
Iterative Model-Driven Development of Software
Extensions for Web Content Management

Systems

Dennis Priefer1,2(B), Peter Kneisel2, and Daniel Strüber3

1 Philipps-Universität Marburg, Marburg, Germany
2 Institute for Information Science, Technische Hochschule Mittelhessen,

Gießen, Germany
{dennis.priefer,peter.kneisel}@mni.thm.de

3 Institute for Computer Science, University of Koblenz and Landau,
Koblenz, Germany

strueber@uni-koblenz.de

Abstract. Dynamic web applications powered by Web Content Man-
agement Systems (WCMSs) such as Joomla, WordPress, or Drupal domi-
nate today’s web. A main advantage of WCMSs is their functional exten-
sibility by standardized WCMS extensions. However, the development
and evolution of these extensions are challenging tasks. Due to depen-
dencies to the core platform and other WCMS extensions, the code struc-
ture of an extension includes a large defect potential. Mistakes usually
lead to website crashes and are hard to find, especially for inexperienced
developers.

In this work, we define a model-driven development (MDD) process
and apply it during the development of software extensions for the
WCMS Joomla. To address two separate scenarios, involving the devel-
opment of independent and dependent WCMS extensions, we use an
MDD infrastructure, comprising a domain-specific language, a code edi-
tor, and reverse engineering facilities. In addition, we provide evidence
indicating that our model-driven approach is useful to generate exten-
sions with consistent interdependencies, demonstrating that the main
issues of extension development in the WCMS domain can be addressed
using a model-driven approach. By applying the MDD infrastructure on
actual projects, we additionally present the lessons learned.

Keywords: Model-driven development · Web content management sys-
tems · Joomla

1 Introduction

In today’s web engineering practice, the creation of functionally rich web appli-
cations from scratch is an outdated process. Instead, web developers use a vari-
ety of Web Content Management Systems (WCMSs) [16] providing the main
functionality of typical web applications, such as management of users, content,
menus, media and templates, as well as multi-language support.
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 142–157, 2017.
DOI: 10.1007/978-3-319-61482-3 9



Iterative MDD of Software Extensions for WCMSs 143

Fig. 1. Functional extension of a
WCMS instance

If the functional needs of WCMS admin-
istrators exceed the core functionality of a
WCMS, it needs to be functionally aug-
mented. Examples for additional functional-
ity include web shops, file repositories, image
galleries, or the management of domain-
specific data, such as conference information.
When using an open source WCMS, devel-
opers can change the code basis in order
to add additional features to the WCMS. A
less intrusive mechanism is based on software
extensions that can be deployed to a running
WCMS instance by an administrator without
changing the platform (see Fig. 1). This app-
roach can ensure a consistent system even if
the WCMS platform undergoes a version update.

The most popular WCMSs are WordPress [5], Joomla [2], and Drupal [1].
WordPress holds the largest market share by far (58,8% of all CMSs and 27,6%
of all web pages [4]) followed by Joomla (7,1% of all CMSs and 3,3% of all
web pages), and Drupal (4,7% of all CMSs and 2,2% of all web pages). For
other well-known CMSs like Magento [3] and Typo3 [6], the market share is
significantly lower compared to these top three WCMSs. All of these systems
provide extensibility in the form of installable software extensions. Norrie et
al. [17] explain the success of WordPress as a result of its user-friendliness and
extensibility. In particular, end-users without advanced technical skills benefit
from its capability to create and publish a web site in a few minutes. Extensibility
in the form of a plug-in mechanism empowers users with a technical background
to customize a WordPress instance according to their needs. Yet this plug-in
mechanism is relatively simple, based on the exposure of an interface by the
platform core used to augment the core with additional code. Support for more
complex extensions, such as domain-specific data management and presentation
or event-triggered extensions, is lacking. If such extensions are developed using
hand-written code, significant challenges to maintainability arise.

A more sophisticated extension mechanism is offered by Joomla. In contrast
to most other WCMSs such as WordPress or Drupal, Joomla supports a vari-
ety of extension types to facilitate the development of feature-rich extensions.
For instance, components are an extension type that provides full data man-
agement capabilities, whereas modules offer presentation utilities for the data
managed by some component. This allows the development of new extensions
using data of existing ones, e.g. a module presenting data of a 3rd party com-
ponent. The extension mechanism provided by Joomla is based on an API as
well as naming conventions: For a consistent deployment to the core platform,
an extension must conform to an elaborate standard file and code structure.

Even though the extension mechanism of Joomla is powerful, extension devel-
opers face several issues during development and evolution. Developing a new



144 D. Priefer et al.

extension is a challenging task even for experienced developers. A typical proce-
dure is to create a clone of an existing extension complying with the standard
structure and to modify the clone to satisfy the new requirements. However,
this procedure shows a high susceptibility to errors. For instance, mismatches
between class identifiers and file names might go unnoticed. Another problem
occurs when the underlying platform evolves and existing extensions have to be
updated to adapt to the platform changes. If the amount of extensions to migrate
grows, the required effort for updating the extensions can increase tremendously.

In this work, we propose to apply a model-driven approach to the devel-
opment of WCMS extensions. Our approach is based on the observation that
a good amount of the file and code structure of popular WCMSs is made up
of generic and schematically recurring fragments. The use of a domain-specific
language and code generator is a promising means to reduce the development
effort for WCMS extensions. In particular, we consider the two typical scenarios
during WCMS extension development: The development of completely indepen-
dent extensions as well as of extensions depending on existing extensions. We
show how a model-driven approach is suitable to support developers during these
tasks.

We exemplify our approach by illustrating its application to Joomla, a main-
stream WCMS with a particularly sophisticated extension mechanism. In partic-
ular, we propose JooMDD, an infrastructure for the model-driven development
of Joomla extensions. JooMDD comprises a DSL and model editor, a code gen-
erator, and a model extraction tool.

This work is the first to address the distinct challenge of developing interde-
pendent WCMS extensions, an issue that does not occur in the simpler case of
regular web application development. However, the model-driven development of
WCMSs has been addressed in earlier works. In particular, the approaches pre-
sented in [19,21,24] address the model-driven development of concrete WCMS
instances, but do not take their extensibility into account.

We introduce the technical background and common use-cases of developing
Joomla extensions in Sect. 2 and present our MDD tools, including support for
reverse engineering, in Sect. 3. Section 4 describes our process to address the
typical development scenarios faced by Joomla extensions developers. We give
example applications of our approach in Sect. 5 and share the lessons learned in
Sect. 6.

2 Extension of Joomla Instances

This section describes the technical background of Joomla extensions and intro-
duces typical use-cases for their development. The use-cases concern the differ-
ences in the extensions interdependencies between each other. So, we can clarify
the different variants during our process definition in Sect. 4.

The Joomla platform provides a custom API for the functional expansion of
its core functionality through installable extensions. Extensions come in different
types of varying complexity, spanning the full range from complex extension
types with their own dedicated data management to simple function libraries.



Iterative MDD of Software Extensions for WCMSs 145

Fig. 2. File and code structure of a
Joomla component (Extract)

The most complex extension type is
called component. Components usually
have their own data management. To this
end, the Joomla core database is extended
with additional tables. To work together
with the Joomla core, components must
exhibit a file and code structure that fol-
lows a specific scheme. Figure 2 shows an
example of this scheme.

On file and code level, the scheme
implements the Model-View-Controller
(MVC) pattern [13]: views use models for data access; controllers can perform
data updates using the models and can also process view requests. While com-
ponents typically use their own custom data, a common practice is to use data
of other components within the view. The MVC classes must comply with the
illustrated scheme. Otherwise, the Joomla instance containing the component
may produce errors.

Another wide-spread extension type are modules, which can be used to place
any content within pre-defined module positions on a page of a Joomla instance.
Common module types are menus, search fields, breadcrumbs, or login sections.
Modules often use the data of an available component. Typically, modules display
a data entry from an underlying database of a component.

Developing Joomla extensions features two use-cases: First, developing inde-
pendent extensions such as components which have their own data management
and, second, dependent extensions, which use artefacts of existing extensions
such as modules, that in turn use the database of a component.

2.1 Use Case 1: Creating Independent Extensions

The first use-case is the development of independent extensions which can be
used within a running Joomla instance. The advantage of independent extensions
occurs during their evolution. If a developer changes the extension, no side-
effects due to dependencies occur. However, it is important to comply with the
development guidelines to ensure a correct interplay between the extension and
the running core system where it is installed. Even subtle errors can lead to
unexpected crashes that are not discovered until runtime.

2.2 Use Case 2: Creating Dependent Extensions

Components and modules stand out for their interplay with other extensions. It
is common practice to use artefacts of existing extensions within a component
or module to increase the functionality of a Joomla system without developing
software fragments anew. Components may reuse models or view templates by
other components, while modules use the database of existing components, since
they usually provide no own data management. This allows developers to augment
existing extensions (e.g. 3rd-party extensions) without changing their code base.



146 D. Priefer et al.

(a) Module referencing to an existing
component model for data access

(b) Module uses the database of a com-
ponent directly

(c) Module referencing to an existing com-
ponent model for data access (code)

(d) Module uses the database of a com-
ponent directly (code)

Fig. 3. Usual dependencies between modules and components

Figure 3 illustrates common dependencies between modules and components
on the example of an existing conference component, which is augmented by a
dependant module for the representation of conference talks. Figures 3a and b
illustrate the dependency variants in an abstract manner, whereas Figs. 3c and
d show the minimal amount of required code to establish these dependencies.
The code shows the corresponding variants of both dependencies as part of a
helper file within a module. This file represents the model of a module. The first
variant of dependency features the use of a component model within a module
via reference, using inclusion methods of Joomla’s singleton implementation
(JModelLegacy), whereas the second variant illustrates the direct use of a
component’s database by using SQL statements.

In this work we focus on the model-driven development of components and
models, with support for both use-cases. While we addressed the less complicated
use-case 1 in our earlier work [18], our extended infrastructure and process
address both use-cases.



Iterative MDD of Software Extensions for WCMSs 147

3 JooMDD - MDD Infrastructure for Joomla Extensions
Including Reverse Engineering Support

This section presents JooMDD, our infrastructure for the model-driven develop-
ment of Joomla extensions1.

JooMDD supports Joomla extension developers with a set of MDD tools: A
DSL and editor for the creation of extension models, a code generator for Joomla
extensions, and a tool to extract extension models from legacy extension code.

We used Xtext [12] and Xtend [11] to develop the infrastructure. Xtext allows
the definition of a DSL in the form of annotated EBNF grammar. Based on
this definition, it supports the generation of infrastructure components, such
as a text-based instance editor, an EMF domain model, and an API for the
DSL which can be used independently within a Java-based application. Xtend
is a Java-based programming language with dedicated support for the definition
of code generator templates. By using these tools, the rapid development and
implementation of a high quality MDD infrastructure is enabled.

3.1 Domain-Specific Language for Joomla Extensions

We created eJSL, a DSL for the description of Joomla-based software exten-
sions. The language consists of three parts: a part to model the data management
of Joomla extensions (entities), a part for the definition of a page flow of exten-
sion views (pages), and a part for the description of an extension structure
(extensions).

The entities and pages parts are platform-independent, that is, not bound
to either Joomla or to WCMSs in general. The design of these parts has been
influenced by the Simple Web Application Language (SWAL) presented in [9],
which describes the data and the page flow of a web application.

Fig. 4. Page reference within an extension
(eJSL model)

The purpose of the extension
part is the specification of particu-
lar Joomla extensions, rendering it
the platform-specific part of eJSL.
Extensions can be mapped to exist-
ing pages and entities. In partic-
ular, components and modules are
extension types which mainly con-
sist of views to illustrate any kind of
data. Therefore the language allows
optional references between these
extension types and pages. By adding
additional information to such a page reference, it is possible to describe depen-
dencies between extensions in an abstract way. Figure 4 illustrates the definition
of a page reference within an extension definition in an eJSL model. It is possible
to define a use reference to the model of a component (frontend or backend),

1 JooMDD can be downloaded from GitHub https://github.com/icampus/JooMDD.

https://github.com/icampus/JooMDD


148 D. Priefer et al.

the database of a conference or an existing webservice, which can also be part
of a component. Hereby it does not matter, if the page reference is made within
a component, or a module description. If no such reference is specified by the
user, this knowledge must be provided in the generator instead.

To use the DSL we provide plugins for the most commonly used develop-
ment environments in the WCMS domain which are IntelliJ IDEA, PhpStorm,
and Eclipse. The editor plugin of JooMDD is customized for integration with
each of these environments. The plugin provides a textual editor with syntax
highlighting, error messages, dependency checks, and auto completion support
for keywords and references between model elements.

3.2 Generator for Joomla Extensions

We have implemented our generator using Xtend templates. The main decompo-
sition of the generated code follows the division of the DSL into entities, exten-
sions, and pages, supporting traceability between models and the generated code.
The generator supports the two use-cases we described earlier in Sects. 2.1 and
2.2. If a new and independent extension is to be developed, the generator creates
the full extension code. In the case of using a an existing extension as reference
within another extension, it is possible to describe the augmentation within the
model (e.g. as part of a page reference as described in Sect. 3.1). So, the generator
is able to only generate the depending extension, but not the existing extension
anew. Both cases will be examined further within Sects. 4 and 5.

3.3 Tool Support for the Reverse Engineering of Existing Joomla
Extensions

JooMDD supports developers during the creation or forward engineering of a
new Joomla extension and the reengineering or migration of a legacy extension.

We developed the prototype jext2eJSL to support the reverse engineering
of Joomla extensions by a model extraction from the code of existing Joomla 3.x
extensions (PHP, HTML, JavaScript, and SQL files) as input. The tool creates
an extension model based on the eJSL language with the main model elements
as entities, pages and extensions. In particular, it supports the common Joomla
extension types. Our specialized use-case for the tool is described in Sect. 2.2:
The creation of a new extension with dependencies to an existing one. Usually
the existing extension must be modelled as well to allow references on the model
level. This step can completely be dropped by using the model extraction tool.
The extracted model contains all information needed to model (and generate)
new extensions based on the existing one. jext2eJSL matches the Joomla stan-
dard file and code schemes. Therefore, the input extensions must follow these
schemes and implement the required patterns such as MVC for components to
ensure that the extracted models are as complete as possible.



Iterative MDD of Software Extensions for WCMSs 149

4 Iterative Process for Extension Development

In this section, we describe an iterative process to reduce development effort
and error-proneness during the development of independent Joomla extensions.
In addition we take the interdependencies between extensions into account to
allow the development of new extensions that use artefacts of existing extensions
as well. Each of these use-cases can be addressed during one iteration of our
process. In fact, the second use-case requires an iteration of the process every
time the existing extension evolves, to avoid side effects due to inconsistencies.

Fig. 5. One iteration during the iterative development of Joomla extensions

The process, outlined in Fig. 5, is made up of eight steps. In this illustration
we focus on the development of components and modules, whereas our infrastruc-
ture provides support to adapt the process to all available extension types. One
iteration consists of the following steps:

(1) Collect Requirements: Requirements for the extensions are collected in
a suitable form, such as an analysis model in the form of a class diagram. In
particular, these requirements may comprise managed data, views, relationships
between views and data, and the extension structure. In this phase the decision
to use artefacts of an existing extension within a new one can be made. This
decision effects the subsequent steps of our process.

(2) Model Extraction (optional): In the case that a model of existing exten-
sions, usually a component, is required, the jext2eJSL tool is used to extract such
models automatically. Though, every evolution on existing extensions requires
a new run of the process with this step as a main requirement to ensure the



150 D. Priefer et al.

correct interplay between existing and dependant extensions. If an independent
extension is to be developed, this step is skipped.

(3) Model Engineering: The identified requirements are used to create or
update an extension model. In the initial development case, the modeller cre-
ates a new model with entities, pages, and the desired extension structure with
regard to the requirements. If the extension should use artefacts of an exist-
ing extension, such as a module using the model of an existing component, a
corresponding model of the existing extension must exist (created in step 2).
References between extensions will be addressed during the subsequent code
generation. To distinguish existing from new extensions, existing model artefacts
can be denoted with a @preserve annotation. If the existing extension evolved
since the last iteration and the corresponding model has changed in step 2, all
affected dependencies must be re-engineered in the extension model. Otherwise
it is not guaranteed that the extensions work correctly at runtime. In the case
that a referenced part is completely removed within the existing extension, the
dependency must be removed as well. Alternatively, the removed parts could be
part of a new extension which can be used by the dependant one.

(4) Model Validation: To ensure that the code generator produces a valid
result, the consistency of the input model needs to be validated upfront. In
particular, the model of the existing extension which is used by a new extension
must correspond to the existing extension’s code. Code changes could lead to
side effects in the Joomla page, which uses both extensions. Therefore, step 2 of
the process must be performed in every iteration to ensure consistency between
the model and code of the existing extension. If the modeller uses our text editor,
the check happens automatically during editing.

(5) Code Generation: The component or module code is generated from the
extension model. In each case the generator creates the full code for an installable
extension. Thereby code is generated for all model elements that do not carry
an @preserved annotation. In the case of creating an dependent extension, the
specified references are incorporated within the generated code.

(6) Add Individual Code (optional): To support extensions with an elabo-
rate application logic, the user may add individual code fragments to the gener-
ated code. A dedicated mechanism is required to guard such individual fragments
for later runs of the code generator.

(7) Deployment to Joomla instance (optional): The generated extension
can be installed within a running Joomla instance. In the case of a depending
extension it must be provided, that all required extensions are installed as well.
In addition they must be consistent to their corresponding models to ensure a
flawless interaction between the new and the existing extensions.

(8) Test Creation: The correctness of the generated extension is ensured by
tests. By performing integration tests, the correct interplay between the new and
already installed extensions. Currently, these tests are required to be written by a
human developer. Since the extensions under test are schematically redundant,



Iterative MDD of Software Extensions for WCMSs 151

the test cases usually present a large extent of schematic duplication as well,
offering an opportunity for further automation. However, the automation of this
step is left to future work.

The process is supported by our MDD infrastructure as follows: We provide
jext2eJSL as model extractor for step 2, a DSL and corresponding editors for step
3 and 4, and a code generator for step 5. We do not provide dedicated support
of the handling of individual fragments in the generated code, as required for
the optional step 6, but an off-the-shelf solution can be used for this purpose.

5 Application of the Approach

In this section, we describe our experiences of applying the previously described
process for both use-cases, creating a component and expanding an existing one
by a depending module.

5.1 Creating a New Component

Fig. 6. Analysis model for conference man-
agement

We devised a simple conference man-
agement component as an extension to
the Joomla core. During the require-
ments step, we identified the analysis
model shown in Fig. 6 to support the
management of a conference with its
participants, talks, agenda, and rooms.
In our case it was sufficient to dis-
play these data in the standard Joomla
CRUD views for the management of
component-related data.

Specifically, each entity should be
displayable in a custom list and details
view, such as those shown in Fig. 7.

The image shows these views from the perspective of a Joomla administrator
who can make the same views visible to site visitors using a menu entry. Based on
these requirements, we designed an extension model2 which can be used as input
for our code generator. The generator then creates a full installable conference
component that can be used to manage the required entities; no manual addition
of individual source code is required.

5.2 Creating a Module Using an Existing Component

We applied our approach to the users component, a core component which is
pre-installed on each Joomla instance. The component manages the users and
user groups of a Joomla instance as Fig. 8a illustrates. However, there is no

2 An excerpt of the extension model can be found in [18].



152 D. Priefer et al.

Fig. 7. List and details view within a Joomla instance (Backend)

(a) Users Component
(Management of User Groups
in the Backend)

(b) New Usergroups Module us-
ing Data of the Users Component
(Frontend)

Fig. 8. User groups management within existing component and new module

way of illustrating the existing user groups within the frontend of a Joomla site.
Therefore, we explore the case of adding a new module to the existing component
using its model as DAO, to provide a new representation of user groups.

The users component is developed by core developers of the Joomla commu-
nity. It was suitable for the exploration of our approach due to its high level of
compliance with the Joomla standard, a general requirement for step 2 above
and of our reverse engineering tool jext2eJSL. To this end, we first use jext2eJSL
to extract an extension model from the given component. The resulting model
provides entities, pages, and the extension specification which can be referred



Iterative MDD of Software Extensions for WCMSs 153

by new extensions. To avoid the generation of code for these existing elements,
they are annotated with a @preserve tag.

(a) New Usergroups Module
(eJSL Model)

(b) References within the DAO of the new
Module

Fig. 9. New usergroups module

To implement the new module, we create a new eJSL model and add a module
specification as Fig. 9a illustrates. Using the model as input, the code generator
creates the module with the dependency to the existing component as shown in
Fig. 9b. Since the generated file and code structure is fully compliant with the
Joomla standard, the module can be deployed directly to an existing Joomla
website. Once installed, it works together with the already installed organizer
component by using its model as DAO for the data which has to be shown - in
our case the user groups which are managed by the component (see Fig. 8b).

To explore the usefulness of our process for other components, we successfully
applied it to the conference component of the first case and a component for
resource management [7] we developed by hand over the course of six years.

6 Lessons Learned

In this section we address the lessons learned of our process based on its appli-
cation. We discuss the strengths and weaknesses of the approach and point out
the limitations of this work.

We investigated the usefulness of our approach by applying it in the domain
of the Joomla WCMS, a particularly critical example domain due to its sophisti-
cated extension mechanism that leads to many code and structure duplications.
Due to these duplications the biggest strength of our approach reveals. Dur-
ing both application scenarios, development speed increased since most of the
code was generated. In addition, the defect potential of the new extensions was
tremendously decreased, because all generated fragments adhere to the given



154 D. Priefer et al.

coding guidelines of Joomla. In both cases the extensions were installable and
applicable without adding a line of code by hand.

Within the application of the second use case a requirement for creating a
dependency from a new extension to an existing one was the creation of a model
using our model extraction tool. After the extraction, the existing extension is
depicted in an abstract manner. So, it could be used for being referenced by
new extensions. A nice effect is the capability of using the model of the existing
extension as a means of documentation, or a first version of the same extension,
which may be developed in a model-driven manner. If an existing extension
evolves, the model must be extracted anew. This could lead to inconsistencies
between models of the existing and new extension. However a re-engineering on
the model level allows a more rapid adjustment in contrast to a manual change of
the dependencies in the extensions’ code - especially if the dependencies concern
different code fragments but are specified in same part of the model.

Beside the described strengths of the approach we discovered some weak-
nesses during the application. The main weakness is the management of indi-
vidual code. If an extension which is developed using our approach evolves,
individual fragments are not considered within the extension model. This could
lead to problems at runtime, since the individual parts could depend on generic
fragments, which have been changed or removed. To detect and fix error-prone
fragments, an adequate test suite is required. Otherwise they wont be detected.

During the case of developing a new dependant extension, the problem of
individual code occurs in an earlier stage. During the model extraction of an
existing extension, only the parts which adhere strictly to the Joomla standard
can be found and abstracted. Individual parts remain unnoticed and can only be
reused by a new extension if the dependencies are added to the generated code
by hand. However, this procedure impairs the benefit of our approach.

Even though our approach can be successfully applied, our work includes
some threats to validity with regard to the applied development scenarios. In our
application, we create a new independent component and a module, which uses
artefacts of an existing component. These use-cases are common in the domain,
but not the only ones existing. This is a threat to the conclusion validity, since
our process is intended to develop extensions in general independent of their
type. Especially, the second case should be further examined in future work. This
includes the collection of possible dependencies between different extension types
and their incorporation into our process. The main threat to external validity is
that we only instantiated out approach for the Joomla WCMS. It yet has to be
studied if it is also suitable for other WCMSs, since the infrastructure parts must
be rewritten to the specific needs of the given WCMS. More extensive studies of
the generalizability of our results are left to future work. However, the successful
approach which is illustrated in this paper, allows an optimistic expectation for
other WCMSs.



Iterative MDD of Software Extensions for WCMSs 155

7 Related Work

Several related works deal with applying model-driven engineering to applica-
tion development in the WCMS domain. Most of these works propose platform-
independent meta-models for the development of specific WCMS instances [15,
21,24]. The approach by Saraiva et al. is the first to also investigate code gener-
ation for concrete WCMS instances [19]. However, none of these works addresses
the extensibility of WCMSs through standardized extension types taking their
interdependencies into account. As we have argued in this work, the creation
of such WCMS extensions is a tedious and error-prone process of significant
practical relevance. Dependencies between newly developed and existing exten-
sions are not provided in any of these works. Our work is the first to tackle this
challenge by providing suitable abstractions and automation facilities.

Model-driven principles have been applied to address augmentation issues
in the WCMS domain. Trias et al. [22] introduce a reengineering method and a
reverse engineering tool for the migration of complete WCMSs, for instance, from
a web page to WordPress. Even though this approach can potentially improve
the model extraction step in our process, it is currently tailored to WordPress, a
WCMS with limited extensibility features. The usefulness for other WCMSs has
yet to be investigated. Vermolen et al. [23] present an approach for the evolution
of data models. As this approach provides a well-defined strategy to deal with
changes to existing data entities, incorporating it into our work will help us to
improve the flexibility during the augmentation of existing extensions.

Apart from these works, there is little recent research on the development
practices for WCMSs, an observation that is confirmed by Norrie et al. [17].

General MDD approaches for the web domain such as the ones in [8,10,14,20]
can be used to create complete websites in a model-driven manner, but are not
suitable for our considered problem since they do not address WCMSs and the
model-driven development of their extensions.

8 Conclusion

Instances of Web Content Management Systems are commonly used as dynamic
web applications in today’s web. Using an open source WCMS, developers can
add additional features by the use of software extensions, which can be installed
into a running WCMS instance. However developing these extensions can be
a time-consuming and complex task, even for experienced extension develop-
ers. Especially, the interdependencies between different extensions can lead to
unwanted errors if they are not sufficiently considered during development. In
this work, we introduce an iterative process using a set of tools to develop Joomla
extensions in a model-driven way. In addition, we introduce a domain-specific
language for the creation of abstract extension models and a code generator
which derives a platform-specific implementation for the Joomla platform. This
allows the rapid development of Joomla 3.x extensions adhering to both the
platform-specific development guidelines and interdependencies between differ-
ent extensions. To ensure the usefulness of our approach, we applied it to two



156 D. Priefer et al.

development scenarios - the development of a new and independent conference
component and of a new user groups module, which illustrates the data of an
existing Joomla core component.

Our future plans span over two research directions. First, we plan to improve
the existing DSL and tools, in particular to provide support for other WCMSs,
such as WordPress and Drupal. Second, based on anecdotal evidence from our
communication with Joomla representatives, there is interest in using JooMDD
for the development of extensions within the Joomla community [18]. This situa-
tion allows us to provide our infrastructure directly to a large group of developers
for a field study in vivo. Using this exposure opportunity, we intend to infer the
usefulness of our approach empirically.

References

1. Drupal.org. https://www.drupal.org
2. Joomla!.org. https://www.joomla.org
3. Magento - eCommerce Software & eCommerce Platform Solutions. https://

magento.com/
4. Usage Statistics, Market Share of Content Management Systems for Websites.

http://w3techs.com/technologies/overview/content management/all
5. WordPress.org. https://wordpress.org
6. TYPO3 - The Enterprise Open Source CMS. https://typo3.org/
7. Antrim, J.: Technische Hochschule Mittelhessen - THM Organizer. https://www.

thm.de/organizer/
8. Brambilla, M.: Interaction flow modeling language: Model-driven UI engineering

of web and mobile apps with IFML. Morgan Kaufmann, Waltham (2015)
9. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in

Practice. Morgan & Claypool, San Rafael (2012)
10. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling

language for designing web sites. Comput. Netw. 33(1–6), 137–157 (2000)
11. Efftinge, S., Spoenemann, M.: Xtend - Modernized Java, 02 December 2015. http://

www.eclipse.org/xtend/
12. Efftinge, S., Spoenemann, M.: Xtext - Language Engineering Made Easy! 11 Feb-

ruary 2016. https://eclipse.org/Xtext/
13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

14. Kraus, A., Knapp, A., Koch, N.: Model-Driven Generation of Web Applications in
UWE. Ludwig-Maximilians-Universität München, München (2008)

15. Mart́ınez, S., Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., Cabot, J.:
Towards an access-control metamodel for web content management systems. In:
Sheng, Q.Z., Kjeldskov, J. (eds.) ICWE 2013. LNCS, vol. 8295, pp. 148–155.
Springer, Cham (2013). doi:10.1007/978-3-319-04244-2 14

16. McKeever, S.: Understanding web content management systems: evolution, lifecy-
cle and market. Ind. Manage. Data Syst. 103(9), 686–692 (2003)

17. Norrie, M.C., Geronimo, L., Murolo, A., Nebeling, M.: The forgotten many? a
survey of modern web development practices. In: Casteleyn, S., Rossi, G., Winckler,
M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 290–307. Springer, Cham (2014).
doi:10.1007/978-3-319-08245-5 17

https://www.drupal.org
https://www.joomla.org
https://magento.com/
https://magento.com/
http://w3techs.com/technologies/overview/content_management/all
https://wordpress.org
https://typo3.org/
https://www.thm.de/organizer/
https://www.thm.de/organizer/
http://www.eclipse.org/xtend/
http://www.eclipse.org/xtend/
https://eclipse.org/Xtext/
http://dx.doi.org/10.1007/978-3-319-04244-2_14
http://dx.doi.org/10.1007/978-3-319-08245-5_17


Iterative MDD of Software Extensions for WCMSs 157

18. Priefer, D., Kneisel, P., Taentzer, G.: JooMDD: a model-driven development envi-
ronment for web content management system extensions - demonstration paper.
In: Proceedings of the International Conference on Software Engineering and Com-
panion, ICSE Companion 2016. ACM, New York (2016)

19. de Sousa Saraiva, J.: Development of CMS-based Web Applications with a Multi-
Language Model-Driven Approach. Dissertation, Universidade Técinica de Lisboa,
Lisbon, Portugal (2012)

20. Svansson, V., Lopez-Herrejon, R.E.: A web specific language for content man-
agement systems. In: Proceedings of the OOPSLA Workshop on Domain-Specific
Modeling, Montréal, Canada (2007)

21. Trias, F.: Building CMS-based web applications using a model-driven approach.
In: 2012 Sixth International Conference on Research Challenges in Information
Science (RCIS), pp. 1–6

22. Trias, F., de Castro, V., López-Sanz, M., Marcos, E.: RE-CMS: a reverse engi-
neering toolkit for the migration to CMS-based web applications. In: Proceedings
of the Annual ACM Symposium on Applied Computing, SAC 2015, pp. 810–812.
ACM, New York (2015)

23. Vermolen, S.D., Wachsmuth, G., Visser, E.: Generating database migrations for
evolving web applications. In: Proceedings of the ACM International Conference
on Generative Programming and Component Engineering, GPCE 2011, pp. 83–92

24. Vlaanderen, K., Valverde, F., Pastor, O.: Model-driven web engineering in the CMS
domain: a preliminary research applying SME. In: Filipe, J., Cordeiro, J. (eds.)
ICEIS 2008. LNBIP, vol. 19, pp. 226–237. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00670-8 17

http://dx.doi.org/10.1007/978-3-642-00670-8_17
http://dx.doi.org/10.1007/978-3-642-00670-8_17

	Iterative Model-Driven Development of Software Extensions for Web Content Management Systems
	1 Introduction
	2 Extension of Joomla Instances
	2.1 Use Case 1: Creating Independent Extensions
	2.2 Use Case 2: Creating Dependent Extensions

	3 JooMDD - MDD Infrastructure for Joomla Extensions Including Reverse Engineering Support
	3.1 Domain-Specific Language for Joomla Extensions
	3.2 Generator for Joomla Extensions
	3.3 Tool Support for the Reverse Engineering of Existing Joomla Extensions

	4 Iterative Process for Extension Development
	5 Application of the Approach
	5.1 Creating a New Component
	5.2 Creating a Module Using an Existing Component

	6 Lessons Learned
	7 Related Work
	8 Conclusion
	References




