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Abstract. Triple Graph Grammars (TGGs) are a declarative, rule-
based approach to model synchronisation with numerous implementa-
tions. TGG-based approaches derive typically a set of operational graph
transformations from direction-agnostic TGG rules to realise model syn-
chronisation. In addition to these derived graph transformations, how-
ever, further runtime analyses are required to calculate the consequences
of model changes in a synchronisation run. This part of TGG-based syn-
chronisation is currently manually implemented, which not only increases
implementation and tool maintenance effort, but also requires tool or at
least approach-specific proofs for correctness. In this paper, therefore,
we discuss how incremental graph pattern matchers can be leveraged to
simplify the runtime steps of TGG-based synchronisation. We propose
to outsource the task of calculating the consequences of model changes
to an underlying incremental pattern matcher. As a result, a TGG-based
synchroniser is reduced to a component reacting solely to appearing and
disappearing matches. This abstracts high-level synchronisation goals
from low-level details of handling model changes, providing a viable and
unifying foundation for a new generation of TGG tools.

1 Introduction and Motivation

Bidirectional model synchronisation is a current challenge that is becoming
increasingly relevant in numerous domains [4]. In our context, bidirectional
model synchronisation refers to the task of keeping two models (called source
and target) consistent by propagating changes (called deltas) applied to one of
the models, i.e., by executing a forward or backward transformation to restore
consistency. The task of implementing an incremental synchroniser with clear
and precise semantics is non-trivial. In this paper, an incremental forward1 syn-
chroniser takes the old target model into account when propagating source deltas

1 In the entire paper, symmetric statements that hold analogously in both forward
and backward directions are only formulated in the forward direction for brevity.
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(and does not create the target model from scratch). Bidirectional transforma-
tion (bx ) languages address this task via diverse techniques [4].

Triple Graph Grammars (TGGs) [16] as a bx language, represent a declar-
ative, rule-based approach to model synchronisation based on the mature field
of graph transformations [5]. TGG rules are direction-agnostic, describing how
consistent pairs of source and target models can be created simultaneously.
TGG-based model synchronisation typically involves compile time and runtime
subtasks: At compile time, operational (forward and backward) graph transfor-
mation rules are derived from TGG rules. At runtime, consequences of deltas
with respect to applying these operational rules are calculated, and consistency
is restored by revoking invalidated rule applications from former runs and per-
forming new ones. This step ideally guarantees correctness, i.e., that the resulting
pair of a source and target model can be created by applying the TGG rules.

All state-of-the-art TGG-based synchronisation frameworks we are aware
of [7,8,10,11,13,15] address the runtime step (i) in a simple but non-scalable
manner, starting each time from scratch and considering the entire models [10],
or (ii) by providing auxiliary dependency analyses over the source (target) model
[13,15] or correspondences [7], or (iii) by applying practically useful but as yet
informal heuristics without proofs of correctness for all possible cases [8,11].
Our observation is that the complexity in addressing the runtime steps of a
TGG-based synchronisation is accidental and is caused by entangling high-level
incremental propagation strategies with low-level details of how deltas and their
transitive consequences must be handled efficiently and correctly.

Incremental pattern matching techniques (e.g., [6]) provide a viable means
of monitoring all matches of a given set of patterns in a host graph and thus
can observe and report consequences of deltas. Although this naturally addresses
the runtime requirements of TGG-based model synchronisation, incorporating
incremental pattern matchers into TGGs has not yet been analysed up until now.
Our contribution is, therefore, to integrate incremental pattern matching and
TGG-based model synchronisation. Our aim is to provide a formal foundation for
a new generation of TGG tools that can now leverage available incremental graph
pattern matching tools [17,18]. We are able to reduce a TGG-based synchroniser
to a relatively simple component that reacts to invalidated or available rule
applications reported by its underlying incremental pattern matcher.

The paper is structured as follows: We present in Sect. 2 a compact but non-
trivial synchronisation scenario and discuss the diverse delta propagation strate-
gies. A novel concept for TGG-based synchronisers making use of incremental
pattern matching techniques is presented intuitively in Sect. 3, and formalised
in Sect. 4 with correctness arguments, shaping our main contribution. Related
approaches and future work are discussed in Sects. 5 and 6, respectively.

2 Running Example and Preliminaries

A TGG specification consists of a schema and a set of rules. A schema is a
triple of metamodels representing the abstract syntax of source, target, and
correspondence models used for mappings between source and target elements.
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Example: Our running example is Ecore2HTML.2 The scenario addressed is
the general usage of models for editable report generation; we only focus here
on packages and their corresponding folders and files. The TGG schema for
our running example is depicted in Fig. 1a. Source models are hierarchies of
packages and target models (representing reports) are hierarchies of folders where
folders may contain files. The single correspondence type (P2F) connects packages
to folders. With respect to this TGG schema, a correctly typed model triple
is depicted in Fig. 1b consisting of three packages p1, p2, and p3 as well as
three corresponding folders f1, f2, and f3. The outermost folders f1 and f3
additionally contain a file fe1 and fe3, respectively.

Package Folder

File

sub

P2F

sub
src trg

(a) TGG schema

p1:Package f1:Folder

fe1:File

c1:P2F

p2:Package f2:Folderc2:P2F

p3:Package f3:Folderc3:P2F

fe3:File

(b) Correctly typed model triple

Fig. 1. Schema and typed model triple

We use a compact syntax to represent TGG rules, merging both the precon-
dition L and the postcondition R together in a single diagram. The elements in L
(also referred to as context elements of the rule) are black, while elements in R\L
(also referred to as created elements of the rule) are green with a ++ markup.
Edges that are incident to a created node do not have explicit ++ markup as
they must also obviously be created. A model triple is consistent with respect
to a TGG, if it can be created by applying the rules of the TGG.

Example: Intuitively, what we want to specify is that packages correspond to
folders and, additionally, that outermost packages require an extra file containing
project-level documentation in their corresponding folder. To achieve this with
TGGs, we need two rules: PackageDocRule (we shall also refer to this as R1)
depicted in Fig. 2a, creates a package p, together with a corresponding folder
f with a file fe. The created package and folder are also connected with a
correspondence link c. R1 has no context elements and can thus be applied
to the empty triple. SubPackageDocRule (R2) depicted in Fig. 2b, requires a
package p and a corresponding folder f (note how the correspondence link c is
used to enforce this), and extends the package and folder hierarchies by creating
a new sub-package p’ and subfolder f’, connected via the correspondence link
c’. In contrast to R1, rule R2 has context elements and can only be applied to

2 The entire synchronisation scenario including our excerpt is documented in the bx
example repository at http://bx-community.wikidot.com/examples:ecore2html.

http://bx-community.wikidot.com/examples:ecore2html
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(a) PackageDocRule (R1) (b) SubPackageDocRule (R2)

Fig. 2. TGG rules for the running example

extend an existing model triple. In this sense, the triple depicted in Fig. 1b can
be created with these rules and is thus consistent with respect to the TGG.

2.1 From TGG Rules to Operational Rules

When propagating a source delta in an existing model triple, an important step is
handling newly created source elements by creating the corresponding structure
in the target model. This is referred to as marking and captured as forward
marking rules, which are derived from an original TGG rule. Explicit markers
are used to keep track of which elements are processed/unprocessed in a model
synchronisation run. Note that the correspondence model does not necessarily
provide this information as correspondences in general do not have to exist for
each element or multiple correspondences might exist for the same element.

Intuitively, the forward marking rule of a TGG rule does not create any source
element but requires them, marks all created elements of its respective TGG rule,
and requires that all context elements of the TGG rule be marked (e.g., by former
applications of forward marking rules). Additionally, Negative Application Condi-
tions (NACs) are used to ensure that source elements (the input elements in case
of a forward synchronisation) are marked only once as they would be created once
by the original TGG rules. Such NACs are referred to as marker NACs. Finally,
an optional set of filter NACs is used to avoid invalid rule applications that would
lead to a state where, e.g., certain edges can no longer be marked (such NACs are
constructed automatically via static analysis techniques [9]).

Example: The forward marking rules for our running example are depicted
in Fig. 3. All elements belonging to a NAC are depicted blue and crossed-out.
For presentation purposes, markers are denoted by circles that are connected to
elements (nodes and edges). The forward marking rule derived from R1 (Fig. 3a)
creates an R1 marker connected to the package p and all created elements c, f
and fe. The package p is demanded as context that must not already be marked
(via the blue, crossed-out marker connected to it). If this forward marking rule
were ever used to mark a sub-package p, it would be impossible to ever mark the
incoming sub edge to p, as there does not exist a rule that creates an incoming
sub edge to an existing package. Hence, a filter NAC is used to forbid the presence
of such edges, i.e., the forward marking rule derived from R1 can only mark
outermost packages (as the original TGG rule R1 can only create outermost
packages). In the forward marking rule derived from R2 (Fig. 3b), the context



Leveraging Incremental Pattern Matching Techniques 183

(a) R1: Forward marking rule (b) R2: Forward marking rule

Fig. 3. Derived marking rules for the running example

elements of the original TGG rule are additionally required as already marked
(no matter whether by the same or different markers).

2.2 Delta Propagation via Operational Rules

Given a consistent model triple and a source delta, the main task of forward
synchronisation is to detect invalidated and available applications of forward
marking rules. Invalidated applications (e.g., due to deleted context elements)
must be revoked by deleting their created correspondence and target elements as
well as obsolete markers. Conversely, available applications of forward marking
rules lead to new correspondence and target elements with new markers.

Example: A simple source delta in our example is given by creating (deleting) a
package, leading to an available (invalidated) application of the forward marking
rule of R1 or R2 (depending on whether the package is an outermost package or
not). A non-trivial source delta is given by creating a sub edge such that a former
outermost package becomes a child package, e.g., creating a sub edge from p2
to p3 in Fig. 1b. In this case, an application of the forward marking rule of R1
becomes invalid (the filter NAC is violated as the outermost package p3 now
becomes a child package). After deleting the obsolete marker of p3 (and the
corresponding target elements), an application of the forward marking rule of
R2 becomes available, i.e., p3 can now be re-marked as a subpackage.

Existing TGG approaches differ from each other mainly concerning how
invalid or available applications of operational rules are detected. In precedence-
driven approaches [13,15], an auxiliary precedence analysis between model ele-
ments is performed (and maintained) to determine which model elements are
potentially affected by deletions or creations of others. Alternatively, this analy-
sis is performed between correspondences [7] (affected correspondences are cal-
culated for a given source delta). Such hand-crafted analyses, however, either
overestimate the actual dependencies as dependencies are retrieved at the type
level [13], or underestimate them relying on additional information via user-
interaction [15] or special correspondences [7]. A completely different strategy is
to re-mark an existing triple from scratch and to complement missing markers
in a final step [10]. This, however, makes the synchronisation process dependent
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on the entire model size even if a small change is to be propagated. We argue
in the following section that incremental pattern matchers naturally address the
same tasks and can thus be exploited to simplify and to unify TGG approaches.

3 Using Incremental Pattern Matching Techniques
for TGG-Based Model Synchronisation

Graph transformation applications depend highly on the discovery of occurrences
of patterns in a host graph (called pattern matching). When an application oper-
ates on relatively large models where individual model changes usually concern
only a small part, it is impractical to restart the pattern matching process each
time from scratch. While auxiliary data structures (such as precedences, look-up
tables, or rule application protocols) strive to avoid this in an application-specific
manner, incremental pattern matching techniques (e.g., [6]) with recently devel-
oped practical solutions (e.g., [17,18]) address the same challenges in a generic
and reusable manner. An incremental pattern matcher is capable of maintaining
partial and complete matches of a given set of patterns found in a possibly chang-
ing host graph. Consequently, appearing or disappearing matches for a given set
of patterns can be determined between two points in time (e.g., before and after
changing the models). This enables client applications to focus on their business
logic and high-level goals by reacting to appearance or disappearance of these
matches (without searching and maintaining them manually). We discuss in the
following how this vision can be realised for TGG-based model synchronisation.

For forward synchronisation, we propose to monitor two types of patterns in
a model triple: available and processed markings with forward marking rules. In
Fig. 4, these patterns are depicted for our running example. Basically, the pattern

R2

Fig. 4. Patterns to be monitored by an incremental pattern matcher
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for an available marking with a forward marking rule is the precondition (L) of
the forward marking rule together with its filter NACs as well as marker NACs.
The pattern for a processed marking comprises the postcondition (R) of the
forward marking rule together with its filter NACs.

Assuming that matches for available and processed markings are monitored
in a model triple by an incremental pattern matcher, Algorithm1 represents our
proposed concept for TGG-based model synchronisation in pseudo code. The
procedure PropagateSourceDelta takes the following inputs: (i) a consistent
model triple G = GS ← GC → GT which is fully marked (from former runs),
(ii) a source delta δS that changes GS to G′

S , and (iii) an incremental pattern
matcher pm that is initialised with G and monitors patterns for available and
processed markings. The outcome of the procedure is a new model triple G′ =
G′

S ← G′
C → G′

T which reflects the source delta and is again consistent.

Algorithm 1. Model Synchronisation
1: procedure PropagateSourceDelta(G, δS , pm)
2:
3: G′ ← change G via δS � Phase 1
4: pm.update(δS)
5:
6: while pm has a disappearing match for processed markings do � Phase 2
7: m− ← choose a disappearing match for processed markings
8: (G′, δ−) ← revoke the fwd marking rule for m− in G′

9: pm.update(δ−)
10: end while
11:
12: while pm has an appearing match for available markings do � Phase 3
13: m+ ← choose a match for available markings
14: (G′, δ+) ← apply the fwd marking rule for m+ in G′

15: pm.update(δ+)
16: end while
17:
18: return G′

19:
20: end procedure

Overall, PropagateSourceDelta consists of three main phases:

Phase 1 (Line 3–4): The source delta is applied to the model triple and the
incremental pattern matcher updates its matches for available and processed
markings in the model triple.

Phase 2 (Line 6–10): Disappearing matches of processed markings indicate that
the respective applications of the forward marking rules from former runs are
invalidated due to the source delta. Such invalidated rule applications must be
revoked by deleting their created markers, correspondences, and target elements.
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The incremental pattern matcher updates its matches after these deletions. Note
that this can trigger further disappearances of processed marking patterns which
again must be handled in the same manner until the pattern matcher does not
report any further disappearing match for processed markings.

Phase 3 (Line 12–16): Appearing matches of available markings indicate that
the respective forward marking rules are applicable. An arbitrary match is chosen
and the forward marking rule is applied by creating a marker, correspondences,
and target elements. The incremental pattern matcher updates its matches after
these creations. Some matches for available markings disappear (at least the
chosen match itself disappears) as some elements are now marked and violate
marker NACs. Note that disappearing matches for available markings in this
phase indicate progress in the synchronisation process (not to be confused with
disappearing matches due to the source delta in Phase 2). Further matches for
available markings can also appear due to the creation of new elements and must
be handled in the same manner until the pattern matcher does not report any
further appearing match for available markings.

In the following, we exemplify the intermediate and end results of Algorithm1
based on two synchronisation runs with our running example.

Example (initial transformation): We first discuss an initial forward trans-
formation of a source model to a target model. This is a special case of forward
synchronisation where the entire source model is a delta applied to an empty
triple. We assume that the incremental pattern matcher is initialised with an
empty triple and that the source delta is the creation of two outermost pack-
ages. Applying this delta in Phase 1, two matches occur as available markings
for the forward marking rule of R1, depicted in Fig. 5a via an R1-labeled arrow
at the bottom-right corner of each match. No matches for processed markings
disappear in this example as the model triple was initially empty, i.e., no rule
application is to be revoked in Phase 2. Finally, applying forward marking rules
for available markings in Phase 3, two matches occur for processed markings,
depicted in Fig. 5b. The model triple is again consistent and fully marked.

p1:Package

p2:Package

R1

R1

(a) Appearing matches for available
markings match after Phase 1 and 2

fe1:File

p1:Package f1:Folderc1:P2F

R1

fe2:File

p2:Package f2:Folderc2:P2F

R1

(b) Consistent state after Phase 3

Fig. 5. Intermediate results of propagating two outermost packages
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Example (creating a sub edge): We now assume that the incremental pattern
matcher is initialised with the result of the previous example (Fig. 6a) and create
a sub edge between the two packages making one of them, namely p2, a child
package. After applying this delta, a match for a processed marking disappears
as p2, being no longer an outermost package, violates the filter NAC. The sub
edge violating the filter NAC is depicted bold in Fig. 6b while the rectangle
with red filling and dashed border represents the disappearing match. Revoking
the respective forward marking rule application of this match (i.e., deleting the
marker of p2 as well as its corresponding target elements) in Phase 2, a new
marking becomes available for the forward marking rule of R2, depicted in Fig. 6c.
Applying the forward marking rule for the available marking in Phase 3, the
model triple is consistent and fully-marked again (Fig. 6d).

fe1:File

p1:Package f1:Folderc1:P2F

R1

fe2:File

p2:Package f2:Folderc2:P2F

R1

(a) Consistent state at the beginning

fe1:File

p1:Package f1:Folderc1:P2F

R1

fe2:File

p2:Package f2:Folderc2:P2F

R1

(b) Disappearing match for processed
marking after Phase 1

fe1:File

p1:Package f1:Folderc1:P2F

R1

p2:Package

R2

(c) Appearing match for available marking
after Phase 2

fe1:File

p1:Package f1:Folderc1:P2F

R1

p2:Package f2':Folderc2':P2F

R2

(d) Final consistent state after Phase 3

Fig. 6. Intermediate results of propagating a sub edge

Finally, it should be mentioned that the phases of Algorithm1 represent a
straightforward approach without any heuristics to improve the quality of model
synchronisation, especially with regard to information preservation capabilities.
While Phase 2 revokes rule applications until no more disappearing match is
reported, another possible reaction to disappearing matches would be to repair
them (instead of revoking) as discussed in [7]. Alternatively, target elements
deleted in Phase 2 can be reused in Phase 3 for new rule applications as proposed
in [8]. In both cases, the goal is to preserve as much as possible from the older
version of the target model. These extensions are orthogonal to our contribution
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and can analogously be supported via an incremental pattern matcher. Basically,
new types of reactions to appearing/disappearing matches are required for this
but the idea of a reactive synchroniser concept remains the same.

4 Correctness of Delta Propagation

We formalise in the following triple graphs and forward marking rules via con-
struction techniques over functor categories [5], and prove the correctness of
Algorithm 1 under sufficient conditions. Our correctness proof is in line with
that of [10,13,15] but eliminates the need of an entire marking from scratch as
in [10], or an additional dependency analysis as in [13,15]. The added value of
our formalisation thus lies in its simplified form.

A functor category [S, C] consists of structure preserving arrows between
objects of shape S, constructed from objects and arrows in the host category C.
This is used to construct graphs from sets, marked graphs from graphs, and triple
graphs from marked graphs. A marked graph is of the form G ← G → M where
the intermediate graph G indicates the part of G that is mapped to a marker
graph M . A triple graph is then of the form GS ← GC → GT where each of GS ,
GC , and GT are marked graphs (the suffixes S, C, and T refer to the source,
correspondence, and target domain, respectively). We provide our formalisation
without attribute and type information in graphs for brevity. The formalisation,
however, can compatibly be extended to attributed graphs [5] where typing can
be captured as a slice category of triple graphs over a distinguished type object.

Definition 1 (Triple Graphs). Let Sets be the category of sets and total func-
tions. The category Graphs of graphs and graph morphisms is the functor cate-
gory [ E V , Sets]. The category MGraphs of marked graphs is the functor
category

[
G ← G → M,Graphs

]
. The category Triples of triple graphs and

triple graph morphisms is the functor category [GS ← GC → GT ,MGraphs].

Definition 2 (Triple Rule and Derivation). A triple rule is a morphism
r : L → R in Triples. A Negative Application Condition (NAC) for a triple
rule r : L → R is a morphism n : L → N in Triples.

Given a triple rule r with a set N of NACs, a direct derivation G
r@m=⇒ G′ (or

just G
r=⇒ G′) is given by the pushout (r′ : G → G′, m′ : R → G′) of r : L → R,

and m : L → G in Triples if � n : L → N ∈ N ,∃n′ : N → G,m = n′ ◦ n.
A derivation G

∗=⇒ G′ with a set R of triple rules is a sequence of k direct
derivations G

r1=⇒ G1
r2=⇒ · · · rk=⇒ G′, r1, r2, · · · , rk ∈ R (G′ = G for k = 0).

In a TGG, the original rules do not create or require markers (e.g., Fig. 2)
but forward marking rules do (e.g., Fig. 3).
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∅

LS LC LT

∅∅

∅ ∅ ∅
σL τL

∅ ∅∅

∅ ∅ ∅

RTRCRS
τRσRrS , rC , rT

L R

Definition 3 (Triple
Graph Grammar).
A triple graph grammar
(TGG) is a finite set R
of triple rules, each of
the form depicted to the
right. A TGG is source
progressive if rs 	= id.
The language of a TGG
is given by L(TGG) :=
{G | ∃ G∅

∗=⇒ G with
R} where G∅ is the empty
triple graph.

A forward marking rule fr for a TGG rule r as introduced in Definition 3
(i) does not create the elements in RS\LS but requires them, (ii) creates all
elements in RC\LC and RT \LT , (iii) requires markers for all elements in LS ,
LC , and LT , (iv) forbids markers for elements in RS\LS , and finally (v) creates
new markers for all elements in RS\LS , RC\LC , and RT \LT (cf. Fig. 3).

Definition 4 (Forward Marking Rule). Given a TGG = R, the forward
marking rule fr : FL → FR for each r ∈ R has the structure as follows:

LC LT
τL

RTRCRS
τRσRRS

LS LC LT
σL τL RTRCRS

τRσR

MLS
MLC

MLT MRT
MRS

MRC

rS ◦ σL

σML
τML σMR

τMR

rS id id id id id

μLS
μLC μLT

μRT
μRC

μRS

rS , rC , rT

id, rC , rT

μrS , μrC , μrT

RS

MNS

NS

n

FL FRN

For X ∈ {S,C, T}, the graphs MLX
are isomorphic to LX . The graphs MRX

extend MLX
by an extra node m. All nodes in RX\LX are mapped by μRX

to
m. Every edge in RX\LX is mapped to an edge added to MRX

so that μRX
is

structure preserving. Furthermore, the forward rule fr is equipped with a set N
of marker NACs. Marker NACs n : FL → N extend the source components of
FL (all other components remain the same and are not depicted explicitly) to
forbid the presence of markers for any element in RS\LS.

Example: The diagram below depicts the forward marking rule for R1 (Fig. 3a)
formally. In FL a node p is required in the source component and the presence of
markers for p is forbidden by the marker NAC N . In FR, the correspondence and
target elements (c, f, fe, and an edge between f and fe) are created together
with a marker m in each component. Note that all nodes that are created in the
original TGG rule (RX\LX) are mapped to one marker m in each component
(shown explicitly via dashed lines for f and fe) where edges are mapped to a
self-edge of markers (e.g., the edge between f and fe).
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rS , rC , rT

id, rC , rT

μrS , μrC , μrT

n

FL FRN
pp

p

mp

p

p

m

c

c

m

f
fe

f
fe

m

Furthermore, the diagram below depicts the forward marking rule for R2
(Fig. 3b) formally. In this case, markers (mp, mc, mf) are required in FL for
context elements (p, c, f, respectively) while created elements as well as cre-
ated/forbidden markers are analogous to the previous diagram.

rS , rC , rT

id, rC , rT

μrS , μrC , μrT

FL FR
f

f'

f
f'

p c f

mp mc mf

c fp
p'

p
p'

c

c'

c

c'

p
p'

mp
m

mc

m
mf

m

p
p'

p
p'

mp

mp'

N

n

Next, we define the source language of a TGG, i.e., source graphs GS for
which a triple GS ← GC → GT exists in L(TGG). Accordingly, the forward
marked language of a TGG is given by derivations via forward marking rules
beginning with triples of the form GS ← ∅ → ∅.

Definition 5 (Source Language, Forward Marked Language). Given a
TGG = R, the source language of TGG is defined as
L(TGG)S = {GS | ∃GS ← GC → GT ∈ L(TGG)}.

The forward marking grammar fwd(TGG) for TGG consists of the set
fwd(R) of forward marking rules for R.

The forward marked language of fwd(TGG) for GS ∈ L(TGG)S is defined as
L(fwd(TGG), GS) = {G | ∃ (GS ← ∅ → ∅) ∗=⇒ G with fwd(R)}.
A triple graph is fully marked if every node/edge in its source, correspondence,
and target components are mapped to a marker node/edge. Fully marked triples
are of interest as every derivation with triple rules from a TGG can be traced
back to a unique derivation with the respective forward marking rules where the
result is fully marked. We furthermore introduce an operator Φ to extract an
unmarked triple graph from a marked one.

Definition 6 (Fully Marked and Unmarked Triple Graphs). Let G =
GS ← GC → GT be a triple graph. G is fully marked if each of its marked graphs
GX , X ∈ {S,C, T}, is of the form X

id← X → MX . A triple graph is unmarked
if each of its marked graphs is of the form X ← ∅ → ∅ and Φ(G) denotes the
unmarked triple graph obtained from G by removing its markers.

Fact 1 (Bijection Between TGG and Forward Marking Grammar).
Given a TGG with a forward marking grammar fwd(TGG), ∃ G = GS ← GC →
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GT ∈ L(TGG) ⇐⇒ ∃ G ∈ L(fwd(TGG), GS) where G is fully marked and
G = Φ(G).

Proof (Sketch). This is a standard operationalisation result for TGGs [10],
applied to marked graphs and marking rules. Basically, a forward marking rule
fr for a TGG rule r maps exactly those source elements to a marker that
are created by r. Both r and fr create the same correspondence and target
elements whereas fr maps each of them additionally to markers (cf. Definitions 3
and 4). ��

We now introduce the notion of confluence, a well-known property of graph
grammars that can be checked statically [5]. Every partial derivation of a con-
fluent graph grammar can be completed to a derivation that produces the same
result, and this ensures (together with Fact 1) that applying forward marking
rules (e.g., as in Algorithm 1) results always in a fully marked triple graph.

Definition 7 (Confluence). A pair G1
∗⇐= G ∗=⇒ G2 of derivations with a

set R of triple rules is confluent if there exists a G′ together with derivations
G1

∗=⇒ G′ and G2
∗=⇒ G′.

We refer to R as confluent if all pairs of its derivations are confluent.

Fact 2 (Confluence of Forward Marking Rules). Given a TGG = R with
forward marking rules fwd(R), source language L(TGG)S and GS ∈ L(TGG)S,
if fwd(R) is confluent, then every derivation d̃ = GS ← ∅ → ∅ ∗=⇒ G̃ with
fwd(R) can be extended to a derivation d = GS ← ∅ → ∅ ∗=⇒ G̃

∗=⇒ G, where
G is fully marked.

Proof. GS ∈ L(TGG)S
Definition 5

=⇒ ∃GS ← GC → GT ∈ L(TGG) Fact 1=⇒ ∃ fully
marked G ∈ L(fwd(TGG), GS). Extension of d̃ to d follows from Definition 7
with G = GS ← ∅ → ∅, G1 = G̃,G2 = G′ = G. ��

To ensure practical applicability of TGGs, forward marking rules are often
enriched with filter NACs (cf., Fig. 3). The goal of filter NACs is to make a non-
confluent forward marking grammar confluent [9]. That is, filter NACs block
only those derivations that do not lead to a fully marked graph.

Definition 8 (Filter NACs). Given a TGG = R and its forward marking
rules fwd(R), each forward marking rule fr : FL → FR in fwd(R) can be
equipped with a set N ′ of filter NACs that do not block any derivation GS ←
∅ → ∅ ∗=⇒ G in fwd(R) without filter NACs where G is fully marked. Filter
NACs are, therefore, only used to ensure that fwd(R) is confluent. We refer to,
e.g., [9] for a construction technique.

Next, we define matches that are to be monitored in a forward synchro-
nisation process as discussed in Sect. 3 for Algorithm 1. Matches for available
markings are simply matches for direct derivations via forward marking rules,
while matches for processed markings appear after a direct derivation via forward
marking rules and forbid the violation of filter NACs.
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Definition 9 (Matches for Available and Processed Markings). Let
fr : FL → FR be a forward marking rule and N ′ the set of filter NACs of fr.
Given a triple graph G, for each possible direct derivation G

fr@m
=⇒ G′, we refer to

m as a match for available marking with fr. A match for processed marking with
fr is given by the comatch m′ : FR → G′. A match m′ for processed marking is
valid if it does not violate any filter NAC, i.e., ∀n : FL → N ∈ N ′, �n′ : N → G
such that n′ ◦ n = m′ ◦ fr.

Deltas represent changes to graphs (to a source graph in case of a forward
synchronisation) and lead to appearance or disappearance of matches for avail-
able or processed markings.

Definition 10 (Delta). A delta is a span of graphs and graph morphisms δX =
GX ← ΔX → G′

X . Elements in GX\ΔX and G′
X\ΔX are referred to as deleted

and created, respectively, by δX .

Finally, the following Theorem states the correctness of Algorithm1, i.e.,
that the result G′ is a fully marked triple where Φ(G′) ∈ L(TGG). We require a
source progressive TGG (Definition 3) with a confluent forward marking gram-
mar (Definition 7) as sufficient conditions.

Theorem 1 (Correctness of Delta Propagation). Given a source progres-
sive TGG = R, let G ∈ L(fwd(TGG), GS) be a fully marked triple, and
δS = GS ← ΔS → G′

S a delta. We assume a pattern matcher pm monitor-
ing matches in G for available and processed markings with forward marking
rules in fwd(R). If fwd(R) is confluent and G′

S ∈ L(TGG)S, the result of
propagateSourceDeltaG, δS, pm (Algorithm1) is a triple graph G′ such
that Φ(G′) ∈ L(TGG), i.e., propagateSourceDeltaG, δS , pm is correct.

Proof. We use in the following the intermediate results of Phase 1, 2, and 3 in
propagateSourceDeltaG, δS , pm for the proof.

Phase 1: G ∈ L(fwd(TGG), GS) is fully marked. Hence, there exists a deriva-
tion d1 = (GS ← ∅ → ∅) ∗=⇒ G with fwd(R). The comatch of each direct
derivation in d1 leads to a match for processed marking (Definition 9). When
changing GS according to δS , such matches can disappear while new matches
for available markings can appear.

Phase 2: For each disappearing match for processed markings, direct derivations
with fwd(R) in d1 are revoked. This step does not create any match for processed
markings and thus terminates when no more matches disappear (d1 has finitely
many direct derivations). With the remaining direct derivations from d1 (i.e.,
direct derivations that have not been revoked), we get a derivation d2 = G′

S ←
∅ → ∅ ∗=⇒ G̃ with fwd(R).

Phase 3: Given that G′
S ∈ L(TGG)S and fwd(R) is confluent, d2 can be

extended to a derivation d3 = G′
S ← ∅ → ∅ ∗=⇒ G̃

∗=⇒ G′ by applying available
marking matches in any order where the result is a fully marked triple G′ due to
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Fact 2 and Φ(G′) ∈ L(TGG) due to Fact 1. Termination of this step is guaran-
teed as the TGG is source progressive (Definition 3), i.e., each direct derivation
marks at least one source element and reduces the number of source elements
for which available matches can appear (due to marker NACs in Definition 4). ��

5 Related Work

Bx approaches can be classified mainly in three categories: relational (e.g., [3]),
programming-based (e.g., [12]), and rule-based approaches such as TGGs. Our
contribution exploits the rule-based characteristics of TGGs and governs a syn-
chronisation process via appearing/disappearing rule matches. We believe, nev-
ertheless, that at least relation-based approaches can be inspired by our contri-
bution to monitor (un-)satisfied relations between two models.

We have already discussed in Sect. 2 different TGG approaches [7,8,10,11,
13,15] to emphasise what our contribution exactly simplifies with regard to the
runtime tasks of a TGG-based synchronisation. While our focus is the underlying
technology of TGG-based synchronisation, practical extensions including repair
rules [7] or reusing deleted elements [8] are useful to improve the quality of TGG-
based synchronisation (by keeping as many elements as possible from the older
versions of models). An incremental pattern matcher can facilitate such exten-
sions by introducing new types of reactions to appearing/disappearing matches.
Furthermore, the confluence requirement in our formalisation can be relaxed via
static analysis techniques [1] such that model synchronisation can have more
than one possible valid result. This is orthogonal to our contribution and non-
confluence has not been considered due to space limitations.

Our work is inspired by model synchronisation applications operating with
incremental pattern matching techniques. Most closely, Bergmann et al. [2]
demonstrate how to transform a source delta to a target delta by using incre-
mental pattern matchers. The transformation step, however, is a manually
implemented forward transformation, while TGGs introduce a grammatical and
declarative consistency notion and the forward transformation is automatically
derived together with its backward counterpart.

6 Conclusion and Future Work

We have presented a novel concept for TGG-based model synchronisation based
on an underlying incremental pattern matcher. A TGG-based synchroniser is
reduced to a component that simply reacts to appearing or disappearing matches
monitored by its underlying incremental pattern matcher. We have formalised
our synchroniser concept and shown its correctness under sufficient conditions.

Future work has already started on, first and foremost, implementing a
feature-complete TGG tool with our concept and evaluating its capabilities with
comparisons to other TGG and bx approaches. Incremental pattern matchers
strive for scalable computations of matches whose runtime depends on delta size
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and not on model size. Our expectation, therefore, is that improved scalabil-
ity will be a second advantage besides the simplified synchroniser concept when
integrating incremental pattern matchers into TGGs. This is yet to be validated
by extending the comparison of TGG-based model synchronisation tools [14].

We are also interested in (incremental) consistency checking and model inte-
gration (two-way model synchronisation potentially with conflict resolution)
with TGGs. Such advanced use cases become tractable and can be handled
uniformly after abstracting TGGs from low-level details of match maintenance.

Acknowledgement. This work has been funded by the German Federal Ministry
of Education and Research within the Software Campus project GraTraM at TU
Darmstadt, funding code 01IS12054.
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