
Anthony Anjorin
Huáscar Espinoza (Eds.)

 123

LN
CS

 1
03

76

13th European Conference, ECMFA 2017
Held as Part of STAF 2017
Marburg, Germany, July 19–20, 2017
Proceedings

Modelling Foundations
and Applications

Lecture Notes in Computer Science 10376

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Anthony Anjorin • Huáscar Espinoza (Eds.)

Modelling Foundations
and Applications
13th European Conference, ECMFA 2017
Held as Part of STAF 2017
Marburg, Germany, July 19–20, 2017
Proceedings

123

Editors
Anthony Anjorin
University of Paderborn
Paderborn
Germany

Huáscar Espinoza
Tecnalia Research and Innovation
Derio
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-61481-6 ISBN 978-3-319-61482-3 (eBook)
DOI 10.1007/978-3-319-61482-3

Library of Congress Control Number: 2017943853

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-6213-6243

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences may vary from year to year, but they all
focus on foundational and practical advances in software technology. The conferences
address all aspects of software technology, from object-oriented design, testing,
mathematical approaches to modeling and verification, transformation, model-driven
engineering, aspect-oriented techniques, and tools.

STAF 2017 took place in Marburg, Germany, during July 17–21, 2017, and hosted
the four conferences ECMFA 2017, ICGT 2017, ICMT 2017, and TAP 2017, the
transformation tool contest TTC 2017, six workshops, a doctoral symposium, and a
projects showcase event. STAF 2017 featured four internationally renowned keynote
speakers, and welcomed participants from around the world.

The STAF 2017 Organizing Committee would like to thank (a) all participants for
submitting to and attending the event, (b) the Program Committees and Steering
Committees of all the individual conferences and satellite events for their hard work,
(c) the keynote speakers for their thoughtful, insightful, and inspiring talks, and (d) the
Philipps-Universität, the city of Marburg, and all sponsors for their support. A special
thanks goes to Christoph Bockisch (local chair), Barbara Dinklage, and the rest of the
members of the Department of Mathematics and Computer Science of the
Philipps-Universität, coping with all the foreseen and unforeseen work to prepare a
memorable event.

July 2017 Gabriele Taentzer

Preface

The European Conference on Modeling Foundations and Applications (ECMFA) is
dedicated to advancing the state of knowledge and fostering the industrial application
of Model-Based Engineering (MBE) and related methods. MBE is an approach to
software engineering that sets a primary focus on leveraging high-level and suitable
abstractions (models) to enable computer-based automation and advanced analyses;
MBE techniques promise a significant boost in both productivity and quality.

The 13th edition of ECMFA was held during July 19–20, 2017, in Marburg as part
of the Software Technologies: Applications and Foundations (STAF) federation of
conferences. The Program Committee received 48 submissions, each of which was
reviewed by at least three Program Committee members. The committee decided to
accept 18 papers, 13 papers for the Foundations Track and five papers for the Appli-
cations Track, resulting in an overall acceptance rate of 38%. Papers on a wide range of
MBE aspects were accepted, including model-driven generative techniques, model
consistency management and evolution, language engineering, and experience reports.

We thank Lionel Briand for his interesting talk on the current challenges of
model-driven verification and testing of cyber-physical systems. We are grateful to all
Program Committee members and additional reviewers for providing excellent
reviews, participating actively in ensuing discussions, and providing constructive
feedback for all submitted papers. We thank the STAF organization for providing an
excellent framework in which ECMFA can continue to co-exist and profit from the
synergy with other related conferences. Finally, we thank all authors who submitted
papers to ECMFA 2017, making this conference possible.

July 2017 Anthony Anjorin
Huáscar Espinoza

Organization

Program Committee

Shaukat Ali Simula Research Laboratory, Norway
Anthony Anjorin Paderborn University, Germany
Colin Atkinson University of Mannheim, Germany
Fabien Belmonte Alstom, France
Reda Bendraou UPMC-LIP6, France
Ruth Breu Universität Innsbruck, Austria
Jean-Michel Bruel IRIT, France
Daniela Cancila CEA TECH, France
Eric Cariou LIUPPA, Université de Pau, France
De-Jiu Chen KTH Royal Institute of Technology, Sweden
Nancy Day University of Waterloo, Canada
Zinovy Diskin McMaster University, University of Waterloo, Canada
Maged Elaasar JPL, USA
Romina Eramo University of L’Aquila, Italy
Huáscar Espinoza TECNALIA, Spain
Anne Etien Université Lille 1, France
Madeleine Faugere Thales, France
Lidia Fuentes Universidad de Málaga, Spain
Sebastien Gerard CEA, LIST, France
Susanne Graf VERIMAG/CNRS, Université Grenoble Alpes, France
Esther Guerra Universidad Autónoma de Madrid, Spain
Regina Hebig Chalmers|Gothenburg University, Sweden
Philipp Helle Airbus Group Innovations, Germany
C. Michael Holloway NASA Langley Research Center, USA
Zhenjiang Hu NII, Japan
Muhammad Zohaib Iqbal Quest lab, FAST, National University of Computer

and Emerging Sciences
Bernhard Kaiser Berner&Mattner Systemtechnik GmbH, Germany
Jörg Kienzle McGill University, Canada
Ekkart Kindler Technical University of Denmark, DTU Compute,

Denmark
Vinay Kulkarni Tata Consultancy Services Research, India
Thomas Kühne Victoria University of Wellington, New Zealand
Thierry Lecomte ClearSy, France
Malte Lochau TU Darmstadt, Real-Time Systems Lab/University

of Passau, Germany
Ralf Lämmel Universität Koblenz-Landau, Germany
Henrik Lönn Volvo Group, Sweden

Ileana Ober IRIT, Université de Toulouse, France
Dorina Petriu Carleton University, Canada
Rolf-Helge Pfeiffer Copenhagen Business Academy, Denmark
Daniel Ratiu Siemens Corporate Technology, Munich, Germany
Gianna Reggio DIBRIS, Università di Genova, Italy
Laurent Rioux THALES R&T, France
Alejandra Ruiz TECNALIA, Spain
Bernhard Rumpe RWTH Aachen University, Germany
Christoph Seidl Technische Universität Braunschweig, Germany
Michal Smialek Warsaw University of Technology, Poland
Juha-Pekka Tolvanen MetaCase, Finland
Antonio Vallecillo Universidad de Málaga, Spain
Mark van den Brand Eindhoven University of Technology, The Netherlands
Stefan Voget Continental Automotive GmbH, Germany
Tim Weilkiens oose Innovative Informatik eG, Germany
Tao Yue Simula Research Labratory, Norway

Additional Reviewers

Aksu, Hakan
He, Xiao
Huber, Michael
Koenig, Harald
Kulcsár, Géza
Li, Shuai
Lu, Hong

Luthmann, Lars
Ma, Tao
Mengerink, Josh
Nieke, Michael
Nowakowski, Emmanuel
Oliveira, Raquel Araujo
Pradhan, Dipesh

Raco, Deni
Safdar, Safdar
Sauerwein, Clemens
Sutii, Ana-Maria
Weckesser, Markus
Zhang, Huihui
Zhang, Xinhai

X Organization

Model-Driven Verification and Testing
of Cyber-Physical Systems:

Tackling Scalability and Practicality
Challenges (Invited Talk)

Lionel C. Briand

University of Luxembourg, Luxembourg City, Luxembourg

Abstract. Testing and verification problems in the software industry come in
many different forms, due to significant differences across domains and contexts.
But one common challenge in the context of cyber-physical systems is scala-
bility; the capacity to test and verify increasingly large systems interacting with
complex physical environments. Another concern relates to practicality. Can the
inputs required by a given technique be realistically provided by engineers given
their background and time constraints? This talk reports on ten years of research
tackling the verification and testing of cyber-physical systems as a search and
optimization problem, often but not always relying on abstractions and models
of the system under test. This experience spans several application domains and
organizations. Our observation is that most of the problems we faced could be
effectively re-expressed so as to make use of appropriate search and optimiza-
tion techniques to automate specific testing or verification strategies, targeting
various categories of faults. However, to achieve scalability, such solutions had
to be often complemented by machine learning to help the search focus on
regions of the input space that were more likely to exhibit failures.

Contents

Meta-Modelling and Language Engineering

On the Automated Derivation of Domain-Specific UML Profiles 3
Alexander Kraas

Towards Seamless Hybrid Graphical–Textual Modelling for UML
and Profiles . 20

Lorenzo Addazi, Federico Ciccozzi, Philip Langer, and Ernesto Posse

Modeling Architectures of Cyber-Physical Systems 34
Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe,
and Michael von Wenckstern

Model Evolution and Maintenance

Systematic Language Extension Mechanisms for the MontiArc Architecture
Description Language . 53

Arvid Butting, Arne Haber, Lars Hermerschmidt, Oliver Kautz,
Bernhard Rumpe, and Andreas Wortmann

A Feature-Based Approach for Variability Exploration and Resolution
in Model Transformation Migration . 71

Davide Di Ruscio, Juergen Etzlstorfer, Ludovico Iovino,
Alfonso Pierantonio, and Wieland Schwinger

On the Influence of Models at Run-Time Traces in Dynamic
Feature Location . 90

Lorena Arcega, Jaime Font, Øystein Haugen, and Carlos Cetina

Model-Driven Generative Development

cMoflon: Model-Driven Generation of Embedded C Code
for Wireless Sensor Networks. 109

Roland Kluge, Michael Stein, David Giessing, Andy Schürr,
and Max Mühlhäuser

Self-adaptive UIs: Integrated Model-Driven Development of UIs
and Their Adaptations . 126

Enes Yigitbas, Hagen Stahl, Stefan Sauer, and Gregor Engels

http://dx.doi.org/10.1007/978-3-319-61482-3_1
http://dx.doi.org/10.1007/978-3-319-61482-3_2
http://dx.doi.org/10.1007/978-3-319-61482-3_2
http://dx.doi.org/10.1007/978-3-319-61482-3_3
http://dx.doi.org/10.1007/978-3-319-61482-3_4
http://dx.doi.org/10.1007/978-3-319-61482-3_4
http://dx.doi.org/10.1007/978-3-319-61482-3_5
http://dx.doi.org/10.1007/978-3-319-61482-3_5
http://dx.doi.org/10.1007/978-3-319-61482-3_6
http://dx.doi.org/10.1007/978-3-319-61482-3_6
http://dx.doi.org/10.1007/978-3-319-61482-3_7
http://dx.doi.org/10.1007/978-3-319-61482-3_7
http://dx.doi.org/10.1007/978-3-319-61482-3_8
http://dx.doi.org/10.1007/978-3-319-61482-3_8

Iterative Model-Driven Development of Software Extensions
for Web Content Management Systems . 142

Dennis Priefer, Peter Kneisel, and Daniel Strüber

Model Consistency Management

Efficient Consistency Checking of Interrelated Models. 161
Harald König and Zinovy Diskin

Finding Achievable Features and Constraint Conflicts
for Inconsistent Metamodels . 179

Hao Wu

Model Consistency for Distributed Collaborative Modeling 197
Gerson Sunyé

Model Verification and Analysis

Model-Based Privacy Analysis in Industrial Ecosystems 215
Amir Shayan Ahmadian, Daniel Strüber, Volker Riediger,
and Jan Jürjens

Formulating Model Verification Tasks Prover-Independently
as UML Diagrams. 232

Martin Gogolla, Frank Hilken, Philipp Niemann, and Robert Wille

Modeling and Formal Analysis of Probabilistic Complex Event
Processing (CEP) Applications . 248

Hichem Debbi

Experience Reports, Case Studies, and New Application Scenarios

Example-Driven Web API Specification Discovery 267
Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot

Technology-Preserving Transition from Single-Core to Multi-core
in Modelling Vehicular Systems . 285

Alessio Bucaioni, Saad Mubeen, Federico Ciccozzi,
Antonio Cicchetti, and Mikael Sjödin

On the Opportunities of Scalable Modeling Technologies: An Experience
Report on Wind Turbines Control Applications Development 300

Abel Gómez, Xabier Mendialdua, Gábor Bergmann, Jordi Cabot,
Csaba Debreceni, Antonio Garmendia, Dimitrios S. Kolovos,
Juan de Lara, and Salvador Trujillo

Author Index . 317

XIV Contents

http://dx.doi.org/10.1007/978-3-319-61482-3_9
http://dx.doi.org/10.1007/978-3-319-61482-3_9
http://dx.doi.org/10.1007/978-3-319-61482-3_10
http://dx.doi.org/10.1007/978-3-319-61482-3_11
http://dx.doi.org/10.1007/978-3-319-61482-3_11
http://dx.doi.org/10.1007/978-3-319-61482-3_12
http://dx.doi.org/10.1007/978-3-319-61482-3_13
http://dx.doi.org/10.1007/978-3-319-61482-3_14
http://dx.doi.org/10.1007/978-3-319-61482-3_14
http://dx.doi.org/10.1007/978-3-319-61482-3_15
http://dx.doi.org/10.1007/978-3-319-61482-3_15
http://dx.doi.org/10.1007/978-3-319-61482-3_16
http://dx.doi.org/10.1007/978-3-319-61482-3_17
http://dx.doi.org/10.1007/978-3-319-61482-3_17
http://dx.doi.org/10.1007/978-3-319-61482-3_18
http://dx.doi.org/10.1007/978-3-319-61482-3_18

Meta-Modelling and Language
Engineering

On the Automated Derivation
of Domain-Specific UML Profiles

Alexander Kraas(B)

Software Technologies Research Group, University of Bamberg, Bamberg, Germany
Alexander.Kraas@swt-bamberg.de

Abstract. The model-driven engineering (MDE) of domain-specific lan-
guages (DSL) is becoming increasingly important. In this area, metamod-
els are the central artefacts, defining the syntax and semantics of DSLs.
Different technologies are available to create metamodels, with the Meta
Object Facility (MOF) being one of them. Apart from other uses, a
MOF-based metamodel can serve as input for an automated derivation
of a profile for the Unified Modeling Language (UML).

In this paper, we propose a novel mapping of redefined or subsetted
metaclass attributes, so that the values of their corresponding stereotype
attributes can be computed at runtime by employing the Object Con-
straint Language (OCL). This is achieved by an automatic introduction
of additional OCL expressions. A further contribution is the transfer of
the static semantics of a metamodel to its derived UML profile. This
transfer is realized by an automatic update of existing OCL constructs
in such a way that they can be utilized for a generated UML profile
without any modification.

Keywords: Metamodel · DSL · UML · Profile · Derivation · OCL

1 Introduction

The creation of metamodels is a key task in model-driven engineering (MDE),
because metamodels are used to define the syntax and semantics of domain-
specific languages (DSLs). Depending on the employed technology, a metamodel
can be based on the Ecore meta-metamodel of the Eclipse Modeling Framework
(EMF) [24], or – as considered in this paper – on the Meta Object Facility
(MOF) [17] that provides advanced language concepts for attributes, such as
subsetting or redefinition.

Although different kinds of artefacts (e.g., textual and graphical editors) can
be generated semi-automatically based on metamodels, some effort is required for
their completion. Hence, it can be preferable to reuse existing tools and frame-
works for the Unified Modeling Language (UML) [19]. This can be achieved
by defining a UML profile for a DSL of interest, because UML profiles are a
standardized UML extension mechanism. Thanks to this mechanism, UML pro-
files usually can be used in UML editors without any additional implementation

c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-61482-3_1

4 A. Kraas

effort. Due to this reason, we prefer the utilization of UML profiles instead of
implementing tools for DSLs from scratch.

However, in comparison to language concepts of the MOF, some restric-
tions exist for those concepts that are applicable for UML profiles. In particular,
the stereotypes of a UML profile cannot inherit from UML metaclasses so that
stereotype attributes cannot redefine or subset attributes of metaclasses.

As proposed in [5,6,26], a UML profile can be derived automatically based on
an existing metamodel. However, these approaches have limitations concerning
the mapping of subsetted or redefined attributes. Furthermore, no automatic
transfer and update of the static semantics defined by the Object Constraint
Language (OCL) is supported. To remedy this situation, we present here a novel
approach for the automatic derivation of UML profiles from MOF-based meta-
models. One key contribution is the automatic generation of OCL expressions
for stereotype attributes that are derived from redefined or subsetted meta-
model attributes. These OCL expressions enable the computation of stereotype
attribute values at runtime. A second contribution is the automatic transfer of
the static semantics of a metamodel towards its derived UML profile. For this
purpose, all OCL constructs of a metamodel are updated and transferred to the
UML profile in such a way that the static semantics can be validated based
on a UML model. Otherwise, this model would have to be transformed into a
corresponding domain model where the validation is then performed.

We have implemented and successfully applied our novel derivation approach
for the generation of a UML profile [25] for the Specification and Description
Language (SDL) [10]. SDL is employed in the telecommunication sector for many
years, in particular for specifying communication protocols and distributed sys-
tems. Since the grammar of SDL is rather complex, we consider SDL as a good
example to evaluate the results of our approach.
Related work. The most closely related approaches to ours are [5,6,22,26],
which also derive a UML profile from an existing metamodel for a DSL. Their
commonality is that, in addition to the metamodel, mapping rules have to be
provided as input for the profile derivation. Depending on the approach, this is
realized in terms of so called ‘Integration Metamodels’ or ‘Mapping Models’. In
contrast, our approach expects metamodels as input for the derivation of UML
profiles, which make reuse of ‘abstract concepts’ as proposed in [4,23]. Since
‘abstract concepts’ are a subset of the metaclasses contained in the UML meta-
model, not all aspects of a DSL have to be modelled from scratch. Furthermore,
due to the correlation between ‘abstract concepts’ and UML metaclasses, no
mapping rules must be explicitly defined in our approach. Equally important
and in contrast to us, the related works do not treat the generation of OCL
expressions and constraints for ‘subsetted’ or ‘redefined’ attributes, and do not
address an automated transfer of the static semantics towards a UML profile.

Another category of existing works covers the derivation of metamodels based
on existing UML profiles, as proposed in [13,14], which is exactly the opposite of
our approach. The creation of a UML profile from scratch may be an option for
a new DSL with low complexity, but for an existing DSL with higher complexity

On the Automated Derivation of Domain-Specific UML Profiles 5

this could become difficult. This is because not only the static semantics of the
DSL but also UML’s static semantics have to be taken into account. Therefore,
the manual creation of a metamodel followed by an automatic derivation of a
UML profile should be preferred for more complex DSLs such as SDL [10]. This
variant should also be chosen if the syntax rules for a DSL are given because,
then, existing tools [7] (e.g., EMFText [8] or xText [2,3]) can be utilized for an
automatic derivation of metamodels.
Structure of this paper. The next section introduces our approach at an
abstract level, while our detailed derivation of a UML profile from a metamodel
is presented in Sect. 3. The results of our approach are evaluated and discussed
in Sects. 4, and 5 presents our conclusions and suggestions for future work.

2 Overall Approach and Running Example

According to our approach not only UML profiles but also model transforma-
tions and additional metaclasses can be automatically derived based on a single
metamodel. Due to space restrictions, we focus on the first aspect in the remain-
der of this paper. This section presents an overview of our overall approach and
illustrates it with a small running example.
Our overall approach. The central artefact for all derivations is a domain-
specific metamodel MMDomain (see Fig. 1), which is generated on the basis of
syntax production rules of an existing computer language or DSL. To obtain a
metamodel that does not require too much effort for further refinement, we reuse
‘abstract concepts’ that are defined by an existing metamodel (MMAC) by inher-
itance, as proposed in [4,23]. For this purpose, syntax rules have to be enriched
with particular annotations before a metamodel can be generated. In addition,
an important prerequisite for our entire approach is that MMAC has to ‘match’
with a subset of the UML metamodel, as is argued below. Otherwise, the UML
profile (UPDomain) and its associated Model-to-Model (M2M) transformations
TDM-to-UML and TUML-to-DM cannot be derived.

After the generation of MMDomain in step (A), a few manual refinements
have to be made before it can be used as input for steps (B)–(E). In particu-
lar, OCL constraints have to be specified to meet the static semantics of the
DSL. Thereafter, we can automatically derive UPDomain and, if required, addi-
tional metaclasses (MMAdd) that extend the MMUML in steps (B) and (C). The
derivation of additional metaclasses may be an option if stereotypes cannot be
employed due to their restrictions as defined by the UML [19]. For instance, such
an approach is applied for the value and expression languages of the SDL-UML
profile [11] and of the MARTE profile [20]. Since the input and output artefacts
of steps (B) and (C) are models, we realize both derivations by two dedicated
M2M transformations, which are implemented using the operational language of
the Query/View/Transformation specification (QVT) [16].

In contrast to the aforementioned artefacts, we utilize two Model-to-Text
(M2T) transformations to generate source code for the M2M transformations

6 A. Kraas

TDM-to-UML (D) and TUML-to-DM (E). Both M2T transformations are imple-
mented with the MOF M2T Language (MTL) [15], and the Acceleo [1] compo-
nent of Eclipse is used for the execution. The source code of a generated M2M
transformation is generated in terms of the operational language of QVT.

We have implemented our approach in terms of plug-ins for the Model Devel-
opment Tools (MDT) edition of Eclipse1. Although we could generate an Ecore-
based metamodel in Step (A), it is a design decision to use a UML-based rep-
resentation; otherwise, we could not subset and redefine metaclass attributes,
because the required language concepts are not supported by the Ecore. How-
ever, the code generators of Eclipse-MDT can handle both formats.

Fig. 1. Transformations and their derived artefacts.

The ‘Abstract Concepts’ metamodel. The metamodel MMAC holds a key
role for the entire derivation approach, because generated metaclasses of the
metamodel MMDomain inherit from ‘abstract concepts’ defined by MMAC . An
important prerequisite for MMAC is that it has to ‘match’ with a subset of
MMUML. Otherwise, a straightforward mapping of MMDomain to UPDomain as
presented here is impossible. A metamodel MMAC is considered to be ‘matching’
with MMUML, if the following constraints are fulfilled:

– For each metaclass MC of MMAC , a corresponding metaclass MC’ with an equal
name shall be present in MMUML. In addition, metaclass MC shall have an
equal or lesser number of attributes than metaclass MC’.

– For each attribute a of a metaclass MC, a corresponding attribute a’ with an
equal name shall be present in metaclass MC’. In addition, attributes a and
a’ shall have the same properties, e.g. the same type and cardinality.

– A data type of MMAC shall have a corresponding data type in MMUML.

Different approaches could be applied to obtain MMAC . Since MMAC shall
‘match’ with MMUML, we consider a creation of MMAC from scratch to be
1 https://eclipse.org/modeling/mdt/.

https://eclipse.org/modeling/mdt/

On the Automated Derivation of Domain-Specific UML Profiles 7

too error-prone and expensive. Another option is to use the MOF or the
UML Infrastructure Library [18]. Since their metaclasses are primarily used in
MMUML to define its ‘Kernel’ package, they could also be reused to create a
MMAC that only supports ‘structural’ language concepts (e.g. ‘Classifier’ 2).
Finally, also the reuse of parts of MMUML could be considered if language con-
cepts for behavioural specifications (e.g. ‘StateMachines’) are required.
Different kinds of metaclasses. Our derivation approach is based on the
assumption that metaclasses of a metamodel MMDomain can be categorized into
three different groups. The first group consists of ‘abstract concept’ metaclasses
MCAC that always have a ‘matching’ counterpart in MMUML. The second group
embraces all MCSt metaclasses that map to ‘Stereotypes’ of UPDomain, and
which are marked with a «ToStereotype» stereotype. Finally, the third group
consists of the MCAMC metaclasses that map to ‘additional metaclasses’ of
MMAMC , and which have a «ToMetaclass» stereotype applied.

Fig. 2. Example of annotated syntax rules and their corresponding metaclasses for a
simple state machine DSL.

Running example. To discuss the derivation approach in more detail, we intro-
duce a simple state machine DSL as a running example. The syntax rules and
their corresponding metaclasses of MMDomain are shown in Fig. 2. The employed
textual notation is a variant of the Extended Backus-Naur Form (EBNF) and
based on the concrete syntax specified in [9]. In addition, our textual notation
includes different kinds of annotations (written in italic-style), which establish
associations to the ‘abstract concepts’. The naming of the annotations is based on
the respective language concepts of the MOF, e.g., the annotation ‘generalized
class’ introduces a ‘Generalization’ relationship between two metaclasses.

The ‘abstract concepts’ used for the given example consist of metaclasses
contained in the ‘StateMachine’ package of the UML metamodel [19]. As shown
in Fig. 2, a Statemachine defined by the given DSL consists of an Event set,
a ResetEvent set, a Command set and the State set. Note that the example is
only employed by us to illustrate the different derivations; it cannot be used to
derive a syntactically complete metamodel.

2 Names within quotation marks and written in italic style refer to UML elements or
attributes as specified by the UML Superstructure [18].

8 A. Kraas

3 UML Profile Derivation

After generating and refining MMDomain, it can be used as the source for deriv-
ing a corresponding UML profile (UPDomain). However, the UML Superstruc-
ture [19] defines some constraints concerning the extension of UML metaclasses
by stereotypes. Thus, we take the following constraints for ‘Profile’ and ‘Stereo-
type’ elements into account for our derivation approach:

– “An element imported as a metaclassReference is not specialized or generalized
in a Profile.” ([19]: Sec. 18.3.7 Profile – Constraint 1)

– “A Stereotype may only generalize or specialize another Stereotype.” ([19]: Sec.
18.3.9 Stereotype – Constraint 1)

Due to the constraints cited above, a ‘Stereotype’ is not permitted to inherit from
a metaclass by a ‘Generalization’ relationship. Instead of this, the extension of a
particular UML metaclass by a ‘Stereotype’ has to be defined by an ‘Extension’
association. Since this is not equivalent to an inheritance relationship, a ‘Stereo-
type’ can extend a metaclass in a restricted manner only. In particular, a ‘Stereo-
type’ can introduce additional ‘Properties’, ‘Operations’ and ‘Constraints’, but
attributes of an extended metaclass cannot be redefined or subsetted.

Fig. 3. «Statemachine» ‘Stereotype’ derived from the running example.

3.1 Our Automated Derivation Approach

To ensure a proper derivation of a UML profile, we enrich the input metamodel
MMDomain with particular metadata, as discussed in the previous section. Hence,
three different kinds of metaclasses (MCAC , MCSt and MCAMC) are present in
MMDomain. However, only the MCSt metaclasses are mapped to correspond-
ing ‘Stereotypes’ in UPDomain. This fact is shown in Fig. 3, which contains
‘Stereotypes’ that are derived based on our running example. For instance, the
Statemachine MCSt is mapped to the «Statmachine» stereotype, whereas the

On the Automated Derivation of Domain-Specific UML Profiles 9

AC_StateMachine MCAC is not mapped. Instead, the «Statmachine» stereo-
type has an ‘Extension’ to the ‘matching’ UML metaclass StateMachine. Due
to this mapping, the MCAC metaclasses of MMDomain have not to be present
in UPDomain and, therefore, derived ‘Stereotypes’ have not any kind of link to
MCAC metaclasses.
Mapping to ‘Stereotypes’. A metaclass MCSt of MMDomain is mapped to a
corresponding ‘Stereotype’ in UPDomain. Due to the restrictions identified before,
a ‘Stereotype’ can inherit from another stereotype by a ‘Generalization’, whereas
an ‘Extension’ has to be used to establish a relationship between a UML meta-
class and its extending ‘Stereotype’ (see Fig. 4). Hence, we take the following two
cases for the derivation of stereotypes into account:

Case A: A MCSt A that inherits from a MCAC T_AC is mapped to a ‘Stereotype’
A’ that has an ‘Extension’ to the UML metaclass T_AC’.

Case B: If a MCSt B inherits from a MCSt A, both metaclasses map to ‘Stereo-
types’ and stereotype B’ has a ‘Generalization’ to stereotype A’.

An example of Case A is shown in Fig. 3, where the «Statemachine» stereotype
is generated for the corresponding metaclass MCSt. In addition, an ‘Extension’
from ‘Stereotype’ Statemachine to the StateMachine metaclass of MMUML is
introduced. The «ResetEvent» stereotype is an example for Case B, because it
inherits from the «Event» stereotype.

Fig. 4. Mapping to Stereotypes and mapping to derived attributes.

Mapping to stereotype attributes. The extension mechanism of ‘Stereotypes’
must also be considered for the mapping of the attributes of a MCSt, because
subsetting and redefinition of a stereotype attribute is only applicable as long
as no attribute of a UML metaclass is involved. Hence, the rules discussed here
apply to the derivation of stereotype attributes.

10 A. Kraas

Derived and read-only stereotype attributes: If an attribute a of a MCSt A in
MMDomain redefines or subsets an attribute t_ac of MCAC , then a is mapped to
a derived and read-only attribute a’ of ‘Stereotype’ A’ in UPDomain (see Fig. 4).
This mapping is required because MCAC has a ‘matching’ metaclass in MMUML;
hence, the mapped attribute a’ of A’ would redefine/subset an attribute of a
UML metaclass, which is not permitted. In addition, we generate an OCL expres-
sion and assign it to the ‘defaultValue’ property of a mapped attribute. This
OCL expression is used at runtime to compute the attribute value. More details
on the generation of appropriate OCL expressions can be found in Sect. 3.2.
For example, the command attribute of the MCSt Statemachine shown in Fig. 2
redefines the nestedClassifier attribute, whereas its corresponding mapped
attribute (see Fig. 3) is specified to be derived and read-only.

Subsetted/redefined attribute: In contrast to the mapping discussed before,
a redefinition or subsetting relationship can be preserved if an attribute a of a
MCSt A redefines or subsets an attribute b of another MCSt B. In this case, the
mapped stereotype attribute a’ redefines or subsets the stereotype attribute b’.
The mapping is possible because a’ and b’ are owned by ‘Stereotypes’.

Mapping of other attributes: We map all other attribute kinds of a MCSt

one-to-one to corresponding stereotype attributes in UPDomain, because no fur-
ther restrictions apply for them. Due to the derivation approach, also an auto-
matic update of existing OCL expressions that define the ‘defaultValue’ of an
attribute (see Sect. 3.3) is required. As shown in Fig. 3 and except for the
command attribute, all attributes of the «Statemachine» stereotype are copied
one-to-one from the corresponding Statemachine metaclass depicted in Fig. 2.
Computation of attribute types. Due to the different kinds of metaclasses
contained in MMDomain, the value for a ‘type’ property of a ‘Stereotype’ attribute
has to be recomputed during the derivation of a UML profile.

Let A be a metaclass MCSt in MMDomain and A’ its corresponding stereotype
in UPDomain. In addition, assume that MCSt A has an attribute att that is
mapped to a corresponding attribute att’ of A’. The ‘type’ property of att can
refer to one of the metaclasses shown in Fig. 5 (Cases A–C). According to these
assumptions, the ‘type’ property of att’ is determined as follows:

Case A: If the ‘type’ of att refers to a metaclass MCAC T_AC of MMDomain,
then the ‘type’ of att’ refers to the metaclass T_AC’ of MMUML.

Case B: If the ‘type’ of att refers to a metaclass MCST T_ST of MMDomain,
then the ‘type’ of att’ refers to the metaclass T_STbase’ of MMUML, which
is extended by stereotype T_ST’.

Case C: If the ‘type’ of att refers to a metaclass MCAMC T_AMC of MMDomain,
then the ‘type’ of att’ refers to metaclass T_AMC’ of MMAdd.

All attributes of the stereotype «Statemachine» shown in Fig. 3 are an exam-
ple of Case B, because instead of referring to stereotypes, the ‘type’ properties
of these attributes are recomputed to the extended metaclasses of MMUML.

On the Automated Derivation of Domain-Specific UML Profiles 11

Fig. 5. Different kinds of metaclasses in MMDomain used as attribute types and their
corresponding mapping targets.

3.2 Introduction of Additional OCL Constructs

In addition to the OCL constructs already present in MMDomain, further OCL
constructs are introduced for UPDomain as part of our UML profile derivation.
OCL expressions for derived attributes. When a redefined or subsetted
attribute of a metaclass MCSt in MMDomain is mapped to a read-only and
derived attribute of a stereotype in UPDomain, the value of such an attribute can
be computed at runtime based on its ‘defaultValue’. Hence, an OCL expression
is introduced for each of these attributes. All OCL expressions can be generated
according to the same generation pattern that consists of the following parts:

– Navigation to metaclass MCB in MMUML that is extended by ‘Stereotype’ A;
– Navigation to attribute src_att of MCB that is used as source for the value

computation;
– Selection of relevant items of attribute src_att depending on the applied

stereotype or the element kind;
– Type-cast of the selected items in order to match the ‘type’ and cardinality

of the derived attribute src_att.

A generated OCL expression is constructed according to the following template:

base_MCB.src_att->select(/* applied ST A or element kind */)->type-cast

The example given below is used to calculate the value for the command attribute
of the «Statemachine» stereotype shown in Fig. 3.

self.base_StateMachine.nestedClassifier->select(
isStrictStereotypedBy(’Command’)).oclAsType(uml::Signal)->asOrderedSet()

12 A. Kraas

StateMachine is the extended metaclass base_MCB, and nestedClassifier
corresponds to the source attribute src_att. In the second code line, all items
that are stereotyped with «Command» in nestedClassifier are selected.
Finally, the selected items are typecast to an ordered set that contains Signal
elements, because this is the defined ‘type’ of the command attribute (see Fig. 3).
Additional OCL constraints. Since the ‘type’ of an attribute owned by a
‘Stereotype’ is recomputed during the mapping, appropriate ‘Constraints’ are
introduced to preserve the static semantics, as defined by MMDomain. Hence,
when an attribute owned by a metaclass MCSt A redefines or subsets an attribute
of a metaclass MCAC in MMDomain, an OCL ‘Constraint’ is created for the
corresponding ‘Stereotype’ A’ in UPDomain. This ‘Constraint’ is generated by
applying the following pattern:

– Navigation to metaclass MCB in MMUML that is extended by ‘Stereotype’ A;
– Navigation to attribute src_att of MCB that shall be validated by the con-

straint;
– Determination of the set of valid elements VE that can be contained in att_src

based on the applied stereotypes or the element kinds.

An OCL ‘Constraint’ is constructed according to the following template:

base_MCB.src_att->notEmpty() implies base_MCB.src_att->forAll(VE)

The example below restricts the valid types of the nestedClassifier attribute
of the «Statemachine» stereotype (see Fig. 3) according to the static semantics as
defined by the originating metaclass (see Fig. 2). Hence, the shown ‘Constraint’
restricts the elements that can be contained in nestedClassifier only to those
elements that have the «Command» stereotype applied.

base_StateMachine.nestedClassifier->notEmpty() implies base_StateMachine
.nestedClassifier->forAll(isStrictStereotypedBy(’Command’))

3.3 Update of Existing OCL Constructs

A metamodel MMDomain usually includes OCL constructs that define the sta-
tic semantics. These constructs can be OCL ‘Constraints’ or OCL expressions,
which are used to define the behaviour of ‘Operations’ or the ‘defaultValue’ of
attributes. To ensure that OCL constructs defined for a metaclass MCSt can be
utilized for its ‘Stereotype’, an update has to be carried out at specific points.

Since OCL constructs of metamodels are only present as textual notations,
they cannot be processed by the M2M-transformation that implements step (B)
of the overall approach. Hence, we implement the update by using an OCL
parser and a pretty printer. Before UPDomain is derived from MMDomain, an
Abstract Syntax Tree (AST) is generated by the parser for each OCL construct
in MMDomain. This AST consists of different kinds of nested OCL expressions
as specified in [21]. To perform the update, every OCL expression of an AST is

On the Automated Derivation of Domain-Specific UML Profiles 13

visited by the pretty printer. During this visit, the AST is converted back to its
textual notation and the update is performed as discussed below.
PropertyCallExp. This kind of OCL expression is used to navigate from
a source expression to the referredProperty. According to the UML [19],
a stereotype and its extended meataclass exist as separate instances in
a model. Hence, the UML provides two different and implicitly defined
properties to navigate between metaclass and stereotype instances. The
‘extension_<stereotype>’ property is used to navigate from a metaclass to
an applied stereotype, whereas the ‘base_<metaclass>’ property is used for
the opposite direction.

Referred property maps to a ‘Stereotype’ attribute: Due to the fact that stereo-
types exist as separate instances, we introduce an ‘extension_<stereotype>’
navigation (as shown below) for a PropertyCallExp, if its source expression has
a result type that refers to a MCSt metaclass and its referredProperty is also
owned by a MCSt metaclass.

input: source.referredProperty
result: source.extension_<stereotype>.referredProperty

Expression source is a ‘self ’ variable: Another update for a PropertyCallExp
occurs if its source expression is a ‘self’ VariableExp with a result type that
refers to a MCSt metaclass and if its referredProperty is owned by a MCAC

metaclass. In this case, an additional ‘base_<metaclass>’ navigation must be
introduced because, in UPDomain, the ‘self’ VariableExp refers to a stereotype
instance from which a property of its extended UML metaclass is accessed:

input: self.referredProperty
result: self.base_<metaclass>.referredProperty

OperationCallExp. This kind of OCL expression is used to invoke a particular
operation (the referredOperation) for a given source expression. The prede-
fined OCL operations oclIsTypeOf() and oclIsKindOf() can be employed to
determine whether the result type of a source expression directly or indirectly
matches the expected type. If one of these operations is applied to a MCSt

metaclass, an update of the OperationCallExp is required, because this kind of
metaclass is mapped to a ‘Stereotype’. Due to this mapping, both operations
are not usable in UPDomain. Hence, they need to be replaced with the user-
defined operations isStrictStereotypedBy() and isStereotypedBy(), which
determine whether a specified stereotype is (directly or indirectly) applied to an
element identified by the source expression.

input: (A) source.oclIsTypeOf(MCSt); (B) source.oclIsKindOf(MCSt)
result: (A) source.isStrictStereotypedBy(<qualified stereotype name>)

(B) source.isStereotypedBy(<qualified stereotype name>)

TypeExp. This kind of OCL expression is used to refer to a particular type: a
‘Class’ or ‘DataType’. Because MMDomain contains three different kinds of meta-
classes (e.g., MCAC), a TypeExp of an OCL construct contained in MMDomain

14 A. Kraas

has to be updated. This is because, after deriving a UML profile, a referenced
‘Type’ can be contained not only in UPDomain but also in MMUML or MMAdd.
Hence, the fully qualified name of a ‘Type’ is determined depending on its con-
taining artefact, and then this name is used for updating the TypExp. For
instance, the TypExp AC_Element is updated to UML::Element.

4 Evaluation and Discussion

We have successfully applied our approach to derive a UML profile for SDL [10],
which we use here for evaluation.
SDL background and objectives. For many years, the International Tele-
communication Union (ITU) is responsible for all standardization activities con-
cerning SDL, and the results of this work are published as a set of ITU-T Z-
series Recommendations3. The ITU-T Recommendations Z.100 – Z.107 define
the grammar of SDL, whereby the semantics is specified in natural language and
the (concrete and abstract) syntax is defined by employing a particular EBNF
that is compliant to Z.111 [9]. In addition, a formal specification for SDL is
provided as an annex to Z.100 [10], where a first-order predicate logic is used
to define the static semantics, and SDL’s dynamic semantics is formalized by
employing the Abstract State Machine (ASM) formalism. Furthermore, a man-
ually created UML profile for SDL is specified in Z.109 [11].

In order to enable a model-based language development of SDL in the future,
our first objective is to provide a (semi-)automatically generated metamodel for
SDL which also captures SDL’s static semantics. Secondly, and based on this
foundation, we also provide an automatically derived UML profile for SDL.
The metamodel. As input for the profile derivation, we generated a metamodel
MMDomain based on 180 abstract syntax rules from SDL and 43 ‘abstract con-
cept’ metaclasses MCAC from MMUML (approx. 17 percent of all UML meta-
classes). Due to similar language concepts in SDL and UML, we could reuse this
high number of metaclasses from MMUML so that we did not have to manu-
ally model these concepts for our derived MMDomain. Owing to an automatic
optimization during the generation, only 106 metaclasses (MCSt+MCAMC) are
derived for the 180 syntax rules. Thus, MMDomain contains 71 MCSt, 35 MCAMC

and 43 MCAC metaclasses.
Furthermore, we created 204 OCL ‘Constraints’ based on SDL’s formal spec-

ification in order to capture the static semantics of SDL. Because of the different
objectives of the ‘Constraints’, their complexity varies from simple to highly
complex. Approximately 50% of the constraints are employed to ensure the syn-
tactical well-formedness, so they have a low or medium complexity. The remain-
ing constraints, e.g., are used to check the compatibility of SDL type definitions.
Because this part of the static semantics of SDL is rather complex, also the
corresponding OCL ‘Constraints’ are highly complex.

3 Homepage of the ITU-T Z-series Recommendations:
http://www.itu.int/itu-t/recommendations/index.aspx?ser=Z.

http://www.itu.int/itu-t/recommendations/index.aspx?ser=Z

On the Automated Derivation of Domain-Specific UML Profiles 15

Fig. 6. The AgentTypeDefinition MCSt metaclass and its derived stereotype.

The derived ‘Profile’ . All 71 MCSt metaclasses of MMDomain are mapped by
our approach to an equal number of ‘Stereotypes’. Furthermore, 43 ‘additional’
metaclasses that extend UML’s ValueSpecification metaclass are derived
automatically to represent SDL expressions. Even though stereotypes could be
used for this purpose, the same approach as applied in Z.109 [11] is employed
here so as to ensure the comparability of a manual and an automatic UML profile
creation. Since agent type definitions are the most important language concept
of SDL, we use the AgentTypeDefinition MCSt and its derived ‘Stereotype’
shown in Fig. 6 to discuss the results of our approach.

According to our approach, all attributes of the MCSt that redefine/subset
attributes of AC_Class are mapped to derived and read-only attributes of the
«AgentTypeDefinition» stereotype. In addition, an OCL expression is generated
for each attribute to enable a value computation at runtime; for example, the
OCL expression introduced for the dataTypeDefinition attribute computes the
value based on the nestedClassifier attribute of Class:

self.base_Class.nestedClassifier->select(isStrictStereotypedBy(
’SDL-UML::DataTypeDefinition’)).oclAsType(uml::Classifier)->asSet()

Since UML metaclass attributes are employed to compute the attribute values
of stereotypes at runtime, we introduce an additional OCL ‘Constraint’ for each
of these metaclass attributes; otherwise, the static semantics of a derived UML
profile, as defined by MMDomain, cannot be preserved. The example constraint

16 A. Kraas

shown below restricts the possible values of the nestedClassifier attribute of
the UML Class metaclass. In consequence, only element instances that have one
of the expected stereotypes applied, are valid values for nestedClassifier.

base_Class.nestedClassifier->notEmpty() implies
base_Class.nestedClassifier->forAll(
isStrictStereotypedBy(’SDL-UML::SyntypeDefinition’)
or isStrictStereotypedBy(’SDL-UML::AgentTypeDefinition’)
or isStrictStereotypedBy(’SDL-UML::DataTypeDefinition’) ...)

In total, 139 OCL expressions (and 73 additional ‘Constraints’) for stereotype
attributes were introduced during our derivation of a UML profile for SDL, so
that a user does not have to assign values to these attributes explicitly. This
is an advantage over related works, because the effort for creating a model is
potentially reduced. Furthermore, due to our particular attribute mapping, the
DSL’s syntactic structure will be preserved. This is key when transferring the
static semantics of a metamodel towards its derived UML profile.
Updated OCL constructs. As argued in the previous section, existing OCL
constructs of a metamodel have to be updated before they can be transferred
to a derived UML profile. In particular, additional property navigations are
introduced, and references to metaclasses are adapted. As an example consider
the ‘Constraint’ given below, which specifies that a ‘SYSTEM’ AgentType-
Definition shall not be owned by any other AgentTypeDefinition. The
updated ‘Constraint’ has an additional navigation to the extended metaclass
of the «AgentTypeDefinition» stereotype, and a check whether the owner has
the expected stereotype applied.

self.agentKind = AgentKind::SYSTEM implies not
self.owner.oclIsTypeOf(AgentTypeDefinition) -- Metamodel

self.agentKind = SDLUML::AgentKind::SYSTEM implies not self.base_Class
.owner.isStrictStereotypedBy(’SDLUML::AgentTypeDefinition’) -- Profile

Based on the SDL metamodel, we could successfully evaluate the automatic
update and transfer of all 204 OCL ‘Constraints’ defined for MMDomain of SDL.
Hence, the advantage of our automatic update is that no manual rework for OCL
constructs of a derived UML profile is required, in contrast to the approaches
discussed in [5,6,26].
Discussion. Although we could automatically derive a UML profile based on a
metamodel for SDL via our approach, a limitation exists concerning the number
of subsetted/redefined attributes that can be processed. According to the MOF, a
metaclass attribute cannot only redefine/subset a single attribute but also a set of
other attributes. Currently, our approach can only process metaclass attributes
that redefine/subset at most one other attribute, because this is sufficient for
our derived UML profile for SDL. However, this limitation can be remedied by
introducing OCL expressions that calculate attribute values based on more than
one metaclass attribute.

As another drawback of our approach, one may argue that it is more appro-
priate to directly create a UML profile for a DSL of interest instead of specifying

On the Automated Derivation of Domain-Specific UML Profiles 17

a metamodel in a first step. Provided that a metamodel is not of interest, the
direct creation of a UML profile might be an option for a new DSL with low
complexity. But if someone is faced with the creation of a metamodel and a
corresponding UML profile for a DSL with higher complexity such as SDL, then
the initial creation of a metamodel should be preferred. In our point of view,
especially the specification of OCL ‘Constraints’ in the context of a UML profile
is more error-prone rather than in the context of a metamodel. This is because,
in the first case, one has to also take UML’s syntax and semantics into account.

5 Conclusions and Future Work

We proposed a novel approach for the automatic derivation of a UML profile from
a metamodel of an existing computer language or DSL. Although other works
can be employed to derive UML profiles, our approach supports the processing of
MOF-based metamodels, which make use of all modelling concepts provided by
the MOF; particularly noteworthy is our support of ‘subsetted’ and ‘redefined’
metaclass attributes. Consequently, a generated ‘Profile’ does not only contain
‘Stereotypes’ but also additional OCL ‘Constraints’ that are used to preserve the
static semantics. A further novelty of our approach is the automatic update and
transfer of OCL constructs contained in a metamodel towards a derived UML
profile.

The applicability of our approach was evaluated by deriving a metamodel
and a UML profile for SDL [10]. This large case study clearly demonstrated the
approach’s benefits: whereas we spent months to generate previous generations
of SDL’s UML profile by hand [11], our new and highly automated approach
required only some weeks to do the same. Due to space constraints we could not
present the full SDL case study here, but the interested reader can download all
necessary components to re-do the case study from [25].

Regarding future work we wish to use our SDL metamodel and UML profile
for implementing a new version of our SDL-UML Modeling and Validation (SU-
MoVal) framework [12]. In addition, we plan to apply our approach to further
DSLs, with the aim of proving its applicability on a larger scale.

Acknowledgments. We thank Gerald Lüttgen of the Software Technologies Research
Group at the University of Bamberg, Germany, for his many valuable remarks on this
paper. Furthermore, we also thank Richard Paige of the Department of Computer
Science at the University of York, U.K., for several discussions on the paper’s topic.

References

1. Homepage of the M2T transformation tool Acceleo. http://www.eclipse.org/
acceleo/. Accessed 24 Feb 2017

2. Bergmayr, A., Wimmer, M.: Generating metamodels from grammars by chaining
translational and by-example techniques. In: Proceedings of the 1st International
Workshop on Model-driven Engineering by Example, CEUR Workshop, vol. 1104,
pp. 22–31. CEUR-WS.org (2013)

http://www.eclipse.org/acceleo/
http://www.eclipse.org/acceleo/

18 A. Kraas

3. Efftinge, S., Völter, M.: oAW xText: a framework for textual DSLs. In: Modeling
Symposium at Eclipse Summit, vol. 32, pp. 118–121. eclipsecon.org (2006)

4. Fischer, J., Piefel, M., Scheidgen, M.: A metamodel for SDL-2000 in the context of
metamodelling ULF. In: Amyot, D., Williams, A.W. (eds.) SAM 2004. LNCS, vol.
3319, pp. 208–223. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31810-1_14

5. Giachetti, G., Marín, B., Pastor, O.: Integration of domain-specific modelling lan-
guages and UML through UML profile extension mechanism. Int. J. Comput. Sci.
Applicat. 6(5), 145–174 (2009)

6. Giachetti, G., Marín, B., Pastor, O.: Using UML as a domain-specific modeling lan-
guage: a proposal for automatic generation of UML profiles. In: Eck, P., Gordijn,
J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 110–124. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02144-2_13

7. Goldschmidt, T., Becker, S., Uhl, A.: Classification of concrete textual syn-
tax mapping approaches. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA
2008. LNCS, vol. 5095, pp. 169–184. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69100-6_12

8. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Model-based lan-
guage engineering with EMFText. In: Lämmel, R., Saraiva, J., Visser, J. (eds.)
GTTSE 2011. LNCS, vol. 7680, pp. 322–345. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-35992-7_9

9. ITU-T: Recommendation Z.111: Notations and guidelines for the definition of ITU-
T languages. International Telecommunication Union (2008)

10. ITU-T: Recommendation Z.100: Specification and Description Language -
Overview of SDL-2010. International Telecommunication Union (2011)

11. ITU-T: Recommendation Z.109: Specification and Description Language - Unified
Modeling Language profile for SDL-2010. International Telecommunication Union
(2011)

12. Kraas, A.: Towards an extensible modeling and validation framework for SDL-
UML. In: Amyot, D., Fonseca i Casas, P., Mussbacher, G. (eds.) SAM 2014. LNCS,
vol. 8769, pp. 255–270. Springer, Cham (2014). doi:10.1007/978-3-319-11743-0_18

13. Malavolta, I., Muccini, H., Sebastiani, M.: Automatically bridging UML profiles to
MOF metamodels. In: Proceedings of the 41st Euromicro Conference on Software
Engineering and Advanced Applications, pp. 259–266. IEEE (2015)

14. Noyrit, F., Gérard, S., Selic, B.: FacadeMetamodel: masking UML. In: France,
R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590,
pp. 20–35. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33666-9_3

15. OMG: MOF Model to Text Transformation Language - Version 1.0. Object Man-
agement Group (2008)

16. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification
- Version 1.1. Object Management Group (2011)

17. OMG: OMG Meta Object Facility (MOF) Core Specification - Version 2.5. Object
Management Group (2011)

18. OMG: OMG Unified Modeling Language (OMG UML), Infrastructure, Version
2.4.1. Object Management Group (2011)

19. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Version
2.4.1. Object Management Group (2011)

20. OMG: UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems, Version 1.1. Object Management Group (2011)

21. OMG: Object Constraint Language - Version 2.4. Object Management Group
(2014)

http://dx.doi.org/10.1007/978-3-540-31810-1_14
http://dx.doi.org/10.1007/978-3-642-02144-2_13
http://dx.doi.org/10.1007/978-3-540-69100-6_12
http://dx.doi.org/10.1007/978-3-540-69100-6_12
http://dx.doi.org/10.1007/978-3-642-35992-7_9
http://dx.doi.org/10.1007/978-3-642-35992-7_9
http://dx.doi.org/10.1007/978-3-319-11743-0_18
http://dx.doi.org/10.1007/978-3-642-33666-9_3

On the Automated Derivation of Domain-Specific UML Profiles 19

22. Pastor, O., Giachetti, G., Marín, B., Valverde, F.: Automating the interoperabil-
ity of conceptual models in specific development domains. In: Reinhartz-Berger,
I., et al. (eds.) Domain Engineering: Product Lines, Languages, and Conceptual
Models, pp. 349–373. Springer, Heidelberg (2013)

23. Scheidgen, M.: Description of languages based on object-oriented meta-modelling.
Ph.D. thesis, Math.-Natural Sci. Dept. II, Humboldt-University, Berlin, Germany
(2009)

24. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Pearson Education, London (2008)

25. SDL-UML Modeling and Validation (SU-MoVal) framework homepage. http://
www.su-moval.org/. Accessed 24 Feb 2017

26. Wimmer, M.: A semi-automatic approach for bridging DSMLs with UML. Int. J.
Web Inform. Sys. 5(3), 372–404 (2009)

http://www.su-moval.org/
http://www.su-moval.org/

Towards Seamless Hybrid Graphical–Textual
Modelling for UML and Profiles

Lorenzo Addazi1, Federico Ciccozzi1(B) , Philip Langer2, and Ernesto Posse3

1 School of Innovation, Design and Engineering,
Mälardalen University, Väster̊as, Sweden

{lorenzo.addazi,federico.ciccozzi}@mdh.se
2 EclipsSource, Wien, Austria
planger@eclipsesource.com
3 Zeligsoft, Ottawa, Canada

eposse@zeligsoft.com

Abstract. Domain-specific modelling languages, in particular those
described in terms of UML profiles, use graphical notations to maximise
human understanding and facilitate communication among stakeholders.
Nevertheless, textual notations are preferred for specific purposes, due
to the nature of a specific domain, or for personal preference. The mutu-
ally exclusive use of graphical or textual modelling is not sufficient for
the development of complex systems developed by large heterogeneous
teams. We envision a modern modelling framework supporting seam-
less hybrid graphical and textual modelling. Such a framework would
provide several benefits, among which: flexible separation of concerns,
multi-view modelling based on multiple notations, convenient text-based
editing operations, and text-based model editing outside the modelling
environment, and faster modelling activities.

In this paper we describe our work towards such a framework for
UML and profiles. The uniqueness is that both graphical and textual
modelling are done on a common persistent model resource, thus dramat-
ically reducing the need for synchronisation among the two notations.

Keywords: Hybrid graphical–textual modelling · Multi-view mod-
elling · UML · Profiles · MARTE · Xtext · Papyrus

1 Introduction

Model-Driven Engineering (MDE) has been largely adopted in industry as a
powerful means to effectively tame complexity of software and systems and their
development, as shown by empirical research [8]. Domain-Specific Modelling Lan-
guages (DSMLs) allow domain experts, who may or may not be software experts,
to develop complex functions in a more human-centric way than if using tradi-
tional programming languages. The Unified Modeling Language (UML) is the
de-facto standard in industry [8], the most widely used architectural descrip-
tion language [11], and an ISO/IEC (19505-1:2012) standard. UML is general-
purpose, but it provides powerful profiling mechanisms to constrain and extend
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 20–33, 2017.
DOI: 10.1007/978-3-319-61482-3 2

http://orcid.org/0000-0002-0401-1036

Hybrid Graphical–Textual UML 21

the language to achieve UML-based DSMLs (hereafter simply ‘UML profiles’);
in this paper we focus on them. Domain-specific modelling demands high level
of customisation of MDE tools, typically involving combinations and extensions
of DSMLs as well as customisations of the modelling tools for their respective
development domains and contexts. In addition, tools are expected to provide
multiple modelling means, e.g. textual and graphical, to satisfy the requirements
set by development phases, different stakeholder roles, and application domains.

Nevertheless, support for graphical and textual modelling, two complemen-
tary modelling notations, is mostly provided in a mutual exclusive manner. Most
off-the-shelf UML modeling tools, such as IBM Rational Software Architect [18]
or SparxSystems Enterprise Architect [4], focus on graphical editing features and
do not allow for seamless graphical–textual editing. This mutual exclusion suf-
fices the needs of developing small scale applications with only few stakeholder
types. For larger systems, with heterogeneous components and entailing differ-
ent domain-specific aspects and different types of stakeholders, mutual exclusion
is too restrictive and void many of the MDE benefits. When adopting MDE in
large-scale industrial projects, efficient team support is crucial. Therefore, mod-
elling tools need to enable different stakeholders to work on overlapping parts of
the models using different modelling notations (i.e., graphical and textual).

Establishing a seamless modelling environment, which allows stakeholders to
freely choose and switch between graphical and textual notations, can greatly
contribute to increase productivity as well as decrease costs and time to mar-
ket. Consequently, such an environment is expected to support both graphical
and textual modelling in parallel as well as properly manage synchronisation to
ensure consistency among the two. The possibility to leverage on different per-
spectives of the same information always in sync can also boost communication
among different stakeholders, who can freely select their preferred visualisation
means. A hybrid modelling environment for seamless graphical and textual mod-
elling would disclose the following benefits.

Flexible separation of concerns with multi-view modelling based on
multiple notations. The possibility to provide graphical and textual mod-
elling editors for different aspects and sub-parts (even overlapping) of a DSML
enables the definition of concern-specific views characterised by either graphical
or textual modelling (or both). These views can interact with each other and are
tailored to the needs of their intended stakeholders.

Faster modelling tasks. The seamless combination of graphical and textual
modelling is expected to reduce modelling time and effort thanks to two factors.

(1) The single developer can choose the notation that better fits her needs,
personal preference, or the purpose of her current modelling task. While
structural model details can be faster to describe using graph-based enti-
ties, complex algorithmic model behaviours are usually easier and faster to
describe using text (e.g., Java-like action languages).

(2) Text-based editing operations on graphical models, such as copy&paste
and regex search&replace, syntax highlighting, code completion, quick fixes,

22 L. Addazi et al.

cross referencing, recovery of corrupted artefacts, text-based differencing and
merging for versioning and configuration, are just few of the features offered
by modern textual editors. These would correspond to very complex opera-
tions if performed through graphical editors; thereby, most of them are cur-
rently not available for graphics. Seamless hybrid modelling would enable the
use of these features on graphical models through their textual view. These
would dramatically simplify complex model changes; an example could be
restructuring of a hierarchical state-machine by moving the insides of a hier-
archical state. This is a demanding re-modelling task in terms of time and
effort if done at graphical level, but it becomes a matter of a few clicks
(copy&paste) if done at textual level.

Decoupling of modelling activities and modelling environment. Models
can be edited using any text editor even outside the modelling environment.

In this paper we describe our work on providing a framework able to provide
seamless hybrid graphical–textual modelling for UML profiles. The uniqueness
of our framework resides in the fact that, differently from current practices, both
graphical and textual editors operate on a common underlying model resource,
rather than on separate resources, thus heavily reducing the need for synchroni-
sation between the two. Our solutions are built upon open-source platforms and
with open-source technologies.

The remainder of the paper is organised as follows. Section 2 provides a snap-
shot of the states of the art and practice related to hybrid modelling. In Sect. 3
we outline our framework, the intended benefits, and the differences with current
practices. Details on the actual solution and exemplifications on a UML profile
are provided in Sect. 4. The paper is concluded with evaluation results, in Sect. 5,
and an outlook on current and future work, in Sect. 6.

2 States of the Art and Practice

mbeddr [14] is an open-source tool which supports extensions of the C language
tailored for the embedded domain. The tool focuses on enabling higher-level
domain-specific abstractions to be seamlessly integrated into C through modu-
lar language extensions. While mbeddr tackles the very relevant issue of bridging
abstraction gaps between modelling and target languages, it does not address
the seamless integration of different concrete syntaxes exploiting the same level
of abstraction. Umple [22] merges the concepts of programming and modelling
by adding modelling abstractions directly into programming languages and pro-
vides features for actively performing model edits on both textual and graphical
concrete syntaxes. The support for synchronisation is limited, thus prohibiting
certain kinds of modification at graphical level.

A plethora of other open-source tools such as FXDiagram [7], LightUML [10],
TextUML [21], MetaUML [15], PlantUML [17] focus on textual concrete syntax
for actively editing the modelling artefacts, while providing a graphical notation
for visualisation purposes only. FXDiagram is based on JavaFX 2 and provides

Hybrid Graphical–Textual UML 23

on the fly graphical visualisation of actions done through the textual concrete
syntax including change propagation; the focus is on EMF models. LightUML
focuses more on reverse engineering by generating a class diagram representa-
tion of existing Java classes and packages. TextUML is similar to FXDiagram
in the sense that it allows modellers to leverage a textual notation for defin-
ing models, in this case UML, and providing textual comparison, live graphical
visualisation of the model in terms of class diagrams, syntax highlighting, and
instant validation. MetaUML is a MetaPost library for creating UML diagrams
through a textual concrete syntax and it supports a number of read-only dia-
grams, such as class, package, activity, state machine, use case, and component.
Similarly, PlantUML allows the modelling of UML diagrams by using a textual
notation; graphical visualisations are read-only and exportable in various graph-
ical formats. None of these tools provides means for synchronised editing in both
textual and graphical notations nor the possibility to allow customisation of the
related concrete syntaxes. Besides FXDiagram, which is DSML independent,
the others focus on specific DSMLs, hence providing fixed textual and graphical
concrete syntaxes for the considered DSML.

Several research efforts have been directed to mixing textual and graphical
modelling. In [1], the authors provide an approach for defining combined tex-
tual and graphical DSMLs based on the AToM3 tool. Starting from a metamodel
definition, different diagram types can be assigned to different parts of the meta-
model. A graphical concrete syntax is assigned by default, while a textual one can
be given by providing triple graph grammar rules to map it to the specific meta-
model portion. The aim of this approach is similar to ours, but it targets specific
DSMLs defined through AToM3 and is not applicable to UML profiles. Charfi
et al. [3] explore the possibilities to define a single concrete syntax supporting
both graphical and textual notations. Their work is very specific to the mod-
elling of UML actions and has a much narrower scope than our work. In [19], the
authors provide the needed steps for embedding generated EMF-based textual
model editors into graphical editors defined in terms of GMF. That approach
provides pop-up boxes to textually edit elements of graphical models rather than
allowing seamless editing of the entire model using a chosen syntax. The focus
of that paper is on the integration of editors based on EMF, while ours is to
provide seamless textual and graphical modelling for UML profiles. Moreover,
the change propagation mechanisms proposed by the authors are on-demand
triggered by modeller’s commit, while we focus on on-the-fly change propaga-
tion across the modelling views. Related to the switching between graphical and
textual syntaxes, the approaches in [6,23] propose two attempts at integrating
Grammarware and Modelware. Grammarware is a tool by which a mixed model
is exported as text. Modelware is a tool by which a model containing graphical
and textual content is transformed into a fully graphical model. Transformation
from mixed models to either text or graphics is on-demand.

Projective editing is another way to enable different editing views for the
same models, as provided by mbeddr and MelanEE [2]. Concrete syntaxes are
not stored, only the abstract syntax is persistent. Thereby, the modeller edits

24 L. Addazi et al.

the abstract syntax directly, and then selects specific concrete syntax projec-
tions of it. The main benefit is the possibility to project the model in various
concrete syntaxes depending on the modeller. On the other hand, it complicates
modelling activities, since it requires to act directly on the abstract syntax of
the model through editors that are much more complex than parser-based text
editors. Jetbrains MPS [9], on which mbeddr is based, provides a projective
approach similar to MelanEE. Similarly to our approach, Jetbrains MPS uses a
single abstract syntax, but it does not entail “real” text editors, rather providing
text-like form-based editors, which hinders the use of traditional text-based tool
features (e.g. for regex search&replace, diff/merge for versioning).

To summarise, current solutions for mixed textual and graphical modelling
present at least one of the following limitations:

– one of the notations is read-only, intended as a mere visualisation means;
– one of the two notations is enforced for a specific, self-contained portion of a

DSML only;
– concrete syntaxes are predefined and not customisable;
– synchronisation among different concrete syntaxes is not automated and on-

the-fly but rather manual or on-demand.

3 A Hybrid Modelling Framework Based on Xtext
and Papyrus

The goal of our work was to provide a hybrid modelling framework for UML
and profiles based on de-facto standard open-source tools, i.e. Eclipse Modeling
Framework [5] (EMF) as platform, Papyrus [16] for UML (graphical) modelling,
and Xtext [24] for textual modelling. In Fig. 1, we depict the differences between
existing solutions for hybrid modelling and our framework.

Existing approaches, notably the one by Maro et al. [12], tackle the provi-
sion of hybridness by keeping graphical and textual modelling fully detached.
Graphical and textual modelling are performed on two separate models, which
are separately persistent in two physical resources. Given a UML profile, a corre-
sponding Ecore-based DSML representing the profile is automatically generated

Fig. 1. Current approaches compared to our approach

Hybrid Graphical–Textual UML 25

or manually provided. EMF provides automation for this task, but the resulting
Ecore model needs often manual tuning in order to be made usable. Graphical
modelling is performed using the UML editors and the model persists as UML
model resource. On the other hand, textual modelling is performed using gener-
ated Xtext editors and the textual representation persists as an Xtext resource.
Moreover, Xtext works internally with an Ecore model resource, which is kept
in sync with the textual resource by Xtext itself.

In order to keep graphical and textual models in sync, semi-automated mech-
anisms in the form of synchronisation model transformations are provided. These
model transformations are in fact also generated, thanks to higher-order model
transformations (HOTs); this provides a certain degree of flexibility in terms of
evolution of the UML profile and automatic co-evolution of the synchronisation
mechanisms. Nevertheless, HOTs would not work in case the generated Xtext
grammar is customised. This practice is very often needed in order to make the
grammar (and related editors) fit the developer’s needs.

As a concrete example of the need to customize a DSML grammar, consider
the UML-RT language [20]. UML-RT has two core concepts: capsules and pro-
tocols. Capsules are active classes and have a well-defined interface consisting
of ports typed by protocols. Capsules may have an internal structure consisting
of parts that hold capsule instances linked by connectors bound to the corre-
sponding capsule ports. All interaction between capsule instances takes place by
message-passing through connected ports.

UML-RT has a UML profile. If we start from the UML-RT profile, we obtain
an Xtext grammar that contains rules like these:
1 Capsule returns Capsule:
2 ’Capsule’
3 ’{’
4 ’base_Class’ base_Class=[uml::Class|EString]
5 ’}’;
6

7 Class returns uml::Class:
8 Class_Impl | Activity | Stereotype | ProtocolStateMachine | StateMachine_Impl
9 | FunctionBehavior | OpaqueBehavior_Impl | Device | Node_Impl

10 | ExecutionEnvironment | Interaction | AssociationClass | Component;
11

12 Class_Impl returns uml::Class:
13 ’Class’
14 ’{’
15 (’name’ name=String0)?
16 (’visibility’ visibility=VisibilityKind)?
17 ’isLeaf’ isLeaf=Boolean
18 ...
19 (’useCase’ ’(’ useCase+=[uml::UseCase|EString]
20 ("," useCase+=[uml::UseCase|EString])* ’)’)?
21 ...
22 (’ownedAttribute’ ’{’ ownedAttribute+=Property
23 ("," ownedAttribute+=Property)* ’}’)?
24 (’ownedConnector’ ’{’ ownedConnector+=Connector
25 ("," ownedConnector+=Connector)* ’}’)?
26 ...
27 ’}’;

This clearly entails a great amount of information related to UML but not rel-
evant to UML-RT. In fact, the rule for Class_Impl includes clauses for each
and every feature of the UML Class metaclass, many of which we removed for

26 L. Addazi et al.

the sake of space. Of these clauses, many, such as useCase, are irrelevant to
the DSML, and only a few, such as ownedAttribute and ownedConnector, are
relevant, but they do not reflect the concepts of UML-RT, and even the concrete
syntax may not be desirable. For UML-RT, we would like to obtain a grammar
with rules that reflect the DSML’s concepts directly and hides away any addi-
tional UML structure that may be used to represent the concept. For example,
instead of having a single clause ownedAttribute, we would like to have clauses
for ports and parts, in a rule like this:

1 Capsule returns Capsule:
2 ’capsule’ name=EString
3 ’{’
4 (ports+=RTPort)*
5 (parts+=CapsulePart)*
6 (connectors+=Connector)*
7 StructuredTypeCommonCoreFragment
8 BehaviourFragment
9 ’}’;

Xtext is designed for being used with EMF-based modeling languages. The
UML implementation in Eclipse is EMF-based and thus Xtext can be used to
implement textual concrete syntaxes for UML. However, Xtext is not designed
to work with UML profiles. This raises the need for explicit complex synchroni-
sation between the two, both at abstract and concrete syntax level. We provide
a different approach to make Xtext work with UML profiles (right-hand side of
Fig. 1), by exploiting a single underlying abstract syntax (UML-based DSML),
two concrete syntaxes (graphical given by UML and textual given by Xtext),
one single persistent resource (UML resource), and thereby reducing the need for
ad-hoc heavyweight synchronisation mechanisms. Synchronisation is instead per-
formed by Xtext in terms of serialisation and de-serialisation operations between
the UML model and the Xtext model, in the same way as Xtext naturally does
between the Ecore model and the Xtext model. Our solution provides the fol-
lowing improvements to the current state of the practice:

– Grammar customisability. The Xtext grammar can be customised and
refactored to fit the developer’s needs. This does not jeopardise the (de-)se-
rialisation mechanisms as long as it does not break the conformance of models
to the UML profile specification (i.e., metamodel).

– Cross-profile hybridness. Virtually, any UML profile can be leveraged
without the provision of ad-hoc complex synchronisation transformations. In
practice, for complex profiles, (de-)serialisation might need additional input
from the hybrid DSML developer (e.g., stereotypes application transformation
described in Sect. 4.2).

– On-the-fly changes propagation. Model changes done in one view (e.g.,
UML graphical) are seamlessly reflected and visible on-the-fly in the other view
(e.g., Xtext textual); existing synchronisation mechanisms propagate changes
on-demand following a specific request from the developer.

– Cross-notation multi-view modelling. Different Xtext grammars and edi-
tors representing different sub-sets (even partially overlapping) of the UML
profile (or several profiles) can seamlessly work on the same UML resource,

Hybrid Graphical–Textual UML 27

along with UML editors. Also in this case, the precondition is that the Xtext
grammars enforce model conformance to the entailed profiles.

Other indirect benefits stem from the aforementioned ones. An example is the
fact that code generators can reuse a single, shared abstract syntax for both
graphical and textual representations of a model, without relying on additional
transformations which result in added maintenance costs. Another example is
that different stakeholders can view and edit model parts of their collaborators
in their preferred syntax (or in a syntax that is optimised for them). In this way,
potential inconsistencies can be identified very early already during the modeling
process and communication among different stakeholders is greatly improved.

In the next section we describe our hybrid modelling solution from a technical
perspective, providing concrete exemplifications of the aforementioned benefits.

4 Technical Solution

Our hybrid graphical–textual UML modelling framework is achieved by com-
bining Papyrus for UML and Xtext. Existing approaches combining UML mod-
elling and Xtext, mentioned in Sect. 2, rely on two completely separated sets of
abstract syntax, concrete syntax, and persistent resources. This results in sep-
arate graphical and textual modelling, where partial hybridness is achieved by
explicit synchronisation between the two concrete syntaxes. Synchronisation is
complicated by the fact that graphical and textual abstract syntaxes are sep-
arated. Complex exogenous DSML-specific model transformations are needed
to realise it. In our solution we provide a more flexible hybrid solution, based
on one single abstract syntax (UML-based DSML only, instead of UML-based
DSML for graphical and Ecore-based DSML for textual, in Fig. 1), two separated
concrete syntaxes (UML model and Xtext model in Fig. 1, needed to overcome
limitations of projective approaches), and one single persistent resource.

One major challenge of providing such a solution is that the resource man-
agement in Xtext entails the creation and maintenance of a separated Xtext-
specific resource. We provide a solution for making Xtext work on the same
UML resource as Papyrus, by acting on how the content of the Xtext textual
editor is retrieved from and pushed to its underlying resource. Since we are inter-
ested in UML profiles, another major challenge is represented by expressing UML
stereotypes and their applications in Xtext grammars since there is no concept
in Xtext that corresponds to profiling. We solved this challenge by providing a
way to define alternative rules, following a superclass/subclass relationship pat-
tern, which enables editing of both stereotype-specific and base UML element
properties.

In the next sections we describe in detail how we tackled the two challenges.

4.1 Extending Xtext Resource Management

Xtext does not provide out of the box support for the direct manipulation,
including persistence, of UML resources. Xtext models are in fact stored as Xtext

28 L. Addazi et al.

resources as plain textual artefacts and managed by the so called XtextResource,
which is an Xtext-specific implementation of the EMF resource. Serialisation
and de-serialisation of textual models to and from in-memory Ecore models are
managed by dedicated serialiser and parser, which are automatically generated
from the related Xtext grammar. Defining an Xtext-based textual language for
UML (or any UML profile) causes Xtext to change the default resource associated
to the “.uml” file extension from UMLResource to XtextResource. Intuitively,
this change affects all editors in the modelling environment working on UML
resources, such as those provided by Papyrus. As soon as an Xtext textual editor
is created for files with extension “.uml”, UML models would be stored as plain
text, hence not manageable by Papyrus model editors.

In order to solve this issue, we reversed the dependency relationship imposed
on other editors by Xtext. More specifically, we enhanced the Xtext textual
editor content management so to enable its interaction with UML resources
too. In practice, the Xtext textual editor relies on a dedicated provider class to
access the resource underlying a model, i.e. DocumentProvider. When a UML
model is opened using an Xtext textual editor, the enhanced DocumentProvider
retrieves the content of the associated UML resource, serialises it, and populates
the textual editor with it. Analogously, each time a textual model is saved in the
Xtext textual editor, the enhanced DocumentProvider propagates the applied
changes to the underlying UML resource by first parsing the editor’s content and
then building or modifying the UML model to be stored.

4.2 Modelling UML Stereotypes Application in Xtext

Xtext does not provide out of the box support for UML profiles. In order to
enable Xtext-based textual languages and related editors to feature UML profiles
and stereotypes application, we operated on the way Xtext creates and maintains
grammars and parsed models.

Given a grammar specification, Xtext creates a corresponding metamodel
defined in Ecore, which we call “grammar metamodel”, describing the structure
of the grammar’s abstract syntax tree. This metamodel can be imported in
case the grammar relates to an existing grammar metamodel. Parsing of textual
models conforming to an Xtext grammar is stored in-memory in terms of the so
called grammar model, which conforms to the grammar metamodel.

Let us walk through the steps to provide support for UML profiles and stereo-
types application in Xtext-based textual languages. Below, we depict an excerpt
of the Xtext grammar providing a textual language, MarText, for the UML pro-
file for MARTE [13].

Hybrid Graphical–Textual UML 29

1 import "http://www.eclipse.org/uml2/5.0.0/UML" as uml
2 generate marText "http://www.eclipse.org/papyrus/uml/marte/MarText"
3

4 Model returns uml::Model :
5 ’model’ {uml::Model} name=ID (’{’
6 packagedElement+=Component*
7 ’}’)? ’;’
8

9 Component returns uml::Component :
10 HwProcessor | HwCache |
11 ’component’ {uml::Component} name=ID (’{’
12 packagedElement+=Component*
13 ’}’)? ’;’
14

15 HwProcessor returns HwProcessor :
16 ’processor’ {HwProcessor} name=ID (’{’
17 (’cores:’ nbCores=INT ’;’)? &
18 (’caches:’ ’{’
19 packagedElement+=HwCache*
20 ’};’)?
21 ’}’)? ’;’
22

23 HwCache returns HwCache :
24 ’cache’ {HwCache} name=ID (’{’
25 ’level:’ level=INT ’;’
26 ’}’)? ’;’

First, we import the UML metamodel as baseline for the Xtext grammar to
access UML metaclasses during the definition of the grammar rules (line 1 of
the MarText grammar). For each stereotype in the profile, we define a dedicated
grammar rule for enabling the textual editing of stereotype properties (e.g.,
HwProcessor stereotype rule at line 15 of the MarText grammar).

While enabling the editing of stereotype properties, we still need to offer the
possibility to edit the properties of the base UML element to which the stereotype
can be applied. To do so, we first looked at how multiple alternatives for a given
grammar rule are represented in the grammar metamodel1. Given a rule A, with
rules B and C as alternatives, Xtext defines three corresponding metaclasses
such that A is a superclass of B and C. We leverage this superclass/subclass
relationship pattern by defining a stereotype-specific rule as alternative to the
rule for the base UML element to which the stereotype can be applied (e.g., Com-
ponent is superclass of HwProcessor and HwCache, in lines 9–10 of the MarText
grammar). The developer can thereby access both stereotype-specific and base
UML element properties as with Papyrus UML model editors.

In order to propagate stereotypes application among the two notations, we
acted on how DocumentProvider retrieves and stores contents of the UML
resource. We defined an endogenous in-place model transformation, which maps
the application of stereotypes to UML base elements by following the super-
class/subclass relationship pattern mentioned above and based on the MARTE
profile metamodel definition. Going from textual to graphical, the transforma-
tion navigates the Xtext model and sets stereotypes to base UML elements in
the UML resource accordingly. An example depicted in Fig. 2 is represented by
processor processorA in the textual model, which leads to the application of the

1
The interested reader can refer to the Xtext specification [24] for further details about the overall
inference process.

30 L. Addazi et al.

Fig. 2. MarText (top-left), Papyrus tree-based (bottom-left), and Papyrus graphical
(right) editors in Eclipse.

stereotypes «Component»«HwProcessor» to processorA in the graphical model.
Going from graphical to textual, the transformation navigates the UML resource
and reproduces the stereotyped element, without explicitly reporting base UML
element info, in the textual format. An example depicted in Fig. 2 is represented
by «Component»«HwProcessor» processorA in the graphical model, which leads
to the definition of processorA as processor in the textual model.

5 Evaluation and Discussion

In Sect. 3, we listed a set of four improvements to current practices brought by
our framework. We provided them as follows.

Grammar customisability and cross-profile hybridness. The framework
works on a manually edited and customised Xtext grammar for MARTE. More-
over, the solution does not entail complex profile-specific synchronisation trans-
formations between textual and graphical notations. The only transformation
needed, for propagating stereotypes application across the notations, is general-
isable since based on the superclass/subclass relationship pattern between base
UML elements and applicable stereotypes. That is to say, the mechanism itself
is cross-profile, while a profile-specific instance of it, as the one we used for Mar-
Text, can be generated by a specific profile metamodel definition, in some cases
with the help of the hybrid DSML developer.

On-the-fly changes propagation. Model changes done in one view are seam-
lessly reflected and visible in the other views (graphical, textual and tree-

Hybrid Graphical–Textual UML 31

based views in Fig. 2). To appreciate how changes are propagated on-the-fly, the
reader can refer to the movie at http://www.mrtc.mdh.se/HybridModelling/demo

movie.zip.

Cross-notation multi-view modelling. We showed how an Xtext-based tex-
tual language (MarText), with related grammar and editor, representing only a
sub-set of the HwLogical package of MARTE can seamlessly work on a UML
resource containing other UML and MARTE concepts (e.g., UML elements in
SW_system package and MARTE «allocated» relations in Fig. 2). For instance,
MarText would be suitable for a platform modeller, who might not need or want
to view functional details. This is possible thanks to our enhanced Xtext resource
management, which, instead of overwriting the in-memory model with plain text,
propagates changes directly to the UML resource.

Additionally, we made an experiment to compare modelling times using the
different notations in four scenarios: Create 1, Modify 1, Create 2, and Modify
2. Create 1 and Modify 1 are run on the platform package depicted in Fig. 2. In
Create 1 we model the platform package, and in Modify 1 we add an additional
HwCache cacheB element to the model and assigned to processorA. Create 2 and
Modify 2 are represented by modelling and modifying (renaming all states from
‘state x’ to ‘x’) a UML state-machine composed of 6 states (1 initial, 1 final, 1
join, 3 normal states) and 5 transitions among the states. The modelling tasks
were performed individually by a set of developers, with similar experience in
UML modelling with Papyrus and Xtext-based textual languages. All developers
got a 2-hours preparation time to study the Xtext languages for MarText and
UML state-machines2. Table 1 shows the experiment results. We provide the
arithmetic mean of the individual sets of values.

Table 1. Mean times for performing the tasks in minutes

Notation Modelling task

Create 1 Modify 1 Create 2 Modify 2 Total

Graphical 1.06 0.27 0.52 0.18 2.03

Tree-based 0.46 0.23 2.15 0.22 3.06

Textual 0.24 0.08 1.42 0.09 1.83

Hybrid (0.24) (0.08) (0.52) (0.09) 0.93

Textual editing results faster when creating stereotyped elements and setting
their properties (Create 1). This is due to the possibility to customise Xtext
grammars to only require a minimum amount of information to be entered by the
modeller (while the underlying base UML elements are created by our stereotypes
application transformation). The same goes for the modification of an existing
model by inserting a new model element (Modify 1).
2

The Xtext language for state-machines is not in the scope of this paper and was created for
experimental purposes only.

http://www.mrtc.mdh.se/HybridModelling/demo_movie.zip
http://www.mrtc.mdh.se/HybridModelling/demo_movie.zip

32 L. Addazi et al.

The creation of state-machines resulted to be faster with the graphical nota-
tion (Create 2). This is mainly due to a swifter creation of transitions between
states using the graphical view. Transition modelling is also the reason why the
tree-based notation resulted way worse than the other two in this scenario (a
much higher amount of “clicks” is needed for creating transitions). The textual
notation resulted to be faster than the others when renaming model elements, as
expected. This is due to textual regex search&replace; while for a bigger model
the times for renaming elements would linearly increase if done through tree-
based or graphical notations, for the textual notation this is not the case, since
regex search&replace would not be affected in the same way by a higher number
of hits. Looking at the total modelling times, we can see how combining graphi-
cal and textual notations (column ‘Total’ row ‘Hybrid’ in Table 1) allows to get
the most out of them, resulting faster than all the others.

6 Outlook

In this paper we outlined the initial steps towards a hybrid seamless graphical–
textual modelling framework for UML profiles based on Papyrus and Xtext. The
uniqueness of our framework is that both graphical and textual modelling act
on a single common persistent model resource, thus requiring lower synchroni-
sation effort than current approaches. By seamlessly combining graphical and
textual modelling, the framework can mitigate the drawbacks of both as well as
emphasise and combine their benefits. We showed several of them, such as flex-
ible separation of concerns, multi-view modelling based on multiple notations,
convenient text-based editing operations, and faster modelling activities.

We are currently working on a façade-based approach for improving the
encapsulation and reusability of the support for profiles. The idea is to provide
means for defining profile-specific custom implementations of complex stereotype
elements (as in the case shown in the paper regarding UML-RT), which create
and maintain the UML “boilerplate elements” behind them. In the presented
solution we only provide limited support for this. Moreover, we are working on
a parametric automated generation of Xtext grammars from UML profiles in
order to support the creation of hybrid DSMLs.

Acknowledgements. We would like to thank Simon Redding, Francis Bordeleau,
and Matthias Tichy for the fruitful discussions and support. This work is partially sup-
ported by the Papyrus Industry Consortium(https://wiki.polarsys.org/Papyrus IC),
the EUREKA network Hybrid Modeling project(http://www.eurekanetwork.org/
project/id/10700), and the KK-foundation MOMENTUM project(http://www.es.
mdh.se/projects/458-MOMENTUM).

References

1. Pérez Andrés, F., De Lara, J., Guerra, E.: Domain specific languages with graph-
ical and textual views. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE
2007. LNCS, vol. 5088, pp. 82–97. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89020-1 7

https://wiki.polarsys.org/Papyrus_IC
http://www.eurekanetwork.org/project/id/10700
http://www.eurekanetwork.org/project/id/10700
http://www.es.mdh.se/projects/458-MOMENTUM
http://www.es.mdh.se/projects/458-MOMENTUM
http://dx.doi.org/10.1007/978-3-540-89020-1_7
http://dx.doi.org/10.1007/978-3-540-89020-1_7

Hybrid Graphical–Textual UML 33

2. Atkinson, C., Gerbig, R.: Harmonizing textual and graphical visualizations of
domain specific models. In: Proceedings of the Second Workshop on Graphical
Modeling Language Development, pp. 32–41. ACM (2013)

3. Charfi, A., Schmidt, A., Spriestersbach, A.: A hybrid graphical and textual notation
and editor for UML actions. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 237–252. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02674-4 17

4. SparxSystems Enterprise Architect. http://www.sparxsystems.eu/enterprise
architect/. Accessed 17 Feb 2017

5. Eclipse Modeling Framework. https://www.eclipse.org/modeling/emf/. Accessed
17 Feb 2017

6. Engelen, L., van den Brand, M.: Integrating textual and graphical modelling lan-
guages. Electron. Notes Theor. Comput. Sci. 253(7), 105–120 (2010)

7. FXDiagram. http://jankoehnlein.github.io/FXDiagram/. Accessed 17 Feb 2017
8. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-

ment of MDE in industry. In: 2011 33rd International Conference on Software
Engineering (ICSE), pp. 471–480. IEEE (2011)

9. Jetbrains MPS. https://www.jetbrains.com/mps/. Accessed 17 Feb 2017
10. LightUML. http://lightuml.sourceforge.net/. Accessed 17 Feb 2017
11. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs

from architectural languages: a survey. IEEE Trans. Softw. Eng. 39(6), 869–891
(2013)

12. Maro, S., Steghöfer, J.P., Anjorin, A., Tichy, M., Gelin, L.: On integrating graphical
and textual editors for a UML profile based domain specific language: an industrial
experience. In: Proceedings of the 2015 ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2015, pp. 1–12. ACM, New York (2015).
http://doi.acm.org/10.1145/2814251.2814253

13. UML profile for MARTE. http://www.omg.org/spec/MARTE/. Accessed 17 Feb
2017

14. mbeddr. http://mbeddr.com/. Accessed 17 Feb 2017
15. MetaUML. https://github.com/ogheorghies/MetaUML. Accessed 17 Feb 2017
16. Papyrus. https://eclipse.org/papyrus/. Accessed 17 Feb 2017
17. PlantUML. http://plantuml.com/. Accessed 17 Feb 2017
18. IBM Rational Software Architect. http://www-03.ibm.com/software/products/

en/ratsadesigner/. Accessed 17 Feb 2017
19. Scheidgen, M.: Textual modelling embedded into graphical modelling. In: Schiefer-

decker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 153–168.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-69100-6 11

20. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object Oriented Modeling. Wiley
& Sons, Chichester (1994)

21. TextUML. http://abstratt.github.io/textuml/. Accessed 17 Feb 2017
22. Umple. http://cruise.eecs.uottawa.ca/umple/. Accessed 17 Feb 2017
23. Wimmer, M., Kramler, G.: Bridging grammarware and modelware. In: Bruel, J.-M.

(ed.) MODELS 2005. LNCS, vol. 3844, pp. 159–168. Springer, Heidelberg (2006).
doi:10.1007/11663430 17

24. Xtext. http://www.eclipse.org/Xtext/. Accessed 17 Feb 2017

http://dx.doi.org/10.1007/978-3-642-02674-4_17
http://www.sparxsystems.eu/enterprisearchitect/
http://www.sparxsystems.eu/enterprisearchitect/
https://www.eclipse.org/modeling/emf/
http://jankoehnlein.github.io/FXDiagram/
https://www.jetbrains.com/mps/
http://lightuml.sourceforge.net/
http://doi.acm.org/10.1145/2814251.2814253
http://www.omg.org/spec/MARTE/
http://mbeddr.com/
https://github.com/ogheorghies/MetaUML
https://eclipse.org/papyrus/
http://plantuml.com/
http://www-03.ibm.com/software/products/en/ratsadesigner/
http://www-03.ibm.com/software/products/en/ratsadesigner/
http://dx.doi.org/10.1007/978-3-540-69100-6_11
http://abstratt.github.io/textuml/
http://cruise.eecs.uottawa.ca/umple/
http://dx.doi.org/10.1007/11663430_17
http://www.eclipse.org/Xtext/

Modeling Architectures
of Cyber-Physical Systems

Evgeny Kusmenko1, Alexander Roth1, Bernhard Rumpe1,2,
and Michael von Wenckstern1(B)

1 Software Engineering, RWTH Aachen, Aachen, Germany
{kusmenko,roth,rumpe,vonwenckstern}@se-rwth.de

2 Fraunhofer FIT, Aachen, Germany
http://www.se-rwth.de

http://www.fit.fraunhofer.de

Abstract. Cyber-physical systems (CPS) in automotive or robotics
industry comprise many different specific features, e.g., trajectory plan-
ning, lane correction, battery management or engine control, requiring
a steady interaction with their environment over sensors and actuators.
Assembling all these different features is one of the key challenges in
the development of such complex systems. Component and connector
(C&C) models are widely used for the design and development of CPS
to represent features and their logical interaction. An advantage of C&C
models is that complex features can be hierarchically decomposed into
subfeatures, developed and managed by different domain experts. In this
paper, we present the textual modeling family MontiCAR, Modeling
and Testing of Cyber-Physical Architectures. It is based on the C&C
paradigm and increases development efficiency of CPS by incorporating
(i) component and connector arrays, (ii) name and index based
autoconnections, (iii) a strict type system with unit and accu-
racy support, as well as (iv) an advanced Math language support-
ing BLAS operations and matrix classifications. Arrays and their
autoconnection modes allow an efficient way of modeling redundant com-
ponents such as front and rear park sensors or an LED matrix system
containing hundreds of single dimmable lights. The strict type system
and matrix classification provide means for integrated static verifica-
tion of C&C architectures at compile time minimizing bug-fixing related
costs. The capabilities and benefits of the proposed language family are
demonstrated by a running example of a parking assistance system.

1 Introduction

Development of Cyber-Physical Systems (CPSs) rises domain specific challenges
that are rarely present in other software engineering disciplines such as enter-
prise applications and web development. These challenges mainly originate from
steady interactions of such systems with the real world through imperfect sensors
and actors while being exposed to complex environments and physical laws.

c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 34–50, 2017.
DOI: 10.1007/978-3-319-61482-3_3

Modeling Architectures of Cyber-Physical Systems 35

Germany’s industrial de facto standard to address these challenges is the
exida R©/BMW SMArDT1 approach, which consists of four layers: object of reflec-
tion (textual requirements and use cases), logical layer (functionality modeled by
abstract C&C models and underspecified activity diagrams), concrete technical
concept (deterministic C&C models and C code), and realization (e.g., ECUs,
CAN-BUS, Flexray, and timing). C&C modeling strengths on the logical layer
comprise the ability to describe architectures by components executing compu-
tations and information flows modeled via connectors between their interfaces.
The paradigm focuses on software features and their logical communication.
Due to hierarchal component decomposition, large and complex systems can be
developed by different stakeholders in a divide and conquer manner. Prominent
examples of C&C languages - used in both academia and industry - are Simulink
[28] and LabView [20].

A C&C modeling approach should be easy to use and let the developer focus
on the functionality of the system likewise it should reduce the error-proneness in
the design phase. To fulfill these demands, we derived a set of requirements for a
language to model the logical layer of CPS from a series of automotive, embedded
and CPS projects. Today, these requirements are addressed by the intersected
features of currently existing C&C modeling approaches rather than by one
unified solution. Hence, this paper presents the MontiCAR language family, a
textual modeling DSL based on the C&C paradigm. MontiCAR incorporates a
strict type system with an integrated unit support allowing developers to work
with physical quantities in a type-safe manner and liberating them from unit
checks and conversion. MontiCAR types have a value range and a resolution to
account for limited operating areas and accuracies of the system components.

Since many CPS tasks can be solved by mathematical models, an advanced
math language is an integral part of the MontiCAR language family. Addition-
ally, to guarantee system properties and to increase the performance of the gen-
erated code, we introduce a matrix type system that tracks matrix size, matrix
elements’ type, and algebraic properties. It is used at compile-time to infer vari-
able properties of the computation results for simulation purposes and to choose
the best internal data representation (e.g., full or sparse matrix storage).

The main contributions of this paper are: (C1) a comprehensive com-
parison of different C&C concepts needed for modeling embedded
software, (C2) high-Level modeling of dataflows including its seman-
tics, and (C3) new concepts for component reuse based on arrays and
efficient connector descriptions.

This paper is structured as follows. First, a running example is described
in Sect. 2, which is used to motivate the requirements explained in Sect. 3. Exist-
ing C&C modeling approaches are evaluated with respect to these requirements
in Sect. 4. Based on these requirements, the following sections present the Mon-
tiCAR language family (Sect. 5) with a focus on EmbeddedMontiArc (Sect. 6)
and MontiMath (Sect. 7).

1 http://www.exida.pl/EnterTheDOOR/help/soley-generation.htm.

http://www.exida.pl/EnterTheDOOR/help/soley-generation.htm

36 E. Kusmenko et al.

2 Running Example

A running example of a lightweight but incomplete driver assistance software sys-
tem providing automated emergency braking and visual user feedback is depicted
as a simplified C&C architecture in Fig. 1. Since this is a logical model, it does
not exhibit any technical details such as assignments of components to concrete
ECUs or transmission protocols. The ParkingAssistant component interface
is defined by its in and out ports: In ports on the left hand side receive signals
needed for component computations including the GPS position, speed, steering
angle of the vehicle, as well as a port array for complex radar signals containing
in-phases and quadrature components for object movement detection. In con-
trast, out ports on the right hand side represent the calculated results, i.e., user
feedback for the dashboard and a brakeForce array controlling the car’s four
brakes.

Fig. 1. C&C architecture of an Park Assistant component in automated vehicle.

The behavior of the ParkingAssistant (i.e., its concrete computation) is
decomposed into several subcomponents each handling one specific task: filter-
ing signals (Filter), fusioning sensor data (SensorFusion), calculating overall
emergency brake effort (EmergencyBrake) depending on the distance, assigning
concrete brake forces to each wheel (BrakeActuator) relative to the car’s direc-
tion, and creating user feedback. The connectors, depicted by solid arrow lines,
represent directed data flows between subcomponents.

A major concern in embedded systems is that most components only guaran-
tee correct behavior for certain working conditions, e.g., radars are only able to
detect obstacles within a certain area due to their physical nature. Models need
to be enriched with such details to ensure verifiability and to enforce correctness
at runtime. For example, EmergencyBrake uses radar measurements to execute
its task, where it needs an obstacle detection within a predefined range having
no blind spots between the sensors’ beams. However, it is capable of processing
input values outside this area, say all positive distances. The component might
not have been designed to cope with unusual inputs such as negative distances.

Modeling Architectures of Cyber-Physical Systems 37

Hence, it is essential to make supported ranges, operational areas, and accura-
cies of used types explicit in models so that they can be validated for system
integrity and compatibility; e.g., it can be ensured that OEMs only use radars
fulfilling the accuracy requirement of EmergencyBrake instead of choosing the
cheapest one. Furthermore, explicit declarations of the ports’ units are essential
to make interconnections between ports describing different physical quantities,
e.g., lengths and speeds, impossible and to provide automatic conversion between
ports working with different unit prefixes such as meters and kilometers, or dif-
ferent systems of units, e.g., metric and imperial. Such static checks are usually
not provided by existing C&C languages (cf. Sect. 4).

3 Requirements

From industry cooperations using CPS modeling, we derived the following
requirements to solve the challenges introduced in Sect. 1:

– (R1) Unit support. In- and output ports should support (R1.1) metric,
(R1.2) imperial, and (R1.3) customized units, such as pixel-per-inch.

– (R2) Unit conversion. Units should be automatically converted to SI units
and prefixes should be resolved (R2.1) for port connections and (R2.2) in
mathematical expressions.

– (R3) Array support. Redundancy in models should be avoided by supporting
(R3.1) port arrays and (R3.2) component arrays. (R3.3) A convenient mecha-
nism to interconnect and access ports and components should be supported.

– (R4) Domain and Accuracy. There is a need for concepts to model the
domain, i.e., (R4.1) minimum, (R4.2) maximum, and (R4.3) resolution, of
the values exchanged between components, and (R4.4) accuracies for sensor
and actuator components. In addition, (R4.5) multiple domains with separate
accuracies should be supported, e.g., high accuracy of a distance sensor is
essential if the object is near but less important if the object is far away.

– (R5) Static Analysis. Theoretical concepts and tools to support static analy-
sis, i.e., (R5.1) over- and (R5.2) underflow checks, (R5.3) division by zero, and
(R5.4) detection of components in dead paths.

– (R6) Reuse concepts. (R6.1) A library concept for components and (R6.2)
ports configurable over parameters is needed. Advanced reuse concepts such
as (R6.3) configuration parameters and (R6.4) generics are required to allow
modifications of component interfaces and behavior.

– (R7) Matrix supports. Discrete control systems are often described by
matrix-vector expressions. To reduce error-proneness a type system should
support (R7.1) static matrix dimension, (R7.2) units, and (R7.3) detection
of domain incompatibilities, e.g., multiplying two 3× 3 matrices having the
domain [0, 1]3×3 must result in a [0, 3]3×3 matrix .

– (R8) Differential equations. Physical systems are often modeled by differ-
ential equations. A native support can facilitate the system design.

38 E. Kusmenko et al.

– (R9) Acausal Modeling support. Acausal modeling is needed to model sys-
tems where the behavior of each system’s component depends on the global
system architecture rather than having casual data flows with static compo-
nent behavior. An example is a non-ideal voltage source whose output depends
on the load connected.

– (R10) Operational area. It should be possible to define the operational area
of a system, i.e., the constraints regarding sensor values in which the system
is fully operational. For example, if multiple distance sensors are used, the
operational area can be defined by at least two sensors detecting the obstacle.

4 Existing C&C Modeling Languages

This section compares the most important C&C modeling languages, listed in
Table 1, according to the requirements in Sect. 3.

Most C&C modeling languages do not support units. In SystemC, unit
support can be added by defining unit types as C++ preprocessor templates
[23, p. 299]. In Simulink, units are used for documentation purposes only, e.g.,
in the bus editor. Partial unit support is available in xADL extending the
meta-schema, Verilog AMS and VHDL AMS. The AMS extensions provides
the nature concepts for defining a collection of attributes with own unit types
[36, 3.6.1]. The unit annotation is passed to the simulator to check compatibility
using Units Value Rule. Modelica, SysML, LabView, AutoSAR fully support SI
units according to ISO 31-1992. Metric, imperial and customized units can be
expressed as unit dimensions. Developers might need to provide transformations
to SI units for own defined ones. MontiCAR uses the same unit meta model as
defined in SysML 1.4 specification Sect. 8.6.4 to support units.

All languages having full SI unit support also allow unit conversions. Simple
conversion (R2.1) is possible in AMS languages (Verilog AMS, VHDL AMS),
since prefixes such as Pico, Micro are part of the number, e.g., 3 pA still has
Ampere as unit. Even though AMS languages support conversion of flow to
potential and vice versa (using disciplines), they do not support more complex
conversions such as kilometer per hour to miles per hour.

Support for port and/or component arrays (R3) is not present in Simulink,
SysML, Marte, AutoFocus3, xADL, AutoSAR, LabView, MontiArc, Rapide,
SADL, Scade, and TECS. Partial support for arrays is given in Modelica by using
a class as a component. Classes can be instantiated as an array. This concept has
been reused in MontiCar to support component arrays. Ptolemy supports arrays
by using the Java array syntax and semantics, allowing only to define the num-
ber of array dimensions but not their concrete array size. Verilog supports one
and two dimensional arrays using a similar syntax as Ptolemy. VHDL supports
ranged and unconstrained arrays of defined types. SystemC allows to declare
array sizes of ports and signals using a C-like syntax. UniCon supports fixed
length arrays of simple types. WRIGHT supports multiple instances of pipes,
which can be seen as arrays of the same connector.

Modeling Architectures of Cyber-Physical Systems 39

Table 1. Comparison of C&C tools and standards (*),
√

: yes, P: partially, -: no

A
rc

hi
te

ct
ur

al
de

sc
ri

pt
io

n
la

ng
ua

ge

U
ni

t
su

pp
or

t
(R

1)

U
ni

t
co

nv
er

si
on

(R
2)

C
om

po
ne

nt
/P

or
t

ar
ra

ys
(R

3)

D
om

ai
n

(R
4.

1)
,(

4.
2)

R
es

ol
ut

io
n

(R
4.

3)

St
at

ic
an

al
ys

is
(R

5)

C
on

fig
ur

at
io

n
pa

ra
m

et
er

s
(R

6.
3)

G
en

er
ic

s
(R

6.
4)

M
at

ri
x

Su
pp

or
t

(R
7)

D
iff

er
en

ti
al

E
qu

at
io

n
(R

8)

A
ca

us
al

M
od

el
in

g
su

pp
or

t
(R

9)

O
pe

ra
ti

on
A

re
a

(R
10

)

Simulink [28] - - -
√

- p
√

-
√

- - -
Modelica*[4,16]

√ √
P

√ √
P

√ √ √ √ √
-

SysML*[31]
√ √

- P P -
√ √

- - - -
Marte*[30]

√ √
- P P -

√ √ √ √
- -

AutoFocus3 [2] - - -
√

-
√ √

- - - - -
xADL [11] P - - P - P P - - - - -
AutoSAR*[5,6]

√ √
-

√ √
P

√
- - - - -

LabView [20]
√ √

-
√ √ √ √

-
√

P - -
MontiArc [17] - - -

√ √
P

√ √
- - - -

MontiCar (this paper)
√ √ √ √ √ √ √ √ √

- -
√

Ptolemy [14] - -
√

- -
√ √ √

- - - -
Verilog (AMS) [36]

√
P

√ √ √ √ √ √
- P

√
-

VHDL (AMS) [3,15]
√

P
√ √ √ √ √ √

- P - -
Rapide [25] - - - - -

√ √
- - - - -

SADL [18] - - - - -
√ √

- - - - -
Scade [13] - - - - -

√
- - - - - -

SystemC [34] - -
√

- -
√ √ √

- - - -
TECS [7] - - - - -

√ √
- - - - -

UniCon [35]
√

-
√ √ √ √ √

- - - - -
WRIGHT [1] - -

√
- -

√ √
- - - - -

Multiple languages provide support to specify the domain together with its
resolution of a variable as required by (R4). Simulink allows to specify the mini-
mum and maximum values for a signal and a resolution for fixed data types using
the data type parameters slope and bias. LabView supports creation of custom
scales, which can be linear, polynomial or table based. This facilitates flexibility
for the creation of custom resolutions, ranges. However, for types with multi-

40 E. Kusmenko et al.

ple domains, only table scale is applicable. Modelica allows to specify attributes
with a variable declaration. Both, reals and integers support a minimum and
a maximum value. A nominal attribute can be used for automatic model scal-
ing. AUTOSAR requires all of its integer types to have a constraint subnode to
specify a scaling with minimum and maximum values.

SysML allows to create value types that are classifiers having the stereotype
«data type» and the corresponding attributes, e.g., min and max. Using this
data type allows setting minimum and maximum values for variables using it,
e.g., in an object diagram. Alternatively, OCL constraints can be used to specify
ranges and resolutions. Verilog-AMS natures concept supports type parameters
such as abstol, and max absolute tolerance to define tolerances and allowed value
ranges primarily for the VLSI domain. VHDL-AMS provides a similar approach
but uses tolerances to specify the preciseness of approximations provided by
numerical algorithms.

SysML, Marte have no concepts to detect over-, underflows, division by zero
or unused components (R5). The Simulink Design Verifier detects division by
zero. Over- and underflow checks are done at runtime. However, no compile-time
verification is possible. Autofocus 3 uses model checkers (NuSMV/nuXmv [9])
to check variable ranges and find unreachable states. Since xADL is a modeling
language without any semantic definition (it also has no denotational seman-
tics introduced by a code generator), it only checks that connectors of models
are correct. LabView programs are verified by translating their models to ACL2
solver expressions and formulate theorems that should be proved [21]. Finding
duplicates (even semantical ones) in MontiArc is done using MontiMatcher [33].
MontiCAR uses the MontiMatcher framework and extends it with support for
checking over-, underflow and divisions by zero by using the MontiMatcher’s
intermediate controlflow graph for backward compatibility checks. Structural
crosscutting specification, C&C views, verification [26] as well as static consis-
tency checks for extra-functional properties [27] are also available in MontiCAR.
Ptomely is a Java-based event extension for modeling architectures. Therefore,
static analysis tools (e.g., Cibai [24]) for Java programs can be used. Verilog
models are checked by translating them to BLIF-MV [10] to perform symbolic
verification2. In SystemC, type checking, control flow graph analysis, and veri-
fying C pointers or static analysis in general can be done with SCOOT [8].

Enabling component reuse, e.g. of general library ones, can be decomposed
into supporting configuration parameters and generics (R6). Simulink supports
configuration parameters (set_param command), which can be defined arbitrar-
ily. However, Simulink does not support general generics for modifying compo-
nent interfaces. It only can be done partially, e.g. Logical Operator block allows
to define the number of input ports. Modelica supports generic components and
configuration parameters provided by the Modelica generic block (MBLOCK).
SysML does not provide explicit language constructs to model variants but pro-
vides a profile mechanism to extend SysML with a concept for variant modeling,
i.e., stereotypes. Stereotypes are also used in MARTE to define parameters and

2 http://vlsi.colorado.edu/~vis/whatis.html.

http://vlsi.colorado.edu/~vis/whatis.html

Modeling Architectures of Cyber-Physical Systems 41

generics. AutoFocus 3 supports parameters that can be used for configuration
purposes but lacks support for generic components. By default xADL does not
support configuration parameters and generics. However, because it uses XML
as the base structure, the tooling supports partial configuration parameters by
direct manipulation of the XML schema. In AutoSAR, parameters can also be
used to configure components. However, it does not support generics for compo-
nents. Similar holds for LabView. MontiArc supports concepts for configuration
parameters and generic components, which are used in the MontiCAR language
family. Being an extension of Java, Ptolemy supports configuration parameters
and generics. Verilog, VHDL, Rapide, TECS, UniCon, WRIGHT, and SADL
only support configuration parameters but no generics. Scade supports configu-
ration parameters nor generics. Since SystemC is an extension of C++, it sup-
ports configuration parameters and adds support for generics.

Several languages implement native matrix support including MAT-
LAB/Simulink as one of the most prominent examples, thereby, partially ful-
filling (R7). However, MATLAB/Simulink neither provides a strict type system
allowing for static checks required by (R7.1), and (R7.3), nor does it allow to
specify units for the entries of a matrix. A far more elaborated matrix type
system is provided by Modellica [16], which not only allows to define the ele-
ment types and its dimensions but also units of the matrix elements allowing far
more rigorous static checks. Other languages providing matrix support comprise
MARTE [30] and LabView. The latter does not allow for the restriction of a
matrix to a specified size and, hence, does not provide static checks. Instead,
similarly to MATLAB/Simulink, matrices can grow dynamically and checks are
only performed at runtime. In contrast, MontiCAR provides full matrix sup-
port with a strict type system and unit support with compile-time checks used
in system verification. Furthermore, to our knowledge, MontiCAR is the only
language using a matrix taxonomy to derive matrix properties for static checks.

Native support for differential equations (R8) is provided by Modelica and
MARTE. With support for ordinary differential equations only, LabView par-
tially fulfills this requirement. The same holds for Verilog and VHDL [29]. All
other languages do not fulfill requirement (R8).

In Modelica, acausal modeling (R9) is done using flow ports and declarative
equations3. In Verilog-AMS, acausal modeling (e.g.y Kirchhoff’s Flow Law and
Potential Law [36, Figs. 1–3]) is done using signal-flow systems. Since MontiCAR
is designed for modeling on the logical layer of the SMArDT methodology, there
is no need for modeling flow properties, e.g., current or voltage flows. There-
fore, Modelica’s acausal modeling concept has not been integrated to keep the
language syntax slim.

From the overview in Table 1, it can be derived that none of the analyzed
modeling languages support definition of an (R10) operational area, e.g., to
guarantee a correct behavior for a limited set of environmental conditions. In
MontiCAR, we integrated OCL/P to allow for the definition of such constraints.

3 https://www.openmodelica.org/images/docs/Modelica-and-OpenModelica-overview-
Peter-Fritzson-120328.pdf.

https://www.openmodelica.org/images/docs/Modelica-and-OpenModelica-overview-Peter-Fritzson-120328.pdf
https://www.openmodelica.org/images/docs/Modelica-and-OpenModelica-overview-Peter-Fritzson-120328.pdf

42 E. Kusmenko et al.

5 MontiCAR Modeling Family

As was shown in Sect. 4, existing modeling languages fail to provide all necessary
means for type-safe and verifiable modeling of cyber-physical systems. Therefore,
we present MontiCAR, a modeling language family developed against real indus-
trial requirements gathered in Sect. 3. The structure of the complete MontiCAR
modeling family is shown in Fig. 2. In this section we give a short description for
each family member.

The base language used by all the other language members is NumberUnit.
It contains rules to parse complex numbers, e.g., 2 - 4i or rational numbers
with and without units, e.g., -3/7 m/sˆ2, 0.35, 1N. OCL/P [32] is a Java-
based OCL derivative to formulate constraints such as brakePedalPressed
implies vehicleAcceleration < 0 m/sˆ2, i.e., the acceleration should be
negative if the brake pedal is pressed. The syntax of MontiMath is very sim-
ilar to the one of MATLAB except that it forces all its variables to be typed.
This language will be introduced in more depth in Sect. 7. The Type language
allows the definition of enumerations and C-like structures. An example is pro-
vided in Fig. 3. Lines 1–2 define a struct type for GPS coordinates aggregating
the scalars latitude and longitude. Pay attention to the type of the two primitive

Fig. 2. MontiCAR modeling family.

Fig. 3. Define new port types

Modeling Architectures of Cyber-Physical Systems 43

struct members. We are not interested in the concrete realization of the scalars
such as int or float on our level of abstraction. Instead, we specify, that each
of the two members is a rational number, denoted by the letter Q according
to the set of rational numbers Q. The latitude coordinate can only take values
from −90◦ to +90◦ whereas a valid longitude must lie between 0◦ and 180◦. We
incorporate this range specification in brackets thereby declaring a new type.
Moreover, GPS sensors only have a limited resolution. This is declared through
the resolution parameter, here taking a value of 0.001◦. An accuracy can also be
added to ranges; e.g. Q(-90 ◦:0.001 ◦:90 ◦) ± 0.02 ◦ says that values between
−90◦ to +90◦ have an accuracy, normally distributed noise, of 0.02◦. Making such
constraints explicit will later help us identifying incompatible components, e.g.,
sensors not providing the required signal resolution. The concrete type imple-
mentation is delegetated to the compiler allowing the system designer to focus on
the functionality. In line 3 we use enumerations to declare a type in MontiCAR. It
can take one of the four possible color values the feedback LED of a driver assis-
tance system can emit. The core language of our family is EmbeddedMontiArc
which extends the general purpose Architecture Description Language (ADL)
MontiArc [17] used for modeling web and cloud services in a C&C like manner.
EmbeddedMontiArc, explained in detail in the next section, supports in contrast
to its base language MontiArc additionally port and component arrays, and it
overwrites the type system of MontiArc in order to provide unit support and
integrate the Type language. The Tagging language [27] enables the developer to
enrich EmbeddedMontiArc models with extra-functional properties allowing for
semantic consistency checks on C&C architectures. The EmbeddedMontiArcMath
language enriches EmbeddedMontiArc models with the possibility to specify the
behavior for atomic components by embedding MontiMath syntax which will be
demonstrated in Sect. 7. Stream models, based on the stream theory of Broy and
Rumpe [22], allow the definition of ordered sequences of input values for C&C
input ports and the expected output sequences for all output ports to faciliate
unit and integration testing of C&C models. Note that due to language aggre-
gation Stream models have knowledge about the EmbeddedMontiArcMath mod-
els, but not vice versa. This allows deploying productive C&C models later-on
without their respective test models. I/O-Automata is a language for describing
behavior by finite automata. It provides internal variables, states and transitions
pointing from a source to a target state. On activation, the automaton goes into
the first start states for which the guard conditions are satisfied by the vari-
ables provided at the input ports. Moreover, transitions produce output values
according to their defined output-port-assignment expressions and activate the
automaton’s target state. I/O-AutomataMath embeds the MontiMath language
for describing guard conditions and output assignments using the Math syn-
tax into the I/O-Automata language. MontiCAR extends EmbeddedMontiArcMath
language allowing both Math and I/O-Automata behavior descriptions.

Since presenting the entire MontiCAR modeling family is out of the scope
of this paper, the next sections will focus on the two most interesting family

44 E. Kusmenko et al.

members: EmbeddedMontiArc for describing CPS features and their interaction
as C&C models and the MontiMath language for defining the features’ behavior.

6 EmbeddedMontiArc

Based on our example introduced in Sect. 2 this section shows how the architec-
ture of embedded and cyber-physical systems can be modeled with Embedded-
MontiArc language belonging to the MontiCAR language family.

The EmbeddedMontiArc model for the running example is given in Fig. 4.
Line 1 defines the main component, having the ParkAssistant type and the
derived instance name parkAssistant. Similar to Java’s convention, all compo-
nent types start with a capital letter and all component instances with a small
one. Lines 2–5 define ParkAssistant’s in- and ll.6–7 out ports. An advantage of
EmbeddedMontiArc’s port arrays, Z brakekForce[4], over MontiArc’s solution
with one port having a data type array, Integer[] brakeForce, is that each
port in the port array can be wired-up individually. A port definition has the
following structure: direction, can be in or out indicating incoming or outgoing
data flow, port type, see paragraph Type in Sect. 5, port name, a small letter
Java variable name, and an 1-dimensional array size (squared brackets). If the
direction is missing such as in l.3, then the one of the previous port definition,
here in l.2, is taken. The default value for missing array size is one.

Fig. 4. Textual EmbeddedMontiArc model of ParkAssistant

Modeling Architectures of Cyber-Physical Systems 45

All ParkAssistant’s subcomponent instances are listed in ll.8–10, each
starts with the instance keyword, followed by a component type, instance
name, an optional one dimensional array specifier. Note that in MontiArc which
is the base language of EmbeddedMontiArc, the keyword instance is also
component. But this ambiguity, component for component definitions and com-
ponent instances, lead to confusion. ParkAssistant is decomposed into one sf
of type SensorFusion (l.8), ten filter (l.9), one fb of type Feedback (l.10)
instances. The singletons of type EmbergencyBrake and BrakeActuator in Fig. 1
are skipped in Fig. 4 for presentational reasons. SensorFusion component type
has a generic parameter binding (in guillemot brackets) specifying the number of
input signals needed for fusion, and a configuration parameter passing (in round
brackets), specifying sensors’ tilt angles. This configuration parameter is a 1×10
vector defined in a MATLAB-like syntax. The difference between a generic and
a configuration parameter is that the primer changes the component’s interface
(has any impact on ports), whereas the latter has no influence on the interface
and is only needed for the component behavior.

Lines 11–13 demonstrate the concrete syntax for interconnecting ports of
subcomponent instances. While l.11 connects two ports using standard MontiArc
syntax, in l.12 we have an EmbeddedMontiArc style interconnection of a port
array with an array of components. Thereby, the colon notation, a short-form of
1:end, selects all entities of the array and connects each entity to a corresponding
entity on the right hand side separated by the -> operator. Instead of the colon
syntax, the forall syntax shown inside the box in ll.a–c can be used.

7 MontiMath Language

MontiMath is a mathematical matrix based behavior modeling language for
MontiCAR. It is mainly inspired by MathJS4, which supports matrices, units
and rational numbers allowing one to solve linear equations exactly. MontiMath
is based on MATLAB syntax. Since CPS in automotive and robotic domain
mostly describe safety critical systems, MontiMath has - in contrast to existing
matrix based languages, such as Modelica, Maple, MATLAB and MathJS - a very
strict type system to minimize runtime errors. This type system includes unit,
dimension, and element ranges information. Furthermore, it keeps track of
algebraic matrix properties based on [19].

For variable assignments and matrix expressions MontiMath detects the fol-
lowing errors at compile-time: Matrix Property Errors occuring when a
matrix violates the defined properties, e.g., diagonal, positive (semi)definite,
lower/upper triangular, invertible, symmetric, or hermitian. For example,
diag inv Qˆ{3,3} A = diag([0km 1 Km 2cm]) declares a rational 3 × 3
diagonal and invertible matrix variable A, being initialized with a diagonal
matrix having values 0 km, 1 km and 2 cm on the main diagonal. This assign-
ment results in a compiler error due to having a value of 0km on the main
diagonal and thereby violating the invertible property. Dimension Errors
4 http://mathjs.org.

http://mathjs.org

46 E. Kusmenko et al.

occur during matrix assignments, e.g., Qˆ{1,3} = [1 2] and matrix infix opera-
tions, e.g., (element-wise) power, (element-wise) multiplication, summation and
equation solving. Unit Errors occur when units of matrices are not compat-
ible, e.g., in summation [10cm 7cm] + [7kg 9kg] and assignments. Out-of-
Bounds Erros occuring by direct indexing of a non-existing matrix position.
Range Errors occuring when an element in the matrix is not inside the allowed
range or if a rational number is given but only integers are allowed.

Lines 6–11 in Fig. 5 show how MontiMath is applied in the EmbeddedMon-
tiArc SensorFusion component to specify its behavior. Lines 7* and 8* are
not part of the model but are displayed to show how the in and out ports of
EmbeddedMontiArc are adapted to MontiMath matrix variable declarations.
Line 9 defines a rational n × n matrix allowing values between 0 and 1. The *
operator in cos*(tilt) denotes that the cosine function is applied element-wise
on tilt, returning the vector [cos(tilt(1,1)), ..., cos(tilt(1,n))]. The
diag function creates a diagonal matrix with the elements of tilt on its main
diagonal; the result is assigned to facMatrix. Line 11 multiplies the distance
vector with this facMatrix resulting in a 1 × n column vector with its mini-
mum value assigned to the output port mergedDistance. Assume, in a previ-
ous software evolution step l.10 was sin*(diag(tilt)) and now needs to be
replaced by cos* due to a change in the sensors’ relative coordinate system.
Since sin(0 ◦) = 0 the element-wise sine of a diagonal matrix is again a diag-
onal matrix; replacing the sine with a cosine however results in a MontiMath
compiler error due to cos(0 ◦) �= 0 making the result non-diagonal. Without the

Fig. 5. SensorFusion component with its behavior defined in MontiMath

Modeling Architectures of Cyber-Physical Systems 47

strong type system and meaningful error messages such a bug may be detected
later during tests or at runtime thereby increasing development costs.

Line 2 in Fig. 6 shows the OCL/P pre-/post condition used by Monti-
Math’s type checker to find out that cos(0 ◦)=1 and therefore not zero, and
ll.5–7 defines the diag matrix property in OCL/P requiring all off-diagonal
values to be zero which is violated by the expression cos*(diag(tilt)).
Using the implies keyword in l.5 we require that the diag property
guarantees the lowerTriangular and upperTriangular properties to be
true. This correctness of this specification is then proven by the Z3 [12]
solver. Furthermore, already existing matrix properties can be reused via
(multiple) inheritance, i.e., the diag property could have been defined by
matrix-property<N1 n> diag Qˆ{n,n} y extends upperTriangular &
lowerTriangular, thereby saving l.7. Lines 8–13 show two other important con-
cepts of MontiMath: Operator overloading based on matrix properties, and func-
tion overloading based on matrix dimensions. The first one is used to define more
efficient algorithms for special matrix types, as it is done for adding two diago-
nal matrices in ll.9–11 where only the diagonal elements of the two matrices are
added reducing the computational complexity for matrix addition from O(n2)
to O(n) for diagonal matrices. Calling the function defined in l.12, diag(a) in
l.10 returns a vector containing the matrices’ diagonal elements; while the outer
diag having a row vector as its argument creates a diagonal matrix by invoking
the function defined in l.13. The decision which function to invoke is based on

Fig. 6. Function definition in math language (";" after function definition is here used
to omit the body implementation of the function.)

48 E. Kusmenko et al.

the matrix dimensions. For this reason the type of the first generic parameter in
l.12 cannot be N1, and therefore it is Z(2:oo). Otherwise the compiler cannot
infer which overloading of the diag function (ll.12–13) should be invoked in case
of a row vector.

The concept of overloading functions based on matrix dimensions is taken
from MATLAB. In contrast, our approach makes the overloading with two func-
tions having different generic types explicit. Moreover, in l.13 in Fig. 6, the return
type has the return type name y, since MontiMath supports, similar to MAT-
LAB, multiple return values and therefore each return value has always a name
to differ between multiple return values.

8 Conclusion

We presented the modeling language family MontiCAR for the design of cyber
physical system encorporating requirements we derived in multiple case stud-
ies. The core of the language family is the architecture description language
EmbeddedMontiArc. This core language was extended by a stricter typing than
is usually known from modern languages. It includes a unit system, value domain
and resolution support. Furthermore, the math language MontiMath is an inte-
gral part of the language family which allows for efficient component behavior
descriptions. The simple Type language facilitates the aggregation and reuse of
data packages without overwhelming the user with unnecessary features such
as pointers and inheritance. Finally, a stream language allows a straightforward
definition of input and output data flows for the definition of test cases.

The language family was evaluated on a simplified example from the auto-
motive domain. Thereby, it was shown how the integrated language concepts
support the system developer helping him to focus on the functionality of the
system instead of implementation details.

A large scale evaluation is subject of ongoing and future work. This evaluation
comprises the modeling of driver assistance systems and autonomous vehicle
components such as a sensor fusion, a planning system, a controller unit, and a
wireless communication system as well as the integration of these modules into
a working software architecture. To validate the resulting system, a series of use
cases needs to be defined and simulated in a virtual environment.

Acknowledgements. This research was supported by a Grant from the GIF, the
German-Israeli Foundation for Scientific Research and Development, and by the Grant
SPP1835 from DFG, the German Research Foundation.

References

1. Allen, R.J.: A formal approach to software architecture. Technical report (1997)
2. Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., Schätz, B.: AutoFOCUS 3: tooling

concepts for seamless, model-based development of embedded systems. In: ACES-
MB (2015)

Modeling Architectures of Cyber-Physical Systems 49

3. Ashenden, P.J.: The Designer’s Guide to VHDL, vol. 3. Morgan Kaufmann, San
Francisco (2010)

4. Association, M., et al.: Modelica Language Specification. Linköping, Sweden (2005)
5. AUTOSAR: layered software architecture. Technical report 053 (4.3.0), AUTOSAR

(2016)
6. AUTOSAR: modeling guidelines of basic software EA UML model. Technical

report 117 (4.3.0), AUTOSAR (2016)
7. Azumi, T., Yamamoto, M., Kominami, Y., Takagi, N., Oyama, H., Takada, H.: A

new specification of software components for embedded systems. In: ISORC (2007)
8. Blanc, N., Kroening, D., Sharygina, N.: Scoot: a tool for the analysis of Sys-

temC models. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol.
4963, pp. 467–470. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_36

9. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham
(2014). doi:10.1007/978-3-319-08867-9_22

10. Cheng, S.T., York, G., Brayton, R.K.: Vl2mv: A compiler from verilog to blif-mv.
HSIS Distribution (1993)

11. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A highly-extensible, xml-based
architecture description language. In: Conference on Software Architecture (2001)

12. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3_24

13. Dormoy, F.X.: Scade 6: a model based solution for safety critical software devel-
opment. In: ERTS 2008, pp. 1–9 (2008)

14. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity-the Ptolemy approach. Proc. IEEE
91(1), 127–144 (2003)

15. Texas Instruments of Electrical and Electronic Engineers: Standard VHDL lan-
guage reference manual. IEEE Std (1988)

16. Elmqvist, H., Mattsson, S.E., Otter, M.: Modelica-a language for physical system
modeling, visualization and interaction. In: Proceedings of the 1999 IEEE Interna-
tional Symposium on Computer Aided Control System Design, pp. 630–639. IEEE
(1999)

17. Haber, A.: MontiArc - Architectural Modeling and Simulation of Interactive Dis-
tributed Systems. Shaker Verlag (2016)

18. Herbert, J., Dutertre, B., Riemenschneider, R., Stavridou, V.: A formalization of
software architecture. In: FM (1999)

19. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cam-
bridge (2012)

20. Instruments, N.: BridgeView and LabView: G Programming Reference Manual.
Technical report 321296B–01, National Instruments (1998)

21. Kaufmann, M., Kornerup, J., Reitblatt, M.: Formal verification of LabVIEW pro-
grams using the ACL2 theorem prover. In: ACL2 (2009)

22. Klein, C., Rumpe, B., Broy, M.: A stream-based mathematical model for distrib-
uted information processing systems-the SysLab system model. In: Formal Meth-
ods for Open Object-based Distributed Systems (1997)

23. Lemke, J.: C++-Metaprogrammierung: Eine Einführung in die Präprozessor-und
Template-Metaprogrammierung (2016)

http://dx.doi.org/10.1007/978-3-540-78800-3_36
http://dx.doi.org/10.1007/978-3-319-08867-9_22
http://dx.doi.org/10.1007/978-3-540-78800-3_24

50 E. Kusmenko et al.

24. Logozzo, F.: Cibai: an abstract interpretation-based static analyzer for modular
analysis and verification of Java classes. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 283–298. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-69738-1_21

25. Luckham, D.C., Vera, J.: An event-based architecture definition language. IEEE
Trans. Softw. Eng. 21(9), 717–734 (1995)

26. Maoz, S., Ringert, J.O., Rumpe, B.: Verifying component and connector models
against crosscutting structural views. In: ICSE (2014)

27. Maoz, S., Ringert, J.O., Rumpe, B., von Wenckstern, M.: Consistent extra-
functional properties tagging for component and connector models. In: ModComp
(2016)

28. Mathworks: simulink user’s guide. Technical report R2016b, MATLAB &
SIMULINK (2016)

29. Nikitin, P.V., Shi, C., Wan, B.: Modeling partial differential equations in VHDL-
AMS (mixed signal systems applications). In: SOC (2003)

30. OMG: UML profile for MARTE: modeling and analysis of real-time embedded
systems. Technical report Version 1.1, OMG Group (2011)

31. OMG: OMG systems modeling language (OMG SysML). Technical report. Version
1.4, OMG Group (2015)

32. Rumpe, B.: Modeling with UML: Language, Concepts, Methods. Springer,
Heidelberg (2016)

33. Rumpe, B., Schulze, C., von Wenckstern, M., Ringert, J.O., Manhart, P.: Behav-
ioral compatibility of simulink models for product line maintenance and evolution.
In: SPLC (2015)

34. IEEE Computer Society: IEEE standard for standard systemc R© language reference
manual (2012)

35. Chromatography software: UNICORN 5.0 - User Reference Manual. Technical
report 03–0014-90 (2004)

36. Accellera Systems Initiative: Verilog-AMS Language Reference Manual. Technical
report 2.4.0, Accellera Systems Initiative standards (2014)

http://dx.doi.org/10.1007/978-3-540-69738-1_21
http://dx.doi.org/10.1007/978-3-540-69738-1_21

Model Evolution and Maintenance

Systematic Language Extension Mechanisms
for the MontiArc Architecture

Description Language

Arvid Butting1, Arne Haber1,2, Lars Hermerschmidt1,3, Oliver Kautz1,
Bernhard Rumpe1, and Andreas Wortmann1(B)

1 Software Engineering, RWTH Aachen University, Aachen, Germany
{Butting,Haber,Hermerschmidt,Kautz,Rumpe,Wortmann}@se-rwth.de

2 Schier Consult GmbH, Braunschweig, Germany
3 AXA Konzern AG, Cologne, Germany

http://www.schier-consult.de,

http://www.axa.de

Abstract. Architecture description languages (ADLs) combine the ben-
efits of component-based software engineering and model-driven devel-
opment. Extending an ADL to domain-specific requirements is a major
challenge for its successful application. Most ADLs focus on fixed fea-
tures and do not consider domain-specific language extension. ADLs
focusing on extensibility focus on syntactic augmentation only and nei-
ther consider semantics, nor the ADL’s tooling. We present a systematic
extension method for the MontiArc component and connector ADL that
enables extending its syntax and infrastructure. The MontiArc ADL is
built on top of the MontiCore workbench for compositional modeling lan-
guages and leverages its powerful language integration facilities. Based
on these, we conceived systematic extension activities and present their
application to customizing MontiArc for three different domains. This
application of software language engineering to ADLs reduces effort for
their extension and the presented method guides developers in applying
it to their domain. This ultimately fosters the application of ADLs to
real-world domain-specific challenges.

Keywords: Model-driven engineering · Architectural programming ·
Action languages · Software language composition

1 Introduction

Component-based software engineering (CBSE) is a software engineering
methodology that advocates the vision of composing complex software sys-
tems from off-the-shelf components. Through this, the individual components
are supposed to be reused more often, better evaluated, and hence more mature.
Nonetheless, most approaches to CBSE rely on exchanging binary or source code
components, which are noisy [33] solution domain [8] artifacts that are specific

c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 53–70, 2017.
DOI: 10.1007/978-3-319-61482-3 4

54 A. Butting et al.

to the general programming language (GPL) they are formulated in. This com-
plicates their reuse and comprehension.

Model-driven development (MDD) lifts models to primary development arti-
facts that are more abstract, closer to the solution domain, less noisy, better
comprehensible, and automatically translatable into solution domain artifacts.
Architecture description languages (ADL) [23] are modeling languages for the
development of complex software systems. They combine the benefits of CBSE
and MDD and have been developed for and applied to multiple challenging
domains including automotive [3], avionics [6], and robotics [30]. For each of
these domains, completely new ADLs with domain-specific syntax and seman-
tics have been developed from scratch. This is expensive, which is why extending
ADLs to specific requirements is one of the major challenges to their successful
application [21]. However, most ADLs focus on fixed domain-specific challenges
and do not support domain-specific extension. Where this is possible (such as
with AADL [6] or xADL [25]), the extensions are mainly of syntactic nature.
Leveraging software language engineering enables implementing better extensible
ADLs. Based on state-of-the-art software language composition mechanisms [4],
we have conceived the MontiArc ADL [17] for extensive systematic extension on
top of the MontiCore [20] language workbench. The language engineering mech-
anisms of MontiCore enable to adjust MontiArc’s syntax and infrastructure to
domain-specific requirements. Core modeling elements of the MontiArc ADL
have been introduced in [17] and an earlier variant extension method has been
presented in [12]. Furthermore, the behavior language embedding mechanisms of
the MontiArc derivative MontiArcAutomaton have been presented in [27]. This
paper specifically contributes

– an augmented method for the structured extension of MontiArc with new syn-
tax and semantics beyond behavior language embedding that considers reuse
of well-formedness rules and no longer distinguishes between code generation
and simulation; and

– three case studies describing applying this method to extending MontiArc for
security architectures, robotics, and cloud-based systems.

In the following, Sect. 2 motivates the benefits of ADL extension by exam-
ple, before Sect. 3 explains necessary preliminaries. Afterwards, Sect. 4 presents
the MontiArc extension method and Sect. 5 describes its application to three
domains. Subsequently, Sect. 6 highlights related work and discusses the app-
roach, and Sect. 7 concludes.

2 Example

Consider a company developing distributed cloud systems for massive open
online courses. For better abstraction and reuse, the company decides to model
the structure of the systems using a component and connector (C&C) ADL.
However, the company requires that the architecture’s components can (a) be

Systematic Language Extension Mechanisms for the MontiArc ADL 55

composed from other components to define logical hierarchies; (b) explicate ser-
vice level requirements; and (c) replicate themselves to scale if necessary. Instead
of creating a new ADL from scratch, the company decides to extend an ADL
already supporting composed components. They analyze the necessary changes
in the ADL’s syntax and semantics and determine two extension requirements.
R1: The syntax supports specifying and storing service level information for
each component. Its semantics ensures that the service level for each composed
component is at least as good as the sum of service levels of its subcomponents.
R2: The syntax supports specifying and storing replication conditions per com-
ponent. Its semantics includes this information to control component replication
at runtime.

The base ADL that the company’s software engineers will extend is domain-
agnostic and features only the core concepts depicted in black in Fig. 1: In this
metamodel, a component type has a name and an arbitrary number of incoming
and outgoing ports, which define the interface of a component. Furthermore, it
can declare subcomponents that have a name and a component type. Each port
has a data type and a name. Component types define an arbitrary number of
connectors to connect their subcomponents.

The base ADL defines its static semantics (well-formedness) by a set of indi-
vidual rules and translational dynamic semantics (behavior) via code generation.
The static semantics include that (a) at least one port of each component type’s
subcomponents is connected by at least one connector; (b) connected subcom-
ponents (i.e., sources and targets of connectors) are actually declared in the
same component type; and (c) that the types of connected ports are compatible.
The dynamic semantics of an ADL govern how messages are passed between
components. This ADL employs event-driven message passing in which compo-
nents start to compute whenever at least one message has arrived. The dynamic
semantics are realized by translating components to Java classes implementing
this behavior.

The extensions to the metamodel are annotated and highlighted in Fig. 1:
Relative to this metamodel, R1 is translated into an extension of the syntax
and semantics for component types. The syntactic extension is realized as the
new property serviceLevel of ComponentType and the semantic extension as a

Fig. 1. Metamodel of a C&C ADL with extensions for R1 and R2.

56 A. Butting et al.

new well-formedness rule. For R2, the syntax of subcomponents is extended by
a replication expression. The company’s engineers reuse a variant of OCL [11] as
Expression language to enable reasoning over object structures. In conditions,
they interpret names as references to ports (e.g., a valid replication condition
for a port users receiving lists of user data could be “users.size() > 1”).

To ensure well-formedness of extended models, the engineers add new rules
to extend the ADL’s static semantics. These include

– service levels are positive numbers;
– the service level of a composed component is at least as high as the sum of

service level of its subcomponents;
– the replication conditions respect the types of ports (i.e., it ensures that its

equations are type-compatible with the referenced ports); and
– the replication conditions evaluate to Boolean.

Realizing the intended replication behavior requires adding subcomponents at
runtime when the conditions are fulfilled. However, in the base ADL’s realiza-
tion of its dynamic semantics, each component type is represented by a Java
class yielding a single, fixed attribute for each subcomponent. To achieve flexi-
ble replication, the Java classes realizing component types should yield a set of
subcomponents for each component type among their subcomponents instead.
Moreover, they should feature a new method that checks the replication condi-
tions whenever a message arrives and passes messages to new subcomponents
as required. Hence, the company’s software engineers extend the ADL’s code
generator accordingly. This small extension – a few properties, rules, and code
generator adjustments – enables the company’s engineers to customize the base
ADL to their requirements and prevents creating a new ADL from scratch.

3 Preliminaries

MontiArc [17] is a component and connector ADL built on top of the Mon-
tiCore language workbench [20]. This enables leveraging MontiCore’s powerful
software language engineering capabilities, such as language composition and
extension [13].

MontiCore employs context-free grammars (CFGs) for the integrated def-
inition of concrete syntax and abstract syntax [20] of modeling languages.
These CFGs describe which models are principally possible. Validating static
semantics constraints not expressible with CFGs requires additional mecha-
nisms. For such checks, MontiCore features a compositional context condition
(CoCo) framework [32], where CoCos are well-formedness rules formulated in
Java. Code generators implement the modeling languages’ dynamic semantics.
From a language’s CFG, MontiCore generates the corresponding abstract syn-
tax tree (AST) classes and infrastructure to parse textual models [10] into AST
instances. The AST instances store the content of models, such as their ele-
ments and their relations to each other free from concrete syntax keywords.
From each grammar, MontiCore automatically produces a model processing

Systematic Language Extension Mechanisms for the MontiArc ADL 57

infrastructure that enables to parse models to operate on AST instances, for
example, to apply model transformations or CoCo checks. For realization of
dynamic semantics, MontiCore further features a template-based model-to-text
code generation framework [29], which supports translating AST instances into
arbitrary target representations. Moreover, MontiCore supports compositional
language integration [1] via inheritance, embedding, and aggregation [13]. Lan-
guage inheritance allows sublanguages to extend and override productions of its
superlanguage. From this, MontiCore produces refined AST classes that inherit
from the AST classes of the overridden production. Language embedding is real-
ized by declaring external productions in a host grammar, which are abstract
in the sense that they cannot be instantiated. To this effect, MontiCore’s lan-
guage configuration models define how productions from other languages are
mapped to the external productions of the host grammar. Using this, Monti-
Core combines the individual parsers accordingly and produces integrated ASTs.
Language aggregation enables to relate artifacts of different languages that are
specified in separate artifacts.

MontiArc [12,17] is a C&C ADL and modeling infrastructure for the devel-
opment of distributed systems. It is designed to provide the benefits of a com-
prehensible core architectural style that can be extended as necessary using
the powerful language composition features of MontiCore [14]. Consequently,
MontiArc provides a small core of language features that are easy to learn
yet powerful enough to model complex software architectures. The language’s
infrastructure comprises code generators translating models into arbitrary GPL
realizations. MontiArc is intentionally designed to be light-weight to keep the
language easy to learn and flexibly adaptable. Thus it aims at providing only
the most important modeling elements of C&C ADLs and focuses on language
and tool chain extensibility. The provided elements are exactly the fundamental
elements of architectural descriptions [23]: components, connectors, and configu-
rations. Components are the units of computation in an architectural model and
yield well-defined interfaces. Connectors connect the interfaces of components
to realize component communication. A configuration is a graph of components
and connectors that describes component composition. Following this principle,
MontiArc facilitates modeling C&C software architectures with hierarchically
structured, interconnected components. The interface of a component is defined

Fig. 2. MontiArc architecture for a light control system with three subcomponents.

58 A. Butting et al.

by a set of unidirectional, named, and typed ports. Components receive messages
via their incoming ports and emit messages via their outgoing ports. Unidirec-
tional connectors connect exactly one source port to one or more target ports.
To facilitate component reuse, MontiArc distinguishes between component types
and component instances. A component type (denoted “component” in the fol-
lowing) defines the interface of its instances by a set of ports and may comprise
component instances (“subcomponents”) and connectors defining a configura-
tion. If a component contains subcomponents, it is called composed. Otherwise
it is called atomic. Atomic components perform the actual computations of a
system. The behavior of a composed component is completely derived from the
composition of the behaviors of its subcomponents according to its configura-
tion. The behavior of atomic component has to be implemented by hand, i.e.,
by providing GPL code implementations. MontiArc provides further language
features, such as generic type parameters, configuration parameters, and syntac-
tic sugar for automatically connecting all ports of the same type. A complete
description of the MontiArc ADL is available in [12]. Figure 2, for instance,
depicts the graphical representation of the component type LightCtrl. List-
ing 1.1 shows its corresponding textual definition. The component consists of
four ports (l. 2), three subcomponents (ll. 4–6), and seven connectors (ll. 8–13).
Connectors are unidirectional and connect one sending port with one or more
receiving ports of compatible data types. The incoming port switchStatus of
component LightCtrl, for instance, is connected to the same-named and same-
typed incoming ports of the subcomponents arbiter and doorEval (l. 9).

As MontiArc is realized as a MontiCore language, it employs the parsers and
AST classes generated by MontiCore from its grammar to translate textual archi-
tecture models into AST instances. Using the AST, it applies the handcrafted
workflows and model transformations as registered. Based on the transformed
ASTs, it creates a symbol table infrastructure, which enables to resolve model
(parts) across different models. Ultimately, MontiArc invokes its code generator
to translate the (possibly transformed) ASTs into GPL artifacts that depend on
classes of a runtime environment (RTE). A RTE consists of GPL artifacts of the
same target language as the generated code and supports execution of generated

Systematic Language Extension Mechanisms for the MontiArc ADL 59

artifacts (for instance, by realizing scheduling or message passing). The RTE’s
artifacts are independent of the generator’s input models and are thus the same
for any generated output. We treat the RTE as part of the generated code that
remains static, independent of the generator’s input models. MontiArc does not
provide to define models in graphical syntax, but creating this can be achieved
via translation to, e.g., EMF [28].

4 MontiArc Extension Method

Reuse is one of the prime enablers for efficient engineering. The language work-
bench MontiCore supports defining reusable languages that can be extended or
combined to new languages [14]. We combine its language composition mech-
anisms with well-defined MontiArc extension points to extend the MontiArc
ADL and its infrastructure. This enables customizing the ADL to requirements
of specific domains and adding further language processing steps, while most
infrastructure parts can be reused with the adjusted language directly. This
section presents an integrated method to extend MontiArc that comprises struc-
tured activities to extend the ADL, model processing, and code generation.
Extending the derived languages follows the same pattern. The method does
not support creating a completely different ADL and infrastructure, as the
result might not be applicable to the extension method anymore. For exam-
ple, eliminating the component production by overriding might prevent further
customization.

4.1 Extending the Syntax of MontiArc

The first step towards extending MontiArc’s syntax is to analyze the intended
extension’s purpose: If the extension should change structural language elements
(e.g., components, ports, connectors), it requires inheriting from MontiArc to
enable adding or refining language elements. To add a new component behavior
modeling language, it requires embedding that language only. If the changes to
MontiArc’s syntax should enable adjusted model processing only, MontiArc’s
many places for stereotypes require even less extension effort. The related activ-
ities are illustrated in Fig. 3.

For introducing new modeling elements or refining existing ones, extension by
inheritance starts with analyzing which MontiArc productions will be affected.
For instance, introducing service level properties to components would require
refining the production responsible for components. With MontiCore languages,
refinement is realized via grammar inheritance. To make the new language ele-
ments accessible for well-formedness checking, language composition, or other
processing, the relevant information must be added to the corresponding sym-
bols also. The activities required to extend the symbol table are depicted in
Fig. 4. For embedding of modeling languages to describe component behavior,
MontiArc relies on MontiCore’s language embedding capabilities. This includes
that MontiArc provides an external grammar production for the embedding of

60 A. Butting et al.

Fig. 3. Extending MontiArc’s syntax: new language elements are introduced via inher-
itance, embedding, or as stereotypes.

grammar productions of embedded languages. First, the productions of the lan-
guages to be embedded must be identified. Afterwards, the mapping between
the external production and the productions to be embedded is established.
The mapping is defined in MontiArc’s language configuration. During model
processing, MontiCore then combines the parsers generated from the individ-
ual languages’ grammars according to this mapping. This enables parsing com-
ponents with embedded behavior models. However, these embedded models
are usually unaware of their new operation context: for instance, embedded
automata might expect to read inputs from variables. To interpret inputs and
outputs of embedded models as references to ports, adapters between their sym-
bols realize proper interpretation. Extension with new stereotypes amounts to
providing proper documentation of the new stereotypes and their possible values.
Please note that we support stereotypes only for minor and ad-hoc extensions.
We advise to use metamodel extension, via inheritance or embedding, instead.

Extending MontiArc’s ADL is coupled to extending its symbol table and
introducing or refining productions as well as embedding behavior languages
might require symbol table extension. After analyzing the cause for symbol table
extension, one of the following activities is to be performed.

1. Type language adaptation: MontiArc supports using arbitrary type lan-
guages.

2. Reflect behavior language embedding: if the modeling elements of an embed-
ded behavior language are relevant to the symbol table, e.g., for checking
inter-language well-formedness, these must be integrated.

Systematic Language Extension Mechanisms for the MontiArc ADL 61

Fig. 4. Activities of extending MontiArc’s symbol table.

3. New symbols: if language extension produced completely new modeling ele-
ments, such as the replication conditions described in Sect. 2, which require
symbols as well, these must be added also.

4. Entry refinement: where modeling elements of MontiArc have been refined,
for instance by adding a service level to components, this must be reflected
at the corresponding symbols also.

5. Tooling adjustment: depending on the symbol table extension performed,
MontiArc’s tooling has to be extended accordingly.

Integrating a new type language into MontiArc requires the aggregation of
both languages. This enables using the types defined in this language for Mon-
tiArc’s ports and configuration parameters. Language aggregation is detailed
in [32] and comprises the following activities: (1) Adapt symbols of the new
type language to MontiArc’s type symbol; (2) Create and register qualifiers [32]
via subclassing. Qualifiers enable relating unqualified names (e.g., String) to
qualified names (e.g., java.lang.String); and (3) Checking type properties
requires loading the referenced model. To this end, MontiArc employs Monti-
Core’s symbol resolving [32], which requires creating and registering resolvers
via subclassing. These resolvers load symbols for qualified names. MontiArc’s
symbol table yields a dedicated extension point for convenient integration of
embedded behavior languages’ symbols. This requires creating a proper sym-
bol kind for the behavior language. For example, when embedding automata,
such a symbol might comprise information about data sources and data sinks
the automaton models operate on. Additionally, qualifiers and resolvers must be
provided. Where extension raises the need for integrating completely new sym-
bols, these must be created and registered accordingly. After the entry classes

62 A. Butting et al.

have been created, MontiArc’s symbol table visitor, which takes care of translat-
ing AST instances into symbols, must be extended via subclassing. In case the
new model element is referenced by another element, the symbol representing the
other element has to be refined accordingly. Refining a symbol entails refining its
implementation via subclassing. The subclasses store the new information (e.g.,
the service level) and must be accompanied by a registered qualifier, resolver,
and symbol creator as explained above. Moreover, the symbol table visitor must
be extended by subclassing to translate the refined AST properties into the cor-
responding symbol. Ultimately, the tooling has to be adjusted to use the refined
factories, the extended symbol table visitor, and the created support classes
(qualifier, resolver, etc.). For this, MontiArc employs dependency injection via
the guice [31] framework. MontiArc contains a central registry module which can
be overridden to change which implementations are bound to which MontiArc
interface. This, for instance, enables to bind a subclass of MontiArc’s symbol
table visitor to the related interface.

4.2 Extend Model Processing

While extending MontiArc’s syntax and symbol table enables introducing new
model properties, refining existing ones, and adding stereotypes to models,
using these modified elements requires adjusting MontiArc’s model processing
infrastructure. This may include extension with new workflows, model analyses,
or model-to-model transformations as presented in Fig. 5. It does, however, not
cover code generator extension, which is described in Sect. 4.3.

Fig. 5. Activities involved in extending MontiArc’s model processing infrastructure.

Systematic Language Extension Mechanisms for the MontiArc ADL 63

Every extension of MontiArc’s model processing infrastructure may start
with extending its ADL as discussed in Sect. 4.1. If MontiArc should be extended
with a new model analysis, a new MontiCore execution unit has to be added
to its infrastructure. An execution unit is a wrapper for MontiCore workflows
and creating a new execution unit requires registering a subclass of MontiCore’s
DSLWorkflow [19]. These workflows are executable units that perform calcula-
tions on the abstract syntax of a model using a visitor pattern variant. The static
semantics of MontiArc are realized by a set of context conditions that ensure
model well-formedness. If extension requires adding additional conditions, these
can be implemented as subclasses of MontiCore’s ContextCondition [32]. If the
new condition relates models of different languages with another, it might be
necessary to add adapters to the symbol table as presented in Sect. 4.1. Ulti-
mately, the new context conditions must be registered by creating and binding
a subclass of MontiArc’s ContextConditionCreator using guice. If MontiArc
is extended with a new model-to-model transformation, an artifact that exe-
cutes the transformation has to be created. This artifact must implement one of
the transformation interfaces for different abstract syntax elements of MontiArc.
Configuration requires subclassing TransformationConfigurationFactory and
binding it via guice.

4.3 Extend Code Generator

Syntactic extensions often aim at tailoring the language’s dynamic semantics,
i.e., modified should change the behavior of the model (or generated code).
Sometimes, the behavior aimed at can be reproduced by existing modeling ele-
ments. In this case, a transformation should be implemented as explained in
Sect. 4.2. This section covers the case where semantics preserving transforma-
tions are neither possible nor desirable. For MontiArc, this entails adjusting its
code generator to alter production of artifacts realizing the modified behavior.

Generally, MontiArc’s code generation framework comprises a component-
invariant run-time environment (RTE) and templates that produce component-
specific artifacts. The RTE specifies properties invariant to individual compo-
nent models, such as scheduling or message passing. The templates translate the
abstract syntax of components to GPL artifacts interfacing the RTE. Hence,
MontiArc provides templates for all abstract syntax concerns (e.g., ports, con-
nectors, subcomponents, etc.), which are registered at its central generator con-
figuration. Creating a generator configuration consists of binding hook points
with FreeMarker templates [29], which should be included (executed) at the
hook point’s location. By default, a unique start template is used for setting
these configuration parameters for components. Figure 6 depicts an overview of
the necessary activities for extending the code generator infrastructure after the
syntactic extensions, if any, have been performed. If the existing RTE is insuf-
ficient for representing the new concepts (e.g., scheduling and message passing
remain unaffected), the generated API has to be adjusted, before the template
parts can be adjusted.

64 A. Butting et al.

Fig. 6. Code generator extension depends on reusability of the RTE.

Extending the RTE typically consists of (a) subtyping existing classes to
refine commonly used method implementations; (b) adding additional methods
to interfaces reflecting additional concepts captured by the new syntax; and (c)
introducing new interfaces and classes representing new elements that cannot be
captured by already existing classes and interfaces of the RTE. Extensions to
the RTE entail adjusting the generated API. First, generated type names have
to be adjusted with regard to referencing the newly created subclasses instead
of the superclasses referenced before. Afterwards, method templates for the new
methods added to the interfaces have to be implemented. This typically affects
– but is not limited to – the generated code for components.

Ultimately, the generator’s hook points have to be configured for new tem-
plates created for the new classes and interfaces added to the RTE in step (c) as
well as for the new method templates. After incorporating possible RTE exten-
sions, existing generated methods have to be adjusted to reflect the intended
meaning of the changes performed on the ADL. To this effect, extension templates
have to be implemented first. These templates are used for injecting code into
preexisting methods generated by the former templates. Afterwards, the created
templates are added to the method hooks in the generator configuration.

Where existing templates must be refined only, for instance to include trans-
lating new modeling elements, extension must provide new templates that are
registered for hook points of related abstract syntax concerns. The lack of tem-
plate inheritance in the underlying template engine causes this effort and ongoing
work on code generator reuse might alleviate this [9]. However, these new tem-
plates can reuse existing templates in a white-box fashion and, thus, contribute
new translation as appropriate.

5 Case Studies

MontiArc’s extension method has successfully been applied to extend it for dif-
ferent domains. This section presents selected case studies.

Systematic Language Extension Mechanisms for the MontiArc ADL 65

MontiSecArc (MSA) is an extension of MontiArc extended to the description of
security architectures that enable the analysis of security flaws [18]. As such, it
introduces modeling elements to specify security properties, such as trust lev-
els, encrypted connectors, and identity links. To integrate these elements, which
entail changes to abstract syntax, static semantics, and dynamic semantics, the
MSA grammar inherits from MontiArc’s grammar and introduces rules for the
new concepts. It does not introduce new symbols, but refines the symbols for
modified modeling elements to reflect the new properties and adds few context
conditions related to these properties only. To produce proper Java artifacts,
MSE also adjusts existing code generation by incorporating encryption into the
RTE’s message passing and overrides several templates where necessary. List-
ing 1.2 illustrates selected MSA features, such as the trustlevel (l. 7), which
describes that the component provides protection against adversaries. Moreover,
the component performs accesscontrol for all incoming ports (l. 8). The weak
identity link from ui to cashDesk (l. 10) ensures that requests to the sale
port are authenticated by a user logged in at the ui and cannot be spoofed
by an adversary. Finally, two connectors are encrypted (ll. 12–13) to prevent
adversaries from reading and modifying messages on these connections.

MontiArcAutomaton (MAA) is a framework for architecture modeling that
extends the MontiArc infrastructure focusing on flexible embedding of com-
ponent behavior languages and compositional code generation [27]. It extends
MontiArc via grammar inheritance and embedding of various component behav-
ior modeling languages. Consequently, it refines symbols of modified modeling

66 A. Butting et al.

elements and adds behavior symbols for the embedded languages. It also reuses
all but one context condition of MontiArc and adds several context conditions
for the new modeling elements. Moreover, it adds transformations to support
various modeling shortcuts. MAA severely extends MontiArc’s code generation
framework to greatly facilitate behavior language embedding and features code
generators producing Java and Python artifacts. As it does not extend Mon-
tiArc’s scheduling and message passing, its Java generator reuses MontiArc’s
RTE without modification. For the Python generator, a new, compatible, RTE
was devised. For the former, it provides extension templates only, for the lat-
ter it replaces all templates. The component BumpControl depicted in Listing
1.3 illustrates two of MAA’s features: it introduces default parameters to com-
ponent types (l. 1) and embeds a stand-alone language for I/Oω automata to
describe component behavior (ll. 5–10). To this effect, it binds the external pro-
ductions inherited from MontiArc to automata productions for states (ll. 6–7)
and transitions (ll. 8–10). To interpret names on transitions as component ports,
which the automata are unaware of, MAA adds adapters between MontiArc’s
port symbols and automaton variable symbols as well as new context conditions
(e.g., to respect the direction of ports when reading). MontiArcAutomaton
furthermore extends MontiArc’s template for atomic components to delegate
translation of embedded behavior language models to registered responsible code
generators [27].

clArc is an infrastructure focusing on modeling cloud architectures. Its cloud
ADL extends MontiArc with replication of ports and subcomponents to support
load-balancing, port groups to enable message traceability, and service ports
that describe requirements on the environment of the architecture. To introduce
these elements clArc also extends MontiArc’s grammar via inheritance, refines
its symbols, and provides new context conditions on top of MontiArc’s context
conditions. Code generation produces event-driven Java implementations, hence
clArc only refines MontiArc’s templates for component hulls, ports, and subcom-
ponent instantiation. Listing 1.4 illustrates clArc’s new modeling elements: The
port group UserData (l. 2), denotes that the following ports belong to a seman-
tic unit for which calculations are performed only if all its ports have received
at least one message. Replication, denoted by [*] (l. 3), enables instantiating
a variable number of component instances at system runtime. The component
UserManagement also requires a service (l. 5) to function properly, which is
translated to a dependency to the eponymous Java interface.

Systematic Language Extension Mechanisms for the MontiArc ADL 67

6 Discussion and Related Work

The systematic extension mechanism of MontiArc enables extending it to cover
a great variety of architecture modeling concerns: Besides the variants presented
above, it has been extended to support component behavior modeling with a
variant of Java/P [16], architecture alignment checking [24], and delta model-
ing [15]. Following this method enables to reuse great parts of existing tooling,
such as transformations, generators, and well-formedness rules. While the present
extension mechanism is powerful, it requires MontiCore expertise to understand
its language constituents and their interaction. As long as there is no general con-
sensus on the shape of language components with interfaces for specific purposes,
this remains necessary. Although many language workbenches [5] support exten-
sion mechanisms comparable to the mechanism presented here, none provides
similar structural guidance to achieve such comprehensive tool chain integration.

Overall, science and industry have produced more than 120 ADLs [21]. These
emerged from different domains and consequently focus on different challenges
of architecture modeling. Although extensibility is “a key property of modeling
notations” [22] most of these ADLs are so-called “first-generation ADLs” [22]
that solely focus on technological challenges instead of domain-specific aspects or
extensibility. Notable exceptions are the Architecture Analysis and Design Lan-
guage (AADL) [6], π-ADL [26], and xADL [2]: AADL [6] features various mod-
eling elements to describe hardware and software components of embedded sys-
tems. Similar to MontiArcAutomaton, AADL can also be extended with behav-
ior modeling languages via sublanguages according to the behavior annex [7].
It does not support structured extension of its syntax or semantics aside from
this. The xADL [25] also focuses on architecture extensibility and shares many
features with MontiArc (e.g., composed and atomic component types, instanti-
ation, component behavior models). Moreover, it features modeling elements for
product lines and variability not supported by MontiArc. Extension in xADL
is syntactic and it neither supports non-invasive language aggregation, nor cus-
tomization of its model processing infrastructure. The π-ADL [26] enables mod-
eling structure and behavior of software architectures based on the π-calculus.
It generally also supports to add behavior modeling capabilities as layers on top
of its ADL. This ultimately produces a monolithic language composite whose
individual languages are difficult to exchange. Moreover, it does not support
structured extension of semantics composition of code generators for the indi-
vidual behavior DSLs.

7 Conclusion

We have presented the MontiArc architecture modeling infrastructure, which
leverages the results from software language engineering as realized with the
MontiCore language workbench to enable extension of syntax and semantics. At
its core, this infrastructure contains a light-weight ADL with extension points for
behavior language embedding and integration of type languages. Its infrastruc-
ture comprises frameworks to integrate new well-formedness checks, workflows,

68 A. Butting et al.

model-to-model transformations, and code generation capabilities. We have pre-
sented an extension method that covers each of these aspects and enables cus-
tomizing MontiArc to domain-specific requirements. This method alleviates the
need for developing a specific ADLs from scratch, which we have illustrated
with examples of MontiArc variants for three different domains, and greatly
facilitates employing ADLs in different domains. This ultimately fosters their
successful application in real-world scenarios.

References

1. Clark, T., Brand, M., Combemale, B., Rumpe, B.: Conceptual model of the
globalization for domain-specific languages. In: Cheng, B.H.C., Combemale, B.,
France, R.B., Jézéquel, J.-M., Rumpe, B. (eds.) Globalizing Domain-Specific
Languages. LNCS, vol. 9400, pp. 7–20. Springer, Cham (2015). doi:10.1007/
978-3-319-26172-0 2

2. Dashofy, E.M., der Hoek, A.V., Taylor, R.N.: A highly-extensible, xml-based
architecture description language. In: WICSA 2001. Proceedings of the Working
IEEE/IFIP Conference on Software Architecture, p. 103. IEEE Computer Society,
Washington, DC (2001)

3. Debruyne, V., Simonot-Lion, F., Trinquet, Y.: EAST-ADL — an architecture
description language. In: Dissaux, P., Filali-Amine, M., Michel, P., Vernadat, F.
(eds.) Architecture Description Languages. ITIFIP, vol. 176, pp. 181–195. Springer,
Boston, MA (2005). doi:10.1007/0-387-24590-1 12

4. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: Pro-
ceedings of the Twelfth Workshop on Language Descriptions, Tools, and Applica-
tions, LDTA 2012, NY, USA. ACM, New York (2012)

5. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer,
Cham (2013). doi:10.1007/978-3-319-02654-1 11

6. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, Boston
(2012)

7. Franca, R.B., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas,
D.: The AADL behaviour annex-experiments and roadmap. In: Proceedings of the
12th IEEE International Conference on Engineering Complex Computer Systems,
pp. 377–382. IEEE Computer Society, Washington, DC (2007)

8. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: Future of Software Engineering, FOSE 2007, pp. 37–54 (2007)

9. Greifenberg, T., Müller, K., Roth, A., Rumpe, B., Schulze, C., Wortmann, A.:
Modeling variability in template-based code generators for product line engineer-
ing. In: Modellierung (2016)

10. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: Textbased
modeling. In: 4th International Workshop on Software Language Engineer-
ing, Informatik-Bericht, Nashville, vol. 4. Johannes-Gutenberg-Universität Mainz
(2007)

11. Group, O.M: OMG Unified Modeling Language (OMG UML), Infrastructure Ver-
sion 2.3 (10–05-03) (2010)

http://dx.doi.org/10.1007/978-3-319-26172-0_2
http://dx.doi.org/10.1007/978-3-319-26172-0_2
http://dx.doi.org/10.1007/0-387-24590-1_12
http://dx.doi.org/10.1007/978-3-319-02654-1_11

Systematic Language Extension Mechanisms for the MontiArc ADL 69

12. Haber, A.: MontiArc - Architectural Modeling and Simulation of Interactive Dis-
tributed Systems. No. 24 in Aachener Informatik-Berichte, Software Engineering,
Shaker Verlag (2016)

13. Haber, A., Look, M., Mir Seyed Nazari, P., Navarro Perez, A., Rumpe, B., Voelkel,
S., Wortmann, A.: Integration of heterogeneous modeling languages via extensible
and composable language components. In: Proceedings of the 3rd International
Conference on Model-Driven Engineering and Software Development. Scitepress,
Angers, France (2015)

14. Haber, A., Look, M., Mir Seyed Nazari, P., Navarro Perez, A., Rumpe, B., Völkel,
S., Wortmann, A.: Composition of heterogeneous modeling languages. In: Desfray,
P., Filipe, J., Hammoudi, S., Pires, L.F. (eds.) MODELSWARD 2015. CCIS, vol.
580, pp. 45–66. Springer, Cham (2015). doi:10.1007/978-3-319-27869-8 3

15. Haber, A., Rendel, H., Rumpe, B., Schaefer, I.: Delta modeling for software
architectures. In: Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteterSysteme VII, pp. 1–10. fortiss GmbH (2011)

16. Haber, A., Ringert, J.O., Rumpe, B.: Towards architectural programming of
embedded systems. In: Tagungsband des Dagstuhl-Workshop MBEES: Modell-
basierte Entwicklung eingebetteterSysteme VI. Informatik-Bericht, vol. 2010-01,
pp. 13–22. fortiss GmbH, Germany (2010)

17. Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - architectural modeling of interac-
tive distributed and cyber-physical systems. Technical report AIB-2012-03, RWTH
Aachen University (2012)

18. Hermerschmidt, L., Hölldobler, K., Rumpe, B., Wortmann, A.: Generating
domain-specific transformation languages for component & connector architec-
ture descriptions. In: 2nd International Workshop on Model-Driven Engineering
for Component-Based Software Systems (ModComp) (2015)

19. Krahn, H.: MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im
Software-Engineering. No. 1 in Aachener Informatik-Berichte, Software Engineer-
ing, Shaker Verlag (2010)

20. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional devel-
opment of domain specific languages. Int. J. Softw. Tools Technol. Transf. (STTT)
12(5), 353–372 (2010)

21. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: a survey. IEEE Trans. Softw. Eng. 39(6), 869–891
(2013)

22. Medvidovic, N., Dashofy, E.M., Taylor, R.N.: Moving architectural description
from under the technology lamppost. Inf. Softw. Technol. 49(1), 12–31 (2007)

23. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26, 70–93 (2000)

24. Mir Seyed Nazari, P.: Architektur Alignment von Java Systemen. Master’s thesis,
RWTH Aachen University (2011)

25. Naslavsky, L., Dias, H.Z., Ziv, H., Richardson, D.: Extending xADL with statechart
behavioral specification. In: Third Workshop on Architecting Dependable Systems
(WADS), Edinburgh, Scotland, pp. 22–26. IET (2004)

26. Oquendo, F.: π-adl: an architecture description language based on the higher-order
typed π-calculus for specifying dynamic and mobile software architectures. ACM
SIGSOFT Softw. Eng. Notes 29(3), 1–14 (2004)

27. Ringert, J.O., Roth, A., Rumpe, B., Wortmann, A.: Language and code genera-
tor composition for model-driven engineering of robotics component & connector
systems. J. Softw. Eng. Rob. (JOSER) 6, 33–57 (2015)

http://dx.doi.org/10.1007/978-3-319-27869-8_3

70 A. Butting et al.

28. Ringert, J.O., Rumpe, B., Wortmann, A.: From software architecture structure
and behavior modeling to implementations of cyber-physical systems. In: Software
Engineering Workshopband (SE 2013). LNI, vol. 215, pp. 155–170 (2013)

29. Schindler, M.: Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P.
No. 11 in Aachener Informatik-Berichte, Software Engineering, Shaker Verlag
(2012)

30. Schlegel, C., Steck, A., Lotz, A.: Model-driven software development in robotics:
communication patterns as key for a robotics component model. In: Chugo, D.,
Yokota, S. (eds.) Introduction to Modern Robotics. iConcept Press (2011)

31. Vanbrabant, R.: Google Guice: Agile Lightweight Dependency Injection Frame-
work. Apress, New York (2008)

32. Völkel, S.: Kompositionale Entwicklung domänenspezifischer Sprachen. No. 9 in
Aachener Informatik-Berichte, Software Engineering, Shaker Verlag (2011)

33. Wile, D.S.: Supporting the DSL spectrum. Comput. Inf. Technol. 4, 263–287 (2001)

A Feature-Based Approach for Variability
Exploration and Resolution in Model

Transformation Migration

Davide Di Ruscio1 , Juergen Etzlstorfer2 , Ludovico Iovino3(B) ,
Alfonso Pierantonio1 , and Wieland Schwinger2

1 University of L’Aquila, L’Aquila, Italy
{davide.diruscio,alfonso.pierantonio}@univaq.it

2 Johannes Kepler University Linz, Linz, Austria
{juergen.etzlstorfer,wieland.schwinger}@jku.at

3 Gran Sasso Science Institute, L’Aquila, Italy
ludovico.iovino@gssi.it

Abstract. The key to success with Model-Driven Engineering is the
ability to maintain metamodels and their related artifacts consistent over
time. Metamodels can evolve under evolutionary pressure that arises
when clients and users express the need for enhancements. However,
metamodel changes come at the price of compromising metamodel-
related artifacts, including model transformations, necessitating their
migration to again conform to the evolved metamodel. Restoring con-
formance of transformations is intrinsically difficult since a multitude of
possible migration alternatives exist, which are unfeasible to be inspected
manually. In this paper, we present an approach to explore variability
in model transformation migration. Employing a feature-based represen-
tation of several possible transformation migrations, the approach per-
mits modelers to explore and explicitly discover differences and conflicts
among them. Once the desired migration alternatives are selected, the
actual migration program is generated and executed by exploiting the
EMFMigrate platform.

1 Introduction

As the complexity of software systems escalates, there is an increasing consensus
on the need to leverage abstraction. In Model-Driven Engineering [20] (MDE)
this is usually accomplished by formalizing domains by means of metamodels
that are at the core of this software discipline. As a consequence, complete mod-
eling environments, which consist of a multitude of artifacts including models
and model transformations, are formally defined in accordance with their refer-
ence metamodels [7]. Similarly to other software artifacts, metamodels can evolve
under evolutionary pressure that arises when clients and users express a need for
enhancements. Changing a metamodel might break conformance to its depen-
dent artifacts because of the existing dependencies among them [6]: conformance
restoring migrations are therefore necessary to re-establish the conformance in
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 71–89, 2017.
DOI: 10.1007/978-3-319-61482-3 5

http://orcid.org/0000-0002-5077-6793
http://orcid.org/0000-0002-8497-2266
http://orcid.org/0000-0001-6552-2609
http://orcid.org/0000-0002-5231-3952
http://orcid.org/0000-0002-7895-3165

72 D. Di Ruscio et al.

the modeling environment. Model transformations are no exception and urge to
be migrated whenever metamodels they are based on undergo modifications [8].

Analogously to the well-known update view problem in relational data-
bases [1] there are multiple ways of propagating metamodel changes, i.e., there
are many alternatives to migrate a transformation. The problem is how to choose
one i.e., how is it possible to identify a migration alternative reflecting both the
modeler intents and the rationale behind the metamodel refactoring among the
viable alternatives? Existing approaches (e.g., [10,16]) typically start from a
formalization of the metamodel changes to automatically derive a single migra-
tion. However, these techniques offer a prefixed solution only, which must be
used in any context and regardless of the reasons behind the occurred meta-
model evolution, entailing the drawback that potential solutions which better
fit the modeler intents are left unexplored. However, since multiple solutions are
possible, each leading to a differently migrated transformation, it is of utmost
importance to identify the one that best fits developers’ needs. In particular,
small changes in a given metamodel typically correspond to a large number of
migration alternatives. Unsupported manual inspection and detection of those
is prone to errors, because alternatives might overlap each other, hampering a
successful transformation migration.

This paper proposes an approach to represent a set of possible model transfor-
mation migration alternatives in response to metamodel evolution to support the
user in inspection and detection of migration alternatives. As a result, migration
solutions can be better compared as differences and potential conflicts between
migration alternatives are denoted by variability points without the necessity of
manually inspecting each of them. In this context, the user is supported in choosing
the desired migration alternative by means of a feature model [2]. EMFMigrate [23]
rules are automatically generated and executed with respect to the selected migra-
tion alternative, to migrate the initial transformation to recover its conformance
with the evolved metamodel.

Outline. Next section presents a motivating scenario, while Sect. 3 introduces
a notation for managing variability in an intensional way and its application on
an example. A prototypical implementation is presented in Sect. 4 and related
work is discussed in Sect. 5. Finally, Sect. 6 draws conclusions and outlines future
work.

2 Motivating Scenario

In this section, we present an explanatory metamodel evolution and its effects
on a model transformation. Despite its simplicity, it is able to show the large
number of migration alternatives and, thus, the multitude of different migrations
a user is confronted with.

Figure 1a shows the Simple Workplace metamodel acting as the source meta-
model of a transformation, comprising metaclasses for the specification of persons
and their corresponding workplaces. According to the metamodel, a Person works
optionally in an (abstract) Workplace, which can be a Company or University.

A Feature-Based Approach for Variability Exploration and Resolution 73

(a) Initial version (b) Evolved version

Fig. 1. An explanatory Workplace metamodel evolution

Fig. 2. The conference management metamodel

The specification of Persons can include the corresponding Address and Contact

data. Company elements consist of the specification of the corresponding addresses
and total revenues. The definition of University includes also information about
the number of students.

Figure 2 shows the metamodel of a simple conference management system: a
Conference can have a set of participants that can be affiliated with either a
University or a Company. In order to complete the registration to a conference,
each participant has to provide the corresponding organizers with a Billing-

Address and a Contact.
1 rule Person2Participant {
2 from s: WORKPLACE!Person
3 to t: CONFERENCE!Participant (
4 name <- s.name,
5 affiliated <- s.works,
6 contact <- s.contacts->first(),
7 address <- s.lives
8)
9 }

10 rule University2University {
11 from s: WORKPLACE!University
12 to t: CONFERENCE!University (
13 name <- s.name
14)
15 }
16 rule Company2Company {
17 from s: WORKPLACE!Company
18 to t: CONFERENCE!Company (
19 name <- s.name
20)
21 }
22 rule Address2Billing {
23 from s: WORKPLACE!Address
24 to t: CONFERENCE!BillingAddress
25 (
26 address <- s.street + ’,�’ + s.city
27)

74 D. Di Ruscio et al.

28 }
29 rule Contact2Contact {
30 from s: WORKPLACE!Contact
31 to t: CONFERENCE!Contact (
32 name <- s.name,
33 phone <- s.phone
34)
35 }

Listing 1.1. Snippet of SimpleWorkplace2ConferenceManagement

Listing 1.1 shows an ATL transformation [14] generating models conforming
to the metamodel in Fig. 2 out of workplace models conforming to the meta-
model in Fig. 1a. Therefore, the rule Person2Participant generates a Participant

instance for each instance of the Person metaclass. Analogously, the rules
University2University and Company2Company create instances of the correspond-
ing metaclasses. The rule Address2Billing generates a BillingAddress instance
for each Address instance, concatenating the source values street and city for
the target address value. The rule Contact2Contact generates Contact instances.

In order to address unforeseen requirements or to better represent the con-
sidered application domain, metamodels can evolve. For instance, the workplace
metamodel shown in Fig. 1a is modified to obtain the new version in Fig. 1b by
applying the following refactorings:

– R1. Introduction of subclasses: the Employee and Researcher metaclasses are
introduced as subtypes of Person, which in turn becomes abstract;

– R2. Split attribute: the attribute name of the metaclass Person is split in two
attributes with the same type, named firstname and lastname;

– R3. Flatten Hierarchy: the hierarchy between the metaclass Workplace and
the subclasses Company and University is reduced to the new version of the
Workplace metaclass. It contains a new attribute of type WorkspaceType, which
is a new enumeration representing the pruned subclasses, whose default value
is Company;

– R4. and R5. Replace metaclass : The metaclass Address is replaced by the
PersonalInfo metaclass, and Contact is replaced by the PersonalInfo meta-
class.

Because of these applied metamodel changes, the model transformation in
Listing 1.1 has lost its domain conformance [13] to the metamodel, and thus, has
to be migrated. Migration of model transformations is difficult and can easily
give place to inconsistencies and omissions [8]. Moreover, multiple migrations are
possible [21], each providing a different solution. Thus, Table 1 shows possible
migration alternatives for each applied refactoring. It is worth noting how even
simple, non-breaking changes [10] induce multiple options of migration according
to developer’s expertise and goals, which is the case of R1. In particular, if
the rule Person2Participant (cf. line 1–9 of Listing 1.1) is left unmodified the
transformation remains valid, since Person instances will be matched by the
rule. However, developers might still decide to change the input pattern of the
transformation with one of the subclasses, i.e. Employee or Researcher.

A Feature-Based Approach for Variability Exploration and Resolution 75

Table 1. Possible migration alternatives for the motivating example

Metamodel change Possible migration alternatives

R1. Introduce
subclasses

R1a1. Leave transformation unchanged

R1a2. Change in-pattern to Employee

R1a3. Change in-pattern to Researcher

R2. Split attribute R2a1. Use firstname

R2a2. Use lastname

R2a3. Use concatenation of firstname and lastname

R2a4. Delete the affected binding (it is assumed it is
not mandatory in the target metamodel)

R3. Flatten hierarchy R3a1. Change input pattern of the affected rule to
the remaining class Workplace and introduce guards to
produce instances of University and Company

R3a2. Change input pattern of the affected rule
University2University to Workplace and delete the other
rule Company2Company

R3a3. Change input pattern of the rule
Company2Company to Workplace and delete the other rule
University2University

R3a4. Delete both rules Company2Company and
University2University

R4. Replace metaclass
Address with PersonalInfo

R4a1. Delete rule Address2Billing

R4a2. Change input pattern of the rule
Address2Billing to the class PersonalInfo

R4a3. Change input pattern of the rule
Address2Billing to match the class PersonalInfo. In
addition, add another output pattern to produce also
target Contact instances

R5. Replace metaclass
Contact with PersonalInfo

R5a1. Delete rule Contact2Contact

R5a2. Change input pattern of the rule
Contact2Contact to be class PersonalInfo

R5a3. Change input pattern of the rule
Contact2Contact to match the class PersonalInfo. In
addition, add another output pattern to produce also
target BillingAdress instances

Refactoring R2 involves the split of the attribute name (cf. line 4). The pattern
s.name in the right hand side of the binding can not be longer queried and thus,
needs to be adapted. The corresponding migrations shown in Table 1 are not
exhaustive since the use of OCL in ATL transformations increases complexity
and gives place to many different solutions. However, possible migration alter-
natives for the right hand side of the binding can be for instance at least the

76 D. Di Ruscio et al.

following expressions: (i) s.firstname, (ii) s.lastname or (iii) s.firstname + ’ ’

+ s.lastname.
Concerning refactoring R3, the rules in lines 10–21 are no longer valid

since the types of the input patterns (i.e., University and Company) have
been removed from the initial version of the source metamodel. One pos-
sible migration is to change the input patterns of the affected rules by
adding conditions based on the new type attribute (cf. Fig. 3a), e.g.,
s:WORKPLACE!Workplace(s.type=#University). Such a “filter” is necessary since
in ATL each source model element can match with one rule only [14] and, conse-
quently, the input pattern Workplace can not be used in two different rules with-
out any guard. Alternatively, it is possible to drop one of the affected rules and
change the input pattern type of the kept rule to Workplace (cf. Fig. 3b and c).
Another option can be dropping both rules. However, although this would be a
syntactically valid option, no instances would be transformed, resulting in a loss
of information.

(a) Migration alternative (a) (b) Migration alternative (b) (c) Migration alternative (c)

Fig. 3. Possible migration alternatives related to refactoring R3

Among the possible ways to resolve refactoring R4, Table 1 shows three alter-
natives consisting of dropping the rule Address2Billing (R4a1), and change the
type of its input pattern to PersonalInfo (R4a2). This would be enough to run
the transformation without errors. However, an additional output pattern can
be added in order to generate also Contact instances (R4a3). Similarly to R4,
Table 1 shows three alternatives for adapting the sample ATL transformation
because of refactoring R5.

When migrating model transformations, which have been compromised by
metamodel refactoring actions, developers have to combine different migration
alternatives, one for each metamodel refactoring, to obtain a migration solution.
This represents a major difficulty because alternatives must be combined causing
a combinatorial explosion of cases: for instance, the 5 refactorings presented
above can give place to

3 × 4 × 4 × 3 × 3 = 432

migration alternatives. Although this is an over-approximation since conflicts
might occur between migration options as discussed later in the paper, it is
highly impractical for the modeler to sort out a myriad of individual alterna-
tives. The problem can be even more complex if the affected transformation has

A Feature-Based Approach for Variability Exploration and Resolution 77

several source and target evolving metamodels1. In the remainder of the paper
we consider the management of one-to-one model transformations with only the
source metamodel evolving, while the target metamodel remains unchanged.

3 Proposed Approach

In this section, we propose an approach to represent, explore, and select migra-
tion alternatives for ATL transformations in response to an evolved source meta-
model. The approach permits to represent all migration alternatives in a single
model with variability. Besides having an intensional representation of the solu-
tion space, i.e., all valid migrations of the transformation, the approach permits
the identification of the differences among the alternatives by means of variation
points originated from each metamodel refactoring. Moreover, the approach per-
mits to highlight conflicting alternatives, which will be discussed in more detail
later.

of
the weaving

model
WMM2FM Migration

configuration
Generation of
the migration

program

mWMM

T

1

2

Variability
Weaving Metamodel

(WMM)
T’MMsrc MM’src

Feature
Model

EMFMigrate
code

gnivae
w

lin
ks

metamodel evolution

domain conforms to domain conforms to

conforms to

Configuration
Model

automated task

control flow

modeling artifact
(model|metamodel|transformation)manually performed task

data flow (domain) conformance

Legend

Execution of
the migration

program

Specification

Fig. 4. Overview of the proposed approach

The approach is outlined in Fig. 4, where weaving model mWMM represents pos-
sible migration alternatives to be applied on the affected transformation T . The
weaving model2 conforms to the the Variability Weaving Metamodel explained
in detail in Sects. 3.1 and 3.2. To allow developers exploring the alternatives
1 In order to give more evidence of the difficulties related to the extensional treatment

of transformation migrations, which might be required because of metamodel evo-
lutions, our online appendix discusses a list of metamodel changes borrowed from
existing catalogues, e.g., [5,12]: http://www.emfmigrate.org/wp-content/uploads/
2017/04/appendix.pdf. Such changes are organized with respect to the impact they
might have on existing transformations.

2 Currently, the weaving model mWMM is manually specified even though an auto-
matic creation is feasible as discussed later in the paper. Such a relevant automation
step is an important work that we plan to do in the future.

http://www.emfmigrate.org/wp-content/uploads/2017/04/appendix.pdf
http://www.emfmigrate.org/wp-content/uploads/2017/04/appendix.pdf

78 D. Di Ruscio et al.

represented in mWMM , the WMM2FM transformation automatically generates
a feature model, a common mean to represent variability [2] (Sect. 3.3). This
is further used to easily determine a valid combination of migration alterna-
tives (Sect. 3.4) and to select a configuration to generate EMFMigrate migration
programs, which can be executed to migrate the affected transformations.

3.1 Variability Weaving Metamodel for Representing Different
Migration Solutions

The Variability Weaving Metamodel (WMM) has been designed in order to be
independent from the model transformation language in use. As a result, it can
be used without loss of generality for any rule-based transformation language.
To this end, a generalization step has been employed to abstract from language
dependent concepts in order to define a simplified transformation language very
much aligned with the notations given in [11,24], collecting common concepts of
model transformation languages (cf. Fig. 5). According to the simplified transfor-
mation metamodel, Module holds one or more Rules that might have superrules

which are composed of InPatterns and Outpatterns. An InPattern is further
composed of InputElements and an optional Guard. The OutPattern is composed
of one or more OutputElements which have optional bindings. It is worth noting
that the actual bindings, guards as well as the input and output patterns are
expressed as strings in the current version, but are planned to be replaced by
including an OCL metamodel, e.g., as done in [18].

Fig. 5. The Simple Transformation Language (STL) metamodel

As previously said, the variability weaving metamodel relies on the simpli-
fied transformation metamodel to deal with all kind of transformation language
specificities. Thus, by applying the approach presented in [3], for each meta-
class MC in the simplified transformation metamodel, corresponding AddedMC,
DeletedMC, and ChangedMC metaclasses, e.g., AddedRule, are defined in WMM
as shown in Fig. 6. WMM permits to represent Solutions that are considered
as the counterpart for the applied metamodel changes. As shown in Fig. 6,
each Solution is composed of Alternatives, which are disjunct and represent
migrations which have to be performed to co-evolve the affected transformation.

A Feature-Based Approach for Variability Exploration and Resolution 79

Fig. 6. The Variability Weaving Metamodel (WMM)

Each Alternative consists of DiffElements. A DiffElement can be in turn a
DiffRule or a DiffPattern, i.e., the changes that a rule can undergo or that
affect a pattern of a rule, respectively. AddedRule, ChangedRule and DeletedRule

are provided for added, updated or deleted rules, while CopyRule allows the rule
to be copied without actions, which might be a valid choice for some refactor-
ings, e.g., introduction of superclasses. The same concept is replicated for other
transformation constructs like patterns that are composed of bindings contain-
ing an OCL expression, to be held in the attribute expr. Finally, input patterns
can have guards to match only certain input patterns, and also in this case is
done using an expression. The references applicationElement from DiffElement

link to the abstract class SimpleTransformationElement, which can be special-
ized for each concept shown in Fig. 5 in order to refer concrete elements of the
transformation to be migrated.

An important characteristics of WMM is the specification of conflicts, i.e.,
disjunct choices that must not occur in the same solution. For instance, a migra-
tion solution can not contain choices that contribute to the generation of different
rules defined on the same input pattern without any guard, thus causing run-
time errors due to multiple rules matching the same model element. As another
example, a migration solution must not contain choices that refer to an element
which has been deleted by another alternative.

As previously mentioned, WMM can be used for managing model trans-
formations specified in different rule-based transformation languages. Thus, a
transformation written in a language, such as ATL or ETL [15], can be mapped
into its simplified version as shown in Fig. 7. This enables a simpler specification

80 D. Di Ruscio et al.

Variability Meta-
model WMM

TETL

TATL

ATL2STL

ETL2STL

mWMM

weaving links

STL2ATL

STL2ETL

trace
information

trace
information

TSTL

conformsTo

data flow
Legend:

Fig. 7. Generation of simplified transformation models

of the linkage between the (abstract) transformation and the migration variants.
Once the modeler has selected the desired alternatives (cf. Sect. 4), the transfor-
mation can be migrated by projecting the modification from the abstract model
to the original transformation. Therefore, the trace information produced when
executing the ATL2STL or ETL2STL transformation is used.

3.2 Specification of Variability Weaving Models

Figure 8 presents a variability model conforming to the WMM and related to
the running example. The weavings have been labeled with the same numbers
as in Fig. 4, so the left panel is the simplified version of the transformation in
Listing 1.1, and the right panel is the associated variability model containing all
migration alternatives listed in Table 1.

Please note that the graphical overlay by means of dashed and dotted lines is
for presentation purposes only and not visualized in this way in the tool, instead
we provide a feature model as graphical decision support which is a common and
widely used mean to manage variability in software product lines [2] (cf. Sect. 4).
The weaving links have been highlighted as dashed (green) lines, while the link
shown as dotted (red) line identifies a conflict in the solutions. The weaving
link denoted by the left (green) tooltip maps the OutPattern from the simplified
transformation model to a ChangedOutPattern in the Alternative R4a1 as part of
the Solution R4. It comprises a DeletedBinding element, which is in turn linked
to the affected binding in the simplified transformation model in rule Person2-

Participant. The corresponding action in Table 1 is denoted by R4a1.
Furthermore, a conflict between Alternative R4a2 and R5a2 has been iden-

tified, using the proposed conflict detection algorithm (cf. Sect. 3.4). In fact,
having both alternatives in the solution model would give place to an invalid
transformation with two rules matching the same input metaclass, which is for-
bidden since the input pattern has to be unique. Possible conflicts that can occur
when migrating transformations are discussed in Sect. 3.4.

In the following, we show how a feature-based representation of the migration
alternatives, as those represented in Fig. 8, can be automatically generated and
how it is beneficial in the variability management.

A Feature-Based Approach for Variability Exploration and Resolution 81

Fig. 8. Excerpt of the variability model for the transformation example (Color figure
online)

3.3 Feature Model as Representation for Managing Variability

Figure 9 shows a generated feature model3 specifying the alternatives for migrat-
ing the transformation to cope with the source metamodel evolution. In the con-
text of this paper, the feature model is a compact representation of all migration
alternatives and possible conflicts between them, supporting the exploration of
the desired migration alternatives.

As shown in Table 1, we consider five refactorings R1–R5 that entail five solu-
tions, each of those has possible alternatives for migration that satisfy the domain
conformance relationship. Also, the automatically identified conflict between the
alternatives is reflected by means of a constraint in the feature model. Thus, the
constraint R4a2 ⇒ ¬R5a2 defines that if alternative R4a2 is chosen, the alter-
native R5a2 is no longer valid and can not be chosen by the modeler.
3 In this work we employed the Eclipse FeatureIDE plugin [22] for specifying feature

models.

82 D. Di Ruscio et al.

Fig. 9. Feature model for the transformation example

The feature model is automatically generated starting from the weaving
model by employing the transformation WMM2FM shown in Listing 1.2. The
transformation employing the Epsilon Generation Language (EGL) [19]. The
model-to-code transformation targets XML as technical space and starts stor-
ing in the variabilityM variable the instance of the variability model and in
allSolutions the solutions specified (cf. lines 1, 2). The transformation iterates
the solutions and for each alternative a feature labeled with the alternative’s
name is created (cf. lines 7–13). Then the script generates constraints stemming
from the defined conflicts (cf. lines 17–30). Those constraints correspond with
the following expression a ⇒ ¬a1 ∧ ¬a2 ∧ . . .∧ ¬an defining that if alternative a
is chosen, the alternatives a1, a2, . . . an are no longer valid.
1 [% var variabilityM := VariabilityM.allInstances().at(0);
2 var allSolutions := variabilityM.solutions; %]
3 <?xml version="1.0"encoding="UTF-8"standalone="no"?>
4 <featureModel chosenLayoutAlgorithm="1">
5 <struct>
6 <and abstract="false" mandatory="true" name="VariabilityModel">
7 [% for (s in allSolutions) { %]
8 <alt mandatory="true" name="[%=s.name%]">
9 [% for (a in s.alternatives) { %]

10 <feature mandatory="true" name="[%=a.name%]"/>
11 [% } %]
12 </alt>
13 [% } %]
14 </and>
15 </struct>
16 <constraints>
17 [% for (s in allSolutions) {
18 for (a in s.alternatives) {
19 if (a.allConflicts.size() > 0) { %]
20 <rule>
21 <imp>
22 <var>[%=a.name%]</var>
23 <conj>
24 [% for (conflict in a.allConflicts) { %]
25 <not><var>[%=conflict.name%]</var></not>
26 [% } %]
27 </conj>
28 </imp>
29 </rule>
30 [% } } } %]
31 </constraints>
32 ...
33 </featureModel>

Listing 1.2. Fragment of the WMM2FM transformation

A Feature-Based Approach for Variability Exploration and Resolution 83

3.4 Automated Identification of Conflicting Alternatives

In order to further automate the presented approach, we propose an algorithm
that automatically identifies conflicts between alternative solutions and sets the
corresponding conflict relations in the variability model (cf. Fig. 8). A conflict
can be defined as a situation where two different alternatives can not co-exist,
since they could raise errors at run-time. The algorithm shown in Algorithm 1 is
able to identify the following conflicts, however, the algorithm can be extended
or changed if needed, to account for language-specific conflict detections4:

(c1) Rules are missing guards avoiding multiple matches for a same model ele-
ment;

(c2) A rule that has been deleted in one alternative is used in another alterna-
tive;

(c3) A binding that has been deleted in one alternative is used in another alter-
native.

Algorithm 1. Detection of Conflicting Alternatives
1: for all solutions s in model do
2: for all alternatives a in s do
3: for all rules r in a do
4: doubleMatch ← hasDoubleMatch(m, r)
5: if doubleMatch <> null then
6: addConflict(a, doubleMatch)
7: end if
8: deletedRule ← isRuleDeleted(r)
9: if deletedRule <> null then

10: addConflict(a, deletedRule)
11: end if
12: for all bindings b in rule r do
13: deletedBinding ← isBindingDeleted(b, r)
14: if deletedBinding <> null then
15: addConflict(a, deletedBinding)
16: end if
17: end for
18: end for
19: end for
20: end for

In particular, all the solutions in the input solution model are queried, and all
their alternatives and rules are iterated to check if two rules can potentially match
a same model element. Since in ATL this must not occur, it has to be ensured
that rules violating such a constraint are marked as conflict. In line 4 of Algo-
rithm 1 it is therefore checked if the current metamodel element is matched by any
4 The auxiliary functions HasDoubleMatch, IsRuleDeleted, IsBindingDeleted,

and AddConflict used in Algorithm 1 are reported online: http://www.
emfmigrate.org/wp-content/uploads/2017/04/appendix.pdf.

http://www.emfmigrate.org/wp-content/uploads/2017/04/appendix.pdf
http://www.emfmigrate.org/wp-content/uploads/2017/04/appendix.pdf

84 D. Di Ruscio et al.

other rule, by calling the auxiliary function HasDoubleMatch. If a double match
is detected, then a conflict is added in the model by means of the AddConflict

auxiliary function (cf. line 6). Analogously, in case elements are accessed in one
alternative, but deleted in another one a conflict has to be declared. To this end, in
line 8 and line 13 the auxiliary functions IsRuleDeleted and IsBindingDeleted

are executed, respectively and depending on their outcomes the AddConflict

function is executed accordingly.

4 Configuration and Execution of the Feature Model

In order to enable the execution of the migration solution obtained by selecting
the alternatives in the considered feature model, we exploit the EMFMigrate
migration platform5. EMFMigrate provides modelers with languages and tools
supporting the coupled evolution of any kind of modeling artifacts. An EMFMi-
grate specification consists of migration rules as shown in Fig. 10. In particular,
a migration program, usually specified by the modeler, is able to migrate artifact
A, conforming to the metamodel MM, according to the metamodel differences
represented in the model Delta, conforming to the difference metamodel pro-
posed in [3] already applied to other co-evolution cases (e.g., [4]).

A migration program consists of a sequence of migration rules mri. Each
rule is applied on artifact A if the corresponding guardi evaluated on the differ-
ence model Delta holds. The body of a migration rule consists of a sequence of
rewriting rules like the following

s[guard] → t1[assign1]; t2[assign2]; . . . tn[assignn]

where s, t1, . . . , tn refer to metaclasses of MM, and guard is a boolean expression
which has to be true in order to rewrite s with t1, t2, and tn. It is possible to spec-
ify the values of the target term properties by means of assignment operations
(see assigni).

Figure 11a shows the building of migration solution by selecting migration
alternatives represented by means of a feature model as discussed in the previ-
ous section. The desired options for migration are selected and shown as green
crosses. For each selected migration alternative corresponding EMFMigrate
migration rules are generated, that can be then executed on the input trans-
formation in order to obtain the migrated one. As one might see, the option
R5a2 is already grayed out by the tool, since this option is in conflict with
the selected one R4a2, thus, not available anylonger. Figure 11b shows the gen-
eration of the selected migration alternatives and a fragment of the generated
EMFMigrate code is shown in Listing 1.3. The shown code is related to the
management of the metamodel refactoring R1 by means of the selected alterna-
tive R1a2 (cf. Table 1). Lines 5–17 represent the guard of the rule and thus the

5 A detailed discussion of EMFMigrate is outside the scope of this paper. Interested
reader can refer to [6,23] for a detailed presentation of the approach.

A Feature-Based Approach for Variability Exploration and Resolution 85

Fig. 10. EMFMigrate syntax

metamodel changes that have to match in order to execute the migration specifi-
cation in line 21. The reported guard corresponds to the metamodel refactoring
R1 involving the metaclasses Person, Employee, and Researcher. The application
of the migration in line 21 induces the adaptation of the affected transformation
by changing the input patterns typed Person, which are all replaced with the
class Employee.

a) Selection of migration alternatives b) Log of EMFMigrate code generation

Fig. 11. Generation of migration solution code

1 migration Workplace2ConferenceManagement-Transformation;
2 migrate SimpleWorkplace2ConferenceManagement.atl : ATL
3 with WorkplaceMM0-WorkPlaceMM2.delta{
4 ...
5 rule migrationR1a2[
6 class person= changeClass(oldperson: class){
7 set abstract=true;
8 ...
9 }

10 class employee=addClass("Employee"){
11 set name="Employee";
12 set eSuperType=person;
13 }

86 D. Di Ruscio et al.

14 class researcher=addClass("Researcher"){
15 set name="Researcher";
16 set eSuperType=person;
17 }
18]
19 {
20 -- input patterns and helper contexts will be assigned to the R1a2 choice
21 o1: OclModelElement where [name = oldperson.name] -> o2: OclModelElement [name =

employee.name]
22 }
23 ...
24 }

Listing 1.3. Fragment of the generated EMFMigrate code

With the help of this approach and by taking potential conflicts into account,
the number of valid migration alternatives is significantly reduced, resulting in

3 × 4 × 3 × 2 × 2 = 144

migration alternatives for the refactoring presented in Table 1, which are sig-
nificantly less than those that can be obtained without the proposed approach.
Furthermore, migration alternatives are reduced even more once some of them
are selected, as shown in Fig. 11, thus, helping the user in finding the most
appropriate solution. Moreover, the generated EMFMigrate code consists only
of those migration rules related to the alternatives that are selected by means
of the feature model.

5 Related Work

In this section, we report on work (i) closely related to model transformation
migration, and (ii) more widely related with respect to variability in co-evolution
in MDE.

Recent approaches tackling the problem of transformation migration mostly
aim at providing a unique, predefined, and possible over-writable solution, thus,
variability is not supported, but has to be manually considered after the migra-
tion, entailing the drawback that generated solutions have to be modified by
hand, regardless if the solution has been generated by means of a higher-order
transformation [10], predefined migration actions [12,16], or mapping opera-
tors [25]. In [9] the authors propose the usage of transformation chains, which
are chosen by the user, thus, different solutions can be generated, but having
the drawback that the modeler has to be familiar with transformation chains.
In [17] a comprehensive set of metamodel changes is proposed, each accompa-
nied with a migration action for models and transformations. Since for the same
metamodel evolution, different semantic changes entailing different migration
solutions are proposed, variability is slightly considered in the sense, that the
evolution designer can incorporate the intention of the evolution when applying
the changes. However, support for exploration of different options for migration
is not provided, i.e., an intensional representation is not provided.

A Feature-Based Approach for Variability Exploration and Resolution 87

As a more widely related work, in [21] an approach for the generation of
multiple, ranked solutions for model migration (in contrast to transformation
migration as proposed in this paper) is presented. Based on the formalization of
the conformance relationship, the authors employ logic programming to gener-
ate a set of ranked solutions for model migration. However, to the best of our
knowledge, an approach supporting variability in the context of transformation
migration has not been proposed yet. As a result, one may see that the presented
approach is unique in the respect that alternative solutions can be explored and
selected by having a suitable representation in terms of a feature model easing
the burden of exploring and selecting the ultimately desired solution.

6 Conclusion and Future Work

In this paper, we proposed an approach for exploring and resolving variabil-
ity during model transformation migration, which is inevitable as a response
to metamodel evolution. The approach builds upon an intensional representa-
tion to explore variability by representing each migration alternative as a ded-
icated element in a weaving model. Furthermore, potentially arising conflicts
between solutions that are not compatible to each other can be explicitly high-
lighted. In order to support the user not only in exploring but also in resolving
variability, a suitable representation in terms of a feature model has been pro-
posed, which is automatically generated from the weaving model. Additionally,
EMFMigrate migration actions have been attached to the migration alternatives,
which allow for a (semi-)automatic co-evolution of transformations. Besides the
possibility of representing alternatives in a compact way, the method provides
means for detecting variations among the different solutions. Detection that oth-
erwise should be performed by manually comparing models, which are greatly
overlapping one with another.

There are several lines of future work. As already mentioned, we plan on
automating the generation of the weaving model, starting form our previous work
on generating multiple solutions for model co-evolution [21] in order to create
the intensional representation of multiple migration alternatives. Furthermore,
we plan on an evaluation in terms of a user study to identify and highlight the
major benefits and possible drawbacks of the proposed approach especially from
a usability point of view.

Acknowledgment. This work has been partly funded by the Austrian Science Fund
(FWF) under grant P 28519-N31 and the OeAD under grant WTZ AR18/2013 and
WTZ AR10/2015.

References

1. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Syst. (TODS) 6(4), 557–575 (1981)

2. Beuche, D., Papajewski, H., Schröder-Preikschat, W.: Variability management with
feature models. Sci. Comput. Program. 53(3), 333–352 (2004)

88 D. Di Ruscio et al.

3. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A metamodel independent approach
to difference representation. J. Object Technol. 6(9), 165–185 (2007)

4. Cicchetti, A., Ruscio, D., Pierantonio, A.: Managing model conflicts in distributed
development. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-87875-9 23

5. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: Proceedings of EDOC, pp. 222–231. IEEE (2008)

6. Di Ruscio, D., Iovino, L., Pierantonio, A.: Coupled evolution in model-driven engi-
neering. IEEE Softw. 29(6), 78–84 (2012)

7. Di Ruscio, D., Iovino, L., Pierantonio, A.: Evolutionary togetherness: how to man-
age coupled evolution in metamodeling ecosystems. In: Ehrig, H., Engels, G.,
Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 20–37.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33654-6 2

8. Di Ruscio, D., Iovino, L., Pierantonio, A.: A methodological approach for the
coupled evolution of metamodels and ATL transformations. In: Duddy, K., Kappel,
G. (eds.) ICMT 2013. LNCS, vol. 7909, pp. 60–75. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38883-5 9

9. Garcés, K., Vara, J.M., Jouault, F., Marcos, E.: Adapting transformations to meta-
model changes via external transformation composition. Softw. Syst. Model. 13,
789–806 (2013)

10. Garćıa, J., Diaz, O., Azanza, M.: Model transformation co-evolution: a semi-
automatic approach. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol.
7745, pp. 144–163. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36089-3 9

11. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., dos Santos, O.M.: Engineering
model transformations with transml. Softw. Syst. Model. 12(3), 555–577 (2013)

12. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - automating coupled evolu-
tion of metamodels and models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 52–76. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03013-0 4

13. Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel
evolution in MDE. JOT 11(3), 3:1–3:33 (2012)

14. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

15. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46–60. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69927-9 4

16. Kruse, S.: On the use of operators for the co-evolution of metamodels and trans-
formations. In: International Workshop on Models and Evolution 2011 (2011)

17. Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger, W., Schwinger, W.,
Schönböck, J.: Consistent co-evolution of models and transformations. In: MOD-
ELS. IEEE, October 2015

18. Richters, M., Gogolla, M.: A metamodel for OCL. In: France, R., Rumpe, B. (eds.)
UML 1999. LNCS, vol. 1723, pp. 156–171. Springer, Heidelberg (1999). doi:10.
1007/3-540-46852-8 12

19. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The epsilon generation
language. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol.
5095, pp. 1–16. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69100-6 1

20. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer
39(2), 25–31 (2006)

http://dx.doi.org/10.1007/978-3-540-87875-9_23
http://dx.doi.org/10.1007/978-3-540-87875-9_23
http://dx.doi.org/10.1007/978-3-642-33654-6_2
http://dx.doi.org/10.1007/978-3-642-38883-5_9
http://dx.doi.org/10.1007/978-3-642-36089-3_9
http://dx.doi.org/10.1007/978-3-642-03013-0_4
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/3-540-46852-8_12
http://dx.doi.org/10.1007/3-540-46852-8_12
http://dx.doi.org/10.1007/978-3-540-69100-6_1

A Feature-Based Approach for Variability Exploration and Resolution 89

21. Schönböck, J., Kusel, A., Etzlstorfer, J., Kapsammer, E., Schwinger, W., Wimmer,
M., Wischenbart, M.: CARE - a constraint-based approach for re-establishing
conformance-relationships. In: Proceedings of the APCCM (2014)

22. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Fea-
tureIDE: an extensible framework for feature-oriented software development. Sci.
Comput. Program. 79, 70–85 (2014)

23. Wagelaar, D., Iovino, L., Ruscio, D., Pierantonio, A.: Translational semantics of
a co-evolution specific language with the EMF transformation virtual machine.
In: Hu, Z., Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 192–207. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30476-7 13

24. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger,
W., Kolovos, D., Paige, R., Lauder, M., Schürr, A., Wagelaar, D.: Surveying
rule inheritance in model-to-model transformation languages. JOT 11(2), 3:1–3:46
(2012)

25. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoenboeck, J.,
Schwinger, W.: Surviving the heterogeneity jungle with composite mapping oper-
ators. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 260–275.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13688-7 18

http://dx.doi.org/10.1007/978-3-642-30476-7_13
http://dx.doi.org/10.1007/978-3-642-13688-7_18

On the Influence of Models at Run-Time Traces
in Dynamic Feature Location

Lorena Arcega1,2(B), Jaime Font1,2, Øystein Haugen3, and Carlos Cetina1

1 SVIT Research Group, Universidad San Jorge, Zaragoza, Spain
{larcega,jfont,ccetina}@usj.es

2 Department of Informatics, University of Oslo, Oslo, Norway
3 Department of Information Technology, Østfold University College,

Halden, Norway
oystein.haugen@hiof.no

Abstract. Feature Location is one of the most important and common
activities performed by developers during software maintenance and evo-
lution. In prior work, we show that Dynamic Feature Location obtains
better results working with models rather than source code. In this work,
we analyze how the criteria to create the model traces influence the
Dynamic Feature Location results. We distinguish between two different
criteria: configuration and architecture. Our Dynamic Feature Location
approach is composed of dynamic analysis, information retrieval at the
model trace level, and information retrieval at the model level. The eval-
uation in a Smart Hotel tests whether the traces created following the
two criteria modify the results of the Feature Location by measuring
recall, precision, and the combination of both (F-measure). The results
reveal that in 75% of the cases the traces that follow the architecture
criterion outperform the traces that follow the configuration criterion.

Keywords: Models at run-time · Feature location · Reverse engineering

1 Introduction

Software maintenance often involves tedious, time-consuming activities. Lehman
et al. [15] pointed out that up to 80% of the lifetime of a system is spent on main-
tenance and evolution activities. Software maintainers spend from 50% to almost
90% of their time trying to understand a program to make changes correctly. To
understand the underlying intents of an unfamiliar system, maintainers look for
clues in both the code and the documentation [2].

Feature Location is one of the most important and common activities per-
formed by developers during software maintenance and evolution [8]. Currently,
research efforts in Feature Location are concerned with identifying software arti-
facts that are associated with a program functionality (a feature). In Feature
Location approaches, it is common to focus on analyzing source code.

In prior work [3] we show that, for systems based on models at run-time,
better results were obtained in Dynamic Feature Location if we analyzed the
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 90–105, 2017.
DOI: 10.1007/978-3-319-61482-3 6

On the Influence of Models at Run-Time Traces 91

run-time model instead of the source code. Through this work, our goal is to
analyze how the criteria to form the model trace influence the Dynamic Feature
Location results. We are interested in two criteria to decide when a snapshot of
the run-time model should be added to the trace: (1) configuration criterion, that
adds a snapshot of the run-time model to the trace when the model corresponds
to a target configuration of the system in a reconfiguration, and (2) architecture
criterion that adds a snapshot of the run-time model to the trace each time a
change in the run-time model is performed.

Our Dynamic Feature Location approach is composed of dynamic analysis,
information retrieval at the model trace level, and information retrieval at the
model level. As a result, our approach generates a ranking with the most relevant
model elements for the feature to be located. We implemented the second and
third steps using a method named Latent Semantic Indexing (LSI), the method
that provides better results [16,20,21]. LSI allows software engineers to write
queries that are relevant to the feature they want to locate. As a result, the
software engineers obtain a ranked list of model elements from the model, which
are intended to identify the parts of the model that are significant for the target
feature.

We have applied our approach to a Smart Hotel to assess its performance. The
case study presents 476 model elements in the architecture model. The evaluation
tests how the traces created following the two criteria influence the results of
the Feature Location by measuring recall, precision, and the combination of
both (F-measure). These are the most common measures for the experiments
with information retrieval methods [17,23]. The recall, precision, and F-measure
values reveal that the traces that follow the architecture criterion obtain better
results than the traces that follow the configuration criterion in 75% of the cases.

The remainder of the paper is structured as follows. In Sect. 2, we present
the Smart Hotel and the model traces. In Sect. 3, we describe our approach for
Dynamic Feature Location with models. In Sect. 4, we evaluate our approach in
the Smart Hotel and we discuss the results. In Sect. 5, we examine the related
work of the area. Finally, we present our conclusions in Sect. 6.

2 Background

The running example and the evaluation of this paper are performed through
a Smart Hotel [7]. In this section we present the reconfigurations of the Smart
Hotel that are performed in response to changes in the context. For instance,
a change in the context could be determined by assessing if there is a client in
the room or not, or focusing on what activities the client may be performing
(sleeping, watching TV, etc.). In addition, this section shows the model traces
in which our approach records the execution information.

2.1 Behavior of the Smart Hotel at Run-Time

The Smart Hotel reconfiguration engine determines how the system should
be reconfigured in response to a context change, and then it modifies the

92 L. Arcega et al.

architecture model accordingly. In models at run-time, a causal connection
between the system and the run-time model is defined (there is a bidirectional
relation between the source code and the run-time model). This connection
allows the models (usually the architecture model) to reflect the software state.
This connection can be achieved in different ways, however, the most used imple-
mentation is the MAPE-K loop [6,13]. For more details about the reconfiguration
engine of the Smart Hotel see [7].

Presence Simulation
(Nobody is in the room)

Lighting By Presence
(The user is in the room)

Lights

Lighting
Service

Alarm
Security
Service

TV

Multimedia
Service

Presence Sensors

a

g
Presence Sensors

1

Security
Service

Presence
Simulator

Alarm

b c

e

f

TV Lights

The user
leaves the

room

Device Service Channel

Fig. 1. Smart hotel model reconfigurations

Figure 1 shows two Smart Hotel configurations according to the concrete syn-
tax of the architecture model of PervML [19]. Figure 1 (left) shows a User in the
room configuration, while Fig. 1 (right) shows a Nobody in the room configura-
tion. It can be observed that movement sensors are used for different purposes:
lighting (left), and providing information to the security service (right). In addi-
tion, the Occupancy simulation service is activated in the Nobody in the room
configuration, and the connections that are required for this service to commu-
nicate with multimedia, lighting, and security services are established.

2.2 Model Execution Traces

In our approach, the execution information is recorded by a model trace of
snapshots at run-time. Each execution trace is related to a set of snapshots of
the run-time model. In this paper we are interested in two criteria to decide when
a snapshot of the run-time model should be added to the trace: (1) configuration
criterion, and (2) architecture criterion.

In the configuration criterion, the snapshots are added to the trace when the
run-time model corresponds to a target configuration of the system in a recon-
figuration. That is, a snapshot is added when the system completes the changes
from one configuration to another. In the architecture criterion, the snapshots
are added to the trace when a change in the run-time model is performed. That
is, a snapshot is added each time a component of the run-time model is deleted

On the Influence of Models at Run-Time Traces 93

Model Trace following the Configuration Criterion

Lights

Lighting
Service

Alarm
Security
Service

TV

Multimedia
Service

Presence Sensors

a

g

Lights

Alarm
Security
Service

TV

1

Presence
Simulator

Presence Sensors

b c

e

f

Lights

Alarm
Security
Service

TV

1

Presence
Simulator

Presence Sensors

b c

e

f

Lights

Lighting
Service

Alarm
Security
Service

TV

Multimedia
Service

Presence Sensors

a

g

Lights

Alarm
Security
Service

TV

Presence Sensors

a

g

1

Presence
Simulator

Lights

Alarm
Security
Service

TV

Presence Sensors

a

g

1

Presence
Simulator

b c

Lights

Alarm
Security
Service

TV

Presence Sensors

1

Presence
Simulator

b c

Model Trace following the Architecture Criterion

Fig. 2. Different model traces following the different criterion

or created even if the model does not correspond to a target configuration of the
system.

Figure 2 shows two different traces for the same reconfiguration (the recon-
figuration showed in Fig. 1). The upper part shows a trace composed by the
configuration criterion. The first snapshot shows the system when there is a user
in the room, and the second snapshot shows the system when the user leaves
the room and the corresponding reconfiguration is completed. The bottom part
shows a trace composed by the architecture criterion. The first snapshot and the
last one are the same, as in the upper part of the figure. However, the rest of the
snapshots give more detail on what actions were carried out in the reconfigura-
tion from the first snapshot to the fifth one. For instance, in the second snapshot,
the Presence Simulator appears; in the third snapshot, the channels that connect
the Presence Simulator with the Multimedia Service and the Lighting Service
emerge; in the fourth snapshot, the channels that connect the Lighting Service
with the Presence Sensors are deleted; and, finally, in the fifth snapshot, the
channels that connect the Security Service with the Presence Sensors come into
sight.

3 Model Based Dynamic Feature Location Approach

Figure 3 shows an overview of our model based Dynamic Feature Location app-
roach. It is composed of three steps: dynamic analysis, information retrieval in
the model trace, and information retrieval in a model from the model trace.
In the first step, the software engineer executes a scenario, which involves the
desired feature to be located. The execution information is recorded by a model
trace of snapshots at run-time. Then, the model trace is used as input for the
second step of our Dynamic Feature Location. Using information retrieval, the
most relevant model for the desired feature is selected from the model trace. This
model is used as input for the third step of our approach, which performs infor-
mation retrieval at the model element level. As a result, the software engineers
obtain a ranked list of model elements from the model, intended to identify the
parts of the model that are significant for the target feature.

94 L. Arcega et al.

Most
Relevant
Model

scenario

1. Dynamic
Analysis

2. Information
Retrieval in the

Model Trace

query

Model
Trace

Rancked
Model

Elements

3. Information
Retrieval in
the Model

Fig. 3. Overview of the dynamic feature location approach

The following subsections present each of the steps that must be carried
out in order to perform the Feature Location at the model level, following our
approach. We use the Smart Hotel presented in Sect. 2 throughout the different
subsections to illustrate the details with a running example.

3.1 Dynamic Analysis

Execution information is gathered via dynamic analysis, which is commonly
used in program comprehension and involves executing a software system under
specific conditions. Executing the target feature during run-time generates a
feature-specific execution trace. In other words, the input for the execution is a
scenario that runs the target feature.

The model trace generated in this step only includes the models that have
been executed in the feature-specific scenario. This model trace is the main
artifact that our approach uses to locate the target feature.

As an example, we depict a scenario where we want to fix a bug in the gradual
light of the Smart Hotel. We follow the information from the bug report to define
the scenario that executes the target feature. In this case, a simplified version
(due to space constraints) of the scenario is as follows:

‘The software engineer simulates an empty Smart Hotel room. The lights are
off. The software engineer simulates that a client enters the room. The lights
gradually turn on. The software engineer simulates that the client leaves the
room, and then the lights gradually turn off.’

Our approach implies that the software engineer input is needed and of
course, results are sensitive to that input. The software engineer has to decide
on a scenario that will run the desired feature.

3.2 Information Retrieval in the Model Trace

In this step we use the model trace extracted in the previous step. In addition,
the software engineer has to formulate a query related to the feature that must
be located. The model trace and the query can be leveraged to locate the most
relevant model for the feature through the use of Information Retrieval (IR). IR
works by comparing a set of artifacts to a query, and ranking these artifacts by
their relevance to the query.

On the Influence of Models at Run-Time Traces 95

Typically, the query can come from textual documentation of the products,
comments in the code, bug reports or oral descriptions from the engineers. There-
fore, the query will include some domain specific terms similar to those used when
specifying the models. The knowledge of the engineers about the domain and
the models will be useful to select the query from the available sources.

There are many IR techniques that have been applied for feature location
tasks. Most of the feature location research efforts show better results when
applying Latent Semantic Indexing (LSI) [16,21]. In addition, combining LSI
with dynamic analysis improves its effectiveness [20].

In our previous work [3] we adapted LSI, which was traditionally used in
code, in order to apply it to models. Summarizing, the text from the models
is extracted and a text corpus is created, where each document corresponds
to a model or to a subset of model elements of the model. The text corpus
is used to create a term-by-document co-occurrence matrix. As LSI does not
use a predefined grammar or vocabulary it is very robust regarding outlandish
identifier names and stop words. Users can produce queries in natural language
and the system returns a list of all the documents in the system, ranked by their
semantic similarity to the query.

Snapshot 1

room 1 2 0 1 2

automated 2 1 0 0 4

light 6 5 7 0 0

presence 4 2 0 0 1

intensity 0 2 1 1 0

... … ...

security 1 0 0 1 4

Te
rm

s

Models

Query

1

0

2

6

1

...

0

Snapshot 2 Snapshot 3 Snapshot 4 Snapshot 5

Lights

Alarm
Security
Service

TV

Presence Sensors

1

Presence
Simulator

b c

Lights

Alarm
Security
Service

TV

1

Presence
Simulator

Presence Sensors

b c

e

f

Lights

Lighting
Service

Alarm
Security
Service

TV

Multimedia
Service

Presence Sensors

a

g

Lights

Alarm
Security
Service

TV

Presence Sensors

a

g

1

Presence
Simulator

Lights

Alarm
Security
Service

TV

Presence Sensors

a

g

1

Presence
Simulator

b c

Fig. 4. Information retrieval via latent semantic indexing (LSI)

We adapt each step of the LSI technique to work with the model trace. The
adaptation is performed as follows:

– Creating a corpus: Each document corresponds to a model of the model
trace extracted in the dynamic analysis. Each document (model) includes
text from the names of the model elements and the names of the attributes
and methods of the model elements that compose that model.

96 L. Arcega et al.

– Preprocessing: The type of the attributes and the type of the parameters
in the methods are removed. Then, all the identifiers are split. For exam-
ple, ’IlluminationService’ becomes ’illumination’ and ’service’. To do this, we
apply Natural Language Processing (NLP) techniques, such as tokenizing,
Parts-of-Speech (POS) tagging techniques, and stemming techniques [1,12],
however, the details of the application of these techniques are out of the scope
of this paper.

– Indexing: In the term-by-document co-occurrence matrix, the terms (rows)
correspond to the names of the model elements and the names of the
attributes or methods of the model, and the documents (columns) corre-
spond to the models that have appeared in the model trace. Figure 4 shows
the term-by-document co-occurrence matrix, with the values associated to
our running example.
Each row in the matrix stands for each one of the unique words (terms)
extracted from our models. Figure 4 shows a set of representative keywords
in the domain such as ’room’, ’light’, or ’presence’ as the terms of each row.
Each column in the matrix stands for the models of the model trace. Figure 4
shows the models of the trace in each column, such as ’Snapshot1’, which
represents the first model of the model trace.
Each cell in the matrix contains the frequency with which the keyword of its
row appears in the document denoted by its column. For instance, in Fig. 4,
the term ’light’ appears 6 times in the ’Snapshot1’ model.

– Querying: We use the bug reports to formulate the queries. Only the relevant
terms are taken into account, and words such as determinants and connectors
from the language are omitted.
In Fig. 4, the query column represents the words that appear in the bug
report. Each cell contains the frequency with which the keyword of its row
appears in the query. For instance, the term ’presence’ appears 6 times in the
query.

– Generating results: In our approach, each document and the query are
translated into vectors. The cosine of the angle between the query vector and
a document vector is used as a measure of the similarity of the document to
the query. The closer the cosine is to one, the more similar the document is to
the query. A cosine similarity value is calculated between the query and each
document, and then the documents are sorted according to their similarity
values. The user inspects the ranked list to decide which of the documents
are relevant to the feature.
We obtain vector representations of the documents and the query by nor-
malizing and decomposing the term-by-document co-occurrence matrix using
a matrix factorization technique called Singular Value Decomposition (SVD)
[14]. SVD is a form of factor analysis, or, more properly, the mathematical
generalization of which factor analysis is a special case. In SVD, a rectan-
gular matrix is decomposed into the product of three other matrices. One
component matrix describes the original row entities as vectors of derived
orthogonal factor values, another describes the original column entities in the
same way, and the third is a diagonal matrix containing scaling values such

On the Influence of Models at Run-Time Traces 97

that when the three components are matrix-multiplied, the original matrix is
reconstructed.

In this step of our approach, we only take into account the model that
presents the best similarity measure. We consider it as the most relevant model
for the feature to be located, and as such, it is used as input for the next step.

3.3 Information Retrieval in the Model

In this step we apply LSI at the model element level, considering that each model
element is a document. We apply it to the model obtained in the previous step.
This model is the most relevant model for the desired feature. However, we want
to locate the most relevant model elements for the desired feature. The result of
this step is a ranked list of model elements of the model, which are intended to
identify the parts of the model that are significant for the target feature.

To that extent, we adapted LSI to work with a model. The main differences
from the previous adaptation are the following:

– The input is one model. As such, the terms are extracted taking into account
only one model.

– The granularity of the corpus changes. In the corpus creation, each document
corresponds to a model element of the most relevant model extracted before.

For generating the results, we apply the same technique as in the previous
step (SVD). However, the result in which we are interested is different. In this
step of our approach, of all the model elements, only those model elements that
have a similarity measure greater than x must be taken into account to measure
the quality of the results. A good heuristic that is widely used is x = 0.7.
This value corresponds to a 45◦ angle between the corresponding vectors. This
threshold has yielded good results in other similar works [17,22]. Determining a
more generally usable heuristic for the selection of the appropriate threshold is
an issue under study, over which further research is needed.

The goal of our approach is to rank the relevant model elements within the
top positions. The ranking of model elements is ordered by the values of the
cosines.

4 Evaluation: Feature Location in the Smart Hotel

We evaluate how the architecture changes recorded with the snapshots in the
model trace influence the results of Feature Location. In other words, we want
to evaluate whether all the changes produced in the architecture model when
a system reconfiguration is necessary are relevant for feature location. In order
to do this, we compare the presented model based Dynamic Feature Location
approach using traces following the architecture criterion (DFL-AT), against the
same approach using traces following the configuration criterion (DFL-CT).

98 L. Arcega et al.

The quality of the results of Information Retrieval techniques is measured
by their recall and precision. These are two of the most common measures for
experiments with information retrieval methods [17,23]. For a given query, recall
is the percentage of retrieved documents that are relevant to the total number of
relevant documents, while precision is the percentage of the retrieved documents
that are relevant to the total number of retrieved documents. A measure that
combines both recall and precision is the harmonic mean of precision and recall,
called the F-measure.

We defined the experimental design of our study using the Goal-Question-
Metric method (GQM) [4]. We used the template presented in [5]. The GQM
method was defined as a mechanism for defining and interpreting a set of opera-
tion goals using measurements. In this evaluation, the object is our Smart Hotel,
the purpose is evaluation, the issues are the recall and precision of our Dynamic
Feature Location approach, and the context is Feature Location using model
traces. We focused on answering this research question: Do the criteria used to
form the model trace influence the results of Dynamic Feature Location?

Basili in [4] and Travassos in [24] describe four kinds of studies: in-vivo, in-
vitro, in-virtuo, and in-silico. In our case, we chose to carry out in-virtuo exper-
iments, where the real world is described through computer models. This exper-
iment involves the interaction among participants and a computerized model of
reality. The simulated environment offers major advantages regarding cost and
feasibility against replicating a real-world configuration. In addition, some sce-
narios such as fires or floods that cannot be replicated in the real world can be
described and analyzed in a simulated environment.

In order to evaluate the results of our experiments, we have collected the
existing documentation about the bugs in the Smart Hotel. Each bug can be
mapped to a subset of model elements of a model, specified with the model
fragment formalization capacities of the Common Variability Language (CVL).
In other words, for each bug, we know beforehand which is the associated subset
of model elements that are involved in the bug. We use the existing knowledge
as an oracle to evaluate the results provided by DFL-AT and DFL-CT.

Figure 5 shows the entire process that we followed to evaluate our approach.
For the evaluation, we used the Smart Hotel system (Fig. 5(A)). The Smart Hotel

(A)
Smart Hotel
Run-time

Architecture
model

at
Run-time

scenario
execution

Architec.
Traces

Config.
Traces

DFL-AT

DFL-CT

input

input

output

output

DFL-AT
Ranking

DFL-CT
Ranking

Oracle

DFL-AT
R&P

Report

DFL-CT
R&P

Report

input output

input output

(B)
Dynamic Analysis

(C)
Information Retrieval

(D)
Checking Results

Fig. 5. Overview of the evaluation process

On the Influence of Models at Run-Time Traces 99

presents 476 model elements in the architecture model. In the evaluation set-up,
a simulated environment was used to represent the Smart Hotel.

After running the scenario that executes the feature to be located, our app-
roach generated the model traces (Fig. 5(B)). Then, we run two different Feature
Location scenarios, using different traces as input. DFL-AT used the model trace
that follows the architecture criterion, and DFL-CT used the model trace that
follows the configuration criterion.

DFL-AT produced a ranking of model elements (DFL-AT Ranking), and
DFL-CT produced another ranking of model elements (DFL-CT Ranking) for
the desired feature (see Fig. 5(D)). The oracle allowed us to know how many
of the model elements in the rankings were the ones that realized the desired
feature in terms of recall, precision, and F-measure values.

The recall and precision were calculated as follows:

Recall =
RankingElements ∩ OracleElements

OracleElements

Precision =
RankingElements ∩ OracleElements

RankingElements

The F-measure that combines recall and precision was calculated as follows:

F − measure = 2 ∗ Precision ∗ Recall

Precision + Recall

4.1 Results

We performed this evaluation with thirty bugs extracted from the documenta-
tion of the Smart Hotel. We defined the scenarios based on bug reports. On
average, the generated traces were as follows: 26 models in the trace following
the architecture criterion (DFL-AT) and 9 models in the trace following the
configuration criterion (DFL-CT).

Figure 6 shows the recall, precision, and F-measure values for each one of
the bugs. On average, DFL-AT obtains a 74.67% recall value while DFL-CT
obtains a 64.23% recall value. The values indicate that around the 75% of the
model elements that realize the target feature are retrieved. DFL-AT improves
the recall result achieved by DFL-CT by around 10%.

Regarding the precision value, on average, DFL-AT obtains a 75.96% while
DFL-CT obtains a 65.53%. The values indicate that around the 76% of the
model elements retrieved belong to the targeted feature. Once again, DFL-AT
improves the precision result achieved by DFL-CT by around 10%.

Consequently, on average, DFL-AT obtains a 74.35% F-measure value, while
DFL-CT obtains a 63.02% F-measure value. In 75% of the cases, DFL-AT out-
performs the results of DFL-CT.

100 L. Arcega et al.

DFL-CT DFL-AT

R
ec

al
l i

n
%

Features

P
re

ci
si

on
 in

 %

Features

F-
m

ea
su

re
 in

 %

Features

Fig. 6. Recall, precision and F-measure graphs

On the Influence of Models at Run-Time Traces 101

4.2 Discussion

Our evaluation suggests that Feature Location with model traces following the
architecture criterion obtains better results in precision, recall, and F-measure
than Feature Location with model traces following the configuration criterion.
This is because the manifestation of a bug can occur in a snapshot that does not
represent a source or target configuration in a reconfiguration of the system. In
other words, a bug can be introduced in the system due to changes made in the
architecture model during a reconfiguration.

Analyzing the results, Dynamic Feature Location with model traces following
the architecture criterion does not always get the best results. The model traces
composed by the architecture criterion have more snapshots that the model
traces composed by the configuration criterion (see Sect. 2.2). In addition, two
consecutive snapshots of the model trace composed by the architecture criterion
are typically more similar that two consecutive snapshots of the model trace
composed by the configuration criterion. For instance, in the model trace com-
posed by the architecture criterion, a snapshot may differ from its consecutive
one on only a single channel.

The above indicates that, in the step through which we perform information
retrieval to extract the most representative model, the search space is larger in
the model trace composed by the architecture criterion. In addition, the fact
that the models in the trace are similar can imply similarity of terms in the doc-
uments of the LSI, therefore causing the technique to not discriminate between
some models. However, in 75% of the cases, the Dynamic Feature Location with
the model trace composed by the architecture criterion obtains better results
than the Dynamic Feature Location with the model trace composed by the con-
figuration criterion.

Finally, when forming the traces in the architecture criterion, only the cre-
ation and deletion of model elements are taken into account. In order to obtain
better results in Feature Location, further experiments must be performed to
analyze if other updates in the model elements should be taken into account.

4.3 Threats to Validity

In this section, we discuss some of the issues that might have affected the results
of the evaluation and that may limit the generalizations of the results.

The first issue is regarding whether or not the software system used in the
evaluation is representative of those used in practice. Given the scale and com-
plexity of our Smart Hotel, we consider our evaluation to be a good starting
point for representing a realistic case. However, this threat can be reduced if we
experiment with other software systems of different sizes and domains.

Another issue is the selection of the scenarios to obtain the execution trace.
Since we have extracted the information from the bug reports, we can claim
that our scenarios are good representatives of features that must be located
to solve the most common bugs of the Smart Hotel. In addition, following the

102 L. Arcega et al.

information from the bug anyone could define the scenarios. However, depending
on the chosen scenarios, the results may differ.

Since the queries formulated to generate the ranked lists depend on the bug
reports, the final results are also sensitive to the queries extracted by the software
engineers from the bug reports.

5 Related Work

Some approaches related to Feature Location use design-time models to extract
variability. Although they do not use models at run-time, their works are based
on extracting features using models.

Font et al. [10] show that model fragments extracted mechanically may not be
units recognizable by application engineers. They propose identifying model pat-
terns by their human-in-the-loop approach, and conceptualizing them as reusable
model fragments. Their approach provides the means to identify and extract
those model patterns and further apply them to existing product models. In
[11], the work from [10] is extended to handle situations where the domain expert
fails to provide accurate information. The authors propose a genetic algorithm
for feature location in model-based SPLs. Their comparison with other approach
without a genetic algorithm demonstrates that their approach is able to provide
solutions upon inaccurate information on the part of the domain expert while
the other fails.

Martinez et al. [18] propose an extensible framework that allows a feature to
be identified, located and extracted from a family of models. They introduce the
principles of this framework and provide insights on how it can be extended for
usage in different scenarios. As a result, the initial investment required by the
task of adopting a software product line from a family of models is reduced.

All of these works extract model fragments from a given set of models, taking
into account their commonalities and variabilities. However, these approaches do
not take into account the run-time behavior of systems, and are not focused on
Feature Location. Nevertheless, all of them can be used as a base for extracting
the model fragments that correspond to the feature to be located.

There are many more research efforts in Dynamic Feature Location tech-
niques based on source-code analysis. Some of these works combine other kinds
of analysis (i.e. information retrieval) to obtain more accurate results.

Liu et al. [16] combine information from an execution trace and from the
comments and identifiers from the source code. They executed a single scenario
which executes the desired feature. All the executed methods are identified based
on the collected trace using LSI. The result is a ranked list of executed methods
based on their textual similarity to a query.

Revelle et al. [21] apply data fusion for feature location. Their technique
combines information from textual, dynamic, and web mining analysis applied
to software. Their input is a single scenario that exercises the feature. After
running the scenario, they construct a call graph that contains only the methods
that were executed. Then, they apply a web-mining algorithm, and the system

On the Influence of Models at Run-Time Traces 103

filters out low-ranked methods. The remaining set of methods is scored using
LSI based on their relevance to the input query describing the feature.

Dit et al. [9] present a data fusion model for feature location that is based on
the idea that combining data from several sources in the right proportions will
be effective at identifying a feature’s source code. The data fusion model defines
different types of information that can be integrated to perform feature location
including textual, execution, and dependence. Textual information is analyzed
by IR, execution information is collected by dynamic analysis, and dependencies
are analyzed using link analysis algorithms.

Similarly to our technique, all of these feature location techniques use infor-
mation from different sources. Although they are based on locating features in
source code, some of the ideas could be applied to our model based Dynamic
Feature Location approach to obtain more accurate results.

In addition, Arcega et al. [3] present a model-based feature location app-
roach. They apply dynamic analysis and information retrieval with run-time
models. The evaluation is focused in revealing that model based feature loca-
tion approaches provide more accurate results. This work extends this approach
changing the way the model traces are treated. Through this work, we are focused
in finding the information needed in the model traces to obtain more accurate
results in Dynamic Feature Location.

6 Conclusion

In the presented work, we analyze how the criteria to create the model traces
influence Dynamic Feature Location results. We focus on two different criteria:
(1) configuration criterion, that adds a snapshot of the run-time model to the
trace when the model corresponds to a target configuration of the system in a
reconfiguration, and (2) architecture criterion, that adds a snapshot of the run-
time model to the trace each time a change in the run-time model is performed.
Our Dynamic Feature Location approach is composed by dynamic analysis, infor-
mation retrieval at the model trace level, and information retrieval at the model
level.

Our evaluation in a Smart Hotel calculates the values of the most common
measures for experiments with information retrieval methods (recall, precision,
and F-measure). We use these values to compare Dynamic Feature Location
with traces created following the architecture criterion against Dynamic Feature
Location with traces created following the configuration criterion. The results
reveal that in 75% of the cases, Dynamic Feature Location with model traces
composed by the architecture criterion obtains better results than Dynamic Fea-
ture Location with model traces composed by the configuration criterion.

Our future work involves designing a Feature Location approach that com-
bines model traces and information about the time of the execution. In addition,
further experiments are necessary to identify other different criteria to create
model traces.

104 L. Arcega et al.

Acknowledgments. This work has been partially supported by the Ministry of Econ-
omy and Competitiveness (MINECO) through the Spanish National R+D+i Plan and
ERDF funds under the project Model-Driven Variability Extraction for Software Prod-
uct Line Adoption (TIN2015-64397-R).

References

1. Alves, V., Schwanninger, C., Barbosa, L., Rashid, A., Sawyer, P., Rayson, P.,
Pohl, C., Rummler. A.: An exploratory study of information retrieval techniques
in domain analysis. In: 2008 12th International Software Product Line Conference,
pp. 67–76, September 2008

2. Antoniol, G., Gueheneuc, Y.-G.: Feature identification: an epidemiological
metaphor. IEEE Trans. Softw. Eng. 32(9), 627–641 (2006)

3. Arcega, L., Font, J., Haugen, Ø., Cetina, C.: Feature location through the combi-
nation of run-time architecture models and information retrieval. In: Grabowski,
J., Herbold, S. (eds.) SAM 2016. LNCS, vol. 9959, pp. 180–195. Springer, Cham
(2016). doi:10.1007/978-3-319-46613-2 12

4. Basili, V.R.: The role of experimentation in software engineering: past, current, and
future. In: Proceedings of the 18th International Conference on Software Engineer-
ing, ICSE 1996, pp. 442–449. IEEE Computer Society, Washington, DC (1996)

5. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In:
Encyclopedia of Software Engineering. Wiley (1994)

6. Bencomo, N., Hallsteinsen, S., Santana de Almeida, E.: A view of the dynamic
software product line landscape. Computer 45(10), 36–41 (2012)

7. Cetina, C.: Achieving autonomic computing through the use of variability models
at run-time. Ph.D. thesis, Universidad Politécnica de Valencia (2010)

8. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
a taxonomy and survey. J. Softw. Maintenance Evol. Res. Pract. 25(1), 53–95
(2011)

9. Dit, B., Revelle, M., Poshyvanyk, D.: Integrating information retrieval, execution
and link analysis algorithms to improve feature location in software. Empirical
Softw. Eng. 18(2), 277–309 (2013)

10. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Building software product lines from
conceptualized model patterns. In: Proceedings of the 2015 19th International Soft-
ware Product Line Conference, SPLC 2015, Nashville, TN, USA (2015)

11. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Feature location in model-based
software product lines through a genetic algorithm. In: Kapitsaki, G.M., Santana
de Almeida, E. (eds.) ICSR 2016. LNCS, vol. 9679, pp. 39–54. Springer, Cham
(2016). doi:10.1007/978-3-319-35122-3 3

12. Hulth, A.: Improved automatic keyword extraction given more linguistic knowl-
edge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2003, Stroudsburg, PA, USA, pp. 216–223. Associ-
ation for Computational Linguistics (2003)

13. IBM: An architectural blueprint for autonomic computing. Technical report, IBM
(2006)

14. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analy-
sis. Discourse Process. 25(2–3), 259–284 (1998)

15. Lehman, M.M., Ramil, J., Kahen, G.: A paradigm for the behavioural modelling
of software processes using system dynamics. Technical report, Imperial College of
Science, Technology and Medicine, Department of Computing, September 2001

http://dx.doi.org/10.1007/978-3-319-46613-2_12
http://dx.doi.org/10.1007/978-3-319-35122-3_3

On the Influence of Models at Run-Time Traces 105

16. Liu, D., Marcus, A., Poshyvanyk, D., Rajlich, V.: Feature location via information
retrieval based filtering of a single scenario execution trace. In: Proceedings of
the Twenty-second IEEE/ACM International Conference on Automated Software
Engineering, ASE 2007, New York, NY, USA, pp. 234–243. ACM (2007)

17. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.: An information retrieval app-
roach to concept location in source code. In: Proceedings of the 11th Working
Conference on Reverse Engineering, pp. 214–223, November 2004

18. Martinez, J., Ziadi, T., Bissyandé, T.F., Le Traon, Y.: Bottom-up adoption of
software product lines: a generic and extensible approach. In: Proceedings of the
19th International Software Product Line Conference, SPLC 2015, Nashville, TN,
USA (2015)

19. Muñoz, J.: Model driven development of pervasive systems. building a software
factory. Ph.D. thesis, Universidad Politécnica de Valencia (2008)

20. Poshyvanyk, D., Gueheneuc, Y.-G., Marcus, A., Antoniol, G., Rajlich, V.: Feature
location using probabilistic ranking of methods based on execution scenarios and
information retrieval. IEEE Trans. Softw. Eng. 33(6), 420–432 (2007)

21. Revelle, M., Dit, B., Poshyvanyk, D.: Using data fusion and web mining to support
feature location in software. In: IEEE 18th International Conference on Program
Comprehension (ICPC), pp. 14–23, June 2010

22. Salman, H.E., Seriai, A., Dony, C.: Feature location in a collection of product
variants: combining information retrieval and hierarchical clustering. In: The 26th
International Conference on Software Engineering and Knowledge Engineering,
Hyatt Regency, Vancouver, BC, Canada, 1–3 July 2013, pp. 426–430 (2014)

23. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill Inc, New York (1986)

24. Travassos, M.O.B.G.H.: Contributions of in virtuo and in silico experiments for the
future of empirical studies in software engineering. In: Proceedings of the Workshop
on Empirical Studies in Software Engineering (ESEIW). IEEE Computer Society
(2003)

Model-Driven Generative Development

cMoflon: Model-Driven Generation of Embedded
C Code for Wireless Sensor Networks

Roland Kluge1(B) , Michael Stein2 , David Giessing1 , Andy Schürr1 ,
and Max Mühlhäuser2

1 Real-Time Systems Lab, TU Darmstadt, Darmstadt, Germany
{roland.kluge,andy.schuerr}@es.tu-darmstadt.de

2 Telecooperation Group, TU Darmstadt, Darmstadt, Germany
{stein,max}@tk.tu-darmstadt.de

Abstract. Wireless sensor networks (WSNs) are an indispensable part
of the emerging Internet of Things. The topology of a WSN is a graph
representing the sensor nodes and their interconnecting links. To reduce
the energy consumption of a WSN, a topology control algorithm inac-
tivates inessential links, and the sensor nodes reduce their transmission
power while preserving crucial integrity properties (e.g., connectivity).
In previous work, we have shown that model-driven engineering allows
to prototype topology control algorithms that (i) preserve the specified
integrity properties and (ii) can be rapidly evaluated in a network simula-
tor. In this paper, we complement our approach by proposing cMoflon,
an open-source tool that generates embedded C code for hardware sen-
sor testbeds. The target platform is the Contiki WSN operating sys-
tem. To show the applicability of cMoflon, we generate code for three
representative topology control algorithms: kTC, l*-kTC, and LMST. A
comparison of the generated topology control algorithms with their man-
ually tuned counterparts for TelosB sensor nodes shows that cMoflon
generates embedded code that is competitive w.r.t. code memory usage.

Keywords: Code generation · Wireless sensor networks · Model-driven
engineering

1 Introduction

Wireless sensor networks (WSNs) are a highly active research area in the emerg-
ing Internet of Things [28]. The topology of a WSN is a graph representing
the sensor nodes and their (potential) communication links. Sensor nodes are
typically battery-powered, which makes reducing the energy consumption of a
WSN a key optimization goal. Topology control (TC) [20] tackles this goal:
Each node selects a subset of its neighboring nodes and reduces its transmission
power to reach its farthest selected neighbor. WSNs are frequently deployed in
safety-critical contexts, such as health or wildfire alarm systems [3]. Therefore,
developers of TC algorithms must ensure that the output topology of the TC
algorithm fulfills important integrity properties (e.g., connectivity).
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 109–125, 2017.
DOI: 10.1007/978-3-319-61482-3 7

http://orcid.org/0000-0002-5551-9374
http://orcid.org/0000-0002-7183-2408
http://orcid.org/0000-0002-9263-8866
http://orcid.org/0000-0001-8100-1109
http://orcid.org/0000-0003-4713-5327

110 R. Kluge et al.

Part of the vision and success story of model-driven engineering (MDE)
[26] is to specify systems using formal models to enable analyzing and proving
desired and required formal properties. Based on these models, major parts of the
specified systems are generated while preserving the proved properties. Several
approaches to developing WSN algorithms leverage MDE (e.g., [1,3]). However,
despite the importance of TC in the WSN community, we have been, to the best
of our knowledge, the first group to propose an MDE approach for developing
TC algorithms [10–12]. More precisely, we propose to specify (i) topologies using
attributed graphs, (ii) modifications of the topology using graph transformation
(GT) [5] and Story-Driven Modeling (SDM) [7], and (iii) integrity properties
using graph constraints [9]. This allows us to derive a GT-based TC algorithm
specification that is correct-by-construction w.r.t. the specified integrity proper-
ties. A tool integration of the MDE tool eMoflon [13] and the WSN simulation
platform Simonstrator [18] currently allows to rapidly and reproducibly per-
form a first-order validation of the TC algorithm specification [10,11]. To assess
its real-life behavior, a TC algorithm should additionally be evaluated in a hard-
ware testbed environment (e.g., FlockLab [15]). Unfortunately, only few works
in the WSN community have dared this step, which may result from the high
complexity of and missing tool support for porting a TC algorithm to the target
hardware platform [23]. To ease this step, we recently proposed the ToCoCo
framework [23] for evaluating TC algorithms based on the Contiki [4] WSN
operating system. Still, even using ToCoCo, a TC developer has to manually
cope with the particularities of embedded C (e.g., memory management).

In this paper, we present cMoflon1, a variant of the GT tool eMoflon
that generates embedded C code for the Contiki operating system using the
ToCoCo framework. The detailed contributions of this paper are as follows:

– We provide an extensible TC metamodel, based on which TC algorithms are
specified using SDM (see Sect. 3).

– We provide an extensible code generation process that generates components
for the ToCoCo TC evaluation framework for the WSN operating system
Contiki. Proper memory management of pattern matching results and null-
pointer handling is provided by the generated code (see Sect. 4).

– To assess the applicability of cMoflon, we generate code for the state-of-
the-art TC algorithms kTC [22], l*-kTC [23], and LMST [14] and compare
the generated TC algorithms with their manually implemented counterparts
(see Sect. 5).

The remainder of this paper is structured along the cMoflon development
workflow. In Sect. 2, we introduce the considered TC algorithms. In Sects. 3
and 4, we explain the modeling and code generation support of cMoflon. In
Sect. 5, we evaluate the generated code of the selected TC algorithms. In Sect. 6,
we review related work, and, in Sect. 7, we conclude this paper.

1 cMoflon is open source and available at https://github.com/eMoflon/cmoflon/.

https://github.com/eMoflon/cmoflon/

cMoflon: Model-Driven Generation of Embedded C Code for WSNs 111

2 A Brief Introduction to Topology Control

In this section, we introduce the required terminology of TC as well as the three
TC algorithms that serve as running example.
Topologies: A topology is a graph consisting of (network) nodes and directed
(communication) links [20]. Each node can have zero or more outgoing and
incoming links, and each link has one source and target node. Nodes and links
can have properties, each having a fixed attribute type. By convention, a link e12
has source node n1 and target node n2. The weight w(e12) of a link e12 signifies
the cost of using e12 for communication (e.g., the distance of its incident nodes).
The state s(e12) of a link e12 captures the processing state of e12 during and after
the execution of the TC algorithm. The hop count hx(n1) of a node n1 w.r.t. a
fixed reference node nx equals the minimal number of links that are required to
reach nx from n1.
Topology control: Topology control (TC) [20] identifies links that are inessen-
tial w.r.t. the integrity properties of the topology (e.g., connectivity of the topol-
ogy) and, at the same time, energy-intensive (e.g., due to large weight). A TC
algorithm accepts an input topology (e.g., consisting of all physically possible
links) and returns, as output topology, a classification of the links according
to their importance. A TC algorithm is usually executed in parallel on each
sensor node, and the input and output topology typically reflect only a local
view of the topology (e.g., all nodes and links that are at most two hops away).
A link e12 can be in one out of three states: e12 is (i) active if it is essen-
tial (s(e12)=Active, denoted as solid line, e.g., 1 2), (ii) inactive if it is
inessential and energy-intensive (s(e12)=Inactive, denoted as dotted line, e.g.,
1 2), and (iii) unclassified if the TC algorithm has not classified e12 yet

(s(e12)=Unclassified, denoted as mixed dotted-solid line, e.g., 1 2). A
TC algorithm changes the state of each link to either Active or Inactive, and
the sensor operating system selectively sets links to Unclassified (e.g., when
link weights change due to node movement). During operation of TC, we assume
that link states are exclusively changed by TC.

In Fig. 1, the input topology is entirely unclassified, indicating that the TC
algorithm has not been executed yet. Note that the active links of each output
topology form a connected subtopology.
TC algorithms: The following three TC algorithms serve as running examples
of this paper. (i) The kTC algorithm [22] inactivates the weight-maximal link
e12 in every directed triangle if the weight of e12 is at least k-times larger than
the weight of the weight-minimal link in the same triangle. The idea behind kTC
is that using two shorter links of low weight requires less energy than using a
link with large weight because the required transmission power increases at least
quadratically with its weight. (ii) The l*-kTC algorithm [23] is a refined variant of
kTC that aims to bound the increase in routing path length by a factor a. l*-kTC
inactivates a link e12 if e12 fulfills the kTC condition and if the hop counts hx(n1),
hx(n2) of n1 and n2 will grow at most by a factor a. (iii) The local minimum

112 R. Kluge et al.

spanning tree (LMST) algorithm [14] determines a minimum spanning tree in
its neighborhood and inactivates all links that are not part of this tree. kTC, l*-
kTC, and LMST are suitable running examples because they represent a larger
class of TC algorithms [10] and manually implemented variants of all algorithms
are available for comparison [23]. Many WSN applications (e.g., routing) assume
that the output topology is symmetric w.r.t. states. Therefore, an inactive link
e12 is re-activated after the termination of TC if its reverse link e21 is still active.

Figure 1 illustrates the effect of executing kTC, l*-kTC, and LMST with a
small input topology. In this example, we use a = 1.5 and k = 2. In the output
topology of kTC, link e14 (e41, resp.) is inactive because it is weight-maximal
in the triangle consisting of e13, e14, e34 (e31, e41, e43, resp.) and its weight is
more than 2-times larger than the weight of the weight-minimal link e34 (e43,
resp.). In the output topology of l*-kTC, the links e14 and e41 are active because,
otherwise, h1(n4) would increase by more than a = 1.5 from 1 to 2. In the output
topology of LMST, all links with a weight of 2 constitute a minimum spanning
tree; all other links are inactivated.

LMST

In
pu

t t
op

ol
og

y
O

ut
pu

t t
op

ol
og

y

3/2=1.5 ≤ k

n2
1

n3
1

2

2

2

36

n1
0

n4
1

na
h1(na)

nb
h1(nb)

w(eab)
Legend

n2
1

n3
1

2

2

2

36

n1
0

n4
1

kTC (k=2)

6/2=3 > k
n2
1

n3
1

2

2

2

36

n1
0

n4
1

l*-kTC (k=2, a=1.5)

(h1(n4)+1)/h1(n4)=2 > a

n2
1

n3
1

2

2

2

36

n1
0

n4
1

Fig. 1. Applying kTC, l*-kTC, and LMST to the sample input topology (n1: ref. node)

3 Modeling TC Algorithms with cMoflon

In this section, we illustrate how TC algorithms can be modeled with cMoflon.
We introduce the underlying TC metamodel topology and provide sample spec-
ifications for the TC algorithms (l*-)kTC and LMST.
TC metamodel: We assume that the reader is familiar with basic metamod-
eling concepts [26]. Figure 2 shows the Ecore-based [24] TC metamodel used in
this paper. Dashed and dotted frames surround metamodel elements that were
introduced to specify (l*-)kTC and LMST, respectively. All other metamodel
elements reflect core concepts of TC and form the basic TC metamodel that

cMoflon: Model-Driven Generation of Embedded C Code for WSNs 113

Node

hopCount : EInt

Link

state : LinkState
weight : EDouble

out
in

0..*
0..*

src
trg

1
1

enumeration
LinkState

Active : LinkState
Inactive : LinkState
Unclassified : LinkStatederived allLinks

0..*

abstract
TopologyControlAlgorithm

abstract run() : void

node1

(l*-)kTC-specific
metamodel element

LMST-specific
metamodel element

LStarKTCAlgorithm

k : EDouble
a : EDouble

run() : void

LMSTAlgorithm

run() : void
init() : void
cleanup() : void
findShortestUnconnectedLink() : Link

KTCAlgorithm

k : EDouble

run() : void

TreeEntry Tree

entry0..1
entries
0..*

tree
1

0..1parent

tree 1

node 1

entry 0..1

Fig. 2. TC metamodel with additions for kTC, l*-kTC, and LMST

cMoflon provides to the TC developer. The Node and Link classes represent
the nodes and links of a topology. The abstract TopologyControlAlgorithm class
serves as superclass for TC algorithms and specifies the abstract run() operation.
The enumeration type LinkState represents the three possible link states. The
real-valued weight attribute, the state attribute of enumeration type LinkState in
class Link, and the integer-valued hopCount attribute in class Node correspond to
the link and node properties described earlier. For simplicity, the reference node
nx for hx(n) is omitted. The src-out and trg-in associations represent that links
are directed. The derived allLinks association allows to iterate over all links in
the neighborhood of a node. The node association from TopologyControlAlgorithm

to Node specifies that a TC algorithm runs on a dedicated node.
Graph transformation: In cMoflon, TC algorithms are specified using pro-
grammed GT. While cMoflon supports many of the GT features of eMoflon,
we only present concepts required to understand the presented TC specifications.
A graph pattern p consists of a set of object variables, which are placeholders for
model elements [5,19]. A pattern may have attribute constraints, which restrict
the attribute value of its variables (e.g., using relational operators such as <, >,
or =). A match m of a pattern p in a model M is an injective mapping from the
object variables of p to the elements of M that fulfills all attribute constraints.
For a variable v, m(v) is called the image of v. A GT rule R consists of a left-
hand side pattern (LHS) and right-hand side pattern (RHS) [5,19]. A GT rule
R is applicable on a model M if there is at least one match of LHS in M . An
application of an applicable GT rule R at a match m in a model M is performed
as follows: (i) The images of all variables that appear in LHS but not in RHS are
removed from M (denoted in red and with -- markup). (ii) For each variable
that appears in RHS but not in LHS, a fresh object of the variable type is added

114 R. Kluge et al.

to M (denoted in green with ++ markup). (iii) The images of all node and link
variables that are in LHS and RHS are preserved (denoted in black without addi-
tional markup). (iv) Finally, the attribute constraints of the RHS are applied by
assigning attribute values to the images of the referenced variables.
Story-Driven Modeling and LMST specification: We specify the control
flow of a TC algorithm using the programmed GT dialect Story-Driven Modeling
(SDM) [7]. The specification of LMST in Fig. 3 serves to illustrate SDM concepts.
A story diagram provides the implementation for an operation in the metamodel
and corresponds to a UML activity diagram whose actions are story nodes, which
contain GT rule applications (e.g., AddLinkToTree), or statement nodes, which
contain operation invocations (e.g., Init). For conciseness, we omit the specifica-
tion of the init, cleanup, and findShortestUnconnectedLink operations; their behavior
is documented inside the note-style boxes. The execution of a story diagram
starts at the unique start node (), proceeds along the activity edges (), and
ends at the stop node (). Upon arriving at a story node, the contained GT
rule is applied, and if the rule was applied successfully, the control flow continues
along the activity edge labeled with [Success]. Otherwise, the [Failure] activity
edge is taken. Upon arriving at a statement node, the contained operation is
invoked. For instance, the execution of the run operation in Fig. 3 starts with the
statement node Init, which initializes the auxiliary data structures that store the
tentative spanning tree. Using a statement node here allows us to choose how to
implement each invoked operation: either using platform-independent SDM or
platform-specific code (e.g., for custom memory management). The this object
variable is always accessible implicitly. To store the spanning tree, we added the
auxiliary classes Tree and TreeEntry to the TC metamodel (see Fig. 2). The story
nodes FindMissingLink, which binds the object variable link by invoking the find-

ShortestUnconnectedLink operation, and AddLinkToTree form a loop that adds links

LMSTAlgorithm::run()

[Success]Init
this.init()

Cleanup
this.cleanup()

link : Link

[Failure]

Create a Tree instance,
connect it to this, and,

for each node, add a TreeEntry.

Remove all objects
created in this.init()

link : Link := this.findShortestUnconnectedLink()

FindMissingLink

AddLinkToTree

trg: Node

in
trg

trgEntry :
TreeEntry

node
entry

parent

entry
++

ActivateTreeLinks
entry:

TreeEntry

Find the weight-minimal link having exactly one incident
node that is connected to the tree (Prim's algorithm)

link : Link

state := ACTIVE

IterateOverLinks
this :

LMSTAlgorithm node: Node

link : Link

state == UNCLASSIFIED

[Success]

entry
parent

allLinks

node

InactivateOtherLinks

[Failure]

link : Link

state := INACTIVE

[Success]

[Failure]

Fig. 3. SDM specification of LMST (Color figure online)

cMoflon: Model-Driven Generation of Embedded C Code for WSNs 115

to the spanning tree (sorted by weight) as long as no cycle is created (Prim’s
algorithm). The story nodes IterateOverLinks, ActivateTreeLinks, and Inactiva-

teOtherLinks form the loop that activates (resp. inactivates) all links that are
(resp. are not) part of the spanning tree. The operator == (:=, resp.) refers to
an equality constraint of the LHS (RHS, resp.) pattern of a rule. Finally, the
statement node Cleanup frees the tentative spanning tree.
(l*-)kTC specification: Figure 4 shows an SDM specification of l*-kTC con-
sisting of two loops. The first loop (InactivateLinksInTriangles) inactivates all links
that fulfill the l*-kTC condition, while the second loop (ActivateRemainingLinks)
activates all remaining links. In contrast to the basic attribute constraints inside
variables, the advanced attribute constraints in the framed box state (i) the
triangle-condition that is common to kTC and l*-kTC (lines 1 to 5), using
cMoflon’s built-in attribute constraints, and (ii) the routing-path condition
of l*-kTC (line 6), using the custom constraint hopCountOK. For specifying the
latter attribute constraint, the TC developer needs to extend the Node class with
the hopCount attribute. Note that by removing the latter attribute constraint,
we obtain a specification of kTC.

e12: Link
state == UNCLASSIFIED
state := INACTIVE

InactivateLinksInTriangles

LStarKTCAlgorithm::run()

[Success]

[Failure]

[Failure]

this : LStarKTCAlgorithm

n2: Node

n3: Node

e13: Link

n1 : Node

e32 : Link

max(maxWeight, e13.weight, e32.weight)
min(minWeight, e13.weight, e32.weight)
*(kMinWeight, minWeight, this.k)
>(e12.weight, maxWeight)
>(e12.weight, kMinWeight)
hopCountOK(e12.hopCount, e13.hopCount, e32.hopCount, this.a)

e12: Link
state == UNCLASSIFIED
state := ACTIVE

this : LStarKTCAlgorithm

n1 : Node

[Success]

ActivateRemainingLinksin

trg

trg
trgsrc

src

src

out

out

in
node

out in src
out

node

Fig. 4. SDM specification of l*-kTC

Technical modeling aspects: cMoflon is a variant of the EMF-based
MDE tool eMoflon [13]. We chose eMoflon because it offers a configurable
and automated code generation process. Developing cMoflon, we reused the
frontend for metamodeling and SDM, which is an add-in for the modeling
tool Enterprise Architect2. This reuse ensures full compatibility of cMoflon

2 https://www.sparxsystems.eu/enterprisearchitect.

https://www.sparxsystems.eu/enterprisearchitect

116 R. Kluge et al.

specifications, e.g., with the tool integration of eMoflon and the Simonstra-
tor network simulator [10]. cMoflon supports a subset of Ecore that is, to our
experience, relevant for TC developers. Supported metamodeling features com-
prise EClasses with EOperations (implemented using SDM or platform-specific
code) and EAttributes (built-in data types and enumerations), and (single-
/multi-valued) EReferences.

4 Generating Code for TC Algorithms with cMoflon

This section describes how cMoflon generates embedded C code from TC
algorithm specifications. We motivate our choice for the ToCoCo evaluation
framework as target platform, describe the cMoflon code generation process,
and, most importantly, explain how we tackled the challenges of an extensible
model-to-text transformation and memory management in embedded C.
ToCoCo as target platform: The most important decision during the design
of cMoflon was the target platform. As operating system, we chose Contiki
[4], which is prominent in the WSN community. In [23] we have proposed the
ToCoCo framework to ease the implementation of novel TC algorithms by
hiding the low-level technical details from the TC developer. While ToCoCo
was built with a focus on Contiki, it can easily be ported to any C-based
WSN operating system. Figure 5 illustrates the architecture of ToCoCo. The
TC component controls the execution of the active TC algorithm and obtains its
input topology from the neighbor discovery component. The topology abstraction
component hides inactive links from routing and the application. The power
control component adjusts the transmission range of the radio module to provide
all active links to the routing and the application.

TOCOCO
Routing TC

Topology abstractionPower control

Radio module

Application

Neighbor discovery

CONTIKI

Fig. 5. Architecture of the ToCoCo TC evaluation framework for Contiki

Code generation process: Figure 6 shows the three phases of the code gener-
ation process of eMoflon and cMoflon: import, validation and code genera-
tion. The code generation process operates as follows. The eMoflon frontend
persists metamodels and story diagrams in an XMI-based file format. The import
phase parses these files into an Ecore metamodel with attached story diagrams.
The validation phase is a model-to-model transformation (M2M) that trans-
lates each story diagram into a control flow model, which represents a goto-free

cMoflon: Model-Driven Generation of Embedded C Code for WSNs 117

program in imperative programming languages such as C, C++, or Java. In
eMoflon, the code generation phase is a model-to-text transformation (M2T)
that uses standard EMF for creating the structural parts of the metamodel,
and the Democles [25] code generator for generating the method bodies based
on the control flow models. The developer may provide user-defined code for
non-SDM operations. cMoflon 1.0.0 reuses the import and validation phase of
eMoflon 2.28.0 with minor adjustments (framed gray arrows). Only the code
generation module was entirely exchanged (blue arrow: cMoflon, black arrow:
eMoflon). The reused parts of eMoflon consist of ca. 358 000 lines of Java
and C# code. In contrast, cMoflon consists of 3 362 lines of Java code (ca. 1%
of eMoflon). This reuse entails a number of benefits. First, cMoflon profits
from the extensively tested code generation process of eMoflon. No formal
verification of the correctness of the code generation process has been carried
out so far due to its inherent complexity. However, each version of eMoflon
is tested against a fully automated test suite consisting of real-world projects3.
Second, cMoflon profits from improvements in the mainline development of
eMoflon and the underlying code generation engine Democles.

</>

.xmi

Metamodel
with story diagrams

Metamodel with
control flow models

EA
export file

Standalone
EMF code

.javaParser M2M

Story
diagrams

Attached to the corr. operations

User-defined code

TOCOCO
TC components

.c,.h

Common to
EMOFLON & CMOFLON

CMOFLON
only

EMOFLON
only

I: Import II: Validation

M2T

III: Code generation

.ecore

Control flow
models

User-defined
attribute constraints

1:1 relation

Export of
EMOFLON
EA add-in

Fig. 6. Build processes of eMoflon and cMoflon (EA: Enterprise Architect) (Color
figure online)

Basic TC metamodel: Elements from the basic TC metamodel are mapped
to internal data structures of the ToCoCo framework for efficiency. The
classes Node and Link are mapped to the structural types networkaddr t and
neighbor t provided by ToCoCo, respectively. The Link::weight attribute is
mapped to the existing member of the neighbor t type. Our implementations
for the src-out, trg-in, and allLinks associations build upon Contiki’s lists data

3 See https://github.com/eMoflon/emoflon-tests/.

https://github.com/eMoflon/emoflon-tests/

118 R. Kluge et al.

type list t. To efficiently implement Link::state, we introduced a C enumera-
tion LinkState, which mirrors the enumeration LinkState, and added a corre-
sponding attribute to neighbor t. For compatibility with previous versions of
ToCoCo [23], LinkState can be completely removed via a preprocessor direc-
tive. When a link is inactivated, the topology abstraction component is notified
and hides the inactivated link. When a link is activated or unclassified, its target
node is made visible again. Finally, the run() operation of each subclass of Topol-

ogyControlAlgorithm results in a dedicated ToCoCo component, represented by
a separate Contiki process. To enable a rapid prototyping of TC algorithms,
(i) the user may switch between the TC components using a single preprocessor
directive, and (ii) the generated files (a .c and a .h file per TC component) can
be copied without modification into the ToCoCo project structure.
Control flow: For generating the C control flow that steers the GT invocations,
we use the modular StringTemplate-based configuration provided by Demo-
cles [25]. Most of the templates for control flow were reused with minor mod-
ifications compared to eMoflon (e.g., if, while-do, do-while). The major
challenge of the M2T for story diagrams was the representation and memory
management for pattern matches. In eMoflon, an Object array represents a
single match. Type safety is checked statically at code generation time. This app-
roach avoids generating dedicated classes for representing the matches of each
pattern. We adopted the same strategy for cMoflon because a typical spec-
ification may contain dozens of patterns, which makes generating a dedicated
result type for each pattern prohibitive regarding code memory consumption. In
cMoflon, a generic pointer (void*) represents a single match and an array of
generic pointers (void**) represents a match set.
Memory management: In this paragraph, we explain how major challenges of
the C target programming language—proper management of dynamic memory
and handling of null pointers—are tackled by cMoflon. Unlike the Java VM,
Contiki lacks an automatic runtime memory management. Using the stack is
certainly the most convenient and least error-prone way of managing memory
in C. While the stack allows for a fast and relatively safe memory management,
all variables on the stack must have a fixed size known at compile time, which
is not possible when using generic arrays to represent pattern matches. In con-
trast, the heap allows us to choose the size of allocated memory fragments at
runtime. The downside is that memory allocation on the heap is slower, may
cause runtime exceptions if memory runs out, and requires a careful manual
handling of memory allocations (via malloc) and corresponding deallocations
(via free). A third, Contiki-specific option is to pre-reserve static memory at
compile time. (De-)allocating static memory tends to be faster (due to reduced
fragmentation), but the size of the reserved memory must be set at compile
time and the reserved memory is no longer available for the heap. To this end,
we decided to store handles to matches on the stack (match t) and to allocate
memory on the heap for the actual pattern match contents. cMoflon cares for
the proper pairing of calls to malloc and free. This strategy allows us to switch

cMoflon: Model-Driven Generation of Embedded C Code for WSNs 119

to a more sophisticated memory management in the future easily (e.g., using
smart pointers). For creating and destroying associations and objects, cMoflon
generates appropriate function prototypes, which are implemented by the TC
developer. cMoflon is conservative w.r.t. null pointer checks, i.e., whenever a
link variable is traversed during pattern matching, cMoflon asserts that the
result is not null. This behavior could be relaxed by relying on the cardinalities
in the metamodel (e.g., that a Link always has exactly one src Node).
User-defined metamodel elements: A major goal of cMoflon is to generate
code lean enough to be used on resource-constrained sensor nodes, and, at the
same time, to be extensible enough to support as many current and future TC
algorithms as possible. Given the vast number of published TC algorithms (listed
in, e.g., [21,27]), we think that it is important to make cMoflon easily exten-
sible for TC developers rather than trying to cover all TC algorithms upfront.
To this end, cMoflon supports the following types of extensions: adding (E1)
custom attributes and associations (e.g., Node::hopCount and entries-tree), (E2)
custom attribute constraints (e.g., hopCountOK), and (E3) custom classes (e.g.,
TreeEntry). In our running example, l*-kTC required (E1) and (E2), and LMST
required (E3). Regarding (E1), we generate for each custom attribute and associ-
ation a function prototype that has to be implemented by the TC developer. To
mimic object-orientation, we prepend a synthetic this parameter to the para-
meter list of the generated function, having the type of the surrounding class.
Regarding (E2), we follow the same approach to specify advanced attribute
constraints as in eMoflon. We provide code mappings for a set of built-in
constraints (e.g., >, <, =, max, min). For custom constraints, the TC developer
defines a C code fragment that implements the constraint check and evaluates
to true or false. Regarding (E3), the TC developer provides a mapping to an
appropriate C type for each custom metamodel class.
Example: Listing 1 shows part of the generated code for l*-kTC4. We sim-
plified the code fragment manually due to space limitations. Line 1 shows the
synthetic this parameter, having the user-defined type LSTARKTCALGORITHM T.
The generated comment on line 2 allows to trace code blocks to their corre-
sponding story diagram element. Line 3 shows how a pattern matching result is
returned. Pattern matching results always reside in the heap and are freed after
extracting the relevant variables (e.g., in line 6). The memory management is
facilitated by the fact that Democles builds upon hierarchical templates. For
instance, lines 1–8 and 10–11 correspond to a single node in the control flow
model and are created simultaneously. Possible nested scopes (i.e., while loops
or story nodes) are handled recursively.

4 The full source code for all TC algorithms of this paper can be found at https://
github.com/eMoflon/cmoflon/releases/tag/cmoflon 1.0.0.

https://github.com/eMoflon/cmoflon/releases/tag/cmoflon_1.0.0
https://github.com/eMoflon/cmoflon/releases/tag/cmoflon_1.0.0

120 R. Kluge et al.

Listing 1 . Excerpt of generated code for (l*-)kTC::run

1 void lStarKtcAlgorithm_run(LSTARKTCALGORITHM_T* this){

2 // InactivateLinksInTriangles

3 void** result2_black = pattern_InactivateLinks_black(this);

4 while (result2_black != NULL) {

5 LINK_T* e12 = (LINK_T*) result2_black[5];

6 free(result2_black);

7 void** result3_green = pattern_InactivateLinks_green(e12);

8 free(result3_green);

9 // Possible nested scopes

10 result2_black = pattern_InactivateLinks_black(this);

11 } // End of InactivateLinksInTriangles

12
13 // ActivateRemainingLinks

14 void** result4_black = pattern_ActivateRemainingLinks_black(this);

15 while (result4_black != NULL) {

16 LINK_T* e12 = (LINK_T*) result4_black[1];

17 free(result4_black);

18 void** result5_green = pattern_ActivateRemainingLinks_green(e12);

19 free(result5_green);

20 result4_black = pattern_ActivateRemainingLinks_black(this);

21 } // End of ActivateRemainingLinks

22 return;

23 }

5 Evaluation

This section presents and discusses the results of evaluating the generated code
for the selected TC algorithms w.r.t. code memory consumption.
Research question: Surprisingly, one of the scarcest resources of a sensor node
is its code memory (e.g., 48 kB of code memory for the widely used TelosB sensor
node platform [16]). In contrast, the runtime efficiency is of minor importance
because a TC algorithm is typically invoked infrequently (e.g., every 10 min).
This makes the size of the generated code a key factor for assessing the applica-
bility of cMoflon. Therefore, we focus on the following research questions.

(RQ1) Is the code generated using cMoflon small enough (w.r.t. code size) to
fit on a typical sensor node?

(RQ2) If yes, how does the code memory consumption change compared to the
manually implemented variant of each algorithm?

While being of minor importance in our application scenario, the execution time
of the generated TC algorithms should not grow excessively compared to the
manual variants, of course.
Setup: We used cMoflon 1.0.0, ToCoCo 2.0.0, Contiki 3.0, and TelosB
sensor nodes [16]. This choice allows us to compare our results with the manually

cMoflon: Model-Driven Generation of Embedded C Code for WSNs 121

implemented algorithms in [23]. The input of this evaluation are seven sensor
images, which are the ready-to-deploy output binaries of the Contiki compiler.
Each image contains the Contiki operating system, the ToCoCo framework,
and a data collection application, which periodically sends a probe message to a
fixed node. Images suffixed with “-man” (resp. “-gen”) correspond to the manual
(resp. generated) variant of each algorithm. The seventh image (named NoTC)
results from disabling TC completely and serves as baseline.
Metrics: The metric of this evaluation is the size (in byte) of each sensor image,
which is the sum of the sizes of the text segment, which contains the binary code
and constants, and the data segment, which contains the initial values of non-
constant variables. To measure the image size, we employed the tool size5.
Results: Table 1 summarizes the code size results. The first and second column
list the six TC sensor images along with their sizes. The third and forth column
show the absolute and relative difference in size of each algorithm compared
to NoTC. The fifth and sixth column show the absolute and relative differ-
ence in size of the generated compared to the manual variant per algorithm.
Δ(NoTC)[%] equals Δ(NoTC)[B] divided by the size of NoTC, and Δ(G-M)[%]
equals Δ(G-M)[B] of the generated variant divided by Δ(NoTC)[B] of the man-
ual variant. The code size of the manual variants w.r.t. NoTC increases by 2.2 kB
to 3.4 kB, whereas the increase for the generated variants ranges from 4.0 kB to
5.9 kB. The absolute (resp. relative) manual-to-generated increase in size is the
smallest for kTC (resp. l*-kTC) with 1.8 kB (resp. +58%), while LMST shows
the largest absolute and relative increase in size of 3.4 kB and +137%. When
using generated TC algorithms, the relative increase w.r.t. total size increases
by 4.8 pp (percentage points) for kTC to 9.2 pp for LMST.

Table 1. Code size of the sensor images (Size of NoTC: 36 917B)

Algo. Size [B] Δ(NoTC)[B] Δ(NoTC)[%] Δ(G-M)[B] Δ(G-M)[%]

kTC-man 39 135 2 218 +6.0

kTC-gen 40 897 3 980 +10.8 1 762 +79.4

l*-kTC-man 40 293 3 376 +9.1

l*-kTC-gen 42 247 5 330 +14.4 1 954 +57.9

LMST-man 39 395 2 478 +6.7

LMST-gen 42 799 5 882 +15.9 3 404 +137.4

Discussion: To our experience, the observed increase in code size is moder-
ate (+79% to +137%) compared to more feature-rich target platforms (e.g.,
EMF). Notably, Contiki, ToCoCo, and the application consume most of the
code memory already (ca. 37 kB, i.e., 77% of 48 kB). Even though several MDE
approaches generate code for WSNs, we could not find quantitative data compar-
ing the code size of manual and generated variants of the same WSN algorithm.
5 See https://linux.die.net/man/1/size.

https://linux.die.net/man/1/size

122 R. Kluge et al.

We manually inspected the generated code to identify reasons for the differ-
ences in code size. First, the generated code contains null checks for each associ-
ation that is traversed. Future improvements could remove null checks whenever
an association is guaranteed to exist (e.g., each link has exactly one source node).
Second, each invocation of a story pattern is systematically decomposed into a
sequence of several basic pattern invocations that map to the different phases of
a GT rule application (as described on page 5). Each pattern invocation results in
the creation of an appropriate match (set), which serves as input for subsequent
pattern invocations. By refining the control flow analysis, the number of created
matches could be reduced (e.g., when none of the results is used further). Third,
the generated code contains significantly more functions and function calls. This
modularization of the code is important because it helps the TC developer to
understand the mapping from the metamodel and SDM elements to the gener-
ated code and to customize the M2T (cf. page 11).

We conclude that, regarding RQ1, the generated TC algorithms are definitely
small enough to fit on the considered TelosB sensor nodes, and, regarding RQ2,
the code memory consumption increases moderately by at most 9.2 pp w.r.t.
total image size when applying cMoflon.
Threads to Validity: A major threat to external validity is that we focused
on three TC algorithms and one type of sensor node. Still, we covered a small,
but typical subset of TC algorithms, which work strictly based on limited local
knowledge. In previous work, we have shown that many established TC algo-
rithms can be represented in the same way as kTC and l*-kTC [11]. Addi-
tionally, the TelosB sensor nodes are comparable w.r.t. code memory to other
state-of-the-art sensor nodes6. To further mitigate this threat, we will evaluate
additional TC algorithms and sensor platforms in our future work. A major
threat to internal validity is the soundness of the generated code w.r.t. the SDM
specification. To mitigate this threat, we deployed all six sensor images in the
FlockLab [15] sensor testbed and carefully checked that the output topologies
and the application behavior were comparable. The runtime of the generated
variant of kTC showed the worst average increase in execution time from 6.3 ms
to 17.2 ms, which is acceptable given that TC is executed only once for a 30 min
simulation run.

6 Related Work

In this section, we review related approaches for MDE in WSNs and code gen-
eration in general. A recent systematic mapping study summarizes 21 MDE
approaches for WSNs: 15 approaches allow generating code for C/C++ or NesC
and 11 approaches support topologies, but none allows to explicitly specify TC
algorithms [6]. Most MDE approaches focus on architectures for WSNs. The
Agilla [3] framework is an agent-based MDE platform for WSNs. The Scat-
terClipse [1] framework is an Eclipse-based toolkit for generating and test-
ing WSN applications. The SAMSON framework [17] provides an architecture
6 See also https://en.wikipedia.org/wiki/List of wireless sensor nodes.

https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes

cMoflon: Model-Driven Generation of Embedded C Code for WSNs 123

description language of a WSN and allows to generate code for Contiki. All
of these approaches (would) represent TC as software component, concealing
the concrete TC implementation. This makes our approach complementary to
many existing MDE middleware approaches: In this context, TC can be seen as
a service component that should be configured according to the demands of the
active application (e.g., concerning robustness, path lengths). To the best of our
knowledge, no other MDE approaches for generating code of TC algorithms exist
in the literature. In [2], a C code generator for the Graph Programming Lan-
guage 2 (GP2) is presented. Similar to the Democles pattern matching engine,
the backend of eMoflon, GP2 transforms the graph patterns into a depth-first
search plan with matching operations. Similar to cMoflon, each operation cor-
responds to a particular (hierarchical) code template and the pattern matching
is rooted. In contrast to GP2, cMoflon uses story diagrams for specifying the
control flow. Story diagrams support the invocation of arbitrary user-defined
operations, and the search plan generation can be easily configured using mod-
ules for search plan weights and strategies [25]. While EMF has emerged as
de-facto target language for MDE tools, a number of tools support other target
platforms (e.g., GrGen.NET [8]). EMF4CPP7 aimed to provide full support for
creating C++ code from EMF models, but appears to be discontinued. To sum
up, we know neither of a tool for generating embedded C code from programmed
GT nor of an MDE methodology that constructively integrates integrity prop-
erties into the development of TC algorithms and targets the evaluation of the
resulting TC algorithms in simulation and testbed environments.

7 Conclusion

Each novel TC algorithm should be evaluated using a WSN testbed to inves-
tigate real-world effects and to increase confidence in its applicability. In this
paper, we present cMoflon, an MDE tool for generating embedded C code
from a programmed GT specification of TC algorithms for the WSN operating
system Contiki. The evaluation results indicate that cMoflon is applicable for
the desired purpose. Together with our previous results in [10–12], a developer
may now design a GT-based, correct-by-construction TC algorithm and evalu-
ate it rapidly in a simulation and testbed environment. In future work, we will
evaluate and improve the code memory consumption and the execution time for
additional TC algorithms and sensor node types to further strengthen our con-
fidence in the applicability of cMoflon. A user study may help to investigate
how using cMoflon reduces the development effort and increases reliability of
the developed TC algorithms compared to the traditional manual approach.

Acknowledgment. This work has been funded by the German Research Foundation
(DFG) as part of project A1 within the Collaborative Research Center (CRC) 1053 –
MAKI.

7 https://github.com/catedrasaes-umu/emf4cpp.

https://github.com/catedrasaes-umu/emf4cpp

124 R. Kluge et al.

References

1. Al Saad, M., Fehr, E., Kamenzky, N., Schiller, J.: ScatterClipse: a model-driven
tool-chain for developing, testing, and prototyping wireless sensor networks. In:
Proceedings of the International Symposium on Parallel and Distributed Process-
ing with Applications (ISPA), pp. 871–885 (2008). https://dx.doi.org/10.1109/
ISPA.2008.22

2. Bak, C., Plump, D.: Compiling graph programs to C. In: Echahed, R., Minas, M.
(eds.) ICGT 2016. LNCS, vol. 9761, pp. 102–117. Springer, Cham (2016). doi:10.
1007/978-3-319-40530-8 7

3. Berardinelli, L., Di Marco, A., Pace, S., Pomante, L., Tiberti, W.: Energy con-
sumption analysis and design of energy-aware WSN agents in fUML. In: Taentzer,
G., Bordeleau, F. (eds.) ECMFA 2015. LNCS, vol. 9153, pp. 1–17. Springer, Cham
(2015). doi:10.1007/978-3-319-21151-0 1

4. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: Proceedings of the International Conference
on Local Computer Networks (LCN), pp. 455–462 (2004). https://dx.doi.org/10.
1109/LCN.2004.38

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006). https://dx.doi.org/10.1007/
3-540-31188-2

6. Essaadi, F., Ben Maissa, Y., Dahchour, M.: MDE-based languages for wireless sen-
sor networks modeling: a systematic mapping study. In: El-Azouzi, R., Menasché,
D.S., Sabir, E., Pellegrini, F.D., Benjillali, M. (eds.) Advances in Ubiquitous Net-
working 2. LNEE, vol. 397, pp. 331–346. Springer, Singapore (2017). doi:10.1007/
978-981-10-1627-1 26

7. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: a new graph
rewrite language based on the unified modeling language and java. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 296–309. Springer, Heidelberg (2000). doi:10.1007/978-3-540-46464-8 21

8. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: a fast SPO-
based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006). doi:10.1007/11841883 27

9. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph rewriting - a con-
structive approach. In: Proceedings of the Joint COMPUGRAPH/SEMAGRAPH
Workshop. ENTCS, vol. 2, pp. 118–126. Elsevier (1995). https://dx.doi.org/10.
1016/S1571-0661(05)80188-4

10. Kluge, R., Stein, M., Varró, G., Schürr, A., Hollick, M., Mühlhäuser, M.: A
systematic approach to constructing incremental topology control algorithms
using graph transformation. J. Vis. Lang. Comput. (JVLC) 38, 47–83 (2016).
http://dx.doi.org/10.1016/j.jvlc.2016.10.003

11. Kluge, R., Stein, M., Varró, G., Schürr, A., Hollick, M., Mühlhäuser, M.: A system-
atic approach to constructing families of incremental topology control algorithms
using graph transformation. J. Softw. Syst. Model. (SoSyM), 1–41 (2017). https://
dx.doi.org/10.1007/s10270-017-0587-8

12. Kluge, R., Varró, G., Schürr, A.: A methodology for designing dynamic topology
control algorithms via graph transformation. In: Kolovos, D., Wimmer, M. (eds.)
ICMT 2015. LNCS, vol. 9152, pp. 199–213. Springer, Cham (2015). doi:10.1007/
978-3-319-21155-8 15

https://dx.doi.org/10.1109/ISPA.2008.22
https://dx.doi.org/10.1109/ISPA.2008.22
http://dx.doi.org/10.1007/978-3-319-40530-8_7
http://dx.doi.org/10.1007/978-3-319-40530-8_7
http://dx.doi.org/10.1007/978-3-319-21151-0_1
https://dx.doi.org/10.1109/LCN.2004.38
https://dx.doi.org/10.1109/LCN.2004.38
https://dx.doi.org/10.1007/3-540-31188-2
https://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/978-981-10-1627-1_26
http://dx.doi.org/10.1007/978-981-10-1627-1_26
http://dx.doi.org/10.1007/978-3-540-46464-8_21
http://dx.doi.org/10.1007/11841883_27
https://dx.doi.org/10.1016/S1571-0661(05)80188-4
https://dx.doi.org/10.1016/S1571-0661(05)80188-4
http://dx.doi.org/10.1016/j.jvlc.2016.10.003
https://dx.doi.org/10.1007/s10270-017-0587-8
https://dx.doi.org/10.1007/s10270-017-0587-8
http://dx.doi.org/10.1007/978-3-319-21155-8_15
http://dx.doi.org/10.1007/978-3-319-21155-8_15

cMoflon: Model-Driven Generation of Embedded C Code for WSNs 125

13. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: Ruscio,
D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 138–145. Springer, Cham
(2014). doi:10.1007/978-3-319-08789-4 10

14. Li, N., Hou, J.C., Sha, L.: Design and analysis of an MST-based topology control
algorithm. IEEE Trans. Wirel. Commun. 4(3), 1195–1206 (2005)

15. Lim, R., Ferrari, F., Zimmerling, M., Walser, C., Sommer, P., Beutel, J.: FlockLab:
a testbed for distributed, synchronized tracing and profiling of wireless embedded
systems. In: Proceedings of the ACM/IEEE Conference on Information Processing
in Sensor Networks (IPSN), pp. 153–165 (2013). https://doi.org/10.1145/2461381.
2461402

16. Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power wireless
research. In: International Symposium on Information Processing in Sensor Net-
works (IPSN), pp. 364–369 (2005). https://dx.doi.org/10.1109/IPSN.2005.1440950

17. Portocarrero, J.M.T., Delicato, F.C., Pires, P.F., Rodrigues, T.C., Batista, T.V.:
SAMSON: Self-adaptive Middleware for Wireless Sensor Networks. In: Proceedings
of the ACM Symposium on Applied Computing (SAC), pp. 1315–1322. ACM, New
York (2016). https://dx.doi.org/10.1145/2851613.2851766

18. Richerzhagen, B., Stingl, D., Rückert, J., Steinmetz, R.: Simonstrator: simulation
and prototyping platform for distributed mobile applications. In: Proceedings of
the International Conference on Simulation Tools and Techniques (SIMUTools),
pp. 99–108. ICST (2015). https://dx.doi.org/10.4108/eai.24-8-2015.2261064

19. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. 1. World Scientific (1997). https://dx.doi.org/
10.1142/3303

20. Santi, P.: Topology Control in Wireless Ad Hoc and Sensor Networks, 1st edn.
Wiley, Chichester (2005)

21. Santi, P.: Topology control in wireless ad hoc and sensor networks. ACM Comput.
Surv. (CSUR) 37(2), 164–194 (2005). https://dx.doi.org/10.1145/1089733.1089736

22. Schweizer, I., Wagner, M., Bradler, D., Mühlhäuser, M., Strufe, T.: kTC - robust
and adaptive wireless ad-hoc topology control. In: Proceedings of the International
Conference on Computer Communications and Networks (ICCCN), pp. 1–9 (2012).
https://dx.doi.org/10.1109/ICCCN.2012.6289318

23. Stein, M., Petry, T., Schweizer, I., Bachmann, M., Mühlhäuser, M.: Topology con-
trol in wireless sensor networks: what blocks the breakthrough? In: Proceedings
of the International Conference on Local Computer Networks (LCN), pp. 389–397
(2016). https://doi.org/10.1109/LCN.2016.67

24. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Addison Wesley Professional, Boston (2008). http://catalogue.pearso
ned.co.uk/educator/product/EMF-Eclipse-Modeling-Framework/9780321331885

25. Varró, G., Anjorin, A., Schürr, A.: Unification of compiled and interpreter-based
pattern matching techniques. In: Vallecillo, A., Tolvanen, J.P., Kindler, E., Störrle,
H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 368–383. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31491-9 28

26. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development: Technology, Engineering, Management. John Wiley & Sons (2013)

27. Wang, Y.: Topology control for wireless sensor networks. In: Li, Y., Thai, M.T., Wu,
W. (eds.) Wireless Sensor Networks and Applications. Signals and Communication
Technology, pp. 113–147. Springer, US (2008). doi:10.1007/978-0-387-49592-7 5

28. Whitmore, A., Agarwal, A., Da Xu, L.: The internet of things-a survey of topics
and trends. Inf. Syst. Front. 17(2), 261–274 (2015). https://dx.doi.org/10.1007/
s10796-014-9489-2

http://dx.doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1145/2461381.2461402
https://doi.org/10.1145/2461381.2461402
https://dx.doi.org/10.1109/IPSN.2005.1440950
https://dx.doi.org/10.1145/2851613.2851766
https://dx.doi.org/10.4108/eai.24-8-2015.2261064
https://dx.doi.org/10.1142/3303
https://dx.doi.org/10.1142/3303
https://dx.doi.org/10.1145/1089733.1089736
https://dx.doi.org/10.1109/ICCCN.2012.6289318
https://doi.org/10.1109/LCN.2016.67
http://catalogue.pearsoned.co.uk/educator/product/EMF-Eclipse-Modeling-Framework/9780321331885
http://catalogue.pearsoned.co.uk/educator/product/EMF-Eclipse-Modeling-Framework/9780321331885
http://dx.doi.org/10.1007/978-3-642-31491-9_28
http://dx.doi.org/10.1007/978-0-387-49592-7_5
https://dx.doi.org/10.1007/s10796-014-9489-2
https://dx.doi.org/10.1007/s10796-014-9489-2

Self-adaptive UIs: Integrated Model-Driven
Development of UIs and Their Adaptations

Enes Yigitbas(B), Hagen Stahl, Stefan Sauer, and Gregor Engels

s-lab - Software Quality Lab, Paderborn University,
Zukunftsmeile 1, 33102 Paderborn, Germany

{enes.yigitbas,hagen.stahl,sauer,engels}@upb.de

Abstract. Self-adaptive UIs have been promoted as a solution for con-
text variability due to their ability to automatically adapt to the context-
of-use at runtime. In classical model-driven UI development (MDUID)
approaches, self-adaptivity and context management introduce addi-
tional complexity since self-adaptation features are distributed in a cross-
cutting manner at various locations in the models. This results in a
tightly interwoven model landscape that is hard to understand and main-
tain. In this paper, we present an integrated model-driven development
method where a classical model-driven development of UIs is coupled
with a separate model-driven development of UI adaptation rules and
context-of-use. We base our approach on the core UI modeling language
IFML, and focus on a new modeling language for adaptation rules, called
AdaptUI. We show how generated UI code is coupled with adaptation
services generated from AdaptUI adaptation rules and integrated in an
overall UI framework. This allows runtime UI adaptation realized by an
automatic reaction to context-of-use changes. The benefit of our app-
roach is demonstrated by a case study, showing the development of self-
adaptive UIs for a university library application, utilizing the Angular 2
JavaScript framework.

Keywords: Model-Driven UI Development · UI Adaptation Rules ·
Self-adaptive UIs · Context-Awareness

1 Introduction

The user interface (UI) is a key component of any interactive software application
and is crucial for the acceptance of the application as a whole. However, a UI is
not independent from its context-of-use, which is defined in terms of the user,
platform and environment [1]. As today’s user interfaces of interactive systems
become increasingly complex since many heterogeneous contexts of use have
to be supported, it is no longer sufficient to provide a single “one-size-fits-all”
user interface. Building multiple UIs for the same functionality due to context
variability is also difficult since context changes can lead to the combinatorial
explosion of the number of possible adaptations and there is a high cost incurred
by manually developing multiple versions of the UI [2].
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 126–141, 2017.
DOI: 10.1007/978-3-319-61482-3 8

Integrated Model-Driven Development of UIs and Their Adaptations 127

In the past, model-driven user interface development (MDUID) approaches
were proposed to support the efficient development of UIs. Widely studied
approaches are UsiXML [3], MARIA [4], and IFML [5] that support the abstract
modeling of user interfaces and their transformation to final user interfaces. How-
ever, in classical MDUID approaches, the modeling of self-adaptivity and context
management aspects introduce additional complexity since self-adaptation fea-
tures are distributed in a cross-cutting manner at various locations in the models.
This results in a tightly interwoven model landscape that is hard to understand
and maintain. Therefore, an integrated model-driven development method is
needed where a classical model-driven development of UIs is coupled with a
separate model-driven development of UI adaptation rules and context-of-use.
In detail, the following challenges have to be addressed to integrate adapta-
tion aspects into MDUID and support the development of self-adaptive UIs in a
systematic way:

– C1: Specification of UI Adaptation Rules : A language conform to the core UI
modeling language IFML, standardized by the Object Management Group
(OMG), is required for specifying UI adaptation rules in an abstract manner.
With the help of this language, UI designers should be able to separately spec-
ify various UI adaptation rules which can adapt the UI at runtime (separation
of concerns, abstraction level, extensibility, maintainability).

– C2: Generation of UI Adaptation Logic: Based on the specified abstract UI
adaptation rules, the adaptation logic needs to be generated for supporting
UI adaptation capabilities at runtime.

– C3: Execution of UI Adaptation at Runtime: For supporting runtime UI adap-
tation enabling automatic reaction to dynamic context-of-use changes, the
generated adaptation logic needs to be coupled with generated UI code as
well as integrated in an overall UI framework.

To address the above described challenges, the contributions of this paper
include our vision on enhancing UIs with self-adaptation capabilities in a sys-
tematic and model-driven way. Therefore, our contribution covers the following
aspects: Firstly, a domain specific language, called AdaptUI, will be presented
which supports the specification of abstract UI adaptation rules that cover var-
ious adaptation dimensions (e.g. layout, navigation, or task-feature set). Addi-
tionally, our approach supports the generation of UI adaptation logic by trans-
forming the abstract UI adaptation rules into an executable representation of
the target UI framework. Finally, a rule-based execution engine is integrated in
our UI framework for executing the UI adaptations at runtime.

The remaining sections of this paper are organized as follows: Section 2
presents the conceptual solution of our work. In Sect. 3, we present the mod-
eling and integration of UI adaptation concerns in MDUID. Section 4 deals with
the implementation of our approach. Section 5 shows the benefit and usefulness
of our approach based on a case-study from the domain of university library
management. Related work is presented in Sect. 6 and finally Sect. 7 concludes
the paper and gives an outlook on future work.

128 E. Yigitbas et al.

2 Conceptual Solution

Model-driven User Interface Development (MDUID) is a promising candidate
for mastering the complex development task of self-adaptive UIs in a systematic,
precise and appropriately formal way. Our model-driven solution architecture for
self-adaptive UIs is depicted in Fig. 1 and consists of three development paths.

Domain Model
(UML Class
Diagram)

Abstract UI
Model
(IFML)

UI Adapta on
Rules

(AdaptUI)

references

UI
Generator

Adapta on
Service

Generator

Final UI
(Angular 2

Views)

Adapta on
Service

(TypeScript)

Input Input

generates

reference

adapts monitors

Context
Model

Context
Sensor

reference

Context
Sensor

Generator

generates generate

ContextUser Interface Adapta on

Input

Fig. 1. Model-driven architecture for self-adaptive UIs

The first development path (left side of Fig. 1) addresses the model-driven
development of UIs. This development path makes use of an Abstract UI Model
and a Domain Model which are then transformed by a code generator (UI Gen-
erator) into a Final UI. This development path has been subject of extensive
research [6] and we already presented the realization and application of an
MDUID approach for different target platforms [7,8] (including smartphone,
desktop and self-service systems) based on the OMG standard IFML. The first
development path supports efficient development of heterogeneous UIs for differ-
ent target platforms. However, this development path on its own is not enough
to support UI self-adaptation capabilities. Therefore, we extended our existing
MDUID solution architecture with parallel development paths which support
model-driven development of UI adaptation rules and context-of-use. This way,
the model-driven UI development path is complemented by an analog devel-
opment path which is responsible for the UI adaptation concerns. As the UI
adaptation path is also based on the paradigm of model-driven development, the
solution preserves various advantages of model-driven software development like
Separation of Concerns, Extensibility or Maintainability. In general, the main
idea of the model-driven adaptation path (in the middle of Fig. 1) is to support
the specification of abstract UI Adaptation Rules in alignment to the standard-
ized abstract UI modeling language IFML. The specified UI Adaptation Rules
serve as an input for the Adaptation Service Generator which transforms them
into an Adaptation Service. The Adaptation Service is responsible for adapting
the generated Final UI at runtime. The third development path (right side of
Fig. 1) is responsible for characterizing the dynamically changing context-of-use

Integrated Model-Driven Development of UIs and Their Adaptations 129

parameters. A Context Model that is referenced by the UI Adaptation Rules, sup-
ports the abstract specification of heterogeneous context-of-use situations. Based
on the Context Model, the Context Sensor Generator allows the generation of
various Context Sensors like accelerometer, GPS, brightness or noise level. The
Context Sensors provide context information data that are monitored by the
generated Adaptation Service to decide on how to adapt the UI at runtime.

In this paper, we are especially focusing on the adaptation path and its
integration in the MDUID approach. For illustrating the interplay between the
generated final user interface, the Angular2 Views, and the Adaptation Service
as well as to present the effect of specified UI adaptation rules on the final user
interface, we elaborate on the adaptation approach. Figure 2 shows a detailed
overview of the UI adaptation approach containing the main layers and com-
ponents for realizing self-adaptive UIs that are able to automatically react to
changes in their context-of-use.

UI AdaptaƟon
Rules

(AdaptUI)

UI AdaptaƟon
Rule Transformer

(XML)

AdaptaƟon
Service

Generator

AdaptaƟon Service

Angular 2
Views

monitored by edit

Display
Proper es

Knowledge

Context
Sensor

Monitor Execute

Evaluate
Condi ons

references

adapt instance

adapt schema

Context Manager Self-adapƟve UI

Fig. 2. Model-driven specification and adaptation of UIs

The first layer starts with the specification of UI Adaptation Rules at design
time. The specification language is AdaptUI, a domain-specific language devel-
oped in this work which is explained in more detail in the next section. In the
second layer, the abstract adaptation rules are transformed into an XML for-
mat by the UI Adaptation Rule Transformer. The goal of this transformation is

130 E. Yigitbas et al.

to store the adaptation rules in a universal, common file format, that is easily
traversable for further transformation processes. The next step in the genera-
tion process, is the transformation to an executable Adaptation Service. This
transformation is done by the Adaptation Service Generator. The output of the
generator is the Adaptation Service which characterizes a runtime component in
the third layer. The Adaptation Service implements an adaptation loop similar
to IBM’s MAPE-K loop [11]. Main runtime components besides the Adapta-
tion Service are the Context Manager and the Self-adaptive UI. The Context
Manager provides the generated context information through Context Sensors
which are specified in the Context Model. The Self-adaptive UI consists of two
subcomponents: The Angular 2 Views which are responsible for representing the
UI and Display Properties which are affected by the adaptation rules and con-
tain the adaptable schema and type information of the UI. Context information
which are generated by Context Sensors are monitored by the Adaptation Ser-
vice. Unlike the MAPE-K loop with its analysis and plan phases, the Adaptation
Service relies on the application of predefined (by the abstract UI Adaptation
Rules) conditions and associated actions. Therefore, no planning of actions is
necessary. The two phases in the MAPE-K loop are replaced by the Evaluate
Conditions component. Rules that satisfy the conditions are executed. The rules
can modify the UI directly or edit the Display Properties. General approach here
is that the UI is directly modified, if the change only affects the current view
(adaptation of the current instance). If it is, for example, a property change
that would affect several pages, it is set in the Display Properties (adaptation of
schemas). An example for a property could be the layout of tables in the whole
UI. The properties are referenced from within the views and thereby can adapt
the layout and design. The Knowledge component of the MAPE-K loop is not
focus of this paper, but logged context information data and stored adaptation
states and preferences could be used to infer upcoming UI adaptations.

3 Modeling and Integration of Adaptation Concerns

In this section, we describe our integrated modeling approach for representing
UI adaptation rules. Therefore, we present our UI adaptation language AdaptUI
and show its coupling to the core UI modeling language IFML and to context
modeling.

Specifying sound UI adaptation rules is a challenging task which should be
supported by a dedicated domain specific language. Based on OMG’s core UI
modeling language IFML, we developed a new modeling language for UI adapta-
tion rules, the language AdaptUI. AdaptUI allows domain experts, for example
web designers, to model adaptation concerns by specifying the conditions and
actions for UI adaptations. To support various adaptation techniques for devis-
ing self-adaptive model-driven UIs, AdaptUI enables specification of different UI
adaptation rules. The following main categories of UI adaptation types are sup-
ported by AdaptUI: task-feature-set, navigation, and layout adaptation. Task-
feature-set adaptation supports UI adaptation by flexibly showing and hiding UI

Integrated Model-Driven Development of UIs and Their Adaptations 131

interaction elements like tables, buttons, text-fields etc. Navigation adaptation
means that the navigation flow of the UI can be flexibly adapted based on the
contextual parameters by adding, deleting or redirecting links between user inter-
face flows. Finally, layout adaptation deals with adaptation rules that support
layout optimization like changing font size, colors or splitting screens to divide
a complex UI view into multiple views so that for example small screen sizes are
satisfied. Figure 3 shows a modeling example of UI adaptation rules based on our
language AdaptUI. On the left side of this figure, small excerpts of the core UI
models are depicted. There is an abstract UI model based on IFML which shows
the representation of two UI view containers booksView and bookDetailsView
which are connected by a navigation edge showDetails. To enable the specifica-
tion of data bindings in IFML, the corresponding classes from the domain model
are referenced, in our case the class Book. To support the separate specification of
UI adaptation rules in addition to the IFML model in a comfortable way, Adap-
tUI allows to specify and bind different adaptation rules to the IFML modeling
elements. In the center of Fig. 3, an example specification of an AdaptUI nav-
igation adaptation rule is shown, which is called “‘Navigate to BookDetails”’.
This AdaptUI rule defines that the specific view bookDetailsView can be only
reached, if a specific user context is satisfied. For defining this rule, AdaptUI
rules are referencing a context model where relevant contextual parameters are
described. In the case of our example, the user role student has to be satisfied
so that the bookDetailsView can be reached. In a similar way, various other UI
adaptation rules like adapt brightness or set table layout (see Fig. 3) can be
specified to react to potential context-of-use changes.

User Interface

booksView

<<List>> bookList

<<DataBinding>>
bookBinding

bookDetailsView

<<Details>>
bookDetails

<<DataBinding>>
bookBinding

Abstract UI Model
(IFML)

Domain Model
(UML Class
Diagram)

Book

tle:String
author:String

isbn:String

Adapta on
UI Adapta on Rules (AdaptUI)

Context
Context Model (UML Class Diagram)

references

re
fe

re
nc

es

references

references

showDetails

references

e:Environment

brighntessLevel: int

CoU:ContextModel

p:Pla orm

type = Pla ormType

u:User

name= String
age= int
language= String
visionAid= boolean
role= String

environment

pla orm

user

Fig. 3. Specification of AdaptUI adaptation rules

An overview of the general structure of the AdaptUI language is shown in
Fig. 4. The root element of all elements in AdaptUI is the AdaptUI-Model. It
contains the definition of a Flow (chosen to be conform to the terminology of used
rule engine Nools1) containing arbitrary number of AdaptationRule elements.
An AdaptationRule consists of the RuleName, FactDefinition, a PriorityLevel,
1 https://github.com/C2FO/nools.

https://github.com/C2FO/nools

132 E. Yigitbas et al.

Conditions and Actions. The FactDefinition is given as the class name in the
final Angular 2 application and an identifier by which it is referred to within the
rule. To decide in which order rules are executed if more than one satisfies all
conditions, the PriorityLevel is used as indicator for priority. Higher level means
that the rule is executed before rules with lower level.

1

AdaptUI-Model

Services Service FuncƟons FuncƟon

Flow

AdaptaƟonRule

RuleName

PriorityLevel

FactDefiniƟon

CondiƟonalOR

CondiƟonalAND

CondiƟonalPrimary

Fact Operator Value

AcƟon

TaskChangeOperaƟon

AddViewComponent
OperaƟon

DeleteViewComponent
OperaƟon

ServiceOperaƟon

ServiceFuncƟonCall
OperaƟon

EditFactOperaƟon

SetDisplayProperty
OperaƟon

LayoutChange
OperaƟon

AdaptCSSClass
OperaƟon

NavigaƟonChange
OperaƟon

AddNavLink
OperaƟon

DeleteNavLink
OperaƟon

RedirectNavLink
OperaƟon

ClearNav
OperaƟon

1

0..1
1..* 1

1..*

1

1..*

1

1

1

1..* Condi ons

right0..1

right0..1

le

le

1

1

1 0..1 0..1

Fig. 4. Structure of AdaptUI-DSL

Conditional expressions can be used to check if the fact satisfies certain condi-
tions. The condition can be a combination of boolean expressions concatenated
by OR-operators and AND-operators. For this, AdaptUI provides several ele-
ments to build such an expression. The ConditionalOR elements are connected
by OR-operators. The left side of such a ConditionalOR expression is a Con-
ditionalAND expression. The right side of a ConditionalOR expression can be
empty or be another ConditionalOR expression. The elements in a Conditiona-
lAND expression are concatenated by an AND-Operator. The left side of Con-
ditionalAND is the ConditionalPrimary, which is a boolean expression made up
of just a fact or a combination of fact, operator and value. The right side of a
ConditionalAND can be either another ConditionalAND or be empty.

The Actions, which were introduced in the beginning of this paragraph, are
executed if the conditions are satisfied. The supported Actions of the AdaptUI
language are based on the action categories defined in our previous work [8] and
cover the adaptation operations TaskChangeOperation, NavigationChangeOpera-
tion and LayoutChangeOperation. A fourth type proposed in our prior previous
work is a ComposedAction which combines multiple actions of the first three
categories. In AdaptUI, the ComposedAction type is implicitly modelled by the
composition relation between AdaptationRule and Action.

Integrated Model-Driven Development of UIs and Their Adaptations 133

Beside a Flow an AdaptUI-Model can also contain Services in the target lan-
guage of the UI. This means, the services referenced here are existing Angular 2
services that are used within the web application. The definition of these services
enables the user of the language to use them later on in the rule specification. A
Service is defined by its name and relative location to the Services folder of the
Angular 2 implementation. A Service can contain interfaces to Functions which
also have a Function with its name attribute. Both, Functions and Services are
referred to by their respective ID. To allow editing facts or call Angular 2 ser-
vices through an AdaptationRule, an additional category, ServiceOperation, is
included in the Actions.

4 Implementation

We implemented an IFML2NG2 generator to support the utilization of our
modeling and development approach for devising self-adaptive UIs. The realized
generator automatically creates Angular 2 views, based on the IFML model and
domain model, and the adaptation service, based on the AdaptUI rule speci-
fication. In the following, we focus on and briefly describe the implementation
of AdaptUI, the Adaptation Service Generator and the Runtime Components to
support UI adaptation at runtime (see Fig. 2).

4.1 AdaptUI

For specifying abstract UI adaptation rules, the described UI adaptation lan-
guage AdaptUI is used. Foundation of AdaptUI is the open-source framework
Xtext2 for development of programming languages and domain-specific lan-
guages. The defined language also comes with support of an infrastructure inte-
grated in the Eclipse IDE. Features include syntax highlighting and code com-
pletion as useful tools for the user of AdaptUI.

4.2 Adaptation Service Generator

The goal of the Adaptation Service Generator is the automated creation of an
Angular 2 service that allows the adaptation of the UI at runtime. The adap-
tations to the UI are expressed in a rule-based form in an XML format. Based
on this input file, the Adaptation Service Generator generates an Angular 2 ser-
vice containing the JavaScript rules engine Nools. Nools is an efficient RETE-
based rule engine written in JavaScript and provides an API for specifying fact
and rules. The Adaptation Service Generator is implemented with Xtend3 and
receives the UI adaptation rules in an XML format as input. Structurally, it con-
sists of the components NoolsServiceGenerator, NoolsRuleGenerator, NoolsCon-
ditionGenerator and NoolsActionGenerator (see Fig. 5). These components are
responsible for creating an injectable Angular 2 service for monitoring the con-
text model and executing adaptation operations.
2 http://www.eclipse.org/Xtext.
3 http://www.eclipse.org/xtend.

http://www.eclipse.org/Xtext
http://www.eclipse.org/xtend

134 E. Yigitbas et al.

<<component>>
NoolsServiceGenerator

<<component>>
NoolsRuleGenerator

<<component>>
NoolsCondiƟonGenerator

<<component>>
NoolsAcƟonGenerator

Rules

Condi ons Ac ons

Fig. 5. Structure of the adaptation service generator

The base structure of the Angular 2 service, generated by the NoolsService-
Generator, consists of the required Angular 2 imports, the class declaration of
the service and the implementation of the Nools flow. The flow is composed
of all the rules defined in the abstract UI adaptation rules. For each rule it is
defined under which conditions the rule actions are executed. The generation of
the individual rules is delegated to the NoolsRuleGenerator. For each adapta-
tion rule the name is the name of the abstract UI adaptation rule. The salience
of the rule is the priority level of the rule and corresponds to the level defined
in the AdaptUI rule specification. In addition to that, the rule fact is defined
by the factType and factName attributes. The generation of the conditions and
adaptation operations of the rule is delegated to the NoolsConditionGenerator
and the NoolsActionGenerator respectively.

The NoolsConditionGenerator is responsible for creating the rule conditions.
All child elements of the conditions element are combined with the OR-operator.
If there is a conditionGroup element, all child elements of the conditionGroup
are combined with the AND-operator. The result is a string of concatenated
conditions with operators. Likewise, to generate the actions that the rule should
execute when the conditions are satisfied, the NoolsActionGenerator is called
with the actions element as parameter and, additionally, the mapping of services
and functions defined in the abstract UI adaptation rule specification. However,
there is a defined set of actions. If the action element is unknown, there is no code
created. This means, that if there are new possible actions added to the schema
definition, they also need to be implemented in the NoolsActionGenerator.

4.3 Runtime Components: Adaptation Service, Self-adaptive UI
and Context Manager

At runtime, we have the components Adaptation Service, Self-adaptive UI and
Context Manager. The Self-adaptive UI is generated by our IFML2NG2 gener-
ator. Its Angular 2 views consist of an HTML template, which is used to render
the UI in the browser, and an Angular 2 component, which is implemented in
TypeScript and manages the view. Likewise, the Adaptation Service is gener-
ated as Angular 2 service and is also implemented in TypeScript. As described
in the earlier section, the Adaptation Service uses Nools, a JavaScript based
rule engine, for monitoring the context information provided by the Context

Integrated Model-Driven Development of UIs and Their Adaptations 135

Manager. In our current implementation, the Context Manager and the Dis-
play Properties (see Fig. 2) are implemented manually and independently from
the generation pipeline in TypeScript. However, to ensure the integration of the
adaptation loop, they are referenced within the AdaptUI specification. The facts
of the AdaptUI rule specification reference the different context-of-use informa-
tion stored in the context model of the Context Manager. Furthermore, it is
possible to define UI adaptation operations that should change the schema used
by the view elements of the UI.

At runtime, the Adaptation Service monitors the context information and
executes the adaptation rules whose conditions are satisfied. To adapt the UI
view elements on instance level, JQuery is used to directly manipulate the DOM
tree of the view. Changes only affect the current UI view element and do not
persist on other UI views. When changing the schema for a group of view ele-
ments in the Display Properties, the adaptation affects the properties of all view
elements of this type. This also includes instances of this view element type on
subsequently visited views. This is done by binding the layout class of the view
elements of this type, represented by CSS classes, to the properties stored within
the Display Properties.

5 Case Study

The case study setting is based on an example scenario which is derived from
the university library management domain (see Fig. 6). The scenario setting is
a library web application for universities which is called “LibSoft”. LibSoft pro-
vides core library management functionality like searching, reserving and lend-
ing books. LibSoft’s UI can be accessed by heterogeneous users and user roles
(like student or staff member) through a broad range of networked interaction
devices (e.g. smartphones, tablets, terminals etc.) which are used in various envi-
ronmental contexts (e.g. brightness, loudness, while moving etc.). Depending on
the situation, users are able to access their library services where, when and how
it suits them best. For example, if the user wants to pursue a self-determined
cross-channel book lending process, she can begin an interaction using one chan-
nel (search and reserve a book with her laptop at home), modify the transaction
on her way using a mobile channel, and finalize the book lending process at the
university library via self-check-out terminal or at the staff desk. In the example
scenario described above, each channel has its own special context-of-use and
eventually the contextual parameters regarding user, platform and environment
can dynamically change. Figure 7 shows such a context-of-use (CoU) change
from CoU2 to CoU4 (compare Fig. 6). The depicted context-of-use object model
excerpts in Fig. 7 illustrate how different contextual parameters regarding user,
platform and environment can change. Therefore, it is important to continu-
ously monitor the context-of-use parameters and react to possible changes by
automatically adapting the UI for the new context-of-use situation.

Already a small set of contextual parameters can highly influence the UI since
lots of context situations can occur if the context-of-use parameters dynamically

136 E. Yigitbas et al.

Search
Book

Reserve
Book

Edit Book
Reserva on

Lend
Book

Issue
Book

XOR XOR

Context-of-use 1 Context-of-use 2

Context-of-use 3

Context-of-use 4

[User, Pla orm, Environment]

Fig. 6. Example scenario: UIs in dynamically changing context-of-use situations.

CoU2:ContextModel

u:User

e:Environment

p:Plaƞorm

user

plaƞorm

environment

name = "Jane Doe"
age = 26
language = "en"
visionAid = false
computerSelfEfficacy = true

admin = false
role = "student"

brightnessLevel = 30

type = "mobile"

CoU4:ContextModel

u:User

e:Environment

p:Plaƞorm

user

plaƞorm

environment

name = "John Roe"
age = 50
language = "de"
visionAid = false
computerSelfEfficacy =false

admin = true
role = "staff"

brightnessLevel = 100

type = "desktop"

Context-of-Use
Change

Fig. 7. Context-of-use object model excerpts

change. Based on the different context dimensions, various adaptations to the UI
can be specified and integrated in the web application. The integration happens,
as explained within the earlier sections, by specifying the adaptation rules with
the help of AdaptUI and using the specification as input for the generator. For
utilizing our approach in the case study setting, an IFML model, representing
the views and navigational flows of the UI, a domain model and a set of UI
adaptation rules were created as described in Sect. 3. The specified models were
transformed into final user interfaces using our IFML2NG2 generator.

Screenshots of the resulting self-adaptive UI are depicted in Fig. 8. According
to the monitored context information for CoU2, the layout for the UI is optimized
for a mobile device used in a darker environment, because the user Jane is editing
her book reservation while travelling to the library and it is already quite dark
outside (see left side of Fig. 8). Also, the UI is adapted to the user properties
by enabling access to the functions and navigation available to students. The
UI language is set to English as it is preferred by the user Jane. Since Jane
is recognized as a self-efficacious user with the application, she gets extended
functionalities, like a more complex search and filter mechanism for the list view
of the books. When the context changes from CoU2 to CoU4, the generated self-
adaptive UI adapts itself automatically to the new contextual parameters. In this
case, the staff members view on a desktop device with a wider and brighter layout
is shown, displaying the list of reserved books, because in CoU4 a staff member,
John Roe, uses his desktop computer to issue the book to Jane. Additionally,

Integrated Model-Driven Development of UIs and Their Adaptations 137

Change of
Context-of-use

UI for CoU2: UI for CoU4:

Fig. 8. UI adaptation according to different contexts-of-use

to the functionalities and functions available to staff members, John is provided
with a link to the administration interface, because he is granted access to the
administration interface. The UI Language is set to German and the search and
filter mechanisms of the list are simplified, because he just started using LibSoft
and is, therefore, not yet self-efficacious. Since the location is a well-lit library,
the brightness of the environment is high.

The case study demonstrates the benefit of our approach for supporting
the development of self-adaptive UIs and showcases our solution approach for
addressing the introduced challenges C1–C3. Through the separate specification
of abstract AdaptUI rules the modeling of adaptation concerns is supported
in a comfortable way. The case study also shows how generated UI code is
coupled with adaptation services generated from AdaptUI adaptation rules and
integrated in an overall UI framework. As shown in the example scenario, this
allows runtime UI adaptation realized by an automatic reaction to context-of-use
changes.

6 Related Work

Recent research provides various approaches that support the model-based and
model-driven development of UIs and their adaptations.

Model-based and model-driven development methods have been discussed in
the past for various individual aspects of a software system and for different
application domains. This applies to the development of the data management
layer, the application layer or the user interface layer. The CAMELEON Ref-
erence Framework (CRF) [1] provides a unified framework for model-based and
model-driven development of UIs. UIs are represented in CRF on the following
levels of abstraction: Tasks and Domain Models, Abstract User Interface (AUI)
Model, Concrete User Interface (CUI) Model and Final User Interface (FUI).
UsiXML [3], MARIA [4] and IFML [5] are widely studied approaches for model-
driven UI development which were applied in various domains. However, these

138 E. Yigitbas et al.

approaches do not explicitly cover the specification and integration of UI adapta-
tion aspects in the development process by providing a UI adaptation language
that enables the generation of adaptation services for supporting runtime UI
adaptation.

In recent research, adaptive or self-adaptive UIs have been promoted as a
solution for context variability due to their ability to automatically adapt to
the context-of-use at runtime [2]. A key goal behind self-adaptive UIs is plastic-
ity denoting a UI’s ability to preserve its usability despite dynamically changing
context-of-use parameters [9]. In practice, especially in the context of web design,
the paradigm of Responsive Web Design (RWB) is widely used to adapt the lay-
out of a web page in response to the characteristics of the used device. While
RWB adaptation rules are mainly focusing on the contextual parameter Plat-
form, considering device characteristics like screen size or resolution, our app-
roach also focuses on the contextual parameters User and Environment allowing
the specification of advanced adaptation rules and automatic adaptation to com-
plex context-of-use situations.

In [10] the authors present a hierarchy of adaptability properties for software
systems, referred to as self-* properties. Based on this work, the authors present
in [2] how some of these properties are applicable to the domain of self-adaptive
UIs. Similar to the idea that self-* properties of self-adaptive software systems
can be applied to self-adaptive UIs, it is possible that general reference architec-
tures for self-adaptive systems can be also applied to self-adaptive UIs. We will
give a brief overview of these architectures. The MAPE-K loop, which was used
in our approach, was created by IBM as a reference model for autonomic comput-
ing [11]. MAPE-K considers software systems as a set of managed resources that
is adapted by an adaptation manager which consists of the components Monitor,
Analyze, Plan, Execute, and Knowledge. Similar reference architectures for self-
adaptive systems are Rainbow [12] and the Three Layer Architecture [13]. Beside
these general architectures for self-adaptive systems, there are also specific ref-
erence architectures for adaptive UIs like CAMELEON-RT [14], CEDAR [15]
or FAME [16]. Furthermore, different approaches like Supple [18], MASP [19],
MyUI [20] or RBUIS [21] present methods, techniques and tools for supporting
the development of adaptive UIs. However, these approaches do not focus on the
generation of UI adaptation logic in the means of adaptation services.

On the intersection of MDUID and UI adaptation, several transformation-
based approaches like [22] or [23] were proposed that make use of adaptation
rules based on a context model to adapt UIs. There are also other approaches
using different techniques to adapt UIs, like [24] which uses machine learning
or [17] where a genetic algorithm is used to calculate a well suited UI adapta-
tion. Compared to these approaches, our model-driven approach for developing
self-adaptive UIs, provides a dedicated rule-based UI adaptation language and
supports the generation of adaptation services allowing runtime UI adaptation.

Integrated Model-Driven Development of UIs and Their Adaptations 139

7 Conclusion and Outlook

In this paper, we present an integrated model-driven development approach for
self-adaptive UIs where a classical model-driven development of UIs is enhanced
and coupled with a separate model-driven development of UI adaptation rules
and context-of-use. Based on OMG’s core UI modeling language IFML, we pro-
pose a new modeling language for UI adaptation rules, the language AdaptUI.
We present how generated UI code is coupled with adaptation services generated
from AdaptUI adaptation rules and integrated in an overall UI framework. This
allows runtime UI adaptation realized by an automatic reaction to dynamically
changing context-of-use parameters like user profile, platform, and usage envi-
ronment. We demonstrate the benefit of our approach by a case study, showing
the development of self-adaptive UIs for a university library application, utilizing
the Angular 2 framework.

In ongoing research, we investigate the acceptance and user-friendliness of
self-adaptive UIs by conducting usability studies with potential end-users. In
addition to that, we analyze how additional context information properties can
be automatically monitored and generated by context sensors to be used for
further UI adaptation. Further research will also cover the application of qual-
ity assurance techniques to our presented model-driven UI adaptation approach,
which enable the provisioning of hard guarantees concerning self-adaptivity char-
acteristics such as adaptation rule set stability and deadlock freedom. Further-
more, we plan to enhance our proposed UI self-adaptation loop through the
implementation of a knowledge component. In this context, it is conceivable to
apply learning algorithms based on the user’s assessment of executed adaptation
operations to further improve UI adaptations.

Acknowledgement. This work is based on “KoMoS”, a project of the “it’s OWL”
Leading-Edge Cluster, partially funded by the German Federal Ministry of Education
and Research (BMBF).

References

1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A unifying reference framework for multi-target user interfaces. Interact.
Comput. 15, 289–308 (2003)

2. Akiki, P.A., Bandara, A.K., Yu, Y.: Adaptive model-driven user interface develop-
ment systems. ACM Comput. Surv. 47(1), 64:1–64:33 (2014)

3. Limbourg, Q., Vanderdonckt, J.: USIXML: a user interface description language
supporting multiple levels of independence. In: Engineering Advanced Web Appli-
cations: Proceedings of Workshops in Connection with the 4th International Con-
ference on Web Engineering. Rinton Press, pp. 325–338 (2004)

4. Paternò, F., Santoro, C., Spano, L.D.: MARIA: a universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. ACM Trans. Comput. Hum. Interact. 16(4), 1–19 (2009)

5. Brambilla, M., Fraternali, P.: Interaction Flow Modeling Language - Model-Driven
UI Engineering of Web and Mobile Apps with IFML. The MK/OMG Press,
New York (2014)

140 E. Yigitbas et al.

6. Paternò, F., Santoro, C.: A logical framework for multi-device user interfaces. In:
Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems (EICS 2012), pp. 45–50. ACM, New York (2012)

7. Yigitbas, E., Kern, T., Urban, P., Sauer, S.: Multi-device UI development for task-
continuous cross-channel web applications. In: Casteleyn, S., Dolog, P., Pautasso,
C. (eds.) ICWE 2016. LNCS, vol. 9881, pp. 114–127. Springer, Cham (2016). doi:10.
1007/978-3-319-46963-8 10

8. Yigitbas, E., Sauer, S.: Engineering context-adaptive UIs for task-continuous
cross-channel applications. In: Bogdan, C., Gulliksen, J., Sauer, S., Forbrig,
P., Winckler, M., Johnson, C., Palanque, P., Bernhaupt, R., Kis, F. (eds.)
HCSE/HESSD -2016. LNCS, vol. 9856, pp. 281–300. Springer, Cham (2016).
doi:10.1007/978-3-319-44902-9 18

9. Coutaz, J.: User interface plasticity: model driven engineering to the limit! In: Pro-
ceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems. ACM, pp. 1–8 (2010)

10. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4, 1–42 (2009)

11. IBM. An Architectural Blueprint for Autonomic Computing (2006)
12. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow:

architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

13. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Pro-
ceedings of the Workshop on the Future of Software Engineering. International
Conference on Software Engineering. IEEE, pp. 259–268 (2007)

14. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: Cameleon-RT: a
software architecture reference model for distributed, migratable, and plastic user
interfaces. In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI
2004. LNCS, vol. 3295, pp. 291–302. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30473-9 28

15. Akiki, P.A., Bandara, A.K., Yu, Y.: Using interpreted runtime models for devising
adaptive user interfaces of enterprise applications. In: Proceedings of the 14th
International Conference on Enterprise Information Systems. SciTePress, pp. 72–
77 (2012)

16. Duarte, C., Carric, L.: A conceptual framework for developing adaptive multimodal
applications. In: Proceedings of the 11th International Conference on Intelligent
User Interfaces. ACM, pp. 132–139 (2006)

17. Blouin, A., Morin, B., Beaudoux, O., Nain, G., Albers, P., Jézéquel, J.-M.: Com-
bining aspect-oriented modeling with property-based reasoning to improve user
interface adaptation. In: Proceedings of the 3rd ACM SIGCHI symposium on Engi-
neering interactive computing systems (EICS 2011). ACM, 85–94 (2011)

18. Gajos, K.Z., Weld, D.S., Wobbrock, J.O.: Automatically generating personalized
user interfaces with supple. Artif. Intell. 174(12–13), 910–950 (2010)

19. Feuerstack, S., Blumendorf, M., Albayrak, S.: Bridging the gap between model
and design of user interfaces. In: Christian Hochberger, R.L. (ed.) Lecture Notes
in Informatics, pp. 131–137 (2006)

20. Peissner, M., Haebe, D., Janssen, D., Sellner, T.: MyUI: generating accessible
user interfaces from multimodal design patterns. In: Proceedings of the 4th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems (EICS 2012).
ACM, pp. 81–90 (2012)

21. Akiki, P.A., Bandara, A.K., Yu, Y.: Engineering adaptive model-driven user inter-
faces. IEEE Trans. Softw. Eng. 42(12), 1118–1147 (2016)

http://dx.doi.org/10.1007/978-3-319-46963-8_10
http://dx.doi.org/10.1007/978-3-319-46963-8_10
http://dx.doi.org/10.1007/978-3-319-44902-9_18
http://dx.doi.org/10.1007/978-3-540-30473-9_28
http://dx.doi.org/10.1007/978-3-540-30473-9_28

Integrated Model-Driven Development of UIs and Their Adaptations 141

22. López-Jaquero, V., Montero, F., González, P.: T:XML: a tool supporting user
interface model transformation. In: Hussmann, H., Meixner, G., Zuehlke, D. (eds.)
Model-Driven Development of Advanced User Interfaces, pp. 241–256. Springer,
Heidelberg (2011)

23. Sottet, J.-S., Ganneau, V., Calvary, G., Coutaz, J., Demeure, A., Favre,
J.-M., Demumieux, R.: Model-driven adaptation for plastic user interfaces. In:
Baranauskas, C., Palanque, P., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT
2007. LNCS, vol. 4662, pp. 397–410. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74796-3 38

24. Hariri, A., Tabary, D., Lepreux, S., Kolski, C.: Context aware business adaptation
toward user interface adaptation. Commun. SIWN 3, 46–52 (2008). Springer-Verlag

http://dx.doi.org/10.1007/978-3-540-74796-3_38
http://dx.doi.org/10.1007/978-3-540-74796-3_38

Iterative Model-Driven Development of Software
Extensions for Web Content Management

Systems

Dennis Priefer1,2(B), Peter Kneisel2, and Daniel Strüber3

1 Philipps-Universität Marburg, Marburg, Germany
2 Institute for Information Science, Technische Hochschule Mittelhessen,

Gießen, Germany
{dennis.priefer,peter.kneisel}@mni.thm.de

3 Institute for Computer Science, University of Koblenz and Landau,
Koblenz, Germany

strueber@uni-koblenz.de

Abstract. Dynamic web applications powered by Web Content Man-
agement Systems (WCMSs) such as Joomla, WordPress, or Drupal domi-
nate today’s web. A main advantage of WCMSs is their functional exten-
sibility by standardized WCMS extensions. However, the development
and evolution of these extensions are challenging tasks. Due to depen-
dencies to the core platform and other WCMS extensions, the code struc-
ture of an extension includes a large defect potential. Mistakes usually
lead to website crashes and are hard to find, especially for inexperienced
developers.

In this work, we define a model-driven development (MDD) process
and apply it during the development of software extensions for the
WCMS Joomla. To address two separate scenarios, involving the devel-
opment of independent and dependent WCMS extensions, we use an
MDD infrastructure, comprising a domain-specific language, a code edi-
tor, and reverse engineering facilities. In addition, we provide evidence
indicating that our model-driven approach is useful to generate exten-
sions with consistent interdependencies, demonstrating that the main
issues of extension development in the WCMS domain can be addressed
using a model-driven approach. By applying the MDD infrastructure on
actual projects, we additionally present the lessons learned.

Keywords: Model-driven development · Web content management sys-
tems · Joomla

1 Introduction

In today’s web engineering practice, the creation of functionally rich web appli-
cations from scratch is an outdated process. Instead, web developers use a vari-
ety of Web Content Management Systems (WCMSs) [16] providing the main
functionality of typical web applications, such as management of users, content,
menus, media and templates, as well as multi-language support.
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 142–157, 2017.
DOI: 10.1007/978-3-319-61482-3 9

Iterative MDD of Software Extensions for WCMSs 143

Fig. 1. Functional extension of a
WCMS instance

If the functional needs of WCMS admin-
istrators exceed the core functionality of a
WCMS, it needs to be functionally aug-
mented. Examples for additional functional-
ity include web shops, file repositories, image
galleries, or the management of domain-
specific data, such as conference information.
When using an open source WCMS, devel-
opers can change the code basis in order
to add additional features to the WCMS. A
less intrusive mechanism is based on software
extensions that can be deployed to a running
WCMS instance by an administrator without
changing the platform (see Fig. 1). This app-
roach can ensure a consistent system even if
the WCMS platform undergoes a version update.

The most popular WCMSs are WordPress [5], Joomla [2], and Drupal [1].
WordPress holds the largest market share by far (58,8% of all CMSs and 27,6%
of all web pages [4]) followed by Joomla (7,1% of all CMSs and 3,3% of all
web pages), and Drupal (4,7% of all CMSs and 2,2% of all web pages). For
other well-known CMSs like Magento [3] and Typo3 [6], the market share is
significantly lower compared to these top three WCMSs. All of these systems
provide extensibility in the form of installable software extensions. Norrie et
al. [17] explain the success of WordPress as a result of its user-friendliness and
extensibility. In particular, end-users without advanced technical skills benefit
from its capability to create and publish a web site in a few minutes. Extensibility
in the form of a plug-in mechanism empowers users with a technical background
to customize a WordPress instance according to their needs. Yet this plug-in
mechanism is relatively simple, based on the exposure of an interface by the
platform core used to augment the core with additional code. Support for more
complex extensions, such as domain-specific data management and presentation
or event-triggered extensions, is lacking. If such extensions are developed using
hand-written code, significant challenges to maintainability arise.

A more sophisticated extension mechanism is offered by Joomla. In contrast
to most other WCMSs such as WordPress or Drupal, Joomla supports a vari-
ety of extension types to facilitate the development of feature-rich extensions.
For instance, components are an extension type that provides full data man-
agement capabilities, whereas modules offer presentation utilities for the data
managed by some component. This allows the development of new extensions
using data of existing ones, e.g. a module presenting data of a 3rd party com-
ponent. The extension mechanism provided by Joomla is based on an API as
well as naming conventions: For a consistent deployment to the core platform,
an extension must conform to an elaborate standard file and code structure.

Even though the extension mechanism of Joomla is powerful, extension devel-
opers face several issues during development and evolution. Developing a new

144 D. Priefer et al.

extension is a challenging task even for experienced developers. A typical proce-
dure is to create a clone of an existing extension complying with the standard
structure and to modify the clone to satisfy the new requirements. However,
this procedure shows a high susceptibility to errors. For instance, mismatches
between class identifiers and file names might go unnoticed. Another problem
occurs when the underlying platform evolves and existing extensions have to be
updated to adapt to the platform changes. If the amount of extensions to migrate
grows, the required effort for updating the extensions can increase tremendously.

In this work, we propose to apply a model-driven approach to the devel-
opment of WCMS extensions. Our approach is based on the observation that
a good amount of the file and code structure of popular WCMSs is made up
of generic and schematically recurring fragments. The use of a domain-specific
language and code generator is a promising means to reduce the development
effort for WCMS extensions. In particular, we consider the two typical scenarios
during WCMS extension development: The development of completely indepen-
dent extensions as well as of extensions depending on existing extensions. We
show how a model-driven approach is suitable to support developers during these
tasks.

We exemplify our approach by illustrating its application to Joomla, a main-
stream WCMS with a particularly sophisticated extension mechanism. In partic-
ular, we propose JooMDD, an infrastructure for the model-driven development
of Joomla extensions. JooMDD comprises a DSL and model editor, a code gen-
erator, and a model extraction tool.

This work is the first to address the distinct challenge of developing interde-
pendent WCMS extensions, an issue that does not occur in the simpler case of
regular web application development. However, the model-driven development of
WCMSs has been addressed in earlier works. In particular, the approaches pre-
sented in [19,21,24] address the model-driven development of concrete WCMS
instances, but do not take their extensibility into account.

We introduce the technical background and common use-cases of developing
Joomla extensions in Sect. 2 and present our MDD tools, including support for
reverse engineering, in Sect. 3. Section 4 describes our process to address the
typical development scenarios faced by Joomla extensions developers. We give
example applications of our approach in Sect. 5 and share the lessons learned in
Sect. 6.

2 Extension of Joomla Instances

This section describes the technical background of Joomla extensions and intro-
duces typical use-cases for their development. The use-cases concern the differ-
ences in the extensions interdependencies between each other. So, we can clarify
the different variants during our process definition in Sect. 4.

The Joomla platform provides a custom API for the functional expansion of
its core functionality through installable extensions. Extensions come in different
types of varying complexity, spanning the full range from complex extension
types with their own dedicated data management to simple function libraries.

Iterative MDD of Software Extensions for WCMSs 145

Fig. 2. File and code structure of a
Joomla component (Extract)

The most complex extension type is
called component. Components usually
have their own data management. To this
end, the Joomla core database is extended
with additional tables. To work together
with the Joomla core, components must
exhibit a file and code structure that fol-
lows a specific scheme. Figure 2 shows an
example of this scheme.

On file and code level, the scheme
implements the Model-View-Controller
(MVC) pattern [13]: views use models for data access; controllers can perform
data updates using the models and can also process view requests. While com-
ponents typically use their own custom data, a common practice is to use data
of other components within the view. The MVC classes must comply with the
illustrated scheme. Otherwise, the Joomla instance containing the component
may produce errors.

Another wide-spread extension type are modules, which can be used to place
any content within pre-defined module positions on a page of a Joomla instance.
Common module types are menus, search fields, breadcrumbs, or login sections.
Modules often use the data of an available component. Typically, modules display
a data entry from an underlying database of a component.

Developing Joomla extensions features two use-cases: First, developing inde-
pendent extensions such as components which have their own data management
and, second, dependent extensions, which use artefacts of existing extensions
such as modules, that in turn use the database of a component.

2.1 Use Case 1: Creating Independent Extensions

The first use-case is the development of independent extensions which can be
used within a running Joomla instance. The advantage of independent extensions
occurs during their evolution. If a developer changes the extension, no side-
effects due to dependencies occur. However, it is important to comply with the
development guidelines to ensure a correct interplay between the extension and
the running core system where it is installed. Even subtle errors can lead to
unexpected crashes that are not discovered until runtime.

2.2 Use Case 2: Creating Dependent Extensions

Components and modules stand out for their interplay with other extensions. It
is common practice to use artefacts of existing extensions within a component
or module to increase the functionality of a Joomla system without developing
software fragments anew. Components may reuse models or view templates by
other components, while modules use the database of existing components, since
they usually provide no own data management. This allows developers to augment
existing extensions (e.g. 3rd-party extensions) without changing their code base.

146 D. Priefer et al.

(a) Module referencing to an existing
component model for data access

(b) Module uses the database of a com-
ponent directly

(c) Module referencing to an existing com-
ponent model for data access (code)

(d) Module uses the database of a com-
ponent directly (code)

Fig. 3. Usual dependencies between modules and components

Figure 3 illustrates common dependencies between modules and components
on the example of an existing conference component, which is augmented by a
dependant module for the representation of conference talks. Figures 3a and b
illustrate the dependency variants in an abstract manner, whereas Figs. 3c and
d show the minimal amount of required code to establish these dependencies.
The code shows the corresponding variants of both dependencies as part of a
helper file within a module. This file represents the model of a module. The first
variant of dependency features the use of a component model within a module
via reference, using inclusion methods of Joomla’s singleton implementation
(JModelLegacy), whereas the second variant illustrates the direct use of a
component’s database by using SQL statements.

In this work we focus on the model-driven development of components and
models, with support for both use-cases. While we addressed the less complicated
use-case 1 in our earlier work [18], our extended infrastructure and process
address both use-cases.

Iterative MDD of Software Extensions for WCMSs 147

3 JooMDD - MDD Infrastructure for Joomla Extensions
Including Reverse Engineering Support

This section presents JooMDD, our infrastructure for the model-driven develop-
ment of Joomla extensions1.

JooMDD supports Joomla extension developers with a set of MDD tools: A
DSL and editor for the creation of extension models, a code generator for Joomla
extensions, and a tool to extract extension models from legacy extension code.

We used Xtext [12] and Xtend [11] to develop the infrastructure. Xtext allows
the definition of a DSL in the form of annotated EBNF grammar. Based on
this definition, it supports the generation of infrastructure components, such
as a text-based instance editor, an EMF domain model, and an API for the
DSL which can be used independently within a Java-based application. Xtend
is a Java-based programming language with dedicated support for the definition
of code generator templates. By using these tools, the rapid development and
implementation of a high quality MDD infrastructure is enabled.

3.1 Domain-Specific Language for Joomla Extensions

We created eJSL, a DSL for the description of Joomla-based software exten-
sions. The language consists of three parts: a part to model the data management
of Joomla extensions (entities), a part for the definition of a page flow of exten-
sion views (pages), and a part for the description of an extension structure
(extensions).

The entities and pages parts are platform-independent, that is, not bound
to either Joomla or to WCMSs in general. The design of these parts has been
influenced by the Simple Web Application Language (SWAL) presented in [9],
which describes the data and the page flow of a web application.

Fig. 4. Page reference within an extension
(eJSL model)

The purpose of the extension
part is the specification of particu-
lar Joomla extensions, rendering it
the platform-specific part of eJSL.
Extensions can be mapped to exist-
ing pages and entities. In partic-
ular, components and modules are
extension types which mainly con-
sist of views to illustrate any kind of
data. Therefore the language allows
optional references between these
extension types and pages. By adding
additional information to such a page reference, it is possible to describe depen-
dencies between extensions in an abstract way. Figure 4 illustrates the definition
of a page reference within an extension definition in an eJSL model. It is possible
to define a use reference to the model of a component (frontend or backend),

1 JooMDD can be downloaded from GitHub https://github.com/icampus/JooMDD.

https://github.com/icampus/JooMDD

148 D. Priefer et al.

the database of a conference or an existing webservice, which can also be part
of a component. Hereby it does not matter, if the page reference is made within
a component, or a module description. If no such reference is specified by the
user, this knowledge must be provided in the generator instead.

To use the DSL we provide plugins for the most commonly used develop-
ment environments in the WCMS domain which are IntelliJ IDEA, PhpStorm,
and Eclipse. The editor plugin of JooMDD is customized for integration with
each of these environments. The plugin provides a textual editor with syntax
highlighting, error messages, dependency checks, and auto completion support
for keywords and references between model elements.

3.2 Generator for Joomla Extensions

We have implemented our generator using Xtend templates. The main decompo-
sition of the generated code follows the division of the DSL into entities, exten-
sions, and pages, supporting traceability between models and the generated code.
The generator supports the two use-cases we described earlier in Sects. 2.1 and
2.2. If a new and independent extension is to be developed, the generator creates
the full extension code. In the case of using a an existing extension as reference
within another extension, it is possible to describe the augmentation within the
model (e.g. as part of a page reference as described in Sect. 3.1). So, the generator
is able to only generate the depending extension, but not the existing extension
anew. Both cases will be examined further within Sects. 4 and 5.

3.3 Tool Support for the Reverse Engineering of Existing Joomla
Extensions

JooMDD supports developers during the creation or forward engineering of a
new Joomla extension and the reengineering or migration of a legacy extension.

We developed the prototype jext2eJSL to support the reverse engineering
of Joomla extensions by a model extraction from the code of existing Joomla 3.x
extensions (PHP, HTML, JavaScript, and SQL files) as input. The tool creates
an extension model based on the eJSL language with the main model elements
as entities, pages and extensions. In particular, it supports the common Joomla
extension types. Our specialized use-case for the tool is described in Sect. 2.2:
The creation of a new extension with dependencies to an existing one. Usually
the existing extension must be modelled as well to allow references on the model
level. This step can completely be dropped by using the model extraction tool.
The extracted model contains all information needed to model (and generate)
new extensions based on the existing one. jext2eJSL matches the Joomla stan-
dard file and code schemes. Therefore, the input extensions must follow these
schemes and implement the required patterns such as MVC for components to
ensure that the extracted models are as complete as possible.

Iterative MDD of Software Extensions for WCMSs 149

4 Iterative Process for Extension Development

In this section, we describe an iterative process to reduce development effort
and error-proneness during the development of independent Joomla extensions.
In addition we take the interdependencies between extensions into account to
allow the development of new extensions that use artefacts of existing extensions
as well. Each of these use-cases can be addressed during one iteration of our
process. In fact, the second use-case requires an iteration of the process every
time the existing extension evolves, to avoid side effects due to inconsistencies.

Fig. 5. One iteration during the iterative development of Joomla extensions

The process, outlined in Fig. 5, is made up of eight steps. In this illustration
we focus on the development of components and modules, whereas our infrastruc-
ture provides support to adapt the process to all available extension types. One
iteration consists of the following steps:

(1) Collect Requirements: Requirements for the extensions are collected in
a suitable form, such as an analysis model in the form of a class diagram. In
particular, these requirements may comprise managed data, views, relationships
between views and data, and the extension structure. In this phase the decision
to use artefacts of an existing extension within a new one can be made. This
decision effects the subsequent steps of our process.

(2) Model Extraction (optional): In the case that a model of existing exten-
sions, usually a component, is required, the jext2eJSL tool is used to extract such
models automatically. Though, every evolution on existing extensions requires
a new run of the process with this step as a main requirement to ensure the

150 D. Priefer et al.

correct interplay between existing and dependant extensions. If an independent
extension is to be developed, this step is skipped.

(3) Model Engineering: The identified requirements are used to create or
update an extension model. In the initial development case, the modeller cre-
ates a new model with entities, pages, and the desired extension structure with
regard to the requirements. If the extension should use artefacts of an exist-
ing extension, such as a module using the model of an existing component, a
corresponding model of the existing extension must exist (created in step 2).
References between extensions will be addressed during the subsequent code
generation. To distinguish existing from new extensions, existing model artefacts
can be denoted with a @preserve annotation. If the existing extension evolved
since the last iteration and the corresponding model has changed in step 2, all
affected dependencies must be re-engineered in the extension model. Otherwise
it is not guaranteed that the extensions work correctly at runtime. In the case
that a referenced part is completely removed within the existing extension, the
dependency must be removed as well. Alternatively, the removed parts could be
part of a new extension which can be used by the dependant one.

(4) Model Validation: To ensure that the code generator produces a valid
result, the consistency of the input model needs to be validated upfront. In
particular, the model of the existing extension which is used by a new extension
must correspond to the existing extension’s code. Code changes could lead to
side effects in the Joomla page, which uses both extensions. Therefore, step 2 of
the process must be performed in every iteration to ensure consistency between
the model and code of the existing extension. If the modeller uses our text editor,
the check happens automatically during editing.

(5) Code Generation: The component or module code is generated from the
extension model. In each case the generator creates the full code for an installable
extension. Thereby code is generated for all model elements that do not carry
an @preserved annotation. In the case of creating an dependent extension, the
specified references are incorporated within the generated code.

(6) Add Individual Code (optional): To support extensions with an elabo-
rate application logic, the user may add individual code fragments to the gener-
ated code. A dedicated mechanism is required to guard such individual fragments
for later runs of the code generator.

(7) Deployment to Joomla instance (optional): The generated extension
can be installed within a running Joomla instance. In the case of a depending
extension it must be provided, that all required extensions are installed as well.
In addition they must be consistent to their corresponding models to ensure a
flawless interaction between the new and the existing extensions.

(8) Test Creation: The correctness of the generated extension is ensured by
tests. By performing integration tests, the correct interplay between the new and
already installed extensions. Currently, these tests are required to be written by a
human developer. Since the extensions under test are schematically redundant,

Iterative MDD of Software Extensions for WCMSs 151

the test cases usually present a large extent of schematic duplication as well,
offering an opportunity for further automation. However, the automation of this
step is left to future work.

The process is supported by our MDD infrastructure as follows: We provide
jext2eJSL as model extractor for step 2, a DSL and corresponding editors for step
3 and 4, and a code generator for step 5. We do not provide dedicated support
of the handling of individual fragments in the generated code, as required for
the optional step 6, but an off-the-shelf solution can be used for this purpose.

5 Application of the Approach

In this section, we describe our experiences of applying the previously described
process for both use-cases, creating a component and expanding an existing one
by a depending module.

5.1 Creating a New Component

Fig. 6. Analysis model for conference man-
agement

We devised a simple conference man-
agement component as an extension to
the Joomla core. During the require-
ments step, we identified the analysis
model shown in Fig. 6 to support the
management of a conference with its
participants, talks, agenda, and rooms.
In our case it was sufficient to dis-
play these data in the standard Joomla
CRUD views for the management of
component-related data.

Specifically, each entity should be
displayable in a custom list and details
view, such as those shown in Fig. 7.

The image shows these views from the perspective of a Joomla administrator
who can make the same views visible to site visitors using a menu entry. Based on
these requirements, we designed an extension model2 which can be used as input
for our code generator. The generator then creates a full installable conference
component that can be used to manage the required entities; no manual addition
of individual source code is required.

5.2 Creating a Module Using an Existing Component

We applied our approach to the users component, a core component which is
pre-installed on each Joomla instance. The component manages the users and
user groups of a Joomla instance as Fig. 8a illustrates. However, there is no

2 An excerpt of the extension model can be found in [18].

152 D. Priefer et al.

Fig. 7. List and details view within a Joomla instance (Backend)

(a) Users Component
(Management of User Groups
in the Backend)

(b) New Usergroups Module us-
ing Data of the Users Component
(Frontend)

Fig. 8. User groups management within existing component and new module

way of illustrating the existing user groups within the frontend of a Joomla site.
Therefore, we explore the case of adding a new module to the existing component
using its model as DAO, to provide a new representation of user groups.

The users component is developed by core developers of the Joomla commu-
nity. It was suitable for the exploration of our approach due to its high level of
compliance with the Joomla standard, a general requirement for step 2 above
and of our reverse engineering tool jext2eJSL. To this end, we first use jext2eJSL
to extract an extension model from the given component. The resulting model
provides entities, pages, and the extension specification which can be referred

Iterative MDD of Software Extensions for WCMSs 153

by new extensions. To avoid the generation of code for these existing elements,
they are annotated with a @preserve tag.

(a) New Usergroups Module
(eJSL Model)

(b) References within the DAO of the new
Module

Fig. 9. New usergroups module

To implement the new module, we create a new eJSL model and add a module
specification as Fig. 9a illustrates. Using the model as input, the code generator
creates the module with the dependency to the existing component as shown in
Fig. 9b. Since the generated file and code structure is fully compliant with the
Joomla standard, the module can be deployed directly to an existing Joomla
website. Once installed, it works together with the already installed organizer
component by using its model as DAO for the data which has to be shown - in
our case the user groups which are managed by the component (see Fig. 8b).

To explore the usefulness of our process for other components, we successfully
applied it to the conference component of the first case and a component for
resource management [7] we developed by hand over the course of six years.

6 Lessons Learned

In this section we address the lessons learned of our process based on its appli-
cation. We discuss the strengths and weaknesses of the approach and point out
the limitations of this work.

We investigated the usefulness of our approach by applying it in the domain
of the Joomla WCMS, a particularly critical example domain due to its sophisti-
cated extension mechanism that leads to many code and structure duplications.
Due to these duplications the biggest strength of our approach reveals. Dur-
ing both application scenarios, development speed increased since most of the
code was generated. In addition, the defect potential of the new extensions was
tremendously decreased, because all generated fragments adhere to the given

154 D. Priefer et al.

coding guidelines of Joomla. In both cases the extensions were installable and
applicable without adding a line of code by hand.

Within the application of the second use case a requirement for creating a
dependency from a new extension to an existing one was the creation of a model
using our model extraction tool. After the extraction, the existing extension is
depicted in an abstract manner. So, it could be used for being referenced by
new extensions. A nice effect is the capability of using the model of the existing
extension as a means of documentation, or a first version of the same extension,
which may be developed in a model-driven manner. If an existing extension
evolves, the model must be extracted anew. This could lead to inconsistencies
between models of the existing and new extension. However a re-engineering on
the model level allows a more rapid adjustment in contrast to a manual change of
the dependencies in the extensions’ code - especially if the dependencies concern
different code fragments but are specified in same part of the model.

Beside the described strengths of the approach we discovered some weak-
nesses during the application. The main weakness is the management of indi-
vidual code. If an extension which is developed using our approach evolves,
individual fragments are not considered within the extension model. This could
lead to problems at runtime, since the individual parts could depend on generic
fragments, which have been changed or removed. To detect and fix error-prone
fragments, an adequate test suite is required. Otherwise they wont be detected.

During the case of developing a new dependant extension, the problem of
individual code occurs in an earlier stage. During the model extraction of an
existing extension, only the parts which adhere strictly to the Joomla standard
can be found and abstracted. Individual parts remain unnoticed and can only be
reused by a new extension if the dependencies are added to the generated code
by hand. However, this procedure impairs the benefit of our approach.

Even though our approach can be successfully applied, our work includes
some threats to validity with regard to the applied development scenarios. In our
application, we create a new independent component and a module, which uses
artefacts of an existing component. These use-cases are common in the domain,
but not the only ones existing. This is a threat to the conclusion validity, since
our process is intended to develop extensions in general independent of their
type. Especially, the second case should be further examined in future work. This
includes the collection of possible dependencies between different extension types
and their incorporation into our process. The main threat to external validity is
that we only instantiated out approach for the Joomla WCMS. It yet has to be
studied if it is also suitable for other WCMSs, since the infrastructure parts must
be rewritten to the specific needs of the given WCMS. More extensive studies of
the generalizability of our results are left to future work. However, the successful
approach which is illustrated in this paper, allows an optimistic expectation for
other WCMSs.

Iterative MDD of Software Extensions for WCMSs 155

7 Related Work

Several related works deal with applying model-driven engineering to applica-
tion development in the WCMS domain. Most of these works propose platform-
independent meta-models for the development of specific WCMS instances [15,
21,24]. The approach by Saraiva et al. is the first to also investigate code gener-
ation for concrete WCMS instances [19]. However, none of these works addresses
the extensibility of WCMSs through standardized extension types taking their
interdependencies into account. As we have argued in this work, the creation
of such WCMS extensions is a tedious and error-prone process of significant
practical relevance. Dependencies between newly developed and existing exten-
sions are not provided in any of these works. Our work is the first to tackle this
challenge by providing suitable abstractions and automation facilities.

Model-driven principles have been applied to address augmentation issues
in the WCMS domain. Trias et al. [22] introduce a reengineering method and a
reverse engineering tool for the migration of complete WCMSs, for instance, from
a web page to WordPress. Even though this approach can potentially improve
the model extraction step in our process, it is currently tailored to WordPress, a
WCMS with limited extensibility features. The usefulness for other WCMSs has
yet to be investigated. Vermolen et al. [23] present an approach for the evolution
of data models. As this approach provides a well-defined strategy to deal with
changes to existing data entities, incorporating it into our work will help us to
improve the flexibility during the augmentation of existing extensions.

Apart from these works, there is little recent research on the development
practices for WCMSs, an observation that is confirmed by Norrie et al. [17].

General MDD approaches for the web domain such as the ones in [8,10,14,20]
can be used to create complete websites in a model-driven manner, but are not
suitable for our considered problem since they do not address WCMSs and the
model-driven development of their extensions.

8 Conclusion

Instances of Web Content Management Systems are commonly used as dynamic
web applications in today’s web. Using an open source WCMS, developers can
add additional features by the use of software extensions, which can be installed
into a running WCMS instance. However developing these extensions can be
a time-consuming and complex task, even for experienced extension develop-
ers. Especially, the interdependencies between different extensions can lead to
unwanted errors if they are not sufficiently considered during development. In
this work, we introduce an iterative process using a set of tools to develop Joomla
extensions in a model-driven way. In addition, we introduce a domain-specific
language for the creation of abstract extension models and a code generator
which derives a platform-specific implementation for the Joomla platform. This
allows the rapid development of Joomla 3.x extensions adhering to both the
platform-specific development guidelines and interdependencies between differ-
ent extensions. To ensure the usefulness of our approach, we applied it to two

156 D. Priefer et al.

development scenarios - the development of a new and independent conference
component and of a new user groups module, which illustrates the data of an
existing Joomla core component.

Our future plans span over two research directions. First, we plan to improve
the existing DSL and tools, in particular to provide support for other WCMSs,
such as WordPress and Drupal. Second, based on anecdotal evidence from our
communication with Joomla representatives, there is interest in using JooMDD
for the development of extensions within the Joomla community [18]. This situa-
tion allows us to provide our infrastructure directly to a large group of developers
for a field study in vivo. Using this exposure opportunity, we intend to infer the
usefulness of our approach empirically.

References

1. Drupal.org. https://www.drupal.org
2. Joomla!.org. https://www.joomla.org
3. Magento - eCommerce Software & eCommerce Platform Solutions. https://

magento.com/
4. Usage Statistics, Market Share of Content Management Systems for Websites.

http://w3techs.com/technologies/overview/content management/all
5. WordPress.org. https://wordpress.org
6. TYPO3 - The Enterprise Open Source CMS. https://typo3.org/
7. Antrim, J.: Technische Hochschule Mittelhessen - THM Organizer. https://www.

thm.de/organizer/
8. Brambilla, M.: Interaction flow modeling language: Model-driven UI engineering

of web and mobile apps with IFML. Morgan Kaufmann, Waltham (2015)
9. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in

Practice. Morgan & Claypool, San Rafael (2012)
10. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling

language for designing web sites. Comput. Netw. 33(1–6), 137–157 (2000)
11. Efftinge, S., Spoenemann, M.: Xtend - Modernized Java, 02 December 2015. http://

www.eclipse.org/xtend/
12. Efftinge, S., Spoenemann, M.: Xtext - Language Engineering Made Easy! 11 Feb-

ruary 2016. https://eclipse.org/Xtext/
13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

14. Kraus, A., Knapp, A., Koch, N.: Model-Driven Generation of Web Applications in
UWE. Ludwig-Maximilians-Universität München, München (2008)

15. Mart́ınez, S., Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., Cabot, J.:
Towards an access-control metamodel for web content management systems. In:
Sheng, Q.Z., Kjeldskov, J. (eds.) ICWE 2013. LNCS, vol. 8295, pp. 148–155.
Springer, Cham (2013). doi:10.1007/978-3-319-04244-2 14

16. McKeever, S.: Understanding web content management systems: evolution, lifecy-
cle and market. Ind. Manage. Data Syst. 103(9), 686–692 (2003)

17. Norrie, M.C., Geronimo, L., Murolo, A., Nebeling, M.: The forgotten many? a
survey of modern web development practices. In: Casteleyn, S., Rossi, G., Winckler,
M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 290–307. Springer, Cham (2014).
doi:10.1007/978-3-319-08245-5 17

https://www.drupal.org
https://www.joomla.org
https://magento.com/
https://magento.com/
http://w3techs.com/technologies/overview/content_management/all
https://wordpress.org
https://typo3.org/
https://www.thm.de/organizer/
https://www.thm.de/organizer/
http://www.eclipse.org/xtend/
http://www.eclipse.org/xtend/
https://eclipse.org/Xtext/
http://dx.doi.org/10.1007/978-3-319-04244-2_14
http://dx.doi.org/10.1007/978-3-319-08245-5_17

Iterative MDD of Software Extensions for WCMSs 157

18. Priefer, D., Kneisel, P., Taentzer, G.: JooMDD: a model-driven development envi-
ronment for web content management system extensions - demonstration paper.
In: Proceedings of the International Conference on Software Engineering and Com-
panion, ICSE Companion 2016. ACM, New York (2016)

19. de Sousa Saraiva, J.: Development of CMS-based Web Applications with a Multi-
Language Model-Driven Approach. Dissertation, Universidade Técinica de Lisboa,
Lisbon, Portugal (2012)

20. Svansson, V., Lopez-Herrejon, R.E.: A web specific language for content man-
agement systems. In: Proceedings of the OOPSLA Workshop on Domain-Specific
Modeling, Montréal, Canada (2007)

21. Trias, F.: Building CMS-based web applications using a model-driven approach.
In: 2012 Sixth International Conference on Research Challenges in Information
Science (RCIS), pp. 1–6

22. Trias, F., de Castro, V., López-Sanz, M., Marcos, E.: RE-CMS: a reverse engi-
neering toolkit for the migration to CMS-based web applications. In: Proceedings
of the Annual ACM Symposium on Applied Computing, SAC 2015, pp. 810–812.
ACM, New York (2015)

23. Vermolen, S.D., Wachsmuth, G., Visser, E.: Generating database migrations for
evolving web applications. In: Proceedings of the ACM International Conference
on Generative Programming and Component Engineering, GPCE 2011, pp. 83–92

24. Vlaanderen, K., Valverde, F., Pastor, O.: Model-driven web engineering in the CMS
domain: a preliminary research applying SME. In: Filipe, J., Cordeiro, J. (eds.)
ICEIS 2008. LNBIP, vol. 19, pp. 226–237. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00670-8 17

http://dx.doi.org/10.1007/978-3-642-00670-8_17
http://dx.doi.org/10.1007/978-3-642-00670-8_17

Model Consistency Management

Efficient Consistency Checking
of Interrelated Models

Harald König1(B) and Zinovy Diskin2

1 University of Applied Sciences FHDW Hannover, Hanover, Germany
harald.koenig@fhdw.de

2 McMaster University, Hamilton, Canada
diskinz@mcmaster.ca

Abstract. Software design normally requires a collection of interdepen-
dent models conforming to different metamodels. These multi-models
present different views of interest and may be consistent only if they
simultaneously satisfy a set of inter-model constraints. A straightfor-
ward approach to inter-model consistency checking is to run constraint
validations on the model union (merge). If, in model repairing scenarios,
single constraints are (re-)checked, these validations are carried out on
a small view (localization) of a big model merge. This “merge-prior-to-
localization”-approach is not efficient, because of considerable matching
and merging workload. We propose to perform early localization in order
to reduce the data space being subject to commonality search. The algo-
rithm is based on a new method to formally specify the inter-relation of
an arbitrary number of heterogeneously typed models.

1 Introduction

System design is based on different conceptual views of the required solution.
These views are represented by models, which differ in their business content and
in the language they are expressed in, such that comparing or merging of models,
i.e. integration of heterogeneous artefacts, becomes an obstacle. Moreover, the
merge of consistent instances of the models can result in an artefact violating
inter-model constraints, i.e. constraints that spread over all or at least some of the
involved models. Hence, when the data is integrated, (re-)checking inter-model
and intra-model consistencies becomes a challenge.

A comprehensive view of the set of involved models must consider them
as a single artefact—a multi-model, i.e., an integral collection of heterogeneous
models each one conforming to its own metamodel. We call these individual
models components of the multi-model. The following example shows that the
merge of legal artefacts can result in an artefact violating inter-model constraints.
Consider two car insurance models M1 and M2. In the former, class ‘Contract’
has an attribute ‘insuranceLevel’ (with values ‘standard’, ‘extended’), while in
M2, class ‘Policy’ has a property ‘traffic telematics enabled’. Suppose that despite
their different names, ‘Contract’ and ‘Policy’ denote the same business concept.
Then the domain may be subject to the constraint that extended contracts
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 161–178, 2017.
DOI: 10.1007/978-3-319-61482-3 10

162 H. König and Z. Diskin

must be controlled via traffic telematics. This inter-model constraint cannot be
declared in either of the models: M1 knows nothing about telematics, and M2

does not know about insurance levels. Suppose we have two legal instances Ai

of their respective models Mi, i = 1, 2. Considering them together as a single
multi-instance needs checking validity of the inter-model constraint, for which
we must also relate instances of Contract to instances of Policy. Thus, a multi-
instance is actually a triple (A1, A2, A0) where A0 is a mapping/relation between
Contract and Policy instances specifying that, e.g., a contract instance c in A1

equals a policy p in A2.1 It is clear that depending on mapping A0, the inter-
model constraint above can be violated even though component instances Ai are
perfectly legal.

Global consistency checking of interrelated software artefacts requires under-
standing and formalizing the interplay of the following operations on instances
and multi-instances:

– Matching takes a multi-instance with unrelated components as its input,
and outputs all detected sameness relationships/overlaps (in our example,
(c: Contract, p: Policy) ∈ A0, where we write i: T to denote an instance i of
type T). We call the multi-instance augmented with overlaps (i.e., the triple
(A1, A2, A0) in the example) a matched multi-instance.

– Merge takes this matched multi-instance and outputs a single instance A,
namely the amalgamation of the components of the multi-instance modulo
the sameness declarations. The output is called a merged instance.

– Localization takes a (possibly merged) instance A and a constraint decla-
ration c on its model M as its input, and outputs only those elements of A
that are typed over those elements of M that are affected by the constraint
declaration.

Whereas merge and localization can be carried out automatically, matching is
often only semi-automatic and needs manual support to be correct.

To check consistency of a multi-instance A = (A1, . . . , An) against an inter-
model constraint (e.g. ‘extended contracts must be controlled via traffic telem-
atics’), a straightforward approach is to use the matching operation to define
samenesses relations between components, and then check the merged instance
against the constraint. The latter checking uses localization, and hence the entire
approach can be encoded as MML (Match→Merge→Localize). However, using
this approach as an algorithm for consistency checking would be impractical,
because of the necessity to build big and unfeasible model merges, especially
with matching being a very expensive operation.

A more efficient approach is early localization, LMM, proposed in our previous
paper [14]. Localization is moved at the very beginning of inter-model consis-
tency checking, so that matching and merging are only performed for those small
parts of instances that localization found to be responsible for the validity of the

1 This may happen, if an insurance company and one of its insurance intermediaries
both store the contracts that this intermediary has sold, but if they store them w.r.t.
different database schemas.

Efficient Consistency Checking 163

constraint. Not only does this significantly reduce matching and merging work-
load, it also enables better tailored and stepwise model repairing, e.g., in model
co-evolution scenarios, or in incremental consistency checking [3]. However, our
previous paper [14] only covers the case of two model components, i.e. multi-
instances A = (A1, A2), such that common concepts can always be maintained
by tracking pairs of matched entities as in our example above.

In the present paper, we generalize the LMM-approach for the case of an
arbitrary number of models. For this, we needed to address two challenging
issues. Issue 1: Instead of complicated handling of binary, ternary, and maybe
higher-order overlap relations, a unified and manageable specification of complex
inter-relations of n ≥ 3 models is required. Issue 2: Costly matching activities
should be properly distributed between consecutive automatic localization and
merging in order to minimize the corresponding workload. To address Issue 1, we
elaborated an advanced formalism for specifying interrelation of n models, which
is based on partial mappings. To address Issue 2, we use several results from cat-
egory theory [2] and prove the MML-LMM-equivalence (which is mathematically
non-trivial).

The paper is structured into three main parts. Section 2 introduces our run-
ning example, Sect. 3 explains the three major operations mentioned above, and
Sect. 4 explains why LMM is more efficient than MML, yet yields the same results.

2 Running Example

We consider an example which will illustrate all constructions we will perform
and facts we will declare. Suppose that certain authorities are interested in social
clustering of inhabitants of a city or a country, or even how people around the

Fig. 1. Several domain models

164 H. König and Z. Diskin

globe flock together. Social networks provide the chance to observe, measure
and monitor this clustering. Figure 1 presents two different UML models of social
networks, M1 and M2. Some of the social networks maintain their data according
to M1, others according to M2.

Model M1 shows that a network has a set of members, each having a set of
emails and, optionally, a phone number (the default multiplicity is 0..*). The
lower OCL constraint states that a member must have either e-mail or a phone.
The model also shows a derived attribute/addrList, giving the set of all member
addresses (note the upper OCL constraint). Model M2 specifies maintenance of
email addresses that serve as logins, and every Address identifies one and only
one Person. The latter have to provide a private or a commercial phone number
(or both).

Model M4 describes data that an intelligence agency keeps to monitor e-mail
communications between social networks. M3 also monitors communication by
recording some of the e-mail metadata. In order to collaborate, the two agencies
decide to consolidate their knowledge. Hence, they have to find out whether their
collective data is consistent in, at least, the following sense specified by an inter-
model constraint consistentEmailContact further abbreviated consEC : For any
two networks n1: Network@M1, n2: Network@M2 instantiating the respective
classes in model M1 and M2 the number of contacts in the set

Contact(n1, n2) = {c: Contact | c.from = n1 and c.to = n2},
and the number of emails in the set

Email(n1, n2) = {e: E-Mail | e.sender ∈ n1.addrList and e.receiver ∩
n2.logins �= ∅}, are equal. Note that this inter-model constraint involves all
four models.

3 Background and Definitions

In this section, we present necessary background knowledge. We introduce new
notations (Sect. 3.1) and explain the three main operations Localization, Match-
ing, and Merging.

Localization (Sect. 3.2) means to focus to those parts of a model, on which a
certain constraint is declared, (see the forthcoming Definition 1) and simultane-
ously retype affected instance portions (Definition 2), such that constraint vali-
dation logic can be reused (Definition 3). Notations and definitions of Sects. 3.1
and 3.2 are taken from [4]. They are included in order to make our paper self-
contained.

Matching is presented formally in Sect. 3.3. We extend former definitions [9],
which enable to consider a collection of individual models as one big artefact,
i.e. as a multi-model (Definitions 4 and 5).

Finally, in Sect. 3.4, we pick up and adapt ideas of [22] to formally define
merging of multi-models (Definition 6), i.e. the interpretation of a multi-model
as a single model.

Efficient Consistency Checking 165

3.1 Notations and Terminology

We encode models and their instances by directed graphs This is common in
many research disciplines, e.g. Graph Transformations, Model-Driven Engineer-
ing [8,16,18], or the Diagrammatic Predicate Framework (DPF) [4,21]. Espe-
cially, UML artefacts such as object diagrams and class diagrams but also
sequence diagrams, state-charts, or activity diagrams, can adequately be encoded
with graphs. Figure 2 shows how UML class diagram M1 from Fig. 1 can be rep-
resented as a graph: Classes become vertices (ellipses in Fig. 2) and associations
become directed edges. In addition, constraints are translated to constraint dec-
laration nodes equipped with dashed lines to show their scope. These elements
(red with a color display) actually encode a mapping between graphs as we will
explain in Sect. 3.2. As constraints are formally diagram predicates, a graph with
constraint declarations is called a DP-graph. Similarly, objects in a UML object
diagram become vertices, and links between them become edges. E.g. in graph
A in Fig. 3, there is one Network-object with three login addresses that in turn
identify three persons. Person b declares a private phone number, which also is
the commercial number of person c.

Fig. 2. DP-graph representing
model M1 from Fig. 1 (Color
figure online)

As in Fig. 3 elements in a graph come equipped
with typing information, i.e., there is a mapping
τ from elements in graph A to elements in the
model graph M (here, M = M2 from Sect. 2),
which maps a vertex or an edge x:T in A to vertex
or edge T in M , resp. This mapping must preserve
the incidence between vertices and edges, and is
called a graph morphism (see Fig. 3 for an illus-
tration). Any graph morphism f between graphs
G and G′ is written as f : G → G′. Thus, our
major construct below will be pairs (A, τ) with A
a graph and τ : A → M a graph morphism.

The graph-based view also has the advantage
that τ ′ : A′ → M ′ can be data A′ typed over model M ′, or τ ′′ : A′′ → M ′′ can
be a model A′′ that conforms to a metamodel M ′′. We adhere to this abstraction
by using the following terminology and notations:

– Any artefact A with typing information is called an instance of its model M .
– The assignment τ : A → M is called typing mapping or typing mor-
phism.

– Instead of writing (A, τ) for the above mentioned pair, we write τ : A → M .
Since A is encoded in τ as its domain, we do not loose information, if we just
write τ . The assignment τ (together with its domain A) is called a typed
graph.

166 H. König and Z. Diskin

3.2 Localization

Table 1. Sample constraintsA key feature of constraints used in MDE is their
diagrammatic nature: the set of elements over which
a constraint is declared is actually a diagram of
some shape specific for the constraint. E.g., the
shape of any multiplicity constraint is a single
arrow, and the shapes of constraint [or] and [=] used
in Fig. 1 are, respectively, a span of two arrows and
an arrow triangle.

To declare a constraint named c over a model
graph M , we recognize the constraint shape in the
graph and label the respective configuration by the
constraint name. Formally, we first declare a signature of constraints, i.e., a set of
constraint names/labels, each one assigned with its (arity) shape denoted, for a
constraint c, by Sc. For example, Table 1 specifies a simple signature consisting
of three constraints, which were used in Fig. 1. Now, to declare a constraint
c over a graph M , we need to specify a graph morphism δ: Sc → M called
(shape) binding. E.g. in Fig. 3, constraint c = [or] is declared via binding δ
with δ(01) = priv , δ(02) = comm, which automatically implies δ(0) = Person,
δ(1) = δ(2) = Phone. The elements in M , the shape is mapped to, are the
image or range or, else, the scope of the binding, the respective graph is denoted
rg(δ). The pair (c, δ) is called constraint declaration. In the sequel, we write c@δ,
meaning that constraint c is imposed on model M at the range of binding δ.

Constraint name “or” already suggests its semantic interpretation in this
context: “Every Person has either a private or a commercial phone, or both”.
Importantly, semantics of a constraint is, in general, defined irrespective to the
binding by defining a validating function validatec(τ∗ : CX → Sc): boolean

Fig. 3. Localization and further Retyping of Typed Graph τ

Efficient Consistency Checking 167

which inputs a typed graph τ∗: CX → Sc, i.e., an instance CX typed over c’s
shape, and outputs Boolean truth iff the instance is considered to be satisfying
the constraint. (We have subscripted the elements with X to emphasize that we
take an arbitrary graph typed over Sc.) For constraint [or], typed graph τ∗ is
defined to satisfy the constraint iff every vertex v in graph CX with τ∗(v) = 0
either has at least one outgoing edge e1 with type τ∗(e1) = 01, or at least one
outgoing edge e2 with type τ∗(e2) = 02 (or both).

To check whether a typed graph τ : A → M satisfies a constraint c@δ, we need
properly select a respective small (local) part of τ and check wrt. c’s semantics
described above. For this, we need the following operation.

Definition 1 (Localization). The input for the operation consists of two graph
morphisms δ: Sc → M and τ : A → M with common target M . The output is a
mapping τ ′ : B → rg(δ), where B is the subgraph of A consisting of all elements
x, for which τ(x) ∈ rg(δ), and τ ′(x) = τ(x) for all elements x ∈ B. We write
τ ′ = localize(δ, τ).

For example, Fig. 3 shows how localization works for a constraint declaration
[or]. Given graphs and graph mappings are shaded, computed ones are blank.
Notched arrows with grid-filled bodies show applications of the respective oper-
ations (Definitions 1 and 2). The range of binding map δ is the graph in the
middle of the lower part. Then we compute the part B of graph A, consisting
of elements whose τ -types belong to rg(δ). This gives us a typed graph τ ′ typed
in model rg(δ)—the result of localization. The next step is to retype graph B
to model Sc by inverting mapping δ—the result is shown in the figure as typed
graph τ∗: C → S[or], and is formally defined as follows.

Definition 2 (Retyping). Let τ ′ : B → rg(δ) be a localized typed graph accord-
ing to Definition 1. Then we construct graph C as follows: It has vertices v: t for
all vertex pairs (v: T, t) in B × Sc for which δ(t) = τ ′(v: T), and edges e: t for
all edge pairs (e: T, t) ∈ B × Sc for which δ(t) = τ ′(e: T). This yields morphisms
τ∗ : C → S defined by τ∗(x: t) = t and δ′ : C → A defined by δ′(x: t) = x for all
(x: t) ∈ C. We write τ∗ = retypeδ(τ ′).

Now we can apply function validatec to typed graph τ∗.

Definition 3 (Consistency Checking).Typed graph τ : A → M satisfies con-
straint declaration c@δ, if and only if

validatec(retypeδ(localize(δ, τ))) = true.

Note also mapping δ′: C → A which plays an important role in instance repair-
ing: if a constraint violation is detected in graph C (e.g. if some vertex v with
τ∗(v) = 0 has no outgoing edges), it can immediately be highlighted in A by
using traceability δ′.

168 H. König and Z. Diskin

3.3 Matching

Modelling a complex system usually results in a multi-model, i.e., a set
M1, . . . ,Mn of model components for some n ≥ 1. For example, Fig. 1 shows
a multimodel consisting of four models to be considered as a collective arte-
fact, e.g., in order to investigate the mentioned inter-model constraint consEC.
Consequently, heterogeneously typed graphs τj : Aj → Mj must be analysed
altogether. For this, one has to consider overlaps in models M1, . . . ,M4, i.e.
the definitions of common terminology in different models. Whereas concept
Address occurs in three of the above-mentioned models, it also happens that
names of common concepts differ: Individual in M1 and Person in M2 are dif-
ferently named, yet both domains speak of the same concept.

Fig. 4. Matching of concepts in models M1, . . . , M4 and resulting merged graph M+

(Color figure online)

It is our goal to formally match common concepts: It is well-known, that in
the case of two models M1 and M2 this can be achieved with a (binary) span of

two graph morphisms M1 M0
m1�� m2 �� M2 , where auxiliary graph M0 speci-

fies the corresponding binary relation: Any two elements x1 ∈ M1 and x2 ∈ M2

(vertices or edges) are declared to be the same, if there is x ∈ M0 such that
m1(x) = x1 and m2(x) = x2. But this is no longer helpful, if there are n ≥ 3
models: If we would work with many spans, transitivity constraints have to be
guaranteed, cf. the approach in [20]. If we work with n-ary spans mi : M0 → Mi

(1 ≤ i ≤ n), we only obtain n-tupels of same concepts. This, however, is unfea-
sible, because we must simultaneously maintain pairs (e.g. Individual/Person)
and triples (Address) of common concepts, although n = 4 in the example.

Efficient Consistency Checking 169

The solution of this problem are partial morphisms M0
mi � Mi as shown

in the upper half of Fig. 4, where two mappings, total m1 and partial m4, are
specified by tables near them; mappings m2 and m3 can be easily understood
analogously (note also similar shading of mapped nodes). A partial morphism

G
f � G′ preserves the edge-vertex incidence in the same way as total mor-

phisms, but may only partially be defined on G, e.g., m4 is not defined on
elements n/p and Address of model M0. However, if it is defined for an edge
e, it must be defined on e’s source and target as well; e.g., the source and
target of arrow n/p@M0 are mapped by m1 to the respective source and tar-
get of arrow nr@M1. The incomplete arrow ⇀ shall remind of the incomplete
definition of the morphism. In general, model M0 specifies overlap of models
M1 . . . ,Mn as follows: If xi1 ∈ Mi1 , xi2 ∈ Mi2 , . . . , xik

∈ Mik
(k ≥ 2) shall

be declared to be identical, M0 must contain some x0, for which mij
(x0) is

defined for all j ∈ {1, . . . , k} and mij
(x0) = xij

, resp. Moreover all other ml

(l �∈ {i1, . . . ik}) are undefined at x0. We call x0 a sameness witness for sticking
together xi1 ∈ Mi1 , xi2 ∈ Mi2 , . . . , xik

∈ Mik
, and M0 is called the gluing graph.

E.g., in Fig. 4, graph morphisms m1, . . . ,m4, of which m1, m2 are total and m3,
m4 are proper partial, specify the following commonalities:

1. Phone in M1 and M2, but also Individual and Person despite their different
names;

2. Attributes phoneNr and private in M1 and M2, too;
3. Also Address in M1, M2, and M3 as expected;
4. Finally, classes Network in models M1,M2,M4.

Note that declaration 2 infers declaration 1 because a matched association yields
matching of its source and target, too.

Definition 4 (Multi-model). The configuration of models M1, . . . ,Mn, gluing

graph M0, and partial morphisms (M0

mj � Mj)1≤j≤n is called a multi-model
M. It is completely determined by the involved partial morphisms (their domain
and codomain specifying all participating graphs), such that we often write M =
(mj)1≤j≤n.

We now define matching of instances typed over multi-model M =

(M0

mj � Mj)1≤j≤n.

Definition 5 (Multi-instance and Matching).

– A discrete (or unrelated) multi-instance over M is a collection

T = (τj : Aj → Mj)1≤j≤n

of typed graphs.
– A matched multi-instance over M is a collection (τi : Ai → Mi)0≤i≤n (note

that a new typed graph τ0 : A0 → M0 is added to T) together with type

170 H. König and Z. Diskin

compatible partial graph morphisms A0

aj � Aj (1 ≤ j ≤ n). A matched
multi-instance over M is denoted

Tm = ((τi : Ai → Mi)0≤i≤n, (A0

aj � Aj)1≤j≤n)

with the corresponding short notation Tm = ((τi)0≤i≤n, (aj)1≤j≤n).
– Matching of a discrete multi-instance T is the process of finding a matched

multi-instance Tm. We write Tm = match(T).

In this context, partial morphisms aj play the same role as morphisms mj : While
the mj ’s control type matching, aj declare sameness of elements in the instance
graphs (instance matching). Type compatiblity means that gluing of elements
in instance graphs is only possible, if their respective types are glued, as well.
Thus matching is an enhancement of τ1, . . . , τn with . . .

1. . . . morphism τ0 : A0 → M0 specifying typing of sameness witnesses of A0

and . . .
2. . . . overlap specification of instances A1, . . . , An via gluing graph A0 and par-

tial morphisms A0

aj � Aj in the same way as for multi-models (cf. Defini-
tion 4).

This is illustrated in the upper part of Fig. 5: Mapping of the morphisms is again
according to shadings. The matching is based on the model matches in Fig. 4,
but, due to lack of space, limited to the match of only two typed graphs τ1 and
τ2. Gluing graph A0 specifies that Individual 1 in A1 and Person 1 in A2 are
the same person, and that the phone number in A1 coincides with the private
number in A2. Type compatibility holds, because A0 specifies gluing only of
elements, whose respective types are also glued.

3.4 Merging

The merge operation is shown in the lower half of Fig. 4: Models Mj are unified
modulo their overlaps, which yields graph M+, in which Ind/Pers represents
Individual from M1 and Person from M2, which are declared the same, because
m1(I/P) = Individual and m2(I/P) = Person. Similarly, the other common-
alities 1 to 4 on page 8 are specified. Note that e.g. vertex Contact ∈ M4 is
not reached by m4 and thus not identified with any other concept. The same
is true for E-mail and also for all edges except nr and priv. Note also that we
follow our shading discipline: as matching needs, in general, a user’s input, it is
not entirely automatic and hence elements produced by matching are shaded; in
contrast, merge is an entirely automatic operation and its results are blank.

A precise definition of the merge operation is given in [13], where we also
explain how graph morphisms k1, . . . , k4 in Fig. 4 arise in general: kj maps each
element x in Mj to the element in M+, which represents x in the merge.
Each kj is called the recognition of Mj in M+. For example, the equality
k1(Individual) = Ind/Pers = k2(Person) represents the fact that these con-
cepts coincide. This merging can be extended to instances:

Efficient Consistency Checking 171

Fig. 5. Matching of Multi-instances (τ1, τ2) and resulting merged typed graph τ+

Definition 6 (Merge of Multi-instance). Let

Tm = ((τi : Ai → Mi)0≤i≤n, (A0

aj � Aj)1≤j≤n)

be a matched multi-instance. Then in the same way as for models the instance
merge A+ of graphs A1, . . . , An modulo their matched overlap (aj)1≤j≤n together
with recognition morphisms li : Ai → A+ (0 ≤ i ≤ n) is constructed. It can be
shown [1] that this uniquely yields a typed graph τ+ : A+ → M+, which is
compatible with recognitions2. We write τ+ = merge(Tm).

An example is shown in Fig. 5: A+ contains the identified person according to
gluing specification A0. She is a member of both social networks, her login is the
e-mail-address from network 2. E-mail-address from network 1 and commercial
phone number are added. τ+ : A+ → M (+) is shown in the lower part. We wrote
M (+), because the model merge only covers two of the four models.

4 Inter-model Constraint Checking

In this chapter, an algorithm is introduced which efficiently verifies consistency
of a collection of typed graphs, i.e. a discrete multi-instance T := (τj : Aj →
Mj)1≤j≤n over multi-model M = (M0

mj � Mj)1≤j≤n, against a single inter-
model constraint declaration c@δ.

2 The type of the recognitions must be equal to the recognition of the types [13].

172 H. König and Z. Diskin

Definition 7 (Inter-model Constraint Declaration). Let M+ be the merge
of multi-model M (cf. Sect. 3.4) and c a constraint with shape graph Sc (cf.
Sect. 3.1). A binding mapping δ : Sc → M+ (written c@δ) is called inter-model
constraint declaration on M.

Our goal is to decide whether some discrete multi-instance T satisfies inter-
model constraint declaration c@δ. Recall the requirement consEC of Sect. 2,
which claims consistency of recorded e-mails according to model M3 and stored
contacts due to M4 for social networks n1/2, whose domains are based on models
M1 and M2, cf. the red annotated part in model M+ in Fig. 4. In order to
do this accurately, “satisfaction” must precisely be defined. We assume M+

to be already computed, because this computation must be carried out only
once prior to the invocations of checking functions for different inputs (T, c@δ).
Moreover, complexity for the computation of M+ is low, because M+ can be
computed algorithmically by partitioning the disjoint union of the models due
to the specified glueings in M0. This requires little effort, since we deal with
a manageable number n of small models (in our example n = 4). Matching
effort (e.g. to decide whether to declare sameness of concepts “Individual” and
“Person”) is acceptable.

Match→Merge→Localize (MML): A natural definition for a discrete multi-
instance T to satisfy an inter-model constraint declaration c@δ on M, written
T |=MML c@δ, is given in terms of the operations of Sect. 3, cf. also [22]:

T |=MML c@δ ⇐⇒ T
match→ Tm merge→ τ+ localize(δ,τ+)→ (τ+)′

retypeδ→ (τ+)∗ validatec→ true/false

I.e. the discrete multi-instance T is matched (Definition 5), merged (Defini-
tion 6), and localized (Definition 1). The subsequent three steps are exactly
the applications for checking a single instance as described in Definition 3.
Because of the order of the operation’s application, we call this approach
“Match→Merge→Localize” (MML).

The only non-automatic and hence costly step is matching (highlighted by
the bold face type), i.e. the search for commonalities, because, in general, there
is manual or at least semi-automatic activity to be performed. This can easily
be seen when investigating properties of persons: An algorithm can not decide
whether a person with name “Dustin Hoffman” and an individual with name
“Dustin Hoffmann” are in fact identical (the difference in their last name may
be due to a typing error). Thus, an algorithm can increase efficiency, if matching
workload is reduced.

Since matching is the first step in the MML-approach, it must be carried
out on the total collection of data. This is the most serious disadvantage of the
MML-approach, as we can demonstrate in our running example: Although con-
straint declaration c@δ = consEC does not affect individuals/persons in M+ (see
Fig. 4), MML demands to deal with all personal data during computation of τ+:
One has to find all matches of individuals (typed in M1) with persons (typed in
M2). Experience, however, shows that data of the same person stored in different

Efficient Consistency Checking 173

databases may differ due to typing errors (see above) or inconsistent updates.
Eliminating these contradictions in large databases (with probably thousands of
redundantly captured data records) is a very costly manual activity and hope-
less in many cases. Hence, using this approach as an algorithm for consistency
checking would be impractical.

Fig. 6. Shape reduction w.r.t.
model M2

Localize→Match→Merge(LMM): To check
satisfaction of a single constraint declaration more
efficiently, we propose to perform early local-
ization separately per component of the multi-
instance: Let Sc be the shape of the given con-
straint c. The shape for c = consEC is shown
in the upper half of Fig. 6. In Fig. 4, it is bound
to M+ according to the shading and the letters
: C �→ Contact,N �→ Network, f �→ from, etc.
In order to determine the constraint affected part
separately for each component, we define for each
j ∈ {1, . . . , n} the shape Sc

j . It is the reduction
of the constraint shape of c, which affects compo-
nent Mj . This is shown for the declaration’s affected part in M2 in Fig. 6: The
reduced shape Sc

2 consists of vertices N and A and edge l. Let δj : Sc
j → Mj be

the corresponding restricted binding mapping. In the case of M2 it assigns N to
Network, A to Address, and l to logins. Figure 7 shows δ2 in the lower part. In
M2 the remaining affected part is marked with a dashed line from the constraint
name. For j = 2, Fig. 7 illustrates the steps that now follow. Early localiza-
tion (step 1): All typed graphs τj are localized along the restricted bindings
(cf. Definition 1) yielding τ ′

j .

Fig. 7. Early Component Localization for typed graph τ2

174 H. König and Z. Diskin

Then the reduced data spaces are subject for matching specifications (com-
monality search, Definition 5). I.e. we traverse data B1, . . . , Bn and declare
samenesses of instance elements, step 2. This is illustrated in Fig. 7 with an
arrow out of B2 (“match with B1/3/4”). After that these reduced typed graphs
together with their gluing specification are retyped (Definition 2) w.r.t. δj in
step 3 (τ ′

j �→ τ∗
j). Finally, these instances are merged (Definition 6) and vali-

dated w.r.t. to function validatec (cf. Sect. 3.2, this is not shown in Fig. 7).
We write T |=LMM c@δ for this approach due to the operation sequence
“Localize→Match→Merge”. This can be summarized: T |=LMM c@δ ⇐⇒

T
∀j:localize(δj ,τj)→ T′ = (τ ′

1, . . . , τ
′
n) match→ (Tm)′ ∀j:retypeδj→ (Tm)∗

merge→ τ ′′ validatec→ true/false.

Again the only non-automatic step (matching) is highlighted. However, while
MML carries out matching on the entire data space, LMM matches on already
localized (i.e. reduced) data. In our example this means that we avoid matching
of persons and phone numbers, because they are not affected by the constraint
declaration. From the remarks in the end of the previous section, it is now clear
that this yields considerable progress.

It is now important to state equivalence of MML and LMM, i.e., prove that
they yield the same result for all inputs. This is not obvious for two reasons:

1. It has to be checked that the output of a previous operation in LMM conforms
to the demanded input of the next operation, e.g. we have to show that the
output of operation merge is a graph typed over the shape graph of constraint
c (only in this case is function validate applicable).

2. It is not immediately clear how to formally compare multiple separated local-
ization and retyping before merging in the LMM-approach on the one hand
and single localization and retyping after merging in MML on the other hand,
especially in the presence of partial morphisms.

In [13], we show that once issue 2 has a positive solution, then 1 automatically
follows. And we explain, how an abstract version of the law of distributivity in
category theory [11] ensures validity of 2. However, the main prerequisite for the
validity of this theorem is that the overall metamodel is the category of directed
graphs. If this would not be the case, equivalence of both approaches may fail,
as we showed in an example in [14]. We state all these facts as our main result:

Theorem 1 (Correctness). Let T be a discrete multi-instance over multi-
model M where all models and instances are based on directed graphs. Let c@δ
be an inter-model constraint declaration on M, then

T |=MML c@δ ⇐⇒ T |=LMM c@δ.

A detailed proof of this theorem is given in [13].
We illustrate the algorithm along the example of Sect. 2 where c@δ = consEC:

Suppose that social networks n1 and n2 have several members with their respec-
tive e-mail-addresses and phone numbers. Early localization reduces the data

Efficient Consistency Checking 175

space, such that it only contains network objects n1 and n2 and some e-mail-
addresses as shown in the left two columns of Table 2 (B1 and B2) together with
sender and receiver information (b3,1, b3,2) of one e-mail-object e in B3 and one
recorded contact con from n1 to n2 in B4. For B2 see also Fig. 7. We do not list
edges of the instance graphs in Table 2, because they are not subject to match-
ing. From the coinciding e-mail-address strings, the algorithm now generates
auxiliary graph B0 = {ang: A, bar: A,n1: N,n2: N} (a graph only with vertices
and no edges) and appropriate partial mappings aj : B0 → Bj (j ∈ {1, . . . , 4})
where a1 : B0 → B1 maps as follows: ang �→ b1,2, bar �→ b1,1, n1 �→ n1. In the
same way a2 : B0 → B2 maps: ang �→ b2,1, bar �→ b2,2, n2 �→ n2. a3 only maps
ang �→ b3,1, a4 is n1 �→ n1, n2 �→ n2. Hence the system proposes samenesses
b1,1 = b2,2, b1,2 = b2,1 = b3,1, which the user may confirm.

Table 2. Instance matching

B1 B2 B3 B4

n1: Network n2: Network e: E-mail con: Contact

b1,1 =:barack@us.gov b2,1 =:angela@bt.de b3,1 =:angela@bt.de(sender) n1(from)

b1,2 =:angela@bt.de b2,2 =:barack@us.gov b3,2 =:justin@ottawa.ca(receiver) n2(to)

Subsequent retyping and validation (automatic by the algorithm) yields an
inter-model but localized picture: Although one intelligence agency recorded a
contact from n1 to n2 in B4, there is no e-mail sent with sender a member of n1

and receiver from n2 because b3,2 does not occur in B2. This violation can still
be highlighted with the help of maps δ′

j . In our example this would be δ′
4, which

highlights the contact from n1 to n2 in A4, since it has no counterpart in A3.

5 Related Work

Operations matching, merging, and consistency checking have been discussed in
a wide variety of approaches. There is an enormous literature on model matching
and merging, whose surveying, even brief, would need a separate paper. We will
just mention several works that have a direct relation to the present paper and
were influential for us.

Matching. In our context, explicit specification of inter-model correspon-
dences is a central issue, and different types of notation and techniques were
developed [20]. Besides the usual distinction between manual and (semi-)
automatic procedures, e.g., [24], more sophisticated approaches have been elabo-
rated [12]. A distinctive feature of our approach is that the set of correspondences
is reified as a special model M0 endowed with partial correspondence mappings.
This is a standard categorical idea, which was repeatedly employed in multi-
modeling frameworks based on category theory, the most prominent being [23],

176 H. König and Z. Diskin

where the correspondencies are themselves subject of evolution. More specifi-
cally, the idea to formally connect many models with partial mappings has its
origin in [9], see also [10]. Spans with partial legs were also used in [5].

Merging and Consistency Checking. There is a major distinction in the way
consistency checks are specified. The most direct approach is via monitoring
satisfiability of consistency rules specified in a special language “understanding”
all local models [17]. In contrast to our approach, matching is only allowed
when elements have same types and same names such that matching can well be
automated. A different approach is consistency checking via merging (CCVM).
It was discussed for homogeneous structural modeling in [22] and for behavioral
modeling in [7] and generalized for the heterogeneous case in [5]. Constraint
specifications are imposed upon the merged model. An essential advantage of
CCVM approaches over monitoring consistency rules is that complex types of
model matching are allowed. However, as checking is based on “late localization”,
these approaches are practically inefficient; see [14] for a detailed survey.

6 Conclusion and Future Work

We presented a framework and an algorithm for consistency checking of a sys-
tem of complexly inter-related multiple models, in which the use of the expensive
match operation is significantly minimized. The key idea is to do localization—
the main ingredient of consistency checking—before model matching and merg-
ing, and thus do the latter for as minimal as possible parts of the component
models. We prove that LMM and MML algorithms produce the same Boolean
value for any given multimodel and inter-model constraint, but LMM is much
more effective for big models with big overlaps. Being based on graphs, the
algorithm is independent of concrete modelling languages.

We plan the following future work. We are going to evaluate the algorithm in
the tooling framework developed at Bergen University College [15]—the idea is
to enhance the DPF editor to make it inter-model aware. It has to be analysed
whether our approach scales in larger use-cases.

The next natural step is to extend multi-model consistency checking to multi-
model-repairing [19] by extending the framework into an update propagation
framework. The challenge will be to find an appropriate generalization of the
(binary) delta-lens framework [6] for the case of n ≥ 3 models. Another direction
is to incorporate into the framework we developed in this paper the ideas of
incremental consistency checking [3].

References

1. Arbib, M., Manes, E.: The Categorical Imperative. Academic Press, New York,
San Francisco, London (1975)

2. Barr, M., Wells, C.: Category Theory for Computing Sciences. Prentice Hall, Upper
Saddle River (1990)

Efficient Consistency Checking 177

3. Diskin, Z., König, H.: Incremental consistency checking of heterogeneous multi-
models. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016. LNCS, vol.
9946, pp. 274–288. Springer, Cham (2016). doi:10.1007/978-3-319-50230-4 21

4. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual
modeling. Electr. Notes Theor. Comput. Sci. 203(6), 19–41 (2008).
http://dx.doi.org/10.1016/j.entcs.2008.10.041

5. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous mod-
els for global consistency checking. In: Dingel, J., Solberg, A. (eds.) MODELS
2010. LNCS, vol. 6627, pp. 165–179. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21210-9 16

6. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model
transformations: the asymmetric case. J. Object Technol. 10(6), 1–25 (2011).
http://dx.doi.org/10.5381/jot.2011.10.1.a6

7. Easterbrook, S.M., Chechik, M.: A framework for multi-valued reasoning over
inconsistent viewpoints. In: Proceedings of the 23rd International Conference on
Software Engineering, ICSE 2001, Toronto, Ontario, Canada, 12–19, pp. 411–420
(2001). http://dx.doi.org/10.1109/ICSE.2001.919114

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformations. Springer, Heidelberg (2006)

9. Fiadeiro, J.L.: Categories for Software Engineering. Springer, Heidelberg (2005)
10. Fiadeiro, J.L., Lopes, A., Maibaum, T.S.E.: Synthesising interconnections. In:

Algorithmic Languages and Calculi, IFIP TC2 WG2.1 International Workshop on
Algorithmic Languages and Calculi, Alsace, France, 17–22, pp. 240–264, February
1997

11. Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Dover Publications, Mine-
ola (1984)

12. Kessentini, M., Ouni, A., Langer, P., Wimmer, M., Bechikh, S.: Search-based meta-
model matching with structural and syntactic measures. J. Syst. Softw. 97, 1–14
(2014). http://dx.doi.org/10.1016/j.jss.2014.06.040

13. König, H., Diskin, Z.: Consistency checking of interrelated models: long version.
Technical report, University of Applied Sciences, FHDW Hannover (2017). http://
fhdwdev.ha.bib.de/public/papers/02017-01.pdf

14. König, H., Diskin, Z.: Advanced local checking of global consistency in heteroge-
neous multimodeling. In: W ↪asowski, A., Lönn, H. (eds.) ECMFA 2016. LNCS, vol.
9764, pp. 19–35. Springer, Cham (2016). doi:10.1007/978-3-319-42061-5 2

15. Lamo, Y., Wang, X., Mantz, F., Bech, Ø., Sandven, A., Rutle, A.: DPF workbench:
a multi-level language workbench for MDE. Proc. Est. Acad. Sci. 62, 3–15 (2013).
http://www.kirj.ee/public/proceedings pdf/2013/issue 1/Proc-2013-1-3-15.pdf

16. de Lara, J., Guerra, E.: Formal support for model driven development with graph
transformation techniques. In: Actas del Taller sobre Desarrollo Dirigido por Mod-
elos, MDA y Aplicaciones, Granada, España, 13 Septiembre 2005 (2005). http://
ceur-ws.org/Vol-157/paper04.pdf

17. Lopez-Herrejon, R.E., Egyed, A.: Detecting inconsistencies in multi-view models
with variability. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA
2010. LNCS, vol. 6138, pp. 217–232. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13595-8 18

18. Mens, T.: On the use of graph transformations for model refactoring. In: Lämmel,
R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 219–257.
Springer, Heidelberg (2006). doi:10.1007/11877028 7

http://dx.doi.org/10.1007/978-3-319-50230-4_21
http://dx.doi.org/10.1016/j.entcs.2008.10.041
http://dx.doi.org/10.1007/978-3-642-21210-9_16
http://dx.doi.org/10.1007/978-3-642-21210-9_16
http://dx.doi.org/10.5381/jot.2011.10.1.a6
http://dx.doi.org/10.1109/ICSE.2001.919114
http://dx.doi.org/10.1016/j.jss.2014.06.040
http://fhdwdev.ha.bib.de/public/papers/02017-01.pdf
http://fhdwdev.ha.bib.de/public/papers/02017-01.pdf
http://dx.doi.org/10.1007/978-3-319-42061-5_2
http://www.kirj.ee/public/proceedings_pdf/2013/issue_1/Proc-2013-1-3-15.pdf
http://ceur-ws.org/Vol-157/paper04.pdf
http://ceur-ws.org/Vol-157/paper04.pdf
http://dx.doi.org/10.1007/978-3-642-13595-8_18
http://dx.doi.org/10.1007/978-3-642-13595-8_18
http://dx.doi.org/10.1007/11877028_7

178 H. König and Z. Diskin

19. Rabbi, F., Lamo, Y., Yu, I.C., Kristensen, L.M.: A diagrammatic approach to
model completion. In: Proceedings of the 4th Workshop on the Analysis of Model
Transformations Co-located with the 18th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2015), Ottawa, Canada,
28 September 2015, pp. 56–65 (2015). http://ceur-ws.org/Vol-1500/paper7.pdf

20. Romero, J.R., Jaen, J.I., Vallecillo, A.: Realizing correspondences in multi-
viewpoint specifications. In: Proceedings of the 13th IEEE International Enterprise
Distributed Object Computing Conference, EDOC 2009, Auckland, New Zealand,
1–4, pp. 163–172 (2009). http://dx.doi.org/10.1109/EDOC.2009.23

21. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach to the specification
and transformation of constraints in MDE. J. Log. Algebr. Program. 81(4), 422–
457 (2012). http://dx.doi.org/10.1016/j.jlap.2012.03.006

22. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S.M., Chechik, M.: Consis-
tency checking of conceptual models via model merging. In: 15th IEEE Interna-
tional Requirements Engineering Conference, RE 15–19th, 2007, New Delhi, India,
pp. 221–230 (2007). http://dx.doi.org/10.1109/RE.2007.18

23. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). doi:10.1007/3-540-59071-4 45

24. Sousa, J., Lopes, D., Claro, D.B., Abdelouahab, Z.: A step forward in semi-
automatic metamodel matching: algorithms and tool. In: Filipe, J., Cordeiro,
J. (eds.) ICEIS 2009. LNBIP, vol. 24, pp. 137–148. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-01347-8 12

http://ceur-ws.org/Vol-1500/paper7.pdf
http://dx.doi.org/10.1109/EDOC.2009.23
http://dx.doi.org/10.1016/j.jlap.2012.03.006
http://dx.doi.org/10.1109/RE.2007.18
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/978-3-642-01347-8_12

Finding Achievable Features and Constraint
Conflicts for Inconsistent Metamodels

Hao Wu(B)

Department of Computer Science,
National University of Ireland, Maynooth, Ireland

haowu@cs.nuim.ie

Abstract. Determining the consistency of a metamodel is a task of
generating a metamodel instance that not only meets structural con-
straints but also constraints written in Object Constraint Language
(OCL). Those constraints can be conflicting, resulting in inconsistencies.
When this happens, the existing techniques and tools have no knowl-
edge about which constraints are achievable and which ones cause the
conflicts. In this paper, we present an approach to finding achievable
metamodel features and constraint conflicts for inconsistent metamod-
els. This approach allows users to rank individual metamodel features
and works by reducing it to a weighted maximum satisfiability modulo
theories (MaxSMT). This reduction allows us to utilise SMT solvers to
tackle multiple ranked constraints and at the same time locate conflicts
among them. We have prototyped this approach, incorporated it into
an existing modelling tool, and evaluated it against a benchmark. The
preliminary results show that our approach is promising and scalable.

1 Introduction

The metamodelling approach plays a key role in Model-Driven Engineering
(MDE), it paves the way for enabling many other MDE approaches such as
model transformation, language engineering and business process modelling [1–
3]. A metamodel captures the syntax for a set of models and allows users to
form a design at a higher level of abstraction. A valid model or an instance of a
metamodel conforms to all of the constraints imposed by its features. These con-
straints vary according to the metamodel structural features such as multiplici-
ties for an association to class invariants written in Object Constraint Language
(OCL). Then the task for checking consistency of a metamodel becomes finding
a valid instance. However, this is a challenging task since an instance needs to
meet all kinds of constraints defined over that metamodel. Recent studies have
shown that this task can be tackled via well-engineered constraint solvers [4–6].

Many metamodels in practice are not consistent due to the conflicts in a
number of constraints imposed by different features such as the multiplicities of
an association or class invariants. These conflicts could be caused by user errors
or features being over-constrained in the design. When this happens, current
modelling tools terminate and report inconsistent metamodels, or are unable
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 179–196, 2017.
DOI: 10.1007/978-3-319-61482-3 11

180 H. Wu

to generate a valid instance. However, in many cases users may wish to know
how many metamodel features can be fulfilled in their current design and which
constraints cause the conflicts, then use this information to further refine their
metamodels. For example, a user may be interested in finding the minimum
number of features that cause conflicts in a metamodel, and fix them in a new
design. In other cases, users could use their domain specific knowledge to rank
individual features and look for a model that could fulfill as many as features
possible.

In this paper, we present an approach to finding two kinds of information
when a metamodel is inconsistent. (1) The set of achievable metamodel features
based on their rankings. (2) The set of structural constraints or class invariants
that cause conflicts. In our approach, both kinds of information are computed
using an SMT solver. The use of an SMT solver has several advantages. First,
we can perform fast satisfiability checks on not only pure boolean constraints
but also complex structures with a number of numeric constraints. Second, it
does not introduce a substantial implementation overhead since an SMT solver
is treated as a black-box engine.

Contributions. The contributions of this paper can be summarised as follows:

1. We present a simple annotation that allows users to rank individual meta-
model features (Sect. 3.1), and a reduction to weighted MaxSMT problem so
that we can compute the set of achievable metamodel features based on their
rankings (Sect. 3.2).

2. Inspired by the work of Liffiton and Sakallah on extracting conflicts [7], we
present a novel technique for finding constraint conflicts by solving the set
cover problem (Sect. 3.3).

3. We have implemented a prototype tool, tapped it into an existing modelling
tool and evaluated it against a benchmark for scalability (Sect. 4).

2 A Running Example

In this section, we provide a small example that will be used throughout this
paper to illustrate our approach. This example is shown in Fig. 1, representing a
metamodel that models a real world example of students in a university choosing
multiple modules to study. This metamodel is enriched with 8 class invariants
(inv1 to inv8). Each invariant is ranked by using an integer value. For example,
each student must have a unique id number (inv4), and can only choose modules
that are in their year (inv5). In this example, we use numbers 1 to 6 to distinguish
a student’s year, and students that are in year 6 are considered as research
students. Thus, a university has some non-research and research students (inv6).

This metamodel is inconsistent and has a maximum number of 6 achievable
invariants. This is due to the two conflicts among the invariants in Fig. 1. The first
conflict is obvious and it is caused by the invariants inv1 and inv2 defined for the
age attribute. However, the second conflict is not easy to identify. This conflict
is caused by the invariants that there must exist some research and non-research

Finding Achievable Features and Constraint Conflicts 181

students (inv6) choosing some modules (inv7) in their corresponding year (inv5).
But there are modules that are only available for non-research students (inv8:
between year 1 and 5).

However, in the real world each individual invariants may be treated differ-
ently based on user’s domain specific knowledge. For example, a university may
consider a registration procedure that students choosing modules in their corre-
sponding year (inv5) is more important than choosing some modules (inv7). In
this context, a maximum number of 6 invariants is achievable with the preference
that inv5 is more favourable than inv7. Therefore, by allowing more favourable
constraints to be achieved first is more suitable for users wishing to distinguish
priorities among different invariants.

Fig. 1. An example of a ranked metamodel describing how a student can choose mul-
tiple modules to study. The ranks are highlighted in the shaded area. Our approach
concludes that this metamodel has a maximum number of 6 achievable invariants and
2 conflicts: (inv1, inv2) and (inv5, inv6, inv7, inv8).

3 The Approach

Figure 2 provides an overview workflow of our approach. Briefly, this is viewed as
three steps. First, users use a simple annotation to rank individual metamodel

182 H. Wu

features. The approach then determines the consistency of a metamodel. If there
is at least one class that cannot be instantiated, then all metamodel features
along with OCL constraints will be reduced to a weighted MaxSMT problem and
solved by an SMT solver. The returned solution is a set that contains all possible
ways of maximising the number of achievable metamodel features based on their
rankings. Finally, to find constraint conflicts among all metamodel features, the
approach treats all features equally including OCL constraints, formalises them
into the set cover problem and solves it by using an SMT solver.

Fig. 2. An overview of our approach.

3.1 Annotation

We provide a simple annotation for users to specify a rank on individual meta-
model features. This annotation has the basic form: ‘@Rank = c’, where c ∈ Z+

denoting a metamodel feature is ranked via an non-negative integer c. Currently,
we allow users to rank classes, associations and invariants. If a metamodel has a
conflict, then any ranked features cause that conflict might be switched off dur-
ing the search for the achievable features. We consider all metamodel features
ranked with integer c as soft features. A soft feature with higher ranking is more
favourable to be selected than a feature with lower ranking during the search.
For example, inv5 in Fig. 1 is more likely to be chosen compared to inv7. On
the other hand, if a feature is not ranked, then it is a hard feature that must
not be ignored during the search. For example, inv8 in Fig. 1 must hold, no
matter what. Therefore, a user could specify a set of soft and hard features over
a metamodel by using this annotation.

Sometime users wish to use a single ranking criteria to treat a group of class
invariants. For example, all invariants defined for a specific class are equally
important. In this case, another type annotation: ‘@Name{Rank = c}’ is intro-
duced, where Name is an identifier for the annotation, and c ∈ Z+. For example,
in Fig. 1 the annotation ‘@StudentRank’ specifies that every invariant defined
under the class Student is ranked using automatic ranking. However, users
may override current ranking criteria by specifying a different rank through
‘@Rank = c’. For example, an automatic ranking is initially specified for inv5

Finding Achievable Features and Constraint Conflicts 183

and inv7 but it is overwritten by the new values of 6 and 5. The remaining
invariants are ranked using automatic ranking.

Ranking Criteria. A metamodel feature can be ranked in two ways: (1) Users
rank an individual metamodel feature into a soft feature based on their domain
specific knowledge1. (2) In situations, where users feel they can let the program
automatically handle a particular feature for them, an automatic ranking criteria
is provided. In default settings, all metamodel features are initially treated as
hard features. However, users may override default settings by using the keyword
‘automatic’. All features annotated with ‘automatic’ are assigned a specific value
internally and automatically calculated as follows.

Automatic Ranking. The automatic ranking for a class is calculated based
on the number of attributes and operations (including those inherited from
an abstract class) defined within. This is because a class that contains more
attributes and operations typically describes more information about a system
than a class with fewer attributes and operations. For an association, it is cal-
culated by adding up the rank defined on each association end2. For a class
invariant, we calculate the size of its abstract syntax tree (AST). The larger size
of an invariant’s AST, the more likely a stricter constraint will be imposed on a
metamodel3. For example, the invariants (except for inv2 and inv7) defined for
Student class are automatically assigned with a rank based on the size of their
ASTs. In Fig. 3, we can see that inv3 is assigned with a value of 9.

Fig. 3. The abstract syntax tree for inv3 from Fig. 1 has a total of 9 nodes.

3.2 Reducing to Weighted MaxSMT

Our reduction to SMT is a procedure that traverses a set of soft features defined
on a metamodel and automatically generates a set of SMT formulas. Each gen-
erated formula consists of two parts.

1 Note that a metamodel could be ranked in 3 different scenarios: (1) Partially ranked
(a mixture of soft and hard features). (2) Totally ranked (soft features only). (3) Not
ranked (hard features only).

2 Currently, we assume that each association end is owned by a class.
3 An invariant could be written in multiple ways. Here, we assume all class invariants

were written in a consistent way. For example, using self to constrain attributes and
allInstances() for quantifiers and navigations.

184 H. Wu

The first part is an SMT encoding of a specific metamodel feature4. Currently,
the formula in this part is similar to the encoding of metamodel features into first-
order logic (FOL) [8]. We support an encoding of a variety of metamodel features
such as classes, inheritance, associations, and class invariants. For invariants
written in OCL, we also support navigation, nested quantifiers and operations
on generic collection data types such as include. These encodings are similar to
those used in [9]. Currently, we do not support string operations.

The second part of the formula is central to our approach. Using the formulas
generated for this part, we are able to apply a rank on a specific metamodel
feature when the constraint imposed by that feature is achievable.

Given a total k number of soft features, we let Fi be an SMT formula that
encodes the ith soft feature in a metamodel. We now introduce an integer type
auxiliary variable Auxi whose range is {0, 1}. We then generate Formula 1. The
idea behind this formula is that we associate each Fi with an auxiliary variable
so that it is equisatisfiable to the original Fi. This is ensured by part a and part b
in Formula 1 since both parts can not be satisfiable simultaneously. Therefore,
we can check whether a feature encoded by formula Fi is achievable via testing
the satisfiability of Formula 1.

(k∧
i=1

Fi ∨
(
Auxi = 1︸ ︷︷ ︸

part a

))
∧

((k∑
i=1

Auxi

)
= 0

︸ ︷︷ ︸
part b

)
(1)

Now let V Wi be an SMT encoding for a user specified rank Wi of the ith
soft feature. Note that V Wi ≥ 0 (no negative value is allowed). We now generate
Formula 2. The implication of this formula is built on Formula 1. If Formula 1
is satisfiable, then each Auxi = 0 and Fi must also be satisfiable. This means
that the constraint imposed by ith soft feature can be achieved. Thus, we must
assign an integer constant c to V Wi to indicate that the corresponding rank is
achieved. Otherwise, there must exist some Fis that are not satisfiable. In this
case, we simply disable the corresponding rank by assigning 0 to V Wi .

k∧
i=1

(((
Auxi = 0

) ⇒ (
V Wi = c

))∧
((

Auxi = 1
) ⇒ (

V Wi = 0
)))

,where c > 0.

(2)
Finally, we form a weighted MaxSMT problem by generating Formula 3. We

generate this formula only when Formula 1 is not satisfiable. This is because if
Formula 1 is satisfiable, then a metamodel is consistent. Intuitively, we know
some Fis are not satisfiable, and both part a and part b from Formula 1 cannot
be satisfiable at the same time. Now to make Formula 1 become satisfiable,
we remove part b (Formula 1) and rewrite it as part c (Formula 3). This forces
some of the auxiliary variables (Auxi in Formula 1) to be evaluated to 1. In other

4 Note that for this part a user could still use an existing SMT encoding, no changes
are required.

Finding Achievable Features and Constraint Conflicts 185

words, we fix some number m and if there are some features that cannot be met,
then the associated auxiliary variables (Auxi) must be evaluated to 1 in order
to be satisfiable. Thus, in this way we can work out m number of constraints
imposed by metamodel features that cannot be fulfilled. In the meantime, we
also check whether it is possible to achieve a total of rank of c based on the
remaining number of metamodel features (part d in Formula 3). If c is the
maximum number we can find to make Formula 3 satisfiable, then c is a solution
to our weighted MaxSMT problem.

((k∑
i=1

Auxi

)
= m

︸ ︷︷ ︸
part c

)
∧

((k∑
i=1

V Wi

)
= c

︸ ︷︷ ︸
part d

)
,where 1 ≤ m ≤ k, 1 ≤ c ≤

k∑
i=1

Wi.

(3)
Now that we have formed weighted MaxSMT problem from ranked meta-

model, the goal here is to find a maximum total rank from all ranked metamodel
features, namely weighted MaxSMT solution. To reduce the number of satisfiabil-
ity checks, we employ a binary-search based algorithm to search for this maximum
total rank. This algorithm iteratively asks an SMT solver to solve Formula 3 and
look for an integer that could maximise the rank. If the maximum rank is found,
the algorithm then enumerates all possible ways of achieving this value by block-
ing all previous successful assignments until no more weighted MaxSMT solutions
can be found. Note that if a metamodel contains hard features only, then the algo-
rithm returns a maximum number of achievable metamodel features.

3.3 Finding Constraint Conflicts

In [7], the authors reveal that the set of conflicts among SAT formulas can be
captured by the set cover problem5. Inspired by their work, we directly use this
information to find constraint conflicts of metamodel features by further solving
the set cover problem using an SMT solver. A conflict among a set of metamodel
features essentially is a minimal unsat core. This core is a set of unsatisifiable
SMT formulas and all proper subsets of the core are satisfiable. Though only
few of the SMT solvers provide unsat core extraction, such extraction is not
guaranteed to find all minimal unsat cores [10]. For example, the Z3 SMT solver
only finds one conflict (inv1, inv2) for the example in Fig. 1.

Relationship to the Set Cover Problem. Formally, a set cover problem can
be defined as: given a finite universe U = {S1, S2, ..., Sn} and a collection of
subsets I1, I2, ..., Ik ⊆ U , find a sub collection (set) of Iis, i ⊆ {1, 2, ..., k} such
that

⋃
Ii = U . The sub collection is minimum if it uses fewest Iis to cover U

and such collection is called a minimum set.
To illustrate that the set cover problem captures the conflicts among the set

of metamodel features. We use the example from Fig. 1 except that we treat all
invariants (inv1 to inv8) equally this time and solve them to derive a total of

5 The hitting set problem is an instance of the set cover problem.

186 H. Wu

MaxSMT Solutions I1 I2 I3 I4 I5 I6 I7 I8
S1 = {I2, I5} 0 1 0 0 1 0 0 0
S2 = {I2, I6} 0 1 0 0 0 1 0 0
S3 = {I2, I7} 0 1 0 0 0 0 1 0
S4 = {I2, I8} 0 1 0 0 0 0 0 1
S5 = {I1, I5} 1 0 0 0 1 0 0 0
S6 = {I1, I6} 1 0 0 0 0 1 0 0
S7 = {I1, I7} 1 0 0 0 0 0 1 0
S8 = {I1, I8} 1 0 0 0 0 0 0 1

Fig. 4. An example that illustrates how the set cover problem captures the con-
flicts among metamodel features. For example, a conflict between inv1 (I1) and inv2
(I2) in Fig. 1 can be identified here, since I1 covers {S5, S6, S7, S8} and I2 covers
{S1, S2, S3, S4}.

8 different solutions (S1, S2, ..., S8), as shown in Fig. 4. Each solution describes
a way of maximising the number of class invariants in Fig. 1, namely they are
MaxSMT solutions. A matrix is then formed with each row describing one solu-
tion and each column denoting a class invariant from Fig. 1. For example, in
Fig. 4 row S1 = {I2, I5} denotes a way of achieving 6 numbers of invariants by
deactivating 2 invariants inv2 and inv5 (in Fig. 1). In the first row, we use a
1 to mark these two invariants that can not be achieved, and 0 to mark the
remaining invariants that can be achieved.

To find conflicts among these invariants, consider each column Ii ⊆
{S1, ..., S8} that covers only rows marked with a 1 in that column. We say an
Si is covered if and only if at least one of the elements is covered. For exam-
ple, column I1 covers row S5, S6, S7, and S8, while column I3 covers no rows. A
conflict can now be identified by finding a sub collection (set) of Iis such that
the union of Iis covers all rows (S1 to S8). Such a set is a minimal unsat core:
it is minimal in the sense that the removal of any element from the set results
in at least one of the rows becoming uncovered. For example, set {I1, I2} forms
a minimal unsat core and thus inv1 and inv2 (from Fig. 1) conflict with each
other. Another conflict can be identified by forming the set {I5, I6, I7, I8}.

Solving the Set Cover Problem. In general, finding one solution to the
set cover problem is NP-complete, and finding a minimum set is NP-hard [11].
To tackle this problem, we present a novel technique that allows us to find all
metamodel constraint conflicts via SMT solving. This technique first computes
a set of achievable metamodel features (MaxSMT solutions) and formulates an
m × n matrix M similar to the one in Fig. 4. Then it automatically generates a
set of SMT formulas capturing the set cover problem and uses an SMT solver
to find metamodel constraint conflicts.

The core idea of this technique is to formalise the set cover problem into a
set of numeric constraints so that we can utilise SMT solvers’ well-engineered

Finding Achievable Features and Constraint Conflicts 187

M =

⎡
⎢⎢⎢⎢⎢⎣

I1 I2 I3 ... In

S1 a11 a12 a13 . . . a1n
S2 a21 a22 a23 . . . a2n
S3 a31 a32 a33 . . . a3n
...

...
...

...
. . .

...
Sm am1 am2 am3 . . . amn

⎤
⎥⎥⎥⎥⎥⎦

Fig. 5. A matrix M representing the set cover problem.

arithmetic reasoning engine to quickly explore the search space. To form such
constraints, we first define this m × n matrix M in Fig. 5:

– each entry aij ∈ {0, 1} is an element from a set (Si and Ij), and 1 denotes
that aij ∈ Si ∧ aij ∈ Ij , otherwise the entry is not in both Si and Ij .

– each Si denotes a set of metamodel features that can not be achieved.
– each Ij denotes a subset of Sis in the jth column, depending on whether

aij = 1.

Let mappings Si 	→ V Si , Ij 	→ V Ij and aij 	→ V aij be SMT encodings of Si, Ij
and each entry aij of M respectively, where V Si , V Ij and V aij are SMT integer
variables whose range are {0, 1}. We now generate a set of SMT formulas which
captures the set cover problem. The range value 1 denotes that an element or a
set is selected (covered) while 0 indicates that it is unselected.

We first generate Formula 4 stating that Si is selected (covered) if one of the
aijs in ith row is selected. Otherwise if all aijs (in ith row) are not chosen, then
Si can not be covered. For example, in Fig. 4, we say S1 can be covered by either
the entry in the 1st row and 2nd column (a12) or another entry in the 1st row
and 5th column (a15), as both of them are set to 1 (S1 = {a12, a15}).

m∧
i=1

(((n∨
j=1

aij∈Si

V aij = 1
)

⇒
(
V Si = 1

))
∧

((n∧
j=1

aij∈Si

V aij = 0
)

⇒
(
V Si = 0

)))

(4)
Intuitively, Formula 5 encodes a constraint indicating that if the subset Ij is
selected, then all of its elements must be selected as well. Otherwise no elements
in Ij can be selected. This formula guarantees that either Ij is chosen or it is not
chosen at all. This rules out the possibility of a partial selection of Ij ’s elements.
This is because when a subset is not chosen (used), then none of the elements
of it should be selected. This condition is enforced by using a conjunction to
connect all elements in Ij to make sure that none of its elements are selected.
For example, if subset I5 in Fig. 4 is not chosen, then its two elements at the 5th
column, marked as 1 (a15 and a55) are also not selected (I5 = {a15, a55}).

188 H. Wu

n∧
j=1

(((
V Ij = 1

)
⇒

(m∧
i=1

aij∈Ij

V aij = 1
))

∧
((

V Ij = 0
)

⇒
(m∧

i=1
aij∈Ij

V aij = 0
)))

(5)
Finally, we generate an integer equality shown in Formula 6 describing the
restriction that every Si must be covered (part a) by some subsets Ijs (part b).
To find all possible combinations of subsets (Ij) that cover Sis, we use the algo-
rithm in Fig. 6 to iteratively ask an SMT solver to find an answer for part b,
starting from 1 subset to n subsets. If this equality is satisfiable (line 5), we
then have a solution to the set cover problem with k subsets covering all Sis.
Otherwise, there is no solution to the set cover problem with k subsets. Finally,
we interpret those V Ij s assigned with 1 as the chosen subsets (line 6) and find
the next solution by blocking all previous solutions (line 7).

((m∑
i=1

V Si

)
= m

︸ ︷︷ ︸
part a

)
∧

((n∑
j=1

V Ij
)

= k

︸ ︷︷ ︸
part b

)
, where 1 ≤ k ≤ n. (6)

Input : A matrix M representing metamodel constraint conflicts as the
set cover problem.

Output: A set s containing all solutions to the set cover problem
including all minimum sets.

1 k ← 1
2 s ← ∅
3 Solver.add(Formula 4 ∧ Formula 5 ∧ Formula 6[part a])
4 while k ≤ n do

5 while SMTSolve
n

j=1

V Ij = k = SAT do

6 s ← s ∪ Interpret(V Ij)
7 Solver.add(BlockingFormula)
8 end
9 k ← k + 1

10 end
11 return s

Fig. 6. An algorithm that iteratively calls an SMT solver and returns all solutions to
the set cover problem. The first set of solutions found by this algorithm must be the
set containing all minimum sets since k starts from 1.

Finding Achievable Features and Constraint Conflicts 189

4 Implementation and Evaluation

We have prototyped the approach described in Sect. 3 into a tool called MaxUSE6

and incorporated it into the exisiting USE modelling tool [12]. We choose USE
mainly because it is a widely used modelling tool that has its own specifica-
tion language that we can alter for our requirements. We modified its grammar
and abstract syntax trees so that it now reads in a metamodel that is fully or
partially ranked. It traverses a metamodel and automatically generates a set of
SMT2 formulas [13]. MaxUSE currently uses Z3 as its solving engine [10]. It
incrementally solves these formulas and interprets each successful assignment as
a solution. Our implementation is approximately 7000 lines of Java code.

4.1 Evaluation

Forming Benchmark. To extensively evaluate MaxUSE’s capability, we first
collect a group of metamodels (Group A in Table 1) from [14], and use them
as candidate metamodels. For each candidate metamodel, we calculate a con-
figuration in terms of its number of classes, associations (different multiplici-
ties), invariants, conflicts, navigations, quantifiers, logic/arithmetic operators,
and breadth/depth of inheritance trees. We then develop a generator that can
generate USE specifications based on different sized configurations. This gener-
ator is approximately 2100 lines of Java code. We use this generator to generate
another four groups (Group B, C, D and E in Table 1) of metamodels using the
configurations calculated from the metamodels in Group A. Currently, MaxUSE
supports OCL constructs used in these metamodels.7 For each group, we gener-
ate 5 metamodels ranging from small to large size. Finally, we randomly inject
a number of conflicts into each metamodel and gather them as a benchmark
as shown in Table 1. For example, for Group D we use a configuration that
allows us to specify the number of diamond shapes and OCL constraints over
an inheritance tree. This is because we use the DS metamodel from Group A
as a candidate and this metamodel contains an OCL constraint over a diamond
shaped inheritance tree. Therefore, every metamodel in Group D also has a
number of constraints over this property based on its size.

Performance Evaluation. We evaluate MaxUSE on an Intel(R) Xeon(R)
machine with eight 3.2 GHz cores. However, our current implementation uses
only one core. Table 1 records MaxUSE’s performance against different sized
metamodels. For each group in Table 1, we first randomly rank each metamodel
including the use of automatic rankings and run MaxUSE to find one solution.
We then equally rank each metamodel and ask MaxUSE to find all possible
solutions including conflicts. This is because an equally ranked metamodel more
likely to have multiple solutions. All the performances are recorded in the ‘Sin-
gle’ and ‘All’ columns in Table 1. We observe that MaxUSE takes less than one
6 Available at https://github.com/classicwuhao/maxuse.
7 MaxUSE cannot handle the OAI metamodel due to recursive structures. Instead, we

add the SM metamodel into Group A (similar to Fig. 1 in Sect. 2).

https://github.com/classicwuhao/maxuse

190 H. Wu

Table 1. The benchmark for evaluating MaxUSE. ‘Formulas’ denotes the number of
SMT2 formulas generated. ‘Rank’ denotes the achieved maximum rank (‘Max’) out of
a total rank distributed (‘Total’). ‘Single’ and ‘All’ denote the time (in seconds) spent
by MaxUSE on finding a single and all possible solutions respectively. ‘#/sec’ means
that the number of solutions and seconds used. ‘†’ indicates that MaxUSE determines
that a metamodel is consistent. ‘∗’ denotes that MaxUSE cannot find solutions within
9 hours.

Number of Rank Single (sec) Mix Ranked All (#/sec) Eq Ranked

Classes Assocs Invs Formulas Max Total Solution Conflict Solution(s) Conflict(s)

Group A CS 3 1 6 19 15 15 NA NA NA NA

WR 2 2 7 33 36 40 4.01 0.16 1/3.53 1/0.5

DS 4 0 1 16 14 16 0.14 0.19 2/0.14 1/0.89

OAI† 1 1 7 NA NA NA NA NA NA NA

SM 3 1 8 31 79 91 0.33 0.08 8/0.44 2/0.15

Group B B1 13 5 27 169 490 498 3.97 0.43 2/2.22 2/0.44

B2 24 9 45 285 521 556 15.90 0.16 12/22.53 5/0.83

B3 33 14 68 420 792 821 31.49 0.58 6/54.89 5/11.92

B4 46 15 90 539 620 622 67.37 0.22 2/100.87 2/1.42

B5 57 19 136 729 881 894 560.12 1.45 24/1609.12 6/3.48

Group C C1 13 5 29 171 237 268 5.59 0.05 12/18.49 7/0.59

C2 24 11 43 276 470 478 15.76 0.83 4/14.70 2/0.84

C3 35 17 66 418 570 581 59.46 0.07 1/68.79 2/1.12

C4 46 15 98 549 605 630 342.98 1.50 4/226.05 4/1.66

C5 57 15 156 765 1004 1045 2853.65 0.57 72/5467.75 11/5.49

Group D D1 13 2 22 136 171 189 3.03 0.17 1/4.17 6/0.46

D2 26 9 47 294 259 329 17.56 0.23 1/23.09 13/0.91

D3 33 3 61 329 520 596 21.74 0.42 6/34.74 9/0.98

D4 46 9 101 525 452 651 68.17 0.39 3/90.08 34/1.24

D5 56 18 166 805 1089 1291 15904.21 2.33 174/29368.16 46/19.22

Group E E1 10 6 31 162 69 72 6.26 0.07 1/7.38 1/0.32

E2 15 12 39 224 217 233 83.36 0.08 2/66.48 4/0.55

E3 30 18 37 312 238 243 392.22 0.729 1/47.75 1/0.71

E4 18 18 105 511 483 515 405.51 0.68 7/5959.61 20/3.90

E5∗ 18 18 167 698 NA 415 NA NA NA NA

second to determine whether a metamodel is consistent or not, and find the max-
imum weight and conflicts within a reasonable amount of time in most cases.
The longest time taken by MaxUSE is approximately 8 hours to get 174 solu-
tions for the D5 metamodel. In general, MaxUSE finds all conflicts much faster
than finding all weighted MaxSMT solutions. This is because searching for an
optimal solution requires significant computation by Z3. Once all solutions are
found, MaxUSE can utilise them to solve the set cover problem much faster. In
some cases, MaxUSE could not find solutions. This is mainly due to Z3 spending
a significant amount of time on solving a large number of formulas combining
nested quantifiers and inequalities. For example, for the E5 metamodel, Z3 was
stuck with a particular value and could not progress to next possible optimal
value within 9 hours. In general, it is an extremely challenging task for any algo-
rithms to find an optimal value for such a large number of complicated formulas.

Finding Achievable Features and Constraint Conflicts 191

This is because the nature of this particular optimisation problem typically has
a massive search space.

Quality of Computed Constraint Conflicts. For the conflicts found in these
metamodels from the benchmark in Table 1, we compare them against actual
injected conflicts to assess how accurate they are. The injected conflicts covers
a wide range of different metamodel features including multiplicities on asso-
ciation ends, different type of attributes and inheritance relationships among
multiple classes. We classify our comparison results as either “exact”, “near” or
“miss” and record them into Table 2. Here, “exact” means that MaxUSE finds
conflicts that match exactly with injected conflicts. In other words, each one
(set) is minimal and removal of any members can make a metamodel become
consistent. “near” means that MaxUSE is able to identify all conflicts that are
close enough to the injected ones. We consider they are “near” because each
reported conflict is a slightly larger set containing those injected ones as a sub-
set. For example, MaxUSE may list the a class containing conflicted invariants
as a part of the returned conflicts. Thus, users could easily understand this infor-
mation and use this in a latter stage for debugging or fixing conflicts. “miss”
indicates that MaxUSE returns at least one “conflict” that is not related to any
of those injected conflicts. We suspect that this is probably caused by heuristic
algorithms used internally in Z3. Despite this inaccuracy, we believe that the
results here show the potential of our approach to finding constraint conflicts for
inconsistent metamodels.

Table 2. Quality of computed constraint conflicts for metamodels in Table 1.

Group A Group B Group C Group D Group E

CS NA B1 exact C1 near D1 exact E1 near

WR exact B2 near C2 exact D2 near E2 near

DS exact B3 exact C3 near D3 exact E3 exact

OAI NA B4 near C4 near D4 near E4 miss

SM exact B5 exact C5 near D5 near E5 NA

Lessons Learnt. From the evaluation results, we have learned three important
lessons:

1. MaxUSE can maximise the number of achievable features and pinpoint con-
flicting constraints without the need for manual interactions. However, in
some cases when Z3 is unable to handle formulas, an interactive mode is
necessary. For example, when Z3 could not solve formulas generated for the
E5 metamodel within a specified time frame, we pause MaxUSE and man-
ually choose a possible optimal value. MaxUSE is then able to resume the
search. However, selecting such a value is quite tricky and requires that one
has knowledge about how things work inside the solver.

192 H. Wu

2. In terms of scalability, the number of ranked features is proportional to the
solving time of MaxUSE. Additionally, we suggest that one could gain better
performance by ranking individual metamodel features into hard features or
using a set of relatively smaller ranks. For example, if a metamodel has 100
features one may consider to rank them using a range of integers from 1 to
100 rather than choosing from 101 to 200.

3. Computing all constraint conflicts sometimes can be significantly more expen-
sive than finding one conflict since there could be an exponential number of
them. In this case, we find it is necessary to let users decide when to stop
MaxUSE for enumerating all constraint conflicts. This is because some con-
straint conflicts are not independent. Therefore, the dependent conflicts can
be used to identify other conflicts without exhaustive enumeration. In the
future, we plan to address this issue and enhance our algorithm for finding
constraint conflicts.

4.2 Threats to Validity

The major threat to external validity concerns the benchmark we form in Table 1.
This benchmark is based on the metamodels collected from [14]. Since these
metamodels do not cover the full set of OCL constructs, this introduces a gap
between our implementation and full OCL constructs. We acknowledge that
the evaluation results of this benchmark only give us a preliminary assessment
of MaxUSE. In the future, we plan to cover more OCL constructs including
operational constraints and string operators.

The most significant threat to internal validity concerns the performance of
MaxUSE which is mainly dependent on the Z3 SMT solver. In some cases, the
first run of Z3 fails to find solutions. However, further runs typically resolve
this issue. This introduces an additional performance overhead. We surmise that
this is caused by the heuristic algorithms used in Z3. In the future, we plan to
overcome this by plugging in multiple SMT solvers and allow users to switch
among them for the best performance.

5 Related Work

The majority of the research in metamodel/UML class diagram-based reason-
ing/verification concentrates on answering the question [5,6,9,15–18]: whether
a metamodel is consistent or not. We focus on the situation when a metamodel
is not consistent, then what information we should give back to users to help
them refine their metamodels. We believe that providing the maximum num-
ber of achievable features and finding constraint conflicts among them is useful
for users to further refine their metamodels. Moreover, this paper also demon-
strates the feasibility and scalability of tackling ranked metamodel features in
an existing modelling environment by introducing SMT solving.

Finding Achievable Features and Constraint Conflicts 193

Much research work has sought to formalise metamodels or UML class dia-
grams into different types of logics [8,9,19–30]. With recent advances in con-
straint solving, SAT/SMT solvers have been widely adapted to verifying meta-
model/UML class diagrams. Among them, Büttner et al. [8] and Clavel et al.
[9,28] directly map a metamodel and its OCL constraints into first-order logic
that can be handled by SMT solvers. Büttner et al. use the Z3 SMT solver to
verify the correctness of the ATL transformation, while Clavel and Dania use
Prover 9 and Z3 to check the satisfiability of OCL constraints. We use a similar
idea to encode the metamodel and OCL constraints, but differ by solving ranked
OCL constraints and the set cover problem. By introducing ranked features to
a metamodel and solving the set cover problem, users are able to maximise the
number of features based on their domain specific knowledge and find constraint
conflicts.

Cabot et al. propose a detailed systematic procedure that uses constraint
programming to program UML/OCL class diagrams into a Constraint Satis-
faction Problem (CSP) [16,31,32]. The main advantage is that CSP provides
a high-level language so that a particular constraint problem is programmable.
Their approach can check a variety of correctness properties including weak and
strong satisfiability by generating a different number of instances for every class.
Instead of presenting an encoding of metamodel and OCL constraints, our work
focuses on reducing a set of ranked metamodel features to a weighted MaxSMT
problem and finding a maximum number of achievable features and conflicts
at the same time. Further, our approach presented in this paper can be easily
incorporated into existing SAT/SMT based approaches without tuning original
encodings.

Alloy uses first-order relational logic as its specification language to model
the problem domain and reduce it to SAT instances [33–35]. It directly supports
finding minimal conflicts in the specification [36]. However, this functionality is
not guaranteed to find all minimal conflicts. Therefore, approaches using Alloy
as a basis for constraint solving engine are also restricted by this functionality.
[4,37–40]. Further, Alloy’s engine is limited to unranked constraints so users
are not able to rank individual constraints, whereas our approach focuses on
maximising all ranked features.

6 Conclusion

In this paper, we have presented an approach to finding achievable features
and constraint conflicts for inconsistent metamodels. Our approach is unique
in the sense that we allow users to rank individual metamodel features and
find achievable features and constraint conflicts by using a state-of-the-art SMT
solver. Further, our SMT encodings presented in this paper could be used as an
add-on to existing SMT based approaches. Thus, this gives us an advantage of
avoiding the tuning of existing SMT encodings. To demonstrate feasibility and
scalability, we have implemented this approach into a prototype tool and evalu-
ated it against a benchmark. Our evaluation results suggest that the approach is

194 H. Wu

promising and scales reasonably well on a large number of metamodel features.
In the future, we plan to extend this approach to metamodel transformation
verification and develop a technique that is able to guide users step-by-step in
refining/synthesizing transformation rules based on their specified preferences.

References

1. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MODELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006). doi:10.
1007/11663430 14

2. Zschaler, S., Kolovos, D.S., Drivalos, N., Paige, R.F., Rashid, A.: Domain-
specific metamodelling languages for software language engineering. In: Brand,
M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 334–353. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-12107-4 23

3. Becker, J., Rosemann, M., Uthmann, C.: Guidelines of business process modeling.
In: Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS,
vol. 1806, pp. 30–49. Springer, Heidelberg (2000). doi:10.1007/3-540-45594-9 3

4. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models
by integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21952-8 21

5. Wille, R., Soeken, M., Drechsler, R.: Debugging of inconsistent UML/OCL models.
In: 2012 DATE, pp. 1078–1083 (2012)

6. Wu, H., Monahan, R., Power, J.F.: Exploiting attributed type graphs to generate
metamodel instances using an SMT solver. In: 7th TASE, Birmingham, UK (2013)

7. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008)

8. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-
shelf’ SMT solvers. In: 15th MoDELS, pp. 432–448 (2012)

9. Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfiability for OCL con-
straints. Electronic Communication of the European Association of Software Sci-
ence and Technology, vol. 24 (2009)

10. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

11. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103 (1972)

12. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69(1–3), 27–34 (2007)

13. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Pro-
ceedings of the 8th International Workshop on Satisfiability Modulo Theories,
Edinburgh, UK. Elsevier Science (2010)

14. Gogolla, M., Büttner, F., Cabot, J.: Initiating a benchmark for UML and OCL
analysis tools. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp.
115–132. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38916-0 7

15. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL data types for SAT-
based verification of UML/OCL models. In: Gogolla, M., Wolff, B. (eds.) TAP
2011. LNCS, vol. 6706, pp. 152–170. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21768-5 12

http://dx.doi.org/10.1007/11663430_14
http://dx.doi.org/10.1007/11663430_14
http://dx.doi.org/10.1007/978-3-642-12107-4_23
http://dx.doi.org/10.1007/3-540-45594-9_3
http://dx.doi.org/10.1007/978-3-642-21952-8_21
http://dx.doi.org/10.1007/978-3-642-21952-8_21
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-38916-0_7
http://dx.doi.org/10.1007/978-3-642-21768-5_12
http://dx.doi.org/10.1007/978-3-642-21768-5_12

Finding Achievable Features and Constraint Conflicts 195

16. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. J. Syst. Softw. 93, 1–23 (2014)

17. Balaban, M., Maraee, A.: Finite satisfiability of UML class diagrams with con-
strained class hierarchy. ACM Trans. Softw. Eng. Methodol. 22(3), 24:1–24:42
(2013)

18. Wu, H.: Generating metamodel instances satisfying coverage criteria via SMT solv-
ing. In: The 4th MODELSWARD, pp. 40–51 (2016)

19. Beckert, B., Keller, U., Schmitt, P.H.: Translating the object constraint language
into first-order predicate logic. In: Verify Workshop at FLoC, Copenhagen, Den-
mark (2002)

20. Maraee, A., Balaban, M.: Efficient reasoning about finite satisfiability of UML class
diagrams with constrained generalization sets. In: Akehurst, D.H., Vogel, R., Paige,
R.F. (eds.) ECMDA-FA 2007. LNCS, vol. 4530, pp. 17–31. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-72901-3 2

21. Brucker, A.D., Wolff, B.: HOL-OCL: a formal proof environment for uml/ocl.
In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 97–100.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78743-3 8

22. Kyas, M., Fecher, H., de Boer, F.S., Jacob, J., Hooman, J., van der Zwaag, M.,
Arons, T., Kugler, H.: Formalizing UML models and OCL constraints in PVS.
Electron. Notes Theor. Comput. Sci. 115, 39–47 (2005)

23. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using boolean satisfiability. In: DATE, pp. 1341–1344 (2010)

24. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: finite reasoning on
UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)

25. Dania, C., Clavel, M.: OCL2FOL+: Coping with undefinedness. In:
OCL@MoDELS (2013)

26. Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model generation
by logic solvers. In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633,
pp. 87–103. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7 6

27. Przigoda, N., Wille, R., Drechsler, R.: Ground setting properties for an efficient
translation of OCL in SMT-based model finding. In: 19th MoDELS, pp. 261–271.
ACM (2016)

28. Dania, C., Clavel, M.: OCL2MSFOL: a mapping to many-sorted first-order logic
for efficiently checking the satisfiability of OCL constraints. In: 19th MoDELS, pp.
65–75. ACM (2016)

29. Wu, H., Monahan, R., Power, J.F.: Metamodel instance generation: a systematic
literature review. CoRR abs/1211.6322 (2012)

30. Wu, H.: An SMT-based approach for generating coverage oriented metamodel
instances. Int. J. Inf. Syst. Model. Des. 7(3), 23–50 (2016)

31. González Pérez, C.A., Buettner, F., Clarisó, R., Cabot, J.: EMFtoCSP: a tool
for the lightweight verification of EMF models. In: Formal Methods in Software
Engineering: Rigorous and Agile Approaches, Zurich, Suisse (2012)

32. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: IEEE ICST V&V Workshop, Berlin, Germany, pp.
73–80. IEEE Computer Society (2008)

33. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodologies 11(2), 256–290 (2002)

34. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71209-1 49

http://dx.doi.org/10.1007/978-3-540-72901-3_2
http://dx.doi.org/10.1007/978-3-540-78743-3_8
http://dx.doi.org/10.1007/978-3-662-49665-7_6
http://dx.doi.org/10.1007/978-3-540-71209-1_49

196 H. Wu

35. Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: a general-purpose higher-
order relational constraint solver. In: 37th ICSE. IEEE Press (2015)

36. Torlak, E., Chang, F.S.-H., Jackson, D.: Finding minimal unsatisfiable cores
of declarative specifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM
2008. LNCS, vol. 5014, pp. 326–341. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68237-0 23

37. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: a challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75209-7 30

38. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: class diagrams analysis using alloy
revisited. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol.
6981, pp. 592–607. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24485-8 44

39. Garis, A., Cunha, A., Riesco, D.: Translating alloy specifications to UML class
diagrams annotated with OCL. In: Barthe, G., Pardo, A., Schneider, G. (eds.)
SEFM 2011. LNCS, vol. 7041, pp. 221–236. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-24690-6 16

40. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and
back. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS
2012. LNCS, vol. 7590, pp. 415–431. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33666-9 27

http://dx.doi.org/10.1007/978-3-540-68237-0_23
http://dx.doi.org/10.1007/978-3-540-68237-0_23
http://dx.doi.org/10.1007/978-3-540-75209-7_30
http://dx.doi.org/10.1007/978-3-540-75209-7_30
http://dx.doi.org/10.1007/978-3-642-24485-8_44
http://dx.doi.org/10.1007/978-3-642-24690-6_16
http://dx.doi.org/10.1007/978-3-642-24690-6_16
http://dx.doi.org/10.1007/978-3-642-33666-9_27
http://dx.doi.org/10.1007/978-3-642-33666-9_27

Model Consistency for Distributed
Collaborative Modeling

Gerson Sunyé(B)

AtlanMod Group (Inria, IMT Atlantique, and LS2N),
LS2N – University of Nantes, Nantes, France

gerson.sunye@univ-nantes.fr

Abstract. Current collaborative modeling tools use a centralized archi-
tecture, based on version control system, where models are updated asyn-
chronously. These tools depend on a single server and are not completely
adapted for collaborative modeling, where update reactivity is essential.
In this paper, we propose a framework for building collaborative model-
ing tools which provides synchronous model update. The framework is
based on a peer-to-peer architecture and uses a consistency algorithm
for model updating.

1 Introduction

As collaborative modeling becomes more and more popular, changing the way
that modelers interact with colleagues to design and create documents, there is a
growing need for tools and techniques that enable effective collaboration. A first
response for this need is the emergence of online web-based modeling tools, e. g.,
Lucidchart [24] or GenMyModel [9], and of standalone modeling tools coupled
with control version systems, as the recent release of MetaEdit+ [31].

In this paper, we propose a model consistency approach for providing the
bases of collaborative modeling tools. This approach is inspired from cooperative
editing systems, introduced in Sect. 2.1 and is based on the Eclipse Modeling
Framework [26], EMF, the de-facto standard framework for building modeling
tools, which is introduced in Sect. 2.2.

The goal of our approach is to provide the basis for developing modeling tools
with following characteristics: (i) distributed : collaborative tools can be deployed
on distributed nodes, connected by networks with different latency times, and do
not require a centralized server for update integration; (ii) reactive: the response
for integrating remote updates is fast with low latency; (iii) synchronous: local
updates are broadcast to other nodes right after their execution.

Differently from other approaches that use a generic control-version server,
e. g., Git or SVN, or a model-specific one, e. g., EMFStore [12], the approach
does not use versions and resolves conflicts automatically aiming at a simple
goal, that all model replicas are consistent. The advantages and limits of the
approach with respect to other research efforts are discussed in Sect. 5.

To ensure that remote changes are integrated with the same execution order
in all nodes, the approach classifies the relations between updates into four
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 197–212, 2017.
DOI: 10.1007/978-3-319-61482-3 12

198 G. Sunyé

distinct types: independent, dependent, equivalent, and conflictual. Independent
updates can be executed in any order, while dependent ones must always follow
the same order. Equivalent updates produce the same result and thus only one
should be executed, and conflictual updates produce different results depending
on their execution order. The integration of the latter is more complex and
may result in undoing local changes and re-executing them after the integration.
Section 3 describes the approach an the integration algorithm, as well as a simple
example that illustrates the approach.

To validate the integration algorithm through implementation, we develop a
prototype that uses EMF notifications to capture local updates and the publish–
subscribe architectural pattern [4] to broadcast them to remote nodes. Section 4
describes the implementation.

2 Background

This section introduces the principles of cooperative editing systems, which
inspired our work, and some of the modeling concepts implemented in EMF
that help the comprehension of the model consistency approach.

2.1 Cooperative Editing Systems

A real-time cooperative editing system consists of a set of interconnected nodes
where locally to each node, users perform changes on a shared document. Each
node propagates its local changes to the remote nodes, which integrate them to
the local copy of the shared document. The system maintains the consistency
among the different copies. A cooperative editing system is said to be consistent
if it maintains the following properties [29]:

Convergence. When the same set of operations have been executed at all nodes,
all copies of the shared document are identical.

Causality Preservation. For any pair of operations Oa and Ob, if Oa → Ob,
then Oa is executed before Ob at all nodes.

Intention Preservation. For any operation O, the effects of executing O at all
sites are the same as the intention of O, and the effect of executing O does
not change the effects of independent operations.

A common solution to achieve consistency is to use an operational transfor-
mation approach [28], which consists of an integration algorithm and a transfor-
mation function. The integration algorithm is responsible for performing, broad-
casting, and receiving operations, while the transformation function is responsi-
ble for detecting and merging concurrent operations. The transformation func-
tion often relies on vector clocks, e. g., GOTO [28] and ABT [18]. A vector clock
is an array of logical clocks, one clock per node, associated to each operation and
used to determine the causality between operations. The limit of vector clocks is
that the size of the exchanged messages grows with the number of nodes, creat-
ing a bottleneck that prevents these systems to scale. A scalable alternative to

Model Consistency for Distributed Collaborative Modeling 199

vector clocks is to use semantic causal dependency [16,20], declared with respect
to operation preconditions. For instance, consider a Graph on which two opera-
tions are performed, O1 = createV ertex(A) and O2 = createV ertex(B). There
is no casual dependency between this two operations since their execution order
can be interchanged. However, if a third operation O3 = createEdge(A,B) is
considered, then there is a casual dependency: the execution of O3 requires that
vertices A and B exist, i. e., O3 must be executed after O1 and O2.

While cooperative editing systems focus on documents and on casual depen-
dency of operations on characters, we believe that their techniques and algo-
rithms can also be applied to structured data models.

2.2 EMF

The Eclipse Modeling Framework is a set of components that aims at help-
ing developers to create sophisticated modeling tools [26]. Similarly to other
modeling frameworks, e. g., MDR [19] and NSUML [22], it proposes a modeling
language, Ecore, and code generation facilities to create Java underlying mod-
els, specific to each Ecore model. In EMF terms, the Java generated modeling
elements are (subclasses of) EObject and their meta-types, the elements of
an Ecore model, are instances of EClass. Unlike the other frameworks, EMF
introduces the concept of Resource, a container for modeling element instances
(EObject sub-instances), which is independent from Ecore models. Indeed, a
resource can contain a subset of instances from the same underlying model,
as well as instances from other models. Resources are mainly used to persist
instances on different formats: e. g., XMI, relational databases [25], or NoSQL
databases [7,21].

Resources respect the containment relationship: when an instance is attached
to a resource, so are all its contents. Conversely, when an instance is detached
from a resource, all its contents are also detached. Resources are responsible
for assigning identities to instances, needed to serialize and unserialize refer-
ences to instances that use the Java object identity as identifiers. Identities are
unique among instances from the same modeling element (EObject subclass).
Instances from a resource can reference instances from a different resource, pro-
vided that both resources belong to the same Resource Set. Each resource has an
unique identifier, used as an index in the global Registry, another EMF concept
introduced along with resources.

Since EMF does not distinguish models by their contents, i. e., another lan-
guage syntax or real-world concepts, we refer to the contents of a model as
Instances and to the modeling language elements as Types.

3 Model Consistency Approach

We consider a distributed system of interconnected nodes, where each node
contains models expressed in different modeling languages. Nodes also contain
resources, which are composed of instances from different modeling languages.

200 G. Sunyé

In this system, any subset of nodes can share one or more resources: each node
contains a replica of a shared resource and performs query and update opera-
tions on it. To ensure that all replicas of a shared resource are consistent, we
propose the following approach:

1. Each update operation in a shared resource is first executed locally.
2. Thereafter, the operation is broadcast to all nodes containing replicas of the

shared resource.
3. These nodes receive and integrate the update operation. The integration may

result in undoing a locally executed operation, executing a new operation,
and redoing that operation.

Shared resources are basically EMF resources that have replicas spread over
a set of nodes and that are defined as follows:

Definition 1 (Shared Resource). A Shared Resource is a tuple R = 〈rid, N,
I, F 〉 where: rid is the resource unique identifier, N is a set of nodes sharing the
resource, I is a set of instances, and F is a set of features (i. e., instance attribute
values and references between instances).

Locally to each node, Java object identifiers (i. e., memory addresses) are
commonly used as identifiers for instances and features. However, in a distributed
environment, we must ensure the following propositions concerning the unique
identification of resources, instances, types, and features.

Proposition 1. Every node has an unique identity through the network, denoted
by nid.

The unicity of a nid may be ensured either locally, e. g., using a UUID, or
distributively, e. g., using a naming server.

Proposition 2. Every shared resource has an unique identity across the network,
denoted by rid. This identity is independent from the node that created the resource
and is ensured by a Global Resource Registry, which also helps nodes to find avail-
able shared resources.

The registry is a simple associative array that may be implemented by a
single node or by a Distributed Hash Table [23,27].

Proposition 3. Each instance has an unique identity across the network, denoted
by oid, which depends on its containing resource and is independent from the node
where it was created. An instance belonging to a shared resource has the same iden-
tity across all resource replicas.

Proposition 4. Each type and each feature of a type have unique identities across
the network, denoted by tid and fid, respectively. A pair (oid,fid) identifies the
value of feature fid on instance oid.

The unicity of a type is usually ensured by its name and the name (or URI)
of its modeling language. The unicity of a feature may be ensured by its name
or by a natural number.

Model Consistency for Distributed Collaborative Modeling 201

3.1 Update Operations

We consider only operations that modify the contents of a shared resource, i. e.,
operations that: add/remove instances to/from a resource, modify the values
of instance monovalued features, or modify the valued of instance multivalued
features. The specification of these operations is listed below:

– attach(rid,oid): adds instance oid to the shared resource rid.
– detach(rid,oid): removed an instance from a shared resource.
– set(oid, fid, v): sets the value of feature fid to value v.
– unset(oid, fid): unsets feature fid.
– add(oid, fid, v) adds value v at the end of the multivalued feature fid.
– remove(oid, fid, i): removes value of multivalued feature fid at index i.
– move(oid, fid, s, t): moves value of multivalued feature fid from source index

s to target index t.
– clear(oid, fid): clears all values of multivalued feature fid.

Update operations can be formulated using simple mathematics. The follow-
ing equation expresses the relation between a resource R and a resource R′ that
was modified by operation O.

R = O ∗ R′

The operator “∗” denotes the application of an update operation to a
resource. Updating a resource means applying n operations Oi to a resource
R′ in a stepwise manner:

R = O1 ∗ O2 ∗ . . . ∗ On−1 ∗ On ∗ R′

Two operations can be either dependent on, independent of, equivalent to or
conflictual with each other. We define independent (or concurrent) operations
as follows:

Definition 2 (Independent Operations). Given any shared resource R and
any two operations Oa and Ob are said to be independent of each other if they
are commutative, i. e., if an only if Oa ∗ Ob ∗ R = Ob ∗ Oa ∗ R.

Conceptually, each operation O is associated to an original context CO, i. e.,
the sequence of operations required to bring a resource from its initial state to
the state where O can be applied.

Definition 3 (Dependent Operations). Given any operations Oa and Ob,
and COa

, the original context of operation Oa, Oa is said to be dependent on
Ob if and only if Ob ∈ COa

.

When two operations have the same original context and are not independent,
they are said to be conflictual. For instance, operations set(oida, fid1, va) and
set(oida, fid1, vb) are conflictual.

202 G. Sunyé

Definition 4 (Conflictual Operations). Given any shared resource R and
any two operations Oa and Ob and their original contexts COa

and COb
, Oa

and Ob are said to be conflictual if and only if COa
= COb

and Oa ∗ Ob ∗ R �=
Ob ∗ Oa ∗ R.

In most cases, operations have different contexts and therefore are indepen-
dent. For instance, the operations set and remove both concern features, but
since features cannot be mono and multivalued at the same time, they are oblig-
atory independent.

Some operations may produce the same result, even when they come from
different nodes. For instance, two operations clear, or two operations remove or
add of the same value, produce the same results on the same features.

Definition 5 (Equivalent Operations). Given any shared resource R and
any two operations Oa and Ob and their original contexts COa

and COb
, Oa and

Ob are said to be equivalent if and only if COa
= COb

and Oa ∗ R = Ob ∗ R.

3.2 Casual Dependencies

The casual dependency relation, denoted by “→”, expresses that one opera-
tion happened before another and is commonly based on time [17,29]. In our
approach, we adopt a semantic casual dependency [16,20]. The idea is not to
establish whether a given operation Oa at node n1 was generated before oper-
ation Ob at node n2, but whether Ob depends on Oa. For instance, the oper-
ation Oa = attach(rid1,oida) precedes operation Ob = set(oida, fid1, value),
Oa → Ob, since object oida must exist before feature fid is set. Conversely, two
operations Oa and Ob are said to be independent (or concurrent), if and only if
neither Oa → Ob nor Ob → Oa, which is expressed as Oa ‖ Ob.

In our approach, we adopt following propositions concerning the semantic
casual dependencies between conflictual operations. In these propositions, we
assume that the operations have the same original contexts.

Let us denote by OAttach(i) an operation that attaches an instance i to a
resource, by ODetach(i) an operation that detaches an instance i from a resource,
and by OAny any feature-related operation.

Proposition 5. For any Instance i, we have the following semantic casual
dependency: OAttach(i) → OAny(i) → ODetach(i).

Two attach() operations cannot be conflictual, since instances attached to dif-
ferent shared resource replicas have different identifications, according to Proposi-
tion 3. Two detach() operations are equivalent since they produce the same result.

There is no semantic casual dependency between Operations on monovalued
features with the same original context, set and unset. However, it can be estab-
lished for operations on multivalued features, add, remove, clear, and move.

Let us denote by fid a multivalued feature, by OAdd(fid) an operation and
adds a value to fid, by ORemove(fid) an operation that removes an element from
fid, by OClear(fid) an operation that clears fid, and by OMove(fid) an operation
that moves around a value in fid.

Model Consistency for Distributed Collaborative Modeling 203

Proposition 6. For any multivalued feature fid, we have the following casual
dependencies:

– OMove(fid) → ORemove(fid), OClear(fid)

– OMove(fid) ‖ OAdd(fid)

– OClear(fid) → OAdd(fid)

– ORemove(fid) → OClear(fid)

– OAdd(fid) ‖ ORemove(fid)

Differently from the other operations, OMove parameters are indexes, instead
of values. Therefore, any operation that changes the position of a value affects the
behavior of OMove. In the opposite, OMove operations do not affect operations
that use values as parameters. OMove and OAdd are independent, since a value is
added to the end of the feature and do not affect a move operation. OClear(fid)

precedes OAdd(fid) because when the first operation is executed, it is not aware of
the value added by the second one. ORemove(fid) precedes OClear(fid), otherwise
the first operation could raise an error (value not found). Finally, OAdd(fid) and
ORemove(fid) are independent, even if their arguments are the same. Indeed, the
first operation adds a value to the end of a feature, while the second one removes
the first occurrence of a value.

In complement to the casual dependency between operations from different
types, we have the following casual dependencies between operations of the same
type:

– Two add or two remove operations are either independents or equivalents.
– Two clear operations are equivalents.
– Two move operations are independents if the range of values between the

source and the target indices do not overlap.

3.3 Integration Algorithm

To propagate local changes to remote nodes, nodes send an update messages for
each operation executed locally. We define update messages as follows.

Definition 6. An Update Message is a tuple M = 〈n,R, O,C〉 where: n is the
source node, R the shared resource, O is the executed operation, and CO is the
operation original context.

The integration requires that each node implements a precedence relation,
according to the following proposition:

Proposition 7. For all nodes sharing a resource, there is a precedence relation
denoted by “≺”, ≺ : M × M → B, such as for any pair of update messages
(ma,mb), ma ≺ mb produces the same result in all nodes.

A simple way to ensure that the precedence operator behaves the same in all
nodes is to use properties belonging to the message: e. g., the source node, the
operation arguments, a hash function on the arguments, etc.

The integration also requires that each node implements a context-equivalent
relation, according to the following proposition:

204 G. Sunyé

Proposition 8. For all nodes sharing a resource, there is a context-equivalent
relation denoted by “
”,
 : M×M → B, such as for any pair of update messages
(ma,mb), ma
 mb if and only if Cma

= Cmb
.

Algorithm 1 describes the integration of update messages on nodes. Each
node has a local history of integrated remote messages, denoted by H and receives
an update message m. The integration first verifies if an equivalent message exists
in H and stops the integration if it is the case. Then, it searches all messages that
are context-equivalent with m and that should precede m, adds these messages
to the set successors and removes them from H. After the removal, message m
is executed and added to H. Lastly, the integration re-executes all successors
and adds them to H.

Algorithm 1. Update Message Integration
Input: m, an Update Message; H, the local history.
if ∃h, h ∈ H ∧ h ≡ m then

return

successors ← {h | h ∈ H ∧ m ≺ h ∧ m � h};
H ← H − successors ;
foreach each ∈ successors do

undo(each)

execute(m);
foreach each ∈ successors do

execute(each)

H ← H + {m} + successors;

3.4 Example

Figures 1a and b present respectively the Ecore model for a Graph modeling
language (GraphML) and a model containing an instance of this language, i. e.,
a graph. This graph contains 7 instances, each one with an unique identifier:

Fig. 1. Simple example

Model Consistency for Distributed Collaborative Modeling 205

– the graph itself, identified by g.
– 4 vertices (and their identifiers): “A” (a), “B” (b), “C” (c), and “D” (d).
– 2 edges, identified by ab and ac.

Let us suppose a collaborative environment, where a shared resource containing
this graph is being modified by three different nodes, performing the following
modifications:

Node 1 : renames vertex a to “A1”.
Node 2 : renames vertex a to “A2” and deletes vertex d.
Node 3 : creates a new vertex e, named “E”, and adds it to graph g; creates a

new edge ae between a and e and adds it to graph g; and deletes vertex d.

Table 1 presents a summary of the operations generated by these modifica-
tions. These operations are first executed locally at each node and then broadcast
to the other nodes. We present the integration of operations on each node in the
next sections. In this example, the order nodes receive remote operations from
remote nodes is arbitrary. Nevertheless, if different orders occurs, the integration
result would be the same.

Table 1. Summary of operations at Nodes 1, 2, and 3.

Node 1 Node 2 Node 3

O1
1 = set(a,#name, “A1”) O2

1 = set(a,#name, “A2”) O3
1 = attach(e)

O2
2 = remove(g,#vertices, d) O3

2 = set(e,#name, “E”)

O2
3 = detach(d) O3

3 = add(g,#vertices, e)

O3
4 = attach(ad)

O3
5 = add(g,#edges, ae)

O3
6 = set(ad,#target, e)

O3
7 = set(ad,#source, a)

O3
8 = remove(g,#vertices, d)

O3
9 = detach(d)

3.5 Integration at Node 1

Node 1 receives operations O2
1..3 from Node 2 and integrates them sequentially.

Operations O1
1 and O2

1 conflict: they both modify the value of the same feature
and have equivalent contexts. Node 1 uses the precedence relation to determine
that O1

1 ≺ O2
1 and executes operation O2

1. Operations O2
2 and O2

3 are not con-
flictual with the precedent ones and are executed.

Then, Node 1 receives operations O3
1..9 from Node 3. Operations O3

1 and
O3

2 concern a new instance, are independent and are executed. O3
3 and O2

2 con-
cern the same feature from the same instance, however, they are independent
(Proposition 6) and O3

3 is executed. O3
4..7 are all independent and are executed.

206 G. Sunyé

Operation O3
8 is equivalent to O2

2 and O3
9 is equivalent to O2

3. Both operations
are not executed. This results in the following history of operations:

H1 =
{
O1

1, O
2
1, O

2
2, O

2
3, O

3
1, O

3
2, O

3
3, O

3
4, O

3
5, O

3
6, O

3
7

}
.

3.6 Integration at Node 2

Node 2 receives operations O3
1..9 from Node 3. Similarly to the precedent inte-

gration at Node 1, Node 2 executes operations O3
1..7, which are independent and

does not execute operations O3
8 and O3

9, which are equivalent to O2
2 and O2

3.
Then, Node 2 receives O1

1 from Node 1, which conflicts with operation O2
1.

Node 2 uses the same precedence relation as Node 1 to determine that O1
1 ≺ O2

1

and cannot execute operation O1
1. It first undoes operation O2

1, executes O1
1 and

re-executes O2
1. This results in the following history of operations:

H2 =
{
O2

2, O
2
3, O

3
1, O

3
2, O

3
3, O

3
4, O

3
5, O

3
6, O

3
7, O

1
1, O

2
1

}
.

3.7 Integration at Node 3

Lastly, Node 3 receives and integrates operations O2
1..3 from Node 2, without

executing O2
2 and O2

3. Then, it receives O1
1 from Node 1, which conflicts with

operation O2
1, as in the other nodes. The very same precedent relation determines

that O1
1 ≺ O2

1 and operation O1
1 cannot be executed. Thus, Node 3 first undoes

operation O2
1, and then executes O1

1 and re-executes O2
1, resulting in the following

history of operations:

H3 =
{
O3

1, O
3
2, O

3
3, O

3
4, O

3
5, O

3
6, O

3
7, O

3
8, O

3
9, O

1
1, O

2
1

}
.

3.8 Discussion

After integration, all three nodes have equivalent replicas of the same shared
resources, all three local histories are equivalent (H1 ≡ H2 ≡ H3), ensuring
convergence and intention preservation. The integration algorithm ensures that
in all nodes, the only pair of conflictual operations, (O1

1, O
2
1), is executed in the

same sequence, i. e., in all nodes O1
1 → O2

1.
If Node 1 is not satisfied with the name of Vertex a and renames it again,

creating operation O1
2 = set(a,#name, “A1”), this operation is broadcast and

executed on the other nodes without conflicts. Indeed, since both operations
(O1

1, O
2
1) belong to the original context of O1

2, i. e., O1
2 depends on O1

1 and on O2
1

(Definition 3).

4 Prototype Implementation

To validate the integration algorithm, we develop a prototype in Java (v. 1.8),
based on EMF (v. 2.12). While the algorithm could be implemented in other lan-
guages and other modeling frameworks, we choose EMF to benefit from resource

Model Consistency for Distributed Collaborative Modeling 207

management and the change notification framework. We use the distributed hash
table TomP2P DHT [5] to implement the distributed shared resource registry
and the HornetQ messaging system [11] to broadcast change messages. The ini-
tial validation of the prototype uses PeerUnit [1], a distributed test architecture.

In this section, we present the main design and implementation choices
adopted for the prototype. The source code is available on GitHub1.

4.1 Identities

In EMF, types and features are identified by integer numbers, associated to a
package (EPackage). A package is a Façade [10] for the generated underlying
model. It uses a namespace URI, originated from the source Ecore model, as
identity. Thus, types (and features) can be identified by a URI and one (or two)
integers. Similarly to packages, instances also use a URI as an identity, when no
indentity attribute exists.

While using URI as identities ensures their unicity, URI are long strings
which are not adapted for network message exchanges. To avoid this problem
and use more efficient identities, we introduce a distributed version of the package
registry. This class is basically a map that allows retrieving packages from its Id
and an Id from the package URI. The shared resource class is also a map that
allows retrieving instances from their Id. Figure 2 sketches these two classes.

Fig. 2. Distributed registry

To ensure the unicity of an instance Id, we adopt the high-low strategy [2].
The identity of an instance is then the Id of the shared resource it is attached to
(high part) and an unique identifier within this resource (low part). This same
strategy is used for types and features. Figure 3 sketches these identities and
their relationships.

We use EMF adapters to associate an oid to instances when they are attached
to a shared resource, avoiding the modification of the different EObject imple-
mentations.
1 https://github.com/sunye/model-consistency.

https://github.com/sunye/model-consistency

208 G. Sunyé

Fig. 3. Identity datatypes

4.2 Update Notification

The EMF change notification framework is an enhanced implementation of the
Observer and the Adapter design patterns [10], where the adapter class is also
an observer. When any feature of an instance is changed, its adapters receive
informations about the change.

Fig. 4. Update notification

Figure 4 depicts a UML class diagram representing the update notification
mechanism. When an instance is changed, the instance adapter receives a noti-
fication and forwards it to the update manager. The latter stores the change,
which is later broadcast to remote nodes through the Publish-subscribe service.

4.3 Original Context and Precedence

To detect conflicts between operations, each operation is associated to an original
context, i. e., the state of the shared resource when the change was done. We
adopt two different strategies to establish the original context, both based on
the changed feature. For operations on manovalued features, we use the previous
value of the feature. According to this rationale, two operations have the same
original context if the previous values of the concerned feature are the same.

Multivalued features are more complex, since sending all values of a collection
would be too expensive. In this case, hashing the collection values is a more effi-
cient alternative, albeit still expensive. We adopt an alternative strategy, which
consists in keeping track of the node that originated the last change and of the

Model Consistency for Distributed Collaborative Modeling 209

of the number of times the feature has been structurally modified (analogously
to the modCount field in the Java AbstractList class).

To determine the precedence relation between two conflictual operations, we
adopt a straightforward strategy, we use a hash function to calculate the hash
values of the operation values. The operation that has the lower hash value
precedes the operation with the greater one. This strategy works for operations
on mono and multivalued features, except for the move operation, which does
not have any associated value. In this case, we first compare the source indices
and if they are equal, we compare the target indices. An operation with the lower
index precedes the one with the greater index.

5 Related Work

Standard control version systems, e. g., CVS, Subversion, or Git, are not fully
adapted for collaborative modeling. Although models can be exported to XMI, a
textual format that could be managed by a version system, this approach would
not be successful. Indeed, XMI files are generated dynamically and this genera-
tion does not ensure neither that the order of XML tags nor that tag identifica-
tion attributes remain unchanged across different generations. In consequence,
the version system may detect several conflicts on two XMI files representing
the same model.

To avoid these issues, academic and industrial projects developed control
version systems dedicated to models. EMFStore [12] from TU Munich, Model-
CVS [14] from TU Vienna, MetaEdit+ [31], and Modelio Constellation [8] from
Softeam implement RCS’ well-oiled checkout-update-commit pattern for EMF
resources. They consider the semantics of modeling languages and thus can cor-
rectly support model merging and conflict detection. They differ from our tool
by supporting asynchronous cooperative work, while we focus on synchronous
cooperative work.

The EMFStore project also proposes a synchronous real-time extension [15],
based on the Bonjour peer-to-peer protocol. While their project has the same
goal as ours, they adopt a different approach for change integration on nodes,
which is based on Git. More precisely, they use hash values to identify change
operations (packages) and maintain a reference to the parent operation. When
conflicts occur, the tool asks the user to solve them. We believe that our semantic
casual dependency is more pertinent for detecting conflicts and that the use of
local context information instead of hash numbers consumes less resources.

Koshima et al. propose DiCoMEF [13], a collaborative model-editing frame-
work. Similarly to our approach, this tools detects conflicts at a low granularity
level, the update operations. Unlike our approach, operations can be annotated
with multimedia information to help users to manually solve conflicts.

Model repositories such a Morsa [21] and Eclipse CDO [25] use a pessimistic
locking approach as a support for collaborative modeling. In this centralized
approach, users lock the elements they want to edit, preventing others from
accessing these elements. Chechik et al. propose the use of a property locking

210 G. Sunyé

approach for more efficient locking [6]. They use the semantic of the modeling
language to avoid users to introduce changes that could generate inconsistencies
for other users.

Hawk [3] is a distributed model indexing framework for file-based models.
Hawk uses a NoSQL database to store and update continuously metadata infor-
mation from these models, to provide efficient and scalable model querying.

6 Conclusion and Future Work

The model consistency approach presented in this paper is an initial step towards
effective collaborative modeling. However, a large amount of work still remains.
Currently, the approach does not ensure the security of the system and does not
provide a service to send efficiently large resources through the network. This is
an issue when nodes open shared resources with an important initial size.

Additionally, the approach does not consider some syntax rules that are spe-
cific to modeling languages. For instance, if two software modelers are editing
the same UML diagram and create two classes with same name, this would not
be considered as an error, since these classes would have different identities.
However, the diagram would not be valid according to the UML wellformed
rules.

The approach adopts a data consistency algorithm, where changes are small
and conflicts are automatically solved. The approach must be integrated into
existing modeling tools to evaluate the impact of these choices on the usability
of the tools during collaborative modeling. Furthermore, we want to analyze the
impact of these choices when performing a complex sequence of changes, e. g.,
when performing different refactorings on UML models [30].

As future work, we will integrate the approach to NeoEMF [7] and extend
it to provide a distributed repository of models, as well as a service to allow
inter-resource references.

References

1. de Almeida, E.C., Sunyé, G., Le Traon, Y., Valduriez, P.: Testing peer-to-peer
systems. Empirical Softw. Eng. 15(4), 346–379 (2010)

2. Ambler, S.W.: The Object Primer: Agile Model-Driven Development with UML
2.0, 3rd edn. Cambridge University Press, Cambridge (2004)

3. Barmpis, K., Kolovos, D.S.: Towards scalable querying of large-scale models. In:
Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569, pp. 35–50. Springer,
Cham (2014). doi:10.1007/978-3-319-09195-2 3

4. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems.
SIGOPS Oper. Syst. Rev. 21(5), 123–138 (1987). http://doi.acm.org/10.1145/
37499.37515

5. Bocek, T.: Tomp2p a p2p-based high performance key-value pair storage library,
February 2017. https://tomp2p.net/

http://dx.doi.org/10.1007/978-3-319-09195-2_3
http://doi.acm.org/10.1145/37499.37515
http://doi.acm.org/10.1145/37499.37515
https://tomp2p.net/

Model Consistency for Distributed Collaborative Modeling 211

6. Chechik, M., Dalpiaz, F., Debreceni, C., Horkoff, J., Ráth, I., Salay, R., Varró,
D.: Property-based methods for collaborative model development. In: Joint Pro-
ceedings of the 3rd International Workshop on the Globalization Of Modeling
Languages and the 9th International Workshop on Multi-Paradigm Modeling co-
located with ACM/IEEE 18th International Conference on Model Driven Engineer-
ing Languages and Systems, GEMOC+MPM@MoDELS 2015, Ottawa, Canada,
pp. 1–7, 28 September 2015. http://ceur-ws.org/Vol-1511/paper-01.pdf

7. Daniel, G., Sunyé, G., Benelallam, A., Tisi, M., Vernageau, Y., Gómez, A., Cabot,
J.: Neoemf: a multi-database model persistence framework for very large mod-
els. In: Proceedings of the MoDELS 2016 Demo and Poster Sessions co-located
with ACM/IEEE 19th International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS 2016), Saint-Malo, France, pp. 1–7, 2–7 October
2016. http://ceur-ws.org/Vol-1725/demo1.pdf

8. Desfray, P.: Model repositories at the enterprises and systems scale: the modelio
constellation solution. In: 2015 International Conference on Information Systems
Security and Privacy (ICISSP), p. IS-17, February 2015

9. Dirix, M., Muller, A., Aranega, V.: GenMyModel: An Online UML Case Tool.
ECOOP (2013). https://hal.archives-ouvertes.fr/hal-01251417, poster

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley Professional, Reading (1995)

11. Giacomelli, P.: Hornetq Messaging Developer’s Guide. Packt Publishing Ltd.
(2012)

12. Koegel, M., Helming, J.: Emfstore: a model repository for EMF models. In: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing, ICSE 2010, vol. 2, Cape Town, South Africa, pp. 307–308, 1–8 May 2010.
http://doi.acm.org/10.1145/1810295.1810364

13. Koshima, A.A., Englebert, V.: Collaborative editing of emf/ecore meta-models and
models: conflict detection, reconciliation, and merging in dicomef. Sci. Comput.
Program. 113, 3–28 (2015). http://dx.doi.org/10.1016/j.scico.2015.07.004

14. Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzegger, W.,
Schwinger, W.: Towards a semantic infrastructure supporting model-based tool
integration. In: Proceedings of the 2006 International Workshop on Global Inte-
grated Model Management, GaMMa 2006, pp. 43–46. ACM, New York (2006).
http://doi.acm.org/10.1145/1138304.1138314

15. Krusche, S., Brügge, B.: Model-based real-time synchronization. Softwaretechnik-
Trends 34(2) (2014). http://pi.informatik.uni-siegen.de/gi/stt/34 2/index.html

16. Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing high availabil-
ity using lazy replication. ACM Trans. Comput. Syst. 10(4), 360–391 (1992).
http://doi.acm.org/10.1145/138873.138877

17. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Com-
mun. ACM 21(7), 558–565 (1978). http://doi.acm.org/10.1145/359545.359563

18. Li, R., Li, D.: Commutativity-based concurrency control in groupware. In: Zhang,
T. (ed.) Proceedings of the 1st International Conference on Collaborative Comput-
ing: Networking, Applications and Worksharing, San Jose, CA, USA. IEEE Com-
puter Society/ICST, 19–21 December 2005. http://dx.doi.org/10.1109/COLCOM.
2005.1651251

19. Matula, M.: Netbeans metadata repository. Technical report, Sun Microsystems
(2003)

http://ceur-ws.org/Vol-1511/paper-01.pdf
http://ceur-ws.org/Vol-1725/demo1.pdf
https://hal.archives-ouvertes.fr/hal-01251417
http://doi.acm.org/10.1145/1810295.1810364
http://dx.doi.org/10.1016/j.scico.2015.07.004
http://doi.acm.org/10.1145/1138304.1138314
http://pi.informatik.uni-siegen.de/gi/stt/34_2/index.html
http://doi.acm.org/10.1145/138873.138877
http://doi.acm.org/10.1145/359545.359563
http://dx.doi.org/10.1109/COLCOM.2005.1651251
http://dx.doi.org/10.1109/COLCOM.2005.1651251

212 G. Sunyé

20. Oster, G., Urso, P., Molli, P., Imine, A.: Data consistency for P2P collaborative
editing. In: Hinds, P.J., Martin, D. (eds.) Proceedings of the 2006 ACM Confer-
ence on Computer Supported Cooperative Work, CSCW 2006, Banff, Alberta,
Canada, pp. 259–268. ACM, 4–8 November 2006. http://doi.acm.org/10.1145/
1180875.1180916

21. Pagán, J.E., Cuadrado, J.S., Molina, J.G.: Morsa: a scalable approach for per-
sisting and accessing large models. In: Proceedings of the 14th MoDELS Confer-
ence, Wellington, New Zealand, pp. 77–92 (2011). http://dl.acm.org/citation.cfm?
id=2050655.2050665

22. Plotnikov, C.: Novosoft metadata framework and uml library (2002). http://nsuml.
sourceforge.net

23. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM 2001: Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations, pp. 161–172. ACM, New York (2001)

24. Lucidchart Software, March 2017. https://www.lucidchart.com
25. Steinberg, D.: Fundamentals of the eclipse modeling framework. Tutorial presented

at EclipseCon, March 2008. http://www.eclipsecon.org/2008/index1000.html
26. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF - Eclipse Modeling

Framework. The Eclipse series, 2nd edn. Pearson Education, London (2008)
27. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a

scalable peer-to-peer lookup service for internet applications. In: SIGCOMM 2001:
Proceedings of the 2001 conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pp. 149–160. ACM, New York (2001)

28. Sun, C., Ellis, C.A.: Operational transformation in real-time group editors: issues,
algorithms, and achievements. In: CSCW 1998, Proceedings of the ACM 1998
Conference on Computer Supported Cooperative Work, Seattle, WA, USA, pp.
59–68, 14–18 November 1998. http://doi.acm.org/10.1145/289444.289469

29. Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving convergence,
causality preservation, and intention preservation in real-time cooperative
editing systems. ACM Trans. Comput. Hum. Interact. 5(1), 63–108 (1998).
http://doi.acm.org/10.1145/274444.274447

30. Sunyé, G., Pollet, D., Traon, Y.L., Jézéquel, J.: Refactoring UML models. In: Pro-
ceedings of the 4th International Conference on UML 2001 - The Unified Modeling
Language, Modeling Languages, Concepts, and Tools, Toronto, Canada, pp. 134–
148, 1–5 October 2001. http://dx.doi.org/10.1007/3-540-45441-1 11

31. Tolvanen, J.P.: Metaedit+ for collaborative language engineering and language use
(tool demo). In: Proceedings of the 2016 ACM SIGPLAN International Conference
on Software Language Engineering, pp. 41–45. ACM (2016)

http://doi.acm.org/10.1145/1180875.1180916
http://doi.acm.org/10.1145/1180875.1180916
http://dl.acm.org/citation.cfm?id=2050655.2050665
http://dl.acm.org/citation.cfm?id=2050655.2050665
http://nsuml.sourceforge.net
http://nsuml.sourceforge.net
https://www.lucidchart.com
http://www.eclipsecon.org/2008/index1000.html
http://doi.acm.org/10.1145/289444.289469
http://doi.acm.org/10.1145/274444.274447
http://dx.doi.org/10.1007/3-540-45441-1_11

Model Verification and Analysis

Model-Based Privacy Analysis
in Industrial Ecosystems

Amir Shayan Ahmadian1(B), Daniel Strüber1, Volker Riediger1,
and Jan Jürjens1,2

1 Institute for Software Technology,
University of Koblenz-Landau, Koblenz, Germany
{ahmadian,strueber,riediger}@uni-koblenz.de

2 Fraunhofer-Institute for Software and Systems Engineering ISST,
Dortmund, Germany

http://jan.jurjens.de

Abstract. Article 25 of Regulation (EU) 2016/679 on the protection of
natural persons with regard to the processing and the free movement of
personal data, refers to data protection by design and by default. Pri-
vacy and data protection by design implies that IT systems need to be
adapted or focused to technically support privacy and data protection.
To this end, we need to verify whether security and privacy are supported
by a system, or any change in the design of the system is required. In this
paper, we provide a model-based privacy analysis approach to analyze
IT systems that provide IT services to service customers. An IT service
may rely on different enterprises to process the data that is provided by
service customers. Therefore, our approach is modular in the sense that it
analyzes the system design of each enterprise individually. The approach
is based on the four privacy fundamental elements, namely purpose, vis-
ibility, granularity, and retention. We present an implementation of the
approach based on the CARiSMA tool. To evaluate our approach, we
apply it to an industrial case study.

1 Introduction

A main problem for IT service providers is to avoid data breaches and provide
data protection. According to a global survey [1], 88% of people are concerned
about who can access their private data. In Germany, 72% of people expect the
government to keep out of their personal data.

Article 25 of Regulation (EU) 2016/679 refers to data protection by design
and by default [3]. This requires that service providers verify if the required pri-
vacy levels are fulfilled according to legal requirements and customers’ privacy
preferences. Furthermore, they must implement appropriate technical and orga-
nizational measures in an effective manner, and integrate proper safeguards into
the processing to support such requirements.

There exist a range of privacy enhancing technologies (PETs) [6,14–16,23],
which provide strong privacy guarantees in different domains. However, accord-
ing to Spiekermann [28,29], privacy and data protection by design and by default
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 215–231, 2017.
DOI: 10.1007/978-3-319-61482-3 13

216 A.S. Ahmadian et al.

are powerful terms, and include more than the process of uptaking a few PETs.
Cavoukian [10], who first introduced the term privacy by design (PbD), defines
PbD as the idea to integrate privacy and data protection principles in a system’s
design, and to recognize privacy in an enterprise’s management processes.

Based on these considerations, PbD implies the design of a system must be
analyzed with regard to privacy preferences and, where necessary, be improved
to technically support privacy and data protection. Article 5 of Regulation (EU)
2016/679 stipulates six principles for the processing of personal data: Personal
data must be (a) processed lawfully, (b) collected for specified and legitimate
purposes, (c) adequate and limited to what is necessary regarding the purposes
(granularity), (d) accurate and kept up to date, (e) kept no longer than necessary
(retention), and (f) protected against unauthorized processing (visibility). These
principles correspond to the key elements of privacy introduced in Barker et al.’s
seminal taxonomy [7]: purpose, visibility, granularity, and retention.

System-level privacy analysis is particularly challenging in today’s digital soci-
ety, where industrial ecosystems play a key role. Specifically, an enterprise may
depend on or cooperate with other enterprises to provide an IT service to a ser-
vice customer. For instance, an enterprise as a service customer of an insurance
enterprise may send personal data of its employees to the insurance enterprise to
issue health insurance contracts for them. The insurance enterprise must assess
the solvency of the employees before issuing an insurance contract. Therefore,
the personal data of each employee will be transmitted to a financial institute for
the relevant assessments. Performing a privacy analysis on such a system’s design
requires analyzing the relevant components of the insurance enterprise, and the
financial institute; and the respective interfaces between the components. To sup-
port cases where the system design of the relevant enterprises and components are
not entirely available, each enterprise must be analyzed individually.

In this paper, we investigate the following research questions: RQ1: How can
a modular privacy analysis be performed on the system’s design of the IT services
in industrial ecosystems, where an IT service is the result of cooperation of differ-
ent service providers? RQ2: How can be analyzed if the key elements of privacy
are supported by the systems’ design of services that process personal data?

To address these questions, we present a model-based approach to support
the analysis of the system’s design concerning privacy. Using the system models,
the privacy requirements are considered from early stages of the system’s design
and the development process. Our approach is modular in the sense that it
analyzes the system design of each enterprise separately. The approach is based
on the fundamental taxonomy of the four privacy key elements [7]. We integrated
it into the CARiSMA tool [2], which was originally designed to make a security
analysis based on the UMLsec profile available to developers [21] and is now
extended to address privacy.

The paper is organized as follows. In Sect. 2, the necessary background is
provided. In Sect. 3, we describe our approach on model-based privacy analysis.
In Sect. 4, we evaluate our approach using a case study. In Sect. 5, we discuss
related work. Finally, in Sect. 6, we conclude.

Model-Based Privacy Analysis in Industrial Ecosystems 217

2 Background

Below, we present the necessary background for this paper.

2.1 The Four Key Elements of Privacy

In what follows, we briefly describe the four fundamental privacy elements pre-
sented in [7]: purpose, visibility, granularity, and retention.

– Purpose is the basic element of data privacy. It indicates the authorized rea-
sons to access data [13]. Service providers must record and track the purposes
for which the data is collected and is processed.

– Visibility indicates who is allowed to access or use the data provided for an
authorized purpose. In other words, visibility controls the number and kind
of users who can access the data.

– Granularity refers to characteristics of data that could be used to facilitate
proper use of the data, where there exists different valid accesses for various
purposes. In other words, data granularity specifies how much precision is
provided in response a query. This is important when the service customer
requires the service provider to provide personal data to a third party [13].

– Retention refers to the need to restrict access or remove the data after they
have been used for the intended purposes.

2.2 Model-Based Security Analysis Using UMLsec

UMLsec [21] provides a model-based approach to develop and analyze security
critical software systems, in which security requirements such as confidentiality,
integrity, and availability are expressed within UML diagrams [24]. UMLsec is
provided as an UML profile, using the standard UML extension mechanism. In
UMLsec, different stereotypes and tags are used to annotate UML diagrams with
security properties. The CARiSMA tool [2] performs the corresponding security
analysis for security properties such as secure information flow [18] and has
been applied to various industrial applications (e.g. [19]). Some of the analysis
techniques have also been ported to the code analysis level [12]. UMLsec does
not support the analysis of a system concerning privacy.

3 Model-Based Privacy Analysis

The terms that are used in this paper are based on the terms and definitions of
Regulation (EU) 2016/679. According to this Regulation, a data controller deter-
mines the purposes and the means for the processing of personal data (privacy
preferences). In our work, a service customer is a data controller, who provides
personal data and specifies the privacy preferences of these data. A data proces-
sor processes personal data on behalf of the controller. When we talk of service
providers, we mean either a data processor, who directly processes the provided

218 A.S. Ahmadian et al.

Fig. 1. Model-based privacy analysis by exploiting PLAs.

data, or a data controller, who transfers to other data processors the data and
their privacy preferences specified by the service customer.

The work presented in this paper is a part of our ongoing research [5] to
provide a method on privacy analysis of IT systems by exploiting privacy level
agreements (PLAs). PLAs are appendixes to service level agreements, and offer
a structured way to communicate the level of personal data protection provided
by a service providers to service customers. PLAs are based on EU personal data
protection and privacy legal requirements [11]. Figure 1 presents the overview of
this privacy analysis method. In [5], we provided a meta-model formalizing PLAs
to specify privacy preferences. In this paper (as it is highlighted in Fig. 1), given
privacy preferences (contained in a PLA) and system model, we introduce an
approach to model-based privacy analysis based on the four key privacy elements.
Following the privacy analysis, the analysis results are evaluated. This evaluation
is out of scope of this paper. The results of this evaluation are: (I) Privacy-centric
questions, which are used to define privacy questionnaires to collect additional
feedback from data controllers on privacy preferences. (II) Privacy measures to
protect personal data (adheres to PLA outline, Sect. 4). (III) Conflicts between
the system model and privacy preferences.

3.1 The Modular Privacy Analysis

The scenario introduced in Sect. 1 is illustrated in more detail in Fig. 2. Car
manufacturing enterprise A wants to issue a health insurance for its employees
and, therefore, sends personal data of the employees to insurance enterprise B.
Together with the personal data, enterprise A specifies the privacy preferences.
For instance, it may specify that enterprise B is not authorized to use the credit
card number and the birthdate of an employee for marketing purposes, and that
it must delete these information five years after the termination of health insur-
ance contracts. Such privacy preferences are specified in PLA-x, which is con-
cluded between the car manufacturing enterprise and the insurance enterprise.
To issue a health insurance for an employee, the insurance enterprise needs to
assess the financial status of the employee and therefore, sends the personal
data of the employee to enterprise C (a financial institute). Enterprise A is
not aware of this data transmission. A PLA must be concluded between the
insurance enterprise and the financial institute (PLA-y), in which the privacy
preferences of enterprise A are included. Similarly, the financial institute may

Model-Based Privacy Analysis in Industrial Ecosystems 219

Fig. 2. An illustration of an industrial ecosystem containing four modules.

send the personal data of the employee to a tax institute (enterprise D) to collect
some information about the employee.

To perform a privacy analysis on such a system design, where several enter-
prises process personal data, we need to perform a modular analysis, in which
each enterprise and its corresponding interfaces are analyzed individually. The
reasons to perform modular privacy analysis are: (I) PLAs are needed as input to
privacy analysis. Since PLA-y might differ from PLA-x and contain additional
privacy preferences, the financial institute (enterprise C) must be analyzed indi-
vidually. (II) System models of all data processors and data controllers may not
be available. In case that the system model for one of the involved enterprises is
not available, a privacy analysis is still desirable. In the scenario, if the system
model of the financial institute is not available, a privacy analysis on the insur-
ance enterprise is still possible. Since the privacy preferences of enterprise A are
contained in PLA-y, at some point a privacy analysis on the financial institute
may be performed (when the system model is available).

Definition 1 (Module). Amodule is a data processor or a data controller together
with its all interfaces to other recipients, where according to Regulation (EU)
2016/679 a recipient is a controller, processor, or data subject (personal data
owner), to which personal data are disclosed.

Per Definition 1, Fig. 2 contains four modules. Module A is a data controller,
i.e. module A acts as a service customer that provides personal data and specifies
the privacy preferences. Modules B, C, and D are recipients and cooperate in
the processing of the data provided by module A. Therefore, these three modules
are analyzed separately to verify if they support the privacy preferences.

According to Definition 1, this analysis needs to address the interfaces
between the involved modules. In the right part of Fig. 2, the structures of mod-
ules B and C are specified using two UML component diagrams, together with

220 A.S. Ahmadian et al.

the respective provided interfaces. The interface provided by module C and used
by module B is annotated with �recipient� specifying that the personal data
is transferred from module B to module C. Later, we will introduce the pri-
vacy profile that is used to annotate UML diagrams with annotations such as
�recipient�.

3.2 Model-Based Privacy Analysis Based on the Four Fundamental
Privacy Elements

Different UML diagrams may be used to specify the structure and behavior of a
system. Figure 3 shows an activity describing the processing of credit card num-
ber within the insurance scenario. The activity is annotated with �dataPrivacy�
{creditCardNo}, specifying that a piece of sensitive data (creditCardNo) is
processed in this activity. According to this activity, the sensitive data will be
stored in a database (storeNumber), and will be sent to a financial institute (send-
ToBank) to check the solvency of the data subject (verifySolvency).

Fig. 3. Design model excerpt (process credit card no. Activity) which highlights the
need to perform a privacy analysis.

Based on the four privacy elements, we need to analyze the activity to verify if
(I) the creditCardNo is only processed for the purposes that are mentioned in the
privacy preferences, (II) access to the sensitive data is restricted to authorized
persons, (III) the granularity level is respected when sensitive data are sent to
the bank, and (IV) deletion or restriction mechanisms are in place to ensure that
sensitive data stored in a database, such as creditCardNo, are eventually deleted
or restricted. To this end, we propose four corresponding privacy checks. In what
follows, first we give a high-level description of these checks:

– Purpose-check: First, this check analyses the system’s behavior and struc-
ture to identify the system operations that process personal data, and their
objectives (purposes). Moreover, it determines if operations that process per-
sonal data belong to different systems. Finally, the objectives of the operations
are compared with the purposes specified in the privacy preferences by the
data controller.

– Visibility-check: The check identifies all the data recipients, and it verifies if
they are authorized to process personal data.Moreover, concerning onemodule,
this check verifies who is allowed to access personal data. This could be verified
by identifying all owners of system operations that process personal data.

Model-Based Privacy Analysis in Industrial Ecosystems 221

– Granularity-check: According to [13], granularity is important when per-
sonal data are disclosed to other recipients. Based on the interfaces to other
recipients, this check verifies if the granularity level is respected by data trans-
missions.

– Retention-check: In the first step, the check verifies if appropriate opera-
tions exist to restrict or delete the personal data. Moreover, the check ana-
lyzes the system behavior to determine if such an operation will be eventually
applied.

The annotations used in Fig. 3 enable these privacy checks. In the following
section, we introduce a complete list of these annotations. Since the systems are
modeled using UML, we use a UML extension mechanism to specify them.

3.3 UML Privacy Extension

As a basis to implement the privacy checks described in Sect. 3.2, we introduce
two UML extensions. First, the privacy profile, allowing elements in UML mod-
els to be annotated with privacy-specific information. Second, the rabac profile,
allowing the generation and enforcement of access control policies for such ele-
ments, using the role- and attribute based access control model (RABAC, [17]).
The rabac profile is an extension of UMLsec’s rbac profile [21]. On top of rbac’s
role and right tags, rabac allows a refined control management using an attribut-
eFilter tag. In nutshell, by using attributes, there is no need to increase the
number of roles in a system in many cases, and the problem of role explosion
will be prevented. We use rabac to define the visibility check, introducing it as a
separate profile, since it is not specific to privacy. The complete list of stereotypes
together with their tags is provided in Fig. 4.

Stereotype Tags UML Element Description

Privacy profile

�dataPrivacy� data Behavior enfoces privacy analysis
�sensitiveData� NamedElement personal data [3]
�recipient� enterprise NamedElement data recipient [3]
�granularity� level Parameter the granularity level
�objective� purpose BehavioralFeature purposes of operations

rabac profile

�abac� roles, rights, Package enforces role-attribute-
attributeFilter based access control

�abacAttribute� name Operation rabac for an attribute
�abacRequire� accessRight, filter Operation rabac for an operation

Fig. 4. Privacy and rabac profiles.

222 A.S. Ahmadian et al.

Privacy Profile. The terms and names used for the stereotypes and the tags
comply with the terms and the definitions of Regulation (EU) 2016/679 [3].

�dataPrivacy�: Behavioral specification mechanism may be annotated with
this stereotype, specifying the existence of personal data in the behavior which
is modeled using the corresponding diagram. Tag data specifies a set of personal
data.
�sensitiveData�: A NamedElement may be annotated with this stereotype
specifying the element is or contains sensitive data. The definition of sensitive
data complies with the definition of personal data provided in Article 4 (1) of
Regulation (EU) 2016/679 and particularly adheres to the definition of special
categories of personal data provided in Article 9. Additionally, and regarding the
controller’s preferences, a piece of data that must not be revealed or disclosed
could be also annotated with this stereotype.
�recipient�: A NamedElement may be annotated with this stereotype recipi-
ent stating that the element is a controller, or a processor, to which the sensitive
data are disclosed.
�granularity�: A Parameter may be annotated with this stereotype together
with its tag level specifying the level of the precision of data provided in response
a query. In other words, granularity is assumed as a new attribute for a para-
meter, where a parameter [24] is an argument used to pass information into or
out of an invocation of a behavior.
�objective�: A BehavioralFeature such as an Operation may be annotated
with this stereotype together with its tag {purpose} specifying the purposes of
the operation (BehavioralFeature). Tag {purpose} specifies a set of purposes for
an operation.

<<sensi veData>>
creditCardNo. receiveNumber

storeNumber <<dataStore>>
Database

sendToBank
(InsuFinance::)

Process credit card no.
<<dataPrivacy>> {creditCardNo} <<sensi veData>>

Credit card no.

InsuFinance
SendToBank(creditCardNo<<granularity>>{specific} : String)
<<objec ve>> {assessment}
<<abacRequire>> {filter=loca on} {accessRight=sendToRecipient}

<<recipient>> {bank}
verifySolvency

Package InsuPkg <<abac>> {(Employee, FinDeptManager)} {(FinDeptManager, sendToRecipient)}

Fig. 5. Design model excerpt annotated with the privacy and rabac profiles.

Figure 5 shows an excerpt from the activity provided in Fig. 3, and a class
from a class diagram of the insurance system. For space reasons, we only show the
relevant actions and classes. The annotation �dataPrivacy� {creditCardNo}
specifies that a piece of personal data (creditCardNo) is processed in this
activity. �recipient� {bank} specifies that the verifySolvency Action is
performed not in the insurance, but in the recipient bank. Based on the

Model-Based Privacy Analysis in Industrial Ecosystems 223

annotation �granularity� {specific}, the granularity-check must analyze the
parameters that are annotated with �sensitiveData� concerning the granu-
larity level specific. The sendToBank Action is a CallOperationAction, i.e., it
invokes an Operation as specified in the InsuFinance Class. This operation is
annotated with �objective� {assessment} specifying assessment as the pur-
pose of the operation and, transitively, the purpose of the sendToBank Action.

rabac Profile. rabac enables the verification of visibility requirements on per-
sonal data. For each operation of a system, a set of data subjects with different
roles, who are authorized to process personal data, is defined. Throughout the
analysis, this information is compared to the provided privacy preferences. In
what follows, the stereotypes of rabac together with their tags are explained:

�abac�: A Package is annotated with this stereotype and its tags, namely
roles, rights, and attributeFilter to specify role-attribute-based access control is
enforced in the system model. The values of roles and rights are tuples of the
following form: (dataSubject, associatedRole), and (associatedRole, accessRight)
respectively. The former one links a role to a data subject, while the later one
associate a right to a role (similar to rbac [21]). Tag attributeFilter specifies a
set of attributes (defined in classes). Based on these attributes, it is possible to
define access rights.
�abacAttribute�: An Operation may be annotated with this stereotype, with
tag name to specify a specific attribute with a corresponding value to invoke the
operation.
�abacRequire�: An Operation or a Transition may be annotated with abacRe-
quire with tags filter, and accessRight to specify the respective attribute and the
access right to invoke the operation. Tag accessRight enables on to identify the
associated role and data subject that are authorized to perform the operation.

In Fig. 5, Operation sendToBank is annotated as follows: �abacRequire�
{filter = location} {accessRight = sendToRecipient}. This means that
the accessRight for this operation is sendToRecipient. Considering �abac�, the
associated role for this accessRight is FinDeptManager, who is allowed to invoke
the sendToBank Operation.

In the following section, we explain how theses stereotypes are used to per-
form a privacy analysis.

3.4 Privacy Checks

Generally, we explain the privacy checks using UML Activities (for detailed
information on Activities see [24]). Before we explain the privacy checks, we
need to define the privacy preferences to be specified by a data controller who
provides the personal data.

Definition 2 (Privacy Preferences). Let P be a partially ordered set of all
defined purposes, V be a partially ordered set of all subjects to whom the data is

224 A.S. Ahmadian et al.

visible, G be a set of all possible granularity levels, and R be a set of retentions
conditions. The privacy preferences of a piece of personal data pd is defined as
a tuple:

PrPpd = (P ′, V ′, g, r)

where P ′ ⊆ P , V ′ ⊆ V , g ∈ G, and r ∈ R.

According to Definition 2, purpose and data subject sets are defined as par-
tially ordered sets. This enables us to organize these two sets in lattice structures,
where each node presents a purpose or a data subject and each edge represents a
hierarchical relation between two purposes or data subjects where they subsume
each other, i.e. one purpose or data subject is more specific than the other. For
instance, concerning visibility, in a lattice which organizes the data subjects,
marketing department and sales department are the descendent (children) of
business department, and are more specific (for more information, see [13]).

Purpose-check. The upper part of Fig. 6 shows an excerpt from a design
model. The lower part demonstrates two lattices, namely a purpose-lattice, and
a visibility-lattice (simplified for space reasons). The purpose-lattice presents the
set of all possible purposes in the system. The parts shown with dashed lines spec-
ify the privacy preferences for creditCardNo, which are specified by the data con-
troller (car manufacturing enterprise). For instance, in the purpose-lattice, the
creditCardNo may be processed for purpose assessment and its child purposes.

sendToBank
(InsuFinance::)creditCardNo.

InsuFinance

sendToBank(creditCardNo : String)
<<objec ve>> {assessment}
<<abacRequire>> {filter=loca on}
{accessRight=sendToRecipient}

CallBehaviorVerifySolvency

verifyAccountType
(Account::)creditCardNo.

Package InsuPkg

<<sensi veData>>

Account

verifyAccountType(creditCardNo : String)
<<objec ve>> {assessment, marke ng}

<<abac>> {(Employee, FinDeptManager)}
{(FinDeptManager, sendToRecipient)}

<<sensi veData>>

<<dataPrivacy>> {creditCardNo.}

A B

owner

supDept BusiDeptEmpl

FinDeptMang SaleDeptMang

Visibility la ce

issue

marke ng invoice

assessment billing

Purpose la ce

FinDeptEmpl SaleDeptEmpl

Fig. 6. Design model excerpt and lattices. Purpose, and visibility-checks use the high-
lighted stereotypes.

Model-Based Privacy Analysis in Industrial Ecosystems 225

Based on the purpose-lattice and the purposes defined in the provided privacy
preferences, the purpose-check for each action of the activity processing a piece
of personal data (annotated with �sensitiveData�) identifies the objective.
According to the specification of Activities [24], two cases may happen:

(I) For a CallOperationAction (Fig. 6, part A), the corresponding oper-
ation in the class diagram is directly identified. Then the purpose-check com-
pares the objectives of the operation to the privacy preferences (purpose-lattice).
For instance, in our example, assessment is specified as the purpose for the
sendToBank Operation. Since assessment is included in the privacy preferences
(purpose-lattice) as an authorized purpose to process creditCardNo, the check is
successful.

(II) For a CallBehaviorAction (Fig. 6, part B), the activity invoked by the
CallBehaviorAction is analyzed. Similar to case (I), if the actions of this activity
are CallOperationActions, the objectives of the corresponding operations are
identified and compared with the privacy preferences. For instance, in Fig. 6,
a mentioned purpose of the verifyAccountType Operation is marketing, which
is not specified as a valid purpose in the privacy preferences. Therefore, the
purpose-check is not successful.

Visibility-check. Similar to purpose-check, the visibility-check assumes a lat-
tice such as the one in Fig. 6. The visibility-lattice presents all possible data sub-
jects to whom creditCardNo may possibly be disclosed. The dashed parts specify
the authorized data subjects according to the privacy preferences. Considering
the annotations � abacRequire � {accessRight = sendToRecipient} and
�abac� {(FinDeptMang, sendToRecipient)}, the visibility-check identifies
that the model specifies FinDeptMang (finance department manager) processes
creditCardNo. Since FinDeptMang is authorized to process creditCardNo in the
privacy preferences, the check is successful.

Granularity-check. The supported granularity levels are none, existential, par-
tial, and specific. Obviously, none means that nothing about a piece of personal
data may be revealed in response to a query. Existential means that a query
may only be answered by specifying if a piece of personal data exists or not.
Partial means that a piece of data is revealed only partially. For instance, for
numeric data, a range of numbers is specified. Specific means that a piece of data
is precisely provided in response to a query.

Granularity is important when a piece of personal data is transferred to a
recipient, that is, another enterprise. In to Fig. 7, the granularity-check first

sendToBank
(InsuFinance::)

InsuFinance
sendToBank(creditCardNo <<granularity>> {specific} : String)

<<recipient>> {bank}
verifySolvency

Fig. 7. Design model excerpt. The granularity-check uses the highlighted stereotypes.

226 A.S. Ahmadian et al.

identifies if a piece of personal data is transferred to another enterprise for
processing, using the �sensitiveData� and �recipient� annotations. After-
wards, similar to the purpose-check, the corresponding Operation is identified
by verifying the action and the respective class. Using the �granularity� spec-
ified for the parameters, the level of granularity used by the operation will be
ascertained. The specified level will be compared to the granularity level given
in the privacy preferences. For instance, in Fig. 7, if we assume the granularity
level specified by the data controller in the privacy preferences is partial, the
check fails.

Retention-check. The retention-check verifies that whenever a piece of per-
sonal data is stored in a database, an action exists to eventually restrict access
to or delete this data. According to the specification of Activites [24], a node
annotated with �dataStore� acts as a database holding object tokens.

The retention-check verifies if in an activity a piece of personal data (an
object annotated with �sensitiveData�) is stored in a node annotated with
�dataStore�. Afterwards, the retention-check verifies if a selection on the
�dataStore� node exists, which retrieves the piece of personal data, and sub-
sequently an action with restrict or delete purpose exists that restricts or deletes
the piece of personal data.

<<sensi veData>>
creditCardNo. receiveNumber storeNumber

<<dataStore>>
Database

restrcitSensData
(InsuFinance::)

Process credit card no.
<<dataPrivacy>> {creditCardNo.} <<selec on>>

creditCardNo

InsuFinance
restrictSensData(creditCardNo : String)
<<objec ve>> {delete, restrict}

Fig. 8. Design model excerpt. Retention-check can be executed using the highlighted
stereotypes.

For instance, in Fig. 8, creditCardNo is stored in a database. This implies
that a selection shall retrieve creditCardNo and an action of purpose deletes or
restricts shall process creditCardNo before the activity terminates. If such an
action does not exist, then the retention-check is not successful. Similar to the
purpose-check, by mapping the action to a respective operation in a class, its
purposes are identified.

4 Case Study

To evaluate our approach, we applied it to an industrial case study, namely
birth certificate registration scenario in Municipality of Athens (MoA). MoA is a
public administration (PA) in Athens. This case study is one of the case studies

Model-Based Privacy Analysis in Industrial Ecosystems 227

Privacy
Assessment

Privacy
Requirement

Privacy Analysis

CARiSMA

legends
VisiOn Privacy Pla orm

Ci zen

Tool

Component

Data flow

Fig. 9. An excerpt from the architecture of VisiOn Privacy Platform (VPP)

of VisiOn research project [4]. In this project a privacy platform to evaluate and
analyze privacy levels of a PA system, and generate a privacy level agreement
between a citizen and a PA to enforce privacy policies, is developed.

In Fig. 9, an excerpt from the architecture of VisiOn Privacy Platform (VPP)
is presented. Three components of VPP architecture are represented. (I) Privacy
assessment, providing a questionnaire to obtain the privacy preferences of a cit-
izen, (II) Privacy requirement, determining privacy requirements based on the
preferences of a citizen. (III) Privacy analysis, analyzing the system model of
a PA considering privacy requirements. Our model-based privacy analysis app-
roach is implemented and integrated into the privacy analysis component. The
implementation of our approach is based on the CARiSMA tool [2]. CARiSMA
enables the developers and IT system designers to annotate UML diagrams with
security-specific information, using UMLsec, and privacy-specific information,
using the profiles introduced in this work. The annotated diagrams can be ana-
lyzed using privacy and security checks.

MoA is in the process of developing a new system called MACS. MACS shall
provide different online services to citizens, such as issuing a birth certificate. To
provide such services, MoA requires citizen’s personal data such as their Registry
Number of Social Insurance (RNSI). Moreover, MoA may cooperate with other
public administrations such as central tax institute and financial institutes.

In our case study, we model the birth certificate registration using a selection
of UML diagrams. Our privacy and rabac profiles are used to annotate these
diagrams with privacy-specific stereotypes. Figure 10 illustrates the annotation
of an operation with the �abacRequire� stereotype from the rabac profile, as
facilitated by the Eclipse CARiSMA perspective.

updateProfile
(Ci zenReg::)

Ci zenReg
updateProfile(regNumSI : String)
<<abacRequire>> {accessRight=modify}

updateAppStatus

Fig. 10. Excerpts from class diagram and activity diagram of birth certificate registra-
tion scenario, together with the property view of the CARiSMA perspective in Eclipse.

228 A.S. Ahmadian et al.

The four privacy checks, as implemented in CARiSMA, analyze the system
model concerning the privacy preferences of a citizen. If a check is not successful,
it will generate an analysis report. For instance, in Fig. 10, if accessRight modify
is defined as an accessRight for MACSadministrator, but a citizen specified in the
questionnaire that only department manager (MACSDeptManager) is allowed to
process RegNumSI, the visibility-check is not successful, and a report specifying
the violation and its reasons is generated. Such reports later will be evaluated
and may result in the application of an appropriate privacy-preserving measure,
or the generation of privacy-centric questions.

In this case study, all the relevant classes of the MACS system together with
corresponding activities to describe the behavior of the system are modeled.
Moreover, the interfaces and relevant classes and related activities of a bank,
which is responsible for approving an invoice issued by MACS, are modeled.

Results of this case study include that our approach is successfully applied to
a software system in industrial ecosystem with complex structure and behavior.
More specifically, concerning the research questions investigated in this work,
results include the following: RQ1: We defined the term module in industrial
ecosystems concerning the system’s design of IT services, and we introduced
modular privacy analysis in such ecosystems, in the sense that enterprises that
cooperates with each other to process personal data are analyzed separately.
RQ2: We introduced a UML privacy extension (the privacy profile, and rabac
profile) to enable four privacy checks to analyze a system model based on the
key four privacy elements.

Since generally, CARiSMA is based on the analysis of the system models
that are modeled using UML diagrams, to perform the privacy analysis using
the four checks, the MoA system and the cooperating systems must be mod-
eled using UML. Based on these considerations, in this paper the privacy pro-
file is defined for UML elements. However, concerning the description of each
stereotype (Sect. 3.3), the privacy concepts may be adapted for other modeling
languages. Furthermore, concerning the fact that IT systems may be modeled
using different modeling languages, a transformation may be defined to perform
the privacy checks on such models. Moreover, by evaluating the results of the
case study, we observed that by performing privacy analysis on system models,
not all privacy issues of the systems may be handled. However, as we previously
mentioned (Sect. 1), the system models enable us to consider key privacy ele-
ments from early stages in the system’s design, and verify if privacy preferences
are supported.

5 Related Work

Generally, model-based privacy analysis has attracted little attention in the sci-
entific literature so far. A possible explanation is the earlier lack of legal incentives
driving its adoption process. Our work is motivated particularly by Article 25 of
Regulation (EU) 2016/679, which is the current state of European legislation.

In [30], an extension of privacy agreement levels by implementing access
purposes for individual personal information in a lattice structure is introduced.

Model-Based Privacy Analysis in Industrial Ecosystems 229

This approach enables service customers to control the use of individual data.
However, in this approach no privacy analysis regarding customer preferences is
performed.

In [13], a lattice-based privacy-aware access control model is introduced. In
their approach, they provide a concrete privacy enhancing technique to control
the access to a system concerning the four key privacy elements. However, using
this approach, one is not able to perform a privacy analysis to verify if pri-
vacy preferences are supported by a system’s design, so that the design can be
improved when necessary.

UMLsec [20,21] provides an approach to develop and analyze security crit-
ical software, in which security requirements such as integrity, availability, and
confidentiality are specified in system models. Moreover, the security analysis
techniques have been integrated with the requirements elicitation phase [9,27].
However, UMLsec analysis does not consider privacy.

In [8], the authors provide a UML profile for privacy-aware applications. This
profile enables one to describe a privacy policy that is applied by an application
and keep track of which elements are in charge of enforcing it. This profile does
not enable one to analyze a system’s design.

In [22], the authors propose a method (PriS) for incorporating privacy user
requirements into the system design process. PriS provides a methodologi-
cal framework to analyze the effect of privacy requirements on organizational
processes. The authors focus on the integration between high-level organiza-
tional needs and IT systems. A privacy analysis is not conducted on a system’s
design.

In [25,26], the authors provide a model-based privacy ‘best practice’, and a
variety of guidelines and techniques to assist experts and software engineers to
consider privacy when the systems are designed. However, they only focus on
top-level security and privacy goals, and they do not perform a privacy analysis.

6 Conclusion

We have introduced a modular model-based privacy analysis approach for indus-
trial ecosystems. The approach is based on four key privacy elements, namely
purpose, visibility, granularity and retention. A set of stereotypes are introduced
to express key privacy elements within the diagrams in a UML system specifi-
cation. This annotations enable four privacy checks, which adhere to the four
key privacy elements. The approach is integrated into VisiOn project, in which
a platform for privacy analysis of public administration systems is provided.

As we mentioned in Sect. 1, privacy by design implies that the system’s design
of IT services must be analyzed to verify if the required privacy levels are fulfilled,
and where necessary appropriate technical and organizational measures must
be implemented to support privacy and data protection. In the future, we will
investigate how the results from our privacy analysis can be evaluated to identify
proper technical and organizational measures.

230 A.S. Ahmadian et al.

Acknowledgements. This research was partially supported by the research project
Visual Privacy Management in User Centric Open Environments (supported by the
EU’s Horizon 2020 program, Proposal number: 653642).

References

1. Personal data in the cloud: The importance of trust. Technical report, Fujitso
Global Business Group, Tokyo 105-7123, Japan, September 2010

2. CARiSMA (2016). https://rgse.uni-koblenz.de/carisma/
3. The European Parliament and the Council of the European Union, Regulation

(EU) 2016/679 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data. Official J. Eur. Union,
vol. 199, pp 1–88 (April 2016)

4. VisiOn Project (2016). http://www.visioneuproject.eu/
5. Ahmadian, S., Jürjens, J.: Supporting model-based privacy analysis by exploiting

privacy level agreements. In: 8th IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom 2016) (2016)

6. Antignac, T., Métayer, D.: Privacy by design: from technologies to architectures.
In: Preneel, B., Ikonomou, D. (eds.) APF 2014. LNCS, vol. 8450, pp. 1–17. Springer,
Cham (2014). doi:10.1007/978-3-319-06749-0 1

7. Barker, K., Askari, M., Banerjee, M., Ghazinour, K., Mackas, B., Majedi, M., Pun,
S., Williams, A.: A Data Privacy Taxonomy, pp. 42–54. Springer, Heidelberg (2009)

8. Basso, T., Montecchi, L., Moraes, R., Jino, M., Bondavalli, A.: Towards a UML
profile for privacy-aware applications. In: 2015 IEEE International Conference on
Computer and Information Technology; Ubiquitous Computing and Communica-
tions; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and
Computing, pp. 371–378, October 2015

9. Breu, R., Burger, K., Hafner, M., Jürjens, J., Popp, G., Wimmel, G., Lotz, V.:
Key issues of a formally based process model for security engineering. In: Sixteenth
International Conference “Software & Systems Engineering & Their Applications”,
Paris (2003)

10. Cavoukian, A., Chibba, M.: Advancing privacy and security in computing, net-
working and systems innovations through privacy by design. In: Proceedings of the
2009 conference of the Centre for Advanced Studies on Collaborative Research, 2–5
November 2009, Toronto, Ontario, Canada, pp. 358–360 (2009)

11. Cloud Security Alliance: Privacy Level Agreement [V2]: A Compliance Tool for
Providing Cloud Services in the European Union (2013)

12. Dupressoir, F., Gordon, A.D., Jürjens, J., Naumann, D.A.: Guiding a general-
purpose C verifier to prove cryptographic protocols. J. Comput. Secur. 22(5), 823–
866 (2014). http://dx.doi.org/10.3233/JCS-140508

13. Ghazinour, K., Majedi, M., Barker, K.: A lattice-based privacy aware access control
model. In: International Conference on Computational Science and Engineering,
CSE 2009, vol. 3, pp. 154–159, August 2009

14. Gürses, S., Gonzalez Troncoso, C., Diaz, C.: Engineering privacy by design. In:
Computers, Privacy & Data Protection (2011)

15. Hafiz, M.: A pattern language for developing privacy enhancing technologies. Softw.
Pract. Exper. 43(7), 769–787 (2013)

16. Hoepman, J.H.: Privacy Design Strategies, pp. 446–459. Springer, Heidelberg
(2014)

https://rgse.uni-koblenz.de/carisma/
http://www.visioneuproject.eu/
http://dx.doi.org/10.1007/978-3-319-06749-0_1
http://dx.doi.org/10.3233/JCS-140508

Model-Based Privacy Analysis in Industrial Ecosystems 231

17. Jin, X., Sandhu, R.S., Krishnan, R.: RABAC: role-centric attribute-based access
control. In: International Conference on Mathematical Methods, Models and Archi-
tectures for Computer Network Security (MMM-ACNS), pp. 84–96 (2012)

18. Jürjens, J.: Secure information flow for concurrent processes. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 395–409. Springer, Heidelberg (2000).
doi:10.1007/3-540-44618-4 29

19. Jürjens, J.: Modelling audit security for smart-card payment schemes with UMLsec.
In: Dupuy, M., Paradinas, P. (eds.) Trusted Information: The New Decade Chal-
lenge, pp. 93–108 (2001). Proceedings of the 16th International Conference on
Information Security (SEC 2001). http://www.jurjens.de/jan

20. Jürjens, J.: Model-based security engineering with UML. In: Aldini, A., Gorrieri,
R., Martinelli, F. (eds.) FOSAD 2004-2005. LNCS, vol. 3655, pp. 42–77. Springer,
Heidelberg (2005). doi:10.1007/11554578 2

21. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2005)
22. Kalloniatis, C., Kavakli, E., Gritzalis, S.: Addressing privacy requirements in sys-

tem design: the PriS method. Requirements Eng. 13(3), 241–255 (2008)
23. Kerschbaum, F.: Privacy-Preserving Computation, pp. 41–54. Springer, Heidelberg

(2014)
24. Object Management Group (OMG): UML 2.5 Superstructure Specification (2011)
25. Pearson, S.: Taking account of privacy when designing cloud computing services.

In: Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges
of Cloud Computing, pp. 44–52, CLOUD 2009. IEEE Computer Society (2009)

26. Pearson, S., Allison, D.: A model-based privacy compliance checker. IJEBR 5(2),
63–83 (2009)

27. Schneider, K., Knauss, E., Houmb, S., Islam, S., Jürjens, J.: Enhancing security
requirements engineering by organisational learning. Requirements Eng. J. (REJ)
17(1), 35–56 (2012)

28. Spiekermann, S.: The challenges of privacy by design. Commun. ACM 55(7), 38–40
(2012)

29. Spiekermann, S., Cranor, L.F.: Engineering privacy. IEEE Trans. Softw. Eng.
35(1), 67–82 (2009)

30. van Staden, W., Olivier, M.S.: Using Purpose Lattices to Facilitate Customisation
of Privacy Agreements, pp. 201–209. Springer, Heidelberg (2007)

http://dx.doi.org/10.1007/3-540-44618-4_29
http://www.jurjens.de/jan
http://dx.doi.org/10.1007/11554578_2

Formulating Model Verification Tasks
Prover-Independently as UML Diagrams

Martin Gogolla1(B), Frank Hilken1, Philipp Niemann2, and Robert Wille2,3

1 University of Bremen, Bremen, Germany
{gogolla,fhilken}@informatik.uni-bremen.de

2 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
philipp.niemann@dfki.de

3 Johannes Kepler University, Linz, Austria
robert.wille@jku.at

Abstract. The success of Model-Driven Engineering (MDE) relies on
the quality of the employed models. Thus, quality assurance through
validation and verification has a tradition within MDE. But model ver-
ification is typically done in the context of specialized approaches and
provers. Therefore, verification tasks are expressed from the viewpoint
of the chosen prover and approach requiring particular expertise and
background knowledge. This contribution suggests to take a new view
on verification tasks that is independent from the employed approach
and prover. We propose to formulate verifications tasks in terms of the
used modeling language itself, e.g. with UML and OCL. As prototypical
example tasks we show how (a) questions concerning model consistency
can be expressed with UML object diagrams and (b) issues regarding
state reachability can be defined with UML sequence diagrams.

1 Introduction

Software development following the Model-Driven Engineering (MDE) para-
digm focuses on models in contrast to traditional code-centric approaches. Mod-
els are said to offer advantages like a high degree of abstraction or platform-
independence. As models become the central artifacts – particular in early stages
of the design process – means for model quality assurance in form of valida-
tion (“Are we building the right product?”) and verification (“Are we building
the product right?”) become indispensable. In particular, verification techniques
get more and more important, since they allow to check whether a system to be
realized is described and behaves as intended before a single line of programming
code is written.

Nowadays, the UML (Unified Modeling Language) and the OCL (Object Con-
straint Language) are frequently applied modeling languages. Correspondingly,
a substantial number of verification techniques has been developed for models
provided in UML/OCL. The spectrum of approaches ranges from solutions for
structural and behavioral verification tasks as well as along the employed veri-
fication engines such as theorem provers [8], solvers for Constraint Satisfaction
c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 232–247, 2017.
DOI: 10.1007/978-3-319-61482-3 14

Formulating Model Verification Tasks Prover-Independently 233

Problems (CSP) [9], Petri nets [10], model checkers [18], intermediate languages
like Alloy or Kodkod [1,28], or solvers for Boolean satisfiability (SAT) and SAT
Modulo Theories (SMT) [26,27].

However, these approaches often address the respective verification tasks
from their own particular perspective and with respect to their paradigms. For
example, solutions based on SAT or SMT require a description of the considered
verification tasks in terms of propositional logic or bit-vector logic, respectively.
This poses a significant challenge to the designer, since expertise and back-
ground knowledge about the employed verification approach and the used tool
is needed in order to formulate a verification task. Moreover, this nullifies sev-
eral of the benefits of using UML/OCL models such as the easy accessibility of
a system description also for non-technical stakeholders, the high-degree of free-
dom, as well as the independence from programming or, in this case, verification
languages.

In this work, we propose a solution to this problem by introducing a view on
verification tasks in a tool- and approach-independent manner. The main idea is
as follows: Instead of formulating the respective verification task in a tool-related
language (such as propositional logic or bit-vector logic), we propose to describe
them in terms of the used modeling language (such as UML/OCL) itself. To
this end, we consider some well-known and frequently applied verification tasks
such as consistency or reachability and provide corresponding formulations in
UML/OCL.

Overall, this allows designers to formulate additional properties for an exist-
ing UML/OCL model which are not explicitly part of the system description, but
represent verification tasks. By this, designers can formulate verification tasks
with description means they are most familiar with and in which they designed
the currently considered model anyway.

The structure of the rest of this paper is as follows. Section 2 introduces
central notions and the paper’s background. Section 3 shows how a representa-
tive verification tool for UML/OCL models currently handles verification tasks.
In Sect. 4, the central idea of this work, namely the formulation of structural
verification tasks within UML/OCL is introduced and illustrated. Section 5 con-
centrates on behavioral verification tasks from the developer’s point of view and
discusses advantages of our proposal. Finally, related work is discussed in Sect. 6
before the paper is concluded in Sect. 7.

2 Preliminaries and Background

Modeling languages such as the UML have been established to specify the design
of complex systems. They provide a broad variety of different concepts such as
class diagrams, sequence diagrams, or activity diagrams which are expressive
enough to formally specify a complex system – especially together with textual
constraints, e.g., in terms of OCL. These formal descriptions additionally allow
for the verification of the respective specification already in the absence of a
specific implementation, i.e., in an early stage of the design where flaws can be
eliminated at relatively low costs.

234 M. Gogolla et al.

The corresponding verification tasks can be divided into Structural Verifica-
tion Tasks, where single states of the system are considered, as well as Behavioral
Verification Tasks, where sequences of system states together with the connect-
ing transitions (e.g., described in terms of state charts or operations with pre-
and postconditions) are considered, see e.g., [16] for an overview.

A very common structural verification task is to check the consistency of
a model, i.e., investigating whether the model description is consistent in the
sense that an instantiation of the model exists which satisfies all of the model
constraints. For behavioral verification, a typical task is to consider the reach-
ability of certain good or bad states from a given initial state. As these two
are very popular verification tasks, they will be considered as stereotypes in the
remainder of the paper to illustrate existing approaches and the proposed con-
cepts. Other verification tasks include, for instance, to check whether (1) the
model satisfies certain properties such that corresponding constraints hold for
any instantiation of the model, or to check whether (2) the invariants are inde-
pendent or possibly imply each other (e.g., in order to find a minimal set of
invariants or constraints) [13]. Typically either solely structural or solely behav-
ioral aspects are considered, though there are a few works that consider the
model structure and behavior at once (e.g., by considering operation contracts
in combination with invariants) [15].

For both categories of verification tasks, a variety of automatic solving
approaches have been introduced. The main idea of most of these approaches is
to encode verification problems in a language that can be passed to a dedicated
solving engine and transfer the results (more or less) back to the level of UML
and OCL. In this context, different languages and solving engines have been pro-
posed such as approaches (a) using theorem provers like Isabelle [8], (b) refor-
mulating the problem as a Constraint Satisfaction Problem (CSP) [9], (c) using
Petri nets [10], (d) addressing model checkers [18], (e) using intermediate lan-
guages like Alloy or Kodkod [1,28] though finally resulting in a SAT problem,
or (f) using a direct encoding in the more general language of SMT [26,27].

All these approaches have their very own characteristics and need a high
amount of expert knowledge and specific experience in order to be used which
cannot be expected from a common developer. And, many approaches often
support a single or a small set of verification tasks only, such that a developer
would need to familiarize with many of these approaches in order to conduct
a reasonable variety of verification tasks. This problem will be illustrated in
more detail in Sect. 3 where we will show how two popular verification tasks
(consistency and reachability) are formulated in one of these approaches.

In order to show examples for verification tasks and also to illustrate the
proposed new concepts, we will make use of a running example as depicted in
Fig. 1. The model describes a CivilStatusWorld with persons having a gender
and a civil status attribute and marriages between persons determined by a
reflexive association. Operations for marrying and divorcing are provided as well
as a query operation spouse determining a (possible) set of persons. Under the
assumption that the model is bigamy-free, this operation returns a singleton set.

Formulating Model Verification Tasks Prover-Independently 235

Fig. 1. Example class diagram.

OCL invariants and operation contracts in form of OCL pre- and postcondi-
tions as shown in Fig. 2 further restrict the structural and behavioral aspects of
the model. More precisely, the query operation spouse is defined in a defensive
way as a set-valued operation because the class diagram allows a person to have
both a wife and a husband. The aim of the model is to have the empty set or
a singleton set as the result for spouse, if all multiplicities and the invariant
hold. The invariant establishes a connection between the gender attribute and
the marriage role names as well as a connection between the civstat attribute
and the spouse operation. We only show the contract for the operation marry,
because the divorce contract is formulated analogously. marry has one precon-
dition and a first ordinary postcondition. The second marry postcondition is a

Fig. 2. OCL query operation, invariant, and operation contract.

236 M. Gogolla et al.

frame condition that explicitly requires that (a) marry does not introduce new
objects nor change the gender attribute and (b) except the spouse set and except
the self object (on which marry is called) all other objects are left unchanged
w.r.t. the roles and the remaining attributes.

When one wants to enable verification of contract behavior, one must either
have an operation implementation (in that case the verification results are rel-
ative to the given implementation) or one must say in a declarative, complete
way what the effect of an operation is, in particular, which things (attributes or
roles from the class diagram) are changed by the operation and which things are
left unchanged. In the example, the two postconditions serve this purpose.

3 Manifesting Consistency and Reachability in Tools

We now explain three typical verification tasks for the running example and show
how they are realized in one UML and OCL tool. The discussion underpins our
claim that specific knowledge and expertise is needed for successfully verifying
properties in UML and OCL models. The three verification tasks are as follows.

1. Assume a system state is given with (a) objects possessing partially specified
attribute values, (b) one female person participating in a marriage (where
the roles wife and husband are left unspecified) and (c) another present male
person. The first verification task now asks whether the system state can be
completed to a full object diagram. If successful, this would prove consistency
of the structural model, i.e., satisfiability of the class diagram including the
multiplicities and the invariants.

2. The second verification task asks whether it is possible to construct a system
state with a marriage link where both participating persons have the same
gender that is however not a priori fixed. If this is not possible, then the fact
that in a marriage the participating persons must have different genders is a
consequence of the model.

3. The third verification task checks whether it is possible to find a sequence of
operation calls that leads from four single persons to four married persons.
In case all operations, i.e., both marry and divorce, show up, this would show
the satisfiability of the invariants considered together with the operation con-
tracts. It would guarantee the satisfiability of the structural model (class dia-
gram with multiplicities and invariants) considered together with the behav-
ioral model (operation contracts).

We classify tasks (1) and (2) as consistency problems (because they aim at
constructing one consistent system state) and task (3) as a property reachability
problem (because a particular property must be reached when starting in a
given initial situation). A general classification of verification tasks was proposed
recently in [16].

USE (Uml-based Specification Environment) is a modeling tool for a subset
of UML and for full OCL [11,12]. USE offers options to validate and verify UML
and OCL models, in particular by employing a component called model validator

Formulating Model Verification Tasks Prover-Independently 237

that is able to automatically construct object diagrams for UML class diagrams
enriched by OCL invariants [12].

The first verification task is realized in USE by expressing the verbally
expressed requirements as an additional OCL constraint and by employing the
USE model validator. In general, the model validator considers a UML and OCL
model with invariants together with a so-called configuration providing bounds
for the possible object diagrams that are to be constructed (configuration exam-
ples can be found in [12]). The configuration bounds determine finite populations
of classes, associations, datatypes and attribute values. The model validator then
tries to construct an object diagram satisfying the class diagram and the invari-
ants under the stated bounds. In this case, the additional constraint requires
three persons to exist with particular attribute values and particular association
participation conditions as stated below.
context Person inv VerificationTask1:
Person.allInstances->exists(A,B,C |

Set{A,B,C}->size=3 and
A.gender=#female and
((A.husband=B and B.wife=A) or (B.husband=A and A.wife=B)) and
C.gender=#male)

Fig. 3. USE Solution for first verification task.

As shown in Fig. 3, the model validator is successful in finding a fitting object
diagram. Thus the first verification task is mastered, and the consistency of the
model has been proven.

For the second validation task another OCL invariant is loaded in addition
to the present model invariant. The invariant is stated below. In particular, this
invariant requires a marriage between two persons which possess the same gender
attribute value.
context Person inv VerificationTask2:
Person.allInstances->exists(P1,P2 |

Set{P1,P2}->size=2 and
(P1.wife=P2 or P1.husband=P2) and
P1.gender=P2.gender)

In this case, the model validator reports that the model is unsatisfiable,
i.e., no valid object diagram can be found. From this fact we conclude that the
additional requirement involving two persons with the same gender in a marriage
cannot be satisfied, and that thus the gender attributes values in a marriage must
be different.

For the third verification task, the stated USE model is first transformed
into a so-called filmstrip model [14]. In the filmstrip model, additional classes
and associations are introduced that serve for representing a sequence of object

238 M. Gogolla et al.

Fig. 4. USE Solution for third verification task (4 persons single to married).

diagrams from the originally stated model within a single object diagram; the
original sequence of object diagrams becomes a sequence of (so-called) snapshot
objects with operation call objects connecting them, as shown in Fig. 4. Addi-
tional OCL constraints guarantee that the filmstrip model behaves properly, for
example, that the snapshot objects are not linked in a cyclic way.

The requirements from the third verification task that initially all persons
are single and all persons are finally married are expressed as OCL invariants on
the filmstrip model as stated below. The subexpressions involving any select the
first, resp. last snapshot. The configuration for this verification task allows up to
four operation calls, either marry or divorce calls, and the four person demand is
reflected by appropriate settings for the number of objects in class Person (and
could be restricted even more by another invariant).
context Person inv allInitiallySingle:

Snapshot.allInstances->any(s | s.pred()=null).person->
forAll(p | p.civstat=#single)

context Person inv allFinallyMarried:
Snapshot.allInstances->any(s | s.succ()=null).person->

forAll(p | p.civstat=#married)

The solution for this verification task is shown in Fig. 4. This filmstrip object
diagram with two operation call objects and three snapshot objects corresponds
to a sequence diagram in the original (application) model with two operation
calls dealing implicitly with three object diagrams: one object diagram before
the first call, one between the two calls, and one after the second call. These
three (implicit) object diagrams are made explicit in Fig. 4 through the three
snapshot objects.

4 Viewing Verification Tasks as UML Diagrams

This section is devoted to the explanation how verification tasks can be developed
and represented in a way that is independent from an underlying proving engine.

Formulating Model Verification Tasks Prover-Independently 239

As good UML “citizens”, we believe that UML can be employed for a lot of tasks
within the software development process. The main idea of UML is to represent
issues and artifacts independent of a needed underlying (proving) engine. The
idea that we want to contribute is to allow non-verification experts to phrase
requirements and formal properties with UML, the language they use anyway
to express their models. Even verification experts may find this attractive.

We will go through the verification tasks and present UML diagrams for
them. The first task about UML and OCL model consistency can be graphically
shown as the object diagram in Fig. 5. The elements from the verbal explanation
are translated into respective UML features, basically objects, links possessing
role names and association names as well as attribute values. In some spots,
concrete values (as e.g., #female) or concrete items from the class diagram (as
e.g., Person or Marriage) are shown. Now, the idea, that we come up with,
is not only to allow concrete items in a UML diagram, but to indicate some
“open”, not yet fixed items that represent placeholders that are to be filled by an
underlying engine. Such a UML diagram with placeholders may be seen as a UML
query (stealing ideas from QBE [30]) or a verification task expressed in UML. In
order to distinguish between concrete items and placeholders, placeholders are
syntactically marked with a starting question mark. In principle, every spot in
a UML diagram, where some concrete item may be written down, may also be
filled with a placeholder. In the example we have used placeholders for attribute
values and role names.

The task for the underlying proving engine is now to show substitutions or
answers for the placeholders with suitable concrete items. The developer will
typically have a particular expectation for the possible answers. In the example,
this could be that ?RA can only be substituted with the role wife, whereas ?CC
could be replaced by one of #single or #divorced or even #married if it is
allowed to add Person objects and Marriage links.

The second verification task can be graphically presented with the object
diagram in Fig. 6. Here, the placeholder ?G is used in two different spots, for the
gender attribute value of persons P1 and P2 which are required to be connected
by a marriage link. This expresses that the two persons in the marriage possess
the same gender.

Fig. 5. First verification task as UML diagram.

Fig. 6. Second verification task as UML diagram.

240 M. Gogolla et al.

Fig. 7. Third verification task as UML diagram.

The third verification task is represented as a sequence diagram in Fig. 7.
Four lifelines represent objects, two OCL constraints express an initial and a
final condition and placeholders are used for operation calls. The standard UML
sequence diagram features loop and alt (for alternative) are used to formulate
that an operation call can go to one of the four objects and that a sequence of
such calls is allowed.

In Fig. 8 we show a sequence diagram with a solution for the third task.
This solution corresponds to the USE filmstrip object diagram from Fig. 4. Thus
in general, it is desirable to see a found solution not only on the level of the
employed technology, but it is necessary to transform a found solution onto
the level on which the verification task was formulated. In the concrete case,
the transformation process from the filmstrip object diagram to the sequence
diagram can be automated. The solution for task 1 was already shown as a

Fig. 8. Solution for third task viewed as UML sequence diagram.

Formulating Model Verification Tasks Prover-Independently 241

UML object diagram in Fig. 3, whereas for task 2 no UML diagram was shown,
because that task was not satisfiable.

Let us shortly wrap up and look back at the verification task formulation
in UML and the proposed use of placeholders. The above examples employ the
following UML diagram and OCL features for task formulation: in the object
diagram we had objects, associations, roles, attribute values, and OCL formulas;
in the sequence diagram we saw lifelines for objects, operation calls, alternative
calls, calls within a loop, and on lifelines closed OCL formulas (or on a lifeline
there could be a partial or complete object diagram as well). These language
features have a precise meaning for task formulation. The proposed verification
tasks can be transformed into prover-specific approaches. For our three example
verification tasks, a precise meaning is given by the added OCL constraints
before starting the verification process. These constraints can be retrieved from
the graphical verification task representation automatically. As said already, in
principle, we do not see any reason to restrict UML language features for task
formulation as long as a precise task is determined.

Essential for our proposal is the use and role of placeholders and the kind of
UML diagram features that placeholders can stand for. Currently we have had
in the examples placeholders for the following features: attribute values, roles in
associations, association names (not in the running example, as there is only one
association in the example class diagram), operation calls and implicit or explicit
operation parameters. The intention of placeholders is that they will be replaced
by the underlying analysis or proving engine with concrete UML “items”. These
UML items either may come from the model (e.g., the class diagram) or may be
explicitly provided by the developer as currently stated in a USE configuration.

5 A Developer’s View on Verification Tasks

So far, we have demonstrated the basic idea of prover-independent verification
tasks and sketched how they can be represented with diagrams. We now want to
focus on the simplifications for developers in regards to the knowledge required
to express verification tasks that can be used in any verification tool. With the
tasks being tool-independent, the developer is not required to have any specific
further knowledge about the tools. Even complex behavioral verification tasks
can be formulated with mostly intuitive UML and OCL language features alone.

In order to illustrate the simplifications for developers, we consider the model
of a traffic light which is depicted in Fig. 9. As we will see in the following,
the model exhibits significantly more interesting behavioral aspects than the
CivilStatusWorld model considered above.

The main component of the traffic light is the Controller which is connected
to exactly one (visual) signal for cars and exactly one visual and acoustic signal
each for the pedestrians. Two buttons are connected to the controller that can be
pushed in order to indicate a pedestrian crossing request to the controller. When
one button is pushed, all connected buttons indicate that there is a pending
request. The invariant safety states a general safety property for traffic lights,

242 M. Gogolla et al.

Fig. 9. Traffic light example

i.e., that both the signals for the pedestrians and the signal for the cars must not
indicate a safe crossing at the same time. Finally, the invariant oneRole ensures
that each visual signal can either serve as a signal for pedestrians or cars, but
not both at the same time.

This model allows for instantiating various meaningful states that are vital
for operating the system, but also several states that shall never be reached in
practice. For instance, the standard idling state of the system in which a green
light is shown to the cars while there is no pending request for a pedestrian
crossing is shown on the top of Fig. 10. Below it, we can see a (partially defined)
state where all visual signals are turned red while the acoustic signal indicates
a safe crossing for pedestrians. Though this state is not violating any of the
model’s invariants, it shall never be entered in practice. Thus, it should just be
unreachable by the definition of the operations. As it does not make a difference
for the rejection of the state whether there is a pending request or not, unnamed
placeholders are used to express that the values of the corresponding attributes
are insignificant.

Now, the designer might be interested to find out whether certain states
are reachable from the standard idling state. Using the proposed diagram-based
approach, this task can be formulated very comfortably by (1) specifying the
(partial) system states that shall serve as the start/target of the reachability
analysis in terms of object diagrams and (2) employing them in a sequence
diagram that allows arbitrary behavior in order to reach the target, i.e., a loop
of arbitrary alternative operation calls on arbitrary objects. The corresponding
diagram is shown in Fig. 11. Note that lifelines and objects for signals are not
shown as no operations can be called on them.

While this formulation will fortunately yield UNSAT (proving that the erro-
neous state is not reachable within the number of steps that are specified as
the upper limit of iterations of the loop), the designer might want to find out
whether it is possible to reach a state that enables a safe crossing for pedestrians
and, at the same time, allows for returning to the idling state afterwards. This
task can be formulated by extending the existing diagram with another loop of
arbitrary operation calls (for returning to the initial state) and an intermediate

Formulating Model Verification Tasks Prover-Independently 243

Fig. 10. (Partial) system states for the
traffic light model.

Fig. 11. Simple reachability formulation

state (which expresses the safe crossing for pedestrians) as shown in Fig. 12.
The corresponding partial object diagram for the intermediate state is shown in
Fig. 13. Note that the state only requires the visual signal for the pedestrians to
show a green light, while the assignment of all other attributes are left open.

While this formulation will unfortunately also yield UNSAT (proving that
there is no possibility to reach a green light for pedestrians and return to the
idle state afterwards), the designer may query whether the intermediate state is
reachable at all. This can be formulated by simply replacing the target state –
more precisely, its object diagram – in the first sequence diagram with this state.
Then, the formulation will yield that the intermediate state is indeed reach-
able from the idle state (e.g., using the operation call sequence B1.request(),
C1.switchCarSignal(), C1.switchPedSignal()), but interchanging start and
target state will show that this is not true for the way back, i.e., the idle state
is not reachable from the intermediate state. One reason for this could be, that
the intermediate state – more precisely, all states for which the visual signal for
the pedestrians shows a green light – are deadlocks. To verify this property, a
formulation as in Fig. 14 can be employed which asks whether any operation
can be called in a (partially) given system state at all. In this special case, the
operations B1.request() and C1.switchPedSignal() may not be called, since
their preconditions are not fulfilled. In addition, calling C1.switchCarSignal()
would yield a situation where both the lights for pedestrians and cars are green,
which violates the safety invariant. Consequently, the state characterization in
Fig. 13 indeed describes a deadlock scenario. Note that, in contrast to the pre-
vious diagrams, there is no more loop in Fig. 14 and no restrictions are applied
to the succeeding system state.

To summarize, this small case study shows that a wide spectrum of behavioral
verification tasks can be formulated independently of a specific prover technology

244 M. Gogolla et al.

Fig. 12. Extended reachability formulation

Fig. 13. Deadlock states

Fig. 14. Deadlock check

in terms of a modeling language, here UML-like sequence diagrams with some
additional, new features.

6 Related Work

There is related work sharing the aim of this paper to improve the usability
of UML/OCL verification techniques. Concerning the question of building a
user-friendly interface, much work has, e.g., been done in the theorem prover
community (see e.g., [2,17,19,20]). There seems to be a high awareness in that
community for the need to improve the usability of provers [6]. On the one
hand, this is an implicit requirement as using theorem provers requires much
interaction by the user. On the other hand, it is recognized that these provers
focus on assisting particularly trained and skilled users, while they are difficult to
use for non-expert users. Consequently, user-friendly interfaces play an important
role in promoting the benefits of the underlying techniques [2].

However, these approaches do not aim at hiding details of the underlying
verification technique, but only provide a “nicer”, graphical interface. To this
end, the potential of using UML diagrams to hide details and, thus, make ver-
ification easier accessible, has been recognized. UML diagrams have been used
for various purposes so far: many verification approaches present solutions (wit-
nesses found by the prover) back at the level of the model, e.g., in terms of UML

Formulating Model Verification Tasks Prover-Independently 245

diagrams. In contrast, in [23] UML sequence diagrams are used for visualizing
patterns of temporal logic as part of a UML-based front-end to a formal verifi-
cation/model checking toolset. More precisely, the sequence diagrams depict the
desired behavior which the user can select from and combine in order to tailor
dedicated verification tasks (formulas). In [21], it is suggested to combine UML
diagrams and the B formalism in a design flow for hardware. However, the user
can hardly specify particular properties to be verified.

The general and nice idea to employ placeholders in query languages is due
to QBE [30]. A combination of model checking but having in mind a particular
application for business processes is proposed in [3]. Placeholders, partly also
with similar notation as here, have been used in the study of class model pat-
terns and anti-patterns [5,7], in the consideration of general model quality [4]
and in the context of domain-specific languages [22]. Recently, there has been a
proposal for a “user-friendly” interface to Alloy which employs a similar idea to
formulate verification tasks by modelling them graphically [29] focusing on struc-
tural verification. In [24,25] so-called partial models are put forward, a general
framework being less tuned to specific verification tasks as we want to cover.

So far UML diagrams in combination with OCL expressions have not been
used as a means for formulating dedicated structural and behavioral verification
tasks.

7 Conclusion

This contribution proposed to formulate model verification tasks from the view-
point of the employed modeling language. We aim to relieve the developer from
expressing tasks only on the basis of the used approach and proving engine. Our
proposal aims at giving non-verification experts the option to work with formal
verification approaches. We have used UML object diagrams to formulate con-
sistency issues and UML sequence diagrams for reachability topics. Central in
our approach are so-called placeholders representing open items that can occur
in UML diagrams and that should be substituted by model elements. Solutions
in terms of substitutions and thus verification task feedback should be given
in terms of the employed modeling languages as far as possible, e.g., as UML
diagrams.

We have concentrated here on prover-independent task formulation. As one
topic for future work we identify the open details for the transformation into
prover- and approach-specific task formulation. The expressibility of the app-
roach, i.e., the answer to the question which verification tasks can be formulated
by UML diagrams, is bounded on the one hand by the employed verification task
features, but on the other hand it is an open question how to enable the formu-
lation of all possible verification tasks in general by the modeling language itself.
Our proposal has to be consolidated and validated by an implementation of what
has been sketched by the features that we used for task formulation. Other UML
diagram kinds than object and sequence diagrams, in particular communication
diagrams with communication channels and state machines for attribute, role or

246 M. Gogolla et al.

OCL expression evolution have to be studied in more detail. Good explanations
in the case of unsatisfiable tasks indicating the “guilty” model parts or at least
identifying the “innocent” model parts have to be developed. Guilty model parts,
i.e., the parts that essentially contribute to the invalidity could be any model
element, e.g., classes, associations, invariants, contracts or even more detailed
information, for example, subformulas of constraints. Last but not least, larger
case studies should give feedback on the practicability of the proposal.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: a challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75209-7 30

2. Arshad, F., Mehmood, H., Raza, F., Hasan, O.: g-HOL: a graphical user
interface for the HOL proof assistant. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2015. CCIS, vol. 596, pp. 265–269. Springer, Cham (2016). doi:10.1007/
978-3-319-29510-7 16

3. Awad, A., Sakr, S.: On efficient processing of BPMN-Q queries. Comput. Ind.
63(9), 867–881 (2012)

4. Balaban, M., Maraee, A., Sturm, A., Jelnov, P.: A pattern-based approach for
improving model quality. Softw. Syst. Model. 14(4), 1527–1555 (2015)

5. Ballis, D., Baruzzo, A., Comini, M.: A minimalist visual notation for design pat-
terns and antipatterns. In: 5th International Conference on Information Technol-
ogy: New Generations (ITNG 2008), pp. 51–56 (2008)

6. Beckert, B., Grebing, S.: Evaluating the usability of interactive verification systems.
In: Proceedings of 1st International Workshop Comparative Empirical Evaluation
of Reasoning Systems, pp. 3–17 (2012)

7. Bottoni, P., Guerra, E., de Lara, J.: A language-independent and formal approach
to pattern-based modelling with support for composition and analysis. Inf. Softw.
Technol. 52(8), 821–844 (2010)

8. Brucker, A.D., Wolff, B.: HOL-OCL: a formal proof environment for UML/OCL.
In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 97–100.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78743-3 8

9. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: First International Conference on Software Testing
Verification and Validation, ICST 2008, pp. 73–80. IEEE Computer Society (2008)

10. Choppy, C., Klai, K., Zidani, H.: Formal verification of UML state diagrams: a
petri net based approach. Softw. Eng. Notes 36(1), 1–8 (2011)

11. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69, 27–34 (2007)

12. Gogolla, M., Hilken, F.: Model validation and verification options in a contempo-
rary UML and OCL analysis tool. In: Oberweis, A., Reussner, R. (eds.) Proceedings
of Modellierung (MODELLIERUNG 2016). LNI, GI, vol. 254, pp. 203–218 (2016)

13. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, independence and conse-
quences in UML and OCL models. In: Dubois, C. (ed.) TAP 2009. LNCS, vol.
5668, pp. 90–104. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02949-3 8

http://dx.doi.org/10.1007/978-3-540-75209-7_30
http://dx.doi.org/10.1007/978-3-540-75209-7_30
http://dx.doi.org/10.1007/978-3-319-29510-7_16
http://dx.doi.org/10.1007/978-3-319-29510-7_16
http://dx.doi.org/10.1007/978-3-540-78743-3_8
http://dx.doi.org/10.1007/978-3-642-02949-3_8

Formulating Model Verification Tasks Prover-Independently 247

14. Hilken, F., Hamann, L., Gogolla, M.: Transformation of UML and OCL models
into filmstrip models. In: Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568,
pp. 170–185. Springer, Cham (2014). doi:10.1007/978-3-319-08789-4 13

15. Hilken, F., Niemann, P., Gogolla, M., Wille, R.: Filmstripping and unrolling: a
comparison of verification approaches for UML and OCL behavioral models. In:
Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 99–116. Springer,
Cham (2014). doi:10.1007/978-3-319-09099-3 8

16. Hilken, F., Niemann, P., Gogolla, M., Wille, R.: Towards a catalog of structural and
behavioral verification tasks for UML/OCL models. In: Oberweis, A., Reussner, R.
(eds.) Proceedings of Modellierung (MODELLIERUNG 2016). LNI, GI, vol. 254,
pp. 115–122 (2016)

17. Homik, M., Meier, A.: Designing a GUI for proofs - evaluation of an HCI experi-
ment. CoRR abs/0903.3926 (2009)

18. Lam, V.S.W.: A formalism for reasoning about UML activity diagrams. Nordic J.
Comp. 14(1), 43–64 (2007)

19. Lapets, A., Kfoury, A.J.: A user-friendly interface for a lightweight verification
system. Electr. Notes Theor. Comput. Sci. 285, 29–41 (2012)

20. Lüth, C.: User interfaces for theorem provers: necessary nuisance or unexplored
potential? ECEASST 23 (2009). http://dblp.uni-trier.de/db/journals/eceasst/
eceasst23.html

21. Moisuc, D., Revol, S., Snook, C.F.: UML user interface to a proof-based hardware
design flow. In: Forum on Specification and Design Languages, FDL 2006, pp.
337–344. ECSI (2006)

22. Pescador, A., Garmendia, A., Guerra, E., Cuadrado, J.S., de Lara, J.: Pattern-
based development of domain-specific modelling languages. In: 18th ACM/IEEE
MoDELS 2015, pp. 166–175 (2015)

23. Remenska, D., Willemse, T.A.C., Templon, J., Verstoep, K., Bal, H.: Property
specification made easy: harnessing the power of model checking in UML designs.
In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014. LNCS, vol. 8461, pp. 17–32.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43613-4 2

24. Salay, R., Chechik, M.: A generalized formal framework for partial modeling. In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 133–148. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46675-9 9

25. Salay, R., Chechik, M., Famelis, M., Gorzny, J.: A methodology for verifying refine-
ments of partial models. J. Object Technol. 14(3), 3:1–3:31 (2015)

26. Soeken, M., Wille, R., Drechsler, R.: Verifying dynamic aspects of UML models.
In: Design, Automation and Test in Europe, DATE 2011, pp. 1077–1082. IEEE
(2011)

27. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using Boolean satisfiability. In: Design, Automation and Test
in Europe, DATE 2010, pp. 1341–1344. IEEE (2010)

28. Straeten, R., Pinna Puissant, J., Mens, T.: Assessing the Kodkod model finder
for resolving model inconsistencies. In: France, R.B., Kuester, J.M., Bordbar, B.,
Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 69–84. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21470-7 6

29. Wang, X., Rutle, A., Lamo, Y.: Towards user-friendly and efficient analysis
with alloy. In: Model-Driven Engineering, Verification and Validation, MoD-
eVVa@MoDELS 2015, pp. 28–37 (2015)

30. Zloof, M.M.: QBE/OBE: a language for office and business automation. IEEE
Comput. 14(5), 13–22 (1981)

http://dx.doi.org/10.1007/978-3-319-08789-4_13
http://dx.doi.org/10.1007/978-3-319-09099-3_8
http://dblp.uni-trier.de/db/journals/eceasst/eceasst23.html
http://dblp.uni-trier.de/db/journals/eceasst/eceasst23.html
http://dx.doi.org/10.1007/978-3-662-43613-4_2
http://dx.doi.org/10.1007/978-3-662-46675-9_9
http://dx.doi.org/10.1007/978-3-642-21470-7_6

Modeling and Formal Analysis of Probabilistic
Complex Event Processing (CEP) Applications

Hichem Debbi(B)

Department of Computer Science,
Med BOUDIAF University–M’sila, M’sila, Algeria

hichem.debbi@univ-msila.dz

Abstract. Complex Event Processing (CEP) is a powerful technology
used in complex and real-time environments. CEP is an Event Driven
Architecture (EDA) style consists of processing different events within
the distributed enterprise system attempting to discover interesting infor-
mation from multiple streams of events in timely manner. In real world,
the streams of events are uncertain, which means that is not guaranteed
that an event has actually occurred, this uncertainty is due mainly to
imprecise content from the event sources (Sensors, RFID,...). As a result,
probabilistic CEP has become an important issue in complex environ-
ments that require a real-time reaction given streams of probabilistic
events.

It is evident that building probabilistic CEP applications is not a
trivial task, which makes the description of these applications and the
analysis of their behavior a necessary task. In this paper, we propose a
formal verification approach for probabilistic CEP applications based on
probabilistic model checking. To this end, we use the probabilistic Timed
Automata (PTA) for describing the probabilistic CEP applications, and
the Probabilistic Timed CTL (PTCTL) logic for specifying probabilistic
timed properties.

Keywords: Complex Event Processing (CEP) · Probabilistic CEP ·
Event Processing Network (EPN) · Probabilistic model checking ·
PRISM

1 Introduction

Complex Event Processing (CEP) is defined by its founder Luckham as a set of
tools and techniques for analyzing and controlling the complex series of inter-
related events that drive modern distributed information systems [1]. CEP is a
style of Event Driven Architecture (EDA) that refers to generation, reaction,
detection and consumption of events that represent notable changes in the state
of enterprise’s activities. CEP applications are based on decoupling principle,
which means that the events are sent or received over publish/subscribe bus,
where the events providers and events consumers are independent components.

c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 248–263, 2017.
DOI: 10.1007/978-3-319-61482-3 15

ECMFA 2017 249

CEP is considered as a promising complementary technique for many exist-
ing techniques. CEP was proposed to support Business Process Management
(BPM), where business processes are continuously reacting with simple or com-
plex events, CEP can give the ability to discover patterns within the events
cloud providing the business manager by interesting information [2]. CEP was
also proposed as a support for Business Activity Monitoring (BAM) to take
place in complex monitoring environments [3]. CEP can also support Business
Intelligence (BI) tools to extract information from continuous events not just
from historical data, thus enabling real-time intelligence [4]. It has been shown
that CEP can play a crucial role in many domains such as sensor and RFID
networks [5], and health care systems [6].

In real world the streams of events are uncertain, this uncertainty is due
mainly to imprecise content from the event sources (Sensors, RFID,...). As a
result, probabilistic CEP has become an important issue to deal with in com-
plex and uncertain environments. There are two main challenges for implement-
ing probabilistic CEP applications, the first concerns the huge number of events
incoming from different sources that we should to deal with in real-time con-
straints, and the second concerns the assignment of probabilities measures to
complex events aggregated from probabilistic basic events.

Probabilistic CEP has attracted recently a great attention. Chuanfei et al. [7]
proposed an infrastructure for event detection and triggering with noisily input-
data from sensors and delivered a probabilistic inference system using Bayesian
networks. Li and Ge [8] have studied the problem of windowed sub-sequences
from probabilistic sequences of events, providing optimization algorithms that
perform in real time. Mainly focusing on RFID networks, Re et al. [9] proposed
a set of algorithms and probabilistic processing engine Lahar that acts on prob-
abilistic RFID events. The authors in [10] proposed a model for representing
materialized events with Bayesian and sampling algorithm for correctly specify-
ing the probabilities of complex events from events history. Another interesting
work that addressed many issues related to probabilistic CEP is presented in [11].
Based on probabilistic nondeterministic finite automaton and active instance
stacks, they proposed a method for processing probabilistic events over distrib-
uted probabilistic event streams, enhanced with query plan optimization method
to enable hierarchical complex event detection. In [12], Cugola et al. introduced
CEP2U, an engine for CEP under uncertainty, which has been built based on
TELSA language [13] and the T-Rex CEP engine [14]. CEP2U does not just
consider uncertainty in basic events and how it propagates, but also it consid-
ered uncertainty in rules. The issue of uncertain data processing is not exclusive
for CEP, but it has its origins in databases community [15].

The analysis of CEP applications using formal methods has been addressed
before. Ericsson et al. [16] introduced an approach based on transforming CEP
rules into timed automata to be verified using timed model checker UPPAAL,
through a proposed tool REX. However, they did not describe in detail how to
perform the verification process. A formal verification approach was also pro-
posed among other approaches proposed by [17] for analyzing CEP applications.

250 H. Debbi

They used Discreet Transition System (DTS) as a verification model and the Prop-
erty Specification Language (PSL) sequences for specifying temporal properties.

In this paper, we propose a novel approach for analyzing probabilistic CEP
applications based on probabilistic model checking. While analyzing CEP appli-
cations has been investigated before, and not really in depth, to our knowledge,
this is the first attempt to analyze probabilistic CEP. Probabilistic model check-
ing has appeared as an extension of model checking for modeling and analyzing
systems that exhibit stochastic behavior. Several case studies in several domains
have been addressed from randomized distributed algorithms and network pro-
tocols to biological systems and cloud computing environments. These systems
are described usually using Discrete-Time Markov Chains (DTMC), Continuous-
Time Markov Chains (CTMC), Probabilistic Timed Automata (PTA) or Markov
Decision Processes (MDP), and verified against properties specified in Prob-
abilistic Computation Tree Logic (PCTL) [18], Continuous Stochastic Logic
(CSL) [19,20] or the extension of Timed CTL (TCTL) the probabilistic TCTL
(PTCTL) [21].

The rest of this paper is organized as follows. In Sect. 2 we present some
preliminaries and definitions, Probabilistic Timed Automata (PTA) and Proba-
bilistic Timed Computation Tree Logic (PTCTL) are presented in this section.
Section 3 introduces some basic definitions related to CEP. In Sect. 4, we intro-
duce our approach for probabilistic CEP verification. Finally, conclusion and
future works are presented.

2 Preliminaries and Definitions

2.1 Clocks and Zones

We denote by R the domain of time (non-negative reals), and by N the naturals.
Let X be a set of finite variables called clocks which take values from R. We
denote by v(x) the clock valuation function that assigns a value v ∈ RX , where
Rx represents the set of all clock valuations of X. For any v ∈ RX and t ∈ R,
v + t denotes the clock valuation defined as (v + t)(x) = v(x) + t for all x ∈ X.

The set of zones (clock constraints) of X, denoted Z(X) is defined by the
syntax

ζ ::= x ≤ d | c ≤ x | x + c ≤ y + d | ¬ζ | ζ ∨ ζ
where x, y ∈ X and c, d ∈ N . We say that a clock valuation v satisfies a

zone ζ, denoted v � ζ if and only if ζ resolves to true after substituting each
clock x with v(x). Other constraints can be easily derived, for example, x > 1 ≡
¬(x ≤ 2) and equality can be written as a conjuction of constraints,for example
x = 2 ≡ (x ≥ 2 ∧ x ≤ 3).

2.2 Probabilistic Timed Automata

While the formalism of Clocks and Zones is the same for classical timed
automata, PTA are extended with discrete probability distributions over edges.

ECMFA 2017 251

A probabilistic timed automaton is a tuple (L, l0,X, inv, prob) where: L is a
finite set of locations with l0 is the initial location. X is a finite set of clocks.
inv : L −→ Z(x) maps to each location an invariant condition. prob ⊆ S ×
Z(X) × Dis(L × 2x) is the probabilistic edge relation.

A state of PTA is a pair (l, v) ∈ L × RX such that �inv(l). An edge of PTA
is (l, g, a, p, l′, Y) where l′ is the destination location and and Y is the set of
clocks to be reset and (l, g, a, p) is a probabilistic edge of PTA where l is source
location, g is a guard, a is an action and p is the destination distribution. In l0
all clocks are initialized to zero. For any state (l, v), there is a non-deterministic
choice between making a discrete transition and letting time pass, the transition
is enabled if v � g and probability to moving to destination location l′ resulting
in resetting the set Y of clocks equals to p(l′, Y). Letting the time passes in
the current location l is provided by the invariant condition inv(l), which is
continuously satisfied while time elapses.

2.3 Probabilistic Timed CTL (PTCTL)

The Probabilistic Timed Computation Tree Logic (PTCTL) has appeared as
an extension of CTL for the specification of probabilistic timed systems. We
use the PTCTL for defining quantitative and timing properties of PTAs. Like
TCTL, we use a set of clock variables for expressing timing properties, this set
is denoted by Z disjoint from X, where ξ : Z → R is a formula clock valuation
that assigns values to such clocks. TPCTL state formulas are formed according
to the following grammar:

φ ::= true|a|ζ|z.φ|φ1 ∧ φ2|¬φ|P∼p(ϕ)

where a ∈ AP is an atomic proposition, ζ is a zone over X ∪ Z, z.φ is reset
quantifier, ϕ is a path formula, P is a probability threshold operator, ∼∈ {<,
≤, >,≥} is a comparison operator, and p is a probability threshold. The path
formulas ϕ are formed according to the following grammar:

ϕ ::= φ1Uφ2|φ1Wφ2|φ1U≤nφ2|φ1W≤nφ2

where φ1 and φ2 are state formulas and n ∈ N . As in CTL, the temporal opera-
tors (U for strong until, W for weak (unless) until and their bounded variants)
are required to be immediately preceded by the operator P. The PTCTL for-
mula is a state formula, where path formulas only occur inside the operator P.
The operator P can be seen as a quantification operator for both the operators ∀
(universal quantification) and ∃ (existential quantification), since the properties
are representing quantitative requirements.

With TPCTL we can express properties such as, with a probability at least
0.98, the packet is eventually delivered within 5 time units, which is expressed
using TPCTL as follows: P≥0.98[(trueUPacketDelivered ∧ (z = 5)].

252 H. Debbi

2.4 PRISM Language

A model in PRISM consists of one or several modules that interact with each other.
The module is specified using PRISM language as a set of guarded commands.

[< action >] < guard >−→< updates >
Where the guard is a predicate over the variables of the system and the

updates describe probabilistic transitions that the module can make if the guard
is true. These updates are defined as follows:

< prob >:< atomicupdate > +.....+ < prob >:< atomicupdate >
PRISM also supports rewards which are real values associated with states

or transitions of the model. Where state rewards can be specified as: g : r, and
transition rewards are represented as: [a]g : r.

PTA is modeled in PRISM as an MDP [22]. The entire model is represented
as a parallel composition of different modules and can be synchronized. PRISM
defines the action time to label the transitions corresponding to time passing for
each module. Thus, for time passing, all the modules will be synchronized on this
action. The time transitions are defined in term of clocks, which are represented
by bounded integer-valued variables. Suppose that we have an invariant (x < 5)
a location l, where x is a clock. The time elapse transition (duration 1) can be
modeled as follows:

[time]l = 1&x < 4 −→ (x′ = min(x + 1, kx + 1))
For the case of discrete transitions, they are enabled based on the value of

the clock x. For instance, in the location l when the value of x becomes in the
interval 4 ≤ x ≤ 6, the enabling condition is satisfied, and discrete transitions
are enabled. For the following guarded command, two transitions are enabled
from location l by performing an action a, the first leads to a location (l = 2)
with probability 0.25, and the second leads to a location (l = 3) with probability
0.75, and the clock x is reset.

[a]l = 1&x >= 4&x <= 6 −→ 0.25 : (l′ = 2) + 0.75 : (l′ = 3)&(x′ = 0)

3 Complex Event Processing (CEP)

Any CEP application regardless of the technique employed for processing events:
query-based, rule-based, etc., can be described using the Event Processing Net-
work (EPN) [1,23]. EPN is a conceptual model that enables us to build a CEP
application in reliable way by describing the event execution flow, from sources
passing by processing modules to destinations. We call the modules responsible
for the processing, Event Processing Agents (EPAs). EPAs are simply a set of
objects that monitor event execution to detect such patterns. For each pattern
found there is a set of actions to be performed. The EPN we use for modeling
CEP applications consists of four main components:

Event producer: the entity responsible for generating the stream of events
Event consumer: the final entity that consumes the outcome of EPAs
EPA: is the component that given set of input events, it generates output
events to be consumed by applying such logic that must expresses time con-
straints (Fig. 1).

ECMFA 2017 253

Fig. 1. An EPA

Event Type: represents the event object structure that consists of specified
attributes, where the time-stamp is a present attribute in any event type.

The output of an EPA is either consumed by event consumer, or it feeds
another EPA (Fig. 2). We notice that EPA is the central component in EPN, in
way we can say that an EPN is a set of EPAs communicating between each other
by exchanging events asynchronously. Roughly speaking, EPA employs such rules
that consist of two parts: pattern called the trigger and a set of actions. By
executing these rules, output events are generated. In CEP applications, EPAs
nature varies according to the engine used (rule-based, query-based,..) [1]. For
example, we can express an EPA as an Event Processing Language (EPL) query,
the language used by ESPER [24] engine for processing events as follows:

Fig. 2. An EPN

[insert into insert into def]
select select list
from stream def[as name] [, stream def[as name] [,...]
[where search conditions]
[within time period expression]
[group by grouping expression list]

254 H. Debbi

[having grouping search conditions]
[output output specification]
[order by order by expression list]
[limit num rows]

4 The Verification Approach of Probabilistic CEP

In real world the streams of events are uncertain, this uncertainty is due mainly
to imprecise content from the events sources (Sensors, RFID, etc.). As a result,
the EPAs will not employ just time constraints, but also probabilistic thresh-
olds, and thus we call them Probabilistic EPAs (PEPAs). The major challenge
for employing probabilities, is how PEPAs derive and output complex events
aggregated from probabilistic basic events. Feeding the events from a PEPA
to another is subjected to a probability threshold called the confidence thresh-
old. Most of the approaches proposed for probabilistic CEP use the confidence
threshold [11,12]. We present here an example of query language structure of a
PEPA with confidence threshold [11].

[EVENT < eventpattern >]
[WHERE < qualification >]
[WITHIN < time window >]
[GROUP BY < attribute set >]
[HAVING < confidence qualification >]

This paper does not consider the inference of the probabilistic complex events,
but rather it reveals the way of analyzing probabilistic CEP application by focus-
ing only on the confidence threshold despite the inference technique in use. The
analysis of probabilistic CEP applications relies on the analysis of how PEPAs
behave as it is intended. Therefore, we need to model the PEPAs and their
interaction using modeling tool capable of dealing with time and probability
and verified against properties specified using a logic that expresses time and
probability. In this paper, we use Probabilistic Timed Automaton (PTA) for
modeling the behavior of PEPAs, and the PTCTL as specification logic for
specifying probabilistic timed properties.

4.1 Modeling Phase

In our approach we argue that probabilistic timed automaton is the best choice for
verifying CEP applications under uncertainty. To this end, we have to show the
correspondence between EPN that describes the event execution flow and PTA.

Using PTA, we model the PEPAs as locations where the initial location is
represented by an PEPA that acts on events generated from event producers and
the final location is represented by an PEPA that delivers final events to event
consumers. We associate to each location an invariant that represents in CEP
the time window defined by the PEPA for such type of events. Each out action

ECMFA 2017 255

from an PEPA is enabled with respect to a guard which is specified by the PEPA
source itself, where each action leads to other PEPAs with new event types is
subjected to such a probability threshold. That is, probabilistic edges from an
PEPA source will lead to possible PEPAs with respect to the probabilistic output
events types. By moving to new PEPAs, previous clocks could be reset.

We introduce below the formalization of PEPAs as PTA, and how we can
model their behavior in PRISM language. For the seek of simplicity, we refer to
the PTA representing the entire EPN as PTAofPCEP.

– Locations: Each location in PTAofPCEP represents a specific type of event.
Moving from an PEPA to another is subjected to time constraint, which is
represented by the clock valuation. As long as the clock does not reach the
specified bound, the time is still elapsing in the current location. This time
interval is usually called in CEP literature as time window.

– Initial state: The PTAofPCEP starts in the initial state, where all clocks are
set to zero, and only the basic events types can be represented, no complex
events can be expressed in the initial state.

– Final state: The final state in PTAofPCEP is the state in which there is
no transition enabled. These states represent the final complex events to be
delivered to the different destinations.

– Transition Probability: In the PTAofPCEP, every location with enabled
action has exactly two transitions. The first leads to a new PEPA with a
probability equals to the confidentiality threshold (CT), the second is a self-
transition with a probability 1 − CT .

– Non-deterministic Choice: There is always a non-deterministic choice of
either making a transition to another PEPA or letting time pass. In addition,
moving from a PEPA to another is also based on non-deterministic choice.
For instance, in case of moving from one PEPA to two other PEPAs, two
actions should take place, each one with two enabled transitions as described
before.

– Parallel Composition: In case of having different sources of events, we
should not restrict ourself to one PTAofPCEP, but rather we can use a parallel
composition of PTAofPCEP, where each PTAofPCEP refers to exactly one
event source.

– PRISM Language: In PRISM, we will introduce the types of events as
Boolean variables. A variable being true, means that the current PEPA rep-
resents this event. In the case of many variables being true, this means that
the current PEPA represents a complex event that requires these events being
true. In PRISM language, each PTAofPCEP is represented as a module, the
parallel composition of these modules form the entire model.

4.2 Specification Phase

After modeling probabilistic CEP application as a PTAofPCEP or a parallel
composition of PTAofPCEP, we can use TPCTL logic to specify temporal and
probabilistic properties, to verify if the model meets the specification. The type

256 H. Debbi

of properties that can be specified for probabilistic CEP are not much different
from the standard types defined by [21]. We present here the main types of
probabilistic timed properties that can be used to specify probabilistic CEP
applications as follows:

Reachability: The application can produce an output event with a given prob-
ability. For example, with probability 0.99 or greater, a deliver alert is received
by a client.

P≥0.99[trueUAllertDelivered]

Time bounded reachability: The application can produce an output event
within a certain time deadline with a given probability. For example, with prob-
ability 0.975 or greater, an alert is received by a client within 5 time units.

P≥0.975[trueU(AllertDelivered ∧ (z < 5))]

Invariance: Certain type of events are not produced with a given probability.
For example, with probability 0.75 or greater, error event is never generated.

P≥0.75[trueU¬error]
We can also specify such properties using PTCTL for complex events. For

example, eventC must not appear until eventA and eventB have already occurred
with probability 0.9 or greater.

P≥0.9[¬EventCUEventA ∧ EventB]

5 Case Study

In this section we will apply our approach to a case study. The case study
concerns a system equipped with different RFID readers, sensors and radars
for tracking vehicles and detecting overspeed and accidents, and delivering all
interesting events in real-time. This case study has been shown as a good example
for probabilistic CEP in [11], where it has been used to express different PEPAs.

5.1 Model

Suppose that we have three RFID readers, installed in three different locations
(A, B and C), each reader reports two main types of events, Accident denoted
X and Over-speed denoted O, together with the type of the vehicle detected (we
consider here two types: Car and Truck). Thus, the CEP engine will have three
events sources with respect to each RFID. These sources of events are often called
input streams. After receiving these basic events, which are themselves uncertain,
they will be passed to different PEPAs for inferring complex events. An example
of complex event is an event composed of overspeed (O) and accident (X). Below,
we present a PRISM model for this probabilistic CEP system. PRISM supports
mainly three types of models: DTMs, CTMSc and MDPs. PTAs are expressed
in PRISM as MDPs [22]. MDP is a model that extends DTMC by allowing the
non-deterministic choice.

ECMFA 2017 257

Fig. 3. Global variables

Fig. 4. Module

Since our system consists of three different sources, our model will be repre-
sented as a parallel composition of three modules, each one refers exactly to one
RFID reader. Each module consists of three main variables, which represent the
types of events (O, X and CarType), in addition to the clock variable, which
is responsible for estimating time elapsing that should not exceed the timewin-
dow specified by the user, where timewindow is declared as a global variable.
The other constants declared globally are the confidence probability thresholds

258 H. Debbi

defined by the user, these constants represent the probabilities of leaving a PEPA
to another, while the value (1-Confidence threshold) represents the probability
of remaining in the same PEPA, or in other words the probability of not leav-
ing to the other PEPA, where new event type is emerged. Figure 3 shows the
declared constants that should be defined by the user while building the model.

Figure 4 identifies the main module of this MDP model. We start by defining
a module for RFID A. It starts by introducing the three local variables (Oa, Xa
and CarTypeA) that represent the event types, as well as the clock x. The clock
x is always reset when the time window elapses.

The commands in lines (11, 17, 21 and 25) represent the time window defined
by each PEPA. For seek of simplicity, we consider that all the PEPAs define
the same time window. The rest of commands define the probabilities of going
from a PEPA to another. For instance, from received events, with confidence
probability threshold OvSpeed, output event overspeed will be generated. The
same thing is applied to Accident event. We modeled here the two possibilities,
accident with no overspeed (line 14) and the other complex event where there
exist overspeed with accident (line 18). The rest of commands represent the
probability correspondent to the type of vehicle, when an accident has already
occurred. Here a confidence probability threshold must be identified for each
type (Car or Truck).

Figure 5 represents the parallel composition of the module RfidA with the
two others (RfidB and RfidC). It’s performed by renaming the local variables.
Figure 6 shows the reward structure of the transition time that represents time
elapsing until time window is reached. It could be helpful for the analysis of
expected reward or cost properties. Figure 7 represents some labels that will be
used for specifying the probabilistic properties.

Fig. 5. Module duplication

The model generated by PRISM consists of 2592 states and 12312 transitions.
The entire model is resulted from the parallel composition of the modules, and
thus each state is determined simply by the values of all the variables of the
three modules.

Fig. 6. Time reward

ECMFA 2017 259

Fig. 7. Labels

5.2 Model Analysis

After building the model, we can specify different probabilistic properties. Since
the model is represented as an MDP, we use Pmin and Pmax for estimating
the minimum and the maximum probabilities respectively, over all the possible
resolutions of non-determinism. PRISM not only offers the maximum and the
minimum probabilities, but also the maximum and minimum reward for cost
analysis. In addition, it offers simulation framework aiding the user to interpret
the results, which we will use it for plotting the graphs of probability estimation
based on time variable T . For the model to be built and verified against the
probabilistic properties, we must define all the constants. The window in which
these values are defined is shown in Fig. 8. We present the values that we should
use for the model analysis. Different values would absolutely lead to different
results. We cite below a set of different properties.

Fig. 8. Defining constants by the user

We can estimate the probability of an event not occurring until some other
events have already occurred. For instance, an accident does not happen at
location C until an overspeed is detected at all the locations (A, B and C),
which is defined by the label OvSpeed All.

Pmax =?[(!Xc = 1)U(“OvSpeed All”)]

260 H. Debbi

Prism renders the value 0.63 as a maximum probability. We can rewrite this
property to be a property with lower threshold as follows:

P <= 0.64[(!Xc = 1)U(“OvSpeed All”)]
The interpretation of this property becomes: the probability of an accident

at location C after an overspeed has been detected at all locations should not
exceed the probability threshold 0.64.

Another property can be used to estimate the maximum probability of having
an overspeed at all locations, but with no accident.

Pmax =?[(true)U(“OvSpeed All”&“No Accident”)]
Prism renders the value 0.36 as a maximum probability. We can rewrite this

property to be a reachability property with lower threshold as follows :
P <= 0.37[(true)U(“OvSpeed All”&“No Accident”)]
We can also need properties with upper threshold. These invariance proper-

ties can be used to express that an event should not occur with such probability
threshold. For instance, the probability of an event of truck accident is gener-
ated where actually no accident has been reported should be practically zero.
However, we can express this property as a property with upper threshold as
follows:

P >= 0.999[trueU !(“No Accident”&CarTypeA= 1)]
Now, we are going to present some time bounded properties, which are based

on the time variable T . For instance, we can use the following property to mea-
sure the probability of generating an event of overspeed with accident at location
A during a period of time T .

Pmax =?[F <= T (Oa = 1&Xa = 1)]
A graph plotting the probability estimated as a function of T is shown in

Fig. 9. It shows that the probability of the complex event overspeed with accident
at location A increases over time. Another graph is presented in Fig. 10 for the
following property.

Pmax =?[F <= T (“OvSpeed All”&Xc = 1)]
This property estimates the probability of generating the complex event that

indicates that overspeed has been detected at all locations with accident at loca-
tion C. By comparing the two graphs, we observe that the maximum probability
of the first property is reached in shorter period of time than in the previous
one. For instance, for the first property the probability reaches 0.9 at T = 30,
while in the second property, it is reached at T = 40.

We can generate a graph for the property Pmax =?[F <= T (“OvSpeed All”
&“No Accident”)] (See Fig. 11). Here we see that the probability increases

until it reaches its maximum value at T = 20.
Another interesting aspect of analysis provided by PRISM is the expected

reward analysis. It might be useful for probabilistic CEP applications when we
want to reason about the time reward for generating such event. For instance,
the following property estimates the minimum reward of having overspeed in all
locations, where the value rendered by PRISM is 10.083.

R“time”min =?[F (“OvSpeed All”)]

ECMFA 2017 261

Fig. 9. Probability of overspeed with acci-
dent at location A

Fig. 10. Probability of overspeed all with
accident at location C

Fig. 11. Overspeed all with no accident

6 Conclusion

Probabilistic CEP applications have known a great success as a technological
paradigm to deal with the high processing of events in real time under uncer-
tainty. Therefore, delivering analysis techniques to ensure the correctness of these
systems has become a great challenge. In this paper, we proposed a formal veri-
fication framework for probabilistic CEP based on probabilistic model checking.
We showed how TPCTL logic can be useful for specifying timed probabilistic
properties to analyze the behavior of PEPAs.

As a future work, we aim to investigate in depth manner the constraints
that should be put on adopting the probabilistic timed automata (PTA) as
a description model for probabilistic CEP, and we aim also to investigate the
extension of TPCTL for specifying more special properties of probabilistic CEP.
We aim also to deliver a tool that allows the description of EPN of PEAPs in
graphical simple language, and then generates the corresponding PRISM model
automatically.

References

1. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, Boston (2002)

2. Ammon, R., Emmersberger, C., Springer, F., Wolff, C.: Event-driven business
process management and its practical application taking the example of DHL.
In: The 1st International Workshop on Complex Event Processing for the Future
Internet (iCEP), pp. 1–26 (2008)

262 H. Debbi

3. Sen, S.: Business activity monitoring based on action-ready dashboards and
response loop. In: The 1st International Workshop on Complex Event Process-
ing for the Future Internet (iCEP), pp. 46–57. IEEE (2008)

4. Laha, A.: Rap: a conceptual business intelligence framework. In: Proceedings of
the 1st Bangalore Annual Compute Conference (2008)

5. Zang, C., Fan, Y.: Complex event processing in enterprise information systems
based on RFID. J. Enterp. Inf. Syst. 01(01), 3–23 (2007)

6. Yao, W., Chu, C., Li, Z.: Leveraging complex event processing for smart hospitals
using RFID. J. Netw. Comput. Appl. 34(03), 799–810 (2011)

7. Chuanfei, X., Shukuan, L., Lei, W., Jianzhong, Q.: Complex event detection in
probabilistic stream. In: 12th International Asia-Pacific Web Conference, pp. 361–
363 (2010)

8. Li, Z., Ge, T.: Online windowed subsequence matching over probabilistic sequences.
In: Proceedings of the 2012 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 277–288 (2012)

9. Re, C., Letchner, J., Balazinska, M., Suciu, D.: Event queries on correlated prob-
abilistic streams. In: Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, pp. 715–728 (2008)

10. Wasserkrug, S., Gal, A., Etzion, O., Turchin, Y.: Complex event processing over
uncertain data. In: Proceedings of the Second International Conference on Distrib-
uted Event-Based Systems, pp. 253–264 (2008)

11. Wang, Y., Cao, K., Zhang, X.: Complex event processing over distributed proba-
bilistic event streams. Comput. Math. Appl. 66(10), 1808–1821 (2015)

12. Cugola, G., Margara, A., Matteucci, M., Tamburrelli, G.: Introducing uncertainty
in complex event processing: model, implementation, and validation. Computing
97(02), 103–144 (2015)

13. Cugola, G., Margara, A.: TESLA: a formally defined event specification language.
In: Proceedings of the Fourth International Conference on Distributed Event-Based
Systems 2010, pp. 50–61 (2010)

14. Cugola, G., Margara, A.: Complex event processing with T-Rex. Comput. Math.
Appl. 85(08), 1709–1728 (2012)

15. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB
J. 16(04), 523–544 (2007)

16. Ericsson, A., Pettersson, P., Berndtsson, M., Seirio, M.: Seamless formal verifica-
tion of complex event processing applications. In: Proceedings of the International
Conference on Distributed Event Based Systems (DEBS), pp. 50–61 (2007)

17. Rabinovich, E., Etzion, O., Ruah, S.: Analyzing the behavior of event process-
ing applications. In: Proceedings of the Fourth ACM International Conference on
Distributed Event-Based Systems, pp. 223–234 (2010)

18. Hansson, H., Jonsson, B.: Logic for reasoning about time and reliability. Formal
Aspects Comput. 6(05), 512–535 (1994)

19. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
markov chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)

20. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model checking algorithms
for continuous-time markov chains. IEEE Trans. Softw. Eng. 29(07), 524–541
(2003)

21. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(01), 101–150 (2002)

ECMFA 2017 263

22. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of
probabilistic timed automata using digital clocks. Formal Methods Syst. Des. 29,
33–78 (2006)

23. Etzion, O., Niblett, P.: Event Processing in Action. Manning, Greenwich (2010)
24. ESPER. http://www.espertech.com/

http://www.espertech.com/

Experience Reports, Case Studies, and
New Application Scenarios

Example-Driven Web API
Specification Discovery

Hamza Ed-douibi1(B) , Javier Luis Cánovas Izquierdo1 ,
and Jordi Cabot1,2

1 UOC, Barcelona, Spain
{hed-douibi,jcanovasi}@uoc.edu

2 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. REpresentational State Transfer (REST) has become the
dominant approach to design Web APIs nowadays, resulting in thousands
of public REST Web APIs offering access to a variety of data sources
(e.g., open-data initiatives) or advanced functionalities (e.g., geolocation
services). Unfortunately, most of these APIs do not come with any spec-
ification that developers (and machines) can rely on to automatically
understand and integrate them. Instead, most of the time we have to
rely on reading its ad-hoc documentation web pages, despite the exis-
tence of languages like Swagger or, more recently, OpenAPI that devel-
opers could use to formally describe their APIs. In this paper we present
an example-driven discovery process that generates model-based Ope-
nAPI specifications for REST Web APIs by using API call examples. A
tool implementing our approach and a community-driven repository for
the discovered APIs are also presented.

Keywords: REST web APIs ·Discovery process ·OpenAPI ·Repository

1 Introduction

Web APIs are becoming the backbone of Web, cloud, mobile applications and
even many open data initiatives. For example, as of February 2017, Program-
mableWeb lists more than 16,997 public APIs. REST is the predominant archi-
tectural style for building such Web APIs, which proposes to manipulate Web
resources using a uniform set of stateless operations and relying only on simple
URIs and HTTP verbs.

Despite their popularity, REST Web APIs do not typically come with any pre-
cise specification of the functionality or data they offer. Instead, REST “specifica-
tions” are typically simple informal textual descriptions [11] (i.e., documentation
pages), which hampers their integration in third-party tools and services. Indeed,
developers need to read documentation pages, manually write code to assemble
the resource URIs and encode/decode the exchanged resource representations.
This manual process is time-consuming and error-prone and affects not only the

c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 267–284, 2017.
DOI: 10.1007/978-3-319-61482-3 16

http://orcid.org/0000-0003-4342-4818
http://orcid.org/0000-0002-2326-1700
http://orcid.org/0000-0003-2418-2489

268 H. Ed-douibi et al.

adoption of APIs but also its discovery so many web applications are missing good
opportunities to extend their functionality with already available APIs.

Actually, languages to formalize APIs exist, but they are barely used in
practice. Web Application Description Language (WADL) [6], a specification
language for REST Web APIs was the first one to be proposed. However, it was
deemed too tedious to use and alternatives like Swagger1, API Blueprint2 or
RAML3 quickly surfaced. Aiming at standardizing the way to specify REST Web
APIs, several vendors (e.g., Google, IBM, SmartBear, or 3Scale) have recently
announced the OpenAPI Initiative4, a vendor neutral, portable and open speci-
fication for providing metadata (in JSON and YAML) for REST Web APIs.

This paper aims to improve this situation by helping both API builders and
API users to interact with (and discover) each other by proposing an approach
to automatically infer OpenAPI-compliant specifications for REST Web APIs,
and, optionally, store them in a community-oriented directory. From the user’s
point of view, this facilitates the discovery and integration of existing APIs,
favouring software reuse. For instance, API specifications can be used to gen-
erate SDKs for different frameworks (e.g., using APIMATIC5). From the API
builder’s point of view, this helps increase the exposure of the APIs without the
need to learn and fully write the API specifications or alter the API code, thus
allowing fast-prototyping of API specifications and leveraging on several existing
toolsets featuring API documentation generation (e.g., using Swagger UI6) or
API monitoring and testing (e.g., using Runscope7).

Our approach is an example-driven approach, meaning that the OpenAPI
specification is derived from a set of examples showing its usage. The use of
examples is a well-known technique in several areas such as Software Engineering
[8,10] and Automatic Programming [5]. In our context, the examples are REST
Web API calls expressed in terms of API requests and responses.

We follow a metamodeling approach [1] and create an intermediate model-
based representation of the OpenAPI specifications before generating the final
OpenAPI JSON Schema definition8 for two main reasons: i) to leverage the
plethora of modeling tools to generate, transform, analyze and validate our dis-
covered specifications (as existing JSON schema tools are limited and may pro-
duce contradictory results [12]); and ii) to enable the integration of APIs into
model-driven development processes (for code-generation, reverse engineering,..).
For instance, we envision designers being able to include API calls in the defin-
ition of web-based applications using the Interaction Flow Modeling Language
(IFML) [2].

1 http://swagger.io/.
2 https://apiblueprint.org/.
3 http://raml.org/.
4 https://openapis.org.
5 https://apimatic.io/.
6 http://swagger.io/swagger-ui/.
7 https://www.runscope.com/.
8 https://github.com/OAI/OpenAPI-Specification/blob/master/schemas/v2.0/

schema.json.

http://swagger.io/
https://apiblueprint.org/
http://raml.org/
https://openapis.org
https://apimatic.io/
http://swagger.io/swagger-ui/
https://www.runscope.com/
https://github.com/OAI/OpenAPI-Specification/blob/master/schemas/v2.0/schema.json
https://github.com/OAI/OpenAPI-Specification/blob/master/schemas/v2.0/schema.json

Example-Driven Web API Specification Discovery 269

The remainder of this paper is structured as follows. Section 2 show the run-
ning example used along the paper. Section 3 presents the overall approach and
then Sects. 4, 5 and 6 describe the OpenAPI metamodel, the discovery process
and the generation process, respectively. Section 7 describes the validation process
and limitations of the approach. Section 8 presents the related work. Section 9
describes the tool support, and finally, Sect. 10 concludes the paper.

2 Running Example

This section introduces the running example used along the paper together with
the main elements of a REST Web API. The example is based on the Pet-
store API, a REST Web API for a pet store management system, released by
the OpenAPI community as a reference. This API allows users to manage pets
(e.g., add/find/delete pets), orders (e.g., place/delete orders), and users (e.g.,
create/delete users). Figure 1 shows an excerpt of this API specification, an API
access request and a possible response document for that call request.

Figure 1a shows the request to retrieve the pet with the id 123 while Fig. 1b
shows the returned response with that pet information. A request includes a
method (e.g., GET), a URL (e.g., http://petstore.swagger.io/v2/pet/123)
and optionally a message body (empty for this example). The URL in turn
includes: (i) the transfer protocol, (ii) the host, (iii) the base path, (iv) the rel-
ative path and (v) the query (indicated by the first question mark “?”, empty for
this example). The relative path and the query are optional. A response includes a
status code (e.g., 200) and optionally a JSON response message. Figure 1c shows
an excerpt of the OpenAPI-compliant specification for this example call in JSON

Fig. 1. API call example of the Petstore API: (a) the request, (b) the response, and
(c) an excerpt of the corresponding OpenAPI specification.

270 H. Ed-douibi et al.

format. This document includes fields to specify properties such as the host, the
base path, the available paths (i.e., the field paths), the supported operations for
each path (e.g., the field get), and the data types produced and consumed by the
API (i.e., the field definitions). The specification indicates that the GET opera-
tion of the path /pet/{petId} allows retrieving a pet by his ID.

3 Approach

We define a two-step process to discover OpenAPI-compliant specifications from a
set of REST Web API call examples. Figure 2 shows an overview of our approach.

The process takes as input a set of API call examples. For the sake of simplic-
ity, we assume examples are provided beforehand and later in Sect. 9 we describe
how we devised a solution to provide them both manually and relying on other
sources. These examples are used to build an OpenAPI model (see Fig. 2a) in the
first step of the process. Each example is analyzed with two discoverers, namely:
(1) behavioral and (2) structural targeting the corresponding elements of the
API definition. The output of these discoverers is merged and added incremen-
tally to an OpenAPI model, conforming to the OpenAPI metamodel presented
in the next section. The second step transforms these OpenAPI models to valid
OpenAPI JSON documents (see Fig. 2b).

To represent the API call examples themselves, we rely on a JSON-based
representation of the request/response details. Both, the request sent to the
server and the received response message, are represented as JSON objects (i.e.,
request and response fields in left upper box of Fig. 2). The request object
includes fields to set the method, the URL and the JSON message body; while
the response object includes fields for the status code and the JSON response
message. This JSON format helps to simplify the complexity of directly using
raw HTTP requests and responses (which would require to perform HTTP traffic
analysis) and facilitate the provision of examples by end-users. As discussed
later, we provide also tool support to provide API call examples and even to
(semi)automatically derive them from other sources, like existing documentation.

Fig. 2. Overview of the approach.

Example-Driven Web API Specification Discovery 271

As a final step, the resulting OpenAPI-compliant specifications may option-
ally be added to HAPI, our community-driven hub for REST Web APIs, where
developers can search and query them. In the following sections we describe our
OpenAPI metamodel, the discoverers, and the OpenAPI generator. The example
providers, APIs importers, and HAPI will be explained in Sect. 9.

4 The OpenAPI Metamodel

This section presents the OpenAPI metamodel to specify REST Web APIs.
In a nutshell, a metamodel describes the set of valid models for a language,
specifying how the different elements of the modeling language can be used and
combined [1].

This model-based approach to define and store internally OpenAPIs facili-
tates the integration of our approach with model-based development methods
and facilitates the manipulation of such OpenAPI specifications before the final
generation of the corresponding JSON documents. Such features are not pro-
vided by the JSON Schema definition of OpenAPI9, which is limited to be used
to validate documents against the original specification; or existing implemen-
tations (e.g., the Java model for OpenAPI10), which generally consist of a set of
POJOs to serve as parsing facilities.

The metamodel is derived from the concepts and properties described in
the OpenAPI specification document. Next we explain the main parts of this
metamodel, namely: (1) behavioral elements, (2) structural elements, and (3)
serialization/deserialization elements. The metamodel also includes support for
metadata (e.g., description or version) and security aspects. The complete meta-
model, comprised of 29 different metaclasses, is available in our repository11.

4.1 Behavioral Elements

Figure 3 shows the behavioral elements of the OpenAPI metamodel. A REST
Web API is represented by the API element, which is the root element of our
metamodel. This element includes attributes to specify the version of the API
(swagger attribute), the host serving the API, the base path of the API, the sup-
ported transfer protocols of the API (schemes attribute) and the list of MIME
types the API can consume/produce. It also includes references to the available
paths, the data types used by the operations (definitions reference) and the
possible responses of the API calls.

The Path element contains a relative path to an individual endpoint and the
operations for the HTTP methods (e.g., get and put references). The description
of an operation (Operation element) includes an identifier operationId, the
MIME types the operation can consume/produce, and the supported transfer
9 https://github.com/OAI/OpenAPI-Specification/blob/master/schemas/v2.0/

schema.json.
10 https://github.com/swagger-api/swagger-core.
11 https://github.com/SOM-Research/APIDiscoverer/tree/master/metamodel.

https://github.com/OAI/OpenAPI-Specification/blob/master/schemas/v2.0/schema.json
https://github.com/OAI/OpenAPI-Specification/blob/master/schemas/v2.0/schema.json
https://github.com/swagger-api/swagger-core
https://github.com/SOM-Research/APIDiscoverer/tree/master/metamodel

272 H. Ed-douibi et al.

Fig. 3. Behavioral elements of the OpenAPI metamodel.

protocols for the operation (schemes attribute). An operation includes also the
possible responses returned from executing the operation (responses reference).

API, Path and Operation elements inherit from ParameterContext, which
allow them to define parameters at API level (applicable for all API operations),
path level (applicable for all the operations under this path) or operation level
(applicable only for this operation).

The Response element defines the possible responses of an operation and
includes the HTTP response code, a description, the list of headers sent with
the response, and optionally an example of the response message. Response and
Parameters elements inherit from SchemaContext thus allowing them to add
the definition of the response structure and the data type (schema reference)
used for the parameter, respectively. Parameter and Schema elements will be
explained in Sect. 4.2.

4.2 Structural Elements

Figure 4 describes the structural elements used in a REST Web API, namely: the
Schema element, which describes the data types; the Parameter element, which
defines an operation parameter; the ItemsDefiniton element, which describes
the type of items in an array; and the Header element, which describes a header
sent as part of a response. These elements use an adapted subset of the JSON
Schema Specification defined in the super class JSONSchemaSubset12.

A parameter includes a name, and two flags to specify whether either the
parameter is required or empty.

The location of the parameter is defined by the location attribute. The
possible locations are: (i) path, when it is part of the URL (e.g., petId in

12 More information about the schema information can be found at http://json-schema.
org/latest/json-schema-validation.html.

http://json-schema.org/latest/json-schema-validation.html
http://json-schema.org/latest/json-schema-validation.html

Example-Driven Web API Specification Discovery 273

Fig. 4. Structural elements of the OpenAPI metamodel.

/pet/petId); (ii) query, when it is appended to the URL (e.g., status in
/pet/findByStatus?status="sold"); (iii) header, for custom headers; (iv)
body, when it is in the request payload; and (v) formData, for specific pay-
loads13.

Parameter and Header elements inherit from ArrayContext to allow them
to specify the collection format and the items definition for attributes of type
array. Additionally the Parameter element inherits from the SchemaContext to
define the data structure when the attribute location is of type body (Schema
reference).

The Schema element defines the data types that can be consumed and pro-
duced by operations. It includes a name, a title, and an example. Inheritance and
polymorphism is specified by using the allOf reference and the discriminator
attribute, respectively. Furthermore, when the schema is of type array, the
items reference makes possible to specify the values of the array.

4.3 Serialization/Deserialization Support

Figure 5 shows the elements of the metamodel to support serialization and
deserialization of OpenAPI models in JSON (or YAML) format. As said
before, a parameter can be defined at the API level, path level, or operation
level. To specify this, API, Path, and Operation elements inherit from the
ParameterDeclaringContext element which is referenced in each parameter

13 application/x-www-form-urlencoded or multipart/form-data.

274 H. Ed-douibi et al.

Fig. 5. Serialization/deserialization elements

(declaringContext reference). A similar strategy is followed by the Schema ele-
ment (the schema can be declared in the API level, parameter level, response
level, or inside a schema) and the Response element (a response can declared at
the API level or operation level).

All behavioral elements inherit from the JSONPointer element which defines
a JSON reference for each element. This element includes a derived attribute
called ref which is dynamically calculated depending on its declaring context.
This attribute specifies the path of the element within a JSON document fol-
lowing RCF 690114 which can be used to reference a JSON object within the
JSON document.

5 The Discovery Process

The discovery process takes as input a set of API call examples and incrementally
generates an OpenAPI model conforming to our OpenAPI metamodel using two
types of discoverers: (1) behavioral and (2) structural. The former generates the
behavioral elements of the model (e.g., paths, operations) while the latter focuses
on the data types elements. In the following we explain the steps followed by
these two discoverers.

5.1 Behavioral Discoverer

This discoverer analyzes the different elements of the API example calls (i.e.,
HTTP method, URL, request body, response status, response body) to discover
the behavioral elements of the metamodel.

Table 1 shows the applied steps. Target elements column displays the creat-
ed/updated elements in the OpenAPI model while Source column shows the ele-
ments of an API call example triggering those changes (see Fig. 1a and b). The
Action column describes the applied action at each step and the Notes column
displays notes for special cases. These steps are applied in order and repeated for
each API call example. A new element is created only if such element does not exist

14 https://tools.ietf.org/html/rfc6901.

https://tools.ietf.org/html/rfc6901

Example-Driven Web API Specification Discovery 275

Fig. 6. The discovered OpenAPI model from the Petstore API example.

already in the OpenAPI model. Otherwise, the element is retrieved and enriched
with the new discovered information. Note that the discovery of the schema struc-
ture will be assessed by the structural discoverer (see step 6).

Figure 6a shows the generated OpenAPI model for the API call example
shown in Fig. 1. The discovery process is applied as follows. Step 1 creates an
API element and set its attributes (i.e., schemes to SchemeType::http, host to
petstore.swagger.io, and basePath to /v2). Step 2 creates a Path element, sets its
only attribute realtivePath to /pet/{petId} (the string ‘123’ was detected as
identifier), and adds it to the paths references of the API element. Step 3 creates
an Operation element, sets its produces attribute to application/json, and adds
it to the get reference of the previously created Path element. Step 4 creates a
Parameter element, sets its attributes (i.e., name to petId, location to path, and
type to JSONDataType::integer), and adds it to the parameters reference of
the previously created Operation element. Step 5 creates a Response element,
sets its attributes (i.e., code to 200 and description to OK), and adds it to
the response reference of the previously created Operation element. Finally
step 6 creates a Schema element, sets only its name to Pet, and adds it to the
definitions reference of the API element. The rest of the Schema element will
be completed by the structural discoverer.

5.2 Structural Discoverer

This discoverer instantiates the part of the OpenAPI model related to data types
and schema information. This process is started after the behavioral discovery
when the API call includes a JSON object either in the request body or the

276 H. Ed-douibi et al.

Table 1. Steps of the behavioral discoverer applied for each REST Web API call
example.

Step Source Target elements Action Notes

1 <host>,

<basePath>,

<protocol>

a:API -a.schemes= protocol

-a.host= host

-a.basePath= basePath

If the path contains

many sections (e.g.,

/one/two/...) the base

path is set to the first

section (e.g., /one)

otherwise it is set to

”/”.

2 <relativePath> pt:Path -Add pt to a.paths

-pt.relativePath= relativePath.

If relative path

contains an identifier,

it is replaced with a

variable in curly

braces to use path

parameters. A

pattern-based

approach is used to

discover identifiers.a.

3 <httpMethod>,

<RequestBody>,

<ResponseBody>

o:Operation -pt.{httpMethod}= o

-If requestBody is of type JSON then

add "application/json" to o.consumes

otherwise keep o.consumes empty.

-If responseBody is of type JSON

then add "application/json" to

o.produces o.produces otherwise keep

o.consumes empty

{httpMethod} is the

reference of pt which

corresponds to

<httpMethod> (e.g.,

get or post).

4 <query>,

<relativePath>,

<requestBody>

pr:Parameter -Add pr to o.parameters

-Set pr.type to the inferred typeb

-Set pr.location to:

(i) path if parameter is in relativePath

(ii) query if parameter is in query

(iii) body if parameter is in

requestBody

Apply this rule for all

the detected

parameters. The

discovery of the

schema of the body

parameter is launched

in step 6

5 <ResponseCode> r:Response -Add r to o.responses

-r.code= responseCode

-r.description= correspondent

description of the response

The discovery of the

schema of the

response body is

launched in step 6.

6 <RequestBody>,

<ResponseBody>

s:Schema -Add s to a.definitions.

-Set the s.name= the last meaningful

section of the path.

-If the schema is in <RequestBody>,

set pr.schema to s where pr is the body

parameter created in step 4.

-If the schema is in <ResponseBody>,

set r.schema to s where r is the

response created in step 5.

-Launch the structural discoverer

We apply this rule

only if requestBody or

responseBody contains

a JSON object.

a We apply an algorithm which detects if a string is a UID (e.g., hexadecimal strings, integer).
b When a conflict is detected (e.g., a parameter was inferred as integer and then as string), the most generic

form is used (e.g., string).

response body that will be used to enrich the definition of the discovered Schema
elements.

We devised a two-step process where we first obtain an intermediate UML-
based representation from the JSON objects and then we perform a model-to-
model transformation to instantiate the actual schema elements of the Ope-
nAPI metamodel. This intermediate step allows us to benefit from JSONDiscov-
erer [4], which is the tool used to build a UML class diagram, and to use this

Example-Driven Web API Specification Discovery 277

Table 2. Transformation rules from UML to Schema

Source Target: create Target: update Attributes initialization

Class c: Schema - Add c to the api.definitions. - c.type = Object

- c.name = The corresponding

class name

Attribute (1) a: Schema -Add a to c.properties where c is

the correspondent schema of the

class containing the attribute.

- a.type = the JSONDataType

correspondent to the type of the

attribute - a.name = the attribute

name

Attribute (*) a: Schema, i: Schema -Add a to c.properties where c is

the correspondent schema of the

class containing the attribute

- a.type = array

- a.items= i

- i.type= the JSONDataType cor-

respondent to the type of the

attribute

- i.name = the attribute name

Association (1) - -Add tc to c.properties where c

is the correspondent schema of

the source class of the

association and tc the

correspondent schema of the

target class of the association

-

Association (*) a: Schema -Add a to sc.properties where sc

is the correspondent schema of

the source class of the association

- a.type = array

- a.items= tc where tc is the

correspondent schema of the

target class of the association

UML-based representation to bridge easily to other model-based tools if needed.
Then, classes, attributes, and associations of the UML class model are trans-
formed to Schema elements. Table 2 shows the transformation rules applied to
transform UML models to Schema elements. Source column shows the source ele-
ments in a UML model while Target: create and Target: update columns display
the created/updated elements in the OpenAPI model. The Attribute initializa-
tion column describes the transformation rules.

Note that elements are updated/enriched when they already exist in the
OpenAPI model. This particularly happens when different examples represent
the same schema elements, as JSON schema allows having optional parts in the
examples.

Figure 6b shows the UML class model discovered by JSONDiscoverer for
the API response shown in Fig. 1b. This class model is transformed to actual
schema elements applying the discovery process as follows. Tag, Pet, and
Category classes are transformed to schema elements of type Object. Single-
valued attributes (e.g., name, id) are transformed to Schema elements where
type is set to the corresponding primitive type. The photoUrls multivalued
attribute and tags multivalued association are transformed to Schema elements
of type array having as items a Schema element of type String and Tag element,
respectively. Finally, attributes and associations are added to the properties
reference of the corresponding Schema element.

278 H. Ed-douibi et al.

6 The Generation Process

The generator creates a OpenAPI-compliant JSON file from an OpenAPI model
by means of a model-to-text transformation. The root object of the JSON file
is the API model element, then each model element is transformed to a pair
of name/value items where the type for the value is (1) a string for primitive
attributes, (2) a JSON array for multivalued element or (3) a JSON object
for references. Serialization/deserialization model elements are used to resolve
references. As said in Sect. 4, elements such as Schema, Parameter, and Response
can be declared in different locations and reused by other elements. While the
declaringContext reference is used to define where to declare the object, the
ref attribute (inherited form JSONPointer class) is used to reference this object
from another element. By default the discovery process sets the declaring context
to the containing class of the element (e.g., parameters in operations).

Figure 7 shows the generated JSON file for the OpenAPI model shown in
Fig. 6a. Note that the declaring context of the Pet schema element is set to
API, which resulted in listing the Pet element in the definitions object. Con-
sequently, the attribute ref is set to #/definitions/Pet and will be used to
reference Pet from any another element (as in the response object).

Fig. 7. The generated OpenAPI specification of the Petstore API example.

7 Validation and Limitations

To ensure the quality of the OpenAPIs we generate, we have first enriched the
OpenAPI metamodel with a set of well-formedness constraints written using
the Object Constraint Language (OCL) [3] (e.g., to guarantee the uniqueness
of the parameters in a call). These constraints are checked during the discovery
process to validate the generated OpenAPI specification against the constraints
published in the last official OpenAPI specification document. Note that this

Example-Driven Web API Specification Discovery 279

is in itself a useful contribution with regard to other syntax checkers for API
documents that offer a limited support in terms of constraint checking.

Additionally, we have validated our approach by manually comparing the
results of our generated OpenAPI with the original specification for a number
of APIs providing already such information. This has been an iterative process
but we would like to highlight the latest test, comprising the following five APIs:
(1) Refuge Restrooms15, a web application that seeks to provide safe restroom
access for transgender; (2) OMDb16, an API to obtain information about movies;
(3) Graphhopper17, a route optimization API to solve vehicle routing problems;
(4) Passwordutility18, an API to validate and generate passwords using open
source tools; and finally (5) the Petstore API. Several factors influenced the
choice of these APIs to serve for our testing purposes. Beside having an OpenAPI
specification, these APIs did not involve fees or invoke services (e.g., SMS APIs),
they managed JSON format (to test our structural discoverer) and were concise
(to keep limited the number of examples required).

For the chosen APIs, our approach was able to generate on average 80% of
the required specification elements and did not generate any incorrect result.
Mainly, the missing information was due to the structure of the call examples
which cannot cover advanced details such as: (i) the enumerations used for some
parameters, (ii) the optionality or not of the parameters, (iii) form parameters,
and (iv) the headers used in some operations. Furthermore, the quality of the
results depend on the number and the variety of the API call examples used
to discover the specification. Our experience so far shows that the number of
examples should be higher than the number of operations of an API covering
all the parameters. However, more experiments are required to identify the ideal
balance between the quality of the result and the number of needed experiments.

Note that even if the result is not complete, it can still be useful. Even for
APIs that do provide an OpenAPI as starting point. For instance, for Refuge
Restrooms, we were able to discover both the operations and data model of the
API even if the latter was not part of the original specification. The complete
set of examples and generated APIs are available in our repository.

8 Related Work

Several tools supporting the OpenAPI initiative have recently appeared19, e.g.,
able to generate documentation and code (e.g., client SDKs, server skeletons)
from OpenAPI-compliant specifications making OpenAPIs a more valuable
artefact. Third party companies like Lucybot20 or ReDoc21, provide similar

15 http://www.refugerestrooms.org/api/docs/.
16 http://www.omdbapi.com/.
17 https://graphhopper.com/.
18 http://passwordutility.net.
19 http://swagger.io/tools/.
20 https://lucybot.com/.
21 http://rebilly.github.io/ReDoc/.

http://www.refugerestrooms.org/api/docs/
http://www.omdbapi.com/
https://graphhopper.com/
http://passwordutility.net
http://swagger.io/tools/
https://lucybot.com/
http://rebilly.github.io/ReDoc/

280 H. Ed-douibi et al.

capabilities while others as Restlet Studio22 and stoplight23 add also the fea-
ture of helping developers manually design such APIs with visual tools. Our
approach can join this tool ecosystem by inferring the OpenAPIs to be used as
input for all these tools out of the box.

Regarding the discovery process itself, there is a limited number of related
efforts and barely any targeting specifically REST or Web APIs in general. Some
research efforts (i.e., [9,17]) focus on the analysis of service interaction logs to dis-
coverer message correlation in business processes. Other works (i.e., [13,14,16])
are more proactive and try to suggest possible compositions based on a WSDL
(or similar) description of the service. Nevertheless, they all focus on the inter-
action patterns and do not generate any description of Web APIs specification
(or the initial WSDL document for previous approaches) themselves. SpyREST
[18] is a closer work to ours. It proposes a Proxy server to analyze HTTP traffic
involved in API calls to generate API documentation. Still, the generated doc-
umentation is intended to be read by humans and therefore does not adhere to
any formal API specification language.

Other research efforts limit themselves to discover the data model underlying
an API, specially by analysing the JSON documents it returns. For instance,
the works in [7] and [15] analyze JSON documents in order to generate their
(implicit) schemas. However, they are specially bounded to NoSQL databases
and are not applicable for Web APIs. On the other hand, JSONDiscoverer [4]
generates UML class diagrams from the JSON data returned after calling a Web
API. We use this tool in our structural discoverer phase.

9 Tool Support

Figure 8 shows the underlying architecture of our discovery tool. Our tool
includes a front-end, which allows users to collect and run API call examples
(see APIDiscoverer UI) to trigger the launch of the core API discoverer process;
and a back-end, which all the components to parse the calls and responses, gen-
erate the intermediate models, etc. Our tool has been implemented in Java and
is available as an Open Source application24.

More specifically, APIDiscoverer is a Java Web application that can be
deployed in any Servlet container (e.g., Apache Tomcat). The application relies
on JavaServer Faces (JSF), a server-side technology for developing Web applica-
tions, and Primefaces25, a UI framework for JSF applications. Figure 9 shows a
screenshot of the APIDiscoverer interface. The center panel of APIDiscoverer
contains a form to provide API call examples either by sending requests or
using our JSON-based representation format. The former requires providing the
request and obtaining a response from the API. As result, a JSON-based API

22 https://studio.restlet.com.
23 http://stoplight.io/platform/design/.
24 https://github.com/SOM-Research/APIDiscoverer.
25 http://www.primefaces.org.

https://studio.restlet.com
http://stoplight.io/platform/design/
https://github.com/SOM-Research/APIDiscoverer
http://www.primefaces.org

Example-Driven Web API Specification Discovery 281

JSF/Primefaces

APIDiscoverer UI

Mashape extractor

Selenium
B
ac

k-
en

d
Fr

on
t-e

nd
REST agent

Unirest

APIDiscoverer

OCL Ex2OpenAPI JSON
Discoverer UML2Schema

EMF

..
.

JSONGen

Fig. 8. Tool architecture.

call example is shown on the right. The latter only requires providing the JSON-
based API call example. API call examples are then used by APIDiscoverer
to obtain/enrich the corresponding OpenAPI model. The examples history is
shown on the left panel and an intermediate OpenAPI model is shown on the
right panel. The OpenAPI model is updated after each example with the new
information discovered by the last request. Finally, a button in the top panel
allows the user to download the final OpenAPI description file.

The main components of the back-end are (1) a REST agent and (2) the core
APIDiscoverer. The REST agent relies on unirest26, a REST library to send
requests to APIs to build and collect API call examples. The APIDiscoverer

Fig. 9. Screenshot of the discoverer UI.

26 http://unirest.io.

http://unirest.io

282 H. Ed-douibi et al.

relies on a plethora of web/modeling technologies, namely, (1) the Eclipse Mod-
eling Framework (EMF)27 as a modeling framework to implement the OpenAPI
metamodel, (2) the Eclipse OCL to validate models and (3) the JSONDiscoverer
to discover models from JSON examples. Additionally, we have implemented the
required components (1) to discover OpenAPI elements from API call examples
(see Ex2OpenAPI), (2) to transform UML models to a list of schema elements
using model-to-model transformations (see UML2Schema), and (3) to generate
an OpenAPI description file from an OpenAPI model by using model-to-text
transformations (see JSONGen).

Beyond these key components, we have also developed MashapeDiscoverer, a
proof-of-concept to show how the API call examples can be derived from other
sources like available examples in the API documentation (in this specific case,
from APIs in the Mashape marketplace28, a documentation portal with over 2,000
APIs) by using Selenium29 to crawl the documentation pages and extract the rel-
evant examples information (i.e., entrypoints, parameters, response examples).

Additionally, we have created HAPI30, a public REST Web API directory
and an open source community-driven project, which stores the discovered Web
APIs. Besides allowing users to download the Web API specifications, this direc-
tory invites developers to contribute using the well-known pull-request model of
GitHub. In order to enrich HAPI, we have also created two OpenAPI importers
for APIs.guru and APIs.io that use their dedicated Web APIs31. This allows
easily adding to HAPI APIs already with a predefined specification.

10 Conclusion

We have presented an example-driven approach to generate OpenAPI specifica-
tions for REST Web APIs. These specifications are stored in a shared directory
where anybody can comment and improve them. We believe our process and
repository is a significant step forward towards API reuse, helping developers to
find and integrate the APIs they need to provide their software services. The
discovery tool is available online as an open source application.

As further work, we are interested in extending the OpenAPI metamodel to
add Quality of Service (QoS) and business plan aspects, which play a fundamen-
tal role in the API economy, as well as ontology and vocabulary concepts (e.g.,
FOAF ontology) to describe the APIs not only on a syntactical level but also
on a semantic level. We are also interested in discovering security aspects, non-
functional properties, and the semantic definitions of the APIs under scrutiny,
and supporting non-JSON data (e.g. XML). The discovery process per se could
also be improved by extending our approach to support the generation of call
examples based on the textual analysis of the API documentation websites, this

27 http://www.eclipse.org/modeling/emf/.
28 https://market.mashape.com.
29 http://docs.seleniumhq.org/projects/webdriver/.
30 https://github.com/SOM-Research/hapi.
31 https://apis.guru/api-doc/ and http://www.apis.io/apiDoc.

http://www.eclipse.org/modeling/emf/
https://market.mashape.com
http://docs.seleniumhq.org/projects/webdriver/
https://github.com/SOM-Research/hapi
https://apis.guru/api-doc/
http://www.apis.io/apiDoc

Example-Driven Web API Specification Discovery 283

way speeding up the process of interacting with the API to infer its specification.
Finally, we plan to systematically apply our process to a large number of APIs
(linked from other directories or repositories) in order to expand HAPI.

Acknowledgment. This work has been supported by the Spanish government
(TIN2016-75944-R project).

References

1. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool Publishers, San Rafael (2012)

2. Brambilla, M., Fraternali, P., et al.: The Interaction Flow Modeling Language
(IFML). Technical report, Object Management Group (OMG) (2014)

3. Cabot, J., Gogolla, M.: Object constraint language (OCL): a definitive guide. In:
Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) SFM 2012. LNCS, vol. 7320,
pp. 58–90. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30982-3 3

4. Cánovas Izquierdo, J.L., Cabot, J.: JSONDiscoverer: visualizing the schema lurking
behind JSON documents. Knowl.-Based Syst. 103, 52–55 (2016)

5. Frankle, J., Osera, P.M., Walker, D., Zdancewic, S.: Example-directed synthesis: a
type-theoretic interpretation. In: ACM Symposium on Principles of Programming
Languages, pp. 802–815 (2016)

6. Hadley, M.J.: Web Application Description Language (WADL). Technical report
(2006)

7. Klettke, M., Störl, U., Scherzinger, S., Regensburg, O.: Schema extraction and
structural outlier detection for JSON-based NoSQL data stores. In: Conference on
Database Systems for Business, Technology, and Web, pp. 425–444 (2015)

8. López-Fernández, J.J., Cuadrado, J.S., Guerra, E., de Lara, J.: Example-driven
meta-model development. Softw. Syst. Model. 14(4), 1323–1347 (2015)

9. Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event correla-
tion for process discovery from web service interaction logs. Inter. J. Very Large
Data Bases 20(3), 417–444 (2011)

10. Nierstrasz, O., Kobel, M., Girba, T., Lanza, M.: Example-driven reconstruction of
software models. In: European Conference on Software Maintenance and Reengi-
neering, pp. 275–286 (2007)

11. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful web services vs. ”Big” web
services. In: International Conference on World Wide Web, pp. 805–814 (2008)

12. Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D.: Foundations of JSON
schema. In: International Conference on World Wide Web, pp. 263–273 (2016)

13. Quarteroni, S., Brambilla, M., Ceri, S.: A bottom-up, knowledge-aware approach
to integrating and querying web data services. ACM Trans. Web 7(4), 19–33 (2013)

14. Rodriguez Mier, P., Pedrinaci, C., Lama, M., Mucientes, M.: An integrated seman-
tic web service discovery and composition framework. IEEE Trans. Serv. Comput.
9(4), 537–550 (2015)

15. Ruiz, D.S., Morales, S.F., Molina, J.G.: Inferring versioned schemas from NoSQL
databases and its applications. In: International Conference on Conceptual Mod-
eling, pp. 467–480 (2015)

16. Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. In:
International Conference on World Wide Web, pp. 211–229 (2004)

http://dx.doi.org/10.1007/978-3-642-30982-3_3

284 H. Ed-douibi et al.

17. Serrour, B., Gasparotto, D.P., Kheddouci, H., Benatallah, B.: Message correla-
tion and business protocol discovery in service interaction logs. In: Bellahsène, Z.,
Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 405–419. Springer, Heidel-
berg (2008). doi:10.1007/978-3-540-69534-9 31

18. Sohan, S., Anslow, C., Maurer, F.: SpyREST: automated RESTful API documenta-
tion using an HTTP proxy server (N). In: International Conference on Automated
Software Engineering, pp. 271–276 (2015)

http://dx.doi.org/10.1007/978-3-540-69534-9_31

Technology-Preserving Transition from
Single-Core to Multi-core in Modelling

Vehicular Systems

Alessio Bucaioni1,2(B), Saad Mubeen1,2, Federico Ciccozzi1,
Antonio Cicchetti1, and Mikael Sjödin1

1 School of Innovation, Design and Engineering,
Mälardalen University, Väster̊as, Sweden

{alessio.bucaioni,saad.mubeen,federico.ciccozzi,
antonio.cicchetti,mikael.sjodin}@mdh.se

2 Arcticus Systems AB, Järfälla, Sweden
{alessio.bucaioni,saad.mubeen}@arcticus-systems.com

Abstract. The vehicular industry has exploited model-based engineer-
ing for design, analysis, and development of single-core vehicular systems.
Next generation of autonomous vehicles will require higher computa-
tional power, which can only be provided by parallel computing plat-
forms such as multi-core electronic control units. Current model-based
software development solutions and related modelling languages, orig-
inally conceived for single-core, cannot effectively deal with multi-core
specific challenges, such as core-interdependency and allocation of soft-
ware to hardware. In this paper, we propose an extension to the Rubus
Component Model, central to the Rubus model-based approach, for the
modelling, analysis, and development of vehicular systems on multi-core.
Our goal is to provide a lightweight transition of a model-based software
development approach from single-core to multi-core, without disrupting
the current technological assets in the vehicular domain.

Keywords: Model-based engineering · Metamodelling · Multi-core ·
Vehicular domain · Embedded systems · Real-time systems

1 Introduction

Software is ubiquitous in our society. In automotive, vehicles have transitioned
from being mechanics-intensive to software-intensive systems [12]. For instance,
the throttle control system of a modern vehicle is realised by means of Electronic
Control Units (ECUs), sensors, and actuators, connected by several networks,
and run by software, which replace the mechanical linkage between the accelera-
tor pedal and the throttle. The current trend in the vehicular domain is towards
vehicles capable of autonomously driving. While most of the current vehicu-
lar systems still employ single-core ECUs, the tendency is to switch to ECUs

c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 285–299, 2017.
DOI: 10.1007/978-3-319-61482-3 17

286 A. Bucaioni et al.

equipped with multi-core microprocessors. In fact, next generation vehicles, par-
ticularly autonomous ones, are expected to require higher computational power,
which can only be provided by multi-core solutions.

On the one hand, the shift to multi-core impacts the way vehicular software
is designed, analysed and developed. Current model-based solutions, specifically
tailored to single-core, are not as effective when dealing with multi-core specific
challenges, such as core-interdependency and allocation of software to hardware.
On the other hand, the vehicular industry cannot prescind from the current
technological assets for many reasons, among which:

Legacy. It has been estimated that up to 90% of the software in a new vehicle
release can be reused from previous releases when using model-based engi-
neering [38].

Organisation. Original Equipment Manufacturers (OEMs) suppliers define
their technological assets based on decennial contracts with Tier-1 and Tier-2
suppliers. Changes to these assets shall not affect these contracts.

Certified run-time support. Functional safety [36] is paramount for the
safety criticality in vehicles [37]. Current model-based solutions rely on certi-
fied development environments and real-time operating systems [1]. Typically,
the certification process adds a development cost overhead between 25 and
100%, and it lasts for several years [29].

We have investigated the extension of Rubus [4], a commercial model-based
approach for vehicular single-core systems, to multi-core with the intent of not
disrupting the current vehicular technological assets related to it. Our hypothe-
sis is two-fold. (H1) Abstraction provided by models and automation provided
by model transformations can be a game changer in the development of multi-
core applications. Abstraction permits to detach software functional modelling
from multi-core hardware modelling and software/hardware allocation mod-
elling. Automation can support the developer in taking important decisions,
such as how to allocate tasks to available cores in order to maximise a specific
quality aspect [13]. (H2) A lightweight transition of a model-based approach from
single-core to multi-core which does not affect critical aspects such as certified
run-time support and lastingness of legacy applications is possible.

In model-based engineering, metamodels play a pivotal role as they define
the set of available modelling entities and relationships for representing the soft-
ware architecture and its quality attributes. Moreover, they enable automation
via model transformations. However, it is essential that metamodels effectively
prescribe the type system, the structure, and the behaviour of domain-specific
applications [34]. In [24] we have discussed some modelling languages (among
which Rubus Component Model) used for single-core vehicular applications and
highlighted the issues arising when using them for modelling multi-core applica-
tions. In particular, existing structural hierarchies lack concepts for representing
multi-core aspects (e.g., cores and partitions) and do not provide explicit support
for core-interdependency and allocation of software to hardware.

In this paper, we propose an extension to the Rubus Component Model
(RCM) [18], core of the Rubus approach, to support multi-core. This represents

From Single- to Multi-core Model-Based Vehicular Systems 287

the first crucial step in the transition from single-core to multi-core. The contri-
bution of the proposed extension is two-fold. We provide a modelling language
able to prescribe type system, structure, and behaviour of multi-core applica-
tions (C1). In particular, the proposed extension comprises modelling elements
for representing the software architecture, the hardware platform, and the soft-
ware to hardware allocation. We ensure backward compatibility with legacy
single-core applications modelled with RCM and do not entail any modification
to the Rubus run-time layer, the Rubus Kernel (C2).

The remainder of the paper is structured as follows. Section 2 introduces
RCM and motivates its selection as well as its extension. Section 3 presents
a comparison between existing related approaches documented in the literature
and our solution. Section 4 describes the proposed solution in all its constituents.
Section 5 describes the application of the proposed solution to an industrial
vehicular application. Sections 6 and 7 discuss the benefits and limitations of
our solution and conclude the paper, respectively.

2 The Rubus Component Model

There are several modelling languages used in the vehicular domain, such as
RCM, AUTOSAR [3], ProCom [35], COMDES [21], AADL [16], to name a few.
These languages were not conceived to deal with the complexity of predictable
vehicle software specifically developed to run on multi-core platforms.

We focus on RCM and its extension for multi-core due to the following rea-
sons. RCM is a good candidate to overcome the issues related to predictability
thanks to its statically synthesised communication as well as its predictable and
fine-grained execution model [25]. RCM uses pipe-and-filter communication and
distinguishes between the control and data flows among its software components.
In [26], we showed that these two features are central for providing early tim-
ing verification of the modelled system, e.g., by supporting end-to-end timing
analysis [15]. Another reason for focusing on RCM is the small run-time foot-
print of the developed software (automatically generated from RCM models) as
compared to other languages [26].

RCM is developed by Arcticus Systems AB1 in collaboration with Mälardalen
University. Through the years, RCM has been adopted by several OEM, Tier-
1 and Tier-2 companies (e.g., Volvo Construction Equipment, BAE Systems
Hägglunds, Hoerbiger and Knorr Bremse) for the development of embedded
real-time software. RCM provides the Rubus Kernel, a dedicated real-time oper-
ating system, which is available for different processor architectures and certified
according to the ISO 26262 [1] standard ASIL D (Road vehicle – Functional
Safety) from Safety Integrity AB2.

RCM was originally thought for providing modelling purposes, but it did
not feature model-based mechanisms, i.e. automation in terms of model trans-
formation. In order to achieve a full-fledge model-based approach, in [9] we
1

https://www.arcticus-systems.com.
2

http://www.safetyintegrity.se.

https://www.arcticus-systems.com
http://www.safetyintegrity.se

288 A. Bucaioni et al.

reverse-engineered the RCM specification in order to express it in a more canoni-
cal form, a metamodel, which we called RubusMM. RubusMM included concepts
for expressing software architectures and concepts for describing timing infor-
mation of vehicular single-core applications. In this paper, we extend RubusMM
to enable modelling of software applications for multi-core.

3 Related Work

AUTOSAR [3] is an industrial initiative to provide a standardised software archi-
tecture for the development of vehicular software systems. Since the emergence
of AUTOSAR 4.0, multi-core support is part of the standard. Similar to RCM,
AUTOSAR describes the application software by means of self-contained units
called software components which are mapped to the ECUs. At the applica-
tion software level, AUTOSAR does not distinguish between the control and the
data flows. In [26], we discussed how this feature is central for providing early
timing verification of the modelled system. AUTOSAR does not provide means
for modelling the execution platform [33]. Recently, several works on the use
of AUTOSAR for multi-core have been proposed both from industry and acad-
emia. However, their main focus is on the adaptation of the AUTOSAR run-
time support rather than on specific modelling challenges such as, e.g., alloca-
tion of the software components. In [30], the authors investigated the use of
AUTOSAR for virtualised architecture and they identified some challenges on
the use of AUTOSAR for multi-core. They concluded that additional features for
the dynamic allocation of the software were needed. In [7,23], the authors evalu-
ated AUTOSAR systems realised with a centralised architecture where the lay-
ered architecture was entirely allocated to one of the available cores only. Both the
approaches were able to demonstrate that the behaviour of the multi-core soft-
ware system and its footprint did not significantly vary from the corresponding
single-core configuration. However, in both approaches, the uneven distribution
of the workload among the cores led to performance and timing verification issues.
In [31,32] the authors described AUTOSAR systems based on virtualised architec-
tures where hypervisors coordinate multiple software systems with same or differ-
ent real-time operating system(s). The use of hypervisors complicates early tim-
ing verification as it introduces additional complexity. From a footprint point of
view, the virtualised architecture may lose its efficiency as each software system
can carry a different real-time operating system. Both approaches rely on certi-
fied versions of AUTOSAR systems. In the AMALTHEA project [2], AUTOSAR
standardised software architecture and methodology are used as a base for a devel-
opment methodology aiming at reducing the effort in exchanging dtata.

Besides technologies specific to the vehicular domain, several works have
discussed the use of the UML language and its profile MARTE [5]. Being
general-purpose, these technologies are often used as complementary to domain-
specific languages as, e.g., AUTOSAR and RCM. In [22], the authors present
the VERTAF/Multi-core UML-based framework for the development of multi-
core software. Within VERTAF/Multi-core, the software system is described by

From Single- to Multi-core Model-Based Vehicular Systems 289

means of UML class diagrams, timed state machines and sequence diagrams.
Model transformations are used for generating extensions to these models for
checking the viability of the design with respect to schedulability and confor-
mance to the specifications. In [14,27] MARTE is used for representing the high-
level architecture of the software system and as enabler for code-generation. In
the first approach, UML is used for modelling the software components while
MARTE is used for modelling hardware and software to hardware allocations.
Starting from these models, code is automatically generated and timing verifi-
cation through simulation is run. The second approach focuses on the system
deployment of component-based systems. MARTE is used for modelling high
level description models from which different models representing allocations
of components are generated by means of code generation. In [13], MARTE
is used for describing a task model and the allocations of tasks to cores for
combined simulation- and execution-based task allocation optimisation. In [17]
the authors introduce a MARTE-based framework, named GASPARD, for the
design of parallel embedded systems. Herrera et al. [19] discuss a framework for
the design space exploration of embedded systems based on MARTE. The frame-
work, called COMPLEX, uses MARTE for describing the different architecture
solutions composing the design space.

AADL [16] is an architecture description language developed for the avionic
domain, but currently used for modelling embedded systems in general. Similarly
to RCM, AADL provides multi-core support and a clear separation of concerns
between software and hardware elements. However, unlikely to RCM, the soft-
ware architecture is described at a lower level of abstraction in terms of, e.g.,
Processes and Threads.

4 Extending Rubus Component Model for Multi-core

In this section, we describe the extension to RCM for modelling vehicle soft-
ware on multi-core. The extension is formalised by means of metamodelling. We
compare the extended RCM with its previous definition, given in [9], thus high-
lighting differences and commonalities. The extension comprises the addition of
modelling packages, classifiers, features, and relations as well as the modification
of some hierarchical structures.

With respect to the previous definition, we have introduced packages for
ensuring a better separation of concerns, improving the understandability of
the metamodel, and simplifying future extensions. The RubusMM packages
involved in the extension are RCM COMMON, RCM HW and RCM SW 3.
RCM HW contains the elements for modelling the hardware platform: Tar-
get, Allocator, Core, and Partition. RCM SW contains the elements for mod-
elling the software architecture: Allocatable, Mode, Assembly, and Software Cir-
cuit. RCM COMMON contains elements which are common to different pack-
ages as, for instance, System and port elements. Figure 1 shows a fragment of
3 The complete explanation of RubusMM is not in the scope of this work. The inter-

ested reader may refer to [9].

290 A. Bucaioni et al.

Fig. 1. Fragment of the RCM HW package for modelling the hardware platform.

RubusMM containing elements from RCM HW for modelling the hardware plat-
form. System represents the system under development. As all the elements in
RubusMM, it inherits from the abstract metaclass NamedElement which pro-
vides two attributes: name and ID. We extended System with the reference tim-
ingConstraint for enabling the specification of timing constraints, occurrences
and events which are used for timing verification.4 These constraints are used
for running timing analysis, but we employed them for automatically generating
the set of RCM models satisfying a given set of timing requirements too [8].

A System contains one Network, one or more Target elements, and one or
more Mode elements. A Network element models all the messages exchanged
among the Node elements. It has two attributes, protocol and speed, which spec-
ify the protocol (e.g., Controlled Area Network (CAN) [20]) and the speed of the
network in Kbit/s, respectively. A Target is a hardware-specific element which
represents a processor architecture. The definition of Target has been extended
with the references timingConstraint, portIO, and portNetwork. portIO and port-
Network model the peripherals and the inter-node communication, respectively.

In the previous definition of RubusMM, Target contained Mode, represent-
ing the software application. However, the containment relation between Target
and Mode was too restrictive for modelling multi-core applications. Such a con-
tainment prescribed in fact that Mode elements, representing software, were
structurally contained by hardware, represented by Target elements. Although

4 TimingConstraint and other elements from different RCM packages are not part of
this extension. However, they are put in relation to the extension as they contribute
to a holistic view of the language and its peculiarities.

From Single- to Multi-core Model-Based Vehicular Systems 291

not providing a clear separation between software and hardware, this structural
containment suited the single-core case, since allocation of software to hardware
was not variably split across different cores. Modelling for multi-core demanded
more flexibility, since allocation of software to hardware is a variability point,
which can hardly be represented by a structural containment.

In order to provide such a flexibility, while ensuring backward compati-
bility with legacy RubusMM models, we have modified the existing hierarchy
as follows. We have added the metaclasses TargetLegacy and TargetNew, both
inheriting from the abstract metaclass Target. TargetLegacy represents a legacy
(single-core) ECU and it contains one or more Mode elements. This contain-
ment is specified through the reference mode. TargetNew represents a single-
or multi-core ECU and contains one or more Core elements, which in turn can
contain Partition elements. Both Core and Partition elements inherit from the
abstract metaclass Allocator, representing hardware elements to which software
elements, represented by the metaclass Allocatable, can be allocated. The meta-
classes Allocator and Allocatable, together with the reference isAllocated, provide
the flexible mechanism for the allocation of software to hardware that we needed,
without any structural containment.

The metaclass Target provides the following attributes: speed, which specifies
its speed in MHz, and type, which specifies whether it is a physical or a simu-
lated target. A simulated target represents the simulation of the actual target
processor in a host environment such as Windows or Linux.

Both TargetLegacy and TargetNew inherit speed and type. Moreover, Target-
New provides additional multi-core specific attributes. numberOfCores specifies
the number of cores composing the TargetNew and it is used by the model-based
timing analysis and to automatically allocate software to hardware. The refer-
ence core links Core elements to their respective TargetNew. Core may contain
Partition elements. The attribute numberOfPartitions specifies the number of
partitions within a Core and the reference partition links them to the Core.
The attribute criticalityLevel specifies the safety criticality level according to
the ISO 26262 standard. There are four criticality levels (A to D) in this stan-
dard. A is the lowest criticality level, whereas D is the highest criticality level
(the Rubus Kernel supports and is certified for all of them). Hence, the Partition
element allows to develop multi-criticalitysoftware systems, where some parts of
the software architecture are more critical than the others. Target, TargetLegacy,
TargetNew, Core, Partition, Allocator, Allocatable, as well as their attributes and
related references were not part of the previous RubusMM definition.

Figure 2 shows a fragment of the RubusMM containing elements from the
RCM SW and the RCM COMMON packages for modelling the software archi-
tecture. In RCM a software circuit, represented in RubusMM by SWC, is the
lowest-level hierarchical element that encapsulates basic software functions. A
SWC contains one Interface which groups all its ports. As RubusMM distin-
guishes between the data and control flows, an Interface containsPortData and
PortTrig elements. The PortData elements manage the data communication

292 A. Bucaioni et al.

Fig. 2. Fragment of the RCM SW package for modelling the software architecture.

among SWC deployed on the same Target. The PortTrig elements manage the
activation of the SWC elements.

A PortNetwork is a port for the data communication of SWC elements
deployed on different Target elements. The PortData elements of a Core are
referenced to the PortData elements of the SWC s allocated on that Core. Sim-
ilarly, the PortNetwork elements of a Node are referenced to the PortNetwork
elements at SWC level. An Assembly groups SWC and Assembly elements in a
hierarchical fashion.

Its reference timingConstraint enables the specification of timing constraints,
occurrences and events which are used for timing verification. With respect to
the previous definition, SWC and Assembly have been extended with the inheri-
tance relation from the abstract metaclass Allocatable. A Mode groups Assembly
and SWC elements and it is used for modelling a specific application of the
software architecture (e.g., start-up or error mode). The attribute globalRefer-
ence serves for creating a reference among all the Mode elements contributing
to the same application. With respect to its previous definition, Mode has been
extended with the inheritance relation from the abstract metaclass Allocatable.
The metaclasses Allocatable and Allocator together with the reference isAllo-
cated enable the specification of the allocation of software to hardware. More
precisely, an Allocatable element can be deployed to an Allocator element by
setting the isAllocated reference. Allocatable, Allocator, and related references
were not part of the previous RubusMM definition.

From Single- to Multi-core Model-Based Vehicular Systems 293

5 Modelling the Brake-By-Wire System

In this section, we leverage the extended RubusMM for modelling the Brake-by-
wire (BBW) vehicular application. The BBW system is a stand-alone braking
system equipped with an anti-lock braking (ABS) function, which allows to
control the brakes through electronic means. To this end, it does not employ
any mechanical connection between the brake pedal and the brake actuators.
Figure 3 depicts the block diagram of the BBW system.

Fig. 3. Block diagram of the BBW system.

A sensor, attached to the brake pedal, acquires the signal expressing the
position of the pedal. The signal is sent to a computational unit which translates
it into a brake torque. A sensor on each wheel acquires the signal expressing the
speed of the wheel. The speed of each wheel, together with the computed brake
torque, is sent to a computational unit which calculates the brake torque for
each wheel. Also, the speed of each wheel is sent to a computational unit which
calculates the speed of the vehicle. The speed of the vehicle and the brake torque
of each wheel are used from the ABS units for calculating the optimal brake
torque for each wheel for avoiding locking the brakes. Finally, the actuators on
the wheels produce the actual brake. Figure 4 shows a RubusMM model depicting
the software architecture of the BBW system.

The model consist of 16 software circuits where (i) Brake Pedal models
the software operating the sensor on the brake pedal, (ii) Speed FR, Speed FL,
Speed RR, and Speed RL model the software operating the speed sensors on
the wheels, (iii) Brake Torque, Brake Controller, Speed Estimator, ABS FR,
ABS FL, ABS RR, and ABS RL model the software on the computational units
and (iv) Brake FR, Brake FL, Brake RR, and Brake RL model the software
operating the actuators on the wheels.

In order to show how the extended RubusMM supports the modelling of
multi-core applications (H1), while ensuring backward compatibility with legacy
single-core applications (H2), we propose two different deployment configura-
tions. In the first configuration, the BBW system is deployed to a MPC5744P

294 A. Bucaioni et al.

Fig. 4. RubusMM model representing the software architecture of the BBW system.

microcontroller, which is a 32-bit unicore microcontroller designed for vehicular
applications.

Figure 5 shows an Ecore serialisation of such a configuration. Note that,
according to what described in Sect. 4 regarding the modelling of legacy appli-
cations, the deployment on single-core is expressed leveraging the containment
relation between the ‘TargetLegacy’ MPC574xP and the ‘Mode’ element Oper-
ational.

In the second configuration, the BBW system is deployed to an Infineon
SAK-TC299TP-128F300S BBmicrocontroller, which is a tri-core microcontroller
developed for applications with high demands of performance and safety.

Figure 6 shows an Ecore serialisation of this configuration. In this case, the
deployment information is modelled by means of the ‘isAllocated’ reference
expressed between ‘Allocatable’ and ‘Allocator’ elements. More precisely, the
software circuits modelling the sensors, the computation units and the actua-
tors of the two front wheels (WheelSpeed FR, WheelSpeed FR, Abs FR, Abs FL,
Brake FR, Brake FL) are allocated to Core 1 of the SAK-TC299TP-128F300S
BB target, as shown by the arrow in the top-right corner of Fig. 6. Similarly,
the SWCs modelling the sensors, the computation units and the actuators of the
two rear wheels (WheelSpeed RR, WheelSpeed RR, Abs RR, Abs RL, Brake RR,

From Single- to Multi-core Model-Based Vehicular Systems 295

Fig. 5. Serialisation of the BBW system deployed to a unicore microcontroller.

Fig. 6. Serialisation of the BBW system deployed to a tri-core microcontroller.

Brake RL) are allocated to Core 2 of the SAK-TC299TP-128F300S BB tar-
get. The remaining SWCs modelling the computational units are allocated to
Core 3 of the SAK-TC299TP-128F300S BB target. As discussed in Sect. 4, the
extended RubusMM leverages a clearer separation of concerns between software
and hardware elements as well as an explicit and more flexible allocation mech-
anism. Let us suppose that the allocation specified in Fig. 6 does not satisfy a
given set of fault-tolerance requirements. One way of addressing this would be
to model a lockstep [28] configuration of the BBW system where each core runs
a copy of the complete software, in parallel. In order to model such an alloca-
tion with the extended RubusMM, it is sufficient to allocate all software circuits
composing a ‘Mode’ to each single ‘Core’.

296 A. Bucaioni et al.

6 Lesson Learned

In this paper, we have proposed an extension to RCM for modelling next gener-
ation of vehicular multi-core systems (H1). The main challenge faced during the
extension of RCM was how to introduce the new modelling elements without
affecting the lastingness of legacy RCM applications (H2). In the first definition
of RCM, pragmatic choices for more efficient modelling and analysis of single-core
applications were made when defining the language. In addition to not provid-
ing clear separation of concerns between hardware and software, these choices
complicated the extension of RCM, as in the case of the containment relation
between Target and Mode discussed in Sect. 4. In fact, that structural contain-
ment, although dramatically simplifying model navigation for analysis and code
generation purposes in case of single-core applications, did not suit variability of
software to hardware allocation in the multi-core case. In this respect, the pro-
posed extension prescribes an allocation mechanism which is more flexible and
apt to be automated by means of model transformations. Please note that, we
have previously provided RubusMM with support for variability modelling [10].
This feature can be very valuable for representing sets of allocations of soft-
ware components to multiple cores, all in a single model with variability points
representing allocations.

To maximise backward compatibility, we introduced the new modelling ele-
ments as leaves in the metamodel hierarchy, as in the case of, e.g., Core and
Partition. This choice could demand additional modelling effort as the engineer
can be required to model the entire hierarchy in order to design valid models
from scratch. This can be mitigated by tooling features, allowing the modeller
to directly model a leaf, while automatically generating the path to the model
root populated with a set of default values.

In Sect. 2, we have pointed out early timing verification as one of the main
reasons which made RCM very appreciated in the vehicular domain and its
extension for multi-core compelling. In this respect, when extending RCM, we
have explicitly addressed timing verification by allowing the specification of tim-
ing constraints, occurrences and events at several levels of the structural hierar-
chy by means of the references timingConstraint. This ensures full compatibility
with the existing model-based timing analysis provided by Rubus. Moreover,
it enables the use of the most recent timing analysis for vehicular embedded
systems on multi-core [11]. Without the extension provided in this paper, the
timing analysis for multi-core would not have been possible in Rubus due to the
missing structural and timing information.

Functional safety is paramount for the safety criticality of vehicular systems.
For being adopted in the vehicular domain, model-based solutions must provide
certified run-time support, e.g., real-time operating system, along with modelling
languages able to capture all the characteristics of a vehicular application. The
Rubus Kernel is certified according to the ISO 26262 standard ASIL D while
Rubus ICE (i.e., the development environment supporting Rubus) is undergoing
the same certification. In this respect, we have extended RCM according to the
virtualisation design option, as described in [6], which enables the reuse of the

From Single- to Multi-core Model-Based Vehicular Systems 297

certified Rubus Kernel. On the one hand, the reuse of the Rubus Kernel makes
also the explicit modelling of the memory not necessary since the mapping of
data ports to physical memory is handled by the Rubus Kernel itself. On the
other hand, this makes the current definition of RCM not suited for approaches
where explicit modelling of the memory is pivotal. Moreover, despite the Rubus
Kernel footprint is significantly small, the virtualised design option increases
the overall footprint of the developed vehicular application since each core or
partition can host a separate instance of the Rubus Kernel.

7 Conclusion and Future Work

In this paper, we have discussed the extension of the Rubus Component Model
for modelling vehicular multi-core applications while ensuring backward compat-
ibility with legacy single-core applications. The proposed extensions also support
the modelling of multi-criticality applications on single- as well as multi-core
platforms. We have leveraged an industrial vehicular application to validate the
proposed extension, also in terms of backward compatibility.

One line of future work will investigate how to support the analysis and veri-
fication of vehicular embedded systems with multi-criticality levels on multi-core
with respect to predictable timing behaviour. Moreover, we will investigate how
to adapt the certified Rubus Kernel for providing run-time support to these
systems on multi-core. Another line of future work will investigate how to pro-
vide automatic support for the allocation of software to hardware. In particular,
we are developing model transformations that, starting from a model with no
modelled allocations and a set of timing constraints, produce a set of models
featuring the set of different allocations of software to hardware optimised for
satisfying the set of timing constraints. We are planning to represent the set of
generated models by means of the compact notation presented in [10]. Such a
notation uses modelling with variability for representing a multitude of models
with one single model with variability points.

Acknowledgments. The work in this paper is supported by the Swedish Knowl-
edge Foundation (KKS) through the PreView and MOMENTUM projects, and by the
Swedish Research Council (VR) through the SynthSoft project. We thank our indus-
trial partners Arcticus Systems, Volvo Construction Equipment and BAE Systems
Hägglunds, Sweden.

References

1. ISO 26262-1:2011: Road Vehicles in Functional Safety. http://www.iso.org/
2. AMALTHEA Project Profile, April 2017. http://www.amalthea-project.org
3. AUTOSAR Techincal Overview, Version 4.3, The AUTOSAR Consortium, Decem-

ber 2016. http://autosar.org
4. Rubus ICE-Integrated Development Environment. http://www.arcticus-systems.

com

http://www.iso.org/
http://www.amalthea-project.org
http://autosar.org
http://www.arcticus-systems.com
http://www.arcticus-systems.com

298 A. Bucaioni et al.

5. The UML Profile for MARTE: Modeling and Analysis of Real-Time and Embedded
Systems. OMG Group, January 2010

6. Becker, M., Dasari, D., Nélis, V., Behnam, M., Miguel, P.L., Nolte, T.: Investigation
on AUTOSAR-compliant solutions for many-core architectures. In: 18th Euromicro
Conference on Digital System Design, vol. 18, August 2015

7. Böhm, N., Lohmann, D., Schröder-Preikschat, W.: A comparison of pragmatic
multi-core adaptations of the AUTOSAR system. In: 7th annual Workshop on
Operating System Platforms for Embedded Real-Time Applications (OSPERT),
pp. 16–22 (2011)

8. Bucaioni, A., Cicchetti, A., Ciccozzi, F., Eramo, R., Mubeen, S., Sjödin, M.: Antic-
ipating implementation-level timing analysis for driving design-level decisions in
EAST-ADL. In: International Workshop on Modelling in Automotive Software
Engineering, September 2015

9. Bucaioni, A., Cicchetti, A., Ciccozzi, F., Mubeen, S., Sjödin, M.: A metamodel for
the rubus component model: extensions for timing and model transformation from
EAST-ADL. J. IEEE Access 5(1), 1–16 (2016)

10. Bucaioni, A., Cicchetti, A., Ciccozzi, F., Mubeen, S., Sjödin, M., Pierantonio, A.:
Handling uncertainty in automatically generated implementation models in the
automotive domain. In: 42nd Euromicro Conference series on Software Engineering
and Advanced Applications, September 2016

11. Burns, A., Davis, R.: Mixed Criticality Systems - A Review, 8th edn. Techni-
cal report, Department of Computer Science, University of York (2016). https://
www-users.cs.york.ac.uk/burns/review.pdf

12. Charette, R.N.: This car runs on code. IEEE Spectr. 46(3), 3 (2009)
13. Ciccozzi, F., Feljan, J., Carlson, J., Crnković, I.: Architecture optimization: speed

or accuracy? both!. Softw. Qual. J. 22, 1–24 (2016)
14. Ciccozzi, F., Seceleanu, T., Corcoran, D., Scholle, D.: UML-based development of

embedded real-time software on multi-core in practice: lessons learned and future
perspectives. IEEE Access 4, 6528–6540 (2016)

15. Feiertag, N., Richter, K., Nordlander, J., Jonsson, J.: A compositional framework
for end-to-end path delay calculation of automotive systems under different path
semantics. In: Proceedings of the IEEE Real-Time System Symposium? Work-
shop on Compositional Theory and Technology for Real-Time Embedded Systems
(2008)

16. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design language
(AADL): an introduction. Technical report, DTIC Document (2006)

17. Gamatié, A., Le Beux, S., Piel, É., Ben Atitallah, R., Etien, A., Marquet, P.,
Dekeyser, J.L.: A model-driven design framework for massively parallel embedded
systems. ACM Trans. Embed. Comput. Syst. (TECS) 10(4), 39 (2011)

18. Hänninen, K., Mäki-Turja, J., Sjödin, M., Lindberg, M., Lundbäck, J., Lundbäck,
K.L.: The rubus component model for resource constrained real-time systems. In:
3rd IEEE International Symposium on Industrial Embedded Systems, June 2008

19. Herrera, F., Posadas, H., Peñil, P., Villar, E., Ferrero, F., Valencia, R., Palermo,
G.: The COMPLEX methodology for UML/MARTE modeling and design space
exploration of embedded systems. J. Syst. Architect. 60(1), 55–78 (2014)

20. ISO 11898-1: Road Vehicles Interchange of Digital Information Controller Area
Network (CAN) for high-speed communication, ISO Standard-11898, November
1993

https://www-users.cs.york.ac.uk/burns/review.pdf
https://www-users.cs.york.ac.uk/burns/review.pdf

From Single- to Multi-core Model-Based Vehicular Systems 299

21. Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: a component-based framework
for generative development of distributed real-time control systems. In: 13th IEEE
International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), pp. 199–208, August 2007

22. Lin, C.S., Hsiung, P.A., Chang, C.H., Hsueh, N.L., Koong, C.S., Shih, C.H., Yang,
C.T., Chu, W.C.C.: Model-driven multi-core embedded software design (2011)

23. Morgan, G., Borg, A.: Multi-core automotive ECUs: Software and hardware impli-
cations. Technical report, ETAS Group (2009)

24. Mubeen, S., Bucaioni, A.: Modeling of vehicular distributed embedded systems:
transition from single-core to multi-core. In: 14th International Conference on
Information Technology: New Generations. Springer, Switzerland (2017)

25. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Communications-oriented development
of component- based vehicular distributed real-time embedded systems. J. Syst.
Architect. 60(2), 207–220 (2014)

26. Mubeen, S., Nolte, T., Sjödin, M., Lundbäck, J., Lundbäck, K.L.: Supporting tim-
ing analysis of vehicular embedded systems through the refinement of timing con-
straints. Softw. Syst. Model., 1–31 (2017)

27. Nicolas, A., Posadas, H., Peñil, P., Villar, E.: Automatic deployment of component-
based embedded systems from UML/MARTE models using MCAPI. In: 2014 Con-
ference on Design of Circuits and Integrated Circuits (DCIS), pp. 1–6. IEEE (2014)

28. Poledna, S.: Fault-Tolerant Real-Time Systems: The Problem of Replica Deter-
minism, vol. 345. Springer, New York (2007)

29. Pop, P., Scholle, D., Hansson, H., Widforss, G., Rosqvist, M.: The SafeCOP ECSEL
project: safe cooperating cyber-physical systems using wireless communication. In:
2016 Euromicro Conference on Digital System Design (DSD), pp. 532–538. IEEE
(2016)

30. Reinhardt, D., Kaule, D., Kucera, M.: Achieving a scalable E/E-architecture using
AUTOSAR and virtualization. SAE Int. J. Passeng. Cars Electron. Electr. Syst.
6, 489–497 (2013). (2013-01-1399)

31. Reinhardt, D., Kucera, M.: Domain controlled architecture-a new approach for
large scale software integrated automotive systems. PECCS 13, 221–226 (2013)

32. Reinhardt, D., Morgan, G.: An embedded hypervisor for safety-relevant automo-
tive E/E-systems. In: Proceedings of the 9th IEEE International Symposium on
Industrial Embedded Systems (SIES 2014), pp. 189–198. IEEE (2014)

33. Sangiovanni-Vincentelli, A., Di Natale, M.: Embedded system design for automo-
tive applications. Computer 40(10), 42–51 (2007)

34. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer
39(2), 25–31 (2006)

35. Sentilles, S., Vulgarakis, A., Bureš, T., Carlson, J., Crnković, I.: A component
model for control-intensive distributed embedded systems. In: Chaudron, M.R.V.,
Szyperski, C., Reussner, R. (eds.) CBSE 2008. LNCS, vol. 5282, pp. 310–317.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-87891-9 21

36. Smith, D., Simpson, K.: Functional Safety. Routledge, London (2004)
37. Storey, N.R.: Safety Critical Computer Systems. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston (1996)
38. Thorngren, P.: keynote talk: Experiences from east-adl use. In: EAST-ADL Open

Workshop, Gothenberg (2013)

http://dx.doi.org/10.1007/978-3-540-87891-9_21

On the Opportunities of Scalable Modeling
Technologies: An Experience Report on Wind
Turbines Control Applications Development

Abel Gómez1(B) , Xabier Mendialdua2, Gábor Bergmann3 ,
Jordi Cabot1,4 , Csaba Debreceni3 , Antonio Garmendia5,
Dimitrios S. Kolovos6, Juan de Lara5, and Salvador Trujillo2

1 IN3, Universitat Oberta de Catalunya, Barcelona, Spain
agomezlla@uoc.edu

2 IK4-IKERLAN Research Center, Arrasate, Spain
{xmendialdua,strujillo}@ikerlan.es

3 MTA-BME Lendület Research Group on Cyber-Physical Systems,
Budapest University of Technology and Economics, Budapest, Hungary

{bergmann,debreceni}@mit.bme.hu
4 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

5 Universidad Autónoma de Madrid, Madrid, Spain
{Antonio.Garmendia,Juan.deLara}@uam.es

6 Department of Computer Science, University of York, York, UK
dimitrios.kolovos@york.ac.uk

Abstract. Scalability in modeling has many facets, including the ability
to build larger models and domain specific languages (DSLs) efficiently.
With the aim of tackling some of the most prominent scalability chal-
lenges in Model-based Engineering (MBE), the MONDO EU project
developed the theoretical foundations and open-source implementation
of a platform for scalable modeling and model management. The plat-
form includes facilities for building large DSLs, for splitting large models
into sets of smaller interrelated fragments, and enables modelers to con-
struct and refine complex models collaboratively, among other features.

This paper reports on the improvements provided by the MONDO
technologies in a software development division of IK4-IKERLAN, a
Medium-sized Enterprise which in recent years has embraced the MBE
paradigm. The evaluation, conducted in the Wind Turbine Control
Applications development domain, shows that scalable MBE technologies
give new growth opportunities to Small and Medium-sized Enterprises.

Keywords: Model-Based Engineering (MBE) · Scalability · Experience
report

This work has been supported by the MONDO (EU ICT-611125) project.

c© Springer International Publishing AG 2017
A. Anjorin and H. Espinoza (Eds.): ECMFA 2017, LNCS 10376, pp. 300–315, 2017.
DOI: 10.1007/978-3-319-61482-3 18

http://orcid.org/0000-0003-1344-8472
http://orcid.org/0000-0002-2556-2582
http://orcid.org/0000-0003-2418-2489
http://orcid.org/0000-0002-6263-7758

On the Opportunities of Scalable Modeling Technologies 301

1 Introduction

IK4-IKERLAN is a Spanish private Technology Centre focused on innovation
and comprehensive product development, with 40 years of experience in com-
bining and applying mechanics, electronics and computer science in industry.
With a staff headcount of nearly 250 employees and a turnover of e18.5 million
in 2015 [10], IK4-IKERLAN is a Medium-sized Enterprise [6] that has carried
out advanced technology transfer for a wide variety of domains, including trans-
portation (railway and elevators), energy (wind and solar power, and storage
systems), automation, industrial, health and home appliances among others.
IK4-IKERLAN has been working for the last 10 years in the development of
supervisory and control platforms for wind turbines for one of the world’s lead-
ing companies in the field of renewable energy.

Wind turbines, as Sect. 2 describes, are complex systems where hardware and
software components need to interact in intricate ways. To tackle this complex-
ity, Model-based Engineering (MBE) [16] technologies were introduced in 2009 in
IK4-IKERLAN for the engineering of the supervisory and control systems. The
goal for adopting and investing in MBE was to improve productivity and com-
petitiveness of its industrial customers by enhancing their software development
processes using, as Sect. 3 sketches, Domain Specific Languages (DSL) [7,11] and
code generators [4]. The experiences reported by customers showed significant
productivity increases, indicating that MBE has been critical in the development
of new software products faster, cheaper and with fewer errors than previous
projects.

However, too often, MBE tools and methodologies have targeted the con-
struction and processing of small models in non-distributed environments. This
focus neglects common scalability challenges [13], considering that a more typical
scenario involves different engineers working in collaboration at distributed loca-
tions. Handling these issues is a challenging task that requires specific solutions
that foster scalability as we will discuss in Sect. 4.

In 2013, the MONDO project was launched with the aim of tackling some of
the most prominent challenges of scalability in MBE by developing the the-
oretical foundations and open-source implementation of a platform for scal-
able modeling and model management. Among the technologies developed,
Sect. 5.1 focuses on the ones that can provide IK4-IKERLAN the opportunity
to offer its customers software development methodologies in geographically dis-
tributed scenarios where multiple users can work collaboratively; and Sect. 5.2
describes, specifically, the different solutions developed in IK4-IKERLAN using
the MONDO platform.

Section 6 describes how the scalable MONDO technologies have been evalu-
ated in IK4-IKERLAN and the results obtained. In a scenario where the 99% of
all businesses in the EU are Small and Medium-sized Enterprises (SME), Sect. 7
draws the conclusions and discusses this experience on the application of scalable
modeling technologies in a company like IK4-IKERLAN.

302 A. Gómez et al.

2 Wind Turbines

A wind turbine is a complex system composed of a set of physical subsystems
whose aim is to convert wind energy into electrical energy. The Wind Turbine
Control System (WTCS) [1] is the system which monitors and controls all the
subsystems that make up the wind turbine. Its aim is to maximize the generation
of electrical energy, always ensuring the correct operation of the turbine and
avoiding any problem which can cause any damage to it. It monitors the status
of the wind turbine and the environmental conditions, making decisions to get
the highest energy production. The WTCS is a HW/SW system that runs on
a dedicated hardware platform. This is connected to the wind turbine through
assorted communications to receive information from inputs (sensors, device
state signals, etc.) and to actuate on outputs (device actuators).

The HW/SW architecture of the WTCS is shown in Fig. 1. The two lower
layers refer to the HW and the Operating System. The software layer is composed
of the following components:

The Execution Engine is the component which cyclically executes the algo-
rithms to monitor and control the Wind Turbine.

The Control Units Library is a set of reusable control algorithms. These
are basic blocks, with well defined interfaces, which can be instantiated and
interconnected to implement the Wind Turbine Control Application.

A Wind Turbine Control Application (WTCA) comprises the set of algo-
rithms that must be executed in order to ensure the correct operation of the
wind turbine the WTCS is monitoring and controlling. The control algorithms
of the wind turbine are specified by instantiating control units available in
the Control Units Library and by combining those instances.

In this software architecture, the Execution Engine is a stable software com-
ponent which does not vary from one wind turbine to another. The Control
Units Library is also a stable component which, generally, does not vary either,
unless some new device is used in a wind turbine and a custom control unit has

Fig. 1. HW/SW architecture of a Wind Turbine Control System

On the Opportunities of Scalable Modeling Technologies 303

to be implemented to control it. Finally, the WTCA is the part of the software
in a WTCS that is customized for each wind turbine, depending on the specific
requirements that WTCS must met.

3 Model-Based Engineering for Offshore Wind Turbine
Control System Development

The development of a WTCS is a process where a multidisciplinary team of hard-
ware, software and telecommunications engineers, as well as electrical, mechan-
ical and other engineers work in collaboration. Due to the complexity of such
scenario—even considering only the software development, which comprises the
three software layers described above—this paper will focus on the development
of the top layer (WTCA), because the WTCA is the only part that is specific
for each different wind turbine.

In recent years, IK4-IKERLAN has implemented the MBE paradigm to
develop the Control Applications for Wind Turbines. This development process
exploits a domain-specific modeling tool, the so-called Wind Turbine Control
Modeler (WTCM), developed in Eclipse [19] and based on Eclipse Modeling
Framework (EMF) [17]. The WTCM provides the catalogue of available control
units that engineers can use to develop the algorithms to monitor and control
the subsystems of the wind turbine.

The control system of a wind turbine is typically composed of nearly 2000
basic control units, involving nearly about 2000 inputs and up to 1000 outputs,
depending on the specific model configuration. A control unit is a basic and
reusable control algorithm which may be combined with other control units to
build more complex algorithms. The control system is structured into logical
subsystems, each controlling different physical subsystems or parts of them. The
control of a wind turbine is built through the aggregation of basic control units
in order to specify those complex algorithms.

Fig. 2. Metamodel of the Wind Turbine DSL

Figure 2 shows an excerpt of the metamodel which describes the abstract
syntax of the DSL provided by the WTCM. As the figure shows, a wind tur-
bine (WT) contains a set of Subsystems which in turn contain ControlUnits.

304 A. Gómez et al.

Fig. 3. Screenshot of Wind Turbine Control Modeler

ControlUnits—which may be parameterised—implement the algorithms which
process a set of inputs to provide a set of outputs. For the sake of simplicity,
Fig. 2 only shows the ControlUnit15, which processes a single input receiving a
single param, and produces a single output.

Figure 3 shows what the initial implementation of the WTCM—which imple-
ments the Wind Turbine DSL—looks like. As it can be seen, the initial WTCM
is an Eclipse application, which enables engineers to edit WTCS models using a
regular EMF tree editor.

Once a model has been created using the WTCM, the actual C++ code
for monitoring and controlling the physical subsystems can be generated
using model-to-text transformations expressed in the Epsilon Generation Lan-
guage [12].

4 Challenges

Today, MBE is used by a group of 10+ developers working in the R&D area
of IK4-IKERLAN developing control systems for new families of wind turbines.
The aim for IK4-IKERLAN is to extend MBE technologies to other activities
such as wind turbine control customization for specific customer requirements.
Considering that there are more than 30 different variants of control applications
that are still being developed using non-MBE methodologies, it is expected that
the number of different models can grow significantly within the next years,
increasing the number of developers using modeling techniques up to 20 or more
in the mid-term.

The main limitation, however, of the initial WTCM presented before is the
lack of features that would enable a team of engineers to work collaboratively:
each engineer has to work with his own copy of the model, and model merging
operations—e.g., to include changes performed by others—need to be carried out
manually. This manual process is a complex, tedious and error prone activity that
can take more than half an hour depending on the amount and type of changes
made.

On the Opportunities of Scalable Modeling Technologies 305

Another important limitation is that engineers do not have mechanisms to
work with a subset of the model. That means that all engineers must always
work with the whole model, although a small subset of elements of the model
can be sometimes enough to perform a specific modeling or validation activity.

Considering these limitations for the modeling solution, the following chal-
lenges have been identified to improve the development of WTCAs:

1. The first challenge is to move from a single-user modeling tool built for
an engineer to work in an isolated way, to a modeling tool which enables
several engineers to work collaboratively sharing models located in a central
repository.

2. The second challenge is the ability to edit partial models or model frag-
ments. Such a feature allows each engineer to work with a specific part of the
model (as opposed to the whole model), thereby easing modeling activities.
Additionally, the use of model fragments allows minimising the volume of
data transferred over the network and limits the number of merge conflicts.

3. The third challenge is to graphically display and edit WTCS hierarchi-
cal models. Graphical models are more expressive for this domains as they
ease the identification of relationships between model elements. This is an
important enhancement with respect to the initial tree-based editor, where
relationships have to be found using auxiliary views of the editor. Scalable
graphical editors should include additional features like filtering facilities,
hierarchies of diagrams, etc. Figure 4 shows a mockup of what a graphical
WTCM would look like.

4. Finally, the fourth challenge is to enable model editing using a lightweight
mobile device—instead of a laptop—to perform the modeling activities on
site in the wind farm.

Fig. 4. Wind Turbine Control graphical modeling conceptual mock-up

5 Towards a Scalable MBE Development Process

The goal of IK4-IKERLAN joining the MONDO project was twofold: (i) to pro-
vide a real-world scenario where the scalable modeling technologies can be tested

306 A. Gómez et al.

and evaluated; and (ii) to improve their development processes by introducing
such techniques. In this section we first present the main MONDO technologies
employed, and second, the solutions implemented in IK4-IKERLAN using these
technologies.

5.1 The MONDO Platform

The MONDO platform is the open-source solution for scalable modeling and
model management developed within the MONDO project. Its main purpose is
to address the shortage of scalable and collaborative support in state-of-the art
technologies within the MBE landscape. It is composed by several components
for the development of scalable Eclipse-based editors and DSLs, collaborative
modeling, model indexing and scalable model transformations and queries. The
MONDO components that have been introduced in the IK4-IKERLAN devel-
opment process are presented next.

The MONDO Collaboration Framework [3] is the MONDO component
which enables collaboration both in offline and online scenarios.

In an offline collaboration scenario, as described in [22], models are stored
in the so-called gold repository of a version control system (VCS) which is inac-
cessible to the actual users. VCS servers instead host separate front repositories
dedicated to each user, that contain a copy of the gold repository, with complete
version history, filtered according to the read access privileges of that user. Users
are given access to a dedicated front repository so that they can read the current
or historical contents of the model files (up to their read privileges) and commit
their changes (which may be denied based on write permissions). In their normal
day-to-day workflow, users interact with their front repository using standard
VCS protocols and off-the-shelf VCS client software.

For an online collaboration scenario, MONDO provides an online collabora-
tive modeling tool, where users can open, view and edit models stored in the
VCS backends using a web browser, thus no client software needs to be installed.
Multiple users can collaborate on the same model simultaneously, enjoying the
same access control mechanism that underlies the offline collaboration frame-
work. The editor is provided as an Eclipse RAP-based web application [20].

DSL-tao [15] is the component within the MONDO platform that enables
the systematic development of scalable graphical DSLs, exploiting the idea of
reusing patterns (for the domain concepts, the graphical syntax, the services
of the final environment). DSL-tao profits from an extensible library of meta-
modeling patterns, which are instantiated and combined. The patterns account
for recurring domain concepts, concrete syntax representation, semantics and
services for the DSL environment. In particular, patterns have been devel-
oped to define modularization strategies for DSLs—using the EMF-Splitter [8]
component—which result in graphical modeling environments with built-in frag-
mentation capabilities, and services for scoping, element visibility and filtering,
among others. Using this technology, models are no longer monolithic, but split
into fragments and organized similarly to programming projects. The generated
environment relies on Sirius for graphical model editing, while Hawk [2]—the

On the Opportunities of Scalable Modeling Technologies 307

MONDO model indexer—is used for efficient look-up of model element across
fragments.

5.2 MONDO Solutions for Offshore Wind Power

Using the previous core MONDO infrastructure, three modeling solutions have
been implemented in IK4-IKERLAN, which are described next.

The Online Concurrent WTCS Modeling Solution is a web modeling
application which allows multiple modelers to share a modeling session. All mod-
elers can work concurrently with the same WTCS model versioned in a model
repository. All changes performed by a modeler are automatically propagated to
all other modelers, having all of them an updated version of the model.

Besides allowing concurrent modeling activities, this solution also supports
working with partial models. It means that each modeler can work with a dif-
ferent view of the same model, thus editing a different fragment of it. This is
achieved by creating a custom model view containing only the model elements
a user is allowed to see and edit, hiding all other elements in the model. Unau-
thorized editing of model elements is also prevented. The Online Concurrent
WTCS Modeling solution allows modelers to commit the changes performed in
the model to the model repository.

The Offline Collaborative WTCS Modeling Solution is an Eclipse appli-
cation which runs locally. It enables several engineers to work with a shared
model, but unlike the solution presented above, collaborative modeling is done
asynchronously, i.e., each modeler working with the shared model edits a local
copy of the shared WTCS model, which is checked out (or updated) from a model
repository. When model editing has finished—or whenever the user decides—a
commit operation is requested and the MONDO Collaboration Framework car-
ries out the operation.

This asynchronous way of working with a WTCS model may lead to con-
flicts when several engineers make changes to the model and try to commit
them. However, to avoid this, the MONDO Collaboration Framework will assist
the modeler to resolve the conflicts by merging the remote and local changes con-
sistently using an automated search-based model merge [5] before the commit
succeeds.

As aforementioned, in MONDO, the management of partial models in an
offline manner is handled by the MONDO Collaboration Framework which per-
forms the synchronization between all the front repositories and the gold repos-
itory. In the case of the Offline Collaborative WTCS Modeling solution, there
exists a different front repository for each different user type which contains the
partial model for that user type.

Apart from collaboration related operations, the way a model user will work
with the Offline Collaborative WTCS Modeling solution is quite similar to the
way the modeler was working with the tree-based single user modeling tool
introduced in Sect. 3.

308 A. Gómez et al.

The Offline Graphical Collaborative WTCS Modeling Solution is a
Sirius-based editor which allows editing WTCS models graphically. As mentioned
above, WTCS models edited by the offline modeling solution are built with
the Wind Power domain specific tree editor, but, as mentioned in Sect. 4, an
important challenge is the capability of editing WTCS models graphically, with
an editor which provides advanced features like drill-down, element filtering,
layers, custom views, different diagrams, etc.

This Offline Graphical Collaborative editor addresses this challenge by
exploiting DSL-tao. DSL-tao was used to define the graphical syntax by instanti-
ating the pattern for concrete syntax using its dedicated wizard, and to generate
the Sirius-based editor. It is noteworthy that a wind turbine model can be edited
either using the classical EMF-based tree editor or the graphical editor based on
Sirius.

6 Evaluation

In order to assess the success of the MONDO technologies in the IK4-IKERLAN
MBE processes, an evaluation has been performed. This evaluation—whose
details are extensively covered in the project deliverables [22]—is reported next.

6.1 Evaluation Framework

Three realistic scenarios, which express the four challenges presented in Sect. 4,
are used for the validation of the MONDO technologies:

Scenario S1: Wind turbine control design — Three system engineers work
concurrently on a single model, modeling different subsystems. Each system
engineer works on a partial model or submodel and MONDO technologies
shall merge all the partial models into a unified model.

Scenario S2: Wind turbine commissioning — A system engineer works
on a partial submodel of a model during the commissioning of a subsystem.
Transformations for code generation will only take into account the artefacts
contained in (and referenced from) the submodel the engineer is working on.

Scenario S3: Maintenance activities in the wind farm using mobile
devices — A maintenance operator of a wind farm detects a malfunction of
a non-critical element in a wind turbine. This causes the wind turbine to be
out of operation. The engineer makes a minor change in the control model
and obtains new code to put the wind turbine into operation in a degraded
mode. These minor changes are made using a tablet or a mobile device.

The solutions presented in Sect. 5.2 support the three aforementioned sce-
narios:

Scenario S1 can be supported by two MONDO solutions: the Online Con-
current WTCS Modeling Solution and the Offline Collaborative WTCS Modeling
Solution. Although in a different way, both solutions allow several engineers to

On the Opportunities of Scalable Modeling Technologies 309

work in parallel on the algorithms for the different subsystems of a wind turbine.
Likewise, both solutions manage all changes performed by each engineer merging
them in a single WTCS model.

Scenario S2 is supported by the Offline Collaborative WTCS Modeling Solu-
tion. A specific subsystem manager is allowed to load only a fragment of the
entire WTCS model. Thus she can only edit the part of the model for the sub-
system under her responsibility. The subsystem manager also has the ability to
generate code for the subsystem.

Scenario S3 is supported by the Online Concurrent WTCS Modeling Solu-
tion. As this is a web based solution deployed on a web server, it can be accessed
using a tablet. Thus, on-site modeling operations related to maintenance activ-
ities can be performed by the maintenance operator.

In order to better measure the impact of the MONDO technologies in the
development of a WTCA, the following top-level indicators have been identi-
fied: (i) time for committing model changes; (ii) impact on performance derived
from using MONDO Collaboration technology ; and (iii) time reduction for build-
ing graphical domain specific modeling editors. These generic indicators have
been materialized into a set of quantitative and qualitative measures, which are
summarized in Tables 1 and 2. Based on the expertise of IK4-IKERLAN in the
domain, different criteria have been defined to measure the success of the quan-
titative measures. On the other hand, the qualitative evaluation is carried out
amongst the engineers participating in the evaluations using the questions in
Table 2. In their answers, a four point scale (i.e., fully, largely, partially, none)
is used together with the opportunity for respondents to provide comments and
clarifications regarding their assessment.

Table 1. Quantitative measures and evaluation criteria

Id Description Sufficient Good Excellent

QN1 Increase in time for loading a model on a tablet
instead of on a PC

25% 15% 10%

QN2 Number of concurrent users working with a model 2 3 5+

QN3 Time for change propagation and notification
among concurrent users

<5 s <3 s <1 s

QN4 Maximum number of elements that can be
displayed in a diagram

25 50 >50

QN5 Time for loading a diagram having 25 elements to
be displayed

2 s 1 s <1 s

QN6 Time for committing model changes <5 s <3 s <1 s

QN7 Performance impact caused by the MONDO
Collaboration Framework

<5% <2% <1%

QN8 Time reduction for building graphical domain
specific modeling editors

25% 50% 75%

310 A. Gómez et al.

Table 2. Qualitative measures

Id Description

QL1 Is there a methodology which specifies how a large DSL should be
constructed?

QL2 Is there a tool support for the methodology, which guides the user on the
construction of a large DSL?

QL3 Does this tool provide a way to create a basic but fully functional
collaborative domain specific modeling tool?

QL4 Is MONDO technology mature enough to be used in industrial solutions?

QL5 Does MONDO technology allow concurrent editing of a model?

QL6 Does MONDO technology allow partial loading of models?

QL7 Does MONDO technology allow progressive loading of a model?

QL8 Does MONDO technology allow working with several modeling languages in
a single tool?

QL9 Can a model be edited using a tablet?

6.2 Evaluation Results

In order to perform the evaluation, a test environment was set up as described
in [22]. This environment consisted of a group of 6 different types of domain
engineers—with different privileges—working together in collaborative modeling
tasks using state-of-the-art tablets, desktop and laptop PCs.

Quantitative Measures

QN1 — The Online Concurrent WTCS Modeling solution has been used to
evaluate this measure. Analyzing the data collected, we observe that the
increase of time for loading the model on a tablet instead of on a PC, is
between 11% and 13% for model fragments and goes up to 20% when full
model is loaded.

QN2 — This measure has been evaluated using the Online Concurrent WTCS
Modeling solution. The modeling solution has been successfully executed—
i.e., without performance loss—by five different users on the same shared
modeling session.

QN3 — Time needed to propagate changes and notifying them among concur-
rent users has been evaluated using the Online Concurrent WTCS Model-
ing solution. The solution has been executed by five different users, four of
them were working with a desktop PC, while fifth one worked on a tablet.
Each time a modification was made by one user, the time required for noti-
fying other users has been measured. Less than one second was needed to
propagate the modifications with a standard network equipment.

QN4 — The Offline WTCS Graphical Modeling solution has been used to eval-
uate this measure. In this evaluation, several diagrams have been loaded in

On the Opportunities of Scalable Modeling Technologies 311

this editor with scalable capabilities such as drill-down and filtering. Their
sizes ranged from 5–15 elements to nearly 450 elements. All the diagrams
were successfully loaded.

QN5 — The Offline WTCS Graphical Modeling solution has been used to eval-
uate this measure. The measurements show that loading and displaying a
diagram with 25 elements takes between two and three seconds. However,
although the target measure is not met, the result achieved is very close to
the target result. It is also noteworthy that the largest diagram (with 452 ele-
ments) can be loaded in less than 7 s. As a consequence, although the target
result has not been met, the overall results achieved in this evaluation are
considered sufficient.

QN6 — This measure has been evaluated with the Offline Collaborative WTCS
Modeling solution. When a commit operation is performed in an offline sce-
nario, model changes are committed to the gold repository and propagated
to the front repositories for the different engineer types who are working in
collaboration.

The first conclusion after the evaluation is that the number of changes to
be committed to the repository has no significant impact on the time needed
to commit them. Specifically, the times collected for committing changes and
updating the front repositories range from two to three seconds for every front
repository, regardless of the number of changes. It is important to highlight
that model merging was a hand-made and error prone activity which could
take up to half an hour before the introduction of the MONDO technolo-
gies [5].

QN7 — Impact on performance has been evaluated using the Offline Collab-
orative WTCS Modeling solution. The solution designed and developed for
offline collaboration does not penalize the performance of features that were
already available in the solution. In this sense, an engineer gets the same
performance for the modeling activities she was used to carry out, but with
the addition of the collaborative modeling capabilities.

QN8 — The process of construction of the Offline WTCS Graphical Modeling
solution has been considered for the evaluation of this measure. The aim of
this measure is to compare the time required to create a graphical wind tur-
bine control system modeling editor using MONDO technology (concretely
DSL-tao and its design patterns), and time required to create the graphical
modeling editor using the design tool provided by Sirius. Specifically, a graph-
ical WTCS modeling editor prototype can be constructed using the Sirius
graphical specification in nearly two hours by an expert developer on this
technology. The equivalent graphical modeling editor has been constructed
using DSL-tao in no more than half an hour by the same developer with
basic—but sufficient—knowledge of DSL-tao.

Table 3 summarizes the rates achieved in the different quantitative measures
according to the criteria specified in Table 1.

312 A. Gómez et al.

Table 3. Quantitative measures Results

Id Rating Id Rating Id Rating Id Rating

QN1 Sufficient QN3 Excellent QN5 Sufficient QN7 Excellent

QN2 Excellent QN4 Excellent QN6 Good QN8 Excellent

Qualitative Measures. Besides the quantitative measures presented above, a
set of qualitative measures were also planned. The fulfillment of this set of mea-
sures is explained below, in Table 4, where the level of compliance for each mea-
sure is presented along with some additional comments. The level of compliance
is set using a four point scale with the following values: (i) fully, the expected tar-
get measure has been achieved for the Wind Power domain; (ii) largely, although
the target measure has not been fully been reached, the achieved result is very
close to the expected result; (iii) partially, some interesting results have been
achieved for the Wind Power domain thanks to MONDO technology, although
the target measure has not been reached; (i) none, no result related to the target
measure has been obtained with the MONDO technology.

Table 4. Qualitative measures results

Id Fulfillment Comments

QL1 Fully DSL-* tools provide a step by step process for designing large DSLs.

QL2 Fully The tool supporting large DSL construction is DSL-tao. It provides a
set of design patterns to design the DSL and to build its modeling tool

QL3 Largely A functional domain specific modeling tool can be created using
DSL-tao, but collaboration features are not fully supported

QL4 Largely Components like the MONDO Collaboration Framework are ready to
use. Setting up of the collaboration environments, however, should be
automated

QL5 Fully This feature is provided by MONDO Online Collaboration Framework,
which has been used to build the Online Concurrent WTCS Modeling
solution

QL6 Fully This feature is provided by the MONDO Collaboration Framework.
EMF-Splitter provides also this feature, enabling to split a model into
different physical files that can be loaded separately on demand

QL7 Fully Progressive loading can be achieved by EMF-Splitter where each
model fragment can be loaded on demand, when modularity pattern is
applied

QL8 Fully Although this requirement has not been validated in the previous use
cases, the MONDO technology has been tested to confirm that there is
no constraint to combine two different modelling languages in a single
modelling tool

QL9 Fully The MONDO Collaboration Framework allows users to edit a model
concurrently using a web modeling application run on a tablet

On the Opportunities of Scalable Modeling Technologies 313

Table 5. Scenarios, solutions and evaluated measures

Scenario MONDO solution Measure id

S1 Online concurrent QN2, QN3, QL5, QL6, QL4

S1 Offline collaborative QN4, QN5, QN6, QN7, QN8, QL1, QL2, QL3, QL4,
QL6, QL7, QL8

S2 Offline collaborative QN6, QN7, QL1, QL2, QL3, QL4, QL6

S3 Online concurrent QN1, QL4, QL9

Scenario Coverage. Table 5 summarises the relationship among the evaluation
scenarios described in Sect. 6.1, the MONDO solutions used for each scenario,
and the measures evaluated by the solution in each scenario.

7 Discussion

Scalable modeling technologies can provide new opportunities to SME to grow
their software development teams. In this document we have reported on the
experience at IK4-IKERLAN after implementing the technologies developed in
the MONDO project. The experience has been extremely positive, and the eval-
uation shows that five out of eight quantitative measures scored excellent—one
of them scored good and two others scored sufficient—while seven out of nine
qualitative measures were fully fulfilled—the two remaining were largely fulfilled.

From this experience, we can also learn that continuous compliance with
existing development processes is a key factor for success. The MONDO scalable
technologies do not impose a big change on the processes and tools that were
already implemented in the company. In this sense, the new solutions enable
teamwork in the offline scenario in such a way that can be integrated with-
out changing the pre-existing single-user modeling tools. This way developers
continue working in the same way they used to work, and collaboration features
only come into play to automate operations that were manual before (e.g., model
merging).

Part of this success has been due to, not only the technology itself, but to the
methodological guidance provided by MONDO. Specifically, the methodol-
ogy supported by DSL-tao can be easily followed to construct large scale DSLs.
In this sense, it is important that this methodology provides a wide set of prede-
fined design patterns, which DSL designers can take advantage of to build their
custom modeling solutions.

Another important contribution of the scalable technology is the capability
for concurrent model editing using web technology, enabling real-time col-
laboration with secure access control, even using mobile devices. While there are
several emerging modeling frameworks to support web-based collaborative mod-
eling such as AToMPM [18], WebGME [14], Web Modeling Framework [21]—see
[9] for an overview—security and scalability remains a major challenge for them.

314 A. Gómez et al.

As demonstrated by Online Graphical Collaborative WTCS Modeling Solution
the Eclipse RAP platform [20] is not mature enough.

Finally, this experience also evidences that web-based solutions are not best
suited to carry out modeling activities in handheld mobile devices, since they
present usability issues. In this sense, another possible avenue for research is the
development of dedicated domain-specific modeling environments for
mobile devices [23].

Acknowledgements. We would like to thank István Ráth, Dániel Varró, and all the
MONDO researchers for their contributions to the project.

References

1. Ackermann, T., Söder, L.: Wind energy technology and current status: a
review. Renew. Sustain. Energy Rev. 4(4), 315–374 (2000). doi:10.1016/
S1364-0321(00)00004-6

2. Barmpis, K., Kolovos, D.: Hawk: towards a scalable model indexing architecture.
In: Proceedings of the Workshop on Scalability in Model Driven Engineering, pp.
6:1–6:9, BigMDE 2013, NY, USA (2013). doi:10.1145/2487766.2487771

3. Bergmann, G., Debreceni, C., Ráth, I., Varró, D.: Query-based access control for
secure collaborative modeling using bidirectional transformations. In: Proceed-
ings of the ACM/IEEE 19th International Conference on Model Driven Engineer-
ing Languages and Systems, Saint-Malo, France, 2–7 October 2016, pp. 351–361
(2016).doi:10.1145/2976767.2976793

4. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., New York (2000).
ISBN:0-201-30977-7

5. Debreceni, C., Ráth, I., Varró, D., Carlos, X., Mendialdua, X., Trujillo, S.: Auto-
mated model merge by design space exploration. In: Stevens, P., W ↪asowski, A.
(eds.) FASE 2016. LNCS, vol. 9633, pp. 104–121. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49665-7 7

6. European Commission: What is an SME? http://ec.europa.eu/growth/smes/
business-friendly-environment/sme-definition es. Accessed Feb 2017

7. Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley Professional,
Upper Saddle River (2010)

8. Garmendia, A., Guerra, E., Kolovos, D.S., de Lara, J.: EMF splitter: a structured
approach to EMF modularity. In: Proceedings of XM@MODELS. CEUR Work-
shop Proceedings, vol. 1239, pp. 22–31. CEUR-WS.org (2014). http://ceur-ws.org/
Vol-1239/xm14 submission 3.pdf

9. Gray, J., Rumpe, B.: The evolution of model editors: browser- and cloud-based solu-
tions. Softw. Syst. Model. 15(2), 303–305 (2016). doi:10.1007/s10270-016-0524-2

10. IK4-IKERLAN: Efficiency in service innovation for companies—IK4-IKERLAN.
http://www.ikerlan.es/en/ikerlan/. Accessed Feb 2017

11. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels, 1st edn. Addison-Wesley Professional, Upper Saddle River
(2008). ISBN:0321553454, 9780321553454

12. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46–60. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69927-9 4

http://dx.doi.org/10.1016/S1364-0321(00)00004-6
http://dx.doi.org/10.1016/S1364-0321(00)00004-6
http://dx.doi.org/10.1145/2487766.2487771
http://dx.doi.org/10.1145/2976767.2976793
http://dx.doi.org/10.1007/978-3-662-49665-7_7
http://ec.europa.eu/growth/smes/business-friendly-environment/sme-definition_es
http://ec.europa.eu/growth/smes/business-friendly-environment/sme-definition_es
http://ceur-ws.org/Vol-1239/xm14_submission_3.pdf
http://ceur-ws.org/Vol-1239/xm14_submission_3.pdf
http://dx.doi.org/10.1007/s10270-016-0524-2
http://www.ikerlan.es/en/ikerlan/
http://dx.doi.org/10.1007/978-3-540-69927-9_4

On the Opportunities of Scalable Modeling Technologies 315

13. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S.,
De Lara, J., Ráth, I., Varró, D., Tisi, M., Cabot, J.: A research roadmap towards
achieving scalability in model driven engineering. In: Proceedings of the Workshop
on Scalability in Model Driven Engineering, pp. 2:1–2:10. BigMDE 2013, NY, USA
(2013).doi:10.1145/2487766.2487768

14. Maróti, M., Kecskés, T., Kereskényi, R., Broll, B., Völgyesi, P., Jurácz, L., Leven-
dovszky, T., Lédeczi, Á.: Next generation (meta)modeling: web- and cloud-based
collaborative tool infrastructure. In: Proceedings of the 8th Workshop on Multi-
Paradigm Modeling (MPM) co-located with MODELS 2014, pp. 41–60 (2014).
http://ceur-ws.org/Vol-1237/paper5.pdf

15. Pescador, A., Garmendia, A., Guerra, E., Cuadrado, J.S., de Lara, J.: Pattern-
based development of domain-specific modelling languages. In: 18th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
MoDELS, pp. 166–175. IEEE Computer Society (2015). doi:10.1109/MODELS.
2015.7338247

16. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003). doi:10.1109/MS.2003.1231146

17. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Model-
ing Framework 2.0, 2nd edn. Addison-Wesley Professional, Amsterdam (2009).
ISBN:0321331885

18. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V., Ergin, H.:
AToMPM: a web-based modeling environment. In: Joint Proceedings of MOD-
ELS 2013 Invited Talks, Demonstration Session, Poster Session, and ACM Student
Research Competition, pp. 21–25 (2013). http://ceur-ws.org/Vol-1115/demo4.pdf

19. The Eclipse Foundation: Eclipse - The Eclipse Foundation open source community
website. https://eclipse.org/. Accessed Feb 2017

20. The Eclipse Foundation: Remote Application Platform (RAP). http://eclipse.org/
rap/. Accessed Feb 2017

21. The Eclipse Foundation: Web Modeling Framework (previously genmymodel.com).
https://projects.eclipse.org/proposals/web-modeling-framework/. Accessed Feb
2017

22. The MONDO Project: Work Package 4 - Scalable Collaborative Modelling. Deliv-
erable 4.4: Prototype Tool for Collaborative Modeling. http://hdl.handle.net/20.
500.12004/1/P/MONDO/D4.4

23. Vaquero-Melchor, D., Garmendia, A., Guerra, E., de Lara, J.: Towards enabling
mobile domain-specific modelling. In: Proceedings of the 11th International Joint
Conference on Software Technologies - Volume 2: ICSOFT-PT, (ICSOFT 2016),
pp. 117–122 (2016).doi:10.5220/0006002501170122

http://dx.doi.org/10.1145/2487766.2487768
http://ceur-ws.org/Vol-1237/paper5.pdf
http://dx.doi.org/10.1109/MODELS.2015.7338247
http://dx.doi.org/10.1109/MODELS.2015.7338247
http://dx.doi.org/10.1109/MS.2003.1231146
http://ceur-ws.org/Vol-1115/demo4.pdf
https://eclipse.org/
http://eclipse.org/rap/
http://eclipse.org/rap/
http://genmymodel.com
https://projects.eclipse.org/proposals/web-modeling-framework/
http://hdl.handle.net/20.500.12004/1/P/MONDO/D4.4
http://hdl.handle.net/20.500.12004/1/P/MONDO/D4.4
http://dx.doi.org/10.5220/0006002501170122

Author Index

Addazi, Lorenzo 20
Ahmadian, Amir Shayan 215
Arcega, Lorena 90

Bergmann, Gábor 300
Bucaioni, Alessio 285
Butting, Arvid 53

Cabot, Jordi 267, 300
Cánovas Izquierdo, Javier Luis 267
Cetina, Carlos 90
Cicchetti, Antonio 285
Ciccozzi, Federico 20, 285

de Lara, Juan 300
Debbi, Hichem 248
Debreceni, Csaba 300
Di Ruscio, Davide 71
Diskin, Zinovy 161

Ed-douibi, Hamza 267
Engels, Gregor 126
Etzlstorfer, Juergen 71

Font, Jaime 90

Garmendia, Antonio 300
Giessing, David 109
Gogolla, Martin 232
Gómez, Abel 300

Haber, Arne 53
Haugen, Øystein 90
Hermerschmidt, Lars 53
Hilken, Frank 232

Iovino, Ludovico 71

Jürjens, Jan 215

Kautz, Oliver 53
Kluge, Roland 109

Kneisel, Peter 142
Kolovos, Dimitrios S. 300
König, Harald 161
Kraas, Alexander 3
Kusmenko, Evgeny 34

Langer, Philip 20

Mendialdua, Xabier 300
Mubeen, Saad 285
Mühlhäuser, Max 109

Niemann, Philipp 232

Pierantonio, Alfonso 71
Posse, Ernesto 20
Priefer, Dennis 142

Riediger, Volker 215
Roth, Alexander 34
Rumpe, Bernhard 34, 53

Sauer, Stefan 126
Schürr, Andy 109
Schwinger, Wieland 71
Sjödin, Mikael 285
Stahl, Hagen 126
Stein, Michael 109
Strüber, Daniel 142, 215
Sunyé, Gerson 197

Trujillo, Salvador 300

von Wenckstern, Michael 34

Wille, Robert 232
Wortmann, Andreas 53
Wu, Hao 179

Yigitbas, Enes 126

	Foreword
	Preface
	Organization
	Model-Driven Verification and Testing of Cyber-Physical Systems: Tackling Scalability and Practicality Challenges (Invited Talk)
	Contents
	Meta-Modelling and Language Engineering
	On the Automated Derivation of Domain-Specific UML Profiles
	1 Introduction
	2 Overall Approach and Running Example
	3 UML Profile Derivation
	3.1 Our Automated Derivation Approach
	3.2 Introduction of Additional OCL Constructs
	3.3 Update of Existing OCL Constructs

	4 Evaluation and Discussion
	5 Conclusions and Future Work
	References

	Towards Seamless Hybrid Graphical--Textual Modelling for UML and Profiles
	1 Introduction
	2 States of the Art and Practice
	3 A Hybrid Modelling Framework Based on Xtext and Papyrus
	4 Technical Solution
	4.1 Extending Xtext Resource Management
	4.2 Modelling UML Stereotypes Application in Xtext

	5 Evaluation and Discussion
	6 Outlook
	References

	Modeling Architectures of Cyber-Physical Systems
	1 Introduction
	2 Running Example
	3 Requirements
	4 Existing C&C Modeling Languages
	5 MontiCAR Modeling Family
	6 EmbeddedMontiArc
	7 MontiMath Language
	8 Conclusion
	References

	Model Evolution and Maintenance
	Systematic Language Extension Mechanisms for the MontiArc Architecture Description Language
	1 Introduction
	2 Example
	3 Preliminaries
	4 MontiArc Extension Method
	4.1 Extending the Syntax of MontiArc
	4.2 Extend Model Processing
	4.3 Extend Code Generator

	5 Case Studies
	6 Discussion and Related Work
	7 Conclusion
	References

	A Feature-Based Approach for Variability Exploration and Resolution in Model Transformation Migration
	1 Introduction
	2 Motivating Scenario
	3 Proposed Approach
	3.1 Variability Weaving Metamodel for Representing Different Migration Solutions
	3.2 Specification of Variability Weaving Models
	3.3 Feature Model as Representation for Managing Variability
	3.4 Automated Identification of Conflicting Alternatives

	4 Configuration and Execution of the Feature Model
	5 Related Work
	6 Conclusion and Future Work
	References

	On the Influence of Models at Run-Time Traces in Dynamic Feature Location
	1 Introduction
	2 Background
	2.1 Behavior of the Smart Hotel at Run-Time
	2.2 Model Execution Traces

	3 Model Based Dynamic Feature Location Approach
	3.1 Dynamic Analysis
	3.2 Information Retrieval in the Model Trace
	3.3 Information Retrieval in the Model

	4 Evaluation: Feature Location in the Smart Hotel
	4.1 Results
	4.2 Discussion
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Model-Driven Generative Development
	cMoflon: Model-Driven Generation of Embedded C Code for Wireless Sensor Networks
	1 Introduction
	2 A Brief Introduction to Topology Control
	3 Modeling TC Algorithms with cMoflon
	4 Generating Code for TC Algorithms with cMoflon
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Self-adaptive UIs: Integrated Model-Driven Development of UIs and Their Adaptations
	1 Introduction
	2 Conceptual Solution
	3 Modeling and Integration of Adaptation Concerns
	4 Implementation
	4.1 AdaptUI
	4.2 Adaptation Service Generator
	4.3 Runtime Components: Adaptation Service, Self-adaptive UI and Context Manager

	5 Case Study
	6 Related Work
	7 Conclusion and Outlook
	References

	Iterative Model-Driven Development of Software Extensions for Web Content Management Systems
	1 Introduction
	2 Extension of Joomla Instances
	2.1 Use Case 1: Creating Independent Extensions
	2.2 Use Case 2: Creating Dependent Extensions

	3 JooMDD - MDD Infrastructure for Joomla Extensions Including Reverse Engineering Support
	3.1 Domain-Specific Language for Joomla Extensions
	3.2 Generator for Joomla Extensions
	3.3 Tool Support for the Reverse Engineering of Existing Joomla Extensions

	4 Iterative Process for Extension Development
	5 Application of the Approach
	5.1 Creating a New Component
	5.2 Creating a Module Using an Existing Component

	6 Lessons Learned
	7 Related Work
	8 Conclusion
	References

	Model Consistency Management
	Efficient Consistency Checking of Interrelated Models
	1 Introduction
	2 Running Example
	3 Background and Definitions
	3.1 Notations and Terminology
	3.2 Localization
	3.3 Matching
	3.4 Merging

	4 Inter-model Constraint Checking
	5 Related Work
	6 Conclusion and Future Work
	References

	Finding Achievable Features and Constraint Conflicts for Inconsistent Metamodels
	1 Introduction
	2 A Running Example
	3 The Approach
	3.1 Annotation
	3.2 Reducing to Weighted MaxSMT
	3.3 Finding Constraint Conflicts

	4 Implementation and Evaluation
	4.1 Evaluation
	4.2 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Model Consistency for Distributed Collaborative Modeling
	1 Introduction
	2 Background
	2.1 Cooperative Editing Systems
	2.2 EMF

	3 Model Consistency Approach
	3.1 Update Operations
	3.2 Casual Dependencies
	3.3 Integration Algorithm
	3.4 Example
	3.5 Integration at Node 1
	3.6 Integration at Node 2
	3.7 Integration at Node 3
	3.8 Discussion

	4 Prototype Implementation
	4.1 Identities
	4.2 Update Notification
	4.3 Original Context and Precedence

	5 Related Work
	6 Conclusion and Future Work
	References

	Model Verification and Analysis
	Model-Based Privacy Analysis in Industrial Ecosystems
	1 Introduction
	2 Background
	2.1 The Four Key Elements of Privacy
	2.2 Model-Based Security Analysis Using UMLsec

	3 Model-Based Privacy Analysis
	3.1 The Modular Privacy Analysis
	3.2 Model-Based Privacy Analysis Based on the Four Fundamental Privacy Elements
	3.3 UML Privacy Extension
	3.4 Privacy Checks

	4 Case Study
	5 Related Work
	6 Conclusion
	References

	Formulating Model Verification Tasks Prover-Independently as UML Diagrams
	1 Introduction
	2 Preliminaries and Background
	3 Manifesting Consistency and Reachability in Tools
	4 Viewing Verification Tasks as UML Diagrams
	5 A Developer's View on Verification Tasks
	6 Related Work
	7 Conclusion
	References

	Modeling and Formal Analysis of Probabilistic Complex Event Processing (CEP) Applications
	1 Introduction
	2 Preliminaries and Definitions
	2.1 Clocks and Zones
	2.2 Probabilistic Timed Automata
	2.3 Probabilistic Timed CTL (PTCTL)
	2.4 PRISM Language

	3 Complex Event Processing (CEP)
	4 The Verification Approach of Probabilistic CEP
	4.1 Modeling Phase
	4.2 Specification Phase

	5 Case Study
	5.1 Model
	5.2 Model Analysis

	6 Conclusion
	References

	Experience Reports, Case Studies, and New Application Scenarios
	Example-Driven Web API Specification Discovery
	1 Introduction
	2 Running Example
	3 Approach
	4 The OpenAPI Metamodel
	4.1 Behavioral Elements
	4.2 Structural Elements
	4.3 Serialization/Deserialization Support

	5 The Discovery Process
	5.1 Behavioral Discoverer
	5.2 Structural Discoverer

	6 The Generation Process
	7 Validation and Limitations
	8 Related Work
	9 Tool Support
	10 Conclusion
	References

	Technology-Preserving Transition from Single-Core to Multi-core in Modelling Vehicular Systems
	1 Introduction
	2 The Rubus Component Model
	3 Related Work
	4 Extending Rubus Component Model for Multi-core
	5 Modelling the Brake-By-Wire System
	6 Lesson Learned
	7 Conclusion and Future Work
	References

	On the Opportunities of Scalable Modeling Technologies: An Experience Report on Wind Turbines Control Applications Development
	1 Introduction
	2 Wind Turbines
	3 Model-Based Engineering for Offshore Wind Turbine Control System Development
	4 Challenges
	5 Towards a Scalable MBE Development Process
	5.1 The MONDO Platform
	5.2 MONDO Solutions for Offshore Wind Power

	6 Evaluation
	6.1 Evaluation Framework
	6.2 Evaluation Results

	7 Discussion
	References

	Author Index

