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Abstract The need to deal with different cognitive necessities of students in the
mathematical classroom, and in particular of students who persistently fail in
mathematics, frequently referred to as “having mathematical learning difficulties or
disabilities” (MLD), has become an important topic of research in mathematics
education and in cognitive psychology. Though frameworks for analyzing students’
difficulties and/or for designing inclusive activities are still quite fragmentary, the
literature rather consistently suggests that technology can support the learning of
students with different learning characteristics. The focus of this chapter is on
providing insight into this issue by proposing analyses of specific software with a
double perspective. We will analyze design features of the selected software, based
on the potential support these can provide to students’ learning processes, in par-
ticular those of students classified as having MLD. We will also analyze some
interactions that actually occurred between students and the software, highlighting
important qualitative results from recent studies in which we have been involved.

1 Introduction

Since we will be discussing software with respect to students “with mathematical
learning difficulties (MLD)” it is necessary to first explain how unclear the situation
actually is around the issue of low achievement in mathematics and MLD. This will
be done in the first section of this chapter, immediately followed by our opinion on
ways in which software can address specific MLD. The rest of the chapter is
divided into three other sections: one in which we describe the theoretical back-
ground we will be using to analyze the proposed examples of software; one in
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which we explore the design of specific digital environments to which we have
contributed; and a last section presenting selected results from studies we have
conducted with students using the previously analyzed software.

1.1 The Murky Notion of “Students with MLD”

When exploring persistent low achievement in mathematics from a cognitive point
of view, most of the literature from the field of psychology investigates typical
development of basic number processing, introducing terms for describing atypical
situations. Terms used to refer to students in such situations include “developmental
dyscalculia”, “mathematical learning disability (or disorder)”, among many others
(e.g., Butterworth, 2005; Passolunghi & Siegel, 2004; Piazza et al., 2010). The
definitions of these terms are still a topic of debate (e.g., Mazzocco, 2008), and the
ways in which they are used in different studies is inconsistent. For example,
Mazzocco and Räsänen (2013) note that “math learning disability (MLD) has been
used as synonymous with DD [Developmental Dyscalculia] […], but also as dis-
tinct from DD when MLD is used to refer to the larger category of mathematics
difficulties (MD)” (ibid., p. 66). Even the use of the acronym MLD is not consistent,
in that the “D” in some cases stands for “disabilities” and in others for “difficulties”
(ML stands for “Mathematical Learning” in all cases). We attribute this, at least in
part, to a problem described by Heyd-Metzuyanim (2013), according to which the
“learning disability” construct does not afford to differentiate between difficulties
that signal a stable disability in mathematics and those that are a result of inade-
quate teaching experiences or lack of sufficient exposure (also see González &
Espínel, 1999; Mazzocco & Myers, 2003).

The bulk of studies conducted within the field of cognitive psychology use tests
of different cognitive abilities (either cognitive domain specific or general) and
investigate how scores derived from those tests correlate with students mathemat-
ical performance on standardized achievement tests (e.g., Geary, 1994, 2004;
Nunez & Lakoff, 2005; Piazza et al., 2010; Andersson & Östergren, 2012; Szucs
et al., 2013; Bartelet, Ansari, Vaessen, & Blomert, 2014). In this scenario it is not
surprising that the cut off scores for diagnosing MLD vary from the 3rd to the 32nd
percentile (Mussoli, 2009), and prevalence is reported between 1.3 and 13.8% of
the population (see, for example, Kaufmann et al., 2013; Mazzocco & Räsänen,
2013; Watson & Gable, 2013).

It is beyond the scope of this chapter to delve deeper into these issues; for our
purposes it suffices to consider students “having MLD” as students with persistent
low achievement in mathematics (this is what the “D” in the acronym MLD will
refer to in this chapter), who are at risk of being labelled by clinicians as “having a
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learning disability” or who have been diagnosed clinically with such a condition.1

So any of these conditions are what we imply when using the acronym MLD in this
chapter.

In Italy the percentage of these students diagnosed with learning disabilities is
estimated between 3 and 5% (MIUR, 2011a) and over the last few years the
percentages have been persistently increasing (MIUR, 2011b). Because of this
phenomenon and because in Italy classrooms are completely inclusive,2 it has
become a more and more pressing issue to study and develop didactical practices
appropriate for all students (Ianes, 2006; Ianes & Demo, 2013). Though frame-
works for analyzing students’ difficulties and/or for designing inclusive activities
are still quite fragmentary, the literature rather consistently suggests that technology
can support the learning of students with different learning characteristics (Edyburn,
2005; Baccaglini-Frank & Robotti, 2013; Robotti, Antonini, & Baccaglini-Frank,
2015), also in inclusive teaching settings, such as the Italian classrooms (Robotti &
Ferrando, 2013).

1.2 How Can Software “Address” Specific MLD?

We must ask ourselves what it means to “address” students’ learning difficulties.
Once we will have agreed upon a meaning for this, we will be able to discuss how
software can do it.

The paradigm used (at least in Italy) in special needs education, as has recently
been argued by the Santi and Baccaglini-Frank (2015), is such that the teaching
activity strives to allow the “special needs” student to reach as much as possible,
according to his/her possibilities, the same objectives of “normal” students, thereby
disregarding his/her identity and being “special” from many points of view (cog-
nitive, social, communicative, emotional, perceptive…). The stand point behind this
approach is that thinking and learning is purely in the functioning of the mind (or,
according to neurosciences, in the brain) and that a deficit provokes a dysfunction
that has to be recovered resorting to a variety of supports: technological, didactical,
psychological and social. This leads to a homogeneization of all students’ contri-
butions, that tends to not take into account or value in any way alternative insight
brought to the classroom by the special needs student. To overcome such approach,
the authors proposed a paradigm shift: “Educational activity should aim at fostering
a mode of existence in mathematics, i.e., being and becoming with others to make
sense of the world also through mathematics. The aim of education should be to

1There are four types of learning disabilities recognized at the moment in Italy: dyslexia,
dyscalculia, dysgraphia, dysorthographia (LEGGE 8 ottobre 2010, n. 170, Nuove norme in materia
di disturbi specifici di apprendimento in ambito scolastico).
2In some “extreme” cases Italy grants a special education teacher to the student in need, who will
sit next to the student during given hours of the student’s regular school schedule.
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allow all students to make sense of the world in spite of their particular conditions”
(ibid., p. 222).

The described approach and the proposed paradigm shift are useful to keep in
mind when considering two main directions in which the development of techno-
logical tools for MLD students seems to be going (at least in Italy): some software
aim at strengthening a particular cognitive or mathematical ability, through repet-
itive tasks, designed for a one-to-one student-computer interaction, in an environ-
ment with constrained types of input and feedback—we will refer to this approach
as for “rehabilitation”; while other software are designed to propose fundamental
mathematical content (e.g., the notion of “variable” or “function”) in ways that take
advantage of particular hardware and software affordances. We will refer to this
approach as “radical”, because didactical material developed within it may propose
(although they do not have to necessarily), more or less explicitly, radical changes
in the mathematical curriculum and/or in the modalities in which certain content is
proposed. Interactions with software designed according to the “radical” approach
are frequently less constrained: tasks within the environment need to be designed by
an educator (as they might not be part of the software), input and feedback may be
given in various ways, and the role of the teacher becomes fundamental in medi-
ating the meanings developed by the students within the environment.

Neither the “rehabilitation” nor the “radical” approach are necessarily one
“better” than the other—of course to make any judgment of this sort we would have
to make explicit the criteria according to which we are making such judgment—and
both could be useful in supporting the learning of students with MLD. However, if
our aim is to provide means for as many students as possible to make sense of the
world, through mathematics, in spite of their particular conditions, it is inevitable to
embrace, at least some of the time, the latter approach, when teaching. This
approach is somewhat innovative in education, at least in the Italian panorama.

Since researchers in psychology and neuroscience have been designing, con-
ducting and publishing research with rehabilitation software (e.g., Wilson, Revkin,
Cohen, Cohen, & Dehaene, 2006; Wilson, Dehaene, Pinel, Revkin, Cohen, &
Cohen, 2006; Butterworth & Laurillard, 2010), in this chapter we would like to
focus mostly on software developed within the radical approach, which is inno-
vative because it characterizes not only software design but also a general line of
research regarding the development of didactical material that seems to be appro-
priate for inclusive mathematics education (see, for example Baccaglini-Frank &
Poli, 2015a, b; Robotti, 2017). Software designed and adopted within the radical
approach can also offer the student with MLD specific compensatory tools
embedded within it, to alleviate the cognitive load of particular tasks in order for the
student to be able to devote as many resources as possible to fundamental math-
ematical reasoning involved in the activity. However, these environments are not
designed only to compensate certain cognitive difficulties. Within a software
designed according to the radical approach there may exist sub-environments in
which, through repetitive exercises, a specific ability or set of abilities may be
strengthened. On the other hand, software developed primarily to strengthen a
specific ability through repetitive exercise can be more difficult to use for fostering
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the development mathematical content within the radical approach. This is the case
also because the closed, and in many cases fast, interaction between student and
software does not leave much space for teacher-guided interventions.

In general there is no clear boundary between software designed according to
either approach: we prefer to think of a spectrum with “radical” and “rehabilitation”
designs at the extremes. Most software we can think of would be situated along the
spectrum, more towards one or the other extreme. Moreover, there are significant
variables, such as how the software is actually used or what role the teacher decides
to play, that can contribute to shifting the software’s placement within the spectrum,
in either direction. In this sense, it can be possible to also use rehabilitation software
within the innovative approach to special education presented above.

The perspective we are taking on how software can address specific MLD
provides our rationale for analyzing how digital resources can support students in
learning mathematics. The analyses will be carried out using a composite frame-
work emerging from the notions of “Universal Design for Learning” and theories
on channels for accessing and producing mathematical information.

2 Theoretical Background

In the field of mathematics education a number of frameworks have been devel-
oped, on one hand, to explain phenomena like “students experiencing learning
difficulties in mathematics” from different perspectives, and others have provided
tools for analyzing teaching-learning activity within technological settings (e.g.,
Lagrange, Artigue, Laborde, & Trouche, 2003; Noss & Hoyles, 1996; Bartolini
Bussi & Mariotti, 2008). However, these theoretical tools are still quite fragmentary
and very few have been adequately adapted and/or integrated to take into account
findings (both practical and theoretical) from neighbouring fields such as cognitive
psychology and neuroscience that have also been very active in investigating such
phenomena. Notable exceptions are studies by the Unit of Instructional Psychology
and Technology in Leuven, directed by Lieven Verschaffel (e.g., Vamvakoussi,
Dooren, & Verschaffel, 2013); studies by Mulligan and her team based in Australia
(e.g., Mulligan & Mitchelmore, 2013); and the work of the Center for Applied
Special Technology (CAST), elaborating on the concept of Universal Design for
Learning (Edyburn, 2005), which we will present in Sect. 2.2. Also, recent work of
Karagiannakis and his colleagues contributes to establishing common grounds, at a
cognitive level, attempting to transpose relevant aspects of the cognitive psychol-
ogy literature into the field of mathematics education (Karagiannakis,
Baccaglini-Frank, & Papadatos, 2014; Karagiannakis & Baccaglini-Frank, 2014;
Karagiannakis, Baccaglini-Frank, & Roussos, 2017).

In particular in the Italian context, we have been active in trying to elaborate
theoretical grounding for research on MLD students when teaching and learning
include physical and digital artifacts (e.g., Baccaglini-Frank & Robotti, 2013;
Baccaglini-Frank & Scorza, 2013; Robotti & Ferrando, 2013; Baccaglini-Frank,
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Antonini, Robotti, & Santi, 2014; Robotti et al., 2015; Santi & Baccaglini-Frank,
2015; Robotti et al., 2015; Baccaglini-Frank & Bartolini Bussi, 2016). In the two
following sections we will review some notions from the theoretical background of
cognitive psychology that will be useful for the analyses in this chapter (Sect. 2.1),
and review some principles and guidelines from the framework elaborated by
CAST that will also be insightful in the analyses proposed in the rest of the chapter
(Sect. 2.2). The relationship between these different frameworks will allow us to
analyse how and why the use of technology can foster mathematical learning in all
students who present MLD.

2.1 Means of Information Access and Production,
with Particular Attention to Mathematical Information

Research in cognitive psychology has identified four basic channels of access to
and production of information: the visual-verbal channel (verbal written code), the
visual non-verbal channel (visual-spatial code), the auditory channel (verbal oral
code), and the kinaesthetic-tactile channel (Mariani, 1996).

Italian research has indicated that most students with specific learning difficulties
(or disabilities), not only in mathematics, encounter greatest difficulties in using the
visual-verbal channel, especially those with dyslexia, and this conditions their
development for preferring different channels (Stella & Grandi, 2011).

The importance of these different channels to access and produce information
shifts the focus from simply “being able or not” to solve a certain task, to different
paths and strategies adopted by the individual (whether successful or not) for
approaching the task. This allows to explain mathematical difficulties not only in
terms of “lacking abilities” but also in terms of necessity to use certain preferred
modalities that lead the student to access, elaborate and/or produce information in a
certain way.

Moreover, various studies in cognitive science point to a correlation between
mathematical achievement, working memory (Raghubar, Barnes, & Hecht, 2010;
Mammarella, Lucangeli, & Cornoldi, 2010; Mammarella, Giofrè, Ferrara, &
Cornoldi, 2013; Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013), and non verbal
intelligence (DeThorne & Schaefer, 2004; Szucs et al., 2013). These findings
suggest that non-verbal intelligence may partially depend on spatial skills (Rourke
& Conway, 1997) and these can potentially be important in mathematical
achievement, where explicit or implicit visualization is required.

We have found other theoretical stances advanced in mathematics education that
are in line with the idea that means of access to and production of information,
different from the visual-verbal one, can be very important in learning. In particular,
these have pointed to the importance of experiences of a sensorial, perceptive,
tactile and kinaesthetic nature for the formation of mathematical concepts
(Arzarello, 2006; Gallese & Lakoff, 2005; Radford, 2003; see also Chap. The
Coordinated Movements of a Learning Assemblage: Secondary School Students
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Exploring Wii Graphing Technology). For example, Arzarello (2006), quoting
Nemirovsky, points to how recent research in math education suggests that the
paradigm of multimodality implies that “the understanding of a mathematical
concept rather than having a definitional essence, spans diverse perceptuomotor
activities, which become more or less active depending of the context”
(Nemirovsky, 2003, p. 108). Also Radford (2003, 2006) highlights that the
understanding of relationships between bodily actions carried out through artifacts
(objects, technological tools, etc.) and linguistic and symbolic activity is essential in
order to understand human cognition and mathematical thinking in particular.

A new framework for teaching and learning in the context of “special needs” has
been developed, taking into account many of the perspectives advanced above, and
suggesting that technology can facilitate all students’ learning. The framework is
built around the concept of Universal Design for Learning.

2.2 Universal Design for Learning

The Center for Applied Special Technology (CAST) has developed a compre-
hensive framework around the concept of Universal Design for Learning (UDL),
with the aim of focusing research, development, and educational practice on
understanding diversity and applying technology to facilitate learning (Edyburn,
2005). UDL includes a set of Principles, articulated in Guidelines and Checkpoints3

that arise from CAST’s review of current studies on how to reduce barriers in
learning and to increase access to curriculum for all the students, including those
with disability, giving all individuals equal opportunities to learn. The research
grounding UDL’s framework is that “learners are highly variable in their response
to instruction. […] individual differences are not only evident in the results; they are
prominent. However, these individual differences are usually treated as sources of
annoying error variance as distractions from the more important “main effects””.4 In
contrast, UDL treats these individual differences as an equally important focus of
attention. The UDL framework considers these findings to be fundamental to
understanding and designing effective instruction.

As a matter of fact, “individuals bring a huge variety of skills, needs, and
interests to learning. Neuroscience reveals that these differences are as varied and
unique as our DNA or fingerprints. Three primary brain networks come into play:”5

Recognition Networks, which refer to recognition tasks such as: How we gather
facts and categorize what we see, hear, and read, Identifying letters, words;
Strategic Networks, which refer to strategic tasks such as solve a math problem;

3For a complete list of the principles, guidelines and checkpoints and a more extensive description
of CAST’s activities, visit http://www.udlcenter.org.
4See http://www.udlcenter.org/aboutudl/udlevidence.
5See http://www.udlcenter.org/aboutudl/whatisudl.
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Affective Networks, which refer to the affective dimension: How learners get
engaged and stay motivated, How they are challenged, excited, or interested.

Linked to each of these brain networks, UDL advances three foundational
Principles6: (1) provide multiple means of representation, (2) provide multiple
means of action and expression, (3) provide multiple means of engagement. In
particular, guidelines within the first principle have to do with means of perception
involved in receiving certain information, and of “comprehension” of the infor-
mation received. Instead, the guidelines within the second principle take into
account the elaboration of information/ideas and their expression. Finally, the
guidelines within the third principle deal with the domain of “affect” and “moti-
vation”, also essential in any educational activity. For our analyses in this chapter
we will focus in particular on specific guidelines within the three Principles.7

Guidelines and checkpoints within Principle 1 (provide multiple means of rep-
resentation), suggest proposing different options for perception and offering support
for decoding mathematical notation and symbols (checkpoints 1.2, 1.3, 2.3). We
will give examples of how this can be realized through different software.
Moreover, guidelines suggest the importance of providing options for compre-
hension highlighting patterns, critical features, big ideas, and relationships among
mathematical notions (checkpoint 3.2). We will identify various of such options in
the remainder of the chapter. Finally, our analyses will give examples of how
software can guide information processing, visualization, and manipulation, in
order to maximize transfer and generalization (checkpoints 3.3 and 3.4).

Moreover, our analyses will provide examples of how guidelines from Principle
2 (provide multiple means of action and expression) can be incorporated into
technology-based mathematical learning, in particular how different options for
expression and communication supporting planning and strategy development can
be offered (checkpoints 4.2 and 6.2). Finally, our analyses will show how certain
software can recruit students’ interest, optimizing individual choice and autonomy,
and minimizing threats and distractions (checkpoints 7.1 and 7.3).

In the two following sections we will analyze specific examples of software,
classifying them by the type of mathematical learning they are designed to address.
The analyses highlight which kinds of compensatory tools each software offers the
student and which kind of tasks could be designed in order for the student to be able
to devote as many resources as possible to fundamental mathematical reasoning
involved in the activity.

Each software will be introduced by a section looking into research around the
particular way of thinking or concept or tool being targeted. The rationale for
choosing the software presented is that each one was used by one of the authors in
studies carried out in the context of special needs or inclusive mathematics

6For further details see: http://www.udlcenter.org/aboutudl/whatisudl/3principles.
7The items are taken from the interactive list at http://www.udlcenter.org/research/
researchevidence.
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education, focus of this chapter. In some cases one of the authors was also directly
involved in the software design process, while in other cases a particular software
was chosen among other existing ones because of its fit with the UDL principles.

3 Examples of Digital Environments to Promote
the Development of Number Sense and Spatial
Orientation

In this session we analyse different software promoting number sense and we report
on results from a case study on learning special orientation by interacting with the
software Mak-Trace.

3.1 Software to Promote “Number Sense”

According to various studies a characterizing feature of students with MLD is a lack
of “number sense”. Although there is no monolithic interpretation of number sense
across the communities of cognitive scientists and of mathematics educators, and
not even within the community of mathematics educators alone (e.g., Berch, 2005),
there seems to be a certain consensus about its importance in mathematics educa-
tion. Indeed the development of number-sense is seen as a necessary condition for
learning formal arithmetic at the early elementary level (e.g., Griffin, Case, &
Siegler, 1994; Verschaffel & De Corte, 1996) and it is critical to early algebraic
reasoning, particularly in relation to perceiving the “structure” of number (Mulligan
& Mitchelmore, 2013). Some crucial aspects upon which number sense is seen to
rely, are: recognition of part-whole relationships, appropriate uses of fingers, and
the development of a mental number line. We will describe these and explain how
they can be promoted through software applications.

Part-whole relationships arise from what Resnick et al. (1991) have described as
protoquantitative part-whole schemas that “organize children’s knowledge about
the ways in which material around them comes apart and goes together” (ibid.,
p. 32). The interiorization of the part-whole relation between quantities entails
understanding of addition and subtraction as dialectically interrelated actions that
arise from such relation (Schmittau, 2011), and recognizing that numbers are
abstract units that can be partitioned and then recombined in different ways to
facilitate numerical (also mental) calculation.

Literature from the fields of neuroscience, developmental psychology, and
mathematics education indicate that using fingers for counting and representing
numbers (Brissiaud, 1992), but also for accomplishing tasks that have no apparent
connection to mathematics (Butterworth, 2005; Gracia-Bafalluy & Noel, 2008), can
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have a positive effect on the development of numerical abilities and of
number-sense. The importance of the role attributed to the use of fingers in the
development of number-sense by the quoted literature is highly resonant with the
frame of embodied cognition, mentioned in Sect. 2.1. For example, hands and
fingers can be used to foster development of the part-whole relation, in particular
with respect to 5 and 10, in a naturally embodied way.

Development of a mental number line

Number sense has also been put in relationship with the development of an internal
representation of the number line. A number of studies have explored a relationship
between space and the processing of numbers (e.g., Pinel et al., 2004; Seron et al.,
1992), suggesting that the (mental) number line model corresponds to an intuitive
representation and to a natural translation of the sequence of (natural) numbers into
a spatial dimension. This model can be used in more abstract (and potentially more
general) processes compared to that of counting existing sets of objects, because,
for example, it opens to the possibility of counting any number of objects and any
object. The number line model is not a static representation, nor is it necessarily
innate,8 instead studies suggest that it evolves as the subject develops cognitively,
and such evolution depends on cultural influences (see, for example, Zorzi, Priftis,
& Umiltà, 2002).

Moreover, studies suggest that a solid mental representation of the number line
provides students with a rapid and successful means of access to numerical infor-
mation necessary for the development of a variety of arithmetical skills. The
number line can also be an appropriate tool not only for calculation (mostly addition
and subtraction) with numbers within 10 (which can also be done using hands and
fingers) but also for dealing with numbers beyond 10, when hands and fingers no
longer are sufficient.9

Finally, the number line is not made up of only natural numbers, but also all
other real numbers, which include, for instance, fractions. However, frequently the
position of numbers on the number line can become a cognitive obstacle: for
example, placing fractions on the number line (mathematically this involves ordinal
properties and the density in the field of rational numbers) is notoriously a difficult
task for many students (Robotti et al., 2015).

Given these considerations on fundamental aspects that have been identified as
promoters of number sense, we can assume that software designed to promote these
aspects, may be used in one of two ways: to help prevent the emergence of MLD in
young students (younger than 8), or to strengthen weaker “number sense” abilities
of older students who have developed MLD. In the sections below we will describe
two innovative examples of these kinds of software.

8For a more complete discussion see volume 42(4) of the Journal of Cross-Cultural Psychology.
9Sometimes fingers are used also to represent numbers larger than 10, but in this case the meanings
referred to by different fingers must be different (for example 4 and 13 might be represented raising
the same fingers: 1 on one hand and 3 on the other) which can be confusing for children.
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3.1.1 Software Promoting Number Sense Through Fingers

Technology offers the possibility of embedding a number of features into software
that can be significant in promoting number sense through the use of fingers. For
example, thanks to touch and multi-touch screens, input may be given in terms of a
number of fingers placed simultaneously on the screen, as a number of sequential
taps (possibly on items in the stimulus), or as particular gestures (swipe, pinch,
lasso/capture, …). Here we give an example of software that exploits such inno-
vative potential.

TouchCounts,10 an application for the iPad, is made up of two environments
(Sinclair & Pimm, 2014; Sinclair & Zaskis, in press; see also Chap. Returning to
Ordinality in Early Number Sense: Neurological, Technological and Pedagogical
Considerations). Here we will briefly analyze the “Operating world” with respect to
its design and potential of fostering development of number sense through fingers.
In this environment the student can create autonomous numbered sets, here referred
to as herds, by placing one or several fingers on the screen. This immediately
creates a large disc encompassing all the fingers and including, in the middle, a
numeral corresponding to the total number of fingers touching the screen. At the
same time, every one of the fingers on the screen creates its own much smaller (and
unnumbered) disc, centred on each fingertip. When the fingers are lifted off the
screen, the numeral is spoken aloud and the smaller discs are then lassoed into a
herd and arranged regularly around the inner circumference of the big disc. This
design offers four representations (UDL Principle 1) of a number: visual non verbal
(or analogical), symbolic (the numeral in the herd), auditory, and of course gestural
(the number is represented by the number of fingers placed on the screen simul-
taneously). Moreover, the student is guided to perceive the herd a single entity
made up of units through the movement of the small discs all together in either a
clockwise or counter-clockwise direction.

The software also offersmultiplemeans of action and expression (UDLPrinciple 2)
because the student can act on the herds in different ways. For example, s/he can
interactively drag herds, either to move them around on the screen or to operate upon
them. After two ormore herds have been produced they can either be pinched together
(ametaphor for addition) or ‘unpinched’ (metaphor for subtraction or partition).When
herds are pinched together they then become one herd that contains the small discs
from each previous herd. The new herd is labelled with the associated numeral of the
sum, which TouchCounts announces aloud. Moreover, the new herd keeps differen-
tiated colors for the small discs coming from the previous herds. Similarly, the student
can do an inverse pinch gesture to decompose a given herd into two herds. The gesture
supports the idea of partitioning, or ‘taking out’ or ‘removing’, which, in turn, supports
the idea of subtracting. The further the swipe travels, the more will be taken out from
the starting herd. When the swiping finger is lifted, two new herds are formed and
TouchCounts announces the number that has been taken out.

10See https://itunes.apple.com/us/app/touchcounts/id897302197?mt=8.
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Students can engage with this software through different means (UDL Principle 3)
—using gestures, through listening, visually—as they freely explore or approach a
variety of tasks proposed by a nearby educator (e.g., “make n all at once”, “count by
n”, “make the herds equal”, “howmany different ways can youmake n?”). Indeed, the
environment allows proposing many different types of tasks that can foster the
development of number sense in different ways, through a “radical” approach.

3.1.2 Software Promoting Number Sense Through the Number Line

There are many software applications that propose representations of the number
line: some are discrete containing only natural numbers, others continuous with
marks such as those on the ruler, some are static and designed only for responding
to specific tasks implemented within the application, while others are dynamic and
allow various user interactions.

A first example we would like to analyze is Motion Math: Fractions,11 an
application for tablets. At the moment it is designed only for promoting processes
involved in the estimation of fractions, exploiting both epistemological and cog-
nitive analyses of fractions (Riconscente, 2013), emphasizing, on the one hand, the
importance of using the number line to give coherence to the study of fractions and
of whole numbers and, on the other hand, the neurological evidence of the mental
number line discussed above (Zorzi et al., 2002).

Within this environment a number line appears on what looks like the “ground”
together with a ball that can bounce (completely elastically) and that can be con-
trolled by the gravity accelerator of the tablet that is, it responds to physically tilting
the tablet, as if the ball had a weight. A fraction appears within the ball, which
needs to be placed correctly on the line. The fraction is presented in different
representational formats: it may be in the form n/m, or a decimal number, a per-
centage, or a shaded section of a circle. Successive hints are given if the user makes
mistakes in positioning the fraction on the line. The app is designed as a game (the
user gets points, passes levels, and “dies” when a mistake has been made even after
all the hints). The ball’s regular bounces constrain the user’s response time, forcing
each placement choice to be planned and executed in pre-determined and regular
time intervals.

The application appears to be in line with a number of the UDL principles
outlined in Sect. 2.2: multiple means of representation are provided and integrated
(fractions are presented in different forms: as “n/m”, as decimal numbers, as per-
centages, as parts of a whole, and as numbers on the number line), support is offered
in the form of successive hints for finding the position of the given fraction on the
number line, the successive hints highlight critical features of the relationship
between the given representations of fractions and their position on the number line,
no verbal skills are necessary because the channels activated for input and output of

11See the app Motion Math: Fractions at http://motionmathgames.com/motion-math-game/.
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information are visual and kinaesthetic, distractions are minimized by the need to
plan and give successive input according to pre-determined and regular time
intervals.

Moreover, Motion Math: Fractions can be seen to exploit embodied learning
and, in particular, the integrated perceptual-motor approach (Nemirovsky et al.,
2012) in the development of the mental number line.

It is possible (and, we believe, advisable in many cases) to complement a
student-software interaction with verbal guidance and successive discussion of each
playing session. For example, in the episode presented in Bartolini,
Baccaglini-Frank, and Ramploud (2014) the student, who had been diagnosed with
various learning difficulties, including severe dyscalculia, was significantly helped
by the introduction of a different way of reading the fractions in the falling ball. The
teacher (second author) suddenly exclaimed: “Let’s name the fractions as Chinese
do!…[1/2 falls] Of two parts, take one!…[3/4 falls] Four parts, three!” and the
student improved his performance very quickly, especially on unitary fractions
(e.g., 1/5). Similar episodes have since been observed with other low achievers.

In this example we can observe that providing options for mathematical
expressions and symbols by language and different linguistic expression, can be
effective for overcoming some difficulties in math comprehension (according to
Principles 1 and 2 of UDL framework). We note that in the case described above
the verbal expression that identifies the fraction expresses at the same time a process
for constructing (and thus placing) the fraction that follows a same order.

3.2 Spatial Orientation and Non-verbal LD

A possible source of difficulties in mathematical learning is what has been referred
to as a non-verbal (or visual-spatial) LD (e.g., Mammarella et al., 2010; Andersson
& Östergren, 2012; Mammarella et al., 2013). An ability that may be weaker in
these students is perspective-taking (Piaget & Inhelder, 1967; Clements 1999), that
is being able to embrace different frames of reference based on one’s self or on
external points of reference, is fundamental both in everyday life and in instruction.
The importance of such ability is declared, for example, in the Italian National
Curriculum Indications (MIUR, 2011a, b) relative to mathematical learning about
Space and Figures. Developing the perspective-taking ability may not be
straightforward: it involves a transition from “perceptual space” to “representational
space” (Piaget & Inhelder, 1967), as well as “connecting different viewpoints”
(Clements, 1999, p. 3).

While children showing typical development seem to have acquired such ability
by the end of primary school, in some children with MLD—including develop-
mental dyscalculia (e.g., Mazzocco & Räsänen, 2013)—the development of
perspective-taking, among other abilities, may be delayed and/or deficient.

Software environments that seem particularly appropriate for addressing per-
spective taking are microworlds, such as Logo (Papert, 1980). The potential of
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Logo-like microworlds for fostering learning in students with persistent difficulties
in mathematics is documented in the literature. In particular, Vasu and Tyler found
that Logo may foster the development of spatial abilities and of critical thinking
skills (Vasu & Tyler, 1997), and various other researchers have reported several
potential benefits of using Logo with students who have learning difficulties
(Atkinson, 1984; Maddux, 1984; Michayluk & Saklofske, 1988; Russell, 1986),
especially using a more structured, mediated approach (Ratcliff & Anderson, 2011).

Below we describe design features of a Logo-like microworld, Mak-Trace, an
environment we used to analyze cognitive processes involved in juggling different
frames of reference of students with non-verbal difficulties.

3.2.1 The Logo-like Microworld Mak-Trace

Mak-Trace is an environment in which a character can be programmed to move and
draw on a grid. The grid is 10 � 15 and the character can only be programmed to
go forwards (F) or backwards (B) (of the distance of one side of a square of the grid
at the time) or to turn 90° clockwise (R) or counterclockwise (L). The characters
can be dragged on the grid with a finger to choose a starting position and then they
will, by default, leave a trace mark as they move according to the commands in the
programmed sequence (see Fig. 1). It is also possible to program the character so
that it does not leave a trace mark on the grid, by inserting appropriate commands in
the programmed sequence. The commands appear as icons that have to be dragged
and placed on a vertical bar that represents the programmed sequence. This design
proposes different representations (UDL Principle 1) corresponding to the

Fig. 1 Main screen in Mak-Trace, where the student can program his/her character

90 E. Robotti and A. Baccaglini-Frank



movements of the snail on the grid: a “draggable” arrow-symbol, a movement of
the character on the grid, a segment (or point) traced on the grid.

An aim in designing Mak-Trace was to create an environment accessible to
young children, or students with learning difficulties or disabilities, especially of a
visual-spatial nature, by offering an intuitive iconic programming language.
Students can act on the environment in different ways (UDL Principle 2): dragging
the character on the grid with their finger, or dragging command icons to into a
sequence to make a “program”. Of course the student can also interact verbally with
a nearby educator.

The fact that the command-icons can be treated as objects can make it natural to
assign symbolic names to each of them in order to quickly describe a programmed
sequence, orally or by writing on paper (Principle 2 of the UDL framework). This
practice can be proposed and pursued by an educator using Mak-Trace with her
students, and it may help students make use of a pre-algebraic language that can be
quite useful in certain tasks involving generalization.

Another design choice is that Mak-Trace gives no feedback in terms of move-
ments of the character until the student touches “GO”. At this point the character
executes the whole list of commands in the constructed sequence. To change the
constructed sequence, the student has to go back to the “programming mode”:
automatically the character goes back to its original position and all trace marks are
cleaned off the screen. This choice was made to foster planning and spatial orien-
tation abilities. In particular, the student has to visualize what the character will do as
she is programming, and where the character will be at each step of the programmed
sequence, before actually executing the sequence. These design choices were made
in accordance with the UDL Checkpoints 4.2 (“Optimize access to tools and
assistive technologies”) and 6.2 (“Support planning and strategy development”).

In Mak-Trace the perspective-taking ability consists in embracing the character’s
moving frame of reference. To exemplify how working in this environment can be
beneficial to students who experience difficulties in perspective-taking, we will
revisit some critical episodes from a case study (Baccaglini-Frank et al., 2014; Santi
& Baccaglini-Frank, 2015).

3.2.2 The Case of Filippo

Filippo was 15 years old and had been diagnosed by clinicians as having MLD
including dyscalculia and severe dyslexia. From the accounts of his special edu-
cation teacher, he also was not able to read maps or to give directions, however he
did not show difficulties in recognizing or naming his left and right hands. He had a
short attention span and little—if any—interest in the activities proposed during
math class. Furthermore he suffered from very low self-esteem and sense of
self-efficacy. We developed a protocol so that Filippo would work with Mak-Trace
when he met with his special education teacher, for five weeks, either once or twice
each week. The tasks were designed based on two hypotheses: we expected
Filippo’s perspective-taking ability to be weak at least initially, but all the same we
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expected that interacting with the software under supervision of the teacher could
enhance his abilities to plan, visualize, and give directions, potentially through
means different than his perspective-taking ability. Here we briefly report on the
two tasks Filippo carried out: (1) describe the relationship between sequences of
commands in Mak-Trace, and the movements and trace mark left by the snail;
(2) program the snail to draw a square.

During the first task Filippo initially thought that the arrow commands “go
forward”, “go backward”, “turn right”, “turn left” (F, B, R, L) made the snail go
forward, backward, right, and left, where these directions are relative to Filippo’s
front, back, left and right, or possibly to “absolute” directions, like north, south,
east, west. Therefore Filippo was not able to construct a sequence of commands to
make the snail draw a given path. For over half an hour he struggled to relate the
brief sequences of commands he programs to their representation on the grid. He
did not seem to be aware of any reference frames other than his own until the
teacher intervened, in the interaction that follows.

Filippo: it went backwards, not upwards […]
Teacher: so what do the little arrows refer to?
Filippo: it depends on how the snail is oriented.

This was a decisive moment which lay the foundations for Filippo’s conception of
the snail’s perspective. However, Filippo still mostly relied on trial and error,
embracing the snail’s perspective as long as the snail is not oppositely oriented,
which he was confronted with in the task of making the snail draw a square.

The first time Filippo tried to program the snail he was able to program the
sequence correctly for the first two sides of the square, then he uses (incorrectly) the
commands B and R, correct in his frame of reference, but not in the snail’s; while
the fourth side, horizontal in Filippo’s frame, is programmed correctly. It is inter-
esting that he used opposite commands for the first and third sides (F and B,
respectively), while for the second and fourth he used the same command (F). The
effect of this programmed sequence is shown in Fig. 2a.

The second time Filippo tried to program the sequence, he composed:
FFFFLFFFFL [hesitated, inserted L, erased it, and with the index of his right hand
made the gesture of a counter clockwise turn] FFFF [he said: “I have to always keep
the” and made another counter clockwise turn gesture with his right hand] RFFFF
(Fig. 2b). The feedback from Mak-Trace (snail moving on the screen and leaving a
mark on the grid) confirmed that three sides were now correctly programmed.
However Filippo made a mistake again on the rotation when the snail is oppositely
oriented. This behavior suggests that indeed Filippo had a weak perspective-taking
ability.

However, our second hypothesis was also confirmed, as Filippo, on his own,
interacting with the software, developed alternative strategies for managing the
different frames of reference. A first strategy is developed to finally solve the square
drawing task. This time Filippo re-wrote the sequence: FFFFLFFFF [he made the
gesture of a counter clockwise turn with his right hand] LFFFF…[he rotated the
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iPad so that his frame coincided with the snail’s, observing the screen he rotated his
right hand counter clockwise]. Then he completed the last turn and side.

Filippo: Done, I found it […] no, I got…lost […] when it is turned around…it goes
opposite [clockwise rotation gesture with the right hand] so…if I want it to go here [hor-
izontal gesture from left to right with the left hand] … oh, I don’t know, I’ll try this
[RFFFF]… no wait, because this otherwise is like before [he substitutes R with L].

The sequence was correct (Fig. 2c).
Rotating the iPad is a gesture that reveals how Filippo is now aware that he

should consider the snail’s frame of reference, and that this frame is oppositely
oriented with respect to his (at the moment of the rotation). It is as if Filippo was
aware of not being able to feel the snail’s frame of reference when it is “too
different” from his own (oppositely oriented), so he figured out a way of physically
making the frame of reference of his body match the one of the snail. This allowed
him to overcome his disorientation and to successfully complete the task.

4 An Example of Digital Environment Promoting
Algebraic Abilities

We now briefly discuss learning difficulties in algebra. In this discussion algebra
will be the chosen learning object (Principle 1 of UDL framework), and we analyse
potentialities of the software AlNuset, showing how they played out during a case
study. In this sense, according to Principles 1 and 2 of the UDL framework, we will
analyse how AlNuset introduces both multiple means of representation and multiple
means of actions and expression in order to help students grasp the meaning of
some algebraic notions. The analysis will be focused, in particular on the MLD
students’ difficulties.

With a significant percentage of students, the current teaching of algebra seems
not to be sufficient to effectively develop skills and knowledge to master this

Fig. 2 Effect of Filippo’s first, second and final programmed sequence
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domain of knowledge (Sfard & Linchevski, 1992; Kieran, 2006). Here, we focus on
the students’ difficulties in algebra considering, in particular, students with MLD.
These students can have severe difficulties in arithmetic, (Butterworth, 2005),
however, there are also areas of mathematics, which do not depend so much on
manipulating numbers, such as algebra, geometry and topology.

Indeed, some studies on MLD students have shown that there is dissociation
between the recovery ability of arithmetic facts, which is compromised, and alge-
braic manipulations, which are intact (Hittmair-Delazer, Sailer, & Benke, 1995;
Dehaene, 1997). Thus, there is evidence for the existence of two independent
processing levels of mathematics: a formal-algebraic level and an
arithmetic-numeric level (Dehaene, 1997). Moreover, neuroimaging results,
focusing on the algebraic transformations, have highlighted how the visual-spatial
areas of the brain are activated at the expense of those devoted to language. For
example, it has been shown that when we solve equations, the expressions are
manipulated mentally by means of a visual elaboration rather than through verbal
means (Landy & Goldstone, 2010). Such neuroscientific results can help us analyze
the difficulties of students with MLD in algebra.

Many students’ difficulties in algebra, including difficulties in controlling alge-
braic manipulation (e.g., Robotti & Ferrando, 2013), seem to be due to a lack of
grasp on the meaning of the notions involved (Arzarello, Bazzini, & Chiappini,
1994). Recent studies in math education have suggested that the construction of
mathematical knowledge, as a cognitive activity, should be supported by the
sensori-motor system activated in suitable contexts (Arzarello, 2006). Indeed,
according to Nemirovsky (2003), the understanding of a mathematical concept
spans diverse perceptuomotor activities, which become more or less active
depending of the context. Thus, the construction of meaning can be seen as based
on a rich interplay among three different types of semiotic sets: speech, gestures and
written representations (Radford, 2003, 2006). Studies concerning both the alge-
braic domain (Chiappini, Robotti, & Trgalova, 2009; Chaachoua et al., 2012) and
the geometrical domain (Goldenberg, Cuoco, & Mark, 1998) suggest using edu-
cational tools through which images can be constructed and managed (dynamically
or statically), exploiting mainly visual non-verbal rather than (or together with)
verbal means. This is in accordance with the UDL principle of providing multiple
means of action and expression (Principle 2).

We will show how the software AlNuSet (Algebra of Numerical Sets) can be
used to make algebraic notions explicit, and to construct their meanings dynami-
cally, while involving all the students in a classroom, as much as possible
(Baccaglini-Frank & Robotti, 2013). In particular we will look at how AlNuSet can
be used in relation to the algebraic notions of variable, unknown, algebraic
expression, equation and solution of an equation, and the formal solution of an
equation can be addressed with the support of AlNuSet.

94 E. Robotti and A. Baccaglini-Frank



4.1 AlNuSet to Construct Algebraic Meanings: Examples
to Inclusive Education

AlNuSet was designed for secondary school students (from age 12–13 to age 16–17)
and it is made up of three separate environments that are tightly integrated: the
Algebraic Line, the AlgebraicManipulator, and the Cartesian Plane.Wewill describe
some features of these environments, with particular attention to the Algebraic Line
and the Algebraic Manipulator, through examples of activities,12 stressing their
support for the conceptualization of algebraic notions in MLD students.

Variable and dependent expressions

On the Algebraic Line it is possible to place variables and expressions that depend
from them. To do this, the user has to type a letter, for example, “x”, and a mobile
point will appear on the line. The point can vary within the chosen set of numbers
(natural, whole, rational, or real13) and variation can be controlled directly by the
user through dragging. This feature was designed so that important aspects of the
notion of variable could become embodied. Moreover, it is possible to construct
expressions on the line that depend on a chosen variable, for example, 2x + 1. This
dependent expression cannot be acted upon directly, but it will move as a conse-
quence when x is dragged. The dependent expression will assume the positions on
the line that correspond to the values it takes on when the dependent variable takes
on the value it is dragged to (Fig. 3).

We note that the functionalities described propose different representations
(UDL Principle 1) and they are designed to foster for the user a mediation of the
algebraic concepts of variable and dependent expression, through a dynamic model
that can be acted upon (UDL Principle 2). The mediation can occur thanks to visual
and kinaesthetic channels, without the need of visual verbal means (written lan-
guage). The construction of the concept realized as so may allow students, and
especially students with MLD, to find mnemonic references that are appropriate for
their cognitive style. This allows them to start using representations of the funda-
mental algebraic concepts at stake, and possibly to place and retrieve them from
long term memory in a more effective way. AlNuSet allows to address “typical”
topics in the secondary school algebra curriculum; in particular, in the following
section we will analyze how equations can be addressed.

Equations

Let us consider a common task: “Solve the Eq. 3x−5 = 13”, or—stated in a pos-
sibly less common way—“Find the values of x for which the expression 3x−5 is
equal to 13”.

12For a more detailed description of these environments see www.alnuset.com.
13Of course the representations of the numerical sets are accomplished on a computer, so the sets
are actually finite and discrete, but they simulate—with some limitations—the properties of the
number sets they represent.
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Solution on the Algebraic Line

Solving this equation on the Algebraic Line requires observing for which values of
x the expression 3x−5 (represented as a mobile point on the line) coincides with the
number 13. When trying to verify the equality of expressions, dragging x is
accomplished with a specific objective: that of trying to make the expressions
coincide, that is, to make them take on a same value, becoming thus associated to a
same “post-it” (yellow rectangle in Fig. 4). If the dragging is done with this
objective, the variable assumes a meaning similar to that of unknown, that is of letter
of which values need to be found in order to make the equality true. This allows
students to act on the representations in different way, according to UDL Principle 2.

In Fig. 4 we can observe what happens on the Algebraic line as the point “x” is
dragged.

The possibility of solving an equation through a perceptive kinaesthetic
approach (dragging x along the line) without directly using a solution algorithm can
help students concentrate their attention on the meaning of equation and its solu-
tions. The Algebraic Line in AlNuSet was designed with this aim, which it attempts
to reach through specific signs and functionalities embedded in it. Among these
there is the possibility of dragging the point corresponding to “x”, the visualization
of “post it” markers containing values on the line and the constructed expressions
that correspond to them (Fig. 4), the color of the dot corresponding to the equation
(Fig. 4a and b). In particular this last feature is an example of how a visual
non-verbal channel is used to give feedback to the student, guiding his/her con-
struction of meaning of solution of an equation.

Features like the dot changing color and the yellow “post-it” signs, supporting
the comprehension and the construction of meaning for algebraic notion and
relationships involved, are examples of how AlNuSet’s design seems to be well in
line with the UDL principle advocating “multiple means of representation”
(Principle 1). Indeed, they support perception providing the representations for
algebraic notions through different modalities (e.g., through vision, dynamic image,
touch…); and in a way that will allow for adjustability by the user (e.g., dragging
the point corresponding to x as often as the user wants). Such multiple represen-
tations not only ensure that algebraic notion is accessible to MLD student, but also
easier to comprehend for many others.

Fig. 3 The movement of the variable x on the Algebraic Line produces the movement of the
dependent expression 2x + 1 on the line
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Another functionality of AlNuSet that can be useful for the construction of a
solid meaning of solution of an equation is the command “E = 0”, in the envi-
ronment Algebraic Line. This command allows the student to ask the system to
calculate the roots of a polynomial (to read more about this functionality visit www.
alnuset.com). This functionality can help the student tackle the “truth value of an
equation”, alleviating his/her cognitive resources from the burden of calculation
procedures associated with the solution algorithms of an equation. This can be
appreciated, for example, thinking about the cognitive load—excessive for some
students—associated with the application of quadratic equations. Indeed, many
students with MLD have trouble both with arithmetic calculations and with
memorization and execution of procedures. The more complex a procedure is,
greater are the difficulties for these students to retrieve the steps involved and to
execute them. The “E = 0” functionality of AlNuSet allows these students to focus

b

a

Fig. 4 A way of solving the Eq. 3x−5 = 13 on the Algebraic Line
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their attention on the cognitive task related to the meaning of solving an equation, in
terms of searching for truth values of the equation, as opposed to dispersing their
cognitive resources only on the calculation, loosing track of most (or all) meaning
(Robotti, 2014; Robotti & Ferrando, 2013).

Given these features and ways in which their use can be integrated in
approaching mathematical situations, the Algebraic Line can be used as a tool that
can help lighten the cognitive burden involved retrieving and carrying out proce-
dures, and allow the student to focus most of his/her cognitive efforts on the
construction of the algebraic meanings at stake, favoring autonomy in approaching
algebra. This is in agreement with UDL Principle 2 and, in particular, with the idea
to provide option for comprehension: guiding information processing, visualization,
and manipulation; maximizing transfer and generalization.

4.2 The Case of Eleonora

We now present the case of a student we will call Eleonora using the Algebraic Line
of AlNuSet, carried out by the first author. She was 26 years old at the time of the
study and had obtained her first diagnosis of dyscalculia the same year.

Before proposing the use of AlNuSet, one of the questions the interviewer asked
Eleonora was the following: “When 3 is added to 3 times a certain number, the sum
is 28; find the number”.

Eleonora did not set up an equation, but proceeded by subtracting 3 from 28
(obtaining 25) and then dividing by 3, “undoing” the operations stated in the
problem text. She then tried to prove the arithmetical equality (in Fig. 5) through
“trial and error”, approximating the value of 25

3 to 8.333… She preferred to do this
in spite of what she had been taught in various algebra classes where many
examples of verbal texts of this type had been given and transformed into equations,
such as 3x + 3 = 28.

The researcher (first author) advanced the hypothesis that Eleonora had not
developed a strong enough (if any) mathematical meaning of the notion of equation,
possibly also due to the fact that she had trouble managing the typical procedures
given to her during regular courses for solving first and second degree equations.
The intervention proposed to Eleonora therefore was planned as a sequence of
activities with the Algebraic Line in AlNuSet aimed at developing the mathematical

Fig. 5 Eleonora’s attempt to
solve the interviewer’s
question
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meaning of equation and of solution of an equation. In the following excerpt we
show Eleonora responding to the researcher’s (R) question: “For which value of “a”
is the expression 2 � a equal to 8?”.

1. E: Right now we can see that “a” changes value,… it changes value if I drag it
2. R: For which value of “a” is the expression equal to 8?
3. E: The expression is equal to 8… that is 2*a is equal to 8…
4. E: If I move it along the line, I am looking for the right value, where the letter

matches
5. E: For example, I discovered that if I place “a” on 3…if I give “a” the value

3… 2*a is 6
6. E: Instead, if I put “a” on 4, 2*a is 8… because I’m multiplying […]
7. R: What did you get? [Referring to the colored dot associated to the equation

in Sets window]
8. E: A verification. It’s a check, if I drag “a”, the red dot shows that I make a

mistake
9. E: …if I drag “a”, if I change the value of “a”, the red dot shows that I make a

mistake
10. E: Because, in this moment, 2*a equal to 8 is not true
11. E: There isn’t an equality. Because I’m on 2*a equal to 10, if I give “a” the

value 5

The solution to the problem is developed through a visual-spatial kinaesthetic
approach in AlNuSet. Here, new representations (algebraic expressions, post-it,
colored dots…) and different ways to act on them are provided, as proposed by
UDL Principle 1 and Principle 2. As matter of fact, manipulating the expression
2 � a on the line allows Eleonora to associate meaningful (to her) dynamic rep-
resentations of the notions of variable, unknown, equation and solution.

Indeed we can observe that the verbal utterances used by Eleonora first refer to
perceived aspects of the solution to the problem. Examples of such utterances are:
“If I place “a” on 3…” (5) or “If I put “a” on 4…” (6). Later she seems to be
attributing to “a” characteristics of an unknown: “if I give “a” the value 3…” (5),
“in this moment, 2 � a equal to 8 is not true” (10).

In intervention (6), we can also observe that Eleanor manages to relate the truth
of the equation obtained by assigning to “a” the value of 4, with the arithmetic
operation in 2 � a, which guided her first solution strategy (in the pre-testing
phase). Thus, dragging “a” along the line until the value 4, she finds a link between
the “meaning of an equation solution” with the “arithmetic procedure”.

The construction of these meanings seemed to become more and more stable
throughout the intervention, that is Eleonora was able to access and retrieve the
meanings constructed within the Algebraic Line environment even months after the
end of the intervention. This suggests a transfer to long term memory. Referring to
the UDL principles, this environment seems to have successfully provided for
Eleonora multiple means of representation, in this case offering dynamic repre-
sentations of algebraic objects on the Algebraic Line of AlnuSet. Moreover, it
provided multiple means of action and expression, exploiting the various
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functionalities through which Eleonora could act on receiving instantaneous feed-
back from the system. Making sense of such feedback Eleonora was able to give
meaning to and manage the process of the solution of equations.

5 Conclusion

Specific theoretical frameworks in mathematics education research for the use of
technology for fostering mathematical learning of students with MLD are still quite
fragmentary. Moreover, very few have been integrated with findings from fields
such as cognitive psychology and neuroscience, fields that have also been very
active in investigating such phenomena. Therefore we felt the need to turn to more
general theoretical notions related to different research fields. Among them, the idea
of different means of information access and production, related to research in
cognitive psychology, the three primary design principles of the Universal Design
for Learning framework, which we refer to specific software’s’ design, and the
paradigm of multimodality, related to research in math education, according to
which experiences of a sensorial, perceptive, tactile and kinaesthetic nature are
essential for the formation of mathematical concepts.

If we turn back and think about the analyses of students’ interactions with
selected software, we can again trace down our effort of seeking out evidence,
within each particular mathematical learning context, of the usefulness of design
choices, interpreted as aligned with the general UDL framework. In the case of
Filippo, use of Mak-Trace, mediated by the teacher, helped the student develop
personal strategies to solve problems concerning perspective-taking ability that
initially he found unsormountable. These strategies later were endorsed also by his
regular mathematics teacher. The analysis pointed to specific instances in which the
software allowed the student to avoid the use of symbolic language and to rely on
his sensorimotor activity in an interplay between movement, gestures and language
(multiple means of action and expression—Principle 2). Moreover, similarly to
what has been described for Logo, Mak-Trace appeared to be highly engaging
(Principle 3), helping the student to “remain absorbed in a task for a period of time;
… tolerate a period of confusion (with appropriate support);… use errors as a
source of information about what to try next” (Russell, 1986, p. 103). In the case of
Eleonora we highlighted how the environment seemed to successfully provide her
with multiple means of representation (Principle 1) of algebraic objects on the
Algebraic Line (for example, mobile points representing variable, expressions or
unknowns, or the “yellow square” indicating expressions that refer to the same
value/point on the line), and multiple means of action and expression (Principle 2),
leading to instantaneous feedback from the system (for example, the movement
induced by dragging a point on the line).

In general, we showed how the software applications analyzed provide multiple
means of representation (Principle 1 of UDL framework), multiple means of action
and expression (Principle 2) and multiple means of engagement (Principle 3),
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meeting specific checkpoints within each of these principles. To complete the
analyses of each environment we also felt the need to add discussions of important
literature on the learning of the specific mathematical content involved. This is
because it is well known in mathematics education that the learning of different
concepts or ways of thinking in mathematics can involve the activation of different
cognitive processes in the students; and for the learning to be promoted effectively,
it implies specific pedagogical content knowledge for teaching (Ball, Lubienski, &
Mewborn, 2001) which the context of MLD includes information on cognitive
issues involved in the learning of the specific mathematical content.

For this analysis, we referred mostly to software developed within the “radical”
approach, according to which new ways of approaching specific mathematical
content can also lead to changes in the organization of the mathematical curriculum
or in the ways in which certain content is proposed (see, for instance, the notions of
variable or unknown addressed in AlNuSet). As of today, we have only taken some
initial steps towards reaching a framework to analyze the use of technology for
fostering mathematical learning of students with MLD, and we definitely have yet a
way to go in this direction. Until now we have (1) looked for ways of implementing
checkpoints from the UDL principles designing software we collaborated to produce,
and we have (2) looked for evidence of the usefulness of such design choices ana-
lyzing students’ interactions with the software. These two tasks are still far from
straightforward and necessitate a good deal of discussion and interpretation of the
checkpoints of the UDL framework, because these are stated in very general terms.
This of course makes them applicable to a number of different learning contexts
(other than mathematics), but it costs their meaningfulness within the domain of
mathematical learning, or even within more specific contexts, like learning natural
numbers, learning about geometrical figures, or learning to solve quadratic equations.

We believe it is yet premature to propose a new coherent framework through
which to look at technology mediated learning in the presence of MLD, but at the
moment we see the intertwining of the different theoretical notions used for the
analyses of the software and of students’ interactions with the software as effective
in giving insight into how and why some innovative software can foster mathe-
matical learning for students with MLD.
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