �j

�j
;
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we have

S.u�;�/ D �
� nC2

2

j

�
�jE0j C �jE1j C Rj

�

E0j D pU.yj/
p�1 � �n�3

j H.qj; qj/ C
X
i¤j

�
n�4
2

j �
n�2
2

i G.qj; qi/
�

C P�j

h
yj � rU.yj/C n � 2

2
U.yj/

i
;

and

E1j D pU.yj/
p�1 � �n�2

j rxH.qj; qj/

C
X
i¤j

�
n�2
2

j �
n�2
2

i rxG.qj; qi/
� � yj C P�j � rU.yj/

and Rj contains smaller order terms.
To see this, we write, for yi D x��i

�i
,

u�;�.x; t/ D
kX

iD1
�

� n�2
2

i U.yi/ � � n�2
2

i H.x; qi/; and S.u�;�/ D S1 C S2

where

S1 WD
kX

iD1
�

� n
2

i
P�i � rU.yi/C �

� n
2

i P�iZnC1.yi/C n � 2

2
�

n�4
2

i P�iH.x; qi/; (2.23)

and

S2 WD
 

kX
iD1

�
� n�2

2

i U.yi/� �
n�2
2

i H.x; qi/

!p

�
kX

iD1
�

� nC2
2

i U.yi/
p: (2.24)

Then at main order we have that near qj,

S2 
 �
� nC2

2

j

 �
U.yj/C‚j

�p � U.yj/
p
�
;

with

‚j D ��n�2
j H.x; qj/C

X
i¤j

�
�j�

�1
i

� n�2
2 U.yi/� .�j�i/

n�2
2 H.x; qi/: (2.25)
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Taylor expanding we get

S2 
 �
� nC2

2

j pU.yj/
p�1‚j :

We make some further expansion. We have, for i ¤ j,

U.yi/ D ˛n�
n�2
i

.j�jyj C �j � �ij2 C �2i /
n�2
2


 ˛n�
n�2
i

j�jyj C qj � qijn�2 :

Hence we get the approximation

‚j 
 ��n�2
j H.qj C �jyj; qj/C

X
i¤j

.�i�j/
n�2
2 G.qj C �jyj; qi/:

Further expanding, we get

‚j 
 � �n�2
j H.qj; qj/C

X
i¤j

.�i�j/
n�2
2 G.qj; qi/

C
h

� �n�2
j rxH.qj; qj/C

X
i¤j

.�i�j/
n�2
2 rxG.qj; qi/

i
� �jyj:

We also approximate

S1 
 �
� n
2

j
P�j � rU.yj/C �

� n
2

j P�j
n � 2

2
U.yj/C yj � rU.yj/

�
;

2.2.3 The Choice of the Parameters at Main Order

We are looking for a solution of our equation of the form

u.x; t/ D u�;�.x; t/C Q�.x; t/

where Q� is globally smaller. We see that

0 D S.u�;� C Q�/ D �@t Q� C�x Q� C pup�1
�;�

Q� C S.u�;�/C QN�;� . Q�/

where QN�;� . Q�/ D .u�;� C Q�/p � up�;� � pup�1
�;�

Q�:
We rewrite

Q�.x; t/ D �
� n�2

2

j �

�
x � �j
�j

; t

�
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so that

0 D �
nC2
2

j S.u�;� C Q�/ 
 (2.26)

� �2j @t� C�y� C pU.y/p�1� C �
nC2
2

j S.u�;�/C AŒ�� (2.27)

where the terms in A.�/ are all of smaller order. It is reasonable to assume that
�.y; t/ decays in the y variable.

Considering the largest term E0 in the expansion of the error�
nC2
2

j S.u�;�/ we find
that �.y; t/ should equal at main order a solution �0j.y; t/ of the elliptic equation

�y�0j C pUp�1�0j D ��0jE0j in R
n; �0.y; t/ ! 0 as jyj ! 1: (2.28)

where we recall

E0j D pU.yj/
p�1 � �n�3

j H.qj; qj/ C
X
i¤j

�
n�4
2

j �
n�2
2

i G.qj; qi/
�

C P�j

h
yj � rU.yj/C n � 2

2
U.yj/

i
;

2.2.3.1 Basic Linear Elliptic Theory

We recall some standard facts on a linear equation of the form

L0. / WD �y C pUp�1 D h.y/ in R
n;  .y/ ! 0 as jyj ! 1:

It is well known that all bounded solutions of the equation L0. / D 0 in R
n consist

of linear combinations of the functions Z1; : : : ;ZnC1 defined as

Zi.y/ WD @U

@yi
.y/; i D 1; : : : ; n; ZnC1.y/ WD n � 2

2
U.y/C y � rU.y/:

If h.y/ D O.jyj�m/, m > 2, then the problem is solvable iff

Z
Rn

h.y/Zi.y/ dy D 0 for all i D 1; : : : ; n C 1:

Since n � 5, we can solve

�y�0j C pUp�1�0j D ��0jE0j in R
n; �0.y; t/ ! 0 as jyj ! 1: (2.29)
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provided that

Z
Rn

E0j.y; t/ ZnC1.y/ dy D 0 for all j D 1; : : : ; k (2.30)

We compute

Z
Rn

E0j.y; t/ ZnC1.y/ dy D c1
h
�n�3
j H.qj; qj/�

X
i¤j

�
n�4
2

j �
n�2
2

i G.qi; qj/
i

C c2 P�j ;

(2.31)

where c1 and c2 are the positive constants given by

c1 D �p
Z
Rn

Up�1ZnC1 D n � 2

2

Z
Rn

Up; c2 D
Z
Rn

jZnC1j2: (2.32)

We observe that c2 < C1 thanks to the assumed fact n � 5.
These relations define a nonlinear system of ODEs for which a solution can be

found as follows: we write

�j.t/ D bj�0.t/

and arrive at the relations

bn�2
j H.qj; qj/�

X
i¤j

.bibj/
n�2
2 G.qi; qj/ C c2c

�1
1 b2j�

3�n
0 P�0.t/ D 0

so that �3�n
0 P�0.t/ should equal a constant, which is necessarily negative since �0

decays to zero. This constant can be scaled out, hence it can be chosen arbitrarily to
the expense of changing accordingly the values bi. We impose

P�0 D �2c1c
�1
2

n � 2 �
n�3
0 ; (2.33)

which yields after a suitable translation of time,

�0.t/ D �nt
� 1

n�4 ; �n D .2�1.n � 4/�1.n � 2/c�1
1 c2/

1
n�4 (2.34)

and therefore the positive constants bj (in case they exist) must solve the nonlinear
system of equations

bn�3
j H.qj; qj/ �

X
i¤j

b
n�2
2

i b
n�2
2 �1

j G.qi; qj/ D 2bj
n � 2 for all j D 1; : : : ; k:

(2.35)
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This system has a solution (which is unique) if the matrix G.q/ defined in is
positive definite. System (2.35) can be written as a variational problem. Indeed,
it is equivalent to rbI.b/ D 0 where

I.b/ WD 1

n � 2

2
4 kX

jD1
bn�2
j H.qj; qj/�

X
i¤j

b
n�2
2

i b
n�2
2

j G.qi; qj/�
kX

jD1
b2j

3
5

Writing ƒj D b
n�2
2

j the functional becomes

.n � 2/ I.b/ D QI.ƒ/ D
kX

jD1
H.qj; qj/ƒ

2
j �

X
i¤j

G.qi; qj/ƒiƒj �
kX

jD1
ƒ

4
n�2

j :

Let us assume that the matrix G.q/ is positive definite. Then the functional QI.ƒ/
is strictly convex in the region where all ƒj > 0. It clearly has a global minimizer
with all components positive. This yields the existence of a unique critical point b
of I.b/ with positive components which what we needed.

From the choice of the parameters �0, bj we have

�0jE0jŒ N�0; P�0j� D ��j�0.t/n�2 q0.y/ (2.36)

where �j is a positive constant and

q0.y/ WD pUp�1.y/c2 C c1ZnC1.y/;

so that
R
Rn q0.y/ ZnC1.y/ dy D 0 :

The problem

��0j C pU.y/p�1�0j D ��j�0.t/n�2q0.y/; �0j.y; t/ ! 0 as y ! 1:

has a radially symmetric solution which we can describe from the variation of
parameters. Let QZnC1.r/ so that L0. QZnC1/ D 0 with

QZnC1.r/ 	 r2�n as r ! 0; QZnC1.r/ 	 1 as r ! 1;

and the radial solution p0 D p0.jyj/ of L0. p0/ D q0 described as

p0.r/ D cZnC1
Z r

0

QZnC1.s/q0.s/sn�1 ds � c QZnC1
Z r

0

ZnC1.s/q0.s/sn�1 ds:

p0 satisfies

p0.jyj/ D O.jyj�2/ as jyj ! 1: (2.37)
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Then a solution �0j.y; t/ is simply given by the function

�j.y; t/ D �j�0.t/
n�2p0.y/:

This leads us to the following corrected approximation,

u�
�;�.x; t/ WD u�;�.x; t/C Q̂ .x; t/; Q̂ .x; t/ WD

kX
jD1

�
� n�2

2

j �0j

�
x � �j

�j
; t

�
: (2.38)

2.2.3.2 Total Expansion of the Error

Expansion for the error S.u�
�;�/ near each qj. Write

�j D bj�0 C �j; j�j � �1C
0

Then setting x D �j C �jyj, we get

S.u�
�;�/ 


kX
jD1

�
� nC2

2

j

n
�0j P�j ZnC1.yj/ � �0j�

n�4
0 pU.yj/

p�1
kX

iD1
Mij�i

C �j
P�j � rU.yj/C pU.yj/

p�1 � �n�2
j rxH.qj; qj/

C
X
i¤j

�
n�2
2

j �
n�2
2

i rxG.qj; qi/
� � yj

o

where Mij is a certain positive definite matrix depending on the points.

2.2.4 The Inner-Outer Gluing Procedure

@tu D �u C up in � � Œ0;1/; u D 0 on @� � Œ0;1/: (2.39)

We solve with u of the form

u D u�
�;� C Q�; (2.40)

where Q�.x; t/ is a smaller term. We construct the function Q� by means of what we
call the inner-outer gluing procedure.
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This procedure consists in writing

Q�.x; t/ D  .x; t/C � in.x; t/ where � in.x; t/ WD
kX

jD1
	j;R.x; t/ Q�j.x; t/

with

Q�j.x; t/ WD �
� n�2

2

0j �j

�
x � �j
�0j

; t

�
; �0j.t/ D bj�0.t/

and

	j;R.x; t/ D 	

�
x � �j

R�0j

�
:

Here 	.s/ is a smooth cut-off function with 	.s/ D 1 for s < 1 and D 0 for s > 2.
In terms of Q�, Problem (2.1) reads as

@t Q� D � Q� C p.u�
�;�/

p�1 Q� C QN. Q�/C S.u�
�;�/ in � � Œ0;1/; (2.41)

Q� D �u�
�;� on @� � Œ0;1/; (2.42)

where

QN�;� . Q�/ D .u�
�;� C Q�/p � .u�

�;�/
p � p.u�

�;�/
p�1 Q�;

S.u�
�;�/ D �@tu�

�;� C�u�
�;� C .u�

�;�/
p:

We decompose

S.u�
�;�/ 


kX
jD1

S�;�;j (2.43)

where, for yj D x��j
�j

,

S�;�;j D �
� nC2

2

j

n
�0j

"
P�j ZnC1.yj/ � �n�4

0 pU.yj/
p�1

kX
iD1

Mij�i

#

C �j

h P�j � rU.yj/C pU.yj/
p�1 � �n�2

j rxH.qj; qj/

C
X
i¤j

�
n�2
2

j �
n�2
2

i rxG.qj; qi/
� � yj

io
:
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Let

V�;� D p
kX

jD1
..u�

�;�/
p�1 � .�

� n�2
2

j U.
x � �j
�j

//p�1/	j;R C p
�
1 �

kX
jD1

	j;R
�
.u�
�;�/

p�1:

(2.44)

A main observation is the following: Q� solves the problem if . ; �/ solves the
following system:

Outer problem:

@t D � C V�;� (2.45)

C
kX

jD1
Œ2r	j;Rrx Q�j C Q�j.�x � @t/	j;R�

C QN�;�. Q�/C So�;� in � � Œt0;1/;

 D �u�
�;� on @� � Œt0;1/;

where

So�;� D S.2/�;� C
kX

jD1
.1 � 	j;R/S�;�;j;

and for all j D 1; : : : ; k, the Inner problems:

@t Q�j D � Q�j C pUp�1
j

Q�j C pUp�1
j  C S�;�;j in B2R�0j.�j/ � Œt0;1/:

The Inner problems in terms of �j.y; t/, y 2 B2R.0/ become

�20j@t�j D �y�j C pU.y/p�1�j C �
nC2
2

0j S�;�;j.�j C �0jy; t/

C p�
n�2
2

0j

�20j

�2j
Up�1.y/ .�j C �0jy; t/C BjŒ�j�C B0j Œ�j�

where BjŒ�j� is a smaller order linear operator.
We proceed as follows. For given parameters �; �; P�; P� and functions �j fixed in

a suitable range, we solve for  the outer problem (2.45). Indeed, in the form of a
(nonlocal) operator

 D ‰.�; �; P�; P�; �/
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Then we replace this  in the inner equations and solve them by a fixed point
argument involving a suitable inverse of the main part of the linear operators in
�j. Let us explain how to do so.

Recall that the elliptic linear operator L0.�/ WD �� C pUp�1.y/� has an n C 1

dimensional bounded kernel generated by the bounded functions

Zi.y/ D @U

@yi
; i D 1; : : : ; n; ZnC1.y/ D n � 2

2
U.y/C rU.y/ � y:

If we consider the model problem for (I), in which now we do not neglect the
term corresponding to time derivative, and we consider it on the whole R

n

�20j@t� D L0.�/C E.y; t/; (2.46)

we observe that �20j@t� D L0.�/ when � is any linear combination of the functions
Zi.y/, i D 1; : : : ; n; n C 1. This fact suggests that solvability depends on whether
the right hand side E.y; t/ does have component in the directions spanned by the
Zi.y/’s.

In other words, one expects solvability of (2.46) provided that some orthogonality
conditions like

Z
Rn

E.y; t/Zi.y/ dy D 0; i D 1; : : : ; n C 1; for all t

are fulfilled. Since we have k of these conditions, for any j D 1; : : : ; k, this system
takes the form of a nonlinear, nonlocal system of .n C 1/k ODEs in the .n C 1/k
parameter functions �1; : : : ; �k and �1; : : : ; �k. It is at this point that we choose
the parameters � and � (as functions of the given �) in such a way that these
orthogonality (or solvability) conditions are satisfied.

Another known fact about the elliptic L0.�/: L0 has a positive radially symmetric
bounded eigenfunction Z0 associated to the only negative eigenvalue �0 to the
problem

L0.�/C �� D 0; � 2 L1.Rn/:

Furthermore, �0 is simple and Z0 decays like

Z0.y/ 	 jyj� n�1
2 e�pj�0j jyj as jyj ! 1:

Let e.t/ WD R
Rn �.y; t/Z0.y/ dy, the projection of �.y; t/ in the direction Z0.y/.

Integrating equation (2.46) in R
n, using that �0j.t/2 D b2j t

� 2
n�4 we get

b2j t
� 2

n�2 Pe.t/ � �0e.t/ D f .t/ WD .

Z
Rn

Z0.y/
2 dy/�1

Z
Rn

E.y; t/Z0.y/ dy:
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Hence, for some a > 0,

e.t/ D exp.at
n�2
n�4 /

�
e.t0/C

Z t

t0

s
2

n�4 f .s/ exp.�as
n�2
n�4 /ds

	
:

The only way in which e.t/ does not grow exponentially in time (and hence �.y; t/
does not growth exponentially in time) is for the specific value of initial condition

e.t0/ D
Z
Rn
�.y; t0/Z0.y/ dy D �

Z 1

t0

s
2

n�4 f .s/ exp.�as
n�2
n�4 /ds:

This argument suggests that the (small) initial condition required for � should lie
on a certain manifold locally described as a translation of the hyperplane orthogonal
to Z0.y/. Since we have k of these hyperplanes, for any j D 1; : : : ; k in (I), these
constraints define a codimension k manifold of initial conditions which describes
those for which the expected asymptotic bubbling behavior is possible.

A central point of the full proof is to design a linear theory that allows us to solve
the final system by means of a contraction mapping argument. For a large number
R > 0 we shall construct a solution to an initial value problem of the form

�� D �� C pU.y/p�1� C h.y; �/ in B2R � .�0;1/ (2.47)

�.y; �0/ D e0Z0.y/ in B2R:

We define

khk�;a WD sup
�>�0

sup
y2B2R

��.1C jyja/ jh.y; �/j: (2.48)

for a suitable number �.
The following is a central step in the proof:

Lemma 2.2.1 Let 0 < a < 1, � > 0. Then, for all sufficiently large R > 0 and any
h D h.y; �/ with khk�;2Ca < C1 that satisfies for all j D 1; : : : ; n C 1

Z
B2R

h.y; �/ Zj.y/ dy D 0 for all � 2 .�0;1/ (2.49)

there exist � D �Œh� and e0 D e0Œh� which solve Problem (2.47). They define linear
operators of h that satisfy the estimates

j�.y; �/j . ��� RnC1�a

1C jyjnC1 khk�;2Ca: (2.50)

and

je0Œh�j . khk�;2Ca: (2.51)
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After this lemma is proven, the remaining argument roughly goes as follows:
We solve (this is rather straightforward) the outer problem (2.45) for given �j’s in
the class of the estimated in Lemma 2.2.1 and parameter functions, in the form
 D ‰.�; �; P�; P�; �/. Then replacing these into the inner problems we get for the
�j’s the system of equations

@��j D �y�j C pU.y/p�1�j C Ej.�; �; P�; P�; �/

where by definition @� D �20j@t. Ej.�; �; P�; P�; �/ is an operator with the property that
the conditions

Z
B2R

Ej.y; �/ Zl.y/ dy D 0 for all � 2 .�0;1/

for all j, l, amount to an explicit system of first order differential equations for the
tuple .�; �/ (which involve small nonlinear, nonlocal terms). The dependence in �
makes the operator Ej a contraction mapping in its dependence in the operator in
Lemma 2.2.1 and the result then follows from a fixed point argument. We refer the
reader to [11] for the complete argument.

To establish Lemma 2.2.1 we will make use of the following basic, key lemma
regarding the quadratic form associated to the linear operator L0 D �C pUp�1,

Q.�; �/ WD
Z jr�j2 � pUp�1j�j2� : (2.52)

The next result provides an estimate of the associated second L2-eigenvalue in a ball
B2R with large radius under zero boundary conditions.

There exists a constant � > 0 such that for all sufficiently large R and all radially
symmetric function � 2 H1

0.B2R/ with
R
B2R
�Z0 D 0 we have

�

Rn�2

Z
B2R

j�j2 � Q.�; �/: (2.53)

To prove this, we let HR be the linear space of all radial functions � 2 H1
0.B2R/

that satisfy the orthogonality condition
R
B2R
�Z0 D 0, and

�R WD inf

�
Q.�; �/ = � 2 HR;

Z
B2R

j�j2 D 1

�
: (2.54)

A standard compactness argument yields that �R in (2.54) is achieved by a radial
function �R.x/ D  R.r/ 2 HR with

R
B2R
�2R D 1, which satisfies the equation

L0Œ�R�C �R�R D cRZ0 in B2R; �R D 0 on @B2R; (2.55)

for a suitable Lagrange multiplier cR.
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We have that �R � 0. Indeed, the radial eigenvalue problem in R
n

L0Œ �C � D 0;  0.0/ D  .C1/ D 0 (2.56)

where

L0Œ � WD  00 C n � 1

r
 0 C pU.r/p�1 

has just one negative eigenvalue, as it follows from maximum principle, using the
fact that L0ŒZ� D 0 with Z D ZnC1, and the fact that this function changes sign just
once. It follows that the associated quadratic form must be positive in H1.Rn/-radial,
subject to the L2-orthogonality condition with respect to Z0. This implies �R � 0.

Thus, to establish (2.53), we assume by contradiction that

�R D o.R2�n/ as R ! C1: (2.57)

Let � be a smooth cut-off function with

�.s/ D 1 for s < 1 and �.s/ D 0 for s > 2: (2.58)

Testing against Z0.y/	R.jyj/ where 	R.s/ D �.s � R
2
/, we get

cR

Z
B2R

Z20	R D
Z
B2R

�RŒZ0�	R C 2r	RrZ0�:

Since k�RkL2.B2R/ D 1, it follows that, for some 
 > 0, cR D O.e�
R/:
On the other hand, again using that k�RkL2.B2R/ D 1, standard elliptic estimates

yield that k�RkL1.B2R/ . 1.
Let us represent �R.x/ D  R.r/ using the variation of parameters formula. The

function  R satisfies the ODE

L0Œ R� D hR.r/; r 2 .0;R/;  0
R.0/ D  R.R/ D 0 (2.59)

where hR.r/ D ��R R.r/C cRZ0.r/: Furthermore, it is uniformly bounded in R.
Letting Z D ZnC1, we consider a second, linearly independent solution QZ.r/ of

this problem, namely L0Œ QZ� D 0, normalized in such a way that their Wronskian
satisfies

QZ0Z.r/ � QZZ0.r/ D 1

rn�1 :

Since Z.r/ 	 1 near r D 0 and Z.r/ 	 r2�n as r ! 1, we see that QZ.r/ 	 r2�n

near r D 0 and QZ.r/ 	 1 as r ! 1.
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The formula of variation of parameters then yields the representation

 R.r/ D QZ.r/
Z r

0

hR.s/ Z.s/ s
n�1 ds C Z.r/

Z 2R

r
hR.s/ QZ.s/ sn�1 ds � ARZ.r/

(2.60)

where AR is such that  R.2R/ D 0, namely

AR D Z.2R/�1 QZ.2R/
Z 2R

0

hR.s/ Z.s/ s
n�1 ds:

We observe that khRkL2.B2R/ . �R C e�
R: Then we estimate

ˇ̌
ˇ̌
Z r

0

hR.s/ Z.s/ s
n�1 ds

ˇ̌
ˇ̌ � kZkL2.B2R/khRkL2.B2R/ . .�R C e�
R/kZkL2.B2R/

and

ˇ̌
ˇ̌Z 2R

r
hR.s/ QZ.s/ sn�1 ds

ˇ̌
ˇ̌ . R

n
2 .�R C e�
R/:

Hence we have for instance,

kARZkL2.B2R/ . Rn�2.�R C e�
R/kZkL2.B2R/;

and estimating the other two terms we obtain at last,

k�RkL2.B2R/ � Rn�2.�R C e�
R/kZkL2.B2R/: (2.61)

At this point we notice kZkL2.Rn/ < C1. This, the fact that �R D o.R2�n/ and then
k�RkL2.B2R/ ! 0. This is a contradiction and estimate (2.53) is thus proven.

How is this fact used in the complete argument? We solve first a projected
problem of the form (just in the radial case for now)

�� D �� C pU.r/p�1� C h.r; �/� c.�/Z0 in B2R � .�0;1/ (2.62)

� D 0 on @B2R � .�0;1/; �.�; �0/ D 0 in B2R:

where h decays fast and the function c.�/ is such that

Z
B2R

�.�; �/ Z0 D 0 for all � 2 .�0;1/: (2.63)
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We obtain the relation

@�

Z
B2R

�2 C Q.�; �/ D
Z
B2R

g�; g D h0 � c.�/Z0:

Using the estimate (2.53) we get that for some � > 0,

@�

Z
B2R

�2 C �

Rn�2

Z
B2R

�2 . Rn�2
Z
B2R

g2: (2.64)

Using that Q�.�; �0/ D 0 and Gronwall’s inequality, we readily get from the L2-
estimate

k�.�; �/kL2.B2R/ . ���Rn�2K; K WD khk0;� C e��Rkry Q�k0;�
�
: (2.65)

Using standard parabolic estimates, we obtain the desired result in Lemma 2.2.1.

2.2.5 The Cases of Dimensions n D 4 and n D 3

The construction above corresponds to dimension n � 5. Here we state the form the
bubbling solutions take in lower dimensions n D 3; 4. For n D 4 the statement is
similar, with different blow-up rates, but it qualitatively changes in dimension 3.

Let start with n D 4. In this case our result reads as follows.

Theorem 2 Assume n D 4. Let q1; � � � ; qk be distinct points in � such that the
matrix G.q/ is positive definite. Then there exist smooth functions �j.t/ ! qj and
0 < �j.t/ ! 0, as t ! C1, j D 1; : : : ; k, and a solution of Problem (2.1) of the
form

u.x; t/ D
kX

jD1
˛4

�
�j.t/

�j.t/2 C jx � �j.t/j2
�

C �.t; x/;

where k�.�; t/k1 ! 0 as t ! C1. The functions �j.t/ satisfy

�j.t/ D ˇ4ƒje
�ˇ�2

4 t
1
2 t

1
4 C o.e�ˇ�2

4 t
1
2 t

1
4 / as t ! C1

for a certain (explicit) positive constant ˇ4. Here ƒj D vj
kvk > 0, where v D

.v1; : : : ; vk/ is an eigenvector associated to the first positive eigenvalue �1 of the
matrix G.q/.

To state the result in dimension n D 3, we need to introduce another Green’s
function. Let �1 be the first (positive) eigenvalue of the Laplace operator, with zero
Dirichlet boundary condition on� and let � be a fixed number with � 2 Œ0; �1/, we
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denote by G� the Green’s function for the boundary value problem

��xG� .x; y/� �G� .x; y/ D ˛3!3ı.x � y/; x 2 �;
G.�; y/ D 0; on @�; (2.66)

where !3 is the area of the unit sphere in R
3 and ˛3 the number in (2.15). We let

H� .x; y/ be the regular part of G� .x; y/ namely the solution of the problem

�xH� .x; y/C �H� .x; y/ D �
˛3

jx � yj in �; H� .�; y/ D ˛3

jx � yj in @�:

(2.67)

Let q1; : : : ; qk be given distinct points in � so that the matrix G.q/ is positive
definite. Define now a new matrix G� .q/ as

G� .q/ D

2
6664

H� .q1; q1/ �G� .q1; q2/ � � � �G� .q1; qk/
�G� .q1; q2/ H� .q2; q2/ �G� .q2; q3/ � � � �G� .q3; qk/

:::
: : :

:::

�G� .q1; qk/ � � � �G� .qk�1; qk/ H� .qk; qk/

3
7775 (2.68)

Observe that G0.q/ D G.q/. Since, for any i, H� .qi; qi/ ! �1; as � " �1, the
matrix G� .q/ becomes positive definite as � " �1. We define

��.q/ D sup f� > 0 W G� .q/ is positive definiteg: (2.69)

Clearly 0 < �� < �1. Furthermore, there exists a vector b D .b1; : : : ; bk/ such that

G�� .q/Œb� D 0; and bi > 0 for all i: (2.70)

Indeed, by definition of �� we see that there exists b 2 R
k with kbk D 1 such that

bTG�� Œq�b D inf
x2Rk; kxkD1

xTG�� Œq�x D 0:

We observe first that all components of b are positive, bi � 0, i D 1; : : : ; k. If not,
we consider Qb D .jb1j; : : : ; jbkj/ and observe that

bTG�� Œq�b � QbTG�� Œq�Qb:

In order to show that bi > 0 for all i, we assume the contrary, we call I D fi W bi D
0g and we define the vector b" D .b"1; : : : ; b

"
k/ with

b"i D "; if i 2 I; b"i D bi otherwise;
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for " > 0 fixed. A direct computation gives that

.b"/TG�� Œq�b" D bTG�� Œq�b C "2
X
i2I

H.qi; qi/ � "
X

i2I; j62I
G.qi; qj/ < bTG�� Œq�b

if " is chosen small enough. We thus reach a contradiction and the claim is proven.
We can now state our result.

Theorem 3 Assume n D 3. Let q1; � � � ; qk be distinct points in � such that the
matrix G.q/ is positive definite. Then there exist smooth functions �j.t/ ! qj and
0 < �j.t/ ! 0, as t ! C1, j D 1; : : : ; k, and a solution of Problem (2.1) of the
form

u.x; t/ D
kX

jD1
˛3

�
�j.t/

�j.t/2 C jx � �j.t/j2
� 1

2

C �.t; x/;

where k�.�; t/k1 ! 0 as t ! C1. The functions �j.t/ satisfy

�j.t/ D 1

2
p
��

bje
�2�� t C o.e�2�� t/ as t ! C1:

In the case � is the unit ball in R
3, the number �� is explicit, it is given by �� D

�2

4
. Recalling that, in this case, the first eigenvalue �1 of the Laplace operator with

zero Dirichlet boundary condition is given by �2, the previous asymptotic becomes

ln kuk1 	 �2

4
t D �1

4
t;

and we recover the asymptotics in [16] obtained in the radial case.

2.3 The Harmonic Map Flow from R
2 into S2

The results presented in this section for Problem (2.2) correspond to joint work with
Juan Dávila and Juncheng Wei.

2.3.1 Preliminaries and Statement of Main Result

We summarize some characteristics of the flow given by Eq. (2.2), some of them we
already commented in the introductory section.
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• Local existence and uniqueness of a classical solution of (2.2) was established in
the works by Eeels-Sampson [14], Struwe [32] and Chang [8]. In fact, a solution
of the equation satisfies ju.x; t/j D 1 at all times if initial and boundary conditions
do.

• Problem (2.2) is the negative L2-gradient flow for the Dirichlet energy E.u/ WDR
�

jruj2dx. along smooth solutions u.x; t/:

d

dt
E.u.�; t// D �

Z
�

jut.�; t/j2 � 0 :

• The problem has blowing-up families of energy invariant steady states in entire
space (entire harmonic maps). Harmonic maps in R

2 are solutions of

�u C jruj2u D 0; juj D 1in R
2

for which the simplest nontrivial example is the inverse of the stereographic map,

U0.x/ D
 

2x
1Cjxj2
jxj2�1
1Cjxj2

!
; x 2 R

2:

The 1-corrotational harmonic maps are given by

U�;x0;Q.x/ D QU0
�x � x0

�

	

with Q a linear orthogonal transformation of R3.

E2.U�;x0;Q/ D E.U/ D 4� for all �; x0:

• Struwe [32] proved the following important result: there exists a global H1-weak
solution of (2.2), where just for a finite number of points in space-time loss
of regularity occurs. In fact, at those times jumps down in energy occur. This
solution is unique within the class of weak solutions with degreasing energy [15].

If T > 0 designates the first instant at which smoothness is lost, we must have

kru.�; t/k1 ! C1

Several works have clarified the possible blow-up profiles as t " T.
The following fact follows from results in the works [12, 22, 26, 27, 32]:
Along a sequence tn ! T and points q1; : : : ; qk 2 �, not necessarily distinct,

u.x; tn/ blows-up occurs at exactly those k points in the form of bubbling. Precisely,
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we have

u.x; tn/ � u�.x/ �
kX

iD1
ŒUi

�
x � qni
�ni

�
� Ui.1/ � ! 0 in H1.�/

where u� 2 H1.�/, qni ! qi, 0 < �ni ! 0, satisfy for i ¤ j,

�ni
�nj

C �nj

�ni
C jqni � qnj j2

�ni �
n
j

! C1:

The Ui’s are entire, finite energy harmonic maps, namely solutions U W R2 ! S2

of the equation

�U C jrUj2U D 0 in R
2;

Z
R2

jrUj2 < C1:

After stereographic projection, U lifts to a conformal smooth map in S2, so that its
value U.1/ is well-defined. It is known that U is in correspondence with a complex
rational function or its conjugate. Its energy corresponds to the absolute value of the
degree of that map times the area of the unit sphere, and hence

Z
R2

jrUj2 D 4�m; m 2 N:

In particular, u.�; tn/ * u� in H1.�/ and for some positive integers mi, we have

jru.�; tn/j2 * jru�j2 C
kX

iD1
4�mi ıqi

ıq denotes the Dirac mass at q.
A least energy entire, non-trivial harmonic map is given by

U0.x/ D 1

1C jxj2
�

2x
jxj2 � 1

�
; x 2 R

2;

which satisfies

Z
R2

jrU0j2 D 4�; U0.1/ D
0
@00
1

1
A :

Very few examples are known of solutions which exhibit the singularity for-
mation phenomenon, and all of them concern single-point blow-up in radially
symmetric corrotational classes.
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When � is a disk or the entire space, a 1-corrotational solution of (2.2) is one of
the form

u.x; t/ D
�
ei� sin v.r; t/

cos v.r; t/

�
; x D rei� :

Problem (2.2) then reduces to the simple looking scalar equation under radial
symmetry,

vt D vrr C vr

r
� sin v cos v

r2
:

We observe that the function w.r/ D � � 2 arctan.r/ is a steady state corresponding
to to the harmonic map U0:

U0.x/ D
�
ei� sinw.r/

cosw.r/

�
:

Chang et al. in 1991 [9] found the first example of a blow-up solution of Problem
(2.2) (which was previously conjectured not to exist). It is a 1-corrotational solution

in a disk with the blow-up profile v.r; t/ 	 w
�

r
�.t/

	
or

u.x; t/ 	 U0

�
x

�.t/

�
:

and 0 < �.t/ ! 0 as t ! T. No information is provided on �.t/.
Topping [36] estimated the general blow-up rates as

�i D o.T � t/
1
2

(valid in more general targets), namely blow-up is of “type II”: it does not occur at
a self-similar rate. Angenent et al. [1] estimated the blow-up rate of 1-corrotational
maps as �.t/ D o.T � t/.

Using formal analysis, van den Berg et al. [38] demonstrated that this rate for
1-corrotational maps should generically be given by

�.t/ 	 �
T � t

j log.T � t/j2

for some � > 0.
Raphael and Schweyer [29] succeeded to rigorously construct a 1-corrotational

solution with this blow-up rate in entire R2. Their proof provides the stability of the
blow-up phenomenon within the radially symmetric class.



106 M. del Pino

A natural, important question is the nonradial case: find nonradial solutions,
single and multiple blow-up in entire space or bounded domains and analyze their
stability.

Our main result: For any given finite set of points of � and suitable initial
and boundary values, then a solution with a simultaneous blow-up at those points
exists, with a profile resembling a translation, scaling and rotation of U0 around each
bubbling point. Single point blow-up is codimension-1 stable.

The functions

U�;q;Q.x/ WD QU0
�x � q

�

	
:

with � > 0, q 2 R
2 and Q an orthogonal matrix are least energy harmonic maps:

Z
R2

jrU�;q;Qj2 D 4�:

For ˛ 2 R we denote

Q˛

2
4y1y2
y3

3
5 D



ei˛.y1 C iy2/

y3

�
;

the ˛-rotation around the third axis.

Theorem 4 Given T > 0, q D .q1; : : : ; qk/ 2 �k, there exists initial and boundary
data such the solution uq.x; t/ of (HMF) blows-up as t " T in the form

uq.x; t/ � u�.x/�
kX

jD1
Q˛�

i


U0

�
x � qi
�i

�
� U0.1/

� ! 0

in the H1 and uniform senses where u� 2 H1.�/ \ C. N�/,

�i.t/ D ��
i .T � t/

j log.T � t/j2 :

jru.�; t/j2 * jru�j2 C 4�

kX
jD1

ıqj

Raphael and Schweyer [29] proved the stability of their solution within the 1-
corrotational class, namely perturbing slightly its initial condition in the associated
radial equation the same phenomenon holds at a slightly different time. On the other
hand, numerical evidence led van den Berg and Williams [37] to conjecture that this
radial bubbling loses its stability if special perturbations off the radially symmetric
class are made. Our construction shows so at a linear level.
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Theorem 5 For k D 1 there exists a manifold of initial data with codimension 1,
that contains uq.x; 0/, which leads to the solution of (2.2) to blow-up at exactly one
point close to q, at a time close to T.

A natural question is that of Continuation after blow-up.
Struwe defined a global H1-weak solution of (2.2) by dropping the bubbles

appearing at the blow-up time and then restarting the flow. This procedure modifies
the topology of the image of u.�; t/ across T. On the other hand, Topping [35] built
a continuation of Chang-Ding-Ye solution by attaching a bubble with opposite
orientation after blow-up (this does not change topology and makes the energy
values “continuous”). This procedure is called reverse bubbling. The reverse bubble
is by definition

NU0.x/ D 1

1C jxj2
� �2x

jxj2 � 1
�

D
�
ei� sin Nw.r/

cos Nw.r/
�
; Nw.r/ D �w.r/:

Our result is the following.

Theorem 6 The solution uq can be continued as an H1-weak solution in��.0;TC
ı/, with the property that uq.x;T/ D u�.x/

uq.x; t/ � u�.x/�
kX

jD1
Q˛�

i

 NU0
�
x � qi
�i

�
� U0.1/

� ! 0 as t # T;

in the H1 and uniform senses in �, where

�i.t/ D ��
i

t � T

j log.t � T/j2 if t > T:

It is reasonable to think that the blow-up behavior obtained is generic. Is it
possible to have bubbles other than those induced by U0 or NU0, and or decomposition
in several bubbles at the same point? Evidence seems to indicate the opposite:

In fact, no blow-up is present in the higher corrotational class (Guan et al. [20])
and no bubble trees in finite time exist in the 1-corrotational class, van der Hout [39].
In infinite time they do exist and their elements have been classified (Topping [36]).

2.3.2 Sketch of the Construction of Bubbling Solution
for k D 1

Here we present the main elements present in the construction of a first approxima-
tion. Given a T > 0, q 2 �, we want

S.u/ WD �ut C�u C jruj2u D 0 in � � .0;T/
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with

u.x; t/ 
 U.x; t/ WD Q˛.t/U0

�
x � x0.t/

�.t/

�

The functions ˛.t/; �.t/; x0.t/ are continuous functions up to T and satisfy

�.T/ D 0; x0.T/ D q

Error of approximation:

S.U/ D �Ut D
P�
�
Q˛rU0.y/ � y � P̨ .@˛Q˛/U0.y/C Q˛rU0.y/ � Px0

�
;

y D x � x0
�

:

Then S.U/ ? U. We recall

U0.y/ D
�
ei� sinw.�/

cosw.�/

�
; w.�/ D � � 2 arctan.�/; y D �ei� ;

E1.y/ D
��ei� cosw.�/

sinw.�/

�
; E2.y/ D

�
iei�

0

�
;

constitute an orthonormal basis of the tangent space to S2 at the point U0.y/.

S.U/.x; t/ D Q˛Œ
P�
�
�w� E1 C P̨�w� E2 �

C Px01
�

w� Q˛Œ cos � E1 C sin � E2�

C Px02
�

w� Q˛Œsin � E1 � cos � E2 �:

For a small function ', we compute

S.U C '/ D �'t C LU.'/C NU.'/C S.U/:

LU.'/ D �' C jrUj2' C 2.rUr'/U

NU.'/ D jr'j2U C 2.rUr'/' C jr'j2':
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A useful observation: if ' with jU C 'j D 1 solves

�Ut � @t' C LU.'/C NU.'/C b.x; t/U D 0

for some scalar function b.x; t/ and j'j � 1
2
, then u D U C ' solves (2.2) namely

S.u/ D 0. Indeed,

S.u/C bU D 0

hence

�b.x; t/U � u D S.u/ � u D �1
2

d

dt
juj2 C 1

2
�.juj2/ D 0:

which implies b D 0 since U � u > 0.
We must have jU C 'j2 D 1, namely

2U � ' C j'j2 D 0:

If ' is small, this approximately means

U � ' D 0:

If we neglect NU.'/ which is quadratic in ', we look for canceling the linear part
(up to terms along U). Thus we want:

�'t C LU.'/C S.U/C b.x; t/U 
 0; ' � U D 0:

We describe a way of finding such a ' for suitable choices of the parameter
functions.

For a function ' we write

…U?' WD ' � .' � U/U:

We want to find a small function '� such that

�@t…U?'� C LU.…U?'�/C S.U/C b.x; t/U 
 0:

'� will be made out of different pieces. For simplicity we fix

x0 � q; ˛ � 0:
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Step 1 Concentrating the error. The outer problem: Far away from the concen-
tration point the largest part of the error becomes

S.U/.x; t/ 
 E0 D
P�
�
�w�.�/E1.y/ y D x � x0

�
D �ei� ; � D jyj:

So that we have

E0 
 �2
r



ei� P�
0

�
; x D q C rei� :

Set

'0.x; t/ D


�.r; t/ei�

0

�

so that …U?'0 
 '0 away from q.

�@t…U?'0 C LUŒ…U?'0�C E0 
 �'t C�x'
0 � 2

r



ei� P�
0

�
:

So we require

�t D �rr C �r

r
� �

r2
� 2 P�

r
D 0:

We solve this equations setting

�0 D �0Œ�2 P��

where for a continuous function p.t/, t 2 Œ0;T/, � D �0Œ p� is the unique solution of
the Cauchy problem

�t D �rr C �r

r
� �

r2
C p.t/

r
D 0; .r; t/ 2 .0;1/ � .0;T/;

�.r; 0/ D 0; �.0; t/ D 0 D �.C1; t/:

With the aid of Duhamel’s formula, we find

�0Œp�.r; t/ D
Z t

0

p.s/
1� e� r2

4.t�s/

2r
ds:

and modify the error as

QE0 WD �@t…U?'0 C LU.…U?'0/C E0 D
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At main order we get

QE0 
 ��2
"

8�0

.1C �2/2
C 2� P�
�.1C �2/

#
E1 C �0 ��1 P��w� U:

Step 2 We add to …U?'0 a small function …U?Z�.x; t/. We consider a small
smooth function z�.x; t/ D z�

1 .x; t/C iz�
2 .x; t/ which solves the heat equation,

z�
t D �z�; in � � .0;T/;

z.x; t/ D z0.x/ in @� � .0;T/;
z.x; 0/ D z0.x/ in @� :

And on z�
0 .x/ we assume the following. For a point q0 close to q,

div z0.q0/ D @x1z01.q0/C @x2z02.q0/ < 0

curl z0.q0/ D @x1z02.q0/ � @x2z01.q0/ D 0

z0.q0/ D 0; Dz0.q0/ non-singular.

We write

Z�.x; t/ D


z�.x; t/
0

�
D


z�
1 C iz�

2

0

�

and compute the linear error

� @t…U?Z� C LU.…U?Z�/

� 1

�
�w2�


div z�E1 C curl z� E2

�

1

�
�w2�


div Nz� cos 2� C curl Nz� sin 2�

�
E1

1

�
�w2�


div Nz� sin 2� � curl Nz� cos 2�

�
E2

C O.��2/

Step 3 The improvement of approximation gets then reduced to finding ' with
' � U D 0 and

�@t.…U?.'0 C Z�/C '/C LU.…U?.'0 C Z�/C '/C E C bU


 �@t' C LU.'/C E1 C E2 C E3 C bU D 0
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where

E1 D
"
��2 4

.1C �2/2

h
�0Œ�2 P�� C �� div z�

i
C 2��1 P�
�.1C �2/

#
E1

E2 D 4��1�
.1C �2/2

n
d1 cos 2� C d2 sin 2�

�
E1 C 

d1 sin 2� � d2 cos 2�
�
E2
o

E3 D 4��1�
.1C �2/2

curl z� E2 C .U � Qz�/
2��1 P��
1C �2

E1 C b.x; t/U C O.��2/

We recall:

z�.q; 0/ D 0;

curl z�.q; 0/ D 0:

div z�.q; 0/ < 0;

In order to find ' which cancels at main order E1 we consider the problem of
finding ' which decays away from the concentration point and satisfies

LU.'/C E1 D 0 ' � U D 0:

the following is a necessary (and sufficient!) condition. We need the orthogonality
condition

Z
R2

E1 � Z01 D 0

where

Z01 D �w�E1

which satisfies LUŒZ01� D 0.
After some computation the equation for �.t/ becomes approximately

Z t��2

0

P�.s/
t � s

ds D 4div z�.q; t/ :

Assuming that log� 	 log.T � t/ the equation is well-approximated by

�P�.t/ log.T � t/C
Z t

0

P�.s/
T � s

ds C 4div z�.q; t/ D 0:
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which is explicitly solved as

P�.t/ D � �

log2.T � t/
.1C o.1//

The value of � is precisely that for which

�

Z T

0

ds

.T � s/ log2.T � s/
D �4div z�.q;T/:

Then if T is small we get the approximation

P�.t/ 
 P�0.t/ WD 4j logTj
log2.T � t/

div z�.q;T/

Since � decreases to zero as t ! T�, this is where we need the assumption

div z�.q;T/ < 0:

With this procedure we then get a true reduction of the total error by solving
LUŒ'�C Ej D 0, j D 1; 2.

At last we find a new approximation of the solution of the type

U�.x; t/ D U0
�x � q

�

	
C…U? Œ�0Œ�2 P��C Z�.x; t/�C '�.x; t/

where '�.x; t/ is a decaying solution to

LUŒ'�� D E1 C E2 C E3; '� � U D 0:

To solve the full problem we consider consider

�.t/ D �0.t/C �1.t/; ˛.t/ D 0C ˛1.t/; x0.t/ D q0 C x1.t/:

The true perturbations �1; ˛1 approximately solve linear equations of the type

Z t��20

0

P�.s/
t � s

ds D p1.t/

Z t��20

0

P̨1.s/�0.s/
t � s

ds D p2.t/
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which are approximated by

�P�1.t/ log.T � t/C
Z t

0

P�1.s/
T � s

ds D p1.t/:

P̨1.t/�0 log.T � t/ D p2.t/:

These equations are actually a weakly coupled system. In particular the value
of ˛1.0/ turns out to depend of the data, at main order in linear way. This sets a
constraint in the solution which yields the codimension-one stability of the solution,
a situation that confirms the non-radial instability conjecture in [37]. Actually it is
so determined �.0/, but the degree of freedom given by moving T allows to choose
it a priori as an arbitrary small number. That degree of freedom is lost in ˛. This
is what yields the codimension 1 statement. The full construction follows the same
lines as that for the critical equation while it is of harder technical nature.

2.4 Infinite Time Blow-up in the Critical Mass
Platak-Keller-Segel Equation

We state a result corresponding to joint work with J. Dávila, J. Dolbeault, M. Musso
and J. Wei where the same general scheme of the problems in the previous two
sections has been followed. For the Platak-Keller-Segel equation (2.3), our main
result is existence and stability of the critical mass solution.

ut D �u � r � .ur.��/�1u/; u > 0 in R
2 � .0;1/

Assuming that u.x; 0/ 2 L1.R2/, the following is known:

• If
R
R2

u.x; 0/dx > 8� then finite-time blow-up always takes place. On the other
hand, if

R
R2

u.x; 0/dx < 8� then the solution is globally defined in time, and it
goes to zero uniformly as t ! 1 with a self-similar profile. See Blanchet et al.
[2]. Bubbling blow-up behavior in the radial case with exact rates when mass is
close from above to 8� have been built by Raphael and Schweyer [30].

• The case of critical mass
R
R2

u.x; 0/dx D 8� is delicate concerning its
asymptotic behavior. The solution is globally defined in time and it may or may
not blow-up. If the second moment of the initial condition is finite, namelyR
R2

jxj2u.x; 0/dx < C1, then the solution blows-up in infinite time, with a
bubbling behavior, see Carlen and Figalli [6], Blanchet et al. [3, 4]. Formal rates
of bubbling when mass equals 8� have been studied by Chavanis and Sire [10]
and by Campos [5]. In the very recent preprint by Ghoul and Masmoudi [18], a
radial solution with exact rates has been built. Stability is proven within the radial
class and the method does not yield it in general.
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Theorem 7 There exists a solution u.x; t/ of Problem (2.3) with fast-decay initial
condition of mass 8� , which blows-up in infinite time, with a profile which at main
order is

u.x; t/ 
 8�.t/2

.�.t/2 C jxj2/2

where

�.t/ 	 1p
log t

:

All positive initial conditions (not necessarily radial) with fast decay and mass 8�
suitably close to u.x; 0/ lead to the same phenomenon.
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Chapter 3
Regularity Theory for Local and Nonlocal
Minimal Surfaces: An Overview

Matteo Cozzi and Alessio Figalli

Abstract These notes record the lectures for the CIME Summer Course held by
the second author in Cetraro during the week of July 4–8, 2016. The goal is to
give an overview of some classical results for minimal surfaces, and describe recent
developments in the nonlocal setting.

3.1 Introduction

Let 1 6 k 6 n � 1 be two integers and � � R
n be a .k � 1/-dimensional, smooth

manifold without boundary. The classical Plateau problem consists in finding a k-
dimensional set † with @† D � such that

Area.†/ D min
n

Area.†0/ W @†0 D �
o
: (3.1)

Here, with the notation Area.�/ we denote a general “area-type functional” that we
shall specify later. We will consider two main examples: one where the area is the
standard Hausdorff k-dimensional measure, and one in which it represents a recently
introduced notion of nonlocal (or fractional) perimeter.

We stress that we do not have a well-defined nonlocal perimeter for
k-dimensional manifolds with k 6 n � 2. Moreover, even in the codimension 1
case, we need † to be the boundary of some set in order to be able to define its
fractional perimeter. Therefore, to make the parallel between the local and the
nonlocal theories more evident, we shall always focus on the setting

k D n � 1 and † D @E; with E � R
n n-dimensional:
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In the forthcoming sections, we will outline several issues and solutions relevant
to this minimization problem.

Most of these notes will be devoted to presenting the main ideas involved in the
case of the traditional area functional. Then, in the last section, we will briefly touch
on the main challenges that arise in the nonlocal setting.

Remark 3.1.1 In these notes, we shall say that a surface is “minimal” if it minimizes
the area functional. This notation is not universal: some authors call a surface
“minimal” if it is a critical point of the area functional, and call it “area minimizing”
when it is a minimizer.

3.1.1 The Minimization Problem

Given a bounded open set� � R
n with smooth boundary and a .n�2/-dimensional

smooth manifold � without boundary, we want to find a set E � R
n satisfying the

boundary constraint

@E \ @� D �;

and minimizing

Area.@E \�/;

among all sets E0 � R
n such that @E0 \ @� D � .

Note that it is very difficult to give a precise sense to the intersection @E \ @�

when E has a rough boundary. In order to avoid unnecessary technical complications
related to this issue, we argue as follows. For simplicity, we shall assume from now
on that � is equal to the unit ball B1, but of course this discussion can be easily
extended to the general case.

Fix a smooth n-dimensional set F � R
n such that @F \ @B1 D � . Instead of

prescribing the boundary of our set E on @B1, we will require it to coincide with F
on the complement of B1. That is, we study the equivalent minimization problem

min
n

Area.@E \ B1/ W E n B1 D F n B1
o
: (3.2)

Still, there is another issue. It may happen that a non-negligible part of @E is not
insideB1, but on the boundary of B1 (see Fig. 3.1). As a consequence, this part would
either contribute or not contribute to Area.@E\B1/, depending on our understanding
of B1 as open or closed.

In order to overcome this ambiguity, we consider the slightly different minimiza-
tion problem

min
n

Area.@E \ B2/ W E n B1 D F n B1
o
: (3.3)
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Fig. 3.1 An example of a boundary @E that sticks to the sphere @B1 on a non-negligible portion of
it

Observe that, in contrast to (3.2), we are now minimizing the area inside the larger
open ball B2. In this way, we do not have anymore troubles with sticking boundaries.
On the other hand, we prescribe the constraint outside of the smaller ball B1. Hence,
in (3.3) we are just adding terms which are the same for all competitors, namely the
area of @F inside B2 n B1. Notice that (3.3) is equivalent to

min
n

Area.@E \ B1/ W E n B1 D F n B1
o
:

However, as we shall see later, (3.3) is “analytically” better because the area inside
an open set will be shown to be lower-semicontinuous under L1loc-convergence (see
Proposition 3.2.3).

Now, the main question becomes: what is the area? For smooth boundaries, this
is not an issue, since there is a classical notion of surface area. On the other hand,
if in (3.3) we are only allowed to minimize among smooth sets, then it is not clear
whether a minimizer exists in such class of sets. Actually, as we shall see later,
minimizers are not necessarily smooth! Thus, we need a good definition of area for
non-smooth sets.

3.2 Sets of Finite Perimeter

The main idea is the following: If E has smooth boundary, then it is not hard to
verify that

Area.@E/ D sup

�Z
@E
X � �E W X 2 C1c .R

nIRn/; jXj 6 1

�
; (3.4)
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where �E denotes the unit normal vector field of @E, pointing outward of E. Indeed,
if @E is smooth, one can extend �E to a smooth vector field N defined on the
whole R

n and satisfying jNj 6 1. By setting X D 	RN, with 	R a cutoff function
supported inside the ball BR, and letting R ! 1, one is easily led to (3.4).

Since, by the divergence theorem,

Z
@E

X � �E D
Z
E

divX;

we can rewrite (3.4) as

Area.@E/ D sup

�Z
E

divX W X 2 C1c .R
nIRn/; jXj 6 1

�
:

Notice that we do not need any regularity assumption on @E for the right-hand side
of the formula above to be well-defined. Hence, one can use the right-hand side as
the definition of perimeter for a non-smooth set.

More generally, given any open set � � R
n, the same considerations as above

show that

Area.@E \�/ D sup

�Z
E

divX W X 2 C1c .�IRn/; jXj 6 1

�
: (3.5)

Again, this fact holds true when E has smooth boundary. Conversely, for a general
set E, we can use (3.5) as a definition.

Definition 3.2.1 Let � � R
n be open and E � R

n be a Borel set. The perimeter
of E inside � is given by

Per.EI�/ WD sup

�Z
E

divX W X 2 C1c.�IRn/; jXj 6 1

�
:

When � D R
n, we write simply Per.E/ to indicate Per.EIRn/.

Note that Per.EI�/ is well-defined for any Borel set, but it might be infinite. For
this reason, we will restrict ourselves to a smaller class of sets.

Definition 3.2.2 Let � � R
n be open and E � R

n be a Borel set. The set E is said
to have finite perimeter inside ˝ if Per.EI˝/ < C1. When ˝ D R

n, we simply
say that E has finite perimeter.

With these definitions, the minimization problem becomes

min
n

Per.EIB2/ W E n B1 D F n B1
o
: (3.6)

Of course, since F is a competitor and Per.F;B2/ < C1, in the above minimization
problem it is enough to consider only sets of finite perimeter.
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In the remaining part of this section we examine two fundamental properties of
the perimeter that will turn out to be crucial for the existence of minimizers: lower
semicontinuity and compactness.

3.2.1 Lower Semicontinuity

In this subsection, we show that the perimeter is lower semicontinuous with respect
to the L1loc topology. We recall that a sequence of measurable sets fEkg is said to
converge in L1.�/ to a measurable set E if

�Ek �! �E in L1.�/;

as k ! C1. Similarly, the convergence in L1loc is understood in the above sense.
The statement concerning the semicontinuity of Per is as follows.

Proposition 3.2.3 Let� � R
n be an open set. Let fEkg be a sequence of Borel sets,

converging in L1loc.�/ to a set E. Then,

Per.EI�/ 6 lim inf
k!C1 Per.EkI�/:

Proof Clearly, we can assume that each Ek has finite perimeter inside �. Fix any
vector field X 2 C1c.�IRn/ such that jXj 6 1. Then,

Z
E

divX D
Z
�

�E divX D lim
k!C1

Z
�

�Ek divX D lim
k!C1

Z
Ek

divX:

Since by definition

Z
Ek

divX 6 Per.EkI�/ for any k 2 N;

this yields

Z
E

divX 6 lim inf
k!C1 Per.EkI�/:

The conclusion follows by taking the supremum over all the admissible vector
fields X on the left-hand side of the above inequality. ut

Lower semicontinuity is the first fundamental property that one needs in order to
prove the existence of minimal surfaces. However, alone it is not enough. We need
another key ingredient.
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3.2.2 Compactness

Here we focus on a second important property enjoyed by the perimeter. We prove
that a sequence of sets having perimeters uniformly bounded is precompact in
the L1loc topology. That is, the next result holds true.

Proposition 3.2.4 Let � � R
n be an open set. Let fEkgk2N be a sequence of Borel

subsets of � such that

Per.EkI�/ 6 C (3.7)

for some constant C > 0 independent of k. Then, up to a subsequence, Ek converges
in L1loc.�/ to a Borel set E � �.

The proof of the compactness result is more involved than that of the semiconti-
nuity. We split it in several steps.

First, we recall the following version of the Poincaré’s inequality. We denote
by .u/A the integral mean of u over a set A with finite measure, that is

.u/A WD �
Z
A
u D 1

jAj
Z
A
u:

Also, Qr denotes a given (closed) cube of sides of length r > 0.

Lemma 3.2.5 Let r > 0 and u 2 C1.Qr/. Then,

Z
Qr

ju � .u/Qr j 6 Cnr
Z
Qr

jruj;

for some dimensional constant Cn > 0.

Proof Up to a translation, we may assume that Qr D Œ0; r�n. Moreover, we initially
suppose that r D 1.

We first prove the result with n D 1. In this case, note that for any x; y 2 Œ0; 1�,
we have

ju.x/� u. y/j 6
Z y

x
jru.z/j dz 6

Z 1

0

jru.z/jdz:

Choosing y 2 Œ0; 1� such that u. y/ D .u/Œ0;1� (note that such a point exists thanks
to the mean value theorem) and integrating the inequality above with respect to
x 2 Œ0; 1�, we conclude that

Z 1

0

ju � .u/Œ0;1�j 6
Z 1

0

jruj;

which proves the result with C1 D 1.
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Now, assume by induction that the result is true up to dimension n � 1. Then,
given a C1 function u W Œ0; 1�n ! R, we can define the function Nu W Œ0; 1�n�1 ! R

given by

Nu.x0/ D
Z 1

0

u.x0; xn/dxn:

With this definition, the one-dimensional argument above applied to the family of
functions fu.x0; �/gx02Œ0;1�n�1 shows that

Z 1

0

ju.x0; xn/� Nu.x0/jdxn 6
Z 1

0

j@nu.x0; xn/jdxn for any x0 2 Œ0; 1�n�1:

Hence, integrating with respect to x0, we get

Z
Œ0;1�n

ju � Nuj 6
Z
Œ0;1�n

j@nuj: (3.8)

We now observe that, by the inductive hypothesis,

Z
Œ0;1�n�1

jNu � .Nu/Œ0;1�n�1 j 6 Cn�1
Z
Œ0;1�n�1

jrx0 Nuj: (3.9)

Noticing that

.Nu/Œ0;1�n�1 D .u/Œ0;1�n and
Z
Œ0;1�n�1

jrx0 Nuj 6
Z
Œ0;1�n

jrx0uj;

combining (3.8) and (3.9) we get

Z
Œ0;1�n

ju � .u/Œ0;1�n j 6
Z
Œ0;1�n

j@nuj C Cn�1
Z
Œ0;1�n

jrx0uj;

which proves the result with Cn D 1C Cn�1.
Finally, the general case follows by a simple scaling argument. Indeed, if u 2

C1.Qr/, then the rescaled function ur.x/ WD u.rx/ belongs to C1.Q1/. Moreover, we
have that

Z
Qr

ju � .u/Qr j D rn
Z
Q1

jur � .ur/Q1 j;

and
Z
Qr

jruj D rn�1
Z
Q1

jrurj:
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The conclusion then follows from the case r D 1 applied to ur. ut
We now plan to deduce a Poincaré-type inequality for the characteristic func-

tion �E of a bounded set E having finite perimeter. Of course, �E … C1 and
Lemma 3.2.5 cannot be applied directly to it. Instead, we need to work with suitable
approximations.

Given r > 0, consider a countable family of disjoint open cubes fQjg of sides r
such that [jQ j D R

n. We order this family so that

jQj \ Ej > jQjj
2

for any integer j D 1; : : : ;N;

jQj \ Ej < jQjj
2

for any integer j > N;

(3.10)

for some uniquely determined N 2 N. Notice that such N exists since E is bounded.
We then write

TE;r WD
N[
jD1

Qj; (3.11)

see Fig. 3.2.

Lemma 3.2.6 Let r > 0 and E � R
n be a bounded set with finite perimeter. Then,

k�E � �TE;rkL1.Rn/ 6 Cnr Per.E/;

with Cn as in Lemma 3.2.5.

Fig. 3.2 The grid made up of cubes of sides r, the set E (in light green) and the resulting set TE;r
(in dark green)
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Proof Consider a family f�"g of radially symmetric smooth convolution kernels,
and define u" WD �E � �". Clearly, u" 2 C1

c .R
n/ and u" ! �E in L1.Rn/,

as " ! 0C. Furthermore, by considerations analogous to the ones at the beginning
of Sect. 3.2, it is not hard to see that

Z
Rn

jru"j D sup

�
�
Z
Rn

ru" � X W X 2 C1c.R
nIRn/; jXj 6 1

�
:

Integrating by parts and exploiting well-known properties of the convolution
operator, we find that

�
Z
Rn

ru" � X D
Z
Rn

u" divX D
Z
Rn
.�E � �"/ divX

D
Z
Rn
�E.�" � divX/ D

Z
E

div.X � �"/:

Since jXj 6 1, it follows that jX � �"j 6 1. Therefore, by taking into account
Definition 3.2.1, we obtain

Z
Rn

jru"j 6 Per.E/: (3.12)

Recall now the partition (up to a set of measure zero) of R
n into the family of

cubes fQjg introduced earlier. Applying the Poincaré’s inequality of Lemma 3.2.5
to u" in each cube Qj, we get

Cnr
Z
Rn

jru"j D Cnr
X
j2N

Z
Qj

jru"j >
X
j2N

Z
Qj

ju" � .u"/Qj j: (3.13)

On the other hand, for any j 2 N,

lim
"!0C

Z
Qj

ju" � .u"/Qj j D
Z
Qj

j�E � .�E/Qj j D
Z
Qj

ˇ̌
ˇ̌�E � jQj \ Ej

jQjj
ˇ̌
ˇ̌

D jQj \ Ej jQ
jj � jQj \ Ej

jQjj C jQj n Ej jQ
j \ Ej
jQjj

D 2
jQj \ EjjQj n Ej

jQjj :

Using this in combination with (3.12) and (3.13), we obtain that

Cnr Per.E/ > 2
X
j2N

jQj \ EjjQj n Ej
jQjj :
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But then, recalling (3.10) and (3.11), we conclude that

Cnr Per.E/ >
NX
jD1

�
2

jQj \ Ej
jQjj

�
jQj n Ej C

C1X
jDNC1

�
2

jQj n Ej
jQjj

�
jQj \ Ej

>
NX
jD1

jQj n Ej C
C1X

jDNC1
jQj \ Ej D jTE;r n Ej C jE n TE;rj

D k�E � �TE;rkL1.Rn/;

which concludes the proof. ut
By virtue of Lemma 3.2.6, we see that TE;r converges to E in L1.Rn/, as r goes

to 0, with a rate that is controlled by Per.E/. Knowing this fact, we are now in
position to deal with the proof of Proposition 3.2.4. The main step is represented by
the next:

Lemma 3.2.7 Let C;R > 0 be fixed. Let fEkg be a sequence of sets such that

Ek � BR; (3.14)

and

Per.Ek/ 6 C;

for any k 2 N. Then, up to a subsequence, Ek converges in L1.Rn/ to a set E.
Notice that this result is slightly weaker than the one claimed by Proposition 3.2.4

(with � D R
n), since the Ek’s are supposed to be uniformly bounded sets.

Proof of Lemma 3.2.7 Consider the following class of sets

XR;C WD
n
F � BR W F is Borel; Per.F/ 6 C

o
;

and endow it with the metric defined by

d.E;F/ WD k�E � �FkL1.Rn/; for any E;F 2 XR;C:

Observe that the lemma will be proved if we show that the metric space .XR;C; d/ is
compact.

We first claim that

.XR;C; d/ is complete: (3.15)

Note that .XR;C; d/ may be seen as a subspace of L1.Rn/, via the identification of
a set E with its characteristic function �E. Therefore, it suffices to prove that X
is closed in L1.Rn/. To see this, let fFkg � XR;C be a sequence such that �Fk



3 Regularity Theory for Local and Nonlocal Minimal Surfaces 127

converges to some function f in L1.Rn/. Clearly f D �F for some set F � BR,
since a subsequence of f�Fkg converges to f a.e. in R

n. In addition, Proposition 3.2.3
implies that

Per.F/ 6 lim inf
k!C1 Per.Fk/ 6 C:

This proves that F 2 XR;C, hence XR;C is closed in L1.Rn/ and (3.15) follows.
We now claim that

.XR;C; d/ is totally bounded: (3.16)

To check (3.16), we need to show the existence of a finite "-net. That is, for any " >
0, we need to find a finite number of sets F1; : : : ;FN" , for some N" 2 N, such that,
for any F 2 XR;C,

d.F;Fi/ < "; for some i 2 f1; : : : ;N"g:

Fix " > 0 and set

r" WD "

2CCn
;

with Cn as in Lemma 3.2.5. Given any F 2 XR;C, we consider the set TF;r" introduced
in (3.11). By Lemma 3.2.6, we have that

d.F;TF;r"/ D k�F � �TF;r"kL1.Rn/ 6 Cnr" Per.F/ 6 CCnr" < ":

Since the cardinality of

n
TF;r" W F 2 XR;C

o
;

is finite (as a quick inspection of definition (3.11) reveals), we have found the
desired "-net and (3.16) follows.

In view of (3.15) and (3.16), we know that .XR;C; d/ is closed and totally
bounded. It is a standard fact in topology that this is in turn equivalent to the
compactness of .XR;C; d/. Hence, Lemma 3.2.7 holds true. ut

With the help of Lemma 3.2.7, we can now conclude this subsection by proving
the validity of our compactness statement in its full generality.

Proof of Proposition 3.2.4 We plan to obtain the result combining Lemma 3.2.7
with a suitable diagonal argument. To do this, consider first f�`g an exhaustion
of � made of open bounded sets with smooth boundaries, so that, in particular,
the perimeter of each set �` is finite. Moreover, we may assume without loss of
generality that �` � B`.
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For any ` 2 N, we define

E`k WD Ek \�`:

For any fixed `, it holds E`k � �` � B` for any k 2 N. In particular, E`k
satisfies (3.14) with R D `. Moreover, using (3.7), it is not hard to check that

Per.E`k/ 6 Per.EkI�`/C Per.�`/ 6 Per.EkI�/C Per.�`/ 6 C`;

for some constant C` > 0 independent of k.
In light of these facts, the sequence fE`kgk2N satisfies the hypotheses of

Lemma 3.2.7. Hence, we infer that, for any fixed `, there exists a diverging
sequence K` D f'`. j/gj2N of natural numbers such that E`

'`. j/
converges in L1.Rn/

to a set E` � �`, as j ! C1. By a diagonal argument we can suppose
that Km � K` if ` 6 m. Furthermore, it is easy to see that Em \ �` D E`,
if ` 6 m. We then define

E WD
[
`2N

E`;

and notice that E \�` D E` for any `. Set k` WD '`.`/, for any ` 2 N. Clearly, fk`g
is a subsequence of each Km, up to a finite number of indices `. Hence, for any
fixed m 2 N, we have

lim
`!C1 k�Ek`

� �EkL1.�m/ D lim
`!C1 k�Em

k`
� �EmkL1.Rn/

D lim
j!C1 k�Em

'm. j/
� �EmkL1.Rn/

D 0:

This proves that Ek` ! E in L1loc.�/ as ` ! C1, completing the proof. ut

3.3 Existence of Minimal Surfaces

With the help of the lower semicontinuity of the perimeter and the compactness
property established in the previous section, we can now easily prove the existence
of a solution to the minimization problem (3.6).

Theorem 3.3.1 Let F be a set with finite perimeter inside B2. Then, there exists a
set E of finite perimeter inside B2 such that E n B1 D F n B1 and

Per.EIB2/ 6 Per.E0IB2/

for any set E0 such that E0 n B1 D F n B1.
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Proof Our argument is based on the direct method of the calculus of variations. Set

˛ WD inf
n
P.E0IB2/ W E0 n B1 D F n B1

o
: (3.17)

Note that ˛ is finite since ˛ 6 P.FIB2/.
Take a sequence fEkg of sets of finite perimeter such that Ek n B1 D F n B1 for

any k 2 N and

lim
k!C1 Per.EkIB2/ D ˛:

Clearly, we can assume without loss of generality that

Per.EkIB2/ 6 ˛ C 1 for any k 2 N:

Therefore, by Proposition 3.2.4, we conclude that there exists a subsequence Ekj

converging to a set E in L1loc.B2/, as j ! C1. Consequently, Proposition 3.2.3
yields

Per.EIB2/ 6 lim
j!C1 Per.Ekj IB2/ D ˛:

Since E nB1 D limj!C1 Ekj nB1 D F nB1, the set E is admissible in (3.17) and we
conclude that

Per.EIB2/ D ˛:

The set E is thus the desired minimizer. ut
In the following sections, our goal will be to show that the minimizers just

obtained are more than just sets with finite perimeter. That is, we will develop an
appropriate regularity theory for minimal surfaces. However, to do that, we first
need to describe some important facts about sets of finite perimeter.

3.4 Fine Properties of Sets of Finite Perimeter

In this section, we introduce a different concept of boundary for sets of finite
perimeter: the reduced boundary. As we shall see, up to a “small” component,
this new boundary is always contained in a collection of .n � 1/-dimensional
hypersurfaces of class C1. Moreover, through this definition, one can compute the
perimeter of a set in a more direct way via the Hausdorff measure.

We begin by recalling the definition of Hausdorff measure.
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Fig. 3.3 The spiral-like set E
is covered by the
ball E1 D Bı=2. If ı is
comparable to the diameter
of E, the covering consisting
only of the set E1 cannot
capture the geometry of E

3.4.1 Hausdorff Measure

The aim is to define a 
-dimensional surface measure for general non-smooth
subsets of the space Rn.

Fix 
 > 0 and ı > 0. Given a set E, we cover it with a countable family of
sets fEkg having diameter smaller or equal than ı. Then, the quantity

X
k2N

.diam.Ek//



represents more or less a notion of 
-dimensional measure of E, provided we take ı
sufficiently small. Of course, if ı is not chosen small enough, we might lose the
geometry of the set E (see Fig. 3.3).

We give the following definition.

Definition 3.4.1 Let 
 > 0 and ı > 0. Given any E � R
n, we set

H

ı .E/ WD inf

�
!

X
k2N

�
diam.Ek/

2

�

W E �

[
k2N

Ek; diam.Ek/ 6 ı

�
;

where

!
 WD �


2

�.

2

C 1/
;

and � is Euler’s Gamma function. Then, we define the s-dimensional Hausdorff
measure of E by

H
 .E/ WD lim
ı!0C

H

ı .E/:
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The factor !
 is a normalization constant that makes the Hausdorff measure
consistent with the standard Lebesgue measure of Rn. In particular, !n is precisely
the volume of the n-dimensional unit ball.

It is immediate to check that the limit defining the Hausdorff measure H
 always
exists. Indeed, since H


ı is non-increasing in ı,

H
 .E/ D sup
ı>0

H

ı .E/:

Finally, it can be proved that, when k > 0 is an integer, Hk coincides with the
classical k-dimensional measure on smooth k-dimensional surfaces of Rn (see for
instance [20, Sects. 3.3.2 and 3.3.4.C] or [25, Chap. 11]).

3.4.2 De Giorgi’s Rectifiability Theorem

Having recalled the definition of Hausdorff measure, we may now present the main
result of this section, referring to [25, Chap. 15] for a proof.

Theorem 3.4.2 (De Giorgi’s Rectifiability Theorem) Let E be a set of finite
perimeter. Then, there exists a set @�E � @E, such that:

(i) we have

@�E �
[
i2N
†i [ N;

for a countable collection f†ig of .n � 1/-dimensional C1 hypersurfaces and
some set N with Hn�1.N/ D 0;

(ii) for any open set A, it holds

Per.EIA/ D Hn�1.@�E \ A/:

Notice that, thanks to (3.4.2), we have now an easier way to compute the
perimeter of any set.

The object @�E introduced in the above theorem is usually called reduced
boundary. Typically, it differs from the usual topological boundary, which may be
very rough for general Borel sets.

Example 3.4.3 Let fxkg be a sequence of points dense in R
n. For N 2 N, define

EN WD
N[

kD1
B2�k .xk/:
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Then,

Per.EN/ 6
NX

kD1
Per.B2�k / D cn

NX
kD1

2�k.n�1/ 6 Qcn;

for some dimensional constants cn; Qcn > 0. Since

EN ! E1 WD
C1[
kD1

B2�k.xk/ in L1.Rn/;

Proposition 3.2.3 implies that

Per.E1/ 6 Qcn;

that is E1 is a set of finite perimeter. On the other hand, the topological boundary
of E1 is very large: indeed, while

jE1j 6
C1X
kD1

jB2�k j < C1;

since E1 is dense in R
n we have NE1 D R

n, thus j@E1j D C1. Also, although it
does not follow immediately from the definition, it is possible to prove that

@�E1 �
C1[
ND1

@�EN �
C1[
kD1

@B2�k.xk/:

This example shows that the topological boundary may be a very bad notion in
the context of perimeters.

Luckily, this is not always the case for minimizers of the perimeter. In fact,
we will shortly prove partial regularity results (i.e., smoothness outside a lower
dimensional set) for the topological boundary of minimizers of the perimeter.

3.5 Regularity of Minimal Graphs

After the brief parenthesis of Sect. 3.4, we now focus on the regularity properties
enjoyed by the minimizers of problem (3.6), whose existence has been established
in Theorem 3.3.1.

We first restrict ourselves to minimal surfaces which can be written as graphs
with respect to one fixed direction.
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Consider the cylinder

C1 WD Bn�1
1 � R;

with

Bn�1
1 WD

n
.x0; 0/ 2 R

n�1 � R W jx0j < 1
o
:

Given g W @Bn�1
1 ! R, we denote by � � @C1 the graph of g.

The following result shows that minimizing the area among graphs is the same
as minimizing the area among all sets.

Lemma 3.5.1 Let† D graph.u/ for some u W NBn�1
1 ! R such that u D g on @Bn�1

1 .
Then,† is a minimal surface if and only if it satisfies

Hn�1.†/ 6 Hn�1.graph.v//;

for any v W NBn�1
1 ! R such that v D g on @Bn�1

1 .

Sketch of the Proof Clearly, we just need to show that if † is a minimizer among
graphs, then it also solves problem (3.1).

Let K be a convex set and denote with �K W Rn ! R
n the projection from R

n

ontoK. It is well-known that �K is 1-Lipschitz (see for instance [21, Lemma A.3.8]).
Hence, since distances (and therefore also areas) decrease under 1-Lipschitz maps,

Hn�1.�K.†
0// 6 Hn�1.†0/

(see for instance [21, Lemma A.7] applied with L D 1). By applying this with K D
C1, it follows that we can restrict ourselves to consider only competitors †0 which
are contained in C1.

We now show that the area decreases under vertical rearrangements. To explain
this concept, we describe it in a simple example. So, we suppose for simplicity
that n D 2 and †0 is as in Fig. 3.4, so that

†0 \ C1 D graph. f1/ [ graph. f2/ [ graph. f3/;

for some smooth functions fi W Œ�1; 1� ! R, i D 1; 2; 3. Then it holds.

H1.†0/ D
3X

iD1

Z 1

�1

q
1C . f 0

i /
2:

Consider now the function h WD f1 � f2 C f3. Note that h is geometrically obtained
as follows: given x 2 Œ�1; 1�, consider the vertical segment Ix WD fxg � Œ f2.x/; f3.x/�
and shift it vertically unit it touches fxg � .�1; f1.x/�. Then the set constructed in
this way coincides with the epigraph of h.
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Fig. 3.4 The curve †0, given by the union of the graphs of f1, f2 and f3

We note that, thanks to the numerical inequality

p
1C .a C b C c/2 6

p
1C a2 C

p
1C b2 C

p
1C c2 for any a; b; c > 0;

it follows that

H1.graph.h/\ C1/ D
Z 1

�1

q
1C . f 0

1 � f 0
2 C f 0

3/
2

6
Z 1

�1

q
1C �jf 0

1j C jf 0
2j C jf 0

3j
�2

6
3X

iD1

Z 1

�1

q
1C . f 0

i /
2

D H1.†0/:

In other words, the area decreases under vertical rearrangement.
We note that this procedure can be generalized to arbitrary dimension and to any

set E � C1, allowing us to construct a function hE W Bn�1
1 ! R whose epigraph

has boundary with less area than @E. However, to make this argument rigorous one
should notice that the function hE may jump at some points (see Fig. 3.5). Hence,
one needs to introduce the concept of BV functions and discuss the area of the
graph of such a function. Since this would be rather long and technical, we refer the
interested reader to [24, Chaps. 14–16]. ut

In view of the above result, we may limit ourselves to minimize area among
graphs, i.e., we may restrict to the problem

min

�Z
Bn�1
1

p
1C jruj2 W u D g on @Bn�1

1

�
: (3.18)
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Fig. 3.5 On the left is the original set E, while on the right is its vertical rearrangement, given as
the epigraph of the function hE . In gray are depicted the segments Ix (on the left), and their vertical
translations (on the right). As it is clear from the picture, the graph of hE may have jumps

Note that the existence of a solution to such problem is not trivial, as the functional
has linear growth at infinity, which may determine a lack of compactness since
the Sobolev space W1;1 is not weakly compact. We shall not discuss the existence
problem here and we refer to [24] for more details.

The following comparison principle is easily established.

Lemma 3.5.2 Suppose that g is bounded. Then, the solution u to the minimizing
problem (3.18) is bounded as well, and it holds

kukL1.Bn�1
1 / 6 kgkL1.@Bn�1

1 /:

Proof Let M WD kgkL1.@Bn�1
1 /. Then, uM WD .u ^ M/ _ �M D g on @Bn�1

1 . Also,

since 1 D p
1C jruMj 6

p
1C jruj inside fjuj > Mg,

Hn�1 .graph.uM// D
Z

f�M<u<Mg

p
1C jruj2 C jfjuj > Mgj

6
Z
Bn�1
1

p
1C jruj2

D Hn�1.graph.u//:

By the minimality of u, it follows that the above inequality is in fact an identity.
Hence, juj 6 M. ut

Starting from this, the regularity theory for minimal graphs can be briefly
described as follows. First of all, the well-known gradient estimate of Bombieri
et al. [6] ensures that minimizers are locally Lipschitz functions.

Theorem 3.5.3 Let u be a bounded solution to the minimizing problem (3.18).
Then, u is locally Lipschitz inside Bn�1

1 .
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Knowing that u is locally Lipschitz, we may differentiate the area functional
to infer more information on the smoothness of u. Fix ' 2 C1

c .B
n�1
1 /. By the

minimality of u, we have that

0 D d

d"

ˇ̌
ˇ̌
"D0

Z
Bn�1
1

p
1C jru C "r'j2:

From this, we deduce that

Z
Bn�1
1

rup
1C jruj2 � r' D 0 for any ' 2 C1

c .B
n�1
1 /;

which is the weak formulation of the Euler-Lagrange equation

div

� rup
1C jruj2

�
D 0: (3.19)

Write now F. p/ WD p
1C jpj2 for any p 2 R

n�1. Since DF.q/ D q=
p
1C jqj2, we

see that (3.19) may be read as

div .DF.ru// D 0:

By differentiating this equation with respect to the direction e`, we get1

div
�
D2F.ru/ � r.@`u/

� D 0;

for any ` D 1; : : : n � 1. Setting now A.x/ WD D2F.ru.x// and v WD @`u, the above
equation becomes

div .A.x/rv/ D 0:

Note that, because u is locally Lipschitz, given any ball Br.x/ � Bn�1
1 , there exists a

constant Lx;r such that jruj 6 Lx;r inside Br.x/. Hence, since

0 < �x;rIdn�1 6 D2F.q/ 6 ƒx;rIdn�1 for any jqj 6 Lx;r;

we deduce that

�x;rIdn�1 6 A. y/ D D2F.ru. y// 6 ƒx;rIdn�1 for any y 2 Br.x/:

1Of course, to make this rigorous one should first check that u 2 W2;2. This can be done in
a standard way, starting from Eq. (3.19) and exploiting the Lipschitz character of u to prove a
Caccioppoli inequality on the incremental quotients of ru.
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This proves that A is measurable and uniformly elliptic, therefore we may apply
the De Giorgi-Nash-Moser theory [13, 26, 27] and conclude that @`u D v 2 C0;˛loc , for
some ˛ 2 .0; 1/. Hence, u 2 C1;˛loc and consequently A D D2F.ru/ 2 C0;˛loc . Then, by
Schauder theory (see e.g. [23]), we get that v 2 C1;˛loc , i.e. u 2 C2;˛loc . Accordingly,A 2
C1;˛loc and we can keep iterating this procedure to show that u is of class C1. Actually,
by elliptic regularity, one can even prove that u is analytic. Hence, we obtain the
following result.

Theorem 3.5.4 Let u W NBn�1
1 ! R be a bounded solution to problem (3.18). Then u

is analytic inside Bn�1
1 .

We have therefore proved that minimal graphs are smooth. This is no longer true
for general minimal sets, as we will see in the next section.

3.6 Regularity of General Minimal Surfaces

We deal here with the regularity of minimal sets which are not necessarily graphs.
Let E be a minimal surface. By De Giorgi’s rectifiability theorem (Theo-

rem 3.4.2), we have the tools to work as if @E were already smooth (of course, there
are technicalities involved, but the philosophy is the same). Thus, for simplicity we
shall make computations are if @E were smooth, and we will prove estimates that
are independent of the smoothness of @E.

3.6.1 Density Estimates

In this subsection we show that, nearby boundary points, minimal sets occupy fat
portions of the space, at any scale. That is, we rule out the behavior displayed in
Fig. 3.6.

Lemma 3.6.1 There exists a dimensional constant c? > 0 such that

jBr.x/\ Ej > c?r
n and jBr.x/ n Ej > c?r

n; (3.20)

for any x 2 @E and any r > 0.

Proof First, recall the isoperimetric inequality: there is a dimensional constant cn >
0 such that

cn Per.F/ > jFj n�1
n ; (3.21)

for any bounded set F � R
n. One can show (3.21) via Sobolev inequality.

Indeed, let f'"g be a family of smooth convolution kernels and apply e.g. [19,
Sect. 5.6.1,Theorem 1] to the function �F � �", for any " > 0. Recalling also (3.12),
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Fig. 3.6 An example of a set E which cannot be area minimizing. In fact, the measure of E\Br.x/
is too small

Fig. 3.7 The set E\Br.x/ (in light green) and EnBr.x/ (in dark green). Then, one uses EnBr.x/ as
competitor in the minimality of E. The boundary of Br.x/\E is the union of the two sets @Br.x/\E
and @E \ Br.x/

we get

k�F � �"kL n
n�1 .Rn/

6 cnkr.�F � �"/kL1.Rn/ 6 cn Per.F/:

Inequality (3.21) follows by letting " ! 0C.
Let V.r/ WD jBr.x/\ Ej. By the minimality of E, we have that (see Fig. 3.7)

Hn�1.Br.x/ \ @E/ 6 Hn�1.@Br.x/ \ E/:
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Therefore, by this and (3.21), we obtain

V.r/
n�1
n 6 cn

Hn�1.Br.x/ \ @E/C Hn�1.@Br.x/ \ E/
�

6 2cnHn�1.@Br.x/ \ E/:
(3.22)

Using polar coordinates, we write

V.r/ D
Z r

0

Hn�1.@Bs.x/\ E/ ds:

Accordingly,

V 0.r/ D Hn�1.@Br.x/\ E/;

and hence, by (3.22), we are led to the differential inequality

V.r/
n�1
n 6 2cnV

0.r/:

By this, we find that

�
V

1
n .r/

	0 D 1

n

V 0.r/
V

n�1
n .r/

> 1

2ncn
;

and thus, since V.0/ D 0, we conclude that

V
1
n .r/ > r

2ncn
:

This is equivalent to the first estimate in (3.20). The second one is readily obtained
by applying the former to R

n n E (note that if E is minimal, so is Rn n E). ut
An immediate corollary of the density estimates of Lemma 3.6.1 is given by the

following result.

Corollary 3.6.2 Let fEkg be a sequence of minimal surfaces, converging in L1loc to
another minimal surface E. Then Ek converges to E in L1

loc.
Notice that convergence in L1

loc means that the boundaries of Ek and E are
(locally) uniformly close.

Proof of Corollary 3.6.2 Fix a compact set K � R
n. We need to prove that, for

any " > 0, there exists N 2 N such that

K \ @Ek �
n
x 2 K W dist.x; @E/ < "

o
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and

K \ @E �
n
x 2 K W dist.x; @Ek/ < "

o

for any k > N. We just prove the first inclusion, the proof of the second one being
analogous.

We argue by contradiction, and suppose that there exist a diverging sequence fkjg
of integers and a sequence of points fxjg � K such that xj 2 @Ekj and dist.xj; @E/ >
", for any j 2 N. Up to a subsequence, fxjg converges to a point Nx 2 K.
Clearly, dist.x; @E/ > " and thus, in particular,

either B"=2.x/ � VE or B"=2.x/ � R
n n NE:

Suppose without loss of generality that the latter possibility occurs, i.e., that

B"=2.x/ � R
n n NE:

By this, Lemma 3.6.1, and the L1loc convergence of the Ek’s, we get

c?
� "
2

	n
6 lim

j!C1 jB"=2.xj/ \ Ekj j D lim
j!C1

Z
B"=2.xj/

�Ekj
D
Z
B"=2.x/

�E D 0;

which is a contradiction. The proof is therefore complete. ut
The regularity theory in this case does not proceed as the one for minimal graphs

(see Sect. 3.5). In fact, we need a more refined strategy.

3.6.2 "-Regularity Theory

The aim of this subsection is to prove the following deep result, due to De Giorgi
[14].

Theorem 3.6.3 There exists a dimensional constant " > 0 such that, if

@E \ Br � fjxnj 6 "rg

for some radius r > 0 and 0 2 @E, then

@E \ Br=2 is a C
1;˛graph

for some ˛ 2 .0; 1/.
Theorem 3.6.3 ensures that, if a minimal surface is sufficiently flat in one given

direction, then it is a C1;˛ graph. The proof presented here is based on several ideas
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contained in the work [28] by Savin. The key step is represented by the following
lemma.

Lemma 3.6.4 Let � 2 .0; 1/. There exist 	; � 2 .0; 1/ and "0 > 0 such that, if

@E \ B1 � fjxnj 6 "g ;

for some " 2 .0; "0/, and 0 2 @E, then

@E \ B� � fjx � ej 6 	�"g ;

for some unit vector e 2 S
n�1.

Lemma 3.6.4 yields a so-called improvement of flatness for the minimal sur-
face @E. Indeed, it tells that, shrinking from the ball B1 to the smaller B�, the
oscillation of @E around some hyperplane is dumped by a factor 	 smaller than 1,
possibly changing the direction of the hyperplane under consideration. Of course,
even if @E is a smooth surface, its normal at the origin may not be en. Hence, we
really need to tilt our reference frame in some new direction e 2 S

n�1 in order to
capture the C1;˛ behavior of @E at the origin.

We now suppose the validity of Lemma 3.6.4 and show how Theorem 3.6.3 can
be deduced from it.

Sketch of the Proof of Theorem 3.6.3 First of all, we only consider the case of rD 1,
as one can replace E with r�1E. To this regard, observe that the minimality of a set
is preserved under dilations.

We then suppose for simplicity that the rotation that sends en to e may be avoided
in Lemma 3.6.4. That is, we assume that we can prove that

@E \ B1 � fjxnj 6 "g implies @E \ B� � fjxnj 6 	�"g ; (3.23)

provided that " 6 "0. As pointed out before, this clearly cannot be true. Never-
theless, we argue supposing the validity of (3.23), since the general case may be
obtained using the same ideas and only slightly more care.

Thanks to the hypothesis of the theorem, we may apply (3.23) and deduce that

@E \ B� � fjxnj 6 	�"g :

Consider now the rescaled set E1 WD ��1E. The previous inclusion can be read as

@E1 \ B1 � fjxnj 6 	"g :

Since �" 6 " 6 "0, we can apply (3.23) to E1 WD ��1E, and we get

@E1 \ B� � ˚jxnj 6 	2�"
�
:
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Getting back to E, this becomes

@E \ B�2 � ˚jxnj 6 	2�2"
�
:

By iterating this procedure, we find that, for any k 2 N,

@E \ B�k � ˚jxnj 6 	k�k"
� D ˚jxnj 6 �.1C˛/k"

�
; (3.24)

where ˛ > 0 is chosen so that �˛ D 	. Now, given s 2 .0; 1/, there exists k 2 N

such that �k 6 s 6 �k�1. Hence

@E \ Bs � @E \ B�k�1 � ˚jxnj 6 �.1C˛/.k�1/"
�

D ˚jxnj 6 ��.1C˛/�.1C˛/k"
� � ˚jxnj 6 ��.1C˛/s1C˛"

�

Thus, we deduce that

@E \ Bs � ˚jxnj 6 C"s1C˛
�
;

for any s 2 .0; 1�, where C WD ��.1C˛/.
As mentioned above, this estimate is obtained forgetting about the fact that one

needs to tilt the system of coordinates. If one takes into account such tilting, instead
of (3.24) one would obtain an inclusion of the type

@E \ B�k � ˚jx � ekj 6 �.1C˛/k"
�
;

for some sequence fekg � S
n�1. However, at each step the inner product ekC1 � ek

cannot be too far from 1 (see Fig. 3.8). By obtaining a quantification of this defect,

Fig. 3.8 The boundary of a minimal set E may be trapped in slabs of different orientations inside
balls of different radii. However, the discrepancy between these orientations cannot be too large



3 Regularity Theory for Local and Nonlocal Minimal Surfaces 143

one can show that the tiltings fekg converge at some geometric rate to some unit
vector e0. Hence, the correct bound is

@E \ Bs � ˚jx � e0j 6 C"s1C˛
�

for any s 2 .0; 1�, for some e0 2 S
n�1:

(3.25)

Let now z be any point in B1=2 \ @E. As B1=2.z/ � B1, we clearly have that

@E \ B1=2.z/ � fjxnj 6 "g :

Assume that " 6 "0=2. Then the set Ez WD 2.E � z/ satisfies

@Ez \ B1 � fjxnj 6 2"g :

This allows us to repeat the argument above with Ez in place of E and conclude that

@E \ Bs.z/ � ˚j.x � z/ � ezj 6 2C"s1C˛
�

for some ez 2 S
n�1;

for any z 2 B1=2\@E and any s 2 .0; 1=2/:With this in hand, one can then conclude
that @E is a C1;˛ graph. ut

In order to finish the proof of the "-regularity theorem, we are therefore only
left to show the validity of Lemma 3.6.4. We do this in the remaining part of the
subsection.

To prove Lemma 3.6.4 we argue by contradiction and suppose that, given two
real numbers �; 	 2 .0; 1/ to be fixed later, there exist an infinitesimal sequence f"kg
of positive real numbers and a sequence of minimizers fEkg for which 0 2 @Ek,

@Ek \ B1 � fjxnj 6 "kg ;

but

@Ek \ B� 6� fjx � ej 6 	�"kg for any e 2 S
n�1: (3.26)

Consider the changes of coordinates‰k W Rn ! R
n given by

‰k.x
0; xn/ WD

�
x0;

xn
"k

�
;

and define QEk WD ‰k.Ek/. Observe that the new sets QEk are not minimizers, as
stretching in one variable does not preserve minimality. However, thanks to the
following result, the surfaces QEk are precompact:

Lemma 3.6.5 (Savin [28]) Up to a subsequence, the surfaces f@ QEkg converge
in L1

loc to the graph of some function u.
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What can we say about u? Let us deal with the easier case in which the original
boundaries @Ek are already the graphs of some functions uk. This is of course not
always the case, but the Lipschitz approximation theorem for minimal surfaces (see
for instance [25, Theorem 23.7]) tells that a flat minimal surface is a Lipschitz graph
at many points (the measure of the points being more and more as the surface gets
flatter and flatter).

Under this assumption, we have that @ QEk D graph.Quk/, with Quk WD "�1
k uk.

Observe that jQukj 6 1, since @ QEk \ B1 � fjxnj 6 1g. In view of the minimality
of @Ek, we compute

0 D 1

"k
div

 
rukp

1C jrukj2

!
D div

0
B@ r Qukq

1C "2k jr Qukj2

1
CA :

Assuming that jr Qukj is bounded, by taking the limit as k ! C1 in the above
expression, we find that u solves

(
�u D 0 in Bn�1

1

kukL1.Bn�1
1 / 6 1:

(3.27)

(In order to rigorously obtain the claimed equation for u, one needs to use the
concept of viscosity solutions that we shall not discuss here. We refer to [9, 28]
for more details.)

From (3.27), it follows by regularity theory for harmonic functions
that kukC2.B3=4/ 6 NCn, for some dimensional constant NCn > 0. Therefore,

ju.x0/� u.0/� ru.0/ � x0j 6 NCn�
2 for any x0 2 Bn�1

2� :

Taking � 6 	=.4 NCn/ and observing that u.0/ D 0, this becomes

ju.x0/� ru.0/ � x0j 6 	�

2
for any x0 2 Bn�1

2� :

As @ QEk converges uniformly to graph.u/ in L1
loc, the above estimate implies that

@ QEk \
�
Bn�1
� � R

	
� fjx � Qvj 6 	�g ; with Qv WD .�ru.0/; 1/;

for k  1. Dilating back we easily obtain

@Ek \ B� � fjx � Qekj 6 	�"kg with Qek WD .�"kru.0/; 1/q
1C "2kjru.0/j2

2 S
n�1;

in contradiction with (3.26).
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We have therefore proved Theorem 3.6.3 in its entirety (up to the compactness
result in Lemma 3.6.5, and some small technical details). By this result, we know
that if a minimal surface is sufficiently flat around a point, then it is locally the graph
of a C1;˛ function. Note that, by the regularity theory discussed in Sect. 3.5, such a
function will actually be analytic.

In order to proceed further in the understanding of the regularity theory, the next
question becomes: at how many points minimal surfaces are flat?

An answer to this question is provided via the so-called blow-up procedure.

3.6.3 Blow-Up Technique

The idea is to look at points of @E from closer and closer. More precisely, for a
fixed x 2 @E, we define the family of minimal surfaces fEx;rg as

Ex;r WD E � x

r
; (3.28)

for any r > 0. By taking the limit as r ! 0C of such close-ups, one reduces to
problem of counting flat points to that of classifying limits of blow-ups.

In order to rigorously describe the above anticipated blow-up procedure, we first
need some preliminary results.

We recall that a set C is said to be a cone with respect to a point x if

y 2 C implies that �. y � x/ 2 C � x for any � > 0:

Theorem 3.6.6 (Monotonicity Formula) The function

‰E.r/ WD Hn�1.@E \ Br.x//

rn�1 ;

is monotone non-decreasing in r.

Proof Let †r be the cone centered at x and such that

†r \ @Br.x/ D @E \ @Br.x/: (3.29)

Set f .r/ WD Hn�1.@E \ Br.x//. By minimality,

f .r/ 6 Hn�1.†r \ Br.x//:
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Using polar coordinates, the fact that †r is a cone, and again (3.29), we compute

Hn�1.†r \ Br.x// D
Z r

0

Hn�2.†r \ @Bs.x// ds

D Hn�2.†r \ @Br.x//

rn�2

Z r

0

sn�2 ds

D rHn�2.@E \ @Br.x//

n � 1 :

As Hn�2.@E \ @Br.x// D f 0.r/, we conclude that

f .r/ 6 r

n � 1
f 0.r/:

This in turn implies that

‰0
E.r/ D

�
f .r/

rn�1

�0
D rf 0.r/ � .n � 1/f .r/

rn
> 0;

and the monotonicity follows. ut
By a more careful inspection of the proof, one can show that ‰E is constant if

and only if E is a cone with respect to the point x.

Proposition 3.6.7 There exists an infinitesimal sequence frjg of positive real num-
bers such that fEx;rjg converges to a set F in L1loc.R

n/, as j ! C1. Furthermore,

(i) @F is a minimal surface;
(ii) F is a cone.

Sketch of the Proof By scaling and Theorem 3.6.6, given R > 0, for any r 2
.0; 1=R� we estimate

Per.Ex;rIBR/ D Hn�1.@Ex;r\BR/ D Hn�1.@E \ BrR.x//

rn�1 6 Rn�1Hn�1.@E\B1.x//:

This proves that the perimeter of @Ex;r in BR is uniformly bounded for all r 2
.0; 1=R�. Accordingly, by Proposition 3.2.4 the family fEx;rg is compact in L1loc.BR/.
Since this is true for any R > 0, a diagonal argument yields the existence of an
infinitesimal sequence frjg such that

Ex;rj �! F in L1loc.R
n/;

for some set F � R
n. Since the sets Ex;r are minimal, exploiting the lower

semicontinuity of the perimeter (see Proposition 3.2.3) it is not difficult to show
that @F is a minimal surface and that Hn�1.@Ex;rj \ Bs/ ! Hn�1.@F \ Bs/ for a.e. s
(see, for instance, [24, Lemma 9.1]).
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We now prove that F is a cone. For any s > 0, we have

‰F.s/ D Hn�1.@F \ Bs/

sn�1 D lim
j!C1

Hn�1.@Ex;rj \ Bs/

sn�1

D lim
j!C1

Hn�1.@E \ Brjs.x//

.rjs/n�1 D lim
�!0C

Hn�1.@E \ B�.x//

�n�1 :

Thus, ‰F.s/ is constant, which implies that F is a cone. ut
We have thus established that the blow-up sequence (3.28) converges to a mini-

mal cone. Notice now that halfspaces are particular examples of cones. Also, if F is
a halfspace and Ex;r is close to F in L1loc (and hence in L1

loc, see Corollary 3.6.2),
then @Ex;r becomes flatter and flatter as r ! 0C. In particular, we may apply
Theorem 3.6.3 to Ex;r for some r sufficiently small to deduce the smoothness of @E
around x. Hence, the goal now is to understand whether minimal cones are always
halfplanes or not. The desired classification result is given by the following theorem.

Theorem 3.6.8 If n 6 7, all minimal cones are halfplanes. If n > 8, then there exist
minimal cones which are not halfplanes.

Theorem 3.6.8 has been obtained by De Giorgi [15] for n D 3, by Almgren [2]
for n D 4 and, finally, by Simons [30] in any dimension n 6 7. The counterexample
in dimension n D 8 is given by the so-called Simons cone

C WD f.x; y/ 2 R
4 � R

4 W jxj < jyjg:

Simons conjectured in [30] that the above set was a minimal cone in dimension 8,
and this was proved by Bombieri et al. [5].

Notice that the case n D 2 of Theorem 3.6.8 is trivial. Indeed, the cone on the
left of Fig. 3.9 cannot be minimal, as the competitor showed on the right has less
perimeter (by the triangle inequality).

In conclusion, the discussion above shows that minimal surfaces are smooth up
to dimension 7. Although in higher dimension minimal surfaces may develop a
singular set S, an argument due to Federer (called “Federer reduction argument”)

Fig. 3.9 The cone on the left is not minimal, since the perturbation on the right has lower perimeter
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allows one to exploit the absence of singular minimal cones in dimension 7 to give
a bound on dimension of S. We can summarize this in the following result (see [24,
Chap. 11] or [25, Chap. 28] for more details):

Corollary 3.6.9 Let E � R
n be minimal. We have:

(i) if n 6 7, then @E is analytic;
(ii) if n > 8, then there exists S � @E such that S is closed, @E n S is analytic,

andH
 .S/ D 0 for any 
 > n � 8.

3.7 Nonlocal Minimal Surfaces

In this last section, we consider a different nonlocal notion of area, introduced
by Caffarelli et al. in [9]. After briefly motivating its definition, we discuss which
of the results and approaches described up to now can be carried over to this new
setting.

To begin with, we should ask ourselves why we study perimeters. Of course,
perimeters model surface tension, as for example in soap bubbles. Moreover,
perimeters naturally arise in phase transition problems. Suppose that we have
two different media (e.g. water and ice, or water and oil) that are put together
in the same container. Of course, the system pays an energy for having an
interface between them. Since nature tends to minimize such an energy, interfaces
must be (almost) minimal surfaces (e.g. spheres of oil in water, planar regions,
etc.).

Hence, perimeters are useful for interpreting in simple ways several complex
events that take place in our world. In general, perimeters give good local
descriptions of intrinsically nonlocal phenomena. We now address the problem
of establishing a truly nonlocal energy that may hopefully better model the physical
situation.

Let E be a subset of Rn, representing the region occupied by some substance.
In order to obtain an energy that incorporates the full interplay between E and its
complement—that we think to be filled with a different composite—we suppose
that each point x of E interacts with each point y of Rn n E. Of course, we need
to weigh this interaction, so that closer points interact more strongly than farther
ones. Moreover, E must not interact with itself, and similarly for its complement.
Finally, because the regularity theory only depends on the interaction for extremely
close-by points, it is natural to consider energies that have some scaling invariance.
In the end, one comes up with the following notion of a fractional perimeter
of E:

Pers.E/ WD
Z
Rn

Z
Rn

j�E.x/ � �E. y/j
jx � yjnCs

dx dy D 2

Z
E

Z
RnnE

dx dy

jx � yjnCs
;
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for any fixed s 2 .0; 1/. Notice that, since we chose a homogeneous weight,
rescalings of minimal surfaces are still minimal, as for the standard perimeter. But
why did we restrict to the above range for the power s?

To answer this question, we first need to define a preliminary restricted version
of the fractional perimeter. Consider the quantity

PerB1s .E/ WD
Z
B1

Z
B1

j�E.x/� �E. y/j
jx � yjnCs

dx dy: (3.30)

Observe that PerB1s .E/ sums up all the interactions between E and its complement
that occur inside B1. If we take s < 0, then

PerB1s .E/ 6 2

Z
B1

Z
B1

dx dy

jx � yjnCs
6 Cn

Z 2

0

d�

�1Cs
< C1;

that is, PerB1s .E/ is always finite, no matter how rough the boundary of E is. Hence,
this would lead to a too weak notion of perimeter.

On the other hand, suppose that s > 1. Then, if we take as E the upper halfspace
fxn > 0g, a simple computation reveals that

PerB1s .E/ D 2

Z
B1\fxn>0g

Z
B1\fxn<0g

dx dy

jx � yjnCs

> 2

Z p

2
2

0

Z 0

�
p

2
2

Z
Bn�1

p

2
2

Z
Bn�1

p

2
2

dx0 dy0 dxn dyn
Œjx0 � y0j2 C .xn � yn/2�

nCs
2

> cn

Z p

2
4

0

dt

t1Cs
D C1:

Thus, halfspaces have infinite s-perimeter in the ball B1 if s > 1. As halfspaces
represents the simplest examples of surfaces, this is clearly something we do
not want to allow for. Consequently, we restrict ourselves to consider weights
corresponding to s 2 .0; 1/.2

It can be easily seen that Pers.E/ D C1 if E is a halfspace, even for s 2 .0; 1/.
This is due to the fact that Pers takes into account also interactions coming from
infinity (actually this happens also in the case of classical perimeters, as the
perimeter of a halfspace in the whole Rn is not finite). Therefore, we need to restrict
our definition (3.30) to bounded containers.

2Although the choice s D 0 is in principle admissible for the restricted perimeter PerB1s , we discard
it anyway. In fact, it determines a weight with too fat tails at infinity, which would not be suitable
for the full fractional perimeter Pers.
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Fix an open set �, and prescribe E outside ˝ , i.e., suppose that E n˝ D F n˝
for some given set F. Then,

Pers.E/ D
Z
�

Z
˝

j�E.x/� �E. y/j
jx � yjnCs

dx dy C 2

Z
˝

�Z
Rnn˝

j�E.x/ � �E. y/j
jx � yjnCs

dy

�
dx

C
Z
Rnn�

Z
Rnn˝

j�E.x/ � �E. y/j
jx � yjnCs

dx dy

D
Z
�

Z
�

j�E.x/� �E. y/j
jx � yjnCs

dx dy C 2

Z
�

�Z
Rnn˝

j�E.x/ � �E. y/j
jx � yjnCs

dy

�
dx

C
Z
Rnn�

Z
Rnn˝

j�F.x/� �F. y/j
jx � yjnCs

dx dy:

Notice that the last integral only sees outside of B1 and is hence independent of E
once the boundary datum F is fixed. Thus, when minimizing Pers.E/, it is enough
to restrict ourselves to the two other terms. Thus, given a bounded open set �, we
define

Pers.EI�/ WD
Z
�

Z
˝

j�E.x/ � �E. y/j
jx � yjnCs

dx dy C 2

Z
˝

Z
Rnn˝

j�E.x/� �E. y/j
jx � �yjnCs

dx dy:

(3.31)

One can check that, with this definition, halfspaces have finite s-perimeters inside
any bounded set �.

Accordingly, we have the following notion of minimal surface for Pers.

Definition 3.7.1 (Caffarelli et al. [9]) Given a bounded open set �, a measurable
set E � R

n is said to be a nonlocal s-minimal surface inside � if

Pers.EI�/ 6 Pers.E0I�/

for any measurable E0 such that E0 n� D E n�.
In the following subsections, we proceed to investigate some important properties

shared by nonlocal minimal surfaces.

3.7.1 Existence of s-Minimal Surfaces

We begin by showing the existence of s-minimal surfaces. Assuming for simplicity
that � D B1, we have the following result.

Theorem 3.7.2 Let F be a set with locally finite s-perimeter. Then, there exists a s-
minimal surface E in B1 with E n B1 D F n B1.
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As in Sect. 3.3, the proof of the existence of minimal surfaces is based on the
semicontinuity of Pers and on a compactness result similar to Proposition 3.2.4.
The lower semicontinuity of Pers in L1loc can be easily established right from
definition (3.31), using for instance Fatou’s lemma. On the other hand, the needed
compactness statement amounts to show that

Pers.EkIB1/ 6 C implies that fEkg is precompact in L1.B1/: (3.32)

To check this fact, we first notice that

Pers.FIB1/ >
Z
B1

Z
B1

j�F.x/� �F. y/j
jx � yjnCs

dx dy

D
Z
B1

Z
B1

j�F.x/ � �F. y/j2
jx � yjnCs

dx dy

D Œ�F �
2
Hs=2.B1/

;

where Œ � �Hs=2 denotes the Gagliardo seminorm of the fractional Sobolev space Hs=2.
By the compact fractional Sobolev embedding (see e.g. [16, Theorem 7.1]), the
uniform boundedness of f�Ekg in Hs=2.B1/ implies that, up to a subsequence, it
converges in L1.B1/ to �F , for some measurable set F. Hence, (3.32) is true.

3.7.2 Euler-Lagrange Equation

Suppose that E is a nonlocal minimal surface in B1 and let fE"g be a continuous
family of perturbations of E, with E" n B1 D E n B1 for any ". From the minimality
of E, we have that

0 D d

d"

ˇ̌
ˇ̌
"D0

Pers.E"IB1/:

Eventually, we are led to the equation

Z
Rn

�E. y/� �RnnE. y/
jx � yjnCs

dy D 0 for any x 2 @E \ B1 (3.33)

(see [9, Sect. 5]). Heuristically, this means that

Z
E

dy

jx � yjnCs
D
Z
RnnE

dy

jx � yjnCs
;

at any point x 2 @E \ B1. In other words, each point x 2 @E interacts in the same
way both with E and with R

n nE. However, the above identity cannot be interpret in
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a rigorous way, as both integrals do not converge. Hence, (3.33) must be understood
in the principal value sense, that is

0 D P.V.
Z
Rn

�E. y/� �RnnE. y/
jx � yjnCs

dy D lim
ı!0C

Z
RnnBı .x/

�E. y/� �RnnE. y/
jx � yjnCs

dy:

When E is the (global) subgraph of a function u W Rn�1 ! R, this can be written
as a nonlocal equation for u: more precisely, if we assume that u is small enough so
that we neglect nonlinear terms, we find that

0 D IŒu�.x/ ' .��/1Cs
2 u.x/ D P.V.

Z
Rn�1

u.x/� u. y/

jx � yj.n�1/C.1Cs/
dy;

where I denotes a suitable integral operator (cp. [9, Lemma 6.11] and [4, Sect. 3]).
The fact that IŒu� is close to the fractional Laplacian of order 1Cs

2
when the Lipschitz

norm of u is small should be compared with the classical mean curvature operator
appearing in (3.19), which is close to the classical Laplacian when ru is small.

3.7.3 s-Minimal Graphs

As we did before, we begin by addressing the problem of obtaining regularity results
for minimal surfaces in the case when they are (locally) the graph of a function u.
So, we consider a s-minimal surface E in the infinite cylinder C1 D Bn�1

1 � R such
that

E \ C1 D
n
.x0; xn/ 2 C1 W xn < u.x0/

o
; (3.34)

for some function u W Bn�1
1 ! R, with u.0/ D 0.

In Sect. 3.5, we saw that bounded classical minimal graphs are smooth functions.
The first step in the proof of this result was the gradient estimate of [6], which
established their Lipschitz character. From this, additional regularity then followed
by the De Giorgi-Nash-Moser and Schauder theories.

In the nonlocal setting, we are still missing the initial step of this argument. In
fact, we can propose the following open problem.

Open Problem Suppose that u is bounded. What can be said of the regularity of u
in the ball Bn�1

1=2 ? Is it locally Lipschitz?
When u is already Lipschitz, then its smoothness follows. This is achieved in two

essential steps. First, we have:

Theorem 3.7.3 (Figalli-Valdinoci [22]) If u is Lipschitz, then u is C1;˛ for
any ˛ < s.

Then, the following Schauder-type result allows one to conclude:



3 Regularity Theory for Local and Nonlocal Minimal Surfaces 153

Theorem 3.7.4 (Barrios et al. [4]) If u is C1;˛ for some ˛ > s=2, then u is C1.
At the moment it is not known whether smooth s-minimal graphs are actually
analytic. The results in [1] show that they enjoy some Gevrey regularity.

We conclude the subsection by observing that s-minimal surfaces with graph
properties as (3.34) indeed exist, for instance when their boundary data are graphs
too.

Theorem 3.7.5 (Dipierro et al. [18]) Suppose that E is a s-minimal surface in C1
such that

E n C1 D
n
.x0; xn/ 2 .Rn n Bn�1

1 / � R W xn < v.x0/
o
;

for some bounded, continuous function v W Rn�1 ! R. Then, (3.34) holds true for
some continuous function u W NBn�1

1 ! R.

3.7.4 Regularity of General s-Minimal Sets

The regularity theory for nonlocal minimal surfaces established in [9] follows an
analogous strategy to that outlined in Sect. 3.6.

The density estimates follow via the same argument of the proof of Lemma 3.6.1,
using the fractional Sobolev inequality in place of the isoperimetric inequality (see
[9, Sect. 4]).

The "-regularity theory is also similar [9, Sect. 6], but we need to check what
happens with the behavior at infinity of the s-minimal surface. The key step is
represented by the following improvement of flatness result.

Lemma 3.7.6 Let E be a s-minimal surface in B1. For any fixed ˛ 2 .0; s/, there
exists k0 2 N such that if

@E \ B2�k � ˚jx � ekj 6 2�k.1C˛/� ;
for some unit vector ek 2 S

n�1 and for any k D 0; : : : ; k0, then

@E \ B2�k0�1 � ˚jx � ek0C1j 6 2�.k0C1/.1C˛/� ;
for some ek0C1 2 S

n�1.
Lemma 3.7.6 tells that if @E is sufficiently flat for a sufficiently large number of

geometric scales, then it is flatter and flatter at all smaller scales. Compare this with
Lemma 3.6.4: in the local case it was sufficient to check the flatness of the boundary
of E at only one scale to deduce its improvement at smaller scales.

We can rephrase the above statement by rescaling everything by a factor 2k0 (in
other words, replacing E by 2k0E). Lemma 3.7.6 is then equivalent to prove that

@E \ B2 j � ˚jx � ejj 6 ".2j/1C˛
�
;
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for any j D 0; : : : ; k0 and with " D 2�k0˛, implies that

@E \ B1=2 � ˚jx � Nej 6 "2�1�˛� :
From this formulation, the role played by the nonlocality of Pers is even more
evident: to obtain information inside the ball B1=2 we need to have it already in B2k0 ,
with k0 sufficiently large.

To prove the improvement of flatness that we just stated, we argue by contradic-
tion. As in Sect. 3.6.2, we pick two sequences of s-minimal surfaces Em and positive
real numbers "m, with "m ! 0. We suppose that each Em violates the implication
above, with " D "m and k0 D j log "mj=.˛ log 2/. It can be shown that suitable
rescalings of the sets Em (analogue to the rescaling in Sect. 3.6.2) converge to the
graph of a function u that satisfies

8<
:
.��/1Cs

2 u D 0 in R
n�1

ju.x/j 6 C
�
1C jxj1C˛� for any x 2 R

n�1;
(3.35)

for some C > 0. The conclusive step of the proof of Lemma 3.7.6 is then provided
by the next general Liouville-type result.

Lemma 3.7.7 Suppose that u satisfies (3.35) for some ˛ 2 .0; s/ and s 2 .0; 1�.
Then, u is affine.

Sketch of the Proof We include the proof of the lemma in the classical case s D
1. The argument for the fractional powers of the Laplacian is analogous (see [9,
Proposition 6.7]).

Fix R > 1 and set uR.x/ WD R�1�˛u.Rx/. Clearly,�uR D 0 and kuRkL1.B1/ 6 C.
Consequently, by elliptic regularity, we have that kD2uRkL1.B1=2/ 6 CnC. But

D2uR.x/ D R1�˛D2u.Rx/;

and therefore we get that

kD2ukL1.BR=2/ 6 CnC

R1�˛
:

The result follows by letting R ! C1. ut
In view of the "-regularity theory outlined above, we know that flat s-minimal

surfaces are smooth.
The next step is then to use blow-ups in order to understand at how many

points a nonlocal minimal surface is flat. To this aim, we first need an appropriate
monotonicity formula, as in Theorem 3.6.6. Instead of working with the nonlocal
perimeter Pers as defined in (3.30), we consider a slightly different energy coming
from the so-called extension problem (see [7, 9]).
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Let RnC1
C denote the upper halfspace f.x; y/ 2 R

n�R W y > 0g and u W NRnC1
C ! R

be the unique solution to the problem

(
div

RnC1

�
y1�sr

RnC1u
� D 0 in R

nC1
C

ujyD0 D �E � �RnnE on R
n:

Then, define

ˆE.r/ WD 1

rn�s

Z
BC

r

y1�s jrRnC1uj2 ;

for any r > 0. The notationBC
r is used here to indicate the upper half-ball of radius r,

centered at the origin of RnC1, i.e. BC
r WD BnC1

r \ R
nC1
C . We have the following:

Theorem 3.7.8 (Caffarelli et al. [9]) The functionˆE is monotone non-decreasing
in r.

With the help of this monotonicity result, we can successfully perform the
standard blow-up procedure.

Proposition 3.7.9 Let E be a s-minimal surface and let x 2 @E. For small r > 0,
set Ex;r WD r�1.E � x/. Then, up to a subsequence,

Ex;r �! F in L1loc;

as r ! 0C, with F a s-minimal cone.
As in the classical case, to complete our investigation on the regularity properties

of minimal surfaces we are left with the problem of classifying minimal cones. This
task turns out to be not trivial at all, even in the plane. In fact, here one cannot argue
as easily as for the standard perimeter (recall Fig. 3.9). However, a more refined
approach can be developed to show that in R

2 there are no non-trivial s-minimal
cones.

Theorem 3.7.10 (Savin-Valdinoci [29]) If E is a s-minimal cone in R
2, then E is

a halfspace. In particular, s-minimal surfaces in R2 are smooth.
This result has been recently improved, via quantitative flatness estimates, in

[10].
Another way to attack the problem of the regularity for s-minimal surfaces,

when s is close to 1, is by taking advantage of the classical regularity theory. First,
we recall the following result due to Davila [11] (see also [3, 8]).

Theorem 3.7.11 There exists a dimensional constant c? > 0 such that

.1 � s/ Pers.EIB1/ �! c? Per.EIB1/;

as s ! 1�.
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In view of the above theorem, (a suitable rescaling of) the nonlocal perimeter
converges to the standard one as s ! 1�. Similarly, nonlocal minimal
surfaces approaches classical ones in the same limit. Hence, as we already
know that classical minimal surfaces are smooth up to dimension n D 7,
the same is true for s-minimal surfaces, provided s is sufficiently close
to 1. More precisely, the following result holds as a consequence of Theo-
rem 3.7.11:

Corollary 3.7.12 Let n > 2, and let E � R
n be s-minimal. There exists sn 2 .0; 1/

close to 1 such that, if s > sn, then:

(1) if n 6 7, then @E 2 C1 (in particular, the only s-minimal cones are halfspaces);
(2) if n > 8, then there exists S � @E such that S is closed, @E n S is smooth,

andH
.S/ D 0 for any 
 > n � 8.

On the contrary, as s ! 0C, a suitable rescaling of Pers converges to the volume
[17]. In this respect, Pers is a very natural way to interpolate between the volume
and the perimeter.

We note that, if s is small, there is an example of a cone F � R
7 such that, for

any continuous family fF"g of perturbations of F, it holds

d

d"

ˇ̌
ˇ̌
"D0

Pers.F"IB1/ D 0 and
d2

d"2

ˇ̌
ˇ̌
"D0

Pers.F"IB1/ > 0:

That is, F is a stable solution of (3.33). If one could prove that F actually minimizes
the s-perimeter, then one would have found a counterexample to the above corollary
when s is far from 1. We refer the interested reader to [12] for more details on this
construction.

In conclusion, the regularity theory for nonlocal minimal surfaces that we
just described is often based on ideas that also work for classical ones. Often
these methods are simpler and work better in the local scenario, but there
are some tools and techniques that are naturally better suited for nonlocal
objects.

For instance, as we saw in Sect. 3.5 the proof that classical Lipschitz minimal
graphs are C1;˛ is based on the De Giorgi-Nash-Moser theory for elliptic PDEs
with bounded measurable coefficients. On the other hand, this strategy does
not seem to work for nonlocal minimal surfaces. Conversely, a new geomet-
ric argument can be successfully applied and the same regularity result is true
[22].

As one can see, several important questions in this theory are still open (the
most fundamental one being the classification of minimal cones). We hope that new
results will come in the next few years.
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Chapter 4
Short Tales from Nonlinear Calderón-Zygmund
Theory

Giuseppe Mingione

Abstract Nonlinear Calderón-Zygmund Theory aims at reproducing, in the non-
linear setting, the classical linear theory originally developed by Calderón and
Zygmund. This topic has large intersections with Nonlinear Potential Theory. We
survey here the main results of this theory.

4.1 The Classical Linear Theory

The classical work of Calderón and Zygmund [26, 27] in the fifties introduced a
wealth of new techniques allowing to analyze the behaviour of singular integrals
in the multidimensional case. This, in turn, opened the way to the analysis of
optimal integrability and differentiability properties of solutions to linear elliptic
and parabolic equations. See for instance the classical papers of Agmon et al.
[4]. The path, that we are going to briefly describe in a few lines below, is the
following: linear problems admit fundamental solutions. These in turn allow to
write explicit representation formulae for solutions to general equations and their
derivatives via singular integral operators. These can be finally analyzed using the
methods of Calderón and Zygmund, that actually belong to a nowadays gigantic
field called Harmonic Analysis. It is difficult to give an account of the developments
of such theories and methods for linear partial differential equations and we shall
not even make an attempt in this direction. It is on the other hand clear that, since
the above approach uses fundamental solutions and related representation formulae,
it is restricted to linear equations. There have been different and by now classical
proofs of the Lp-estimates by Campanato and Stampacchia [28, 109] that avoid
singular integrals, but they again work for linear equations, since they strongly rely
on interpolation methods. On the other hand, in the last years there have been a series
of developments leading to a set of results replicating the classical linear theorems

G. Mingione (�)
Dipartimento di Matematica, Università di Parma, I-43124 Parma, Italy
e-mail: giuseppe.mingione@unipr.it

© Springer International Publishing AG 2017
M. Bonforte, G. Grillo (eds.), Nonlocal and Nonlinear Diffusions
and Interactions: New Methods and Directions, Lecture Notes in Mathematics
2186, DOI 10.1007/978-3-319-61494-6_4

159

mailto:giuseppe.mingione@unipr.it


160 G. Mingione

in the nonlinear setting. All such results and methods concur to build what could
be called Nonlinear Calderón-Zygmund Theory (Nonlinear CZ-theory, in short).
In these notes, stemming from the series of lectures given at the CIME school at
Cetraro in June 2016, we shall try to give an overview of the results nowadays
available, emphasizing the connections with other branches of the regularity theory
of nonlinear differential equations, such as Nonlinear Potential Theory. This is about
all those classical regularity and fine properties of solutions to linear elliptic and
parabolic equations, that can be recast, in one way or another, in the nonlinear
setting. Its first official appearance dates back to the fundamental paper of Havin and
Maz’ya [60] and the reader may consult the classical monograph [62] of Heinonen
et al. for the basics; see also [3, 61, 93]. As a matter of fact, several main results
in Nonlinear Potential Theory, like for instance pointwise potential estimates, find
their roots in De Giorgi’s methods [39] for establishing a priori regularity estimates
for solutions to linear elliptic equations with measurable coefficients. Such methods
are indeed nonlinear in nature, and they involve estimates that perfectly emulate the
presence of the otherwise non-existent fundamental solutions. Starting from such
basic estimates, it is indeed possible to reconstruct, in the nonlinear setting, a whole
wealth of properties which are typical of the linear one. The same thing happens
in Nonlinear CZ-theory, giving, if needed, yet another proof of the deepness and
generality of De Giorgi’s original techniques.

We conclude this section by giving a brief account of some classical linear results
that the Nonlinear CZ-theory, and Nonlinear Potential Theory, aim at reproducing
in the nonlinear setting. Let us therefore consider the Poisson equation

� 4u D �divDu D � (4.1)

in R
n for n � 2. The classical representation formula via convolution with the

fundamental solution G.�/ is

u.x0/ D 1

jB1jn.n � 2/
Z
Rn

G.x; x0/ d�.x/ ; G.x; x0/ WD 1

jx � x0jn�2 : (4.2)

In (4.2), for simplicity, we consider n � 3 (otherwise G.x; x0/ 
 log jx � x0j for
n D 2), � 2 L1loc.R

n/, with u being the unique solution u to (4.1) that decays to zero
at infinity.

Differentiating (4.2) and considering a suitable definition of integrals involving
so called principal values, we arrive at a representation formula of the type

D2u.x0/ D
Z
Rn

K.x; x0/ d�.x/ ; jK.x; x0/j 
 1

jx � x0jn ; (4.3)

where at the right-hand side of the first expression we find a singular integral.
The kernel K.�/ is indeed not locally integrable but enjoys special and decisive
cancelation properties. The mapping properties of such an operator, described in
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[26, 27] and based on the aforementioned cancelation properties, lead to establish
that

� 2 Lq H) Du 2 W1;q whenever 1 < q < 1 : (4.4)

The result in (4.4) fails for q D 1;1 and it is obviously sharp. The same approach
works for solutions to equations with right-hand side in divergence form, that is

4u D divF (4.5)

for which the result becomes

F 2 Lq H) Du 2 Lq whenever 1 < q < 1 : (4.6)

Another approach to (4.4) and (4.6) has been later on developed by Campanato
and Stampacchia [28, 109]; this avoids the use of singular integrals. The idea is
replacing them with suitable interpolation theorems involving the BMO spaces of
John and Nirenberg [66] (see (4.16) below). Cancellation properties that are at the
core of the analysis of singular do not disappear but are now incorporated in the
definition of the space BMO. Linearity of the equation considered is anyway still a
fundamental ingredient at this stage, allowing for the use of interpolation methods.

The identity in (4.2) allows to reconstruct the pointwise properties of solutions
via classical Riesz potentials. These are described in the following

Definition 4.1.1 Let ˇ 2 .0; n�; the linear operator defined by

Iˇ.�/.x0/ WD
Z
Rn

d�.x/

jx � x0jn�ˇ ;

is called the ˇ-Riesz potential of �, where � is a Borel measure defined on R
n.

Estimate (4.2) implies the following pointwise inequalities:

ju.x0/j . jI2.�/.x0/j and jDu.x0/j . cI1.j�j/.x0/ : (4.7)

(The first one actually holds when n � 3.) Eventually, by a standard approximation
argument the previous formulae still hold for general Borel measures with locally
finite total mass. By means of (4.7), and using the basic regularizing properties
of the Riesz potential, it is then possible to infer a priori estimates for u and Du
in various function spaces in terms of the assumed integrability of �. This allows
to obtain regularity properties of solutions without directly using the equation. As
in the case of Nonlinear CZ-theory, estimates in (4.7) seem to be linked to the
fact that we are dealing with a specific linear equation. Nevertheless they admit
a sharp reformulation for solutions to nonlinear equations. This fact is at the core of
Nonlinear Potential Theory and will be described in detail starting from Sect. 4.11.
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4.2 Notation

Constants are generically denoted by c; these are larger or equal than one;
dependence on parameters is indicated using parenthesis. In the followingBR.x0/ WD
fx 2 R

n W jx�x0j < Rg denotes the open ball with center x0 and radius R > 0. When
not important, or when it will be clear from the context, we shall omit denoting the
center as follows: BR � BR.x0/. With B � R

n being a measurable subset with
positive measure, and with f WB ! R

k, k � 1, being an integrable map, we shall
denote by

. f /B �
Z
B
f dx WD 1

jBj
Z
B
f .x/ dx

its integral average; here jBj denotes the Lebesgue measure of B. In the following
� will denote an arbitrary open subset of Rn, with n � 2. We shall identify L1loc.�/-
functions � with measures, thereby denoting

j�j.B/ D
Z
B

j�j dx for every measurable subset B b � :

Moreover, we shall denote by Mloc.�/ the space of Borel (signed) measures with
locally finite total mass defined on�. This means that� 2 Mloc.�/ iff j�j.K/ < 1
for every compact subset K � �. Accordingly, we denote by M.�/ the space of
Borel measures with finite total mass over�.

4.3 Nonlinear CZ-Theory: Energy Estimates

We start presenting some basic results dealing with that part of Nonlinear CZ-
theory covering the case in which the solutions of the equations considered are
in the natural energy space associated to the operator defining the equation itself.
See assumptions (4.10) below. Specifically, here we are considering distributional
solutions u to scalar equations of the type

divA.x;Du/ D div .jFjp�2F/ in � � R
n (4.8)

with � being an open subset and n � 2. Notice that, for the choice A.x;Du/ � Du
and p D 2, the last equation reduces to (4.5), for which the standard, linear CZ-
theory prescribes that the implication (4.6).

First of all, let us specify the main assumptions we are going to work with. The
vector field AW� � R

n ! R
n is assumed to C0.Rn/ \ C1.Rn n f0g/-regular with
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respect to the gradient variable z and initially satisfies assumptions

8̂
ˆ̂<
ˆ̂̂:

jA.x; z/j C j@A.x; z/jjzj � Ljzjp�1

�jzjp�2j�j2 � h@A.x; z/�; �i
jA.x1; z/ � A.x2; z/j � L!.jx1 � x2j/jzjp�1

(4.9)

for every choice of z 2 R
n n f0g; � 2 R

n, x; x1; x2 2 �, and for fixed ellipticity
constants 0 < � � 1 � L: Here the symbol @ always refers to the differentiation
with respect to the gradient variable z. Moreover, we assume that the map @A.�/ is
Carathéodory-regular; this means that

(
the map x 7! @A.x; z/ is measurable for every z 2 R

n

the map z 7! @A.x; z/ is continuous for almost every x 2 � :

Unless otherwise specified, we shall always deal with the case p > 1: The function
!W Œ0;1/ ! Œ0; 1� is a modulus of continuity. This means that is, a continuous,
bounded and non-decreasing function such that !.0/ D 0; with no loss of generality
it can be taken to be concave. Assumption (4.9) basically serves to describe the
continuous dependence on the variable x (the coefficients) of the renormalised
vector field

R
n n f0g 3 z 7! A.x; z/

jzjp�1 :

Conditions (4.9) are classical since the work of Ladyzhenskaya and Uraltseva [88]
and they are modelled on the p-Laplacean operator, i.e.,

A.x; z/ D jzjp�2z :

For basic regularity results concerning the p-Laplacean operator we refer for
instance to [42, 50, 52, 93, 94]. In this section our permanent assumptions on u
and F are such that

u 2 W1;p
loc .�/ and F 2 Lploc.�/ : (4.10)

Distributional solutions u satisfying u 2 W1;p
loc .�/ are usually called (local) weak

solutions or (local) energy solutions. This terminology stems from the fact that they
belong, at least locally, to the natural function space associated to Eq. (4.8) under
assumptions (4.9), which is W1;p. In the same way, the integrability assumption
F 2 Lploc.�/ guarantees that, F belongs to the dual space W�1;p0

.�0/ (which is the
dual of W1;p

0 .�0/), whenever �0 b � is an open subset. The weak formulation
of (4.8), defining the concept of weak solutions, is as follows:
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Definition 4.3.1 A function u 2 W1;p
loc .�/ is a weak (energy) to the equation in (4.8)

under assumptions (4.9), if and only if

Z
�

hA.x;Du/;D'i dx D
Z
�

hjFjp�2F;D'i dx 8 ' 2 C1
0 .�/ : (4.11)

In other words, an energy solution is nothing but a distributional solution satisfying
the additional energy condition u 2 W1;p

loc .�/.
A basic theorem in Nonlinear CZ-theory, that in the following local version can

be obtained by the methods of Iwaniec [63], is the following:

Theorem 4.3.2 ([63]) Let u 2 W1;p
loc .�/ be a weak solution to the equation in (4.8),

under assumptions (4.9). Then

jFjp 2 L�loc.�/ H) jDujp 2 L�loc.�/ for every � > 1 : (4.12)

Moreover, for every � > 1 there exist a radius r � r.n; p; �;L; �; !.�// and constants
c � c.n; p; �;L/ and c.�/ � c.n; p; �;L; �/, such that the estimate

 Z
BR=2

jDujp� dx
!1=�

� c
Z
BR

jDujp dx C c.�/

�Z
BR

jFjp� dx
�1=�

(4.13)

holds for every ball BR b � such that R � r.
The original proof of Theorem 4.3.2 following the methods of [63] rests on a clever
use of Harmonic Analysis tools such as sharp maximal operators (see Sect. 4.9
below) and a priori estimates regularity estimates for solutions w to homogeneous
equations with frozen coefficients of the type

� divA.x0;Dw/ D 0 : (4.14)

These serve to overcome the lack or representation formulae and the possibility
of using singular integral operators. In particular, the approach in [63] uses sharp
maximal operators to replace singular integrals, while local estimates for solutions
to (4.14) serve as a local replacement of the representation formulae.

DiBenedetto and Manfredi [44] extended Iwaniec’s original results to the case
of systems. Caffarelli [24] found a beautiful approach to the nonlinear theory in
the case of fully nonlinear equations, a class of problems we are not considering
here. Partially relying on Caffarelli’s original ideas, Caffarelli and Peral [25] found
a different approach to integral estimates, still using maximal operators. This
approach inspired several subsequent developments [115], including those featuring
irregular boundary value problems and irregular coefficients [21, 22], and more
general structures [71]. Finally, a maximal function free-proof, based solely on PDE
estimates, has been later found [2] in the setting of parabolic problems; for this we
refer to Sect. 4.5 below.
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The assumption of continuity of A.�/ with respect to the coefficients, i.e., with
respect to x can be relaxed in assuming so called VMO dependence (Vanishing
Mean Oscillations). Specifically, we define

Q!.%/ WD

2
64 sup

z2Rnnf0g
B%��

Z
B%

 ˇ̌
A.x; z/� .A/B%.z/

ˇ̌
jzjp�1

!2
dx

3
75
1=2

;

where the averaged vector field .A/B%.z/ is defined as

.A/B%.z/ WD
Z
B%

A.x; z/ dx :

The main assumption, playing the role of VMO-dependence on x is then

lim
%&0

Q!.%/ D 0 :

Under such a condition Theorem 4.3.2 still holds. On the other hand, well-known
counterexamples tell that if the dependence on x of the vector field A.�/ is merely
measurable Theorem 4.3.2 does not hold.

4.4 Two Extensions

What about systems instead of equations? This means we are considering solutions
with values in R

N , N � 1, and a vector field AW� � R
N�n ! R

N�n that satisfies
assumptions similar to those in (4.9), but recast for the vector-valued case, that is,

8̂
ˆ̂<
ˆ̂̂:

jA.x; z/j C j@A.x; z/jjzj � Ljzjp�1

�jzjp�2j�j2 � h@A.x; z/�; �i
jA.x1; z/ � A.x2; z/j � L!.jx1 � x2j/jzjp�1 ;

(4.15)

hold for every choice of z 2 R
N�n n f0g; � 2 R

N�n, x; x1; x2 2 �, and again 0 <
� � 1 � L are fixed constants. Here we are again requiring that A is C1-regular with
respect to z 2 R

N�n n f0g.
In the vectorial case local energy solutions are in general not regular (see

[99] for a through discussion), and can be even unbounded [111], already for
simpler systems of the type �divA.Du/ D 0. Therefore Theorem 4.3.2 cannot
hold as such unless additional assumptions are made on the vector field A.�/,
while, when considering general systems, weaker results are available. And in fact,
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Theorem 4.3.2 continues to hold in the case of the model case system

div .Dujp�2Du/ D div .jFjp�2F/ in � � R
n :

The result for this model case has been originally proved by DiBenedetto and
Manfredi [44], who furthermore obtained the following borderline result:

jFjp�2F 2 BMOloc H) Du 2 BMOloc

that in case linear case p D 2 is a classical fact due to Campanato (see
[58, Chap. 10]). Recall that an L1.�/-function f belongs to BMOloc.�/ provided

sup
B��0

Z
B

j f � . f /Bj dx < 1 (4.16)

for every open subset �0 b � and where the sup is taken over all possible balls.
When passing to considering general systems some form of CZ-theory survives.

Indeed we have

Theorem 4.4.1 ([71]) Let u 2 W1;p
loc .�/ be a weak solution to the system

divA.x;Du/ D div .jFjp�2F/

under assumptions (4.15). There exists a number �m � �m.n;N; p; �;L/ > 1 such
that

8<
:

�m >
n

n�2 if n > 2

�m is any positive number if n D 2

and such that (4.12) holds provided 1 � � < �m. In particular for every � 2 Œ1; �m/
there exist a radius r � r.n;N; p; �;L; �; !.�// and constants c � c.n;N; p; �;L/
and c.�; �m/ � c.n;N; p; �;L; �; �m/, such that the estimate

 Z
BR=2

jDujp� dx
!1=�

� c
Z
BR

jDujp dx C c.�; �m/

�Z
BR

jFjp� dx
�1=�

holds for every ball BR b � such that R � r.
As shown in [71], the previous result plays a significant role in the estimate

of Hausdorff dimension of the singular set of minima of vector-valued variational
problems. It is also important in order to establish a few boundary partial regularity
results [54, 72].
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The second extension we are presenting here concerns obstacle problems. We
consider the constrained minimization problem

min
v2K

Z
�

jDvjp dx (4.17)

where

K WD fv 2 W1;p
0 .�/ W v �  a.e.g  2 W1;p

0 .�/ :

The integrability result available is then the following natural and optimal one:

Theorem 4.4.2 ([17]) Let u 2 W1;p.�/ be the unique variational solution to the
obstacle problem (4.17), where � is a bounded domain in R

n. Then

jD jp 2 L�loc.�/ H) jDujp 2 L�loc.�/ for every � > 1 :

Moreover, for every � > 1 there exist a constant c � c.n; p; �;L/ and c.�/ �
c.n; p; �;L; �/, such that the estimate

 Z
BR=2

jDujp� dx
!1=�

� c
Z
BR

jDujp dx C c.�/

�Z
BR

jD jp� dx
�1=�

holds for every ball BR b �.
The previous theorem is obviously optimal, as it follows by considering the gradient
integrability of u on the contact set fu �  g, where Du and D coincide
almost everywhere. This result has been extended in several directions; see for
instance [23].

4.5 Parabolic Nonlinear CZ-Theory

The problem of extending Theorem 4.3.2 to the parabolic case

ut � divA.Du/ D �div .jFjp�2F/ in �T WD � � .�T; 0/ � R
nC1 (4.18)

has remained open until [2]. The main obstruction was in the fact that the techniques
developed in [63] and [25] rely on the use of maximal operators, which are ruled
out in parabolic problems as long as p 6D 2. This is basically due to the fact that
equations of the type

wt � div .jDwjp�2Dw/ D 0 in �T ; (4.19)
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are such that if c 2 R is a constant, then cw is no longer a solution of the same
equation as long as p 6D 2. This lack of scaling prevents the validity of homogeneous
a priori estimates for solutions to (4.19) which are a basic ingredient in the proof
of Theorem 4.3.2. More precisely, considering for simplicity the case p � 2, for
homogeneous solutions to (4.19) the estimate

sup
QR=2

jDwj .

Z

QR

jDwjp dx dt C 1

�p=2

holds for every parabolic cylinderQR � BR.x0/�.t0�R2; t0/ b �T . This estimate is
obviously not homogeneous as long as p 6D 2. Homogeneous estimates can be recast
by using the so-called called intrinsic parabolic cylinders (in the original language
of DiBenedetto). These are cylinders of the type

Q�R � QR.x0; t0/ D BR.x0/ � .t0 � �2�pR2; t0/ (4.20)

where � > 0 is determined by the solution w in the same cylinder. Specifically,
conditions of the type

Z
Q�R

jDwjp dx dt . �p

are required to be satisfied on the very same cylinder Q�% . This motivates the use of
the word intrinsic. Notice that when p D 2 intrinsic cylinders reduce to the standard
ones. The use of such intrinsic geometries been introduced in the fundamental work
of DiBenedetto, see [43]. As a matter of fact, on intrinsic cylinders the following
homogeneous estimate holds:

Z
Q�R

jDwjp dx dt . �p H) sup
Q�R=2

jDwj . � :

The drawback is that since the cylinders in question depend on the solution itself,
the use of maximal operators are ruled out since these need an a priori assigned
family of balls or cylinders to be defined.

To overcome this gap a direct, maximal function-free proof has been introduced
in [2] and this allows to give a direct approach to Calderón-Zygmund estimates
which is only based on PDE estimates. No maximal operators or other Harmonic
Analysis tools are required.

Theorem 4.5.1 ([2]) Let u 2 C.�T; 0IL2loc.�// \ Lp.�T; 0IW1;p
loc .�// be a weak

solution to the parabolic equation (4.18), where � is a bounded domain in Rn, and
the C1.Rn n f0g/-vector field AWRn ! R

n satisfies (4.9) (recast for the case with no
x) dependence. Assume also that

p >
2n

n C 2
: (4.21)
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Then

jFjp 2 L�loc.�T/ H) jDujp 2 L�loc.�T/ for every � > 1 : (4.22)

Moreover, for every � > 1, there exists a constant c � c.n; p; �;L; �/ such that the
estimate

 Z
QR=2

jDujp� dx dt
!1=�

� c

"Z
QR

jDujp dx dt C
�Z

QR

jFjp� dx dt
�1=�

C 1

#d

(4.23)

holds for every parabolic cylinder QR � BR.x0/ � .t0 � R2; t0/ b �T. Here d is the
scaling deficit of the system, i.e.

d WD
8<
:

p
2

if p � 2

2p
p.nC2/�2n if 2n

nC2 < p < 2 :

The above result is sharp. Indeed, we remark that assuming the lower bound
in (4.21) is essential in order to prove (4.22); see the counterexamples to regularity
in [43] which apply already to the case F � 0 when 1 < p � 2n=.n C 2/.
The appearance of the exponent d in (4.23) reflects the fact that the parabolic p-
Laplacean operator is not homogeneous unless p D 2. Therefore a priori estimates
cannot be homogeneous as well. Indeed we notice that d D 1 if and only if p D 2.
Moreover, we notice that d ! 1 as p ! 2n=.n C 2/. The result of Theorem 4.5.1
extends to the case of the parabolic p-Laplacean system as well, and, again, the
presence of VMO-coefficients can be allowed; we refer to [2, 55, 73, 74] for more
details and various cases. The techniques of [2] are flexible enough to be extended
to more general rearrangement invariant function spaces, as for instance Lorentz
spaces (see Definition 4.9.4 below); for this see the results of Baroni [7]. We also
refer to the important work [70].

4.6 Non-uniformly Elliptic Operators

We now consider the case of non-uniformly elliptic operators. Here non-uniform
ellipticity means that we are considering equations as

�divA.x;Du/ D 0 ;

where the ratio between the highest and the lowest eigenvalue of @A.x; z/ is not
bounded. Observe that this ratio is bounded when assumptions in (4.15) are in force.
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For non-uniformly elliptic operators a complete nonlinear CZ-theory is still lacking,
due to the fact that such operators can have completely different structure properties
from each other. We therefore focus on two particular, yet significant cases, related
to the following variational integrals:

V.w; �/ WD
Z
�

jDwjp.x/ dx ; 1 < �1 � p.x/ � �2 < 1

Pp;q.w; �/ WD
Z
�

.jDwjp C a.x/jDwjq/ dx ; 0 � a.x/ � L ; 1 < p < q :

(4.24)

The common point of the two functionals is the fact that the growth, and therefore
the ellipticity properties, of the integrand with respect to the gradient variable
depends on the point x. This fact is at the origin of the non-uniformly elliptic nature
of the Euler-Lagrange equations associated to the functionals in (4.24). These are of
the type

�divA.x;Du/ D 0

where

A.x; z/ D p.x/jzjp.x/�2z and A.x; z/ D jzjp�2z C .q=p/a.x/jzjq�2z ;

respectively. The integrals in (4.24) are related to the seminal work of Marcellini
[95, 96] on functionals with non-standard growth conditions and to the work of
Zhikov in the setting of Homogenization theory [116–118].

As for the functional V.�/, the main, sharp assumption is the one of log-Hölder
continuity on the variable exponent p.x/:

lim
%!0

!.%/ log

�
1

%

�
D 0 ; (4.25)

where !.�/ is the modulus of continuity of p.�/

jp.x/� p. y/j � !.jx � yj/ 8 x; y :

We have then the following

Theorem 4.6.1 ([1]) Let u 2 W1;1.�IRN/ be a distributional solution to the system

div .Dujp.x/�2Du/ D div .jFjp.x/�2F/ in � � R
n ;

such that jDujp.x/; jFjp.x/ 2 L1loc.�/: Assume that (4.25) holds. Then

jFjp.x/ 2 L�loc.�/ H) jDujp.x/ 2 L�loc.�/ for every � > 1 :
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Moreover, for every � > 1 there exists a constant c � c.n;N; p; �/ such that the
estimate

 Z
BR=2

jDujp.x/� dx
!1=�

� c
Z
BR

jDujp.x/ dx C c

�Z
BR

jFjp.x/� dx
�1=�

(4.26)

holds for every ball BR b �.
We just remark that the assumption (4.25) is necessary and it serves to bound the
rate of non-uniform ellipticity of the problems considering via the bound on the
oscillations of p.x/. Notice that in the case the variable exponent is constant, i.e.,
p.x/ � p, estimate (4.26) gives back (4.13).

Theorem 4.6.2 ([36]) Let u 2 W1;1.�/ be a local minimiser of the functional V
and assume that p.�/ is locally Hölder continuous in �. Then Du is locally Hölder
continuous in �.

We next switch to the functional Pp;q.�/ and consider related equations of the
type

divA.x;Du/ D divA.x;F/ in � � R
n (4.27)

where

A.x; z/ WD .jzjp�2 C a.x/jzjq�2/z D H.x; z/z

jzj2

and

H.x; z/ WD jzjp C a.x/jzjq :

The main assumption we are considering is the following balance between the gap
q=p and the regularity of a.�/, that is

a.�/ 2 C0;˛.�/ ;
q

p
< 1C ˛

n
: (4.28)

This condition plays the role condition (4.25) has for functionals with a variable
growth exponent of the type V.�/. We shall expand on this more later. We then have
the following, optimal:

Theorem 4.6.3 ([35]) Let u 2 W1;1.�/ be a distributional solution to Eq. (4.27)
such that H.x;Du/;H.x;F/ 2 L1.�/, under the assumptions (4.28). Then

H.x;F/ 2 L�loc.�/ H) H.x;Du/ 2 L�loc.�/ holds for every � � 1 :
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Moreover, for every � � 1 there exist a positive radius r and constants c; c.�/

8̂
ˆ̂<
ˆ̂̂:

r � r.n; p; q; �;L; Œa�0;˛ ; kH.x;Du/kL1 ; �/ > 0
c � c.n; p; q; �;L; Œa�0;˛; kH.x;Du/kL1 / > 0

c.�/ � c.n; p; q; �;L; Œa�0;˛; kH.x;Du/kL1 ; �/ > 0

such that the estimate

 Z
BR=2

ŒH.x;Du/�� dx

!1=�
� c

Z
BR

ŒH.x;Du/� dx

Cc.�/

�Z
BR

ŒH.x;F/�� dx

�1=�
(4.29)

holds for every ball BR � � such that R � r.
Notice that, also in this case, estimate (4.29) perfectly reduces to (4.13) when

a.�/ � 0, or when p D q. The operator in (4.27) has been originally introduced
by Zhikov in the context of Homogenization [116–118], in order to provide models
for strongly anisotropic materials. In this respect the exponents p and q represent
the hardening exponents of two materials forming a composite whose geometry is
dictated by the coefficient a.�/, or, more precisely, by its zero set fa.x/ D 0g. The
bound in (4.28) reflects in a sharp way the subtle interaction between the different
kinds of ellipticity properties of the operator—given by the numbers p and q—
and the regularity of the coefficient a.�/ that dictates the phase transition. More
precisely, this in turn relates to the kind of non-uniform ellipticity of the Euler-
Lagrange equation of the functional, which is

� div ŒjDujp�2Du C .q=p/a.x/jDujq�2Du� D 0 : (4.30)

The non-uniform ellipticity of equation in display (4.30), when evaluated on the
specific solution u, is measured by the potential blow-up of the ratio

highest eigenvalue of @zA.x;Du/

lowest eigenvalue of @zA.x;Du/

 1C a.x/jDujq�p : (4.31)

Around the phase transition, that is the zero set fa.x/ D 0g, the ratio in (4.31)
exhibits a potential blow-up with respect to the gradient of rate q�p; to compensate,
a.x/ is required to be suitably small. This means that, since we are close to fa.x/ D
0g, then ˛ must be large enough as prescribed in (4.28). This heuristic reasoning is
confirmed when looking at the functional V : in this case, when p.�/ is continuous,
the variability of x produces a small change in the growth exponent and therefore
the non-uniform ellipticity of the related Euler-Lagrange equation is modest. Indeed,
the correction needed in (4.25) is a regularity assumptions imposed on p.x/ which
is weaker than the one imposed on a.x/ in (4.28).
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As for the regularity of minimizers, we this time have

Theorem 4.6.4 ([33, 34]) Let u 2 W1;p.�/ be a local minimiser of the functional
Pp;q and assume that (4.28) is in force. Then Du is locally Hölder continuous in �.
The same conclusion holds under the condition

0 � a.�/ 2 C0;˛.�/ and q � p C 1 ; (4.32)

provided the local minimizer u is locally bounded.
We conclude this section by observing that the main assumption in (4.28), as

well as the one in (4.32) when minimizers and/or solutions are locally bounded,
are sharp. This indeed follows from a counterexample in [56] where it is shown the
existence of a W1;p-regular bounded local minimizer u of the functional Pp;q.�/, with
0 � a.�/ 2 C0;˛.�/, but with q > n C ˛ > n > p, such that u 62 W1;q

loc .

4.7 Estimates Below the Natural Growth Exponent

In Sect. 4.3 we have considered equations of the type (4.8) under the main
assumption (4.10) on the solution and on the datum F. This means that we are in
the so called energy range. We now want to briefly describe what happens when
assumptions (4.10) are not considered and we therefore fall in the subenergy range.
Here we again consider general equations of the type (4.8), but this time with
measurable coefficients, i.e., the vector field A.�/ is Carathéodory regular and the
map x 7! A.x; z/ is just measurable. We moreover consider the weaker assumptions

jA.x; z/j � Ljzjp�1 and �jzjp � hA.x; z/; zi (4.33)

for every z 2 R
n and x 2 �, where 0 < � � 1 � L are fixed real numbers.

To fix the ideas, we immediately observe that in order to give the distributional
definition (4.11) sense it is sufficient to assume that

u 2 W1;q
loc .�/; F 2 Lqloc.�/ q > p � 1 : (4.34)

A distributional solution that does not belong to W1;p
loc .�/ is called a very weak

solution. Such solutions were first considered in detail by Serrin [107], who showed
that they might exist next to the standard energy solutions.

Understanding the basic properties of very weak solutions is not an easy task,
since even establishing basic estimates becomes problematic. To highlight the main
ideas without getting involved in misleading technicalities, we consider the Dirichlet
problem

(
divA.x;Du/ D div .jFjp�2F/ in �

u D 0 on @� ;
(4.35)



174 G. Mingione

where, again for simplicity, � is just a ball (a smooth or even a Lipschitz domain
would be fine as well). Now, assume for a moment to deal with an energy solution,
that is (4.33) hold for some q � p. By a standard density argument we can use
' � u in (4.11), thereby getting, by means of (4.33), the basic energy estimate

Z
�

jDujp dx � c. p; �;L/
Z
�

jFjp dx :

The above density argument does not match with the growth properties in (4.33) in
case (4.33) for q < p and the choice ' � u is now no longer admissible in (4.11).
Nevertheless, the previous estimate continues to hold even when q < p, provided
the distance between p and q is not too large. This is a highly non-trivial fact and is
contained in the following:

Theorem 4.7.1 ([65, 89]) Let u 2 W1;q
0 .�/ be a distributional solution to the

equation in (4.8), under assumptions (4.33) and (4.34). Then there exist numbers
p1; p2 with

p � 1 < p1 < p < p2 < 1 ; (4.36)

and depending only on n; p; �;L, such that the estimate
Z
�

jDujq dx � c.n; p; q; �;L/
Z
�

jFjq dx (4.37)

holds in the range q 2 . p1; p2/.
When q < p estimates of the type in (4.37) are for obvious reasons sometimes

called estimates below the natural growth exponent. Theorem 4.7.1 is due to Iwaniec
and Sbordone [65] and Lewis [89], who proved it independently by different means.
The authors of [65] use a method based on the Hodge decomposition and its stability
properties with respect to certain nonlinear perturbations. In [89], a method based
on the truncation of certain maximal operators is instead used. Both techniques are
applied to solutions in order to obtain test functions with improved integrability
properties, recovering the initial lack of integrability.

In the rest of the section we shall briefly describe the approach of Iwaniec
and Sbordone, that reveals some fascinating and deep features of the Hodge
decomposition. We still recall that in the following lines � is assumed to be, for
simplicity, a ball.

Given a vector field F 2 Lq.�/ with q > 1, the Hodge decomposition (actually
also-called Helmotz decomposition) allows to expressF as a gradient plus a diverge-
free vector field, i.e.

F D Du C H ; divH D 0 :

This decomposition comes along with the natural estimate, that is

kDukLq.�/ C kHkLq.�/ � c.q/kFkLq.�/ :
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It is not very difficult to realize how this works, at least when � � R
n; let us give

a very informal sketch of the construction. One solves the equation 4u D divF
via singular integrals (actually using a composition of Riesz transforms), and the
standard Calderón-Zygmund theory provides us with an estimate of the type

kDukLq.�/ � c.q/kFkLq.�/ : (4.38)

Then one concludes with H WD F � Du. If F is a gradient, we can obviously take
H D 0 and in fact, for generalF, Du is nothing but the closest gradient vector field to
F with respect to the distance in L2. The key point is that this construction, together
with the related estimate (4.38), is stable with respect to certain natural nonlinear
perturbations. Indeed, we have

Theorem 4.7.2 ([64, 65]) Let w 2 W1;q
0 .B/ for q > 1 and let " 2 .�1; q � 1/.

There exists ' 2 W1;q=.1C"/
0 .B/ and a divergence free vector field

H 2 Lq=.1C"/.BIRn/ ; divH D 0

such that

jDwj"Dw D D' C H (4.39)

and

kHkLq=.1C"/.B/ � c.n; q/j"jkDwk1C"Lq.B/ (4.40)

hold. The constant c.q/ depends on q but it is stable as long as q varies in a compact
subset of .1;1/.
It is now rather clear how to use the above result to the proof of estimate (4.37):
the idea is to apply Theorem 4.7.2 to u for some negative ". If " is sufficiently
small, then the remainder H is small too thanks to (4.40) and can be re-absorbed
in the estimates, finally leading to (4.37). The smallness of " fixes the range of the
exponents appearing in (4.36). This method can be used in several other contexts;
see for instance [59].

4.8 Measure Data Problems

In this section we start considering equations with general measure data of the type

� divA.x;Du/ D � in � � R
n : (4.41)

Here � is a Borel (signed) measure concentrated on� with locally finite total mass,
i.e.� 2 Mloc.�/. The starting assumptions we shall consider throughout this section
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on the Carathéodory vector field AW� � R
n ! R

n are

8<
:

jA.x; z/j � Ljzjp�1

�
�jz1j2 C jz2j2

� p�2
2 jz1 � z2j2 � hA.x; z1/� A.x; z2/; z1 � z2i

(4.42)

for any choice of z; z1; z2 2 R
n, for almost every x 2 �, and for fixed ellipticity

constants 0 < � � 1 � L: In particular, the dependence on x of A.�/ is at the moment
just measurable. The monotonicity inequality in (4.42)2 is satisfied by the main
model example given by the p-Laplacean operator A.z/ � jzj. p�2/=2z. Notice that in
the case p � 2, from (4.42)2 we recast the familiar strict monotonicity property

�jz1 � z2jp � hA.x; z1/ � A.x; z2/; z1 � z2i :

Remark 4.8.1 The assumptions in (4.42) are the starting ones we shall consider
when looking at measure data problems. They are sufficient to get integrability
results for the gradient. Later on, when considering higher regularity properties of
solutions, we shall use stronger assumptions (see (4.52)–(4.53) below).
For measure data problems the plain notion of distributional solution is not sufficient
to build a reasonable theory and suitably reinforced notions must be considered.
These naturally stem from the available existence theory. Indeed, solutions to
measure data problems can be obtained via approximation methods as for instance
first shown by Boccardo and Gallouët in [12]. These methods in turn generate the
most commonly used notion of solution, called SOLA, that here we report in its
local version (as described in [104]). We remark that in the linear and semilinear
cases the theory of measure data problems has been pioneered in [92] and [20],
respectively.

Definition 4.8.2 (Local SOLA) A function u 2 W1;1
loc .�/, with � � R

n being an
arbitrary open subset, is a local SOLA to the equation in (4.42) under assumptions
(4.42) and with � 2 Mloc.�/, if and only if there exists a sequence of local energy
solutions fukg � W1;p

loc .�/ to the equations

�divA.x;Duk/ D �k 2 L1
loc.�/ ;

such that uk * u weakly in W1;1
loc .�/. Here the sequence f�kg converges to �

(locally) weakly� in the sense of measures and satisfies

lim sup
k

j�kj.B/ � j�j.B/

for every ball B b �.
Local SOLA, that are at the moment defined only via a convergence property, are in
fact distributional solutions in the sense that they satisfy

Z
�

hA.x;Du/;D'i dx D
Z
�

' d� 8 ' 2 C1
0 .�/ :
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but they are not necessarily energy solutions (see a few lines below). There are
indeed SOLA that do not belong to the natural spaces W1;p and they are very weak
solutions in the sense explained in Sect. 4.7; a typical example is provided in (4.45)
below. Concerning local SOLA integrability properties, we have the following
result, whose proof can be found in [104]. It extends to the local case some basic
convergence and regularity results obtained in [12–14]:

Theorem 4.8.3 ([12, 104]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation

in (4.41) in the sense of Definition 4.8.2, with p > 2 � 1=n, and let fukg the
corresponding sequence of approximate solutions thereby introduced. Then, up to a
not relabelled subsequence, it holds that

uk ! u strongly in W1;q
loc .�/ 8 q < min

�
p;

n. p � 1/
n � 1

�
:

As a consequence, u is a distributional solution to the equation in (4.41).
The notion of local SOLA is consistent with the one of weak solution in the sense
that every W1;p-regular weak solution turns out to be a local SOLA; moreover when
the measure � belongs to the dual space W�1;p0

.�/, then SOLA become energy
solutions. We refer for instance to [104, Chap. 5] for more details.

By Theorem 4.8.3 it follows that every local SOLA u satisfies

Du 2 Lqloc.�IRn/ for every q <
n. p � 1/
n � 1 ; when p � n : (4.43)

Actually, the limiting integrability of SOLA can be described in terms of weak-
Lebesgue spaces, i.e., Marcinkiewicz spaces, that is (for p � n)

Du 2 M
n. p�1/
n�1

loc .�IRn/ ” sup
0<�

�
n. p�1/
n�1 jfx 2 �0 W jDu.x/j > �gj < 1 ; (4.44)

with the last inequality that holds for every open subset �0 b �. For this result see
[11, 46]. This result is optimal, as shown by the so-called nonlinear fundamental
solution

Gp.x/ 

8<
:

jxj p�n
p�1 if 1 < p 6D n

� log jxj if p D n ;
jxj 6D 0 : (4.45)

This is in fact the unique SOLA to the equation �4pu D ı, where ı is the Dirac
measure charging the origin. We again refer to [104, Chap. 5] for more details on this
fact and on general measure data problems. Different notions of solutions have been
proposed in the literature, see for instance [15, 37]. They turn out to be equivalent in
the case of positive measures [69]. For results in the vectorial case see also [45, 46].
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Finally, notice that the lower bound p > 2 � 1=n essentially serves to guarantee
that the SOLA belong to W1;1

p > 2 � 1

n
” n. p � 1/

n � 1 > 1 : (4.46)

4.9 Estimates on Level Sets and Maximal Operators

The result in (4.43) fixes the best regularity in terms of gradient integrability we can
expect for solutions when dealing with general measure data equations. It is anyway
only a starting point of a more general theory that in fact allows to get estimates in
various function spaces for solutions, in terms of the integrability assumed on �. In
this respect, in this section we shall present a level sets inequality involving maximal
operators and allowing to get a wealth of results in virtually all rearrangement
invariant function spaces. We premise a few definitions.

Definition 4.9.1 (Fractional Maximal Operator) Let � 2 Mloc.�/ with� � R
n

being an open subset; with x 2 � and R < dist.x; @�/, the function defined by

MˇIR.�/.x/ WD sup
0<%<R

jB%.x/jˇ=n j�j.B%.x//
jB%.x/j ; 0 � ˇ � n

is called the restricted (centered) fractional maximal function of �.
When ˇ � 0 and R D 1, we recast the usual maximal operator of Hardy and
Littlewood

M.�/.x/ WD sup
B%.x/

j�j.B%.x//
jB%.x/j :

The non-centered version is instead defined as follows:

Definition 4.9.2 (Non-centered Fractional Maximal Operator) Let � 2 M.�/
with B b � � R

n being open subsets; the function defined by

M�̌IB.�/.x/ WD sup
x2B
B�B

jBjˇ=n j�j.B/
jBj ; 0 � ˇ � n

is called the non-centered restricted fractional maximal function of �.

Definition 4.9.3 (Fractional Sharp Maximal Operator) Let f 2 L1loc.�/ with
� � R

n being an open subset, ˛ 2 Œ0; 1�, x 2 � and R < dist.x; @�/; the function
defined by

M#
˛IR. f /.x/ WD sup

0<%<R
%�˛

Z
B%.x/

j f � . f /B%.x/j dy
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is called the restricted (centered) sharp fractional maximal function of f . In case
f 2 L1loc.R

n/ we have the non-restricted version

M#
˛. f /.x/ WD sup

0<%

%�˛
Z
B%.x/

j f � . f /B%.x/j dy :

The boundedness of maximal operators in various functions spaces as for instance
Lebesgue and weak Lebesgue spaces is a well-known fact; see for instance [104]. A
particular class of spaces which is of interest here is the one of Lorentz spaces.

Definition 4.9.4 (Lorentz Spaces) Let q 2 .0;1/ and � 2 .0;1/ and let
� � R

n be an open subset; a measurable map f W� ! R
k, k 2 N, belongs to

L.q; �/.�IRk/ � L.q; �/.�/ if and only if

k fkL.q;�/.�/ D
�
q
Z 1

0

.�qjfx 2 � W j f .x/j > �gj/�=q d�
�

�1=�
< 1 :

The space L.q;1/.�/ is finally defined setting

L.q;1/.�/ � Mq.�/

with

k fkL.q;1/.�/ WD k fkMq.�/ :

The local variant can are defined as usual, by saying that f 2 L.q; �/loc.�/ iff
f 2 L.q; �/.�0/ for every open subset �0 b �.
Observe that Lorentz spaces coincide with Lebesgue spaces when q D � and indeed
we have k fkL.q;q/.�/ D k fkLq.�/: Lorentz spaces refine the standard Lebesgue
spaces in the sense that the second index tunes the first in the sense that when� has
finite measure, whenever 0 < q < t < r < 1 the following continuous embeddings
take place:

Lr � L.r; r/ � L.t; q/ � L.t; t/ � L.t; r/ � L.q; q/ � Lq ;

while all the previous inclusions are strict. For later purposes it will be also
convenient to introduce the following averaged quasinorms. For this we shall then
assume that � has bounded measure. We then define

¬fkL.q;�/.�/ WD
 
q
Z 1

0

�
�q

jfx 2 � W j f .x/j > �gj
j�j

��=q d�

�

!1=�
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if � < 1 and

¬fkMq.�/ � ¬fkL.q;1/.�/ WD
�

sup
0<�

�q
jfx 2 � W j f .x/j > �gj

j�j
�1=q

< 1 :

Notice that in the case q D � we have

¬fkL.q;q/.�/ D
�Z

�

j f jq dx
�1=q

;

and this justifies the terminology of averaged quasinorm. Lorentz spaces can also be
realized as interpolation spaces and therefore the boundedness of Maximal operators
in Lorentz spaces follows by standard interpolations theory.

We now go back to solutions of measure data problems and state the main result
of this section, which is

Theorem 4.9.5 ([101]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in (4.41)

in the sense of Definition 4.8.2, and under assumptions (4.42) with p > 2 � 1=n.
Let B be a ball such that 2B b �. There exist constants H � H.n; p; �;L/ > 1,
� � �.n; p; �;L/ > 1 and c.n/ � 1 such that the following is true: For every T � 1

there exists " � ".n; p; �;L;T/ 2 .0; 1/ such that
ˇ̌
ˇ
n
x 2 r1B W M�

0I2B.jDuj/.x/ > HT�
oˇ̌
ˇ

� 1

Tp�

ˇ̌
ˇ
n
x 2 r2B W M�

0I2B.jDuj/.x/ > �
oˇ̌
ˇ

C
ˇ̌
ˇ
n
x 2 r1B W ŒM�

1I2B.�/�1=. p�1/ > "�
oˇ̌
ˇ (4.47)

holds whenever

� � c.n/Tp��1

.r2 � r1/n

Z
2B

jDuj dx and 0 < r1 < r2 � 1 :

Theorem 4.9.5 allows to control the level sets of the gradient of solutions with the
level sets of the measure �, provided suitable maximal operators, reflecting the
scaling properties of the equation, are considered. Moreover, there is a price to pay,
that is the presence of the intermediate term in (4.47), that naturally prevents to get
a degree of regularity for solutions that goes beyond the maximal one allowed in the
case � � 0. Note that without this term the inequality would be false since it would
imply to much! Indeed, when considering homogeneous equations with measurable
coefficients �divA.x;Dw/ D 0, the maximal regularity obtainable for the gradient
is the following higher integrability result:

jDwj 2 Lp�loc.�/ (4.48)
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for some � � �.n; p; �;L/ > 1. This essentially follows from Gehring’s theory.
The exponent � appearing in the line above is exactly the one appearing in
Theorem 4.9.5, and this makes it sharp in this respect. On the other hand, with
the aim to get integrability gradient estimates for solutions, Theorem 4.9.5 does
not yield more than the integrability result in (4.48), even for smooth choices of �.
More in general, being formulated in terms of levels sets, Theorem 4.9.5 allows to
sharply recover the integrability information solutions by that of the given datum �

in rearrangement invariant function spaces (recall that by their very definition, such
spaces are defined via the decay properties of the level sets of their functions).

A first consequence of Theorem 4.9.5 is the following one:

Theorem 4.9.6 ([101]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in (4.41)

in the sense of Definition 4.8.2, and under assumptions (4.42) with p > 2 � 1=n.
Then, for every couple of exponents .t; �/ satisfying

1 � t <
p�

p � 1 and 0 < � � 1 ; (4.49)

there exists a constant c � c.n; p; �;L; t; �/ such that the maximal estimate

¬M�
0I2B.jDuj/kL.t. p�1/;�. p�1//.B=2/ � c

Z
2B

jDuj dx

Cc ¬M�
1I2B.�/k1=. p�1/

L.t;�/.B/

holds whenever B is a ball such that 2B b �. The constant � � �.n; p; �;L/ > 1 in
(4.49) is the exponent appearing in Theorem 4.9.5.
Since the behaviour of maximal operators on Lorentz spaces is known we then get,
as a corollary, theorems on solutions. For instance, it holds the following:

Theorem 4.9.7 ([101]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in (4.41)

in the sense of Definition 4.8.2, and under assumptions (4.42) with p > 2 � 1=n.
Assume that � 2 L.q; �/.�/ locally, with

1 < q < max

�
1;

np�

np � n C p�

�
and 0 < � � 1 : (4.50)

Then

Du 2 L

�
nq. p � 1/

n � q
; �. p � 1/

�
holds locally in � :

Moreover, there exists a constant c � c.n; p; �;L; q; �/ such that the estimate

¬Duk
L
�
nq. p�1/
n�q ;�. p�1/

�
.BR=2/

� c
Z
BR

jDuj dx C cR ¬�k1=. p�1/
L.q;�/.BR/
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holds whenever BR b � is a ball. The constant � � �.n; p; �;L/ > 1 in (4.50) is
the higher integrability exponent appearing in Theorem 4.9.5.
Many more examples are obtainable in various function spaces, in particular, in non-
interpolation spaces as Morrey spaces. We refer to [101] for more on such aspects.

4.10 Limiting Calderón-Zygmund Theory

The results displayed in (4.43)–(4.44) and those of the last section deal with
optimal gradient integrability results. What happens when looking at gradient
differentiability? Using the results available for the Poisson equation (4.1) as a
guide, the classical Calderón-Zygmund theory gives (4.4). This result fails for
q D 1, nevertheless only a minimal amount of gradient differentiability is lost.
This can be seen by using fractional Sobolev spaces. Indeed for solutions to (4.1) it
can be proved that

� 2 L1loc.�/ H) Du 2 W
;1
loc .�IRn/ whenever 0 < 
 < 1 : (4.51)

In the above display the fractional Sobolev space W
;1 appears; (4.51) essentially
means that

Z
�0

Z
�0

jDu.x/� Du. y/j
jx � yjnC
 dx dy < 1

holds for every 
 2 .0; 1/ and every bounded open subset �0 b �. In general, with
˛ 2 .0; 1/, q 2 Œ1;1/, k 2 N, the fractional Sobolev space W˛;q.�IRk/ is defined
prescribing that f W� ! R

k belongs to W˛;q.�IRk/ if and only if the following
Gagliardo-type norm is finite:

k fkW˛;q.�/ WD
�Z

�

j f .x/jq dx
�1=q

C
�Z

�

Z
�

j f .x/� f . y/jq
jx � yjnC˛q dx dy

�1=q
:

The local variant W˛;q
loc .�IRk/ is defined by requiring that f 2 W˛;q

loc .�IRk/ if and
only if f 2 W˛;q

loc .�
0IRk/ for every open subset �0 b �.

To get differentiability results in the nonlinear case we have to use a suitable
reinforcement of the assumptions that have been considered in (4.42). More
precisely we shall consider for simplicity equations with no dependence on the x-
variable, that is of the type

� divA.Du/ D � in � � R
n : (4.52)
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using assumptions as those in (4.9), but suitably recast or the case under considera-
tion. That is, we assume

8̂
ˆ̂<
ˆ̂̂:

A.�/ 2 C1.Rn n f0g/
jA.z/j C j@A.z/jjzj � Ljzjp�1

�jzjp�2j�j2 � h@A.z/�; �i :
(4.53)

These assumptions in fact imply those in (4.42) (modulo a change of the constants)
when no x-dependence of A.�/ is considered.

Now, the point is that the conclusion of (4.51) still holds in the case � is just a
Borel measure with finite total mass.

Theorem 4.10.1 ([100]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in

(4.52) in the sense of Definition 4.8.2, under assumptions (4.53) with p � 2. Then

Du 2 W



p�1 ;p�1
loc .�IRn/ for every 
 2 .0; 1/ (4.54)

holds. Moreover, for every 
 2 .0; 1/ there exists a constant c � c.n; p; �;L; 
/
such that the fractional Caccioppoli type inequality

Z
BR=2

Z
BR=2

jDu.x/� Du. y/jp�1

jx � yjnC
 dx dy � c

R


Z
BR

jDujp�1 dx

C c

R



 j�j.BR/

Rn�1

�

holds for every ball BR b �.
In (4.54) one cannot allow 
 D 1. Indeed the fractional Sobolev embedding

W˛;q
loc .�IRn/ ,! Lnq=.n�˛q/

loc .�IRn/ provided ˛q < n ; (4.55)

would then give Du 2 Ln. p�1/=.n�1/
loc .�/, which is clearly not verified by the

fundamental solution Gp defined in (4.45). The same argument using Sobolev
embedding theorem allows to infer (4.43) from (4.54). Differentiability results are
also available in the case 2 � 1=n < p < 2, see [103, 104]. For the case p D 2, a
fractional differentiability result for solutions to parabolic equations with measure
data is available in [10].

Let us now exploit some closer connections to the standard classical case (4.1).
When p D 2, (4.54) gives that

Du 2 W
;1
loc .�IRn/ holds for every 
 2 .0; 1/ (4.56)
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which is exactly what happens in (4.51). The parallel with the linear can be
pushed further, investigating the differentiability of the intrinsic quantity A.Du/,
that naturally stems from the equation. Surprisingly enough, it holds the following
result, which is in some sense the limiting case of the Calderón-Zygmund theory for
nonlinear problems:

Theorem 4.10.2 ([5]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in (4.52)

in the sense of Definition 4.8.2, under assumptions (4.53) with p � 2 � 1=n;
moreover assume also that the matrix @A.�/ is symmetric when 2 � 1=n < p < 2.
Then

A.Du/ 2 W
;1
loc .�IRn/ holds for every 
 2 .0; 1/ : (4.57)

Moreover, for every 
 2 .0; 1/, there exists a constant c � c.n; p; �;L; 
/ such that
the following fractional Caccioppoli type inequality

Z
BR=2

Z
BR=2

jA.Du.x// � A.Du. y//j
jx � yjnC
 dx dy

� c

R


Z
BR

jA.Du/j dx C c

R



 j�j.BR/

Rn�1

�

holds for every ball BR b �.
In the case of the p-Laplacean operator, (4.57) is

jDujp�2Du 2 W
;1
loc .�IRn/ holds for every 
 2 .0; 1/ ;

that reduces to (4.56) when p D 2. Theorem 4.10.2 in turn implies a family of differ-
entiability estimates showing a sort of principle of uniformization of singularities:
raising a solution to a power larger than one, increases its differentiability (although
it naturally decreases its local integrability). In particular, it allows to recast the
result of Theorem 4.10.1. We indeed have

Theorem 4.10.3 ([5]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in (4.52)

in the sense of Definition 4.8.2, under assumptions (4.53)with p � 2. Then for every
� such that 0 � � � p � 2

jDuj�Du 2 W


�C1
p�1 ;

p�1
�C1

loc .�IRn/ holds for every 
 2 .0; 1/ : (4.58)

This means there is a trade between integrability and differentiability of various
nonlinear quantities of the gradient, which is always sharp. In fact, observe that, for
every choice of � 2 Œ0; p�2�, in (4.58) we can never allow for 
 D 1, otherwise the
fractional version of Sobolev embedding theorem (4.55) applied to jDuj�Du, would
give that Du 2 Ln. p�1/=.n�1/

loc . On the other hand, again applying Sobolev embedding
theorem, for every choice of � 2 Œ0; p � 2�, we see that (4.58) implies (4.43), that is



4 Short Tales from Nonlinear Calderón-Zygmund Theory 185

the maximal regularity of Du in terms of Lebesgue spaces. We notice that the case
� D p�2 of (4.58) essentially corresponds to Theorem 4.10.2, while the case � D 0

gives (4.54). Again, when � D 0 and when � D 0, Theorem 4.10.2 relates to some
classical fractional differentiability results of Simon [108]; see also [18, 98].

4.11 Nonlinear Potential Estimates

Here we approach the nonlinear extension of the linear potential estimates (4.7).
For simplicity we shall confine ourselves to equations of the type in (4.52), under
assumptions (4.53), immediately observing that these can be in several cases
relaxed. We remark that the main point here is not the treatment of degenerate
equations as (4.52) as such, but is extending (4.7) to the case of nonlinear equations,
where representation formulae are not available. Indeed the forthcoming results are
totally non-trivial already in the case one assumes (4.53) with p D 2. Then, in this
framework, treating degenerate equations create additional and highly non-trivial
difficulties. To proceed, we still need the next

Definition 4.11.1 (Truncated Riesz Potentials) Let � 2 Mloc.�/, with � � R
n

being an open subset; the (truncated) Riesz potential I�ˇ is defined by

I�ˇ.x0;R/ WD
Z R

0

j�j.B%.x0//
%n�ˇ

d%

%
; ˇ > 0 ;

whenever BR.x0/ b �.
The relation between truncated Riesz potentials and the classical ones in Defini-
tion 4.1.1 is very simple:

I�ˇ.x0;R/ � c.n/Iˇ.j�j/.x0/ for every R > 0 : (4.59)

The truncated Riesz potentials are the natural local counterpart of the classical For
obvious scaling reasons, when p 6D 2, estimates of the type in (4.7) cannot hold. It is
therefore necessary to consider also different types of potentials, incorporating the
scaling exponent of the equations considered. These are known in the literature as
Wolff potentials, and they have been first introduced and used in [60].

Definition 4.11.2 (Wolff Potentials) Let � 2 Mloc.�/, with � � R
n being an

open subset; the nonlinear Wolff potential W�

ˇ;p is defined by

W�

ˇ;p.x0;R/ WD
Z R

0

� j�j.B%.x0//
%n�ˇp

�1=. p�1/ d%

%
; ˇ > 0

whenever BR.x0/ b �.
Wolff potentials play a basic role in Nonlinear Potential Theory and in the analysis
of fine properties of Sobolev functions and solutions. They intervene in basic
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issues such as the pointwise behaviour of Sobolev functions, the Wiener criterion
for degenerate equations [67, 68, 91, 97], existence theory for non-homogeneous
equations [105, 106]. Comparing Definition 4.11.2 with Definition 4.11.1, we see
that

W�
1;2.x0;R/ D I�2 .x0;R/ and W�

1=2;2.x0;R/ D I�1 .x0;R/ ; (4.60)

so that Wolff potentials actually reduce to Riesz potentials when p D 2.
Wolff potentials sharply replace Riesz potentials when considering degenerate

equations (p 6D 2). This is phenomenon is displayed in

Theorem 4.11.3 ([53, 67, 68, 81]) Let u 2 W1;1
loc .�/ be a local SOLA to the

equation in (4.52) in the sense of Definition 4.8.2, under assumptions (4.53) with
p � 2 � 1=n. Let BR.x0/ b � be a ball. If W�

1;p.x0;R/ < 1; then x0 is Lebesgue
point of u, in the sense that the limit

lim
%&0

.u/B%.x0/ DW u.x0/

exists and thereby defines the precise representative of u at x0. Moreover, the
pointwise Wolff potential estimate

ju.x0/j � cW�
1;p.x0;R/C c

Z
BR.x0/

juj dx (4.61)

holds with a constant c depending only on n; p; �;L.
This theorem is essentially a very fundamental contribution of Kilpeläinen and
Malý [67, 68], who established estimate (4.61) for positive measures in the full
range p > 1, provided a suitable notion of solutions is considered for the case
1 < p � 2 � 1=n to overcome the fact that SOLA do not belong to W1;1 on
this range (recall (4.46)); for such definition of solutions see also [62, 90]. An
alternative approach is in [112]. The case of general measures is treated in [53],
where yet another approach is given. The Lebesgue point criterion first appeared
in [81]. Theorem 4.11.3 allows to recover several regularity properties of solutions
to measure data problems from the analysis of Wolff potentials, whose mapping
properties are indeed known in many relevant function spaces. Their behaviour
can be indeed recovered from that of Riesz potentials via so-called Havin-Maz’ya
potentials Vˇ;p.j�j/.x0/. The inequality

W�

ˇ;p.x0;1/ . Iˇ
n
Iˇ.j�j/�1=. p�1/o

.x0/ DW Vˇ;p.j�j/.x0/ :

holds provided ˇp < n [29, 60]. When p D 2 and� � R
n, assume that

lim inf
R!1

Z
BR.x0/

juj dx D 0 :
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Letting R ! 1 in (4.61), and recalling (4.59)–(4.60), we find the first estimate
in (4.7), that this time holds in the nonlinear setting.

The Lebesgue point criterion of Theorem 4.11.3 let us forecast that Wolff
potentials can be used to control the oscillations of solutions. A sharp form of this
phenomenon is given in the following:

Theorem 4.11.4 ([68, 81]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in

(4.52) in the sense of Definition 4.8.2, under assumptions (4.53)with p � 2�1=n. If

lim
%&0

W�
1;p.x; %/ D 0 holds locally uniformly in � w.r.t. x ;

then u is continuous in �.
Theorem 4.11.4 is due to Kilpeläinen and Malý [67, 68], who considered the case
of positive measures. A proof in the general case is given in [81]. A remarkable
point here is that estimate (4.61) is sharp, and the nonlinear potential W�

1;p cannot
be replaced by any other smaller potential. This is in fact reported in the following:

Theorem 4.11.5 ([67, 68]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in

(4.52) in the sense of Definition 4.8.2, under assumptions (4.53) with p � 2 � 1=n
and with � 2 Mloc.�/ being a positive measure. Then there exists a constant c �
c.n; p; �;L/ such that the following pointwise estimate holds whenever B.x0; 2R/ b
� and the Wolff potential is finite:

c�1W�
1;p.x0;R/ � u.x0/ � cW�

1;p.x0; 2R/C c inf
BR.x0/

u : (4.62)

We refer to [87] for a fractional version of the last two theorems. The nonlinear
extension of the second estimate in (4.7) has remained an open problem after the
works [67, 68, 112]. In the non-degenerate case p D 2 the first result has been
obtained in [102]. As for the degenerate case p > 2, the first result that appeared in
the literature involved Wolff potentials:

Theorem 4.11.6 ([53]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in (4.52)

in the sense of Definition 4.8.2, under assumptions (4.53) with p � 2. Then the
pointwise Wolff potential estimate

jDu.x0/j � cW�

1=p;p.x0;R/C c
Z
BR.x0/

jDuj dx (4.63)

holds with a constant c depending only on n; p; �;L, and for every ball BR.x0/ b �

such that x0 is Lebesgue point of Du.
We recall that

W�

1=p;p.x0;R/ D
Z R

0


 j�j.B%.x0//
%n�1

�1=. p�1/ d%

%
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and this coincides with the usual linear Riesz potential I�1 .x0;R/ for p D 2.
Theorem 4.11.6 follows the standard orthodoxy of Nonlinear Potential Theory:
Wolff potentials replace linear Riesz potentials whenever p 6D 2. Now we shall see
a change of paradigm. Consider the equation �div .jDujp�2Du/ D � and formally
decouple it as

( D WD jDujp�2Du

�divD D � :
(4.64)

We now formally apply the Riesz potential I1, i.e. D 
 �I�1 (this is actually very
rough but it is what could be done when trying to solve an equation as in (4.64)2).
This suggests the validity of the estimate

jDu.x0/jp�1 D jD.x0/j .
Z
Rn

dj�j.x/
jx � x0jn�1 : (4.65)

It indeed holds the following:

Theorem 4.11.7 ([51, 78]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in

(4.52) in the sense of Definition 4.8.2, under assumptions (4.53) with p � 2 � 1=n.
Let BR.x0/ b � be a ball. If I�1 .x0;R/ < 1; then x0 is Lebesgue point of the
gradient, in the sense that the limit

lim
%&0

.Du/B%.x0/ DW Du.x0/

exists and thereby defines the precise representative of Du at x0. Moreover, the
pointwise Riesz potential estimate

jDu.x0/j � c

I�1 .x0;R/

�1=. p�1/ C c
Z
BR.x0/

jDuj dx (4.66)

holds with a constant c depending only on n; p; �;L.
As for a comparison between (4.66) and (4.63), we have


I�1 .x0;R/

�1=. p�1/ . W�

1=p;p.x0; 2R/ if p � 2

W�

1=p;p.x0;R/ .

I�1 .x0; 2R/

�1=. p�1/
if 1 < p < 2 :

This means that Theorem 4.11.7 improves Theorem 4.11.6. Let us mention that
the decoupling and linearization principle explained in (4.64) is very general and
applied to very large classes of operators in divergence from as shown by Baroni [9].
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Riesz potentials can be also used to control the local oscillations of the gradient;
indeed we have

Theorem 4.11.8 ([78, 104]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in

(4.52) in the sense of Definition 4.8.2, under assumptions (4.53)with p � 2�1=n. If
lim
%&0

I�1 .x; %/ D 0 holds locally uniformly in � w.r.t. x ; (4.67)

then Du is continuous in �.
Several typical facts of the linear theory can now be reproduced verbatim since

the behavior of Riesz potentials is completely known in rearrangement invariant
function spaces. See for instance the techniques in [29]. Moreover, assume this time
that � � R

n and that

lim inf
R!1

Z
BR.x0/

jDuj dx D 0 :

Letting R ! 1 in (4.11.7), and recalling (4.59), we find exactly (4.65), which is in
turn the second estimate in (4.7) when p D 2.

We finally mention a remarkable application of Theorem 4.11.8. A celebrated
result of Stein [110] claims that if v 2 W1;1 is a Sobolev function defined in R

n

with n � 2, then Dv 2 L.n; 1/ implies that v is continuous. From Definition 4.9.4
we recall that the Lorentz space L.n; 1/ (over a subset �) is defined as the set of
measurable maps gW� ! R such that

Z 1

0

jfx 2 � W jg.x/j > �gj1=n d� < 1 : (4.68)

Stein’s theorem is, in a sense, the limiting case of Sobolev-Morrey embedding
theorem, as on finite measure spaces we have LnC" � L.n; 1/ � Ln for every " > 0.
A dual way to state Stein’s theorem can be obtained when looking at the gradient
regularity of solutions u to the Poisson equation (4.1), and amounts to observe that
4u 2 L.n; 1/ implies the continuity of Du. This follows by Steins’ result and
classical Calderón-Zygmund theory, since Lorentz spaces are actually interpolation
spaces (�4u 2 L.n; 1/ implies D2u 2 L.n; 1/). The point is that now this fact
transports verbatim to the nonlinear case, and we have the following nonlinear Stein
theorem:

Theorem 4.11.9 ([78]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in (4.52)

in the sense of Definition 4.8.2, under assumptions (4.53) with p � 2�1=n and such
that � 2 L.n; 1/ locally in �. Then Du is continuous in �.

This last result is a corollary of (4.11.8), since it can be proved that con-
dition (4.68) implies (4.67). Actually, but by different means, Theorem 4.11.9
continues to hold in the whole range p > 1 when considering the p-Laplacean
system, and therefore vector-valued solutions. For this result we refer to [83]. The
space L.n; 1/ plays a role for more general operators and in this respect recent results
dealing with non-uniformly elliptic equations can be found in [6]. For further a priori
estimates see also [30–32, 77].
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4.12 Systems

The scalar estimates of the previous section find a fully satisfying analog in the
vectorial case, provided, of course, the right class of systems is considered. The
problem of proving potential estimates for systems, that is when both uW� ! R

N

and � are vector-valued, has remained open since the original work of Kilpeläinen
and Malý [67, 68] and after the vectorial existence theory has been established in
the work of Dolzmann et al. in [45–47]. This issue is delicate and needs different
approaches, since its nature changes. Indeed, already in the case � � 0 as in (4.83),
solutions to vectorial problems develop singularities, no matter how data are smooth,
and this is a well-known fact; we refer for instance to [71, 99] for a discussion
of this topic. On the other hand, as noticed starting from the classical work of
Uhlenbeck [113], under special structure conditions, solutions to vectorial problems
do not exhibit singularities. This is the case of systems with so-called quasi-diagonal
structure of the type

� div .g.jDuj/Du/D � ; (4.69)

where g.t/ 
 tp�2. Indeed, when � � 0, Uhlenbeck showed that solutions are
C1;˛-regular, for some ˛ depending only on n;N; p and the ellipticity properties of
g.�/. In the recent paper [86] a rather satisfying Nonlinear Potential Theory has been
established for solutions to systems as in (4.69) for the case p � 2. In particular, a
suitable notion of SOLA is considered (essentially the one introduced in [45, 46])
and the whole content of Theorems 4.11.3, 4.11.4, 4.11.7 and 4.11.8 is established
in the vectorial case too. The main results, for u and Du, respectively, are in the
following two theorems and are stated directly for the model case given by the p-
Laplacean system. Notice that we have not given the definition of local SOLA in
the vectorial case, for which we refer to [86]. We just say that, with no surprise,
this definition allows to recover the final estimate for SOLA from a priori estimates
for energy solutions (i.e., W1;p-regular) to systems with regular data (� 2 L1).
So, when reading the statement of the next two theorems, the reader can think for
simplicity to this last case and look at the shape of the estimates. The essence of the
content will not be lost.

Theorem 4.12.1 ([86]) Let u 2 W1;p�1.�IRN/ be a local SOLA to the system

� div .jDujp�2Du/ D � (4.70)

where � is a vector-values Borel measure with finite total mass and for p � 2. Let
Br.x0/ � � be a ball. If

lim
%!0

j�j.B%.x0//
%n�p

D 0 ;
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then u has vanishing mean oscillations at x0, i.e.,

lim
%!0

Z
B%.x0/

ju � .u/B%.x0/j dx D 0 :

Furthermore, if W�
1;p.x0; r/ is finite, then x0 is a Lebesgue point of u and

ju.x0/ � .u/Br.x0/j � cW�
1;p.x0; r/C c

Z
Br.x0/

ju � .u/Br.x0/j dx (4.71)

holds with a constant c � c.n;N; p/. Finally, assume that

lim
%!0

sup
x2Br.x0/

W�
1;p.x; %/ D 0 :

Then u is continuous in Br.x0/.
Notice that estimate (4.71) easily implies (4.61), and therefore gives the vector-

valued analog of the scalar results of Kilpelainen and Malý [67, 68]. As for the
gradient, we have the following:

Theorem 4.12.2 ([86]) Let u 2 W1;p�1.�IRN/ be a local SOLA to the system
in (4.70), where � is a vector-values Borel measure with finite total mass and for
p � 2. Let Br.x0/ � � be a ball. If

lim
%!0

j�j.B%.x0//
%n�1 D 0 ;

then Du has vanishing mean oscillations at x0, i.e.,

lim
%!0

Z
B%.x0/

jDu � .Du/B%.x0/j dx D 0 :

Moreover, if Ij�j
1 .x0; r/ is finite, then x0 is a Lebesgue point of Du and

jDu.x0/ � .Du/Br.x0/j � c
h
Ij�j
1 .x0; r/

i1=. p�1/

Cc
Z
Br.x0/

jDu � .Du/Br.x0/j dx (4.72)

holds for a constant c � c.n;N; p/. Finally, if

lim
%!0

sup
x2Br.x0/

Ij�j
1 .x; %/ D 0

holds, then Du is continuous in Br.x0/.
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The proof of the potential estimates and continuity criteria in the vectorial case
requires approaches that do strongly differ from those employed in the scalar one.
Ultimately, absence of maximum principles and related truncation techniques plays
a decisive role here. The proofs involve a combination of methods from Nonlinear
Potential Theory and from the partial regularity theory for elliptic systems, in
turn originally stemming from Geometric Measure Theory. In particular, some of
the methods of classical Uhlenbeck’s paper [113] are used here; these are in turn
inspired by the linearization techniques introduced by De Giorgi [40] in the setting
of Geometric Measure Theory, minimal surfaces and partial regularity. These tools
are then embedded in the context of measure data problems, building a bridge
between two different branches of regularity theory, that is partial regularity theory
and Nonlinear Potential Theory. An example of such an interaction is given by the
following instrumental lemma, that could be useful in different settings.

Lemma 4.12.3 ([86]) Let p > 2 � 1=n and w 2 W1;p.BrIRN/ satisfy

Z
Br

jwj dx � Mr for some M � 1 ;

where Br � R
n is a ball with radius r > 0. Let

1 < q < min

�
p;

n. p � 1/
n � 1

�
; " > 0 :

There exists a positive constant ı � ı.n;N; p; q;M; "/, ı 2 .0; 1�, such that if
ˇ̌
ˇ̌Z

Br

jDwjp�2hDw;D'i dx
ˇ̌
ˇ̌ � ı

r
k'kL1.Br/

for every ' 2 W1;p
0 .BrIRN/ \ L1.BrIRN/, then there exists a p-harmonic map h 2

W1;p.Br=2IRN/, that is a solutions to the system �div .jDhjp�2Dh/ D 0, satisfying

 Z
Br=2

jDw � Dhjq dx
!1=q

� " :

We notice that similar compactness lemmas already appear in the literature. They
find their origins in the seminal work of De Giorgi on minimal surfaces, where the
Laplacean operator is considered (p D 2). For lemmas involving the p-Laplacean
operator we refer to [48, 57]. The main new and essential feature of Lemma 4.12.3
is that it allows to prove a comparison estimate via compactness methods without
assuming energy bounds on u in the natural spaceW1;p, but just in L1. In other words,
it works in a lower energy regime which is tailored to measure data problems, whose
solutions are indeed not in the natural energy space.
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We finally spend a few words on the case of general systems of the type

� divA.Du/ D � ; in � � R
n : (4.73)

In this case it is still possible to get results of the type of Theorem 4.11.9, but,
since for such systems singularities occur anyway even when � � 0, then a kind
of partial regularity statement holds. Let us now describe the assumptions in detail.
We consider the vector field AWRN�n ! R

N�n which is assumed to be C1-regular
and satisfying the following ellipticity and growth assumptions:

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

jA.z/j C j@A.z/jjzj � Ljzjp�1

�jzjp�2j�j2 � h@A.z/�; �i

j@A.z2/� @A.z1/j � L!

� jz2 � z1j
jz1j C jz2j

�
.jz1j C jz2j/p�2

p � 2 ;

(4.74)

for every choice of z; z1; z2, � 2 R
N�n, jz1j C jz2j 6D 0. Here n;N � 2, 0 < � � L,

and ! W R
C ! Œ0; 1� is a modulus of continuity i.e. a bounded, concave,

and non-decreasing function such that !.0/ D 0. As it is clear from the above
assumptions, we are allowing the vector field A.�/ to be degenerate elliptic at the
origin. Specifically, we assume that A.�/ is asymptotically close to the p-Laplacean
operator at the origin in the sense that the limit

lim
t!0

A.tz/

tp�1 D jzjp�2z (4.75)

holds locally uniformly with respect to z 2 R
N�n. This means that there exists a

function 	W .0;1/ ! .0;1/ with the property

jzj � 	.s/ H) ˇ̌
a.z/� jzjp�2z

ˇ̌ � sjzjp�1 for every z 2 R
N�n and s > 0 :

Finally, with B%.x/ � � being a given ball, we introduce the so called excess
functional defined by

E.Du;B%.x// WD
 Z

B%.x/

ˇ̌jDujp=2�1Du � .jDujp=2�1Du/B%.x/
ˇ̌2

dy

!1=2
;

which is bound to give an integral measure of the oscillations of the gradient in
B%.x/.
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We now have the following partial regularity analog of the nonlinear Stein
Theorem 4.11.9:

Theorem 4.12.4 ([85]) Let u 2 W1;p.�IRN/ be a solution to the general system
(4.73) under assumptions (4.74)–(4.75). If

� 2 L.n; 1/ ;

then there exists an open subset �u � � such that

j� n�uj D 0 and Du 2 C0.�uIRN�n/ : (4.76)

Moreover, there exist a positive constant "s and a positive radius %s, such that

�u D
n
x 2 � W 9 B%.x/ b � with % � %s W E.Du;B%.x// < "s

o
: (4.77)

The constant "s depends only on n;N; p; �;L; !.�/ and 	.�/, while %s depends on the
same parameters and additionally on �.
Theorem 4.12.4 builds a bridge between the classical partial regularity theory—
that prescribes to prove regularity of solutions outside closed subsets with zero
measure as in (4.76)—and the nonlinear potential theory. Indeed, it rests on a series
of potential estimates employing certain nonlinear potentials that also plays a role
in the analysis of fully nonlinear equations [38]. We also notice that, for � � 0,
Theorem 4.12.4 coincides with the kind of partial regularity results obtained [49].
For more pointwise estimates we also refer to [19].

4.13 Universal Potential Estimates

In this section we want to describe an approach allowing to control oscillation
properties of solutions via potentials. This fact is already partially displayed in
estimates (4.71)–(4.72); here we shall present precise quantitative versions with
respect to assigned moduli of continuity. The final outcome is a set of estimates,
that we indeed call universal potential estimates, virtually allowing to describe
any type of regularity of solutions via potentials. Moreover, the potential estimates
in (4.61), (4.63) and (4.66) will be then recovered as special occurrences of such
a new family. Again, let’s start from the familiar Poisson equation (4.1). The
elementary inequality

ˇ̌jx1 � x0j2�n � jx2 � x0j2�n
ˇ̌

.
ˇ̌jx1 � x0j2�n�˛ C jx2 � x0j2�n�˛ ˇ̌ jx1 � x2j˛ ;
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which is valid whenever x1; x2; x0 2 R
n, 0 � ˛ < 1, and estimate (4.2), then imply

ju.x1/ � u.x2/j . ŒI2�˛.j�j/.x1/C I2�˛.j�j/.x2/� jx1 � x2j˛

and

jDu.x1/ � Du.x2/j � c ŒI1�˛.j�j/.x1/C I1�˛.j�j/.x2/� jx1 � x2j˛ :

These two estimates allow to control the oscillations of u and of Du, respectively,
in Hölder type spaces, via the use of potentials. Sharp nonlinear analogs of
such inequalities actually hold. For this, we need a few preliminaries to fix the
setting, starting by a remarkable feature of the fractional sharp operators from
Definition 4.9.3.

Proposition 4.13.1 ([41]) Let f 2 L1.B2R/; for every ˛ 2 .0; 1� the inequality

j f .x1/ � f .x2/j � c

˛


M#
˛;R. f /.x1/C M#

˛;R. f /.x2/
� jx1 � x2j˛ (4.78)

holds whenever x1; x2 2 BR=4, for a constant c depending only on n. More precisely,
x1 and x2 are Lebesgue points of f whenever M#

˛;R. f /.x1/ andM
#
˛;R. f /.x2/ are finite,

respectively. Therefore, whenever the right-hand side in (4.78) is finite, the values
of f are defined via the precise representative as follows:

f .x1/ WD lim
%&0

. f /B%.x1/ 2 R and f .x2/ WD lim
%&0

. f /B%.x2/ 2 R :

As first realized by De Vore and Sharpley [41], the previous proposition allows to
define a new, natural family of function spaces.

Definition 4.13.2 (Calderón Spaces) Let ˛ 2 .0; 1�, q � 1, k 2 N, and let � �
R

n be an open subset with n � 2. A measurable map f W� ! R
k, which is finite a.e.

in �, belongs to the Calderón space C˛q .�/ if and only if there exists a nonnegative
function m 2 Lq.�/ such that

j f .x1/� f .x2/j � Œm.x1/C m.x2/�jx1 � x2j˛ (4.79)

holds for almost every couple .x1; x2/ 2 � ��.
This is just another way to say that f has “fractional derivatives". The advantage

is that, with the above definition, the nonlocal character of fractional derivatives is
reduced to a minimal status: only two points are considered in (4.79). Calderón
spaces are closely related to the usual fractional Sobolev spaces W˛;q seen in
Sect. 4.10 and the function m plays the role of a generalized fractional derivative
of f of order ˛ in the Lq-sense. Definition 4.13.2 is implicit in the work of DeVore
and Sharpley [41], where, thanks to Proposition 4.13.1, the authors fix the canonical
choice m D M#

˛;1. f / from Definition 4.9.3, when f is locally integrable on R
n.

With this notion of fractional differentiability at our disposal, it is possible to give
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a suitable formulation of potential estimates, controlling in a quantitative way the
rate of oscillations in Hölder type spaces. To shorten the presentation we restrict
to the simpler case of (4.52) and when p � 2, referring to the [76] for the
subquadratic case. We first state a new estimate, involving fractional operators, and
being interesting in itself.

Theorem 4.13.3 ([76, 81]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in

(4.52) in the sense of Definition 4.8.2, under assumptions (4.53) with p � 2. Then,
for every ball BR.x0/ b �, the estimate

M#
˛;R.u/.x0/ � c

h
I�p�˛. p�1/.x0;R/

i1=. p�1/ C cR1�˛
Z
BR.x0/

jDuj dx (4.80)

holds uniformly with respect to ˛ 2 Œ0; 1�, with c � c.n; p; �;L/.
Applying (4.78) together with (4.80) yields a pointwise estimate on the oscilla-

tions of solutions to (4.41), that is the first universal potential estimate the title of
this section is referring to.

Theorem 4.13.4 ([76, 81]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in

(4.52) in the sense of Definition 4.8.2, under assumptions (4.53) with p � 2. The
inequality

ju.x1/ � u.x2/j � c

˛

h
I�p�˛. p�1/.x1;R/C I�p�˛. p�1/.x2;R/

i1=. p�1/ jx1 � x2j˛

Cc
Z
BR

juj dx �
� jx1 � x2j

R

�˛
(4.81)

holds uniformly in ˛ 2 Œ0; 1�, whenever BR b � is a ball and x1; x2 2 BR=4, provided
the right-hand side is finite. The constant c depends only on n; p; �;L.

Estimate (4.81) gives back (4.66) when ˛ D 1, and extends it to the whole range
of differentiability ˛ 2 .0; 1�; information deteriorates when ˛ ! 0. In view of
Definition 4.13.2, we can interpret estimate (4.81) as

j@˛u.x/jp�1 . Ip�˛. p�1/.j�j/.x/ ; 0 < ˛ � 1 :

Strong abuse of notation is made here, of course. The case ˛ D 0 is not included
in Theorem 4.13.4. Indeed, the validity of (4.81) would ultimately contradict the
optimality of the Wolff estimate displayed in (4.62) since


I�p .x0;R/

�1=. p�1/ . W�
1;p.x0; 2R/ ; for p � 2 :

On the other, using Wolff potentials we can prove an estimate that works uniformly
in the whole range ˛ 2 Œ0; 1�; this includes both the case ˛ D 0 (that is (4.61)) and
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recovers (4.63) when ˛ D 1 (which is slightly less sharp than (4.66)). This is the
content of

Theorem 4.13.5 ([76]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in (4.52)

in the sense of Definition 4.8.2, under assumptions (4.53) with p � 2. The inequality

ju.x1/� u.x2/j � c
h
W�

1�˛. p�1/=p;p.x1;R/C W�

1�˛. p�1/=p;p.x2;R/
i

jx1 � x2j˛

Cc
Z
BR

juj dx �
� jx1 � x2j

R

�˛
(4.82)

holds uniformly with respect to ˛ 2 Œ0; 1�, whenever BR b � is a ball and x1; x2 2
BR=4, provided the right-hand side is finite. The constant c depends only on n; p; �;L.

The main use of estimates (4.81) and (4.82) is rather clear. In order to get
regularity of solutions in spaces measuring the oscillations of functions, like
Hölder spaces C0;˛ , fractional Sobolev spaces W˛;q, and Calderón spaces C˛q , it is
sufficient to check the relevant mapping properties of potentials. This in fact encodes
regularity theory via estimates as (4.81) and (4.82).

In view of the available gradient regularity theory for solutions to homogeneous
equations as

divA.Dw/ D 0 ; (4.83)

it is then natural to wonder if similar universal potential estimates hold for the
oscillations of the gradient too. For this let us recall the basic information about the
maximal regularity of W1;p-solutionsw to equations as (4.83). This theory goes back
to the fundamental contribution of Ural’tseva [114]; see also [113] for the vectorial
case. The outcome is the existence of a positive exponent ˛M 2 .0; 1/, depending
only on n; p; � and L, such that Dw 2 C0;˛loc .�IRn/ takes places for every ˛ < ˛M
and

jDw.x1/� Dw.x2/j .
Z
BR

jDwj dx �
� jx1 � x2j

R

�˛

holds for every ball BR b �, with x1; x2 2 BR=2. Accordingly to this last inequality,
in the non-homogeneous case we have

Theorem 4.13.6 ([76]) Let u 2 W1;1
loc .�/ be a local SOLA to the equation in (4.52)

in the sense of Definition 4.8.2, under assumptions (4.53) with p � 2. Fix Q̨ <

minf1=. p � 1/; ˛Mg, then the inequality
jDu.x1/ � Du.x2/j

� c



W�

1� .1C˛/. p�1/
p ;p

.x1;R/C W�

1� .1C˛/. p�1/
p ;p

.x2;R/

�
jx1 � x2j˛

Cc
Z
BR

jDu � .Du/BRj dx �
� jx1 � x2j

R

�˛
(4.84)
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holds whenever BR b � and x1; x2 2 BR=4, and ˛ 2 Œ0; Q̨ �, provided the right-hand
side is finite. The constant c depends only on n; p; �;L and Q̨ .
Notice that estimate (4.84) catches-up the one in (4.63) “from above" (let ˛ D 0).

4.14 Parabolic Equations

We finally conclude with some results valid for parabolic problems, confining
ourselves to a few significant cases. Proving potential estimates for solutions to
nonlinear parabolic equations of the type

ut � divA.Du/ D � in �T WD � � .�T; 0/ � R
nC1 (4.85)

requires additional new ideas and a wealth of new technicalities; the assumptions
considered for the vector field A.�/ here are those considered in (4.53). As usual,
� 2 Mloc.�T/ denotes a Borel measure with locally finite total mass in �T . For
basic existence and regularity results concerning (4.85), we refer to [8, 16].

We shall treat the case of gradient potential estimates and we shall specialize to
the case p � 2. When p D 2 gradient potential estimates have first been derived
in [53], and in this case the approach is similar to the one used for the elliptic
case. The situation drastically changes when p 6D 2. The basic idea here is to
use the potential theoretic approach developed for the elliptic case together with
the fundamental concept of intrinsic geometry introduced by DiBenedetto [43] and
already described in Sect. 4.5. The key new point is to use the intrinsic cylinders
defined in (4.20) to build a new type of “intrinsic potentials". These are (intrinsic)
caloric Riesz potentials of the type

I�ˇ;�.x0; t0IR/ WD
Z R

0

j�j.Q�%.x0; t0//
%N�ˇ

d%

%
; (4.86)

where at the moment � > 0 is just a free parameter, that will be eventually linked
to a solution. Here N WD n C 2 is the usual parabolic dimension. For � D 1 or for
p D 2, those in (4.86) reduce to the caloric Riesz potentials already used in [53] to
get parabolic potential estimates when p D 2, and built using the standard parabolic
cylinders, i.e.,

I�ˇ.x0; t0IR/ WD
Z R

0

j�j.Q%.x0; t0//
%N�ˇ

d%

%
: (4.87)

The approach to parabolic potential estimates via intrinsic caloric potentials has
been introduced and carried out in [79, 80, 82], with some anticipations in [75]. For
the sake of simplicity we shall report results in the form of a priori estimates for
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energy solutions. We therefore consider energy solutions

u 2 C0.�T; 0IL2loc.�// \ Lp.�T; 0IW1;p
loc .�//

to parabolic equations of the type (4.85). From this it is then not difficult to get
estimates for solutions to measure data parabolic problems when considering the
natural definition of SOLA, for which we again refer to [80]. The following intrinsic
Riesz potential bound for the (spatial) gradient now takes place:

Theorem 4.14.1 ([80, 82]) Let u be an energy solution to (4.85), under assump-
tions (4.53) with p � 2. There exists a constant c > 1, depending only on n; p; �;L,
such that the implication

cI�1;�.x0; t0IR/C c

 Z
Q�R.x0;t0/

jDujp�1 dx dt
!1=. p�1/

� �

H) jDu.x0; t0/j � �

holds whenever Q�R.x0; t0/ b �T and .x0; t0/ is Lebesgue point of Du.
This last estimate, which is homogeneous and actually a conditional one, then

implies a bound on general standard parabolic cylinders, and making use of the
standard caloric Riesz potential defined in (4.87).

Theorem 4.14.2 ([80, 82]) Let u be an energy solution to (4.85), under assump-
tions (4.53) with p � 2. There exists a constant c, depending only on n; p; �;L, such
that

jDu.x0; t0/j � cI�1 .x0; t0IR/C c
Z
QR.x0;t0/

.jDuj C 1/p�1 dx dt

holds whenever QR.x0; t0/ b �T is a standard parabolic cylinder and .x0; t0/ is
Lebesgue point of Du.
The proof of Theorem 4.14.1 opens the way to an optimal continuity criterion for
the gradient that involves classical (caloric) Riesz potentials and that, as such, is
again independent of p.

Theorem 4.14.3 ([80]) Let u be an energy solution to (4.85), under assumptions
(4.53) with p � 2. If

lim
%&0

I�1 .x; tI %/ D 0 holds locally uniformly in � w.r.t. .x; t/ 2 �T ;

then Du is continuous in �T .
For the results in the case p < 2 we refer to [79]. See [84] for systems.
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Chapter 5
The Mathematical Theories of Diffusion:
Nonlinear and Fractional Diffusion

Juan Luis Vázquez

Abstract We describe the mathematical theory of diffusion and heat transport with
a view to including some of the main directions of recent research. The linear heat
equation is the basic mathematical model that has been thoroughly studied in the last
two centuries. It was followed by the theory of parabolic equations of different types.
In a parallel development, the theory of stochastic partial differential equations gives
a foundation to the probabilistic study of diffusion.

Nonlinear diffusion equations have played an important role not only in theory
but also in physics and engineering, and we focus on a relevant aspect, the existence
and propagation of free boundaries. Due to our research, we use the porous medium
and fast diffusion equations as case examples.

A large part of the paper is devoted to diffusion driven by fractional Laplacian
operators and other nonlocal integro-differential operators representing nonlocal,
long-range diffusion effects. Three main models are examined (one linear, two
nonlinear), and we report on recent progress in which the author is involved.

5.1 Introduction to Diffusion

There are a number of phenomena in the physical sciences that we associate with the
idea of diffusion. Thus, populations of different kinds diffuse; particles in a solvent
and other substances diffuse. Besides, heat propagates according to a process that is
mathematically similar, and this is a major topic in applied science. We find many
other instances of diffusion: electrons and ions diffuse; the momentum of a viscous
fluid diffuses (in a linear way, if we are dealing with a Newtonian fluid). More
recently, we even talk about diffusion in the financial markets.
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The word diffusion derives from the Latin diffundere, which means “to spread
out”. A substance spreads out by moving from an area of high concentration to an
area of low concentration. This mixing behaviour does not require any bulk motion,
a feature that separates diffusion from other transport phenomena like convection,
or advection.

high concentration low concentration

solute
Source: Figure obtained from Google

This description can be found in Wikipedia [265], where we can also find a longer
listing of more than 20 diffusive items, that are then developed as separate subjects.
It includes all classical topics we mention here.

5.1.1 Diffusion in Mathematics

In this survey paper we want to present different topics of current interest in the
mathematical theory of diffusion in a historical context. To begin with, we may ask
if mathematics is really relevant in the study of diffusion process? The answer is
that diffusion is a topic that enjoys superb mathematical modelling. It is a branch of
the natural sciences that is now firmly tied to a number of mathematical theories that
explain its working mechanism in a quite successful way. The quantity that diffuses
can be a concentration, heat, momentum, information, ideas, a price,. . . every such
process can be called a diffusion, and its evolution is governed by mathematical
analysis.

Going into the details of how we actually explain diffusion with mathematics, it
so happens that we may do it in a twofold way: roughly speaking, by means of the
diffusion equation and its relatives, or by a random walk model and its relatives.

The older work concerns the description of heat propagation and mass diffusion
by means of partial differential equations (PDEs), and this is the view that we are
going to favor here. The type of PDEs used is the so-called parabolic equations,
a family based on the properties of the most classical model, the linear Heat
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Equation (HE), which is called in this context the diffusion equation. probabilistic
On the other hand, according to probabilists diffusion is described by random
walks, Brownian motion, and more generally, by stochastic processes, and this is
a long and successful story in twentieth century mathematics, culminated by Itō’s
calculus. Let us recall that the connection between the two visions owes much to
A.N. Kolmogorov.

Actually, an interesting question for the reader or the expert is ‘How much
of the mathematics of diffusion can be explained with linear models, how much
is essentially nonlinear?’ Linear models have priority when applicable by virtue
of their rich theory and easier computation. But nonlinear models are absolutely
necessary in many real-world contexts and most of our personal research has
been based on them. Diffusion equations involving nonlinearities and/or nonlocal
operators representing long-range interactions are the subject matter of the recent
research that we want to report in this paper.

Outline of the Paper The declared intention is to make a fair presentation of the
main aspects of Mathematical Diffusion as seen by an expert in PDEs, and then
to devote preference to the work done by the author and collaborators, especially
the more recent work that deals with free boundaries and with fractional operators.
The main topics are therefore the heat equation, the linear parabolic theory and the
fractional diffusion in a first block; the nonlinear models, with emphasis on those
involving free boundaries come next; finally, the nonlocal and nonlinear models, and
here we will focus on the two equations that have been most studied by the author in
the last decade, both combine porous medium nonlinearities and fractional diffusion
operators.

Lengthy details are not frequent, but we give some for very recent work of
ours and our collaborators. On the other hand, we supply many important explicit
solutions and comment on their role. Indeed, many such examples belong to the
class stable diffusive patterns, that combine their surprising occurrence in numerous
real-world applications with the beauty of pure mathematics.

A large number of connections with other topics is given in the text, as well as
hints for further reading. More detail on the topics is to be found in the articles,
monographs, or in our previous survey papers.

Disclaimer Let us comment on an important absence. The stationary states of
diffusion belong to an important world, the elliptic equations. Elliptic equations,
linear and nonlinear, appear in a large number of applications: diffusion, fluid
mechanics, waves of all types, quantum mechanics, . . . Elliptic equations are
mathematically based on the Laplacian operator, � D r2, the most important
operator for our community. This is a huge world. We are not going to cover in
any detail the many developments in elliptic equations related to diffusion in this
paper, we will just indicate some important facts and connections here and there.
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5.1.2 Heat Equation: Main Model for Diffusion

We begin our presentation with the linear heat equation (HE):

ut D �u

proposed by J. Fourier as a mathematical model for heat propagation (“Théorie
Analytique de la Chaleur”, 1822, [128], with a previous attempt in 1807), and the
Fourier analysis that he promoted. For a long time the mathematical study of heat
transport and diffusion was almost exclusively centered on the heat equation. In
these two centuries, the mathematical models of heat propagation and diffusion have
made great progress both in theory and application. Actually, they have had a strong
influence on no less than six areas of Mathematics: PDEs, Functional Analysis,
Infinite-Dimensional Dynamical Systems, Differential Geometry and Probability,
as well as Numerics. And the theory has been influenced by its motivation from
Physics, and in turn the concepts and methods derived from it have strongly
influenced Physics and Engineering. In more recent times this influence has spread
further away, to Biology, Economics, and the Social Sciences.

• The classical analysis of the heat flow is based on two main mathematical
techniques: integral representation (convolution with a Gaussian kernel) and
Fourier analysis, based on mode separation, analysis, and synthesis. Since this
topic is well-known to the readers, see for instance [120], we will stress the points
that interest us to fix some concepts and tools.

1. The heat equation semigroup and Gauss. When heat propagates in free space
R

N , the natural problem is the initial value problem

ut D �u; u.x; 0/ D f .x/ ; (5.1)

which is solved by convolution with the evolution version of the Gaussian
function

G.x; t/ D .4�t/�N=2exp .�jxj2=4t/: (5.2)

Note that G has all nice analytical properties for t > 0, but for t D 0 we have
G.x; 0/ D ı.x/, a Dirac mass. G works as a kernel, a mathematical idea that goes
back to Green and Gauss.

The maps St W u0 7! u.t/ WD u0 � G.�; t/ form a linear continuous semigroup
of contractions in all Lp spaces for all 1 � p � 1. This is pure Functional
Analysis, a product of the twentieth century.

Asymptotic Behaviour as t ! 1, Convergence to the Gaussian If u0 is
an integrable function and M D R

u0.x/ dx ¤ 0, the following convergence is
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proved

lim
t!1 tN=2.u.x; t/ � MG.x; t// D 0 ; (5.3)

and the limit holds uniformly in the whole space. For convergence in Lp less is
needed. So u.�; t/ increasingly resembles (i.e. as t grows to infinity) a multiple
of the Gaussian profile G.�; t/. This is the famous Central Limit Theorem in its
continuous form (famous in Probability with M D 1, but M ¤ 1 makes no
difference as long as M is not zero).

The Gaussian function is the most famous example of the many diffusive
patterns that we will encounter, and the previous theorem shows that is not only
stable but also asymptotic attractor of the heat flow (for finite-mass data). Note
that the sharp convergence result needs renormalization in the form of the growth
factor tN=2.

• These are two classical personalities of the diffusion equation.

J. Fourier and K.F. Gauss. Source: Figures obtained from Google and personal sources

2. Matter diffusion. This is an older subject in Physics, already treated by Robert
Boyle in the seventeenth century with the study of diffusion in solids. After the
work of Fourier in heat propagation, Adolf Fick proposed his law of diffusion of
matter [126], where the mass flux is proportional to the gradient of concentration
and goes in the direction of lower concentrations. This leads to the heat equation,
HE, as mathematical model. He also pointed out the fundamental analogy
between diffusion, conduction of heat, and also electricity. Actually, Fourier’s
law for heat conduction (1822), Ohm’s law for electric current (1827), Fick’s law
for diffusion in solids (1855), and Darcy’s [98] law for hydraulic flow (1856)
have a similar mathematical gradient form.

3. The connection with Probability. The time iteration of independent random
variables with the same distribution led to the theory of random walks, at the
early times of the Bernoullis et al. Soon it was realized that this led to a
large-time limit described (after renormalization) by the Gaussian distribution,
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as textbooks in Probability and Stochastic Processes show. The connection of
this evolution with the heat equation took place after the construction of the
Brownian motion as a mathematically rigorous object in the form of Wiener
process. In the 1930s Kolmogorov investigated the equivalence of the two view
points, i.e., the PDE approach via the Heat Equation and the stochastic approach
via Brownian motion. This topic is covered by many PDE authors, let us mention
[122, 221].

Next we show two opposing diffusion graphs. They show the comparison of
ordered dissipation in the heat equation view, as the spread of a temperature or
concentration, versus the underlying chaos of the random walk particle approach,
origin of the Brownian motion favoured by the probabilistic school.
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We will go back to the latter view in a while. The experimental observation of
chaotic movement in Nature due to mechanical effects at the microscopic level is
credited to Robert Brown (1827), see [57], hence the label ‘Brownian motion’.

4. The Fourier Analysis approach to heat flows in bounded domains. The
second classical scenario for heat flows occurs when heat propagates inside a
bounded domain of space. The convolution approach does not work and other
ideas have to be proposed. The Fourier approach proposes to look for a solution
in the series form

u.x; t/ D
X

Ti.t/Xi.x/ ; (5.4)

and then the time factors are easily seen to be negative exponentials of t, while
the space componentsXi.x/ form the spectral sequence, solutions of the problems

��Xi D �i Xi (5.5)

with corresponding eigenvalues �i. Boundary values are needed to identify the
spectral sequence .�i;Xi/, i D 1; 2; : : : This is the famous linear eigenvalue
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problem, the starting point of the discipline of Spectral Theory. The time-
space coupling implies then that Ti.t/ D e��it. This is nowadays one of the
most celebrated and useful topics in Applied Mathematics and is covered in all
elementary PDE books.

The scheme works for many other equations of the form ut D A.u/ and in this
way Fourier Analysis and Spectral Theory developed with great impetus, as well
as Semigroup Theory. Fourier analysis also took a direction towards the delicate
study of functions, a proper branch of pure mathematics, which is one of the most
brilliant developments in the last two centuries. Through the work of Cantor this
also motivated advances in Set Theory, since the sets of points where a Fourier
series does not converge can be quite complicated.

5.1.3 Linear Heat Flows

We now consider a big step forward in the mathematical tools of diffusion. A more
general family of models was introduced to represent diffusive phenomena under
less idealized circumstances and this was done both in the framework of PDEs and
Probability. This happened in several stages.

In the framework of PDEs, the heat equation has motivated the study of other
linear equations, which now form the Theory of Linear Parabolic Equations. They
are written in the form

ut D P
i;j aij@i@ju CP

bi@iu C cu C f (5.6)

with variable coefficients aij.x; t/, bi.x; t/, c.x; t/, and forcing term f .x; t/. Belonging
to the parabolic family requires some structure conditions on such coefficients that
will ensure that the solutions keep the basic properties of the heat equation. In
practice, the main condition is the fact that the matrix aij.x; t/ has to be definite
positive: there exists � > 0

X
i;j

aij.x; t/�i�j � �
X
i

�2i : (5.7)

This must be valid for all vectors � D .�1; : : : ; �N/ 2 R
N and all x; t in the space-

time domain of the problem. Let us point out that the theory is developed under some
additional conditions of regularity or size on the coefficients, a common feature of
all PDE analysis. Another prominent feature is that all coefficients can be submitted
to different more or less stringent conditions that allow to obtain more or less regular
solutions.
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A more stringent uniform positivity condition is

�
X
i

�2i �
X
i;j

aij.x; t/�i�j � ƒ
X
i

�2i (5.8)

with 0 < � < ƒ. Even the uniform condition (5.7) can be relaxed so that � > 0

depends on x and t. When these conditions are relaxed we talk about degenerate
or singular parabolic equations. This flexibility on the structure conditions makes
for a big theory that looks like an ocean of results. It will be important later in the
nonlinear models.

In fact, the parabolic theory was developed in the sequel of its more famous
stationary counterpart, the theory for the elliptic equations,

X
i;j

aij@i@ju C
X
i

bi@iu C c u C f D 0; (5.9)

with variable coefficients aij.x/; bi.x/; c.x/ and forcing term f .x/. The main structure
condition is again (5.7) or (5.8), which is usually called uniform ellipticity condi-
tion. In the time dependent case, (5.7) and (5.8) are called uniform parabolicity
conditions.

Main steps in the Parabolic Theory are:

1. The first step is the classical parabolic theory in which aij; bi; c; f are assumed to
be continuous or smooth, as needed. Functional spaces are needed as framework
of the theory, and these turn out to be C˛ spaces (Hölder) and the derived
spaces C1;˛ and C2;˛ . This leads to a well-known theory in which existence
and uniqueness results, continuous dependence on data are obtained after adding
initial and boundary data to the problem. And the theory provided us with
Maximum Principles, Schauder estimates, Harnack inequalities and other very
precise estimates.

This is a line of research that we would like to follow in all subsequent
chapters when further models of diffusion will be treated, but unfortunately
the direct application of the scheme will not work, and to be more precise, the
functional setting will not be conserved and the techniques will change in a strong
way.

The results are extended into the disciplines of Potential Theory and Genera-
tion of Semigroups. These are also topics that will be pursued in the subsequent
investigations.

2. A first extension of the classical parabolic theory concerns the case where the
coefficients are only continuous or bounded. In the theory with bad coefficients
there appears a bifurcation of the theory into Divergence and Non-Divergence
Equations, which are developed with similar goals but quite different technology.
The difference concerns the way of writing the first term with second-order
derivatives.
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The way stated before is called non-divergent form, while the divergent
form is

X
i;j

@i.aij@ju/C
X

bi@iu C cu C f D 0: (5.10)

This form appears naturally in many of the derivations from physical principles.
About the structure conditions, we assume the aij to be bounded and satisfy the
uniform parabolicity condition. The basic functional spaces are the Lebesgue and
Sobolev classes, Lp, W1;p. Derivatives are understood as distributions or more
often weak derivatives, and this motivates the label of weak theory. Existence,
uniqueness and estimates in W1;p or W2;p norms are produced. Maximum
Principles, Harnack inequalities work and C˛ is often proved. A very important
feature is the Calderón-Zygmund theory, basic to establish regularity in Sobolev
spaces. Divergent form equations were much studied because of their appearance
in problems of Science and Engineering. We refer to the books [139, 184] for the
elliptic theory, and to [129, 185, 191] for the parabolic theory.

3. There is nowadays a very flourishing theory of elliptic and parabolic equations
with bad coefficients in the non-divergence form (5.6), but we will not enter into
it for reasons of space, since it does not affect the rest of our exposé.

5.1.4 The Stochastic Approach: SPDEs

The probabilistic way to address the previous field enlargement appears in the form
of the diffusion process, which is a solution to a stochastic differential equation,
SPDE. A diffusion is then a continuous-time Markov process with almost surely
continuous sample paths. This is essentially a twentieth century theory, originated
in the work of Bachelier, Einstein, Smoluchowski, then Kolmogorov, Wiener and
Levy, and the last crucial step was contributed by Itō, Skorokhod, . . . The stochastic
equation reads

dX D b dt C 
 dW (5.11)

where W is the N-dimensional Wiener process, and b and 
 are (vector and matrix
valued respectively) coefficients under suitable conditions. In particular, 
 must be a
uniformly elliptic matrix. Derivatives are understood in the sense of Itō. Among the
extensive literature we mention Bass [25], Friedman [130], Gihman-Skorohod [138]
and Varadhan [244] for the relation between PDEs and Stochastic processes. Thus,
Bass discusses the solutions of linear elliptic and parabolic problems by means of
Stochastic processes in Chapter II. The stochastic equation (5.11) gives a formula
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to solve the Cauchy problem for the evolution PDE ut D Lu, where

Lu D
X

aij@iju C
X

bi@iu;

if the vector b D .b1; : : : ; bN/ and the symmetric positive semi-definite matrix a D
.aij/ is given by a D 
 � 
T . We call the functions 
 and a the diffusion coefficients
of the process Xt and L, respectively, while b is the drift vector. Let us also mention
[122, 221, 231].

A Comment About Real-World Practice If we consider a field of practical
application like quantitative finance, one may ask the question about which of the
two known approaches—PDEs versus martingales and SPDEs—is more important
in the real practice of derivatives pricing. Here is a partial answer: since the Black-
Scholes equation is a modified form of the Heat Equation, understanding PDEs is
very important as a practical tool, see [266]. And the American options add a free
boundary problem, a topic that we will find later in the text.

5.2 Fractional Diffusion

Replacing the Laplacian operator by fractional Laplacians is motivated by the
need to represent processes involving anomalous diffusion. In probabilistic terms,
it features long-distance interactions instead of the next-neighbour interaction of
random walks and the short-distance interactions of their limit, the Brownian
motion. The main mathematical models used to describe such processes are the
fractional Laplacian operators, since they have special symmetry and invariance
properties that makes for a richer theory. These operators are generators of stable
Lévy processes that include jumps and long-distance interactions. They reason-
ably account for observed anomalous diffusion, with applications in continuum
mechanics (elasticity, crystal dislocation, geostrophic flows,. . . ), phase transition
phenomena, population dynamics, optimal control, image processing, game theory,
finance, and others. See [10, 28, 91, 140, 199, 200, 262, 267], see also Sect. 1.2 of
[253].

After a very active period of work on problems involving nonlocal operators,
there is now well established theory in a number of directions, like semilinear
equations and obstacle problems, mainly of stationary type. We are interested here
in evolution problems. Instead of the Heat Equation, the basic evolution equation is
now

ut C .��/su D 0 (5.12)

There has been intense work in Stochastic Processes for some decades on this
equation, but not in Analysis of PDEs. My interest in the field dates from the
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year 2007 in Texas in collaboration with Prof. Luis Caffarelli, who was one of the
initiators, specially in problems related to nonlinear diffusion and free boundaries.

It is known that there is well defined semigroup associated with this equation
for every 0 < s < 1 that solves Cauchy problem (5.12) in the whole space or the
typical initial and boundary value problems in a bounded domain, see more below.
Though in the limit s ! 1 the standard heat equation is recovered, there is a big
difference between the local operator �� that appears in the classical heat equation
and represents Brownian motion on one side, and the nonlocal family .��/s, 0 <
s < 1, on the other side. In the rest of the paper we are going to discuss some
of those differences, both for linear and nonlinear evolution equations. We have
commented on the origins and applications of the fractional Laplacian and other
nonlocal diffusive operators in our previous survey papers [252, 253].

5.2.1 Versions of the Fractional Laplacian Operator

Before proceeding with the study of equations, let us examine the different
approaches and defining formulas for the fractional Laplacian operator. We assume
that the space variable x 2 R

N , and the fractional exponent is 0 < s < 1.

• Fourier Approach. First, we may consider the pseudo-differential operator given
by the Fourier transform:

2.��/su.�/ D j�j2sbu.�/ : (5.13)

This allows to use the very rich theory of Fourier transforms, but is not very
convenient for nonlinear analysis which is our final goal. Due to its symbol j�j2s,
the fractional Laplacian can be viewed as a symmetric differentiation operator of
fractional order 2s. Even when 2s D 1, it is not the standard first derivative, just
compare the Fourier symbols.

• Hyper-Singular Integral Operator. The formula reads

.��/su.x/ D CN;s

Z
RN

u.x/� u.y/

jx � yjNC2s dy : (5.14)

The kernel is not integrable near x and this motivates the need for the difference
in the numerator of the integrand. The integral is understood as principal value.
With this definition, the operator is the inverse of the Riesz integral operator
.��/�su; which has a more regular kernel C1jx � yjN�2s, though not integrable
at infinity. The fractional Laplacian operator is also called the Riesz derivative.

• Numerics and Stochastic Approach. Take the random walk for a processes with
probability unj at the site xj at time tn:

unC1
j D

X
k

Pjku
n
k ; (5.15)
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where fPjkg denotes the transition function which has a fat tail (i.e., a power
decay with the distance j j � kj), in contrast to the next-neighbour interaction of
random walks. In a suitable limit of the space-time grid you get an operator A as
the infinitesimal generator of a Lévy process: if Xt is the isotropic ˛-stable Lévy
process we have

Au.x/ D lim
h!0

1

h
E.u.x/� u.x C Xh//: (5.16)

The set of functions for which the limit on the right side exists (for all x) is called
the domain of the operator. We arrive at the fractional Laplacian with an exponent
s 2 .0; 1/ that depends on the space decay rate of the interaction jj � kj�.NC2s/,
0 < s < 1.

• The Caffarelli-Silvestre Extension. The ˛-harmonic extension: Find first the
solution of the .N C 1/-dimensional elliptic problem

r � .y1�˛rU/ D 0 .x; y/ 2 R
N � RCI U.x; 0/ D u.x/; x 2 R

N : (5.17)

The equation is degenerate elliptic but the weight belongs to the Muckenhoupt
A2 class, for which a theory exists [123]. We may call U the extended field. Then,
putting ˛ D 2s we have

.��/su.x/ D �C˛ lim
y!0

y1�˛
@U

@y
: (5.18)

When s D 1=2, i.e. ˛ D 1, the extended function U is harmonic (in N C 1

variables) and the operator is the Dirichlet-to-Neumann map on the base space
x 2 R

N . The general extension was proposed in PDEs by Caffarelli and
Silvestre [67], see also [227]. This construction is generalized to other differential
operators, like the harmonic oscillator, by Stinga and Torrea, [240].

• Semigroup Approach. It uses the following formula in terms of the heat flow
generated by the Laplacian�:

.��/sf .x/ D 1

�.�s/

Z 1

0

�
et�f .x/ � f .x/

� dt

t1Cs
: (5.19)

Classical references for analysis background on the fractional Laplacian operator
in the whole space: the books by Landkof [187], Stein [239], and Davies [102]. The
recent monograph by Bucur and Valdinoci [58] introduces fractional operators and
more generally nonlocal diffusion, and then goes on to study a number of stationary
problems. Numerical methods to calculate the fractional Laplacian are studied e.g.
in [213].
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5.2.1.1 Fractional Laplacians on Bounded Domains

All the previous versions are equivalent when the operator acts in R
N . However,

in order to work in a bounded domain � � R
N we will have to re-examine

all of them. For instance, using the Fourier transform makes no sense. Two main
efficient alternatives are studied in probability and PDEs, corresponding to different
way in which the information coming from the boundary and the complement of
the domain is to be taken into account. They are called the restricted fractional
Laplacian (RFL) and the spectral fractional Laplacian (SFL), and they are carefully
defined in Sect. 5.8. And there are more alternatives that we will also discuss there.

5.2.2 Mathematical Theory of the Fractional Heat Equation

The basic linear problem is to find a solution u.x; t/ of

ut C .��/su D 0 ; 0 < s < 1 : (5.20)

We will take x 2 R
N , 0 < t < 1, with initial data u0.x/ defined for x 2 R

N .
Normally, u0; u � 0, but this is not necessary for the mathematical analysis. We
recall that this model represents the linear flow generated by the so-called Lévy
processes in Stochastic PDEs, where the transition from one site xj of the mesh to
another site xk has a probability that depends on the distance jxk � xjj in the form of
an inverse power for j ¤ k, more precisely, c jxk �xjj�N�2s. The range is 0 < s < 1.
The limit from random walk on a discrete grid to the continuous equation can be
read e. g. in Valdinoci’s [243].

The solution of the linear equation can be obtained in R
N by means of

convolution with the fractional heat kernel

u.x; t/ D
Z

u0.y/Pt.x � y/ dy; (5.21)

and the probabilists Blumental and Getoor proved in the 1960s [36], that

Pt.x/ � t�
t1=s C jxj2�.NC2s/=2 : (5.22)

Here a � b means that a=b is uniformly bounded above and below by a constant.
Only in the case s D 1=2 the kernel is known to be explicit, given precisely by the
previous formula up to a constant. Note the marked difference with the Gaussian
kernel Gt of the heat equation (case s D 1). The behaviour as x goes to infinity
of the function Pt is power-like (with a so-called fat tail) while Gt has exponential
spatial decay, see (5.2). This difference is expected in a theory of long-distance
interactions. See more on this issue in [169].
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Rather elementary analysis allows then to show that the convolution formula
generates a contraction semigroup in all Lp.RN/ spaces, 1 � p � 1, with
regularizing formulas of the expected type

ku.t/k1 � C.N; s; p/ ku0kp t�N=2sp :

When the data and solutions are not assumed to be Lebesgue integrable, interesting
questions appear. Such questions have been solved for the classical heat equation,
where it is well-known that solutions exist for quite large initial data, more precisely
data with square-quadratic growth as jxj ! 1, see Widder [264]. The idea is
that the convolution formula (5.21) still makes sense and can be conveniently
manipulated.

Likewise, we may study the fractional heat equation in classes of (maybe) large
functions and pose the question: given a solution of the initial value problem posed
in the whole space R

N , is it representable by the convolution formula? The paper
[24] by Barrios et al., shows that the answer is yes if the solutions are suitable
strong solutions of the initial value problem posed in the whole space R

N , they are
nonnegative, and the growth in x is no more that u.x; t/ � .1C jxj/a with a < 2s.

In the recent paper [51] by Bonforte, Sire, and the author, we look for optimal
criteria. We pose the problem of existence, uniqueness and regularity of solutions
for the same initial value problem in full generality. The optimal class of initial data
turns out to be the class of locally finite Radon measures � satisfying the condition

Z
RN
.1C jxj/�.NC2s/ d�.x/ < 1 : (5.23)

We call this class Ms. We construct weak solutions for such data, and we prove
uniqueness of nonnegative weak solutions with nonnegative measure data. More
precisely, we prove that there is an equivalence between nonnegative measure data
in that class and nonnegative weak solutions, which is given in one direction by the
representation formula, in the other one by the existence of an initial trace. So the
result closes the problem of the Widder theory for the fractional heat equation posed
in R

N . We then review many of the typical properties of the solutions, in particular
we prove optimal pointwise estimates and new Harnack inequalities. Asymptotic
decay estimates are also found for the optimal class. Here is the general result in that
direction. We want to estimate the behaviour of the constructed solution u D Pt ��0
for t > 0 and prove that it is a locally bounded function of x and t with precise
estimates. Here is the main result.

Theorem 5.2.1 Let u D St�0 the very weak solution with initial measure �0 2
MC

s and let k�0kˆ WD R
RN ˆ d�0. There exists a constant C.N; s/ such that for

every t > 0 and x 2 R
N

u.t; x/ � C k�0kˆ .t�N=2s C t/.1C jxj/NC2s : (5.24)
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Here MC
s are the nonnegative measures in the class Ms and k�0kˆ is the associated

weighted norm with weight ˆ.x/ D .1 C jxj2/�.NC2s/=2. See whole details in [51,
Theorem 7.1]. The dependence on t cannot be improved. Under radial conditions a
better growth estimate in x is obtained. Construction of self-similar solutions with
growth in space also follows.

5.2.3 Other Nonlocal Diffusive Operators

• Equation (5.20) is the most representative example of a wide class of equations
that are used to describe diffusive phenomena with nonlocal, possibly long-range
interactions. We can replace the fractional Laplacian by a Lévy operator L which
is the pseudo-differential operator with the symbol a D a.�/ corresponding to a
certain convolution semigroup of measures, [169]. Popular models that are being
investigated are integro-differential operators with irregular or rough kernels, as
in [222], where the form is

ut C b.x; t/ � ru �
Z
RN
.u.x C h; t/� u.x; t//K.x; t; h/ dh D f .x; t/: (5.25)

See also [7, 54, 84, 109, 112, 125, 170, 228], among many other references.
• A different approach is taken by Nyström-Sande [210] and Stinga-Torrea [241],

who define the fractional powers of the whole heat operator and solve

.@t ��/su.t; x/ D f .t; x/; for 0 < s < 1: (5.26)

In this equation the random jumps are coupled with random waiting times. The
authors find the space-time fundamental solution that happens to be explicit,
given by

Ks.t; x/ D 1

.4�t/N=2j�.�s/j � e
�jxj2=4t

t1Cs
D 1

j�.�s/jt1Cs
G.x; t/; (5.27)

for x 2 R
N , t > 0, where G is the Gaussian kernel. The limits s ! 0; 1 are

singular. Motivations are given, extension methods are introduced, and regularity
results proved.

5.3 Nonlinear Diffusion

The linear diffusion theory has enjoyed much progress, and is now solidly estab-
lished in theory and applications. However, it was soon observed that many of
the equations modeling physical phenomena without excessive simplification are
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essentially nonlinear, and its more salient characteristics are not reflected by
the linear theories that had been developed, notwithstanding the fact that such
linear theories had been and continue to be very efficient for a huge number
of applications. Unfortunately, the mathematical difficulties of building theories
for suitable nonlinear versions of the three classical partial differential equations
(Laplace’s equation, heat equation and wave equation) made it impossible to make
significant progress in the rigorous treatment of these nonlinear problems until
the twentieth century was well advanced. This observation also applies to other
important nonlinear PDEs or systems of PDEs, like the Navier-Stokes equations
and nonlinear Schrödinger equations.

5.3.1 Importance of Nonlinear PDEs

The main obstacle to the systematic study of the Nonlinear PDE Theory was the
perceived difficulty and the lack of tools. This is reflected in a passage by Nash
[207]. In his seminal paper [207], he said

The open problems in the area of nonlinear PDE are very relevant to applied mathematics
and science as a whole, perhaps more so that the open problems in any other area of
mathematics, and the field seems poised for rapid development. It seems clear, however,
that fresh methods must be employed. . .

and he continues in a more specific way:

Little is known about the existence, uniqueness and smoothness of solutions of the general
equations of flow for a viscous, compressible, and heat conducting fluid. . .

This is a grand project in pure and applied science and it is still going on. In
order to start the work, and following the mathematical style that cares first about
foundations, he set about the presumably humble task of proving the regularity
of the weak solutions of the PDEs he was going to deal with. More precisely,
the problem was to prove continuity (Hölder regularity) of the weak solutions
of elliptic and parabolic equations assuming the coefficients aij to be uniformly
elliptic (positive definite matrices) but only bounded and measurable as functions of
x 2 R

N . In a rare coincidence of minds, this was done in parallel by Nash [206, 207]
and the then very young Italian genius De Giorgi [103].1 This was a stellar moment
in the History of Mathematics, and the ideas turned out to be “a gold mine”, in
Nirenberg’s words.2 The results were then taken up and given a new proof by Moser,
[202], who went on to establish the Harnack inequality, [203], a very useful tool in
the sequel.

Once the tools were ready to start attacking Nonlinear PDEs in a rigorous way,
it was discovered that the resulting mathematics are quite different from the linear

1Strictly speaking, priority goes to the latter, but the methods were different.
2Nash and Nirenberg shared the Abel Prize for 2015.
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counterparts, they are often difficult and complex, they turn out to be more realistic
than the linearized models in the applications to real-world phenomena, and finally
they give rise to a whole set of new phenomena unknown in the linear world. Indeed,
in the last decades we have been shown a multiplicity of new qualitative properties
and surprising phenomena encapsulated in the nonlinear models supplied by the
applied sciences. Some of them are very popular nowadays, like free boundaries,
solitons and shock waves. This has kept generations of scientists in a state of surprise
and delight. Nonlinear Science rests now on a firm basis and Nonlinear PDEs are a
fundamental part of it.

5.3.2 Nonlinear Heat Flows, Nonlinear Diffusion

The general formula for the nonlinear diffusion models in divergence form is

ut D P
@iAi.u;ru/CPB.x; u;ru/ ; (5.28)

where A D .Ai/ and B must satisfy some so-called structure conditions, the main
one is again the ellipticity condition on the function A.x; u; z/ as a function of the
vector variable z D .zi/. This general form was already posed as a basic research
project in the 1960s, cf. [15, 225]. Against the initial expectations, the mathematical
theory turned out to be too vast to admit a simple description encompassing
the stated generality. There are reference books worth consulting, like those by
Ladyzhenskaya et al. [184, 185], Friedman [129], Lieberman [191], Lions-Magenes
[193], and Smoller [230] are quite useful introductions. But they are only basic
references.

Many specific examples, now considered the “classical nonlinear diffusion
models”, have been investigated separately to understand in detail the qualitative
features and to introduce the quantitative techniques, that happen to be many and
from very different origins and types.

My personal experience with nonlinear models of diffusive type lies in two areas
called respectively ‘Nonlinear Diffusion with Free Boundaries’ and ‘Reaction-
Diffusion PDEs’.

5.3.2.1 Pure Nonlinear Diffusion: The Free Boundary Models

The work on nonlinear parabolic equations in the mathematical research community
to which I belonged focussed attention on the analysis of a number of paradigmatic
models involving the occurrence of free boundaries, for which new tools were devel-
oped and tested. A rich theory originated that has nowadays multiple applications.

• The Obstacle Problem. This is the most famous free boundary problem and there
is a huge literature for it, cf. [63, 66, 131, 174] and their references. It belongs
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to the class of stationary problems, connected with elliptic equations, hence
further away from our interests in this paper. Let us only say at this point that
a free boundary problem is a mathematical problem in which we want to find
the solution of a certain equation (normally, a PDE) as well as the domain of
definition of the solution, which is also an unknown of the problem. Typically,
there exists a fixed ‘physical’ domain D and the solution domain � that we seek
is a subset of D, well-determined if we know the free boundary � D @� \ D.

Parabolic free boundaries may move in time. They appear in the ‘four classical
sisters’ that we will introduce next:

• The Stefan Problem [186, 238] The problem typically describes the temperature
distribution in a homogeneous medium undergoing a phase change (like ice and
water). The heat equation must be solved in both separate media filling together
a certain space D � R

N , and the separation surface is allowed to move with time
according to some transfer law. The mathematical formulation is thus

SE W
�
ut D k1�u for u > 0;
ut D k2�u for u < 0:

TC W
�
u D 0;

v D L.k1ru1 � k2ru2/:

(SE) means state equations, valid in the separate domains�1 D f.x; t/ W u.x; t/ >
0g and �2 D f.x; t/ W u.x; t/ < 0g, which are occupied by two immiscible
material phases (typically water for u > 0 and ice for u < 0). Of course, if
the physical domain D is not the whole space then usual boundary conditions
have to be given on the fixed boundary @D. The main mathematical feature is the
existence of a free boundary or moving boundary3 � � R

N � R that separates
ice from water and there u D 0, see the monographs [198, 219]. This free
boundary � moves in time and has to be calculated along with the PDE solution
u, so that suitable extra information must be given to determine it: (TC) means
transmission condition that applies at the free boundary � , and v is the normal
advance speed of � . Physically, this formula is due to the existence of latent heat
at the phase transition. We not only want to determine the location of � but we
want to hopefully prove that it is a nice hypersurface in space-time.

Summing up, the combination of analysis of PDEs and variable geometry is what
makes this problem difficult. The correct mathematical solution came only via the
weak formulation [164] that allows to eliminate the geometry in a first step and
concentrate in finding the so-called weak solution. The free boundary comes later
as the zero level set of the weak solution, and finding it needs some regularity theory.

A simpler version is the One-phase Stefan problem where ice is assumed to
be at zero degrees, roughly u D 0 in �2. The free boundary is still there but the
mathematical theory is much easier, hence better known.

3Also called interface in the literature.
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• The Hele-Shaw Cell Problem. Hele-Shaw [153] and Saffman-Taylor [220] The
problem is posed in a fixed spatial domain D � R

N , and consists of finding
�.t/ � D and u.x; t/ such that

u > 0; �u D 0 in �.t/I u D 0; v D L@nu on @f�.t/:

Here the main unknown of the problem is the moving domain�.t/ � D, and @nu
denotes normal derivative on the free boundary �.t/ D @f�.t/, the part of the
boundary of the set fx 2 D W u.x; t/ > 0g that lies inside D. Additional conditions
are to be given on the part of fixed boundary @D bounding �.t/. Once �.t/ is
known, solving the Laplace equation for u is standard; notice that it is nontrivial
because of the boundary conditions (sometimes there is a forcing term).

Mathematically, this is a simplified version of the previous model where there
is only one phase, and besides the time derivative term disappears from the
state equation. This increased simplicity comes together with beautiful analytical
properties, some of them related to the theory of conformal transformations and
complex variables when working in 2D, see [155, 216]. The Hele-Shaw flow appears
in fluid mechanics as the limit of the Stokes flow between two parallel flat plates
separated by an infinitesimally small gap, and is used to describe various applied
problems. The weak formulation is studied in [118]. There are many examples of
moving boundaries with interesting dynamics; thus, a peculiar complex variable
pattern exhibiting a free boundary with a persistent pointed angle is constructed in
[178] in 2D. In that example, the free boundary does not move until the pointed
angle is broken, which happens in finite time. On the other hand, wider angles move
immediately and the free boundary is then smooth.

• The Porous Medium Equation. This is an equation in the nonlinear degenerate
parabolic category,

ut D �um; m > 1:

The equation appears in models for gases in porous media, underground infiltra-
tion, high-energy physics, population dynamics and many others. We will devote
a whole section to review the free boundary and other nonlinear aspects of this
equation, called PME for short, since it has served so much as a paradigm for the
mathematics of nonlinear degenerate diffusion, see [12, 250, 251]. Actually, we
see that the free boundary does not appear in the formulation, but it will certainly
appear in the theory. It is a hidden free boundary.

The equation can be also considered for exponents m < 1, called fast diffusion
range, and further generalized into the class of so-called filtration equations ut D
�ˆ.u/; whereˆ is a monotone increasing real function. This generality also allows
to include the Stefan problem that can be written as a filtration equation with very
degenerateˆ:

ˆ.u/ D .u � 1/C for u � 0; ˆ.u/ D u for u < 0; p > 1:
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• The p-Laplacian Equation. This is another model of nonlinear degenerate
diffusion

ut D div .jrujp�2ru/ : (5.29)

Such a model appears in non-Newtonian fluids, turbulent flows in porous media,
glaciology and other contexts. The mathematics of this equation turn out to be
closely related to the PME: existence, regularity, free boundaries, and so on, but
there are subtle differences. Here p > 2 is needed for a free boundary to appear,
[114, 249]. Recent interest in the limit cases p D 1 (total variation flow, used
in image analysis), or p D 1 (appearing in geometry and transport), [121]. On
the other hand, the equation can be generalized into the class of equations with
gradient-dependent diffusivity of the general form

ut � r � .a.jDuj/Du/D 0;

where a is a nonnegative real function with suitable growth assumptions to ensure
degenerate parabolicity. Another extension is the doubly non-linear diffusion
equation of the form

ut D r � .jD.um/jp�2D.um//:

Here the diffusivity takes the form a.u; jDuj/ D cu. p�1/.m�1/jDujp�2. We use the
notations ru D Du for the spatial gradient.

5.3.2.2 The Reaction Diffusion Models

This is another important direction taken by Nonlinear Diffusion, in which the
nonlinear features originate from a lower-order term with super-linear growth. This
may create a mathematical difficulty in the form of blow-up, whereby a solution
exists for a time interval 0 < t < T and then some norm of the solution goes
to infinity as t ! T (the blow-up time). In other cases the singular phenomenon
is extinction (the solution becomes zero every where), or some other kind of
singularity formation.

• The Standard Blow-Up Model: It is also called the Fujita model [133, 168]

ut D �u C up p > 1 :

Main feature: If p > 1 the norm ku.�; t/k1 of the solutions may go to infinity
in finite time. This depends on the domain and the initial data. For instance, if
the space domain is RN and the initial function is constant, then blow-up in finite
time always happens. Hint: Integrate the ODE ut D up. However, when the data
are distributed in space then diffusion and reaction compete and the result is a
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priori uncertain. This is how a large literature arose. Thus, if the initial data are
bell-shaped (like the Gaussian function), the domain is bounded and boundary
conditions are zero Dirichlet, then small data will not blow-up and large data
will. For other configurations things depend on the exponent p: there exists a
critical exponent pF called the Fujita exponent, such that all positive solutions
blow up if p 2 .1; pF/. See [133, 135, 168, 189].

A number of beautiful blow-up patterns emerge in such evolutions. Galaktionov
and the author have constructed in [134] a particular one, called the peaking
solution, that blows up in finite time T at a single point x0 and then continues for
later time as a bounded smooth solution, a clear example of the curious phenomenon
called continuation after blow-up. However, the most common situation in reaction-
diffusion systems of this diffusive type is complete blow-up at time T with no
possible continuation (for instance, the numerical approximation goes to infinity
everywhere for t > T). The intricate phenomenon of bubbling is studied by M. del
Pino in another course of this volume [110].

As an extension of this elementary reaction-diffusion blow-up model there have
been studies for many equations of the general form

ut D A.u/C f .u;Du/

where A is a linear or nonlinear diffusion operator, maybe of porous medium or
p-Laplacian type. The studies also include systems. Some of them are systems of
mixed type, one of the most popular ones is the chemotaxis system, where blow-up
has a very interesting form that is still partially understood, [154].

• The Fisher-KPP Model and Traveling Waves: The problem goes back to Kol-
mogorov, Petrovskii and Piskunov, see [182], that present the most simple
reaction-diffusion equation concerning the concentration u of a single substance
in one spatial dimension,

@tu D Duxx C f .u/ ; (5.30)

with an f that is positive between two zero levels f .0/ D f .1/ D 0. We assume
that D > 0 is constant. The choice f .u/ D u.1�u/ yields Fisher’s equation [127]
that was originally used to describe the spreading of biological populations. The
celebrated result says that the long-time behavior of any solution of (5.30), with
suitable data 0 � u0.x/ � 1 that decay fast at infinity, resembles a traveling wave
with a definite speed that can be explicitly calculated. The KPP traveling wave
pattern is one of the most famous dynamic patterns in diffusive phenomena.

When considering Eq. (5.30) in dimensions N � 1, the problem becomes

ut ��u D f .u/ in .0;C1/ � R
N ; (5.31)



226 J.L. Vázquez

This case has been studied by Aronson and Weinberger in [17, 18], where they prove
the following result.

Theorem Let u be a solution of (5.31) with u0 ¤ 0 compactly supported in RN and
satisfying 0 � u0.x/ � 1. Let c� D 2

p
f 0.0/. Then,

1. if c > c�, then u.x; t/ ! 0 uniformly in fjxj � ctg as t ! 1.
2. if c < c�, then u.x; t/ ! 1 uniformly in fjxj � ctg as t ! 1.

In addition, problem (5.31) admits planar traveling wave solutions connecting 0
and 1, that is, solutions of the form u.x; t/ D �.x � e C ct/ with

��00 C c�0 D f .�/ in R; �.�1/ D 0; �.C1/ D 1:

This asymptotic traveling-wave behavior has been generalized in many interesting
ways, in particular in nonlinear diffusion of PME or p-Laplacian type, [22, 104,
105]. Departing from these results, King and McCabe examined in [177] a case of
fast diffusion, namely

ut D �um C u.1� u/; x 2 R
N ; t > 0;

where .N � 2/C=N < m < 1, and showed that the problem does not admit traveling
wave solutions and the long time behaviour is quite different. We will return to
this question when dealing with fractional nonlinear diffusion in the work [233], in
Sect. 5.7.

• In the last decades many other models and variants of diffusive systems have
been proposed, in particular in the form of systems, like the various cross-
diffusion systems [163]. Cross-diffusion gives rise to instabilities that attract
much attention in population dynamics, since they allow to predict important
features in the study of the spatial distribution of species. The seminal work in
this field is due to Alan Turing [242]. In order to understand the appearance
of certain patterns in nature with mathematical regularities like the Fibonacci
numbers and the golden ratio, he proposed a model consisting of a system of
reaction-diffusion equations.

• Blow-up problems have appeared in related disciplines and some of them have
attracted in recent times the attention of researchers for their difficulty and
relevance. We present two cases, a case still requiring more work, a case enjoying
big success. The combination of diffusion with nonlinear reaction is in both cases
very intricate and leading to the deepest mathematics.

The Fluid Flow Models: The Navier-Stokes or Euler equation systems for incom-
pressible flow. The nonlinearity is quadratic and affects first order terms. Progress is
still partial. There is also much work on the related topic of geostrophic flows. We
will not enter into more details of such a relevant topic that has a different flavor.
The Geometrical Models: The Ricci flow describes the motion of the metric tensor
of a Riemannian manifold by means of the Ricci matrix: @tgij D �2Rij. This is
a nonlinear reaction-diffusion system, even if this information is not clear in the
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succinct formula. Posed in the form of PDEs by R. Hamilton, 1982, it has become
a Clay Millenium Problem. Its solution by G. Perelman in 2003 was one of biggest
success stories of Mathematics in the twenty-first century, see [89, 201]. One of the
main points in the proof is the study of the modes of blow-up of this system. In order
to see that the evolution system of the Ricci flow is a type of nonlinear diffusion, it
is convenient to recall the much simpler case of two-manifolds, since in that case it
reduces to a type of fast diffusion called logarithmic diffusion, see below.

Let us finally mention the equations of movement by curvature to the list of
geometrical models. Enormous progress has been made in that topic.
Basic Reading for This Chapter: On Nonlinear Diffusion: [99, 114, 251]. On free
boundaries [113, 131]. Moreover, [95, 96]. Fully nonlinear equations are form a vast
topic that we have not touched, see [59].

5.4 PME: Degenerate Diffusion and Free Boundaries

A very simple model of nonlinear diffusion in divergence form is obtained by means
of the equation

ut D r � .D.u/ru/ (5.32)

where D.u/ is a diffusion coefficient that depends on the ‘concentration variable’
u. Strict parabolicity requires that D.u/ > 0, and the condition can be relaxed to
degenerate parabolicity if we make sure that D.u/ � 0. Now, if we further assume
that D.u/ is a power function, we get the simplest model of nonlinear diffusion
equation in the form

ut D r � .c1juj�ru/ D c2�.jujm�1u/: (5.33)

with m D 1 C � and c1; c2 > 0. Exponent m, in principle positive, will play an
important role in the model, but the constants ci are inessential, we may put for
instance c2 D 1, c1 D m. The concentration-dependent diffusivity is then

D.u/ D mjujm�1 :

In many of the applications u is a density or concentration, hence essentially
nonnegative, and then we may write the equation in the simpler form

ut D �.um/ ; (5.34)

that is usually found in the literature (we have dispensed with useless constants).
But there are applications in which u is for instance a height that could take negative
values, and then version (5.33) is needed, since otherwiseD.u/would not be positive
and the equation would not be parabolic.
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The equation has enjoyed a certain popularity as a mathematical model for
degenerate nonlinear diffusion, combining interesting and varied applications with
a rich mathematical theory. The theory has many interesting aspects, like functional
analysis in the existence and uniqueness theory, and geometry in the study of the free
boundaries, as well as deep novelties in the long time asymptotics. Our monograph
[251] gathers a large part of the existing theory up to the time of publication (2007).
We will devote this section to review some of the main topics that affect the theory
of fractional porous medium models of later nonlocal sections, and we will also
present the very recent sharp results on the regularity and asymptotic behaviour of
free boundaries, obtained in collaboration with Kienzler and Koch in [172].

5.4.1 The Porous Medium Equation

As we have already said, the value of exponent m is an important part of the model.
Clearly, if m D 1 we have D.u/ D 1, and we recover the classical heat equation,
ut D �u, with its well-known properties, like the maximum principle, the C1
regularity of solutions, and the infinite speed of propagation of positive disturbances
into the whole space, as well as the asymptotic convergence to a Gaussian profile
for suitable classes of initial data.

• The first interesting nonlinear case is m > 1 where D.u/ degenerates at the level
u D 0. This brings as a consequence the existence of weak solutions that have
compact support in the space variable for all times, though that support expands.
We refer to that situation as Slow Diffusion. As a consequence, free boundaries
arise and a whole geometric theory is needed. All this is in sharp contrast with
the heat equation.

The differences with the heat equation can be seen by means of an easy
calculation for m D 2. In that case, and under the assumption that u � 0, the
equation can be re-written as

1

2
ut D u�u C jruj2 ;

and we can immediately see that for values u  0 the equation looks like a harmless
nonlinear perturbation of the heat equation plus a lower order term, while for u 	 0

the first term disappears and the equation looks like (a singular perturbation of) the
eikonal equation

ut D jruj2 :

This last equation is not parabolic, but hyperbolic, with propagation along charac-
teristics. The PME equation is therefore of mixed type near the critical value u D 0

where it degenerates, and it has therefore mixed properties.
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The calculation may look very particular, for a specific value of m. But to the
initial surprise of researchers, it extends to all value m > 1, of the slow diffusion
range. The pressure transformation v D cum�1 allows us to get an equivalent
equation for v:

vt D .m � 1/v�v C jrvj2 ; (5.35)

where we have used the standard normalization c D m=.m�1/. Indeed, the apparent
generality of this transformation goes further and there is a great unity in the theory
developed for the PME in the whole rangem > 1, see [251]. Indeed, it can be proved
that in some weak sense the eikonal equation holds on the free boundary fu D 0g,
and this implies that the support of the solution spreads with time, another property
that can be rigorously proved.

• The pressure transformation is even more general, and can be applied to the
filtration equation ut D �ˆ.u/: If we put v D R u

1
.ˆ0.s/=s/ ds, then we can

get the pressure equation

vt D 
.v/�v C jrvj2 ; (5.36)

where the function 
.v/ D ˆ0.u/ � 0, cf. [55].
• These pressure considerations apply under the assumption that u � 0, which is

physically natural for most applications. It must be pointed out the existence and
uniqueness theory has been done for signed solutions, according to the generality
that is suitable in Functional Analysis. However, many of the estimates on which
the qualitative theory is based do not apply for general signed solutions, and we
will forsake them and assume u � 0 in the rest of the section unless mention to
the contrary.

• When m < 1 the equation becomes singular at u D 0 in the sense that D.u/ !
1. This range is called Fast Diffusion. We will return to that case in the next
Sect. 5.5 since its properties show a remarkable difference with the PME range
m > 1.

5.4.2 Applied Motivation: Fixing Some Physical Concepts

This application is maybe the best known and has played a role in developing the
theory for the PME, a clear example of the influence of physics on the mathematics.
According to [188, 205], the flow of gas in a porous medium (they were thinking of
the petroleum industry) obeys the laws

8<
:

�t C div .�V/ D 0;

V D � k
�

rp; p D p.�/;
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where � is density, p is the averaged pressure and V is the seepage velocity. The first
line is the usual continuity equation from fluid mechanics, and the second line left
is the Darcy law for flows in porous media (Darcy 1856). Therefore, these porous
media flows are potential flows due to averaging of Navier-Stokes on the pore scales.
We need a precise closure relation which is given by a gas law of the form p D po �� ,
with value of the exponent � D 1 (isothermal gas) or � > 1 (adiabatic gas flow),
see details in [251]. Hence, we get

�t D div .
k

�
�rp/ D div .

k

�
�r. po��// D c���C1:

In order to get the PME we put u D �, m D 1 C � (which happens to be equal or
larger than 2) and we eliminate useless constants. We point out that the pressure is
then

p D pou
m�1;

just the variable that we called v in formula (5.35). No wonder that this equation is
important. As for the local flow velocity we have V D �crv in our mathematical
notation.

– There are many other applications, as described in the book [251]: underground
water infiltration [53] with m D 2, plasma radiation with m � 4, (Zeldovich-
Raizer [269], around 1950), spreading of populations (self-avoiding diffusion)
m 	 2 [150], thin films under gravity with no surface tension m D 4, and so on.

5.4.3 Generalities: Planning of the Theory

The way the nonlinear theory of the PME has developed is quite different from the
way the linear heat equation is studied. Indeed, in the early years there were attempts
to construct a perturbation theory putting m D 1C" in (5.34) and then perturbing the
linear model, but the singular perturbation analysis was not successful. Fortunately,
around 1958 when the theory started the serious development in Moscow [212], the
tools of nonlinear functional analysis were ready, and in particular the concept of
weak solution and the role of a priori estimates.

Here are the main topics of mathematical analysis (1958–2016):

– The precise meaning of solution. Since it was realized that classical solutions do
not exist if there are free boundaries.

– The nonlinear approach: estimates; functional spaces.
– Existence of suitable solutions (like weak solutions). Uniqueness. Further in the

theory, variant of the equation showed cases of non-existence or non-uniqueness.
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– Regularity of solutions: Are weak solutions indeed continuous functions? are
they Ck for some k? which is the optimal k?

– Existence, regularity and movement of interfaces: are they Ck for some k?
– Asymptotic behaviour: is there something comparable to the Gaussian profile

as a universal attractor? This is a question of emerging patterns. If there is
convergence to a pattern we want to know that rate of convergence. We also want
to know how universal that convergence is, in other words the basin of attraction
of the asymptotic pattern.

– Comparison with other approaches like the probabilistic approach. Interesting
new tools appear, like Wasserstein metrics and estimates.

The beauty of this plan is that it can be used mutatis mutandis on a huge number
of related models: fast diffusion models, inhomogeneous media, anisotropic media,
p-Laplacian models, applications to geometry or image processing; equations
involving effects, like the chemotaxis models,. . .

5.4.4 Fundamental Solutions: The Barenblatt Profiles

These profiles are the alternative to the Gaussian profiles of the linear diffusion case.
They are source solutions. Source means that u.x; t/ ! M ı.x/ as t ! 0. Explicit
formulas exist for them (1950):

B.x; tIM/ D t�˛F.x=tˇ/; F.�/ D �
C � k�2

�1=.m�1/
C (5.37)

x

u

BS

˛ D n
2CN.m�1/

ˇ D 1
2CN.m�1/ < 1=2

Maximum height u D Ct�˛
Free boundary is located at distance jxj D ctˇ

Source: Personal source
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where C > 0 is a free constant and k D k.m;N/. Since Fourier analysis is not a way
for find them, new ideas are needed. We observe that the solution obeys a scaling
symmetry, it is self-similar. In other words, it is invariant under suitable scaling
in space and time. This fact is the key to finding the expression, see [251, p. 63].
An important property for the applications is that (5.37) breaks with the Brownian
space-time law: jxj D ct1=2, so that it can be classified as anomalous diffusion.

If you look for the mathematical properties, we find a surprise with regularity.
Put m D 2 for simplicity. B.x; tIM/ does not satisfy the equation in a classical sense
since u is not even C1 continuous in space or time. The validity of this physical
solution was a hot problem when it was discovered around 1950.

5.4.5 Concepts of Solution

Hence, there is a problem with the concept of solution that will satisfy the
mathematical requirements (existence and uniqueness for a reasonable class of
data, plus stability estimates) as well as the physical requirements (to reflect the
behaviour that is expected from the evidence obtained in the applications). This
problem did not exist for the main example of diffusion, the Heat Equation, since
classical solutions could be found.

Many concepts of generalized solution have been used in developing the
mathematical theory of the PME, and also in many related equations, not only in
the parabolic theory:

• Classical solution. This is the most desirable option, and indeed it happens for
non-degenerate situations, u > 0. But it cannot be expected if the Barenblatt
solutions are to be included.

• Limit solution. This is the practical or computational remedy. To replace the
equation by approximated problems with good physical or computational prop-
erties and then to pass to the limit. The catch is that the approximation may
not converge, or we could be unable to prove it; even if the approximations
do converge, the limit may depend on the approximation. Spurious solutions
may appear when the approximation is not efficient, a quality difficult to tell
a priori. On the positive side, limit solutions have been successfully used in
the diffusive literature with the names of minimal solutions, maximal solutions,
SOLAs (solutions obtained as limits of approximations), proper solutions, . . .

• Weak solution. This was a very good solution to the problem of building a theory
for the PME. The idea is to test the equation against a full set of smooth functions
and to eliminate all or most of the derivatives prescribed by the equation on
the unknown function. It was first implemented on the PME by Oleinik and
collaborators [212] (1958). The simplest weak version reads

Z Z
.u 	t � rum � r	/ dxdt C

Z
u0.x/ 	.x; 0/ dx D 0 ;
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while there is a second version, the very weak solution,

Z Z
.u 	t C um�	/ dxdt C

Z
u0.x/ 	.x; 0/ dx D 0:

This version is more relaxed than the first. In both cases functional spaces have
to be chosen for the solutions to belong to so that the integrals in the formulation
make sense and existence and uniqueness can be proved.

Once existence and uniqueness of a weak solution was proved for suitable initial
data; that it was verified that all classical solutions are weak; and that the Barenblatt
solutions are indeed solutions for t > 0 (and take the initial Dirac delta in a
suitable sense) the theory of the PME could be conveniently framed as a theory
of weak solutions. Even more, it was proved that suitable numerical approximations
converge to the weak solution.

• Better regularity. Strong solution. The previous paragraph solves the problem of
the correct setting in principle. But researchers want to have solutions that have
good properties so that we can do calculus with them. Fortunately, weak solutions
of the PME are better than weak, they are strong. In this context it means that all
weak derivatives entering the original equation are Lp functions for some p.

• The search for an abstract method to solve a large number of evolution problems
of diffusive type has led to a functional approach called mild or semigroup
solution, that we discuss below.

• Solutions of more complicated diffusion-convection equations have motivated
new concepts that can be translated to the PME:

– Viscosity solution. Two different ideas: (1) add artificial viscosity and pass to
the limit; (2) viscosity concept of [94]; adapted to PME by Caffarelli-Vázquez
[69].

– Entropy solution [183]. Invented for conservation laws; it identifies unique
physical solution from spurious weak solutions. It is useful for general models
with degenerate diffusion plus convection.

– Renormalized solutions (by Di Perna-P.L. Lions), BV solutions (by Volpert-
Hudjaev), Kinetic solutions (by Perthame,. . . ).

5.4.6 Semigroup Approach: Mild Solution

Functional Analysis is a power tool for the expert in PDEs, and when used wisely
it produces amazing result. Thus, when faced with the task of solving evolution
equations of the type

ut C Au D 0 ; (5.38)



234 J.L. Vázquez

where A is a certain operator between function spaces, we may think about
discretizing the evolution in time by using a mesh t0 D 0 < t1; : : : tK D T and
posing the implicit problems

u.tk/ � u.tk�1/
hk

C A.u.tk// D 0; hk D tk � tk�1:

In other words, we want to find a discrete approximate solution u D fukgk such that

hA.uk/C uk D uk�1 ; (5.39)

where we have used equal time spacing hk D h > 0 for simplicity. Of course, the
approximate solution depends on the time step h, so that we should write u.h/ D
fu.h/k gk. This step is called Implicit Time Discretization, ITD. We start the iteration

by assigning the initial value u.h/0 D u0h, where u0h is the given initial data or an
approximation thereof.

Parabolic to Elliptic The success of ITD depends on solving the iterated equa-
tion (5.39) in an iterative way. In fact, the iteration has always the same format

hA.u/C u D f ; (5.40)

since f D uk�1 is the value calculated in the previous step. When this is used for the
filtration equation ut ��ˆ.u/ D 0; we get the stationary equation

� h�ˆ.u/C u D f ; (5.41)

and the question reduces to solve for u if f is known. An easy change of variables
v D ˆ.u/, u D ˇ.v/ leads to

� h�v C ˇ.v/ D f : (5.42)

This is the semilinear elliptic problem that we must solve. We have reduced the
theory of a (possibly nonlinear) parabolic problem to an elliptic problem with a
specific form.

Accretive Operators: Semigroup Generation The rest of the story depends on
the theory of accretive operators. If A is an m-accretive map in a Banach space
X with densely defined domain, then the famous Crandall-Liggett Theorem [93]
ensures not only existence of the solution of the iterated problems, but also that
as h ! 0 the discrete solutions u.h/ converge to a function u.t/ 2 C.Œ0;1/ W X/
that solves the evolution problem in a sense called mild sense. The solution is often
termed the semigroup solution. Moreover, the set of solutions forms a semigroup
of contractions in X.
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But is this mild solution a solution in some more usual sense? In the case of the
PME it is proved that the operator given by A.u/ D ��.um/ is m-accretive in the
space X D L1.RN/ when properly defined, [26], and also that the mild solution is a
weak solution. We have explained the method in some detail in Chap. 10 of [251].

5.4.7 Regularity Results for Nonnegative Solutions

The next step in the theory is proving that under mild conditions on the data weak
solutions of the PME are indeed continuous, and the free boundary is quite often a
regular hypersurface in space-time, or in space for every fixed time. We recall that
we are working with nonnegative solutions. We we also dealing with the Cauchy
problem in the whole space to save effort and concentrate on the basics, but many
results hold for locally defined solutions.

• The regularity theory for solutions relies on the existence of a rather miraculous
a priori estimate, called the Aronson-Bénilan estimate [13], that reads:

�v � �C=t;

where v D cum�1 is the pressure and C D .n.m � 1/ C 2/�1. Nonnegative
solutions with data in any Lp space are then proved to be bounded for positive
times. A major step was then done by Caffarelli and Friedman [65] when they
proved C˛ regularity: there is an ˛ 2 .0; 1/ such that a bounded solution defined
in a cube is C˛ continuous. This holds in all space dimensions.

• What happens to the free boundary? It was soon proved that free boundaries may
be stationary for a while but eventually they must move to fill the whole domain
as time passes. The movement is expansive, the positivity set keeps expanding in
time and never recedes. Caffarelli and Friedman proved subsequently that if there
is an interface � , it is also a C˛ continuous set in space time (properly defined).

• How far can you go? The situation is understood in 1D. On the one hand,
free boundaries can be stationary for a time (metastable) if the initial profile is
quadratic near @�: v0.x/ D O.d2/, d being distance to the zero set. This time
with lack of movement is called a waiting time. It was precisely characterized
by the author in 1983; it is visually interesting in the experiments with thin films
spreading on a table. In paper [19] we proved that metastable interfaces in 1D
may start to move abruptly after the waiting time. This was called a corner point.
It implies that the conjecture of C1 regularity for free boundaries in 1D was false.
But in 1D the problems with regularity stop here: 1D free boundaries are strictly
moving andC1 smooth after the possible corner points. See [251] for full details.



236 J.L. Vázquez

5.4.8 Regularity of Free Boundaries in Several Dimensions

The situation is more difficult for free boundary behaviour in several space
dimensions, and the investigation is still going on.

u>0
u=0

t=0

T

t

A regular free boundary in N-D. Source: Personal source

• Caffarelli, Wolanski, and the author proved in 1987 that if u0 has compact
support, then after some time T > 0 the interface is C1;˛ , and the pressure is
also C1;˛ in a lateral sense [72, 73]. Note the lateral regularity is the only option
since the Barenblatt solutions are an example of solutions that exhibit a smooth
profile that is broken at the FB. The general idea, taken from 1D, is that when
the FB moves, the adjoining profile is always a broken profile, since the support
of the solution moves forward only if the gradient of the pressure is nonzero
(Darcy’s law).

• In his excellent doctoral thesis (1997), Koch proved that if u0 is compactly
supported and transversal then the free boundary is C1 after some finite time
and the pressure is “laterally” C1. This solved the problem of optimal regularity
in many cases, though not all.

• The free boundary for a solution with a hole in 2D, 3D is the physical situation in
which optimal regularity can be tested. Indeed, as the flow proceeds and the hole
shrinks, it is observed that the part of the motion of the free boundary surrounding
the hole accelerates, so that at the point and time where the hole disappears (this
phenomenon is called focusing), the advance speed becomes infinite. The applied
setup is a viscous fluid on a table occupying an annulus of radii r1 and r2. As time
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passes r2.t/ grows out while r1.t/ goes to the origin. In a finite time T the hole
disappears. The flow can be regular for t < T but it was suspected from the
numerical evidence that it was not at the focusing time t D T.

To prove this fact, a self-similar solution was constructed displaying the focusing
behaviour. It has the form

Uf .x; t/ D .T � t/˛F.x=.T � t/ˇ/:

with .m � 1/˛ D 2ˇ C 1. The profile is such that F.�/ 	 j�j� near � D 0, with
� D ˛=ˇ. There is one free parameter, let us say ˇ, that is not known a priori. We
find a very interesting mathematical novelty, an anomalous exponent, or similarity of
the second kind in the terminology popularized by Barenblatt [23]. The problem was
solved by ODE analysis in 1993 by Aronson and Graveleau [14], and then further
investigated by Aronson and collaborators, like [9, 16]. It is proved that � < 1 so that
the speed v 	 rum�1 blows-up at the focusing time t D T at x D 0. Moreover, the
limit profile Uf .x;T/ is not Lipschitz continuous at x D 0, it is only C� continuous.
This is a counterexample to the hypotheses of higher regularity of heat equation and
similar diffusive flows: a degenerate equation like PME has limited regularity for
nonnegative solutions with moving free boundaries. Such a phenomenon is known
to happen in the other typical evolution free boundary problems. Stefan, Hele-Shaw
and p-Laplacian equation. For the latter see [20].

Summing up, higher regularity for PME flows has an obstacle. We may hope
to prove higher regularity if we avoid it, like the situation of compactly supported
solutions for large times.

5.4.9 Recent Results on Regularity and Asymptotics

The question remained for many years to know if we can prove regularity of the
solutions and their free boundaries under some certain geometrical condition on the
solution or the data less stringent than the conditions of compact support and initial
transversality of papers [72, 73, 181].

• Much progress was done recently in paper with Koch and Kienzler [172],
preceded by Kienzler [171]. Here is the main theorem proved in [172] about
regularity of solutions that are locally small perturbations from a flat profile.

Theorem 5.4.1 There exists ı0 > 0 such that the following holds:
If u is a nonnegative ı-flat solution of the PME at .0; 0/ on scale 1 with ı-
approximate direction en and ı-approximate speed 1, and ı � ı0, then for all
derivatives we have uniform estimates

j@tk@x˛rx.u
m�1 � .xn C t//j � Cı (5.43)
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at all points .t; x/ 2 .Œ�1=2; 0� � B1=2.0// \ P.u/ with C D C.N;m; k; ˛/ > 0. In
particular, �m�1 is smooth up to the boundary of the support in .� 1

2
; 0� � B1=2, and

jrxu
m�1 � enj; j@tum�1 � 1j � Cı : (5.44)

Moreover, the level sets for positive values of u and the free boundary are uniformly
smooth hypersurfaces inside .� 1

2
; 0� � B 1

2
.0/.

The technical assumption is being ı-flat, which means being very close to a flat
travelling wave (the special solution that serves as model) in a certain space-time
neighbourhood. See precise details in the paper. The size of this neighbourhood is
taken to be unit, but this is not a restriction by the scale invariance of the equation.
The very detailed form of the estimates allows us then to derive very strong results
for large times, that we will explain in next subsection.

• Theorem 5.4.1 implies the eventual C1-regularity result for global solutions that
we were looking for. The following result is Theorem 2 of [172]. We use the
notation RB.t/ D c1.N;m/M.m�1/�t�, with � D 1=.N.m � 1/ C 2/, for the
Barenblatt radius for the solution with mass M located at the origin.

Theorem 5.4.2 Let u � 0 be a solution of the PME posed for all x 2 R
N, N �

1, and t > 0, and let the initial data u0 be nonnegative, bounded and compactly
supported with mass M D R

u0dx > 0. Then, there exists a time Tr depending on u0
such that for all t > Tr we have:

(i) Regularity. The pressure of the solution um�1 is a C1 function inside the
support and is also smooth up to the free boundary, with rum�1 ¤ 0 at the
free boundary. Moreover, the free boundary function t D h.x/ is C1 in the
complement of the ball of radius R.Tr/.

(ii) Asymptotic approximation. There exists c > 0 such that

t�N�
�
a2M2.m�1/� � ct�2� � �jx � x0j2

2t2�

	 1
m�1

C �u.t; x/

� t�N�
�
a2M2.m�1/� C ct�2� � �jx � x0j2

2t2�

	 1
m�1

C

(5.45)

where x0 D M�1 R x�.x/dx is the conserved center of mass, and a is a certain
constant. Moreover,

BRB.t/�ct�� .x0/ � supp.u.�; t// � BRB.t/Cct��.x0/ (5.46)

In this way we are able to solve the problem posed in 1987, and improved
by Koch in 1997. We use delicate flatness conditions, scalings, heat semigroups
and harmonic analysis. We have eliminated the non-degeneracy condition on the
initial data. The estimates are uniform. The result cannot be improved in a number
of directions. Besides, some more information is available: if the initial function
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is supported in the ball BR.0/, then we can write the upper estimate of the
regularization time as

Tr D T.N;m/M1�mR
1
� : (5.47)

By scaling and space displacement we can reduce the proof to the case M D 1 and
x0 D 0. The fine asymptotic analysis uses also the results of Seis [223].

• Nonlinear Central Limit Theorem revisited

The last part of Theorem 5.4.2 refers to the way a general solution with compact
support approaches the Barenblatt solution having the same mass. This kind of result
is what we have called the PME version of the Central Limit Theorem.

It was proved in due time that the standard porous medium flow has an
asymptotic stabilization property that parallels the stabilization to the Gaussian
profile embodied in the classical Central Limit Theorem if we take as domain R

N

and data u0.x/ 2 L1.Rn/. The convergence result is

ku.t/� B.t/k1 ! 0 (5.48)

as t ! 1, as well as

tN� ju.x; t/ � B.x; t/j ! 0; (5.49)

uniformly in x 2 R
N . Here, B.x; tIM/ be the Barenblatt with the asymptotic mass M.

Note that the factor tN� is just the normalization needed to work with relative errors
since B.x; t/ decays like O.t�N�/. Proofs are due to Kamin and Friedman [132] for
compactly supported solutions, and the author (2001) in full generality. The result
is reported with full detail in [251] and explained in [250, 253].

An improvement of the result to indicate a definite rate of convergence is due
to Carrillo and Toscani [78]. It works for solutions with a finite second moment,R
u0.x/ jxj2 dx, [78] and uses the powerful machinery of entropy methods, that

become subsequently very popular in studies of nonlinear diffusion.
The result that we obtain above points out to a finer error rate for compactly

supported solutions, that can be written as

tN.m�1/� jum�1.x; t/ � Bm�1.x � x0; tIM/j D O.t�2�/ : (5.50)

Seis’ analysis and our paper show optimality of this rate. Note that 2� < 1.

Other Problems There are numerous studies of the PME in other settings, like
bounded domains with Dirichlet or Neumann conditions, PME with forcing term:

ut D �um C f ;
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PME with variable coefficients or weights, generalized filtration equation, PME
with convection and/or reaction, . . .

Many of the above results have counterparts for the p-Laplacian flow. Thus,
stabilization to the p-Laplacian version of the Barenblatt solution is proved by
Kamin and the author in [166]. There are many studies but no comparable fine
analysis of the FB has been done.

Further Reading for This Chapter On the PME: [250, 251]. On asymptotic
behaviour: [247, 248]. About estimates and scaling: [249]. For entropy methods
[11, 78, 79].

5.5 The Fast Diffusion Equation

We will consider now that range m < 1 for the model equation (5.33). The equation
becomes singular at the level u D 0 in the sense that D.u/ ! 1. This range is called
Fast Diffusion Equation, FDE, and we also talk about singular diffusion. The new
range was first motivated by a number of applications to diffusive processes with
fast propagation: plasma Physics (Okuda-Dawson law) [27, 211], material diffusion
(dopants in silicon) [175], geometrical flows (Ricci flow on surfaces and the Yamabe
flow), diffusive limit of kinetic equations, information theory, and others, see [249].
Once the mathematics started, it was seen that the FDE offers many interesting
mathematical challenges, and some unexpected connections with other disciplines
like Calculus of Variations.

The common denominations slow and fast for the parameter ranges m > 1 and
m < 1 in (5.33) refer to what happens for u 
 0. But when large values of u are
involved, the names are confusing since the situation is reversed:

– D.u/ ! 1 as u ! 1 if m > 1 (“slow case”)
– D.u/ ! 0 as u ! 1 if m < 1 (“fast case”)

Indeed, power functions are tricky. The pressure transformation can also be used for
the FDE range, but then the factorm�1 changes sign and the equation that we obtain
is different because of the sign changes. Putting v D cum�1 with c D m=.1�m/ we
get a new pressure equation of the form

vt D .1 � m/v�v � jrvj2 ; (5.51)

so that the eikonal term is now an absorption term. Note that u ! 0 implies v ! 1
in the FDE.
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5.5.1 Barenblatt Solutions in the Good Range

We have well-known explicit formulas for source-type self-similar solutions called
Barenblatt profiles, valid for with exponents m less than 1, but only if 1 > m >

m� D .N � 2/=N if N � 3:

B.x; tIM/ D t�˛F.x=tˇ/; F.�/ D .C C k�2/�1=.1�m/:

u(x,t)

x

t=1.15
t=1.25
t=1.4
t=1.6

Source: Personal source

The decay rate and spreading rate exponents are

˛ D N

2 � N.1 � m/
; ˇ D 1

2 � N.1 � m/
> 1=2 :

Both exponents ˛; ˇ ! 1 as m goes down to m�. So the question is what happens
for m < m�? It is a long and complicated story, see a brief account further below.

The decay of the Barenblatt FDE profile for fixed time is B D O.jxj�2=.1�m//, a
power-like decay that we have termed a fat tail in terms of probability distributions.
The exponent ranges from N to 1 in the range m� < m < 1. Note that for m� <
m < .N � 1/=.N C 1/ the distribution B.�; t/ does not even have a first moment.

The exponent range mc < m < 1 < of the FDE where the Barenblatt solutions
exist is called the “good fast diffusion range”, since it has quite nice properties;
though different from the linear heat equation, they nevertheless quite satisfying
from many points of view, in particular from the point of view of existence,
functional analysis, regularity and asymptotic behaviour. Thus, existence of a
classical C1 smooth solution is guaranteed for every nonnegative, locally bounded
Radon measure as initial data (no growth conditions like the HE or the PME), the
solution is unique, it is also positive everywhere even if the data are not (they must
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be nontrivial), decay in time of the solutions depends in a predictable way from
suitable norms of the data. Even unbounded Borel measures can be taken, see [85].

In particular, when u0 2 L1.RN/, a semigroup of contractions if generated,
conservation of mass holds, and the solution converges for large time to the
Barenblatt solution given above, and with the same expression of the Central Limit
Theorem that we saw for the PME. The impressive Aronson-Bénilan estimate is
now a two-sided universal estimate: �C1u=t � ut.x; t/ � C2u=t, which implies
better and easier estimates for the rest of the theory. Of course, the absence of free
boundaries makes it lose part of its power of attraction. We will not enter into the
proofs of these results, than can be found in the literature, [99, 114, 249],. . .

5.5.2 Comparison of Anomalous Diffusions

The type of diffusion described by the Barenblatt solutions is called anomalous
diffusion since it breaks the Brownian spread rate jxj 	 t1=2 and space decay with
an exponential rate. We have already seen that anomalous behaviour in the linear
setting, as the fundamental solution Pt.x/ of the Fractional Heat Equation (FHE)
ut C .��/su D 0, cf. (5.22). In that case the spreading rate is jxj 	 t1=2s. This leads
to a formal (and partial) equivalence between anomalous diffusion of FHE and FDE
types based on the spread strength. It reads 2s 	 2 � N.1 � m/, hence

N.1 � m/ 	 2.1� s/;

which agrees for the classical heat equation: m D 1, s D 1. For the best known case
s D 1=2 the equivalence gives N D .N � 1/=N, a well-known exponent.

For the fundamental solution of the fractional Laplacian diffusion, the decay rate
for fixed time is Pt.x/ D O.jxj�.NC2s//. This gives the formal equivalence between
spatial decay rates: N C 2s 	 2=.1 � m/. It does not agree with the heat equation
value in the limit: m D 1, s D 1.

One may wonder if we can get complete agreement of exponents and profile
functions. This happens in dimension N D 1 for s D 1=2 and m D 0, a very
exceptional case. The profile function is the Cauchy distribution

P.x/ D 1

�

t

t2 C jxj2 : (5.52)

5.5.3 Subcritical, Logarithmic and Very Singular Fast
Diffusion

The situation becomes much more involved once we cross the valuemc D .N�2/=N
for N � 3. In the range mc > m > 0many of the above properties do not hold. Thus,
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there must be a condition on the initial data to guarantee that solutions becomes
bounded, hence smooth, for all positive times. If u0 2 LPloc.R

N/ then we need p >
N.1�m/=2, and the bound is sharp, otherwise regularization need not be true. When
u0 2 L1.RN/, conservation of mass never holds, and in fact such solutions disappear
in finite time, a phenomenon called extinction, that is discussed at length in our
[249]. Obtaining valid versions of the Harnack inequality was challenging in this
range [40, 41], see also the monograph [115].

• Logarithmic Diffusion. The limit m ! 0 makes sense if we slightly modify the
constants in the equation and write it as

ut D r � .um�1ru/ D .1=m/�um: (5.53)

It is proved that the solutions um.x; t/ with fixed initial data, say bounded,
converge as m ! 0 to a solution of the logarithmic diffusion equation

ut D r � .ru=u/ D � log.u/ ; (5.54)

famous in 2D as a model for the evolution of the conformal matric by Ricci
flow, as proposed by Hamilton [151] in 1988, where u is the conformal factor.
A detailed study of the surprising mathematical theory is done in [249], where
references are given. The following facts are remarkable: finite mass solutions
are not uniquely determined by the initial data and moreover, they all lose at
least 4� units of mass (which here means surface) per unit time. A very beautiful
solution happens when we choose surface loss equal to 8� and the formula is

U.x; t/ D 8a.T � t/

.a2 C jxj2/2 ; with a > 0: (5.55)

In the geometrical interpretation it describes the shrinking of a perfect 2D ball
to a point in time T > 0. The ball is represented on the plane by stereographical
projection. The solution qualifies as another beautiful diffusive pattern, this time
it portrays extinction by Ricci flow. We ask the reader to note the difference with
the Barenblatt FDE solutions, or with the Cauchy distribution (5.52).

Note that there is another natural limit as m ! 0, namely the equation
ut D � sign.u/. Though it means no flow for positive data, it has an interesting
interpretation in terms of total variation flow for signed data, see [38] in 1D and
compare with [217]. Total variation flow is an very important subject in itself, related
to the p-Laplacian, cf. the monograph [8].

• Super-Fast Diffusion. Once we cover m D 0 the natural question is, can we
cover m < 0. Actually, formula (5.53) makes perfect sense and a theory can
be developed that extends much of what we have seen in the subcritical case
0 < m < mc. Some surprises arise in the form of nonexistence for integrable data
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(which seem in principle the most natural), see [246]. The range is called very
singular diffusion of super-fast diffusion.

• Subcritical Asymptotic Stabilization. The absence of Barenblatt solutions makes
one wonder what happens for large times in the subcritical, logarithmic and very
singular cases. This is a complicated topic, that needs lots of mathematics. We
refer to [176, 249] for the earlier extinction analysis for so-called small solutions,
and to [35, 45] for stabilization of solution with certain fat tails to the self-similar
solutions called pseudo-Barenblatt solutions. The proofs are based on entropy-
entropy dissipation methods. References to abundant related work are found.

5.5.4 Comments and Extensions

The subject FDE in the lower m ranges is quite rich. Part of the very interesting
results concern problems posed in bounded domains, where the discussion is quite
different. However, lack of space leads us not to continue the study of the Fast
Diffusion range, and we refer to reader to monographs like [99, 249]. But let us just
point out that there is no unity in the mathematics of the Fast Diffusion comparable
to the Porous Medium range, and a number of critical exponentsm < 1 appear. This
is the source of many interesting functional developments and physical phenomena
that researchers are still trying to understand.

The contents of the two last sections on PME and FDE can be translated to a
large extent to the study of the evolution p-Laplacian equation (PLE), though some
remarkable differences exist. We refer to the book [249] for an account of our ideas.
There is even a transformation that maps all radial solutions of the PME to the
corresponding class of the PLE, see [158]. Of course, p D m C 1 by dimensional
considerations, but the transformation changes also the space dimension. If N > 2,
then the corresponding PLE dimension is N0 D .N � 2/.m C 1/=2m.

Some studies deal with the Doubly Nonlinear Equation ut D r �
.jD.um/jp�2D.um//. See [232] for a recent work.

5.6 Nonlinear Fractional Diffusion: Potential Model

The combination of fractional diffusion and porous medium nonlinearities gives rise
to interesting mathematical models that have been studied in the last decade both
because of a number of scientific applications and for their mathematical properties.
Two main models will be discussed below; a mechanical model has been developed
in collaboration with Luis Caffarelli in Texas, and can be called porous medium
flow with fractional potential pressure (or more generally, with nonlocal pressure);
it has surprising properties. The other one has been developed later but it has better
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analytical properties. For convenience we will call them here PMFP and FPME.4

We will also examine models that interpolate between both.

5.6.1 Porous Medium Diffusion with Nonlocal Pressure

We devote this section to introduce model PMFP. It arises from the consideration
of a continuum, say, a fluid, represented by a density distribution u.x; t/ � 0 that
evolves with time following a velocity field v.x; t/, according to the continuity
equation

ut C r � .u v/ D 0:

We assume next that v derives from a potential, v D �rp, as happens in fluids
in porous media according to Darcy’s law, and in that case p is the pressure. But
potential velocity fields are found in many other instances, like Hele-Shaw cells,
and other recent examples.

We still need a closure relation to relate p to u. In the case of gases in porous
media, as modeled by Leibenzon and Muskat, the closure relation takes the form of
a state law p D f .u/, where f is a nondecreasing scalar function, which is linear
when the flow is isothermal, and a power of u if it is adiabatic. The PME follows.
The linear relationship happens also in the simplified description of water infiltration
in an almost horizontal soil layer according to Boussinesq’s modelling. In that case
we get the standard porous medium equation, ut D c�.u2/. See Sect. 5.4 on the
PME or [251] for these and many other applications.

The diffusion model with nonlocal effects proposed in 2007 with Luis Caffarelli
uses the first steps of the derivation of the PME, but it differs by using a closure
relation of the form p D K.u/; where K is a linear integral operator, which we
assume in practice to be the inverse of a fractional Laplacian. Hence, p es related to
u through a fractional potential operator, K D .��/�s, 0 < s < 1; with kernel

k.x; y/ D cjx � yj�.n�2s/

(i.e., a Riesz operator). We have .��/sp D u. This introduces long-distance effects
in the model through the pressure, and we end up with a nonlocal model, given by
the system

ut D r � .urp/; p D K.u/ (5.56)

4In [253] they were called Type I and Type II in reverse order.
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where u is a function of the variables .x; t/ to be thought of as a density or
concentration, and therefore nonnegative, while p is the nonlocal pressure, which
is related to u via a linear operator K. We can write: ut D r � .ur.��/�su/.
A technical observation: there are problems in defining .��/�su in 1D since the
kernel may be too singular, but then r.��/�su is always well defined, which is
enough to perform the calculations that will be commented upon below.

The problem is posed for x 2 R
N , n � 1, and t > 0, and we give initial conditions

u.x; 0/ D u0.x/; x 2 R
N ; (5.57)

where u0 is a nonnegative, bounded and integrable function in R
N :

5.6.2 Applied Motivation and Variants

• Particle Systems with Long Range Interactions. Equations of the more general
form

ut D r � .
.u/rLu/

have appeared in a number of applications to the macroscopic evolution of
particle systems. Thus, Giacomin and Lebowitz [136], 1997, consider a lattice
gas with general short-range interactions and a Kac potential, and passing to the
limit, the macroscopic density profile �.r; t/ satisfies the equation

@�

@t
D r �




s.�/r ıF.�/

ı�

�
(5.58)

where 
s.�/ may be degenerate. See also [137].
• Modeling Dislocation Dynamics as a Continuum. Following old modeling

by Head in [152], Biler-Karch-Monneau [31] considered the one-dimensional
case of model (5.56). By integration in x they introduced viscosity solutions
à la Crandall-Evans-Lions. They prove that uniqueness holds, which is very
satisfying property. But the corresponding mathematical model in several space
dimensions looks quite different from (5.56).

• Hydrodynamic Limit for s D 1. This is a very interesting limit case. Putting
s D 1 makes us lose the parabolic character of the flow that becomes hyperbolic.
In 1D the situation is rather trivial since when we put p D .��/�1u we get
pxx D �ux, and then

ut D .u px/x D ux px � u2
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Moreover, if v D �px D R
u dx, we have

vt D upx C c.t/ D �vxv C c.t/;

For c D 0 this is the Burgers equation vt C vvx D 0, which generates shocks in
finite time but only if we allow for u to have two signs.

In several dimensions the issue becomes much more interesting because it does
not reduce to a simple Burgers equation. We have

ut D r � .urp/ D ru � rp � u2; p D .��/�1u ; (5.59)

A very close version to this model has appeared in superconductivity (the Chapman-
Rubinstein-Schatzman-E model) see [192, 263], and Ambrosio-Serfaty [4]. In that
application u describes the vortex density. Gradient flow structure for this example
is established in [6].

• The PME Limit. If we take s D 0, K D the identity operator, we get the standard
porous medium equation, whose behaviour is well-known. Therefore we can
see the PMFP equation as a nonlinear interpolation between the PME and the
hydrodynamic limit, s D 1.

• More generally, it could be assumed that K is an operator of integral type defined
by convolution on all of Rn, with the assumptions that is positive and symmetric.
The fact the K is a homogeneous operator of degree 2s, 0 < s < 1, will be
important in the proofs. An interesting variant would be the Bessel kernel K D
.��C cI/�s. We are not exploring such extensions.

5.6.3 Mathematical Results

Early results on the PMFP have been reported in Proceedings from the Abel
Symposium [252], and then in [253], so we will concentrate on general facts and
only develop in more detail some of the new material. For applications of nonlinear
nonlocal diffusion see also [64].

• In paper [70] Luis Caffarelli and the author established the existence of weak
energy solutions, the basic properties of the solutions, like conservation of mass

d

dt

Z
u.x; t/ dx D 0 ; (5.60)

the two energy estimates

d

dt

Z
u.x; t/ log u.x; t/ dx D �

Z
jrHuj2 dx ; (5.61)
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where H D .��/�s=2, and

d

dt

Z
jHu.x; t/j2 dx D �2

Z
ujrKuj2 dx; K D .��/�s: (5.62)

A number of usual properties in diffusive processes do hold here like con-
servation of positivity, as well as Lp decay. But we also found lack of a
general comparison principle, a major difficulty in developing the theory (such
a drawback will not be shared by the second model, FPME). And we could not
prove uniqueness for general solutions in several space dimensions.

A main goal in the study of this model was to determine whether or not the
property of finite propagation holds. The answer turned out to be yes. This is
not clear in principle due to the competition between the slow propagation of the
PME part with the infinite propagation of the fractional operator (amounting to long
distance effects). The lack of plain comparison made the proof difficult, and the
difficulty was surmounted by a novel use of the methods of viscosity solutions.
Summing up, the degenerate character of the PME wins. On the contrary, infinite
propagation was later proved to be true for FPME.

• In a second contribution [71] we explored the long-time behaviour in two steps.
We first established the existence of self-similar profiles, so-called Fractional
Barenblatt solutions

U.x; t/ D t�˛F.x t�ˇ/; ˇ D 1

N C 2 � 2s ; ˛ D Nˇ;

The profile F is compactly supported, a clue to the finite propagation property,
and is the solution of a certain fractional obstacle problem. A different proof
in dimension 1 follows from paper [31]. The authors of [32] found the self-
similar Barenblatt profiles in all dimensions with explicit formulas: F.x/ D
.A � B jxj2/1�sC .

Then we introduced the renormalized Fokker-Planck equation and used a suitable
entropy functional and proved stabilization of general solutions to the previous
profiles that we called fractional Barenblatt profiles. All this is carefully explained
in [252].

• The next issue in the programme was the regularity of the solutions. It was
studied in a paper with Caffarelli and Soria, [75]. Proving boundedness for
solutions with integrable data in Lp, 1 � p � 1 was an important step in the
this theory. We can dispense with the extension method for fractional Laplacians
by using energy estimates based on the properties of the quadratic and bilinear
forms associated to the fractional operator, and then the iteration technique.

Theorem Let u be a weak solution the initial-value problem for the PMFP with
data u0 2 L1.Rn/ \ L1.Rn/, as constructed before. Then, there exists a positive
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constant C such that for every t > 0

sup
x2Rn

ju.x; t/j � C t�˛ku0k�L1.RN /
(5.63)

with ˛ D N=.N C2�2s/, � D .2�2s/=.NC2�2s/. The constant C depends only
on N and s.

The major step is then proving C˛ regularity. The proof uses the DeGiorgi
method with careful truncations together with very sophisticated energy methods
that have to overcome the difficulties of both nonlinearity and nonlocality. A number
of ideas come from Caffarelli-Vasseur [68] and [74] with difficult modifications due
to the degenerate nonlinearity. The theory can be extended to data u0 2 L1.RN/,
u0 � 0, giving global existence of bounded weak solutions.

5.6.4 Energy, Bilinear Forms and Fractional Sobolev Spaces

The previous results are obtained in the framework of weak energy solutions: The
basis of the boundedness analysis is a property that goes beyond the definition
of weak solution. The general energy property is as follows: for any real smooth
function F and such that f D F0 is bounded and nonnegative, we have for every
0 � t1 � t2 � T,

R
F.u.t2// dx � R

F.u.t1// dx D � R t2
t1

R rŒ f .u/�urp dx dt

D � R t2
t1

R rh.u/r.��/�su dx dt ;

where h is a function satisfying h0.u/ D u f 0.u/. We can write the last integral in
terms of a bilinear form

Z
rh.u/r.��/�su dx D Bs.h.u/; u/

This bilinear form Bs is defined as

Bs.v;w/ D C
“

rv.x/ 1

jx � yjN�2s rw.y/ dx dy D“
N�s.x; y/rv.x/rw.y/ dx dy

where N�s.x; y/ D C jx � yj�.N�2s/ is the kernel of operator .��/�s. After some
integrations by parts we also have

Bs.v;w/ D Cn;1�s

“
.v.x/ � v.y//

1

jx � yjnC2.1�s/
.w.x/ � w.y// dx dy (5.64)
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since ��N�s D N1�s. It is well known that Bs.u; u/ is an equivalent norm for the
fractional Sobolev space W1�s;2.RN/. This is the way the fractional Sobolev spaces
appear, as dissipated energies that will guarantee compactness in the arguments, see
[75]. Fractional Sobolev spaces with a view to their use in PDEs are discussed in
[116].

5.6.5 More Recent Work

• The particular value s D 1=2 of the fractional exponent turned out to be
extremely delicate for the regularity analysis of [75] and needed a further article
with new geometrical ideas, [71]. Briefly stated, there are some terms in the
energy estimates that come from the tails of the solutions and cannot be suitably
controlled in an iterative way. An iterated geometrical coordinate transformation
allows to eliminate them at the cost of a distorted geometry.

• The Hydrodynamic Limit s ! 1 was studied by Serfaty and the author in [224].
We pass to the limit and construct a theory of existence, uniqueness and estimates
for the hydrodynamic limit problem. It is interesting to note that the asymptotic
attractor is a selfsimilar vortex of the form

U.x; t/ D t�1F.x=t1=N/;

and F is the characteristic function of a ball. Therefore, even continuity is lost in
the regularity of the solutions. This is not a contradiction since the limit equation
is no longer parabolic. Our work is related to work on aggregation models by
Bertozzi et al. [29].

• We posed the question of possible rates in the asymptotic convergence to
selfsimilar solutions of Barenblatt type of papers [31, 71]. This question was
partially solved in a paper [80] with Carrillo et al., where we showed exponential
convergence towards stationary states for the Porous Medium Equation with
Fractional Pressure in 1D. The many-dimensional case seems to be a difficult
open problem, it is tied to some functional inequalities that are not known. Our
analytical approach does not seem to apply either.

5.6.6 Additional Work, Open Problems

• The questions of uniqueness and comparison are solved in dimension N D 1

thanks to the trick of integration in space used by Biler et al. [31]. New tools are
needed to make progress in several dimensions.

Recent uniqueness results are due to Zhou et al. [270]. They obtain local in time
strong solutions in Besov spaces. Thus, for initial data in B˛1;1 if 1=2 � s < 1 and
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˛ > N C 1 and N � 2. Therefore, Besov regularity implies uniqueness for small
times.

• The fractional Burgers connection was explored in [81] for N D 1, s D 1=2

where @x.��/�1=2 D �H, the Hilbert transform.
• The study of the free boundary is in progress, but regularity is still open for small

s > 0.
• The gradient flow structure of the PMFM flow in Wasserstein metrics has been

recently established by Lisini et al. in [194]. For the general approach see the
monograph [5]. Previous work in 1D was due to by Carrillo et al.

• The problem in a bounded domain with Dirichlet or Neumann data has not been
studied, to our knowledge.

• Good numerical algorithms and studies are needed.

5.6.7 Elliptic Nonlinear Nonlocal Models

The interest in using fractional Laplacians in modeling diffusive processes has a
wide literature, especially when one wants to model long-range diffusive interac-
tions, and this interest has been activated by the recent progress in the mathematical
theory, in the form of a large number works on elliptic equations, mainly of the linear
or semilinear type, as well as free boundary problems, like obstacle problems. There
are so many works on the subject that we cannot refer them here. Let us mention
the survey paper [64] by Caffarelli, that contains a discussion of the properties of
solutions to several non-linear elliptic equations involving diffusive processes of
non-local nature, including reference to drifts and game theory.

5.7 The FPME Model and the Mixed Models

Another natural model for the combination of fractional diffusion and porous
medium nonlinearities is the equation that we will call fractional porous medium
equation: @tu C .��/s.um/ D 0. In order to be mathematically precise we write the
equation as

ut C .��/s.jujm�1u/ D 0 (5.65)

with 0 < m < 1 and 0 < s < 1. We will take initial data in u0 2 L1.RN/ unless
mention to the contrary. Normally, u0; u � 0. We will refer to this model as FPME
for easy reference in this paper. Mathematically, it looks a more direct generalization
of the linear fractional heat equation than the potential model PMFP studied in the
previous section.
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This model represents another type of nonlinear interpolation with parameter
s 2 .0; 1/, this time between the PME ut ��.jujm�1u/ D 0 for s D 1 and the plain
absorption ODE ut C jujm�1u D 0 for s D 0.

We have written a detailed description of this model in the survey paper [253],
where we give references to the physical motivations, among them [21, 159–161],
the literature, and the mathematical developments until 2013 approximately. See
also Appendix B of [41]. Therefore, we will mention the main items of the research,
the references and general ideas, and then proceed to give notice of recent work,
that covers different directions.

5.7.1 Mathematical Theory of the FPME

A complete analysis of the Cauchy problem posed for x 2 R
N , t > 0, with initial

data in L1.RN/ was done in two very complete papers coauthored with de Pablo
F. Quirós, and Rodríguez: [106] in (2011) and [107] (2012). Using the Caffarelli-
Silvestre extension method and the Bénilan-Brezis-Crandall functional semigroup
approach, a weak energy solution is constructed, and u 2 C.Œ0;1/ W L1.RN//.
Moreover, the set of solutions forms a semigroup of ordered contractions in L1.RN/.
This is the first instance of a ‘better behaviour’ than model PMFP.

• The second big difference is that Nonnegative solutions have infinite speed of
propagation for all m and s, so that there is no nonnegative solution with compact
support (we mean, in the space variable). Actually, a very important property of
Model PMFP with Caffarelli is that solutions with compactly supported initial
data do have the compact support property (i.e., they stay compactly supported
for all times).

Even is propagation is always infinite in this model, we still use the name ‘fractional
FD’ for the range m < 1 because of the many analogies with the usual FDE.

• On the other hand, some properties are similar in both models: Conservation of
mass holds for all m � 1, and even for some m < 1 close to 1; the L1 � L1
smoothing effect works; and the C˛ regularity holds also (unless m is near 0 and
solutions are not bounded). Comparison of the models PMFP and FPME is
quite interesting and has been pursued at all levels.

• The question of existence of classical solutions and higher regularity for the
FPME and the more general model

@tu C .��/sˆ.u/ D 0

(where ˆ is a monotone real function with ˆ0 � 0) has been studied in two
papers with the same authors (A.deP., F.Q., A.R., J.L.V.). The first paper, [108],
treats the model case ˆ.u/ D log.1 C u/, which is interesting as a case of log-
diffusion. The second treats general nonlinearitiesˆ and proves higher regularity
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for nonnegative solutions of this fractional porous medium equation, [261]. This
is a very delicate result. There is an extension of this result to proveC1 regularity
to solutions in bounded domains by Bonforte et al. [49].

• Our paper [254] deals with the construction of what we call the fractional
Barenblatt solution of the FPME, which has the also self-similar form:

U.x; t/ D t�˛F.xt�ˇ/ (5.66)

The construction works for m > mc D .N � 2s/=N, a range that is optimal that
reminds us of the Fast Diffusion Equation, Sect. 5.5. The difficulty is to find F
as the solution of an elliptic nonlinear equation of fractional type. Such profile
is not explicit as in the PMFP model (it is only for some very special exponents
[156]). In any case, F has behaviour like a power tail

F.r/ 	 r�.NC2s/ :

This is important for the applications and it the same as the one predicted by
Blumental for the linear fractional kernel. This asymptotic spatial behaviour
holds for all m � 1, and even for some m < 1, but not for some fast diffusion
exponents mc < m < 1 (see what happens then in [254]). The results are
extended in [147].

Asymptotic behaviour as t ! 1 follows, and this Barenblatt pattern is proved
to be an attractor, as we were expecting from what has been seen along this whole
text. The result holds for m > mc. Open problem: Rates of convergence have not
been found, and this is an interesting open problem.

Extinction in finite time is proved for exponents 0 < m < mc. The corresponding
stabilization process must be studied.

• Another direction concerns regularity at the local or global level. In collaboration
with M. Bonforte we have obtained a priori upper and lower estimates of
intrinsic, local type for this problem posed in R

N , [42]. Quantitative positivity
and Harnack Inequalities follow. Against some prejudice due to the nonlocal
character of the diffusion, we are able to obtain them here for fractional
PME/FDE using a technique of weighted integrals to control the tails of the
integrals in a uniform way. The novelty are the weighted functional inequalities.
This also leads to existence of solutions in weighted L1-space for the fast
diffusion version FPME, a restriction that does not appear in the standard FDE.

More recent, very interesting work on bounded domains is reported in
Sect. 5.8.

• Symmetrization (Schwarz and Steiner types). This is a project with Volzone [259,
260]. Applying usual symmetrization techniques is not easy and we have found
a number of open problems. It turns out that Steiner symetrization works and
it does much better for fractional FDE than for the fractional PME range. This
work was followed by recent collaboration with Y. Sire and B. Volzone to apply
the techniques to the fractional Faber-Krahn inequality, [229].
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• We have also investigated very degenerate nonlinearities, like the Mesa Problem.
This is the limit of FPME with m ! 1. We have studied this limit in [255], and
the limit flow characterized by the solution of a fractional obstacle problem, that
is related to the obstacle problem for the PMFP that was described in [71].

• Numerics for the nonlinear nonlocal diffusion models is being done by a number
of authors at this moment by : Nochetto et al. [208, 209], Teso [111].

• Fast diffusion and extinction. Very singular fast diffusion. Paper with Bonforte
and Segatti [48], on non-existence due to instantaneous extinction, which is the
common rule in very singular fractional fast diffusion as shown for standard
diffusion in [246]. Paper [258] shows the existence of maximal solutions for some
very singular nonlinear fractional diffusion equations in 1D in some borderline
cases, this is an exception.

• We have looked at the phenomenon of KPP propagation in linear and nonlinear
fractional diffusion with the particular reaction proposed by Kolmogorov-
Piskunov-Petrovskii and Fisher [182]. In the case of standard linear diffusion
travelling waves appear and serve as asymptotic attractors. Cabré and Roque-
joffre [60, 61] studied the diffusion equation with linear fractional diffusion and
KPP reaction and showed that there is no traveling wave propagation, and in fact
the level sets move out at an exponential rate for large times. The results are
extended to nonlinear fractional diffusion of the FPME type for all values of the
exponents in work with Stan, [233].

5.7.2 Mixed Models

• The potential model PMFP given in (5.56) is generalized into PMFP’

ut D r � .um�1r.��/�su/ (5.67)

with m > 1. This is an extension that accepts a general exponent m, so that the
comparison of both models may take place on more equal terms.

The most interesting question seems to be deciding if there is finite and infinite
propagation for PMFP’. Recent works with Stan and del Teso [234] and [236] show
that finite propagation is true for m � 2 and propagation is infinite is m < 2. This
is quite different from the standard porous medium case s D 0, where m D 1 is the
dividing value of the exponent as regards propagation. The problem with existence
is delicate for large m and is treated in a further paper [237].

An interesting and unexpected aspect of the theory is the existence of a
transformation that maps self-similar solutions of the FPME with m � 1 into
solutions of the same type for model PMFP’ with exponent 1 < m < 2. This applies
in particular to the Barenblatt solutions constructed in [254]. The transformation
is established in [235] and is quite useful in showing that PMFP’ has infinite
propagation in that range of parameters.
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• Work by Biler-Imbert-Karch [33] deals with the variant

ut D r � .ur.��/�sum�1/ : (5.68)

They construct a family of nonnegative explicit compactly supported self-similar
solutions which are a generalization of the well-known Barenblatt profiles for
the classical porous-medium equation. They also establish the existence of
sign-changing weak solutions to the initial-value problem, which satisfy sharp
hypercontractivity L1-Lp estimates.

• Reference [235] also treats on the double exponent model

@tu C r.um�1r.��/�sun�1/ D 0 (5.69)

that generalizes all the previous models. The paper discusses self-similar trans-
formations and finite propagation. The transformation of self-similar solutions
indicates that finite propagation holds for m � 2, while n > 1 does not count. The
graphic of parameters in [235] gives a very clear scheme of these transformations.

5.7.3 Some Related Directions

There is work on equations with other nonlocal linear operators, and also on
equations with lower order terms, leading to reaction-diffusion and blow-up. Non-
linear diffusion and convection is treated in [1, 90]. The chemotaxis systems have
been studied with nonlocal and/or nonlinear diffusion, like [30, 52, 119, 190]. We
also have geometrical flows, like the fractional Yamabe problem (to be mentioned
below). And there are a number of other options.

5.8 Operators and Equations in Bounded Domains

We have presented different definitions of the fractional Laplacian operator acting
in R

N in Sect. 5.2, and we have mentioned that all these versions are equivalent.
However, when we want to pose a similar operator in a bounded domain � � R

N

we have to re-examine the issue, and several non-equivalent options appear. This
enlarges the theory of evolution equations of fractional type on bounded domains,
and the recent literature has taken it into account. Actually, there is much recent
progress in this topic and the next second subsection will describe our recent
contributions. A large class of related nonlocal diffusive operators can be considered
in the same framework.
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5.8.1 The Linear Operators

There are a number of definitions that have been suggested for the fractional
Laplacian operator (FLO) acting on a bounded domain �. The ones we consider
here are naturally motivated, and they give rise to different operators. We will
mention three basic options, two of them are mostly used.

The Restricted Fractional Laplacian operator (RFL) It is the simplest option.
It acts on functions g.x/ defined in � and extended by zero to the complement, and
then the whole hypersingular integral of the Euclidean case is used. Therefore, it
is just the fractional Laplacian in the whole space “restricted” to functions that are
zero outside �.

.��j�/sg.x/ D cN;s P.V.
Z
RN

g.x/� g.z/

jx � zjNC2s dz ; with supp.g/ � �: (5.70)

Here, s 2 .0; 1/ and cN;s > 0 is a normalization constant. It is shown that, thus
defined, .��j�/s is a self-adjoint operator on L2.�/ with a discrete spectrum, with
eigenvalues

0 < �1 � �2 � : : : � �j � �jC1 � : : : ;

satisfying �j � j2s=N ; for j  1. The corresponding eigenfunctions � j are only

Hölder continuous up to the boundary, namely � j 2 Cs.�/, [218].
An important issue is the way in which the additional conditions (formerly

boundary conditions) are implemented for the RFL. It usually takes the form of
exterior conditions:

u.t; x/ D 0 ; in .0;1/ � �RN n�� : (5.71)

The behavior of the Green function G plays an important role in the correspond-
ing PDE theory. It satisfies a strong behaviour condition, that we call (K4) condition:

G.x; y/ � 1

jx � yjN�2s

�
ı� .x/

jx � yj� ^ 1
��

ı� .y/

jx � yj� ^ 1
�
; (K4)

where ı.x/ is the distance from x 2 � to the boundary. The exponent � will play a
role in the results derived from the kernel. In the RFL we have � D s.

References There is an extensive literature on the RFL operator and the corre-
sponding ˛-stable process in the probability literature. The interested reader is
referred [47]where we have commented on relevant works in that direction.
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The Spectral Fractional Laplacian Operator (SFL) It is defined by the two
equivalent expressions

.���/
sg.x/ D

1X
jD1

�sj Ogj �j.x/ D 1

�.�s/

Z 1

0

�
et��g.x/� g.x/

� dt

t1Cs
; (5.72)

where �� is the classical Dirichlet Laplacian on the domain �, and Ogj are the
Fourier coefficients of f

Ogj D
Z
�

g.x/�j.x/ dx ; with k�jkL2.�/ D 1 :

In this case the eigenfunctions �j are the same as in the Dirichlet Laplacian, smooth
as the boundary of � allows. Namely, when @� is Ck, then �j 2 C1.�/ \ Ck.�/

for all k 2 N . The eigenvalues are powers �sj of the standard eigenvalues 0 < �1 �
�2 � : : : � �j � �jC1 � : : : and �j � j2=N . It is proved that the eigenvalues of the
RFL are smaller than the ones of SFL: �j � �sj for all j � 1, [86].

Lateral boundary conditions for the SFL are different from previous case.
They can be read from the boundary conditions of the Dirichlet Laplacian by the
semigroup formula. They are often defined by means of the equivalent formulation
that uses the Caffarelli-Silvestre extension defined in a cylinder adapted to the
bounded domain, as done in [56, 62, 240]. If U is the extended function, then we
impose U D 0 on the lateral boundary x 2 @�, y > 0.

The Green function of the SFL satisfies the strong assumption (K4), this time
with exponent � D 1.

Remarks Both SFL and RFL admit another possible definition using the so-called
Caffarelli-Silvestre extension. They are the two best known options for a FLO. The
difference between RFL and SFL seems to have been well-known to probabilists,
it was discussed later in PDEs, see Servadei-Valdinoci [226], Bonforte and the
author [43], and Musina-Nazarov [204]. In this last work the denomination Navier
fractional Laplacian is used. The debate about the proper names to be used is not
settled.

The Censored Fractional Laplacians (CFL) This is another option appearing in
the probabilistic literature, it has been introduced in 2003 by Bogdan et al. [37]. The
definition is

Lg.x/ D P:V:
Z
�

.g.x/� g.y//
a.x; y/

jx � yjNC2s dy ; with
1

2
< s < 1 ; (5.73)

where a.x; y/ is a measurable, symmetric function bounded between two positive
constants, satisfying some further assumptions; for instance a 2 C1.� ��/. In the
simplest case we put a.x; y/ D constant. On the other hand, [37] point out that in the
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excluded range s 2 .0; 1=2� the censored 2s—stable process is conservative and will
never approach the boundary. The CFL is also called regional fractional Laplacian.

The Green function G.x; y/ satisfies condition (K4) with � D s� 1
2
, as proven by

Chen et al. [88]. See also [149].

Note We have presented three models of Dirichlet fractional Laplacian. The
estimates (K4) show that they are of course not equivalent. Our work described
in the next subsection applies to those operators and a number of other variants, that
are listed in [44, 50]. For instance, sums of operators of the above types and powers
of said operators are included.

5.8.2 Nonlocal Diffusion of Porous Medium Type on Bounded
Domains

We report here on very recent work done in collaboration with Bonforte, and also
Sire and Figalli, on nonlinear evolution equations of porous medium type posed in
bounded domains and involving fractional Laplacians and other nonlocal operators.
The papers are [43, 44, 47, 49, 50].

We develop a new programme for nonlocal porous medium equations on
bounded domains aiming at establishing existence, uniqueness, positivity, a priori
bounds, regularity, and asymptotic behaviour for a large class of equations of that
type in a unified way. We include the set of suitable versions of FLO in a bounded
domain. The main equation is written in abstract form as

@tu C Lˆ.u/ D 0 ; (5.74)

where ˆ a continuous and nondecreasing real function, most often a power
function.

• A problem to be settled first is the suitable concept of solution. We use the “dual”
formulation of the problem and the concept of weak dual solution, introduced in
[43, Definition 3.4], which extends the concept of weighted very weak solution
used before. In brief, we use the linearity of the operator L to lift the problem to
a problem for the potential function

U.x; t/ D
Z
�

u.y; t/G.x; y/dy

where G is the elliptic Green function for L. Then @tU D �ˆ.u/:
• Class of Operators. In our recent work we have extended the evolution theory to

cover a wide class of linear operators L that satisfy the following conditions.
L W dom.L/ � L1.�/ ! L1.�/ is assumed to be densely defined and
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sub-Markovian, more precisely, it satisfies (A1) and (A2):

(A1) L is m-accretive on L1.�/;
(A2) If 0 � f � 1 then 0 � e�tLf � 1.

Moreover, the inverse operator L�1 can be written as

L�1Œf �.x/ D
Z
�

K.x; y/f .y/ dy ;

The kernel K is called the Green function and we assume that there exist
constants � 2 .0; 1� and c0;�; c1;� > 0 such that, for a.e. x; y 2 � :

c0 ı
� .x/ ı� .y/ � K.x; y/ � c1

jx � yjN�2s

�
ı� .x/

jx � yj� ^ 1
��

ı� .y/

jx � yj� ^ 1
�
;

(K2)

where we adopt the notation ı.x/ WD dist.x; @�/. We will also use �1, the first
eigenfunction of L, and we know that �1 � dist.�; @�/� . Further assumptions
will be made in each statement, depending on the desired result we want, in
particular (K4) that we have already mentioned.

• Sharp Bounds. Under these assumptions, we obtain existence and uniqueness of
solutions with various properties, like time decay in Lp spaces. We will not delve
in this basic theory that is covered in the papers [44, 47]. We will stress here
one of our main contributions in [50]: we prove sharp upper and lower pointwise
bounds for nonnegative solutions, both at the interior and close to the boundary.
Indeed, we must pay close attention to the boundary behaviour, that turns out
to be different for different operators in this class. However, only some options
appear, as we describe next. Let us introduce first an important exponent


 D 1 ^ 2sm

�.m � 1/ :

Notice that 
 D 1 for the RFL and the CFL, but not always for the SFL unless
m D 1. The results that follow are taken from the last work, [50]. In the next
results (CDP) means the Cauchy-Dirichlet problem with zero lateral data, and
solutions means dual weak solutions. We make the default assumptions (A1),
(A2), and (K2) on L.

Case 1. Nonlocal Operators with Nondegenerate Kernels We assume here
moreover that the kernel of L is non degenerate at the boundary, namely

Lf .x/ D
Z
RN

�
f .x/� f .y/

�
K.x; y/ dy ; with inf

x;y2�K.x; y/ � �� > 0 : (5.75)

Under these assumptions we can prove the following first version of the Global
Harnack Principle.
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Theorem 5.8.1 Let (A1), (A2), (K2), and (5.75) hold. Also, when 
 < 1, assume
that K.x; y/ � c1jx� yj�.NC2s/ for a.e. x; y 2 R

N and that �1 2 C� .�/. Let u � 0 be
a weak dual solution to the (CDP) corresponding to u0 2 L1�1.�/. Then, there exist
constants �; �, so that the following inequality holds:

�

�
t

t C t�

� m
m�1 �1.x/
=m

t
1

m�1

� u.t; x/ � �
�1.x/
=m

t
1

m�1

(5.76)

for all t > 0 and all x 2 �.
Here, t� D ��ku0k�.m�1/

L1�1 .�/
, and this time will appear in the other theorems. For

large times both lower and upper bounds are similar. We point out that the result
holds in particular for the Restricted and Censored Fractional Laplacians, but not
for the Spectral Fractional Laplacian. The lower bound is false for s D 1 (in view
of the finite speed of propagation of the standard PME).

Case 2. Matching Behaviour for Large Times We can prove that previous Global
Harnack Principle for large times without using the non-degeneracy of the kernel,
under the following conditions on 
 : either

(i) 
 D 1 (i.e., 2s > �.m � 1/=m), or
(ii) 
 < 1, and we have an improved version of (K2)

K.x; y/ � c1
jx � yjN�2s

�
ı� .x/

jx � yj� ^ 1
��

ı� .y/

jx � yj� ^ 1
�
; (K4)

and the initial data are not small: u0 � c�
=m1 for some c > 0.

Theorem 5.8.2 (Global Harnack Principle II) Let (A1), (A2), and (K2) hold,
and let u � 0 be a weak dual solution to the (CDP) corresponding to u0 2 L1�1.�/.
Assume that either (i) or (ii) above hold true. Then there exist constants �; � > 0

such that the following inequality holds:

�
�1.x/
=m

t
1

m�1

� u.t; x/ � �
�1.x/
=m

t
1

m�1

for all t � t� and all x 2 � : (5.77)

The constants �; � depend only on N; s; �;m; �0; ��, and�.
The conditions on 
 are sharp. Actually, the proof in the case 
 D 1 includes the

classical PME (i.e., the non fractional equation, for which finite propagation holds,
so that there can be no positive a priori lower bound for short times).

The Case of a Really Degenerate Kernel We assume moreover that we assume
moreover that the kernel of L exists and can be degenerate at the boundary (actually,
excluding the local case, this is the most general assumption) in the form

Lf .x/ D P:V:
Z
RN

�
f .x/ � f .y/

�
K.x; y/ dy ; with K.x; y/ � c0�1.x/�1.y/ 8 x; y 2 � :

(5.78)
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This is an assumption that holds for the Spectral Fractional Laplacian operator.
To our knowledge, precise information about the kernel of the SFL was not known
before Lemma 3.1 of [50].

Note that, for small times, we cannot find matching powers for a global Harnack
inequality (except for some special initial data), and such result is actually false
for s D 1 (in view of the finite speed of propagation of the PME). Hence, in the
remaining cases, we have only the following general result.

Theorem 5.8.3 (Global Harnack Principle III) Let (A1), (A2), (K2), and (5.78)
hold. Let u � 0 be a weak dual solution to the (CDP) corresponding to u0 2 L1�1.�/.
Then, there exist constants �; � > 0, so that the following inequality holds:

�

�
t

t C t�

� m
m�1 �1.x/

t
1

m�1

� u.t; x/ � �
�1.x/
=m

t
1

m�1

(5.79)

for all t > 0 and all x 2 � .
This is what we call non-matching powers for the spatial profile at all times. The
paper gives analytical and numerical evidence that such non matching behaviour
does not happen in the associated elliptic problems, and came as a surprise to the
authors. For some class of initial data, namely u0 � "0�1 we can prove that for small
times

�0

� t

T

	 m
m�1 �1.x/

t
1

m�1

� u.t; x/ � �0 T
1

m�1
�1.x/

t
1

m�1

for all 0 � t � T and all x 2 � :

Numerics. This work has been improved in January 2017 with numerics done at
BCAM Institute by my former student del Teso and collaborators, [97], 2017, that
validates the different behaviour types.

• Asymptotic Behaviour. An important application of the Global Harnack inequal-
ities of the previous section concerns the sharp asymptotic behavior of solutions.
More precisely, we first show that for large times all solutions behave like the
separate-variables solution U.t; x/ D S.x/ t� 1

m�1 . The profile S is the solution
of an elliptic nonlocal problem. Then, whenever the Global Harnack Principle
(GHP) holds, we can improve this result to an estimate in relative error.

Theorem 5.8.4 (Asymptotic Behavior) Assume that L satisfies (A1), (A2), and
(K2), and let S be as above. Let u be any weak dual solution to the (CDP). Then,
unless u � 0,

���t 1
m�1 u.t; �/� S

���
L1.�/

t!1���! 0 : (5.80)

We can exploit the (GHP) to get a stronger result, using the techniques of paper
[47].
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Theorem 5.8.5 (Sharp Asymptotic Behavior) Under the assumptions of Theo-
rem 5.8.4, assume that u 6� 0. Furthermore, suppose that either the assumptions of
Theorem 5.8.1 or of Theorem 5.8.2 hold. Set U.t; x/ WD t� 1

m�1 S.x/. Then there exists
c0 > 0 such that, for all t � t0 WD c0ku0k�.m�1/

L1�1 .�/
, we have

���� u.t; �/U.t; �/ � 1

����
L1.�/

� 2

m � 1

t0
t0 C t

: (5.81)

We remark that the constant c0 > 0 only depends on N; s; �;m; �0; ��, and�.

Comments on Related Work Construction of the solutions of the FPME on
bounded domains with the SFL was already used in [106, 107] as an approximation
to the problem in the whole space, but the regularity or asymptotic properties
were not studied. Kim and Lee in [173] study the Fast Diffusion range m < 1

with a fractional Laplacian in a bounded domain and prove Hölder regularity
and asymptotic behaviour. There is a developing literature on nonlocal nonlinear
diffusion equations on domains.

5.8.3 Fractional Diffusion Equations of p-Laplacian Type

We report here about our work [257]. It deals with a model of fractional diffusion
involving a nonlocal version of the p-Laplacian operator, and the equation is

@tu C Ls;pu D 0; Ls;p.u/ WD
Z
RN

ˆ.u.y; t/ � u.x; t//

jx � yjNCsp
dy D 0 (5.82)

where x 2 � � R
N , N � 1; ˆ.z/ D cjzjp�2z; p 2 .1;1/ and s 2 .0; 1/. Ls;p is

the Euler-Lagrange operator corresponding to a power-like functional with nonlocal
kernel of the s-Laplacian type. The study of the equation is motivated by the recent
increasing interest in nonlocal generalizations of the porous-medium equation. In
the paper we cover the range 2 < p < 1. Note that for p D 2 we obtain the
standard s-Laplacian heat equation, ut C .��/su D 0, which was discussed before;
on the other hand, it is proved that in the limit s ! 1 with p ¤ 2, we get the well-
known p-Laplacian evolution equation @tu D �p.u/, after inserting a normalizing
constant.

We consider the equation in a bounded domain� � R
N with initial data

u.x; 0/ D u0.x/; x 2 �; (5.83)

where u0 is a nonnegative and integrable function. Moreover, we impose the
homogeneous Dirichlet boundary condition that in the fractional Laplacian setting
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takes the form

u.x; t/ D 0 for all x 2 R
N ; x 62 �; and all t > 0: (5.84)

When then apply the integral operator on the set of functions that vanish outside
of �

The first result of this paper concerns the existence and uniqueness of a strong
nonnegative solution to an initial-boundary value problem for (5.82) in bounded
domain� � R

N , with zero Dirichlet data outside� � .0;1/. The boundedness of
the solution is established after proving the existence of a special separating variable
solution of the form

U.x; t/ D t�1=. p�2/F.x/;

called the friendly giant. The profile function F.x/ of the friendly giant solves the
interesting nonlocal elliptic problem

Z
RN

ˆ.F.y/� F.x//

jx � yjNCsp
dy D c F.x/:

The friendly giant solution provides a universal upper bound and also gives the
large-time behaviour for all the nonnegative solutions of initial-boundary value
problems with homogeneous Dirichlet boundary conditions.

The fractional p-Laplacian has recently attracted the attention of many
researchers for its mathematical interest. See among other related works the papers
by Caffarelli et al. [74], Mazón et al. [197], Puhst [214]. Another approach in
the form of non-local gradient dependent operators is taken by Bjorland-Caffarelli-
Figalli in [34]. The corresponding stationary equation is also studied in the literature,
see previous references. Finally, the work [157] by Hynd and Lindgren deals with
the doubly nonlinear model jutjp�2ut C Ls;pu D 0, that has a special homogeneous
structure. Regularity and asymptotic behaviour follow.

5.9 Further Work on Related Topics

5.9.1 Diffusion with Fractional Time Derivatives

Equations of the form

D˛t u D Lu C f

are another form of taking into account nonlocal effects. Here L represents the
diffusion process with long-distance effects in the family of the fractional Laplacian
operators. The symbol D˛t denotes the fractional time derivative. There are a number



264 J.L. Vázquez

of variants of this concept, the most popular being maybe the Caputo fractional
derivative, which was introduced by Caputo in 1967 [77] and reads

C
a D

˛
t f .t/ D 1

�.n � ˛/
Z t

a

f .n/.�/ d�

.t � �/˛C1�n
; n � 1 < ˛ � n (5.85)

Indeed, fractional time derivatives are the most elementary objects of Fractional
Calculus, a branch of mathematical analysis that studies the possibility of taking
real number powers (real number fractional powers or complex number powers) of
the differentiation operator D D d=dx; and the integration operator.

The foundations of the theory of fractional derivatives were laid down by
Liouville in a paper from 1832. Different definitions use different kernels, but all
them make weighted averages in time.

Some recent work: Dipierro and Valdinoci derive the linear time-fractional
heat equation in 1D in a problem of neuronal transmission in cells, [117]; Allen,
Caffarelli and Vasseur study porous medium flow with both a fractional potential
pressure and a fractional time derivative,[2].

5.9.2 Diffusion Equations on Riemannian Manifolds

• The study of the heat equation posed on a Riemannian manifold comes from long
time ago, the diffusive operator being the Laplace-Beltrami operator

�g.u/ D 1pjgj@i.g
ij
p

jgj@ju/ ; (5.86)

with the usual Riemannian notations. Thus, the heat kernel was studied in [101,
143, 268], random walks and Brownian motion on manifolds are studied in [245].
There are lots of recent works, an example is [144].

• Generalization of the Caffarelli-Silvestre extension method allows to define
extensions and boundary operators of the fractional Laplacian type when M is the
boundary of a conformally compact Einstein manifold. Combining geometrical
and PDE approaches, Chang and González in [83] related the original definition
of the conformal fractional Laplacian coming from scattering theory to a
Dirichlet-to-Neumann operator for a related elliptic extension problem for M,
see also [141]. It is possible then to formulate fractional Yamabe-type problems
for the conformally covariant operators P� , [142]. For more recent work in this
problem see [100, 162].

• Work on the Porous Medium Equation on manifolds was done in the 2000s,
like [39, 251]; fast diffusion was treated in [46]; general Aronson-Bénilan
estimates and entropy formulae for porous medium and fast diffusion equations
on manifolds were obtained in [195].
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• Recently the author studied the PME on the hyperbolic space [256], and
constructed the fundamental solution and proved the asymptotic convergence and
free boundary propagation rates. The fact that the fundamental is not explicit or
self-similar is not pleasant, and looking for some higher symmetry properties
a remarkable object appeared to play an asymptotic role. Namely, there exists
nonnegative weak solution of the PME defined on the whole of H

N for all
t > 0, that has a strong algebraic structure. In the Poincaré upper half-space
representation it is given by the formula

U.x; y; t/m�1 D a
.log.ct�y//C

t
(5.87)

with m;N > 1, 1=a D m.N � 1/ and 1=� D .N � 1/.m � 1/, and x 2 R
N�1,

y > 0. Note that U has zero initial trace at t D 0 on the half-space, but it has a
singularity as trace at y D C1, which corresponds to a singularity at the North
Pole in the standard Poincaré ball representation. Therefore, we can say that the
special solution (or geometrical soliton) U comes from the infinite horizon and
expands to gradually to fill the whole space; for any t > 0 it has a support limited
by a family of horospheres f.x; y/ W y D .1=c/t��g. Recall that geodesic distance
is given by the formula ds2 D dy2=y2. A detail for analysts: U represents an
example of non-uniqueness of nonnegative solutions for the Cauchy Problem in
hyperbolic space.

This family of special solutions is the pattern to which all solutions with
compactly supported initial data are proved to converge as t ! 1. Accordingly,
we get the following sharp estimates for all solutions u � 0 with compact support:

ku.�; t/k1 	 ct�1=.m�1/ log.t/1=.m�1/; S.t/ 	 � log.t/

where S.t/ is the location of the free boundary measured in geodesic distance.

• The asymptotic analysis of PME flows is extended to more general manifolds in
[148]. The work on the asymptotic behaviour on hyperbolic space is extended
to fast diffusion by Grillo et al. in [145]. In another direction, Amal and Elliott
[3] study fractional porous medium equations on evolving surfaces, a very novel
subject.

5.9.3 Diffusion in Inhomogeneous Media

We have already mentioned the inhomogeneity of the medium as a reason for the
introduction of coefficients in the passage from the heat equation to the parabolic
class. In view of the important practical consequences, there is no surprise in finding
coefficients appear in most of the models we have considered above, both linear
and nonlinear, local and nonlocal. Let us just mention some well-known references
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like [165, 167, 215], where it appears as diffusion with weights, see also the more
recent [146] with two weights. There is an interesting connection between weighted
diffusion in Euclidean space and Laplace-Beltrami diffusion on manifolds, that has
been studied in [256] and is being further investigated.

5.9.4 Drift Diffusion Equations with or Without Fractional
Terms

The main equation in this case is an equation for a scalar unknown � driven by the
equation

@t� C v � rx� D L.�/ ; (5.88)

where v � rxT is the convective term with velocity vector v, and L.�/ is the
diffusion operator; that diffusion can be linear of nonlinear, local or nonlocal. A
very important aspect is the relation of v to the rest of the variables. Thus, when
v D v.x; t/ is a given function, no essential new problems arise if v is smooth. But
serious difficulties happen for nonsmooth v. All this is reflected for instance in the
seminal paper by Caffarelli and Vasseur [68] where the equation is

@t� C v � rx� C .��/1=2.�/ D 0

and v is a divergence-free vector field. In the popular quasi-geostrophic model v is
given in terms of � that makes the problem more involved, but the results stated in
[68] do not depend upon such dependence. The proof of regularity needs to establish
delicate local energy estimates, despite the fact that the diffusion operator .��/1=2
is non-local. It also uses DeGiorgi’s methods in an essential way. There is much
work in geostrophic flows, like [179, 180, 196].

There is a vast literature on this important issue. In some cases v is given by
Darcy’s law in an incompressible fluid, and the papers refer to the problem as “flow
in porous media”, like [82]. Let us point out that this use is quite different from our
use of “porous media” in the present paper, the difference being often stressed by
calling their use “incompressible flow in porous media”, [124].

5.9.5 Other

– Minimal surfaces are an important subject which uses many methods of the
nonlinear elliptic and parabolic theory, Recently, it has developed a new branch,
nonlocal minimal surfaces. Work on both aspects is reported in detail in another
contribution to this volume by Cozzi and Figalli [92]. Related items are fractional
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perimeters and fractional phase transition interfaces. We will not enter into that
area.

– The study of the combined effects of diffusion and aggregation is a very active
field where the methods of diffusion in its different forms must be combined
with the counter mechanism of attraction. We refer to the contribution by Calvez
et al. to this volume, [76].

– In the study of nonlinear diffusion we have chosen to present almost exclusively
equations with diffusion terms in divergence form. There is a large body of
work involving Fully Nonlinear Parabolic Equations (they are non-divergence
equations), both elliptic and parabolic. We will not touch such theories here.

5.10 Addendum and Final Comment

Here is the complete Wikipedia list of diffusion topics:
Anisotropic diffusion, also known as the Perona-Malik equation, enhances high

gradients; Anomalous diffusion, in porous medium; Atomic diffusion, in solids;
Brownian motion, for example of a single particle in a solvent; Collective diffusion,
the diffusion of a large number of (possibly interacting) particles; Eddy diffusion, in
coarse-grained description of turbulent flow; Effusion of a gas through small holes;
Electronic diffusion, resulting in electric current; Facilitated diffusion, present
in some organisms; Gaseous diffusion, used for isotope separation; Heat flow,
diffusion of thermal energy; Itō-diffusion, continuous stochastic processes; Knudsen
diffusion of gas in long pores with frequent wall collisions; Momentum diffusion,
ex. the diffusion of the hydrodynamic velocity field; Osmosis is the diffusion
of water through a cell membrane; Photon diffusion; Random walk model for
diffusion; Reverse diffusion, against the concentration gradient, in phase separation;
Self-diffusion; Surface diffusion, diffusion of adparticles on a surface; Turbulent
diffusion, transport of mass, heat, or momentum within a turbulent fluid.

• The reader may wonder whether mathematical diffusion is a branch of applied
mathematics? In principle it would seem that the answer is an obvious yes, and
yet it is not so clear. As we have seen, the mathematical theories of diffusion
have developed into a core knowledge in pure mathematics, that encompasses
several branches, from analysis and PDEs to probability, geometry and beyond.
We hope that the preceding pages will have convinced the reader of this trend,
and will also motivate him/her to pursue some of many avenues open towards the
future.
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