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Abstract. Graph-based data structures are fundamental to many applications in
Computer Science and Software Engineering. Operations on graphs can be
formalized as graph transformations or graph rewriting rules and a rich theo-
retical underpinning has been developed in the research community that sup-
ports reasoning about the properties of graph transformation systems. Various
tools exist for developing graph transformations, including visual editors as well
as textual languages that can be integrated with general purpose programming
languages. This paper introduces Grape (Graph Rewriting and Persistence
Engine), a hybrid, embedded Domain Specific Language (DSL) for Clojure.
Grape is a lightweight approach to computing with persistent graphs within
Clojure. It combines the ease of use of a textual DSL with a graphical visual-
ization that is inlined with the program code when needed to aid comprehension
and documentation of graph rewriting rules. Moreover, Grape supports persis-
tence, programmed transactions and backtracking.
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1 Introduction

Graph-based data structures play an important role in many applications of Computer
Science and Software Engineering. Operations on graphs can be formalized with graph
transformation rules (also referred to as graph rewriting rules). A rich theoretical
background exists on the formal properties of graph transformation systems (GTS) and
various tools have been developed in support of their development [1, 2]. Current tool
support ranges from visual development environments (with underlying transformation
engines) to textual languages that may be integrated with general purpose programming
languages. Visual development environments for GTS provide the benefit of a more
intuitive, graphical way of specifying operations on graphs. However, these tools are
often expensive to build and maintain. Moreover, visual development tools may pose
usability challenges, as developers need to learn how to use them properly [3]. Other
challenges pertain to the integration of visual programming in the overall software
development lifecycle, such as the integration with other parts of a software program,
configuration management and merging of different versions, etc.

Textual graph transformation languages provide a more lightweight approach to
developing graph-based computations and avoid many of these challenges. However,
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textual graph rewriting rules may not be as easy to understand as their visual coun-
terparts. Hybrid approaches in which graph transformations are specified textually but
documented visually have been suggested as a compromise. However, textual pro-
grams and visual documentations are often not well integrated, which impede incre-
mental and dynamic development of graph-based programs.

Another concern with existing graph transformation tools pertains to their scala-
bility and the persistence of large graphs. Most current tools process graph models in
main memory, which imposes practical limits to the scalability of their applications.
Moreover, most current tools do not provide support for complex transactions of
programmed graph rewrite operations, in the sense of the typical ACID properties
(Atomicity, Consistency, Integrity and Durability).

This paper introduces Grape (Graph Rewriting and Persistence Engine) as a
lightweight, hybrid GTS development tool that seeks to address the above concerns.
Grape provides a lightweight, hybrid GTS extension to the Clojure programming
language. Graph transformations are programmed textually, but visualized graphically,
inline with the program code, within the LightTable general purpose text editor1. Grape
utilizes the highly scalable Neo4 J graph database for graph persistence and transaction
support. Grape programs provide full support for transactions, including backtracking.
It has been made available under an open source license on Github.

The rest of this paper is structured as follows. The next section provides a short
introduction to graph rewriting and graph transformation systems. Section 3 provides
an overview of the work related to tool support for developing graph transformation
systems in software applications. Section 4 provides an overview of the architecture of
Grape, while Sect. 5 introduces the Grape DSL within Clojure and demonstrates the
use of LightTable as a lightweight hybrid development environment. Finally, Sect. 6
provides concluding remarks and an outlook on future work.

2 Graph Rewriting and Graph Transformation Systems

2.1 Directed, Attributed, and Labeled (DAL) Graphs

A directed graph is a data structure that consists of a set of nodes N and a set of
edges E, such that each edge e 2 E has a source sðeÞ and target tðeÞ in N. Labeled
graphs allow nodes and edges to be labeled, i.e., a labeling function lðoÞ associates each
graph object o 2 N [E with a set of labels. Attributed graphs further allow the
association of graph objects with attribute properties, i.e., an attributation function aðoÞ
associates each graph object with a set of key/value pairs.

2.2 Graph Transformation Rules

A graph transformation rule L ! R consists of two graphs, commonly referred to as
left-hand side (LHS) and right-hand side (RHS), respectively. The LHS specifies a

1 http://lighttable.com.
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subgraph pattern to find in a given graph (the host graph) and the RHS defines how a
found subgraph is to be rewritten as a result of the transformation. In other words, LHS
acts as a precondition of the rule, while RHS specifies its post-condition. Graph
transformation rules are applied in a three-stepped process:

1. Match: The hostgraph is searched for a subgraph that matches the rule’s LHS.
2. Delete: Graph objects in the rule’s LHS that are not in the rule’s RHS are deleted

from the hostgraph.
3. Add: Graph elements in the rule’s RHS that are not included in its LHS are added

to the host graph.

When a rule matches multiple subgraphs in the host graph, a match is chosen
non-deterministically.

The above process of applying graph transformation rules may result in a structure
that is not a graph. This is the case when a node is deleted that is a source or a target of
an edge in the host graph that is not part of the match found for the rule’s LHS. The
graph transformation community has developed different approaches on how to prevent
this situation. One approach is to permit the deletion of such a node and to delete all
edges that may be left “dangling” in the host graph. This approach is based on the
“single pushout” (SPO) theory for graph transformations [1]. Another approach is to
prohibit the application of a transformation rule in cases where its execution would
result in dangling edges. This more restrictive condition is commonly referred to as the
gluing condition in the double-pushout (DPO) theory for graph transformations [1].

Different approaches exist as well with respect to the type of morphism that is used
to find a match for a rule’s LHS in the host graph. Isomorphic matching requires that
each object in a rule’s LHS matches a distinct graph object in the host graph, while
homomorphic matching allows different objects in a rule’s LHS to match to the same
graph object in the host graph.

Graph transformation rules may also have a set of negative application conditions
(NACs) that may be used to prevent rule application in certain contexts. NACs are an
important concept for many practical applications of GTS [4]. NACs can be specified
as graph patterns (and conditions on attributes) that extend a rule’s LHS. The appli-
cation of graph transformation rules with NACs becomes a four-step process:

1. Match: The hostgraph is searched for a subgraph that matches the rule’s LHS.
2. Check: Attempt to extend the matched subgraph with a match for any of the rule’s

NACs. If this is possible, prevent rule application in this context.
3. Delete: Graph objects in the rule’s LHS that are not in the rule’s RHS are deleted

from the hostgraph. (Validate gluing condition for DPO rewriting approach.)
4. Add: Graph elements in the rule’s RHS that are not included in its LHS are added

to the host graph.

A graph transformation system (GTS) is defined as a set of graph transformation
rules. A graph grammar is a GTS with a defined start graph. Graph grammars are
commonly used for defining and parsing graph-based languages. In this paper, we are less
concerned with the definition of graph-based languages and rather focus on engineering
applications of graph rewriting. Such applications typically require imperative control
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structures to govern the execution of graph transformation rules. A programmedGTS is a
GTS that has been associated with an imperative control program.

3 Related Work: Tool Support for Graph Rewriting

3.1 Visual Tools

PROGRES is an integrated development environment for visual developing of pro-
grammed GTS [5]. PROGRES provides a powerful specification language and uses a
graph database for scalability and persistence with support for complex transactions
and backtracking. However, PROGRES lacks integration with general purpose pro-
gramming languages and its development has been discontinued.

FUJABA supports the development of programmed GTS for Java [6]. Control
structures are specified using “story diagrams”, a combination of activity diagrams and
graph rewriting rules. Graph transformations are carried out in main memory. Graphs
can be serialized for file-based storage. FUJABA generates Java code, which can be
integrated with general purpose Java programs. FUJABA does not support transactions
and backtracking.

AGG is a visual development environment for GTS [7, 8]. Transformation rules are
executed based on an interpreter and the graph is held in main memory. The definition
of control structures is supported. An API allows the integration with the Java general
purpose programming language.

GROOVE is another visual GTS development environment that is particularly
suitable for formal verification and state space exploration [9]. The graph is held in
main memory and transformations are executed by an interpreter. Control structures are
provided in form of a dedicated scripting language. Backtracking and transactions are
not supported. Integration with general purpose programming languages is possible
through an internal (undocumented) API.

Henshin is a visual graph transformation tool based on the Eclipse modelling
framework (EMF) [10]. Graph transformations are carried out by an interpreter that can
be interfaced with general purpose programming languages (Java) through an API.
Graphs are kept in main memory. No transactions or backtracking is supported.

3.2 Textual Tools

Viatra is an Eclipse plugin that provides a textual language for specifying graph
transformations [11, 12]. Control structures are specified using abstract state machines.

GrGen provides a textual language to define graph transformations on object graphs
held in main memory (C# or Java) or kept in a relational database [13]. GrGen gen-
erates C# code or .net assemblies.

SDMlib is an internal DSL for graph transformations with Java [14]. Graphs are
kept in main memory and can be persisted in a file. Graphs and graph transformations
can be visually documented. Transactions and backtracking is not supported.
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FunnyQT is an internal graph transformation DSL for Clojure [15]. Homomorphic
as well as isomorphic graph pattern matching is supported. FunnyQT provides a
framework for in-place graph rewriting with arbitrary Clojure actions. The semantics of
rewriting rules is not grounded in a particular theory (such as DPO or SPO). Graphs are
held in main memory and transactions are not supported.

4 The Grape Architecture

Grape provides an internal domain-specific language (DSL) for programming GTS
with Clojure (cf. Fig. 1). Grape uses the Neo4J graph database for storing the host-
graph, i.e., the graph is not held in main memory. Graph transformation rules defined in
the Grape DSL are translated to Cypher, Neo4J’s native query language. Cypher
provides powerful constructs for graph pattern matching, which are leveraged by
Grape. Grape also provides a visualizer for graph transformation rules based on
GraphViz [16]. Grape does not depend on any particular development tool or IDE, but
provides a convenient integration with LightTable, which allows developers to visu-
alize their graph transformation rules “in line” with their textual definition. Indepen-
dently of the editor used, the Grape visualizer also provides functions to generate
visual representations of GTS in the file system. Neo4J also provides an extensible
graph browser that can be used to visualize graphs.

Grape provides support for complex transactions of programmed graph transfor-
mations with full support for backtracking. This functionality is based on Neo4J’s flat
transaction model and implemented in Grape’s transaction module. (Neo4J native
“flat” transaction model needs to be extended to support nested transactions, as
required for the desired backtracking behaviour.)

Fig. 1. The Grape architecture
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5 A Taste of Grape – Introduction to Programming
with Grape

5.1 Simple Rule Definition and Execution

The Grape DSL uses native Clojure syntax. Graphs are schema-less (untyped), fol-
lowing the schema-less design philosophy of no-SQL databases such as Neo4 J.
Figure 2 provides a first example of the Grape language. It defines a new GTS (using
the gts form) and a simple transformation rule that matches two graph nodes that are
connected with a works_for edge in order to replace that edge with a new Con-
tract node with employee and employer edges.

As the example in Fig. 2 shows, Grape rules have three main parts: read, delete
and create. (Of course, some of these parts may be missing. For example, a rule that
simply creates a graph structure will not have a read or delete part.) Nodes and edges
are identified by id symbols, e.g., ‘n1. Labels are defined using the :label key and
assertions on attributes are defined using the :asserts key. In the above example,
two attributes are defined for the new Contract node: the first attribute (name) is

Fig. 2. Definition of a GTS and a simple transformation rule
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assigned the literal value “Contract”, while the second attribute (with) is assigned the
value of the name attribute of node n1.

The visualization of the rule in Fig. 2 is automatically generated by Grape and
inlined after the textual definition (if LightTable is used as the editor). The visualization
uses the popular representation of graph transformation rules where LHS and RHS are
merged into the same graph, with red colours showing deleted graph elements and
green colour showing new ones. Grape programmers who do not use LightTable can
still make use of the rule visualization by generating visual documentation in the
project’s file system.

Once a rule has been defined (as above), it can be invoked simply by calling an
equally named function, i.e., by calling (rewrite_contract!) in the above
example. Calling this function will return true if the rule could be applied and false
otherwise. Its invocation will non-deterministically select a possible match and attempt
its transformation. The usual Clojure control structures can be used with this function.
For example, if all works_for occurrences are to be rewritten, a programmer may
simply use (while (rewrite-contract!)).

Grape does not implement its own tool for visualizing the state of the hostgraph,
since Neo4J provides a powerful graph browser as part of its community edition.
Figure 3 shows a hostgraph visualized with the Neo4J browser for the Ferryman
example discussed at the end of this section.

Fig. 3. Hostgraph visualization using Neo4J’s graph browser
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5.2 Customizing Matching and Rewrite Semantics

Grape performs isomorphic graph matching by default. This means that in the above
example, self-employment relationships (where n1 and n2 match the same node in the
host graph) would not be matched. If homomorphic matching is desired, a :homo key
can be added to the definition of the read pattern.

Furthermore, Grape rules implement SPO rewrite semantics by default, i.e., any
“dangling” edges that may arise from deleting nodes are automatically deleted as well.
If the more restrictive DPO semantics is desired, an :dpo key can be added to a rule,
which results in checking the gluing condition prior to executing the transformation.

5.3 Parameters and NACs

Grape transformation rules can by parameterized and contain an arbitrary number of
NACs. Figure 4 provides an example for a rule “promote!” with a formal parameter
and one NAC. It searches for a Worker who works_for an Employer with a
given name (parameter) and replaces the Worker node with a Director node, if that
worker does not also work for another Employer (i.e., if there is not a work_for edge
from node w to another node in the host graph). Graph patterns defined in NACs are
visualized with dashed lines and using a different colour for each defined NAC, if
multiple NACs are defined. Invoking a parameterized rule uses the normal Clojure
parameter passing, e.g., (promote! “John”) in the above example.

Fig. 4. A parameterized rule with a single NAC
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5.4 Transactions

Grape supports transactions of complex graph rewriting operations consisting of
multiple transformation rules, with full backtracking support. Transactions are created
using the transact form. The left-hand side of Fig. 5 shows a simple transaction
consisting of a sequence of programmed transformation rules.

Note that programmed transformation rules require the apl form to define each
rule application. Writing (rule1) instead of (apl ‘rule1) would cause the Clo-
jure REPL to execute “rule1” at the time of defining the transaction. Of course, we
could have used a macro instead of a regular Clojure function for defining the transact
form to prevent this behaviour. However, we intentionally decided to avoid macros in
the development of Grape to keep the code simple and functional.

Grape also allows parameter passing between different transformation rules in a
transaction. This is realized using two forms: bind and consult. The first form
binds a graph element (node or edge) matched by the previously executed graph
transformation rule to a symbol, while the second form (consult) dereferences the
bound graph object for the purpose of passing it to a subsequent transformation rule.
The right-hand side of Fig. 5 shows an example. Here, the graph element n matched in
rule1 is bound to symbol out and then passed to rule2 as a parameter.

The transact form returns a value that can be passed to the attempt form for
execution. Of course, parameterized transactions can be defined as regular Clojure
functions, using the defn form. Figure 6 shows an example of defining a transaction
with an example parameter p (left) and attempting to execute it with an example
argument “hello” (right). The result of executing an attempt form is true or false,
depending on whether the transaction succeeded.

(transact
(apl ‘rule1)
(apl ‘rule2)
..
(apl ‘ruleN))

(transact
(apl ‘rule1 p)
(bind ‘out ‘n)
(apl ‘rule2 (consult ‘out))
..)

Fig. 5. Defining simple transactions (left) and defining parameterized transaction operations
with parameter passing (right).

(defn tx [p]
(transact
(apl ‘rule1 p)
..
))

(attempt (tx! “hello”))

Fig. 6. Defining and attempting to execute a parameterized transaction.
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5.5 Control Structures

As Grape is an embedded DSL the full breadth of control structures of the host
language (Clojure) can be utilized for programming with graph transformation rules.
(An example was given at the end of Sect. 5.1.) Moreover, since Clojure is a
JVM-based language, other JVM languages can also be used.

A limitation of using the GPL host language’s control structures is that they provide
no support for backtracking in operations that compose multiple graph transformations.
Grape provides a set of native DSL control structures that can be used to program
complex graph operations where backtracking is desired. In particular, Grape provides
control structures for loops, non-deterministic choice, and negative graph tests.

Figure 7 shows an example program for solving the well-known Ferry Crossing
puzzle [17]. In that problem, a ferryman has the task to safely transport three items
across the river. He can only take one item at a time. Two unsafe states exist: (1) the
wolf will eat the goat and (2) the goat will eat the cabbage, if left unsupervised.

The until form is used to define a loop with a break condition given as its first
argument, followed by a set of Grape transactions that are to be executed in each
iteration. The break condition ‘all_on_the_other_side? is a graph test. It is
defined as a regular Grape graph transformation rule that only has a read part. The
choice form takes a list of Grape rule applications or transactions and
non-deterministically selects one of them for execution. Finally, the avoid form takes
a list of graph tests and checks whether any of them have a match in the host graph. In
that case, the current state of the graph exploration is considered a failure and the
program will backtrack. Note that the avoid form is not strictly necessary for
expressiveness, since Grape rules support the definition of NACs. However, we believe
that its existence may increase the readability and conciseness of programs.

The program in Fig. 6 is an example for implementing a graph exploration search
algorithm in Grape. Essentially, the program implements a forward rule-chaining
algorithm. Rule selection by the choice operator is non-deterministic, which means
that the above search is not guaranteed to find a solution (and to terminate). Of course,
the graph transformation rules can be defined to limit the search space. A common
approach is to define a cost for each ferry crossing and allocate a budget. This can be
done using graph attribute assignments and application conditions. In the future, we are
interested in extending Grape with a heuristics guided choice operator that uses a utility
function to aid the prioritization of alternative rule applications.

(until 'all_on_the_other_side?
(transact (choice (apl 'ferry_one_over!)

(apl 'cross_empty!))
(avoid (apl 'wolf-can-eat-goat?)

(apl 'goat-can-eat-grape?)))))

Fig. 7. Example using Grape control structures
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6 Conclusions and Future Work

The choice of a graph transformation tool ultimately depends on the application it is
used for. Several graph transformation tools have been developed and made available.
We found that for our applications, graph persistence, scalability, transaction handling
and the ability to easily integrate with general purpose programming languages were
important requirements. Moreover, we found that the user interfaces of fully visual
graph transformation tools often create usability challenges and do not integrate
seamlessly with modern, distributed software development practices, e.g., versioning,
merging, test-driven development, etc.

In this paper, we have introduced Grape as a lightweight, hybrid graph transfor-
mation engine embedded in Clojure. Grape is highly scalable, as graphs are not kept in
main memory but in a graph database (Neo4J scales to graphs consisting of tens of
billions of nodes). Grape is considered a “hybrid” tool, since rules are authored tex-
tually but visualized graphically “in line” with the textual code (if LightTable is used as
the editor). Since Grape programs are authored with an embedded DSL in Clojure, they
can easily be interfaced with the rest of a software program. Moreover, Grape provides
full support for complex transactions, including backtracking.

Grape has been made available for public use on Github2. So far, we have used
Grape in the development of one small-sized application in the medical domain. The
source code for this example application is also available on Github3. While in this first
application we did not make use of some of Grape’s advanced concepts (such as
complex transactions and backtracking), it illustrates nicely how easy it is to integrate a
Grape GTS with the rest of a typical Web-based software system.

There are many avenues for future work on improving Grape. We already men-
tioned at the end of the last section the plan to add a heuristics guided choice operator,
to direct the selection of alternative graph transformation rules in complex transactions.
Moreover, Grape currently operates on untyped graphs. This provides a great degree of
flexibility but also increases the likelihood of specification errors. We will be adding
the option of working with typed graphs in the future. Another worthwhile extension to
Grape would be the addition of path expressions. Neo4J provides support for powerful
graph expressions in its query language Cypher. We expect to be able to use this
feature as a basis for implementing path expressions in Grape.

Finally, we are intending to extend Grape with respect to supporting bidirectional
transformations between graph structures. Triple Graph Grammars (TGG) have been
proposed and successfully used for bidirectional graph model synchronization prob-
lems. Their integration in Grape is planned for a future release [18].

2 https://github.com/jenshweber/grape.
3 https://github.com/sdiemert/app-project.
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