
Predictive Shift-Reduce Parsing
for Hyperedge Replacement Grammars

Frank Drewes1, Berthold Hoffmann2, and Mark Minas3(B)

1 Umeå universitet, Umeå , Sweden
drewes@cs.umu.se

2 Universität Bremen, Bremen, Germany
hof@informatik.uni-bremen.de

3 Universität der Bundeswehr München, Neubiberg, Germany
mark.minas@unibw.de

Abstract. Graph languages defined by hyperedge replacement gram-
mars can be NP-complete. We study predictive shift-reduce (PSR) pars-
ing for a subclass of these grammars, which generalizes the concepts of
SLR(1) string parsing to graphs. PSR parsers run in linear space and
time. In comparison to the predictive top-down (PTD) parsers recently
developed by the authors, PSR parsing is more efficient and more general,
while the required grammar analysis is easier than for PTD parsing.

Keywords: Hyperedge replacement grammar · Graph parsing · Gram-
mar analysis

1 Introduction

“It is well known that hyperedge replacement (HR, see [11]) can generate NP-
complete graph languages [1]. In other words, even for fixed HR languages pars-
ing is hard. Moreover, even if restrictions are employed that guarantee L to be
in P, the degree of the polynomial usually depends on L; see [16].1 Only under
rather strong restrictions the problem is known to become solvable in cubic time
[5,21].” This quote is from our paper [8] on predictive top-down (PTD) pars-
ing, an extension of SLL(1) string parsing [17] to HR graph grammars [11]. The
parser generator has been extended to the contextual HR grammars devised in
[6,7]; it approximates Parikh images of auxiliary grammars in order to deter-
mine whether a grammar is PTD-parsable [9], and generates parsers that run in
quadratic time, and in many cases in linear time.

Here we devise—somewhat complementary—efficient bottom-up parsers for
HR grammars, called predictive shift-reduce (PSR) parsers, which extend SLR(1)
parsers [4], a member of the LR(k) family of deterministic bottom-up parsers for
context-free grammars [15]. We describe how PSR parsers work and how they
can be constructed, and relate them to SLR(1) string and PTD graph parsers.

1 This result has been exploited for parsing natural language in the system Bolinas [2].
c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 106–122, 2017.
DOI: 10.1007/978-3-319-61470-0_7

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 107

In Sect. 2 we recall basic notions of HR grammars. We sketch SLR(1) string
parsing in Sect. 3 and describe in Sect. 4 how it can be lifted to PSR parsing
of graphs with HR grammars. Then, in Sect. 5, we describe how HR grammars
can be analysed for being PSR-parsable. Section 6 is devoted to the discussion
of related work. Further work is outlined in Sect. 7.

2 Hyperedge Replacement Grammars

We let N denote the non-negative integers. A∗ denotes the set of all finite sequences
over a set A; the empty sequence is denoted by ε, the length of a sequence α by |α|.
For a function f : A → B, its extension f∗ : A∗ → B∗ to sequences is defined by
f∗(a1 · · · an) = f(a1) · · · f(an), for all a1, . . . , an ∈ A, n � 0.

We consider an alphabet Σ of symbols for labeling edges that comes with an
arity function arity : Σ → N. The subset N ⊆ Σ is the set of nonterminal labels.

An edge-labeled hypergraph G = 〈Ġ, Ḡ, attG, �G〉 over Σ (a graph, for short)
consists of disjoint finite sets Ġ of nodes and Ḡ of hyperedges (edges, for short)
respectively, a function attG : Ḡ → Ġ∗ that attaches sequences of nodes to edges,
and a labeling function �G : Ḡ → Σ so that |attG(e)| = arity(�G(e)) for every
edge e ∈ Ḡ. Edges are said to be nonterminal if they carry a nonterminal label,
and terminal otherwise; the set of all graphs over Σ is denoted by GΣ . A handle
graph G for A ∈ N consists of just one edge x and k = arity(A) pairwise distinct
nodes n1, . . . , nk such that �G(x) = A and attG(x) = n1 . . . nk.

Given graphs G and H, a morphism m : G → H is a pair m = 〈ṁ, m̄〉 of
functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ that preserves labels and attachments:
�H ◦ m̄ = �G, and attH ◦ m̄ = ṁ∗ ◦ attG (where “◦” denotes function compo-
sition). A morphism m : G → H is injective and surjective if both ṁ and m̄
have the respective property. If m is injective and surjective, it makes G and H
isomorphic. We do not distinguish between isomorphic graphs.

Definition 1 (HR Rule). A hyperedge replacement rule (rule, for short) r =
L → R consists of graphs L and R over Σ such that the left-hand side L is a
handle graph with L̇ ⊆ Ṙ.

Let r be a rule as above, and consider some graph G. An injective morphism
m : L → G is called a matching for r in G. The replacement of m(L) by R is
then given as the graph H, which is obtained from the disjoint union of G and
R by removing the single edge in m(L̄) and identifying, for every node v ∈ L̇,
the nodes m(v) ∈ Ġ and v ∈ Ṙ. We then write G ⇒r,m H (or just G ⇒r H)
and say that H is derived from G by r.

The notion of rules introduced above gives rise to the class of HR grammars.

Definition 2 (HR Grammar [11]). A hyperedge-replacement grammar (HR
grammar, for short) is a triple Γ = 〈Σ,R, Z〉 consisting of a finite labeling
alphabet Σ, a finite set R of rules, and a start graph Z ∈ GΣ .

We write G ⇒R H if G ⇒r,m H for some rule r ∈ R and a matching
m : L → G, and denote the transitive-reflexive closure of ⇒R by ⇒∗

R. The
language generated by Γ is given by L(Γ) = {G ∈ GΣ\N | Z ⇒∗

R G}.

108 F. Drewes et al.

Without loss of generality, we assume that the start graph Z consists of a
single edge labeled with a symbol S ∈ N of arity 0, that it is the left-hand side
of just one rule, and that it does not occur in any right-hand side.

Graphs are drawn as in Example 1. Circles represent nodes, and boxes of
different shapes represent edges. The box of an edge contains its label, and is
connected to the circles of its attached nodes by lines; these lines are ordered
clockwise around the edge, starting to its left. Terminal edges with two attached
nodes are usually drawn as arrows from their first to their second attached
node, and the edge label is ascribed to that arrow (but omitted if there is just
one label, as in Example 1 below). In rules, identifiers like “x” at nodes identify
corresponding nodes on the left-hand and right-hand sides.

Example 1. With a start graph as assumed above, the HR grammar below
derives n-ary trees, like the graph on the right:

3 Shift-Reduce Parsing of Strings

Our shift-reduce parser for HR grammars borrows and extends concepts known
from the family of context-free LR(k) parsers [15], which is why we recall these
concepts first. As context-free grammars, shift-reduce parsing, and in particular
LR(k) parsing appear in every textbook on compiler construction, we discuss
these matters just at hand of an example.

Example 2. The Dyck language of matching nested parentheses consists of
strings over the symbols “ [” and “]”; it can be defined by a context-free string
grammar with four rules D = {S → T, T → [B], B → T B,B → ε}, to which
we refer by the numbers 0 to 3; S, T , and B are nonterminals, and ε denotes
the empty string.

Starting with the string consisting only of S, the rules are applied to strings
of nonterminals and terminals, by replacing an occurrence of their left-hand side
by their right-hand side; this is done repeatedly until all nonterminals have been
replaced. So we can derive a word of the Dyck language:

S ⇒
0

T ⇒
1
[B]⇒

2
[TB]⇒

3
[T]⇒

1
[[B]]⇒

3
[[]] (1)

A context-free parser checks whether a string like “ [[]]” belongs to the language
of a grammar, and constructs a derivation as above if this is the case. A parser
is modeled by a stack automaton that reads an input string from left to right,
and uses a stack for remembering its actions. In a (general) shift-reduce parser,
a configuration can be represented as α �w, where w is the unconsumed input, a
terminal string, and α is the stack, consisting of the nonterminal and terminal

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 109

symbols that have been parsed so far. (The rightmost symbol is the “top”.) The
parser has its name from the two kinds of actions it performs (where α is an
arbitrary string of symbols, and w an arbitrary terminal string):

– Shift consumes the first terminal symbol a of the input, and pushes it onto
the stack. Our parser does shifts for parentheses:

α � [w 	 α[�w α �]w 	 α] �w

– Reduce pops the right-hand side symbols of a production from the stack, and
pushes its left-hand side onto it. Our parser has the reductions (for symbol
sequences α and terminal symbol sequences w):

T � 	0 S � α[B] �w 	1 αT �w αTB �w 	2 αB �w α �w 	3 αB �w

If the rule is the start rule, and α and w are empty, the parser terminates,
and accepts the word, as in the first reduction.

A successful parse of a string w is a sequence of shift and reduce actions starting
from the initial configuration ε � w to the accepting configuration S � ε, as below:

� [[]] 	 [� []] 	 [[�]] 	
3
[[B �]] 	 [[B] �] 	

1
[T �] 	

3
[TB �] 	

2
[B �] 	 [B] � 	

1
T � 	

0
S �

The reduction steps of a successful parse, read in reverse, yield a rightmost
derivation of “ [[]]” from S, in this case the one in (1) above.

This parser is nondeterministic: E.g., in the configuration “ [TB �]”, the fol-
lowing actions are possible:

1. a reduction with rule B → T B, leading to the configuration [B �];
2. a reduction with rule B → ε, leading to the configuration [TBB �]; or
3. a shift of the symbol “]”, leading to the configuration [TB] � .

Only action 1 will lead to the successful parse above. After action 2, further
reduction is impossible, even after a subsequent shift of the unconsumed “]”;
after action 3, no further action is possible. In such situations, the parser must
backtrack, i.e., undo actions and try alternative ones, until it can accept the
word, or fails altogether.

Since backtracking is inefficient, shift-reduce parsers are extended by two
concepts so that they can predict which action in a configuration will lead to a
successful parse:

– A lookahead of k > 0 input symbols helps to decide for an action. In the
situation sketched above, the reductions 1 and 2 should only be done if the
first input symbol is “]”, which is the only terminal symbol that may follow
B in the derivations with the grammar.

110 F. Drewes et al.

– A characteristic finite automaton (CFA) controls the order in which actions
are performed; in the configuration α[T B �], the CFA should indicate that
rule B → T B shall be reduced, not rule B → ε.

Different lengths of lookahead, and several notions of CFAs can be used to con-
struct a predictive shift-reduce parser. The most general one is Knuth’s LR(k)
method [15]; here we just consider the simplest case of DeRemer’s SLR(k)
parser [4], namely for a single symbol of lookahead, i.e., k = 1.

Fig. 1. SLR(1) automaton AD of the Dyck grammar

The transition diagram of the CFA AD for the Dyck language is shown in
Fig. 1. It is constructed as follows. The nodes q0 to q6 define its states, which
are characterized by sets of so-called items; an item is a rule with a dot between
the symbols on the right-hand side; e.g., state q3 is characterized by the single
item T → [B �]; in this state, the parser has recognized the symbols [and B of
rule T → [B], but not the closing parenthesis. The transitions q

x→ q′ define the
successor state q′ of a state q after recognizing a symbol x.

The start state q0 is described by the item S → �T , which is called a kernel
item. Since recognizing the nonterminal T implies to recognize the rule of T ,
T → � [B] is the closure item of this state. The symbols appearing right of the
dot in state q0 can be recognized next; so, state q0 has two transitions: under the
nonterminal T to state q1 with the kernel item S → T � (T is being read), and
under the terminal “ [” to state q2 with the kernel item T → [�B]. State q2 has
closure items B → � ε and B → �TB, and the latter item has a further closure
item T → � [B]. While state q1 has no transitions (nothing more needs to be
recognized), state q2 has three successor states, under the nonterminals B, T ,
and the terminal “ [”. The transition under “ [” loops on state q2. The remaining
states and transitions are determined analogously.

The stack of the SLR(1) parser is extended to contain an alternating sequence

of states and symbols, e.g., “q0[q2[q2Tq4Tq4”, which record a path q0
[→ q2

[→
q2

T→ q4
T→ q4 in its CFA AD, starting in the initial state. The actions of the

parser are determined by its actual (topmost) state, and are modified wrt. those
of the nondeterministic parser as follows:

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 111

– Shift consumes the first terminal a of the input, and pushes it onto the stack,
with the successor state q′ so that q

a→ q′ is in AD. For our grammar, and
i ∈ {0, 2, 4}:

αq3 �]w 	 αq3]q5 �w αqi � [w 	 αqi[q2 �w

– Reduce pops the right-hand side of a production A → β (and the intermediate
states) from the stack, but only if the lookahead—the first input symbol—may
follow A in derivations, and pushes the left-hand side A, and the successor
state q′ so that q

A→ q′. If A = S and the input is empty, the parser accepts
the word. For our grammar:

q0Tq1 � 	0 S αq0[q2Bq3]q5 �w 	1 αq0Tq1 �w
αq2[q2Bq3]q5 �w 	1 αq2Tq4 �w αq4[q2Bq3]q5 �w 	1 αq4Tq4 �w
αq2Tq4Bq6 �]w 	2 αq2Bq3 �]w αq4Tq4Bq6 �]w 	2 αq4Bq6 �]w

αq2 �]w 	3 αq2Bq3 �]w αq4 �]w 	3 αq4Bq6 �]w

The CFA may reveal conflicts for predictive parsing:

– If a state allows to shift some terminal a, and a reduction under the lookahead
a, this is a shift-reduce conflict.

– If a state allows reductions of different productions under the same lookahead
symbol, this is a reduce-reduce conflict.

Whenever the automaton is conflict-free, the SLR(1) parser exists, and is deter-
ministic. The automaton AD for the Dyck language is conflict-free: In states q2
and q4, rule B → ε can be reduced if the input begins with the only follower
symbol “]” of B, which is not in conflict with the shift transitions from these
states under “ [”.

A deterministic parse with the SLR(1) parser for D is as follows:

q0 � [[]] 	 q0[q2 � []] 	 q0[q2[q2 �]] 	
3

q0[q2[q2Bq3 �]] 	 q0[q2[q2Bq3]q5 �]
	
1

q0[q2Tq4 �] 	
3

q0[q2Tq4Bq6 �] 	
2

q0[q2Bq3 �] 	 q0[q2Bq3]q5 �
	
1

q0Tq1 � 	
0

S (accept)

4 Predictive Shift-Reduce Parsing for HR Grammars

We shall now transfer the basic ideas of shift-reduce parsing to HR grammars.
First we define a textual notation for graphs and HR rules. A graph G can
be represented as a pair uG = 〈s, Ġ〉, called (graph) clause of G, where s is a
sequence of (edge) literals a(x1, . . . , xk), one for every edge e ∈ Ḡ with �G(e) = a
and attG(e) = x1 . . . xk. When writing down uG, we omit Ġ and write just s if
Ġ is clear from the context. For an HR rule L → R, the rule clause is uL → uR,
with L̇ ⊆ Ṙ.

112 F. Drewes et al.

While the order of literals in a graph clause is irrelevant, we shall process the
literals on the right-hand side of a rule clause in the given order.2

Example 3 (Tree Rule Clauses and Tree Clauses). The rules of the tree grammar
in Example 1 are represented by the clauses

S() → T (x) T (y) → T (y) edge(y, z)T (z) T (y) → ε

We shall refer to them by r1, r2, r3. The empty sequence ε in the last rule is a
short-hand for the clause 〈ε, {y}〉. One of the possible clauses representing the
graph in Example 1 is “edge(1, 2) edge(1, 3) edge(2, 4) edge(2, 5)”.

We will use this simple example to demonstrate the basic ideas of PSR parsing.
The PSR graph parser will use configurations α �w, and rely on a CFA for

its control, just like an SLR(1) parser. However, instead of just symbols, the
configurations will consist of literals, and something has to be done in order to
properly determine the nodes of these literals in the host graph. This makes the
construction more complicated.

If we disregard for a moment the assignment of host graph nodes to the
literals, the states of the CFA are defined as sets of items, i.e., of rule clauses
with a dot at some place in their right-hand side. Consider the kernel item
T (y) → T (y) edge(y, z) � T (z) as an example. It has closure items of the form
T (y) → �T (y)edge(y, z)T (z) and T (y) → � . However, we have to take care of
the node names: Since the closure is built according to the literal T (z), the y in
the closure items is actually the z of the kernel item, and their z is a node not
in the kernel item at all. This has to be reflected in the closure items, without
causing name clashes. Our method will be the following: First we distinguish
those nodes in the kernel items to which nodes of the host graph will have been
assigned when the state is entered. These are called the parameters of the state.
In the present state – let us call it q2 – the parameters will correspond to y and z
since the literals to the left of the dot are already on the stack in this state. First
we replace y and z by parameter names, say x and y , in the kernel item. Then
we rename the nodes on the left-hand side of the closure items according to the
kernel literal causing the closure, i.e., we replace y by y in the closure items.
The remaining node names are preserved – they correspond to nodes that have
not yet been assigned any host graph nodes and are thus not parameters.3 We
now call this state q2(x ,y) to indicate that x and y are its formal parameters
which have to be instantiated by concrete host graph nodes whenever the parser
enters the state.

2 We assume that this order is provided with the HR grammar. Finding an appropriate
order for PSR parsing automatically can be done by dataflow analysis, but is outside
the scope of this paper.

3 In general, we may have to introduce fresh names for non-parameter nodes in the
closure items as well in order to avoid name clashes, but this is not necessary in the
present example.

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 113

State q2(x ,y) now gets a transition under the literal T (y) to a state, let us
call it q3(x ,y), which has two kernel items

T (x) → T (x) edge(x ,y)T (y) � and T (y) → T (y) � edge(y , z)T (z).

This state also gets x and y as formal parameters. For the transition, we specify
which nodes of q2(x ,y) define the parameters in q3(x ,y), writing it in the form
of a “call” q3(x ,y). (Note that x and y are the parameters in state q2(x ,y) that
are thus transferred to the (equally named) formal parameters of q3(x ,y).)

The second item of q3(x ,y) causes a transition under edge(y , z) to a state
that would have a kernel item T (y) → T (y)edge(y , z) � T (z), where the actual
parameter z is determined by the shift. However, this kernel item equals the
one of q2(x ,y) up to the names of formal parameters so that we identify these
states, and “call” q2(x ,y), specifying its actual parameters by writing q2(y , z)
on the transition. In general, a transition is thus defined by a literal, and by a
call that defines the actual parameters, thereby passing nodes from one state to
the other.

Figure 2 shows the CFA for the tree grammar, built according to these con-
siderations. (Note that q2(x ,y) and q3(x ,y) are as discussed above.) A special
case arises in the start state q0(x). In order to work without backtracking, pars-
ing has to start at nodes of the start rule that can be uniquely determined before
parsing starts. In our example, the node u of the host graph that corresponds to
x in the start item S() → �T (x) must be determined, and assigned to the for-
mal parameter x of q0(x) before running the parser. This is done by a procedure
devised in [9, Sect. 4], computing the possible incidences of all nodes created by
a grammar; only if the start node u can be distinguished from all other nodes

Fig. 2. The PSR CFA for the tree grammar Example 3

114 F. Drewes et al.

generated by the grammar, predictive parsing is possible. In our example, u is
the unique node in the input graph that has no incoming edges, i.e., the root
of the tree. (If the input graph has more than one root, or no root at all, it
cannot be a tree, and parsing fails immediately.) So the start item is renamed
to S() → �T (x), and q0(x) is entered with the call q0(u).

Figure 4 shows moves of a PSR parser that accept the tree of Fig. 3 in state
q11 that indicates a reduction with the start rule. We are using a compact form to
denote concrete instances of states (i.e., with actual parameters being assigned
to them): for a state q(x 1, . . . ,x k) and an assignment μ : {x 1, . . . ,x k} → Ġ we
let qμ denote q(μ(x 1), . . . , μ(xk)). Moreover, in Fig. 4 we just denote μ by a list
of nodes, i.e., q10 denotes qμ

0 where μ(x) = 1. We use a similar shorthand for
literals, e.g., e12 and T 1 abbreviate literals edge(1, 2) and T (1), respectively.

Fig. 3. An input tree Fig. 4. Moves of a PSR parser recognizing Fig. 3;
places where reductions occur are underlined

The operations of the PSR parser work as follows on a host graph G:

Shift. Let the CFA contain a transition from state p(x 1, . . . ,xk) to state
q(y1, . . . ,y l) labeled by the terminal edge literal e(v1, . . . , vm) and the call
q(u1, . . . , ul), and consider a concrete instance pμ of p(x 1, . . . ,x k). Then there
is a shift from pμ to qν if

1. μ can be extended to the non-parameter nodes among v1, . . . , vm, yielding an
assignment μ′ such that e(μ′(v1), . . . , μ′(vm)) is a hitherto unconsumed edge
literal of G (which is thus consumed) and

2. ν is defined by setting ν(y i) = μ′(ui) for i = 1, . . . , l.

The shift then pushes the consumed edge e(μ′(v1), . . . , μ′(vm)) and qν onto the
stack.

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 115

Reduce. Let the topmost stack element be the state qνk

k , and assume that it
contains an item of the form A(w) → s1(w1) · · · sk(wk) � . Thus, w,w1, . . . , wk

are sequences of formal parameters of qk and the stack is of the form

· · · pμs1(w′
1) qν1

1 · · · sk(w′
k)q

νk

k

where w′
i = ν∗

k(wi) for all i.
The CFA would then allow a transition from pμ to consume the instantiated

left-hand side A(ν∗
k(w)). Let qν be the concrete target state of this transition.

Then a reduction can be performed by popping s1(w′
1)q

ν1
1 · · · sk(w′

k)q
νk

k from the
stack and pushing A(ν∗

k(w)) and qν onto it.
Note that the parser has to choose the next action in states like qν

1 or qν
3 ,

which allow for a shift, but also for a reduction with rule r1 and r2, respectively.
The parser predicts the next step by inspecting the unconsumed edges. We will
discuss this in the next section. Note also that the PSR shift step differs from
its SLR(1) counterpart in an important detail: while the string parser just reads
the uniquely determined next symbol of the input word, the graph parser must
choose an appropriate edge. There may be states with several outgoing shift
transitions (which do not occur in the present example), and the PSR parser
has to choose between them. The parser, when it has selected a specific shift
transition, may even have to choose between several edges to shift. E.g., in
Fig. 4 the second step could shift the edge edge(1, 3) instead of edge(1, 2). We
will discuss this problem below when considering shift-shift as well as other
conflicts and the free edge choice property.

5 Predictive Shift-Reduce Parsability

A CFA can be constructed for every HR grammar; the general procedure works
essentially as described above. However, one must usually deal with items whose
left-hand sides still contain nodes which have not yet been located in the host
graph. (Such items do not occur in the tree example.) We ignore this issue here
due to space restrictions and refer to [8]. We shall now outline the three criteria
for an HR grammar to be PSR-parsable (or just PSR for short):

1. Neighbor-determined start nodes: Prior to actual parsing, one must be able to
determine the nodes where parsing will start. This has already been examined
in [8,9] and is not considered in this paper.

2. Conflict-freeness: An SLR(1) parser can predict the next action iff its CFA is
conflict-free (cf. Sect. 3). We define a similar concept for PSR parsing in the
following.

3. Free edge choice: The parser, when it has selected a specific shift transition,
may have to choose between several edges matching the edge pattern, as
described above. A grammar has the free edge choice property if the parser can
always choose freely between these edges. There are sufficient conditions for
this property that can be effectively tested when testing for conflict-freeness.
This has already been examined in [8]; so we do not discuss it here.

116 F. Drewes et al.

We shall now define conflict-freeness in PSR parsing similar to SLR(1) pars-
ing so that conflict-freeness implies that the PSR parser can always predict the
next action. A graph parser, different from a string parser, must choose the next
edge to be consumed from a set of appropriate unconsumed edges. It depends on
the next action of the parser which edges are appropriate. We define a conflict
as the situation that an unconsumed edge is appropriate for an action, but could
be consumed also if another action was chosen. Conflict-freeness just means that
there are no conflicts. Obviously, conflict-freeness then allows to always predict
the correct action.

We now discuss how to identify host edges that are appropriate for the action
caused by an item. For this purpose, let us first define items in PSR parsing more
formally: An item I = 〈L → α �β | P 〉 consists of an HR rule L → αβ in clause
representation with a dot indicating a position in the right-hand side and the
set P of parameters, i.e., those nodes in the item to which we have already
assigned nodes in the host graph. These host nodes are not yet known when
constructing the CFA and the PSR parser, but we can interpret parameters as
abstract host nodes. A “real” host node assigned to a parameter during parsing
is mapped to the corresponding abstract node. All other host nodes are mapped
to a special abstract node −. Edges of the host graph are mapped to abstract
edges being attached to abstract nodes, i.e., P ∪ {−}, and each abstract edge
can be represented by an abstract (edge) literal in the usual way. Note that the
number of different abstract literals is finite because P ∪ {−} is finite.

Consider any valid host graph in L(Γ), represented by clause γ derived by the
derivation S = α1 ⇒ · · · ⇒ αn = γ. We assume that the ordering of edge literals
is preserved in each derivation step. We then select any mapping of nodes in γ
to abstract nodes P ∪ {−} such that no node in P is the image of two different
host nodes. Edge literals are mapped to the corresponding abstract literals. The
resulting sequence of literals can then be viewed as a derivation in a context-free
string grammar Γ (P) that can be effectively constructed from Γ in the same way
as described in [9, Sect. 4]; details are omitted here because of space restrictions.
Γ (P) has the nice property that we can use this context-free string grammar
instead of Γ to inspect conflicts. This is shown in the following.

Consider an item I = 〈L → α �β | P 〉. Each edge literal e = l(n1, . . . , nk) has
the corresponding abstract literal abstrP (e) = l(m1, . . . ,mk) where mi = ni if
ni ∈ P , and mi = − otherwise, for 1 � i � k. Let us now determine all host
edges, represented by their abstract literals, which can be consumed next if the
action caused by this item is selected. The host edge consumed next must have
the abstract literal FirstP (β) := abstrP (e) if I is a shift item, i.e., β starts with a
terminal literal e. If I, however, causes a reduction, i.e., β = ε, we can make use
of Γ (P). Any host edge consumed next must correspond to an abstract literal
that is a follower of the abstract literal of L in Γ (P). This is exactly the same
concept as it is used for SLR(1) parsing and indicated in Sect. 3. Let us use the
notion FollowP (L) for this set of followers.

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 117

As an example, consider state q3(x ,y) in Fig. 2 with its items 〈Li → αi � βi |
Pi〉, i = 1, 2, with P1 = {x, y} and P2 = {y}. For the first item, one can compute

FollowP1(L1) = FollowP1(T (x)) = {edge(x,−), edge(−,−), ε},

i.e., the host edge consumed next must either be an edge between the host node
assigned to x and a node different from the ones assigned to x or y, or it must
be a completely unrelated edge wrt. to the host nodes assigned to x or y, or all
edges of the host edge have been completely consumed, indicated by ε.

For the second item, one can compute

FirstP2(β2) = abstrP2(edge(y, z)) = edge(y,−),

i.e., the host edge under which the shift step is taken is an edge between the
host node assigned to y and a node different from the ones assigned to x or y.

As FirstP2(β2) is not in FollowP1(L1) the edge under which the shift step
is taken cannot be consumed next when the reduce step is taken instead. This
condition is sufficient to avoid a conflict in SLR(1) parsing, but this is not the
case for PSR parsing. Because host edges are not consumed in a fixed sequence,
edge(y,−) might be consumed later when the reduce step is taken. We must
actually compute the set of all abstract literals that may follow abstrP1(L)
immediately, or later in Γ (P). Let us denote the set of all such abstract literals
Follow∗

P (L), whose computation from Γ (P) is straightforward. In this example,
one can see that

Follow∗
P1
(L1) = {edge(x,−), edge(−,−), ε}.

We conclude that, if the parser can find a host edge matching edge(y,−), this
edge can never be consumed if the reduce step is taken; the parser must select
the shift step. If it cannot find such a host edge, it must select the reduce step.

Note that the test for a conflict (which we have not yet defined formally)
is not symmetric: we have just checked whether FirstP2(β2) /∈ Follow∗

P1
(L1).

But we could also check whether any abstract literal in FollowP1(L1), i.e., if the
reduce step is taken, can be consumed later when the shift step is taken instead.
Let us denote the set of these abstract literals as Follow∗

P2
(L2, β2), which can be

computed using Γ (P) in a straightforward way. In the tree example, it is

Follow∗
P2
(L2, β2) = {edge(y,−), edge(−,−)},

i.e., edge(−,−) ∈ FollowP1(L1)∩ Follow∗
P2
(L2, β2). Thus the parser cannot pre-

dict the next step by just checking the existence of host edges matching abstract
literals in FollowP1(L1). But this is insignificant, because it can predict the cor-
rect action based on the other test (in the “opposite direction”).

Analogous arguments apply if two different shift actions or two different
reduction actions are possible in a state. However, there are no such states in
the tree example.

118 F. Drewes et al.

We are now ready to define conflicting items in PSR parsing. In order to
simplify the definition, we refer to sets FollowP (I) and Follow∗

P (I) for an item
I = 〈L → α �β | P 〉. If I is a shift item, we define

FollowP (I) := {FirstP (β)} and Follow∗
P (I) := Follow∗

P (L, β).

If I is a reduce item, we define

FollowP (I) := FollowP (L) and Follow∗
P (I) := Follow∗

P (L).

Definition 3 (Conflicting items). Let I1 and I2 be two items with sets P1

and P2 of parameters, respectively. I1 and I2 are in conflict iff

FollowP (I1) ∩ Follow∗
P (I2) �= ∅ ∧ FollowP (I2) ∩ Follow∗

P (I1) �= ∅

where P = P1 ∩ P2. The conflict is called a shift-shift, shift-reduce, or reduce-
reduce conflict depending on the actions caused by I1 and I2.

The above considerations make clear that the parser can predict the next
action correctly if all states of its CFA are conflict-free. They also make clear
that the parser has to consider only a fixed number of abstract edge literals
in any state to choose the next action, and the host edge to shift if a shift
is chosen. However, each abstract literal may match several host edges. But
proper preprocessing of the host graph allows to find an (arbitrary, because of
the free edge choice property) unconsumed host edge in constant time. This
preprocessing is linear in the size of the graph (in space and time). Because the
number of actions of the parser is linear in the size of the input graph, it follows
that PSR parsing is linear in the size of the host graph.

The Grappa tool implemented by the third author generates PSR parsers
based on the construction of the PSR CFA and the analysis of the three criteria
outlined above. Table 1 summarizes test results for some HR grammars. The
columns under “Grammar” indicate the size of the grammar in terms of the
maximal arity of nonterminals (A), number of nonterminals (N), number of
terminals (T) and number of rules (R). The columns under “CFA” indicate the
size of the generated CFA in terms of the number of states (S), the overall
number of items (I) and the number of transitions (T). The number of conflicts
in the CFA are shown in the columns below “Conflicts” that report of shift-
shift (S/S), shift-reduce (S/R) and reduce-reduce conflicts (R/R). Note that the
grammars without any conflicts are PSR, the others are not. The columns under
“Analysis” report on the time in milliseconds needed for creating the CFA (CFA)
and checking for conflicts (Confl.), on a MacBook Pro 2013 (2,7 GHz Intel Core
i7, Java 1.8.0 and Scala 2.12.1).

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 119

Table 1. Test results of some HR grammars.

Example Grammar CFA Conflicts Analysis [ms]
A N T R S I T S/S S/R R/R CFA Confl

Trees (Example 3) 1 2 1 3 4 10 4 – – – 93 38

anbncn [8] 4 3 3 5 14 22 14 – – – 130 31

Nassi-Shneiderman diagrams [19] 4 3 3 6 12 78 59 – – – 233 76

Palindromes (1) 2 2 2 7 12 32 19 – – – 142 36

Arithmetic expressions 2 4 5 7 12 34 22 – – – 137 49

Series-parallel graphs 2 2 1 4 7 63 32 12 4 – 179 61

Structured flowcharts 2 3 4 6 14 75 50 – 4 – 212 81

6 Comparison with Related Work

PSR parsing can be compared with SLR(1) string parsing if we define the rep-
resentation of strings as graphs, and of context-free grammars as HR grammars.

The string graph w• of a string w = a1 · · · an ∈ A∗ (with n � 0) consists (in
clausal form) of n edge literals ai(xi−1, xi) over n + 1 distinct nodes x0, . . . , xn.
(The empty string ε is represented by an isolated node.) The HR rule of a
context-free rule A → α (where A ∈ N and α ∈ Σ∗) is A• → α•. For the
purpose of this section, we represent an ε-rule A → ε by a rule that maps
both nodes of A• to the only node in ε•. Such rules are called “merging” in [8].
Context-free grammars and HR grammars can be cleaned, i.e., transformed into
equivalent grammars without ε-rules and merging rules, respectively; however,
they may loose their SLL(1) and PTD property, respectively.

The string graph grammar of a context-free grammar G with a finite set P
of rules and a start symbol S is the HR grammar G• = (Σ,P•, S•) with the
rules P• = {A• → α• | A → α ∈ P}. It is easy to see that the HR language of
G• is L(G•) = {w• | w ∈ L(G)}.

The following can easily be shown by inspection of the automata of string
and HR grammars.

Proposition 1. For an SLR(1) grammar without ε-rules, the string graph
grammar is PSR.

This allows to establish the expected relation between PTD and PSR string
graph grammars.

Theorem 1. The clean version of a PTD string graph grammar is PSR.

Proof. The main result of [12] states that the ε-cleaned version G̃ of an SLL(1)
grammar G is SLR(1). This result can be lifted to string graph grammars as
follows: By [8, Theorem 2], the string graph grammar G• is PTD since G is
SLL(1). The string graph grammar G̃• is the clean version of G•. Since G̃ is
SLR(1), G̃• is PSR by Proposition 1. ��

120 F. Drewes et al.

The inclusion of SLR(1) grammars is proper, as is the inclusion of SLL(1)
grammars in PTD grammars.

Corollary 1. There are context-free languages that cannot be generated with an
SLR(1) grammar, but have a PSR string graph grammar.

Proof. The language of palindromes over V = {a, b}, i.e., all words which read
the same backward as forward, can be generated by the unambiguous grammar
with rules S → P and P → a | aa | aPa | b | bb | bPb. Since the language cannot
be recognized by a deterministic stack automaton [20, Prop. 5.10], this language
neither has an LL(k) parser, nor an LR(k) parser. However, the grammar is
PTD by [8, Theorem 2], and ε-free so that it is PSR by Theorem 1. ��
For graph languages beyond string graphs, a comparison of PTD and PSR
appears to be difficult: On the one hand, the tree grammar in Example 3 is
left-recursive, and not PTD. (However, moving the edge-literal to the front in
rule r2 makes the grammar PTD.) On the other hand, PTD grammars with
merging rules are not PSR, and it will be rather difficult to lift the main result
of [12] to the general case of graph languages.

For early related work on efficient parsing algorithms, we quote from the
conclusions of [8]: “Related work on parsing includes precedence graph gram-
mars based on node replacement [10,14]. These parsers are linear, but fail for
some PTD-parsable languages, e.g. the trees in Example 1. According to our
knowledge, early attempts to implement LR-like graph parsers [18] have never
been completed. Positional grammars [3] are used to specify visual languages,
but can also describe certain HR grammars. They can be parsed in an LR-like
fashion, but many decisions are deferred until the parser is actually executed.
The CYK-style parsers for unrestricted HR grammars (plus edge-embedding
rules) implemented in DiaGen [19] work for practical languages, although their
worst-case complexity is exponential.”

7 Conclusions

We have devised a predictive shift-reduce (PSR) parsing algorithm for HR gram-
mars, along the lines of SLR(1) string parsing. For string graphs, PSR is strictly
more powerful than SLR(1) and predictive top-down (PTD) parsing [8]. Check-
ing PSR-parsability is complicated enough, but easier than for PTD, as we do not
need to consider HR rules that merge nodes of their left-hand sides. PSR parsers
also work more efficiently than PTD parsers, namely in linear vs. quadratic time.
The reader is encouraged to download the Grappa generator of PTD and PSR
parsers and to conduct own experiments.4

Like PTD, PSR parsing can be lifted to contextual HR grammars [6,7], a
class of graph grammars that is more relevant for the practical definition of graph

4 The Grappa tool is available at www.unibw.de/inf2/grappa; the examples mentioned
in Table 1 can be found there as well.

www.unibw.de/inf2/grappa

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 121

languages. This remains as part of future work. We will also study whether the
specification of priorities for rules, as in the yacc parser generator [13], can be
lifted to PSR parsing. However, an extension of PSR corresponding to SLR(k)
or LR(k) may be computationally too difficult. A still open challenge is to find
a HR (or contextual HR) language that has a PSR parser, but no PTD parser.
The corresponding example for LL(k) and LR(k) string languages exploits that
strings are always parsed from left to right—the palindrome example shows that
this is not the case for PTD and PSR parsers.

References

1. Aalbersberg, I., Ehrenfeucht, A., Rozenberg, G.: On the membership problem for
regular DNLC grammars. Discrete Appl. Math. 13, 79–85 (1986)

2. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistic. Long Papers, vol. 1, pp.
924–932 (2013)

3. Costagliola, G., De Lucia, A., Orefice, S., Tortora, G.: A parsing methodology for
the implementation of visual systems. IEEE Trans. Softw. Eng. 23, 777–799 (1997)

4. DeRemer, F.L.: Simple LR(k) grammars. Commun. ACM 14(7), 453–460 (1971)
5. Drewes, F.: Recognising k-connected hypergraphs in cubic time. Theor. Comput.

Sci. 109, 83–122 (1993)
6. Drewes, F., Hoffmann, B.: Contextual hyperedge replacement. Acta Informatica

52, 497–524 (2015)
7. Drewes, F., Hoffmann, B., Minas, M.: Contextual hyperedge replacement. In:

Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 182–
197. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34176-2_16

8. Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyper-
edge replacement grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.)
ICGT 2015. LNCS, vol. 9151, pp. 19–34. Springer, Cham (2015). doi:10.1007/
978-3-319-21145-9_2

9. Drewes, F., Hoffmann, B., Minas, M.: Approximating Parikh images for gener-
ating deterministic graph parsers. In: Milazzo, P., Varró, D., Wimmer, M. (eds.)
STAF 2016. LNCS, vol. 9946, pp. 112–128. Springer, Cham (2016). doi:10.1007/
978-3-319-50230-4_9

10. Franck, R.: A class of linearly parsable graph grammars. Acta Informatica 10(2),
175–201 (1978)

11. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992). doi:10.1007/BFb0013875

12. Hoffmann, B.: Cleaned SLL(1) grammars are SLR(1). Technical Report 17–1,
Studiengang Informatik, Universität Bremen (2017). http://www.informatik.
uni-bremen.de/~hof/papers/sllr.pdf

13. Johnson, S.C.: Yacc: Yet another compiler-compiler. Computer Science Technical
Report 32, AT&T Bell Laboratories (1975)

14. Kaul, M.: Practical applications of precedence graph grammars. In: Ehrig, H.,
Nagl, M., Rozenberg, G., Rosenfeld, A. (eds.) Graph Grammars 1986. LNCS, vol.
291, pp. 326–342. Springer, Heidelberg (1987). doi:10.1007/3-540-18771-5_62

15. Knuth, D.E.: On the translation of languages from left to right. Inf. Control 8(6),
607–639 (1965)

http://dx.doi.org/10.1007/978-3-642-34176-2_16
http://dx.doi.org/10.1007/978-3-319-21145-9_2
http://dx.doi.org/10.1007/978-3-319-21145-9_2
http://dx.doi.org/10.1007/978-3-319-50230-4_9
http://dx.doi.org/10.1007/978-3-319-50230-4_9
http://dx.doi.org/10.1007/BFb0013875
http://www.informatik.uni-bremen.de/~hof/papers/sllr.pdf
http://www.informatik.uni-bremen.de/~hof/papers/sllr.pdf
http://dx.doi.org/10.1007/3-540-18771-5_62

122 F. Drewes et al.

16. Lautemann, C.: The complexity of graph languages generated by hyperedge
replacement. Acta Informatica 27, 399–421 (1990)

17. Lewis II, P.M., Stearns, R.E.: Syntax-directed transduction. J. ACM 15(3), 465–
488 (1968)

18. Ludwigs, H.J.: A LR-like analyzer algorithm for graphs. In: Wilhelm, R. (ed.)
GI - 10. Jahrestagung, Proceedings of the Saarbrücken, 30 September - 2 Oktober
1980. Informatik-Fachberichte, vol. 33, pp. 321–335 (1980)

19. Minas, M.: Diagram editing with hypergraph parser support. In: Proceedings of the
1997 IEEE Symposium on Visual Languages (VL 1997), Capri, Italy, pp. 226–233
(1997)

20. Sippu, S., Soisalon-Soininen, E.: Parsing Theroy I: Languages and Parsing, EATCS
Monographs in Theoretical Computer Science, vol. 15 (1988)

21. Vogler, W.: Recognizing edge replacement graph languages in cubic time. In:
Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS,
vol. 532, pp. 676–687. Springer, Heidelberg (1991). doi:10.1007/BFb0017421

http://dx.doi.org/10.1007/BFb0017421

	Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars
	1 Introduction
	2 Hyperedge Replacement Grammars
	3 Shift-Reduce Parsing of Strings
	4 Predictive Shift-Reduce Parsing for HR Grammars
	5 Predictive Shift-Reduce Parsability
	6 Comparison with Related Work
	7 Conclusions
	References

