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Foreword by Ferdinando Arzarello

The issue of a fresh and creative use of technology to enhance innovation in
mathematics education is a hot spot in current debates on mathematics education.
Many countries invest a lot in equipping the schools with (more or less) updated
devices and in organizing consequent teachers’ training for a suitable use of the new
tools.

The research is cautious in claiming that technology has great positive associ-
ations with educational outcomes (see, e.g. the Report of Higgins, Xiao, &
Katsipataki, 2012). What is there underlined more is that:

The range of impact identified in these studies suggests that it is not whether technology is
used (or not) which makes the difference, but how well the technology is used to support
teaching and learning. There is no doubt that technology engages and motivates young
people. However, this benefit is only an advantage for learning if the activity is effectively
aligned with what is to be learned. It is therefore the pedagogy of the application of
technology in the classroom which is important: the how rather than the what. This is the
crucial lesson emerging from the research. (p. 3)

Hence, it is this lesson that must be considered by researchers and practitioners: it
underlines the necessity of approaching technology in the classroom from a wider
standpoint, namely considering what Mishra and Koehler (2006) call the techno-
logical pedagogical content knowledge (TPACK-perspective).

Another issue about the type of impact that technology can have in schools
emerges from PISA surveys. In one of the last PISA in Focus (n.64), it is pinpointed
that

even when most students have easy access to new media, inequalities persist in the way
they use these tools. The use of online media depends on the student’s own level of skills,
motivation, and support from family, friends and teachers, which vary across
socio-economic groups. In their free time, disadvantaged students tend to prefer chatting
rather than sending e-mails. They are also much less likely to read the news or obtain
practical information from the Internet, perhaps because their navigation and reading skills
are often more limited than those of advantaged students. (p. 4)
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In fact, PISA results show that proficiency in the ability to use ICT tools for
learning is strongly related to more traditional school abilities:

Proficiency in online reading and navigation requires students to plan and execute a search,
evaluate the usefulness of information, and assess the credibility of sources on line – skills
that schools can encourage students to practice and develop. […] Proficiency in online
reading and navigation requires students to plan and execute a search, evaluate the use-
fulness of information, and assess the credibility of sources on line. […] students with good
reading skills, regardless of their background, have a much easier time ending their way
around–and mining the considerable assets of–the Internet.

The lesson here is that the activities with ICT should be designed according to a
global standpoint of the teaching design for the classroom activities: let us call this
the global skills perspective.

These two combined perspectives require that researchers deeply rethink the
theoretical and empirical frames at the base of the educational projects for
enhancing and improving mathematics teaching and learning in the classrooms.
What is needed is not a cumulative programme where new devices are at stake
together with the old ones focussing on possible hoped advantages for teachers’ and
students’ activities, perhaps without any founded assumption. There is the necessity
of a deeper insight, which touches the real roots of learning according the hewn
findings that research puts forward not only from the pedagogical and technological
innovation standpoint but also considering the new results of other disciplines, from
neuro- to social sciences, which can give fresh ideas and programmes to pursue
global learning and teaching designs, aligned with the two perspectives pointed out
above.

In this sense, the book is very useful. From the one side, it offers some inter-
esting suggestions for these new spaces for research and for innovation, pushing
forward possible programmes of innovation linked to the last findings in technol-
ogy: from the affordances allowed by touch screen devices to those that
Wii-environments offer, and others. The interest of these proposals consists in the
deep analysis of the intertwining between the cognitive, embodied and didactical
affordances that such devices allow. From the other side, also more or less standard
examples are considered and innovative uses of digital technologies are exemplified
in different contexts: CAS environments, interactions between concrete and simu-
lated artefacts, construction of mathematics concepts within institutional infras-
tructures, the use of a single computer in a classroom, the use of technology for
students having mathematical learning difficulties or disabilities.

Overall, the chapters offer an interesting updated survey of important researches
in the field, as pointed out in the retrospective Chap. “From Acorns to Oak Trees:
Charting Innovation Within Technology in Mathematics Education”: there, it is
shown how the progress of innovations in this field has “been seeded and taken
root” within the ICTMT community in the years.

In most of the book, the two perspectives—TPACK and global-skill one—are
both present: therefore, the book can be read with benefits not only by researchers
but also by practitioners.
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Practitioners will find new ideas about an old issue that new technology today
puts forward, but that is connected to older problems raised many centuries ago by a
philosopher like Bacon (1620), who, at the beginning of the scientific revolution,
summarized a main issue that even today teachers (and not only they) face when
using artefacts, and specifically technological devices in their classrooms:

Neither the naked hand nor the understanding left to itself can effect much. It is by
instruments and helps that the work is done, which are as much wanted for the under-
standing as for the hand. And as the instruments of the hand either give motion or guide it,
so the instruments of the mind supply either suggestions for the understanding or cautions.1

(Book I, Aphorismus 2).

Hopefully this book can give some contribution to enter further into the fascinating
interactions between hand, artefacts and mind within the social, technological and
cognitive environments where we live today.

Ferdinando Arzarello
Università di Torino

Italy
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Introduction: Innovative Spaces
for Mathematics Education
with Technology

Francesca Ferrara, Eleonora Faggiano and Antonella Montone

The idea of this book arose from research encounters occurred during a past ICTMT
Conference: the International Conference on Technology in Mathematics Teaching.
The ICTMT Conference, which is now moving to its 13th edition, has a strong
commitment to promote technology in mathematics education for improving the
quality of teaching and learning by effective use of technology. In recent years,
international research in mathematics education has offered a range of theoretical
perspectives that attempted to provide different and interrelated frames and view-
points to the study of use and role of digital technologies in/for teaching and
learning mathematics (e.g. Hoyles & Lagrange, 2010; Drijvers, Kieran, & Mariotti,
2010; Drijvers, Tacoma, Besamusca, Doorman, & Boon, 2013). But still, the
integration of technology in the didactical practice, far from becoming a reality in
the mathematics classroom, is a crucial issue of this discourse subjected to various
lines of flight and critical interpretations.

Today, in particular, part of the discourse sheds some light on change and
transformation implicated for the classroom practice of the mathematics teacher in
the digital era (see Clark-Wilson, Robutti, & Sinclair, 2013). Other part mainly
focuses on the influential affordances of software environments or devices (for
example, Hegedus & Moreno-Armella, 2008; Arzarello, Ferrara, & Robutti, 2012;

The original version of this chapter was revised: For detailed information please see Erratum.
The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-61488-5_12
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Calder, 2015), as well as on the ways that technologies affect or even change the
nature of the mathematical objects and relations (e.g. Rotman, 2008; Sinclair, de
Freitas, & Ferrara, 2013). Generations of research on new technologies in mathe-
matics education have been discussed (Sinclair, 2014; Drijvers, 2015). In this
respect, are underlined the massive changes in the nature of the physical interac-
tions with digital technologies, from the entirely alphanumeric hegemony of the
keyboard to the even continuous movement with the mouse, to touch and haptic
experiences, which put forward more direct action and gesture that come to replace
the mouse and keyboard, and how these new forms of interaction make very
different demands on the body but also on the mathematics, eventually implying
new ways of sensing and making sense, a new kind of sensory politics at play in the
mathematics classrooms (cf. chapter six in de Freitas & Sinclair, 2014).

More recently, researchers have started drawing attention to how the technology
might offer new ways of engaging with mathematical thinking and engender new
kinds of mathematical experiences for learners (e.g. Santi & Baccaglini-Frank,
2015; Calder & Campbell, 2016; Hegedus & Tall, 2016; Sinclair, Chorney, &
Rodney, 2016). Student interactive engagement with mathematics, motivation and
level of interest have also been part of the wide landscape (Attard & Curry, 2012;
Lange & Meaney, 2013).

However, when the research lens is trained on educational research, the
emphasis can shift away from practice and activity, from task design, from the role
of the teacher but also, and more importantly, from the conceptual or empirical
positionings of the researchers (see Herbel-Eisenmann, Wagner, Johnson, Suh, &
Figueras, 2015) and the implications for their particular ways of speaking about
research on technology. Beyond the fact that the nature of these positionings is
revealed to vary immensely in the literature, Herbel-Eisenmann and colleagues
underline that often, the sources from which people draw as they position each
other are not explained well.

This fuzziness further complicates the relationship between positioning and
storylines that are offered to readers in discourse, and entails a social meaning that
depends upon the positioning of the speaker(s) as soon as this is seen as a product
of the social force implicated in any communication action. Deepening the dis-
cussion, we might reconsider how the widespread use of technologies in everyday
life has forged changes in the ways in which people interact and communicate
beyond how they know, implying in turn a wide open range of possibilities for
ways of positioning.

This challenging view is typical of current research in our field and the chapters in
this book attempt to face such a sociological change drawing on the issue of inno-
vation regarding researching about technologies and mathematical practice. It is also
concerned with the reason under our choice, as Editors of the book, of talking about
spaces. The image of space grasps here a vision of how the world looks to an
individual and how the individual lives in the world. The spaces we take into account
here are those where the authors of the different chapters live their specific per-
spective on innovation and technology at a meta-level, which is that of the particular
researcher who is culturally positioning herself with respect to a certain perspective.

2 F. Ferrara et al.



Therefore, the readers of the book can discover and recognize ideas and
meanings of innovation as they emerge from the entanglement of the researchers
with the mathematical activity, the teacher training program or practice, the student
learning and engagement, or the research method that they are telling stories about.
The multiple views that arise from this book have to be considered as a rich bundle
of heterogeneous theoretical or empirical positionings of research, being them
philosophical, instrumentalist, cognitive, technological or of other kind.

Starting a journey through the text, the reader will first encounter an opening
scenery (Chap. From Acorns to Oak Trees: Charting Innovation Within
Technology in Mathematics Education, by Carreira and colleagues) that recalls the
ideas coming from the past ICTMT conferences, launching the delicate and subtle
issue of how we have been used to speak of innovation within technology in
mathematics education research, highlighting the few key innovations that have
been seeded and taken root within the community of participants through the
history of ICTMT.

After this scenery, the book is split into three parts that breach into spaces as
explicit ways of positioning and telling stories about the teaching and learning of
mathematics with technology.

The first part (New spaces for research) consists of three different chapters that
advance fresh theoretical and methodological positionings about innovative ways of
learning. Sinclair and Coles (Chap. Returning to Ordinality in Early Number Sense:
Neurological, Technological and Pedagogical Considerations) propose to relate
inclusive materialism and enactivism in concert with recent findings of neuro-
science in order to think of new methodological possibilities for thinking of the
importance of ordinality in the early learning of number and how this might be
fostered by a new technology. De Freitas and colleagues (Chap. The Coordinated
Movements of a Learning Assemblage: Secondary School Students Exploring Wii
Graphing Technology) position from the perspective of assemblage theory to study
how human bodies collaborate and assemble with technology when exploring
mathematical ideas, offering the idea of learning assemblage to analyse data less in
terms of tool use and more in terms of the affective force of the technology. Robotti
and Baccaglini-Frank (Chap. Using Digital Environments to Address Students’
Mathematical Learning Difficulties) centre their positioning on literature mainly
coming from cognitive psychology, which helps address the issue of learning in
relation to students with learning difficulties and to software that might promote
new learning in this situation. Therefore, the context is different among the three
chapters, but they share common interests in how specific positionings make dif-
ferent demands on the body and on mathematics.

The second body of three chapters (New technological spaces) contributes to the
discourse with attention mainly drawn to affordances and innovative uses of new
digital technologies. In this case, the positionings of the various researchers have in
common their tentative dwelling upon implications and benefits of the technolog-
ical environments. Through a comparative research, the instrumental positioning of
Thomas and colleagues (Chap. Innovative Uses of Digital Technology in
Undergraduate Mathematics) centres on the new use of digital environments in first
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year mathematics courses at the university, in order to tackle with possible dis-
continuities in the transition from secondary to tertiary education. Concerning the
duo of artefacts designed by Maschietto and Soury-Lavergne (Chap. The Duo
“Pascaline and e-Pascaline”: An Example of Using Material and Digital Artefacts at
Primary School), innovation is unfolded along two dimensions: the emergent
relationships between the digital and the physical in the duo, and the possibility of
integrating the digital in primary school in a way that supports teaching and
learning practices. Weigand’s contribution (Chap. What Is Or What Might Be the
Benefit of Using Computer Algebra Systems in the Learning and Teaching of
Calculus?) positions from the side of previous research on computer algebra sys-
tems and tries to deal with a new understanding and vision of the benefits of using
this technological environment in the mathematics classroom, through the devel-
opment of a competence model.

The third part of the book (New spaces for teachers) only includes two chapters
that both shift the focus of our discourse specifically on teaching and take strong
positionings on teaching as an activity. Kynigos (Chap. Innovations Through
Institutionalized Infrastructures: The Case of Dimitris, His Students and
Constructionist Mathematics) suggests to reflect on the potential for innovation
made possible by connecting different kinds of innovation, and to re-think con-
structionism as an innovative activity that is rich in opportunities for meaning
making in the era of large portal and the social web, through an example of
constructionist mathematical activity by one teacher and his class using portals.
Despite the widespread availability of new digital expressive and communicative
possibilities, Tabach and Slutsky’s positioning (Chap. Studying the Practice of
High School Mathematics Teachers in a Single Computer Setting) differs from
Kynigos’, calling attention for the specific situation in which students do not have
access to the digital but only the classroom teacher is equipped with a computer and
data projector, therefore, pointing out the need for a new—for this reason, inno-
vative—instrumental framework able to address and support teacher practice ade-
quately in such situations.

The mosaic of the varied research that features this book is completed with the
closing scenery (Chap. Digital Mazes and Spatial Reasoning: Using Colour and
Movement to Explore the 4th Dimension). De Freitas affords to propose new
inventive learning about spatial reasoning and spatial sense in four dimensions with
digital maze technology, pointing to possible directions for future research on
innovative approaches to mathematics thinking.

With this panorama in mind, we hope to leave the reader with a flavouring will
for unfolding and unveiling—possibly, traversing—multiple dimensions of the
spaces discussed throughout the book. In a way similar to how technology prompts
interaction and how the teacher can create her own space for interaction, we hope
that this book might contribute to current discussions on mathematics education
with technologies offering researchers and readers spaces for communication and
comparison and prompting them to create their own new spaces, rich in position-
ings and stories.

4 F. Ferrara et al.

http://dx.doi.org/10.1007/978-3-319-61488-5_7
http://dx.doi.org/10.1007/978-3-319-61488-5_7
http://dx.doi.org/10.1007/978-3-319-61488-5_7


References

Arzarello, F., Ferrara, F., & Robutti, O. (2012). Mathematical modelling with technology: The role
of dynamic representations. Teaching Mathematics and its Applications, 31(1), 20–30.

Attard, C., & Curry, C. (2012). Exploring the use of iPads to engage young students with
mathematics. In J. Dindyal, L. Cheng, & S. Ng (Eds.), Proceedings of the 35th Annual
Conference of the Mathematics Education Research Group of Australasia (pp. 75–82).
Singapore: MERGA.

Calder, N. (2015). Apps: Appropriate, applicable and appealing? In T. Lowrie & R. Jorgensen
(Eds.), Digital games and mathematics learning: Potential, promises and pitfalls (pp. 233–
250). Dordrecht: Springer.

Calder, N., & Campbell, P. (2016). Using mathematical apps with reluctant learners. Digital
Experiences in Mathematics Education, 2(1), 50–69.

Clark-Wilson, A., Robutti, O., & Sinclair, N. (Eds.). (2013). The mathematics teacher in the
digital era: An international perspective on technology focused professional development.
Dordrecht: Springer.

de Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the
classroom. New York: Cambridge University Press.

Drijvers, P. (2015). Digital technology in mathematics education: Why it works (or doesn’t). In S.
J. Cho (Ed.), Selected Regular Lectures from the 12th International Congress on Mathematical
Education (pp. 135–151). New York: Springer.

Drijvers, P., Kieran, C., & Mariotti, M. A. (2010). Integrating technology into mathematics
education: Theoretical perspectives. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics
education and technology—Rethinking the terrain: The 17th ICMI Study (pp. 89–132). New
York: Springer.

Drijvers, P., Tacoma, S., Besamusca, A., Doorman, M., & Boon, P. (2013). Digital resources
inviting changes in mid-adopting teachers’ practices and orchestrations. ZDM Mathematics
Education, 45(7), 987–1001.

Hegedus, S., & Moreno-Armella, L. (2008). From static to dynamic mathematics: Historical and
representational perspectives. Educational Studies in Mathematics, 68(2), 99–111.

Hegedus, S., & Tall, D. (2016). Foundations for the future: The potential of multimodal
technologies for learning mathematics. In L. D. English & D. Kirshner (Eds.), Handbook of
international research in mathematics education (3rd ed., pp. 543–562). New York: Routledge.

Herbel-Eisenmann, B., Wagner, D., Johnson, K. R., Suh, H., & Figueras, H. (2015). Positioning in
mathematics education: Revelations on an imported theory. Educational Studies in
Mathematics, 89(2), 185–204.

Hoyles, C., & Lagrange, J.-B. (2010). Mathematics education and technology—Rethinking the
terrain: The 17th ICMI Study. New York: Springer.

Lange, T., & Meaney, T. (2013). iPads and mathematical play: A new kind of sandpit for young
children. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eight Congress of
the European Society for Research in Mathematics Education (pp. 2138–2147). Ankara,
Turkey: Middle East Technical University.

Rotman, B. (2008). Becoming beside ourselves: The alphabet, ghosts, and distributed human
beings. Durham: Duke University Press.

Santi, G., & Baccaglini-Frank, A. (2015). Forms of generalization in students experiencing
mathematical learning difficulties. PNA, 9(3), 217–243.

Sinclair, N. (2014). Generations of research on new technologies in mathematics education.
Teaching Mathematics and its Applications, 33(3), 166–178.

Sinclair, N., Chorney, S., & Rodney, S. (2016). Rhythm in number: Exploring the affective, social
and mathematical dimensions of using TouchCounts. Mathematics Education Research
Journal, 28(1), 31–51.

Sinclair, N., de Freitas, E., & Ferrara, F. (2013). Virtual encounters: The murky and furtive world
of mathematical inventiveness. ZDM Mathematics Education, 45(2), 239–252.

Introduction: Innovative Spaces for Mathematics … 5



Part I
Opening Scenery



From Acorns to Oak Trees: Charting
Innovation Within Technology
in Mathematics Education

Susana Carreira, Alison Clark-Wilson, Eleonora Faggiano
and Antonella Montone

Abstract Technology has created an expectation in all levels of education that
requires us to understand how we can harness its potential for improving the depth
and quality of mathematical learning. It is highly unlikely that there is a universal
recipe or formula for how technology should be used that would satisfy every
context or culture, but there have been recurring trends in the process of designing
and implementing such innovative environments. By considering the papers
included in proceedings of the past International Conferences on Technology in
Mathematics Teaching (ICTMT), this chapter aims to highlight how a few key
innovations have been seeded and taken root within this community. We begin by
describing the ways in which innovation has been presented at ICTMT conferences
with a view to exploring this from the perspectives of technology designers,
researchers and teachers/lecturers from all levels of education. Given the extensive
literature on this topic, it is not feasible to carry out a comprehensive survey of the
complete literature base, however it is anticipated that the analysis of key ICTMT
papers will be sufficient to present an informative and insightful picture and
highlight some important knowledge and experience that has been elicited and
disseminated.
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1 Introduction

The first Conference on Technology in Mathematics Teaching (ICTMT) took place
in Birmingham UK, in 1993, under the stewardship of Professor Bert Waits of the
University of Colombus, Ohio, in an attempt to develop an international conference
series in the spirit of the US-based Conference for Technology in Collegiate
Mathematics, which Bert and his colleague Frank Demanna had first chaired in
1988. The late 1980s and early 1990s was a period of great innovation for tech-
nology within mathematics education, which saw the introduction of the first
handheld graphing calculators, the development of computer algebra languages
such as Derive, Mathematica and MatLab, programming languages such as LOGO
and the emergence of dynamic geometry software (DGS) such as Cabri-Géomètre
and The Geometer’s Sketchpad, which were greatly assisted by the design of the
computer mouse.

For this first conference, contributions were sought in the form of peer-refereed
papers that would be offered as presentations, shorter papers offered as workshops
and thematic topics for a series of symposiums. In each case, the contributors were
asked to submit their proposals according to one of the three conference themes:

1. The mathematical content of teaching and learning environments.
2. Technology as a resource for the teacher.
3. Hands-on interactions between learners and technology.

In addition, the contributors were asked to classify their contributions according to
the level of educational interest (Primary teachers, Secondary teachers,
Teacher-Educators and Lecturers in Higher Education) and to highlight whether
their paper reported aspects of Research, Development and Teaching.

The subtlety of the decision by the original scientific committee to welcome
contributions beyond traditional papers that reported empirical research was an
important one—and one that has shaped the content and ethos of all of the sub-
sequent ICTMT conferences since 1993. By welcoming papers that reported aspects
of Development and Teaching, it opened the ICTMT conference to embrace
innovation as participants sought to share their designs of technological
tools/environments and/or educational courses, teaching materials and reports on
teaching/learning outputs as ‘work in progress’. Consequently, although the aca-
demic rigour, systematic evaluation and reporting of some of these early innova-
tions was as yet undetermined, it gave the opportunity for the conference
community to share new developments at an earlier stage.

It is in this context that we have chosen to examine the way in which important
technological innovations within the field of mathematics education have been
seeded in the form of acorns, taken root and, in some cases, grown into mighty oak
trees. We did this by means of a historical review of the ICTMT proceedings
(see Appendix 1) in which we foregrounded the plenary talks to identify some
seminal themes and, following this, we scrutinised the peer-reviewed paper
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submissions1 and workshop session topics to chart how these themes evolved over
the subsequent years.

Drawing on the perspectives that the plenary speakers have proposed throughout
the ICTMT conferences and in line with findings from significant texts in the field
(e.g. Hoyles & Lagrange, 2009; Hoyles & Noss, 2003; Kaput, 1999; Shaffer &
Kaput, 1999; Moreno-Armella, Hegedus, & Kaput, 2008; Laborde & Sträßer, 2010)
we have identified the following themes that have proved to be significant with
respect to the path of innovation in the field. These are:

1. The concept of a mathematical ‘figure’ and the new action of ‘dragging’.
2. Multiple representations in mathematics (2-Dimensional and 3-Dimensional).

This chapter is structured as follows. After a short explanation of how we
interpret the idea of ‘innovation’, we take each of these themes in turn and, drawing
on key contributions to the ICTMT conference series, highlight how the ideas have
evolved in the field.

In our final section, we build on these themes to describe some of the innovative
technologies that have been showcased at ICTMT conferences that have particu-
larly impacted on how we interact with, and communicate about, mathematics. For
example, touch screen technologies, video, e-books, online communities and
competitions—all set against a back drop of increasingly ubiquitous access.

2 Defining Innovation from the ICTMT Conference Series
Perspective

Any historical review should take account of the context in which the reported
phenomena occurred and, in beginning a historical review on technological inno-
vation in mathematics, we have to cast our minds back to the typical classroom or
research environment of the early 1990s. In these pre-internet days, most tech-
nology was ‘stand-alone’, although locally networked computer ‘suites’ were
emerging. The data projector (and interactive whiteboard) were still in develop-
ment, meaning that the whole class display of a computer screen was still a chal-
lenge, although some classrooms achieved this using television screens. The
transfer of files was a physical one, involving computer discs and the computer
mouse was becoming a ‘standard’ peripheral device for the newer computers.

As a conference series on technology in mathematics teaching, one might
imagine that there is a clear and widespread understanding of what is meant by
‘technology’ amongst the community of conference participants. Unsurprisingly,
the word technology is one of the most frequent words to appear in the written
proceedings; indeed, the range of meanings for the word is vast and it includes:

1For one of the early conferences (ICTMT2, Edinburgh 1995) we did not have access to the
complete peer-reviewed papers, only the accepted abstracts.
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• Technology that is the platform through which the digital media is accessed
and/or made visual—this has traditionally been called the ‘hardware’. For
example, the Personal Computer, Laptop computer, iPad, mobile phone,
graphing calculator, and data logger.

• Technology that provides the means through which teachers and learners access
some mathematics content—traditionally the software, or more recently applets
and widgets. Examples include classes of software such as: dynamic graphing
software (Autograph, Mouseplotter); computer algebra software (Mathematica,
MathCad, Wolfram Alpha, Derive); dynamic geometry software
(DGS) (Cabri-Géomètre, The Geometer’s Sketchpad) and more recently soft-
ware packages that combine mathematical representations and functionality
(TI-Nspire, GeoGebra, TinkerPlots).

• Technology that communicates mathematical content as either a one-way
(video, informative web-pages) or two-way (intelligent support) medium.

• Technology that combines some or all of the above to create portals (Census at
School), ‘e-learning environments’ or support ‘blended learning’.

These definitions seem to indicate a natural timeline as the technology often appears
first, followed by classroom experimentation and then, in time, resulting in the
design of more substantial courses and assessment approaches that bring the
technology to more classrooms. However, this could be a slow process as, in the
early days of technology use in education, researchers tended to adopt positivist
approaches that used formal scientific methods that did not take full account of the
diversity of teachers, students, classrooms and cultures, and variables involved. For
example, by using a control group methodology and identical pre- and post-testing
protocols for each group, particular effects on the learning outcomes like the role of
the teacher, previous knowledge of the students or issues related to the underlying
technological and pedagogical environment were often overlooked. This led quite
quickly to the conclusion that many mathematical technologies changed the nature
of the mathematical knowledge that was being taught—and so required different
methodological approaches (Artigue, 2002). This resulted in the growth of the use
of design-based research approaches (diSessa & Cobb, 2004) that integrate the
processes of the design of the technology alongside systematic evaluation in
partnership with stakeholders and, as a result, can fast-track the latter stage by
adopting simultaneous design innovation.

2.1 Innovation in the Design and Evaluation
of Technological Tools

The ICTMT conference series has always attracted participants whose primary
interest has been in the design of technological environments for the learning and
teaching of mathematics. Often, the conferences have been used as major ‘design
showcases’ at which new features and functionalities are shared and conference
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participants have often been the first to experience such innovations. For example,
Cabri-Géomètre (ICTMT1, Birmingham, 1993), Autograph (ICTMT6, Volos,
2003), Mathematica (ICTMT7, Bristol, 2005), Casyopée (ICTMT8, Hradec
Kralové, 2007), CabriElem (ICTMT10, Portsmouth, 2011), and TouchCounts
(ICTMT11, Bari, 2013).

There have always been tensions within the education community concerning
the relationships between all those involved in technology design. Many techno-
logical products emerge from the academic research community but, as they prove
their efficacy and develop their user base, it often becomes necessary to partner with
or create commercial enterprises in order to market and distribute the resource more
widely. Alternatively, academics and teachers collaborate with existing technology
companies to develop and evaluate products with a commercial aim. In both sce-
narios, the respective aims of educational researchers, teacher educators, technology
designers, teachers and students are of high importance as each partner seeks to
maintain its principles and values. For example, the technology designer might seek
to implement a new functionality because it is technically possible, whereas a
teacher or researcher might be more concerned with how such functionality might
influence or change the mathematical knowledge and its associated pedagogy.

The collaborations between the different people involved in the design and
evaluation of educational technology for mathematics has led to a number of the-
oretical ideas that have supported an understanding of the ways in which teachers
and learners begin to make sense of and use such innovations. For example, the
important theoretical constructs of instrumentation/instrumentalisation (see
Verillon & Rabardel, 1995 and, within mathematics education, Guin & Trouche,
1999), situated abstraction (Noss & Hoyles, 1996), structuring features of class-
room practice (Ruthven & Hennessy, 2002) and semiotic mediation
(Bartolini-Bussi & Mariotti, 2008).

De Freitas, Ferrara and Ferrari (Chap. The Coordinated Movements of a
Learning Assemblage: Secondary School Students Exploring Wii Graphing
Technology) bring in a new theoretical perspective to analyze and conceive the
relation between the user and the tool: (‘assemblage theory furnishes innovative
ways of thinking about individual human bodies and how they come together with
technology’). On the other hand, this perspective brings to light an aspect that did
not appear overtly in our revision of ICTMT papers: technology and its relation to
gamification paradigms and, eventually, games, including interactive digital games
that make extensive use of sensorial elements. Indeed, de Freitas and colleagues
say: “This research makes use of technology that is related to the game console
Nintendo Wii because of the potential that it offers in terms of playing games
through proprioception and kinaesthesia. The devices under consideration are the
remote controllers (also called Wii Remotes, or Wiimotes) and the Balance Board
of the Wii. The remote controllers are devices with which users can control and
play games where real movement simulations are produced. The Wii balance board
is usually used for games that depend on balance and body perception in space”.
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2.2 Innovation in the Design and Evaluation of Classroom
Tasks

In reviewing the proceedings, it is not always possible to distinguish aspects of the
design and evaluation of the technological tool from those concerning the design
and evaluation of the associated mathematical task(s). Consequently, we interpret
this aspect of innovation as that which is predominantly reported by authors who
have taken technological tools that have been created by others within which to
design classroom tasks that use the inherent software functionality. For example, a
high school teacher proposing a range of mathematical tasks for secondary students
using the Microsoft Excel programme (see the paper by Broman, in Fraunholz,
1997).

3 Some Key Innovations in Mathematics Education

3.1 The Concept of a Mathematical ‘Figure’ and the New
Action of ‘Dragging’

The advent of the computer graphic image that could be constructed and acted upon
using the computer mouse, graphics tablet and pen, and more recently figure or
stylus driven touch screens, was a major technological development that took place
in the late 1980s and early 1990s. Within mathematics education, this led to the
development of dynamic geometry software (DGS) (The Geometry Inventor,
Cabri-Géomètre, The Geometer’s Sketchpad, Cinderella, GeoGebra), a key feature
of which was the functionality to use a set of geometric construction features to
define 2-D (and also 3-D) ‘figures’, which could be transformed by selecting
constituent parts of the figure and ‘dragging’ with the computer mouse. This was a
revolutionary new way of experiencing a mathematical environment that extended
the idea of a mathematical ‘drawing’—a mathematical sketch that, although not
necessarily accurate, incorporated mathematical properties. In her seminal plenary
during the first ICTMT, Colette Laborde offered the following scenario to indicate
how a ‘Cabri figure’ could be constructed in different ways to enable different
points to be free to move on the circle (see Fig. 1).

As software developed over time, so the ‘drawing’ of a function such as y = x2

might include key features such as set of perpendicular axes, a curved graph (the
shape of a parabola) and with a minimum at (0,0). In dynamic technological
environments, such drawings can become figures whereby classes of mathematical
objects (geometric shapes, geometric scenarios, algebraic functions, etc.) can be
constructed and interacted upon by ‘dragging’.

In this section, we explore ‘figures and dragging’ from the perspective of the
initial design and evaluation of the associated technologies before then considering
the innovative design and evaluation of classroom tasks within such environments.
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3.1.1 Figures and Dragging from the Perspective of the Innovative
Design/Evaluation of Tools

In her plenary address at the first ICTMT conference, Colette Laborde, who was a
member of the Cabri-Géomètre design team, shared this innovative new software
with the conference participants and, in doing so, offered some important defini-
tions that were seminal in their influence of later research and practice (Laborde, in
Jaworski, 1993). In the paper that accompanied her plenary, Colette made the
important distinction between the idea of a ‘drawing’, which is ‘imperfect’ in that
(‘the lines have a width, the straight lines are not really straight’) (ibid. p. 41), and
the ‘idealized’ drawing of the mathematician, in which such imperfections are
ignored through to the consideration that, in a computerised environment, ‘to what
extent the imperfections of a drawing are considered a noise by the users?’. Within
the context of dynamic geometry, Colette then introduced the idea of a
(Cabri-Géomètre) ‘Figure’ as a particular type of mathematical drawing which, due
to its dynamic construction based on a set of (Euclidean) geometric rules, retained
its mathematical properties when free objects were varied by dragging. The open
nature of the construction and transformation functionality enabled a multitude of
geometric figures to be constructed, from the simple case of a dynamic isosceles
triangle to more complex geometric scenarios that model known and unexplored
problems from traditional geometry.

In the evolutionary path of dynamic geometry tools, the dragging functionality is
a major developmental milestone that was evident from the early design and, with
time, has become an essential feature of most subsequent mathematical digital
technologies.

Some subsidiary developmental milestones include:

• The translation of traditional geometry tools to their digital equivalences.
• A move from plane geometry to the design of 3-D geometric environments.

Fig. 1 The right triangle
(Laborde in Jaworksi, 1993,
p. 44)
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• The overlaying/underlying of a Cartesian plane—leading to the functionality to
drag objects within multi-representational mathematical environments.

• The use of parameters and sliders to support mathematical modelling.
• The use of video/images as a context for modelling mathematics in a dynamic

way.
• The use of macros (Cabri) or tools (Sketchpad, GeoGebra), which enable pro-

cedures to be captured in a process that has a strong resonance with computer
programming.

The combination of dragging functionality alongside the digital representations of
Euclidean geometry tools on the computer screen (ruler, compass, straight-edge and
protractor) may be considered to be at the heart of the development of DGS. These
capabilities have provided a new way of interacting with geometrical objects and
their properties, namely by enhancing visualization, understanding, and a providing
motivation for the analysis and discovery of geometrical properties. The designers
enthusiastically pointed to opportunities to make the teaching and learning of
mathematics more lively, relevant, fun, appealing and stimulating, particularly by
giving learners ‘visual hooks to hang on’ (Butler, in Triandafillidis & Hatzikiriakou,
2003).

Simultaneously, from the viewpoint of teachers and researchers, there is a clear
perception that DGS has great potential to emphasise conceptual understanding in
geometry. For example, giving the perspective of a classroom teacher,
Clark-Jeavons (in Borovcnik & Kautschlitsch, 2002a) gave an a priori synthesis of
a variety of new approaches centred on conceptual understanding, not just related to
the production of dynamic and interactive representations (the pointer as an
extension of the hand through the mouse interface) but also profiting from com-
plementary features. The ways in which DGS is effective in developing geometrical
understanding concerns ‘visual creation and interpretation’, ‘support in deductive
proof’, ‘means for making and testing conjectures’, ‘black box activities’, ‘visual
proof’, and ‘reinterpretation of the static geometry’.

The early versions of dynamic geometry environments sought to simulate and
emulate the purity of Euclidean geometry and its structure, which translated into
highly robust mathematical constructions being created on the computer. The
robustness of those constructions, such as polygons with certain characteristics or
other figures where points, lines or segments were dependent on certain primitive
objects, was markedly one of the capabilities that mathematicians, researchers and
mathematics educators considered to be both innovative and important. But for
teachers, purism was soon balanced with the possibility of creating and using
macros that allow users (for example, younger students) to perform rigorous con-
structions (e.g. to create an equilateral triangle) without having to go through all of
the construction steps each and every time. As an example, Don Hoyle, in his
account of his educational experience with school students learning about families
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of quadrilaterals and their classification (in Maull & Sharp, 1999), mentioned that
students and also teachers found some of the ‘more pure’ versions of DGS more
difficult to use. Therefore it favoured the availability of plugged-in features that
allow pre-designed constructions as opposed to the classical Euclidean way of
doing them. (‘The first version of Cabri-Geometre was very purist, in that the only
tools you had were, as in pure Greek Geometry, a ruler and a compass’) (ibid. p. 1).
Alongside this, there was an acceptance that it is not always desirable or necessary
for students to create figures from scratch. Tasks are as valid when students are
required to work on figures already constructed by acting upon them or changing
them in some way, as a means of revealing important properties and features of
those figures.

One significant paper on the evolution of DGS and its design principles was
given by Elschenbroich (in Borovcnik & Kautschlitsch, 2002a) who emphasised
that the main affordance of such environments was the opportunity to investigate
invariants, functional dependencies and loci. He asserted that the drag mode and the
revealing of loci are two important functionalities that extended those of (digital)
construction using compass, straightedge, ruler and protractor. The resulting digital
figures are classes of drawings holding the same properties and relationships and
Elschenbroich argued that the purpose of teaching and learning geometry should be
directed to investigate what changes and what remains invariant. Moreover, as
measures can be made dynamically, it became possible to calculate with such
dynamic measures and even to create new constructions using those measures.
Therefore, the new dragging action was extended to coordinates, measurements and
equations. And the figures could also go beyond the user’s constructions as it
became possible to produce them under the form of loci. Dragging a point could be
interpreted as leaving a visible trace and thus generating a new object—a locus.
Such loci remained available as new objects that could lead to new mathematical
investigations. The meaning of dragging thus became much broader than it was
before.

Another storyline concerns the evolution of technological tools from plane
geometry to geometry in three dimensions, which became visible at the ICTMT
conferences through the development of 3-D DGS. This innovation transported the
dragging functionality that had been developed for 2-D DGS and made it possible
for points, lines, vectors and surfaces to be manipulated in 3-D space.

Alongside this, the teaching and learning of coordinate geometry, non-Euclidean
geometry and other versions of algebraic approaches to geometry gained new
perspectives by appropriating the dynamic nature of the changing of drawings in a
figure and the corresponding change in the equations and/or parameters involved in
coordinates and Cartesian equations. For instance, Adrian Oldknow (in Borovcnik
& Kautschlitsch, 2002a) commented on the advances and developments of DGS by
stressing the link between geometric and algebraic representations: (‘The current
versions of Cabri and GSP both provide the means to use the results of
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measurements and calculations based on them to define the position of points in a
Cartesian coordinate system. Thus they can be used as algebraic tools where a
graph of a function can be created as the locus of a point whose y-coordinate is a
given function of its x-coordinate’) (p. 84).

One prominent innovation concerns the combination of and connections
between geometric objects and algebraic objects/symbols in ways that capitalise on
the dynamic properties of many of these software products alongside the nature of
the underlying mathematical constructions. Roanes-Lorenzo (in Borovcnik &
Kautschlitsch, 2002a), in collaboration with other Spanish researchers, described
the creation of a combined package, called Lugares, that made it possible to link
dynamic geometry and algebra. The author claimed that DGS and CAS packages
had attained high levels of development but they had evolved independently. The
aim was therefore to develop a software package that provided the equations of any
drawn configurations—in particular those of parameter-dependent geometrical
constructions. (‘In Lugares, numerical approaches to dynamic geometry can be
complemented with the symbolic capabilities of CAS, letting a step forward to draw
loci and find their equations’) (ibid, p. 361).

Indeed, this combination of geometry and algebraic equations in coordinate
systems was promptly felt as an important innovation for the work with figures that
depended on the variation of parameters. For example, innovative ways of dealing
with conics (see Broman, in Borovcnik & Kautschlitsch, 2002a) or investigations
on functions and their graphs in relation to the change of areas or distances began to
emerge and be discussed as legitimate mathematical tasks, sometimes in tune with a
problem-solving or a modelling approach to mathematics (see Lopez-Real in
Olivero & Sutherland, 2005 and Miller & Ehmann, in Triandafillidis &
Hatzikiriakou, 2003).

We note that by the mid 2000s, the community’s knowledge and understanding
of dragging (by then an essential affordance of DGS) was consolidating, and the
action of dragging was becoming more and more intrinsic and even ‘natural’ within
DGS environments. This in turn was generating ever more specific and more
diverse results in terms of the kinds of representations offered and combined within
mathematical tasks.

Although the development of software that enabled the progression from 2-D to
3-D contexts is an important benchmark in the process of innovation, the ability to
generate loci and work with them in concrete ways, namely by dragging them,
should be acknowledged as a significant step forward. The example given by Miller
and Ehmann, in which the locus of the intersection points of the altitudes of
triangles with constant height is described, is illustrative of this and, as the authors
argue, it (‘puts across a first impression of the transition from an elementary geo-
metric problem to a question in calculus’) (Triandafillidis & Hatzikiriakou, 2003,
p. 315).
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3.1.2 Figures and Dragging from the Perspective of the Innovative
Design and Evaluation of Classroom Tasks

The ICTMT proceedings tell an interesting story with respect to the development of
innovative classroom tasks that utilised the ideas of dynamic geometric figures that
could be constructed and interacted upon by dragging. During ICTMT1, which
featured the seminal plenary by Colette Laborde, there was only one other paper
(Little, in Jaworski, 1993) that made reference to how dynamic geometry software
(Cabri-Géomètre) might influence the future design of classroom tasks. Little makes
specific reference to the importance of the distinction between a figure and a drawing
when clarifying geometric concepts. Little writes, (‘In cabri, we construct a ‘figure’,
then by dragging vertices we see different ‘drawings’ which exemplify the figure.
This distinction can be used to illustrate and clarify the distinction between, for
example, ‘square’ and ‘squareness’’). In his paper, Little suggests such tasks might
become legitimate in a technology enhanced school geometry curriculum in England.

The strong attention given by researchers, teachers and lecturers to the dragging
action was reflected not only in the exploratory, inquiring and investigative nature
of the tasks supported by DGS but also within the theorizing of different modes of
dragging and of the role of dragging in mathematical activity involving the con-
struction and manipulation of figures on the screen.

In her paper presented at ICTMT4, Federica Olivero (in Maull & Sharp, 1999)
reported outcomes of a study with 15-year-old students in which a theoretical model
of ‘dragging modalities’ was proposed. The study was described as follows:
(‘Pupils were requested to produce conjectures in open geometric situations, to
validate and, finally, to prove them. These activities took place within the micro-
world Cabri-Géomètre. (…) We found out that different dragging modalities are
crucial for producing a shift from conjecturing to proving: these modalities can be
analysed as the perceptive counterpart of the cognitive processes students use’).
(ibid. p. 567).

This particular study showed that students’ use of dragging in Cabri changes
with respect to the control that the students have of the situation. It also showed that
dragging acts as a mediator of students’ activity on proof. The essential argument is
that dragging supports the production of conjectures, given that exploring figures by
moving and manipulating them, allows the users to discover invariant properties of
those figures. Besides, the possibility of dragging has another major function, that
of generating useful feedback in the phase of discovering properties and further-
more supporting the finding of a proof as an ‘explanation’ of the property or the
conjecture made.

This mediating role of the tool and especially the dragging action has continued
to be investigated and still remains important in the research about the mathematical
thinking afforded by DGS in tasks that clearly highlight the dragging function in
deduction, explanation and proof.

It is worth pointing out that the views of teachers and researchers did not always
seem to coincide with regard to evaluating the affordance of dragging. While
teachers tended to look at the dragging as handy to help students overcoming
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difficulties in concept acquisition, researchers were theorising the dragging action
and conceptualising the subtleties of this feature in students’ activity from explo-
ration into proof. For example, in the work presented by Kordaki, Balomenou, and
Pintelas (in Triandafillidis & Hatzikiriakou, 2003) students were asked to construct
several triangles and then to transform them into other equivalent triangles. The
difficulty of the concept of equivalent triangles (conservation of the area) was the
motivation for the study. The authors claimed the innovative character of this DGS
approach to the conservation of the area. The main result of the teaching approach
was that students (‘viewed the concept of conservation of the area of a triangle as an
alteration of its position on the computer screen as well as an alteration of its
figure’) (ibid. p. 181) and (‘using the drag mode… students had the opportunity to
observe a large number of equivalent triangles’), (‘thereby forming a dynamic view
of this concept’) (ibid. p. 181). Thus the emphasis on the dragging action was
related to the possibility of observing a large number of cases. In short, the power of
dragging was absorbed by many teachers, in the tasks they produced for their
students, as opportunities to visualise and to make sense of a concept or property,
which would not be feasible to realise on paper.

3.2 The Concept of Multiple Representations

Since the late 1980’s a growing appreciation of the importance of multiple repre-
sentations has been considered an essential component in the process of learning
mathematics. The learning or doing of mathematics implies not only manipulating
mathematical symbols, but the interpretation and coordination of mathematical
relationships and situations, using specialised language, symbols, images and
graphs. It also involves the clarification of problems, deduction of consequences
and development of appropriate tools (National Research Council, 1989).

Moreover, in the USA, the National Council of Teachers of Mathematics
(NCTM, 1989) published ‘Curriculum and Evaluation Standards for School
Mathematics’, in which multiple representations are considered as one of the
fundamental aspects of the curriculum that should be emphasised during the
teaching and learning of mathematics. According to the document’s authors, stu-
dents who have flexible tools for solving problems are able to interpret the same
problem or the same mathematical concepts through its multiple representations.

Other researchers at this stage and thereafter in the 1990’s were devoting much
attention to the role of representations and to the importance of translations between
multiple representations in students’ learning and understanding (of numbers,
algebra, functions, etc.) and also to the multi-representational capacity of many
developing software (e.g. Fey, 1989; Schwarz, Dreyfus & Bruckheimer, 1990;
Borba & Confrey, 1996).

Some of the contributions at ICTMT corroborate this trend. Gomes Ferreira (in
Fraunholz, 1997) suggests that the incorporation of multiple representations in
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mathematics teaching can empower and help students to develop their under-
standing of mathematical relationships and concepts and improve their perceptions
of mathematics by emphasising the linkages between graphical, tabular, symbolic
and verbal descriptions of mathematical relationships and mathematical problem
situations.

This view is concurred by Ozgun-Koca, who says that multiple representations
can be defined as external mathematical embodiments of ideas and concepts to
provide the same information in more than one form (Ozgun-Koca, 1998). For
example, a linear function can be viewed as a set of ordered pairs, a correspondence
in a table or a mapping, a graph, or an algebraic expression. Examples of external
multiple representations include verbal representations (written words), graphical
representations (Cartesian graphs), algebraic or symbolic representations (equations
expressing the relationship between two or more quantities), pictorial representa-
tions (diagrams or drawings) and tabular representations (table of values) among a
host of others (see Fig. 2).

Innovation in technology design has led to the development of digital envi-
ronments that enable multiple linked representations to be acted upon such that the
relationships between mathematical representations can be made more visible.
Depending upon the design of the associated mathematical tasks, students and
teachers can focus their activity on establishing and justifying the underlying
mathematical links and connections.

3.2.1 Multiple Representation from the Perspective of the Innovative
Design/Evaluation of Tools

The analysis of the ICTMT proceedings shows that one of the most influential
technological tools to use multiple representational functionalities in mathematics
has been Texas Instruments’ TI-92 graphing calculator. Since the early 1980s

Fig. 2 Multiple representations of the linear function, f(x) = 2x−8 (Adu-Gyamfi, 1993, p. 11)
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developments and applications through different experiences in school mathematics
education have been reported that exploit its multiple representations. Aspetsberger
(in Fraunholz, 1997) presented the outcomes of classroom work with students aged
16, who were mainly interested in art and languages and not in natural sciences.
The author’s goals were to use the TI-92 to make traditional mathematical content
more visual and accessible for the students. For example, referring to teaching
calculus and problems associated with the tangent, the author says that (‘especially
for optimization problems the different representation modes of the TI-92 (table,
graph, expression) were very helpful for illustration. The students learned how to
detect minima and maxima in tables, graphs and to verify them by means of
calculus. For curve analysis the permanent availability of graphs was very illus-
trative’) (p. 2). And, referring to the experiences, she also says (‘One of the main
advantages of the TI-92 are [sic] the different forms of representation (tables,
graphs, expressions) which are always available on the TI-92 and can lead to a
better understanding of mathematical concepts. The students have the possibility to
choose a representation form they like most e.g. for solving problems, for illus-
tration or to get an overview in a certain situation. It is remarkable, that most
students choose tables or graphs to solve problems, if the method is free. Only very
few students use expressions for solving problems or for illustration. The
abstractness of expressions is a major handicap in traditional math courses when
introducing new mathematical concepts. So the availability of different represen-
tation forms helps to differentiate and individualise the process of math teaching’)
(p. 12). This teacher’s conclusions, supported by the evidence she elicited from her
own classroom experiences are echoed by many other teachers and lecturers who
have presented outcomes of their own classroom work in ICTMT presentations and
workshops over the years.

Another relevant paper by Duncan (in Bardini et al. 2009) describes the design
of a more recent technological tool, which also emphasises the role of multiple
representations. In his paper, Duncan presents the results of a classroom-based
study that evaluated the Texas Instruments TI-Nspire, which evolved from the
previous TI-92 technology. Duncan, referring to the work of Richard Skemp
(1978), poses the problem of transition from an instrumental understanding,
characterised by ‘rules without reasons’, to a relational understanding, in which
students understand what they are doing and why. In particular, he describes a study
done in schools in Scotland during 2008/09 and reports the views of the teachers
involved in this study. The use of multiple representations within TI-Nspire and the
evidence of students’ relational understanding associated with mathematical con-
cepts is detected through the teachers’ responses to his research questions.

The teachers were asked in a direct way whether they perceived that the use of
multiple representations facilitated by their task designs within TI-Nspire had
enhanced their students’ relational understanding of the mathematics involved in
their lessons. The majority of teachers responded positively to this question and
examples of their justification were:
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• ‘Pupils making connections/links between topics or single concept from dif-
ferent perspectives’;

• ‘Pupils explaining topic/lesson to others verbally—[their] discussion’; and
• ‘Pupils asking/answering questions—wanting to know why’.

The evolution of technological tools has also resulted in environments that
encourage the development of visualization skills in 3-D. It has always been
challenging for teachers to promote the development of 3-D concepts in a tradi-
tional classroom environment using the standard chalkboard to represent 3-D
objects by means of a 2-D sketch. It is generally admitted that learning 3-D
geometry is strongly related to wider spatial and visual ability (Dreyfus, 1991). This
has led to the creation of software that aims to develop abilities and processes in
students that are closely associated with a mental scheme representing spatial
information.

It follows that the design of some important software followed some major fields
of educational theory. On the one hand, the constructivist perspective about learning,
which argues that learning is personally constructed and is achieved by designing
and making artefacts that are personally meaningful (Kafai & Resnick, 1996); on the
other hand, the semiotic perspective that views mathematics as a meaning-making
endeavour and argues that any single sign (e.g. icon, diagram, symbol) is an
incomplete representation of the object or concept, and thus multiple representations
of knowledge should be encouraged during learning (Yeh & Nason, 2004).

Several researchers offer definitions of visual and spatial ability. According to
both Tartre (1990) and Linn and Petersen (1985), spatial ability is defined as the
mental skills concerned with interpreting relationships visually, understanding,
manipulating and reorganizing, and also as the process of representing, trans-
forming, generating non-linguistic information.

Gutiérrez (1996) considers that the development of 3-D dynamic geometry
software necessitates the following core visual abilities to be taken into account:
(1) perceptual constancy, (the capability to recognise the independence among
some proprieties of an object and some characteristics such as size, colour, texture,
position, different orientation); (2) mental rotation, (the ability to visualise a con-
figuration in movement); (3) perception of spatial position and spatial relationship,
(the capability to relate objects, pictures or mental images to oneself or to each
other); (4) visual discrimination, (the ability to compare several objects, pictures,
mental images to identify similarities and differences among them). Finally the
access to a multitude of representations supports students to create ‘correct’ mental
and spatial images.

These theoretical perspectives (and the associated elements of visualization)
informed the design of an early 3-D geometry software environment, 3-DMath.
(‘The idea of 3-DMath is to develop a dynamic three dimensional geometry
microworld, which enables (i) students to construct, observe and manipulate geo-
metrical figures in 3-D space, (ii) students to focus on modeling geometric situations,
and (iii) teachers to help students construct their understanding of stereometry’).
(Christou, Pittalis, Mousoulides, & Jones, in Olivero & Sutherland, 2005, p. 69).
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The potential of multiple representations has also been exploited within the
design of arithmetic environments. For example, the software Logotron Visual
Fractions (LVF) was presented at ICTMT7 by Lehotska and Kalas (in Olivero &
Sutherland, 2005). LVF gives students the opportunity to become aware of the
meaning of the different semiotic registers and provides new learning opportunities
for discovering and exploring fractions and fractional relations through the dynamic
dependencies and interactions of the different representations of fractions. This
complex tool provides ten different visual interactive representations of fractions
and the relations between them: pie, box, decimal fraction, percentage, ratio, pic-
ture, family, number line, fraction and balloon and fraction objects can be con-
nected together to create dependencies (see Fig. 3).

In this way it is possible that some objects represent values of some other
objects. These dynamic dependencies and interactions give students and teachers
the opportunity to observe what happens if we change the value of some object
denoted by one of the representations and find the reasons why a fraction repre-
sented in one way cannot be expressed in another type of representation. For
example, fractions represented by a picture ‘story’ such as a train with three of its
four carriages filled with coal has a fixed denominator, which is why it cannot
represent any value of another fraction. The relations between objects can also be
more complex—more objects can depend upon the same object.

The importance of the visualization of different representations was also
emphasised by Butler (in Triandafillidis & Hatzikiriakou, 2003) in his plenary
during ICTMT6. He highlighted how the exploration and use of dynamic 3-D
objects (lines, vectors, planes, etc.) within software such as Autograph v.3. can help
students make sense of 3-D mathematical situations where they are required to
solve problems involving the intersections of planes, and the shortest distances
between points. Furthermore, he underlines that for many teachers, although soft-
ware offers freedom from the more limited chalkboard, it presents a serious chal-
lenge to their well-established and already effective teaching styles.

Fig. 3 Two chains of dependencies of fraction objects staring with a pie with the value of 6/8.
(Lehotska and Kalas in, Olivero & Sutherland, 2005, p. 110)
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A key feature of all the tools described so far is that they offer the opportunity to
improve the construction of mathematical meanings through the use of multiple
representations—an innovative and unique affordance of such technology-mediated
environments.

3.2.2 Multiple Representations from the Perspective of the Innovative
Design/Evaluation of Classroom Tasks and Lesson

The value of working with multiple representations has been a consistent theme in
the literature for more than two decades. However, how to integrate the use of
multiple representational technology into classroom tasks and how to reorganise
classroom work so as to make the most of the potential of technology to enhance
learning have been recurring questions for researchers and teachers/lecturers alike.

The evidence of the ICTMT proceedings highlights the dichotomy in responding
to these questions. On the one hand, several researchers underline that the com-
plexity of mathematical structures and the multiplicity of its representations within
dynamic technological environments make the mathematics difficult to learn and to
understand. On the other hand, researchers have shown that the students who are
more successful in mathematics are those who have been exposed to multiple
representations of ideas and mathematical principles. In particular, the coexistence
of the three basic components, algebra, geometry and number, in situations of
teaching and learning of mathematics seems to underpin such success.

The innovation offered by the multiple representations, namely the simultaneous
display of different representations of the same mathematical concept (algebraic
representation, geometric and numerical) opens up the possibility of restructuring
the lesson, by redefining objectives and tasks. However, this presents new chal-
lenges for teachers as they begin to create mathematical tasks that use the affor-
dances of such software environments to promote productive activity for their
students. An important contribution on this theme is given by Pierce and Stacey (in
Bardini et al., 2009). They describe their research that (‘reports on the use of ‘lesson
study’ to research principles for the design of a lesson aiming to use a pedagogical
opportunity at the task level: the use of multiple representations’) (p. 1). They
identify four key principles: (‘focus on the main goal for that lesson (despite the
possibilities offered by having many representations available); identify different
purposes for using different representations to maintain engagement; establish
naming protocols for variables that are treated differently by-hand and within a
machine; and reduce any sources of cognitive load that are not essential’) (p. 1).
Furthermore the authors have elaborated the pedagogical opportunities map, which
summarises the different levels (the task, the classroom, the subject of mathematics)
afforded by technologies (see Fig. 4).

Pierce and Stacey underline the importance of developing lessons to help
teachers and students to gain advantage from access to multiple representations.
Their study highlights the importance of technologies to allow students to explore
problems in the new way using multiple representations. They suggest the need to
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focus on students’ thinking on a particular area of mathematics to allow teachers to
restrict the strategies supported and to plan to reduce distractions due to the tech-
nology: by establishing naming protocols and minimizing the amount of extraneous
information students must deal with.

4 Ways of Interacting with Mathematics Through
Technology

Since the first ICTMT in 1993, the ways we think about interacting with mathe-
matical objects have evolved in line with the development of new technologies.

The word ‘interact’ and its derivations is prevalent within all of the ICTMT
proceedings—often appearing more than 100 times in each volume—but its use is
mainly as an adjective to describe all manner of innovative technological envi-
ronments (see Nodelman, in Bardini et al., 2009). There are only a few examples
where authors have probed the nature of the interaction in more depth by posing
questions such as: Is it an interaction with something? Is the interaction facilitated
by something? Who is doing the interaction and with what?

Fig. 4 Pedagogical opportunities’ map, emphasising linking representations at the level of
classroom task design. (Pierce and Stacey, in Bardini et al., 2009)
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Lapp (in Fruanholz, 1997), in his paper on students’ perception of the authority
provided by the technology as they interacted with TI-82 handheld calculators,
offers a model of their interactions for aspects of their technology use. He also
considers the importance of the role of the teacher’s interactions—underlining the
teacher’s role in supporting the tendency for students to believe the calculator’s
model (or not). Lapp reported that, when faced with an apparent contradiction, the
students would often refer back to the teacher’s previous statements that were made
during the lesson.

In her plenary talk at ICTMT7, Mariotti introduced the important theoretical
point of view of semiotic mediation drawing on the work of Vygotsky to say (‘it is
possible to interpret the role of artefacts and their functioning as sources of
meaning, from the educational point of view’) (see Mariotti, in Olivero &
Sutherland, 2005) (p. 5). She recognises Papert (1980) as the first person to
acknowledge that interacting with a computer offers many different opportunities
for meaningful activities and involves ways of thinking which are recognisable as
typical of mathematics. However, the process of construction of mathematical
meanings is not directly and simply related to the interaction with the technology.
Mariotti’s work contributes to the need to increase investigation on activities in
computer environments in order to study the effects that such activities may have on
the mathematical classroom as a whole. One of the main ideas in her paper is that
the mathematical meaning related to technology becomes accessible to the learner
by its use, but the construction of meanings is fostered by the guidance of the
teacher. The mediating role of the teacher is essential for the interaction between the
learners and the technology to be effective in terms of learning gain.

Following Texas Instruments’ launch of the TI-92 handheld calculator in 1996,
which incorporated a Computer Algebra System (CAS) and an interactive geometry
package (based on Cabri-Géomètre), many ideas about the classroom use of CAS
and DGS were seeded and began to take root as the ICTMT conferences were
populated with papers and presentations on these themes. Teachers and researchers
underlined how interactions with the different representations, which are always
available on the TI-92 and its successor, the TI-Nspire, exploits the affordances of
CAS and DGS, and can lead to a better understanding of mathematical concepts.
For example, Duncan (in Joubert, Clark-Wilson, & McCabe, 2011) attributed the
positive effect of the use of multiple representations on the development of stu-
dents’ relational understanding in large part to the interaction with TI-Nspire. The
interaction with the handled technology affected students’ engagement, positive
attitudes and perseverance in the activities, thus enhancing a genuine, deep
understanding, characterised by students knowing both what to do and why. This
resonates with the work of Weigand (Chap. What Is or What Might Be the Benefit
of Using Computer Algebra Systems in the Learning and Teaching of Calculus?),
which energizes the many studies and research involving the multiple representa-
tions of mathematical concepts to show in a powerful way how the representational
capacity is constantly increased and intensified in CAS environments like
GeoGebra or the later graphing calculator. But Weigand’s contribution brings
another side of innovation: the awareness that there is a new competence to be
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developed in order to take advantage of CAS in the learning of sequences, func-
tions, or equations. And again this will mean to rethink the work with symbolic,
numerical and graphical representations so as to determine the best way that a
student can be supported to attain a better understanding and higher competencies
in working with CAS.

More recently students are becoming increasingly familiar with touchscreen
devices (such as interactive whiteboards, tablets, smartphones, etc.) as they become
more and more available within and outside the classrooms. In addition,
multi-touch technologies are both impacting upon and providing challenges for
mathematics education as they provide a multi-modality of forms of interaction and
communication that can be enriched by new ways of manipulation. Some inno-
vative experiences conducted with the use of the new touch technologies have been
presented at the more recent ICTMTs and portend to take root in the coming years.

As an example, we refer to the work of Arzarello and colleagues (see their paper
in Faggiano & Montone, 2013), in which they analysed and identified modes of
touch screen use during the process of solving problems using a dynamic geometry
software. Based on research by Yook (2009) and Park, Lee, & Kim (2011), and
distinguishing between finger action from the user and motion feedback from the
interface, they observed singularities in the way students perform rotation (using
one or more than one finger) and a different way of dragging (called the ‘dragging
to’ approach). Focusing on motion feedback as a powerful strategy to improve
interaction, discovering and thinking in mathematics education, Arzarello and
colleagues highlighted the new challenges of interaction and learning processes in
the key transition from click to touchscreen interactions.

Jackiw (in Faggiano & Montone, 2013) imagined the glass tablet screen (‘as
some sort of conceptual border between the Platonic realm of geometric abstraction
(on the computer‘s side of the glass) and the tactile empire of sense experience (on
the user‘s side)’) (p. 149). He questioned how multi-touch ideas could shape
mathematical ideas and, alternatively, how multi-touch approaches could impact
upon learners’ interactions. Illustrating ‘Sketchpad Explorer’, he highlighted that
the gesture space of a multitouch device establishes a full semiotic system, in which
the conditions for mathematical structure or meaning become possible. However
such innovative technologies require more work to understand how to re-craft rich
software interfaces toward multi-user asynchronous uses. The appeal of this paper
goes beyond the designers’ points of view: multi-touch enables uniquely-embodied
interactions with multivariate mathematics and this offers opportunities (‘to both
extend and rethink existing research on embodiment in Dynamic Geometry in both
individual and social formations, as well as a boldly-literal new meaning for digital
mathematics’) (p. 154).

At ICTMT11—and in her keynote at ICTMT12—Sinclair (see her papers in
Faggiano & Montone, 2013 and in Amado & Carreira, 2015) described
TouchCounts, an application designed for the iPad with the aim to assist young
children (ages 3–8) in developing an understanding of the one-to-one relationship
between their fingers and numbers. As the multimodal touchscreen interface pro-
vides direct mediation through fingers and gestures, the study shows how the
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application seems to facilitate the establishment of number practices and the
development of number sense through both the individual and collaborative
finger-based interactions. The complex analysis of the way in which young children
become fluent with cardinal aspects of number while using TouchCounts has been
developed using a new materialist theoretical lens, according to which the tool and
the user mutually constitute each other through interaction (de Freitas & Sinclair,
2013). Sinclair’s research, hence, represents an interesting example of another
acorn which might germinate in the coming years.

The impact of these new ways of interacting and levels of connectivity are yet to
be evaluated. Moreover, since 1993, the opportunities and means for the sharing of
resources and ideas, and of collaborating through technological devices are maturing
at great pace. Many papers, especially throughout the second half of the conference
editions, deal with different aspects of the opportunities afforded by the almost
ubiquitous access to information, learning materials, experts’ guides, and
self-assessment tools. Online courses are extremely attractive in the flexibility that
they offer to learners and in recent years computer-aided learning has become a
recurring addition to mathematics education. Many Virtual Learning Environments
(VLEs) have been designed, implemented and experimented upon especially at the
high-school and university level. High expectations seem to be placed on some of
the main features of these interactive resources, such as the opportunity for students
to practise and interact with mathematics anytime and anywhere and quickly receive
automatic intelligent feedback on their work, or the possibility for teachers to track
and review the students’ progress and difficulties (see Bokhove, in Milkova, 2007).

More recently, in today’s rapidly changing educational landscape, various
content management systems have also been used for teachers’ professional
development. They seem to take advantage, in particular, of the communication
functionalities which allow students and teachers to share experiences, exchange
ideas and interact with other colleagues, creating a supportive and collaborative
working environment (see for instance the papers presented by the MEI team
members at ICTMT10 and ICTMT11 in Joubert, Clark-Wilson, & McCabe, 2011
and Faggiano & Montone, 2013, respectively).

To conclude this overview on how the many new ways of interacting with
mathematics have impacted upon technology and innovation in mathematics edu-
cation, a special mention should be given to the research projects that explore the
affordances of e-books, which offer new kinds of flexibility, participation, and
personalization. It is assumed that, as the traditional textbook will rapidly evolve
from print to digital formats, the ways in which teachers and students will interact
with such textbooks will also develop. In particular, the Museum Image Model of
non-ordered multi-modal digital textbook as presented by Michal Yerushalmy in
her keynote at ICTMT11 (see her paper in Faggiano & Montone, 2013), which
constitutes an interesting example of how technology could exploit research results
so as to foster the development of innovative teaching and learning tools. In her
view, an e-book presents opportunities for students to focus on a concept and
practice related skills, making the objectives of the learning apparent, while the
interaction can be guided by the tasks, by the tools, by the feedback of the
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interactive diagrams, and by the problems and exercises. Yerushalmy also points
out that, although some teachers call for greater participation in choosing and
authoring textbooks, it is unclear whether and how teachers and schools could
assume an important role in designing and developing curriculum materials, and
how this would change the way they use textbooks in a sustained way.

A current European Union funded project, MC-Squared is also grappling with
some of the same issues. During the most recent ICTMT, members of this project
team outlined its aims: to design and develop a new genre of author-able creative
e-books, called c-books, which consist of pages with carefully designed interactive
elements (widgets) (see the papers by Kynigos and Kalogeria and Bokhove et al. in
Amado & Carreira, 2015). Several Communities of Interest (Fischer, 2001) in the
different participating countries, who have diverse creative profiles, fuel the col-
laborative design and development of the c-books within a socio-technical envi-
ronment leading to the production of creative outputs. According to the early results
of the project, the c-books have the potential to foster students’ creative mathe-
matical thinking and can also function as a catalyst for teacher professional
development. In particular, by engaging in design activities, teachers can develop a
better understanding of the relationship between technology, pedagogy and the
content being taught. This is an emerging research field which may prove to be
another acorn that might take root and thrive to become an oak tree.

5 Conclusions

At ICTMT conferences it is not unusual to see teachers and lecturers presenting
‘innovations’ in their own classroom teaching that do not appear to be so innovative
to the older or more experienced members of the conference community. This does
suggest that despite the existence of a large body of research on technology use in
mathematics education, practitioners are more likely to begin by experimenting in
their own classrooms, which in turn stimulates their interest in the existing com-
munity and its research findings. The chapter proposed by Kynigos (Chap.
Innovations Through Institutionalized Infrastructures: The Case of Dimitris, His
Students and Constructionist Mathematics), for example, highlights the renewed
importance of teachers as co-designers of digital tools and task creators, whether
challenging the capacity and features of the digital media that are meant to fit the
characteristics of his/her classroom, whether exploring more freely and boldly tasks
in which students can use software tools to develop diverse approaches to mathe-
matical questions.

Maschietto and Soury-Lavergne (Chap. The Duo “Pascaline and e-Pascaline”:
An Example of Using Material and Digital Artefacts at Primary School) also pose a
question about the way in which digital tools seek to emulate properties and rules
that define mathematical objects; this therefore means bearing in mind the impor-
tance of the feedback that digital artifacts must offer to the user. Moreover, in the
case of their research, innovation is about connecting physical and digital
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manipulatives, and in particular exploring complementarities. The study highlights
the different educational settings that teachers are able to imagine and productively
organize around the use of digital tools in their classes, which reveals how inno-
vation is essentially shaped by the teacher’s action with their students.

Indeed, by participating in the ICTMT conferences, many teachers and lecturers
make the first step towards becoming researchers as they engage with other par-
ticipants and learn about other projects and technologies that relate to their own
interests. Hence, over time it is possible to see what appears to be the same pre-
sentation—albeit from a different teacher/lecturer that uses a variety of technologies
—that exemplify the presenter’s personal excitement in discovering the power of
dragging objects in dynamic software or the affordances of multiple representa-
tional software. What is important is that, by combining and contrasting experi-
ences, the community works to advance both knowledge and practice in an
inclusive way that takes account of different starting points.

One of the most significant technological innovations in the field, the drag mode,
has now become an inherent feature in the design of most mathematical tech-
nologies that offer multi-representational environments. Initially dragging was
carried out by using the cursor keys on a computer keyboard, later using the
computer mouse and now facilitated by touch screen technology; this functionality
to manipulate on-screen mathematical objects has been a ‘game-changer’ for
mathematics education research and researchers. However, repeated reports of
technology use in mathematics education around the world suggest that not much
has changed with respect to classroom uses of such technologies. There is still
much work to be done to enable prospective and practising teachers and lecturers to
experience accessible classroom tasks that enable students to interact with mathe-
matics through the act of dragging tangible mathematical objects. Hence, each
teacher and lecturer needs to become an innovator, feel the excitement of seeing his
or her own students engage in purposeful, rich mathematical activity in new ways
and, in turn re-evaluate their teaching approaches.

As mentioned in the introduction to this chapter, traversing through the ICTMT
conference series, it is possible to identify clear tracks of innovation in the design
and pedagogical uses of technological tools for the teaching and learning of
mathematics at different educational levels. The characteristics that marked the
evolution of educational technology stem from how deeply they have transformed
the ways in which the ideas, objects and mathematical concepts are approached.
The drag mode associated with the dynamic characteristics of the software is
becoming the norm. The multi-representational nature of the signs and images that
can be manipulated, observed, modified and connected on the screen is yet another
trend that has developed as a highly relevant aspect in the teaching of mathematics.
Both trends together have led to the merge of software packages. The use of
increasingly portable technology has also consolidated and increased the impor-
tance given to student’s independent and collaborative work in an atmosphere of
problem solving, mathematical modelling and investigations, in which a key role of
the teacher is guiding the student’s activity with the technology. Alongside, it is
noticeable that an emphasis on meaning-making and higher order thinking based on
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the development of mathematical concepts and its multiple representations has
followed most of the technological innovations in mathematics education. In this
regard, Sophocleous and Pitta-Pantazi (in Amado & Carreira, 2015) present and
discuss different modalities of using the opportunities offered by technology for
promoting higher order thinking in mathematics. Based on research results they
claim that the most successful technological environment in improving students’
mathematical learning was the inquiry based technological environment.

We anticipated that our review of the ICTMT proceedings might lead us to be
able to comment on innovation from the perspective of the design and evaluation of
courses and assessment processes on a larger scale for participants that include
school-age students, university-age students and both pre-service and in-service
teachers. The ICTMT conferences have always included designers of curriculum
and assessment processes who have worked in partnership with the community to
develop innovation in these areas. However, whilst carrying out our review, it was
noticeable how few contributions addressed the scaling of technology mediated
teaching approaches. Whilst some early contributions made reference to courses in
design (see Oldknow, in Jaworski, 1993), there are far fewer that report evaluations
of the outcomes of courses that have been established over time. Evidence from the
more recent ICTMT proceedings suggest that researchers’ attentions are moving
towards the design and evaluation of:

• courses for upper secondary mathematics (Brockmann-Behnsen, in Joubert,
Clark-Wilson, & McCabe, 2011; Weigand, in Faggiano & Montone, 2013)

• courses in undergraduate mathematics (Maclaren, in Faggiano & Montone,
2013 and Marshall, Buteau & Muller, in Faggiano & Montone, 2013),

• courses for prospective teachers of mathematics (Abu-Elwan, in Joubert,
Clark-Wilson, & McCabe, 2011; Gurevich & Gorev, in Amado & Carreira,
2015);

• courses for practising teachers/lecturers of mathematics (Aldon et al., in
Faggiano & Montone, 2013; Clark-Wilson, in Amado & Carreira, 2015 and
Thurm, Klinger, & Barzel, in Amado & Carreira, 2015).

We predict that in the coming years, the ICTMT conference series will offer a fertile
ground within which new acorns can germinate.

References

Adu-Gyamfi, K. (1993). External multiple representations in mathematics teaching. A thesis
submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of
the requirements for the Degree of Master of Science.

Amado, N., & Carreira, S. (Eds.). (2015). Proceedings of the 12th International Conference on
Technology in Mathematics Teaching. Faro, Portugal: University of Algarve.

Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection
about instrumentation and the dialectics between technical and conceptual work. International

32 S. Carreira et al.



Journal of Computers for Mathematical Learning, 7(3), 245–274. doi:10.1023/A:
1022103903080

Bardini, C. Fortin, P. Oldknow, A., & Vagost D. (Eds.). (2009). Proceedings of the 9th
International Conference on Technology in Mathematics Teaching. Metz, France.

Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics
classroom: Artifacts and signs after a Vygotskian perspective. In L. English, M. Bartolini
Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of International Research in
Mathematics Education (2nd ed., pp. 746–805). Mahwah, NJ: Lawrence Erlbaum.

Borba, M. C., & Confrey, J. (1996). A student’s construction of transformation of functions in a
multiple representational environment. Educational Studies in Mathematics, 31(3), 319–397.

Borovcnik, M, & Kautschlitsch, H (Eds.). (2002a). 5th International Conference on Technology in
Mathematics Teaching: Plenary lectures and strands. Klagenfurt, Austria.

Borovcnik, M., & Kautschlitsch, H. (Eds.). (2002b). 5th International Conference on Technology
in Mathematics Teaching: Special groups and working groups. Klagenfurt, Austria.

de Freitas, E., & Sinclair, N. (2013). New materialist ontologies in mathematics education: The
body in/of mathematics. Educational Studies in Mathematics, 83(3), 453–470.

diSessa, A., & Cobb, P. (2004). Ontological innovation and the role of theory in design
experiments. Journal of the Learning Sciences, 13(1), 77–103.

Dreyfus, T. (1991). On the status of visual reasoning in mathematics and mathematics education.
In F. Furinghetti (Ed.), Proceedings of the 15th Conference of the International Group for the
Psychology of Mathematics Education (Vol. 1, pp. 33–48). Genova, Italy: University of
Genova.

Faggiano, E., & Montone, A. (Eds.). (2013). Proceedings of the 11th International Conference on
Technology in Mathematics Teaching. Bari, Italy: University of Bari.

Fey, J. T. (1989). Technology and mathematics education: A survey of recent developments and
important problems. Educational Studies in Mathematics, 20(3), 237–272.

Fischer, G. (2001). External and shareable artifacts as opportunities for social creativity in
communities of interest. In J. S. Gero and M. L. Maher (Eds.), Proceedings of the Fifth
International Conference on Computational and Cognitive Models of Creative Design (pp. 67–
89). Sydney: University of Sydney.

Fraunholz, W. (Ed.). (1997). Proceedings of the 3rd International Conference on Technology in
Mathematics Teaching. Koblenz, Germany: University of Koblenz.

Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical
instruments: The case of calculators. International Journal of Computers for Mathematical
Learning, 3(3), 195–227.

Gutiérrez, A. (1996). Visualization in 3-dimensional geometry: In search of a framework. In L.
Puig & A. Gutiérrez (Eds.), Proceedings of the 20th conference of the international group for
the psychology of mathematics education (Vol. 1, pp. 3–19). Valencia: Universidad de
Valencia.

Hoyles, C., & Lagrange, J.-B. (Eds.). (2009). Mathematics education and technology—Rethinking
the terrain: The 17th ICMI study. Berlin: Springer.

Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in
mathematics education? In A. Bishop, M. Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.),
Second international handbook of mathematics education. Dordrecht: Kluwer Academic.

Jaworski, B. (Ed.). (1993). A bridge between teaching and learning. Proceedings of the
International Conference on Technology in Mathematics Teaching. University of Birmingham,
UK, LG Davis.

Joubert, M., Clark-Wilson, A., & McCabe, M. (Eds.). (2011). Enhancing mathematics education
through technology. In Proceedings of the 10th International Conference on Technology in
Mathematics Teaching. Portsmouth, UK: University of Portsmouth.

Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and
learning in a digital world. Mahwah, NJ: Lawrence Erlbaum Associates.

Kaput, J. (1999). Representations, inscriptions, descriptions and learning: A kaleidoscope of
windows. Journal of Mathematical Behavior (special issue), 17(2), 265–281.

From Acorns to Oak Trees: Charting Innovation Within Technology … 33

http://dx.doi.org/10.1023/A:1022103903080
http://dx.doi.org/10.1023/A:1022103903080


Laborde, C., & Sträßer, R. (2010). Place and use of new technology in the teaching of
mathematics: ICMI activities in the past 25 years. ZDM—The International Journal on
Mathematics Education, 42(1), 121–133.

Linn, M. C., & Peterson, A. C. (1985). Emergence and characterization of sex differences in spatial
ability: A meta-analysis. Child Development, 56, 1479–1498.

Maull, W., & Sharp, J. (Eds.). (1999). Proceedings of the 4th International Conference on
Technology in Mathematics Teaching. Plymouth, UK: University of Plymouth.

Milkova, E. (Ed.). (2007). Proceedings of the 8th International Conference on Technology in
Mathematics Teaching. (CD-Rom) and online at http://fim.uhk.cz/ictmt8/seznam/?nazev=
&autor=&typ=&v=1&Submit=Search (abstracts only).

Moreno-Armella, L., Hegedus, S., & Kaput, J. (2008). From static to dynamic mathematics:
Historical and representational perspectives. Educational Studies in Mathematics, 68, 99–111.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for
school mathematics. Reston, VA: Author.

National Research Council. (1989). Everybody counts. Washington, DC: National Academy Press.
Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and

computers. Dordrecht: Kluwer Academic.
Olivero, F., & Sutherland, R. (Eds.). (2005). Proceedings of the 7th International Conference on

Technology in Mathematics Teaching (Vols. 1 and 2). Bristol, UK: Bristol University.
Ozgun-Koca, S. A. (1998). Students’ use of representations in mathematics education. In S.

B. Berenson, et al. (Eds.), Procedings of the Twentieth Annual Meeting of the North American
Chapter of the International Group for the Psychology of Mathematics Education, (Vol. 2,
p. 812) Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental
Education.

Papert, S. (1980).Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Park, D., Lee, J.-H., & Kim, S. (2011). Investigating the affective quality of interactivity by motion

feedback in mobile touchscreen user interfaces. International Journal of Human-Computer
Studies, 69(12), 839–853.

Ruthven, K., & Hennessy, S. (2002). A practitioner model for the use of computer-based tools and
resources to support mathematics teaching and learning. Educational Studies in Mathematics,
49, 47–88.

Schwarz, B., Dreyfus, T., & Bruckheimer, M. (1990). A model of the function concept in a
three-fold representation. Computers & Education, 14(3), 249–262.

Shaffer, D., & Kaput, J. (1999). Mathematics and virtual culture: An evolutionary perspective on
technology and mathematics education. Educational Studies in Mathematics, 37, 97–119.

Skemp, R. (1978). Relational understanding and instrumental understanding. Arithmetic Teacher,
26, 9–15.

Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for
Research in Mathematics Education, 21(3), 216–229.

Triandafillidis, T., & Hatzikiriakou, K. (Eds.). (2003). Proceedings of the 6th International
Conference on Technology in Mathematics Teaching. Volos, Greece: University of Thessally.

Verillon, P., & Rabardel, P. (1995). Cognition and artefacts: A contribution to the study of thought
in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–
102.

Yeh, A., & Nason, R. (2004). Towards a semiotic framework for using technology in mathematics
education: The case of learning 3D geometry. In Proceedings of the 12th International
Conference on Computers in Education. Melbourne, Australia.

Yook, H. (2009). A study on the types of interactive motions in Mobile touch interface (Doctoral
dissertation). Korea, HK: Hongik University.

34 S. Carreira et al.

http://fim.uhk.cz/ictmt8/seznam/?nazev=&autor=&typ=&v=1&Submit=Search
http://fim.uhk.cz/ictmt8/seznam/?nazev=&autor=&typ=&v=1&Submit=Search


Appendix 1. The ICTMT Conference Series and Proceedings

ICTMT1—Birmingham, 1993. Jaworski, B. (Ed.). (1993). A bridge between teaching and
learning. In Proceedings of the International Conference on Technology in Mathematics
Teaching, University of Birmingham, UK, LG Davis.

ICTMT2—Edinburgh, 1995. Scott, T. (Ed.). (1995). Informal Proceedings of the Second
International Conference on Technology in Mathematics Teaching. Edinburgh: Napier
University.

ICTMT3—Koblenz, 1997. Fraunholz, W. (Ed.). (1997). Proceedings of the 3rd International
Conference on Technology in Mathematics Teaching Koblenz, Germany: University of
Koblenz

ICTMT4—Plymouth, 1999. Maull, W., & Sharp, J. (Eds.). (1999). Proceedings of the 4th
International Conference on Technology in Mathematics Teaching. Plymouth, UK: University
of Plymouth.

ICTMT5—Klagenfurt, 2001. Borovcnik, M, & Kautschlitsch, H (Eds.). (2002). The 5th
International Conference on Technology in Mathematics Teaching: Plenary lectures and
strands. Klagenfurt, Austria.

and Borovcnik, M, & Kautschlitsch, H (Eds.). (2002). The 5th International Conference on
Technology in Mathematics Teaching: Special groups and working groups. Klagenfurt,
Austria.

ICTMT6—Volos, 2003. Triandafillidis, T, & Hatzikiriakou, K. (Eds.). (2003). Proceedings of the
6th International Conference on Technology in Mathematics Teaching. Volos, Greece:
University of Thessally.

ICTMT7—Bristol, 2005. Olivero, F., & Sutherland, R. (Eds.). (2005). Proceedings of the 7th
International Conference on Technology in Mathematics Teaching (Vols. 1 and 2). Bristol,
UK: Bristol University.

ICTMT8—Hradec Králové, 2007. Milkova, E. (Eds). (2007). Proceedings of the 8th International
Conference on Technology in Mathematics Teaching. (CD-Rom) and online at http://fim.uhk.
cz/ictmt8/seznam/?nazev=&autor=&typ=&v=1&Submit=Search (abstracts only).

ICTMT9—Metz, 2009. Bardini, C., Fortin, P., Oldknow, A., & Vagost D. (Eds.). (2009).
Proceedings of the 9th International Conference on Technology in Mathematics Teaching.
Metz, France.

ICTMT10—Portsmouth, 2011. Joubert, M., Clark-Wilson, A., & McCabe, M. (Eds.). (2011).
Enhancing mathematics education through technology. Proceedings of the 10th International
Conference on Technology in Mathematics Teaching. Portsmouth, UK: University of
Portsmouth.

ICTMT11—Bari, 2013. Faggiano, E. & Montone, A. (Eds.). (2013). Proceedings of the 11th
International Conference on Technology in Mathematics Teaching. Bari, Italy: University of
Bari.

ICTMT12—Faro, 2015. Amado, N. & Carreira, S. (Eds.). (2015). Proceedings of the 12th
International Conference on Technology in Mathematics Teaching. Faro, Portugal: University
of Algarve.

From Acorns to Oak Trees: Charting Innovation Within Technology … 35

http://fim.uhk.cz/ictmt8/seznam/?nazev=&autor=&typ=&v=1&Submit=Search
http://fim.uhk.cz/ictmt8/seznam/?nazev=&autor=&typ=&v=1&Submit=Search


Part II
New Spaces for Research



Returning to Ordinality in Early Number
Sense: Neurological, Technological
and Pedagogical Considerations

Nathalie Sinclair and Alf Coles

Abstract This chapter brings together recent research in neuroscience about the
processing of number ability in the brain and new pedagogical approaches to the
teaching and learning of number in order to highlight the significance roles of
fingers and of ordinality in the development of early number sense. We use insights
from these two domains to show how TouchCounts, a multitouch app designed for
exploring counting and arithmetic, enables children to develop the symbol-symbol
awareness that is characteristic of ordinality. We conclude by drawing out impli-
cations for further research making use of technology and neuroscience.

1 Introduction

In this chapter, we address two aspects of the use of technology within mathematics
education. The first is what can be learnt from innovations in neuroscience in
relation to studying the developing brain and the second is what can be gained from
innovative touch screen learning technologies. The chapter, therefore, will address
two issues:

– How does the use of brain mapping technology change our ways of thinking
about and doing research?

– How can the use of technology support and foster innovative ways of learning?

In the first half, we draw on the work of Ian Lyons and others to trouble the typical
developmental sequence posited by researchers of a movement from considering
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actions on concrete objects, to the culmination in abstract mental structures.
Innovations in brain technology mean we are now able to observe what takes place
in the brain when faced with different tasks and placed in different contexts. A clear
hypothesis emerging from this work is that what is significant in the learning of
mathematics is not being able to link symbols to objects in a manner that is often
considered accessible or natural, but being able to link symbols to other symbols.
There is a danger that a focus on individual brains may lead to an impoverished and
overly cognitive sense of what is important in learning. However, there are several
neuroscientific studies that implicate the significant role of touch in the learning of
early number and we consider two innovative research methodologies, inclusive
materialism and enactivism, that take account of biology while not losing sight of
the importance of the social and cultural in learning.

As an interlude, we then draw parallels between the suggestions coming from the
neuroscience we review and the historical insights of one twentieth century edu-
cator (Caleb Gattegno). We suggest that Gattegno’s innovative curriculum for early
number can be seen as aimed at developing an awareness of symbols as relations
and, by implication, developing an ordinal awareness of number.

In the second half of the chapter, drawing on our inclusive materialist/enactivist
methodology, we analyse the use of the innovative TouchCounts iPad app, which
supports children in the development of early number sense. Through a focus on
sequences of interaction with the app, it appears that what students are becoming
engaged and energised by is precisely the development of symbol-symbol aware-
ness. We conclude by drawing out implications for further research making use of
technology and neuroscience.

2 How Does Neuroscience Change Our Way of Thinking
About and Doing Research?

For neuroscience researchers, the term number sense gets operationalized by
looking for neurological changes that correlate to particular kinds of numerical
tasks. More than a decade ago, Nieder and Miller (2003) believed they had iden-
tified the individual “number neuron” in rhesus monkeys. To do so, they presented
the monkeys with pairs of slides containing dots on them that varied in size, shape
or numerosity. By comparing the activation pattern in the monkey brains, they
could identify the neurons that responded only to changes in numerosity. Even if
there is validity to this suggestion, the situation seems to be much more complex for
humans and identifying a number neuron is difficult because of the way that lan-
guage, visual perspective and memory all play a role in number cognition. That
said, neuroscience research has helped draw attention to the importance of under-
lying abilities such as finger gnosis and subitising, with subitising now being
recommended practice in primary school classrooms (Clements, 1999). More
recently, it has been shown that people who are successful at certain kinds of
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number tasks seem to draw on imagery associated with a number-line, which has
helped shape some more visual approaches to early number (see Harvey, Klein,
Petridou, & Dumoulin, 2013).
With these interesting insights coming out, it can sometimes be easy to forget the
underlying assumptions that drive the associated neuroscience research. One such
assumption is that cardinality should be first and foremost in the development of
number sense (Butterworth, 1999). This assumption is evident both in the theo-
retical models that are proposed for how the brain processes number (see Bugden &
Ansari, 2015), but also in the tasks that are used to study brain activity.
Reigosa-Crespo and Castro (2015), for instance, focus on magnitude processing of
numbers in symbolic and non-symbolic formats and describe “numerical magni-
tude” exclusively as cardinality: “To grasp the magnitude concept we need to learn
the distinction between the transformations that do or do not modify the cardinality
of a set (e.g., adding or removing objects in a set modifies the cardinality; spreading
or grouping objects does not). We also need to compare between the numerosity of
different sets (e.g., set A could be smaller, larger or equal to set B)” (p. 60).
However, as Rips (2015) notes, there are many ways in which we use numbers in
everyday life that do not depend on its cardinality, such as finding one’s seat in the
theatre and turning to a specific page in a book.

2.1 A New Space for Research on Early Number?

Recently, some researchers have challenged the dominant cardinal view of number
cognition, and have proposed tasks that aim to engage ordinal thinking. Lyons and
Beilock (2011) devised an ordinal task in which sequences of three numbers (or
three sets of dots) were shown to participants, who then had to decide whether they
were correctly ordered (either ascending or descending) or not. For example, the
sequences [2, 3, 4] and [4, 3, 2] are correctly ordered but the sequence [2, 4, 3] is
not. Speed and success on ordering tasks was strongly correlated to wider mathe-
matical achievement. They argue that this experiment shows how a significant
aspect of the meaning of a numeral, for students who are successful at mathematics,
is relational and strongly tied to the unfolding of the sequence of numerals. There
was a much smaller correlation with overall achievement, in the case of ordinal
interpretations of dots. For this task, participants again have to judge whether three
groups of dots are correctly ordered or not (e.g., from left to right, 2 dots, 4 dots, 5
dots are in order; 2 dots, 5 dots, 3 dots are not). A further distinction between tasks
involving dots and numerals relates to the well established ‘distance-effect’ found in
cardinal comparison of numbers, which is that the farther apart two numbers are, for
(cardinal) comparison, the quicker it is found subjects are typically able to make
judgements of which is bigger. Lyons and Beilock (2011) found the distance effect
persisted with the order comparison of groups of dots but, importantly, when
judging the order of numerals, the distance effect is reversed. In other words, when
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asked if three numerals are in order, the closer they are together, the quicker it is
found that subjects can typically make the judgment or correct ordering or not.
Lyons and Beilock (2011) use this reversal of the distance effect to suggest that the
brain is doing something different when making ordinal comparisons of numerals,
compared to both cardinal comparisons (of numerals or dots) and compared to
ordinal comparisons of dots.

According to Lyons and Beilock then, the ordinal task on numerals calls upon
the rote connections that we form in reciting the “number song”. This hypothesis is
interesting to consider in light of Seidenberg’s (1962) theory of the ritual origins of
counting, in which the recitation of the count list long precedes, historically
speaking, the more cardinal counting of things (animals, people, money, etc.).
Seidenberg argued that acts of ordinal counting are principally about calling forth
the next or an(other), making the new or next appear, and not just about ordering
that which is already visible. In research focused on developmental dyscalculia
(DD), Rubinsten and Sury (2011) use the same task as Lyons and Beilock (both
symbols and dots) with typically developing adults as well as adults with DD and
found that both groups performed in similar ways on the symbolic tasks, but
differed on the dot task.1 They suggest that linguistic knowledge may facilitate
ordinal number processing, which is consistent with Seidenberg’s hypothesis and
also revelatory of the difficulty of isolating any component of number sense, be it
ordinal or cardinal.

Without adopting the reductive or innate assumptions underlying neuroscientic
research, we find that the new emphasis on ordinality can be helpful to mathematics
education research not only in highlighting the decisive role that task design plays
in any definition (and assessment) of number sense, but also in drawing attention to
aspects of number sense that have not been traditionally valued in the primary
school curriculum. While still limited by the tools (fMRIs) used to identify brain
response, which can only capture static images of brain activity, we see the new
findings by Lyons and colleagues as drawing attention not only to the relational and
symbolic aspects of number, but also to a powerful temporal sense of number. It is
important also to note that fMRI images highlighting small regions of brain activity
are only illustrating differences in brain activity (when provoked into doing a
specific task compared to a control task). In other words, there are large regions of
the brain also active, but what is flagged up are those regions that change activation
patterns when presented with a number comparison task versus, say, a control
reading task. It therefore does not seem to us entirely accurate to locate number
processing in a particular brain region, or at least it must remain a possibility that
there are vital elements of number processing taking place in distributed parts of the
brain (which are also active when not doing number work).

1In the dot test, they varied the way that the dots were shown (such as changing the size of the
dots) in order to see how perceptual cues modulated ordinal judgements. This is typical in the
neurocognitive research literature on number sense.
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2.2 A New Space for Research Methodologies?

The kind of neuroscience research that we have described above can be seen as
challenging more sociocultural approaches to mathematics education research
because it emphasises the biological component of mathematics cognition, some-
times even making claims about the innateness of certain aspects of number sense.
Some of this research aligns well with embodied cognition theories, which stress
the significant role that sensorimotor experiences play in mathematics under-
standing, though most mathematics educators do not address the neuronal level of
embodiment. Sociocultural approaches, on the other hand, draw attention to the
way in which the environment, language and politics are at play both in defining
number sense, and in determining who is mathematically able.

The inclusive materialism developed by de Freitas and Sinclair (2014) provides
a way of attending both to the sociocultural conditions of learning, while at the
same time allowing a fundamental role for the body and the physical environment
in mathematics teaching and learning. It does so by adopting a monist position that
accords the same ontological status to mathematical concepts, human bodies, dis-
courses and physical objects—this distinguishes it from theories such as instru-
mental genesis and semiotic mediation, which see tools and humans and concepts
interacting with each other, but being ontologically distinct. A first consequence is
that mathematical concepts are no longer seen as abstractions of sensorimotor
experiences, but inevitably entangled with those experiences. In other words, a
number is not a Platonic ideal, nor is it merely a sociocultural creation. Rather, it is
an assemblage of counting fingers, things-to-be-counted, words to count with, and
so on, that can be described as being in intra-action, which is Barad’s (2007) term
for describing the way in which concepts (such as number) are “specific material
arrangements of experimental apparatuses” (p. 253). Barad’s materialism is rooted
in her interpretation of Bohr’s work in quantum physics, where the concept in
question might be light and the experimental apparatus might be the two-slit device
that physicists use to study particular-wave duality. A concept such as light cannot
be extracted from, or abstracted from the material assemblage in which it is mea-
sured; similarly, a mathematical concept such as number cannot be abstracted from
the material assemblages in which it is encountered or used. In this perspective, the
tool is not simply a way to mediate an already existing concept for the benefit of
learning or understanding: the tool and the concept (and the learner) are in iterative
entanglement. As Souriau (2015) would say, the tool and the concept and the
learner do not exist in and of themselves, but in and of each other.

Bohr also helped problematize the taken-for-granted boundaries of the body
when he wondered whether the body of a blind person holding a walking stick and
navigating across a room stopped at the end of the person’s hand, or at the end of
the walking stick or at the edges of the walls. Similarly, does a learner’s body
extend to the screen on which she is manipulating shapes and symbols or contract to
the Intraparietal Sulcus (IPS) [which is the brain region that lights up as people
solve particular types of number-related tasks that require immediate cognitive
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judgements (Nieder & Dehaene, 2009)]? In the view of inclusive materialism, the
idea of the human body as being well-defined by the contours of the skin melts
away, since the body is both expanded to include physical tools and objects, as well
as contracted, perhaps to a single neuron.

That a ‘subject’ is radically entwined with any ‘object’ that might be defined in
contrast to it, and that any imagined demarcation between subject and object is
malleable and porous, is an insight echoed in several other stances: a radical view of
biology (Maturana & Varela, 1987); an approach to neuroscience (Varela, 1996);
early thinking within cybernetics (Bateson, 1972); a strand of phenomenology
(Merleau Ponty, 1962); and, within mathematics education, enactivism (see Reid &
Mgombelo, 2015). Enactivism entails an essentially circular epistemology; what we
take to be subject and object arise together and one cannot be taken as prior or more
fundamental than the other. Perception does not represent a pre-given world to a
subject, in fact it is misleading to even write of ‘perception’ as a noun; what we
engage in, as humans, is “perceptually guided action” (Varela, 1999, p. 12), with
touch providing a better exemplar than sight. It is clear that, in general, touch
involves the activity of the ‘subject’ no less than that of the ‘object’; to touch
another human entails two decisions. The movement, choice and activity of the
subject is perhaps harder to catch in the case of sight and hearing but, from an
enactivist perspective, is no less present.

Common across both inclusive materialism and enactivism, therefore, is the
view that an individual does not end at the boundary of the skin and that the social,
cultural, political are enmeshed in the physicality of each of us and vice versa. If we
are considering the learning of mathematics by children in school, we need to
expand the typical view of the individual, to include relations that extend outside
the body and, at the same time, inquire of larger systems, such as the social, cultural
and political, how these make a difference to the relations and materiality that
constitute each of us.

The novel theoretical approach described above requires new methodological
considerations, since it would make little sense to individuate a priori the learner
and the tool and the concept, and to see how the tool somehow causes the learner to
“construct” an existing concept. In contrast to approaches that, for example, attempt
to isolate and categories teacher knowledge (e.g., see, Chap. Studying the Practice
of High School Mathematics Teachers in a Single Computer Setting) the research
questions in inclusive materialism are more concerned with ontological issues, such
as: what can the concept of number be within a particular assemblage (see
Chap. Digital Mazes and Spatial Reasoning: Using Colour and Movement to
Explore the 4th Dimension)? As with experimentation in quantum physics, we, as
mathematics education researchers, might conceptualise a particular tool or appa-
ratus as an experimental device that allows us to better understand the relations
between matter and meaning that emerge in a particular classroom situation (de
Freitas and Sinclair, 2016). Imagine, for example, as will be the case in this chapter,
that the apparatus is an educational app. The apparatus would not simply be taken
as a mediator of learning, or a tool that students use in order to learn a particular
concept. Instead, the app is an apparatus that produces effects which help us see

44 N. Sinclair and A. Coles



how meanings about the concept of number are entangled with the physical app and
thus intrinsically indeterminate.

The next section is an interlude where we explore some historic pedagogical
insights relevant to an ordinal approach to early number, following which we offer
one example of what research within mathematics education might look like, from
an inclusive materialist/enactivist perspective (illustrating our response to the
question: how does the use of brain mapping technology change our ways of
thinking about and doing research?). Our second aim is to show how neuroscientific
results and pedagogical considerations pointing to the importance of ordinality in
the early learning of number find resonance in the spontaneous activities of children
working with a new technology (addressing the question: how can the use of
technology support and foster innovative ways of learning?).

3 Returning to Ordinality: An Interlude of Pedagogical
Considerations

We have found striking echoes of the neuroscientific suggestions, around devel-
oping symbol-symbol relations in the early learning of number, within the work of
Caleb Gattegno, (1911–88). Gattegno worked across the world developing a
mathematics curriculum based in the use of the Cuisenaire rods.2

Cuisenaire rods may appear to offer a strongly cardinal-based approach to
number (and perhaps are often used by teachers in this way) with the white (1 cm3)
cube being associated with ‘1’, the red cuboid with ‘2’, the light green (length
3 cm) with ‘3’ and so on up to ‘10’. However, as Coles (2014) has recently
highlighted, this was far from Gattegno’s vision. Rather than beginning with these
quantitative relations, the first use of the rods, according to Gattegno (1957), was
designed to foster more qualitative awareness (‘greater than’, ‘less than’) with
letters for the colour names initially used to capture these relationships. Numerals
are introduced to capture the special case where one kind of rod can fit a whole
number of times into the length of another rod, see Fig. 1, where (if the longer rod
is pink and the shorter ones are red) p = 2r.

In a context such as Fig. 1, numerals do not become associated with collections
of objects (in a cardinal sense) but with a relation (in this case between lengths of
rods). While ‘2’ does not have a strong cardinal association when introduced as in
Fig. 1, it does not have a strong ordinal sense either. Numerals are operators, or
scale factors, and Gattegno’s approach advocates the immediate introduction of
rational numbers to indicate the inverse relation (Fig. 1 represents ‘½’ as well as
‘2’, r = ½ p). What quickly gets prioritised is the manner in which symbols link to

2Cuisenaire rods are cuboids with 1 cm2 cross-sections and ranging in length from 1 to 10 cm.
Each length is coloured uniquely (eg the cube with 1 cm lengths is white, the rod of length 2 cm is
red).

Returning to Ordinality in Early Number Sense … 45



each other, for example the link between ‘2’ and ‘½’. The materials are used to
provide a context for symbol use but the number symbols do not represent the
materials, they point to relations between the rods and attention can easily turn to
relations between the symbols themselves (e.g., t = 2p = 4r, and r = 1

4 t). The link
to ordinality, therefore, is that Gattegno’s curriculum uses materials (the rods) as a
mechanism to get children working on symbol-symbol relations, of which ordi-
nality (the position of numbers in the number-count sequence) is one important
aspect.

Gattegno uses a tens chart later in the curriculum (see Fig. 2). This chart can be
used initially to work on number naming (the teacher might tap on ‘300’, ‘50’ and
then ‘7’, the children all chant back in unison ‘three hundred and fifty seven’). The
teacher might tap on a number and get children to chant back the number that is 1
greater, or 10 greater, or 100 greater, or 10 times bigger, or 10 times smaller, etc.
What the chart makes available is the structure of our number system, not via
thinking about the link between numerals and objects, but via the link between
numerals and each other, how the names go together, and how you can get from one
number to the next. In other words, the chart promotes ordinal awareness of number
(see Coles, 2014 for further possibilities for working with children on the chart).

Fig. 1 Introducing numbers
with Cuisenaire rods

Fig. 2 Gattegno’s tens chart
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4 How Can the Use of Technology Support and Foster
Innovative Ways of Learning?

In this section we draw on research, conducted within an inclusive materialist
methodology, into the use of an innovative iPad app, TouchCounts. The data on
children’s use of this technology allows us to explore further the insights, discussed
above, in relation to both early number and research methodology. This data has
been drawn from a broader research project in which author Sinclair worked with
children in two different daycare settings, one all-day daycare for three to five year
old children and one after school day care for children five, six and seven years old.
In both contexts, the research team interacted with groups of three to four children
at a time, inviting them to engage in a variety of tasks that were designed both to
take advantage of the functionalities of TouchCounts and to support their devel-
oping number sense. The app is ‘radical’ in the sense of Chap. Using Digital
Environments to Address Students’ Mathematical Learning Difficulties, meaning
that the aim is to “propose fundamental mathematical content in innovative ways”.
There are no explicit ‘tasks’ or ‘levels’ built into the app and instead it offers a
space for “being and becoming with others to make sense of the world … through
mathematics” (Santi & Baccaglini-Frank, 2015, p. 122).

The data presented below was selected because it revealed different aspects of
ordinality that we believe may be significant in children’s learning. Our goal in
selecting the examples was to exemplify new possibilities for working with ordi-
nality. We analyse each example, in keeping with our overall research stance,
through an ontological focus on what kind of number arises through the assemblage
of students and apparatus.

TouchCounts was initially designed as a counting environment, to help children
learn about one-to-one correspondence. Every time a finger touches the screen, a
yellow disc appears, labelled with a numeral, and that numeral is spoken aloud.
Each subsequent touch produces a yellow disc with the next biggest numeral on it.
With the gravity mode turned on, taps that are made below the ‘shelf’ fall away,
much in the same way that turning the page of a book makes that page number
disappear. If one taps above the shelf, the yellow disc is ‘caught’ and remains on the
shelf. It is thus possible to see just the yellow disk labelled ‘6’ on the shelf if the
previous five taps have been below the shelf. Indeed, putting just 6 on the shelf is a
frequently-used task. Notice that it requires being aware of the fact that 5 comes
before 6. Note that this task does not require any sense of cardinality. In both the
temporal dimension, but also because of the lack of cardinal reference, this
“Enumerating world” emphasises ordinality. With the use of the aural feedback as
well as the numerals, there is also a strong emphasis on language and symbol, as per
Lyons’ recommendation.

The second world in TouchCounts has a more cardinal orientation. When three
fingers touch the screen at once, a circle is created that contains the digit 3, as well
as three smaller coloured circles. Once two or more such ‘herds’ are created, they
can be added together through a pinching gesture. The resulting sum carries the
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trace of the colours found in the original herds. When the resulting herd is created,
TouchCounts announces the sum out loud. There is a commonality with the
e-pascaline software described in Chap. The Duo “Pascaline and e-Pascaline”: An
Example of Using Material and Digital Artefacts at Primary School in that par-
ticular gestures are associated with the processes of addition and subtraction. While
the Operating World seems to focus activity around additive concepts, we will
show in the examples below that significant aspects of ordinality are still at play.
We begin, however, with two excerpts from the Enumerating World.

Example 1: Ordinal size In a kindergarten classroom, the children are sitting on
the carpet, with the overhead projector hooked up to TouchCounts. The teacher has
asked the children to count by fives. They do this by tapping four times (simul-
taneously) below the shelf and then once above. This leaves the multiples of 5 on
the shelf. The children take turns doing the 4 + 1 tapping. The following table gives
a sense of the rhythm of the skip counting. Note that instead of hearing “five, ten,
fifteen, …”, the children hear “four, five, nine, ten, fourteen, fifteen, …”.

The teacher had intended to only get up to about 25, but the children wanted to
keep going. They eventually got to 100. At this point the shelf was full, so the
teacher wiggled it, which made all the multiples of 5 fall down, off the screen. The
children wanted to continue, and so the teacher let them do so, and 105 rested on
the shelf, 110, 115, and so on. At 125, they began to predict what number would
appear on the shelf—chanting it out, chorus style—and ended up going all the way
to 200. At this point, the following interaction took place:

Cam: I thought that two hundred was right after one hundred, but it’s not
Teacher: No, how far is it away from one hundred?
Cam: It’s, it’s, it’s one more hundred away.

Analysis

Significant in this episode is the fact that the children were involved in a skip
counting activity that had no explicit connection to a quantity of objects. The
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concept of number that emerges here is one of ritual acts, that is, a repeated gestural
choreography that calls forth both names said aloud and symbols on the shelf (much
like the ritual acts of counting that Seidenberg sees as the origins of counting). The
concept of number is not a cardinal one. In addition, the highly patterned sequence
of numbers on the shelf, 5, 10, 15, 20, 25, 30, etc., became predictable, enabling the
children to chant out the multiples, ignoring each time the iPad voicing of the
number immediately before the multiple of 5. The concept of number is temporal in
that the sequence emerges over time, in time.

When 200 appears on the shelf, there had been no connection made between the
number word and a quantity (of, say, two hundred objects). Indeed, Cam’s real-
ization about the relation between 200 and 100 is not a cardinal one. Instead, the
concept of number that emerged in this assemblage was one in which getting to 100
involves the same time and sequence as getting from 100 to 200. In this sense, the
relation seems to be deeply temporal, assembled as it is with the time it takes to
create all the numbers up to 100 and then 200. The relation is also entangled with
TouchCounts’ pronouncements (“one hundred”, “one hundred and forty-nine”,
“two hundred”), some of which these children may never have heard before, and
which they could not have read from the symbolic forms (100, 149, 200). In other
words, the meanings of the numbers were established by the way they were made
(the gesture of four below, one above) and the time it took to get to them.

Example 2: Making 10 Three children are working together with Sean, a member
of the research team. In prior visits to the daycare, the research team had noticed a
tendency for the children to use just one finger when working in the Enumerating
world, and wanted to encourage them to use multiple fingers at a time. The children
had all succeeded in putting just 10 on the shelf. Now, Sean asked them if they can
do it in a different way.

Immediately, Whyles touches

with 5 fingers (TouchCounts says “five”),
then 4 fingers (TouchCounts says “nine”)

then 1 finger (TouchCounts says “ten”) on the shelf.

The only thing on the screen is a yellow circle labelled 10 sitting on the shelf.
The screen is reset and Benford goes next; he touches

with 5 fingers (TouchCounts says “five”),
then 1 finger (TouchCounts says “six”),
then 2 fingers (TouchCounts says “eight”),
then 1 finger (TouchCounts says “nine”)

then puts 1 finger above the shelf (TouchCounts says “ten”).

The only thing on the screen is a yellow circle labelled 10 sitting on the shelf.
Auden went next. He touches

with 1 index finger (TouchCounts says “one”)
then 1 pinkie finger (TouchCounts says “two”)
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then 1 index finger (TouchCounts says “three”)
then 1 middle finger (TouchCounts says “four”)
then 1 index finger (TouchCounts says “five”)
then 1 middle finger (TouchCounts says “six”)
then 1 index finger (TouchCounts says “seven”)
then 1 middle finger (TouchCounts says “eight”)
then 1 index finger (TouchCounts says “nine”)
then 1 middle finger (TouchCounts says “ten”)

There is nothing on the screen except the shelf. He presses reset and then touches

with 1 index finger (TouchCounts says “one”)
then 1 middle finger (TouchCounts says “two”)
then 1 index finger (TouchCounts says “three”)
then 1 pinkie finger (TouchCounts says “four”)
then 1 index finger (TouchCounts says “five”)
then 1 middle finger (TouchCounts says “six”)
then 1 index finger (TouchCounts says “seven”)
then 1 middle finger (TouchCounts says “eight”)
then 1 index finger (TouchCounts says “nine”)
then puts 1 index finger above the shelf (TouchCounts says “ten”)

Analysis

An equivalent activity of ‘making 10 in different ways’ could be done, for example,
with a collection of objects, in which the children would be decomposing or
‘partitioning’ 10 into smaller quantities. In order to succeed at making different
partitions of 10, children would need to pay attention to the sizes (the cardinality) of
the separate groups they created and the overall numerosity. In transcribing what all
three children did with TouchCounts, it can seem as though they ‘partitioned’ the
number ten in a manner similar to that just described, the partitioning of 5, 4 and 1
for Wesley, of 5, 1, 2, 1, 1 for Benford and the full count (for Auden). But this is not
the concept of number that emerges from this episode. Instead, 10 emerged as a
number that you get to. You can get here quickly at first, and then slow down, like
both Wesley and Benford, or you can get there steadily, one by one. In each case,
getting to 10 involves first getting to 9, which suggests a privileged relation
between 9 and 10, but the meanings of 9 and 10 are made through the shelf, which
requires that 9 be placed below it before 10 can be placed above. And the relation
becomes important only because 10 was set as the target. If Sean had asked for 11
on the shelf, a different privileged relation would have emerged: in this example
though, 10 emerges in and of the shelf, the tapping, the task.

The two attempts by Auden suggest a different kind of intra-action in which the
particular fingers—the index, the middle and the pinkie fingers—are entangled with
the production of 10. In Auden’s first attempt to make ten, every other tap was done
by his index finger and, except for one use of his pinkie, he alternated index-middle
finger. This pattern of tapping took him ‘beyond’ the nine he needed to place below
the shelf and he tapped below a tenth time with his middle finger. There is a sense
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here in which the production of numbers is essentially rhythmic, not just in the
tap/iPad voice/yellow disc cycle, but in the middle finger/index finger cycle. But
when “ten” is said aloud, and the disc falls of the bottom of the screen, Auden
immediately tries again, seemingly aware of the fact that he had tapped too many
times. On his second attempt, the alternating index finger tapping remained as a
pattern up to nine and then he used the index finger again (the only time he tapped
index-index in succession) to place his tenth tap above the shelf. In this way 10
emerged as an index finger number, the index finger being the one that begins and
ends the sequence. We conjecture that making 9 or 11 would have been easier,
since Auden’s making of 10 involved a pause or disruption of a physical and
temporal patterning.

Example 3: Blurring the units Transitioning out of an activity in which the chil-
dren had been asked to put 10 on the shelf, Nathalie asked whether the children had
played the “game” that involves tapping “one below, one above, one below, one
above” the shelf in a sing-song voice. She touched five times towards the left of the
screen and then Chleorah touched once below, once above towards the far right of
the screen, and kept doing that while Olette said that it was her first time playing
with TouchCounts. After resetting, Nathalie asked the children to watch her.

Screen
action

iPad
says

Others say

N touches
below

one

N touches
above

two

N touches
below

three

N touches
above

four

N touches
below

five

N touches
above

six A laughs

N touches
below

seven

N touches
above

eight

N touches
below

nine

N touches
above

ten N: You see that? Okay, can you read

O: Two, four, six, eight, ten

N: Two, four, six, eight ten. So what do you think is going to be the
next number that shows up?

O/C: Twelve

N: How do you know that?

Returning to Ordinality in Early Number Sense … 51



Chleorah explained that she knew how to count by twos. Olette then said very
quickly “two, four, six, eight, ten, twelve, thirteen” and sat back and laughed.
Nathalie said “ten, twelve, fourteen” with an emphasis on the last number and
Auden said “fifteen”. Chleorah said “no, sixteen”. Nathalie asked the children to
continue.

Screen action iPad says Others say

O touches
below

eleven

O touches above twelve

O touches
below

thirteen A: thirteen

O touches above fourteen A: fifteen

O touches
below

fifteen

O touches above sixteen (The shelf is full; O pulls her hand away and C takes over)

C touches below seventeen

C touches above eighteen A: eighteen (laughs)

C touches below nineteen

C touches above twenty

C touches below twenty

C touches above twenty

C touches below twenty

C touches above twenty-four

C touches below A: twenty-one, twenty-two, twenty-fi, twenty-five

O/C touch above and below so quickly that the numbers are not said aloud

O/C touch below and above a little slower, so that the iPad can be heard saying “thir” repeatedly

C touches above thirty-nine

C touches below forty

Analysis

At the start of this sequence, Nathalie was focussed on a pattern of counting in
twos. By tapping above and below the shelf it is possible to make only the evens
appear above the shelf; the odd numbers literally fall out of view even though they
have been said aloud by TouchCounts. Even and odd numbers are thus configured
as ‘up’ and ‘down’ numbers, with the shelf acting as a kind of numberline on which
consecutive evens can be placed. Odette’s pausing at 16, when the shelf is full,
shows how the material arrangement of the discs and shelf briefly circumscribed the
production of evens. But Chleorah picks up the up-down rhythm of tapping, filling
up the shelf with overlapping discs and then speeds it up when she gets into the
twenties so that only the tens digit can be heard. The up-down rhythm of the finger
tapping configures the even numbers as limitless: if the children had counted by
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twos before, they had probably stopped at 20—given their age—but now that they
do not have to produce the number names and their fingers can continue tapping,
the even numbers extend beyond the familiar.

As the up-down tapping continued, the even numbers clutter up the shelf and the
speed of tapping increasing, the soundscape changes from slow rhythmic counting
to more repetitive “twenty” and then “thir” before alighting on “thirty-nine” and
“forty”. The echoing of Auden before (with “thirteen,” “fourteen,” “fifteen” as well
as several numbers in the twenties) fades away. The four “twenty” in a row, being
repetitive, may have provoked the speeding up of the tapping, with the sound or
sight of thirty slowing it down just enough to be heard. Now, instead of the even
and odd back and forth, the numbers bunch into batches that have a common initial
sound—that is, they bundle into twenties and thirties, to the value of the tens digit.
But the bundling is not only about the symbol in the tens place or the sound of the
word, but also about time, that is, about the length of time it takes to go through the
twenties and the length of time it takes to go through the thirties. A new pattern thus
emerges in which the up-down binary of the tapping is joined with the bundling of
the tens.

Example 4: Focussing on the digits This episode, which lasts about thirty minutes,
begins with one boy sitting in front of the iPad, creating and merging herds on the
screen. He has made 155. Another boy, Henri arrives, and begins making herd as
well, but not as expertly. The first boy Ned, goes away, and Henri continues
working on merging herds. By the time Jordan and Dipak arrive, Henri has made
39. George says “thirty-nine Henri”. He continues making his herd bigger and
Dipak says, “Make one hundred. Henri, make one hundred.” Ned returns and,
having heard the comment, asserts, “I can do a hundred and fifty one.” He goes
away while Jordan and Dipak watch Henri work. Dipak says, “If you could make
one hundred that would be awesome.” Dipak laughs at a certain point when Henri
has made 68 and says “six eight?” and Jordan says “sixty-eight”. Henri makes 76
and he and George both echo TouchCounts, saying, “seventy-six”. Dipak says,
“Make a trillion, Jordan”. Five minutes after they have begun, when Henri has
made 80 (and there are other small herds on the screen) he says “okay, who wants
to go next?” Jordan tries to put herds of 80 and 2 together but ends up making some
new herds. He finally gets 82, and Dipak echoes TouchCounts and says
“eighty-two”. Henri says, “Let’s make a trillion.”

Jordan: Look how big this is (see Fig. 3a)
Dipak: Wooooow
Henri: What the heck? You need to use two fingers, not just one finger (Jordan

is trying to merge 88 and 1 but ends up creating new herds)
Nathalie: What do you have there already?
Dipak: Two eights
Nathalie: Two eights?
Henri: Eighty-eight
Nathalie: Eighty-eight?
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Henri: (looks up to the left) And when there’s two of the same number that’s
eighty-eight, forty-four, five, what is the number with two fives? (Henri
holds two fingers up, see Fig. 3b)

Jordan: (Jordan merges herds together to obtain 96) Now look, sixty-f,
sixty-six!

Nathalie: (Responding to Henri) Fifty-five
Dipak: Sixty-six?
Jordan: (Makes a herd of 2 and merges it with the 96)
iPad: Ninety-eight
Jordan: (Makes another herd of 2 and merges it with 98)
Henri: One hundred! (clapping his hands while Nathalie takes Jordan’s hands

off the screen: see Fig. 3c)
Ned: (Coming back to the group) I thought you were supposed to make a

trillion
Henri: A trillion is after one hundred.

The boys continue making the herd bigger, now repeating the numbers after the
iPad. They eventually make 204 and Dipal saying, “we got to 100 and then we
made two hundred and four”). They make 208 and decide to show the iPad to others
in the room. When they return to the table, and since TouchCounts has been reset,
they start over again. They eventually, after about two minutes, manage to make
100 again, with Henri clapping his hands in excitement.

Analysis

The excerpt is replete with number-naming. TouchCounts names big numbers, the
children repeat big numbers and also name numbers that they would like to make.
Numbers are not quantities you count or operate on; they are discs/numerals/names
that you can get to with sufficient creating and pinching of herds. We are struck by
Henri’s interest in the numeral 88 because we see in it the emergence of number as
numeral not just to record or count or operation, but to consider as an object of
interest in and of itself—in this case, an object that is special perhaps because of its
twin-like character. Indeed, when 88 appears on the iPad, Henri muses aloud about
the general situation of “when there’s two numbers the same”. He says 44 but gets
stuck on 55 (which interestingly is ‘irregular’ in the sense that it could, and perhaps

Fig. 3 Children making 100 on TouchCounts
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should, be named ‘five-ty-five’). This focus on number-naming is ordinal in nature,
in terms of its attention to symbols, but it also gives rise to yet another pattern (44,
55, 66, etc.) that almost completely ignores cardinality.

There is other evidence that the concept of number that emerges in this excerpt is
concerned with the ordering of symbols associated with the herds the children have
created. The children not only repeat the named numbers that TouchCounts speaks
aloud but make statements about the order of the herds, as in when Dipak asserts
that they made 100 and then 204 and when Henri asserts that a trillion comes after
one hundred. We see it as significant that he uses the phrase “comes after” (an
ordinal awareness) rather than, e.g., “is bigger than”, in that number is once again
about order rather than size.

Through the pinching of herds, number also emerges as something that you
combine with other numbers, so that 6, for example, is not just the amount of
objects on the screen, or the number after 5, but a device that can be used to make
bigger numbers. It becomes a tool to make new numbers, including numbers as
arbitrary as 204 and as magical as a trillion. Perhaps because they are working with
large numbers, it is almost impossible for the children to actually attend to the
quantity of coloured discs in the herd, which means that they are not attending to
the relationship between the number symbol and the collection of disks. They are
certainly attending to the growing size of the disc (at one point, George says that
they should make the herd be bigger than the screen; and, at several other points,
the boys talk about the size of the herd and their desire to make it bigger), which
may support a more qualitative comparison between numbers—as in the compar-
ison of 100 and 204 then a trillion and 100. The fact they are so motivated to get to
100 seems important in orienting attention towards number symbols, since these
alone (or the TouchCounts voice) let them know if they reach their goal. Once
again, number emerges from the (self-imposed) task, the possibility of endless
creation and pinching of herds, echoing of large number-names and the presence of
numerals.

5 Discussion

We began this chapter asking two questions: how does the use of brain mapping
technology change our ways of thinking about and doing research? and, how can
the use of technology support and foster innovative ways of learning? In this final
section we will review what we have offered against these two areas of focus.
Neuroscientific studies connecting brain mapping to items of behaviour seemingly
draw attention back to an individual, constructing knowledge in isolation from
others. Brain mapping technology points to the embodiment of mathematics, par-
ticularly in attempts to isolate particular brain regions with particular forms of
mathematical activity. We see these technological advances as provoking a need for
doing research in mathematics education that is thoroughly grounded in the material
and that allows us to connect the materiality of the brain with the materiality of the
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world. Our inclusive materialist/enactivist stance allows just such an approach
through a focus on the ontology of what arises as humans engage with apparatus
and each other. Given our interest in the learning of number, one aim of the chapter
has been to demonstrate how an analysis of interaction is possible that draws
attention to the kind of number concept that arises.

Our review of brain mapping technology, as well as influencing the way we go
about doing research, has also influenced our interest in ordinality in the early
learning of number and, in particular, the way in which an innovative technology –

the iPad app TouchCounts, fosters new ways of learning. A common approach to
working on ordinality in schools involves practicing the number song; children are
invited to count up to 5, then 10, then 20 and then 100. While we see much value in
this practice, as a first way of introducing children to the language and sounds of
number, much as in the ritual calling on to stage of deities thousands of years ago, we
do not think it exhausts the potential of ordinal awareness. This has already been
made evident in the work of Gattegno (1974), whose curriculum for early number
was based on developing awareness of relations between lengths, where what are
symbolised are relations between objects (greater than, less than, double, half), rather
than, say, using numerals to label ‘how many’ objects are in a collection. Gattegno
introduced work on place value, as a linguistic ‘know-how’ and not something that
required ‘understanding’. He made extensive use of fingers (both the teacher’s and
the children’s) as haptic symbolic devices for working on number relations, with a
focus on correspondence and complementarity. We see awareness of number, in this
curriculum, arising out of linguistic skill and awareness of relations in a manner that
does not emphasise a cardinal focus on counting collections.

We have argued that ordinality has a fundamental role in the successful early
learning of number, firstly drawing on recent findings of neuroscience, which seem
to support the important role accorded to language, symbol and relational under-
standings of number, and secondly identifying the ways in which number emerges
from the particular intra-actions of the children’s fingers, the spoken number names,
the numerals, the shelf, the herds, the tasks, etc. In the examples we offered, we saw
several instances of number relating, none of which seemed to be based on cardinal
judgements, nor on explicit understanding of place value. We also saw evidence of
the way the children attended both to the named words and to the symbols, even
when the associated numbers are not part of their usual age-specific repertoire. We
highlighted tasks that might usually be thought of as cardinal ones being offered in
ways that invited ordinal thinking. These provide illustrations of the entanglement
of concepts such as number with the experimental apparatus being used, the fingers
being moved and the tasks being offered.

The concept of ordinality is often associated with Dedekind (1872/1963) who
made use of the ordering of the continuum in order to define a real number in a
rigorous manner. What we observe emerging in the examples above is a kind of
ordering that is tied up with the touching, talking tool the children are using. The
ordinality we observe from the assemblages of children and TouchCounts seems to
take on a strong temporal aspect that may often be overlooked in writing-based
contexts in which ordinals become static.
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There are themes across the data on children’s use of TouchCounts, in particular
their apparent engagement and enjoyment and the creativity of their responses. In
Example 1, the children want to take the count beyond 200 (compared to the
teacher’s plan of going up to 25). In the third example, there are several moments of
laughter seemingly about the mathematics and perhaps the surprise of what
TouchCounts says, and in Example 4 some of the excitement of the children can
perhaps be read in the way they ask their own questions and pursue their own lines
of thinking. It is worth considering why this might be happening—what it is about
TouchCounts, the tasks offered to the children and what the adult does, that
occasions such a response (which is typical in our experience)?

One answer to the questions above, that might be suggested by the neuroscience
studies we reviewed, is that the context of the children’s work in the four Examples
allows a focus on number as a relation (see Coles, submitted). Whether the children
are counting in 5 s, making 10, creating even numbers above the shelf, or making
big numbers there is a consistent feature of their attention seemingly being drawn
by pattern—patterns in time, in touch, in sound and patterns within the number
name sequence. TouchCounts seems to free children from having to focus on
cardinality (while not cutting off that important possibility) in order to explore the
number system. Without the constraint of having to only work with numbers that
can be grasped and handled (as would be implied by an approach to early number
that emphasised the significance and difficulty of the move from concrete to
abstract), the children become excited by exploring numbers and relationships far
beyond what would be commonly expected at that age.

We conjecture that students of this age working with bigger than expected
numbers and gaining awareness of number relations through playing with ordi-
nality, will be developing quite different neurological structures to children offered
a more typical cardinal-focused and concrete image of number. We see an
important avenue of neuroscientific research (at the point where good enough brain
imagining technology becomes wear-able and safe, perhaps) in exploring the brain
effects of different pedagogical models of developing early number sense. At pre-
sent it has been exclusively the case that neuroscientific studies related to education
have led to implications for the classroom. In the spirit of the relational method-
ologies we use, we feel it is also time that principled classroom interventions lead to
hypotheses to be tested neuroscientifically.
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The Coordinated Movements
of a Learning Assemblage: Secondary
School Students Exploring Wii Graphing
Technology

Elizabeth de Freitas, Francesca Ferrara and Giulia Ferrari

Abstract This chapter uses assemblage theory to investigate how students engage
with graphing technology to explore mathematical relationships. We use the term
‘learning assemblage’ to describe provisional dynamic physical arrangements
involving humans and other bodies moving together and learning together.
Emphasis on dynamic coordinated movements allows us to study how mathematics
learning occurs in complex interaction with technology. We tap into the rich
concept of ‘sympathy’ to understand the way that students develop a feeling for
these coordinated movements as they participate collaboratively in mathematical
investigations. Through sympathetic movements, a learning assemblage sustains a
kind of affective agreement amongst the various bodies that participate. We show
how assemblage theory helps us rethink the role of affect in technology tool use.
This chapter sheds light on innovative ways of theorizing the role of Wii graphing
technology in mathematical practice.

1 Introduction

In this chapter we explore how a sense of coordinated movement is entailed when
students use Wii graph technology to explore mathematical relationships. We use
assemblage theory and its emphasis on relations between movements in order to
understand how these students are doing mathematics. The concept of assemblage
has been taken up and used extensively in various new materialisms and new
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empiricisms in the social sciences (Bennett, 2010; de Freitas, 2012; Fox, 2011;
Mazzei, 2013). Much of this work follows assemblage theory as articulated by
Gilles Deleuze and Feliz Guattari. According to this approach, assemblages are the
fundamental “real unit” of study. Deleuze and Parnet (2007), for instance, claim
that “the minimum real unit is not the word, the idea, the concept or the signifier,
but the assemblage” (p. 51). In the inclusive materialist perspective of de Freitas
and Sinclair (2014), the notion of assemblage is offered to de-essentialise the body
and rethink its contours in mathematical activity, so that the potentiality of the body
is stressed. Our focus in this chapter is on how human bodies collaborate and
assemble with technology when exploring mathematical ideas. In another contri-
bution in the book, Sinclair and Coles (Chap. Returning to Ordinality in Early
Number Sense: Neurological, Technological and Pedagogical Considerations) draw
on inclusive materialism to speak similarly of the role of the material environment
in mathematics teaching and learning, shifting attention to the assembling of the
human body with the concept of number. This chapter attempts to address some of
the concerns raised about the concept of assemblage, particularly the concern that it
is used all too often to simply name a set of individuals in a relationship (Buchanan,
2015). Indeed, we believe that the power of assemblage theory lies in the way it
emphasizes how bodies are provisional relationships between moving parts, and that
this coordinated movement involves an affective bond between components. In
other words, a body is assembled through the dynamic force of affect, and not
simply through mechanistic coordination of a set of components.

We use the term learning assemblage to describe provisional dynamic physical
arrangements involving humans and other bodies moving together and learning
together. Drawing on assemblage theory, we argue that perception occurs across
these provisional arrangements and not in one central processing location (like the
brain). This allows us to better study the way that acts of perception involve
collaborative movement and activity. To “perceive” is actually to assemble with a
relational environment in such a way as to fold back into it.

Such an approach highlights the concept of proprioception, which was originally
defined as “sense of locomotion” and has evolved into the idea of “muscle sense”
and a sense of one’s own body’s configuration. Proprioception is, by definition, a
relational property of any assemblage. For instance, proprioception explains how
we can move rapidly and without reflection in order to grasp a falling cup from a
table. As one moves, the “proprioceptive potentialities” (p. 38) of the body are
continuously reconfigured, as are the relative locations of objects in the foreground
and background. This insight resonates with phenomenological approaches to
perception, whereby corporeal space is “lived spatiality, oriented to a situation
wherein the lived/living/lively body embarks on an architectural dance that actively
spatializes (and temporalizes) through its movements, activities, and gestures.”
(Coole, 2010, p. 102). Proprioception is part of a larger concept called kinesthesia,
which refers to the ability of the human body to feel its own movement and states,
and thereby contributes to the sense that ‘oneself’ is the source of such action
(Streeck, 2013). Sheets-Johnstone (2012) argues “not only is our perception of the
world everywhere and always animated, but our movement is everywhere and
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always kinesthetically informed” (p. 113). These two ideas—proprioception and
kinesthesia—are pivotal to our understanding of learning assemblages.

We use the concept of ‘sympathy’ to study the affective nature of coordinated
movement in a learning assemblage. Although sympathy has various common sense
meanings, we draw from the work of Gilles Deleuze who reclaimed the concept and
tapped into its pre-Kantian meaning. For Deleuze, sympathy is a matter of inde-
pendently moving bodiesmoving together, and involves the power of a body to affect
and be affected (Deleuze & Parnet, 2007, p. 53). Sympathy thus takes on a pivotal
role in understanding how affect is entailed in any learning assemblage. Following
Deleuze and Parnet (2007), this ancient notion of sympathy, a term that comes from
ancient Greek (sumpátheia) combines the meaning of “come together” and “pathos”
and helps us understand how different bodies feel each other’s movements. The
notion of sympathy came to be used in diverse ways, but here we are interested in
how it refers to a kind of agreement between bodies whereby they are mutually
affected by each other through a coordinated movement. In our case, we want to
study the way that affect plays a part in coordinated movements of different students
insofar as they participate in a kind of collaborative and compassionate movement.
Thus the learning assemblage is achieved insofar as affect sustains an agreement
amongst the various bodies that join in. It is crucial that the term “agreement” not be
interpreted as a judgement of rightness, but is rather a way of describing how bodies
move together: “There is no judgment in sympathy, but agreements of convenience
between bodies of all kinds” (Deleuze & Parnet, 2007, p. 52).

We next discuss a teaching experiment using Wii technology. We first present
the context of research and the technology entailed, then the teaching experiment
and finally a discussion of the data in terms of assemblage theory, drawing on the
work of Manuel DeLanda (2006, 2011) who has further developed the ideas of
Deleuze and Guattari.

2 The Context and Wii Technology

The experiment we present here took place in a secondary school in Northern Italy,
as part of a wider study carried out during regular mathematics lessons. The study
involved a class of grade 9 students participating in activities aimed at introducing
the concept of function through a graphical approach using digital technology. The
class was heterogeneously composed of 30 students (20 males and 10 females) from
Torino and surroundings. The study lasted for 4 months and consisted of 9 meet-
ings of 2 h in the period December 2014–March 2015. Two researchers (the second
and the third author) designed and orchestrated the activities, while the teacher
collaborated as an active observer within the classroom. The instructional
methodology that was adopted offered diverse perspectives on the students’
experience: collective discussions, group work, and individual work, often by
means of written worksheets. The meetings took place in a laboratory room, which
is used in the school as a laboratory for mathematical practice.
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The activities were conceived so that the researchers could focus on kinaesthetic
and proprioceptive experiences with tools that mobilized mathematical concepts
related to functions. The approach draws on mathematics education research lit-
erature, which highlights that kinaesthesia and proprioception are part of mathe-
matical understanding (see Nemirovsky, 2003; de Freitas, 2012, 2014; Ferrara &
Ferrari, 2015; Roth, 2015). The teaching experiment focused on the spatio-temporal
relationships that allow students to capture and describe motion phenomena, so it is
greatly relevant for the study of mathematical functions, in part due to the historical
roots of this particular area of mathematics, based as it was on the study of
movement (e.g. Edwards, 1979). This research makes use of technology that is
related to the game console Nintendo Wii because of the potential that it offers in
terms of playing games through proprioception and kinaesthesia. The devices under
consideration are the remote controllers (also called Wii Remotes, or Wiimotes) and
the Balance Board of the Wii. The remote controllers are devices with which users
can control and play games where real movement simulations are produced. The
Wii balance board is usually used for games that depend on balance and body
perception in space. So, bodily activity is crucial during activities performed with
the Wii: the movement of the controller in the hand, the board under the feet,
susceptible to all the variations in the player’s balance, the eyes gazing at the
feedback on the screen. The bodily actions required are kinaesthetic activities that
deeply involve the proprioceptive capacities of the person who is participating. In a
similar manner, Baccaglini-Frank and Robotti’s contribution (Chap. Using Digital
Environments to Address Students’ Mathematical Learning Difficulties) discusses
proprioceptive and kinaesthetic interactions with specific software as ways of
accessing mathematical thinking by learners with disabilities.

The very first challenging step in this research project was to understand how to
use the Wii devices in suitable pedagogical ways. Growing attention to gamification
and serious games paradigms for education was seen as a way to tap student
willingness to engage with the technology, which led to considerations of how to
use the Wii as a resource for mathematics thinking and learning within a game
context. Indeed, for many students such technology is already associated with game
experiences, where players use the Wii technology to move through and solve
problems within a virtual environment. Moreover, research suggests that affect
might play a huge role in these kinds of game experiences. We were able to bring
this technology to bear on pedagogical concerns through the use of two software
applications, WiiGraph and DarwiinRemote, respectively working with two
Wiimotes and one Balance Board. The first application has been developed with
didactic goals by a group of researchers in mathematics education at the Centre of
Research in Mathematics and Science Education of San Diego State University:
Ricardo Nemirovsky and his colleagues (Nemirovsky, Bryant, & Meloney, 2012).
The second software is freely available online. WiiGraph opened a wide range of
opportunities to work with Cartesian graphs generated using Wii remotes. As the
player moves her remote, the graph is depicted in real time on a single plane and
captures instant by instant the movement of the corresponding controller. The graph
on the screen documents the distance of the remote from an origin point, given by a

62 E. de Freitas et al.

http://dx.doi.org/10.1007/978-3-319-61488-5_5
http://dx.doi.org/10.1007/978-3-319-61488-5_5


sensor bar, which is positioned in the interactive space. Two players can play at the
same time, and two different graphs can be shown on the screen.

Using a different modality, WiiGraph also allows working with a single graph
which assembles the movements of the two remotes. This entails processing and
integrating the two different movements in terms of one movement—that being the
one graph that is collaboratively produced. These kinds of graphs lend themselves
to two-person collaborative tasks involving two spatial variables, and can include
activities of creating a rectangle or circle or some other figure, where one player
controls the x-coordinate and another controls the y-coordinate. In a similar way,
when connected to a Balance Board with a person standing on it, DarwiinRemote
furnishes a dotted line on the screen. This line documents instant by instant the
position of the person’s centre of gravity, depicting the dotted graph of its pro-
jection on the horizontal plane (the plane of the board). This graph captures the
horizontal motion trajectory of the centre of gravity. Beyond the original aim, the
combined use of both software tools in the classroom allowed for rich explorations
of the relations between motion laws and corresponding planar motion trajectories
in the context of modelling motion. Even though we do not expand discussion
about them here, design principles also play a role in our research in terms of
novelty as for the studies presented in this book especially by Kynigos
(Chap. Innovations Through Institutionalized Infrastructures: The Case of Dimitris,
His Students and Constructionist Mathematics), Maschietto and Soury-Lavergne
(Chap. The Duo “Pascaline and e-Pascaline”: An Example of Using Material and
Digital Artefacts at Primary School), and Tabach and Slutsky (Chap. Studying the
Practice of High School Mathematics Teachers in a Single Computer Setting).

This chapter centres on a specific teaching experiment concerning sinusoidal
functions and their relationships with a circular trajectory. In the experiment, the
students made use of the first software, WiiGraph, to work with two types of
graphs: Line graphs and Versus graphs.

3 WiiGraph Software: Line and Versus Graphs

WiiGraph is an interactive software application that takes advantage of the
Wiimotes’ multiple features to detect and graphically display the location of two
users as they move along life-size number lines. In our experiment, an interactive
whiteboard was also present in the classroom for visual experiences with the graphs
projected by the computer screen, as well as a wide interaction space in the middle
of the room to enhance students’ opportunities for embodied and kinaesthetic
experiences with the controllers.

A graphing session with WiiGraph commences when each user holds the con-
troller pointed toward the sensor bar, so that a diffuse circle, matching a specific
colour for each Wiimote, appears in the graph area. The diffuse circle is an index of
the fact that the bar is capturing the distance of the controller at that moment—the
circle indicates that the sensing technology and the software are coordinated. Once
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each circle is visible, WiiGraph can produce real time graphs with lines of the
corresponding colour. Students can individually and collaboratively explore and
work with several graph types, challenges, and composite operations, including
shape tracing, maze traversal, and ratio resolution.

The graphs are configured in the graph area according to selected graph type,
operations, and parameters like ranges, time periods and targets. Visibility controls
can also be toggled during or after the session to selectively hide and show par-
ticular characteristics.

Among the various visual experiences that WiiGraph provides to the students,
two are the most interesting graphical types for our study: Line, on the one hand,
and Versus, on the other. We briefly discuss the two kinds of graphs to understand
their functioning and the dynamic modes of interactions they offer to the students.

The Line Graph type, without target and operation, allows for depicting two
distance-time lines of the kind a(t) and b(t), which correspond to the two Wiimotes’
movement in front of the sensor bar, where a and b are the positions of the
controllers and give their distances from the sensor. The thin coloured graphs are
shown on the same Cartesian plane in the fixed time interval and they correspond to
individual users (Fig. 1a). If an operation is selected, for example the sum a + b,
this type adds to the previous lines a new distance-time line, which is the result of
the operation at any given instant, in this case (a + b)(t).

The other type, which is the very focus of our study, is the Versus Graph type.
Versus plots an ordered pair of the distances of each user over time (the creation of
the ordered pair is implicit). Briefly speaking, the graph that appears on the screen
as result of the movement of the two Wiimotes is in this case the line a(b), which is
composed of the pairs of the kind (b(t), a(t)), for each t of the interval under
consideration. The graph is thus always a spatial graph, where the variable of time
disappears from the axes. In this perspective, one of the most significant challenges
offered by Versus involves, as already said above, the creation of plane shapes, like
rectangles, diamonds and circles (see e.g. Fig. 1b). Interestingly, this modality
offers the students the opportunity of working together to collaborate and coordi-
nate with each other for reaching a common goal.

Fig. 1 a Graphs with Line modality. b Graphs with Versus modality
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4 The Teaching Experiment

In the teaching experiment discussed in this chapter, the students worked with
WiiGraph in an activity focused on diagrams produced by the movement of two
Wiimotes. At this point of the study, the students had already worked with
WiiGraph on various aspects of functions through other activities using the Line
modality: for example, they had explored plane transformations of graphs, such as
translation and dilation; operations on functions, like the sum of functions; and
relations amongst families of functions, like parallel straight lines, etc. They had
also used the technology to face challenges that required matching suitable
movements with given graphs (which offered room to reason on the role of the
independent variable). Each of these activities required the students to use and
compare with each other the two space-time graphs of a(t) and b(t). In this case, no
constraint about coordinating the movements of the two Wiimotes in the interaction
space was, implicitly or explicitly, given by the task. Rather, each learner could do a
movement in a totally independent way with respect to the other learner. We
discuss here a completely new activity, following these ones, in which pairs of
students were asked to use the Versus modality of WiiGraph to generate together a
single ‘spatial graph’ of the kind a(b). These spatial graphs were the rectangle, the
rhombus, and the circle (see again Fig. 1b). The novelty of the activity resides, at
this point, in the fact that the students had to discuss ways of combining and
coordinating the movements of the two controllers in order to produce one of these
planar graphs. Concerning the rectangle and the rhombus, the students’ first
explored trials with the controllers. As their discussions evolved, they talked about
how the changing positions of the two controllers were connected and assembled in
the plane figure that they were seeing on the screen, referring to these positions as
horizontal and vertical components of movement. Next, the task aimed to make this
idea of horizontal and vertical components explicit for the whole class, asking two
students, in front of their mates, to imagine being these orthogonal components on
an imaginary vertical plane in space. The second author stood in front of them and
gestured in space the plane figure (rectangle, rhombus), by moving her hand, while
the two students had to move their right hands miming simultaneously the move-
ments of the two components (see Fig. 2a for the case of the circle). This was
purely a gestural affair, without the Wiimotes, in order to first explore the kinds of
movements entailed in this task. The task involves the two learners in commencing
their movements together with the researcher, synchronizing so that the learners’
hands are always (1) at the same distance above the floor and (2) at the same width
from the wall, as the researcher’s hand. In so doing, the researcher’s movement
dictates the timing of the students’ hand movements and the way in which they
have to be assembled so that the original figure is the combined effect of such
movements.

Then, the teaching experiment had the students return to the use of WiiGraph for
obtaining a specific plane figure, taking advantage of the previous experience.
Unlike the orthogonal gestures in the previous miming experience, the WiiGraph
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technology requires the two movements of the x and y coordinates (b and a,
respectively) be performed in parallel, adding another complex dimension to the
task. The WiiGraph software demands that the two controllers are moved along
parallel lines in front of the sensor bar, although the sensory data is then processed
as orthogonal. The movements, which before were orthogonally driven by the
researcher’s hand movement, and therefore more appropriately linked to habitual
ways of characterizing these two components of planar movement, now need to be
assembled in a different way. Indeed, the linear movements of the two Wiimotes
have to occur along parallel lines, even though their combined effect will produce a
similar two dimensional planar figure on the screen. In addition, the students need
to agree with each other, driven by the software’s feedback, so that the movements
occur in suitable timing with each other and at suitable but different speeds for the
combined movement to achieve the specific figure.

Thus the task entails tapping into time or duration in challenging ways, com-
bining individual heterogeneous rhythms to achieve a third definitive rhythm. This
third rhythm is then expressed as the target shape—be it the rectangle or rhombus.
This task points to the fundamental role of time or duration in theories of embodied
mathematics. It also shows how the learning assemblage implicates a confluence or
commingling (like an orchestra or river) of diverse speeds and movements.

In this chapter, we focus on an excerpt from the video data collected during this
teaching experiment when the students turned to the task of how to produce a circle
using Versus and two Wiimotes. Two students, Lucrezia and Barbara, came in front
of the class and mimed the gestures of the second author (Fig. 2a). They tried to
explore the hand movements that might be needed to generate an imaginary circular
trajectory in the air. Then, Lucrezia and Barbara started moving the Wiimotes with
the aim of producing a circle as a third movement on the screen. Figs. 2b and c
show the two girls while they are moving the controllers trying to be synchronized
both in rhythm and speed. Fig. 3a shows the new circular movement that they are
able to obtain on the screen (after some trials).

In order to better grasp the ways in which these coordinated movements of these
two girls relate to the mathematics of the software and the mathematics of the
figures they are making, we describe here the specific quantitative relationships that

Fig. 2 a Circle and components’ movements in the air. b, c Lucrezia and Barbara coordinating
the Wiimotes’ movements
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are at work in the Versus mode in which they are working. This is the mode where
the time variable is implicit, and the two coordinated movements must fuse to make
the figure, in this case either a rectangle, rhombus or circle. The diagram of these
figures, belonging to the plane ba, is constituted of pairs (b, a), which capture
specific positions in the plane and corresponding specific locations of the Wii
remotes. Each position depends on the distances of the two controllers from the
sensor during movement. If (b1, a1) and (b2, a2) are two distinct points of the
diagram, they differ from each other in terms of movement, for the times at which
the controllers reach the corresponding distances, say t1 and t2. So even if time
seems to disappear in the Versus modality, it is obviously crucial for the creation of
the diagrams, since these depend on movement. Indeed, what marks this modality
as crucial for the purposes of this chapter is that the movements of the two users
need to be coordinated to obtain the specific shape.

For example, in the case of a square or a rectangle (with sides parallel to the
Cartesian axes), each side is created by one controller staying still and the other
moving at a constant speed. In the case of the horizontal sides, the user at distance
b (horizontal coordinate) is the only one moving, while a vertical side requires just
the user at distance a to move. Thus, instant by instant, speed is not the same for the
two movements: while the one user keeps null speed, the speed of the other is to be
different from zero. If we take another quadrilateral (like a non-squared rhombus or
a slanted rectangle), the two movements imply again two different instantaneous
speeds, but there is also the fact that the ratio between speeds is always constant.
Finally, when the expected diagram is a circle, the coordination between the con-
trollers is much more difficult, and introduces challenging ideas about the rela-
tionship of movement to resultant diagram. In the case of the circle, the need to
produce a curved line makes the task different from all the previous ones that the
students have engaged in. With the circle, the speeds still need to be different from
each other, but the users have to move in varying speeds in the same unit of time:
while one user is at maximum speed, the other is at minimum speed while having to

Fig. 3 a The circle with Versus. b The two periodic functions with Line
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change direction, and when one is accelerating, the other needs to decelerate, and
vice versa. Most importantly, the ratio between the speeds now is not constant,
requiring the users to modulate their accelerations. The two movements must be
coordinated and in “agreement” insofar as they together form the desired figure.

The combined effect of the students’ coordinated movement, assembling the two
linear movements (one the horizontal variable, and the other the vertical variable)
produces a non-linear movement—that being the circular movement that appears in
the resultant ‘real-time’ graph of the circle. Each student’s hand movement has its
own rhythmic pattern, each acts as either the horizontal variable or the vertical
variable, and in this case the hands together form a new body or assemblage, a third
movement. Their speeds must be different but coordinated. In so doing, their two
different movements become conjoined, producing a combined effect. The com-
bined effect is produced through the shared timing of their movements, creating a
new movement that assembles the circular, creating the non-linear out of the
combinations of linear movements. Each hand movement has its own rhythmic
pattern, and each hand must move at a different speed, and indeed at related rates of
changed speed, in order to achieve the effect. Thus the two bodies are moving
together but apart, and the coupling of these movements forms a third movement
that belongs to neither of the original bodies.

This task involves the combined movement of the two girls and the WiiGraph
diagram. The two girls look at the screen where the graph appears but also down at
their two hands as they move back and forth. We see here how time is the medium
by which these two different movements commingle, and that a shared time must be
adopted in order to create a new curve. This shared synchronized time introduces a
new dimension to the combined movement, and yet each of the two human bodies
has to follow different rhythms and speeds to achieve the effect. Thus the task
points to the fundamental role of time or duration in theories of embodied math-
ematics, underscoring the way that bodies are assemblages of speeds and move-
ments, while problematizing how we typically understand a body. We see how
there is bodily agreement or coordination that characterizes the process of assem-
bling, an aspect of group formation or body formation that is often overlooked.
Agreement, as we use it, does not mean identification amongst parts, nor the
creation of a unified homogeneous assemblage, but is used here to describe the
coordination of heterogeneous movements – for instance a symbiotic relationship
entails an agreement between two very different bodies that move together in a
productive assemblage without erasing their distinctness. It is not that the two girls
form bonds because they identify with each other, but because they are to become
coordinated together. In that sense, there is a strong spatial element involved in the
affective bonding that we see in forming this learning assemblage.

In the final part of the activity under discussion, after achieving the circle in the
Versus modality (Fig. 3a), the researchers changed the software from Versus to Line
modality. This modality calls time back as the independent variable in the
space-time graphs, which capture over time the movement of the two Wiimotes as
the changing distance from the sensor. The same two girls worked the controllers,
and were asked to continue the movements that produced the circle in the other

68 E. de Freitas et al.



modality. The researcher repeated again and again “continue, continue” but said
nothing else. The technology does not allow for having both space-time graphs and
the circle (the spatial graph) present at the same time on the screen. So, the students
have now to re-assemble in imagination the new coordinated movement of the
circle graph, but now they produce the graphs of two periodic functions. The
periodic functions that appear on the screen are the effect of using the Line modality
(see Fig. 3b). The periodic functions (one for each girl) repeat horizontal or vertical
coordinates according to the winding of the circular movement, graphed against the
time variable. The class now sees the two girls continue to make the same hand
movements, but now instead of a circle they generate two sinusoidal graphs. The
teaching experiment helps the students grasp the many different ways in which
related movements are at work in the apparently fixed and familiar figure of the
circle, deepening their understanding of the geometric figure, and enhancing their
embodied understanding of the mathematics involved. The Line modality shows the
wave function for each of these movements, and shows where they intersect,
directing attention to when the movements must be in some sense ‘equal’.

In unexpected ways, this series of activities has “closed” the circle. From the
initial experiences, which involved the researcher’s hand as a catalyst of rhythm
and speed, to the coordinated movements that produced the circle graph, learners
pass to this last motion experience, which makes present the rhythm and speed of
time in the production of the circle. In other words, moving back and forth between
the Line and Versus modality allows the students to see how the same movements
generate a circle and two periodic functions, thereby bringing to agreement these
two ways of thinking about the movements inherent in making shapes. The periodic
graphs demonstrate and indeed emphasize the coordinated rhythm of the students’
movements.

5 Discussion: Assemblage Theory

In this section, we use assemblage theory to analyse the kind of mathematics
learning that occurs as students assemble with technology in mathematics class-
rooms. The experiment discussed in the previous section sheds light on innovative
technologies for teaching and learning mathematics. Assemblage theory, however,
helps us analyse this data less in terms of tool use and more in terms of the affective
force of the technology, insofar as it participates in the learning assemblage. The
focus on learning assemblages is new per sé in the panorama of mathematics
education literature on technology, which has tended to study technology in terms
of ‘tool use’ and the affordances for the human. Here we look beyond the human at
the entire assemblage that incorporates various kinds of non-human agencies. It is
important to note, however, that an assemblage is not merely a set of bodies
collected as one. Thus, it is not simply a matter of a student and a computer being
seen as a cyborg, as for example recognized by Borba and Villareal (2005) when
they speak of knowledge production by collectives of “humans-with-media”. These
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collectives are “the basis for an epistemology that focuses attention on how people
know things in different ways with the introduction of different technologies.”
(p. 27). Although our approach shares much with endeavour, there is an important
difference regarding the episto-ontological claims. These authors state that the
human should be considered as the epistemological subject, as the basic unit for
thinking and of analysis in the production of knowledge. They focus on knowledge
production and retain a dialectical relationship between the human and the tech-
nology: “We claim that a new technology of intelligence results in a new collective
that produces new knowledge, which is qualitatively different from the knowledge
produced by other collectives.” (p. 24). We do not want to abandon this insight, but
we want to draw attention to the more than human ontological relationships entailed
in such a collective. Our chapter aims to study human-technology interaction
without treating the human as a ‘user’ of a ‘tool’, because such an approach tends to
over-emphasize human will and agency, as seen in the French perspective of
instrumental genesis (e.g. Artigue, 2002; Baron, Guin, & Trouche, 2007). In other
words, we aim to rethink the nature of distributed agency across an assemblage, and
this entails rethinking the very nature of “use-value” since the idea harbours par-
ticular assumptions about agency (see for example the discussion around instru-
mental orchestration presented in Thomas et al.’s contribution in the book—
Chap. Innovative Uses of Digital Technology in Undergraduate Mathematics).
Moreover, we want to explore how the assemblage is assembled, rather than start
with pre-given ideas about an individual who mediates outside sources of knowl-
edge, like in the case of semiotic mediation or representational infrastructure the-
ories (see Bartolini Bussi & Mariotti, 2008; Hegedus & Moreno-Armella, 2008). As
Chorney (2014) points out, all too often “when the focus is on the student and the
tool interacting, a dualist approach has been adopted.” (p. 60). So, assemblage
theory gives us a new perspective that helps us study the more than human process
of “becoming-together”, whereby the Wii, the students and the circle are entangled
in the relational movement that characterises mathematical activity.

In particular, assemblage theory furnishes innovative ways of analysing the
classroom episode, focusing on the affective and ethical nature of material entan-
glement. In the episode presented, the learning assemblage and its movement
gradually emerge through various coordinated body movements, first between
Barbara and Lucrezia, who must move so as to agree with the circular trajectory
actualized by the researcher. The coordinated movement of the task re-assembles the
students’ hands into one movement forming a new body, that which actualizes the
sinusoidal functions on the screen. The assembling process entails an ongoing
agreement amongst various movements, which allows the collaborative activity to
achieve something: that being a series of graphs that express mathematical rela-
tionships. We see in this coordinated agreement a way of addressing the ethical
aspects of such activities, in that the students gradually and quietly become sym-
pathetic with each other. This sympathy or agreement amongst various movements
entails an ethical obligation to get the task done, or, following Barad (2010), shows
us how “entanglements are relations of obligation—being bound to the other—
enfolded traces of othering” (p. 265). The fact that bodies are related in terms of
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coordinated movements, and the fact that a graph is produced, relates directly to the
force of affect that sustains the assemblage. Affect is the force or glue that sustains
the sympathetic relations of agreement between Barbara and Lucrezia. Although it is
difficult to track the evidence of this force, doing so helps us think about the ethical
dimension of learning assemblages—there is an ethical obligation to the assemblage
and its movement because affect glues the assemblage together (provisionally).
There is a certain responsibility, which is part of the sympathetic manner in which
the two girls are working together. If we think of this as a positive learning
encounter, then this obligation to collaboratively engage with the task depends on
the force of affect—engaging in the task depends on the fact that bodies have a
capacity to be affected. Obligation is then a kind of coordinating with the other, a
sympathetic agreeing with the other—not an identification, but a coordinated effort.
The students affect each other. It is the power to be affected and to cause affects that
produces the learning assemblage. For Deleuze, assembling is sympathy.

DeLanda (2006, 2011) will speak of assemblages as emergent entities within
systems of matter, energy and information. The simplest assemblage, according to
DeLanda, is formed when two molecular populations of air (or water) at different
pressure or temperature are placed in contact. Because of the difference, a gradient
is formed. This gradient is the simplest assemblage, having a tendency to dissipate
but also a capacity to be exercised. Note that DeLanda (2011) defines assemblages
in terms of a mathematical concept—the gradient—which is the derivative of a
multi-variable function. A gradient is a vector whose components are the partial
derivatives of an n-dimensional function. In this way, DeLanda operationalizes and
makes more concrete the proposal that assemblages are relations of speed and
movement. He is not simply suggesting that gradient is a good metaphor for how
complex assemblages are formed. He is literally suggesting that assemblages are
differentiation processes and relations of difference. As in our case study, the
assembling of girls and technology is a gradient (a series of relations of speed and
direction). Quite explicitly, the technology entails that Lucrezia and Barbara’s
instantaneous speeds are captured as the two derivatives db/dt and da/dt that
constitute the speed of movement along the circle, as well as that their directions
make the direction of this movement. Briefly speaking, WiiGraph assembles the
derivatives in the slope of the line tangent to the circle point by point. This case
study with the circle illustrates DeLanda’s argument about how assemblages are
gradients—quite literally, the study directs our attention to how the concept of
circle is a series of speeds coordinated through the students’ movements. Their
timed accelerated movements are the gradients that are imperceptible in the graph.
The assemblage of graph-concept-student is achieved through these gradients.

Our case study illustrates this point well because the graphs on the screen are
produced only by a series of coordinated movements, and thus the achievement of a
circle graph is in fact nothing more than a complex set of differentials (degrees of
difference). What we take to be the unity of the achievement is actually a field of
movement and differential relations of speeds and directions. All of these compo-
nents partake of the mathematical work in the classroom; the mathematical work is
determined by the relations between the components. For example, when the hand
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movements of two students are assembled with each other, an entirely new kind of
movement emerges—a circular and also periodic movement emerges from the
combining of two linear movements. Thus mathematical concepts of linearity,
periodicity, etc. are at play in the emergence of this particular assemblage. The
speeds of the movements are intrinsically relevant to the resultant properties of this
assemblage—that being the circle graph and later the sinusoidal graphs. The circle
emerges as a specific varying relationship of speed and direction, and the sinusoidal
as a specific relation of varying slopes, both graphs emerging from the modulation
of Lucrezia and Barbara’s accelerations. The case study demonstrates how the
radically new—in this case circular movement—can emerge from a set of com-
ponents that are different in kind (linear). The linear can be combined to create the
circular. We often take this for granted, but it is actually a philosophically signif-
icant action. The fact that the circular motion emerges in this way is a perfect
example of how an emergent property can be distinctive and not possessed by the
components of the assemblage.

It is important to understand that the identity of an assemblage is both embodied
and expressed in its materiality. In other words, an assemblage is associated with a
body (an individualized collective) and expressed information as “raw physical
pattern.” (DeLanda, 2011, p. 200). This dual emphasis on embodiment and
expression is crucial for any theory of assemblage that aims to attend to learning.
A learning assemblage must thrive through its gradient while also express infor-
mation. A gradient in physics can be live or dissipated, and in either case it pos-
sesses the same energy. However, the live gradient expresses more information
because it is ordered. A dissipated gradient lacks order. A high degree of infor-
mation is associated with a highly structured assemblage. We can see in our case
study how the assemblage of students and Wii technology is highly structured
insofar as the students have been asked to do something and they are attempting to
do it. Like any classroom, there is some authority that structures the activity. But
the assemblage is also highly structured in a more systems-based way insofar as
the various movements of components—the two different students, the software,
the sensor—are carefully coordinated so that they can create the desired graph on
the screen. For example, Lucrezia and Barbara cannot see any mark on the screen if
they do not keep the controllers pointed at the sensor. Coordination between the
students’ movements and the sensor requires such a careful pointing during the
motion experience. In a similar way, the girls need the software feedback to grasp
the efficiency of their movements. They even do not know a priori that their
movements need to respect the conditions discussed above. It is only when their
coordinated movement realizes and sustains these conditions that they are able to
assemble with the technology in a sympathetic way that they are then able to draw a
circle-like diagram. It is precisely at this point that they experience the shared
obligation to each other that Barad cites above, that sense of shared commitment
and affective bond that achieves the coordinated rhythms and the circle graph.

The repeated attempts of the girls to achieve the graph shows how sympathies
proliferate in everyday minute interactions, lived in and as affective bonds, and
assemble into larger overt coordinated emotional responses between bodies. Minute
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sympathetic movements contribute to passionate attachments, so that the emotional
investment in such shared activities becomes pronounced: “sympathy is bodies who
love or hate each other, each time with populations in play, in these bodies or on
these bodies.” (Deleuze & Parnet, 2007, p. 52). Thus affect circulates across minute
movements as the two girls coordinate their activity. We see the learning assem-
blage evolve through these relations, where sympathy becomes “something to be
reckoned with, a bodily struggle”. The girls do not identify with each other or ‘put
oneself in the other’s shoes’, but they assemble with each other and with the Wii,
and thereby enter a process of becoming other that does not erase the other (Deleuze
& Parnet, 2007, p. 53). An ethical relationship emerges through the sympathetic
coordination of movement.

Thus there is an increasingly intense obligation amongst the many components
of the assemblage as the teaching experiment unfolds. The assemblage is embodied
in the relations between these participants, but is also expressed through and in the
information in the graph. That information is precisely the mathematical relation-
ships captured in the graph. There are many different ways in which the students
might have made some marks on the screen using the WiiGraph technology, and all
these different ways express different degrees of information. The desired outcome
—the circle—is clearly considered as that which possesses more information by the
adults present. Thus the sense of obligation that an entanglement entails, this sense
that we are entangled together in the shared task, is both an affective sympathetic
bond and an expression of information deemed to be information by the researchers
who are present. DeLanda is careful to situate assemblages in historical and cultural
context, and to recognize the contingency of how particular arrangements and
movements are deemed to possess more information than others. Although we do
not have the space to develop these ideas here, his approach is not a neutral or
ahistorical theory of assemblages, but rather one that brings together insights from
systems theory (in particular physical-chemical processes at work in systems) with
affect theory and information theory, in such a way that the historical-political
context is also integrated.

Summarizing, in this chapter we have used assemblage theory to offer new ways
of examining the processes through which individual human bodies come together
with technology in mathematical activity. Our innovative analysis highlights the
relational movement that characterises the entanglement of the technology, the
students and the mathematical concepts. The emphasis on relations between
movements has allowed us to study how the entire learning assemblage is doing
mathematics and thinking mathematically. With our episode we have proposed to
look at the process of becoming-together as more than human, instead of focusing
on the human as a user of tools. We have also seen how we have been able to frame
the discussion of the classroom episode shedding light on the degree of obligation
that is entailed in any assemblage, and how this helps us begin to think about the
ethical dimension of learning, where questions of obligation and responsibility must
be considered. This has brought us to draw attention to the role of affect in inno-
vative technology and to think of it as the force that sustains a sympathetic
human-technology assemblage. Affect is intended in Deleuzian terms, as the force
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that nourishes sympathetic relations of agreement between bodies whereby they are
mutually affected by each other. Affect thus circulates across bodily relations of
sympathy. Sympathy takes on a pivotal role in any learning assemblage.
Accordingly, it is not a matter of identification but of coordinated effort of agreeing
with the other—this agreeing allows for radically diverse forms of heterogeneous
movement, and is not a matter of compliance or becoming the same. It is rather an
attempt to think about how we form assemblages of radically heterogeneous
movements in ways that are productive of learning and ethical relationships. In our
case study, the bodily agreement or coordination produces rich mathematical
thinking—an assembling of gradients and directions that speaks directly to the
shape of the sinusoidal functions and their relationship with the figure of the circle.
The learning assemblage that we have analysed here is a complex entanglement of
affect and information, demonstrating how innovative technologies add to our
understanding of fundamental aspects of mathematics learning.
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Using Digital Environments to Address
Students’ Mathematical Learning
Difficulties

Elisabetta Robotti and Anna Baccaglini-Frank

Abstract The need to deal with different cognitive necessities of students in the
mathematical classroom, and in particular of students who persistently fail in
mathematics, frequently referred to as “having mathematical learning difficulties or
disabilities” (MLD), has become an important topic of research in mathematics
education and in cognitive psychology. Though frameworks for analyzing students’
difficulties and/or for designing inclusive activities are still quite fragmentary, the
literature rather consistently suggests that technology can support the learning of
students with different learning characteristics. The focus of this chapter is on
providing insight into this issue by proposing analyses of specific software with a
double perspective. We will analyze design features of the selected software, based
on the potential support these can provide to students’ learning processes, in par-
ticular those of students classified as having MLD. We will also analyze some
interactions that actually occurred between students and the software, highlighting
important qualitative results from recent studies in which we have been involved.

1 Introduction

Since we will be discussing software with respect to students “with mathematical
learning difficulties (MLD)” it is necessary to first explain how unclear the situation
actually is around the issue of low achievement in mathematics and MLD. This will
be done in the first section of this chapter, immediately followed by our opinion on
ways in which software can address specific MLD. The rest of the chapter is
divided into three other sections: one in which we describe the theoretical back-
ground we will be using to analyze the proposed examples of software; one in
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which we explore the design of specific digital environments to which we have
contributed; and a last section presenting selected results from studies we have
conducted with students using the previously analyzed software.

1.1 The Murky Notion of “Students with MLD”

When exploring persistent low achievement in mathematics from a cognitive point
of view, most of the literature from the field of psychology investigates typical
development of basic number processing, introducing terms for describing atypical
situations. Terms used to refer to students in such situations include “developmental
dyscalculia”, “mathematical learning disability (or disorder)”, among many others
(e.g., Butterworth, 2005; Passolunghi & Siegel, 2004; Piazza et al., 2010). The
definitions of these terms are still a topic of debate (e.g., Mazzocco, 2008), and the
ways in which they are used in different studies is inconsistent. For example,
Mazzocco and Räsänen (2013) note that “math learning disability (MLD) has been
used as synonymous with DD [Developmental Dyscalculia] […], but also as dis-
tinct from DD when MLD is used to refer to the larger category of mathematics
difficulties (MD)” (ibid., p. 66). Even the use of the acronym MLD is not consistent,
in that the “D” in some cases stands for “disabilities” and in others for “difficulties”
(ML stands for “Mathematical Learning” in all cases). We attribute this, at least in
part, to a problem described by Heyd-Metzuyanim (2013), according to which the
“learning disability” construct does not afford to differentiate between difficulties
that signal a stable disability in mathematics and those that are a result of inade-
quate teaching experiences or lack of sufficient exposure (also see González &
Espínel, 1999; Mazzocco & Myers, 2003).

The bulk of studies conducted within the field of cognitive psychology use tests
of different cognitive abilities (either cognitive domain specific or general) and
investigate how scores derived from those tests correlate with students mathemat-
ical performance on standardized achievement tests (e.g., Geary, 1994, 2004;
Nunez & Lakoff, 2005; Piazza et al., 2010; Andersson & Östergren, 2012; Szucs
et al., 2013; Bartelet, Ansari, Vaessen, & Blomert, 2014). In this scenario it is not
surprising that the cut off scores for diagnosing MLD vary from the 3rd to the 32nd
percentile (Mussoli, 2009), and prevalence is reported between 1.3 and 13.8% of
the population (see, for example, Kaufmann et al., 2013; Mazzocco & Räsänen,
2013; Watson & Gable, 2013).

It is beyond the scope of this chapter to delve deeper into these issues; for our
purposes it suffices to consider students “having MLD” as students with persistent
low achievement in mathematics (this is what the “D” in the acronym MLD will
refer to in this chapter), who are at risk of being labelled by clinicians as “having a

78 E. Robotti and A. Baccaglini-Frank



learning disability” or who have been diagnosed clinically with such a condition.1

So any of these conditions are what we imply when using the acronym MLD in this
chapter.

In Italy the percentage of these students diagnosed with learning disabilities is
estimated between 3 and 5% (MIUR, 2011a) and over the last few years the
percentages have been persistently increasing (MIUR, 2011b). Because of this
phenomenon and because in Italy classrooms are completely inclusive,2 it has
become a more and more pressing issue to study and develop didactical practices
appropriate for all students (Ianes, 2006; Ianes & Demo, 2013). Though frame-
works for analyzing students’ difficulties and/or for designing inclusive activities
are still quite fragmentary, the literature rather consistently suggests that technology
can support the learning of students with different learning characteristics (Edyburn,
2005; Baccaglini-Frank & Robotti, 2013; Robotti, Antonini, & Baccaglini-Frank,
2015), also in inclusive teaching settings, such as the Italian classrooms (Robotti &
Ferrando, 2013).

1.2 How Can Software “Address” Specific MLD?

We must ask ourselves what it means to “address” students’ learning difficulties.
Once we will have agreed upon a meaning for this, we will be able to discuss how
software can do it.

The paradigm used (at least in Italy) in special needs education, as has recently
been argued by the Santi and Baccaglini-Frank (2015), is such that the teaching
activity strives to allow the “special needs” student to reach as much as possible,
according to his/her possibilities, the same objectives of “normal” students, thereby
disregarding his/her identity and being “special” from many points of view (cog-
nitive, social, communicative, emotional, perceptive…). The stand point behind this
approach is that thinking and learning is purely in the functioning of the mind (or,
according to neurosciences, in the brain) and that a deficit provokes a dysfunction
that has to be recovered resorting to a variety of supports: technological, didactical,
psychological and social. This leads to a homogeneization of all students’ contri-
butions, that tends to not take into account or value in any way alternative insight
brought to the classroom by the special needs student. To overcome such approach,
the authors proposed a paradigm shift: “Educational activity should aim at fostering
a mode of existence in mathematics, i.e., being and becoming with others to make
sense of the world also through mathematics. The aim of education should be to

1There are four types of learning disabilities recognized at the moment in Italy: dyslexia,
dyscalculia, dysgraphia, dysorthographia (LEGGE 8 ottobre 2010, n. 170, Nuove norme in materia
di disturbi specifici di apprendimento in ambito scolastico).
2In some “extreme” cases Italy grants a special education teacher to the student in need, who will
sit next to the student during given hours of the student’s regular school schedule.
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allow all students to make sense of the world in spite of their particular conditions”
(ibid., p. 222).

The described approach and the proposed paradigm shift are useful to keep in
mind when considering two main directions in which the development of techno-
logical tools for MLD students seems to be going (at least in Italy): some software
aim at strengthening a particular cognitive or mathematical ability, through repet-
itive tasks, designed for a one-to-one student-computer interaction, in an environ-
ment with constrained types of input and feedback—we will refer to this approach
as for “rehabilitation”; while other software are designed to propose fundamental
mathematical content (e.g., the notion of “variable” or “function”) in ways that take
advantage of particular hardware and software affordances. We will refer to this
approach as “radical”, because didactical material developed within it may propose
(although they do not have to necessarily), more or less explicitly, radical changes
in the mathematical curriculum and/or in the modalities in which certain content is
proposed. Interactions with software designed according to the “radical” approach
are frequently less constrained: tasks within the environment need to be designed by
an educator (as they might not be part of the software), input and feedback may be
given in various ways, and the role of the teacher becomes fundamental in medi-
ating the meanings developed by the students within the environment.

Neither the “rehabilitation” nor the “radical” approach are necessarily one
“better” than the other—of course to make any judgment of this sort we would have
to make explicit the criteria according to which we are making such judgment—and
both could be useful in supporting the learning of students with MLD. However, if
our aim is to provide means for as many students as possible to make sense of the
world, through mathematics, in spite of their particular conditions, it is inevitable to
embrace, at least some of the time, the latter approach, when teaching. This
approach is somewhat innovative in education, at least in the Italian panorama.

Since researchers in psychology and neuroscience have been designing, con-
ducting and publishing research with rehabilitation software (e.g., Wilson, Revkin,
Cohen, Cohen, & Dehaene, 2006; Wilson, Dehaene, Pinel, Revkin, Cohen, &
Cohen, 2006; Butterworth & Laurillard, 2010), in this chapter we would like to
focus mostly on software developed within the radical approach, which is inno-
vative because it characterizes not only software design but also a general line of
research regarding the development of didactical material that seems to be appro-
priate for inclusive mathematics education (see, for example Baccaglini-Frank &
Poli, 2015a, b; Robotti, 2017). Software designed and adopted within the radical
approach can also offer the student with MLD specific compensatory tools
embedded within it, to alleviate the cognitive load of particular tasks in order for the
student to be able to devote as many resources as possible to fundamental math-
ematical reasoning involved in the activity. However, these environments are not
designed only to compensate certain cognitive difficulties. Within a software
designed according to the radical approach there may exist sub-environments in
which, through repetitive exercises, a specific ability or set of abilities may be
strengthened. On the other hand, software developed primarily to strengthen a
specific ability through repetitive exercise can be more difficult to use for fostering
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the development mathematical content within the radical approach. This is the case
also because the closed, and in many cases fast, interaction between student and
software does not leave much space for teacher-guided interventions.

In general there is no clear boundary between software designed according to
either approach: we prefer to think of a spectrum with “radical” and “rehabilitation”
designs at the extremes. Most software we can think of would be situated along the
spectrum, more towards one or the other extreme. Moreover, there are significant
variables, such as how the software is actually used or what role the teacher decides
to play, that can contribute to shifting the software’s placement within the spectrum,
in either direction. In this sense, it can be possible to also use rehabilitation software
within the innovative approach to special education presented above.

The perspective we are taking on how software can address specific MLD
provides our rationale for analyzing how digital resources can support students in
learning mathematics. The analyses will be carried out using a composite frame-
work emerging from the notions of “Universal Design for Learning” and theories
on channels for accessing and producing mathematical information.

2 Theoretical Background

In the field of mathematics education a number of frameworks have been devel-
oped, on one hand, to explain phenomena like “students experiencing learning
difficulties in mathematics” from different perspectives, and others have provided
tools for analyzing teaching-learning activity within technological settings (e.g.,
Lagrange, Artigue, Laborde, & Trouche, 2003; Noss & Hoyles, 1996; Bartolini
Bussi & Mariotti, 2008). However, these theoretical tools are still quite fragmentary
and very few have been adequately adapted and/or integrated to take into account
findings (both practical and theoretical) from neighbouring fields such as cognitive
psychology and neuroscience that have also been very active in investigating such
phenomena. Notable exceptions are studies by the Unit of Instructional Psychology
and Technology in Leuven, directed by Lieven Verschaffel (e.g., Vamvakoussi,
Dooren, & Verschaffel, 2013); studies by Mulligan and her team based in Australia
(e.g., Mulligan & Mitchelmore, 2013); and the work of the Center for Applied
Special Technology (CAST), elaborating on the concept of Universal Design for
Learning (Edyburn, 2005), which we will present in Sect. 2.2. Also, recent work of
Karagiannakis and his colleagues contributes to establishing common grounds, at a
cognitive level, attempting to transpose relevant aspects of the cognitive psychol-
ogy literature into the field of mathematics education (Karagiannakis,
Baccaglini-Frank, & Papadatos, 2014; Karagiannakis & Baccaglini-Frank, 2014;
Karagiannakis, Baccaglini-Frank, & Roussos, 2017).

In particular in the Italian context, we have been active in trying to elaborate
theoretical grounding for research on MLD students when teaching and learning
include physical and digital artifacts (e.g., Baccaglini-Frank & Robotti, 2013;
Baccaglini-Frank & Scorza, 2013; Robotti & Ferrando, 2013; Baccaglini-Frank,
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Antonini, Robotti, & Santi, 2014; Robotti et al., 2015; Santi & Baccaglini-Frank,
2015; Robotti et al., 2015; Baccaglini-Frank & Bartolini Bussi, 2016). In the two
following sections we will review some notions from the theoretical background of
cognitive psychology that will be useful for the analyses in this chapter (Sect. 2.1),
and review some principles and guidelines from the framework elaborated by
CAST that will also be insightful in the analyses proposed in the rest of the chapter
(Sect. 2.2). The relationship between these different frameworks will allow us to
analyse how and why the use of technology can foster mathematical learning in all
students who present MLD.

2.1 Means of Information Access and Production,
with Particular Attention to Mathematical Information

Research in cognitive psychology has identified four basic channels of access to
and production of information: the visual-verbal channel (verbal written code), the
visual non-verbal channel (visual-spatial code), the auditory channel (verbal oral
code), and the kinaesthetic-tactile channel (Mariani, 1996).

Italian research has indicated that most students with specific learning difficulties
(or disabilities), not only in mathematics, encounter greatest difficulties in using the
visual-verbal channel, especially those with dyslexia, and this conditions their
development for preferring different channels (Stella & Grandi, 2011).

The importance of these different channels to access and produce information
shifts the focus from simply “being able or not” to solve a certain task, to different
paths and strategies adopted by the individual (whether successful or not) for
approaching the task. This allows to explain mathematical difficulties not only in
terms of “lacking abilities” but also in terms of necessity to use certain preferred
modalities that lead the student to access, elaborate and/or produce information in a
certain way.

Moreover, various studies in cognitive science point to a correlation between
mathematical achievement, working memory (Raghubar, Barnes, & Hecht, 2010;
Mammarella, Lucangeli, & Cornoldi, 2010; Mammarella, Giofrè, Ferrara, &
Cornoldi, 2013; Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013), and non verbal
intelligence (DeThorne & Schaefer, 2004; Szucs et al., 2013). These findings
suggest that non-verbal intelligence may partially depend on spatial skills (Rourke
& Conway, 1997) and these can potentially be important in mathematical
achievement, where explicit or implicit visualization is required.

We have found other theoretical stances advanced in mathematics education that
are in line with the idea that means of access to and production of information,
different from the visual-verbal one, can be very important in learning. In particular,
these have pointed to the importance of experiences of a sensorial, perceptive,
tactile and kinaesthetic nature for the formation of mathematical concepts
(Arzarello, 2006; Gallese & Lakoff, 2005; Radford, 2003; see also Chap. The
Coordinated Movements of a Learning Assemblage: Secondary School Students
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Exploring Wii Graphing Technology). For example, Arzarello (2006), quoting
Nemirovsky, points to how recent research in math education suggests that the
paradigm of multimodality implies that “the understanding of a mathematical
concept rather than having a definitional essence, spans diverse perceptuomotor
activities, which become more or less active depending of the context”
(Nemirovsky, 2003, p. 108). Also Radford (2003, 2006) highlights that the
understanding of relationships between bodily actions carried out through artifacts
(objects, technological tools, etc.) and linguistic and symbolic activity is essential in
order to understand human cognition and mathematical thinking in particular.

A new framework for teaching and learning in the context of “special needs” has
been developed, taking into account many of the perspectives advanced above, and
suggesting that technology can facilitate all students’ learning. The framework is
built around the concept of Universal Design for Learning.

2.2 Universal Design for Learning

The Center for Applied Special Technology (CAST) has developed a compre-
hensive framework around the concept of Universal Design for Learning (UDL),
with the aim of focusing research, development, and educational practice on
understanding diversity and applying technology to facilitate learning (Edyburn,
2005). UDL includes a set of Principles, articulated in Guidelines and Checkpoints3

that arise from CAST’s review of current studies on how to reduce barriers in
learning and to increase access to curriculum for all the students, including those
with disability, giving all individuals equal opportunities to learn. The research
grounding UDL’s framework is that “learners are highly variable in their response
to instruction. […] individual differences are not only evident in the results; they are
prominent. However, these individual differences are usually treated as sources of
annoying error variance as distractions from the more important “main effects””.4 In
contrast, UDL treats these individual differences as an equally important focus of
attention. The UDL framework considers these findings to be fundamental to
understanding and designing effective instruction.

As a matter of fact, “individuals bring a huge variety of skills, needs, and
interests to learning. Neuroscience reveals that these differences are as varied and
unique as our DNA or fingerprints. Three primary brain networks come into play:”5

Recognition Networks, which refer to recognition tasks such as: How we gather
facts and categorize what we see, hear, and read, Identifying letters, words;
Strategic Networks, which refer to strategic tasks such as solve a math problem;

3For a complete list of the principles, guidelines and checkpoints and a more extensive description
of CAST’s activities, visit http://www.udlcenter.org.
4See http://www.udlcenter.org/aboutudl/udlevidence.
5See http://www.udlcenter.org/aboutudl/whatisudl.
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Affective Networks, which refer to the affective dimension: How learners get
engaged and stay motivated, How they are challenged, excited, or interested.

Linked to each of these brain networks, UDL advances three foundational
Principles6: (1) provide multiple means of representation, (2) provide multiple
means of action and expression, (3) provide multiple means of engagement. In
particular, guidelines within the first principle have to do with means of perception
involved in receiving certain information, and of “comprehension” of the infor-
mation received. Instead, the guidelines within the second principle take into
account the elaboration of information/ideas and their expression. Finally, the
guidelines within the third principle deal with the domain of “affect” and “moti-
vation”, also essential in any educational activity. For our analyses in this chapter
we will focus in particular on specific guidelines within the three Principles.7

Guidelines and checkpoints within Principle 1 (provide multiple means of rep-
resentation), suggest proposing different options for perception and offering support
for decoding mathematical notation and symbols (checkpoints 1.2, 1.3, 2.3). We
will give examples of how this can be realized through different software.
Moreover, guidelines suggest the importance of providing options for compre-
hension highlighting patterns, critical features, big ideas, and relationships among
mathematical notions (checkpoint 3.2). We will identify various of such options in
the remainder of the chapter. Finally, our analyses will give examples of how
software can guide information processing, visualization, and manipulation, in
order to maximize transfer and generalization (checkpoints 3.3 and 3.4).

Moreover, our analyses will provide examples of how guidelines from Principle
2 (provide multiple means of action and expression) can be incorporated into
technology-based mathematical learning, in particular how different options for
expression and communication supporting planning and strategy development can
be offered (checkpoints 4.2 and 6.2). Finally, our analyses will show how certain
software can recruit students’ interest, optimizing individual choice and autonomy,
and minimizing threats and distractions (checkpoints 7.1 and 7.3).

In the two following sections we will analyze specific examples of software,
classifying them by the type of mathematical learning they are designed to address.
The analyses highlight which kinds of compensatory tools each software offers the
student and which kind of tasks could be designed in order for the student to be able
to devote as many resources as possible to fundamental mathematical reasoning
involved in the activity.

Each software will be introduced by a section looking into research around the
particular way of thinking or concept or tool being targeted. The rationale for
choosing the software presented is that each one was used by one of the authors in
studies carried out in the context of special needs or inclusive mathematics

6For further details see: http://www.udlcenter.org/aboutudl/whatisudl/3principles.
7The items are taken from the interactive list at http://www.udlcenter.org/research/
researchevidence.
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education, focus of this chapter. In some cases one of the authors was also directly
involved in the software design process, while in other cases a particular software
was chosen among other existing ones because of its fit with the UDL principles.

3 Examples of Digital Environments to Promote
the Development of Number Sense and Spatial
Orientation

In this session we analyse different software promoting number sense and we report
on results from a case study on learning special orientation by interacting with the
software Mak-Trace.

3.1 Software to Promote “Number Sense”

According to various studies a characterizing feature of students with MLD is a lack
of “number sense”. Although there is no monolithic interpretation of number sense
across the communities of cognitive scientists and of mathematics educators, and
not even within the community of mathematics educators alone (e.g., Berch, 2005),
there seems to be a certain consensus about its importance in mathematics educa-
tion. Indeed the development of number-sense is seen as a necessary condition for
learning formal arithmetic at the early elementary level (e.g., Griffin, Case, &
Siegler, 1994; Verschaffel & De Corte, 1996) and it is critical to early algebraic
reasoning, particularly in relation to perceiving the “structure” of number (Mulligan
& Mitchelmore, 2013). Some crucial aspects upon which number sense is seen to
rely, are: recognition of part-whole relationships, appropriate uses of fingers, and
the development of a mental number line. We will describe these and explain how
they can be promoted through software applications.

Part-whole relationships arise from what Resnick et al. (1991) have described as
protoquantitative part-whole schemas that “organize children’s knowledge about
the ways in which material around them comes apart and goes together” (ibid.,
p. 32). The interiorization of the part-whole relation between quantities entails
understanding of addition and subtraction as dialectically interrelated actions that
arise from such relation (Schmittau, 2011), and recognizing that numbers are
abstract units that can be partitioned and then recombined in different ways to
facilitate numerical (also mental) calculation.

Literature from the fields of neuroscience, developmental psychology, and
mathematics education indicate that using fingers for counting and representing
numbers (Brissiaud, 1992), but also for accomplishing tasks that have no apparent
connection to mathematics (Butterworth, 2005; Gracia-Bafalluy & Noel, 2008), can
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have a positive effect on the development of numerical abilities and of
number-sense. The importance of the role attributed to the use of fingers in the
development of number-sense by the quoted literature is highly resonant with the
frame of embodied cognition, mentioned in Sect. 2.1. For example, hands and
fingers can be used to foster development of the part-whole relation, in particular
with respect to 5 and 10, in a naturally embodied way.

Development of a mental number line

Number sense has also been put in relationship with the development of an internal
representation of the number line. A number of studies have explored a relationship
between space and the processing of numbers (e.g., Pinel et al., 2004; Seron et al.,
1992), suggesting that the (mental) number line model corresponds to an intuitive
representation and to a natural translation of the sequence of (natural) numbers into
a spatial dimension. This model can be used in more abstract (and potentially more
general) processes compared to that of counting existing sets of objects, because,
for example, it opens to the possibility of counting any number of objects and any
object. The number line model is not a static representation, nor is it necessarily
innate,8 instead studies suggest that it evolves as the subject develops cognitively,
and such evolution depends on cultural influences (see, for example, Zorzi, Priftis,
& Umiltà, 2002).

Moreover, studies suggest that a solid mental representation of the number line
provides students with a rapid and successful means of access to numerical infor-
mation necessary for the development of a variety of arithmetical skills. The
number line can also be an appropriate tool not only for calculation (mostly addition
and subtraction) with numbers within 10 (which can also be done using hands and
fingers) but also for dealing with numbers beyond 10, when hands and fingers no
longer are sufficient.9

Finally, the number line is not made up of only natural numbers, but also all
other real numbers, which include, for instance, fractions. However, frequently the
position of numbers on the number line can become a cognitive obstacle: for
example, placing fractions on the number line (mathematically this involves ordinal
properties and the density in the field of rational numbers) is notoriously a difficult
task for many students (Robotti et al., 2015).

Given these considerations on fundamental aspects that have been identified as
promoters of number sense, we can assume that software designed to promote these
aspects, may be used in one of two ways: to help prevent the emergence of MLD in
young students (younger than 8), or to strengthen weaker “number sense” abilities
of older students who have developed MLD. In the sections below we will describe
two innovative examples of these kinds of software.

8For a more complete discussion see volume 42(4) of the Journal of Cross-Cultural Psychology.
9Sometimes fingers are used also to represent numbers larger than 10, but in this case the meanings
referred to by different fingers must be different (for example 4 and 13 might be represented raising
the same fingers: 1 on one hand and 3 on the other) which can be confusing for children.
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3.1.1 Software Promoting Number Sense Through Fingers

Technology offers the possibility of embedding a number of features into software
that can be significant in promoting number sense through the use of fingers. For
example, thanks to touch and multi-touch screens, input may be given in terms of a
number of fingers placed simultaneously on the screen, as a number of sequential
taps (possibly on items in the stimulus), or as particular gestures (swipe, pinch,
lasso/capture, …). Here we give an example of software that exploits such inno-
vative potential.

TouchCounts,10 an application for the iPad, is made up of two environments
(Sinclair & Pimm, 2014; Sinclair & Zaskis, in press; see also Chap. Returning to
Ordinality in Early Number Sense: Neurological, Technological and Pedagogical
Considerations). Here we will briefly analyze the “Operating world” with respect to
its design and potential of fostering development of number sense through fingers.
In this environment the student can create autonomous numbered sets, here referred
to as herds, by placing one or several fingers on the screen. This immediately
creates a large disc encompassing all the fingers and including, in the middle, a
numeral corresponding to the total number of fingers touching the screen. At the
same time, every one of the fingers on the screen creates its own much smaller (and
unnumbered) disc, centred on each fingertip. When the fingers are lifted off the
screen, the numeral is spoken aloud and the smaller discs are then lassoed into a
herd and arranged regularly around the inner circumference of the big disc. This
design offers four representations (UDL Principle 1) of a number: visual non verbal
(or analogical), symbolic (the numeral in the herd), auditory, and of course gestural
(the number is represented by the number of fingers placed on the screen simul-
taneously). Moreover, the student is guided to perceive the herd a single entity
made up of units through the movement of the small discs all together in either a
clockwise or counter-clockwise direction.

The software also offersmultiplemeans of action and expression (UDLPrinciple 2)
because the student can act on the herds in different ways. For example, s/he can
interactively drag herds, either to move them around on the screen or to operate upon
them. After two ormore herds have been produced they can either be pinched together
(ametaphor for addition) or ‘unpinched’ (metaphor for subtraction or partition).When
herds are pinched together they then become one herd that contains the small discs
from each previous herd. The new herd is labelled with the associated numeral of the
sum, which TouchCounts announces aloud. Moreover, the new herd keeps differen-
tiated colors for the small discs coming from the previous herds. Similarly, the student
can do an inverse pinch gesture to decompose a given herd into two herds. The gesture
supports the idea of partitioning, or ‘taking out’ or ‘removing’, which, in turn, supports
the idea of subtracting. The further the swipe travels, the more will be taken out from
the starting herd. When the swiping finger is lifted, two new herds are formed and
TouchCounts announces the number that has been taken out.

10See https://itunes.apple.com/us/app/touchcounts/id897302197?mt=8.
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Students can engage with this software through different means (UDL Principle 3)
—using gestures, through listening, visually—as they freely explore or approach a
variety of tasks proposed by a nearby educator (e.g., “make n all at once”, “count by
n”, “make the herds equal”, “howmany different ways can youmake n?”). Indeed, the
environment allows proposing many different types of tasks that can foster the
development of number sense in different ways, through a “radical” approach.

3.1.2 Software Promoting Number Sense Through the Number Line

There are many software applications that propose representations of the number
line: some are discrete containing only natural numbers, others continuous with
marks such as those on the ruler, some are static and designed only for responding
to specific tasks implemented within the application, while others are dynamic and
allow various user interactions.

A first example we would like to analyze is Motion Math: Fractions,11 an
application for tablets. At the moment it is designed only for promoting processes
involved in the estimation of fractions, exploiting both epistemological and cog-
nitive analyses of fractions (Riconscente, 2013), emphasizing, on the one hand, the
importance of using the number line to give coherence to the study of fractions and
of whole numbers and, on the other hand, the neurological evidence of the mental
number line discussed above (Zorzi et al., 2002).

Within this environment a number line appears on what looks like the “ground”
together with a ball that can bounce (completely elastically) and that can be con-
trolled by the gravity accelerator of the tablet that is, it responds to physically tilting
the tablet, as if the ball had a weight. A fraction appears within the ball, which
needs to be placed correctly on the line. The fraction is presented in different
representational formats: it may be in the form n/m, or a decimal number, a per-
centage, or a shaded section of a circle. Successive hints are given if the user makes
mistakes in positioning the fraction on the line. The app is designed as a game (the
user gets points, passes levels, and “dies” when a mistake has been made even after
all the hints). The ball’s regular bounces constrain the user’s response time, forcing
each placement choice to be planned and executed in pre-determined and regular
time intervals.

The application appears to be in line with a number of the UDL principles
outlined in Sect. 2.2: multiple means of representation are provided and integrated
(fractions are presented in different forms: as “n/m”, as decimal numbers, as per-
centages, as parts of a whole, and as numbers on the number line), support is offered
in the form of successive hints for finding the position of the given fraction on the
number line, the successive hints highlight critical features of the relationship
between the given representations of fractions and their position on the number line,
no verbal skills are necessary because the channels activated for input and output of

11See the app Motion Math: Fractions at http://motionmathgames.com/motion-math-game/.
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information are visual and kinaesthetic, distractions are minimized by the need to
plan and give successive input according to pre-determined and regular time
intervals.

Moreover, Motion Math: Fractions can be seen to exploit embodied learning
and, in particular, the integrated perceptual-motor approach (Nemirovsky et al.,
2012) in the development of the mental number line.

It is possible (and, we believe, advisable in many cases) to complement a
student-software interaction with verbal guidance and successive discussion of each
playing session. For example, in the episode presented in Bartolini,
Baccaglini-Frank, and Ramploud (2014) the student, who had been diagnosed with
various learning difficulties, including severe dyscalculia, was significantly helped
by the introduction of a different way of reading the fractions in the falling ball. The
teacher (second author) suddenly exclaimed: “Let’s name the fractions as Chinese
do!…[1/2 falls] Of two parts, take one!…[3/4 falls] Four parts, three!” and the
student improved his performance very quickly, especially on unitary fractions
(e.g., 1/5). Similar episodes have since been observed with other low achievers.

In this example we can observe that providing options for mathematical
expressions and symbols by language and different linguistic expression, can be
effective for overcoming some difficulties in math comprehension (according to
Principles 1 and 2 of UDL framework). We note that in the case described above
the verbal expression that identifies the fraction expresses at the same time a process
for constructing (and thus placing) the fraction that follows a same order.

3.2 Spatial Orientation and Non-verbal LD

A possible source of difficulties in mathematical learning is what has been referred
to as a non-verbal (or visual-spatial) LD (e.g., Mammarella et al., 2010; Andersson
& Östergren, 2012; Mammarella et al., 2013). An ability that may be weaker in
these students is perspective-taking (Piaget & Inhelder, 1967; Clements 1999), that
is being able to embrace different frames of reference based on one’s self or on
external points of reference, is fundamental both in everyday life and in instruction.
The importance of such ability is declared, for example, in the Italian National
Curriculum Indications (MIUR, 2011a, b) relative to mathematical learning about
Space and Figures. Developing the perspective-taking ability may not be
straightforward: it involves a transition from “perceptual space” to “representational
space” (Piaget & Inhelder, 1967), as well as “connecting different viewpoints”
(Clements, 1999, p. 3).

While children showing typical development seem to have acquired such ability
by the end of primary school, in some children with MLD—including develop-
mental dyscalculia (e.g., Mazzocco & Räsänen, 2013)—the development of
perspective-taking, among other abilities, may be delayed and/or deficient.

Software environments that seem particularly appropriate for addressing per-
spective taking are microworlds, such as Logo (Papert, 1980). The potential of
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Logo-like microworlds for fostering learning in students with persistent difficulties
in mathematics is documented in the literature. In particular, Vasu and Tyler found
that Logo may foster the development of spatial abilities and of critical thinking
skills (Vasu & Tyler, 1997), and various other researchers have reported several
potential benefits of using Logo with students who have learning difficulties
(Atkinson, 1984; Maddux, 1984; Michayluk & Saklofske, 1988; Russell, 1986),
especially using a more structured, mediated approach (Ratcliff & Anderson, 2011).

Below we describe design features of a Logo-like microworld, Mak-Trace, an
environment we used to analyze cognitive processes involved in juggling different
frames of reference of students with non-verbal difficulties.

3.2.1 The Logo-like Microworld Mak-Trace

Mak-Trace is an environment in which a character can be programmed to move and
draw on a grid. The grid is 10 � 15 and the character can only be programmed to
go forwards (F) or backwards (B) (of the distance of one side of a square of the grid
at the time) or to turn 90° clockwise (R) or counterclockwise (L). The characters
can be dragged on the grid with a finger to choose a starting position and then they
will, by default, leave a trace mark as they move according to the commands in the
programmed sequence (see Fig. 1). It is also possible to program the character so
that it does not leave a trace mark on the grid, by inserting appropriate commands in
the programmed sequence. The commands appear as icons that have to be dragged
and placed on a vertical bar that represents the programmed sequence. This design
proposes different representations (UDL Principle 1) corresponding to the

Fig. 1 Main screen in Mak-Trace, where the student can program his/her character
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movements of the snail on the grid: a “draggable” arrow-symbol, a movement of
the character on the grid, a segment (or point) traced on the grid.

An aim in designing Mak-Trace was to create an environment accessible to
young children, or students with learning difficulties or disabilities, especially of a
visual-spatial nature, by offering an intuitive iconic programming language.
Students can act on the environment in different ways (UDL Principle 2): dragging
the character on the grid with their finger, or dragging command icons to into a
sequence to make a “program”. Of course the student can also interact verbally with
a nearby educator.

The fact that the command-icons can be treated as objects can make it natural to
assign symbolic names to each of them in order to quickly describe a programmed
sequence, orally or by writing on paper (Principle 2 of the UDL framework). This
practice can be proposed and pursued by an educator using Mak-Trace with her
students, and it may help students make use of a pre-algebraic language that can be
quite useful in certain tasks involving generalization.

Another design choice is that Mak-Trace gives no feedback in terms of move-
ments of the character until the student touches “GO”. At this point the character
executes the whole list of commands in the constructed sequence. To change the
constructed sequence, the student has to go back to the “programming mode”:
automatically the character goes back to its original position and all trace marks are
cleaned off the screen. This choice was made to foster planning and spatial orien-
tation abilities. In particular, the student has to visualize what the character will do as
she is programming, and where the character will be at each step of the programmed
sequence, before actually executing the sequence. These design choices were made
in accordance with the UDL Checkpoints 4.2 (“Optimize access to tools and
assistive technologies”) and 6.2 (“Support planning and strategy development”).

In Mak-Trace the perspective-taking ability consists in embracing the character’s
moving frame of reference. To exemplify how working in this environment can be
beneficial to students who experience difficulties in perspective-taking, we will
revisit some critical episodes from a case study (Baccaglini-Frank et al., 2014; Santi
& Baccaglini-Frank, 2015).

3.2.2 The Case of Filippo

Filippo was 15 years old and had been diagnosed by clinicians as having MLD
including dyscalculia and severe dyslexia. From the accounts of his special edu-
cation teacher, he also was not able to read maps or to give directions, however he
did not show difficulties in recognizing or naming his left and right hands. He had a
short attention span and little—if any—interest in the activities proposed during
math class. Furthermore he suffered from very low self-esteem and sense of
self-efficacy. We developed a protocol so that Filippo would work with Mak-Trace
when he met with his special education teacher, for five weeks, either once or twice
each week. The tasks were designed based on two hypotheses: we expected
Filippo’s perspective-taking ability to be weak at least initially, but all the same we
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expected that interacting with the software under supervision of the teacher could
enhance his abilities to plan, visualize, and give directions, potentially through
means different than his perspective-taking ability. Here we briefly report on the
two tasks Filippo carried out: (1) describe the relationship between sequences of
commands in Mak-Trace, and the movements and trace mark left by the snail;
(2) program the snail to draw a square.

During the first task Filippo initially thought that the arrow commands “go
forward”, “go backward”, “turn right”, “turn left” (F, B, R, L) made the snail go
forward, backward, right, and left, where these directions are relative to Filippo’s
front, back, left and right, or possibly to “absolute” directions, like north, south,
east, west. Therefore Filippo was not able to construct a sequence of commands to
make the snail draw a given path. For over half an hour he struggled to relate the
brief sequences of commands he programs to their representation on the grid. He
did not seem to be aware of any reference frames other than his own until the
teacher intervened, in the interaction that follows.

Filippo: it went backwards, not upwards […]
Teacher: so what do the little arrows refer to?
Filippo: it depends on how the snail is oriented.

This was a decisive moment which lay the foundations for Filippo’s conception of
the snail’s perspective. However, Filippo still mostly relied on trial and error,
embracing the snail’s perspective as long as the snail is not oppositely oriented,
which he was confronted with in the task of making the snail draw a square.

The first time Filippo tried to program the snail he was able to program the
sequence correctly for the first two sides of the square, then he uses (incorrectly) the
commands B and R, correct in his frame of reference, but not in the snail’s; while
the fourth side, horizontal in Filippo’s frame, is programmed correctly. It is inter-
esting that he used opposite commands for the first and third sides (F and B,
respectively), while for the second and fourth he used the same command (F). The
effect of this programmed sequence is shown in Fig. 2a.

The second time Filippo tried to program the sequence, he composed:
FFFFLFFFFL [hesitated, inserted L, erased it, and with the index of his right hand
made the gesture of a counter clockwise turn] FFFF [he said: “I have to always keep
the” and made another counter clockwise turn gesture with his right hand] RFFFF
(Fig. 2b). The feedback from Mak-Trace (snail moving on the screen and leaving a
mark on the grid) confirmed that three sides were now correctly programmed.
However Filippo made a mistake again on the rotation when the snail is oppositely
oriented. This behavior suggests that indeed Filippo had a weak perspective-taking
ability.

However, our second hypothesis was also confirmed, as Filippo, on his own,
interacting with the software, developed alternative strategies for managing the
different frames of reference. A first strategy is developed to finally solve the square
drawing task. This time Filippo re-wrote the sequence: FFFFLFFFF [he made the
gesture of a counter clockwise turn with his right hand] LFFFF…[he rotated the
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iPad so that his frame coincided with the snail’s, observing the screen he rotated his
right hand counter clockwise]. Then he completed the last turn and side.

Filippo: Done, I found it […] no, I got…lost […] when it is turned around…it goes
opposite [clockwise rotation gesture with the right hand] so…if I want it to go here [hor-
izontal gesture from left to right with the left hand] … oh, I don’t know, I’ll try this
[RFFFF]… no wait, because this otherwise is like before [he substitutes R with L].

The sequence was correct (Fig. 2c).
Rotating the iPad is a gesture that reveals how Filippo is now aware that he

should consider the snail’s frame of reference, and that this frame is oppositely
oriented with respect to his (at the moment of the rotation). It is as if Filippo was
aware of not being able to feel the snail’s frame of reference when it is “too
different” from his own (oppositely oriented), so he figured out a way of physically
making the frame of reference of his body match the one of the snail. This allowed
him to overcome his disorientation and to successfully complete the task.

4 An Example of Digital Environment Promoting
Algebraic Abilities

We now briefly discuss learning difficulties in algebra. In this discussion algebra
will be the chosen learning object (Principle 1 of UDL framework), and we analyse
potentialities of the software AlNuset, showing how they played out during a case
study. In this sense, according to Principles 1 and 2 of the UDL framework, we will
analyse how AlNuset introduces both multiple means of representation and multiple
means of actions and expression in order to help students grasp the meaning of
some algebraic notions. The analysis will be focused, in particular on the MLD
students’ difficulties.

With a significant percentage of students, the current teaching of algebra seems
not to be sufficient to effectively develop skills and knowledge to master this

Fig. 2 Effect of Filippo’s first, second and final programmed sequence
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domain of knowledge (Sfard & Linchevski, 1992; Kieran, 2006). Here, we focus on
the students’ difficulties in algebra considering, in particular, students with MLD.
These students can have severe difficulties in arithmetic, (Butterworth, 2005),
however, there are also areas of mathematics, which do not depend so much on
manipulating numbers, such as algebra, geometry and topology.

Indeed, some studies on MLD students have shown that there is dissociation
between the recovery ability of arithmetic facts, which is compromised, and alge-
braic manipulations, which are intact (Hittmair-Delazer, Sailer, & Benke, 1995;
Dehaene, 1997). Thus, there is evidence for the existence of two independent
processing levels of mathematics: a formal-algebraic level and an
arithmetic-numeric level (Dehaene, 1997). Moreover, neuroimaging results,
focusing on the algebraic transformations, have highlighted how the visual-spatial
areas of the brain are activated at the expense of those devoted to language. For
example, it has been shown that when we solve equations, the expressions are
manipulated mentally by means of a visual elaboration rather than through verbal
means (Landy & Goldstone, 2010). Such neuroscientific results can help us analyze
the difficulties of students with MLD in algebra.

Many students’ difficulties in algebra, including difficulties in controlling alge-
braic manipulation (e.g., Robotti & Ferrando, 2013), seem to be due to a lack of
grasp on the meaning of the notions involved (Arzarello, Bazzini, & Chiappini,
1994). Recent studies in math education have suggested that the construction of
mathematical knowledge, as a cognitive activity, should be supported by the
sensori-motor system activated in suitable contexts (Arzarello, 2006). Indeed,
according to Nemirovsky (2003), the understanding of a mathematical concept
spans diverse perceptuomotor activities, which become more or less active
depending of the context. Thus, the construction of meaning can be seen as based
on a rich interplay among three different types of semiotic sets: speech, gestures and
written representations (Radford, 2003, 2006). Studies concerning both the alge-
braic domain (Chiappini, Robotti, & Trgalova, 2009; Chaachoua et al., 2012) and
the geometrical domain (Goldenberg, Cuoco, & Mark, 1998) suggest using edu-
cational tools through which images can be constructed and managed (dynamically
or statically), exploiting mainly visual non-verbal rather than (or together with)
verbal means. This is in accordance with the UDL principle of providing multiple
means of action and expression (Principle 2).

We will show how the software AlNuSet (Algebra of Numerical Sets) can be
used to make algebraic notions explicit, and to construct their meanings dynami-
cally, while involving all the students in a classroom, as much as possible
(Baccaglini-Frank & Robotti, 2013). In particular we will look at how AlNuSet can
be used in relation to the algebraic notions of variable, unknown, algebraic
expression, equation and solution of an equation, and the formal solution of an
equation can be addressed with the support of AlNuSet.
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4.1 AlNuSet to Construct Algebraic Meanings: Examples
to Inclusive Education

AlNuSet was designed for secondary school students (from age 12–13 to age 16–17)
and it is made up of three separate environments that are tightly integrated: the
Algebraic Line, the AlgebraicManipulator, and the Cartesian Plane.Wewill describe
some features of these environments, with particular attention to the Algebraic Line
and the Algebraic Manipulator, through examples of activities,12 stressing their
support for the conceptualization of algebraic notions in MLD students.

Variable and dependent expressions

On the Algebraic Line it is possible to place variables and expressions that depend
from them. To do this, the user has to type a letter, for example, “x”, and a mobile
point will appear on the line. The point can vary within the chosen set of numbers
(natural, whole, rational, or real13) and variation can be controlled directly by the
user through dragging. This feature was designed so that important aspects of the
notion of variable could become embodied. Moreover, it is possible to construct
expressions on the line that depend on a chosen variable, for example, 2x + 1. This
dependent expression cannot be acted upon directly, but it will move as a conse-
quence when x is dragged. The dependent expression will assume the positions on
the line that correspond to the values it takes on when the dependent variable takes
on the value it is dragged to (Fig. 3).

We note that the functionalities described propose different representations
(UDL Principle 1) and they are designed to foster for the user a mediation of the
algebraic concepts of variable and dependent expression, through a dynamic model
that can be acted upon (UDL Principle 2). The mediation can occur thanks to visual
and kinaesthetic channels, without the need of visual verbal means (written lan-
guage). The construction of the concept realized as so may allow students, and
especially students with MLD, to find mnemonic references that are appropriate for
their cognitive style. This allows them to start using representations of the funda-
mental algebraic concepts at stake, and possibly to place and retrieve them from
long term memory in a more effective way. AlNuSet allows to address “typical”
topics in the secondary school algebra curriculum; in particular, in the following
section we will analyze how equations can be addressed.

Equations

Let us consider a common task: “Solve the Eq. 3x−5 = 13”, or—stated in a pos-
sibly less common way—“Find the values of x for which the expression 3x−5 is
equal to 13”.

12For a more detailed description of these environments see www.alnuset.com.
13Of course the representations of the numerical sets are accomplished on a computer, so the sets
are actually finite and discrete, but they simulate—with some limitations—the properties of the
number sets they represent.
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Solution on the Algebraic Line

Solving this equation on the Algebraic Line requires observing for which values of
x the expression 3x−5 (represented as a mobile point on the line) coincides with the
number 13. When trying to verify the equality of expressions, dragging x is
accomplished with a specific objective: that of trying to make the expressions
coincide, that is, to make them take on a same value, becoming thus associated to a
same “post-it” (yellow rectangle in Fig. 4). If the dragging is done with this
objective, the variable assumes a meaning similar to that of unknown, that is of letter
of which values need to be found in order to make the equality true. This allows
students to act on the representations in different way, according to UDL Principle 2.

In Fig. 4 we can observe what happens on the Algebraic line as the point “x” is
dragged.

The possibility of solving an equation through a perceptive kinaesthetic
approach (dragging x along the line) without directly using a solution algorithm can
help students concentrate their attention on the meaning of equation and its solu-
tions. The Algebraic Line in AlNuSet was designed with this aim, which it attempts
to reach through specific signs and functionalities embedded in it. Among these
there is the possibility of dragging the point corresponding to “x”, the visualization
of “post it” markers containing values on the line and the constructed expressions
that correspond to them (Fig. 4), the color of the dot corresponding to the equation
(Fig. 4a and b). In particular this last feature is an example of how a visual
non-verbal channel is used to give feedback to the student, guiding his/her con-
struction of meaning of solution of an equation.

Features like the dot changing color and the yellow “post-it” signs, supporting
the comprehension and the construction of meaning for algebraic notion and
relationships involved, are examples of how AlNuSet’s design seems to be well in
line with the UDL principle advocating “multiple means of representation”
(Principle 1). Indeed, they support perception providing the representations for
algebraic notions through different modalities (e.g., through vision, dynamic image,
touch…); and in a way that will allow for adjustability by the user (e.g., dragging
the point corresponding to x as often as the user wants). Such multiple represen-
tations not only ensure that algebraic notion is accessible to MLD student, but also
easier to comprehend for many others.

Fig. 3 The movement of the variable x on the Algebraic Line produces the movement of the
dependent expression 2x + 1 on the line
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Another functionality of AlNuSet that can be useful for the construction of a
solid meaning of solution of an equation is the command “E = 0”, in the envi-
ronment Algebraic Line. This command allows the student to ask the system to
calculate the roots of a polynomial (to read more about this functionality visit www.
alnuset.com). This functionality can help the student tackle the “truth value of an
equation”, alleviating his/her cognitive resources from the burden of calculation
procedures associated with the solution algorithms of an equation. This can be
appreciated, for example, thinking about the cognitive load—excessive for some
students—associated with the application of quadratic equations. Indeed, many
students with MLD have trouble both with arithmetic calculations and with
memorization and execution of procedures. The more complex a procedure is,
greater are the difficulties for these students to retrieve the steps involved and to
execute them. The “E = 0” functionality of AlNuSet allows these students to focus

b

a

Fig. 4 A way of solving the Eq. 3x−5 = 13 on the Algebraic Line
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their attention on the cognitive task related to the meaning of solving an equation, in
terms of searching for truth values of the equation, as opposed to dispersing their
cognitive resources only on the calculation, loosing track of most (or all) meaning
(Robotti, 2014; Robotti & Ferrando, 2013).

Given these features and ways in which their use can be integrated in
approaching mathematical situations, the Algebraic Line can be used as a tool that
can help lighten the cognitive burden involved retrieving and carrying out proce-
dures, and allow the student to focus most of his/her cognitive efforts on the
construction of the algebraic meanings at stake, favoring autonomy in approaching
algebra. This is in agreement with UDL Principle 2 and, in particular, with the idea
to provide option for comprehension: guiding information processing, visualization,
and manipulation; maximizing transfer and generalization.

4.2 The Case of Eleonora

We now present the case of a student we will call Eleonora using the Algebraic Line
of AlNuSet, carried out by the first author. She was 26 years old at the time of the
study and had obtained her first diagnosis of dyscalculia the same year.

Before proposing the use of AlNuSet, one of the questions the interviewer asked
Eleonora was the following: “When 3 is added to 3 times a certain number, the sum
is 28; find the number”.

Eleonora did not set up an equation, but proceeded by subtracting 3 from 28
(obtaining 25) and then dividing by 3, “undoing” the operations stated in the
problem text. She then tried to prove the arithmetical equality (in Fig. 5) through
“trial and error”, approximating the value of 25

3 to 8.333… She preferred to do this
in spite of what she had been taught in various algebra classes where many
examples of verbal texts of this type had been given and transformed into equations,
such as 3x + 3 = 28.

The researcher (first author) advanced the hypothesis that Eleonora had not
developed a strong enough (if any) mathematical meaning of the notion of equation,
possibly also due to the fact that she had trouble managing the typical procedures
given to her during regular courses for solving first and second degree equations.
The intervention proposed to Eleonora therefore was planned as a sequence of
activities with the Algebraic Line in AlNuSet aimed at developing the mathematical

Fig. 5 Eleonora’s attempt to
solve the interviewer’s
question

98 E. Robotti and A. Baccaglini-Frank



meaning of equation and of solution of an equation. In the following excerpt we
show Eleonora responding to the researcher’s (R) question: “For which value of “a”
is the expression 2 � a equal to 8?”.

1. E: Right now we can see that “a” changes value,… it changes value if I drag it
2. R: For which value of “a” is the expression equal to 8?
3. E: The expression is equal to 8… that is 2*a is equal to 8…
4. E: If I move it along the line, I am looking for the right value, where the letter

matches
5. E: For example, I discovered that if I place “a” on 3…if I give “a” the value

3… 2*a is 6
6. E: Instead, if I put “a” on 4, 2*a is 8… because I’m multiplying […]
7. R: What did you get? [Referring to the colored dot associated to the equation

in Sets window]
8. E: A verification. It’s a check, if I drag “a”, the red dot shows that I make a

mistake
9. E: …if I drag “a”, if I change the value of “a”, the red dot shows that I make a

mistake
10. E: Because, in this moment, 2*a equal to 8 is not true
11. E: There isn’t an equality. Because I’m on 2*a equal to 10, if I give “a” the

value 5

The solution to the problem is developed through a visual-spatial kinaesthetic
approach in AlNuSet. Here, new representations (algebraic expressions, post-it,
colored dots…) and different ways to act on them are provided, as proposed by
UDL Principle 1 and Principle 2. As matter of fact, manipulating the expression
2 � a on the line allows Eleonora to associate meaningful (to her) dynamic rep-
resentations of the notions of variable, unknown, equation and solution.

Indeed we can observe that the verbal utterances used by Eleonora first refer to
perceived aspects of the solution to the problem. Examples of such utterances are:
“If I place “a” on 3…” (5) or “If I put “a” on 4…” (6). Later she seems to be
attributing to “a” characteristics of an unknown: “if I give “a” the value 3…” (5),
“in this moment, 2 � a equal to 8 is not true” (10).

In intervention (6), we can also observe that Eleanor manages to relate the truth
of the equation obtained by assigning to “a” the value of 4, with the arithmetic
operation in 2 � a, which guided her first solution strategy (in the pre-testing
phase). Thus, dragging “a” along the line until the value 4, she finds a link between
the “meaning of an equation solution” with the “arithmetic procedure”.

The construction of these meanings seemed to become more and more stable
throughout the intervention, that is Eleonora was able to access and retrieve the
meanings constructed within the Algebraic Line environment even months after the
end of the intervention. This suggests a transfer to long term memory. Referring to
the UDL principles, this environment seems to have successfully provided for
Eleonora multiple means of representation, in this case offering dynamic repre-
sentations of algebraic objects on the Algebraic Line of AlnuSet. Moreover, it
provided multiple means of action and expression, exploiting the various
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functionalities through which Eleonora could act on receiving instantaneous feed-
back from the system. Making sense of such feedback Eleonora was able to give
meaning to and manage the process of the solution of equations.

5 Conclusion

Specific theoretical frameworks in mathematics education research for the use of
technology for fostering mathematical learning of students with MLD are still quite
fragmentary. Moreover, very few have been integrated with findings from fields
such as cognitive psychology and neuroscience, fields that have also been very
active in investigating such phenomena. Therefore we felt the need to turn to more
general theoretical notions related to different research fields. Among them, the idea
of different means of information access and production, related to research in
cognitive psychology, the three primary design principles of the Universal Design
for Learning framework, which we refer to specific software’s’ design, and the
paradigm of multimodality, related to research in math education, according to
which experiences of a sensorial, perceptive, tactile and kinaesthetic nature are
essential for the formation of mathematical concepts.

If we turn back and think about the analyses of students’ interactions with
selected software, we can again trace down our effort of seeking out evidence,
within each particular mathematical learning context, of the usefulness of design
choices, interpreted as aligned with the general UDL framework. In the case of
Filippo, use of Mak-Trace, mediated by the teacher, helped the student develop
personal strategies to solve problems concerning perspective-taking ability that
initially he found unsormountable. These strategies later were endorsed also by his
regular mathematics teacher. The analysis pointed to specific instances in which the
software allowed the student to avoid the use of symbolic language and to rely on
his sensorimotor activity in an interplay between movement, gestures and language
(multiple means of action and expression—Principle 2). Moreover, similarly to
what has been described for Logo, Mak-Trace appeared to be highly engaging
(Principle 3), helping the student to “remain absorbed in a task for a period of time;
… tolerate a period of confusion (with appropriate support);… use errors as a
source of information about what to try next” (Russell, 1986, p. 103). In the case of
Eleonora we highlighted how the environment seemed to successfully provide her
with multiple means of representation (Principle 1) of algebraic objects on the
Algebraic Line (for example, mobile points representing variable, expressions or
unknowns, or the “yellow square” indicating expressions that refer to the same
value/point on the line), and multiple means of action and expression (Principle 2),
leading to instantaneous feedback from the system (for example, the movement
induced by dragging a point on the line).

In general, we showed how the software applications analyzed provide multiple
means of representation (Principle 1 of UDL framework), multiple means of action
and expression (Principle 2) and multiple means of engagement (Principle 3),
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meeting specific checkpoints within each of these principles. To complete the
analyses of each environment we also felt the need to add discussions of important
literature on the learning of the specific mathematical content involved. This is
because it is well known in mathematics education that the learning of different
concepts or ways of thinking in mathematics can involve the activation of different
cognitive processes in the students; and for the learning to be promoted effectively,
it implies specific pedagogical content knowledge for teaching (Ball, Lubienski, &
Mewborn, 2001) which the context of MLD includes information on cognitive
issues involved in the learning of the specific mathematical content.

For this analysis, we referred mostly to software developed within the “radical”
approach, according to which new ways of approaching specific mathematical
content can also lead to changes in the organization of the mathematical curriculum
or in the ways in which certain content is proposed (see, for instance, the notions of
variable or unknown addressed in AlNuSet). As of today, we have only taken some
initial steps towards reaching a framework to analyze the use of technology for
fostering mathematical learning of students with MLD, and we definitely have yet a
way to go in this direction. Until now we have (1) looked for ways of implementing
checkpoints from the UDL principles designing software we collaborated to produce,
and we have (2) looked for evidence of the usefulness of such design choices ana-
lyzing students’ interactions with the software. These two tasks are still far from
straightforward and necessitate a good deal of discussion and interpretation of the
checkpoints of the UDL framework, because these are stated in very general terms.
This of course makes them applicable to a number of different learning contexts
(other than mathematics), but it costs their meaningfulness within the domain of
mathematical learning, or even within more specific contexts, like learning natural
numbers, learning about geometrical figures, or learning to solve quadratic equations.

We believe it is yet premature to propose a new coherent framework through
which to look at technology mediated learning in the presence of MLD, but at the
moment we see the intertwining of the different theoretical notions used for the
analyses of the software and of students’ interactions with the software as effective
in giving insight into how and why some innovative software can foster mathe-
matical learning for students with MLD.
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Part III
New Technological Spaces



Innovative Uses of Digital Technology
in Undergraduate Mathematics

Mike O. J. Thomas, Ye Yoon Hong and Greg Oates

Abstract The ways in which digital technology is often used in university teaching
of mathematics can be quite different from how it is employed in schools. This has
the potential to form a discontinuity between school and university, making the
transition less than smooth for students. In this chapter we consider several
examples of how digital technology has been used with first year mathematics
students in both New Zealand and South Korea. The approaches employed include:
intensive use of technology, including formative and summative assessment prac-
tice; lecturer modelling and privileging of technology use; a versatile approach to
calculus concepts that encourages epistemic exploration of local properties of
functions; and novel orchestration of mathematical thinking through smartphone
communication technology. We analyse each of these approaches using the theory
of instrumental orchestration and outline some innovative aspects and benefits of
them. The student perspective is also considered, with some evidence of the
influence on student engagement and attitudes. We conclude by suggesting that in
order to teach with digital technology in the manner described here good peda-
gogical technology knowledge (PTK) is required.

1 Introduction

In recent years there has been an increasing focus on research considering the
mathematical transition from secondary school to university (see for example,
Thomas et al., 2015). This research has highlighted a number of issues related to
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transition. For example, one epistemic discontinuity is the change in emphasis from
equality to inequality in the transition from algebra to analysis (Artigue, 2010).
A second potential epistemic discontinuity, identified by Vandebrouck (2011),
which is returned to in our discussion below, is the tendency for school mathe-
matics to focus on pointwise and global perspectives of functions (see e.g.,
Fernández-Plaza, Rico, & Ruiz-Hidalgo, 2013), whereas university level mathe-
matics requires a local perspective. While we have taken a slightly different
standpoint below (see also McMullen, Oates, & Thomas, 2015) we agree with
Vandebrouck’s (2011) claim that often only point-wise and global perspectives on
function are constructed at the secondary school. Students may evaluate functions,
including derivatives, etc., at specific points and work globally on a function rep-
resentation, such as applying a translation to a graph of a function, relating it to the
algebraic formula y� q ¼ f x� pð Þ but may not consider the behaviour of a
function on an arbitrarily small interval, such as x� d; xþ dð Þ: This chapter
considers a third area that could give rise to an epistemic discontinuity in the
transition from school to university mathematics, namely the manner of use of
digital technology (DT). In particular we consider how it might be used to address
the provision of an environment in which students’ might construct a local per-
spective on function.

2 A Potential Digital Technology Institutional
Disjunction/Discontinuity

The use of DT in schools has been well researched, with a survey article by
Lagrange et al. (2003) analysing 800 articles, leading to identification of seven
dimensions related to ICT use in mathematics classrooms. The range of DT tools
now available to teachers in developed countries is increasingly being recognised
(Mousley, Lambdin, & Koc, 2003) along with the wide range of pedagogical
opportunities some of these tools offer (Pierce, Stacey, & Wander, 2010). In gen-
eral, studies have found small but significant, if not universal, positive effects from
DT use in schools (e.g., Burrill et al., 2002; Cheung & Slavin, 2011; Graham &
Thomas, 2000; Li & Ma, 2010) that do not hinder the development of mathematical
skills (Ellington, 2003). However, Bressoud, Mesa, and Rasmussen (2015) report
that although students were very comfortable using graphing calculators they were
noticeably less comfortable doing calculations by hand. A key aspect in many
school situations is that the students may have ready access to DT; especially
through calculators, applets and more recently smartphone apps. A culture of
investigative activity also exists in schools, with many studies describing ways to
use technology such as graphics calculators and GeoGebra in an investigative
manner (e.g., Goos, Galbraith, Renshaw, & Geiger, 2003; Pierce & Stacey, 2011).

On the other hand, the university situation can be more varied and problematic.
The Reform Calculus movement promoted some major efforts in the use of
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technology (e.g., Bookman & Friedman, 1999; Meel, 1998; Park & Travers, 1996;
Schwingendorf, 1999) and Thomas and Holton (2003) provide a comprehensive
discussion of both theoretical and practical issues associated with technology use in
undergraduate mathematics. Despite these efforts, use at scale remains sporadic,
even within individual departments and is often centred on lecturers’
research-oriented DT (Oates, 2011). Further, introducing new and complex tech-
nologies in a one-semester course raises issues of student instrumentation (Stewart,
Thomas, & Hannah, 2005). A recent analysis of Calculus I programs (Bressoud,
Mesa, & Rasmussen, 2015) showed mixed results regarding the use of technology
at over 300 tertiary institutions, with lower use possibly due to some institutions
valuing procedural fluency without technology. There are numerous studies
describing individual approaches to the use of technology in undergraduate math-
ematics (e.g., Paterson, Thomas, & Taylor, 2011; Ng, 2011; Blyth & Labovic,
2009). However, such use is often either restricted to lecturer demonstration, or
student use may be limited to use in tutorials and assignments in computer labs.
Further, this use frequently exists in isolation from other courses in the department
and may be more commonly associated with applied mathematics courses using
specific technologies associated with research mathematics, such as Matlab, as
opposed to other technologies which students maybe familiar with from school
(Oates, 2011). For example, while Ng’s (2011) study described the use of graphics
calculators in an undergraduate calculus class, and Lin and Thomas (2011) have
described the use of GeoGebra to develop student understandings of Riemann
integration, such use is comparatively rare, much more common are studies such as
those of Blyth and Labovic (2009), Tobin and Weiss (2011), and Paterson et al.
(2011), all of which described the use of Matlab in applied courses such as dif-
ferential equations and engineering mathematics.

Following on from the research observations above, several contributors to the
Insights and recommendations from the national study of college calculus MAA
report (Bressoud, Mesa, & Rasmussen, 2015) note aspects in the teaching of college
calculus that support the innovative nature of the technology use described in this
paper. For example, while use of graphics and CAS calculators are reasonably
widespread in teaching and coursework, permission to use graphing calculators in
examinations drops dramatically (Selinski & Milbourne, 2015), a sharp disconti-
nuity between high school and college calculus. Larsen, Glover, and Melhuish
(2015) describe two examples of innovative and ambitious teaching which mirror
many of the elements incorporated in the studies reported here, emphasising that
despite increasing use of technology, such examples of extensive and integrated
approaches remain uncommon across institutions, and they support a more coor-
dinated approach and more research into this field. At the post-calculus level,
Rasmussen and Wawro (2016, in press) note that while both linear algebra, dif-
ferential equations research studies are resulting in useful frameworks for inter-
preting student reasoning and planning for instruction, the role that technology can
play in the modelling process is surprisingly missing and is an area ripe for future
research. Hence, in line with these findings, this chapter considers a number of
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innovative approaches to using DT in the teaching of first year undergraduate
mathematics courses that may suggest a better alignment with the school practice
that students are accustomed to, while at the same time allowing them to see how
DT can assist in building understanding of more advanced mathematical processes
and concepts, such as a local perspective on function.

3 Instrumental Orchestration

The process of instrumental genesis involves the development of suitable mental
schemes in order to transform a tool into an instrument suitable for the current task
or activity. As writers such as Trouche (2004) have noted, this process is not
automatic and requires teacher direction: “I introduce the term instrumental
orchestration to point out the necessity (for a given institution—a teacher in her/his
class, for example) of external steering of students’ instrumental genesis” (Trouche,
2004, p. 296). Thus in instrumental orchestration a primary goal of a teachers’
orchestrations is to help students engage in activity that will develop the appropriate
mental schemes for producing techniques with either epistemic value, providing
knowledge of the mathematical object under study, or ‘productive potential’,
pragmatic value (Artigue, 2002). According to Trouche (2004) the orchestrations
can act at several levels: that of the artifact itself; that of an instrument or a set of
instruments; or a meta level, of the relationship of a subject with an instrument or a
set of instruments. The nature of these orchestrations will also evolve over time in
response to the development of technological tools. The orchestrations occur in the
context of a didactical configuration, or an arrangement of the artefacts or tools in
the learning environment, along with an exploitation mode, which is the “way the
teacher decides to exploit a didactical configuration for the benefit of his or her
didactical intentions” (Drijvers, Doorman, Boon, Reed, & Gravemeijer, 2010,
p. 215). Orchestrations may be observed to comprise an “intentional and systematic
management of artefacts, aiming at the implementation of a given mathematical
situation in a given classroom” (Trouche & Drijvers, 2010, p. 676) or ad hoc
decisions forming part of a didactical performance (Drijvers et al., 2010). This
framework of instrumental orchestration has been suggested as a useful means of
categorising observed teaching practices (Drijvers et al., 2010). More recent
research (Drijvers, Tacoma, Besamusca, Doorman, & Boon, 2013), focused on an
attempt to produce a taxonomy of whole-class and individual orchestrations, lists
some of the latter as technical-demo, guide-and-explain, link-screen-paper,
discuss-the-screen and technical-support (see the classification in Fig. 1).

Clearly the types of orchestrations in a didactical performance are dependent on
the tasks used, and whether the techniques and utilisation schemes, employed in
activity related to the task have an epistemic or pragmatic focus.
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4 Different Perspectives on Function

We now return to the ideas of Vandebrouck (2011), mentioned above, related to the
various possible perspectives on function that are necessary in mathematical
thinking. According to his analysis a pointwise property is one that only depends on
the value of the function at a specific point x0, such as evaluating the derivative of a
function at a specific point, while a global property such as concavity is defined on
an interval. In contrast, he considers a local property to be one that depends on the
values of f in a neighbourhood of a specific point x0, say x0 � d; x0 þ dð Þ, as
required for an understanding of continuity, something that is not often considered
in secondary school. Thus if we consider two points x0; f x0ð Þð Þ and x1; f x1ð Þð Þ
then, Vandebrouck’s (2011) classification would mean that the average rate of

change of the function on the interval x0; x1½ �; f x1ð Þ�f x0ð Þ
x1�x0

is a global property, since it
is defined on an interval. However, we have some issues with this classification
based on contextual influence. For example, if we take the AROC of f over the

interval x0; x0 þ h½ �, to be f x0 þ hð Þ�f x0ð Þ
h then is this still a global property irrespective

of the size of h? Or does it become local as h becomes small, and if so at what
point? Thus, in our discussion, we suggest a classification with four possible per-
spectives on function: global; interval; local; and pointwise. Of course, all of these
involve a consideration of intervals of some size, ranging from one comprising a
single point to the whole of the function’s domain. We suggest that global thinking
involves considering the function across the whole of its domain. Hence, the
algebraic approach to global thinking will usually involve statements such as
‘8x 2 D’, where D is the domain of the function. Examples include even and odd
functions (for an odd function f �að Þ ¼ �f að Þ; 8a 2 DÞ, a continuous function (if

Fig. 1 Whole-class and individual orchestrations (from Drijvers et al., 2013)
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we define it as continuous at every point in its domain), a periodic function (where,
for some k, f aþ kð Þ ¼ f að Þ; 8a 2 DÞ and some transformations of functions (a
translation, for example, where g að Þ ¼ f a� hð Þþ k; 8a 2 Df

�
. Similarly we will

take a local perspective to involve intervals such as x� h; xþ h½ � and x; xþ hð Þ
where it is necessary to consider the behaviour of the function on intervals where a
limit process is required, such as in this case, h ! 0. For a consideration of those
intervals that lie between the macro and micro sizes of global and local we propose
a designation of an interval perspective. Examples include the concavity of a
function, intervals where the function is increasing or decreasing and intervals
where f xð Þ[ 0 (for some functions, of course concavity and increasing/decreasing
are global properties—a quadtratic function exemplifies the former and a linear
function the latter—but this is nor generally the case). The pointwise perspective
considers the behaviour of a function at particular points in the domain, such as the
sign of the gradient at x = a or the value of the function at a point i.e., f(a).

5 Intensive Use of Digital Technology

The first implementation of DT described here relates to the Intensive Technology
Innovation study comprising one of three components of a wider research project,
led by a research team at the University of Auckland, entitled Capturing Learning
in Undergraduate Mathematics. The research involves a digital technology initia-
tive in an entry-level mathematics course and follows a design experiment
methodology where “a primary goal for a design experiment is to improve the
initial design by testing and revising conjectures as informed by ongoing analysis of
both the students’ reasoning and the learning environment” (Cobb, Confrey,
diSessa, Lehrer, & Schauble, 2003, p. 11). Theoretically, we apply an instrumental
orchestration framework and seek to modify this through each stage of our inter-
ventions. In the course technology is employed in four major ways, as described in
the course design principles below.

6 Course Design Principles

One guiding principle employed in the initial cycle of course design and con-
struction, and one usually lacking in other research, and hence innovative, was that
technology should be integral to the assessment process. Hence, each student was
required to register and enrol into MathXL—a web-based homework, tutorial and
assessment system, which was used for five skills quizzes that contributed 1% each
to the final grade and the mid-semester test, which was worth 10%. The MathXL
program allows for some measure of mathematical input and provides instant
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feedback by marking student answers. It also identifies topics where the student
needs to focus their attention and directs them to sections in an online textbook as
well as creating a personalised Study Plan. The quiz and test questions were largely
free-response, exercising the MathXL facility for numerical, algebraic and graphical
input of solutions, in contrast to static multiple-choice style questions. The quizzes
comprised a time-limited, non-supervised assessment in which students had three
attempts and their best score was recorded. The mid-semester test was also
time-limited but held in a supervised computer lab with one attempt per question.
Students were allowed access to CAS-calculators if they had them as well as access
to all online resources, although time factors would have made this impractical for
most. There is still some debate about whether the test should be technology-free
(skills-based) or technology-active.

The second design principle in the study was that during the 36 one-hour lec-
tures in the course the lecturers should model a range of appropriate technology
since teacher-privileging of DT can be very influential (Kendall & Stacey, 2001).
As Maschietto and Soury-Lavergne (Chap. The Duo “Pascaline and e-Pascaline”:
An Example of Using Material and Digital Artefacts at Primary School) found,
using several artefacts implies that teachers need to construct adequate orchestration
of the different resources available. In our case a number of different DT platforms
and programs were employed and so the lecturer was faced with similar orches-
tration issues. In the first implementation phase of the study DT included: a
web-based graphing calculator; YouTube clips; applets to demonstrate critical
features of mathematics; and mathematical websites. The second implementation
phase continued most of this approach, with the exception of discontinuing the use
of MathXL, but with greater use of the simple online graphing calculator Desmos,
which was favoured by the students for its ease of platform access (on both
computers and smart-phones) and its comparative instrumental and syntactic sim-
plicity (Oates, Sheryn, & Thomas, 2014; McMullen, Oates, & Thomas, 2015).
While MathXL does have many advantages in the power it gives students to pursue
individual supported study, it is a commercial package with associated costs. Thus,
in addition to the importance of teacher-privileging that influenced the overall
approach, a main reason for this decision in the second phase was to minimise any
disadvantage to students who did not have access to specific technologies. At the
end of each lecture students were directed to webpages that illustrated the concepts
at the heart of each topic, and a video-recording of each lecture was available to
students within 24 hours via the learning management system. The third, somewhat
innovative, design principle was that students were encouraged to use any tech-
nology platform they had access to, including all calculators, mobile phones,
computers, tablets, etc. and any e-resources they could access with these, in lec-
tures, tutorials, during home study and on other occasions, In other words, rather
than seeing these DT resources as an obstacle to learning, preventing students from
thinking deeply about the mathematics, as some would argue, they were viewed as
having the potential to be turned into pragmatic and epistemic instruments, and
hence of real value in learning.
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The final design principle was that technology should be actively used in the
one-hour weekly assessed tutorials that all students were expected to attend. In
these a task with a context-based set of related questions was given to the students,
who spent an hour working collaboratively, in groups of two or three, on the
questions in the task. The students could use a computer with internet access and
were also allowed to use any technological means to help them solve the tasks
presented to them (i.e., Desmos, Matlab, Wolfram Alpha, etc.) including their own
scientific or graphic calculators. Each group of students was required to hand in
their answers to the questions at the end of the tutorial and their answers were
marked as a group with the total mark produced from an equal weighting of group
participation and mathematical correctness. The marks from the ten tutorials forms
part of the assessment for the course and contributes a total of 13% towards the
students’ final grade.

Data was collected from many sources, and we will consider just five of these in
the following discussion in order to evaluate the success of this approach. At the
end of each iteration of the course students were asked to complete three ques-
tionnaires: a technology questionnaire; an attitude survey; and the standard uni-
versity student course evaluation. Figure 2 shows examples of the questions used in
the online technology questionnaire, which contained a mix of 19 open and closed
questions, and investigated student use of technology in general;
mathematics-focused technology use; and the student pattern of technology use
during the course. The open questions had an unlimited response space. For the
attitude survey, a Likert scale was constructed with five subscales in 29 randomised
items, each with five possible responses (strongly agree, agree, neutral, disagree,
and strongly disagree). The subscales measured: attitude to maths ability; confi-
dence with technology; attitude to instrumental genesis of technology (learning how
to use it); attitude to learning mathematics with technology; and attitude to versatile
use of technology. The versatility subscale had four questions and the others five.

2. Do you think the lecturers made sufficient use of these technologies to help you 
understand their use and value? If not, specify which you would have liked 
more of.

3. Which technologies do you personally own or have easy access to? [list given]
5. Which mathematics learning technologies did you personally use in the course? 

Please indicate your frequency of use, and whether this was the first time you 
had used them. 

7. What activities did you use technology for? Please specify which technologies
you used for each of the following activities: [Lectures, assignments, tutorials, 
quizzes, other]

11. Describe the kind of activities you used technology for when working on 
mathematics problems in the course. [Open response]

14. Did you like the extensive use of technology in MATHS 102? Please explain.

Fig. 2 Examples of the open and closed questions from the questionnaire
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In addition, there were five questions covering possible goals in technology use,
which did not comprise a subscale.

Table 1 gives examples of some items from two subscales employed in data
analysis in the study. In addition to the questionnaires, groups of volunteers were
observed as they worked collaboratively in a computer lab on a series of rich
technology-active tasks specially designed by one of the study team. Observation
notes included the type of technology device used, when they were working or
reading individually or all together, who in the group was not on task, and how the
technology was used, for example modelling, checking answers, drawing graphs,
performing algebraic manipulation or extending the task. Each of the students had
their own CAS-calculators as well as the other technology available on the computer
or their phones. One of the tasks focused on the average rate of change (AROC) of a
function and its relationship to instantaneous rate of change, one of the key math-
ematical constructs targeted in the course. The link between these may be seen
through the lens of our classification of perspectives on function, based on
Vandebroucke (2011). For ‘relatively large’ intervals the AROC requires an interval
perspective, but as the interval becomes very small and the limiting process is
evoked, a local perspective is required to understand how it can lead to an instan-
taneous rate of change, which then has a pointwise focus. During lectures, the
concept of AROC of a function was introduced using a board-instruction orches-
tration (see Fig. 1). In this mode, the lecturer wrote on paper, projected on to a large
screen visible to all the students and recorded for the class lecture video.1 The idea
that a linear function and a polynomial through two points have the same AROC on
the interval defined by those points was mentioned (see Fig. 3a). Basic AROC
calculations were carried out using function notation and Fig. 3b shows an example
where an interval perspective is used. Then the rate of change of a function at a point
x0; the derivative, was defined, using local thinking as the limit as h ! 0 of the
AROC of the function on the interval ½x0; x0 þ h�. Rates of change were also
emphasised for determining the nature of stationary points and for concavity (Fig. 3).

Table 1 Examples of two attitude subscales

Learning mathematics with technology Instrumental genesis

I like using technology to learn maths Learning how to use technology is difficult
for me

Using technology in maths is worth the extra
effort

I work to improve my ability to use
technology

Maths is more interesting when using
technology

I often need to ask others how to use
technology

Using technology hinders my ability to
understand maths

I can understand a new technology as quickly
as other people

I prefer working out maths by hand rather
than using technology

Using technology wastes too much time in
the learning of maths

1All screenshots here are taken from the lecture videos provided to the students.
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7 Whole Class Instrumental Orchestration

During the introduction of AROC a program, written by the lecturer using
GeoGebra, was displayed (see Fig. 4). Using dynamic dragging with sliders, and an
explain-the-screen orchestration, the lecturer was able to promote both interval and
local thinking when presenting examples of the AROC between two points, either a
variable or a fixed distance apart, and link the screen view to mathematical
constructs.

Some of these examples (Fig. 4a) could be said to illustrate interval properties
due to the macro size of the distance between the points, while others were local
properties, with a small delta, down to 0.1 (Fig. 4b and c). It did not prove possible
to provide this program for students to engage with during the lecture, which would
have been valuable, and in line with the kind of constructionist principles described
by Kynigos (Chap. Innovations Through Institutionalized Infrastructures: The Case
of Dimitris, His Students and Constructionist Mathematics). However, it was made
available to them through the learning management system with the encouragement
to experiment outside of class. Two further examples of technical-demo orches-
trations using the web-based Desmos graphing program are shown in Fig. 5. Here

Fig. 3 Two screenshots taken from lecture videos

Fig. 4 Screenshots showing dynamic use of GeoGebra for interval and local AROC
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the left hand screen shows a demonstration of a technique for finding and dis-
playing approximate solutions to equations for 2 cos xð Þ � 1 ¼ �2. The right hand
screen shows a possible use of Desmos to draw functions with split domains.

Students were constantly encouraged to change and extend the examples given
in the lectures by investigating for themselves what the program response to various
inputs would be, and 50% of the questionnaire respondents said that they used
Desmos during the lectures. We see this kind of orchestration that usually followed
a technical-demo as a new development of the Drijvers et al. (2013) classification,
which we have called a guide-to-investigate, with students immediately encouraged
to use Desmos, or other technology in their possession, to investigate further
examples.

The final program that featured through the course was Wolfram Alpha. In
Fig. 6 we provide three screen shots showing two examples of its use.

All three screens were employed in explain-the-screen orchestrations. The top
screen shows how we can find the local maximum value of a function. Although
this is a black box process, one advantage of Wolfram Alpha here is that it makes
links between the algebraic and graphical representations (Thomas, 2008). The
other two screens enabled discussion of a valuable DT technique that employs the
absolute value of a function for finding the area between a function and the x-axis,
and why a difference may occur between this area and the ‘standard’ definite
integral.

An active-technology tutorial task, in a financial context, was designed around
these lectures on the AROC concept. Students in the tutorial were asked to engage
with and respond to a description of two mock students answering a problem
associated with the graph of f tð Þ, as shown in the condensed excerpt of this task
(without the associated diagrams) in Fig. 7.

For our final source of data, we examined student responses to a question
included in the final examination, which examined their understandings of AROC.
Unfortunately, one of the limitations of this study was that university policy on
internal examinations limited student access to technology to CAS or graphics

Fig. 5 Screenshots showing use of explain-the-screen with Desmos

Innovative Uses of Digital Technology in Undergraduate … 119



calculators. We recognise that this may affect any conclusions that can be drawn
from this final source of data.

It is important to recognise that the kind of instrumental orchestrations that can
be employed are very much dependent on the pedagogical technology knowledge

Fig. 6 Screenshots showing use of explain-the-screen with Wolfram Alpha

Fig. 7 Technology-active tutorial task based on the AROC
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(PTK) of the lecturer (Thomas & Hong, 2005; Hong & Thomas, 2006; Thomas &
Palmer, 2013). In this case the lecturer in the second implementation was very
experienced in using technology in teaching, having over 25 years experience, a
high level of instrumental genesis with a number of DT tools, positive attitudes to
technology use, a good mathematical background and strong confidence in using
technology in mathematics teaching.

8 Student Technology Use

With respect to the questionnaires, student responses to technology use in each phase
were consistent (Oates et al., 2014), although there was some evidence in the second
implementation that the sustained intensive technology approach might be leading to
greater usage, for example 100% of respondents in the second phase reported using
Desmos in the course compared with 85% in the first. It also seems
teacher-privileging may have had led to an increased use of GeoGebra with 10% in
phase 2 compared to only one student in phase 1. Desmos was easily the most
popular platform (80% very useful or useful; only 10% had never used it), with
usage in lectures (50%), assignments (77.8%), tutorials (77.8%), and quizzes
(77.8%). The students particularly liked its ease of access and use: “very easy to use
and very easy to access”, “useful as it is very responsive (quick) and extremely easy
to use” and “Easy to use”. In terms of lecturer modelling, 91.7% said the lecturer
made sufficient use of technology in the course (cf. 76.9% in 2014), with 90.9%
affirming that they received sufficient help with the technology (“Lecturer always
explains”). Further, 83.3% liked the extensive use of technology in the course (“The
use of technology was great, seeing the graphs and how they work in Desmos was
really useful”; “It provides another perspective when solving problems”; “Yes, it’s
nice to know that we are moving with the advancement in technology”) and 91.7%
thought the technology helped in their learning of mathematics, for example, helping
to visualise solutions (“Graph is much easier to understand and solve problems”).

The attitude survey demonstrated, with reasonable reliability (supported by
Cronbach Alpha measures), that students at the end of the course had positive
attitudes towards technology to learn mathematics, to learn the techniques and
construct the schemes required to do so, and a confidence to follow through on
both. The subscale for Attitude to Learning Mathematics with Technology had a
mean response of 3.24/5 (Cronbach alpha 0.71), Confidence with Technology a
mean of 3.69/5 (Cronbach alpha 0.77), Attitude to Instrumental Genesis a mean of
3.62/5 (Cronbach alpha 0.64) and Attitude to Mathematics Ability a mean of 3.58/5
(Cronbach alpha 0.86).

During the DT-active tutorial task, technology was very much embraced by the
students, with all groups, after reading through the task, immediately using Desmos
to plot the function given to them: f tð Þ ¼ 0:025 2 sin tð Þþ t sin 2tð Þ � 2tð
sin 3tð Þþ 65Þ; 0� t� 25: They then zoomed in on aspects of the graph they were
interested in or plotted it against other functions they came up with. Scientific
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calculators were also used but most of their work was done with Desmos. Students
also used their own course or internet resources, such as Wolfram Alpha, to look up
mathematical concepts that they did not remember or could not find in their notes
(possible reasons for this are discussed later), such as AROC. While the technology
was well used, the students in the closely observed focus group tended to perform
by-hand calculations, integrated with computer use, retrieving data or ideas and
moving back and forth between the two environments. There was considerable
discussion between the two of them. It was apparent that they knew how to cal-
culate AROC:

A: So you work out the average rate of change between that point and that point which is
going to be 3.2 take away 0.1, which is pretty much that bottom point there. Between those
two. And there’s only a difference of one. So you’ve got an average rate of change of 3.1.
Are we good on that?

They also demonstrated some idea of interval properties, and the effect on
AROC of reducing the interval size, in essence exhibiting the ability to shift from
interval thinking to local thinking involving limiting values.

A: So that will give you the steepest line there. The other one is that one, which is pretty
close, between the 29th and 12 o’clock on the 29th. But it’s not quite as good. But as your
k gets smaller, so as your k interval gets smaller and smaller and smaller, that one will
become your steepest line. But then it will swap to that one.

A: …so m gets smaller and smaller…As m gets smaller, the greatest rate of change is going
to effectively be steeper. Until you get to the stationary points. So the stationary points will
remain the same, but as you get closer and closer…

The lectures and tutorial task were followed up with the following question on
AROC set in the final examination:

The London Eye (picture provided in exam) is a giant circular ferris wheel in London, UK.
The height, H metres, of passenger capsule A above the centre of the wheel t hours after the
wheel starts to move is given by: H tð Þ ¼ 60 sin 4ptþ p

4

� �
. What is the average rate at which

capsule A is rising during the period from t ¼ 0 to t ¼ 1
16 hours?

While technology was not essential to answer this question, the removal of the
customary technology such as Desmos, which observations had already suggested
many students turn to almost automatically, may have influenced the results.
Regardless of the reasons, the question proved relatively difficult, with only 21.6%
of the students fully correct and 62.5% gaining no marks out of 2 on part (iv) of the
question. The students were comfortable using the function notation H 0ð Þ and
H 1

16

� �
, although few gave the exact answer (even when close to it), resorting, not

surprisingly, to calculators to work out the answer (Fig. 8).
Overall this task, which was written with active technology use in view, gen-

erated a lot of discussion among the students and they investigated this task in more
depth than they did previous tutorial tasks that had not been designed specifically
around the use of technology. However, the progress of some students was limited
by their desire to employ Desmos, due to its relative ease of use, rather than other
programs such as GeoGebra that would have allowed a greater array of techniques
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to be employed in activity on the task. In this respect, it seemed evident that the
greater use of Desmos in the second phase of the study by the lecturer had influ-
enced students’ propensity to use Desmos, rather than explore other technologies,
as was more the case in the first phase of the study (McMullen, Oates & Thomas,
2015).

9 New Orchestrations with Smartphone Digital
Technology

The constant evolution of digital technology presents teachers with the question of
how to innovate in order to adopt new technologies with learning potential into
teaching in an interactive manner that will foster mathematical thinking (Thomas,
Monaghan, & Pierce, 2004), and exactly how it might be orchestrated. This requires
consideration of questions such as, what interactions are desirable between student,
teacher and technology in order to promote mathematical thinking and under-
standing, and how can the teacher orchestrate these?

One crucial aspect of the rapid development of DT tools is the role of con-
nectivity in establishing collaboration through communication (Hoyles et al., 2010).
This has often been interpreted as existing within the didactical configuration,
although the implications of cloud technology have also been described as a
‘revolutionary manifestation’ of connectivity (Trouche & Drijvers, 2010).

The innovative potential of the latest mobile technology devices, such as
smartphones, for learning has been recognised (Coffland & Xie, 2015), based on
their accessibility, immediacy and portability. Although research is still in its
infancy, possible uses, such as dynamic demonstrations of concepts, access to
expert advice on problem solving methods, immediate feedback on practice prob-
lems, and dynamic concept exploration have all been suggested (Coffland & Xie,
2015). Other possibilities for as yet untapped usage, presented by White, Booker,
Carter Ching, and Martin (2011), include the opportunity for students to make
mathematics personal by allowing them to capture their real problem-solving sit-
uations by means of pictures, audio, and videos. While there have been some
research studies using mobile technology, including: practicing skills related to a
given content area (O’Malley et al., 2013); collaborative learning and spontaneous

Fig. 8 Sample working on the examination question on AROC
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reaction (Norris, Soloway, Tan, & Looi, 2013); and investigation of how
socio-cultural and situated learning aspects are reflected in learning experiences
(Genossar, Botzer, & Yerushalmy, 2008), further studies related to learning are
needed. In particular, there have been few, if any, studies that have considered the
use of mobile technology to learn mathematics in the university setting, making this
an innovative area.

Young people today form a strong bond with their mobile phones and there
seems little doubt that the assemblage of students and their mobile phones (de
Freitas, Ferrara, & Ferrari, Chap. The Coordinated Movements of a Learning
Assemblage: Secondary School Students Exploring Wii Graphing Technology), is a
complex area worthy of study. However, while the availability of smartphones is
opening up even greater opportunities for innovative implementation and com-
munication in mathematics learning at the tertiary level, this brings with it chal-
lenges for teacher orchestration. In a recent study we examined smartphone use
with 134 students in two pre-calculus classes of the same university course in
Korea. This considered the dynamic, immediate and communicative aspects of the
technology in students’ learning and problem solving. The course was taught using
lecturer demonstration with GeoGebra, Geometer’s Sketchpad and graphic calcu-
lator apps on a smartphone, which the students downloaded during the class.
Students also used KakaoTalk on the SNS (Social Network Service), which allows
one to send and receive messages and pictures on the screen of a smartphone,
making immediate feedback during a class possible. The researcher demonstrated
how to download KakaoTalk and put a copy on their e-class (electronic learning)
website which was accessible to enrolled students. Once again, the lecturer here had
excellent PTK (Thomas & Hong, 2005; Hong & Thomas, 2006). She is very
positive in her attitude to technology use in mathematics teaching, has over
20 years experience with technology in teaching, along with high level of instru-
mental genesis using a number of DT tools, is very confident and has a good
mathematical background.

Examples of the kind of activity this lecturer uses to encourage global, interval,
local and pointwise thinking about function are included here to provide a context for
the examples below (see Hong & Thomas, 2015 for further details). Having defined a

rate of change function r hð Þ ¼ f 2þ hð Þ�f 2ð Þ
h for f xð Þ ¼ x2 and generated numeric

approximations for r, her aim is to move to a general rate of change. A CAS calculator
can be used to obtain the derivative at x ¼ a by defining a function slope hð Þ ¼
avgRC f að Þ; a; hð Þ; a ¼ �1; 0; 1; 2; 3f g as the average rate of change over an
interval of size h. As in the study above this can initially focus on interval thinking but
lead to local thinking as the intervals get progressively smaller. Thus students can
investigate the change of slope and, by taking the limit, see that it gets close to
�2; 0; 2; 4; 6f g; and hence conjecture that the derivative is 2x (see Fig. 9).
Next we illustrate the kinds of novel orchestrations that she was able to intro-

duce. In this course the students were employing their smartphones as a graphic
calculator as well as a communication device. In Fig. 10 we see a student com-
municating with the teacher through KakaoTalk on the smartphone. The second
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column contains the original communication in Korean, the first an English
translation and the third the student input in GeoGebra and the resulting graph.

Entering f xð Þ ¼ 2x� 1 �1� x� 1ð Þ into GeoGebra the student was surprised by
the discontinuous graph obtained, what she called ‘cut out’. Realising this was
incorrect since she wanted the graph of 2x − 1 on the interval [−1, 1] to display, she
had asked how to define the interval correctly. It appears that solving her dilemma
involved a transition from interval thinking about function (why did she have a
different definition on each interval) to a global perspective (the intention was that
the function be defined on the interval [−1, 1]). Here the student knew what the
function should look (i.e., the global view) like but lacked the instrumentation
needed to produce it. We see that GeoGebra has behaved in a subtle manner, taking
the input for f to mean subtract 1 from the function 2x only on the interval [−1, 1]
and leave 2x elsewhere. Interestingly, and illustrating the potential vagaries of DT
techniques, and the associated difficulties for instrumental genesis, the format of
this command with {} brackets would produce the desired effect in the Desmos
program. However, the communication technology provided the teacher with the

Fig. 9 Calculator screens showing interval slope calculation

Fig. 10 A student utilising KakaoTalk to communicate with the lecturer

Innovative Uses of Digital Technology in Undergraduate … 125



opportunity for innovative instrumental orchestration. In Fig. 11 we again see her
original response in column 2, the English translation in column 1 and the result of
entering the command in GeoGebra in column 3.

This individual orchestration could be classified as involving both
discuss-the-screen, due to the need to explain why the graph was not as expected,
and technical-support, where the correct input was provided. Due to the ad hoc
nature of this didactical performance the lecturer did not here take the opportunity
to engage the student further by discussing what GeoGebra might do with an input
such as f xð Þ ¼ 2x� 1ð Þ �1� x� 1ð Þ, which could have helped her to focus on the
mathematical logic behind the placement of the interval and hence construct a
suitable scheme for using them. In this latter case GeoGebra keeps the domain as R
and draws the graph of the function on three intervals

f xð Þ ¼ 2x� 1 �1� x� 1
0 otherwise

�

rather than restricting the domain to [−1, 1] as intended. This type of orchestration,
which, as mentioned above and in McMullen et al. (2015), does not appear to be
covered by the taxonomy of Drijvers et al. (2013), and could, we believe, be
classified as guide-to-investigate.

In a second example, seen in Fig. 12 (original screenshots with an English
translation underneath), the student sends questions while using a GC to work on an
assignment and the lecturer responds to the questions with a didactical performance
executed through KakaoTalk in real time. The student asks whether her method is
correct or not, and to make sure of her working she sends the screenshot of the
graph (see the enlargement in Fig. 11). Invoking a pointwise view of function to
find the points where the function has the value zero, the student tries to solve the
equation k2 � 6kþ 13 ¼ 0 algebraically but is unable to and wonders if she has
made an error. Once told that there are no solutions she realises that she may not
have ‘to use the quadratic formula for the roots’ and wonders how she might verify

Fig. 11 The lecturer response using KakaoTalk for instrumental orchestration
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this using what she describes as ‘the graph of k2 � 6kþ 13 ¼ 0’. The lecturer, who
realises that the GC technique requires a function in x, orchestrates the student’s
instrumentation by suggesting drawing the graph of the function f, where
f xð Þ ¼ x2 � 6xþ 13. The student follows this advice, and then sends the resulting
graph through the communication channel with the comment “I see, I understand
why I don’t have real roots looking at the graph”. The change of representation has
enabled the GC to provide epistemic insight, including a change in focus from
pointwise to global; seeing that the function’s graph lies above the x-axis across the
whole of its domain.

In this case the lecturer’s orchestration could be described, firstly, as
technical-support, assisting the student to see that the GC will only plot graphs in
terms of x not k. This has pragmatic value, since it leads to the graph production.
However, at a deeper level the orchestration is helping the student develop an
appropriate mental scheme with genuine epistemic value. It has the potential to
produce the knowledge that the particular variable used in a function is irrelevant,
leading to a technique whereby it may be substituted by any other variable. This has
many crucial applications in mathematics, such as in the Fundamental Theorem of
the Calculus. The second aspect of the orchestration here is the encouragement to
experiment in order to learn (“Try it. Then you can see that the value of k does not
exist on the x-axis”). In this case it involves having the versatility to link the function
across two representations, with the mathematical outcome much easier to see from
the graph than the algebra, and, again, could be classified as guide-to-investigate.

Fig. 12 The student and lecturer discussion using KakaoTalk
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The third example of communication and orchestration afforded by KakaoTalk
presented here exemplifies a discuss-the-screen orchestration, and it occurred while
the students are using the GC in the class while working on the task:

Find the value of k, if when the graph of the function y ¼ x�1
x�2 is reflected onto itself in the

line y ¼ �xþ k.

This task combines several perspectives on function. The students were
encouraged to solve the task graphically using the GC and then send a screenshot of
their working to the lecturer via KakaoTalk. Thus the lecturer was able to see what
students are doing, check their answers and provide necessary feedback immedi-
ately, using guide-and–explain or explain-the-screen orchestrations. Figure 13
shows an example from one particular student who has sent the graph of y ¼ x�1

x�2 ; as
well as those of the linear functions y ¼ �xþ 3; y ¼ �xþ 2 and y ¼ �xþ 5. In
this case, to assist the student to find the solution, k = 3, the lecturer took the
following steps. She asked her to compare the graph of y ¼ x�1

x�2 with that of ¼ 1
x,

and, after seeing the graphs, the student, employing a global view of the function,
answered that it is translated about 2 units along the positive x-axis and shifted up 1
unit. The lecturer then asked where the horizontal and vertical asymptotes intersect
and the student answered that they intersect at the point (2, 1).

Fig. 13 Communication
between a student and the
lecturer using screenshots
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Following this the lecturer asked through which point the line of reflection of the
graph of y ¼ x�1

x�2 must pass, and the student, using the pointwise idea of an invariant
point, answered (2, 1). After this exchange the student was able to answer that the
appropriate linear function is y ¼ �xþ 3. Some confirmation of the epistemic value
of the DT approach was obtained from the mid-term test, where this example was
extended to finding a range of possible values for k, as follows: The hyperbola
y ¼ x�1

x�2 intersects the line y ¼ �xþ k at two points. Find the range of possible
values for k and sketch the graphs. This question involves a global perspective, with
its vertical translation of the straight line. The results support the hypothesis that a
DT ‘guide-to-investigate’ orchestration may be effective in developing the students’
visual thinking and conceptual understanding. In this case, 60.4% of the students
used an algebraic method with the discriminant to find two intersection points,
followed by a graphical method where they employed a translation for y ¼ �xþ k
(see one example in Fig. 14).

Our final example of smartphone communication and orchestration occurred
when students were working on the following task.

It is known that a population of a certain of moth changes on an annual cycle, which can be
approximately modeled by the function: P mð Þ ¼ m2�8mþ 18, where m is the number of
the month (0 � m � 11) and P(m) is in thousands. In what month is the population at a
minimum, and what is this population?

As seen in Fig. 15, the students used the GC to sketch the graph of
P mð Þ ¼ m2�8mþ 18, and then transferred their graphical work to paper. Here the
lecturer has communicated the alternative version of the function, completing the
square to give a version of P xð Þ ¼ x� 4ð Þ2 þ 2:

The students have quickly picked up the epistemic value of this orchestration as
a route to the solution, without the need to differentiate the function. We see that
both students A and B have completed the square and recognised that the minimum
value is 2, occurring at m = 4, writing P 4ð Þ ¼ 2:

Fig. 14 A student’s solution integrating algebraic and graphical techniques
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Hence, although many students would naormally solve this problem in a stan-
dard by-hand manner using differentiation techniques, the GC, along with lecturer
orchestration we can describe as guide-to-maths-technique, led these students to
link the graphical and algebraic representations in a versatile manner (Thomas,
2008) through the technique of completing the square. In addition, the standard
method focuses on pointwise thinking to find the points where the derivative is
zero, but completing the square and drawing the graph shifts the focus to a global
one where the student can see that across its whole domain the function is greater
than the value at the vertex.

10 Conclusion

In this chapter we have described some recent research involving innovative aspects
of technology use in a university mathematics environment that include:

• Integrated technology involving intensive technology use by staff and students
• Courses deliberately framed around instrumental orchestrations taken from the

recent literature (Drijvers et al., 2013)
• Course design that used DT to promote epistemic mediation of an interval and

local perspective on function
• DT integrated into all aspects of assessment except the final examination
• Small group activity on DT-active inquiry-based tasks (Jaworski, Robinson,

Matthews, & Croft, 2012)
• Dynamic DT multiple representations of functions within the orchestrations

framework
• Dynamic, immediate use of mobile technology in a university problem solving

context

GC Student A Student B

Fig. 15 Students’ working with the graphing calculator and KakaoTalk
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• Use of mobile technology for instant, direct communication between students
and lecturer involving mathematical output and thinking

• Linking of interval and local perspectives of function.

In both of the studies reported on here, and in other examples (Hong & Thomas,
2015), we have seen that it is possible to design and construct a teaching approach at
university level using DT that can assist students to construct both interval and local
perspectives on functions. In this way one existing discontinuity between school and
university-based epistemologies may possibly be satisfactorily addressed.

At a practical level, this included integrating technology into as many aspects of
the course as possible, thus mirroring and even extending the use of technology that
most students now bring with them from school, such as encouraging the use of
Desmos and Wolfram Alpha in the first study, and KakaoTalk in the second. Staff
modelled the use of technology in lectures, encouraged students to engage actively
with it in lectures and provided examples of multiple different platforms for stu-
dents to explore outside of class. Other aspects included overt use of technology in
assessment (e.g., course tests and compulsory use in assignments), and
specially-designed active technology tasks for use in small-group tutorials.
Observations and survey responses suggest that students both enjoyed and benefited
from this approach, with evidence that the tasks promoted students’ exploration
using the multiple representations provided by the technology. The first study
supports the value of both the concept of instrumental orchestration proposed by
Trouche (2004) and teacher privileging (Kendal & Stacey, 2001), with a clear
indication that the teachers’ promotion of technology (especially Desmos) and the
examples used in lectures and developed in the tasks guided students’ choices and
uses of technology.

The first study also provided an indication that deliberately designing a course
around the instrumental orchestrations framework (Drijvers et al., 2013) may lead
to opportunities for additional orchestrations beyond those previously described.
Tutorial observations suggested that the use of Desmos with the AROC problem in
lectures, incorporating specific orchestrations (e.g., technical-demo;
explain-the-screen; board-instruction), may have mediated students’ movement
towards instrumental genesis when working on other technology-active problems
with Desmos. McMullen et al. (2015) describe this process, where rather than
simply providing an answer the teacher encourages the student(s) to use their DT to
investigate mathematical ideas, as a guide-to-investigate orchestration. It seems that
the conscious effort to incorporate dynamic, DT-active representations of functions
into these courses, using multiple platforms, supports the crucial role of such
representations in epistemic mediation (McMullen et al., 2015; Stacey, 2003).
Further, the programs written using GeoGebra have the potential to enable students
to move in a dynamic manner from interval-based thinking about AROC of func-
tions to a local perspective. This is achieved by reducing the size of the interval
employed for average rate of change from a macro to a micro level, allowing for
reflection on the implications of the limiting process as the interval dynamically
tends to zero size.
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The second study, incorporating the process of using mobile technology to
institute two-way, instant, direct, dynamic communication between lecturer and
students provides further evidence of the individual guide-to-investigate proposed
here. In addition, a second individual orchestration we describe as guide-to-maths-
technique is suggested, where teacher orchestration leads students to make epis-
temological links between the digital technology techniques and the by-hand
techniques. This may be accomplished by enhancing representational versatility
(Thomas, 2008) for a technique such as completing the square.

Of course, innovation of practice alone is insufficient to recommend its imple-
mentation in teaching. So we must ask what was the effect of the practice outlined
above on students? We do not provide a full discussion of the effects on learning
here. However, in the first study we saw above that the level of engagement with
DT in student learning activity increased, they often responded positively in the
survey to its use, and they displayed positive attitudes to DT use in the attitude scale
given at the end of the course. In the second study it appears that the innovative use
of KakaoTalk as a communication device, along with the individual and whole
class instrumental orchestrations by the lecturer described above, may have facil-
itated communication that contributed to a more positive student perception of
calculator use in their learning. For example, the student evaluation, which followed
the teaching in the second study, produced comments such as “The application of
graphing calculator could be easily understood.”, “Conducting classes to engage
students was very good”, “Using the graphing calculator was a lot of help to
conceptually understand and easy to understand mathematics.” and “It was nice to
learn new mathematics using a graphing calculator”. Further, the students were
given an attitude scale prior to the course, and again at the end. For around a third of
the items there was a significant positive shift in attitude towards DT use from the
students. For example, Table 2 shows the mean responses to some of the questions.

Thus we propose that the use of DT during class time, along with visual com-
munication via a smartphone app, may have encouraged student engagement, with
the potential for improved conceptual understanding.

Overall, we feel that the kinds of DT-active approaches detailed in this chapter
have the potential to assist in smoothing any discontinuity in technology use
between school and university. We suggest there are several key aspects to

Table 2 Some of the attitude scale items showing significant positive movement

Scale item Pre-test
mean
(N = 214)

Post-test
mean
(N = 148)

p-value

When I use a calculator my learning improves 2.88 3.20 <0.005

More creative problem solving methods come
to mind if I use a graphing calculator

2.70 3.14 <0.0005

Studying is more fun when you use tools such
as the graphing calculator

3.10 3.40 <0.005

Using a graphing calculator to solve problems
makes them more memorable for longer

2.70 3.14 <0.0005
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successfully implementing such a scheme if we wish to promote active student
engagement and investigation with DT. These include the role of instrumental
orchestrations in facilitating instrumental genesis, and the level of teacher-
privileging provided for particular technologies. We agree with Carreira,
Clark-Wilson, Faggiano and Montone (Chap. From Acorns to Oak Trees: Charting
Innovation Within Technology in Mathematics Education) that restructuring les-
sons with DT, by redefining objectives and tasks “presents new challenges for
teachers as they begin to create mathematical tasks that use the affordances of such
software environments to produce productive activity for their students”. Hence, a
crucial factor in any consideration of teaching mathematics with DT is the level of
pedagogical technology knowledge (PTK) of the lecturer (Thomas & Hong, 2005;
Hong & Thomas, 2006). The PTK lens includes the orientations of teachers and
lecturers, a vital factor that is missing in the TPACK framework (Mishra &
Koehler, 2006) that is exemplified in the work of Tabach and Slutzky
(Chap. Studying The Practice of High SchoolMathematics Teachers in a Single
Computer Setting). These orientations form part of Schoenfeld’s (2010) resources,
orientations and goals model, and without them it is not really possible to gain full
insight into the goals of teachers and lecturers (see e.g., Thomas & Palmer, 2013).
Their influence on mathematician lecturers, recently described by Schoenfeld,
Thomas, and Barton (2016), illustrates why it is important to include them in
research. The manner in which PTK may be enhanced for individual lecturers in the
digital era (Clark-Wilson, Sinclair, & Robutti, 2013) should therefore continue to be
a focus of on-going research and professional development.
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The Duo “Pascaline and e-Pascaline”:
An Example of Using Material and Digital
Artefacts at Primary School

Michela Maschietto and Sophie Soury-Lavergne

Abstract The paper presents the design and the analysis of teaching experiments at
primary school concerning the introduction and use of a “duo of artefacts”, con-
stituted by the pascaline i.e., the arithmetical machine Zero+1, and its digital version
e-pascaline. The idea of ‘duo of artefacts’ represents the innovative component of
this research work, because the e-pascaline is constructed in a complementary way
with respect to the pascaline. The duo of artefacts is proposed to support student’s
conceptualization processes of numbers as sign of a quantity, number sequences and
recursive addition. Computation and manipulation of base ten notation are two
processes that students often consider separately. This duo enables the design of
situations that required those two processes to be connected and to consider their
effect on each other. With duo of artefacts, technology allows the development of
learning environments in which it is possible to study the articulation between
material and digital manipulatives for mathematical conceptualization.

1 Connecting Manipulatives and Technological Tools

Research in education is more and more interested in studying the role of manip-
ulatives and their characteristics in teaching and learning, not only mathematics but
also sciences. International literature distinguishes between virtual and physical
manipulatives. In the recent book “Perspectives on Teaching and Learning
Mathematics with Virtual Manipulatives”, Moyer-Packenham and Bolyard (2016)
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discuss extensively the definition of virtual1 manipulatives, starting from the pre-
vious definition by Moyer, Bolyard, and Spikell (2002). Their updated definition of
a virtual manipulative with respect to other technological tools makes the presence
of dynamic representations as an essential feature, and also includes some pro-
grammable aspects. Among the five kinds of virtual manipulative environments
they have identified, this paper—about the digital part of the duo of artefacts that
will be presented later—focuses on “tutorial virtual manipulative environment” and
“simulation virtual manipulative environment”. But this paper also considers the
physical manipulatives and is interested in relationships between virtual (digital)
and physical ones. This new attention towards combining physical and digital is
rather new, as stated by Bartolini Bussi and Inprasitha (2015) and constitutes an
innovation in the field of digital technology for education. Hence, the interest is
already shared among recent research works in conceptual learning in mathematics
—in particular (Ladel & Kortenkamp, 2015; Soury-Lavergne & Maschietto, 2015a;
Sarama & Clements, 2016). The current focus is on the relevance of sensory-motor
experiences for mathematical conceptualization (see Chap. Returning to Ordinality
in Early Number Sense: Neurological, Technological and Pedagogical
Considerations). In science education, such concern also exists. At university level,
Olympiou and Zacharia (2012) have carried out teaching experiments using
physical manipulative alone, or virtual manipulative alone or the two together. In
their overview of the possible combinations of the manipulatives usages, they
identify two distinct settings: a “sequential combination” in which the manipula-
tives are sequentially used, without explicit support between them, and a “blended
combination” in which physical and virtual manipulatives are used in reference to
each other. The authors carry out their teaching experiments in the latter setting
with the aim of analyzing the affordances of the two kinds of manipulatives for
students’ learning.

We develop our work about connecting manipulatives and digital tools by fol-
lowing the two perspectives of Carreira et al. (in this book) in their study of
innovation development. We have designed a technology, which is a duo of
material and digital artefacts (Maschietto & Soury-Lavergne, 2013). Moreover, we
have designed classroom tasks partly embedded in the digital technology itself and
partly in the description of teaching units using the duo of artefacts
(Soury-Lavergne & Maschietto, 2015b). We now study the appropriation of the duo
and the classroom tasks by the teachers, which is a third perspective about inno-
vation and technology, as in Kynigos’s or Tabach and Slutzky’s contributions in
(Chap. Innovations Through Institutionalized Infrastructures: The Case of Dimitris,
His Students and Constructionist Mathematics and Chap. Studying the Practice of
High School Mathematics Teachers in a Single Computer Setting).

1Sarama and Clements (2016) do not agree with this term. For them, representations on a screen
physically exist, they are not ‘virtual’.
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1.1 From a Learning Perspective

The use of concrete tools implies physical engagement. Many works from different
research fields have established its necessity for mathematical conceptualization
(Lakoff & Nunez, 2000; Edwards, Radford, & Arzarello, 2009; Kalenine, Pinet, &
Gentaz, 2011). The technological tool of the duo (digital and manipulative) must
present some evolution in comparison to the physical one in order to help students
overcome some of the manipulatives limits. It should offer students a new oppor-
tunity to identify the mathematical properties embedded in the artefact behavior.
Moreover, digital parts of the duo may evolve toward a more abstract and con-
ventional representation of mathematical objects. In line with Fyfe, McNeil, Son,
and Goldstone (2014), there is no opposition between the use of concrete materials
and abstract materials in learning, but rather a continuity that helps students build
the mathematical concepts in that it gradually eludes the characteristics of concrete
material. Also, it contributes to the construction of a “conceptual field” (Vergnaud,
2009), defined by the set of situations in which a concept is carried out:

It is at the same time a set of situations and a set of concepts tied together. By this, I mean
that a concept’s meaning does not come from one situation only but from a variety of
situations and that, reciprocally, a situation cannot be analysed with one concept alone, but
rather with several concepts, forming systems (Vergnaud, 2009, p. 86).

Therefore, our proposal is to design duos of artefacts, grounded in the example of
pascaline and e-pascaline, by associating a concrete manipulative tool to a digital
tool to combine the advantages of both types of learning tools and to overcome
some of their limits. Mainly, we use the theory of didactical situations (Brousseau,
2002) and especially the concept of feedback in the interaction subject-milieu to
design didactical situations including concrete and digital artefacts (Mackrell,
Maschietto, & Soury-Lavergne, 2013). Thus, our question is about the character-
istics of the duo of artefacts in order to improve the learning experience of students.
But, like any learning resources, especially innovative resources, their potential for
mathematical learning also depends on the teachers.

1.2 From a Teaching Perspective

The use of information and communication technology by primary school teachers is
still not as developed as it could be expected considering the level of equipment and
the learning attainments achieved by technology (see Ravenstein and Ladage (2014)
for French schools). One of the reasons may be the teachers’ poor understanding of
technology as an added value to learn mathematical concepts. They are not con-
vinced of its usefulness. When considering manipulatives, like base-ten kits, sets of
cards, coins, dice and so on, the situation is not similar (Moyer-Packenham, Slakind,
& Bolyard, 2008). Teachers are aware of the role of manipulation providing physical
and perceptual experience as well as solid mathematical conceptualization as regards
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longs-standing research on education. Teachers actually use such teaching resources,
even though the use of concrete manipulatives may also raise difficulties to students,
because they embed perceptual and mechanical elements irrelevant to mathematical
knowledge or limit knowledge transfer from one situation to another. Thus, a duo of
artifacts may be an invitation for teachers to use both tools and especially technology
at primary school level. Currently we have very few elements regarding teachers’
appropriation and use of complex set of resources, like a duo of artefacts may be
(Gueudet, Bueno-Ravel, & Poisard, 2014).

In this study, we use an ergonomic approach developed by Tricot et al. (2003) to
evaluate learning environments with technology. We applied it to the duo of
artefacts and its appropriation process by teachers. In particular, Tricot and col-
leagues distinguish three different dimensions to evaluate the efficiency of a
learning technology and its potential use by teachers: utility, usability and
acceptability. We apply these three dimensions to the duo of artefacts:

– The duo of artefacts is useful if it enables students to learn what is intended to.
Usefulness characterizes a relevant technology.

– The duo of artefacts is usable if students can easily use it and remember how it
works, if it is an efficient tool that generates satisfaction and doesn’t produce
mistakes. Usability characterizes the efficiency of a technology.

– The duo of artefacts is acceptable if it matches constraints of the teaching
context (like time, space, organization, resources), and also institutional requests
and existing practices and if it is compatible with students’ motivations, affects,
culture and standards. Acceptability conditions the user’s decisions to use the
environment.

Utility, usability and acceptability can be evaluated empirically, with the involve-
ment of users at every moment of the tool design process. We have organized a
study to explicit the point of view of the teachers about the duo of artefacts.

The purpose of this chapter is first to explicit some principles that might be
efficient for the design of a duo of artefacts like pascaline and e-pascaline. Then we
present a study conducted with teachers and first grade classes to discuss the duo
integration into learning and teaching practices. Finally, the ergonomic approach is
a suitable theoretical framework to study innovation in the case of teachers’
appropriation of a duo of artefacts.

2 The Pascaline and the e-Pascaline for the Learning
of Numbers, Place Value and Computation

We have designed a first duo of artefacts composed of a concrete manipulative, the
pascaline, and a digital counterpart, the e-pascaline, with the principle that each
artefact complements the other one. The pascaline (Fig. 1) is an arithmetic machine
developed after the historical machine of the French mathematician Blaise Pascal. It
is already used in Italian research on mathematical machines (Maschietto, 2015).

140 M. Maschietto and S. Soury-Lavergne



The e-pascaline (Fig. 2) has been developed with the Cabri Elem technology and is
a fixture of a collection of e-books.

The duo pascaline and e-pascaline aims at teaching place value and computation;
moreover it offers a rich mathematical experience on numbers to the students.

2.1 From the Pascaline to the Design of the e-Pascaline

The pascaline is a simple mechanical machine made up of gears providing a
symbolic representation of three digit numbers and adequate for arithmetic opera-
tions. Each of the five wheels has ten cogs. The digits from 0 to 9 are stamped on
the lower yellow wheels that display units, tens and hundreds from the right to the
left. When the units wheel initialized to 0 rotates fully clockwise, the right upper
wheel makes the tens wheel rotate in the same direction one tooth forward. This
automatic mechanical motion of each lower wheel mediates the idea of packing ten
units into one ten, or ten tens into one hundred. Likewise, the jerky motion of the
wheel supports the recursive approach to numbers as it rotates one tooth at a time,
adding or subtracting 1 according to the rotation clockwise or anticlockwise. It links
addition and subtraction as inverse operations.

We have designed a digital machine with some chosen elements of continuities
and discontinuities in relation with the physical pascaline (Maschietto &
Soury-Lavergne, 2013). The aim was to help the transfer of students’ ideas con-
cerning relevant mathematical meanings and to hinder those irrelevant to mathe-
matical interpretation at primary school level. In the studies about virtual and digital
manipulatives (Moyer-Packenham, 2016; Olympiou & Zacharia, 2012), this com-
ponent of design is not taken into account. Therefore, we have analyzed both
students’ schemes of use and their drawings of the pascaline in order to know what
physical components and actions of the machine they have clearly identified. We
have selected some of these elements to design the e-pascaline. As a result, the
e-pascaline looks like the pascaline (Fig. 2) with just some meaningful differences.
For instance, with the e-pascaline, it is no longer possible to directly move the upper
wheels. Blocking the upper wheels is a means to reinforce the association between a
direction of rotation and an operation (the upper wheels turn in the opposite

Fig. 1 The pascaline (left) displaying number 122 (the three digits above the red triangles) and
some usage gestures (right, Maschietto 2015)
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direction due to the principle of gear rotation). Likewise, it is no longer possible to
subtract 1 from 0 or to add 1 to 999 (in the pascaline, 000-1 makes 999). The
e-pascaline allows only the operations having a result between 0 and 999, which is
the full range of numbers displayed by the e-pascaline and the pascaline.

Moreover, the e-pascaline comes with additional components such as action
arrows. Indeed, the rotation of the physical pascaline wheels produces sound and
haptic feedback each time a tooth revolves. Students use these clicks to control their
action on the machine and to perform operations. The e-pascaline makes it explicit
by displaying two arrows on each side of the wheels (Fig. 2). These arrows are
buttons on which the user clicks to actuate the e-pascaline wheels. In any case, there
is always a jerky movement, one by one on a wheel, different from a multi-touch
technology (Chap. Returning to Ordinality in Early Number Sense: Neurological,
Technological and Pedagogical Considerations). They express a possible action on
the digital machine and the direction of the wheel rotation. Other examples of
additional components are the reset button (to reset the three wheels to zero) or the
“counter of clicks” to display the number of clicks performed by the user since the
last reset of the counter (Fig. 3). All these e-pascaline components created on added
value and could be used to design problem-solving situations (for instance, writing
a number with the minimum of clicks).

The last additional element of the digital part to the duo of artefacts is the col-
lection of e-books offering several possible didactical situations with the e-pascaline.

2.2 Three Different Levels of Feedback in the Duo
of Artefacts

The didactical situations with the e-pascaline are developed in e-books created with
the Cabri Elem technology. From one page to the other, the designers must set the
didactical variable values and implement appropriate feedback to cause the

Fig. 2 The e-pascaline (left) displaying number 122 and a single wheel with curved arrows for
moving the wheel (right)
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evolution of the students’ strategies in solving an assigned task (Mackrell et al.,
2013). One of the most important design principles at the basis of Cabri Elem
authoring environment is direct manipulation (Laborde & Laborde, 2011) which
involves both action and feedback on action. In the process of situation design with
the authoring environment, we have identified three kinds of feedback.

Direct manipulation feedback is the response of the environment to any stu-
dents’ action and may be combined to produce the other two types of feedback. An
example of direct manipulation feedback is the fact that the rotation of the
e-pascaline wheels is displayed continuously when the students click on the action
arrow, not only the initial and final state of the wheel. The implementation of a
direct manipulation feedback resides mainly in choosing what elements are dis-
played or hidden, the successive positions of these elements and their dynamic
update (the counter of click is automatically updated when clicking on a wheel).

Strategy feedback aims at supporting students in their solving strategy of a given
task. It is a response to the mathematical value of the students’ strategy (Brousseau,
2002). To implement strategy feedback, the designers need to identify (i) configura-
tions that are typical of a strategy and induce a diagnosis of this strategy and (ii) new
objects or actions that can provide help to the students without changing the nature of
the task or giving the answer. Such feedback may consist of help alerts, signs pointing
out some contradictory elements in the students’ strategy that call their attention to
their current strategy limitations or changes in direct manipulation feedback. Below,
we present examples of strategy feedback in the e-pascaline e-books.

Evaluation feedback is related to the completion of the task. Such feedback is
necessary for the students to know how successful their strategies are to solve the
problem. In the e-pascaline collection of e-books, it is mainly a smiling smiley
displayed on the page that indicates success and a sad smiley that indicates errors.
Moreover, the successive smileys obtained after each problem remain on the page.

Fig. 3 The e-pascaline in the e-book, with additional components
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They provide information about the global achievement of the students. It is worth
to notice that if the evaluation feedback is automatically displayed, it may happen
independently of the students’ request. Then, the students can develop a trial and
error strategy, seeking the unplanned pop-up of a smiley without looking for a
solution. So, in the e-pascaline e-books, the evaluation is given only after an
explicit request from the students.

These three levels of feedback appear relevant to design and to analyze didactical
situations including each kind of artefact, either physical or digital.

2.3 Adding with the Pascaline and the e-Pascaline

There are two main procedures to add two numbers with the pascaline, both starting
from the first term displayed on this device. Once the first term is displayed, the
iterative procedure consists in repeating the operation of pushing the units wheel,
one tooth at a time clockwise until the number of clicks corresponds to the second
term of the sum. For instance, when adding 26 by iteration, the student clicks 26
times on the units wheel. The decomposing procedure consists in pushing each of the
three wheels by a number of clicks equal to the corresponding digit of the second
term. For instance, when adding 26 by decomposing, the user clicks 6 times on the
units wheel and twice on the tens wheel (the order between the wheels does not
matter). The iterative procedure is based on the quantity represented by the number
while the decomposing procedure is based on the meaning of each of the digits in
place value notation. Hence, the evolution of students’ procedures from iteration to
decomposition corresponds to the transition from a procedure based on the quantity
represented by the number (adding by counting one by one) to a procedure based on
place value notation. It indicates an evolution of the mathematical meanings asso-
ciated to place value notation and their possible use for performing operation.

The use of the pascaline provides students with different kinds of feedback.
There is an asymmetric direct manipulation feedback when adding two numbers.
The feedback is not the same for the two terms of the addition. When the students
add two numbers, the pascaline continuously displays the first term and never does
for the second one. For the second term, the feedback is reduced to the clicks
produced by the moving wheels and the boosted haptic feedback when two or three
of the lower wheels turn simultaneously. Using the physical pascaline also enables
the students to realize that the two procedures are not equivalent. Therefore, the
pascaline provides a kind of strategy feedback. For instance, adding a large number
like 100 requires 100 clicks on the units wheel and only one click on the hundreds
wheel. Students may be conscious of this difference but the physical machine will
not require the evolution from one to the other procedure. And finally, there is no
evaluation feedback with the pascaline. This last level of feedback relies on the
intervention of a human agent, mainly a teacher.

The goal of the addition e-book is the crucial and tricky passage from the
iterative procedure to the decomposing procedure. It corresponds to the evolution
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from a number representing a quantity, unit by unit, to the writing of number in
terms of hundreds, tens and units. Most six-year-old students apply the iterative
procedure even with large numbers (Soury-Lavergne & Maschietto, 2015b). The
e-book consists of three pages displaying the same structure and components
(Fig. 4). The differences from one page to another concern the size of the proposed
numbers for addition (up to 30 in pages 1 and 2, up to 69 in page 3) and the type of
feedback given by the e-pascaline in response to the students’ procedures. We have
implemented feedback to compel students’ procedures to evolve from iteration to
decomposition. We used the possibility of hiding the action arrows on the units
wheel to compel the students to consider and use another wheel, the tens one. It is
possible and efficient because the iteration procedure requires only addition on the
units wheels, although the decomposing procedure requires the use of the units
wheel and the tens wheel as soon as the second term is a two-digit number. In the
first page of the e-book, all procedures are feasible. It supports appropriation of the
situation by the students. In the next two pages, the units wheel can only be used a
number of times equal to the sum of the unit digits of the two terms. For example, to
add 18 + 13 (Fig. 4), the user can only click 8 + 3 times on the units wheel before
the addition arrow disappears. The iteration procedure, which needs 13 clicks on the
units wheel, is no longer possible. In such a way, students have to look for another
strategy to perform the addition. The fact that the action arrow is concealed cor-
responds to a strategy feedback. It occurs in response to the iterative procedure and
shows to the students that iteration on the units wheel is no longer possible, yet does
not give the appropriate procedure. Such a feedback is not possible with the
physical pascaline. The possibility to design different kinds of feedback contributes
to the added value of the e-pascaline to the duo of artefacts.

The differences between the situations with the pascaline and the situation with the
e-pascaline are sufficiently clear-cut to support students’ grasp and change of
procedures and therefore conceptualization of place value notation. Situations
including the pascaline and the e-pascaline involve concrete manipulatives, iconic
and symbolic representations with strong links between the three aspects. The duo

Fig. 4 On the left, the first term 18 is written; the e-pascaline is waiting for the second term. On
the right, the second term is added, by using the units wheel; after three clicks, the adding unit
arrow disappears
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of artefacts makes possible to create situations and problems that link physical
manipulations to different kinds of representation and particularly symbolic
representation.

3 Learning Setting with a Duo of Artefacts

The first teaching experiments with the duo of artefacts have been conducted within
two French projects with the aim to produce teaching resources based on the duo of
artefacts (Soury-Lavergne & Maschietto, 2013). The teachers involved in these
projects have started with the e-pascaline, some e-books and some teaching
resources concerning the physical pascaline alone [some of them are included in
Maschietto and Savioli (2014)]. They have elaborated a teaching scenario, and
tested it during two years in different classes. A scenario has been released on one
of the projects website2 to be accessible to any other teachers (Fig. 5). This point is
essential in combining the two kinds of artifacts, as Olympiou and Zacharia (2012)
claim the need of “having certain knowledge and skills” for teachers involved in
teaching experiments with them.

The teaching scenario is organized in four units, beginning with the discovery of
the physical machine mechanism and ending with a problem solving situation (i.e.,
the minimum number of clicks for writing given numbers) involving the e-pascaline.

During the first teaching unit, the students discover the physical machine and its
mechanical behavior, without being told that it is a mathematical machine. They
verbally describe the machine and draw it on a paper. They formulate hypothesis
about its possible usages.

In the second teaching unit, they learn to write 2-digits numbers with the
physical pascaline, either with an iterative procedure starting from 000 and incre-
menting the units wheel or by directly using each wheels. The e-pascaline is
introduced collectively to gather the hypothesis of the students about how to write a
number on the pascaline and the role of each wheel. They use the e-pascaline
e-book about writing numbers. The task is to write on the e-pascaline numbers
which correspond either to collections of counters or to spoken numbers.

In the third teaching unit, additions and subtractions are introduced with the
physical machine and with the e-pascaline. The physical pascaline allows the two
types of procedures. Yet the e-pascaline should block the iterative procedure and
require the decomposing procedure.

In the fourth teaching unit, the e-pascaline is used to create a new
problem-solving situation, which consists in writing a number on the e-pascaline
with a minimum of clicks.

2http://ife.ens-lyon.fr/sciences21/ressources/sequences-et-outils/pascaline-CP. Accessed July 15,
2016.
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In the experiment presented in this chapter, the resources available to the
teachers were the duo of artefacts and the above scenario. We have also provided
some online videos and tutorials.3

4 Teachers Teaching with a Duo of Artefacts

In this section, we present the setting in which the questions of planning a learning
environment with the duo of artefacts and teachers’ appropriation are considered.

Fig. 5 The teaching scenario on the Plan Science website. The four teaching units use the
pascaline or the e-pascaline or both of them

3http://educmath.ens-lyon.fr/Educmath/recherche/equipes-associees-13-14/mallette/prototype-
mallette/page-accueil-de-la-mallette-cp-ce1. Accessed July 15, 2016.
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4.1 Experimental Setting in the “Mathematical Package4”
Project

We have studied the use of the duo of artefacts pascaline and e-pascaline by seven
teachers of the first year of French primary school (six-year old students). These
teachers had no connection with teachers of the initial research projects and had
never seen the pascaline and the e-books nor used them in class before the
experiment. They have been recruited by the local educational institution among
volunteers, with the constraint of being a pair of teachers in the same school (one of
the teachers leaved the experiment, so a teacher was finally single in her school).
We assumed that the possibility to easily interact with a colleague was a condition
for a successful commitment in the experiment. The educational authority has
approved the experimentation, which has also provided positive institutional con-
ditions for the success of the experiment. Moreover, the teachers’ extra work has
been compensated. Teachers were asked to look at the scenario and to use the
pascaline and e-pascaline in class with their students for at least eight sessions
between March and June 2014.

Our methodology consisted in several means of data collection. We have
interviewed the teachers, asked them to answer some questions, observed some
class sessions and collected data, like teachers’ preparation sheets and students’
productions. This data collection has been planed as follows:

• We (the two researchers that are authors of the present chapter) have organized a
one-day kick-off meeting with the teachers, a teachers’ educator which was
involved in a previous project, a representative of the educational authority and
two members of the institutional publisher. During this first meeting, we have
introduced the pascaline, the e-pascaline, the e-books and the online resources,
but not fully presented them. We have provided an initiation to the pascaline like
in Soury-Lavergne and Maschietto (2013). We have also devoted a large part of
the meeting to the organization of the experimental setting (documentations,
processes of data collections, schedules…).

• During the next twelve weeks the teachers have implemented lessons with the
pascaline and the e-pascaline. We have split this period into four parts, which
correspond to two weeks of teaching (there was also two holidays weeks during
this period). We have planned interviews by phone with each pair of teachers at
the end of each of the four periods. We have created a drop box folder for every
teacher to collect every file that they could provide: pictures of the class, stu-
dents’ productions, and lesson plans. For each period, we have asked the
teachers to report the preparation of the lessons and the implementation of the

4The French project was named “Projet Mallette”. It was a national project financially supported
by the French ministry of Education and the French Institute of Education. It aimed at designing
mathematical tools and learning situations for teaching mathematics at the kindergarten levels
and grades 1 and 2.
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lessons. About the preparation of lessons (before and after the lessons), we
asked them to precise: the date and its approximate duration (for the preparation
phase and eventually after the lesson), if their work was individual or collective
(with colleagues or pedagogical counselor or any other person), and the
resources that had been consulted.

• We have organized a final one-day meeting with several aims: to get some final
data, but also to give them feedback of the experiment and the opportunity to
discuss their expectations and difficulties about the use of the duo of artefacts.
A week before this meeting, teachers were asked to send us a message telling
two positive aspects of the experiment and two negative aspects. We have
organized their responses into different themes and presented them during the
last meeting. The final meeting has also be an opportunity for the teacher to
share their creations and adaptations of the teaching scenario.

About the lessons with the students, we asked for the following facts: date, number
of students attending the lesson, anticipated and actual duration, computers setting
(beamer, computers in the classroom, IWB, computer room), pedagogical setting
(collective work, group work, individual work), number of adults present during the
lesson, title of the e-books used… We also required for a short description of the
lesson and its origin (was the lesson proposed in the scenario or did it come from
another source). The teachers had to give commentaries about how the lesson
occurred, from different points of view: mathematics at stake and students’ learning,
unexpected events and surprises, new ideas and changes of plan during the lesson,
students’ comments and expressed opinions… We also asked them to collect stu-
dents’ productions and eventually some other pictures of the class. We completed
this methodology by direct observation of two successive lessons in two classes of a
same school.

During this experiment, our methodology was not only a way to collect the data
we needed for our study, but also it has been a means to provide assistance to the
teachers and to support innovation. Indeed, during interviews, teachers had the
opportunity to report their difficulties and their success and we could help,
acknowledge and encourage them. This wouldn’t be the case of teachers working
on their own. Nevertheless, the data were meaningful to study the appropriation of a
duo of artefacts.

5 The Duo in the Classes

In this section, we discuss a case in which the students are asked to interpret the
result of their actions and their consequent feedback on the pascaline and on the
e-pascaline in the e-book about addition (see Sect. 2.3). It concerns the fact that the
arrow of the units wheel disappears after a certain number of clicks.
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5.1 From the Students’ Point of View, Resistance
to Abandon Iterative Strategy When Adding Numbers
with the Pascaline and the e-Pascaline

Like it was proposed in the scenario, in the implemented teaching sequence, stu-
dents first worked on addition with the pascaline alone and then used the e-book.
We have observed the two inadequate strategies that are regularly appearing during
the introduction of the pascaline: (i) the two terms are written on two separate
wheels and the result is expected to appear on the third wheel; (ii) the addition was
done by mental calculation and the result was written on the pascaline. Some
students also proposed a third strategy: (iii) the result of the addition is decomposed
in a sum of three one-digit numbers that are finally written on each wheel. The first
strategy is analogous to the use of a calculator. The users expect the pascaline to be
a two arguments function and they transfer the main part of the work to the
pascaline. With the second strategy, the users perform the main part of the work and
use the pascaline only as a display device. With the third strategy, the users are
working with the additive representation of the number. The iteration procedure can
only appear once these previous strategies have been invalidated and after teacher’s
interventions.

In Cleo’s class, the iterative procedure appeared after she suggested using the
units wheel alone. Once the students have moved to the iterative procedure, the cost
of this new strategy and the level of errors were not high enough to make students
looking for another strategy. Even with two terms greater than ten and even when
the teacher suggested to look for another strategy, students do not change again to
use the decomposing strategy. Only one of Cleo’s twenty-three students found and
used the decomposing procedure. When Cleo’s students first used the e-pascaline
e-book for addition, she organized it as an individual activity and students still had
the possibility to use the physical pascaline together with the e-pascaline. Hence,
many of them used the pascaline, on which the iteration procedure was still pos-
sible. Then, Cleo compelled the students to perform addition using the e-book.

In Stina’s class, after introducing addition with the pascaline, pairs of students
used the e-pascaline and the e-book “addition” on laptops. They all used the iter-
ative procedure and were completely unable to progress once the arrow of the units
wheel disappeared. During the next lesson, Stina has transformed this incident into
a learning opportunity. She asked her students to describe the problem with the
e-pascaline and to share ideas regarding solutions to perform additions. She sum-
marized the collective discussion on the whiteboard (Fig. 6). Students came up with
different explanations (for instance), among which: the system enables no more
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than one click, or we must not turn too much the wheel, or we must not make the
tens wheel turning (Fig. 7).

Then, Stina asked her students to look for additive decompositions of numbers.
They worked in small groups and had to write 23 and 41 in different ways, using the
physical pascaline to check their solutions. For number 23, students suggested the
following decompositions:

20 + 3; 13 + 10; 10 + 10 + 3; 10 + 5 + 5 + 3; 10 + 10 + 2 + 1; 5 + 5 + 5 + 5
+ 2 + 1 and even 11 + 12 and 14 + 9.

During the next lesson, when we observed her students with the e-pascaline,
most of them were able to use the two procedures and to compare their efficiency.

The analysis shows that the iterative procedure is the main first grade students’
strategy and that there is a strong resistance of the students to change their pro-
cedure. As anticipated, the physical pascaline is not providing a milieu that makes
the iterative procedure inadequate, even if this procedure may be considered as long
and uncertain. On the contrary, the e-pascaline in the e-book offers extra feedback
that makes the students aware of the limits of the iterative procedure. But without
teachers’ intervention, there is no evolution from the iterative to the decomposing
procedure. Moreover, the strategy feedback of the e-pascaline, which consists in
hiding the action arrow on the units wheel, is considered as a bug by the students.

Fig. 6 Students’ explanations for the missing arrow and solutions to compute 23 + 41 with the
e-pascaline
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5.2 From the Teachers’ Point of View

5.2.1 A Difficulty in Interpreting a Strategy Feedback

From the point of view of the teachers, the disappearing arrow in the e-book about
addition was also an unexpected event that occurred during the lessons. Teachers
were not aware of this feedback of the e-pascaline although it was explained in
commentaries for teachers in the e-book for addition and also demonstrated in a
tutorial video. Each of the seven teachers involved in the experiment has been
challenged by the phenomena during the lesson with the students. None of them
came up with an adequate explanation:

“So, I don’t know if we have done well or not, with Nelly, we have faced the same
problem, I don’t know what happened but we have quickly been confronted with the
problem that the little purple arrow, on the right, went away! So in almost every group, at a
certain moment they [the students] were blocked because they couldn’t push this right
purple arrow. Well so we stopped!” (Stina, period 1).

“It was mainly the capable students, they have faced a problem. Well well, how to say, if
they were exceeding the number, for instance if they want to add 2 tens and being to fast
they added 3, there is an arrow that disappears. Then they couldn’t move back, well that
bothered them. […] We [the teachers] have been aware of that, with the students, not
before.” (Lila, period 3).

Fig. 7 One student’s sheet
explaining why the units
wheel could be blocked
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“Well a last little thing, just with the e-pascaline e-book. I did a video. It’s a pity that… For
instance, it was 17 plus 8. A student succeed, he has displayed 17. Then the student turns 8
times the units wheel. But after, the purple arrow, the one to move forward the units wheel,
it disappears. So, one cannot turn the units wheel more than 8 times. […] I wonder if it has
been done purposely” (Cleo, period 3).

Teachers thought it was a bug of the software or wonder if it has been done on
purpose. But after the first surprise and a discussion during the interviews, they
understood the reason of the disappearing arrow and turned the phenomena into a
pedagogical opportunity.

Stina and Nelly have planned a new lesson. They have transformed the situation
into a new problem, which consists to understand why the e-book stops the cal-
culation: “we are going to see why we are stopped” (Stina, reporting her interaction
with her class in period 2). The students have proposed several explanations
(Fig. 7). Then the teacher has clarified the two procedures, showing that even if the
arrow disappears, the calculation may be completed.

Another teacher, Cleo, has questioned the feedback relevance when the second
addend is lower than 10. Indeed, the students may not stop incrementing the units
wheel, because they have controlled the process and know that they have finished
with the calculation. They may stop because they cannot go on any more and still
they produce a correct answer. It happens when the second addend is lower than
ten. This situation may happened because the additions are randomly generated by
the system within a set of constraints which includes checking the fact that the sum
of the two units digits of the two addends is over 10 but not checking that the
second addend is over 10.

We must precise that displaying or hiding the action arrows is a feedback used in
every e-book with the e-pascaline. It prevents any calculation that would result in a
number outside the range from 000 to 999. For instance, when the e-pascaline
displays 000, the user cannot perform a subtraction with any of the three wheels,
because the mathematical result would be a negative integer incoherent with the
number displayed on the pascaline. Teachers and their students have easily noticed
these phenomena when they were discovering the e-pascaline: “At the first clicks,
some have reacted, they said Yes but there is an arrow that comes in the other way,
yeah it’s to go in the other direction […] and which disappears when you’re at
zero. Well they also said to me: the arrow is there starting at 1, at zero it disap-
pears.” (July, period 2). Thus, it is an already known feedback. It should not have
caused such a surprise. The teachers’ reaction reveals that the meaning of this
feedback was not immediately accessible in the situation. Its value as a strategy
feedback was not spontaneously identified.

5.2.2 Instrumental orchestration

Using the duo of artefacts also implies for teachers to find the adequate orches-
tration between the different resources (Drijvers, Doorman, Boon, Reed, &
Gravemeijer, 2010). The teachers have found different ways to organize students’
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access to the duo of artefacts and the e-pascaline on the computers. They have
invented configurations of artefacts according to the available equipment (pascaline
and e-pascaline, computers, video projector, IWB…). For instance, the following
spatial configurations with e-pascaline were proposed:

(1) the e-pascaline in a computer laboratory (Figs. 8 and 9)
(2) the e-pascaline in the usual classroom, on a laptop (Fig. 10)
(3) the e-pascaline available only by video projector (Fig. 11).

Teachers set up different exploration modes. Some of them worked with sub-groups
of the class successively (a half of the class or a smaller group of about five students
per session). Meanwhile, the other groups were doing something else, in the same
room (Fig. 9) or in another room when another adult could supervise them
(Fig. 10). These teachers reproduced the same lesson until every student of the class

Fig. 9 Half of the class is
working autonomously in the
middle of the computer
laboratory and the other half
of the class is working with
the e-pascaline, one pupil per
computer (Cleo’s class)

Fig. 8 Two pupils sharing
the same computer, one sited
and the other standind up
(Cleo’s class)
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had been through. Some teachers organized work with the duo of artefacts for the
whole class at the same time, with the same task or with different tasks (for instance,
part of the group with computer, the other with pascaline).

Some teachers organized class work, in their usual classroom, with the physical
pascaline and the e-pascaline projected on a screen (Figs. 11 and 12).

Some teachers organized individual access to the pascaline and the e-books and
others always make their students work by pair (Fig. 8). One of the teachers has
selected only a small sub-group of students to work with them, assuming that the
other students were facing too many difficulties to work with the pascaline (Iris,
period 3). Five of the seven teachers have used the possibility of video-projecting the
e-pascaline to support collective discussion (Fig. 12). Cleo prepared printed labels to
legend a projected image of the pascaline (Fig. 11), available in the pack of
resources. Rose also brought a Wi-Fi mouse to enable students to easily manipulate
the e-pascaline that is video-projected, without leaving their place. This kind of
orchestration exploits the added value of the technology in the duo of artefacts.

Fig. 11 Labels to legend a
video projected image of the
pascaline (Cleo’s class)

Fig. 10 Half of the class is
working with the e-pascaline
in the usual classroom, two
pupils per computer. The
other half of the class is
outside the classroom with
another adult (Stina’s class)
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Two teachers didn’t use a video-projector, even if they agree that it would be
easier for collective discussion (Nelly and Stina, period 4). Collective discussion
was required by the didactical methodology on which the teaching scenario is
based. But along the experiment, we have noted some evolutions in the way the
teachers organized sharing strategies and discussions about results among their
students, giving them the responsibility of moving the wireless mouse.

6 Utility, Usability and Acceptability of a Duo of Artefacts
from the Teachers’ Point of View

Our study of the duo also includes an evaluation of its utility, usability and
acceptability. Teachers have identified positive aspects that can be related either to
the utility of the pascaline, or to the utility of the e-pascaline, or to the duo.

About utility to learn mathematics, in a written questionnaire during last meeting
of the experiment the teachers declare that: (i) the duo of artefacts provides a
complementary conceptual approach of numbers with respect to the number line,
the duo helps student to distinguish between units and tens and help to build the
notions of complement to 10 and complement to 100; (ii) this duo enables students
to visualize numbers and to use different procedures; (iii) students face investigative
situations and actual mathematical problems; and (iv) students understand better.
They find e-books useful to: organize students’ autonomy and differentiation, to
arrange exercising and evaluation, to help students. Finally they considered that
“it’s new” compared to any other pedagogical material. They also emphasis the
complementarity in the duo: “a positive aspect is the link with the computers

Fig. 12 Each pupil has a pascaline and a video-projection of the e-pascaline is used (Iris’s class)
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(e-pascaline)” (Cleo, last meeting) and “e-books are really complementary and
serve to train and evaluate if the notion is learned” (Rose, last meeting), “using the
e-pascaline in complement with the pascaline enables to reinvest what has been
learned in a different way” (Stina, last meeting), “and above all to pose problems
that, for them, going from the pascaline to the e-pascaline, were much more
playful” (Nelly, last meeting).

They raised also negative points regarding utility. First, the pascaline does not
help students with difficulties and some of the e-books are too difficult for the level
of schooling (first grade). Second, the ludic and funny aspect of the pascaline may
prevent some students to engage into the mathematical situation. Indeed, the ludic
dimension of the pascaline is perceived as being both positive and negative. Finally
about e-books, even if the teachers had a positive opinion, they identified charac-
teristics that decrease their utility regarding learning. They particularly discussed
the fact that students can reload a new problem without having solved the previous
one (for instance reload a new couple of numbers to add). Teachers confronted two
points of views. On one side, they consider it positively because it enables students
to choose a problem adapted to their level of knowledge (which signs that students
are aware of what they know and can do, a kind of self evaluation). On the other
side, it is negative for the learning because it may give students a way to avoid
problems teachers want them to face. In conclusion, teachers have to manage the
balance between two possible uses, according to each student’s attitude. It requires
additional attention and teacher’s feedback during the lesson. Different evolutions
of the e-book are possible to support the teacher’s task. One of them is to keep an
explicit trace of every problem launched by the students, with the indication of the
solved and unsolved ones.

As for utility, usability for teacher inherits of students’ usability. The teachers
have noticed that it is easy for the students to engage in the work and to appropriate
the pascaline because “the device is pleasant” (Lila). Students encountered some
difficulties in using the e-books. There has been some mouse and click problems.
Some functions were missing, like a zone to write the student’s name or a reload
button to initialize the e-book without closing it. Each of these problems can be
easily solved (the experiment produced several useful indications for updating the
e-books). But usability was also related to the teachers’ specific tasks. They found
the duo of artefacts easy to use because it fits with any textbook and it is easy to
manage different students’ work pace, by using different e-books simultaneously.
But there are also difficulties. The first one is time related. The teachers have
implemented up to fifteen lessons for about nine hours. Rose declares that it asked
her a lot of time. The other main difficulty is about computers management:
management of students’ files, management of hardware (some computers launch
automatic updates or run out of charge during students’ work, school computers are
too slow), computers rooms are not big enough to have a sit for every students. It
also appears to be difficult for the teachers to be sure that every student has
manipulated the pascaline and the e-pascaline by himself. They would also like to
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have a global view on students’ achievement with the e-books, without having to
open each student e-book one by one.

The teachers have evaluated positively the acceptability of the duo of artefacts,
mainly because the institutional demands are fulfilled. They have declared that the
pascaline and the e-pascaline are usable all along the year, not only for a too
specific part of the curriculum. It completes the mathematics curriculum about base
ten-place value notation, which is a main part of the first grade mathematics cur-
riculum. Using the e-books is adapted to the competencies of the students and the
targeted ones. Finally, it responds to the institutional demand about using tech-
nology in class.

7 Discussion About Innovation with a Duo of Artefacts

7.1 The Innovation Is About Connecting Physical
and Digital Manipulatives

The utility of the duo of artefacts for learning mathematics results form the design
of the digital artefact in continuity and discontinuity with regard to the physical one.
The e-books implement new feedback that is in continuity with the physical pas-
caline, to help the student to connect the two artefacts. But it also implements new
feedback introducing discontinuity, like the episode of the disappearing arrow
shows, to create learning situations. Thanks to the evaluation feedback imple-
mented in the e-books, teachers can also monitor the achievement of the task by the
students without interrupting them. It is not possible with the physical pascaline.

In conclusion, feedback and design in the duo of artefacts and in the e-books
constitute the innovation. Innovation is also in the complementarity of the physical
and digital artefacts in the duo and the existence of a learning scenario that blend
them.

The ergonomic analysis has pointed that the teachers are aware of the comple-
mentarity between the physical and the digital artefacts of the duo.

7.2 Introducing Digital Technology in Primary School
Classes Is Still an Innovation

Until now, introducing digital technology in class is still an innovation when
considering primary school and primary school teachers. Does the duo of artefacts
promote the introduction of digital technology in class? The ergonomic analysis has
showed that the duo of artefacts is considered to be useful by the teachers.
Moreover, the acceptability of the duo of artefacts is good and related to the fact
that it enables to introduce technology in class, which is required by the institution.
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The usability of the duo of artefacts may be improved (the experimentation has
provided a list of possible updates and improvements of the e-books). But it is
currently already sufficient to enable relevant and efficient classroom practices.
Nevertheless, the general agreement about the utility of the duo of artefacts was not
really a debate. It may be a bias of our methodology because the teachers are
volunteers and certainly want to raise the positive aspect of their involvement in the
experiment.

Finally, the duo of artefacts supports the use of the digital technology by the
teachers. Every teacher has found her own way to technology and to use the
e-pascaline and the e-books in her class. Yet, in the local context of their schools,
the teachers have implemented many different didactical configurations. It shows
their creativity in the organization of the class. Moreover, these different didactical
configurations ask for the orchestration of additional instruments like video pro-
jector or IWB. The teachers have found a place for the duo of artefacts pascaline
and e-pascaline in their practices.
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What Is Or What Might Be the Benefit
of Using Computer Algebra Systems
in the Learning and Teaching of Calculus?

Hans-Georg Weigand

Abstract Advantages and disadvantages of the use of Digital Technologies
(DT) and especially of Computer Algebra Systems (CAS) in mathematics lessons
are worldwide discussed controversially. Many empirical studies show the benefit
of the use of DT in classrooms and there are also many useful examples concerning
their use. However, despite these inspiring results and the countless ideas, class-
room suggestions, lesson plans and research reports, the use of DT—and especially
CAS—has not succeeded, as many had expected during the last decades see Hoyles
& Lagrange, (2010). The thesis of this article is that we have not been able to
convince teachers, lecturers at university and parents of the benefit of CAS in the
classrooms in a sufficient way. What are the arguments that justify the use of CAS
in the classroom? The article gives examples of a fruitful use of CAS with regard to
the generally accepted goals or standards of mathematics education—like fostering
students’ abilities in problem solving, modelling, proving or communicating—and
to the subjects taught in high school. The basis of the argumentation is a compe-
tence model which classifies the relation between contents or topics: sequences and
limits, functions and equations; representations of DT or CAS: static isolated, static
multiple, dynamic isolated and dynamic multiple representations; and classroom
activities: calculate, consult, control, communicate and discover.

1 Concerning the Use of DT in Mathematics Lessons

There are many theoretical considerations, empirical investigations and suggestions
for the classroom concerning the use of DT and especially CAS in mathematical
learning and teaching (Artigue, 2002; Pierce & Stacey, 2004; Guin, Ruthven &
Trouche, 2005; Kieran & Drijvers, 2006; Zbiek, 2007; Drijvers & Weigand, 2010;
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Weigand, 2013). In recent times, some empirical studies started integrating CAS
into regular classroom teaching and covering longer periods of investigation. The e-
CoLab1 project in France (Aldon et al., 2008), the one year TI-Nspire project (using
the non-CAS-version) of the University of Chichester in secondary mathematics
classrooms (Clark-Wilson, 2008), the RITEMATHS2 projects in Australia. The
CALIMERO3 project (Ingelmann & Bruder, 2007) started with the use of computer
algebra 2005 in grade 7 and continued on to the following grades in the next years,
and from 2005 to 2013, the “M3-Project”4 tested the use of Symbolic Calculators
(SC) in Bavarian ‘Gymnasien’ (grammar schools) in Germany with students from
grades 10, 11 and 12 (see Weigand, 2008; Weigand & Bichler, 2010b, c).

The main results of these projects and investigations can roughly be summarized
as follows: Computer Algebra Systems

• allow a greater variety of strategies in the frame of problem solving processes;
• are a catalyst for individual, partner and group work;
• do not lead to a deficit in paper-and-pencil abilities and mental abilities (if these

abilities are regularly supported in the teaching lessons);
• allow more realistic modelling problems in the classroom (but also raise the

cognitive level of the understanding of these problems);
• do not automatically lead to changed or modified test and examination problems

(compared to paper-and-pencil tests);
• demand and foster advanced argumentation strategies (e.g. if equations are

solved by pressing only one button).

However, overall, classroom teaching and learning did not change automatically due
to the additional use of a new tool. It needs didactic and methodic considerations, a
thorough thinking about the goals of teaching and the possibilities of change as a
prerequisite of a gainful change in real classroom teaching (and learning).

2 Visions and Disillusions

The NCTM standards of 1989 (and in the revised version of 2000) have been
visionary—concerning the field of mathematics education—by representing a
vision for the future of mathematics education. This is especially true for the use of

1e-CoLab = Expérimentation Collaborative de Laboratoires mathématiques. See: http://educmath.
inrp.fr/Educmath/dossier-parutions/experimentation-collaborative-de-laboratoires-mathematiques.
Accessed 29 May 2016.
2RITEMATHS = The project is about the use of real problems (R) and information technology
(IT) to enhance (E) students’ commitment to, and achievement in, mathematics (MATHS). http://
extranet.edfac.unimelb.edu.au/DSME/RITEMATHS. Accessed 29 May 2016.
3CALIMERO = Computer Algebra in Mathematics Lessons: Discovering, Calculating,
Organizing (translated title).
4M3 = Model Project New Media in Mathematics Education.
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new technologies in mathematics classrooms, expressed in the ‘Technology
Principle’:

Technology is essential in teaching and learning mathematics; it influences the mathematics
that is taught and enhances students’ learning. (p. 24)

and:

Calculators and computers are reshaping the mathematical landscape … Students can learn
more mathematics more deeply with the appropriate and responsible use of technology.
(p. 25)

The first ICMI study in 1986 “The Influence of Computers and Informatics on
Mathematics and its Teaching” (Churchhouse) was also affected by a great
enthusiasm concerning the perspectives of mathematics education in view of the
availability of new technologies. Many mathematics educators, for instance Jim
Kaput, predicted that new technologies would change all fields of mathematics
education rather quickly.

Technology in mathematics education might work as a newly active volcano – the math-
ematical mountain is changing before our eyes (1992, p. 515).

In the ICMI Study 17 “Mathematics Education and Technology—Rethinking the
terrain” (Hoyles & Lagrange, 2010) disappointment is quite often expressed about
the fact that—despite the countless ideas, classroom suggestions, lesson plans and
research reports—the use of DT has not succeeded, as many had expected at the
beginning of the 1990s. The disappointment that “Technology still plays a marginal
role in mathematics classrooms” (ibid., p. 312) is expressed quite often. In her
closing address concerning “The Future of Teaching and Learning Mathematics
with DT” Michèle Artigue summarizes in the ICMI Study:

The situation is not so brilliant and no one would claim that the expectations expressed at
the time of the first study (20 years ago) have been fulfilled. (p. 464)

This study gives a good overview of the numerous activities in the last years
concerning the use of digital technologies in mathematics education (also see
Weigand, 2010). However, the book is not a vision; it rather poses questions, these
are, however, quite similar or very similar to those 20 years before.

One may interpret that as—partial—resignation, but one can also see it as an
indicator of how hard it is to answer these questions. Finally, one can also
understand it as a request and as a challenge to develop new ideas—visions—in
order to make progress with the integration of DT in mathematics education.

Worldwide, the current situation concerning the use of DT—and especially CAS
—is very versatile. There are countries (like Norway or Denmark) that are inten-
sively using laptops, tablets (with the programs Geogebra or Maple) or symbolic
calculators (like the TI-Nspire or the Casio Classpad). These countries even allow
using these tools in examinations. There are other countries (like the UK or France)
that allow “only” symbolic calculators in examinations, there are countries—
especially in Asia—which are very sceptical about the use in examinations, and
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there are countries (like Germany) where there are a different situations about the
use of DT—depending on the state.

The results of the 17th ICMI-study and the ambivalent acceptance of DT in
different countries made us think about the reasons for these developments
(Weigand, 2013). One thesis has been that

We underestimated the difficulties of DT-use–in a technical sense and in relation to the
contents–and we have not been able to convince teachers, lecturers at university and parents
of the benefit of DT in the classrooms. (ibid., p 300)

Reflecting the developments of the use of DT and especially CAS in the last
decade, we started to rethink the results concerning the possibilities of supporting
students’ learning processes and then especially raised the question: What is the
benefit of using CAS in the classroom? More specifically we asked:

1. In relation to which mathematical contexts does the CAS-use make sense and
which (mathematical) competencies are supported and developed?

2. Which mathematical and tool competencies are necessary, or at least helpful,
when working with CAS for specific mathematics content?

3. How can the CAS-use be described in a more detailed form?

These questions are answered based on existing theoretical considerations, on the
results of the various empirical investigations and on abilities and students’ com-
petencies that are necessary to adequately work with CAS. The result is expressed
in a competence model for CAS-use because an answer to these questions needs
various considerations concerning the content, the tool and the way or the method
of teaching and learning.

In the following we give answers to these questions, illustrated by examples,
concerning three basic concepts of calculus—sequences and limits, functions and
equations—and connect them to a competence model for CAS-use. These examples
shall give teachers and lecturers arguments for the use of CAS in the classroom.
They are not presented in the form of teaching units, but they are—of course—open
for the use in calculus classes.

3 Competence Models for CAS-Use

3.1 Theoretical Foundations

The concepts of competence and competence (level) models have aroused interest in
mathematics education in the past years. Starting with the NCTM Standards (1989)
and especially the PISA studies, competence and competencies are expressions,
often used in the context of standards and substituted the “old expression” goals
which envisaged knowledge and abilities in mathematics education. “Mathematical
competence means the ability to understand, judge, do, and use mathematics in a
variety of intra- and extra-mathematical contexts and situations in which
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mathematics plays or could play a role …” (Niss, 2004, p. 120). In the PISA
studies, competencies are on the one hand related to the content, e.g. numbers,
space and shape, change, etc., and on the other hand—in a more general way—
related to processes like problem-solving, modelling and the use of mathematical
language. In order to evaluate or operationalize the competencies through the
construction of items and tests, it is helpful to organize these competencies in
levels, categories or classes. In the PISA studies, each of the possible pairs (content,
process) can be divided into three different levels or competence classes (OECD,
1999, p. 43):

– Class 1: reproduction, definitions, and computations
– Class 2: connections and integration of problem solving
– Class 3: mathematical thinking, generalisation and insight.

This leads to a three-dimensional competence-model with the dimensions content,
basic or process competencies and cognitive activation.5 The German Standards for
grade 10 (KMK, 2004) and grade 12 (KMK, 2012)—based on the NCTM
Standards—are also related to content6 and general competencies.7 And there
are also three levels of cognitive activation, which are traditionally called
Reproduction, Connections and Reflections, these levels are in line with the PISA
classification.

3.2 Competence Model for CAS-Use While Working
with Functions

In Weigand and Bichler (2010a) a Competence Model for the Use of Symbolic
Calculators in Mathematics Lessons in the frame of working with functions was
developed. Different levels of understanding the function concept have been seen in
relation with the “tool competencies” and—as a third dimension—with the “cog-
nitive activation” (Fig. 1).

The ability or the competence to adequately use the tool—here a CAS—requires
technical knowledge about the handling of the tool. Moreover, it requires the
knowledge of when to use which features and for which problems it might be
helpful. The use of SC was classified according to the way representations are used.
We distinguished three levels, which might also be categorized by using SCs—
Sientific Calculators or Graphing Calculators with CAS—as a (simple) function

5These dimensions are in PISA called “Overarching ideas” (content), “Competencies” (process)
and “Competence Clusters” (cognitive activation).
6These are: numbers, measuring, space and shape, functional connections, data and chance.
7These are: arguing mathematically, solving problems mathematically, modelling mathematically,
using mathematical representations, acting mathematically on a symbolical, formal and technical
level, communicating mathematically.
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plotter, as a tool for creating dynamic animations and as a multi-representational
tool.

The competence model had a diagnostic goal to describe the anticipated aim in
the context of the project, but also to detect, which abilities are missing while
students are working with SCs. However, the evaluation or the diagnosis can only
be the very first step. The second step is to think about consequences based on the
evaluation. How can the student be supported to reach higher levels of under-
standing and higher competence levels while working with the SC?

3.3 Competence Model for CAS-Use

In the following, the competence model in 3.2 is extended and specified on the
content dimension in the frame of calculus. In school mathematics, calculus is the
field, where CAS are mostly used, compared to geometry or stochastics. The first
dimension “Understanding functions” was substituted by three basic concepts of
calculus: sequences and limits, functions and equations. The second dimension
“Tool competence” was substituted by “Representation” with the categories “iso-
lated”, “multiple static” and “multiple dynamic” because this matches real working
with CAS better and is on the same level as the theory of representation, which
emphasizes the reasoning with multiple and dynamic representations (see Bauer,
2013 or Ainsworth, 1999). Moreover, the concept “Tool competence” rather
describes a competence, which should be seen in relation to working with special
contents and representations or even also including classroom activities. Thus, the
expression “Tool competence” is not used as a dimension in the competence model,
but it is rather a competence, which includes the here discussed competencies. The
third dimension “Cognitive Activation” was substituted by “Activity” and
emphasizes the classroom activities in which the CAS is used more:

Fig. 1 Competence model for CAS-use while working with functions
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• Calculate: the CAS as a tool for (numeric and symbolic) calculations;
• Consult: the CAS as a formulary;
• Control: the CAS as a controller of hand-written solutions, suggestions and

ideas;
• Communicate: the CAS as a source for explanations and argumentations—

especially if it is used as a “black box”;
• Discover: the CAS as a tool for evaluating and testing suggestions and strategies

in a problem solving process.

This classification may be seen as a hierarchy while moving from a procedural
knowledge (calculate) to a conceptual knowledge (communicate, discover). This
new third dimension is seen more on the teaching side while the dimension
“Cognitive activity” (in model 3.2) is more on the learning side. It would be
possible to add the “Cognitive activity” as a fourth dimension, but that would
increase the complexity of the model. We left this fourth dimension out, because the
model is already quite complex and seems, in a first approach, to concentrate on
problems in relation to the three dimensions and later to think about different levels
of difficulties with these problems.

The present three-dimensional competence model—represented in a three-
dimensional coordinate-system—has three categories on the topic- or content-axis,
three categories on the representation-axis and five on the activity-axis. This gives
us 3 � 3 � 5 = 45 cells. If each cell is again subdivided into three levels of
cognitive activation, this makes a total of 135 cells (Fig. 2).

Fig. 2 An extended competence model for CAS-use while working with sequences, functions and
equations
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When we speak of a CAS, we think of a tool which is able to represent math-
ematics or mathematical objects on symbolic, graphic and numeric level. We use
the word tool instead of instrument because we concentrate on the facilities of CAS,
reflect these in relation to mathematics aspects in the classroom. However, we leave
the development of the user-tool-relationship in the frame of an instrumental
orchestration, which is the heart of the instrumental genesis (see Artigue, 2002;
Drijvers et al., 2010), to the user or learner.8

4 Examples

In the following, we will concentrate on the relation of “topic” and “representation”
and present examples that are typical of the particular “cells”. It will not and cannot
be possible to assign particular examples to one type of representation. However,
there will be fluent transition between isolated und multiple as well static and
dynamic representations. The focus will of course be on the significance of the CAS
representations for the different topics.

4.1 Sequences

4.1.1 Recursively Defined Sequences

Sequences whose elements can be defined by the previous elements in a straight-
forward way are called recursively-defined sequences. With a first element a1 2 R

and a function f : R ! R is then akþ 1 ¼ f akð Þ with k 2 N and we get a sequence of
iteration

a1; a2 ¼ f a1ð Þ; a3 ¼ f a2ð Þ; . . .

Figure 3 shows the numerical calculation of the first few elements of

f xð Þ ¼ �0:6 � xþ 3with a1 ¼ 1

in the isolated representation of a spreadsheet (Fig. 3). In the following we mainly
use the program Geogebra, which is a combination of a CAS, function plotter,
dynamic geometry software and a spreadsheet, and the Casio ClassPad either as a
symbolic calculator or a notebook simulation.

In the CAS window, these numerical calculations can be represented on a
symbolic level in a way that is closer—but not close—to the traditional mathe-
matical notation. However, one has to be familiar with the particular commands in
the “language of tools” (Fig. 4).

8In German language the concepts tool and instrument are widely used interchangeably.
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Changing the original function f leads to an automatic change of the numerical
values.

Recursively defined functions can be well represented in a “cobweb-diagram”.
The following representation (Fig. 5) with a given function f :x ! y; x 2 R and the
first element a1 shows the schematic construction of the iteration sequence.

x values                         y values

first element  a1 a2 = f(a1)

2   a3 = f(a2) a

a3   a4 = f(a3) 

.... ...

an an+1 = f(an)

The convergence of the function for “large k” can be seen in a “contraction” of
the sequence points in the intersection of the line f xð Þ ¼ �0:6 � xþ 3 with the angle
bisector of the first quadrant with y ¼ x.

Fig. 3 Table view (Geogebra) of the function f xð Þ ¼ �0:6 � xþ 3; a1 ¼ 1

Fig. 4 Calculation (Geogebra) of the sequence elements of akþ 1 ¼ �0:6 � ak þ 3; a1 ¼ 1 in the
CAS window
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With the Casio ClassPad the notation of the iteration sequence is quite close to
the mathematical language (Figs. 6 and 7).

Fig. 5 The “cobweb-diagram” (Geogebra) of the sequence akþ 1 ¼ �0:6 � ak þ 3; a1 ¼ 1

Fig. 6 Symbolic and table representation (ClassPad) of a recursively-defined sequence
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In this case, CAS is a tool that helps showing the sequence on a symbolic level,
enables numerical calculations, provides the (numerical) basis and is a device for
experimentation in the field of discovering relations. The first example, as well as
the following ones, shows that CAS has to be seen and evaluated in relation with
other representations, especially in the relation with a heuristic examination and
discovery. Furthermore, the examples underline the importance of the dynamic
aspect.

Over all some or many or nearly all aspects of the mathematical concept of a
sequence are seen in relation to the representations and some activities of the
competence model for CAS-use (see Sect. 3.3). The CAS does calculations, sup-
ports communication (between mathematics and the user, but it is also a medium
concerning the teacher-learner- and the learner-learner-communication), and it is a
helpful tool in the discovery process (Fig. 8). Especially the following mathematics
or calculus competencies—beyond the CAS-use—are supported: Learners

• recognize the unrestrained continuation of an “infinite processes”, which is the
possibility of coming arbitrarily close to a “limit object”;

• combine graphical and numerical ideas with the limit processes in the sense of
“pursue to” or “is arbitrarily close to”;

• can numerically and graphically describe the limit process with recursively
defined sequences with akþ 1 ¼ A � ak þB;A;B 2 R;A ¼ const;B ¼ const.

Fig. 7 The cobweb-diagram
(ClassPad) of a
recursively-defined sequence
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4.1.2 Difference Sequences

Difference sequences Dakð Þ
N
with

Dak:¼akþ 1 � ak

with a given sequence akð Þ
N
are well suitable for a discrete introduction of the

difference quotient. Based on sequences or functions that are defined on N, we will
now take a look on functions f :Z ! R; the so called Z-functions that are defined on
Z and their relation with difference-Z-functions. Df :Df zð Þ ¼ f zþ 1ð Þ � f zð Þ, p.e.
f zð Þ ¼ z2 � 2zþ 3 (Figs. 9 and 10).

The dependence of Df on the used parameters of f with f zð Þ ¼ az2 þ bzþ c can
be graphically depicted. The dynamics of the representation can be induced by the
“slide bars” (Figs. 11 and 12).

The two graphs of f and Df already suggest that the graph of the
difference-Z-function is linear. This can be explained on a symbolic level: With
f zð Þ ¼ az2 þ bzþ c you receive the difference-Z-function

Df zð Þ ¼ f zþ 1ð Þ � f zð Þ ¼ a zþ 1ð Þ2 þ b zþ 1ð Þþ c� az2 þ bzþ c
� �

¼ 2azþ aþ b:

Therewith, the changes of the graph by varying a and b and the independence of
Df can be explained. Moreover, it has to be noticed, that the mathematical com-
munication—concerning used expressions and gestures—is different in static and
dynamic environments. You will get more dynamic verbalizations if you use
dynamic representations (Ng, 2016).

Fig. 8 Competence model for CAS-use while working with recursively defined sequences
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This concept of the Z-function can be transferred to polynomials of a higher
degree. For example, for the Z-polynomial with

f zð Þ ¼ az3 þ bz2 þ czþ d

you receive the difference-Z-polynomial

Fig. 9 f(z) = z2−2z + 3

Fig. 10 Df(z) = f(z + 1)−f(z)
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Df zð Þ ¼ 3az2 þ 3aþ 2bð Þzþ aþ bþ c:

This can easily be calculated with a CAS or at least be verified with the pro-
gramme (Fig. 13).

The use of computer algebra systems is especially useful and helpful when
difference-Z-polynomials of Z-polynomials of a higher degree have to be calculated
(Fig. 14).

Fig. 11 f zð Þ ¼ z2 � 8zþ 1:9

Fig. 12 Df zð Þ ¼ f zþ 1ð Þ � f zð Þ
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This leads to the hypothesis that a Z-polynomial of degree n 2 Nð Þ has a
difference-Z-polynomial of degree n-1.9

Here we can see that there are different aspects or representations that are
connected to the CAS. It is a tool for multiple and dynamic representations, it is an
experimentation tool and reflects mathematical expressions on a symbolic level
with a notation that is close to mathematical notation. Concerning the competence
model for CAS-use, all kinds of representations are used and also nearly all kinds of
activities—except consult—are already used in these examples (Fig. 15).

We summarize the meaning of CAS concerning the content sequences and
limits:

• CAS is a tool with notations (or a language) quite close to mathematical
notations (or the mathematical language);

• CAS allows object-related working with sequences and discrete functions;
• CAS has to be seen or evaluated in relation to other—especially graphical—

representations.

Fig. 13 Calculation (Geogebra) of the difference-Z-function with a CAS

Fig. 14 Calculation with a CAS

9For G.W. Leibniz (1646–1715) sequences and their difference sequences have been a source for
the development of the derivative and the calculus.
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Especially the following mathematics or calculus competencies are supported:
Learners

• understand the definition of difference sequences of sequences and Z-functions
and realize the relation between a Z-function and its difference sequence;

• interpret the relation between a Z-function and its difference sequence in dif-
ferent representations;

• can determine the difference-Z-function of a Z-function on the symbolic level,
basic examples by hand and more complex examples using a CAS.

4.2 Functions

4.2.1 Working with Functions as Objects

Functional thinking expresses itself in a way of thinking that emphasizes three
aspects of the function concept (cf. Vollrath, 1989):

• The aspect of allocation: A function as an allocation of (particular) values.
• The aspect of change: A change of the independent values leads to a change of

the dependent values.
• The aspect of object: A function is an object that depicts a connection as a

whole.

This last aspect is especially important, when functions are being added, subtracted,
multiplied, divided or composed. A special case is the change of the function.

Fig. 15 Competence model for CAS-use while working with difference sequences
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f :x ! y ¼ f xð Þ with a; b; c; d 2 R to a � f xð Þ; f xð Þþ c; f xþ dð Þ; f bxð Þ or
f bxþ dð Þ

Therewith, a change f xð Þ ! a � f xð Þ can geometrically be described as “en-
larging” (or shrinking) in y-direction with the function

A : R2 ! R
2;

x
y

� �
7! 1 0

0 a

� �
� x

y

� �
¼ x

ay

� �
:

The change f xð Þ ! f bxð Þ can be described as enlarging (or shrinking) in
x-direction by the factor 1

b with

B : R2 ! R
2;

x
y

� �
7!

1
b 0
0 1

� �
� x

y

� �
¼

1
b x
y

� �
:

Figure 16 shows these maps of the graph Gf with f xð Þ ¼ 1
3 x

3 � 2x.
In the CAS window, the corresponding transformations with the parameters

distance can be made on a symbolic level. Hereby, one has to consider if a
parameter, e.g. a, is looked at “in general”, or if particular values are being cal-
culated e.g. for drawing the graph. Therefore, it is useful to take a look at functions
that depend on parameters as functions of several parameters and to indicate this in
the definition of the function, e.g. g x; að Þ:¼a � f xð Þ. The graph of the function g can
then be drawn for a particular value a (here named “aa”) with the function
Gg xð Þ ¼ g x; aað Þ. The CAS requires on the one hand, and probably visualizes on
the other hand, where the learner has to distinguish mentally a parameter as a
general variable, or as variable with a particular value, when working traditionally
with paper and pencil.

4.2.2 Milk Packs

For the following considerations concerning the optimization of the material con-
sumption of a milk pack, the package of Fig.17 (c) will be used. At first, it is
surprising that the net is a square having sides of 28.5 cm. The question arises, if
this pack has only been constructed for optimality reasons, i.e. if the packaging
material for the volume of 1 L is minimal regarding the surface.

For the actual milk pack, one has h = 18.8 cm, b = 7.1 cm. If you open a milk
pack that is still closed at its cap, you will notice that the milk fills the pack more or
less up to the height h, therefore, there is still a bit of air in the “roof”. The volume
can be calculated with the help of the parameters that are listed in Fig. 18, as
follows:

V b; hð Þ ¼ b2 � h ¼ 1000 cm3� �
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and

h ¼ 1000
b2

:

For the lateral area results:

M b; hð Þ ¼ 4bþ 0; 5ð Þ hþ 1:7þ bþ 2ð Þ:

The CAS does not only perform the particular calculations, but also provides a
good and clear structure of the solution of the task (Fig. 19).

Fig. 16 The graphs (Geogebra) Gf ;Gg;Gh with f xð Þ ¼ 1
3 x

3 � 2x and g xð Þ ¼ a � f xð Þ and
h xð Þ ¼ f b � xð Þ

Fig. 17 Different milk packs that can be bought in the grocery store

178 H.-G. Weigand



The CAS is in this case at first solely being used statically for the actual case. For
an optimal width of the pack, one has a value of b = 7.44, when two decimal places
have been adjusted. This can also be represented graphically and the optimal
b-value can be approximately determined from the graphic (Fig. 20).

When handling the results that had been obtained through the mathematization
experimentally, the width of the fold f—measured with 1 cm at the original pack—
can be changed and the effects on the optimal b-value can be studied. With the help
of a slide bar, the f-values can be changed easily. Therewith, one has an isolated
dynamic symbolic representation (Fig. 21).

Another possibility would be to leave the value f as a general parameter in the
original equation (Fig. 22).

Here, Geogebra reaches its limits, as Eq. 4 cannot generally be solved anymore
with f as a parameter.

Additional remark to the modeling problem: With the model above, one receives
an optimal value for b = 7.44 cm regarding the surface of the pack. It can now be
discussed why this value differs—also if only a bit—from the actual value.
Production conditions (e.g. width of the cardboard rolls, the packs are cut out of)
can be named, or it is remarked that the sides of the pack are not even, when the
pack is filled with milk!

Fig. 18 Net of the milk pack from Fig. 17(c)
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Fig. 19 Calculation (Geogebra) of the length b of the milk pack

Fig. 20 Symbolic and graphic representation (Geogebra) of the optimization of the milk pack
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4.2.3 Welded Seam of a Tin Can

The following considerations ask for the optimization of a welded seam of a can
with volume V (Figs. 23 and 24). There is a welded seam along the circular bases
on bottom and top and along the height h. If we use a cylinder with radius r and
height h as a mathematical model, the volume V of the can is:

V r; hð Þ ¼ r2 � p � h:

Fig. 21 Calculation (Geogebra) of the optimal pack with a variable width of the fold f

Fig. 22 General calculation with the width of the fold f
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The length of the welded seam is:

L r;Vð Þ ¼ 2 � 2 � r � pð Þþ h ¼ 4 � r � pþ V
r2p

:

Is there a minimal length of the welded seam with the given volume V. What
does the can look like? (Fig. 25).

If we use the Casio ClassPad also the last expression will be simplified (Fig. 26):

Fig. 23 A tin can

Fig. 24 The welded seam of
a tin can
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The ratio of the height and the diameter of the optimized can (concerning the
length of the welded seam) is p. The CAS is a tool for calculations with a static
symbolic representation and it is a multiple and dynamic tool for representing
special examples—with a “slider”—on the graphic level.

While working with functions and using the CAS we work on different levels or
in different “cells” of the competence model. Calculations are mainly done isolated
in the symbolic representation. For discovering, multiple dynamic representations
are used in the graphic representation in relation to the symbolic representation.
Moreover, a CAS can be used as a control tool in the discovery process.

We summarize the meaning of CAS concerning the content functions:

• CAS allow calculations on the symbolic level in notations which are quite close
to the common mathematical notation or language.

• CAS expand the working with functions as objects on the symbolic level and
give the possibility of a simultaneous connection to numeric and graphic
representations;

Fig. 25 Calculation (Geogebra) of the minimal welded seam length in dependence of the volume V
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• CAS add a new level to the working with parametric functions in defining
functions of two (several) variables and allowing the dynamic change of the
variables in the graphic and numeric representations;

Especially the following mathematics or calculus competencies are supported:
Learners

• can work with functions as objects on a symbolic and a graphical level; they
especially interpret changes of the variables of a function a geometrical
transformations;

• understand the definition of functions of several variables and they can—ade-
quate to the situation—interpret them as functions of one variable with
parameters;

• can use functions of several variables to solve mathematical and modelling
problems.

4.3 Equations

4.3.1 Linear and Quadratic Equations

A CAS is a formulary that offers in particular solution formulas for linear and
quadratic equations and for systems of linear equations (Fig. 27).

In relation with a graphic representation, questions concerning the number of
zeros of a quadratic function can (at first) be answered through experimental
exploration (Fig. 28).

Fig. 26 Calculation (ClassPad) of the minimal welded seam length in dependence of the volume V
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A CAS can be used to calculate the zeros of a function by only pressing one
button, but moreover, it serves as visualization. Furthermore, the relation of func-
tion and equation is fundamental for the mutual representation in the CAS and the
graphic window.

4.3.2 Systems of Equations

The CAS is a tool for solving systems of equations with parameters (Fig. 29). Also
systems with quadratic equations can be calculated (on a symbolic level) (Fig. 30).
The CAS provides the calculations and the solutions on the symbolic level and
these have then to be interpreted, especially in relation to the graphical level.

4.4 Complex Equations

Equations of higher degree, particularly equations of degree 3, can be solved in a
symbolic form by a CAS, but the solution depends on the equation (Fig. 31).

However, there will be different forms of solutions if the CAS solves the fol-
lowing equation (Fig. 32). The Casio ClassPad, for example, can also solve
equations that depend on parameters (Figs. 33 and 34). However, a constructive
handling of these solutions asks for further knowledge concerning the solution

Fig. 27 Quadratic equations with CAS (Geogebra)
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Fig. 28 Symbolic and graphic representation (ClassPad) of the solutions of a quadratic equation
with a parameter

Fig. 29 Solving a linear system of equations with one parameter (Geogebra)

Fig. 30 Solving a system of quadratic equations with one parameter
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formulas or these solutions can encourage dealing with solution formulas—here the
Cardano formulas.

It is, however, only possible to solve more complex equations with a CAS, when
there is already a basic knowledge of the solution variety of the considered equa-
tions. Furthermore, one needs strategies for the handling of a representation type
especially, with regard to necessary changes of the representation types. Because, if
an approach that had been used did not lead to a successful solution a strategy is
needed. An example is the solution of the equation 1þ sin xð Þ ¼ 2x (Fig. 35).

Geogebra-CAS cannot solve the equation on a symbolic level. The Casio
ClassPad offers several numerical solutions (Fig. 28), these are however not easy to
understand for (almost) every user (Fig. 36).

A useful strategy would here be the change to a graphic representation and
zooming in on the intersection point of the graphs. Therefore, mathematical
knowledge about basic properties of the two functions is absolutely necessary.
Tonisson (2015) gives a good overview of the solution variety of equations, as he
has solved and compared 120 equations of school mathematics with 8 different
CAS.

A last example: x7 � 4x5 þ 4x3 ¼ 0:

Fig. 31 Soving polynomial equations (ClassPad) of degree 3
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The CAS gives the solutions of a polynomial of grade 7, but only because the
expression can be factorized (Fig. 37). The—surprising—solution has to be inter-
preted with the graphic representation.

Fig. 32 Solving (ClassPad) an equation of degree 3

Fig. 33 Section of the solution of the equation x3 þ a � xþ 1 ¼ 0 with the Casio ClassPad

Fig. 34 Section of the
solution of the equation
x3 þ p � xþ q ¼ 0 with the
Casio ClassPad
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An efficient use of a CAS when solving—a bit more complex—equations is only
possible with a mathematical knowledge concerning the solution of equations, the
characteristics of the underlying functions of the equations and the possibilities of
the solution varieties. For calculations the CAS is used mainly within the static
isolated symbolic representation, adding graphic representations for interpreting or
explaining symbolic results. The advantage of using CAS is the notation of

Fig. 35 Graphical solution of “complex” equations

Fig. 36 Symbolic solution with the Casio ClassPad

Fig. 37 Graphic solution of a polynomial of grade 7
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solutions on a symbolic level, especially while working with equations with
parameters. Like in the case of working with functions the communication with the
tool is possible in a language close to the traditional mathematical language.
The CAS is a consultant in the sense of a formulary for symbolic solutions espe-
cially for polynomial equations of order 2 or 3.

We summarize the meaning of CAS concerning the content equations:

• CAS are an interactive digital formulary;
• CAS expand the solving of equations to equations usually not considered in

school mathematics based on paper and pencil algorithms. They allow symbolic
solution e.g. of equations of degree 3 and numeric and graphic solutions of
(nearly) any equation.

Especially the following mathematics competencies are supported: Learners

• can interpret solutions of equations and systems of equations, given as a result of
a CAS-command, on a numeric, symbolic and graphic level concerning the
existence and number of solutions;

• especially interpret CAS-solutions of (complex) equations which they cannot
solve by hand;

• see the meaning of symbolic solutions for proofs and argumentations, and the
meaning of numeric and graphic solutions especially for real-life-problems.

5 Conclusions

The examples in Sect. 4 show various aspects of a CAS while working with
sequences, functions and equations.

• First of all, the CAS is a tool, which allows calculation on a symbolic level in
notation or language close to the mathematical language. There are some special
tool commands, which have to be learned to use the tool language. But more-
over, there are worthwhile and fruitful notations—like seeing parameter
dependent functions as functions of several variables—which allow an efficient
working style in problem solving processes. A CAS is an isolated representation
which may be used statically or dynamically.

• Second, working with a CAS on the symbolic level has to be seen in relation
with other representations, especially with numerical and graphical representa-
tions (the aspect of multiple representations). These additional representations
allow interpretations of symbolic results and expressions.

• Third, the relation to the dynamics of the representations shows especially the
dynamic aspect of variables, especially while using multiple representations.

• Finally, the CAS-use depends on the aim of mathematical activities. The CAS is
used
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– for calculations on a symbolic, numeric and graphic level (Calculate);
– as a consultant in the sense of using a formulary (Consult);
– for controlling calculations on a graphical, numeric or symbolic level (Control);
– for the communication between the user and the media or digital tool, but also

for the communication between the user (student) and someone who has to
interpret or understand the CAS-solutions (like a teacher) (Communicate);

– for solving problems on a heuristic level or discovering problem solving
strategies (Discover).

The developed competence model is a theoretical or normative model. In the first
line, the main reason was to get a basis for argumentations for the benefit of using a
CAS. Concerning the empirical justification of the theoretical model and with the
aim of constructing an empirical competence model, some questions have to be
answered.

1. The validity of the model: Problems for each “cell” of the topic-representation
matrix have to be developed and students’ solutions have to be evaluated.
Moreover, it will be necessary to concentrate on specific topics—concerning
sequences, functions and equations—for students in specific grades.

2. From a qualitative to a quantitative model: The PISA studies use a model with a
numerical competence scale, which is based on the relative frequency with
which students are able to solve a problem. The problem that has been solved
successfully is taken as a measure of the difficulty of the exercise. The scale is
standardized on a mean value of 500 with a standard deviation of 100 (OECD,
2003). This might also be an aim in the context of this competence model.

3. Diagnostic: The competence model will also be used for diagnostic reasons to
evaluate the “tool-competencies” of students. But diagnostics are only the first
step while improving students’ competencies in this area. The second step is to
establish consequences to improve students’ competencies. How can a student in
the best way be supported to attain a better understanding and higher compe-
tencies in working with CAS?

The evaluation of the competence model on the one side and to improve stu-
dents’ abilities in using CAS will be the up-coming challenge.
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Part IV
New Spaces for Teachers



Innovations Through Institutionalized
Infrastructures: The Case of Dimitris, His
Students and Constructionist Mathematics

Chronis Kynigos

Abstract The paper discusses the case of Dimitris, a secondary mathematics tea-
cher, who selected three micro-experiments from an institutionalized portal,
re-mixed them and then gave his version to his students who in turn made their own
changes and constructions. The case is discussed in the frame of the potential for
institutionalized portals and digital infrastructures to afford pedagogical innovation
which in this particular instance was about designing and re-mixing digital artefacts
as an activity for educators, designers, teachers and students alike. Innovation is
considered simultaneously at diverse levels, the representational affordances of
digital artefacts, the potential for experiential mathematics for students, the potential
for teacher-designer expressivity and the potential for economy-of-scale interven-
tions. Dimitris’ changes were about the level of abstraction of the available linked
representations in a simulation, about restructuration by bringing up front the notion
of equivalence in solving equations, about encouraging the use of the negation of a
property in a geometrical justification and about laying the ground for students to
discover the usefulness of linear functions in working with geometrical properties.
The students employed equivalence in a situated context, created an auxiliary point
and segment to think around a geometrical property and embedded a linear rela-
tionship between segment lengths to create a rectangle which can never be a square.
The paper discusses the potential for accredited large-scale institutionalized
infrastructures to become the starting point for the generation of personalized living
digital artifacts for both teachers and students rather than a showcase of exemplary
interactive artifacts.
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1 Introduction

In their paper in this volume (Chap. From Acorns to Oak Trees: Charting Innovation
Within Technology in Mathematics Education) identify multiple representations and
the mathematical figure to be the backbone of innovation brought to mathematics
education through digital technologies. Mathematical meaning is both generated and
expressed in different ways by means of these two affordances. The figure is no
longer an object but an instance of a class of objects since no figure in mathematical
digital media is expected to be treated as invariable. Representations are no longer
confused with mathematical concepts in themselves. When a student co-varies more
than one linked representations of a concept, discrimination of the concept itself
becomes more natural. So, the nature of innovation brought by digital media to
mathematics education is that they afford generation and expression of meaning in
fundamentally different ways than pre-technological media. As a corollary, digital
simulations afford the possibility to embed mathematical concepts in a vast variety of
models of physical or societal phenomena and situations allowing students to
appreciate the relevance and role of mathematics in their own reality.

More recently however, different kinds of innovations affecting mathematics
education are becoming a real potential, apart from innovations with respect to
expressivity. Authoring systems allowing teachers to design their own artefacts and
tasks for their students, embedding content of their own choice. Systems providing
structured and searchable access to large quantities of resources from anywhere by
means of any computational device at any time. Systems supporting social
engagement, argumentation and sharing of artefacts. Videos and e-books as new
kinds of mediating informational or instructional resources and exercises. Even
interactive e-books, such as ‘the c-book’ (built through the European ‘M C
Squared’ project, Kynigos, 2015), where text and narrative seamlessly mesh with a
diversity of dynamic digital artefacts.

In research, there is often a focus on one innovation from the list above, con-
veying a feeling of fragmentation in the way innovations are addressed. Large portals
are seldom designed to focus on a clear pedagogical innovation such as mathe-
matical meaning-making and expressivity. The attention is on quantity, diversity and
search-ability. Artefacts designed to afford meaning making are seldom considered
by their creators as one amongst different types of media and activities made
available to students. The attention is on the affordances of the respective medium
and mathematical meaning making is perceived through this medium in a kind of
‘silo’ approach. This paper takes a flipped stance towards this issue in order to
discuss innovation made possible by connecting different types of innovation. It
reflects on the potential for an integrated approach to innovation through the
description of a case of a teacher and his students engaging in activity based on
systemically enabled expressivity and meaning making. Can a teacher and his stu-
dents use an institutionally accredited portal infrastructure to re-mix digital media in
order to construct mathematical meaning? The following two sections provide some
contextual framing necessary to discuss the case of Dimitris and his students.
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2 The Case of Constructionist Mathematics

Many years ago the innovative role of digital technologies for learning mathematics
was primarily perceived as that of an expressive medium for students to generate
mathematical meanings by means of programming a computer with a language
affording formalism and connected graphical outputs to executed commands and
procedures (Abelson & DiSessa, 1981; Papert, 1972). The key idea characterising
students’ mathematical activity was termed ‘constructionism’ by Papert and his
group (Kafai & Resnick, 1996). By constructing, tinkering with and re-mixing
graphical models, which were then the only affordance available, students would
have much more dense opportunity to construct meaning than just express meaning
with pencil and paper. The process of generating mathematical meaning was then
described as containing four sides to it, using ideas, discriminating mathematical
essence or structure amongst them, generalizing within the computational context
and synthesizing with the same ideas in a more abstract way (Hoyles & Noss,
1987). Some recent versions of such media afford expressing such meanings by
means of linked representations, dynamic manipulation and feedback (see, e.g.,
Zantzos & Kynigos, 2012). Meanings are thus expressed as they are generated and
so become visible artefacts amenable to inspection, sharing, discussion and
argumentation.

Many things changed since those early days. The advent of Computer Algebra
Systems and Dynamic Geometry software afforded representations much closer to
the ones traditionally established in mathematics (Artigue, 2002). Dynamic
manipulation of these representations was perceived as conveying mathematical
meaning and as a new semiotic system in itself (Arzarello et al., 2002; Bussi &
Mariotti, 2008; Morgan & Kynigos, 2014). During the era of multimedia in the late
90s attention turned to the agenda of experimentations with simulations by-passing
formal symbolic programming, by means of mathematical representations of the
underlying simulation rules (Kaput et al., 2002).

The internet and the social web brought attention to argumentation, collaborative
learning, publicising and sharing constructs and links with some work on collab-
orative activity for mathematical argumentation (Stahl et al., 2010) but not so much
emphasis on the use of digital media as media to express and construct mathe-
matical meanings. Now, we are in the midst of the era of large portals, spaces with
zillions of digital artefacts with searchable meta-data and a great emphasis on video
artefacts (Kahn Academy) and e-books. So, what happened to the idea of using
digital technology for generating and expressing mathematical meaning? What
happened to the idea of how important it is for this media to afford deep structural
access (DiSessa, 2001) to its functionality in order to invite mathematical meaning
making?

This chapter suggests that it is important to re-consider constructionism as an
innovative activity, rich in opportunity for meaning making in the era of large
portals and the social web, especially now that expressing meaning, using for-
malism and coding (the new term for programming) are perceived as central for
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expressivity and meaning generation. Different types of innovations have attracted
attention at different times. How can we approach the challenge of maintaining
focus on more than one, on merging the agendas of different stakeholders and
forging connections between diverse kinds of affordances?

Let us briefly consider possible meaning-making and expressivity innovations
through the affordances of large portals. The most pertinent initiative has not come
directly from mathematics education but rather from communities perceiving pro-
gramming as an expressive medium. For around ten years now, ‘Scratch’ has been
paving the way for a number of recently emerging infrastructures for constructionist
activity such as ‘Second life’, ‘Kodu’ or ‘Minecraft’, addressing mostly informal
settings and gaining popularity based on their own merit. At the same time math-
ematics education infrastructures for access to digital media in institutionalized
settings such as ministries of education and organizations working on their behalf
have grown but mostly seem to be indifferent to supporting coherent pedagogical
reform and innovation, apart from a very few exceptions, see for example Benton
et al., 2016). The agenda there is mostly to accrue the largest possible volume of
resources provided they have a basic accreditation mainly with respect to the
validity of and the rights to the embedded information. Very often, these portals
give mixed messages with respect to the role and uses of digital artifacts, empha-
sizing video narratives, links to encyclopedic information, tightly defined exercises
usually to be resolved by multiple choice questions and finally some simulations
affording a simple experiment.

So, this chapter raises the question of how might it be made possible to embed
the potential of supporting mathematical meaning making and expressive activity in
these institutionalized infrastructures without disputing their agendas to democra-
tize access to information and easily understood affordances but at the same time
seeding affordances for pedagogical innovation. The pedagogical innovation con-
sidered here involves educators, teachers, designers and students making structural
changes to artefacts made widely available through such institutionally accredited
portals. To use Chevallard’s metaphor, the chapter considers the question of
whether it is possible to go to a human knowledge exhibition centre and place some
exhibits allowing visitors to engage in producing their own knowledge (Chevallard,
2012).

3 The Case of Institutionalized Innovation

I take the case of the ‘Digital School’ infrastructure of the Greek Ministry of
education created in the past four years and in particular two co-existing portals, the
‘Interactive books’ portal and the ‘Photodendro’ portal at http://photodentro.edu.gr/
aggregator/?lang=en. The former contains the original unique curriculum books (in
Greece there is only one institutionally accredited curriculum book per subject)
enriched by the inclusion of links to a variety of artefacts in amongst the text and in
tight relation to it. The latter, Photodendro, is a classic portal with carefully
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organized meta-data for each of the artefacts which began by containing the
artifacts of the interactive books portal and has been growing since, but with no
connection to the curriculum books.

The challenge to embed constructionist mathematical meaning making in the
affordances of institutionalized infrastructures is complex and the argument here is
that it may be feasible and will certainly constitute and generate innovative ways
and new potential to proliferate meaning making uses of digital media and the
pedagogies necessary for that to happen. Ruthven discusses some important
parameters facing the task for teachers to sustainably infuse meaning making
pedagogies based on the use of digital expressive media, such as accreditation,
curriculum script, time economy (Ruthven, 2009).

My role in the design and development of this infrastructure was to coordinate
the design and development of artefacts for the domain of mathematics from year 3
through 11. I worked with a team of 30 professionals selected so as to have diverse
expertise, comprising of technical knowledge, pedagogical design knowledge and
mathematical knowledge (Fischer, 2012; Kynigos, 2007). In a course of four years,
an impressive number of 1800 original artefacts were developed and uploaded in
the two portals, almost all of them constituting what we call ‘micro-experiments’,
i.e. tightly focused microworlds, objects with which students can experiment and
dynamically manipulate some simulation or problem embedding mathematical
concepts in order to discuss and answer in the classroom a set of closed questions
and occasionally a final open question involving invitation to some constructionist
activity (Kynigos, 2012). To orchestrate a sound integration of the knowledge and
experience inherent in the design team and also to create the conditions for creative
designs, I made sure that each of artefacts was created by 2–3 designers with
diverse expertise and internally reviewed by another team member in a way visible
to all designers (for a discussion, see Clinton & Hokanson, 2012; Gero, 2010). The
underlying authoring tools were Geogebra, MaLT—a 3D web version of e-slate
Turtleworlds, (Zantzos & Kynigos, 2012; Kynigos, 2004)—and some custom
widgets built with flash and other tools.

The question I’d like to discuss in this paper is how may it become possible for
this kind of infrastructure to support constructionist activity. I thus asked Dimitris, a
mathematics teacher with a masters degree in mathematics education and some (but
not extensive) experience with constructionist media, to pick a small number of
artefacts, change them and then give them to his students to engage in mathematical
activity.

The paper revolves around three examples of Dimitris’ work (see Kynigos,
2007; Kynigos and Diamantidis, 2014 for a background discussion). The corre-
sponding artefacts will thus be discussed with respect the way they were originally
designed and the way they may be used by people who play different roles, such as
the role of the designer, the educator and the student (Kynigos, 2002). The main
perspective and pursuit is to talk about the fact that Photodentro and the interactive
books portal can play the role of the resource, of the available infrastructure, but it
can also play the role of a springboard for design, creation and development for all
the people involved in education, from the educator to the student (Pepin et al.,
2013; Gueudet & Trouche, 2012).
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3.1 The Context of Large Scale Initiatives

Firstly, for Mathematics we had the possibility and the opportunity from very early
on to work in conjunction with other major initiatives of the Ministry that happened
to take place around the same time. One of those initiatives was the committee for
the new curriculum, which for the first time placed great emphasis on mathematical
activity, that is what is proposed for students to do in order to become personally
engaged with the concepts of mathematics by actually utilizing them and have a
mathematical experience. Additionally, great emphasis was been placed in this new
curriculum on mathematical literacy, that is the approach to mathematics as an
important societal asset, a cultural tool concerning everyone’s actual life and not the
mere abstract end-product of a scientific field. The second major concurrent ini-
tiative of the Ministry was what was named ‘second level Training program’, which
supports in-service teachers to make use of the two portals and all the infrastructure
to a very large degree, focusing on mathematics education, which is the blending of
new and established methods, techniques and teaching practices http://b-epipedo2.
cti.gr/. Thus, the ‘Digital School’ initiative was for us the third field of contribution
and intervention, the one that constitutes the infrastructure in terms of available
material.

Beyond any doubt there are great many matters that are addressed with these
infrastructures, and thus the core part of their designers’ agenda, such as the
availability of textbooks or resources online for everyone, from anywhere and at
any time. What we were interested in the domain of mathematics was to look for
added pedagogical value that may be involved in utilizing them, what the educator
or the student can do that would otherwise be very difficult to be done without these
technologies. This was our main focus for the subject of mathematics. Reinforcing
the possibility for students to have a personal experience of mathematical reasoning
in situations that are realistic for them, by utilizing the available infrastructures as
the tool for expressing concepts of mathematics by using them in the context of
mathematical literacy. The interweaving between the three major actions was
especially important for us as to eliminate the confusion that is often caused by the
feeling of fragmentation between intervention actions in the field of education.

3.2 The Quest for Added Pedagogical Value

We addressed the challenge for the portal to afford added pedagogical value not
only with respect to student activity but also with respect to the potential for teacher
designs. In the paper there are three examples, of three artefacts, that incorporate
different technologies and concepts of mathematics and I will describe the ways that
they have been constructed by the original micro-experiment designers, by Dimitris
as a teacher re-mixing these accredited designs and by his students for each of them
to express concepts of mathematics.
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We perceived the added value for students to be that they can utilize these
infrastructures to strengthen their mathematical experience and the feeling that
mathematics is something that is realistic, interesting, fun as well as beautiful and
mainly that it’s something useful for our everyday lives. Apart from the students,
we also aimed at affording added value for the teacher in the role of a professional
designer. We saw the potential for the portal to be that of a springboard for the
design and development of artefacts, not only by specialists and researchers but also
by the educators themselves. In the original team of mathematics designers of the
portal artifacts, we were 35 specialized colleagues and all the artefacts of mathe-
matics in the Photodentro, around 1800 artifacts, were original and developed by
the group. This team of colleagues consisted of technicians and educators that had
overall knowledge of pedagogy, mathematics and technology. Not even a single
artefact was developed without having all these three aspects of know-how
underlying, by the people that made it. Beyond this highly specialized team, this
infrastructure also provides the educator himself with the possibility of modifying
his own artefacts, design activities for his students and his own repertoire can be
contained in these activities, his own “suitcase” or “la valise” -as the French call it,
see Pepin et al. 2013—of digital artefacts that are modifications of the ones that can
be found at the Photodentro. And these possibilities also exist for trainers and
councilors for them to strengthen and create seminars of training and practice
between colleagues who discuss matters of didactics.

3.3 Emphasizing Equivalence to Solve an Equation:
Dimitris’ Re-Mix of a ‘scales’ Simulation

This section contains a discussion of the first example involving the representations
in a simulation of a physical phenomenon embedding the concept of an equation
and the distinction between equation and equivalence. Dimitris chose a classic
equation problem embedded in a scales task residing in the 8th grade interactive
textbook (and also in the Photodendro portal). In the paper version the task refers to
a picture of the scales. In the interactive book, it is dynamically manipulable,
affording the adding or taking away of known and unknown weights and the
simulation of a balanced or tilted scale (Fig. 1). The weights are represented
iconically with a different shape and color for the unknown which is also marked
with the letter ‘x’. The ‘known’ weights of 200 grams have the respective number
marked on one of the side facing the user. So, the idea is that students will
experiment and come up with a solution involving the isolation of one unknown
weight on one scale and the number of known weights on the other, needed to
balance the scale. They are supposed to connect this with the process of solving an
equation. The digital tools for experimentation available in this simulation are
sliders that change the number of known and unknown weights on each one of the

Innovations Through Institutionalized Infrastructures … 203



two sides of the scale. Dragging a slider dynamically adds or subtracts weight icons
on the simulation.

Dimitris however had other ideas regarding how to use it in order to make the
mathematics more interesting for his students and changed the artefact completely,
he created a modified version (Fig. 2). In his version of the simulation, the
semantics for the weights and their measure are not iconic, the user imagines the
weights inside two pots (for a discussion of artefacts as representations, see Morgan
& Kynigos, 2014). The semantics are numerals for the number of weights and color
for known (red) and unknown (blue) weights, all changeable by means of respective
sliders. Dragging a slider now changes the digit of the respective type of weight. Up
till now, the simulation appears to be the same just with different, more abstract,
representations. Things change dramatically however by a textual question asked to
the student: “is there any chance that the scale is faulty”? Dimitris wanted to get the
students to work that one out and then find the value of the unknown weight too.

Fig. 1 The “scales” micro-experiment

Fig. 2 Dimitris’ “scales” experiment
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Let’s see now how this artefact was used by the students. One way that the
children themselves thought of how to deal with this was to put the same number
and combination of weights on each side, despite the fact that the blue weight was
unknown. The scale turned out to have a visible tilt. They then added known
weights until it apparently balanced to find out the extent of the fault. In this case,
their thinking dealt with the unknown value as an object which is at the heart of
mathematical thinking. It means that they could cope with imagining that the
number had been found and additionally accepting that the scale is broken and there
is no balance. So, the students found that the scale had an error of 40 kg since it was
balanced when two red weights of 20 kg each were added to the equivalent weights.
Afterwards, in their effort to find how much the unknown blue weights weighed, a
strategy that a group of kids thought of was to put the scale in balance and then
increase the number of blue weights by one and then see how many reds they
needed to add in order for it to become balanced again and in that way figure out the
solution. Dimitris’ agenda was for the students to see the value of equivalence and
appreciate that it lies behind the concept of equation. The students’ changes allowed
them to be able to use a faulty balance to work out their equation problem and
estimate the extent of the fault. Although maybe in this case they did not change the
functionality of the simulation, they did understand it to an extent allowing them to
resolve a problem.

The original scale micro-experiment was designed and developed in a way
which was typical of the process of designing all of the original artifacts for the two
portals. Special care was taken so that each one emerged out of the collaboration of
2–3 designers with diverse expertise, at least one with technical know-how and one
with pedagogical design experience. First and foremost the directive to the
designers was to pay special attention to the correctness of the mathematics
embedded in the artifact in essence and in the way is was conveyed by means of its
representation. The agenda here was for the portal to be widely accepted and
compatible with the systemic agenda of accreditation. Equivalently, the developers
were asked to clearly negotiate the pedagogical agenda for its use, i.e. to anticipate
what the students would do with it as an expressive tool. Thus, although the
development of the two portals was funded simply to play the role of a resource, for
the domain of mathematics it was almost exclusively designed as a set of artefacts
for the students to do mathematics with, i.e. to experiment, to modify, to think
around and to justify behaviors, properties and the changes they made.

3.4 Constructionism for All in a Classic Geometrical
Problem

The second example shows how students made structural changes to an artefact
already changed by Dimitris. We now have a classic geometrical example, which is
in the interactive textbook (Fig. 3), two concentric circles are given, with two
corresponding diameters and students are asked to tell what kind of quadrilateral is
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formed if the four intersection points of the diameters and the circles are connected
and also justify their answer. Next, they are asked, by increasing and decreasing the
lengths of the diameters (and thus the circle size) and changing their direction to
make various quadrilaterals and justify their constructions (e.g. rectangle, rhombus
etc.). But Dimitris wanted more in terms of the possibility of engaging his students
in mathematical thinking. So, he made two line segments, where one of them was a
diameter and the other was a mere chord of an arc whose size could be modified. He
asked his students if a parallelogram is formed, as well as when and why. He asked
them to explain what is happening on the shape and construct different parallelo-
grams of their own choice. We can see that the questions are more open, they invite
students to create quadrilaterals and to explain how a figure does not belong to a
particular class when the properties necessary for it to do so do not apply (Fig. 3).

Now let’s look at some students’ activity. A certain student thought of con-
necting the two midpoints, one of the diameter and the other of the chord, O and O’,
and observe what happens to the OO’ segment in order to provide his explanation.
This is especially important, since the student felt that he had the right and that it is
part of his role to tamper with the software, to add a line segment which will help
him think and then dynamically manipulate it.

It is also important that in order for such a thing to happen, the teacher needs to
create and encourage this norm in the classroom, i.e. that these tools are tools for

Fig. 3 Dimitris’ geometry experiment
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experimentation and engagement as well as modification and tampering. In support
of this, let us look at the things the children were saying while using the tool. We
have a student who says “this quadrilateral is not a parallelogram since the opposite
sides are not parallel and equal”. So far she answers the question. But, without
being asked, she goes on to say, “if the point K is moved along the diameter that is
there, the length of the chord, from which this point passes through, will change.
So, as K comes closer to D, the length of the side BG increases and of GD
decreases”. This conclusion was not part of the question. It is however a mathe-
matical formulation, a conjecture and a topic for thought in class, that this particular
student felt it is a valid thing to do, it’s within the norm, within reason to do so.
Despite the fact that there was a specific question, children felt free to think of the
mathematics around the question and not just answer it and move on to the next
matter and the next problem.

These digital infrastructures, are thus infrastructures that encourage and allow
children to express themselves, to attribute meaning in what they’re doing. They
include interdependent representations as is shown in the first example, which is a
very important matter in mathematics, they help children become detached from the
representation and understand that there are concepts behind it. They allow dynamic
manipulation, which is a new way to represent concepts in mathematics as shown in
the second example, a way that was not available before. They allow teachers and
students alike to have deep access to functionalities. In the first two examples,
Dimitris modified the scale simulation and took away a property of one segment
(diameter) to drastically change a mathematical problem. The students respectively
changed the functionality of the experiment by employing equivalence to resolve an
equation and by adding a segment to help them study a property. It is important to
point out that, the systemic agenda was not challenged, i.e. the micro-experiments
were in themselves accredited resources aiming at a wide-scale use with not much
emphasis on pre-requisites for a high teacher T.P.a.C.K. level or students highly
tuned to experimentation with digital media. However, their affordances allowed
re-mixing from teacher and students in a large variety of ways. The former example
involved some use of multimedia objects and the representation of a physical
phenomenon where mathematics was embedded, the latter was a simulation of a
mathematical object who’s abstract generalized nature could be perceived by means
of dynamic manipulation of the representation.

3.5 Employing Algebra for a Geometrical Construction

The third example is about how we can combine concepts of mathematics that lie in
different sections in the curriculum, to such an extent so that they are mistakenly
considered to be unconnected. It is also about how students can for themselves
invent ways to use mathematical concepts. The respective artefact from the digital
school is for the 7th grade and it is about the rhombus and the square, apparently
geometry again. This artefact incorporates mathematical expression through
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computer programming, it is made with a new web-based 3D version of E-slate
Turtleworlds which we call ‘Turtlesphere’ which we developed at the Educational
Technology Lab (http://etl.ppp.uoa.gr/malt2).

Students are put in the position of an engineer, and are asked to de-bug a model
that one of their fellow students has apparently made and that is not working
correctly. “Yiannis’ team”, we read in the problem text (Fig. 4), “tried to make a
procedure to construct a square, without success, can you help Yannis fix the
procedure so that when it is executed a square is always constructed”? Students can
experiment with the sliders by altering the variable values dynamically, look at the
code to figure out what change is needed, which property of the square is missing in
this procedure. What is missing here is that the angles should be 90 degrees rather
than variable values independent from each other. They get into the formalism of
mathematics, correct the code, run the procedure and observe if it works or not.

First, let us discuss Dimitris’ modification (Fig. 5, first column). He turned this
problem to be about parallelograms providing one that doesn’t work in order for the
students to experiment and find out, think of what they need to do to make this
shape become correct once again. After a lot of discussion, the children managed to
realize that the subsequent angles of the turns are supplementary and that this
suffices for the parallelogram to be fixed and nothing else is required.

Dimitris then gave them another problem, he asked if they can make a rectangle,
that can never be a square. The students came up with various strategies. For
example, they put a variable x for one of the two opposite sides and they used
x + 20 in one case and 2 � x in another, for the other side (Fig. 5, columns 2 and
3). What did the children do here? In order to express a generalized inequality in the
mode, without anyone telling them, they thought of incorporating the linear func-
tion as an element of changing and modifying the model. With this artefact the

Fig. 4 A ‘micro-experiment’ on an institutionalised digital portal
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students themselves came up with an algebraic solution to a geometrical problem
and incorporated a linear relationship between two generic numbers, the length of
the opposite sides.

4 Discussion

These three examples provide a flipped perspective on innovation. Rather than
addressing one type of innovation such as a special artefact or infrastructural
affordance, the chapter considers innovation in an integrated pragmatic approach
through a teacher and his students’ activities with media residing in institutionalized
infrastructures. How can we as researchers elaborate cases of the whole cycle of
infusing an agenda for added pedagogical value into a systemic agenda for gen-
erating an accredited institutionalized digital infrastructure in an education system?
In this chapter, the cases are meant to help identify the challenges and the potential
rather than to convey showcase exemplary stories. My participatory involvement in
the process and the reflections expressed in this chapter led me to identity the
following three issues.

1. Considering the role of constructionist mathematical activity within an evolution
of broader agendas for educational innovation.

2. The need to address the essence and characteristics of differing but not neces-
sarily conflicting agendas so as to generate and construe integrations where
possible.

3. Reflecting on the potential to integrate pedagogical added-value innovation such
as constructionist mathematical meaning making and expressivity, with larger
equity, political and large-scale economy agendas.

The first issue to consider is the role of constructionist mathematics with expressive
media as attention to technological infrastructures, societal norms and political

To parellelogram :x :y To change :x To myrectangle :x

Fd50 fd :x+20 Fd :x

Rt30 rt 90 Rt 90

Fd :y fd :x Fd :x*2

Rt :x rt 90 Rt 90

Fd50 fd :x+20 Fd :x

Rt30 rt 90 Rt 90

Fd 100 fd :x Fd :x*2

Rt150 Rt 90 Rt 90

end end end

Fig. 5 Students’
constructions as responses to
Dimitris’ task
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agendas evolve in time. In the short history from the advent of digital media, this
innovation has been highlighted, underplayed, challenged and considered obsolete
or wanting with respect to original perceived promises. In this era of social media
and large portals, how can systemic agendas co-exist and integrate with an agenda
for meaning making with constructionist expressive media? Scratch is a case where
the two are integrated but with little as yet emphasis on mathematics albeit some
focus which had been given recently (Benton et al., 2016). The Photodendro
mathematics portal can in the same sense be considered as an effort to integrate
portal agendas with constructionist mathematics. It may be perceived as a resource
ready to be used in traditional classrooms by simply having teachers support stu-
dents to follow the tasks given by the micro-experiment resource. Even at that level,
it is designed to widely convey the idea that mathematics is not an abstract isolated
field of study which for some unexplained reason is good for the future citizen.
Instead, that it may be connected to experimental activity, to engagement with
something which is relevant and interesting and most importantly, where sharing
and exposing the process of mathematical thinking by means of sharing thoughts,
ideas and actions on digital representations and their manipulations is recognized,
explicit and valued in mathematics courses.

Let’s consider the three micro-experiments as they stood in Photodendro orig-
inally. The scales simulation can be used for experimenting with iconic represen-
tations of physical objects connected with mathematical properties and
dependencies. Geometrical figures can be manipulated dynamically to generate
understandings of embedded properties. The mathematical formalism which created
figural models can be inspected and changed so as to embed a property necessary to
construct a mathematical figure. This paper argues that the same infrastructure may
invite going much further with respect to added value agendas. It can also be
perceived as a stepping stone for teacher engagement with design like in the case of
Dimitris and constructionist mathematics for the student as in the case of the second
and third example given in this chapter.

The same scales micro-experiment can be re-mixed so that it lends itself to
experimentation with mathematical representations and a focus on equivalence
rather than equations, geometrical figures can be manipulated dynamically to
express conjectures regarding the consequences of inherent properties, rectangles
can be given custom properties expressed algebraically to achieve idiosyncratic
behaviors. These thoughts only help raise the issue which in any case remains, how
to think of constructionist mathematics not as a silo pedagogy or activity but as an
element amongst the affordances of digital infrastructures design for broader
reforms focusing on e.g. equity, scale economy, digital citizenship etc. Innovations
thought of as silo interventions have little chance of being sustained and
proliferated.

The second issue refers to the agendas themselves. Are societal (social web
tools) or systemic (portal) agendas necessarily detrimental to the innovation of
constructionist meaning making in mathematics? This chapter makes the case that
this is not so, leaving an open issue to identify and operationalise agenda inte-
grations, embedding innovative activity in equity and economy-of-scale
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interventions. The strategy with the Photodendro for mathematics was that of
focusing on added pedagogical value rather than creating a portal which would be a
centre for exhibiting any type of resource. This took some discussion amongst the
original 30 design professionals. Enabling the re-mixing of their own constructs
was not readily accepted or understood by all. Neither was conforming to a
coherent pedagogical framework. The idea of a pedagogical framework was not
clear in any case, some teachers initially aiming to just upload coaching exercises
they had already created. My task and challenge was to explain the constructionist
agenda in arguments understood and accepted by those colleagues who were much
more representative of the average mathematics teacher. This is a much harder task
than it looks, and experience with the ways in which digital media has been used in
classrooms worldwide is full of stories of why this is so (Ruthven, 2009).
Furthermore, embedding innovative activity in one amongst diverse large scale
initiatives has thin chances to survive, initiatives emerge from different needs and
are often concurrent as was the case with the new Greek curriculum for mathe-
matics and the large scale in-service education program. It would be very normal
for the curriculum to undermine this kind of mathematical activity had it not been a
lucky circumstance that there was a concurrent curriculum reform involving
like-minded professionals. Another aspect of the strategy for mathematics was for
the essence of what was perceived as added value which was to include and
democratize engagement for all parties concerned, educational designers, teachers
in a designer role, students in both a designer role and in engagement with math-
ematical activity. The innovation strategy thus for the mathematics portal was
driven by an emphasis on added pedagogical value based on the importance of
experiential mathematics and the democratization of resource design and re-mixing.

The third issue is on what is in it for mathematics education. That is, beyond the
inevitable defensive argument that the value of mathematical thinking may survive
an era where the focus is on information, administration, collective engagement,
social pluralism and economy of scale, what are the arguments for how it may
actually gain from added value strategies? In the chapter we discussed some
examples, where mathematical representations and figures were in focus. Dynamic
manipulation and engagement with dynamically linked representations may gain
much higher visibility and accessibility, especially when, as in the case of Dimitris’
scales re-mix, switching from one type of representation to another is made so
seamlessly. Allowing for different conceptual fields (to use Vergnaud’s term, 2009)
to emerge placing for instance geometrical properties with functions in the same
kernel may generate many more opportunities for mathematical meaning making as
in the rectangle failing to ever become a square built by Dimitris’ students.
Wilensky and Papert (2010) referred to this as ‘restructurations’. At another level,
recognizing and supporting the design aspect of the teaching profession widely
maybe afforded in new ways, think of Dimitris for instance putting together his own
‘valise’ (to use Pepin et al’s term, 2013) of resources continually re-mixing and
tinkering with each one and using this experience to reflect on his own pedagogy in
TPD courses.
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So this is a way in which institutionalized digital infrastructures could afford
added pedagogical value for students and also for teachers, designers and teacher
educators and consultants. Where is the innovation? it is inherent in the whole of
the above phrase. In that the teacher can be assisted by these infrastructures in order
for his practice to acquire a higher element of orchestration by means of using them
to generate norms for mathematical literacy in the classroom, as shown by the
natural way Dimitris’ student articulated a mathematical argument during the
concentric circles investigation. In that the portal can also be used by teachers to
engage in their own research and professional reflection. In that the design element
in the teaching profession can also be enhanced in interesting ways given that these
digital media can be used as expressive media for design. Teachers can create their
own artefacts by remixing the ones given in the portal like Dimitris and thus act as a
members of communities that discuss and share such activities and such materials.
Consequently, the artefacts now become springboards for student constructions, for
design, for creation of such artefacts by the educator and for engagement in
communities of educators.
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Studying the Practice of High School
Mathematics Teachers in a Single
Computer Setting

Michal Tabach and Galit Slutzky

Abstract Many studies have examined the teaching of mathematics in techno-
logical environments that are accessible both to the teacher and to the students.
Nevertheless, some classrooms are equipped with only one computer and a data
projector. This study examined case studies of four different teachers who had
previously worked in the high-tech industry and then became high school mathe-
matics teachers that used technology in the classroom. Two technological envi-
ronments were examined: (1) an environment in which teachers used a computer
and a projector and (2) an environment that also included an interactive whiteboard
(IWB). The study aimed at characterizing teaching practices and teacher knowledge
in these two environments. An innovative framework was developed, based on
three lenses: (1) the teachers’ goals; (2) the technological resources used; and
(3) the way these resources were used. Findings indicate that teachers used a
whole-class lecture style of teaching, mostly for explaining concepts. Although the
teachers attempted to demonstrate mathematical concepts dynamically, either they
tended to use the technology statically or they avoided using it. The teachers mostly
used the IWB as a non-digital whiteboard.

1 Introduction

For technology to introduce innovation into the teaching and learning ofmathematics,
we as researchers need to understand the everyday practice of teachers and to suggest
new means of technological implementation (Clark-Wilson, Sinclair, & Robutti,
2013). In recent years many studies have examined mathematics teaching in tech-
nological environments that are accessible to both the teacher and the students. Some
of these studies focused on characterizing teachers’ knowledge needed for integrating
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technology into their everyday routine (e.g., Mishra & Koehler, 2006). Other
researchers focused on the ongoing documentation work of the teachers, done mainly
outside the classroom, while re-sourcing digital and other sources into his everyday
practice (e.g., Chap. Innovations Through Institutionalized Infrastructures: The Case
of Dimitris, His Students and Constructionist Mathematics; Pepin, Gueudet, and
Trouche, (eds.), 2013). Others identified the unique role played by the teacher in the
mathematics classroom where students have technological means at their disposal.
Specifically, the instrumental orchestration framework proposed by Trouche (2004)
and developed by Drijvers and colleagues (Drijvers, Doorman, Boon, Reed, &
Gravemeijer, 2010; Drijvers, Tacoma, Besamusca, Doorman, & Boon, 2013) is rel-
evant in caseswhere both teacher and students have access to technology. Yet inmany
high schools in Israel, and likely elsewhere in the world as well, classrooms are
equipped only with a computer for the teacher and a data projector. The teachers do
not consider students accessibility to smartphones as a possible technological
resource to be used in class (see, for example, Chap. Innovative Uses of Digital
Technology in Undergraduate Mathematics; Trouche & Drijvers, 2010). That is, the
technology is available only to the teacher. Hence, in order to analyze teacher practice
in cases where students do not have access to technology in class, we need to modify
the existing framework or to develop an innovative one.

The current study monitored several second-year mathematics teachers with
strong technological backgrounds. We chose these specific teachers intentionally
because the claim that teachers lack technological knowledge does not apply in
their case. Hence it will be interesting and innovative to trace their use of tech-
nology in class. The classrooms were equipped with only one computer for the
teacher. In some cases the classroom was also equipped with an interactive white
board. The study sought to develop a framework that would allow us to characterize
teachers’ actions in such settings and to examine the applicability of the framework
by applying it to several case studies. The study also investigated teacher knowl-
edge to examine whether there is any connection between this knowledge and
teacher actions. The use of several case studies allowed us to highlight similarities
and differences between cases.

2 Theoretical Framework

2.1 Integrating Technology into Mathematics Lessons

Koehler and Mishra (2008) define technology in the school context as “the sum of
the tools, techniques, and collective knowledge applicable to education” (p. 5). This
definition does not distinguish between what may be considered “old” technology,
such as blackboards or overhead projectors, and “new” technology, such as Internet
applets. Some technologies, such as chalk for example, are more easily classified as
“old.” However, with the rapid advances in digital technology, the classification of
technology as “new” is bound to time and place. Furthermore, in some classrooms
“old” and “new” technologies are often used at the same time.
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Every technology has specific affordances and constraints (Gibson, 1979). In the
context of educational technology, these affordances and constraints refer to all the
properties of a system that allow certain actions to be performed and encourage
specific types of learner behaviors (Norman, 1988). A distinction can be made
between affordances and constraints that are part of the technological tool itself and
those that are imposed by the task or the user. A teacher may refrain from giving her
lecture notes to her students due to her personal “functional fixedness” (German &
Barrett, 2005), even though as a tool these notes may provide her students another
learning opportunity. Sometimes the integration of technology is dependent upon
overcoming functional fixedness. Specifically, in the classroom the teacher is often
the one who needs to overcome her practice fixedness in order to harness the
technology’s affordances for the benefit of student learning. Tabach (2011) reported
on a case of one skillful teacher who worked in a particular technological envi-
ronment for some time before she was able to overcome her own fixedness
regarding the use of technology.

Teacher practice is complex and stable (Robert & Rogalski, 2005), to some
extent due to teachers’ functional fixedness. Integrating technology amplifies this
complexity and challenges the stability of teacher practice because new techniques
need to be developed for integrating technological tools (Lagrange & Monaghan,
2009). Such new techniques are likely to be related to already existing ones as well
as to teachers’ perceptions about mathematics education (Pierce & Ball, 2009).

2.2 Technological Pedagogical Content Knowledge
(TPACK)

The notion of TPACK emerged in an attempt to propose a typology of teacher
knowledge for technology integration based on Shulman’s (1986) construct of
pedagogical content knowledge (PCK). Shulman (1986) explained his ideas about
PCK as follows:

Pedagogical content knowledge is of specific interest because it identifies the distinctive
bodies of knowledge for teaching. It represents the blending of content and pedagogy into
an understanding of how particular topics, problems or issues are organized, represented,
and adapted to the diverse interests and abilities of learners, and presented for instruction
(p. 8).

The construct of PCK was criticized by Ball and Bass (2000), who claimed that “it
sometimes falls short in the dynamic interplay of content in teacher’s real-time
problem solving (p. 88).” Yet this notion has shaped views of teacher knowledge
for the last three decades (Graeber & Tirosh, 2008). Shulman’s ideas evolved in an
environment in which the technological tools used in class, among them textbooks,
overhead projectors and the like, were considered commonplace and as such
transparent (Bruce & Hogan, 1998). The introduction of digital computers and
software into school systems and the increasing availability of computer
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communications technology brought the issue of technology to the fore. One may
argue that Shulman’s construct of Curricular Knowledge (CK) includes technology.
Shulman (1986) defines CK as follows:

The curriculum is represented by the full range of programs designed for the teaching of
particular subjects and topics at a given level, the variety of instructional materials available
in relation to those programs, and the set of characteristics that serve as both the indications
and contraindications for the use of particular curriculum or program materials in particular
circumstances. … [W]e ought to expect that the mature teacher possesses such under-
standing about the curricular alternatives available for instruction (p. 10).

Yet as Mioduser (1998) explained, “[t]echnology is generally presented as a dis-
cipline in its own right, as a body of knowledge with its unique history and
development, philosophy, contents, and methodology” (p. 169). If we accept this
view, we must acknowledge that Shulman’s typology has a missing component that
needs to be explicitly addressed as a component in teachers’ knowledge.

Shulman’s (1986) seminal work suggested that content (C) and pedagogy (P) are
two bodies of knowledge that must overlap, creating a third distinct body of
knowledge (PCK). Similarly, Mishra and Koehler (2006) suggested that techno-
logical knowledge (T) also needs to overlap knowledge regarding the content to be
learned and the pedagogy (Fig. 1). By accepting this complex view of teacher

Fig. 1 Diagram of the combined knowledge areas, copied with permission from http://tpack.org/
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knowledge, we must take into consideration four additional distinct yet connected
bodies of knowledge.

Mishra and Koehler (2006) proposed the following descriptions for each of these
four new bodies of knowledge. Technological knowledge (TK) entails the teacher’s
knowledge about digital computation devices and software. This includes knowl-
edge regarding how to connect and install as well as how to use hardware and
software. An important characteristic of TK is the ability to learn about new
technologies. To illustrate, one may consider the ability to adapt from one version
of software to its successive version. Technological pedagogical knowledge
(TPK) refers to knowledge relating to how the use of technology may influence
teacher practice and student learning. It includes familiarity with existing tools for a
specific pedagogical purpose and knowing how to choose an appropriate teaching
strategy according to the learning goals. Technological content knowledge
(TCK) involves knowing how technology and content mutually influence each
other. For example, dynamic geometry software allows students to construct and
“drag” a construction so they can inspect many examples of a constructed object. In
a sense, the tool provides students the opportunity to experiment so that the
dynamic geometry software serves as a laboratory.

Technological pedagogical content knowledge (TPCK) is the knowledge at the
core where pedagogical knowledge, content knowledge and technological knowl-
edge overlap. Mishra and Koehler (2006, p. 1029) define TPCK according to the
following five characteristics: [1] an understanding of the representation of concepts
using technology; [2] pedagogical techniques that use technologies in constructive
ways to teach content; [3] knowledge of what makes concepts difficult or easy to
learn and how technology can help redress some of the problems that students face;
[4] knowledge of students’ prior knowledge and theories of epistemology; and [5]
knowledge of how technologies can be used to build on existing knowledge and to
develop new epistemologies or strengthen old ones.

Figure 1 illustrates the view that these combined knowledge areas are bounded
within contexts. In other words, integrated knowledge is strongly related to subject,
though it needs to be further elaborated for each subject area.

Many researchers have used TPCK in their studies both within mathematics
education and in other educational domains. Voogt, Fisser, Pareja Roblin, Tondeur
& van Braak (2013) reviewed and analyzed the ways in which different researchers
interpreted the TPCK framework. They pointed to three different ways of under-
standing the TPCK concepts: T(PCK) as an extension of PCK by integrating
Technological Knowledge; TPCK as a unique and distinct body of knowledge; and
TP(A)CK as a knowledge domain that emerges from the integration of
Technological Knowledge, Pedagogical Knowledge and Content Knowledge.
While the first two conceptualizations view TPCK as a knowledge domain on its
own, TP(A)CK represents an integrative view and emphasizes the relationship
between the three knowledge domains and their intersections. This is the view of
TPACK adopted in the current study.
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2.3 Ways of Analyzing Teacher Practice in Technological
Environments

Vérillon and Rabardel (1995) defined instrumental genesis as the process by which
individuals create and change their perceptions of a tool while performing different
tasks. Instrumental genesis is considered a bidirectional process in which both tool
and user change. Trouche (2004) referred to these two bidirectional aspects as
instrumentalization and instrumentation. Changes in the tool, or instrumentation,
usually entail changes in software features. For example, user-generated changes to
cellular devices reflect users’ needs and their orientation towards the tool. Changes
in the user, known as instrumentalization, affect the mental schema developed by
users with respect to achieving a mathematical goal with the aid of a specific
technological tool.

Whole-class discussions orchestrated by the teacher (Trouche, 2004) can serve
as an appropriate forum for discussing and sharing students’ own instrumental
geneses for the purpose of further enhancement. Trouche “introduced the term
instrumental orchestration to point out the necessity of external steering of stu-
dents’ instrumental genesis” (2004, p. 296, emphasis in the original). Rivera put it
differently: “Instrumental orchestration encompasses institutional strategies that
assist students in developing instrumental actions. The strategies are aimed at
learners who are driven by the goals in an activity” (Rivera, 2007, p. 295).
Instrumental orchestration also has a socio-cultural aspect (Laborde, 2003;
Lagrange et al., 2003), since the technological medium serves as a boundary object
between teacher and students, where “mutual negotiation and meaning-construction
is the norm for both sides” (Hoyles et al., 2004, p. 321).

Instrumented orchestration is defined by four components: a set of individuals; a set of
objectives (related to the achievement of a type of task or the arrangement of a
work-environment); a didactic configuration (that is to say a general structure for the plan of
action); a set of exploitations of this configuration (Guin, Ruthven, & Trouche, 2005,
p. 208).

The framework of instrumental orchestration does not suggest specific orchestration
types. Nevertheless, several orchestration types have been identified based on
empirical data from various studies (Drijvers et al., 2010, 2013; Tabach, 2011,
2013; Trouche, 2004).

The framework of instrumental orchestration was suggested by Trouche and
developed by others in an attempt to better understand teacher practice in mathe-
matics classrooms with digital tools accessible to students. Nevertheless, in many
schools today students are not equipped with digital technology for use in the
context of mathematics lessons. If only the classroom teacher is equipped with a
computer and data projector and the students do not have access to digital tech-
nology, applying the instrumental orchestration framework to teacher practice is not
adequate. A different framework is needed to be able to describe what happens.
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3 Methods

3.1 Research Question

Four case studies were examined in light of four questions. The first two questions
refer to each case separately, while the last two compare the four cases to highlight
similarities and differences. Each case focused on one high school mathematics
teacher working in a technological environment comprising one computer and a
data projector.

1. What teaching practices can be identified in class?
2. What are the teachers’ TPACK knowledge components?
3. What similarities and differences can be identified in the practices of the

teachers?
4. What similarities and differences can be identified in teacher knowledge?

3.2 Participants and Research Procedure

Four high school teachers—Meir,1 Gilad, Eli and Ron—took part in the study.
These four teachers had several years of experience working in high-tech industry.
Each of them decided to change careers and become high school mathematics
teachers. They all studied in the same year-long program designed for people who
hold bachelor’s degrees in mathematics and wish to become high school mathe-
matics teachers. Note that we had no involvement in their professional training
program. We felt that the similar backgrounds of the four teachers would provide us
with a good starting point for comparison. At the time of the research, all the
teachers had already been teaching high school mathematics in different schools for
about a year. The classrooms in all four schools were equipped with a computer and
a data projector for teacher use. Two of the schools also had interactive white
boards in the classrooms.

A preliminary discussion took place with each teacher to explain the research
goals and obtain consent to participate in the study. All four teachers used tech-
nology in their teaching on a regular basis. We used individual semi-structured
interviews to interview each of the teachers in a quiet corner for about an hour. The
goal of these interviews was to gain some insights into each teacher’s knowledge.
Each teacher was observed during three to four lessons in one of his regular classes,
based on his choice of a convenient time. The interviews and observations were
recorded and transcribed verbatim.

1All names are pseudonyms.
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3.3 Data Analysis

Based on observations in classrooms where technology was available only to the
teacher, we propose a framework to examine the practices of these teachers. The
framework includes three lenses: (1) the teachers’ goals; (2) the technological
resources used; and (3) the way the resources were used. The teachers’ goals in the
first lens were categorized as follows: proving a statement; explaining a concept,
technique or how to solve a problem; monitoring and guiding in which students
work individually while the teacher circulates and helps as needed; and manage-
ment, in which all kinds of general actions take place, such as school announce-
ments. Note that these goals were identified based on observing the teachers acting
in the classes. Table 1 outlines the operational definitions for each category.

The second lens, technical resources, was not always applicable, for example in
cases when the data projector was not used. When the data projector was in use, the
teacher could choose to work with mathematical software or general software.
Table 2 outlines the operationalization of technical resources.

Table 2 Operationalization of technical resources

Software type Means of identification

Mathematical
software (MS)

Software that allows the user to manipulate mathematical objects, such
as symbolic expressions, graphs, geometrical figures, calculations and
others. Examples include Excel, GeoGebra

General software
(GS)

Software that does not allow the user to manipulate mathematical
objects. Sometimes the software may display a mathematical object.
Examples include Word, Acrobat Reader, PowerPoint

NA The use of technical resources was not applicable (NA) if the data
projector was turned off

Table 1 Operationalization of teachers’ goals

Goal Means of identification

Proving (Prov) The teacher proves a mathematical statement

Explaining Concept
(ExpC)

The teacher explains a mathematical idea, concept or claim

Technique
(ExpT)

The teacher explains a general technique or algorithm for
solving a particular type of problems

How to
solve (H2S)

The teacher explains how to solve a particular problem or
rehearses a particular topic in the whole-class forum

Monitoring & Guiding
(M&G)

The teacher circulates among the students who work as
individuals or in pairs. The teacher assists in private
conversations as the need arises

Management (Mng) The teacher does administrative work, such as informing
students about events, giving information and the like
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The third lens refers to the way the resources were used and includes four
categories. The first distinction refers to the teacher’s ability to manipulate or
interact with the display, including static presentation or presentation that includes a
multimedia component. In other cases, the teacher manipulates the presentation or
interacts with it, including the use of applets or learning management organizing
systems (see Table 3).

We also operationalized the component of the TPACK framework to analyze
teachers’ knowledge as it emerged from the classroom observations and was
expressed in the individual interviews with the teachers. Table 4 provides some
examples for categorizing teachers’ utterances during the interview into knowledge
types. Further, we categorized the questions asked during each interview according
to the knowledge types they were expected to elicit. We then compared the
knowledge types aimed at in each question with the knowledge types we catego-
rized in the teachers’ answers. Mismatches between the knowledge types aimed at
and those answered allowed us to determine the level of the particular knowledge
type. For example, if the teachers’ answers to questions aiming to elicit pedagogical
knowledge included almost no utterances we could classify this as pedagogical
knowledge of a low level. In contrast, if the utterances in the answers were clas-
sified as technological knowledge regardless of the knowledge type the questions
aimed to elicit, we determined this to be a very high level knowledge type.

Table 3 Operationalization of way resources were used

Ways of use Means of identification Distinction

Static presentation
(Stat)

Using software to display a document, picture
or their integration into one page (or more, e.g.,
PPT), similar to the use of an overhead projector

Not possible to
manipulate or
interact

Presentation
includes
multi-media (MM)

Using manipulatives or demonstrations
including multimedia, such as animations,
movies, simulations

Applet Use of demonstrative digital tools that can be
manipulated or interacted with by touch,
keyboard or mouse

Possible to
manipulate or
interact

Learning
management or
context system
(Org Teach)

Projecting software onto board that can be used
to organize or edit content. Students watch and
may influence the end product. Examples: Word
or PowerPoint presentation, or editing abilities
of an interactive white board

Regular board uses The teacher can write on the projected display
(WO), write beside the projected display
(WB) or not write on the display (NW)
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4 Findings

First we present the findings from each teacher’s practice separately. After that we
analyze the knowledge regarding the four teachers together.

4.1 Meir’s Teaching Method

Meir’s classroom was equipped with an interactive white board and a regular white
board, but he used only the interactive white board both for data projecting and for
writing. He used Geogebra files he created at home or drawings he created on the
spot with Geogebra in response to students’ needs. When he wrote on the

Table 4 Operationalization for identifying teachers’ knowledge

Knowledge
types

Means of identification Examples

TK Teacher operates software or hardware;
can handle malfunctions

Where to save files
How to operate the software

PK Teacher refers to general pedagogical
issues, with no reference to
mathematics

Keeping order in class
Reading names

CK Teacher refers to mathematical facts,
procedures, process, proofs…

What is a derivative?
How to solve quadratic equation

PCK Teacher refers to ways of teaching
mathematics, considerations of
pedagogical choices regarding
sequencing learned topics and more

What may affect students’ learning of
a particular topic?
What is considered easy or hard for
students?
Students’ difficulties or
misconceptions
Students’ prior knowledge that may
influence current learning
Best examples, analogies, and the like

TPK Teacher refers to operating technology
for integration in teaching with no
reference to mathematics

How to use the interactive white board
for teaching
Pros and cons of using technology
while teaching

TCK Teacher refers to operating technology
for presenting mathematical content

Explaining about an applet for
learning math

TPACK Teacher refers to using the software for
teaching mathematics

How to choose a digital representation
appropriate to the learned topic
How to choose a pedagogical
technique that will make use of digital
tools to study a specific math topic
How can specific problematic issues
for students be overcome with the help
of technology
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interactive white board he used it as a regular white board, making no use of its
software abilities. Table 5 summarizes the analysis of Meir’s observed lessons
according to teacher goals. During almost half the lesson time (44%) Meir used
mathematical software, and for the vast majority of the lesson time (88%) he used
the technology dynamically while explaining mathematical concepts, techniques
and ways to solve exercises.

4.2 Gilad’s Teaching Method

Gilad’s classroom was also equipped with two boards—an interactive white board
and a regular one. Like Meir, he also only used the interactive white board both for
data projecting and for writing. Like Meir, he used Geogebra files he created at
home or drawings he created on the spot in response to students’ needs. Unlike
Meir, when Gilad wrote on the interactive white board he used its software capa-
bilities (colored changes, moving, scaling, drawing lines and the like). Table 6
summarizes the analysis of Gilad’s observed lessons according to teacher goals.
During about a fifth of the lesson time (19%) Gilad used mathematical software, yet
for the vast majority of the lesson time (75%) he used the technology dynamically.
He spent less time on management issues compared to Meir, and he also spent a
short time proving a statement, which did not occur in Meir’s observed lessons.

4.3 Eli’s Teaching Method

Eli’s class was equipped only with a regular white board on which the data were
projected. Eli also used Geogebra files that he created at home or drawings he
created on the spot with Geogebra in response to students’ needs. While the data
were projected on the white board, he used an erasable marker pen to write on and
next to the display. Table 7 summarizes the analysis of Eli’s observed lessons

Table 5 Distribution of Meir’s teaching during the observed lessons

Teaching goals Technological resources Use of resources

% % %

Explain concept 56 Mathematical software 42 Applet 42

General software 14 Org Teach 14

Explain technique 2 Mathematical software 2 Org Teach 2

Explain how to solve 24 General software 24 Org Teach 24

Management 18 General software 12 Static 12

NA 6

*All percentages are rounded to whole numbers
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Table 6 Distribution of Gilad’s teaching during the observed lessons

Teaching goals Technological resources Use of resources

% % %

Prove a statement 6 General software 6 Org Teach 6

Explain concept 58 Mathematical software 18 Stat 8

Applet 10

General software 40 Stat 13

Org Teach 27

Explain technique 11 Mathematical software 1 Applet 1

General software 10 Org Teach 10

Explain how to solve 13 General software 13 Org Teach 13

Management 12 General software 5 Stat 4

Org Teach 1

NA 7

*All percentages are rounded to whole numbers

Table 7 Distribution of Eli’s teaching during the observed lessons

Teaching goals Technological resources Use of
resources

Teacher writes
on board

% % % %

Prove a statement 9 Mathematical
software

9 Stat 2 WO &
WB

2

Applet 7 WO &
WB

7

Explain concept 46 Mathematical
software

44 Stat 25 WO 7

WB 11

WO&
WB

7

Applet 19 WO 12

WO
&WB

6

NW 1

NA 2

Explain how to
solve

36 NA 36

Monitor & guide 6 Mathematical
software

6 Stat 6 NW 6

Management 3 NA 3

*All percentages are rounded to whole numbers; WO Writes on the projected display; WB Writes
beside the projected display; NW Does not write on the display
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according to teacher goals. Eli used mathematical software during 59% of the
lesson time, a bit more than half of that time in a static mode while writing on and
next to the displayed data. He spent significantly less time on management issues.
Like Gilad, he also spent a short time proving a mathematical statement. Finally, he
engaged his students as individuals or in pairs for a short period during class work
while he circulated among them.

4.4 Ron’s Teaching Method

Ron’s classroom was organized similar to Eli’s and was equipped with a regular
white board on which the data were projected. Ron used only a digital version of
the student textbook, which he projected onto the white board. When the data were
projected onto the board, he used an erasable marker pen to write on and next to the
display. Table 8 summarizes the analysis of Ron’s observed lessons according to
teacher goals. Ron used general software for the vast majority of the lesson time,
87% in a static mode only. During almost all that time he wrote on and next to the
displayed data. The amount of time he used for management issues was similar to
that used by Meir and Gilad.

Table 8 Distribution of Ron’s teaching during the observed lessons

Teaching goals Technological
resources

Use of
resources

The teacher writes
on board

% % % %

Explain concept 9 NA 1

General software 8 Stat 8 NW 4

WB 3

WO& WB 1

Explain technique 2 General software 2 Stat 2 NW 2

Explain how to solve 73 General software 73 Stat 73 NW 1

WO 21

WB 37

WO & WB 14

Management 16 NA 12

General software 4 Stat 4 NW 4

*All percentages are rounded to whole numbers; WO Writes on the projected display; WB Writes
beside the projected display; NW Does not write on the display
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4.5 Findings Regarding Knowledge for All Four Teachers

As mentioned above, the teachers’ knowledge was analyzed based on the inter-
views. Table 9 shows the overall results regarding all four teachers. The teachers
participating in the study were not typical. On the one hand, they had a high level of
technological and mathematical knowledge due to their previous work experience
in high-tech industry. We can see that for the most part, their TPK, TCK and
TPACK are on a high level. We attribute this high level to their strong techno-
logical knowledge component. On the other hand, as practicing teachers in their
first or second year of teaching, their pedagogical knowledge is more limited. This
is also to some extent reflected in their PCK. This last point is of interest, as all four
teachers are graduates of the same year-long training program. It seems that both
their professional training and the enculturation process at the schools where they
teach resulted in different levels of knowledge for the various knowledge types.

5 Discussion

The current study used a multiple-case approach to examine teacher practice in a
specific technological environment in which only one computer and one data
projector were available in the classroom. Each of the four teachers was interviewed
and observed for three to four lessons in one class. The study sought to identify
teachers’ knowledge and practice and possibly to highlight the links between the
two.

Examining teachers’ knowledge via the TPACK framework indicated on the one
hand that strong technological knowledge and strong content knowledge do not
necessarily indicate strong technological content knowledge. Nevertheless, strong
technological knowledge may compensate for low pedagogical knowledge in the
technological pedagogical knowledge component. Therefore, we conceptualize
each of the seven knowledge components pointed out by Mishra and Kohler (2006)
as a body of knowledge in its own right, with multiple connections among these
knowledge components. Voogt et al. (2013) referred to this view of multiple
connections and interdependency as TP(A)CK. Our study provides empirical evi-
dence for this theoretical point of view.

Table 9 Teachers’ knowledge

TK PK CK PCK TPK TCK TPACK

Meir Strong Low Strong Low Strong Strong Strong

Gilad Strong Medium Strong Medium Strong Very
strong

Very
strong

Eli Strong Medium Strong Strong Strong Strong Strong

Ron Strong Low Strong Strong Low Low Medium
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To examine teacher practice, we developed an innovative three-lens framework
that we used concurrently to identify similarities and differences in the practices of
the four teachers described. The framework allowed us to gain some insights into
teacher practice and hence proved to be a useful research tool. In the following we
discuss each lens and its possible connections to teacher knowledge.

In terms of the teachers’ learning goals, we can see from Table 10 that all four
teachers used explanations—of concepts, techniques or ways to solve—for about
80% of their teaching time. In other words, the lessons were mainly
teacher-centered. This is in accordance with the findings of Zevenberg and Lerman
(2008), who studied teacher practice in an interactive white board environment.
These researchers claimed that the potential of the interactive white board to foster
new pedagogies remains unfulfilled and that teachers prefer the whole-class setting.
Further, they claimed that sometimes teachers are engaged with the technical aspects
of how to use the interactive white board, which hinders meaningful discussions. In
the current study, we showed that this was also the case for the two teachers who did
not have an interactive white board but only a data projector and a regular white
board. Their dominant teaching style was the same. We cannot claim that these four
teachers were accustomed to teaching in a whole-class lecture style prior to the
introduction of technology to their class as they began as teachers who used tech-
nology. We can attribute this pedagogical choice to “functional fixedness” (German
& Barrett, 2005), which evolved during all the years they were studying and
observing their own teachers, as well as to their limited pedagogical knowledge.

When considering the findings shown in Tables 9 and 10, we can establish a link
between the teachers’ ways of teaching and their pedagogical knowledge. The four
teachers had low-medium pedagogical knowledge, and they all used traditional
teacher-centered pedagogy while teaching. Only for a short period of time in Eli’s
lessons did the students worked individually or in pairs while he circulated among
them.

All the teachers used technology, either statically or to present a document
(Table 11). In addition, some of the teachers used applets. The two teachers who
had an interactive white board at their disposal used the technology to organize
learning content. We did not see the teachers using multimedia in any of the

Table 10 Distribution of teaching goals (in percentages) for each teacher

noRilEdaliGrieMslaoggnihcaeT

Proving (Prov) – 6 9 –

Explain Concept (ExpC) 56 58 46 9

Technique (ExpT) 2 11 – 2

How to solve (H2S) 24 13 36 73

Monitor & Guide (M&G) – – 6 –

Management (Mng) 18 12 3 16

Shaded cells for teaching in an IWB class

Shaded cells for teaching in an IWB class

Studying the Practice of High School Mathematics Teachers … 229



observed lessons, though the teachers claimed to have used multimedia. Kaput
(1992) highlighted the importance of visual and dynamic representations for
mathematical concepts, claiming that such representations help learners build a
mental representation of mathematical concepts. Most of the teachers in the current
study tried to use Geogebra as a means of incorporating visual and dynamic rep-
resentations, but in fact they spent much of the time in a static mode. Little use of
dynamism was also reported by Ruthven (2009), who studied an unusually
expressive teacher while teaching high school students in a dynamic geometry
environment. This is also in line with the findings of Hofer and Harris (2010), who
claim that integrating technology into teacher practice is a complex process.

In addition, Table 11 shows that the teachers who taught using an interactive
white board spent less time not using technology (the not applicable category). In
contrast, the two teachers without an interactive white board did not use software to
edit content, as in Word editing. Eli’s NA time use is similar to the time used by
Meir and Gilad to organize teaching time. In fact, Meir and Gilad used the inter-
active white board to write the mathematics content, while Eli did the same on the
regular board. This is in line with the findings of Drijvers et al. (2013) that the
board-instruction category, in which teachers used the board as if no technology is
available, is common. These researchers claim that this way of overlooking tech-
nology allowed the teachers to remain close to their old ways of teachings.

The one exception was Ron. Even though he did not use an interactive white
board, he used technology in almost all the observed lesson time. He is also
exceptional in his static use of the same technology (digital book) almost all the time.

The three teachers who exhibited strong TCK—Meir, Gilad and Eli—also used
mathematical software while teaching (Table 12). Eli was the only teacher who did
not use general software. Meir and Gilad used the interactive white board software
to organize mathematical content, while Ron used the digital book display.

We conclude with a practical observation relevant for teacher training and with
three innovative research observation. The first innovative feature of the current
study was the technological environment. As students had no access to technology
in the classroom, the well-developed frameworks were not applicable, and we had
to find a way to focus our observations on teacher practice. More examination is
needed to evaluate the benefits and pitfalls of the suggested framework.

Table 11 Distribution of teachers’ use of technology (in percentage) for each teacher

Methods of use Meir Gilad Eli Ron

Static presentation (Stat) 12 25 33 87

Presentation includes multi-media (MM) – – – –

Applet 42 11 26 –

Learning management or context system (Org Teach) 40 57 – –

Regular board uses 6 7 41 13

Shaded cells for teaching in an IWB class

Shaded cells for teaching in an IWB class
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The second innovation relates to the unique group of participants in the study.
The unique teacher population that was the focus of the current study reflects a
growing trend of people who have chosen a second career as teachers after a period
of working in high-tech industry. This population has special characteristics in
terms of their strong background of technological and mathematical knowledge.
Their weakness lies in their pedagogical knowledge. Hence, professional devel-
opment programs aimed at this particular group should focus on pedagogical
knowledge, pedagogical content knowledge and the integration of pedagogy,
content and technology—TPACK.

Finally, other studies also noted a gap between the potential of integrating
technology into school mathematics and the actual use teachers make of this
technology in class. The literature suggests two common explanations: (1) teachers
need to change their practice from working in a traditional environment to a digital
environment, and such a change is highly complex (Robert & Rogalski, 2005;
Zevenbergen & Lerman, 2008); and (2) teachers’ technological knowledge is not
sufficiently developed, and hence they do not use the full potential of the digital
tools (Lagrange & Monaghan, 2009). The innovative power of the current study is
that in the four analyzed cases, both explanations fail. The teachers were in their
second year as teachers and hence did not have well established practices to change.
Moreover, the teachers had strong technological knowledge. Perhaps we as a
research community still need to find better ways to understand teacher practice and
how to help teachers use the full potential of digital environments.
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Digital Mazes and Spatial Reasoning:
Using Colour and Movement to Explore
the 4th Dimension

Elizabeth de Freitas

Abstract This chapter focuses on innovative developments of four-dimensional
digital mazes, examining how these mazes tap into the ideas of mathematician and
fiction writer Charles Hinton (1853–1907) who wrote extensively on perception of
a 4th geometric dimension. Hinton treats mathematical objects as physical and
material movements, and draws on non-Euclidean geometry to argue for a virtual
dimension to matter. I discuss recent attempts to build digital mazes that develop
spatial sense in four dimensions, and show how these are directly linked to Hinton’s
ideas. I focus on how colour and movement in digital environments are used to
develop a distinctive kind of spatial sense. This chapter sheds light on innovative
uses of digital software for developing student spatial sense. My aim is to explicate
the new materialism of Charles Hinton, contribute to discussions about the nature of
spatial sense and spatial reasoning, and to point to possible directions for future
research on inventive approaches to geometry.

1 Introduction

Charles Howard Hinton (1853–1907) was a British mathematician and author who
published various monographs on the mathematics of higher dimensions. He was
particularly interested in conceptualizations of the 4th dimension, and was the first
to use the term “tesseract” to describe the four-dimensional cube. Hinton argued
that people could develop perceptions of higher dimensions if they rid themselves
of the conventions of right and left, up and down, through a process of “casting out
the self” (De Witt, 2013). In The fourth dimension, Hinton (1904) describes how
our sensory habits and our capacity to make sense of the world in three dimensions
can be altered and opened onto a fourth dimension. Like many others in the late
nineteenth century, in response to developments in non-Euclidean geometry and
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topology, there was a widespread interest in rethinking human spatial sense. Along
with Charles Hinton, others working in England, such as Charles Dodgson (Lewis
Carroll) and Edwin Abbott, the author of Flatland (1884/2007), pursued this bur-
geoning interest in experiments that contest the limits of human perception.

By examining the experiential qualities in one, two and three dimensions, Charles
Hinton attempted to generalize a method or model for how the human mind might
come to understand a four-dimensional space. Hinton was motivated to consider the
implications of this work for mathematics teaching and learning. Speculating
philosophically about these implications led Hinton to propose a “higher” form of
existence whereby one might tap into and perceive the fourth dimension. Rather than
looking to mystical and religious sources for apprehending this higher being, he
turned to mathematics and the physical sciences to study the “physical reality of the
fourth dimension” (Hinton, 1902, p. 142). Through developing a more advanced
spatial sense, Hinton aspired to what he called the “higher man”.

We must learn to realize the shapes of objects in this world of the higher man; we must
become familiar with the movements that objects make in his world, so that we can learn
something about his daily experience, his thoughts of material objects, his machinery
(Hinton, 1904, p. 121).

In this chapter, I describe Hinton’s methods for developing perception of a 4th
geometric dimension. I show how his approach can be characterized as a kind of
materialist approach to the study of mathematics because of the way it fuses
mathematics with matter. I then discuss recent attempts to build digital mazes that
develop spatial sense in 4 dimensions, and show how these are directly linked to
Hinton’s ideas. I focus on how colour and movement in digital environments are
used to develop a distinctive kind of spatial sense. Digital environments allow for
powerful uses of colour due to the pixel screen and the simulation of depth and
movement. This chapter sheds light on innovative uses of digital software for
developing student spatial sense, and thereby responds to a need to think more
broadly about spatial sense in mathematics education (Kinache, 2012; Wai,
Lubinski, Benbow, 2009). I discuss how 4-D digital mazes work and how their use
of colour is linked to the philosophical insights of Charles Hinton. My aim is to
contribute to discussions about the nature of spatial sense and spatial reasoning, and
to point to possible directions for future research on inventive approaches to
geometry. In the first sections, I discuss the insights of Hinton, and in the last
sections I discuss two examples of 4-D digital mazes, as well as findings regarding
participant skill at nagivating such mazes.

2 A New Materialist Approach to Space

Thought experiments run throughout Hinton’s work. In these thought experiments,
he melds mathematics and physics in creative speculative ways. In Scientific
Romances (1884) he asks that we imagine a skew line moving through a plane and
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then states “If the plane were of such a nature as to close up behind the line, if it
were of the nature of a fluid, what would be observed would be a moving point.”
(Hinton, 1884, p. 13). This focus on a fluid plane on which and through which
points, lines, planes and other entities might pass as physical-mathematical objects,
leaving various traces at varying speeds, allows him to speculate about the nature of
both geometry and perception. He carries through with this thought experiment,
rigorously pursuing the implications in terms of geometric space, and describes an
entire structure of enmeshed lines—a “framework”—cutting through this fluid
plane at different angles, and thus producing—for those who live and perceive on
the plane—points that move across the plane at varying speeds. Indeed, the per-
manence of any static point on the plane will be the effect of one such perpendicular
line moving through the plane, and have no other presence than that which is
sustained through a particular kind of movement. In this way, Hinton centers
movement in the making of mathematics, showing how any individuated bodies
(like points) are secondary effects of a particular kind of movement. It’s important
to note that this secondary effect is not a Platonic image or reflection of a hidden
world, because the movement that engenders the form does not operate according to
resemblance or copy. Hinton does not hesitate to move back and forth between
mathematical entities and material ones as he pursues these ideas:

Let us now assume that instead of lines, very thin threads were attached to the framework:
they on passing through the fluid plane would give rise to very small spots. Let us call the
spots atoms, and regard them as constituting a material system in the plane (Hinton, 1884,
p. 14).

The threads are woven together and form connected shapes that pass through the
fluid plane, creating an effect that lasts for some period of time: “These moving
figures in the plane are but the traces of the shapes of threads as those shapes pass
on. These moving figures may be conceived to have a life and a consciousness of
their own.” (Hinton, 1884, p. 15). Like many other philosophers in the 1890s,
Hinton is exploring the mixture of matter and mind, foreshadowing the convictions
of contemporary theorists who describe themselves as new materialist (Coole &
Frost, 2010). In A New Era of Thought (1888), Hinton says that he prefers to use the
term “higher matter” rather than “higher space” because it does not make sense to
split concrete matter into extension and impenetrability (Hinton, 1888, p. 106). He
hopes that “the horizon of thought is altered” (Hinton, 1888, p. 107), not away from
matter and towards spiritual existences, but towards the enhanced apprehension of
the material. He will suggest that apprehending such “higher matter” demands an
attention to detail—a proliferation of detail—so that awareness comes from satu-
ration of detail rather than from generalizing from cases. In other words, He is
seeking a way of developing spatial sense that is more immersive, and less based on
ideas of abstraction whereby a concept transcends the details and the examples in
which it is said to be instantiated. This is an important point as we turn to questions
of learning how to perceive in four geometric dimensions. Immersive experiences
are detail-oriented methods of learning, in which the environment is saturated with
pedagogic potential. And although he seeks to study our experiences in three
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dimensions to learn about the fourth (which might be deemed a kind of general-
ization), his method of apprehension will ultimately depend on maximizing the
apprehension of details.

These highly speculative claims point to Hinton’s interest in mapping the virtual
dimension of space. He links consciousness to space in ways that resonate with the
historian of mathematics Gilles Chatelet’s work on the virtual dimension of matter
(2000), asking “Can our consciousness be supposed to deal with a spatial profile of
some higher actuality?” (Hinton, 1884, p. 16. my italics). Moreover, the movement
that we perceive is but the trace of a “higher” movement, a movement that produces
images that do not resemble the threaded structures exactly, but are in direct
contiguous and haptic relation (an indexical relation) to those structures. What
makes this approach highly important for experiments today regarding perception
and four dimensions is Hinton’s attempt to think four dimensions according to these
kinds of thought experiments where selected invariants—like movement and force
—are carried over to the other dimension, although modulated due to the ways that
sensation always involves more than geometric relations. Hinton, like others
working today on digital 4-D mazes, stresses that our experience in three dimen-
sions can be examined and used to develop a perception in four dimensions.

Again, it sometimes appears to be thought that the fourth dimension is in some way
different from the three which we know. But there is nothing mysterious at all about it. It is
just an ordinary dimension tilted up in some way, which with our bodily organs we cannot
point to.” (Hinton, 1884, p. 46).

We hear in this citation how the fourth dimension is just “tilted up” in some way
that we are unable to perceive. But he moves on to make two very important claims
about how to build awareness of the fourth dimension. Two everyday spatial
experiences are pivotal in his expanding to the fourth dimension. The first is the
common feeling of being surrounded or bounded by a space of higher dimension,
which implies that all three-dimensional objects touch and are contiguous with this
higher dimensional space. The second is the feeling of the continuum, and the fact
that any space must be composed of an infinite number of objects of lesser
dimension (i.e. an infinite number of planes compose a solid). This implies that any
four-dimensional space must be composed of an infinite number of three-
dimensional objects.

3 Continuity and the Infinitely Smooth Texture of Matter

A being existed in four dimensions must then be thought to be as completely bounded in all
four directions as we are in three. All that we can say in regard to the possibility of such
beings is, that we have no experience of motion in four dimensions. The powers of such
beings and their experience would be ampler, but there would be no fundamental difference
in the laws of force and motion. (Hinton, 1884, p. 17)
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And yet we will see when we discuss digital four dimensional mazes that forces
such as gravity will by necessity act differently when perceived in four dimensions.
But Hinton’s point is that in order to become conscious of how these differences
will be lived in the higher dimension, we must attend to the “infinitely minute” in
matter—“the ultimate particles of matter”—because only then might we be able to
compare magnitudes in all four dimensions (Hinton, 1884, p. 21). When we can
perceive the infinitely minute, we can then begin to operate according to propor-
tions between such magnitudes in some pragmatic sense (Hinton, 1884, p. 21). It is
interesting to note that Hinton seems to be advocating for a certain infinitesimal
relationship that might help us connect with the fourth dimension. He describes the
“thin” dimension of entities, lines for instance, much like Evariste Torricelli might
have described the inflatable width of a line, when he broke with the Euclidean
definition of line in order to develop the infinitesimal calculus. For Hinton, the same
materiality and plasticity of an unperceived geometric dimension can be imagined
as “thin”, if we accept that matter quivers and vibrates with potentiality:

The direction in which it is thin is in a direction which we do not know, in which we cannot
move. But although we cannot make any movements which we can observe with our eyes
in this direction, still the thin film—thin though infinitely extended in any way which we
can measure—this thin film vibrates and quivers in this new direction, and the effects of its
trembling and quivering are visible in the results of molecular motion. It only affects matter
by its movement in directions at right angles to any paths which we can point to or observe,
and these movements are minute: but still they are incessant, all-pervading, and the cause of
movements of matter. It is smooth—so smooth that it hinders not at all the gliding of our
earth in its onward path” (Hinton, 1884, p. 52. My italics).

This reference to the fourth direction as being infinitely smooth points again to the
infinitesimal as the “smallest interval” or miniscule thread by which the dimensions
are stitched together, where the stitch is so fast and the weave so tight, space
becomes so smooth and so intense that we are able to slip across dimensions. This
is linked to Riemann’s influential essay “The hypotheses which lie at the foundation
of geometry” whose ideas Hinton seems to echo at times. And yet the smoothness
of Riemann’s continuous manifold was—at the infinitesimal scale—a Euclidean
smoothness, whereby the manifold is glued together or composed of patches of
Euclidean flat planes (Plotnitsky, 2012). In the 1970s, this use of the infinitesimal
developed into synthetic differential geometry and smooth infinitesimal analysis
(Bell, 2014). For instance, the mathematician F.W. Lawvere used the infinitesimal
to develop this kind of mathematics, assuming the continuum as an autonomous
notion, not requiring the notion of the discrete, substituting the idea of the limit with
the idea of the nilpotent infinitesimal, a quantity so small that some power of it
vanishes. I draw these historical links between Hinton’s ideas and developments in
mathematics to show that his musings are not mere quackery. I also want to draw
this link to the infinitesimal because it has played such a significant role in fueling
the kind of thought experiments that Hinton pursues so well.

The infinitely small plays a pivotal role in how Hinton imagines we are capable
of cognition in four dimensions. Hinton speculates that movement at the quantum
level and the “minute portions of matter” may “go through four-dimensional
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movements and form four-dimensional structures” (Hinton, 1888, p. 109). Like
Henri Bergson during the same era, along with many other continental and English
philosophers, Hinton was inspired by developments in physics regarding the odd
behavior of quantum particles. He suspected that these particles were capable of
moving through a geometric fourth dimension. Thus our power to perceive in four
dimensions may in fact involve our learning the movements of the very small
particles of matter. He then suggests that thought itself might be considered the
infinitely small, and therefore the movement of thought is a movement through the
fourth dimension.

The goal of apprehending in four dimensions corresponds to the goal of grasping
thought in all its mobility—“by observing, not what we can see, but what we can
think.” (Hinton, 1888, p. 110). Hinton makes a Spinoza-like attempt to relink thought
with matter, and to ascribe to thought a particular kind of movement that is not
representational of three-dimensional extension, but accords to four dimensional
movement. Thought, suggests Hinton, and its “small molecules in the brain…might
go through four-dimensional movements and form four-dimensional structures
(Hinton, 1888, p. 110). Despite how odd such claims may sound, his approach to
consciousness links up with current interest in quantum computing, where the
temporal dynmanics of ‘cognition’ disobey the usual space-time rules. For Hinton,
we are indeed four-dimensional creatures, ill-equipped to percieve beyond three
dimensions, but nonetheless thought and imagination, at their freest, plug into the 4th
dimension. Hinton’s insights into how we might come to perceive the 4th dimension
are thus linked to related projects, at the turn of the twentieth century, of developing
an “intuitive method” that might tap into the virtual mobility of matter (Bergson,
1903). These projects looked for a virtual dimension buried in matter. More recently,
this kind of work supports attempts to study learning in terms of the movement of
thought, and not simply the movement of already individuated bodies (de Freitas &
Ferrara, 2015; see also Chap. The Coordinated Movements of a Learning
Assemblage: Secondary School Students Exploring Wii Graphing Technology).

4 Movement and Spatial Sense

Hinton was influenced by the work of Lobatchewsky and Bolyai (1830s) on
alternative axiomatic foundations for geometry, as well as the work of Riemann
(1850s) who had developed analytic tools for mapping the distinctive spatial
characteristics of n-dimensional manifolds, and had introduced a new way of
thinking about relationships between geometry and space. This latter work, in
particular, had led to all sorts of new ways of defining dimension. In 1912, Poincaré
(1854–1912) used an inductive strategy for defining dimension that was based on
the concept of boundary and border. A space is n + 1 dimensional, suggested
Poincaré, if its border is n dimensional. For instance, a 3 dimensional object has 2
dimensional faces (figures), and a 4 dimensional cube (a hypercube) has 3
dimensional faces (cubes). Another way of conceiving dimension is through
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movement. For instance, one might drag or move an object to enter a new
dimension: by dragging a 0-dimensional object in some direction, one obtains a
1-dimensional object. By dragging a 1-dimensional object in a new direction, one
obtains a 2-dimensional object. These diverse ways of thinking about the concepts
of dimension and orientation were debated throughout the nineteenth century.

Like Poincaré, Hinton described the process of moving to higher dimensions in
terms of boundaries and movement. He noted that a line is divided in two by a
boundary point, that a plane is divided into two distinct planes by a boundary line, and
a volume likewise by a boundary plane. In each of these cases, the next dimensional
space is generated through the new movement of the lesser dimensional entity.

Thus, going on, we may say that space is that which limits two portions of higher space
from each other, and that our space will generate the higher space by moving in a direction
not contained in itself (Hinton, 1904, p. 122)

What is exciting is the acknowledgement of a movement “in a direction not con-
tained in itself” which underscores two important ideas: (1) this movement is
unrecognizable as movement in the original space, and (2) such movement points
to a virtual dimension or potentiality of space. Because the movement is unrec-
ognizable as movement in the n-1 dimensional space, work on perception in higher
dimensions helps us imagine how there might be a movement in this world that is
beyond our perception.

Hinton (1904) uses examples of physical movement to develop his argument. He
describes the movement of a line and a spiral through a film (Fig. 1), where the
intersection of the spiral and film would be a point moving in a circle (see dotted
line in Fig. 1).

He then introduces a second movement, that of the film itself moving “vertical”
or perpendicular to the lateral space of the film. In the first case, any dweller on the
film would simply perceive the circle being drawn on the film, but in the second
case, the film dweller would develop an awareness of the film’s trajectory through
time. This introduces a reflexive perception, that is, a perception of one’s

Fig. 1 Hinton’s line and
spiral moving through a
material film
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environment moving, and thus also introduces, according to Hinton, consciousness.
This consciousness is distributed across both the film and the spiral, by way of their
intersection:

In the film the permanent existence of the spiral is experienced as a time series—the record
of traversing the spiral is a point moving in a circle. If now we suppose a consciousness
connected with the film in such a way that the intersection of the spiral with the film gives
rise to a conscious experience, we see that we shall have in the film a point moving in a
circle, conscious of its motion, knowing nothing of that real spiral the record of the
successive intersections of which by the film is the motion of the point (my italics, Hinton,
1904, p. 125).

Through this combination ofmovements and diverse points of view, Hinton describes
the “apparent”motion within the film, felt by the “plane of consciousness” or “space
of consciousness” as a record of the movement—“each atom at every moment is not
what it was, but a new part of that endless line which is itself.” (Hinton, 1904, p. 125).
These atoms are “acting, living” and partake always of at least two motions, one
associated with their interactions within the film, reflecting spatial-temporal rela-
tionships immanent to that plane, and the other associated with the film itself moving
in an altogether different spatio-temporal dimension. Thus the atoms can only “read
off” thismotion “in thefilm” as the trace of an altogether different kind ofmovement, a
movement that is in some strong sense inconceivable within the film. This kind of
leaping into another dimension where the movement is literally inconceivable in the
original space is exactly what is needed to begin operating in four dimensions.
Hinton’s approach to themateriality of the spiral intersecting the plane lends itself to a
new materialist reading of mathematics (de Freitas & Sinclair, 2014; a different
example is given in Chap. Returning to Ordinality in Early Number Sense:
Neurological, Technological and Pedagogical Considerations). He isn’t shy to treat
circles and other mathematical entities as material or physical objects, and does so in
order to think differently about the way that mathematics is in the material world. His
work is filled with these kinds of thought experiments.

Let us now make the supposition that film after film traverses these higher structures, that
the life of the real being is read off again and again in successive waves of consciousness.
There would be a succession of lives in the different advancing planes of consciousness
each differing from the preceding, and differing in virtue of that will and activity which in
the preceding had not been devoted to the greater and apparently most significant things in
life, but the minute and apparently unimportant (Hinton, 1904, p. 126. my italics)

Apprehending this motion that is inherent to life and matter, that is intrinsic to being
and becoming, is the task of the “higher man”. This task requires that ‘man’ has “a
consciousness of motion which is not as the motion he can see with the eyes of the
body” (Hinton, 1904, p. 128). Most notably, this requires becoming conscious of a
motion that is not discernable or perceivable in our current perceptual organization.
If we are to perceive the fourth dimension, we must achieve this decentering of our
current perceptual apparatus. Hinton suggests that this approach to the fourth
dimension reflects a certain Eastern philosophy of nature and matter. I would also
argue that his approach resonates strongly with that of the French philosopher Henri
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Bergson who was highly influential in the same period in which Hinton was for-
mulating and writing his ideas. Bergson (1896) argues that there is a difference
between sensori-motor movement, which is movement trapped by the measure
conventions of the perceptible world, and the movement of the whole of duration, a
movement that taps the virtual potentiality of matter.

Hinton uses the Pythagorean theorem to elaborate his approach to space. He
considers an alternative world where the Pythagorean theorem states that a sheared
square on the hypotenuse is the difference between the two squares on the other
sides of the right triangle. Shearing retains the area of a square, but changes the
shape. In this alternative world, we imagine that the inhabitants ‘see’ the square and
its shear image as the same (or as equivalent) if there is a “shear rotation” move-
ment that generates one from the other. As long as such a motion can be identified,
two figures will be considered equal. In this alternative world, we emphasize that
our own rules no longer apply, and the Pythagorean theorem takes on a different
import. Notably, Hinton is experimenting here with how perception and geometry
are entwined, and how different geometries entail different topological relation-
ships. He is imagining a different geometry so that he might problematize the very
notion of distance or metric, and at the same time link it more directly to matter:
“Hence distance independent of position is inconceivable, or practically, distance is
solely a property of matter.” (Hinton, 1904, p. 136). This reference to “matter”
marks his empirical approach, and his realization that only observation and
experiment can help us decide whether our Pythagorean theorem or this other
version of the Pythagorean theorem is appropriate: “There is nothing to connect the
definition of distance with our ideas rather than with his, except the behavior of an
actual piece of matter.” (Hinton, 1904, p. 136).

For Hinton, alternative non-Euclidean geometries should inspire us to reconsider
the nature of perception and also the limits of material agency. According to
Hinton, the discoveries of non-Euclidean geometry have significance for all sorts of
reasons, one of them being how they force us to consider both materiality and
sensation in new ways:

By immersing the conception of distance in matter to which it properly belongs, it promises
to be of the greatest aid in analysis; for the effective distance of any two particles is the
product of complex material conditions and cannot be measured by hard and fast rules. Its
ultimate significance is altogether unknown. It is a cutting loose from the bonds of sense,
not coincident with the recognition of a higher dimensionality, but indirectly contributory
thereto (Hinton, 1904, p. 140).

5 Depth of Field and Colourism

Before turning to a discussion of how Hinton’s ideas are linked to current digital
four dimensional mazes, it’s important to discuss some of the visual cues that are
used when humans navigate through space. Visual perception in multiple dimen-
sions entails the notion of depth of field. Cutting (1995, 1997) proposes that we
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think of space in three ways—personal space, action space, and vista space—each
defined in terms of their proximity to the body. Perceiving in each of these spaces
draws on different kinds of perceptual habits. He shows how we decode various
depth cues when making sense of images, identifying various key aspects of
unconscious perception. Such cues are crucial as we move through spaces and
integrate paths, and these are used extensively by digital game designers, as they
develop complex spatial mazes and puzzles. Based on Cutting (1995, 1997), I list
here key cues for depth perception, as they play a crucial role in digital maze
navigation:

(1) Occlusion—where part of an object is occluded behind another—is a standard
way of rendering depth or dimension, although it does not convey any measure
to the depth and thus offers limited information.

(2) Height in the visual field renders depth through the measures of relations
among the bases of objects in the image.

(3) Relative size [linear perspective] whereby perspective (linear or otherwise)
renders depth perception. This engenders a ratio between objects’ positions
rather than any objective measure of depth between them.

(4) Relative density refers to the projected number of similar objects or textures per
solid visual angle. According to Cutting (1997) it was not until the 15th century
that artists began rigorously using all four of these in conjunction. He also
points out that digital media coordinate all four strategies in generating an
image from a single point of view.

(5) Binocular disparity is the difference in relative position of an object as projected
on the retinas of the two eyes. When disparities are small, we perceive solid
space. When disparities are greater—often when an object is very near—we
suffer double vision.

(6) Motion perspective where depth is rendered through a moving observer. This
technique is very good for judging absolute depths, rather than just determining
which objects are in front and which behind.

(7) Texture gradients.
(8) Brightness and shading.
(9) Kinetic depth concerns depth derived from the movement of parts of the image.

This often entails (dis)occlusion revealed through motion. With respect to what
sort of geometry applies in each of these spaces, Cutting (1997) finds that
personal space is perceived as “Euclidean” but that action space is perceived as
affine, although movement through such space can reconfigure it as Euclidean.

Most of these points, and especially the last regarding “kinetic depth” perception,
are actively deployed in making sense of moving images. Deleuze (1989) suggests
that Orson Welles is the master of depth of field in the moving image. In each of his
films, the camera plunges through space, away from the viewer, deep into a beyond
that unfolds through optical barriers, and into nested rooms and distant corners. It
feels as though the camera is travelling into space, penetrating a volume of space,
poking through what might have been a two-dimensional image and carving out a
new dimension. In the history of cinema, depth of field is a hallmark of the first
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films that documented movement (Lumière and the 1895 “Exiting of the factory”),
but Deleuze argues that these films capture depth in film or depth in image, but not
depth of field or a depth of image. Depth of field achieves a different effect. This
distinction can be found, he continues, in tracking changes in Western perspective
drawing and painting. Prior to the 17th century, depth was conjured through
carefully layered planes of vision, where each plane had its occupants and objects,
each visually autonomous. In the 17th century we see paintings where an element of
one plane refers directly to an element of another plane, where characters address
each other across planes, and where the foreground comes into immediate contact
with the background. This latter effect is depth of field. This contrast between a
depth that is achieved through juxtaposition of differently sized images and char-
acters, and a depth that is achieved through movement and engagement, can be seen
in contrasting the cinema of Welles to that of Griffith’s Intolerance where depth was
produced by “a simple juxtaposition of independent shots (plans), a succession of
parallel planes (plans) in the image” (Deleuze, 1989, p. 107).

Deleuze argues that this new depth of field is principally temporal, and indeed
offers a direct image of time:

In this freeing of depth which now subordinates all other dimensions we should see not
only the conquest of a continuum but the temporal nature of this continuum: it is a
continuity of duration which means that the unbridled depth is of time and no longer of
space (Deleuze, 1989, p. 108).1

The temporal dimension of depth is thus extremely important for humans watching
a moving image of a particular spatial arrangement. This discussion of the power of
depth of field in the moving image helps us appreciate the nature of screen watching
when navigating a 4-dimensional maze. How might navigating a 4-dimensional
digital maze, ultimately a moving image that unfolds with kinetic depth, tap into
this direct relationship with time? Especially as the focus on geometric relationships
within such mazes tends to keep one focused on the measurement of space rather
than more experiential immersive ways of apprehending? This is where Hinton and
current software designers turn to colour.

In A new era of thought (1888), Hinton describes working with a system of
colour cubes with students, developing their perceptions of the tesseract using
different colours for different vertices, edges, and faces. In Hinton’s system, colour
is used as a way to visualize dimension, and each dimension is assigned a primary
colour (Fig. 2). Surfaces that stretch into other dimensions have appropriately
blended colours. For example, if a cube has edges coloured yellow, red and blue,
then each of its faces would be orange (blend of red and yellow) or brown (blend of
red and blue) or green (blend of blue and yellow). In order to extend this to the
fourth dimension, introduce a new colour—say white—and use the blending to
colour the various three-dimensional cross sections of the hypercube. In the fourth

1He cites Claudel who said of Rembrandt that depth was “an invitation to recall”. He also refers to
how Bergson and Merleau-Ponty showed how depth was principally a temporal dimension.
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dimension, each cross-section is itself a cube, with its faces colour-coded appro-
priately, but now our vision must grapple with the blending of colours not simply
on a surface but in three dimensions.

Hinton’s ideas about colour and higher dimensions are fascinating for many
reasons, particularly because colour is not typically studied as part of spatial rea-
soning and depth perception. As an under-examined quality of depth perception and
orientation skills, colour blending offers important insights into the concept of
dimension. Attempts to draw on the modulation of colour intensity in an image are
of course familiar to artists. Deleuze (2003) suggests that Francis Bacon’s skill at
“colouring sensation” is what allows us to get at the distributed nature of con-
sciousness. Bacon’s eerie “scrambling and smudging” of the human figure gets to
the heart of the movement of thought and what Deleuze calls the “time-image”
(Deleuze, 2003, p. 127). Deleuze (2003) states “The formula for the colourists is: if
you push colour to its pure internal relations (hot-cold, expansion-contraction), then

Fig. 2 Hinton’s (1988) colour cubes
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you have everything” (Deleuze, 2003, p. 112). Colourism aims to show how colour
itself is the variable relation or differential relation on which individuation depends.
The technique of the colourist is “the production of light and even time through the
unlimited activity of colour” (Deleuze, 2003, p. 112).

In pushing colour to function in this onto-generative way, Bacon and other
colourists, force us to encounter the image differently. In attending to the modulated
intensity of colour sensation, the eye is no longer the usual optic device, looking for
resemblance, looking for the line, but becomes haptic and sculptural. In other
words, the eye touches the image, and the sense of sight behaves like the sense of
touch. In terms of developing spatial sense, this means that modulations of colour
might play an important role. There needs to be more research on how modulating
colour is a part of spatial reasoning. As we see below, colour is used for both
representing different dimensions, but also for capturing the intensity of a fourth
dimension that is folded into the first three in digital environments. In the examples
I discuss, colour is used to also refer to the varying ‘temperature’ (hot/cold) of the
fourth dimension, so as to evoke for the participants that sense of intensive quantity
that infuses the material world.

6 Four-Dimensional Digital Mazes

During the last decade, perception scientists have used experiments with digital
mazes to study the potential of developing human perception in 4 dimensions. In
this section, I explore the way that innovative colour digital mazes draw on
Hinton’s earlier ideas to develop student spatial sense. Various software developers
use colour to simulate the experience of moving through a fourth dimension. For
instance, the mathematician Weeks (2016) has developed a game that involves
moving an object (white ball) along a series of coloured paths to reach a target, such
that one must navigate four dimensions (Fig. 3).2 One can train oneself on these
mazes, becoming familiar with how the colour coding and the particular corner
rainbow transformations embody movement into a fourth dimension with reference
to the movements one has already made. In this software, you occupy a ‘bird’s eye
view’ on the maze, and can rotate the maze as you try and decide where to move.
By rotating the maze, the occluded links between pathways become visible.

One can also modify the image with a 4-D shear, so as to see where the linked
tubes do not actually connect. This innovation helps one realize how the 3-D
version of the maze is also a kind of occlusion, blocking the entire fourth dimension
from view (see Fig. 4 to see maze without shear on left, and the same maze with
shear on right). In other words, colour is used to introduce another fold in the maze,
one that would be invisible to anyone operating only in 3-D space.

2Available at http://www.geometrygames.org/Maze4D/index.html.
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Recent attempts using digital colour mazes to develop students’ perceptions of
the 4th dimension show how colour can enhance “path integration” and successful
spatial navigation through 4 dimensional mazes (Aflolo & Graziano, 2008). Gamers
using computer simulations claim to develop competence in 4-D navigation using
such visual cues (Seyranian, Colantoni, & D’Zmura, 1999). This work points to
how students may be able to develop 4-D spatial maps and operate through visu-
alizations of 4-D environments.

Aflalo and Graziano (2008) designed an innovative computer-generated maze
that moved through four spatial dimensions, but was different from Weeks’ maze in
that there was no bird’s eye view. The participants were able to develop skills in
perceiving in the fourth dimension, based on their ability to perform path inte-
gration, which is a standard test in such experiments for measuring spatial sense.
After moving along a winding corridor, the participants then had to ‘point’ back at
the occluded starting point of their movement. As the authors note, these

Fig. 3 Certain corners are rainbow transitions into the fourth dimension

Fig. 4 The same maze, showing the 4-D shear on right
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experiments indicate the potentiality of the body: “One interpretation is that the
brain substrate for spatial navigation is not a built-in map of the 3-dimensional
world. Instead it may be better described as a set of general rules for manipulating
spatial information that can be applied with practice to a diversity of spatial
frameworks” (Aflalo & Graziano, 2008, p. 1066). Much of the work on path
integration shows that humans are often better when they do not rely on visual cues
(Easton & Sholl, 1995; Farrell & Thomson, 1998; May & Klatzky, 2000; Presson &
Montello, 1994). We often have that typical experience of getting lost in a building,
and in order to proceed we look up or close one’s eyes, as we try to recall how our
body moved through the building. Phenomenologists have theorized this in terms of
the body and its inherent capacities to navigate through space. Rush (2009) suggests
that the body is thus “something that I move with, not something I move, i.e., it has
the characteristic of direct motility—I do not have to place my body in order to
move it.” (Rush, 2009, p. 18). This observation is important as developers try to
innovate with digital maze technology. Our sense of our own body’s movement
needs to be considered as we develop innovative technologies. Clearly path inte-
gration is only part of the story.

Research into spatial cognition in humans and other animals often uses this skill
of path integration, the “short cut” test, to study spatial skills (Biegler, 2000;
Newcombe & Huttenlochner, 2000; Wehner, Michel, & Antonsen, 1996). Path
integration is the skill of keeping track of the various movements you’ve taken,
summing distances and turns, so that you know where you are in relation to your
starting point. Desert ants, for instance, are renowned for wandering around while
scavenging, and then able to return to their starting point along a more direct route.
Whether this is pheromonal or geometric knowledge (or a combination of both) is
unknown.

Four-dimensional digital mazes without birds-eye view are built so that the
fourth dimension is simulated through engagement with the digital environment.
Typically, this entails building a maze so that a fourth dimension is orthogonal to
the three dimensions of 3-space. In other words, the movement through the virtual
maze entails a movement that is orthogonal to all the movements in 3-space. The
virtual environment simulates the experience of moving in this new dimension.
Aflolo and Graziano (2008) for instance, created a program which first displayed a
menu of selections of either 2-D, 3-D or 4-D mazes. The program contained 100
possible examples of mazes of each type, and would automatically store the time in
each maze and the angular accuracy of the subject’s response at the end of the maze
(the response to the path integration test. See Fig. 5e–d). The number of turns and
the length of the corridors in each maze varied randomly, with given constraints,
such as each corridor was between 3 to 6 units, and could not intersect itself. The
view in each maze was of a virtual corridor along which the subject was moving,
displaying that which was in front of the participant (Fig. 5a).

Using different commands, the subject could simulate travelling and looking in
different directions within the virtual world of the maze, translating forward or
backward along the corridor and rotating left or right. Texture on the walls was used
to enhance perspective cues, but depth was depicted using standard perspective,
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motion parallax and occlusion. In the 2-D mazes, the bends in the corridor were
either to the left or right only. In the 3-D mazes, there were turns that were
orthogonal to the horizontal plane. Colour was used to help them identify both the
start and the end of each maze—the start cube had silver walls and the end of a

Fig. 5 Aflolo and Graziano (2008, p. 1065)
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corridor cube had five golden walls. Subjects never saw an outside view, and at the
end of their journey, were asked to point in the direction of their starting cube,
hidden behind the occluding corridor walls. A score indicating their accuracy
(angular deviation from direct line joining start to finish) was revealed to the
participant after each guess.

In the 4-D mazes, the cubes composing the corridors became hypercubes, and
the corridor bends were right-left, up-down bend, and hot-cold. The terms hot and
cold were used to designate directions in the mathematically defined fourth
dimension, but depended on colour perception and sense of orientation. As in the
case of representing 3-D space on a flat computer screen, the display of a 4-D maze
relies on projection, as well as visual cues. In the virtual computer world, virtual
4-D objects are projected onto the flat display. The subject must reconstruct the 4-D
object using perspective, shading, motion parallax, and occlusion—no easy task!
As in the maze software of Weeks discussed above, colour was used as an addi-
tional perspective cue to aid participants. A greater degree of red hue indicated that
the object (in this case a wall or edge) was more in the ‘hot’ direction in relation to
the viewer, while a greater degree of blue hue indicated that the object was more in
the cold direction in relation to the viewer. If an object was purple, then it was at the
same temperature as the viewer—that is, purple indicated that it was on the same
plane as the viewer in the four-dimensional space.

Visual cues and sense of orientation are strongly linked in the experience of the
maze. In other words, dimensions are always determined in relation to the orien-
tation of the viewer. Thus the viewer has a particular orientation—a front, back, top,
down, hot and cold—and as the viewer rotates 90°, these relational terms
(top/down) are altered in relation to the surrounding environment. For instance,
imagine you start the maze and are looking ahead into a corridor, and then you
rotate on the horizontal plane, so that the corridor is now to your left (along the
left-right axis). Next, you can rotate orthogonal to that horizontal plane, so that the
corridor is now above you. In other words, as you move and change your orien-
tation, the environment occupies different dimensions (what was cold is now far
away). In the 4-D topology of the space, the participant gains additional rotational
degrees of freedom, labeled R4, R5 and R6. These are modeled on conventional
rotational movements in 3-D space, but these vary according to the hot-cold
dimension. If the viewer comes to a wall in the corridor, she now has additional
rotational moves that re-orient her in relation to the four dimensions she faces. The
point here is that all dimensions become rotationally swapped as the participant
moves through the space. Each rotation redefines what is up/down or right/left or
hot/cold. The participants only ever translation movement is in the forward/
backward direction, while all other dimensions are experienced through rotation.
The dimensions are thus strongly entangled or mixed through rotation, creating an
unusual spatial experience. When we move up in an elevator, we do not remix or
exchange our relation to the dimensions of the ground floor where we were standing
before getting into the elevator. Hence, this 4-D maze invites a radically different
way of orienting oneself, compared to the bird’s eye view mazes discussed above.
Navigating in this space entails understanding the rotational interactions of the
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dimensions, and seems to entail what Hinton advocated for—the need for “casting
out the self” in a process of productive disorientation.

But what is this hot-cold dimension? Aflolo and Graziano (2008) describe it as a
kind of additional material quality of the walls in the maze. Each wall has width,
length and temperature. Generalizing from two and three dimensions, where the
addition of another dimension allows escape from the previous space. For instance,
an ant trapped inside a square on a plane, can escape when it is allowed to travel in
three dimensions. Trying to keep the ant trapped involves layering squares on top of
squares (surrounding him) and giving the initial square height so that the ant cannot
crawl out (assuming it movement is on the plane). If we imagine someone trapped
inside a cube, they might be also able to escape by moving in a higher-dimensional
space. Suppose this dimension is temperature, so that the cube has a particular cold
temperature. They can move into a higher temperature and, in theory, escape the
particular trappings of the initial cube. In order to keep them trapped, one would
have to add additional cubes of higher temperature, so that their movement was still
contained by the stacked hypercube environment, an environment of cubes with
infinite varying temperature.

Temperature is a useful term because it refers to an intensive quality that applies
to all material, and brings a material perspective to the colour coding. In terms of
visualizing the 4-D maze, we need to imagine the barriers of the corridor no longer
are walls, as we imagine them, but cubes. Each cube extends top-down, right-left,
hot-cold. These barriers hem the participant in, so that movement within the maze
environment only ever happens in ‘one’ direction. In Fig. 5f, there are 6 cubes that
hem the movement of the participant, acting as barriers. These stop the movement
in the left-right direction, the up-down direction, and the hot-cold direction, leaving
only the forward-backward direction open for movement. Cube number 1, for
instance, is the left hand barrier, with one cold face, one hot face, top and bottom
faces, and one near face and one further face. The other barrier cubes (right, and top
and bottom) have the same construction. The red cube and the blue cube are the
barriers in the temperature direction. Their absence would mean that one could
move in that direction (purple). Their presence is thus a barrier to moving—just as
in the two-dimensional world of the ant on the plane, a barrier is only a barrier
because it occupies that plane. The actual view of the maze navigator is shown in
Figure 5a, b. To simulate the depth of the maze, the structure of 1-D is repeated into
the distant corridor, shrinking in size—using basic perspectival technique. In
addition, the blue-red temperature dimension is shown to vary, and in the distance
(depth of field) the difference between blue and red diminishes. When the partici-
pant rotates, the view becomes radically more complicated (see Fig. 5b), as does the
task of managing all this visual information.

One of the fascinating Hinton-like insights of this digital maze experiment, is
that if one navigated in this maze using only three dimensions, one has a “better
than even-chance” odds of guessing the correct location of the original start when
asked to point in that direction. This is simply because if the participant is ignoring
one of four dimensions, and if they are expert at three, then their chances are pretty
good. The authors used a simulated participant with perfect 3-D path integration
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skills, and found that such a participant pointed with an angular error of 0 Degrees
and a mean accuracy of 28 Degrees. The human participants in this study, however,
did seem to develop better accuracy, which implies definite improvement of skill at
4-dimensional path integration, rather than simply using 3-D skills and ignoring the
fourth dimensional cues.

7 Concluding Comments

In this chapter I have explored the details of Charles Hinton’s proposal for how
perception in four dimensions is possible. I’ve shown how his ideas were linked to
other ideas and techniques of observation (the moving image) that emerged during
the same historical period. In particular, Hinton’s ideas are linked to philosophical
interest in developing an “intuitive method” as articulated by Henri Bergson, and
also linked to developments in non-Euclidean geometry and topological thinking,
all of which inform the theoretical turn to new materialism more recently. Although
developments in non-Euclidean geometry are often presented as more abstracted
from the material world, I have showed how Hinton focused on the specific ways in
which geometric concepts are inherently material, and engendered through depth of
field, movement, colour, and intensity (temperature).

Hinton’s revolutionary approach to spatial sense is now being actualized in
innovative uses of digital technology. This chapter shows how two very different
attempts to build a digital 4-dimensional maze deploy many of Hinton’s ideas about
spatial sense, colour, movement and intensity. Moreover, these experiments in
virtual navigation raise important research questions about how we can use tech-
nology to expand our ways of perceiving and being in the world, suggesting that
body syntonicity is radically different in four dimensions. More research is needed
on digital technology’s potential for advancing our perceptual skills, and on
experiments for developing our grasp of what Hinton called a “higher matter”. Not
only would such research serve perception studies, it would also contribute to our
understanding of the nature of the relationship between geometry and the material
world, and enhance students’ engagement with geometric concepts.
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2014)”. The erratum book has been updated with the change.

The updated online version of this chapter can be found at
https://doi.org/10.1007/978-3-319-61488-5_1
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