
Juan de Lara · Detlef Plump (Eds.)

 123

LN
CS

 1
03

73

10th International Conference, ICGT 2017
Held as Part of STAF 2017
Marburg, Germany, July 18–19, 2017, Proceedings

Graph
Transformation

Lecture Notes in Computer Science 10373

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Juan de Lara • Detlef Plump (Eds.)

Graph
Transformation
10th International Conference, ICGT 2017
Held as Part of STAF 2017
Marburg, Germany, July 18–19, 2017
Proceedings

123

Editors
Juan de Lara
Universidad Autónoma de Madrid
Madrid
Spain

Detlef Plump
University of York
York
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-61469-4 ISBN 978-3-319-61470-0 (eBook)
DOI 10.1007/978-3-319-61470-0

Library of Congress Control Number: 2017944215

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-9425-6362
http://orcid.org/0000-0002-1148-822X

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences may vary from year to year, but they all
focus on foundational and practical advances in software technology. The conferences
address all aspects of software technology, from object-oriented design, testing,
mathematical approaches to modeling and verification, transformation, model-driven
engineering, aspect-oriented techniques, and tools.

STAF 2017 took place in Marburg, Germany, during July 17–21, 2017, and hosted
the four conferences ECMFA 2017, ICGT 2017, ICMT 2017, and TAP 2017, the
transformation tool contest TTC 2017, six workshops, a doctoral symposium, and a
projects showcase event. STAF 2017 featured four internationally renowned keynote
speakers, and welcomed participants from around the world.

The STAF 2017 Organizing Committee would like to thank (a) all participants for
submitting to and attending the event, (b) the Program Committees and Steering
Committees of all the individual conferences and satellite events for their hard work,
(c) the keynote speakers for their thoughtful, insightful, and inspiring talks, and (d) the
Philipps-Universität, the city of Marburg, and all sponsors for their support. A special
thanks goes to Christoph Bockisch (local chair), Barbara Dinklage, and the rest of the
members of the Department of Mathematics and Computer Science of the
Philipps-Universität, coping with all the foreseen and unforeseen work to prepare a
memorable event.

July 2017 Gabriele Taentzer

Preface

This volume contains the proceedings of ICGT 2017, the 10th International Conference
on Graph Transformation. The conference was held in Marburg, Germany, during July
18–19, 2017. ICGT 2017 was affiliated with STAF (Software Technologies: Appli-
cations and Foundations), a federation of leading conferences on software technologies.
ICGT 2017 took place under the auspices of the European Association of Theoretical
Computer Science (EATCS), the European Association of Software Science and
Technology (EASST), and the IFIP Working Group 1.3, Foundations of Systems
Specification.

The aim of the ICGT series is to bring together researchers from different areas
interested in all aspects of graph transformation. Graph structures are used almost
everywhere when representing or modelling data and systems, not only in computer
science, but also in the natural sciences and in engineering. Graph transformation and
graph grammars are the fundamental modelling paradigms for describing, formalizing,
and analyzing graphs that change over time when modelling, e.g., dynamic data
structures, systems, or models. The conference series promotes the cross-fertilizing
exchange of novel ideas, new results, and experiences in this context among
researchers and students from different communities.

ICGT 2017 continued the series of conferences previously held in Barcelona (Spain)
in 2002, Rome (Italy) in 2004, Natal (Brazil) in 2006, Leicester (UK) in 2008,
Enschede (The Netherlands) in 2010, Bremen (Germany) in 2012, York (UK) in 2014,
L’Aquila (Italy) in 2015, and Vienna (Austria) in 2016 following a series of six
International Workshops on Graph Grammars and Their Application to Computer
Science from 1978 to 1998 in Europe and in the USA.

This year, the conference solicited research papers describing new unpublished
contributions in the theory and applications of graph transformation, innovative case
studies describing the use of graph transformation techniques in any application
domain, and tool presentation papers that demonstrate the main features and func-
tionalities of graph-based tools. All papers were reviewed thoroughly by at least three
Program Committee members and additional reviewers. We received 23 submissions,
and the Program Committee selected 14 papers for publication in these proceedings,
after careful reviewing and extensive discussions. The topics of the accepted papers
range over a wide spectrum, including theoretical approaches to graph transformation
and their verification, model-driven engineering, chemical reactions, as well as various
applications. In addition to these paper presentations, the conference program included
an invited talk, given by Georg Gottlob (University of Oxford, UK).

We would like to thank all who contributed to the success of ICGT 2017, the invited
speaker, Georg Gottlob, the authors of all submitted papers, as well as the members
of the Program Committee and the additional reviewers for their valuable contributions
to the selection process. We are grateful to Reiko Heckel, the chair of the Steering
Committee of ICGT for his valuable suggestions; to Javier Troya and Leen Lambers for

their help in preparing the proceedings; to Gabriele Taentzer, the general chair of
STAF; and to the STAF federation of conferences for hosting ICGT 2017. We would
also like to thank EasyChair for providing support for the review process.

July 2017 Juan de Lara
Detlef Plump

VIII Preface

Organization

Steering Committee

Michel Bauderon LaBRI, University of Bordeaux, France
Paolo Bottoni Sapienza University of Rome, Italy
Andrea Corradini University of Pisa, Italy
Gregor Engels University of Paderborn, Germany
Holger Giese Hasso Plattner Institut Potsdam, Germany
Reiko Heckel (Chair) University of Leicester, UK
Dirk Janssens University of Antwerp, Belgium
Barbara König University of Duisburg-Essen, Germany
Hans-Jörg Kreowski University of Bremen, Germany
Ugo Montanari University of Pisa, Italy
Mohamed Mosbah LaBRI, University of Bordeaux, France
Manfred Nagl RWTH Aachen, Germany
Fernando Orejas Technical University of Catalonia, Spain
Francesco

Parisi-Presicce
Sapienza University of Rome, Italy

John Pfaltz University of Virginia, Charlottesville, USA
Detlef Plump University of York, UK
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro University Federal do Rio Grande do Sul, Brazil
Grzegorz Rozenberg University of Leiden, The Netherlands
Andy Schürr Technical University of Darmstadt, Germany
Gabriele Taentzer University of Marburg, Germany
Bernhard Westfechtel University of Bayreuth, Germany

Program Committee

Anthony Anjorin University of Paderborn, Germany
Paolo Baldan University of Padova, Italy
Gábor Bergmann Budapest University of Technology and Economics,

Hungary
Paolo Bottoni Sapienza University of Rome, Italy
Andrea Corradini University of Pisa, Italy
Juan de Lara (Co-chair) Autonomous University of Madrid, Spain
Juergen Dingel Queen’s University, Canada
Rachid Echahed CNRS, Laboratoire LIG, France
Maribel Fernandez King’s College London, UK
Holger Giese Hasso Plattner Institut Potsdam, Germany
Joel Greenyer Leibniz University of Hannover, Germany
Annegret Habel University of Oldenburg, Germany

Reiko Heckel University of Leicester, UK
Berthold Hoffmann University of Bremen, Germany
Dirk Janssens University of Antwerp, Belgium
Barbara König University of Duisburg-Essen, Germany
Leen Lambers Hasso Plattner Institut Potsdam, Germany
Yngve Lamo Bergen University College, Norway
Mark Minas University of Bundeswehr München, Germany
Mohamed Mosbah LaBRI, University of Bordeaux, France
Fernando Orejas Technical University of Catalonia, Spain
Francesco

Parisi-Presicce
Sapienza University of Rome, Italy

Detlef Plump (Co-chair) University of York, UK
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro University Federal do Rio Grande do Sul, Brazil
Andy Schürr Technical University of Darmstadt, Germany
Uwe Wolter University of Bergen, Norway
Albert Zündorf University of Kassel, Germany

Additional Reviewers

Azzi, Guilherme
Debreceni, Csaba
Dyck, Johannes
Farkas, Rebeka
Flick, Nils Erik
Gadducci, Fabio
Gritzner, Daniel
Heindel, Tobias
Kluge, Roland

Maximova, Maria
Nolte, Dennis
Peuser, Christoph
Rabbi, Fazle
Raesch, Simon-Lennert
Sandmann, Christian
Schneider, Sven
Szárnyas, Gábor

X Organization

General and Fractional Hypertree
Decompositions: Hard and Easy Cases

(Invited Talk)

Wolfgang Fischl1, Georg Gottlob1,2, and Reinhard Pichler1

1 Institut für Informationssysteme, Technische Universität Wien, Vienna, Austria
2 Department of Computer Science, University of Oxford, Oxford, UK

Abstract. Hypertree decompositions [5, 4], the more powerful generalized
hypertree decompositions (GHDs) [5, 4], and the yet more general fractional
hypertree decompositions (FHDs) [8, 9] are hypergraph decomposition methods
successfully used for answering conjunctive queries and for solving constraint
satisfaction problems. For a survey on these decompositions, see [3], for exact
hypertree decomposition algorithms [7], and for heuristic decomposition
methods, see [1].

Each hypergraph H has a width relative to each of these methods: its
hypertree width hw(H), its generalized hypertree width ghw(H), and its frac-
tional hypertree width fhw(H), respectively. While hw(H) � k can be checked
in polynomial time, the complexity of checking whether fhw(H) � k holds for a
fixed constant k was unknown. We settle this problem by proving that checking
whether fhw(H) � k is NP-complete, even for k = 2 and by same construction
also the problem deciding whether ghw(H) � k is NP-complete for k � 2.
Hardness was previously known for k � 3 [6], whilst the case k = 2 has
remained open since 2001.

Given these hardness results, we investigate meaningful restrictions, for
which checking for bounded ghw is easy. We study classes of hypergraphs that
enjoy the bounded edge-intersection property (BIP) and the more general
bounded multi-edge intersection property (BMIP). For such classes, for each
constant k, checking whether ghw(H) � k, and if so, computing a GHD of
width k of H is tractable and actually FPT. Finally we derive some approx-
imability results for fhw. We consider classes of hypergraphs whose fhw is
bounded by a constant k and which also enjoy the BIP or MIP, or bounded
VC-dimension. For each hypergraph in such a class, we are able to compute an
FHD of width O(k log k) efficiently. A different restriction on classes of
hypergraphs gives a linear approximation in PTIME. Hypergraphs of bounded
rank are a simple example of such a class.

A full paper [2] with these and further results is available online via the link
https://arxiv.org/abs/1611.01090.

The work of Fischl and Pichler was supported by the Austrian Science Fund (FWF):P25518-N23.
Gottlob’s work was supported by the EPSRC Programme Grant EP/M025268/ VADA: Value Added
Data Systems Principles and Architecture

https://arxiv.org/abs/1611.01090

References

1. Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B., Musliu, N., Samer, M.: Heuristic
methods for hypertree decomposition. In: Proceedings of MICAI, pp. 1–11 (2008)

2. Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decompositions: hard
and easy cases. CoRR, abs/1611.01090 (2016)

3. Gottlob, G., Greco, G., Leone, N., Scarcello, F.: Hypertree decompositions: questions and
answers. In: Milo, T., Tan, W. (eds.) Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA,
USA, 26 June–01 July 2016, pp. 57–74. ACM (2016)

4. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition meth-
ods. Artif. Intell. 124(2), 243–282 (2000)

5. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries.
J. Comput. Syst. Sci. 64(3), 579–627 (2002)

6. Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions: Np-hardness
and tractable variants. J. ACM 56(6), 1–32 (2009)

7. Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decomposition.
ACM J. Exp. Algorithm. 13 (2008)

8. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans. Algorithms
11(1), 1–20 (2014)

9. Marx, D.: Approximating fractional hypertree width. ACM Trans. Algorithms, 6(2), 1–17
(2010)

XII W. Fischl et al.

https://arxiv.org/abs/1611.01090

Contents

Foundations

The Pullback-Pushout Approach to Algebraic Graph Transformation 3
Andrea Corradini, Dominque Duval, Rachid Echahed,
Frédéric Prost, and Leila Ribeiro

Hierarchical Graph Transformation Revisited: Transformations
of Coalgebraic Graphs . 20

Julia Padberg

Geometric Modeling: Consistency Preservation Using Two-Layered
Variable Substitutions . 36

Thomas Bellet, Agnès Arnould, Hakim Belhaouari,
and Pascale Le Gall

Chemical Graph Transformation with Stereo-Information 54
Jakob Lykke Andersen, Christoph Flamm, Daniel Merkle,
and Peter F. Stadler

Graph Languages and Parsing

Specifying Graph Languages with Type Graphs . 73
Andrea Corradini, Barbara König, and Dennis Nolte

Fusion Grammars: A Novel Approach to the Generation
of Graph Languages . 90

Hans-Jörg Kreowski, Sabine Kuske, and Aaron Lye

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 106
Frank Drewes, Berthold Hoffmann, and Mark Minas

Analysis and Verification

Granularity of Conflicts and Dependencies in Graph Transformation
Systems . 125

Kristopher Born, Leen Lambers, Daniel Strüber, and Gabriele Taentzer

k-Inductive Invariant Checking for Graph Transformation Systems 142
Johannes Dyck and Holger Giese

Probabilistic Timed Graph Transformation Systems 159
Maria Maximova, Holger Giese, and Christian Krause

http://dx.doi.org/10.1007/978-3-319-61470-0_1
http://dx.doi.org/10.1007/978-3-319-61470-0_2
http://dx.doi.org/10.1007/978-3-319-61470-0_2
http://dx.doi.org/10.1007/978-3-319-61470-0_3
http://dx.doi.org/10.1007/978-3-319-61470-0_3
http://dx.doi.org/10.1007/978-3-319-61470-0_4
http://dx.doi.org/10.1007/978-3-319-61470-0_5
http://dx.doi.org/10.1007/978-3-319-61470-0_6
http://dx.doi.org/10.1007/978-3-319-61470-0_6
http://dx.doi.org/10.1007/978-3-319-61470-0_7
http://dx.doi.org/10.1007/978-3-319-61470-0_8
http://dx.doi.org/10.1007/978-3-319-61470-0_8
http://dx.doi.org/10.1007/978-3-319-61470-0_9
http://dx.doi.org/10.1007/978-3-319-61470-0_10

Model Transformation and Tools

Leveraging Incremental Pattern Matching Techniques for Model
Synchronisation . 179

Erhan Leblebici, Anthony Anjorin, Lars Fritsche,
Gergely Varró, and Andy Schürr

Henshin: A Usability-Focused Framework for EMF Model
Transformation Development . 196

Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner,
Timo Kehrer, Manuel Ohrndorf, and Matthias Tichy

GRAPE – A Graph Rewriting and Persistence Engine 209
Jens H. Weber

Table Graphs . 221
Albert Zündorf, Daniel Gebauer, and Clemens Reichmann

Author Index . 231

XIV Contents

http://dx.doi.org/10.1007/978-3-319-61470-0_11
http://dx.doi.org/10.1007/978-3-319-61470-0_11
http://dx.doi.org/10.1007/978-3-319-61470-0_12
http://dx.doi.org/10.1007/978-3-319-61470-0_12
http://dx.doi.org/10.1007/978-3-319-61470-0_13
http://dx.doi.org/10.1007/978-3-319-61470-0_14

Foundations

The Pullback-Pushout Approach to Algebraic
Graph Transformation

Andrea Corradini1(B), Dominque Duval2(B), Rachid Echahed2(B),
Frédéric Prost2(B), and Leila Ribeiro3(B)

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
andrea@di.unipi.it

2 CNRS and Université Grenoble Alpes, Grenoble, France
{Dominique.Duval,Rachid.Echahed,Frederic.Prost}@imag.fr

3 INF - Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
leila@inf.ufrgs.br

Abstract. Some recent algebraic approaches to graph transformation
include a pullback construction involving the match, that allows one to
specify the cloning of items of the host graph. We pursue further this
trend by proposing the Pullback-Pushout (pb-po) Approach, where we
combine smoothly the classical modifications to a host graph specified
by a rule (a span of graph morphisms) with the cloning of structures
specified by another rule. The approach is shown to be a conservative
extension of agree (and thus of the sqpo approach), and we show that
it can be extended with standard techniques to attributed graphs. We
discuss conditions to ensure a form of locality of transformations, and
conditions to ensure that the attribution of transformed graphs is total.

1 Introduction

Algebraic graph transformations have been dominated by two main approaches,
namely the Double Pushout (dpo) [9] and the Single Pushout (spo) [14]. These
two approaches offer a very simple and abstract definition of a large class of
graph transformation systems [5,8]. However, they are not suited for modeling
transformations where certain items of the host graph should be copied (cloned),
possibly together with the connections to the surrounding context. This feature is
instead naturally available in approaches to graph transformation based on node
replacement, like Node-Label-Controlled (nlc) grammars [10], and is needed in
several application domains. The nlc approach is typically presented in set-
theoretical terms, but a categorical formulation was proposed in [1]. The key
points there are that a rule is represented as a morphism from the right-hand
side (rhs) to the left-hand side (lhs) (both enriched to represent abstractly the
possible embedding context), and a match is a morphism from the host graph to

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-
LABX-0025-01) funded by the French program Investissement d’avenir and by the
Brazilian agency CNPq.

c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-61470-0 1

4 A. Corradini et al.

the lhs. Then rewriting is modeled by a pullback: the cloning of edges due to node
replacement is obtained by the multiplicative effect of the limit construction.

Independently, some approaches were proposed to enrich dpo with cloning,
including Adaptive Star Grammars [6], Sesqui-Pushout (sqpo) [4] and
agree [3]. Even if the presentations differ, all are based on the idea of intro-
ducing a limit construction in the first phase of rewriting, to model cloning.
Coherently with the dpo, in these approaches a match is a morphism from the
lhs of the rule to the host graph but, at least for sqpo and agree, the match
determines implicitly a morphism from the host graph to an enriched version
of the lhs, which is pulled back along a suitable morphism to model deletion
and cloning of items. Other approaches to structure transformations where the
match goes from the host graph to the rule include [19] for refactoring object-
oriented systems, and [20] for ontologies: in both cases some form of cloning can
be modeled easily.

The analysis of these approaches led us to define (yet) an(other) algebraic
approach to graph transformation, called pb-po, that we introduce in this paper.
The pb-po approach conservatively extends agree [3], and thus sqpo [4] with
injective matches, by streamlining the definition of transformation and making
explicit the fact that when cloning is a concern, it is natural to include in the
transformation a pullback construction based on (part of) the match, that has
to go from the host graph to (part of) the lhs of the rule. A rule in pb-po
is made of two spans, the top and the bottom ones, forming two commutative
squares. A match consists of a pair of morphisms, the instantiation from the lhs
of the top span to the host graph (like a standard match in dpo and similar
approaches), and the typing from the host graph to the lhs of the bottom span,
that is used to clone items with the first phase of a transformation, which is a
pullback. As the name of the approach suggests, the second phase is a standard
pushout which glues the pullback object with the rhs of the top span. Thus a
pb-po transformation can be seen as a combination of a standard transformation
of structures, modeled by the top span, with a sort of retyping modeled by the
bottom span.

Like other categorical approaches supporting cloning (e.g. [1,3]) also pb-po
may specify transformations that are not local, in the sense that they affect part
of the host graph that is not in the image of the instantiation. After showing
in which sense the new approach extends agree, we propose a formal notion of
locality for pb-po rules and a sufficient condition to ensure it.

Next we consider the enrichment of the pb-po with attributes, following the
ideas developed in [7] for the sqpo approach. A key feature of this approach
is to allow attributes of items of the host graph to be changed through the
application of a rule, a feature that is possible thanks to the use of partially
attributed structures. As a consequence, in general the result of transforming
a completely attributed graph via a pb-po rule could be a partially attributed
graph. We present some sufficient syntactic conditions over rules in order to
ensure that the result of a transformation is totally attributed.

The Pullback-Pushout Approach to Algebraic Graph Transformation 5

The paper is organized as follows: In Sect. 2, we define pb-po rewriting and
in Sect. 3, we show its relation with the agree and sqpo approaches. Then,
we discuss issues regarding the locality of pb-po rewriting in Sect. 4. In Sect. 5,
we show how the pb-po approach extends to deal with attributed structures.
Finally, we conclude in Sect. 6.

2 The pb-po Transformation of Structures

In this section we introduce the pb-po approach to structure transformation.
The main differences with respect to other algebraic approaches is the shape of
a rule and, as a consequence, the definition of a match. To make the presentation
lighter, we start assuming that all objects and diagrams belong to a category
of “structures” G with “enough” pullbacks and pushouts so that the required
constructions exist. We will introduce any additional requirement on G when
needed. Typical examples of categories of interest are that of graphs, of hyper-
graphs, or of typed graphs (i.e., the slice category Graph ↓ T for a given type
graph T). Such categories have all limits and colimits.

Definition 1 (Rule, Match and Rewrite Step). A pb-po rule ρ is a com-
mutative diagram as follows:

L

=tL
��

K

=

l�� r ��

tK
��

R

tR
��

L′ K ′
l′

��

r′
�� R′

(1)

We call L
l← K

r→ R the top span of ρ and L′ l′← K ′ r′
→ R′ its bottom span.

The three vertical arrows are called the left-hand (lhs) side, the interface and the
right-hand (rhs) side of ρ. We say that ρ is in canonical form if the left square
is a pullback and the right square is a pushout.

A (pb-po) match of ρ in an object G is a factor-
ization of its left-hand side through G, i.e. a pair
(m,m′) such that m′ ◦ m = tL, as shown on the
right. Arrow m : L → G is called the instantiation
(part) and arrow m′ : G → L′ the typing (part) of
the match.

L

m
��

tL =

��

G
m′

��

L′

A pb-po rewrite step from G to H via rule ρ, denoted G ⇒ρ H, is defined
by the following diagram, where square (a) is a pullback, arrow n : K → D
(making square (a′) commuting) is uniquely determined by the universal property
of pullbacks, square (b) is a pushout, and arrow p′ : H → R makes square (b′)
commuting and is uniquely determined by the properties of pushouts.

6 A. Corradini et al.

L

= (a′)m

��

tL
=

��

K

PO (b)

l�� r ��

n

��

tK
=

��

R

p

��

tR
=

��

G

PB (a)m′

��

Dg�� h ��

n′

��

H

p′

��

L′ K ′
l′

��

r′
�� R′

= (b′)

(2)

Note that if rule ρ is in canonical form and it is applied to a match (m,m′),
in the resulting Diagram (2) we have that (a′) is a pullback and (b′) is a pushout
by obvious properties of these universal constructions.

It is worth observing that object R′ of a rule is not involved directly in a
rewrite step, but it determines a default typing for the result of rewriting. Thus a
pb-po rewrite step maps a pb-po match (m,m′) to another pb-po match (p, p′).

Example 2. This example is related to the copy of some “local” web pages,
as discussed in [3]. Nodes represent web pages, and edges represent hyperlinks
among them. Then it is reasonable to expect that creating a copy of a set of
local pages will only copy the hyperlinks contained in such pages, and not those
in remote pages pointing to them. This is modeled by the following pb-po rule ρ
in the category of graphs, where the vertical morphisms map r, r′, n respectively
to l, l′, n . Note that in order to avoid confusion between morphism names and
graph node names, the latter will be underlined in the rest of the paper.

r ← r r′ → r r′ �� n

↓ ↓ ↓
l
��

��
g��

		
← l

��

��

l′

����
��

�

g��

		
→ l

��

��

l′

����
��

�
�� n

g��

		

A match L
m→ G

m′
→ L′ classifies the nodes of G as either local (l) or global

(g) thanks to the typing m′ : G → L′ and it distinguishes one root node (r) of G
thanks to the instantiation m : L → G. In addition, r is local since m′ ◦ m = tL.
The local subgraph of G is defined as the subgraph of G generated by the local
nodes. By applying the rule ρ to the match (m,m′) we get a graph H which
contains G together with a copy of its local subgraph with all its outgoing edges,
and with an additional edge from the copy of the root to a new node n. Here is
an instance of such a rewrite step, where the root of G is r1, its local nodes are
r1, l1, l2 and its global nodes are g1, g2:

The Pullback-Pushout Approach to Algebraic Graph Transformation 7

r ← r r′ → r r′ �� n

↓ ↓ ↓
r1

�� ���
����

l1 �� l2

��
g1

		 �������
�� g2��

← r1

�� ���
��

��
�

r′
1

�� ���
��

��

��

l1 �� l2

��

l′1 �� l′2

��������������

g1

		 �������
�� g2��

→ r1

�� ���
��

��
�

r′
1

�� ��	
		

		
	

��

�� n1

l1 �� l2

��

l′1 �� l′2

��

g1

		 �������
�� g2��

↓ ↓ ↓
l
��

��
g��

		
← l

��

��

l′

������������

g��

		
→ l

��

��

l′

������������
�� n

g��

		

A natural question is whether rules in canonical forms are as expressive as
general rules. The following result answers positively to this question.

Proposition 3 (canonical forms). For each pb-po rule ρ there exists a rule
ρ1 in canonical form which is equivalent, that is

– ρ and ρ1 have the same lhs tL : L → L′

– for each match (m,m′) with L
m→ G

m′
→ L′ = tL, G ⇒ρ H if and only if

G ⇒ρ1 H.

Proof. The following diagram shows how one can build from rule ρ (whose com-
ponents are named as in Diagram (1)) a corresponding rule ρ1 (where corre-
sponding components have subscript 1).

L

=idL
��

tL

=

��

K

PO

l�� r ��

n
��

tK =

��

R

p
��

tR =

��

L1 = L

PBtL1=tL

��

K1

PO

l1
�� r1

��

tK1
��

R1

tR1
��

L′
1 = L′ K ′

1 = K ′
l′1=l′

�� r′
1

��

r′
������������������ R′

1

p′′
��

R′

=

First rule ρ is applied using the pb-po approach to match (idL, tL), gen-
erating the pullback object K1 and the pushout object R1. Next we build the
pushout of r1 and tK1 , obtaining object R′

1. It is obvious by construction that

rule ρ1, made of top span L1
l1← K1

r1→ R1 and of bottom span L′
1

l′1← K ′
1

r′
1→ R′

1,
is canonical, and also that the lhs of ρ and ρ1 coincide.

Now let G be an object and (m,m′) be a pb-po match of ρ (and ρ1) in G, and
consider the following diagram. We argue that G ⇒ρ H if and only if G ⇒ρ1 H.

8 A. Corradini et al.

=

K

2© PO
l

��

r ��

n
��

tK
=

��

R

p
��

tR =

��

L1 = L

m
��

tL
=

��

K1

3©
l1�� r1

��

n1
��

R1

p1

��

G

1©m′
��

D1g1
�� h1

��

n′
1

��

H

p′
1

��

L′
1 = L′ K ′

1 = K ′
l′1=l′

�� r′
1

��

r′
������������������ R′

1

p′′
��

=

R′

In fact, G ⇒ρ H if and only if 1© is a pullback and 2© + 3© is a pushout,
while G ⇒ρ1 H if and only if 1© is a pullback and 3© is a pushout. Thus we can
conclude by observing that since 2© is a pushout by construction, 3© is a pushout
if and only if 2© + 3© is a pushout, by well known properties of composition and
decomposition of pushouts. �	
Example 4. It is easy to check that the following three pb-po rules are equivalent
and act as identities on any graph with at least one node. The last one is in
canonical form.

n ← →
↓ ↓ ↓

n g ← n g → n g

n ← n

n′
→ n

n′

↓ ↓ ↓
n g ← n=n′ g → n=n′ g

n ← n → n

↓ ↓ ↓
n g ← n g → n g

3 Relating pb-po with agree and sqpo Rewriting

In this section, we first show that pb-po extends both agree and sqpo with
monic matches (in categories where agree rewriting is defined), and then dis-
cuss informally how the greater expressive power can be exploited in designing
transformation rules.

An agree rule α [3] is a triple of arrows with the same source, as in the left
part of (3), and its application to an agree match m : L � G is shown in the
right part of (3), defining a rewrite step G⇒agree

α H as explained below.

L K
l�� r ��

��

t
��

R

TK

L
��

m

��

��

ηL =

��

K

PO (b)

l�� r ��
��

n

��

��

t=

��

R

p

��

G

PB (a)m

��

D
g

�� h ��

n′

��

H

T (L) TK
l′

��

(3)

The Pullback-Pushout Approach to Algebraic Graph Transformation 9

Thus an agree rule is made of the usual top span enriched with a mono
t : K � TK having a role similar to arrow tK : K → K ′ in a pb-po rule.
The definition of rewriting requires the existence in the underlying category of a
partial map classifier [2], i.e. for each object Y , there exists an arrow ηY : Y �
T (Y) such that for each pair of arrows Z

i� X
f→ Y (a partial map from Z to

Y) there is a unique arrow ϕ(i, f) such that the left diagram of (4) is a pullback.

X
����

i
��

f
�� Y
��

ηY

��

Z
ϕ(i,f)

�� T (Y)

L
��

ηL

��

K
l��

��
��

t
��

T (L) TK
l′=ϕ(t,l)

��

L
����

m

��

idL �� L
��

ηL

��

G
m=ϕ(m,idL)

�� T (L)

(4)

The application of the agree rule α to a match m : L → G is obtained by
first taking the pullback (a) of m and l′, and then the pushout of the resulting
mediating arrow n and of r. Both m and l′ are uniquely determined by T (L) as
shown in the mid and right diagrams of (4). By comparing Diagrams (2) and (3)
we easily obtain the following result.

Proposition 5 (relating agree and pb-po). Let α be an agree rule in a
category with a partial map classifier. Then there is a pb-po rule ρα such that
for each mono m : L � G we have G ⇒agree

α H if and only if G ⇒ρα
H using

match (m,m) with m : G → T (L).

Proof. Let α = (L l← K
r→ R,K

t� TK) be an agree rule, and TK
r′
→ R′ tR← R

be the pushout of TK
t← K

r→ R. Let ρα be the pb-po rule having L
l← K

r→ R as

top span, T (L) l′← TK
r′
→ R′ as bottom span, and ηL, t and tR as the three vertical

arrows relating them. Then the statement immediately follows by comparing
Diagrams (2) and (3) defining G ⇒ρα

H and G ⇒agree
α H, respectively. �	

We easily obtain a similar result for sqpo rewriting with monic matches. An
sqpo rule has the shape σ = (L l← K

r→ R) and its application to a match
L → G is defined in [4] via a double-square diagram where the right square
is a pushout (as in dpo), but the left square is a final pullback complement.
In [3] it was shown that for a monic match L � G, G ⇒sqpo

σ H if and only if
G ⇒agree

ασ
H, where ασ = (σ, ηK : K � T (K)) is obtained by enriching σ with

the partial map classifier applied to K. The following result is then obvious.

Corollary 6 (relating sqpo and pb-po). Let σ be a sqpo rule in a category
with a partial map classifier. Then there is a pb-po rule ρσ such that for each
mono m : L � G we have G ⇒sqpo

σ H if and only if G ⇒ρσ
H using match

(m,m) with m : G → T (L).

There is therefore a progressively increasing expressive power moving from
dpo to sqpo to agree to pb-po, at least for injective matches. A detailed

10 A. Corradini et al.

analysis of the expressive power of pb-po is a topic of future work, but we make
a few considerations with respect to the kind of cloning typical of approaches
based on node replacement. Standard dpo with left injective rules cannot model
cloning of nodes at all. Instead sqpo can, with a non-injective lhs l : K → L.
Referring to the right diagram in (3), if a node n ∈ L is cloned (i.e., it has more
than one inverse image in K via l), then its image in G will be cloned as well
in D. Furthermore, for any embedding edge e, i.e. an edge incident to m(n) in
G but not in m(L), there will be one copy of e in D for each counter-image
of m(n).

With agree the same kind of node cloning can be specified, but thanks to
the additional arrow t : K � TK in the rule, one can specify explicitly which
embedding edges have to be copied for each cloned node of G. Moving to pb-po,
note that arrows tL : L → L′ and l′ : K ′ → L′ are explicitly provided by a
pb-po rule, while the corresponding arrows ηL : L � T (L) and l′ : TK → T (L)
in (3) are uniquely determined by l : K → L and t : K → TK in agree. With
suitable definitions of object L′ and arrow l′ : K ′ → L′, and using the m′ part
of a match, in pb-po one can

– classify in a fine way the context items of the host graph G, i.e. those not in
the image of m;

– for each group of such items, specify if it is deleted, preserved or copied;
– specify additional application conditions.

Example 7. Suppose that in an information system there are two security levels:
�, for private information, and ⊥ for public information. We can model the
transformation of a graph containing both private and public information nodes
so that in the resulting graph there is no access (arrow) from public to private
ones. This can be done with a rule having the empty graph for L,K and R, the
following inclusion K ′ ⊆ L′ for l′, and the identity for r′:

�
����

⊥��

�� l′�� �
����

⊥
��

Given a morphism m′ : G → L′, mapping all private information nodes to � and
public nodes to ⊥, the application of this rule to the match (∅ → G,m′) would
erase all arrows from public nodes to private nodes.

4 Constraining the Effects of pb-po Rewriting

As just discussed (and evident from Example 7), a pb-po rewrite step can affect
any item of the host graph, that is, changes are not limited to the image of L and
its incident edges (as in other approaches like dpo, spo and sqpo). This holds
for agree as well, as discussed in [3] where a notion of local rule was introduced.
Informally, let us denote with A \ B the largest subobject of A disjoint from B.
Then an agree rule is local if for all matches m : L → G we have that G \ m(L)

The Pullback-Pushout Approach to Algebraic Graph Transformation 11

is preserved after the transformation, i.e. referring to Diagram (3), if D \n(K) →
G \ m(L) is an isomorphism. Also, in [3] a sufficient condition for an agree rule
to be local was identified.

In the case of pb-po, the greater flexibility in the definition of rules and
of matches on the one hand allows us to introduce a more general notion of
locality, called Γ -preservation, parametrized by a subobject Γ � L′ of the lhs
of the bottom span. On the other hand, however, whether a rewrite step is
Γ -preserving or not depends not only on the rule but also on the match. After
introducing the notion of Γ -preservation and characterizing a sufficient condition
to ensure it, we relate it to locality of agree transformations.

Definition 8 (Γ -preserving rewrite steps). Let ρ be a pb-po rule as in
Diagram (1), inc : Γ � L′ be a mono, and (m,m′) be a match of ρ in G. Let
GΓ be defined by the pullback on the left of Diagram (5).

Then we say that the rewrite step G ⇒ρ H is Γ -preserving if, referring to
Diagram (2), the two squares on the right of Diagram (5) are pullbacks.

GΓ

��

��

�� i �� G

m′

��

Γ �� inc �� L′

GΓ
��

i

��

GΓ
��id�� �� id ��

��

j

��

����
GΓ
��

h◦j

��

G Dg�� h �� H

(5)

Intuitively, GΓ represents the subobject of G typed by Γ . The right diagram
of (5) says that subobject GΓ remains unchanged in D (left square) and in the
resulting structure H (right square). Note that in Diagram (5) it follows from
the three squares being pullbacks that i, j and also h ◦ j are mono.

The next result presents sufficient conditions for a rewrite step to be
Γ -preserving, under suitable assumptions on the underlying category and on
the rule.

Proposition 9 (conditions for Γ -preservation). Let us assume that the
underlying category of structures G is adhesive [13] and has a strict initial object
0 (i.e., each arrow with target 0 must have 0 as source). Let ρ be a pb-po rule
in canonical form or right-linear, i.e., where r is a mono, and let (m,m′) be a
match of ρ in G with m : L � G mono. Then we have that if the two squares of
Diagram (6) are pullbacks, then G ⇒ρ H is a Γ -preserving rewrite step.

0
��

��

�� L

m

��

GΓ
�� i �� G

Γ
����

��

�� id �� Γ
��

inc

��

K ′ l′ �� L′

(6)

Informally, the left pullback ensures that the subobject of G typed over Γ is
disjoint from the image of L in G, thus it is not affected by the top rule; the right
pullback guarantees that the subobject Γ of L′ (and thus the items of G typed

12 A. Corradini et al.

on it) is preserved identically when pulled back along l′, thus it is not affected
by the bottom rule. It is still open if the previous result also holds for rules that
are neither in canonical form nor right linear. To conclude this section, we relate
the pb-po notion of Γ -preservation with locality of agree rules.

Proposition 10 (Γ -preservation and agree locality). Let α be an agree
rule as in Diagram (3) and ρα be the associated pb-po rule as in Proposition 5.
Let Γα be the subobject T (0) of T (L). If α is local in the sense of [3], then for
each agree match m : L � G the rewrite step G ⇒ρα

H is Γα-preserving.

5 The pb-po Transformation of Attributed Structures

For attributed structures we follow the same approach as in [7]. Given a category
G called the category of structures, with pullbacks and pushouts, a category A
called the category of attributes, and two functors S : G → Set and T : A →
Set, the category of attributed structures AttG and the category of partially
attributed structures PAttG are defined as in [7]. The issue is that there are not
enough pushouts in the category PAttG. Let Pfn denote the category of sets
with partial maps. A partial map f from X to Y is denoted f : X ⇀ Y and its
domain of definition is denoted D(f). The partial order ≤ between partial maps
is defined as usual: let f, g : X ⇀ Y , then f ≤ g means that D(f) ⊆ D(g) and
f(x) = g(x) for all x ∈ D(f). Then Pfn with this partial order is a 2-category.
By composing S and T with the inclusion of Set in Pfn we get two functors
Sp : G → Pfn and Tp : A → Pfn. Let |...| denote any of the four functors
S, T, Sp, Tp (sometimes, |...| is omitted).

Definition 11 (attributed structures). The category of attributed struc-
tures AttG (with respect to the functors S and T) is the comma category
(S ↓ T). This means that an attributed structure is a triple ̂G = (G,A, α)
made of an object G in G, an object A in A and a map α : |G| → |A|; and a
morphism of attributed structures ĝ : ̂G1 → ̂G2, where ̂G1 = (G1, A1, α1) and
̂G2 = (G2, A2, α2), is a pair ĝ = (g, a) made of a morphism g : G1 → G2 in G
and a morphism a : A1 → A2 in A such that α2 ◦ |g| = |a| ◦ α1. The category of
partially attributed structures PAttG is defined similarly: a partially attributed
structure is a triple ̂G = (G,A, α) made of an object G in G, an object A in A
and a partial map α : |G| ⇀ |A|; and a morphism of partially attributed struc-
tures ĝ : ̂G1 → ̂G2, where ̂G1 = (G1, A1, α1) and ̂G2 = (G2, A2, α2), is a pair
ĝ = (g, a) made of a morphism g : G1 → G2 in G and a morphism a : A1 → A2

in A such that α2 ◦ |g| ≥ |a| ◦ α1. A morphism of partially attributed structures
(g, a) is called strict when α2 ◦ |g| = |a| ◦ α1.

̂G1

ĝ
��

=

G1

g

��

|G1|
|g|

��

α1 � |A1|
|a|
��

A

a

��

̂G2 G2 |G2| α2 � |A2|
≥

A2

The Pullback-Pushout Approach to Algebraic Graph Transformation 13

Given an attributed structure ̂G = (G,A, α), we write n : x when n has
attribute x (i.e. α(n) = x) and n : ⊥ when n is not attributed (i.e. n �∈ D(α)),
|G|⊥ denotes the set of elements of |G| which are not attributed. An attributed
structure ̂G = (G,A, α) is said attributed over A, an attributed morphism ĝ =
(g, a) is said attributed over a, and when a = idA then ĝ can be said attributed
over A.

Remark 12. A morphism of partially attributed structures ĝ = (g, a) : ̂G1 → ̂G2

is such that ĝ(n1 : x1) = g(n1) : a(x1) and ĝ(n1 : ⊥) = g(n1) : ⊥ or g(n1) : x2

for some x2. When ĝ is strict, the last case is forbidden, so that the restriction
of ĝ determines a map |g|⊥ : |G1|⊥ → |G2|⊥.

Definition 13. Let ĝ = (g, a) : ̂G1 → ̂G2 be a morphism of partially attributed
structures. Then ĝ (or g) is injective if |g| : |G1| → |G2| is injective. Assume that
ĝ is strict, then ĝ is surjective on non-attributed elements if |g|⊥ : |G1|⊥ → |G2|⊥
is surjective. Besides, ĝ preserves attributes if ̂G1 and ̂G2 are attributed over the
same A and a = idA.

As in [7], we assume that all horizontal arrows in the rules preserve attributes,
and we will see that this implies that all horizontal arrows in the rewrite steps
also preserve attributes. This implies that there are objects A, A0 and A′ and
arrows a : A → A0 and a′ : A0 → A′ in A such that, in each rewrite step diagram,
the vertical arrows in the top squares are over a and the vertical arrows in the
bottom squares are over a′. Let tA = a′ ◦ a : A → A′. Typically, elements of A
are terms with variables, A′ describes types (for example, it could be the final
algebra in which carrier sets are singletons) and the morphism tA gives a type
to each variable, and the morphism a denotes an instantiation of the variables
(and terms) in A which respects their types:

A
a
��

tA

��

A0

a′
��

A′

example: x�
a
��

2�
a′
��

nat

The definitions of pb-po attributed rewrite rules, matches and steps must
ensure that the result of a step is indeed a well-formed attributed structure.
Therefore we have to impose some restrictions on rules and matches with respect
to re-attribution (i.e. change of attribute value): (i) only items that are explicitly
preserved by the rule can be re-attributed; (ii) items being re-attributed can not
be identified with anything neither by the match nor by tL; (iii) the bottom
span of the rule must agree with the upper span with respect to re-attribution
(for example, it is not possible that the attribute of the bottom span of an item
– its type – is changed and the value of the item in the upper span remains
unchanged); and (iv) the left- and right-hand sides of the spans of a rule must
be fully-attributed. Some of these conditions are defined for the rule and some

14 A. Corradini et al.

for the match. Examples 17 and 18 motivate these conditions and illustrate
re-attribution issue.

Definition 14 (pb-po attributed rewrite rules). Given a morphism tA :
A → A′ of A, a pb-po attributed rewrite rule over tA is a pb-po rewrite rule ρ
in the category PAttG of partially attributed structures, i.e., a diagram:

̂L

=̂tL
��

̂K

=

̂l�� r̂ ��

̂tK
��

̂R

̂tR
��

̂L′
̂K ′

̂l′
��

r̂′
��
̂R′

with the following restrictions: the top line is attributed over A, the bottom line is
attributed over A′, ̂l, ̂l′, r̂, and ̂r′ are attribute preserving, the vertical morphisms
are attributed over tA, the objects ̂L, ̂R, ̂L′ and ̂R′ are totally attributed and the
morphism ̂tK : ̂K → ̂K ′ is strict and injective on non-attributed items.

The following condition ensures that whenever an item will be re-attributed,
it is (the image of) an item that is preserved by the rule.

Definition 15 (re-attribution condition). Given a pb-po attributed rewrite
rule ρ (with notations as above), a totally attributed structure ̂G and a pb-po

match (m̂, m̂′) of ρ in ̂G, the match satisfies the re-attribution condition with
respect to ρ if:

for each nG in |G|, if there is some nK′ in |K ′|⊥ with m′(nG) = l′(nK′) then
there is an nK in |K| with nG = m(l(nK)) and nK′ = tK(nK).

Definition 16 (pb-po attributed rewrite system). Given a pb-po attributed
rewrite rule ρ and a totally attributed structure ̂G, a pb-po attributed match of ρ
in ̂G is a pb-po match of ρ in ̂G in the category PAttG, i.e., a pair (m̂, m̂′) =
((m,a), (m′, a′)) such that m̂◦ m̂′ = ̂tL, with the following restrictions: m̂ is injec-
tive and (m̂, m̂′) satisfies the re-attribution condition with respect to ρ. The pb-
po attributed rewrite step applying a pb-po attributed rewrite rule ρ to a pb-po
attributed match (m̂, m̂′) is the pb-po rewrite step applying ρ to (m̂, m̂′) in the
category PAttG.

Example 17. All examples are diagrams having the shape of Diagram (2). We
start with two basic examples of re-attribution.

(1) Identity: n is preserved, with its attribute.
(2) Identity of structure only: n is preserved, but its type and attribute are

changed.

n : x ← n : x → n : x

↓ ↓ ↓
n : 6 ← n : 6 → n : 6

↓ ↓ ↓
n : nat ← n : nat → n : nat

(1)

n : x ← n : ⊥ → n : char of int(suc(x))

↓ ↓ ↓
n : 68 ← n : ⊥ → n : “E”

↓ ↓ ↓
n : nat ← n : ⊥ → n : char

(2)

The Pullback-Pushout Approach to Algebraic Graph Transformation 15

Example 18. We now give three examples to motivate the restrictions about
rules and matches made in Definitions 14 and 16.

(1) Here ̂tK is not strict (and thus the rule is not well-formed). The pushout of
(r̂, n̂) does not exist, so that the rewrite step cannot be constructed.

(2) Here ̂tK is not injective on non-attributed items: again, the rule is not well-
formed, and the pushout of (r̂, n̂) does not exist.

(3) Here the issue is that (m̂, m̂′) does not satisfy the re-attribution condition,
since n′ (in G) should be re-attributed but it is not an item preserved by the
rule (not an image of an element in K). The pushout of (r̂, n̂) exists, but the
resulting H is not totally attributed.

n : ⊥ ← n : ⊥ →r̂ n : 2

↓ ↓n̂ ↓
n : 6 ← n : 6 → n :?

↓ ↓ ↓
n : nat ← n : nat → n : nat

(1)

n = n′ : x ← n : ⊥
n′ : ⊥

→ n : 2

n′ : 3

↓ ↓ ↓
n = n′ : 6 ← n = n′ : ⊥ → n = n′ :?

↓ ↓ ↓
n = n′ : nat ← n = n′ : ⊥ → n = n′ : nat

(2)

n : x ← n : ⊥ → n : suc(x)

↓ ↓ ↓
n : 6

n′ : 8

← n : ⊥
n′ : ⊥

→ n : 7

n′ : ⊥
↓ ↓ ↓

n : nat

n′ : nat

← n : ⊥
n′ : ⊥

→ n : nat

n′ : nat

(3)

We will use “pb-po-a” for “pb-po attributed”. In the rest of this section
we show that the restrictions imposed on attributed rules and matches in Def-
initions 14, 15 and 16 are sufficient to guarantee that a rewriting step can be
completed, and that the resulting structure is totally attributed. This result is
preceded by two technical lemmas concerning pullbacks and pushouts in PAttG,
respectively.

Lemma 19 (on pullbacks in PAttG). Let ̂G
m̂′
→ ̂L′ ̂l′← ̂K ′ be a cospan in

PAttG, with ̂G and ̂L′ totally attributed and ̂l′ attribute-preserving. Let us
denote ̂G = (G,A0, αG), ̂L′ = (L′, A′, αL′), ̂K ′ = (K ′, A′, αK′), m̂′ = (m′, a′)

and ̂l′ = (l′, idA′), as in the diagram below. Let G
g← D

n′
→ K ′ be the pullback

of G
m→′

L′ l′← K ′ in G. Let αD : |D| ⇀ |A0| be the partial map such that,
for each nD ∈ |D|: if |n′|(nD) : ⊥ then nD : ⊥, otherwise nD : x0 where x0 is
the attribute of |g|(nD). Let ̂D = (D,A0, αD), ĝ = (g, idA0) and n̂′ = (n′, a′).

16 A. Corradini et al.

Then ĝ : ̂D → ̂G and n̂′ : ̂D → ̂K ′ are morphisms in PAttG, n̂′ is strict, and
̂G

ĝ← ̂D
n̂′
→ ̂K ′ is the pullback of ̂G

m̂′
→ ̂L′ ̂l′← ̂K ′ in PAttG.

(G,A0, αG)

PB(m′,a′)
��

(D,A0, αD)
(g,idA0)��

(n′,a′)
��

(L′, A′, αL) (K ′, A′, αK)
(l′,idA′)

��

Lemma 20 (on pushouts in PAttG). Assume that the functor S : G → Set

preserves pushouts. Let ̂D
n̂← ̂K

r̂→ ̂R be a span in PAttG, with ̂R totally
attributed, r̂ attribute-preserving and n̂ injective, strict, and surjective on non-
attributed elements. Let us denote ̂D = (D,A0, αD), ̂K = (K,A,αK), ̂R =
(R,A, αR), r̂ = (r, idA) and n̂ = (n, a), as in the diagram below. Let D

h→ H
p←

R be the pushout of D
n← K

r→ R in G. Then there is a unique total map
αH : |H| → |A0| such that, for each nH ∈ |H|: if |p|(nR) = nH for some nR : x
in |R| then nH : a(x), and if |h|(nD) = nH for some nD : x0 in |D| then nH : x0.
Let ̂H = (H,A0, αH), ̂h = (h, idA0) and p̂ = (p, a). Then ̂H is totally attributed,
̂h : ̂D → ̂H and p̂ : ̂R → ̂H are morphisms in PAttG, and ̂D

̂h→ ̂H
p̂← ̂R is the

pushout of ̂D
n̂← ̂K

r̂→ ̂R in PAttG.

(K,A,αK)

PO

(r,idA)
��

(n,a)

��

(R,A, αR)

(p,a)

��

(D,A0, αD)
(h,idA0)

�� (H,A0, αH)

Theorem 21 (rewriting totally attributed structures). Assume that the
functor S : AttG → Set preserves pullbacks and pushouts. Then for every pb-
po-a rule and every pb-po-a match of this rule, the pb-po-a rewrite step exists,
and in addition the resulting ̂H is totally attributed.

Example 22. Let us recall that the rule of Example 2 specifies that the local web
pages of the host graph G (i.e., those mapped by m′ to node l of L′) are cloned
with all outgoing edges, while edges from the global pages to cloned ones are not
copied. Additionally, a selected local node, “root”, is linked to a new page.

The following rule intends to enrich the one of Example 2 by specifying that
the copy of the local root page should get as attribute the successor of the
attribute of the original page (s : nat → nat is the successor function), and the
new page should get in turn its successor.

The Pullback-Pushout Approach to Algebraic Graph Transformation 17

r : x ← r : x r′ : ⊥ → r : x r′ : s(x) �� n : s(s(x))

↓ ↓ ↓
l : nat
��

��

g : nat

		
← l : nat

��

��

l′ : ⊥
!!

""�����

g : nat

		
→ l : nat

��

��

l′ : nat
��

�������

�� n : nat

g : nat

		

However, if we consider the attributed graph ̂G
on the right and the same match as in Example 2
(mapping r1, l1 and l2 to l and g

1
and g

2
to

g), this match does not satisfy the re-attribution
condition, because only r1 has a pre-image in K.

̂G =

r1 : 0

��

�����

##

l1 : 2 �� l2 : 4

��

g
1
: 6

		 �����
�� g

2
: 8��

The next rule is instead the “right” extension of the rule in Example 2:

r : x ← r : x r′ : ⊥ → r : x r′ : s(x) �� n : s(s(x))

↓ ↓ ↓
r : nat

��

$$

l : nat
��

��

g : nat

		

← r : nat

��

$$

r′ : ⊥
��

%%

l : nat
��

��

l′ : nat
��

�����
���

g : nat

		

→ r : nat

��

r′ : nat

��

%%

l : nat
��

��

l′ : nat
��

�����
���

g : nat

		

The obvious match satisfies the re-attribution condition, and the resulting
G

g← D
h→ H is:

r1 : 0

�� ���
��

�

��

l1 : 2 �� l2 : 4

��

g
1
: 6

		 ������
�� g

2
: 8��

← r1 : 0

�� ��	
			

	

��

r′
1 : ⊥
�� ���

��
�

&&

l1 : 2 �� l2 : 4

��

l′1 : 2 �� l′2 : 4

������������

g
1
: 6

		 ������
�� g

2
: 8��

→ r1 : 0

�� ��	
			

	

��

r′
1 : 1

�� ���
��

�

��

�� n1 : 2

l1 : 2 �� l2 : 4

��

l′1 : 2 �� l′2 : 4

�����������

g
1
: 6

		 ������
�� g

2
: 8��

6 Conclusions and Related Works

We presented a new categorical approach to graph transformation, the pb-po
approach, that combines the standard transformation of structures of the dpo
approach with a retyping of the host graph, that allows to model both deletion
and cloning of items. pb-po is shown to be a conservative extension of the
agree approach, and thus of the sqpo approach with monic matches. The more
general framework allows to define a notion of locality parametric with respect

18 A. Corradini et al.

to a subgraph of the type graph, and we presented sufficient conditions for a
match and a rule to ensure such locality. Finally we extended the approach to
attributed structures, presenting sufficient conditions to ensure that the result
of transforming a totally attributed structure is still totally attributed.

We discussed in Sect. 3 the relationships with sqpo and agree, of which the
pb-po approach can be considered as an evolution. Adaptive Star Grammars [6]
were also proposed to model cloning. They include star replacement rules, which
can be seen as a restricted kind of dpo rules, and adaptive star rules, which
can be applied to arbitrarily large matches via an adaptation mechanism that
creates the needed number of copies of items of the lhs. It should be possible to
describe this adaptation mechanism with a limit construction, from which one
could explore the feasibility of encoding this approach in pb-po.

Rewriting in the category of spans [15] has been proposed as a framework
that generalizes dpo, spo and sqpo rewriting, thanks to a powerful gluing con-
struction able to model cloning. Transformations based on both pushouts and
pullbacks are used in the quite different framework of collagories [12] or that of
model migration [16, Sect. 4.5]. The analysis of the relationships of pb-po with
these contributions will be a topic of future work. Let us also mention that pull-
backs are also used in [11] to model the effect of a rule on a graph while the same
graph can be subject of other changes caused by the environment, but because
of the restriction to injective rules no cloning effect is modeled.

Finally, since the pb-po rules are defined as two connected spans, one may
expect from this approach to model situations where one span is used for trans-
forming data graphs while the other span can be used for transforming the typing
information, just like in [17] where rules, defined as two connected co-spans, are
used to model co-evolutions of meta-models and models.

References

1. Bauderon, M., Jacquet, H.: Node rewriting in graphs and hypergraphs: a categor-
ical framework. Theor. Comput. Sci. 266(1–2), 463–487 (2001)

2. Cockett, J., Lack, S.: Restriction categories II: partial map classification. Theor.
Comput. Sci. 294(1–2), 61–102 (2003)

3. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic
graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B.
(eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Cham (2015). doi:10.
1007/978-3-319-21145-9 3

4. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting.
In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.)
ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). doi:10.1007/
11841883 4

5. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation - part I: basic concepts and double pushout
approach. In: Rozenberg [18], pp. 163–246

6. Drewes, F., Hoffmann, B., Janssens, D., Minas, M.: Adaptive star grammars and
their languages. Theor. Comput. Sci. 411(34–36), 3090–3109 (2010)

http://dx.doi.org/10.1007/978-3-319-21145-9_3
http://dx.doi.org/10.1007/978-3-319-21145-9_3
http://dx.doi.org/10.1007/11841883_4
http://dx.doi.org/10.1007/11841883_4

The Pullback-Pushout Approach to Algebraic Graph Transformation 19

7. Duval, D., Echahed, R., Prost, F., Ribeiro, L.: Transformation of attributed struc-
tures with cloning. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411,
pp. 310–324. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54804-8 22

8. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic approaches to graph transformation - part II: single pushout approach
and comparison with double pushout approach. In: Rozenberg [18], pp. 247–312

9. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach.
In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa,
USA, 15–17 October, pp. 167–180. IEEE Computer Society (1973)

10. Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: Rozenberg
[18], pp. 1–94

11. Heckel, R., Ehrig, H., Wolter, U., Corradini, A.: Double-pullback transitions and
coalgebraic loose semantics for graph transformation systems. Appl. Categorical
Struct. 9(1), 83–110 (2001)

12. Kahl, W.: Amalgamating pushout and pullback graph transformation in col-
lagories. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT
2010. LNCS, vol. 6372, pp. 362–378. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15928-2 24

13. Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FoSSaCS
2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24727-2 20

14. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2), 181–224 (1993)

15. Löwe, M.: Refined graph rewriting in span-categories - A framework for algebraic
graph transformation. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2012. LNCS, vol. 7562, pp. 111–125. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33654-6 8

16. Mantz, F.: Coupled Transformations of Graph Structures applied to Model Migra-
tion. Ph.D. thesis, University of Marburg (2014)

17. Mantz, F., Taentzer, G., Lamo, Y., Wolter, U.: Co-evolving meta-models and their
instance models: a formal approach based on graph transformation. Sci. Comput.
Program. 104, 2–43 (2015)

18. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations, vol. 1: Foundations. World Scientific (1997)

19. Schulz, C., Löwe, M., König, H.: A categorical framework for the transformation
of object-oriented systems: models and data. J. Symb. Comput. 46(3), 316–337
(2011)

20. Wouters, L., Gervais, M.P.: Ontology transformations. In: IEEE International
Enterprise Distributed Object Computing Conference, pp. 71–80 (2012)

http://dx.doi.org/10.1007/978-3-642-54804-8_22
http://dx.doi.org/10.1007/978-3-642-15928-2_24
http://dx.doi.org/10.1007/978-3-642-15928-2_24
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1007/978-3-642-33654-6_8

Hierarchical Graph Transformation Revisited

Transformations of Coalgebraic Graphs

Julia Padberg(B)

Hamburg University of Applied Sciences, Hamburg, Germany
julia.padberg@haw-hamburg.de

Abstract. Concepts for structuring are fundamental to any modelling
technique. Hierarchical graphs allow vertical structuring, where nodes or
edges contain other nodes or subgraphs. There have been several sug-
gestions to hierarchical graphs that differ in terms of the underlying
graph type, the elements that are structured and the way the structur-
ing is achieved. In this contribution we aim at a more general notion
of hierarchical structures for graphs. We investigate several extensions
of the powersets that comprise arbitrarily nested subsets, and call them
superpower set. This allows the definition of graphs with possibly infi-
nitely nested nodes. Additionally, we allow edges that are incident to
edges. Coalgebras and comma categories are used to capture different
notions of hierarchies. The main motivation of this paper is the question
how to define recursion on a graph’s structure so that we still obtain an
M-adhesive transformation system.

Keywords: Graph · Hierarchy · Coalgebra · M-adhesive transforma-
tion system

1 Motivation

Graphs are commonly used to describe complex structures that may become very
large. For the sake of scalability many approaches using graphs have one or more
additional structuring notions. Hierarchical graphs (and graph transformations)
add some hierarchy to the nodes or to the edges. Various approaches to graphs
with hierarchy have been proposed, e.g. [5,7–9,19,22,24,28,29]. The resulting
techniques were used for modelling hierarchical hypermedia, distributed project
management, mobile and ubiquitous systems among others.

In this contribution we investigate the possible variations with respect to
their use in graph transformation systems. This allows choosing an adequate
hierarchical model and directly obtaining the results from M-adhesive transfor-
mation systems. The concept of graphs is very general and can be specialised
to directed and undirected graphs, as well as hypergraphs, typed, labelled or
attributed graphs. To cope with that many different approaches M-adhesive
transformation systems offer an abstract definition that requires some categori-
cal constructs and provides a common theory for many different types of graphs
and the corresponding transformation systems.
c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 20–35, 2017.
DOI: 10.1007/978-3-319-61470-0 2

Hierarchical Graph Transformation Revisited 21

Hierarchies are naturally presented by means of a recursion, since items of
one hierarchical level are expanded to several items of the next lower level. In
Sect. 2 we represent the recursive structure of the hierarchy as two constructions
that allow nested subsets of subsets. This construction – the superpower set –
yields the corresponding functors. Subsequently we investigate these functors
and show that coalgebraic graphs based on these functors yield M-adhesive
transformation systems. One advantage is that the additional graph structure is
not represented by additional arcs but in terms of containment given in a uniform
way based on functors. Moreover, we expand the notion of edges so that edges
between edges are possible. Although this leads to unconventional concepts such
edges have already been used, e.g. in AGG [2,14] or for graph grouping [19]. We
investigate several notions of hierarchies in graphs in more detail in Sect. 5:

Hierarchical Graphs comprise many different approaches to hierarchies in
graph, in Sect. 5.1 we discuss the relation to three of them, hierarchical hyper-
edges as in [9] and packages in [8]. The latter is a more general approach that
allows various types of graphs. In [24] hierarchical graphs are given that allow
trees as hierarchies for both nodes and edges.

Multi-Hierarchical Graphs as presented in [29] are sketched in Sect. 5.2. Their
hierarchy concept is given for nodes and they support several different hierarchies
in the same graph that are independent of each other.

Bigraphs [22] are an important theory for modelling ubiquitous computing
and combine two graphs to model both locality and connectivity. The first states
containment in terms of a forest, the latter the connection via hyperedges. They
can be considered to be a special case of hierarchical graphs (see Sect. 5.3).

Graph Grouping as given in [19] allows the analysis of large graphs by group-
ing nodes and edges into super nodes and super edges, see Sect. 5.4.

The main benefit of this contribution is the systematic representation of var-
ious hierarchy concepts for graphs that support graph transformation in terms
of M-adhesive transformation systems, i.e. the algebraic double pushout (DPO)
approach, see Sect. 3. Since the hierarchy concepts are the main focus we only
have investigated graph types without any additional data as labels or attributes.
Section 4 gives an overview over the hierarchy concepts that are obtained as coal-
gebraic graphs by varying the underlying categorical concepts. It summarizes the
concepts at an informal level and facilitate the establishment of transformation
systems for non-standard hierarchical graphs. Then we examine in Sect. 5 var-
ious different approaches to hierarchies in graphs. This contribution does not
aim at a general theory of hierarchical graphs but at the availability of algebraic
graph transformations for widely spread graph hierarchy concepts.

Structure of the paper. In the next section (Sect. 2) we investigate the different
constructions for an iterated power set construction. Section 3 details the use of
coalgebras for the construction of M-adhesive categories. The emerging hierar-
chical concepts are sketched in Sect. 4. We then discuss various approaches to
hierarchical graphs (see Sect. 5) and exemplarily compare them to their formu-
lation in terms of M-adhesive categories in Sect. 4. Subsequently in Sect. 6, we
discuss related work and concluding remarks in Sect. 7 close this contribution.

22 J. Padberg

2 Extension of the Powerset

One of the main technical results of this contribution is given in this section. We
introduce superpower sets1 that allow arbitrary nesting of subsets and are the
basic construction for the hierarchy concepts.

The superpower set is achieved by recursively inserting subsets of the super-
power set into itself. We here present two possibilities P and Pω. Both are func-
tors that preserve pullbacks of injective morphisms and hence can be deployed
in the formulation of M-adhesive transformation systems. These can be con-
structed from existing ones by various categorical constructions, namely product,
coslice, functor and comma categories (see Theorem 4.15 (construction of (weak)
adhesive HLR categories) in [10]) and from F -coalgebras based on suitable func-
tors F (see Theorem 1). In Sect. 4 we summarize the potential constructions
arising from these results.

The superpower set construction can be defined in various ways, here we
present two of them (see the supplemental report [23] for additional ones). Both
allow nesting of subsets of arbitrary depth.

Definition 1 (Superpower set P). Given a set M and P(M) the power set
of M then we define the superpower set P(M):

1. M ⊂ P(M) and P(M) ⊂ P(M).
2. If M ′ ⊂ P(M) then M ′ ∈ P(M).

P(M) is the smallest set satisfying 1. and 2.

Condition 1 ensures that sets may contain nested subset of different depth.
Pω differs from P as in each subset there are only subsets that have the same
depth in terms of nesting. So, for some non-empty set M with m ∈ M we have
{m,M} /∈ Pω(M) but {m,M} ∈ P(M).

Definition 2 Superpower set Pω). Given a set M we define P0(M) = M
and P1(M) = P(M) the power set of M . Then Pi+1(M) = P(Pi(M)) and
Pω(M) =

⋃
i∈N0

Pi(M).

The use of strict subsets ensures in both definitions that Russell’s antinomy
cannot occur. Both superpower set constructions yield well-founded sets with an
order based on the depth of the nested parentheses and hence allow induction.

Subsequently, we only investigate the properties of P. The results hold for
Pω and other possibilities of superpower sets as well, see [23].

Lemma 1 (P is a functor). P : Sets → Sets is defined for sets as in
Definition 1 and for functions f : M → N by P(f) : P(M) → P(N) with

P(f)(x) =

{
f(x) ;x ∈ M

{P(f)(x′) | x′ ∈ x} ; else

1 Although the nesting of sets or nodes (see Sect. 6) are well-known, to the author’s
knowledge neither the construction nor the corresponding functors have been con-
sidered before.

Hierarchical Graph Transformation Revisited 23

Example 1 (Functor P). Given sets N1 = {u, v, w}, N2 = {n1, n2, n3} and
f : N1 → N2 with f : u �→ n1, v �→ n1, w �→ n3 then we have
P(f) : P(N1) → P(N2) with for example P(f)({u, v, w, {u, v}, {v, {w, ∅}}}) =
{n1, n3, {n1}, {n1, {n3, ∅}}}.

Lemma 2 (P preserves injections). Given injective function f : M → N
then P(f) : P(M) → P(N) is injective.

For the proof see Lemma 2 in [23]. In this paper the proofs are only given if they
are relevant for understanding the concepts.

Lemma 3 (P preserves pullbacks along injective morphisms). Given a
pullback diagram (PB) in Sets with injective g1 : C ↪→ D, then P(A) in the
diagram (1) is pullback in Sets as well.

Proof. Pullbacks and the superpower set functor (see
Lemma 2) preserve injections, so πB : A ↪→ B, P(πB) : P(A) ↪→
P(B) and πP(B) : P ↪→ P(B) are injective. Since (PB) is
a pullback diagram we have A = {(b, c) | f1(b) = g1(c)}.
(1) commutes, since P is a functor. Let P be the pullback of
(P(D),P(f1),P(g1)), so P(f1) ◦ πP(B) = πP(C) ◦ P(g1). Hence,
P = {(B′, C ′) | P(f1)(B′) = P(g1)(C ′)} ⊆ P(B) × P(C).

Moreover, there is the unique
h : P(A) → P s.t. h(A′) =
(P(πB)(A′),P(fπC)(A′)) for
all A′ ⊆ A so that the dia-
grams (2) and (3) commute
along h: πP(B) ◦ h = P(πB) and
πP(C) ◦ h = P(πC).

We define h̄ : P → P(A) with

h̄((X,Y)) =

⎧
⎪⎨

⎪⎩

(b, c) ; if X = b ∈ B, Y = c ∈ C

{(x, y) | x ∈ X ∩ B, y ∈ Y ∩ C, f1(x) = g1(y)} ∪
⋃

(X′,Y ′)∈(X−B)×(Y −C) h̄(X ′, Y ′) ; else

and have:

1. h̄ is well-defined since h̄(X,Y) ∈ P(A).
2. (2) commutes along h̄, i.e. P(πB) ◦ h̄ = πP(B)(X,Y) is shown by induction

over the depth of the nested parentheses n.For n = 0, i.e. the atomic nodes,
let (b, c) ∈ P with b ∈ B and c ∈ C be given. P(πB) ◦ h̄(b, c) = P(πB)(b, c) =
b = πP(B)(b, c). Let be P(πB) ◦ h̄(X,Y) = πP(B)(X,Y) for sets with at most
n nested parentheses. Given (X̂, Ŷ) ∈ P with n + 1 nested parentheses and
let X̂ = B̂ ∪ X with B̂ ⊆ B and X ∩ B = ∅. Let Ŷ = Ĉ ∪ Y with Ĉ ⊆ C and
Y ∩ C = ∅. X and Y have at most n nested parentheses. Then

24 J. Padberg

P(πB) ◦ h̄(X̂, Ŷ)

= {x | x ∈ B̂ ∧ ∃y ∈ Ĉ : f1(x) = g1(y)} ∪
⋃

(X′,Y ′)∈(X×Y)

P(πB) ◦ h̄(X ′, Y ′)

IB
= B̂ ∪

⋃

(X′,Y ′)∈(X×Y)

πP(B)(X
′, Y ′)

= B̂ ∪ X

= πP(B)(X̂, Ŷ)

P(A) is isomorphic to the pullback P , since

– h◦ h̄ = idP , since πP(B) is injective and πP(B) ◦h◦ h̄ = P(πB)◦ h̄ = πP(B) ◦ idP .
– h̄◦h = idP(A), since P(πB) is injective and P(πB)◦ h̄◦h = πP(B)◦h = P(πB) =
P(πB) ◦ idP(A).

Fig. 1. Morphism in < IdSets ↓ P >

For a first impression graphs with arbi-
trarily nested nodes are defined. Note,
only the nodes are nested, but nodes
containing others do not have a name.
In Fig. 1 the node {m1,m2,m3} con-
tains the nodes m1,m2 and m3 but
it does not have a name. Edges are
hyperedges given as a subset of the
superpower set, so the first level of the
nesting of subsets defines the edges,
so the edge a4 connects the nodes
{n1, n2} and {n2, n4}. The edges have neighbours that are atomic nodes or
nodes containing nodes and are given by the neighbour function ngb : E → P(N).
The category of P-graphs is given by a comma category
< IdSets ↓ P >. The morphisms are given by mappings
of the nodes and arcs f = (fN , fE) : G1 → G2 with
fN : N1 → N2 and fE : E1 → E2 so that (1) commutes,
i.e. P(fN) ◦ ngb1 = ngb2 ◦ fN .

Example 2 (P-Graph). Figure 1 illustrates two P-graphs and the morphism based
on the mappings fN : N1 → N2 and fE : E1 → E2 with fN (m4) = n2, fN (mi) =
ni and fE(ei) = ai for i = 1, 2, 3. So, P(fN)({m1,m2,m4}) = {n1, n2}.

G1 = (N1, E1, ngb1 : E1 → P(N1)) with
N1 = {m1, .., m4}
E1 = {e1, e2, e3}

ngb1 : e1 	→ {m1, m2, m3}
e2 	→ {m1, {m1, m2, m4}
e3 	→ {m2, m4}

and G2 =
(N2, E2, ngb2 : E2 → P(N2))

with N2 = {n1, .., n4}
E1 = {a1, ..., a4}

ngb2 : a1 	→ {n1, n2, n3}
a2 	→ {n1, {n1, n2}
a3 	→ {n2}
a4 	→ {{n1, n2}, {n2, n4}}

Hierarchical Graph Transformation Revisited 25

3 M-Adhesive Categories Using Coalgebras

To express that nodes contain nodes again we need a mapping of nodes to super-
power set of nodes cnt : N → P(N). This is essentially a coalgebra. Coalge-
bras are often used for specifying the behaviour of systems and data structures
that are potentially infinite, for example classes in object-oriented programming,
streams and transition systems.

The second main result shows that coalgebras of functors
preserving pullbacks along injective morphisms form an M-
adhesive category.

An endofunctor F : Sets → Sets gives rise the category
of coalgebras SetsF with M

αM−→ F (M) – also denoted by
(M,αM) – being the objects and morphisms f : (M,αM) →
(N,αN) – called F -homomorphism – so that (1) commutes in Sets (see [26]).

Lemma 4 (Pullbacks along injections in SetsF). Given a functor F :
Sets → Sets that preserves pullbacks along an injective morphism, then SetsF
has pullbacks along an injective F-homomorphism.

For the proof see Lemma 10 in [23].
M-adhesive transformation systems (e.g. [12,25]) are an abstract framework for
graph transformations and allow a uniform description of the different notions
and results based on a class M of specific monomorphisms. These well-known
results comprise concepts for transformation, local confluence and parallelism,
application conditions, amalgamation and so on.

Definition 3 (Class of monomorphisms M). Let M be a class of monomor-
phisms in Sets that is PO-PB-compatible, that is:

1. Pushouts along M-morphisms exist and M is stable under pushouts.
2. Pullbacks along M-morphisms exist and M is stable under pullbacks.
3. M contains all identities and is closed under composition.

According to Property 4.7 in [26] if f : M → N is injective in Sets then f
is an F -monomorphism in SetsF. Obviously the class of all injective functions

MF = {(A,αA)
f
↪→ (B,αB) | f is injective in Sets} is PO-PB-compatible.

Theorem 1 (M-Adhesive Category). (SetsF,MF) is an M-adhesive cate-
gory if F preserves pullbacks along injective morphisms.

For the proof see proof of Theorem 1 in [23].
This allows M-adhesive transformation systems for various dynamic systems
based on coalgebras of functors the preserve pullbacks along injective morphisms.
For a first discussion see [23].

Example 3 (Nested nodes). Nested nodes can be constructed using the coalgebra
CoalgP based on the superpower set functor P. Given a set N the function cnt :
N → P(N) gives the nodes contained in a given node. This function yields an
M-adhesive category; the category of coalgebras CoalgP over P : Sets → Sets

26 J. Padberg

with the class M of injective morphisms.
The nesting of nodes can also be defined allowing the different kinds of nesting
using some functor F : Sets → Sets, so we have the contains function cnt :
N → F(N). This yields an M-adhesive category where G may be one of the
(super-)power functors, e.g. P, P(1,2), P or Pω or any other functor preserving
pullbacks of injections.

We now investigate the nesting of edges, that is neighbours of edges can again be
edges. Edges between edges have been already mentioned for the AGG approach
[14] and are used as super edges in graph grouping [19]. To define nested edges
we need to extend the neighbour function ngb to edges and nodes. So, we have
coalgebraic graphs with directed edges that can be considered as a many sorted
coalgebra using the functor F : Sets × Sets → Sets × Sets with F (N,E) =

(N,E)
(!,ngb)−→ (1, N ×N) where 1 is the final object and ! the corresponding final

morphism, see e.g. [26]. Corollary 2 in [23] extends the result of Theorem 1 to
many sorted coalgebras.

Corollary 1. Let F : Sets × Sets → Sets × Sets be given where F preserves
pullbacks along injections and let M be the class of pairs of injective morphisms
< fN , fE >. Then the category of coalgebraic graphs (CoalgF,M) is an M-
adhesive category.

To give an example we define nested hyperedges.

Example 4 (Nested hyperedges). Given a set of nodes N and a set of edge names
E and a function yielding the neighbours ngb : E → P(V � E).
Then the category of coalgebras CoalgF1

over F1 : Sets × Sets → Sets ×
Sets with F1(N,E) = (1,P(N � E)) yields the category of graphs with nested
hyperedges. The category of coalgebraic graphs with nested hyperedges CoalgF1

is an M-adhesive category. Analogously, graphs with nested, undirected edges
can be defined by the functor P(1,2) that yields only subsets containing one ore
two elements. And graphs with nested, directed edges can be defined by a functor
yielding (N � E) × (N � E), for both see [23].

Subsequently some properties are sketched that might be worthwhile when inves-
tigating coalgebraic graphs more deeply. These properties can be defined inde-
pendently of the underlying constructs and functors. Their definition depends
on the purpose of the approach and we merely hint at a possible formulation as
this contribution does not aim at a general theory of hierarchical graph trans-
formation.
Properties of nested nodes can be defined for example as follows:

– Nodes names are unique if cnt is injective.
– Nodes referring to themselves are the atomic nodes, so we define the set

aN = {n | cnt(n) = n}.
– Nodes are containers if they are not atomic.
– The set of nodes is well-founded if and only if

– X ∈ N ∧ Y ∈ cnt(X) implies, that Y ∈ cnt(N)

Hierarchical Graph Transformation Revisited 27

– X ∈ cnt(N) ∧ Y ∈ (X − N) implies, that Y ∈ cnt(N)
This ensures that the contains function cnt yields a directed acyclic graph.

– The set of nodes is hierarchical if and only if cnt(n) ∩ cnt(n′) �= ∅ implies
n = n′. This ensures that the neighbour function cnt yields a forest.

Properties of nested edges can be defined for example as follows:

– Common edges are those without nested edges. Hence, the set of common
edges is given by those edges e, where ngb(e) does not contain any edge.

– The function ngb∗ : E → P(N) yields the set of all incident nodes of
arbitrarily deep nesting and is defined by ngb∗(e) = {n ∈ N | n ∈
ngb(e)} ∪ ⋃

x∈ngb(e) ngb∗(x). Edges are node-based if is ngb∗ well-defined.
They are not node-based if they are incident to some container node which
is not well-founded.

– Edges are atomic if they are node-based and if the function ngb∗(E) ⊆ aN
only yields atomic nodes.

The notion of subgraphs given by a set of nodes can be transferred easily to
the above concepts using the recursive extension cnt∗(n) = {n ∈ N | n ∈
cnt(n)} ∪ ⋃

x∈cnt(n) cnt∗(x). A subgraph G[M] ⊆ G = (N,E, cnt, ngb) induced
by a subset of nodes M ⊆ N can be defined by G[M] = (M, {e ∈ E|ngb(e) ∈
cnt∗(M)}, cnt, ngb) where cnt, ngb are the corresponding restrictions. This yields
a notion of subgraph that comprises edges between inducing nodes. Note that
in [24] a different approach is chosen (see Sect. 5.1) where edges between nodes
that have the same parent need not have this parent.

4 M-Adhesive Categories of Hierarchical Graphs

The results of the both previous sections yield different M-adhesive categories
depending on the choice of the categorical construction and the underlying func-
tors. We obtain different types of hierarchical graphs and corresponding M-
adhesive transformation systems. Hence (DPO) transformations for each of these
types of hierarchical graphs are provided.

The neighbours of edges are given by the neighbour function ngb and the
nodes contained by node are given by the contains function cnt. The nodes may
be containers or atomic nodes, containers may have a name or not, depending on
the construction. The edges can be the well-known ones, (un-)directed, hyper-
edges with or without an order as well as ones having edges between edges. Next,
we state the categorical constructions, involved functors and relate the resulting
categories to the examples in this paper. For details and proofs see [23].

Example 5 (Types of hierarchical graphs and corresponding M-adhesive trans-
formation systems).

1. The comma category < IdSets ↓ P > as used in Example 2 is an M-adhesive
category because of the comma-category construction (see Theorem 4.15 in
[10]) and P preserving pullbacks of injections. It yields hierarchical graphs
with hyperedges between nodes and containers of nodes, but containers do
not have an explicit name.

28 J. Padberg

2. Combining the nested nodes based on the superpower set functor P as in
Example 3 with usual edges concepts leads to various types of coalgebraic
graphs and is closely related to hierarchical graphs in the sense of [8]. In
this case hierarchical graphs are given by G = (N,E, cnt : N → P(N), ngb :
E → H(N)). H determines edge type. Typical choices for H are P or ()∗

for hyperedges, P(1,2) for undirected edges or for directed edges the copying
functor X2 : Sets → Sets × Sets with X2(N) = N × N . For an example see
Sect. 5.1. Item 1.
We use a coalgebra over F1 : Sets × Sets → Sets × Sets with F(N,E) =
P(N) × H(N). Then the category of coalgebraic graphs (CoalgF1

,M) is an
M-adhesive category.

3. A hierarchy where the edges are refined by subnets (see [9]) is obtained by
the neighbouring function ngb : E → (N)∗ × Pω(N) that maps edges to a
pair where the first component defines the incident nodes and the second
component defines the nodes contained by the edges. This nesting is layered
as it is defined by the functor Pω, see Definition 2. The resulting graphs
are given by G = (N,E, ngb : E → N∗ × Pω(N)). The category of such
graphs is given by the comma category < IdSets ↓ G > with the functor
G = (()∗ × Pω) ◦ X2.
Note G(N) = (()∗ × Pω) ◦ X2(N) = (()∗ × Pω)(N,N) = N∗ × Pω(N). For
an example see Sect. 5.1. Item 2.

4. For hierarchies where the edges between nodes may have other parents than
the nodes and where the edges may contain subgraphs (as in [24]) the
coalgebraic graphs are given by the functions cnt : N → P(N � E) and
ngb : E → P(N) × P(N � E). We use the coalgebra with F2(N,E) =
(P(N � E),P(N) × P(N � E)). P(N � E) yields nested sets of nodes and
edges and P(N) yields the incident nodes of an hyperedge. To obtain an M-
adhesive category CoalgF2

we construct F2 from other functors that yield
M-adhesive categories. An example is in Sect. 5.1. Item 3

5. Multiple hierarchies can be constructed as coalgebraic graphs using a copying
functor Xi : Sets → Sets×Sets× ...×Sets. Then the contains function cnt :
N → ∏ ◦Xi ◦P(N) yields for each node i different nestings. For edges we may
use hyperedges ngb : E → P(N). The corresponding M-adhesive category
CoalgF3

of coalgebraic graphs is given by F3(N,E) = (
∏ ◦Xi ◦ P(N),P(N))

and corresponds to the multi-hierarchical graphs in Sect. 5.2.
6. For bigraphs, see Sect. 5.3, we use the functions cnt : N → P(N) and

ngb : E → P(N � E) × P(N � E). Again we obtain an M-adhesive category
CoalgF4

of coalgebraic graphs with F4(N,E) = (P(N),P(N �E)×P(N �E))
constructed from other functors.

7. The functions cnt : N → P(N) and ngb : E → N × N × P(E) allow the
description of graph grouping and give rise to the category of coalgebraic
graphs CoalgF5

with F5(N,E) = (P(N), N × N × P(E)) that corresponds
roughly to the the graph grouping in Sect. 5.4.

Hierarchical Graph Transformation Revisited 29

Varying the constructions, mainly comma categories, product categories and
coalgebras and varying the involved functors yield a huge amount of different
hierarchy concepts that all lead to well-defined transformation systems. The
above examples have been selected to show the width of this approach and to
relate it to existing notions of hierarchical graphs. It may as well be used to define
new appropriate hierarchy concepts. So, for a specific application the employed
hierarchy concept can be chosen out of many different ones.

5 Transformations of Hierarchical Graphs

Here we argue to what extent known concepts can be considered as M-adhesive
categories of hierarchical graphs. The detailed, mathematical investigation of
each of these examples is beyond the scope of this paper.

Labels and attributes are not considered in this paper, but labelled or
attributed graphs yield M-adhesive categories (see [10,12]) and at least labels
can be introduced into coalgebraic constructions (see [1,26]).

5.1 Hierarchical Graphs

Many possibilities to define hierarchical graphs have already been investigated,
e.g. [4,6–9,24]. In [13] the possibility of infinitely recursive hierarchies has already
been introduced as an infinite number of type layers. Here we sketch how three
of them, namely [8,9,24], can be considered in this framework.

1. Hierarchical Graphs as in [8]
In this approach graphs are grouped into packages via a coupling graph.
A hierarchical graph is a system H = (G,D,B), where G is a graph some
graph type, P is a rooted directed acyclic graph, and B is a bipartite coupling
graph whose partition contains the nodes of NG and of NP . All edges are
oriented from the first NG to the second set of nodes NP and every node in
NG is connected to at least one node in NP . For this approach we can consider
coalgebraic graphs in the coalgebra category CoalgF1

(see Example 5.2) with
cnt : N → P(N) being well-founded. Additionally a completeness condition,
stating that each atomic node is within some package, has to hold:
∀n ∈ N : cnt(n) = n ⇒ ∃p ∈ N : n ∈ cnt(p)

Fig. 2. Hierarchical graph as in [8]

The packages are the nodes that are
not atomic. The edge function is given
by ngb : E → H(N) where H(N)
determines the type of the underlying
graphs. In Fig. 2 we have an example
with two packages, that uses directed
egdes. So based on H = X2 we can give
this example as a coalgebraic graph.

30 J. Padberg

We have N = {n,m, x, y, z, p1, p2, p3}

with cnt(v) =

⎧
⎪⎪⎨

⎪⎪⎩

v ; if v ∈ {n,m, x, y, z}
{x, y, z} ; if v = p1
{n,m} ; if v = p2
{p1, p2} ; if v = p3

and ngb :

⎧
⎪⎪⎨

⎪⎪⎩

a �→ (y, x)
b �→ (y, z)
c �→ (m,n)
e �→ (z, n)

2. Hierarchical Hypergraphs as in [9] Hypergraphs H = (V,E, att, lab) in [9]
consist of two finite sets V and E of vertices and hyperedges. These are
equipped with an order, so the attachment function is defined by att : E →
V ∗. The hierarchy is given in layers, in the sense that subsets in the same
layer have the same nesting depth. So, edges are within one layer. Hierarchical
graphs < G,F, cts : F → H >∈ H are given with special edges F that contain
potentially hierarchical subgraphs. Figure 3a depicts a hierarchical graph that
can be considered to be a graph in the comma category < IdSets ↓ G > (see
Example 5.3). The graph G = (N,E, ngb) with ngb : E → N∗ × Pω(N)) is
defined so that edges are node-based.

3. Hierarchical Graphs as in [24] are obtained from hypergraphs by adding a
parent assigning function to them. Nodes and edges can be assigned as a
child of any other node or edge. These correspond to coalgebraic graphs in
the category CoalgF2

(see Example 5.4). The parent function coincides with
cnt : N → P(N � E) being well-founded and hierarchical and ngb : E →
P(N) × P(N � E) since edges can have children as well.

In Fig. 4 the nodes N = {1, 2, 3, 6, 8, 9, 11} and the contains function cnt :
N → P(N � E), yield the nodes and their children. The hyperedges E =
{4, 5, 7, 10} with ngb : E → P(N × P(N � E)) yield the edges. Note in this
example the edges are not nested.
Contains and neighbour function are given by
cnt : 1�→1 8�→8

2�→2 9�→9
3�→{1, 2, 4} 11�→{8, 9}
6�→6

and ngb : 4�→({1, 2}, ∅)
5�→({2, 6}, ∅)
7�→({3, 6, 11}, ∅)

10�→({8, 9}, ∅)

5.2 Multi-Hierarchical Graphs

In [29] multiple hierarchies have been suggested, first ideas can be found in [24].
A finite set of child nesting functions is specified that relate nodes to set of
nodes and edges. This corresponds to a finite family (cnti : N → P(N � E))i<n

that are well-founded and hierarchical. For transformations of multi-hierarchical
graphs there is the M-adhesive category CoalgF3

of coalgebraic graphs (see
Example 5.5).

5.3 Bigraphs as an Hierarchy

Bigraphs [22] originate in process calculi for concurrent systems and provide a
graphical model of computation. A bigraph is composed of two graphs: a place

Hierarchical Graph Transformation Revisited 31

(a) as given in[9]

ngb : a 	→< xyz, ∅ >
b 	→< nm, ∅ >
c	→< v2v4, ∅ >
e1 	→< v1v2v3, {x, y, z} >
e2 	→< v4, {n,m} >

(b) as a graph in < IdSets ↓ G >

Fig. 3. Example of hierarchical hypergraphs

graph and a link graph. They emphasize interplay between physical locality
and virtual connectivity. Reaction rules allow the reconfiguration of bigraphs.
A bigraphical reactive system consists of a set of bigraphs and a set of reaction
rules, which can be used to reconfigure the set of bigraphs. Bigraphs may be
composed and have a bisimulation that is a congruence wrt. composition. Cate-
gorically, bigraphs are given as morphisms in a symmetric partial monoidal cat-
egory where the objects are interfaces. This construction corresponds to ranked
graphs as given in [15] where morphisms are given by a isomorphism class of con-
crete directed graphs with interfaces. [11] discusses extensively the relation of
bigraphs to graph transformations. In [16] a functor that flattens bigraphs into
ranked graphs is provided that encodes the topological structure of the place
graph into the node names. In [5] bigraphs are shown to be essentially the same
as gs-graphs that present the place and the link graph within one graph. We also
represent bigraphs within one graph, where the hierarchical structure is given
by a superpower set of nodes and the link structure is given by nested hyper-
edges. Here we abstract from the categorical foundations and give bigraphs as a
special cases of hierarchical graphs. Hence, we ignore their categorical structure,

(a) Example from [24] (b) corresponding coalgebraic graph

Fig. 4. Hierarchical graph in [24]

32 J. Padberg

(a) Example from [22] (b) as a graph in Coalg
F4

Fig. 5. Bigraph

but we obtain a transformation system. Nevertheless, often only the graphical
representation of bigraphs is used [3,30,31].

A bigraph is a 5-tuple: (V,E, ctrl, prnt, link) : 〈k,X〉 → 〈m,Y 〉, where V is
a set of nodes, E is a set of edges, ctrl is the control map that assigns controls
to nodes, prnt is the parent map that defines the nesting of nodes, and link
is the link map that defines the link structure. The notation 〈k,X〉 → 〈m,Y 〉
indicates that the bigraph has k holes (sites) and a set of inner names X and m
regions, with a set of outer names Y . These are respectively known as the inner
and outer interfaces of the bigraph.

Below we illustrate the relation of bigraphs to coalgebraic graphs in CoalgF4

(see Example 5.6) in an example. In Fig. 5a we have an introductory example
from [22] that we represent as a coalgebraic graph. The coalgebraic graphs in
the M-adhesive category CoalgF4

need to have well-founded and hierarchical
nodes, where the contains function represents the parent function, so cnt =
prnt. The function cntrl yields basically the in- and out-degree of each node.
The link function yields hyperedges, which we represent as directed hyperedges.
Hyperedges connecting outer names are represented as directed hyperedges with
the arc itself as the target, those connecting inner names as directed hyperedges
with the arc itself as the source. The regions correspond to the roots 0,1 of the
forests given by cnt and the site are the distinguished atomic nodes 0, 1, 2. The
nodes N = {0,1, v0, v1, v2, v3, 0, 1, 2} and the contains function cnt : N → P(N),
yield the place graph. The directed nested hyperedges E = {e1, e2, e3, e4, e5}
with ngb : E → P(N � E) × P(N � E) yield the link graph. We have:

cnt : 0�→{v0, v2}
1�→{v3, 1}

v0 �→{v1}
v1 �→{0}
v2 �→v2
v3 �→{2}
i�→i;for 0 ≤ i ≤ 2

and ngb : e1 �→({v1, v2, v3}, {v1, v2, v3})
y0 �→({v2}, {v2})
y1 �→({v2, v3}, {v2, v3})
x0 �→({x0}, {y1})
x1 �→({x1}, {v3})

Assuming cnt to be just well-founded we obtain bigraphs with sharing as in [28].

Hierarchical Graph Transformation Revisited 33

5.4 Graph Grouping

[19] aims at a fundamentally different application area, namely graph grouping to
support data analysts making decisions based on very large graphs. Here, a graph
hierarchy is established to cope with large amounts of data and to aggregate
them. Graph grouping operators produce a so-called summary graph containing
super vertices and super edges. A super vertex stores the properties representing
the group of nodes, and a super edge stores the properties representing the
group of edges. Basically this leads to a contains function cnt : N → P(N)
that are well-founded but not necessarily hierarchical and a neighbour function
ngb : E → N × N × P(E). These can be given as coalgebraic graphs in the
category of coalgebras CoalgF5

(see Example 5.7) that is M-adhesive.
But clearly this graph grouping is only sensible for attributed graphs since

these used to abstract the data.

6 Related Work

Abstraction in graph transformations is employed for different purposes, e.g. for
model checking, for a common theory for different types of graphs, for transfer-
ring concepts and results. Abstract approaches to graph transformations [10,12]
of different types of graphs comprise mainly M-adhesive transformation systems.
Other approaches to abstract graphs can be found in that uses the presentation
of graphs as a comma-category [17,27] or as a coalgebra [18]. F -graphs are a
family of graph categories induced by a comma category construction using a
functor F (see [27]). In [17] the notion of F -graphs based on a construction that
is a comma-category and has been encoded as a coalgebraic construction in [18]
using the basic idea from [26].

In [20,21] coalgebraic signatures are used to define various graph types and
yields first steps towards a new paradigm for graph transformation systems.
Moreover [20] is concerned with attributed graph transformations, since the
coalgebraic definition allows a uniform treatment of term algebras over arbi-
trary signatures and unstructured label sets. in contrast this contribution is
concerned with the inner structure of hierarchical graphs and establishes coalge-
bras as another possible construction for M-adhesive transformation systems.

7 Concluding Remarks

We have presented a novel approach to hierarchies in graphs and graph transfor-
mations. This approach supports the use of the mature and extensive theory of
algebraic graph transformations for graphs with many different and also uncom-
mon hierarchy concepts. The aim of our approach is not a generalisation of
hierarchy concepts in graph transformation but a possibility to access algebraic
graph transformation for graphs with a wide spectrum of hierarchy concepts.

The vision is a clear and simple access that provides a potential user with
the hierarchical technique that is most adequate for the purpose. This requires

34 J. Padberg

a much deeper treatment of the hierarchical concepts at the abstract categorical
level as well as an intuitive representation of these concepts.

To aim at this vision future work comprises then formulation of typical results
and notions for hierarchical graph transformations, as e.g. flattening, hierarchical
rule application or imposing a hierarchy. Moreover, the inclusion of labels, types
and attributes is central for realizing that vision. For this task the work in [21] is
an exciting prospect. Additionally, the transfer of existing concepts to this more
categorical approach is required based on further investigation of the relations
discussed in Sect. 5.

Acknowledgements. I am very grateful for the constructive and thorough comments
of the anonymous referees.

References

1. Adamek, J.: Introduction to coalgebra. Theor. Appl. Categories 14, 157–199
(2005). http://www.tac.mta.ca/tac/volumes/14/8/14-08abs.html

2. AGG: The attributed graph grammar system (2014). http://user.cs.tu-berlin.de/
∼gragra/agg/, revision: 10/29/2014 16:43:00

3. Benford, S., Calder, M., Rodden, T., Sevegnani, M.: On lions, impala, and bigraphs:
Modelling interactions in physical/virtual spaces. ACM Trans. Comput. Hum.
Interact. 23(2), 9: 1–9: 56 (2016). http://doi.acm.org/10.1145/2882784(2016)

4. Bruni, R., Corradini, A., Montanari, U.: Modeling a service and session calculus
with hierarchical graph transformation. ECEASST 30 (2010). http://journal.ub.
tu-berlin.de/index.php/eceasst/article/view/427

5. Bruni, R., Montanari, U., Plotkin, G.D., Terreni, D.: On hierarchical graphs: recon-
ciling bigraphs, Gs-monoidal theories and Gs-graphs. Fundam. Inform. 134(3–4),
287–317 (2014). http://dx.doi.org/10.3233/FI-2014-1103

6. Busatto, G.: An abstract model of hierarchical graphs and hierarchical graph trans-
formation. Ph.D. thesis, University of Paderborn, Germany (2002). http://ubdata.
uni-paderborn.de/ediss/17/2002/busatto/disserta.pdf

7. Busatto, G., Hoffmann, B.: Comparing notions of hierarchical graph transforma-
tion. Electr. Notes Theor. Comput. Sci. 50(3), 310–317 (2001). http://dx.doi.org/
10.1016/S1571-0661(04)00184--7

8. Busatto, G., Kreowski, H., Kuske, S.: Abstract hierarchical graph transformation.
Math. Struct. Comput. Sci. 15(4), 773–819 (2005). http://dx.doi.org/10.1017/
S0960129505004846

9. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation. J. Com-
put. Syst. Sci. 64(2), 249–283 (2002). http://dx.doi.org/10.1006/jcss.2001.1790

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in TCS. Springer (2006)

11. Ehrig, H.: Bigraphs meet double pushouts. Bull. ATCS 78, 72–85 (2002)
12. Ehrig, H., Golas, U., Hermann, F.: Categorical frameworks for graph transforma-

tion and HLR systems based on the DPO approach. Bull. EATCS 102, 111–121
(2010)

13. Engels, G., Schürr, A.: Encapsulated hierarchical graphs, graph types, and meta
types. Electr. Notes Theor. Comput. Sci. 2, 101–109 (1995). http://dx.doi.org/10.
1016/S1571-0661(05)80186--0

http://www.tac.mta.ca/tac/volumes/14/8/14-08abs.html
http://user.cs.tu-berlin.de/~gragra/agg/
http://user.cs.tu-berlin.de/~gragra/agg/
http://doi.acm.org/10.1145/2882784
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/427
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/427
http://dx.doi.org/10.3233/FI-2014-1103
http://ubdata.uni-paderborn.de/ediss/17/2002/busatto/disserta.pdf
http://ubdata.uni-paderborn.de/ediss/17/2002/busatto/disserta.pdf
http://dx.doi.org/10.1016/S1571-0661(04)00184--7
http://dx.doi.org/10.1016/S1571-0661(04)00184--7
http://dx.doi.org/10.1017/S0960129505004846
http://dx.doi.org/10.1017/S0960129505004846
http://dx.doi.org/10.1006/jcss.2001.1790
http://dx.doi.org/10.1016/S1571-0661(05)80186--0
http://dx.doi.org/10.1016/S1571-0661(05)80186--0

Hierarchical Graph Transformation Revisited 35

14. Ermel, C., Rudolf, M., Taentzer, G.: The agg approach: language and environ-
ment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook of
Graph Grammars and Computing by Graph Transformation, pp. 551–603. World
Scientific Publishing Co., Inc. (1999). http://dl.acm.org/citation.cfm?id=328523.
328619

15. Gadducci, F., Heckel, R.: An inductive view of graph transformation. In: Presicce,
F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 223–237. Springer, Heidelberg (1998).
doi:10.1007/3-540-64299-4 36

16. Gassara, A., Rodriguez, I.B., Jmaiel, M., Drira, K.: Encoding bigraphical reactive
systems into graph transformation systems. Electron. Notes Discrete Math. 55,
207–210 (2016). http://dx.doi.org/10.1016/j.endm.2016.10.051

17. Jäkel, C.: A unified categorical approach to graphs (2015). https://arxiv.org/abs/
1507.06328

18. Jäkel, C.: A coalgebraic model of graphs (2016). https://arxiv.org/abs/1508.02169
19. Junghanns, M., Petermann, A., Rahm, E.: Distributed grouping of property graphs

with gradoop. In: Proceedings of the 17. Fachtagung, Datenbanksysteme für Busi-
ness, Technologie und Web. LNI, GI (2017) (to be published)

20. Kahl, W.: Categories of coalgebras with monadic homomorphisms. In: Bonsangue,
M.M. (ed.) CMCS 2014 2014. LNCS, vol. 8446, pp. 151–167. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44124-4 9

21. Kahl, W.: Graph transformation with symbolic attributes via monadic coalgebra
homomorphisms. ECEASST 71 (2014). http://journal.ub.tu-berlin.de/eceasst/
article/view/999

22. Milner, R.: Pure bigraphs: structure and dynamics. Inf. Comput. 204(1), 60–122
(2006). http://dx.doi.org/10.1016/j.ic.2005.07.003

23. Padberg, J.: Towards M-adhesive categories of coalgebraic graphs. Technical
report, ArXiv e-prints (2017). https://arxiv.org/abs/1702.04650

24. Palacz, W.: Algebraic hierarchical graph transformation. J. Comput. Syst. Sci.
68(3), 497–520 (2004). http://dx.doi.org/10.1016/S0022-0000(03)00064--3

25. Prange, U., Ehrig, H., Lambers, L.: Construction and properties of adhesive and
weak adhesive high-level replacement categories. Appl. Categorical Struct. 16(3),
365–388 (2008)

26. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput.
Sci. 249(1), 3–80 (2000). http://www.sciencedirect.com/science/article/pii/
S0304397500000566

27. Schneider, H.J.: Describing systems of processes by means of high-level replace-
ment. In: Handbook of Graph Grammars and Computing by Graph Transforma-
tion, vol. 3, pp. 401–450. World Scientific (1999)

28. Sevegnani, M., Calder, M.: Bigraphs with sharing. Theor. Comput. Sci. 577, 43–73
(2015). http://dx.doi.org/10.1016/j.tcs.2015.02.011

29. Ślusarczyk, G., �Lachwa, A., Palacz, W., Strug, B., Paszyńska, A., Grabska, E.:
An extended hierarchical graph-based building model for design and engineering
problems. Autom. Const. 74, 95–102 (2017)

30. Walton, L.A., Worboys, M.: A qualitative bigraph model for indoor space. In: Xiao,
N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol.
7478, pp. 226–240. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33024-7 17

31. Worboys, M.F.: Using bigraphs to model topological graphs embedded in orientable
surfaces. Theor. Comput. Sci. 484, 56–69 (2013). http://dx.doi.org/10.1016/j.tcs.
2013.02.018

http://dl.acm.org/citation.cfm?id=328523.328619
http://dl.acm.org/citation.cfm?id=328523.328619
http://dx.doi.org/10.1007/3-540-64299-4_36
http://dx.doi.org/10.1016/j.endm.2016.10.051
https://arxiv.org/abs/1507.06328
https://arxiv.org/abs/1507.06328
https://arxiv.org/abs/1508.02169
http://dx.doi.org/10.1007/978-3-662-44124-4_9
http://journal.ub.tu-berlin.de/eceasst/article/view/999
http://journal.ub.tu-berlin.de/eceasst/article/view/999
http://dx.doi.org/10.1016/j.ic.2005.07.003
https://arxiv.org/abs/1702.04650
http://dx.doi.org/10.1016/S0022-0000(03)00064--3
http://www.sciencedirect.com/science/article/pii/S0304397500000566
http://www.sciencedirect.com/science/article/pii/S0304397500000566
http://dx.doi.org/10.1016/j.tcs.2015.02.011
http://dx.doi.org/10.1007/978-3-642-33024-7_17
http://dx.doi.org/10.1016/j.tcs.2013.02.018
http://dx.doi.org/10.1016/j.tcs.2013.02.018

Geometric Modeling: Consistency Preservation
Using Two-Layered Variable Substitutions

Thomas Bellet1(B), Agnès Arnould2, Hakim Belhaouari2, and Pascale Le Gall1

1 MICS, CentraleSupélec, University of Paris-Saclay, Paris, France
{thomas.bellet,pascale.legall}@centralesupelec.fr

2 XLIM UMR CNRS 7252, University of Poitiers, Poitiers, France
{agnes.arnould,hakim.ferrier.belhaouari}@univ-poitiers.fr

Abstract. In the context of topology-based geometric modeling, oper-
ations transform objects regarding both their topological structure (i.e.
cell subdivision: vertex, edge, face, etc.) and their embeddings (i.e. rel-
evant data: vertex positions, face colors, volume densities, etc.). Graph
transformations with variables allow us to generically handle those oper-
ations. We use two types of variables: orbit variables to abstract topo-
logical cells and node variables to abstract embedding data. We show
how these variables can be simultaneously used, and we provide syntac-
tic conditions on rules to ensure that they preserve object consistency.
This rule-based approach is the cornerstone of Jerboa, a tool that allows
a fast and safe prototyping of geometric modelers.

Keywords: DPO graph transformations · Labeled graphs · Graph
variables ·Topology-based geometric modeling ·Consistency preservation

1 Introduction

Context. Geometric modeling concerns mathematical models useful to create,
manipulate, modify or display realistic n-dimensional (nD) objects in numerous
application domains such as computer-aided design and manufacturing, mechan-
ical engineering, architecture, geology, archaeology, medical image processing,
scientific visualization, animated movies or video games. Many modeling tools
are therefore developed at expensive costs to fulfill the various application needs.
In order to facilitate the prototyping of new modelers, we developed a tool set
for designing and generating safe geometric modeler kernels, called Jerboa1 [1].

The Jerboa Tool Set. Objects are specified as generalized maps (G-maps) [7]
which allow uniform modeling of complex nD objects (e.g. 2D surfaces, 3D vol-
umes) by regular graphs. Their topological structure (i.e. cell subdivision) is
encoded by the graph structure and the arc labels, while their embeddings (i.e.
geometric or applicative data) are given by the node labels. Their consistency is
guaranteed thanks to G-map labeling constraints. Designing a modeler therefore
1 http://xlim-sic.labo.univ-poitiers.fr/jerboa/.

c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 36–53, 2017.
DOI: 10.1007/978-3-319-61470-0 3

http://xlim-sic.labo.univ-poitiers.fr/jerboa/

Geometric Modeling: Consistency Preservation 37

(a) Modeler editor (b) Generated modeler

Fig. 1. Design and application of the face triangulation with Jerboa

starts by specifying the dimension and the embeddings of manipulated objects
(e.g. 3D objects with vertex positions and face colors in Fig. 1). Modeling opera-
tions are then defined as graph transformation rules, using two types of dedicated
variables: orbit variables [19] and node variables [4] which respectively abstract
topological structures (e.g. in order to subdivide a face whatever its number
of vertices) and embeddings (e.g. in order to compute the barycenter of a face
whatever its vertices’ positions). The rule editor (see Fig. 1(a)) includes a syntac-
tic analyzer which guides the user while ensuring consistency. Once designed, a
modeler can be generated and used right away with the provided generic viewer
(see Fig. 1(b)) or integrated into larger tools. End-users of this modeler are not
required to understand the rule language as they only pick and apply operations
interactively.

Building Consistent Objects. Jerboa’s rule language relies on two key aspects:
the instantiation of variables and the syntactic conditions of consistency preser-
vation (i.e. conditions on rules that preserve G-map labeling constraints). As
long as only one variable type is concerned, these aspects have been proved well-
founded. Purely topological operations defined with the sole use of orbit variables
(e.g. unsew a vertex, sew two faces, etc.) have been discussed in [5,19], whereas
geometric operations defined with the sole use of node variables (e.g. translate
a vertex, swap two face colors, etc.) have been discussed in [3,4]. Therefore,
the previous limitation of Jerboa regarded the simultaneous use of both vari-
able types which come with different instantiation mechanisms and syntactic
conditions, making them hard to use together.

Contribution. Following the general approach of DPO graph transformations
with variables defined in [11], we propose a two-layered instantiation of vari-
ables. Orbit variables are first substituted by cells of the object, thus automat-
ically duplicating the node variables. These can then be substituted if a match
morphism exists, thus leading to a classical DPO application of the instantiated
rule. To ensure that transformed objects are consistent, we extend the syntactic
conditions on rules separately defined for each variable type to rules with both
variable types.

38 T. Bellet et al.

Related Work. Formal rule languages are already commonly used in the context
of geometric modeling. In particular, L-systems are particularly useful to proce-
durally model regular objects such as plants or buildings [6,15]. However, they
are inadequate to design a generic geometric modeler since every new construc-
tion requires dedicated implementation efforts. Conversely, graph transformation
rules are self-contained and can be applied with a single rule application engine
(for a given transformation class). Moreover, they have already been enriched
with several variable types with various genericity purposes (e.g. label computa-
tions [13], labeling constraints [16,17], structural transformations [10,12]), which
facilitated the definition of variables dedicated to geometric modeling. At last,
let us point out that despite the existence of many efficient generic tools (i.e.
GrGen.NET, Groove, AGG, etc.) [14,18], we favored the development of a dedi-
cated tool [1] for performance issues. Indeed, as any geometric modeler, modelers
designed with the help of Jerboa have to interactively handle objects that can be
over a million nodes large, whereas the mentioned tools only allow few thousand
nodes.

Paper Organization. Section 2 presents G-maps [7] and conditions under which
rules without variable define consistent transformations. Section 3 presents orbit
variables and node variables and their respective conditions of consistency preser-
vation. In Sect. 4, we introduce a dedicated two-layered instantiation process to
simultaneously use both variable types and we provide new conditions for con-
sistency preservation.

2 G-maps and Their Transformations

2.1 G-maps

The topological model of G-maps [7] can be directly encoded with labeled graphs:
the topological structure is defined by both the graph itself and the arc labels,
while the embedding is defined by node labels. To handle multiple embeddings
(e.g. vertex positions and face colors in Fig. 2(a)), we defined in [3] the category
of Π-graphs (with Π a finite set of node labels) as an extension of partially
labeled graphs [9], in which nodes have |Π| labels.

In the sequel, n ∈ N will denote the dimension of considered objects and τ
will denote a generic data type name with �τ� its set of typed values.

Π-graph. For Π = (π :→ τ) a family of typed names, a Π-graph G =
(V,E, s, t, (π)π∈Π , α) consists in a set E of arcs, two functions source s : E → V
and target t : E → V , a family of partial functions2 (π : V → �τ�)π∈Π that label
nodes and a partial function α : E → [0, n] that labels arcs.

2 Given X and Y two sets, a partial function f from X to Y is a total function
f : X ′ → Y , from X ′ a subset of X. X ′ is called the domain of f , and is denoted by
Dom(f). For x ∈ X\Dom(f), we say that f(x) is undefined, and write f(x) = ⊥.
We also note ⊥ : X → Y the function totally undefined, that is Dom(⊥) = ∅.

Geometric Modeling: Consistency Preservation 39

A

B C

D E

(a)

2

2

2

2

2

2

(b)

1

11

1 1

11

(c)

d
b

c

a

m n
l

j

k

i
g h

e f

0 0

0

0

0

00

(d)

d
b

c
a

m n
l

j

k

i
g h

e f

A A

B

B C

C

C

C

B

B

D

D E

E

(e)

Fig. 2. Decomposition of a geometric 2D object into a 2-G-map (Color figure online)

All examples will be colored G-maps in dimension 2, such as in Fig. 2. Arcs
are labeled on [0, 2] to encode topological relations, while nodes are labeled by
positions and colors (functions pos and col respectively) to encode embedding
data

G-maps intuitively result from the object decomposition into topological
cells. The 2D object of Fig. 2(a) is first (Fig. 2(b)) decomposed into faces con-
nected along their common edge with a 2-relation and provided with 2-loops
on border edges. Similarly, faces are split into edges connected with 1-relations
(Fig. 2(c)). At last, edges are split into vertices by 0-relations to obtain the
2-G-map of Fig. 2(d). Nodes obtained at the end of the process are the G-map
nodes and the different i-relations are labeled arcs: for a G-map of dimension
n, i belongs to [0, n]. For readability purpose, we will use the graphical codes of
Fig. 2 (black line for 0-arcs, red dashed line for 1-arcs and blue double line for
2-arcs).

Topological cells of G-maps are defined by subgraphs called orbits and built
from an originating node v and a set o ⊆ [0, n]. By denoting 〈o〉 any word on
o without repetition (e.g. 〈1 2〉 or 〈2 1〉 for o = {1, 2}), the orbit 〈o〉(v) (of type
〈o〉 adjacent to v) is the subgraph which contains v, the nodes reachable from
node v using arcs labeled on o, and the arcs themselves. By definition, embedding
data (positions or colors) are shared by all nodes belonging to an orbit of the
associated type. In Fig. 2(e), the vertex adjacent to e is the orbit 〈1 2〉(e) which
contains nodes c, e, g and i, all labeled with the position B attached to the
vertex. Similarly, nodes a, b, c, d, e, f all belong to the same face orbit 〈0 1〉 and
are all labeled by the same color .

Topological graph. An Π-graph G is a n-topological graph if the arc labeling
function α is a total function on [0, n]. Gα, called the topological structure of G,
is the graph G, except that all node labeling functions are totally undefined.

Orbit type. An orbit type 〈o〉 is a subset o ⊆ [0, n], and denoted as a word on
[0, n] without repetition.

Orbit equivalence. For any orbit type 〈o〉, ≡G〈o〉 is the orbit equivalence relation
defined onVG×VG as the reflexive, symmetric and transitive closure built fromarcs

40 T. Bellet et al.

with labels in o (i.e. ensuring for each arc e∈G with α(e)∈o, sG(e) ≡G〈o〉 tG(e)).
A graph whose edge labels are in 〈o〉 is said to be of type 〈o〉.
Orbit. For v ∈ VG, the 〈o〉-orbit of G adjacent to v, denoted by G〈o〉(v) (or 〈o〉(v)),
is the subgraph of G whose set of nodes is the equivalence class of v using ≡G〈o〉
and whose set of arcs are those labeled on o between nodes of G〈o〉(v), and whose
source, target, labeling functions are the restrictions of functions of G.

Embedding. An embedding π : 〈o〉 → τ is characterized by a name π, a data
type name τ and a support orbit type 〈o〉.

We will therefore consider pos : 〈1 2〉 → point and col : 〈0 1〉 → color.
Regarding an embedding π : 〈o〉 → τ , all nodes of an 〈o〉-orbit will share the same
label by π (called π-label). G-maps are provided with an embedding constraint
capturing this property [3]. Besides, G-maps are equipped with constraints relat-
ing to the topology. The cycle constraint ensures that in G-maps, two i-cells can
only be adjacent along (i − 1)-cells. For instance, in Fig. 2(d), the 0202-cycle
constraint implies that faces are stuck along topological edges.

Definition 1 (G-map [3,7,19]). For Π = (π : 〈o〉 → τ) a family of embed-
dings, a G-map embedded on Π (or Π-embedded G-map) is a topological graph
G = (V,E, s, t, (π)π∈Π , α) that satisfies the following consistency constraints:

– Symmetry: G is symmetric (i.e. ∀e ∈ E, ∃e′ ∈ E, such that s(e′) = t(e),
t(e′) = s(e), and α(e′) = α(e)),

– Adjacent arcs: each node is the source node of n + 1 arcs labeled from 0 to n,
– Cycles: ∀i, j such that 0 ≤ i ≤ i + 2 ≤ j ≤ n, there exists a cycle3 labeled by

ijij starting from each node.
– Embedding consistency: every node labeling function π ∈ Π is total and for

all nodes v and w such that v ≡〈o〉 w, π(v) = π(w).

2.2 Consistent G-map Transformations Using DPO

Morphisms on Π-graphs extend morphisms defined on partially labeled graphs
to a set of labels Π. In [3], we extended relabeling graph transformations of [9]
to Π-graphs using the double-pushout approach (DPO) [8].

Morphism. For two Π-graphs G = (VG, EG, sG, tG, (πG)π∈Π , αG) and H =
(VH , EH , sH , tH , (πH)π∈Π , αH), a Π-graph morphism m : G → H is defined by
two functions mV : VG → VH and mE : EG→EH preserving sources, targets
and labels - i.e. sH ◦ mE = mV ◦ sG, tH ◦ mE = mV ◦ tG, πH(m(v)) = πG(v)
for all π ∈ Π and v ∈ Dom(πG), and αH(m(e)) = αG(e) for all e ∈ Dom(αG).
If m(v) = v for all v ∈ VG and m(e) = e for all e ∈ EG, m is an inclusion and is
denoted m :G↪→H.

We have shown in [3] that the Π-graph category inherits from the par-
tially labeled graph category [9] all classical properties such as the existence
of pushouts.
3 A cycle is a sequence e1...ek of arcs such t(ei) = s(ei+1) for each 1 ≤ i < k and

t(ek) = s(e1). The word α(e1)...α(ek) is called its label.

Geometric Modeling: Consistency Preservation 41

Rule. A rule r : L←↩K ↪→R consists of two inclusions K ↪→L and K ↪→R such
that:

– for all v ∈ VL (resp. for all e ∈ EL and all π ∈ Π), αL(v) = ⊥ (resp.
πL(e) = ⊥) implies v ∈ VK and αR(v) = ⊥ (resp. e ∈ EK and πR(e) = ⊥),

– for all v ∈ VR (resp. for all e ∈ ER and all π ∈ Π), αR(v) = ⊥ (resp.
πR(e) = ⊥) implies v ∈ VK and αL(v) = ⊥ (resp. e ∈ EK and πL(e) = ⊥).
We call L the left-hand side, R the right-hand side and K the interface of r.

Direct derivation. A direct derivation from a graph G to a graph H via a
rule r : L ←↩ K ↪→ R consists of two natural pushouts [9] as in Fig. 3, where
m : L → G, called a match morphism, is injective4. If this derivation exists, we
write G⇒r,m H.

d
b

c
a o

p
lj

ki
g

h

e

f

A

A

B

B

C

C

C

C

B

B D

D

E

E

(G)

db

ca
o

p
lj

ki
g
h

e

f

J

I

B

B

C

C

C

C

B

B D

D

E

E

(H)

uJ

Idb

ca
o

p
lj

ki
g
h

e

f

B

B

C

C

C

C

B

B D

D

E

E

(D)

db

c
a e

f
A

A

(L)

db

ca
e
f

(K)

db

ca e
f

(R)

u
J

I
I

J

v

v

m

Fig. 3. A direct derivation (Color figure online)

For example, the rule L ←↩ K ↪→ R in Fig. 3 matches a blue triangle which
has a vertex at position A. The rule transforms the triangle into a square by
splitting this vertex into two vertices at positions I and J , while changing the
face color to red. According to the rule definition, unmatched labels in L such
as the position of node d are also unmatched in R. Secondly, nodes of R with
undefined labels are preserved nodes of the rule, with undefined labels in L.
Consequently, added nodes of R such as the node v have all their labels defined
in R (I and). Moreover, changed labels such as the color of d in R () are
matched in L (). These rule properties ensure that when the rule is applied to
a totally labeled object such as G in Fig. 3, the resulting graph H is also totally
labeled.

To ensure that direct derivations preserve G-map constraints of Definition 1,
[19] and [3] respectively introduced topological conditions and embedding con-
ditions on rules that ensure consistency preservation. For example, the rule of
Fig. 3 preserves consistency as the added nodes u and v are added with all their
adjacent arcs, cycles and embeddings. Similarly, the embedding modifications
(to and A to I/J) are consistently defined on all concerned nodes.
4 A morphism g is injective if gV and gE are injective.

42 T. Bellet et al.

Result 1 (G-map consistency preservation using basic rules [3,4,19]).
For r : L ←↩ K ↪→ R a graph transformation rule and m : L → G a match mor-
phism on a Π-embedded n-G-map, the direct transformation G ⇒r,m H produces
a Π-embedded n-G-map if r satisfies the following topological conditions:

– Symmetry: L, K and R satisfy the symmetry constraint.
– Adjacent arcs:

• preserved nodes of K are sources of arcs having the same labels in both
the left-hand side L and the right-hand side R;

• removed nodes of L\K and added nodes of R\K must be source of exactly
n + 1 arcs respectively labeled from 0 to n.

– Cycles: for all pair (i, j) such 0 ≤ i ≤ i + 2 ≤ j ≤ n,
• any added node of R\K is source of an ijij-cycle;
• any preserved node of K which is source of an ijij-cycle in L, is also
source of an ijij-cycle in R;

• any preserved node of K which is not source of an ijij-cycle in L is source
of the same i-arcs and j-arcs in L and R.

and the following embedding conditions for all π : 〈o〉 → τ in Π:

– Embedding consistency: L, K, R satisfy the embedding consistency
constraint.

– Full match of transformed embeddings: if v is a node of K such that πL(v) �=
πR(v), then every node of R〈o〉(v) is labeled and is the source of exactly one
i-arc for each i of 〈o〉.

– Labeling of extended embedding orbits: if v is a node of K and there exists
a node w in R〈o〉(v) such that w is not in L〈o〉(v), then there exists v′ in K
with v′ ≡L〈o〉 v and v′ ≡R〈o〉 v such that πL(v′) �= ⊥.

A

B C

D

E

F

I

J

(a) Modeled object

A

B C

D

E

F

I

J

M

(b) Triangle triangulation

A

B C

D

E

F

I

J

N

(c) Square triangulation

Fig. 4. A modeling operation: face triangulation

3 Rule Variables for Geometric Modeling

Let us consider the face triangulation operation of Fig. 4. On the topological
side, the face is subdivided into as many triangles as it contains edges. On the
embedding side, new face colors are computed as the mix of the subdivided face
color and the neighboring face color, while the position of the created vertex
is set as the barycenter of the transformed face. As the operation depends on
the attributes (number of vertices, position, color) of the matched object, its
definition by a single generic rule requires the use of variables.

Geometric Modeling: Consistency Preservation 43

3.1 Graph Transformations with Variables

Intuitively, rule schemes (rules with variables) describe as many concrete rules
as there are possibilities to instantiate variables with concrete elements. In [11],
a generic approach has been proposed to deal with variables within graph trans-
formations: roughly speaking, a rule scheme is first applied to a graph along a
kernel match morphism (in our case a morphism that only matches the topolog-
ical structure Lα of the left-hand side L). Then, if a substitution σ associating
a value for all variables can be induced from the kernel match morphism, an
instance rule, generically denoted Lσ ←↩Kσ ↪→Rσ for a rule scheme L←↩K ↪→R,
can be built and finally, applied to the graph as a classical rule.

vu
x,z y,z

vu
x,z y,zc(x,y),z c(x,y),z

p q(L) (R)vu
z z

(K)

(a) Rule scheme

u
A B

(L) vu
A B

qp
I I

(K) (R)v u v

(b) A rule instance

Fig. 5. Embedding label computations with attribute variables

Using this principle, [11] introduces three types of variables. Let us briefly
present two of them which relate to our dedicated variable types. First, attribute
variables illustrated in Fig. 5 allow label computation. In the rule scheme of edge
subdivision, variables x and y abstract two position labels while z abstracts a
color one. In the right-hand side, a topological vertex is added at the center of the
existing two positions, using the dedicated center operator c : point × point →
point, while the color is set to the same face color z.

Second, clone variables illustrated in Fig. 6 allow structural abstraction. Intu-
itively, in order to subdivide n edges, nodes of the rule scheme which are labeled
by the clone variable n are duplicated by as many nodes as the multiplicity value
used to instantiate n, while arcs are duplicated accordingly to node duplications
and arcs of the rule scheme. Note that as we also use the attribute variables x,
y, and z, the rule scheme of Fig. 6(b) still requires to substitute them.

nnnnnnn
vu

x,z y,z

vu

x,z y,zc(x,y),z c(x,y),z

p q(L) (R)vu

z z

(K)
n

(a) Rule scheme with n as clone variable

v1u1

x,z y,z
v1u1

x,z y,zc(x,y),z c(x,y),z
p1 q1

z z

v2u2 p2 q2

v1u1

(L)

x,z y,z

(K)

z z
u2 v2 u2

v2
x,z y,z

(R)

c(x,y),z c(x,y),z

(b) Instantiation of n by 2

Fig. 6. Expanding computations with clone variables

44 T. Bellet et al.

3.2 Node Variables for Embedding Computation

Embedding computations require to traverse the topological structure of modi-
fied objects: e.g. the face triangulation of Fig. 4 requires to access the colors of
adjacent faces, whether such faces exist or not. In [4], we therefore introduced
node variables which are similar to attribute variables. By directly using node
names of L as variables, we provide operators on node variables to access embed-
ding labels and adjacent nodes, thanks to G-map regularity. For a node variable
a, a.π gives access to its π-label while a.αi (with i ≤ n) gives access to the node
connected to node a by an i-arc. Embedding expressions used in a rule scheme
L←↩K ↪→R are then terms built over these operators and nodes of L. Thus, for
a kernel match morphism m : Lα → G, a rule instance LmV ←↩KmV ↪→RmV can
be computed by using the node matching function mV as variable substitution.

d
d

b

c

a

e f(R)

i, t

j, t

p, t

p,t p,u

p,u

p,vp,v

(L)

a b

e

c

f

d

(K)

a b

e

c

f

i, t

j, t

v = mix (e. col, e. 2. col)

u = mix (b. col, b. 2. col)

t = mix (a. col, a. 2. col)

s = a. col

i,s

j,s

i,s

k,s

j,s k,s

p = bary(pos (a))0 1i = a. pos

j = c. pos

k = d. pos

j,v
j,v

i,u
i,u

k,u

k,u

k,v
k,v

(a) Rule scheme

(R)

d
d

b

c

a

e f

a b

e

c

f

d

a b

e

c

f

M M

M

MM

M

A A

C

CB

B

A A

C

C

B

B

A A

C

C

B

B

(L) (K)

(b) A rule instance

(R)(L) (K)

d
d

b

c

a

e f

a b

e

c

f

d

a b

e

c

f

O O

O

OO

O

C C

I

IJ

J

C C

I

I

J

J

C C

I

I

J

J

(c) Another rule instance

Fig. 7. Triangle triangulation with embedding terms

From the rule scheme of Fig. 7(a), we can build the two rule instances
of Fig. 7(b) and (c) respectively corresponding to triangles BAC and JCI of
Fig. 4(a). In the left-hand side, the term a.col is respectively evaluated as and

. In the right-hand side, the dedicated operator mix : color × color → color is
applied to the face color (a.col) and the color of the neighboring face (a.α2.col).
At rule application, a.α2 is evaluated as the 2-neighbor of a. Note that in the bor-
der, nodes are their self 2-neighbors (e.g. node a in Fig. 2(e)). Consequently, some
created faces in Fig. 7(b) and (c) keep their original color. At last, embedding
expressions also include operators in charge of collecting all embedding values
carried by a given orbit. In the rule scheme of Fig. 7(a), the term pos〈0 1〉(a) is
evaluated as the multiset of positions labeling the face, i.e. of 〈0 1〉-orbit adjacent
to node a. In the instance of Fig. 7(b), this set is [A,B,C] and the added vertex
is positioned at bary([A,B,C]) = M using a dedicated barycenter operator.

Geometric Modeling: Consistency Preservation 45

In order to instantiate a rule scheme built over node variables into a rule that
satisfies the conditions of Result 1, we introduced in [4] a completion step. Let us
consider the example of Fig. 8 that merges two faces by removing their common
edge and mixing their colors. This operation can be defined independently of face
shapes by the minimal rule scheme of Fig. 8(a) that only deals with the central
edge and the adjacent nodes. The completion step automatically includes in the
rule instance all nodes concerned by embedding modifications. In the example
of Fig. 8(b) corresponding to an application to the object of Fig. 2(e), this step
completes the rule with the rest of the two faces so that the green color can be
attached on the whole new face.

x wts

(L)

u y z
ws

(K)

z
ws

(R)

z

c = s. col d = w. col e = mix(s.col,w.col)

c
c

c
c

d
d

d
d

e e

ee

(a) Rule scheme

x
w

t
s

u y z

ws

z

ws

z
(R)(L) (K)

(b) A rule instance

Fig. 8. Face merge with embedding terms (Color figure online)

Consequently, rule schemes are exempt from the condition of full match of
transformed embeddings of Result 1. However, to prevent misapplication cases
in which two different embedding orbits would be matched as a single one,
the condition of full match is replaced by a non-overlap condition on match
morphism. Note that similarly to the condition of injective match morphism,
the non-overlap condition has to be dynamically checked, with no particular
difficulty.

Result 2 (G-map consistency preservation using node variables [4]).
For r : L←↩K ↪→R a rule scheme with node variables and m : Lα→G a match
morphism on a Π-embedded G-map, if r satisfies the conditions of Result 1,
except the full match of transformed embeddings, and satisfies the following non-
overlap condition for all 〈o〉 occurring as support orbit type in Π = (π : 〈o〉 → τ),
then the instance rule5 rmV : LmV ←↩KmV ↪→RmV satisfies the conditions of
Result 1.
Non-overlap: for v, u ∈ VL such as v �≡L〈o〉 u, m(v) �≡G〈o〉 m(u).

3.3 Orbit Variables for Topological Rewriting

As existing variable types were unfit to abstract G-map cell transformations, we
introduced orbit variables in [19]. Intuitively, these are typed by an orbit type
〈o〉 so that they can abstract any G-map orbit of type 〈o〉. By rewriting 〈o〉
5 Note that the instantiation includes the completion step that consist in extending

the matched and transformed patterns to the embedding orbits [4].

46 T. Bellet et al.

into another type 〈o′〉, we can change arc labels or remove arcs. For example,
the rule scheme of Fig. 9(a) models the topological triangulation of any face -
i.e. any orbit of type 〈0 1〉. Note that, as for clone variables in Fig. 6, the other
node labels, in this case the color labels, are duplicated along the orbit variable
instantiation. Note also that these colors have been chosen to help reading of
orbit copies, disregarding G-map embedding consistency preservation.

0 _ _2 1 20 1

(L) (K) (R)

(a) Rule scheme on the orbit type 〈0 1〉

d
d

b

c

a

e f
(L)

a b

e

c

f

d

a b

e

c

f

(K) (R)

(b) Triangle rule instance

(L) (K) (R)

j
g h

m
k l

i

n

g h

m
k l

i

n

j
j

g h

m

k l

i

n

(c) Square rule instance

Fig. 9. Face triangulation with orbit variable

The two instance rules of Fig. 9(b) and (c) are constructed as follows:

1. the node v labeled in L with the orbit type 〈0 1〉 is substituted by a face, i.e.
a 〈0 1〉-orbit, e.g. a triangle (resp. a square), to build Lσ ;

2. each node of Lσ is kept in Rσ, and duplicated twice, corresponding to the
nodes v, v′ and v′′, labeled by different orbit types in R;

3. for the face matched by node v, 0-arcs are conserved in Rσ while 1-arcs are
removed as v is relabeled in R by 〈0 〉 (an empty label “ ” replaces 1);
similarly, for node v′, the type 〈 2〉 means both removal of 0-arcs and 2-
relabeling of 1-arcs while for the v′′ node, 〈1 2〉 entails 1-relabeling of 0-arcs
and 2-relabeling of 1-arcs;

4. at last, as indicated by the arcs of R between v, v′ and v′′ nodes, any node
of the matched face v is connected to its image in copy v′ with a 1-arc, and
all v′ and v′′ images of a given node are connected with a 0-arc.

Topological rewriting. A topological rewriting 〈ω〉 of an orbit type 〈o〉 is
defined by a word ω on [0, n] ∪ { }, of same length as o, and such that for
all i in [0, n], there is at most one occurrence of i in ω. We write 〈o→ω〉 for the
type rewriting function that associates each label oi ∈ [0, n] at position i in 〈o〉 to
its images ωi at the same position in 〈ω〉 - i.e. 〈o→ω〉(oi) = ωi. For a graph G =
(V,E, s, t, (π)π∈Π , α) of type 〈o〉, we denote G〈o→ω〉 = (V,E′, s, t, (π)π∈Π , α′)
the rewritten graph with E′⊂E such that ∀e ∈ E, e �∈ E′ if 〈o→ω〉(α(e)) = ,

Geometric Modeling: Consistency Preservation 47

and e ∈ E′ otherwise with α′(e) = 〈o → ω〉(α(e)). At last, for convenience, 〈o〉
denotes both an orbit type and the identity type rewriting function 〈o→o〉.
Rule scheme with orbit variable. For an orbit type 〈o〉, a rule scheme L←↩
K↪→R with orbit variable 〈o〉 is such that all nodes of L, K and R are labeled
by topological rewritings of 〈o〉 and at least one node of L is labeled by 〈o〉.
Orbit variable instantiation. For r : L←↩K ↪→R a rule scheme with orbit
variable 〈o〉 and O a graph of type 〈o〉, we denote rO : LO ←↩KO ↪→RO the
instantiated rule6 [19]. The functions that respectively associate instance nodes
with their originating nodes in graphs of r or in O are respectively denoted
↑L

LO : VLO→VL, ↑L
KO : VKO→VK , ↑R

RO : VRO→VR and ↑O
rO : (VLO ∪VKO ∪VRO)→VO.

In particular, for all π ∈ Π and all node v of rO, we have π(v) = π(↑O
rO (v)).

Since nodes of rule schemes contain topological rewritings as special labels
used to match topological graphs, they do not belong to the same Π-category
than the underlying Π-embedded G-maps. However, as in Fig. 9, these extra
labels disappear after variable instantiation. Additionally, the syntactic condi-
tions that preserve G-map topological consistency have been adapted to handle
both the explicit arcs of rule graphs and the implicit arcs of topological rewrit-
ings that label nodes. For example, node v′ in Fig. 9(a) is added with all its
adjacent arcs as both the 0-arc and 1-arc are explicit in R, while the 2-arc is
implicit in the orbit rewriting 〈 2〉. Similarly, v′ is added with an half-implicit
0202-cycle as v′ and v′′ are connected with an explicit 0-arc while 2 is at the
same position in their topological rewritings 〈 2〉 and 〈1 2〉.
Result 3 (Topological consistency preservation using orbit variable
[19]). For r : L ←↩K ↪→R a rule scheme with orbit variable 〈o〉 and a graph
O of type 〈o〉, the instance rule rO : LO ←↩KO ↪→RO satisfies the topological
conditions of G-map consistency preservation of Result 1 if r satisfies the same
conditions extended to implicit arcs and cycles such as for v a node of L, K or
R labeled by 〈ω〉:
– for i ∈ [0, n], v is source of an implicit i-arc if i ∈ 〈ω〉; for v ∈ K, this implicit

i-arc is preserved if i is at the same position in 〈ωL〉 and 〈ωR〉 the respective
labels of v in L and R - i.e. 〈ωL〉→〈ωR〉(i) = i;

– for all (i, j), v is source of an implicit ijij-cycle if i ∈ 〈ω〉, j ∈ 〈ω〉, and there
exists a node v′ in L labeled by 〈ω′〉 and source of an i′j′i′j′-cycle such that
i′ = 〈ω〉→〈ω′〉(i) and j′ = 〈ω〉 → 〈ω′〉(j);

– for all (i, j), v is source of an half-implicit ijij-cycle if i ∈ 〈ω〉 (resp. j ∈ 〈ω〉)
and either v is source of an j-loop (resp. i-loop) or v is connected by an j-arc
(resp. i-arc) to a node v′ labeled by 〈ω′〉 such that i (resp. j) is at the same
position in 〈ω〉 and 〈ω′〉 - i.e. 〈ω〉→〈ω′〉(i) = i (resp. 〈ω〉→〈ω′〉(j) = j).

As orbit variables abstract multiple nodes (and arcs), their combined use with
node variable requires some care in order to instantiate both variable types.
6 L0, K0, and R0 are the Cartesian product graphs of O and resp. graphs L, K and

R, by keeping tracks of arc relabelings and arc removals.

48 T. Bellet et al.

4 Rule Schemes for Specifying Modeling Operations

4.1 Combining Orbit Variables and Node Variables

Let us consider the rule scheme of Fig. 10(a) that defines the face triangulation of
Fig. 7 by combining the two variable transformations of Figs. 7 and 9. Intuitively,
as the orbit variable 〈0 1〉 defines the topological structure of the rule instance,
it has to be substituted first in order to provide all the node variables required
to match the embedding of the face. When the orbit variable is instantiated in
Fig. 10(b) by a triangle face, the terms v.pos and v.col are duplicated on all
instantiated nodes. However, they are rewritten by respectively replacing v by
the new node names a, b, . . . , f . For example, the term mix(v.col, v.α2.col)
has been rewritten on c′′ by mix(c.col, c.α2.col) as c is the corresponding new
variable.

Definition 2 (Term rewriting). Let r : L←↩K ↪→R be a rule scheme with
orbit variable 〈o〉 and node variables. Let rO be a rule scheme with node variables
resulting from a substitution 〈o〉 by a graph O of type 〈o〉.

The rewritten rule scheme r(O) results from the respective application of the
following term functions ρv for each node v of rO to the node labels of rO,
such that ρv extends the following variable substitution: for every node variable
u of VL, ρv(u) = u′ in which u′ is the unique node variable of VLO such that
↑L

LO(u′) = u and ↑O
rO(u′) = ↑O

rO(v).

Similarly to the rule scheme of Fig. 7(a), the rewritten one of Fig. 10(a) only
requires to substitute node variables to produce the instance rules of Fig. 7(b)
and (c), but in this case multiple terms define the same value. For example,
the barycenter is successively defined as bary(pos〈0 1〉(a)), bary(pos〈0 1〉(b)), . . . ,
bary(pos〈0 1〉(f)) which will all result in the same position. Therefore we must
adapt the conditions of consistency preservation.

Fig. 10. Face triangulation with both variables types

Geometric Modeling: Consistency Preservation 49

4.2 Consistency Preservation

Let us consider the rule scheme of Fig. 11(a) that still defines the triangulation,
but with different embedding computations. In particular, the center is posi-
tioned right between the corner and the barycenter (c(v.pos, bary〈0 1〉(v))) and
the color of created faces is defined as the mix between the original color and
the color of the adjacent face around the corner (v.α1.α2.col). Note that this
rule satisfies the conditions of embedding consistency preservation as defined in
Result 2. However, most instances of this scheme surely break the embedding
consistency. Figure 11(b) and (c) respectively present the rule instance and the
intuitive representation for its application to the triangle ABC of Fig. 4(a). This
rule breaks the added vertex consistency since three different positions are com-
puted: I = c(A,M), J = c(B,M), K = c(C,M) with M = bary([A,B,C]).
Similarly, each created face is embedded with two different colors since the orig-
inal color is mixed with the colors of the faces around the two corners.

Fig. 11. Break of G-map consistency

To prevent inconsistencies, conditions on rule scheme must take into account
the pattern expanding and the term rewriting due to the orbit variable substitu-
tion. For this purpose, considering rule schemes without orbit variable, we first
define the equivalence between two embedding terms that ensures embedding
equality on rule application to a G-map.

Definition 3 (Term equivalence). Let r : L←↩K ↪→R be a rule scheme with
node variables.

For any terms t and t′ of r that define an embedding π : 〈o〉 → τ , the
equivalence between terms, denoted t ≡L〈o〉 t′, is the smallest equivalence relation
extending the equivalence between nodes of L such that:

– for all dimension i ∈ [0, n], let 〈o′〉 the sub-orbit of 〈o〉 containing all dimen-
sions j of 〈o〉 such j + 2 ≤ i or i + 2 ≤ j, if t ≡L〈o′〉 t′ then t.αi ≡L〈o〉 t′.αi,

– for all dimension i ∈ 〈o〉, if t ≡L〈o〉 t′ then t ≡L〈o〉 t′.αi and t.αi ≡L〈o〉 t′,

50 T. Bellet et al.

– for all embedding π′ : 〈o′〉 → τ ′, if t ≡L〈o′〉 t′ then t.π′ ≡L〈o〉 t′.π′,
– for all orbit 〈o′〉, if t ≡L〈o′〉 t′ then π〈o′〉(t) ≡L〈o〉 π〈o′〉(t′),
– for all user function f : s1×...×sm → sm+1 and all terms t1, t

′
1 : s1, ..., tm, t′m :

sm, if t1 ≡L〈o〉 t′1 and ... and tm ≡L〈o〉 t′m then f(t1, ..., tm) ≡L〈o〉 f(t′1, ..., t
′
m).

Intuitively, in the rule scheme of Fig. 10(b), the two terms bary(pos〈0 1〉(a))
bary(pos〈0 1〉(b)) are equivalent because a and b belong to the same 〈0 1〉-
orbit in L. Similarly, mix(a.col, a.α2.col) and mix(c.col, c.α2.col) are equivalent
because: (i) a.col and c.col are equivalent as they belong to the same 〈0 1〉-orbit
carrying the color embedding; (ii) a.α2.col and c.α2.col are equivalent as the
α2-access ensures that a.α2 and c.α2 belong to the same 〈0 1〉-orbit and thus
have the same color.

Theorem 1 (Evaluation equality along term equivalence). Let r : L←↩
K ↪→ R be a rule scheme with node variables and m : Lα → G a kernel match
morphism on a Π-embedded n-G-map G.

If two terms t and t′ of r defining an embedding π : 〈o〉 → τ are equivalent,
i.e. t ≡L〈o〉 t′, then their interpretations along mV are equal, i.e. tmV = t′mV .

The proof can be made by induction on the structure of terms t and t′

following the Definition 3, and using G-map properties. The full proof can be
found in [2].

We now define a condition on rule schemes with orbit variable that ensure
term equivalence, and therefore stability along the instantiation process. Intu-
itively, this condition ensures that when a term labels a node that is also labeled
by a topological rewriting, the rewritten terms should be equivalent for all
expanded embedding orbits. This can be predicted by comparing the term itself
with terms capturing the relabeling of concern arcs - i.e. that belong to the
embedding orbit.

Let us consider the term bary(pos〈0 1〉(v)) that labels node v′′ in the rule
scheme of Fig. 10(a). As node v′′ is labeled by 〈1 2〉 and will be expanded, we
must ensure equivalence for all labels of the 〈1 2〉-subset of 〈1 2〉 (vertex orbit
carrying the position embedding), therefore in this case for both 1 and 2. As
node v appearing in the term is originally labeled 〈0 1〉 in L, we have to con-
sider the respective reverse relabeling 〈1 2 →0 1〉(1) = 0 and 〈1 2→0 1〉(2) =
1. Therefore, the term must be equivalent to both bary(pos〈0 1〉(v.α0)) and
bary(pos〈0 1〉(v.α1)). This is indeed true as v.α0 and v.α1 both belong to the
collected orbit 〈0 1〉(v).

Similarly, let us consider the term mix(v.col, v.α2.col) labeling v′′. We must
ensure equivalence for all labels of the 〈1 2〉-subset of the 〈0 1〉 (face orbit carrying
the color embedding), therefore in the case only 1. As node v appearing in the
term is originally labeled by 〈0 1〉 in L, we consider 〈1 2→0 1〉(1) = 0 and show
that the term is equivalent to mix(v.α0.col, v.α0.α2.col). As α0 belong to the
face orbit 〈0 1〉 carrying the color embedding, v.col and v.α0.col are equivalent.
Similarly, because of the 0202-cycle constraint of G-maps, v.α2 and v.α0.α2

belong to the same face, therefore v.α2.col and v.α0.α2.col are equivalent terms.

Geometric Modeling: Consistency Preservation 51

Definition 4 (Condition of term stability). Let r : L ←↩ K ↪→ R be a rule
scheme with orbit variable and node variables, and v a node of L, K or R, such
v is labeled by an embedding term t defining an embedding π : 〈o〉 → τ and by a
topological rewriting 〈ωv〉.

The term t is stable along instantiation if for all label i of 〈o′〉 the 〈o〉-subset
of 〈ωv〉, t is equivalent to the rewritten term ti (i.e. t ≡L〈o〉 ti) in which any
occurence of a variable x ∈ VL is replaced by x.αj, in which j = 〈ωv →ωx〉(i)7
with 〈ωx〉 the topological rewriting that labels x in L.

Finally, rule schemes containing both node variables and orbit variables pre-
serve G-map consistency if they satisfy all conditions previously introduced,
including term stability. Note that the non-overlap condition of Result 2 is still
to be additionally checked on the application morphism.

Theorem 2 (G-map consistency preservation using both variable
types). For a rule scheme r : L ←↩ K ↪→ R with orbit variable and node vari-
ables, any rule instance resulting from the orbit variable substitution satisfies the
conditions of Result 2 if r satisfies the topological conditions of Result 3 and the
following embedding conditions:

– Embedding consistency of Result 1;
– Labeling of extended embedding conditions orbits of Result 1;
– Term stability of Definition 4.

The proof can be made thanks to the following property resulting from the
orbit variable substitution and the term rewriting: two linked nodes of a same
embedded orbit come either from one node of the rule scheme r and two linked
nodes of the substituted orbit O, or from two linked nodes of r and one node
of O. In both cases, previous results and Theorem 1 ensure value equality. The
full proof can be found in [2].

5 Conclusion

In this paper, we have presented a rule-based language for geometric modeling
involving two types of variables, node variables and orbit variables, and provided
them with a two-layered variable substitution mechanism. Orbit variables are
first substituted, therefore defining the resulting topological structure and gen-
erating new node variables; these node variables are then substituted to compute
the new embeddings. Moreover, rules written in a DPO style are provided with
syntactic conditions ensuring the consistency preservation of embedded G-maps
- i.e. by construction, transformed objects are also embedded G-maps. In partic-
ular, by introducing the conditions of term stability and terms equivalence, the
syntactic conditions of embedding consistency preservation have been adapted to
handle the new node variables generated by the orbit variable instantiation. This
language is the core of Jerboa, a tool set for designing and generating geometric
modelers.
7 Note that if 〈ωv →ωx〉(i) = , ti does not exist and therefore t is not stable.

52 T. Bellet et al.

References

1. Belhaouari, H., Arnould, A., Gall, P., Bellet, T.: Jerboa: a graph transformation
library for topology-based geometric modeling. In: Giese, H., König, B. (eds.)
ICGT 2014. LNCS, vol. 8571, pp. 269–284. Springer, Cham (2014). doi:10.1007/
978-3-319-09108-2 18

2. Bellet, T., Arnould, A., Belhaouari, H., Le Gall, P.: Geometric modeling: con-
sistency preservation using two-layered variable substitutions (extended version).
Research report (2017). https://hal.archives-ouvertes.fr/hal-01509832

3. Bellet, T., Arnould, A., Le Gall, P.: Rule-based transformations for geometric
modeling. In: 6th International Workshop on Computing with Terms and Graphs
(TERMGRAPH 2011), Part of ETAPS, Saarbrücken (2011)

4. Bellet, T., Arnould, A., Le Gall, P.: Constraint-preserving labeled graph transfor-
mations for topology-based geometric modeling. Research report (2017). https://
hal.archives-ouvertes.fr/hal-01476860

5. Bellet, T., Poudret, M., Arnould, A., Fuchs, L., Le Gall, P.: Designing a topo-
logical modeler kernel: a rule-based approach. In: Shape Modeling International
Conference (SMI), Aix-en-Provence, pp. 100–112 (2010)

6. Bohl, E., Terraz, O., Ghazanfarpour, D.: Modeling fruits and their internal struc-
ture using parametric 3Gmap L-systems. Vis. Comput. 31(6), 747–751 (2015)

7. Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. CRC Press, Boca Raton (2014)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Monographs on Theoretical Computer Science. Springer,
Heidelberg (2006)

9. Habel, A., Plump, D.: Relabelling in graph transformation. In: Corradini, A.,
Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505,
pp. 135–147. Springer, Heidelberg (2002). doi:10.1007/3-540-45832-8 12

10. Habel, A., Radke, H.: Expressiveness of graph conditions with variables. Electron.
Commun. EASST 30 (2010)

11. Hoffmann, B.: Graph transformation with variables. In: Kreowski, H.-J., Montanari,
U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and
Systems Modeling: Essays Dedicated to Hartmut Ehrig on the Occasion of His 60th
Birthday. LNCS, vol. 3393, pp. 101–115. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31847-7 6

12. Hoffmann, B.: More on graph rewriting with contextual refinement. In: Echahed, R.,
Habel, A., Mosbah, M. (eds.) Graph Computation Models Selected Revised Papers
from GCM 2014, vol. 71. Electronic Communications of the EASST (2015)

13. Hoffmann, B., Jakumeit, E., Geiß, R.: Graph rewrite rules with structural recur-
sion. In: Mosbah, M., Habel, A. (eds.) 2nd International Workshop on Graph Com-
putational Models (GCM 2008), pp. 5–16 (2008)

14. Jakumeit, E., Buchwald, S., Wagelaar, D., Dan, L., Hegedüs, Á., Herrmannsdörfer,
M., Horn, T., et al.: A survey and comparison of transformation tools based on
the transformation tool contest. Sci. Comput. Program. 85, 41–99 (2014)

15. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling
of buildings. ACM Trans. Graph. (TOG) 25, 614–623 (2006)

16. Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transfor-
mation. Electron. Commun. EASST 30 (2010)

17. Orejas, F., Lambers, L.: Lazy graph transformation. Fundamenta Informaticae
118(1–2), 65–96 (2012)

http://dx.doi.org/10.1007/978-3-319-09108-2_18
http://dx.doi.org/10.1007/978-3-319-09108-2_18
https://hal.archives-ouvertes.fr/hal-01509832
https://hal.archives-ouvertes.fr/hal-01476860
https://hal.archives-ouvertes.fr/hal-01476860
http://dx.doi.org/10.1007/3-540-45832-8_12
http://dx.doi.org/10.1007/978-3-540-31847-7_6
http://dx.doi.org/10.1007/978-3-540-31847-7_6

Geometric Modeling: Consistency Preservation 53

18. Pérez, J., Crespo, Y., Hoffmann, B., Mens, T.: A case study to evaluate the suit-
ability of graph transformation tools for program refactoring. Int. J. Softw. Tools
Technol. Transf. 12(3–4), 183–199 (2010)

19. Poudret, M., Arnould, A., Comet, J.-P., Gall, P.: Graph transformation for topol-
ogy modelling. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT
2008. LNCS, vol. 5214, pp. 147–161. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-87405-8 11

http://dx.doi.org/10.1007/978-3-540-87405-8_11
http://dx.doi.org/10.1007/978-3-540-87405-8_11

Chemical Graph Transformation
with Stereo-Information

Jakob Lykke Andersen1,9(B), Christoph Flamm2,8, Daniel Merkle1(B),
and Peter F. Stadler2,3,4,5,6,7

1 Department of Mathematics and Computer Science,
University of Southern Denmark, 5230 Odense, Denmark

{jlandersen,daniel}@imada.sdu.dk
2 Institute for Theoretical Chemistry, University of Vienna, 1090 Wien, Austria

xtof@tbi.univie.ac.at
3 Bioinformatics Group, Department of Computer Science,

and Interdisciplinary Center for Bioinformatics,
University of Leipzig, 04107 Leipzig, Germany

stadler@bioinf.uni-leipzig.de
4 Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
5 Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany

6 Center for Non-coding RNA in Technology and Health, University of Copenhagen,
1870 Frederiksberg, Denmark

7 Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA
8 Research Network Chemistry Meets Microbiology,

University of Vienna, 1090 Wien, Austria
9 Tokyo Institute of Technology, Earth-Life Science Institute, Tokyo 152-8550, Japan

jlandersen@elsi.jp

Abstract. Double Pushout graph transformation naturally facilitates
the modelling of chemical reactions: labelled undirected graphs model
molecules and direct derivations model chemical reactions. However, the
most straightforward modelling approach ignores the relative placement
of atoms and their neighbours in space. Stereoisomers of chemical com-
pounds thus cannot be distinguished, even though their chemical activ-
ity may differ substantially. In this contribution we propose an extended
chemical graph transformation system with attributes that encode infor-
mation about local geometry. The modelling approach is based on the so-
called “ordered list method”, where an order is imposed on the set of inci-
dent edges of each vertex, and permutation groups determine equivalence
classes of orderings that correspond to the same local spatial embedding.
This method has previously been used in the context of graph transfor-
mation, but we here propose a framework that also allows for partially
specified stereoinformation. While there are several stereochemical con-
figurations to be considered, we focus here on the tetrahedral molecular
shape, and suggest general principles for how to treat all other chemi-
cally relevant local geometries. We illustrate our framework using several
chemical examples, including the enumeration of stereoisomers of carbo-
hydrates and the stereospecific reaction for the aconitase enzyme in the
citirc acid cycle.

c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 54–69, 2017.
DOI: 10.1007/978-3-319-61470-0 4

Chemical Graph Transformation with Stereo-Information 55

Keywords: Double Pushout · Chemical graph transformation system ·
Stereochemistry

1 Introduction

Graph transformation systems have a long history in molecular biology [24].
Applications to chemical reaction systems have evolved from abstract artificial
chemistry models such as Fontana’s AlChemy [13,14] based on lambda calculus.
An early attempt at more realistic modelling of chemistry with graph transfor-
mation [6] and an early perspectives article [29] proposed a variety of potential
applications.

Although general graph transformation tools, such as AGG [26], have also
been used to implement models of chemical systems [10], there is one crucial
aspect where chemistry differes from the usual setup in the graph transformation
literature. The latter focusses on rewriting a single (usually connected) graph,
thus yielding a traditional formal language. Chemical reactions, in contrast, usu-
ally involve multiple molecules; chemical graph transformations therefore oper-
ate on multisets of graphs to produce a chemical “space” or “universe” [4], see
also [17] for a similar construction in the context of DNA computing. With the
software package MØD [2] we have developed a versatile suite for working with
this type of transformation [5]. The packages handles composition of rules and
provides a domain specific language for graph language generation [3,4].

Mathematical models for molecular compounds may be specified at differ-
ent levels of abstraction. At the coarsest, arithmetical level molecular formulas
describe only the number and type of constituent atoms; a finer topological level
uses graphs to determine the adjacencies between atoms; a further refinement
also determines the (relative) spatial arrangement of atoms and thus the mole-
cule’s geometry. Stereoisomers, that is, molecules with the same topology but
different geometry, often have similar physical and chemical properties but differ
dramatically in their biological and pharmacological activity. A famous exam-
ple is the sedative thalidomide. The compound with the German trade name
Contergan has a sedative effect. Its non-superposable mirror image (such a pair
of compounds is called enantiomorphic), however, causes severe birth defects.
The stereospecific — and in particular enantioselective — synthesis of such com-
pounds is a very challenging task in practice. In order for a graph transformation
model of chemistry to be useful in practical applications, it therefore needs to
be able to properly model stereoisomers and stereospecific chemical reactions.
This task is not made simpler by the fact that stereochemical terms are often
not well-defined in a mathematical sense [16].

To date, most chemical graph transformation models, with the notable excep-
tion is the hypergraph rewriting approach explored in [10], lack support for stere-
ochemistry. The chemical literature, however, has recognized early-on that the
ability to handle stereochemistry is a prerequisite for the practical applicability
of computational models of chemistry: Already in the sixties of the last century
the “ordered list method” was introduced [20,28]. It exploits the representation

56 J.L. Andersen et al.

of graphs as adjacency lists by using the ordering of the edge lists to encode geo-
metric information. Alternative approaches rely on transformation of structures
to larger, ordinary graphs that encode the stereochemical situations, e.g. [1] or
aim at the encoding in the form of linear descriptions such as SMILES [27] or
CAST [25]. The chemical literature usually annotates local geometric informa-
tion in terms of IUPAC nomenclature rules. For example, the local geometry at
a tetrahedral centre is determined as “R” or “S” depending on a complex set of
inherently non-local precedence rules for the four neighbours [8]. Such represen-
tation of geometric information is not designed to allow the implementation of
chemical reactions as local rewriting operations.

Here we advocate a strategy that differs in a conceptually important point
from [10]: Their hypergraph approach explicitly uses transformation rules to gen-
erate equivalent tetrahedral centres, which results in exponentially many graphs
(in the number of centres) representing the same molecule. Instead, we pro-
pose here to incorporate the symmetries that define equivalent local geometries
directly into the morphisms themselves. This also allows us to preserve the mod-
elling principle that each graph is equivalent to just one molecule, and that each
direct direction is a proper chemical reaction. It is not in all reactions that the
(full) geometric information is relevant, and we therefore also introduce a hier-
archy of local atom configurations that allows the representation of partially
known stereo-information, both in graphs and rules. This approach can be seen
as a special case of graph transformation with node inheritance [18], though we
opt for a more direct modelling approach, closer to a practical implementation,
where the inheritance is capture in an specialised algebra using principles from
term algebras.

We introduce stereochemistry and molecular shapes in Sect. 2, and in Sect. 3
we describe the graph model and transformation system with attributes that
encodes information about local geometry. We give several application examples
in Sect. 4 and conclude with Sect. 5. In the Appendix we present the code used
for the application examples.

2 Molecular Shapes

The connectivity of molecules can be modelled trivially by undirected graphs,
but this ignores the relative placement of atoms and their neighbours in 3D
space. An intermediary view is to look locally at each atom and characterise the
shape that the incident bonds form. Each atom features (depending on its type)
a certain number of valence electrons. Part of these are shared with adjacent
atoms in the formation of chemical bonds, while others remain localized at their
atom and form so-called lone electron pairs. The Lewis diagram [19] of a molecule
describes the distribution of valence electrons into bonding electron pairs and
lone pairs. Backed by a grounding in quantum theory, the Gillespie-Nyholm the-
ory, also called the Valence-Shell Electron-Pair Repulsion (VSEPR) theory [15],
then explains the local geometry in terms of Lewis formula by means of three
simple rules: (1) electron pairs repulse each other and thus attain a geometry

Chemical Graph Transformation with Stereo-Information 57

that maximizes their mutual angular distances; (2) double and triple bonds can
be treated like single bonds; and (3) lone electron pairs are treated like chemical
bonds. Changes in bond orders and/or the number of lone pairs therefore affect
the geometry as part of a chemical reaction. The distinction between bonds and
lone pair allows the model to define fine-grained shapes, for example:

– The oxygen in a water molecule has 2 lone pairs and 2 incident bonds, giving
it the “bent” shape.

– The nitrogen in an ammonia molecule has 1 lone pair and 3 incident bonds,
giving it the “trigonal pyramidal” shape.

– The carbon in a methane molecule has no lone pairs and 4 incident bonds,
giving the “tetrahedral” shape.

In terms of the VSEPR theory, each of these three examples correspond to a
central atom with four neighbours, and the difference in shape arise from dis-
tinguishing bonds from lone pairs. Two atoms with the same sum of incident
bonds and lone pairs have the same intrinsic geometry, in this case as a tetra-
hedron with the atom in the centre and the neighbours placed in the corners.
In the model we thus only consider the basic shapes, from which the “visible”
geometry of the molecule can be recovered by considering the lone pairs.

A comprehensive model of stereochemistry should include separate treatment
of each possible shape. In this contribution we focus on the tetrahedral shape
and the general modelling framework that also allows for partial specification
of stereo-information in transformation rules. Future extensions will then imple-
ment the remaining chemically relevant shapes.

Throughout the paper we use the depiction of tetrahedral shapes usually used
in chemistry, where wedge () and hash () bonds are used to
indicate their 3D embedding. In Fig. 1 this is illustrated on the two stereoisomers
of glyceraldehyde.

Fig. 1. Depiction of the two stereoisomers of glyceraldehyde in 3D (3D depictions
from https://en.wikibooks.org/wiki/Organic Chemistry/Chirality) and in 2D with
wedge/hash bond notation to indicate the 3D embedding. The broad end of a wedge
(resp. hash) bond is placed above (resp. below) the plane of drawing of the narrow end.

https://en.wikibooks.org/wiki/Organic_Chemistry/Chirality

58 J.L. Andersen et al.

3 Model

3.1 Molecules as Typed Attributed Graphs

Molecules without stereochemical information can be modelled directly using
simple undirected graphs, with labels on vertices and edges. For extending this
model we recast the model described in [5] in terms of typed attributed graphs
(e.g., see [9]), which simply results in the type graph shown in Fig. 2. In the prac-
tical use of a chemical graph transformation system it is useful to enable/dis-
able stereochemical information in different contexts. The stereochemical model
therefore only adds to the type graph of the basic model.

Atom string

Bond bondLabel

atomLabel

Fig. 2. Type graph for the basic molecule model, where each atom vertex and bond
edge are attributed with strings, that encode the atom type, charge, and bond order.

Not all combinations of atom types, charges, number of lone pairs, and shapes
are chemically valid. However, for simplicity we here present a general model for
describing local geometry, and leave out the details of checking for chemical
validity. The number of combinations is quite limited and in the end the check
can therefore be handled by a moderately sized lookup table.

For representing lone pairs we allow each atom to have additional neighbours
of type LonePair (see Fig. 3). In the following when we refer to the degree of
an atom and its neighbours we thus include the lone pairs. On a practical note,
we can simply represent the number of lone pairs at each atom, and adapt the
morphism algorithms accordingly.

Atom

Bond

LonePair
lonePair

string

bondLabel

atomL abel

Configuration

configuration

Fig. 3. The extended type graph for representing stereochemistry. A new type of vertex
is introduced for the modelling of lone electron pairs, and a new atom attribute is added
for representing molecular shapes and embeddings into the shapes. Each atom is only
allowed to have 1 configuration, while it may have multiple neighbouring lone pairs.

Chemical Graph Transformation with Stereo-Information 59

Fig. 4. The category of shapes, CShape, used as a basis for encoding stereochemical config-
urations. Leaf objects correspond to actual molecular shapes while the remaining objects
provide a means for specifying partial stereo-information by acting as “variable” shapes.
In particular, the Any shape is the initial object that acts as an unconstrained variable.
The two trigonal planar shapes are shown only as an example of how the category will be
extended in the future. They are briefly discussed in the concluding remarks.

Next we introduce a category of shapes CShape, where the objects and mor-
phisms are explicitly defined, see Fig. 4. In principle we add an object for each
general shape described in the VSEPR theory, though here we focus on the
tetrahedral shape. We additionally introduce several “variable” shapes for more
expressive modelling of transformation rules, including the Any shape which is
the initial object of the category. This allows for the direct expression of (par-
tially) unknown configurations, both in rules and in molecules.

In contrast to the “ordered list method” in [20,28] we do not modify the
underlying storage of the graph. Instead we store the neighbour ordering in a
Configuration attribute on each atom along with the geometric shape of the
atom. That is, a configuration is a pair 〈S,N〉 of a shape object S and an
ordered list of all neighbours of the atom N . Most shapes may only be assigned
to atoms of a specific degree (see below), e.g., the tetrahedral shape requires
the atom to have degree 4. As each configuration references the neighbours in
the graph, the definition of configuration morphisms requires an already valid
graph morphism, which we assume also to be injective due to the modelling of
chemistry [5]. Let m : G1 → G2 be such an injective typed graph morphism, with
respect to all attributes except for the configurations. For deciding whether m
is also valid when taking configurations into account, consider an atom vertex
u of G1 with configuration 〈S1, N1〉, and its image v = m(u) with configuration
〈S2, N2〉. We first require that a shape morphism S1 → S2 exists. Then, from the
neighbour lists N1 = [u1, u2, . . . , ud1] and N2 = [v1, v2, . . . , vd2] create an index
map mI : {1, 2, . . . , d1} → {1, 2, . . . , d2} such that if m(ui) = vj then mI(i) = j.
Each shape morphism S1 → S2 may now define additional constraints the index
map mI must fulfil (see Fig. 5 for an example). Though, for the current set of
shapes only morphisms among configurations with TetrahedralFixed shape
has additional constraints.

60 J.L. Andersen et al.

Fig. 5. Example of a graph morphism, which is not a valid stereo morphism. The two
vertices u, v both have the TetrahedralFixed shape, and the indicated neighbour
lists Nu and Nv. A graph morphism m is given, indicated by the dashed, red arrows
and with m(u) = v. This induces the index map mI = {1 �→ 3, 2 �→ 2, 3 �→ 1, 4 �→ 4},
i.e., the permutation (1 3)(2)(4). As this permutation does not describe a symmetry of
a tetrahedron, following our encoding convention, the graph morphism is not a valid
stereo morphism. (Color figure online)

In the following we describe intended semantics, degree constraints, and index
map constraints of each shape.

The TetrahedralFixed Shape can only be attached to atoms of degree 4.
We interpret a neighbour list [v1, v2, v3, v4] geometrically in the following manner:
the neighbours are placed in the corners of a regular tetrahedron, and v is placed
in the centre. When looking from v1 towards v, the neighbours v2, v3, v4 appear in
counter-clockwise order. With this encoding the symmetries of a tetrahedron can
be expressed as the permutation group generated by 〈(1)(2 3 4), (1 2)(3 4)〉 acting
on the neighbour list, corresponding to the alternating group on 4 elements as
expected. A morphism from one TetrahedralFixed configuration to another
thus requires the index map to be a permutation from this group. In Fig. 5 an
example of a graph morphism that does not meet this requirement is shown.

The TetrahedralSym Shape. In some cases the specific embedding of an atom
in tetrahedral shape is unknown, and in some cases it is beneficial to be able to
match both possible tetrahedral embeddings. We therefore introduce this shape
that also requires atom degree 4, has the geometric shape of a tetrahedron, but
with no particular assignment of neighbours to the corners. The symmetries of
the neighbours are therefore the complete symmetric group on 4 elements. As it
has a morphism to the TetrahedralFixed shape it can be used as a restricted
“variable” in transformation rules.

The Any Shape has no degree constraints, and all neighbour lists are equiv-
alent. It is the initial object of the shape category, and can therefore be used as
an unrestricted “variable” in transformation rules.

The Degree0, Degree1, and Linear Shapes require degree 0, 1, and 2,
resp., of the atoms they are attached to. Geometrically, an atom with the Linear
shape is located on the line between its two neighbours.

Chemical Graph Transformation with Stereo-Information 61

3.2 Transformation Rules and Derivations

For a DPO transformation rule p = (L l←− K
r−→ R) we already require l and

r to be graph monomorphisms. In the extension to stereochemical information,
we require them to be isomorphisms on the configuration attributes. That is,
either an atom has no configuration attribute in K, or it has the same attribute
in L, K, and R. The top span of Fig. 6 shows an example rule where the change
of configuration is combined with partial stereo-information. As configurations
contain lists of neighbours in the graph, the isomorphism requirement for con-
figurations implies that only atoms of K where all incident edges also are in K
can have a configuration attribute. From the perspective of modelling chemistry
this means that when bonds are broken or formed, one must be explicit about
the change of molecular shape for the incident atoms.

In rule application the configurations with non-leaf shapes (see Fig. 4) act
as unnamed variables, similar to transformation with term attributes described
in [9]. That is, in the transformation of a graph G with a rule p = (L l←− K

r−→ R),
the match morphism m : L → G implicitly determines an assignment of configu-
rations such that substitution yields isomorphic configurations. This is illustrated
with both vertex 0 and 1 in the direct derivation shown in Fig. 6. Vertex 1 has
an Any configuration in L, and is being assigned to a TetrahedralSym con-
figuration through m. As it also has this configuration in K and R, the pushout
requirements preserve the TetrahedralSym configuration through D to H.
Vertex 0 has a TetrahedralSym configuration in L, which is being assigned
to a TetrahedralFixed configuration. However, the vertex has no configura-
tion in K, and a new TetrahedralSym configuration is added in R. The rule
therefore effectively matches any tetrahedron to vertex 0 and generalizes it to a
TetrahedralSym.

4 Application Examples

We have extended the graph transformation system of MØD [2,5] with the model
for stereochemistry. Morphisms are found using the VF2 algorithm [7], where
shape morphisms are checked during matching. Index map constraints require
the complete neighbourhood of a vertex to be mapped to the host graph. For
simplicity this check is deferred to after a total morphism has been found.

In the following we illustrate the use of the modelling framework. The code
for each example can be found in the appendix, and can be experimented with
in the live version of MØD at http://mod.imada.sdu.dk/playground.html.

4.1 Stereospecific Aconitase

One of the central metabolic pathways is the citric acid cycle, which contains a
reaction that converts the molecule citrate into isocitrate. This reaction, facili-
tated by the aconitase enzyme, is stereospecific which means that it only pro-
duces D-isocitrate and not the stereoisomer L-isocitrate. While the modelling of

http://mod.imada.sdu.dk/playground.html

62 J.L. Andersen et al.

C 〈0〉

CH3
TetrahedralSym

〈1〉
PH2 Any

〈2〉

SH Any

〈3〉
OHAny

〈4〉

D

CTetrahedralFixed[1, 2, 3, 4]

〈0〉

CH3
TetrahedralSym

〈1〉
PH2 Any

〈2〉

SH Any

〈3〉
OHAny

〈4〉

G

CTetrahedralSym

〈0〉

CH3
TetrahedralSym

〈1〉
PH2 Any

〈2〉

SH Any

〈3〉
OHAny

〈4〉

H

CTetrahedralSym

〈0〉

CAny

〈1〉
PAny

〈2〉

SAny

〈3〉
OAny

〈4〉

L

C 〈0〉

CAny

〈1〉
PAny

〈2〉

SAny

〈3〉
OAny

〈4〉

K

CTetrahedralSym

〈0〉

CAny

〈1〉
PAny

〈2〉

SAny

〈3〉
OAny

〈4〉

R

l r

m

Fig. 6. A direct derivation with explicitly annotated configuration data. Vertex 0 and
1 have variable configurations with TetrahedralSym and Any shape, such that they
can match more specialised configurations. As vertex 1 also has a configuration in K, its
assigned TetrahedralSym configuration in G is transferred to D and H as well. The
configuration on vertex 0 is on the other hand being deleted and replaced with a new
configuration in R. The original TetrahedralFixed configuration in G is therefore
replaced accordingly.

this reaction as a transformation rule can be done in the hypergraph approach
described in [10], the present approach also allows us to generalize the rule to be
applicable to molecules other than isocitrate, that share the same context. This
is shown in Fig. 7 where a generalized rule for aconitase is shown being applied
to citrate and water.

4.2 Generation of Stereoisomers

Tartaric acid is the most important chemical compound for the discovery of
the concept of chirality. Tartaric acid has three stereoisomers, two are chiral
(i.e., their mirror image is non-superposable) and one is achiral (i.e., it equals
its mirror image). The crystal structure of the double salt of the stereoiso-
mers of tartaric acid (potassium sodium tartrate tetrahydrate) was analysed by
Louis Pasteur. He performed a morphological analysis and analysed the shapes of
the different macroscopic crystals. The macroscopic (non-)superposability of the
idealised shape of the crystals established the existence of molecular chirality [12].

We use the tartaric acid molecule here as an example to illustrate how all
stereoisomers with partial and fully specified stereoinformation can be inferred
in the rule-based framework. This is accomplished by repeated application of the
rule shown in Fig. 8. As the central atom has TetrahedralSym shape it can
be used to either fixate the tetrahedral embedding or change an existing one.
We here also extend the ordinary atom labels to include the special unnamed
variable label ‘*’ that can be assigned any other atom label during matching.
Figure 9 shows the result of repeatedly applying the rule to a model of tartaric

Chemical Graph Transformation with Stereo-Information 63

Fig. 7. Illustration of a generalized transformation rule for the aconitase enzyme, used
in the citric acid cycle, applied to a citrate and water molecule. The reaction is stere-
ospecific, and results therefore in D-isocitrate but not L-isocitrate. In the left side the
two central carbon atoms have the TetrahedralSym shape, in order to match any
tetrahedral, while in the right side they both have the more specialized Tetrahedral-
Fixed shape with a specific embedding.

∗
TetrahedralSym

〈0〉

∗Any〈1〉

∗Any

〈2〉

∗Any

〈3〉

∗Any

〈4〉

L

∗〈0〉

∗Any〈1〉

∗Any

〈2〉

∗Any

〈3〉

∗Any

〈4〉

K

∗
TetrahedralFixed[1, 2, 3, 4]

〈0〉

∗Any〈1〉

∗Any

〈2〉

∗Any

〈3〉

∗Any

〈4〉

R

Fig. 8. A generic rule that either fixates or changes the embedding of a tetrahedral
atom. Each vertex is annotated explicitly with the configuration data, and the asterisks
∗ are unnamed variable labels that match any atom label.

acid without fully specified stereo-information. We see that the 3 stereoisomers,
L- and meso-tataric acid, in addition to the naturally occurring form D-tartaric
acid are generated as expected.

While it is not too difficult to manually derive the stereoisomers of tar-
taric acid, the task quickly becomes complicated and error prone for larger
molecules. Enumeration of (i.e., explicitly creating all) and counting molecules
has been providing a fertile ground for developments in graph theory, combina-
torics, chemistry and the intersecting research fields since the nineteenth century.
Many counting problems in chemistry have been solved by the Pólya Theory of

64 J.L. Andersen et al.

Fig. 9. The language of tartaric acid stereoisomers including isomers with generalized
stereo configurations, starting from a model without specified tetrahedral embeddings
(the graph on top). Each arrow represents a direct derivation using the rule shown in
Fig. 8. As it matches any tetrahedral configuration, it also results in identity derivations
for molecules already with a TetrahedralFixed atom. The bottom three graphs, D-,
L-, and meso-tartaric acid, are models with fully specified embeddings, and are there-
fore the proper stereoisomers. The two graphs in the middle only have a tetrahedral
embedding fixated on one of the two central carbon atoms, while the other still has
TetrahedralSym shape.

Counting [21,23]. Based on the automorphism group of a molecular graph its
cycle index is inferred. The cycle index is used to infer a generating function for
which the coefficients correspond to the number of isomers (for an introduction,
e.g., see [11]). When applying the theory to stereochemical compounds, consid-
ering the order of incident edges of atoms can lead to a non-trivial compensation
of stereoisomers (see [22] for an in-depth discussion from a combinatorial point of
view). An example is shown in Fig. 10, where a central tetrahedral carbon atom
(adjacent to the nitrogen atom) has two graph-isomorphic subtrees attached, i.e.,
they are isomorphic if the stereo information is ignored. If two different tetra-
hedral embeddings are added to the subtree carbons, then the central carbon
atom can have only one tetrahedral embedding up to isomorphism (the outer
graphs of Fig. 10). On the other hand, when two different embeddings are on the
subtree carbons, then only two further stereoisomers exist (the inner graphs);
one for each of the embeddings on the central carbon. This kind of compensa-
tion of such stereoisomers has been thoroughly analysed for specific molecular
classes (e.g. tree-like structures with single bonds only) in literature. However,
our framework allows not only for enumeration of stereoisomers, but also for
a rigorous modelling of chemical and biochemical pathways with complete or
partial stereoinformation attached.

Chemical Graph Transformation with Stereo-Information 65

N
O

S

P

O
S

P

O

N
O

S

P

O
S

P

O

N
O

S

P

O

S

P

O

N
O

S

P

O

S

P

O

Fig. 10. The language of all proper stereoisomers for an abbreviated molecule, using
the rule shown in Fig. 8. As with the tartaric acid example (Fig. 9) the rule can result
in identity derivations. All three carbon atoms have TetrahedralFixed shape.

5 Concluding Remarks

We have presented a model of molecules based on typed attributed graphs that
include the representation of local molecular shapes. The model is inspired by
previous work on molecule representation, e.g., the ordered list method from
chemistry and the hypergraph approach from graph transformation. We have
extended it here to allow a partial specification of stereochemical information.
This both allows for partially assigning geometric information to molecules, but
more importantly provides a more expressive framework for describing classes
of reactions as graph transformation rules. The presented model additionally
includes the possibility to represent lone electron pairs, which in some cases give
rise to multiple stereoisomers. We have implemented the model as an extension
of the chemical graph transformation system in the MØD software package. The
extension is being prepared for release in an upcoming version of MØD.

Additional Shapes. The trigonal planar shape is another important shape in
biochemistry, which gives rise to cis-trans isomerism in conjunction with incident
double or aromatic bonds. In this shape an atom is coplanar with its required 3
neighbours. In Fig. 4 we have shown how this shape can be added to the shape
category. Like the TetrahedralFixed shape, it has associated constraints on
index maps induced by graph morphisms. In addition the trigonal planar shape
will also require non-local checks of morphisms to ensure consistency of the half-
planes implicitly defined by the neighbour lists.

Shapes that require more than 4 neighbours are uncommon in biochemistry,
although the trigonal bipyramid plays a role in phosphorus chemistry. Prelim-
inary investigations suggest that all other chemically relevant local geometries
can also be defined in the framework laid out in this contribution.

The embedding of a graph in the plane (or any surface) can be represented
by locally imposing a cyclic order on the incident edges at each vertex, also
called a rotation system. The semantics of this encoding is similar to that of
the trigonal planar shape. The same techniques thus are applicable to defining
a transformation system for graphs with an associated embedding.

66 J.L. Andersen et al.

Acknowledgements. This work is supported by the Danish Council for Independent
Research, Natural Sciences, the COST Action CM1304 “Emergence and Evolution of
Complex Chemical Systems”, and the ELSI Origins Network (EON), which is sup-
ported by a grant from the John Templeton Foundation. The opinions expressed in
this publication are those of the authors and do not necessarily reflect the views of the
John Templeton Foundation.

A Code Examples

The following code shows how to use the stereochemical extension of MØD,
in the context of the three application examples. The code is also available as
modifiable scripts in the live version of the software, accessible at http://mod.
imada.sdu.dk/playground.html.

A.1 Stereospecific Aconitase

Executing the following code creates the figures for Fig. 7.
water = smiles("O", "H_2O")

cit = smiles("C(C(=O)O)C(CC(=O)O)(C(=O)O)O", name="Cit")

d_icit = smiles("C([C@@H]([C@H](C(=O)O)O)C(=O)O)C(=O)O", name="D-ICit")

aconitase = ruleGMLString("""rule [

left [

the dehydrated water

edge [source 1 target 100 label "-"] edge [source 2 target 102 label "-"]

the hydrated water

edge [source 200 target 202 label "-"]

]

context [

node [id 1 label "C"]

edge [source 1 target 2 label "-"] # goes from - to = to -

node [id 2 label "C"]

the dehydrated water

node [id 100 label "O"] node [id 101 label "H"] node [id 102 label "H"]

edge [source 100 target 101 label "-"]

the hydrated water

node [id 200 label "O"] node [id 201 label "H"] node [id 202 label "H"]

edge [source 200 target 201 label "-"]

dehydrated C neighbours

node [id 1000 label "C"] node [id 1010 label "O"] node [id 1001 label "C"]

edge [source 1 target 1000 label "-"] edge [source 1000 target 1010 label "-"]

edge [source 1 target 1001 label "-"]

hydrated C neighbours

node [id 2000 label "C"] node [id 2001 label "H"]

edge [source 2 target 2000 label "-"] edge [source 2 target 2001 label "-"]

]

right [

The '!' in the end changes it from TetrahedralSym to

TetrahedralFixed

node [id 1 stereo"tetrahedral[1000, 1001, 202, 2]!"]

node [id 2 stereo"tetrahedral[200, 1, 2000, 2001]!"]

the dehydrated water

edge [source 100 target 102 label "-"]

the hydrated water

edge [source 1 target 202 label "-"] edge [source 2 target 200 label "-"]

]

]""")

dg = dgRuleComp(inputGraphs, addSubset(cit, water) >> aconitase,

seldctino of attributes and morphisms for matching

labelSettings=LabelSettings(

use terms as labels, instead of strings

LabelType.Term,

term morphisms may be specialisations

LabelRelation.Specialisation,

use stereo information,

with specialisation in the morphisms

LabelRelation.Specialisation)

)

dg.calc()

for e in dg.edges:

p = GraphPrinter()

p.withColour = True

e.print(p, matchColour="Maroon")

http://mod.imada.sdu.dk/playground.html
http://mod.imada.sdu.dk/playground.html

Chemical Graph Transformation with Stereo-Information 67

A.2 Stereoisomers of Tartaric Acid

Executing the following code creates the figures for Figs. 8 and 9.
smiles("C(C(C(=O)O)O)(C(=O)O)O", name="Tartaric acid")

smiles("[C@@H]([C@H](C(=O)O)O)(C(=O)O)O", name="L-tartaric acid")

smiles("[C@H]([C@@H](C(=O)O)O)(C(=O)O)O", name="D-tartaric acid")

smiles("[C@@H]([C@@H](C(=O)O)O)(C(=O)O)O", name="Meso-tartaric acid")

change = ruleGMLString("""rule [

left [node [id 0 stereo"tetrahedral"]]

context [

node [id 0 label "*"] node [id 1 label "*"] node [id 2 label "*"]

node [id 3 label "*"] node [id 4 label "*"]

edge [source 0 target 1 label "-"] edge [source 0 target 2 label "-"]

edge [source 0 target 3 label "-"] edge [source 0 target 4 label "-"]

]

right [node [id 0 stereo"tetrahedral[1, 2, 3, 4]!"]]

]""")

dg = dgRuleComp(inputGraphs, addSubset(inputGraphs) >> repeat(change),

seldctino of attributes and morphisms for matching

labelSettings=LabelSettings(

use terms as labels, instead of strings

LabelType.Term,

term morphisms may be specialisations

LabelRelation.Specialisation,

use stereo information,

with specialisation in the morphisms

LabelRelation.Specialisation)

)

dg.calc()

p = GraphPrinter()

p.setMolDefault()

p.withPrettyStereo = True

change.print(p)

p = DGPrinter()

p.withRuleName = True

p.withRuleId = False

dg.print(p)

A.3 Non-trivial Stereoisomers

Executing the following code creates the figures for Figs. 8 and 10.
g = smiles("[N][C@]([O])([C@]([S])([P])([O]))([C@]([S])([P])([O]))")

change = ruleGMLString("""rule [

left [node [id 0 stereo"tetrahedral"]]

context [

node [id 0 label "*"] node [id 1 label "*"] node [id 2 label "*"]

node [id 3 label "*"] node [id 4 label "*"]

edge [source 0 target 1 label "-"] edge [source 0 target 2 label "-"]

edge [source 0 target 3 label "-"] edge [source 0 target 4 label "-"]

]

right [node [id 0 stereo"tetrahedral[1, 2, 3, 4]!"]]

]""")

dg = dgRuleComp(inputGraphs, addSubset(inputGraphs) >> repeat(change),

seldctino of attributes and morphisms for matching

labelSettings=LabelSettings(

use terms as labels, instead of strings

LabelType.Term,

term morphisms may be specialisations

LabelRelation.Specialisation,

use stereo information,

with specialisation in the morphisms

LabelRelation.Specialisation)

)

dg.calc()

p = GraphPrinter()

p.setMolDefault()

p.withPrettyStereo = True

change.print(p)

p = DGPrinter()

p.withRuleName = True

p.withRuleId = False

dg.print(p)

68 J.L. Andersen et al.

References

1. Akutsu, T.: A new method of computer representation of stereochemistry. Trans-
forming a stereochemical structure into a graph. J. Chem. Inf. Comput. Sci. 31,
414–417 (1991)

2. Andersen, J.L.: MedØlDatschgerl (MØD) (2016). http://mod.imada.sdu.dk
3. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Inferring chemical reaction

patterns using rule composition in graph grammars. J. Syst. Chem. 4(1), 4 (2013)
4. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Generic strategies for chem-

ical space exploration. Int. J. Comput. Biol. Drug Des. 7(2/3), 225–258 (2014).
http://arxiv.org/abs/1302.4006

5. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: A software package for
chemically inspired graph transformation. In: Echahed, R., Minas, M. (eds.)
ICGT 2016. LNCS, vol. 9761, pp. 73–88. Springer, Cham (2016). doi:10.1007/
978-3-319-40530-8 5

6. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J.
Chem. Inf. Comput. Sci. 43, 1085–1093 (2003)

7. Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism algo-
rithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10),
1367 (2004)

8. Cross, L.C., Klyne, W.: Rules for the nomenclature of organic chemistry: section
E: stereochemistry. Pure Appl. Chem. 45, 11–30 (1976)

9. Ehrig, H., Ehrig, K., Prange, U., Taenthzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Berlin (2006)

10. Ehrig, K., Heckel, R., Lajios, G.: Molecular analysis of metabolic pathway with
graph transformation. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L.,
Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 107–121. Springer, Heidel-
berg (2006). doi:10.1007/11841883 9

11. Faulon, J.L., Visco Jr., D., Roe, D.: Enumerating Molecules, Reviews in Compu-
tational Chemistry, vol. 21, pp. 209–286. Wiley, Hoboken (2005)

12. Flack, H.D.: Louis Pasteur’s discovery of molecular chirality and spontaneous reso-
lution in 1848, together with a complete review of his crystallographic and chemical
work. Acta Crystallogr. Sect. A 65, 371–389 (2009)

13. Fontana, W., Buss, L.W.: “The arrival of the fittest”: toward a theory of biological
organization. Bull. Math. Biol. 56, 1–64 (1994)

14. Fontana, W., Buss, L.W.: What would be conserved “if the tape were played twice”.
Proc. Natl. Acad. Sci. USA 91, 757–761 (1994)

15. Gillespie, R.: Fifty years of the VSEPR model. Coord. Chem. Rev. 252, 1315–1327
(2008)

16. Kerber, A., Laue, R., Meringer, M., Rücker, C., Schymanski, E.: Mathematical
Chemistry and Chemoinformatics. De Gruyter (2013)

17. Kreowski, H.J., Kuske, S.: Graph multiset transformation: a new framework for
massively parallel computation inspired by DNA computing. Nat. Comput. 10(2),
961–986 (2011)

18. de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.:
Attributed graph transformation with node type inheritance. Theor. Comput. Sci.
376(3), 139–163 (2007). http://www.sciencedirect.com/science/article/pii/S03043
97507000631

19. Lewis, G.N.: The atom and the molecule. J. Am. Chem. Soc. 38, 762–785 (1916)

http://mod.imada.sdu.dk
http://arxiv.org/abs/1302.4006
http://dx.doi.org/10.1007/978-3-319-40530-8_5
http://dx.doi.org/10.1007/978-3-319-40530-8_5
http://dx.doi.org/10.1007/11841883_9
http://www.sciencedirect.com/science/article/pii/S0304397507000631
http://www.sciencedirect.com/science/article/pii/S0304397507000631

Chemical Graph Transformation with Stereo-Information 69

20. Petrarca, A.E., Lynch, M.F., Rush, J.E.: A method for generating unique computer
structural representation of stereoisomers. J. Chem. Doc. 7, 154–165 (1967)

21. Pólya, G.: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und
chemische Verbindungen. Acta Mathematica 68(1), 145–254 (1937)

22. Pólya, G., Read, R.: Combinatorial Enumeration of Groups, Graphs, and Chemical
Compounds. Springer, New York (1987)

23. Redfield, J.: The theory of group-reduced distributions. Am. J. Math. 49(3), 433–
455 (1927)

24. Rosselló, F., Valiente, G.: Graph transformation in molecular biology. In: Kreowski,
H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Meth-
ods in Software and Systems Modeling. LNCS, vol. 3393, pp. 116–133. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31847-7 7

25. Satoh, H., Koshino, H., Funatsu, K., Nakata, T.: Novel canonical coding method
for representation of three-dimensional structures. J. Chem. Inf. Comput. Sci. 40,
622–630 (2000)

26. Taentzer, G.: AGG: a graph transformation environment for modeling and val-
idation of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) Applications of
Graph Transformations with Industrial Relevance: Second International Workshop,
AGTIVE 2003. LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

27. Weininger, D.: SMILES, a chemical language and information system. 1. Introduc-
tion to methodology and encoding rules. J. Chem. Inf. Model. 28, 31–36 (1988)

28. Wipke, W.T., Dyott, T.M.: Simulation and evaluation of chemical synthesis-
computer representation and manipulation of stereochemistry. J. Am. Chem. Soc.
96, 4825–4834 (1974)

29. Yadav, M.K., Kelley, B.P., Silverman, S.M.: The potential of a chemical graph
transformation system. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 83–95. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30203-2 8

http://dx.doi.org/10.1007/978-3-540-31847-7_7
http://dx.doi.org/10.1007/978-3-540-30203-2_8

Graph Languages and Parsing

Specifying Graph Languages with Type Graphs

Andrea Corradini1, Barbara König2, and Dennis Nolte2(B)

1 Università di Pisa, Pisa, Italy
andrea@di.unipi.it

2 Universität Duisburg-Essen, Duisburg, Germany
{barbara koenig,dennis.nolte}@uni-due.de

Abstract. We investigate three formalisms to specify graph languages,
i.e. sets of graphs, based on type graphs. First, we are interested in (pure)
type graphs, where the corresponding language consists of all graphs that
can be mapped homomorphically to a given type graph. In this context,
we also study languages specified by restriction graphs and their relation
to type graphs. Second, we extend this basic approach to a type graph
logic and, third, to type graphs with annotations. We present decidability
results and closure properties for each of the formalisms.

1 Introduction

Formal languages in general and regular languages in particular play an impor-
tant role in computer science. They can be used for pattern matching, parsing,
verification and in many other domains. For instance, verification approaches
such as reachability checking, counterexample-guided abstraction refinement [5]
and non-termination analysis [11] could be directly adapted to graph transfor-
mation systems if one had a graph specification formalism with suitable clo-
sure properties, computable pre- and postconditions and inclusion checks. Inclu-
sion checks are also important for checking when a fixpoint iteration sequence
stabilizes.

While regular languages for words and trees are well-understood and can
be used efficiently and successfully in applications, the situation is less satis-
factory when it comes to graphs. Although the work of Courcelle [9] presents
an accepted notion of recognizable graph languages, equivalent to regular lan-
guages, this is often not useful in practice, due to the sheer size of the resulting
graph automata. Other formalisms, such as application conditions [13,20] and
first-order or second-order logics, feature more compact descriptions, but there
are problems with expressiveness, undecidability issues or unsatisfactory closure
properties.1

Hence, we believe that it is important to study and compare specification
formalisms (i.e., automata, grammars and logics) that allow to specify potentially
infinite sets of graphs. In our opinion there is no one-fits-all solution, but we
believe that specification mechanisms should be studied and compared more
extensively.
1 A more detailed overview over related formalisms is given in the conclusion (Sect. 6).

c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 73–89, 2017.
DOI: 10.1007/978-3-319-61470-0 5

74 A. Corradini et al.

In this paper we study specification formalisms based on type graphs, where
a type graph T represents all graphs that can be mapped homomorphically to T ,
potentially taking into account some extra constraints. Type graphs are common
in graph rewriting [7,21]. Usually, one assumes that all items, i.e., rules and
graphs to be rewritten, are typed, introducing constraints on the applicability of
rules. Hence, type graphs are in a way seen as a form of labelling. This is different
from our point of view, where graphs (and rules) are – a priori – untyped (but
labeled) and type graphs are simply a means to represent sets of graphs.

There are various reasons for studying type graphs: first, they are reason-
ably simple with many positive decidability results and they have not yet been
extensively studied from the perspective of specification formalisms. Second,
other specification mechanisms – especially those used in connection with verifi-
cation and abstract graph transformation [19,23,24] – are based on type graphs:
abstract graphs are basically type graphs with extra annotations. Third, while
not being as expressive as recognizable graph languages, they retain a nice intu-
ition from regular languages: given a finite state automaton M one can think of
the language of M as the set of all string graphs that can be mapped homomor-
phically to M (respecting initial and final states).

We in fact study three different formalisms based on type graphs: first, pure
type graphs T , where the language consists simply of all graphs that can be
mapped to T . We also discuss the connection between type graph and restriction
graph languages. Then, in order to obtain a language with better boolean closure
properties, we study type graph logic, which consists of type graphs enriched with
boolean connectives (negation, conjunction, disjunction). Finally, we consider
annotated type graphs, where the annotations constrain the number of items
mapped to a specific node or edge, somewhat similar to the proposals from
abstract graph rewriting mentioned above.

In all three cases we are interested in closure properties and in decidability
issues (such decidability of the membership, emptiness and inclusion problems)
and in expressiveness. Proofs for all the results and an extended example for
annotated type graphs can be found in [6].

2 Preliminaries

We first introduce graphs and graph morphisms. In the context of this paper we
use edge-labeled, directed graphs.

Definition 1 (Graph). Let Λ be a fixed set of edge labels. A Λ-labeled graph
is a tuple G = 〈V,E, src, tgt, lab〉, where V is a finite set of nodes, E is a finite
set of edges, src, tgt : E → V assign to each edge a source and a target node, and
lab : E → Λ is a labeling function.

We will denote, for a given graph G, its components by VG, EG, srcG, tgtG
and labG, unless otherwise indicated.

Specifying Graph Languages with Type Graphs 75

Definition 2 (Graph morphism). Let G,G′ be two Λ-labeled graphs. A graph
morphism ϕ : G → G′ consists of two functions ϕV : VG → VG′ and ϕE : EG →
EG′ , such that for each edge e ∈ EG it holds that srcG′(ϕE(e)) = ϕV (srcG(e)),
tgtG′(ϕE(e)) = ϕV (tgtG(e)) and labG′(ϕE(e)) = labG(e). If ϕ is both injective
and surjective it is called an isomorphism.

We will often drop the subscripts V,E and write ϕ instead of ϕV , ϕE . We will
consider the category Graph having Λ-labeled graphs as objects and graph mor-
phisms as arrows. The set of its objects will be denoted by GrΛ. The categorical
structure induces an obvious preorder on graphs, defined as follows.

Definition 3 (Homomorphism preorder). Given graphs G and H, we write
G → H if there is a graph morphism from G to H in Graph. The relation
→ is obviously a preorder (i.e. it is reflexive and transitive) and we call it the
homomorphism preorder on graphs. We write G � H if G → H does not
hold. Graphs G and H are homomorphically equivalent, written G ∼ H, if both
G → H and H → G hold.

We will revisit the concept of retracts and cores from [15]. Cores are a con-
venient way to minimize type graphs, as, according to [15], all graphs G,H with
G ∼ H have isomorphic cores.

Definition 4 (Retract and core). A graph H is called a retract of a graph G
if H is a subgraph of G and in addition there exists a morphism ϕ : G → H. A
graph H is called a core of G, written H = core(G), if it is a retract of G and
has itself no proper retracts.

Example 5. The graph H is a retract of G, where the morphism ϕ is indicated
by the node numbering:

G = 1 2 3 4

5 6

A

A

B

B

B ϕ
�
δ 1, 5 2, 4 3, 6

A B = H

Since the graph H does not have a proper retract itself it is also the core of G.

3 Languages Specified by Type or Restriction Graphs

In this section we introduce two classes of graph languages that are characterized
by two somewhat dual properties. A type graph language contains all graphs that
can be mapped homomorphically to a given type graph, while a restriction graph
language includes all graphs that do not contain an homomorphic image of a
given restriction graph. Next, we discuss for these two classes of languages some
properties such as closure under set operators, decidability of emptiness and
inclusion, and decidability of closure under rewriting via double-pushout rules.
Finally we discuss the relationship between these two classes of graph languages.

76 A. Corradini et al.

Definition 6 (Type graph language). A type graph T is just a Λ-labeled
graph. The language L(T) is defined as:

L(T) = {G | G → T}.

Example 7. The following type graph T over the edge label set Λ = {A,B}
specifies a type graph language L(T) consisting of infinitely many graphs:

L(B
A) =

{
∅ , , A B ,

A

A , . . .
}

The category Graph has a final object, that we denote TΛ
✲

, consisting of one
node (called flower node ✲) and one loop for each label in Λ. Therefore L(TΛ

✲
) =

GrΛ. The graph TΛ
✲

for Λ = {A,B,C} is depicted to the right.

T✲ = A

B

C

Specifying graph languages using type graphs gives
us the possibility to forbid certain graph structures by
not including them into the type graph. For example, no
graph in the language of Example 7 can contain a B-loop
or an A-edge incident to the target of a B-edge. However,
it is not possible to force some structures to exist in all graphs of the language,
since the morphism to the type graph need not be surjective. This point will be
addressed with the notion of annotated type graph in Sect. 5.

Another way (possibly more explicit) to specify languages of graphs not
including certain structures, is the following one.

Definition 8 (Restriction graph language). A restriction graph R is just
a Λ-labeled graph. The language LR(R) is defined as:

LR(R) = {G | R � G}.

We will consider the relationship between the class of languages introduced
in Definitions 6 and 8 in Sect. 3.3.

3.1 Closure and Decidability Properties

The type graph and restriction graph languages enjoy the following complemen-
tary closure properties with respect to set operators.

Proposition 9. Type graph languages are closed under intersection (by tak-
ing the product of type graphs) but not under union or complementation, while
restriction graph languages are closed under union (by taking the coproduct of
restriction graphs) but not under intersection or complementation.

Instead the two classes of languages enjoy similar decidability properties.

Proposition 10. For a graph language L characterized by a type graph T (i.e.
L = L(T)) or by a restriction graph R (i.e. L = LR(R)) the following problems
are decidable:

Specifying Graph Languages with Type Graphs 77

1. Membership, i.e. for each graph G it is decidable if G ∈ L holds.
2. Emptiness, i.e. it is decidable if L = ∅ holds.

Furthermore, language inclusion is decidable for both classes of languages:

3. Given type graphs T1 and T2 it is decidable if L(T1) ⊆ L(T2) holds.
4. Given restriction graphs R1 and R2 it is decidable if LR(R1) ⊆ LR(R2) holds.

3.2 Closure Under Double-Pushout Rewriting

In this subsection we are using the DPO approach with general, not necessarily
injective, rules and matches. We discuss how we can show that a graph language
L is a closed under a given graph transformation rule ρ = (L ← ϕL − I − ϕR →
R), i.e., L is an invariant for ρ. This means that for all graphs G,H, where G
can be rewritten to H via ρ, it holds that G ∈ L implies H ∈ L.

For both type graph languages and restriction graph languages, separately, we
characterize a sufficient and necessary condition which shows that closure under
rule application is decidable. The condition for restriction graph languages is
related to a condition already discussed in [14].

Proposition 11 (Closure under DPO rewriting for restriction graphs).
A restriction graph language LR(S) is closed under a rule ρ = (L ← ϕL − I −

ϕR → R) if and only if the following condition holds: for every pair of morphisms
α : R → F , β : S → F which are jointly surjective, applying the rule ρ with (co-)
match α backwards to F yields a graph E with a homomorphic image of S, i.e.,
E 	∈ LR(S).

Proposition 12 (Closure under DPO rewriting for type graphs). A
type graph language L(T) is closed under a rule ρ = (L ← ϕL − I − ϕR → R)
if and only if for each morphism tL : L → core(T), there exists a morphism
tR : R → core(T) such that tL ◦ ϕL = tR ◦ ϕR.

We show that the only if part (⇒) of Proposition 12 cannot be weakened
by considering morphisms to the type graph T , instead of to core(T). In fact,
consider the following type graph T and the rule ρ:

ρ =
1 2

A

1 2 1 2

B
T =

A

B

A

78 A. Corradini et al.

The type graph T contains the flower node, i.e., it has T
{A,B}
✲

as subgraph.
This ensures that each graph G, edge-labeled over Λ = {A,B}, is in the language
L(T), and thus by rewriting any graph G ∈ L(T) into a graph H using ρ it is
guaranteed that H ∈ L(T). However there is a morphism tL : L → T , the one
mapping the A-labeled edge of L to the left A-labeled edge of T , such that there
exists no morphism tR : R → T satisfying tL ◦ ϕL = tR ◦ ϕR.

3.3 Relating Type Graph and Restriction Graph Languages

Both type graph and restriction graph languages specify collections of graphs
by forbidding the presence of certain structures. This is more explicit with the
use of restriction graphs, though. A natural question is how the two classes of
languages are related. A partial answer to this is provided by the notion of duality
pairs and by an important result concerning their existence, presented in [15].2

Definition 13 (Duality pair). Given two graphs R and T , we call T the dual
of R if for every graph G it holds that G → T if and only if R � G. In this case
the pair (R, T) is called duality pair.

Clearly, we have that (R, T) is a duality pair if and only if the restriction
graph language LR(R) coincides with the type graph language L(T).

Example 14. Let Λ = {A,B} be given. The following is a duality pair:

(R, T) =

(
1 2 3

A B ,
1 2

A,B
A B

)

Since node 1 of T is not the source of a B-labeled edge and node 2 is not the
target of an A-labeled edge, for every graph G we have G → T iff it does not
contain a node which is both the target of an A-labeled edge and the source of
a B-labeled edge. But it contains such a node if and only if R → G.

One can identify the class of restriction graphs for which a corresponding type
graph exists which defines the same graph language. Results from [15] state3 that
given a core graph R, a graph T can be constructed such that (R, T) is a duality
pair if and only if R is a tree.

Thus we have a precise characterisation of the intersection of the classes of
type and restriction graph languages: L belongs to the intersection if and only
if it is of the form L = LR(R) and core(R) is a tree. It is worth mentioning that
the construction of T from R using the results from [15] contains two exponen-
tial blow-ups. This can be interpreted by saying that type graphs have limited
expressiveness if used to forbid the presence of certain structures.

2 Note that in [15] graphs are simple, but it can be easily seen that for our purposes
the results can be transferred straightforwardly.

3 We refer to Lemma 2.3, Lemma 2.5 and Theorem 3.1 in [15].

Specifying Graph Languages with Type Graphs 79

4 Type Graph Logic

In this section we investigate the possibility to define a language of graphs using
a logical formula over type graphs. We start by defining the syntax and semantics
of a type graph logic (TGL).

Definition 15 (Syntax and semantics of TGL). A TGL formula F over a
fixed set of edge labels Λ is formed according to the following grammar:

F := T | F ∨ F | F ∧ F | ¬F, where T is a type graph.

Each TGL formula F denotes a graph language L(F) ⊆ GrΛ defined by struc-
tural induction as follows:

L(T) = {G ∈ GrΛ | G → T} L(¬F) = GrΛ \ L(F)
L(F1 ∧ F2) = L(F1) ∩ L(F2) L(F1 ∨ F2) = L(F1) ∪ L(F2)

Clearly, due to the presence of boolean connectives, boolean closure proper-
ties come for free.

Example 16. Let the following TGL formula F over Λ = {A,B} be given:

F = ¬ A ∧ ¬ B

The graph language L(F) consists of all graphs which do not consist exclusively
of A-edges or of B-edges, i.e., which contain at least one A-labeled edge and
at least one B-labeled edge, something that can not be expressed by pure type
graphs.

We now present some positive results for graph languages L(F) over TGL
formulas F with respect to decidability problems. Due to the conjunction and
negation operator, the emptiness (or unsatisfiability) check is not as trivial as it
is for pure type graphs. Note that thanks to the presence of boolean connectives,
inclusion can be reduced to emptiness.

Proposition 17. For a graph language L(F) characterized by a TGL formula
F , the following problems are decidable:

– Membership, i.e. for all graphs G it is decidable if G ∈ L(F) holds.
– Emptiness, i.e. it is decidable if L(F) = ∅ holds.
– Language inclusion, i.e. given two TGL formulas F1 and F2 it is decidable if

L(F1) ⊆ L(F2) holds.

Such a logic could alternatively also be defined based on restriction graphs.
A related logic, for injective occurrences of restriction graphs, is studied in [17],
where the authors also give a decidability result via inference rules.

80 A. Corradini et al.

5 Annotated Type Graphs

In this section we will improve the expressiveness of the type graphs themselves,
rather than using an additional logic to do so. We will equip graphs with addi-
tional annotations. As explained in the introduction, this idea was already used
similarly in abstract graph rewriting. In contrast to most other approaches, we
will investigate the problem from a categorical point of view.

The idea we follow is to annotate each element of a type graph with pairs
of multiplicities, denoting upper and lower bounds. We will define a category
of multiply annotated graphs, where we consider elements of a lattice-ordered
monoid (short �-monoid) as multiplicities.

Definition 18 (Lattice-ordered monoid). A lattice-ordered monoid (�-
monoid) (M,+,≤) consists of a set M, a partial order ≤ and a binary operation
+ such that

– (M,≤) is a lattice.
– (M,+) is a monoid; we denote its unit by 0.
– It holds that a + (b ∨ c) = (a + b) ∨ (a + c) and a + (b ∧ c) = (a + b) ∧ (a + c),

where ∧,∨ are the meet and join of ≤.

We denote by �Mon the category having �-monoids as objects and as arrows
monoid homomorphisms which are monotone.

Example 19. Let n ∈ N\{0} and take Mn = {0, 1, . . . , n,m} (zero, one, . . . , n,
many) with 0 ≤ 1 ≤ · · · ≤ n ≤ m and addition as monoid operation with the
proviso that �1 + �2 = m if the sum is larger than n. Clearly, for all a, b, c ∈ Mn

a ∨ b = max{a, b} and a ∧ b = min{a, b}. From this we can infer distributivity
and therefore (Mn,+,≤) forms an �-monoid.

Furthermore, given a set S and an �-monoid (M,+,≤), it is easy to check that
also ({a : S → M},+,≤) is an �-monoid, where the elements are functions from
S to M and the partial order and the monoidal operation are taken pointwise.

In the following we will sometimes denote an �-monoid by its underlying set.

Definition 20 (Annotations and multiplicities for graphs). Given a func-
tor A : Graph → �Mon, an annotation based on A for a graph G is an element
a ∈ A(G). We write Aϕ, instead of A(ϕ), for the action of functor A on a graph
morphism ϕ. We assume that for each graph G there is a standard annotation
based on A that we denote by sG, thus sG ∈ A(G).

Given an �-monoid Mn = {0, 1, . . . , n,m} we define the functor Bn :
Graph → �Mon as follows:

– for every graph G, Bn(G) = {a : (VG ∪ EG) → Mn};
– for every graph morphism ϕ : G → G′ and a ∈ Bn(G), we have

Bn
ϕ(a) : VG′ ∪ EG′ → Mn with:

Bn
ϕ(a)(y) =

∑
ϕ(x)=y

a(x), where x ∈ (VG ∪ EG) and y ∈ (VG′ ∪ EG′)

Specifying Graph Languages with Type Graphs 81

Therefore an annotation based on a functor Bn associates every item of a graph
with a number (or the top value m). We will call such kind of annotations mul-
tiplicities. Furthermore, the action of the functor on a morphism transforms a
multiplicity by summing up (in Mn) the values of all items of the source graph
that are mapped to the same item of the target graph.

For a graph G, its standard multiplicity sG ∈ Bn(G) is defined as the function
which maps every node and edge of G to 1.

Some of the results that we will present in the rest of the paper will hold for
annotations based on a generic functor A, some only for annotations based on
functors Bn, i.e. for multiplicities.

The type graphs which we are going to consider are enriched with a set
of pairs of annotations. The motivation for considering multiple annotations
rather than a single one is mainly to ensure closure under union. Each pair can
be interpreted as establishing a lower and an upper bound to what a graph
morphism can map to the graph.

Definition 21 (Multiply annotated graphs). Given a functor A : Graph →
�Mon, a multiply annotated graph G[M] (over A) is a graph G equipped with a
finite set of pairs of annotations M ⊆ A(G) × A(G), such that � ≤ u for all
(�, u) ∈ M .

An arrow ϕ : G[M] → G′[M ′], also called a legal morphism, is a graph mor-
phism ϕ : G → G′ such that for all (�, u) ∈ M there exists (�′, u′) ∈ M ′ with
Aϕ(�) ≥ �′ and Aϕ(u) ≤ u′. We will write G[�, u] as an abbreviation of G[{(�, u)}].
In case of annotations based on Bn, we will often call a pair (�, u) a double multi-
plicity.

Multiply annotated graphs and legal morphisms form a category.

Lemma 22. The composition of two legal morphisms is a legal morphism.

Example 23. Consider the following multiply annotated graphs (over B2) G[�, u]
and H[�′, u′], both having one double multiplicity.

G[�, u] =
[1,1] [1,m]

A [0,1]
H[�′, u′] =

[1,m]
A [0,m]

As evident from the picture, multiplicities are represented by writing the
lower and upper bounds next to the corresponding graph elements. Note that
there is a unique, obvious graph morphism ϕ : G → H, mapping both nodes of G
to the only node of H. Concerning multiplicities, by adding the lower and upper
bounds of the two nodes of G, one gets the interval [2,m] which is included in the
interval of the node of H, [1,m]. Similarly, the double multiplicity [0, 1] of the
edge of G is included in [0,m]. Therefore, since both B2

ϕ(�) ≥ �′ and B2
ϕ(u) ≤ u′

hold, we can conclude that ϕ : G[�, u] → H[�′, u′] is a legal morphism.

We are now ready to define how a graph language L(T [M]) looks like.

82 A. Corradini et al.

Definition 24. (Graph languages of multiply annotated type graphs).
We say that a graph G is represented by a multiply annotated type graph T [M]
whenever there exists a legal morphism ϕ : G[sG, sG] → T [M], i.e., there exists
(�, u) ∈ M such that � ≤ Aϕ(sG) ≤ u. We will write G ∈ L(T [M]) in this case.
Whenever M = ∅ for a multiply annotated type graph T [M] we get L(T [M]) = ∅.

An extended example can be found in [6].

5.1 Decidability Properties for Multiply Annotated Graphs

We now address some decidability problems for languages defined by multiply
annotated graphs. We get positive results with respect to the membership and
emptiness problems. However, for decidability of language inclusion we only get
partial results.

For the membership problem we can simply enumerate all graph morphisms
ϕ : G → T and check if there exists a legal morphism ϕ : G[sG, sG] → T [M].

The emptiness check is somewhat more involved, since we have to take care
of “illegal” annotations.

Proposition 25. For a graph language L(T [M]) characterized by a multi-
ply annotated type graph T [M] over Bn the emptiness problem is decidable:
L(T [M]) = ∅ iff M = ∅ or for each (�, u) ∈ M there exists an edge e ∈ ET

such that �(e) ≥ 1 and (u(src(e)) = 0 or u(tgt(e)) = 0).

Language inclusion can be deduced from the existence of a legal morphism
between the two multiply annotated type graphs.

Proposition 26. The existence of a legal morphism ϕ : T1[M] → T2[N] implies
L(T1[M]) ⊆ L(T2[N]).

We would like to remark that this condition is sufficient but not necessary, and
we present the following counterexample. Let the following two multiply annotated
type graphs T1[M1] and T2[M2] over B1 be given where |M1| = |M2| = 1:

T1[M1] =
[1, m]

T2[M2] =
[1, 1] [0, m]

Clearly we have that the languages L(T1[M1]) and L(T2[M2]) are equal as
both contain all discrete non-empty graphs. Thus L(T1[M1]) ⊆ L(T2[M2]), but
there exists no legal morphism ϕ : T1[M1] → T2[M2]. In fact, the upper bound
of the first node of T2 would be violated if the node of T1 is mapped by ϕ to
it, while the lower bound would be violated if the node of T1 is mapped to the
other node.

5.2 Deciding Language Inclusion for Annotated Type Graphs

In this section we show that if we allow only bounded graph languages consisting
of graphs up to a fixed pathwidth, the language inclusion problem becomes

Specifying Graph Languages with Type Graphs 83

decidable for annotations based on Bn. Pathwidth is a well-known concept from
graph theory that intuitively measures how much a graph resembles a path.

The proof is based on the notion of recognizability, which will be described
via automaton functors that were introduced in [4]. We start with the main
result and explain step by step the arguments that will lead to decidability.

Proposition 27. The language inclusion problem is decidable for graph lan-
guages of bounded pathwidth characterized by multiply annotated type graphs
over Bn. That is, given k ∈ N and two multiply annotated type graphs T1[M1]
and T2[M2] over Bn, it is decidable whether L(T1[M1])≤k ⊆ L(T2[M2])≤k, where
L(T [M])≤k = {G ∈ L(T [M]) | G has pathwidth ≤ k}.

Our automaton model, given by automaton functors, reads cospans (i.e.,
graphs with interfaces) instead of single graphs. Therefore in the following,
the category under consideration will be Cospanm(Graph), i.e. the category
of cospans of graphs where the objects are discrete graphs J,K and the arrows
are cospans c : J → G ← K where both graph morphisms are injective. We will
refer to the graph J as the inner interface and to the graph K as the outer
interface of the graph G. In addition we will sometimes abbreviate the cospan
c : J → G ← K to the short representation c : J

�
K.

According to [3] a graph has pathwidth k iff it can be decomposed into
cospans where each middle graph of a cospan has at most k + 1 nodes. Hence
it is easy to check that a path has pathwidth 1, while a clique of order k has
pathwidth k − 1.

Our main goal is to build an automaton which can read all graphs of our lan-
guage step by step, similar to the idea of finite automata reading words in formal
languages. Such an automaton can be constructed for an unbounded language,
where the pathwidth is not restricted. However, we obtain a finite automaton
only if we restrict the pathwidth. Then we can use well-known algorithms for
finite automata to solve the language inclusion problem. Note that, if we would
use tree automata instead of finite automata, our result could be generalized to
graphs of bounded treewidth.

We will first introduce the notion of automaton functor (which is a categor-
ical automaton model for so-called recognizable arrow languages) and which is
inspired by Courcelle’s theory of recognizable graph languages [9].

Definition 28 (Automaton functor [4]). An automaton functor C :
Cospanm(Graph) → Rel is a functor that maps every object J (i.e., every
discrete graph) to a finite set C(J) (the set of states of J) and every cospan
c : J

�
K to a relation C(c) ⊆ C(J) × C(K) (the transition relation of c). In

addition there is a distinguished set of initial states I ⊆ C(∅) and a distinguished
set of final states F ⊆ C(∅). The language LC of C is defined as follows:

A graph G is contained in LC if and only if there exist states q ∈ I and
q′ ∈ F which are related by C(c), i.e. (q, q′) ∈ C(c), where c : ∅ → G ← ∅

is the unique cospan with empty interfaces and middle graph G.

Languages accepted by automaton functors are called recognizable.

84 A. Corradini et al.

We will now define an automaton functor for a type graph T [M] over Bn.

Definition 29 (Counting cospan automaton). Let T [M] be a multiply
annotated type graph over Bn. We define an automaton functor CT [M] :
Cospanm(Graph) → Rel as follows:

– For each object J of Cospanm(Graph) (thus J is a finite discrete graph),
CT [M](J) = {(f, b) | f : J → T, b ∈ Bn(T)} is its finite set of states

– I ⊆ CT [M](∅) is the set of initial states with I = {(f : ∅ → T, 0)}, where 0
is the constant 0-function

– F ⊆ CT [M](∅) is the set of final states with F = {(f : ∅ → T, b) | ∃(�, u) ∈
M : � ≤ b ≤ u}

– Let c : J −ψL → G ← ψR −K be an arrow in the category Cospanm(Graph)
with discrete interface graphs J and K where both graph morphisms ψL : J →
G and ψR : K → G are injective. Two states (f : J → T, b) and (f ′ : K →
T, b′) are in the relation CT [M](c) if and only if there exists a morphism
h : G → T such that the diagram below to the right commutes and for all
x ∈ VT ∪ ET the following equation holds:

b′(x) = b(x) + |{y ∈ (G \ ψR(K)) | h(y) = x}|
The set G \ ψR(K) consists of all elements of G which are not targeted by the
morphism ψR, e.g. G \ ψR(K) = (VG \ ψR(VK)) ∪ (EG \ ψR(EK)). Instead of
LCT [M] and CT [M] we just write LC and C if T [M] is clear from the context.

The intuition behind this construction is to
count for each item x of T , step by step, the number
of elements that are being mapped from a graph G
(which is in the form of a cospan decomposition) to
x, and then check if the bounds of a pair of anno-
tations (�, u) ∈ M of the multiply annotated type
graph T [M] are satisfied. We give a short example
before moving on to the results.

Example 30. Let the following multiply annotated type graph (over B2) T [�, u]
and the cospan (c : ∅ → G ← ∅) with G ∈ L(T [�, u]) be given:

T [�, u] =
[0,1] [1,m]

A [0,2]
B [0,m] c : ∅

A B
∅

We will now decompose the cospan c into two cospans c1, c2 with c = c1; c2 in
the following way:

∅
A B

∅

c1 c2

c

Specifying Graph Languages with Type Graphs 85

We let our counting cospan automaton parse the cospan decomposition c1; c2 step
by step now to show how the annotations for the type graph T evolve during
the process. According to our construction, every element in T has multiplicity
0 in the initial state of the automaton. We then sum up the number of elements
within the middle graphs of the cospans which are not part of the right interface.
Therefore we get the following parsing process:

∅
A B

∅

[0] [0]

A[0]
B[0]

[1] [0]

A[1]
B[0]

[1] [2]

A[1]
B[1]

f1 f2 f3

q1 q2 q3
We visited three states q1, q2 and q3 in the automaton with (q1, q2) ∈ C(c1) and
(q2, q3) ∈ C(c2). Since C is supposed to be a functor we get that C(c1); C(c2) =
C(c) and therefore (q1, q3) ∈ C(c) also holds. In addition we have q1 ∈ I and
since the annotation function b ∈ B2(T) in q3 = (f3, b) satisfies � ≤ b ≤ u we
can infer that q3 ∈ F . Therefore we can conclude that G ∈ LC holds as well.

We still need to prove that C is indeed a functor. Intuitively this shows
that acceptance of a graph by the automaton is not dependent on its specific
decomposition.

Proposition 31. Let c1 : J → G ← K and c2 : K → H ← L be two arrows and
let idG : G → G ← G be the identity cospan.

The mapping CT [M] : Cospanm(Graph) → Rel is a functor:

1. CT [M](idG) = idCT [M](G)

2. CT [M](c1; c2) = CT [M](c1); CT [M](c2)

The language accepted by the automaton LC is exactly the graph language
L(T [M]).

Proposition 32. Let the multiply annotated type graph T [M] (over Bn) and
the corresponding automaton functor C : Cospanm(Graph) → Rel for T [M] be
given. Then LC = L(T [M]) holds, i.e. for a graph G we have G ∈ L(T [M]) if and
only if there exist states i ∈ I ⊆ C(∅) and f ∈ F ⊆ C(∅) such that (i, f) ∈ C(c),
where c : ∅ → G ← ∅.

Therefore we can construct an automaton for each graph language specified
by a multiply annotated type graph T [M], which accepts exactly the same lan-
guage. In case of a bounded graph language this automaton will have only finitely
many states. Furthermore we can restrict the label alphabet, i.e., the cospans by
using only atomic cospans, adding a single node or edges (see [2]). Once these
steps are performed, we obtain conventional non-deterministic finite automata
over a finite alphabet and we can use standard techniques from automata theory
to solve the language inclusion problem directly on the finite automata.

86 A. Corradini et al.

5.3 Closure Properties for Multiply Annotated Graphs

Extending the expressiveness of the type graphs by adding multiplicities gives
us positive results in case of closure under union and intersection. Here we use
constructions that rely on products and coproducts in the category of graphs.
Closure under intersection holds for the most general form of annotations. From
T1[M1], T2[M2] we can construct an annotated type graph (T1 × T2)[N], where
N contains all annotations which make both projections πi : T1 × T2 → Ti legal.

Proposition 33. The category of multiply annotated graphs is closed under
intersection.

We can prove closure under union for the case of annotations based on the
functor Bn. Here we take the coproduct (T1 ⊕ T2)[N], where N contains all
annotations of M1, M2, transferred to T1⊕T2 via the injections ij : Tj → T1⊕T2.
Intuitively, graph items not in the original domain of the annotations receive
annotation [0, 0]. This can be generalized under some mild assumptions (see
proof in [6]).

Proposition 34. The category of multiply annotated graphs over functor Bn is
closed under union.

Closure under complement is still an open issue. If we restrict to graphs
of bounded pathwidth, we have a (non-deterministic) automaton (functor), as
described in Sect. 5.1, which could be determinized and complemented. However,
this does not provide us with an annotated type graph for the complement. We
conjecture that closure under complement does not hold.

6 Conclusion

Our results on decidability and closure properties for specification languages are
summarized in the following table. In the case where the results hold only for
bounded pathwidth, the checkmark is in brackets.

Pure TG Restr. Gr. TG Logic Annotated TG
G ∈ L? ✓ ✓ ✓ ✓

Decidability L = ∅? ✓ ✓ ✓ ✓
L1 ⊆ L2? ✓ ✓ ✓ (✓)
L1 ∪ L2 ✗ ✓ ✓ ✓

Closure Properties L1 ∩ L2 ✓ ✗ ✓ ✓
GrΛ \ L ✗ ✗ ✓ ?

One open question that remains is whether language inclusion for annotated
type graphs is decidable if we do not restrict to bounded treewidth. Similarly,
closure under complement is still open.

Furthermore, in order to be able to use these formalisms extensively in appli-
cations, it is necessary to provide a mechanism to compute weakest preconditions

Specifying Graph Languages with Type Graphs 87

and strongest postconditions. This does not seem feasible for pure type graphs
or the type graph logic. Hence, we are currently working on characterizing weak-
est preconditions and strongest postconditions in the setting of annotated type
graphs. This requires a materialisation construction, similar to [23], which we plan
to characterize abstractly, exploiting universal properties in category theory.

Note that our annotations are global, i.e., we count all items that are mapped
to a specific item in the type graph. This holds also for edges, as opposed to
UML multiplicities, which are local wrt. the classes which are related by an edge
(i.e., an association). We plan to study the possibility to integrate this into our
framework and investigate the corresponding decidability and closure properties.

Related work: As already mentioned there are many approaches for specifying
graph languages. One can not say that one is superior to the other, usually there
is a tradeoff between expressiveness and decidability properties, furthermore they
differ in terms of closure properties.

Recognizable graph languages [8,9], which are the counterpart to regular
word languages, are closely related with monadic second-order graph logic. If one
restricts recognizable graph languages to bounded treewidth (or pathwidth as we
did), one obtains satisfactory decidability properties. On the other hand, the size
of the resulting graph automata is often quite intimidating [2] and hence they are
difficult to work with in practical applications. The use of nested application condi-
tions [13], equivalent to first-order logic [20], has a long tradition in graph rewriting
and they can be used to compute pre- and postconditions for rules [18]. However,
satisfiability and implication are undecidable for first-order logic.

A notion of grammars that is equivalent to context-free (word) grammars are
hyperedge replacement grammars [12]. Many aspects of the theory of context-
free languages can be transferred to the graph setting.

In heap analysis the representation of pointer structures to be analyzed
requires methods to specify sets of graphs. Hence both the TVLA approach
by Sagiv, Reps and Wilhelm [23], as well as separation logic [10,16] face this
problem. In [23] heaps are represented by graphs, annotated with predicates
from a three-valued logics (with truth values yes, no and maybe).

A further interesting approach are forest automata [1] that have many inter-
esting properties, but are somewhat complex to handle.

In [22] the authors study an approach called Diagram Predicate Framework
(DPF), in which type graphs have annotations based on generalized sketches.
This formalism is intended for MOF-based modelling languages and allows more
complex annotations than our framework.

References

1. Abdulla, P.A., Hoĺık, L., Jonsson, B., Lengál, O., Trinh, C.Q., Vojnar, T.: Ver-
ification of heap manipulating programs with ordered data by extended forest
automata. In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 224–
239. Springer, Cham (2013). doi:10.1007/978-3-319-02444-8 17

http://dx.doi.org/10.1007/978-3-319-02444-8_17

88 A. Corradini et al.

2. Blume, C., Bruggink, H.J.S., Engelke, D., König, B.: Efficient symbolic implemen-
tation of graph automata with applications to invariant checking. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562,
pp. 264–278. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33654-6 18

3. Blume, C., Sander Bruggink, H.J., Friedrich, M., König, B.: Treewidth, pathwidth
and cospan decompositions with applications to graph-accepting tree automata. J.
Vis. Lang. Comput. 24(3), 192–206 (2013)

4. Bruggink, H.J.S., König, B.: On the recognizability of arrow and graph languages.
In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol.
5214, pp. 336–350. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87405-8 23

5. Clarke, E.M., Grumberg, O., Jha, S., Yuan, L., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

6. Corradini, A., König, B., Nolte, D.: Specifying graph languages with type graphs,
arXiv:1704.05263 (2017)

7. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae
26(3/4), 241–265 (1996)

8. Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of
finite graphs. Inf. Comput. 85, 12–75 (1990)

9. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic, A
Language-Theoretic Approach. Cambridge University Press, New York (2012)

10. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006). doi:10.1007/11691372 19

11. Endrullis, J., Zantema, H.: Proving non-termination by finite automata. In: RTA
2015, vol. 36. LIPIcs, pp. 160–176. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2015)

12. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992). doi:10.1007/BFb0013875

13. Habel, A., Pennemann, K.-H.: Nested constraints and application conditions for
high-level structures. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G.,
Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol.
3393, pp. 293–308. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31847-7 17

14. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph rewriting - a con-
structive approach. In: Proceedings of the Joint COMPUGRAPH/SEMAGRAPH
Workshop on Graph Rewriting and Computation, vol. 2, ENTCS (1995)

15. Nešetřil, J., Tardif, C.: Duality theorems for finite structures (characterising gaps
and good characterisations). J. Comb. Theory Ser. B 80, 80–97 (2000)

16. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007). Reynolds Festschrift

17. Orejas, F., Ehrig, H., Prange, U.: A logic of graph constraints. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 179–198. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78743-3 14

18. Pennemann, K.-H.: Development of Correct Graph Transformation Systems. Ph.D.
thesis, Universität Oldenburg, May 2009

19. Rensink, A.: Canonical graph shapes. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol.
2986, pp. 401–415. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24725-8 28

20. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30203-2 23

21. Rozenberg, G., (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, vol. 1: Foundations. World Scientific (1997)

http://dx.doi.org/10.1007/978-3-642-33654-6_18
http://dx.doi.org/10.1007/978-3-540-87405-8_23
http://arxiv.org/abs/1704.05263
http://dx.doi.org/10.1007/11691372_19
http://dx.doi.org/10.1007/BFb0013875
http://dx.doi.org/10.1007/978-3-540-31847-7_17
http://dx.doi.org/10.1007/978-3-540-78743-3_14
http://dx.doi.org/10.1007/978-3-540-24725-8_28
http://dx.doi.org/10.1007/978-3-540-30203-2_23

Specifying Graph Languages with Type Graphs 89

22. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A diagrammatic formalisation
of MOF-based modelling languages. In: Oriol, M., Meyer, B. (eds.) TOOLS
EUROPE 2009. LNBIP, vol. 33, pp. 37–56. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-02571-6 4

23. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
TOPLAS (ACM Trans. Program. Lang. Syst.) 24(3), 217–298 (2002)

24. Steenken, D., Wehrheim, H., Wonisch, D.: Sound and complete abstract graph
transformation. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS, vol. 7021,
pp. 92–107. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25032-3 7

http://dx.doi.org/10.1007/978-3-642-02571-6_4
http://dx.doi.org/10.1007/978-3-642-02571-6_4
http://dx.doi.org/10.1007/978-3-642-25032-3_7

Fusion Grammars: A Novel Approach
to the Generation of Graph Languages

Hans-Jörg Kreowski, Sabine Kuske, and Aaron Lye(B)

Department of Computer Science, University of Bremen,
P.O.Box 33 04 40, 28334 Bremen, Germany

{kreo,kuske,lye}@informatik.uni-bremen.de

Abstract. In this paper, we introduce the notion of fusion grammars
as a novel device for the generation of (hyper)graph languages. Fusion
grammars are motivated by the observation that many large and complex
structures can be seen as compositions of a large number of small basic
pieces. A fusion grammar is a hypergraph grammar that provides the
small pieces as connected components of the start hypergraph. To get
arbitrary large numbers of them, they can be copied multiple times. To
get large connected hypergraphs, they can be fused by the application
of fusion rules. As the first main results, we show that fusion grammars
can simulate hyperedge replacement grammars that generate connected
hypergraphs, that the membership problem is decidable, and that fusion
grammars are more powerful than hyperedge replacement grammars.

1 Introduction

One encounters various fusion processes in various scientific fields like DNA
computing, chemistry, tiling, fractal geometry, visual modeling and others. For
example, the fusion of DNA double strands according to the Watson-Crick com-
plemtarity is a key operation of DNA computing in the wake of the Adleman
experiment (see, e.g. [1,2]). As an illustration, consider the DNA double strands

A T T A G T A C
T A A T C A T G

As they have complementary sticky ends, the first strand and the second or
the third one as well as the second and the third one can fuse with each other.
Moreover, the second strand can fuse with itself. Therefore, in a tube with many
identical molecules of the three kinds, one gets fused molecules like those given
in Fig. 1a. Similar effects can be seen in the iteration of some fractals (see, e.g.,
[3]) like those depicted in Fig. 1b. This iterates the Sierpinski triangle where the
(i + 1)-th structure is obtained from the i-th structure by zooming it with the
factor 1/2, making three copies and fusing the right corner of one copy with the
left corner of another copy and the upper corners of both copies with the left and
right corner of the third copy. Ignoring the geometry, the i-th iterated structure of
the Sierpinski triangle is a fusion of 3i copies of the initial triangle. Quite similar

c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 90–105, 2017.
DOI: 10.1007/978-3-319-61470-0 6

Fusion Grammars: A Novel Approach to the Generation of Graph Languages 91

A T T A C
T A A T G

A T T A G T A
T A A T C

G T A C
A T C A T G

A T T A G T A C
T A A T C A T G

...

(a) DNA (b) Sierpinski

X

X

getorder A

getorder B

produce A

produce B

send A

send B

(c) BPMN

Fig. 1. Examples of fused entities

fusion operations can be found in mosaics and tilings (see, e.g., [4]). As a last
example, we may look into the area of visual modeling where one encounters quite
a spectrum of diagrams that are composed of some basic forms. For instance, a
BPMN process may look as depicted in Fig. 1c. In all the examples, the same
principle works: A few small entities may be copied and fused to produces more
complicated entities.

In this paper, we capture the principle in the formal framework of fusion
grammars which are generative devices on hypergraphs. The basic entities are
provided by the start hypergraph. The fusion is done by means of fusion rules
that take two complemtary hyperedges with the same number of attachment
nodes. By rule application, each two corresponding nodes of the attachment
nodes are fused with each other while the hyperedges are consumed. This allows
in particular to connect disconnected component hypergraphs. Moreover, arbi-
trary multiplication of connected components is admitted during the derivation
process. Because of the multiplication, the derived hypergraphs may consist of
many disjoint connected components that may not always be used for fusion in
a meaningful way later on. Hence, we consider hypergraphs as a kind of ”tubes
of molecules” where the molecules are represented by the connected compo-
nents. In this respect, fusion grammars are closely related to graph multiset
transformation as one encounters in [5,6]. Consequently, the generated language
contains terminal connected components of derived hypergraphs rather than the
whole terminal derived hypergraphs. Additionally, we allow to use a marker
mechanism to identify the language elements. Fusion grammars exhibit quite
strong parallelism properties and it turns out that fusions and multiplications
can be interchanged. Based on these results, one can prove that the membership
problem of fusion grammars is decidable provided that none of the connected
components of the start hypergraph consists of fusion hyperedges only. A sec-
ond main result is that the well-known hyperedge replacement grammars can be
transformed into fusion grammars such that the source grammar and the tar-
get grammar generate the same language if the source grammar has rules with
connected right-hand sides. As a last result we show that fusion grammars are
more powerful than hyperedge replacement grammars.

92 H.-J. Kreowski et al.

The paper is organized as follows. Section 2 provides graph-transformational
preliminaries. In Sect. 3, basic results of hyperedge replacement grammars are
recalled. In Sect. 4, we introduce the notion of fusion grammars. Basic properties
of these type of grammars are proven in Sect. 5 including a solution of the mem-
bership problem. In Sect. 6, we relate fusion grammars to hyperedge replacement
grammars. Section 7 concludes the paper.

2 Graph-Transformational Preliminaries

In this section, the basic notions and notations of graph transformation are
recalled as far as needed (see, e.g., [7]). Although we are mainly interested in
graph languages, we use the more general hypergraphs as underlying structures
because they make some technicalities a bit simpler. We consider hypergraphs
the hyperedges of which are attached to a sequence of nodes and labeled in a
given label alphabet Σ.

A hypergraph over Σ is a system H = (V,E, att , lab) where V is a finite
set of nodes, E is a finite set of hyperedges, att : E → V ∗ is a function, called
attachment, and lab : E → Σ is a function, called labeling.

The length of the attachment att(e) for e ∈ E is called type of e, and e
is called A-hyperedge if A is its label. The components of H = (V,E, att , lab)
may also be denoted by VH , EH , attH , and labH respectively. The class of all
hypergraphs over Σ is denoted by HΣ .

A graph is a hypergraph H = (V,E, att , lab) with att(e) ∈ V 2 for all e ∈ E.
In this case, the hyperedges are called edges. Moreover, the attachment may be
separated in source and target mappings s, t : E → V given by s(e) = v and
t(e) = v′ for att(e) = vv′. If s(e) = t(e), then e is also called a loop.

In drawings, a hyperedge e with attachment att(e) = v1 · · · vk is depicted by

•v1 1

•v2
2 A

•vkk

i.e. numbered tentacles connect the label with the corresponding attachment
nodes. Moreover, an edge e is depicted by • •A instead of • A •1 2 and • A

if s(e) = t(e). We assume the existence of a special label ∗ ∈ Σ that is omitted
in drawings. In this way, unlabeled hyperedges are represented by hyperedges
labeled with ∗. If there are two edges with the same label, but in opposite

directions, we may draw them as an undirected edge: • •A instead of • •
A

A
.

Given H,H ′ ∈ HΣ , H is a subhypergraph of H ′ if VH ⊆ VH′ , EH ⊆ EH′ ,
attH(e) = attH′(e), and labH(e) = labH′(e) for all e ∈ EH . This is denoted by
H ⊆ H ′.

Given H,H ′ ∈ HΣ , a (hypergraph) morphism g : H → H ′ consists of two
mappings gV : VH → VH′ and gE : EH → EH′ such that attH′(gE(e)) =
g∗

V (attH(e)) and labH′(gE(e)) = labH(e) for all e ∈ EH where g∗
V : V ∗

H → V ∗
H′

is the canonical extension of gV , given by g∗
V (v1 · · · vn) = gV (v1) · · · gV (vn) for

Fusion Grammars: A Novel Approach to the Generation of Graph Languages 93

all v1 · · · vn ∈ V ∗
H . H and H ′ are isomorphic, denoted by H ∼= H ′, if there is

an isomorphism g : H → H ′, i.e. a morphism with bijective mappings. Clearly,
H ⊆ H ′ implies that the two inclusions VH ⊆ VH′ and EH ⊆ EH′ define a
morphism from H → H ′. Given a morphism g : H → H ′, the image of H in H ′

under g defines a subgraph g(H) ⊆ H ′.
Let H ′ ∈ HΣ as well as V ⊆ VH′ and E ⊆ EH′ . Then the removal of

(V,E) from H ′ given by H = H ′ − (V,E) = (VH′ − V,EH′ − E, attH , labH)
with attH(e) = attH′(e) and labH(e) = labH′(e) for all e ∈ EH′ − E defines a
subgraph H ⊆ H ′ if attH′(e) ∈ (VH′ −V)∗ for all e ∈ EH′ −E, i.e. no remaining
hyperedge is attached to a node that does not remain. This condition is called
dangling condition because the removal of a node would leave some dangling
tentacles if this condition is violated.

Let H ∈ HΣ and H ′ = (V ′, E′, att ′ : E′ → (VH + V ′)∗, lab′ : E′ → Σ) be
some quadruple with two sets V ′, E′ and two mappings att ′ and lab′ where
+ denotes the disjoint union of sets. Then the extension of H by H ′ given by
H+H ′ = (VH +V ′, EH +E′, att , lab) with att(e) = attH(e) and lab(e) = labH(e)
for all e ∈ EH as well as att(e) = att ′(e) and lab(e) = lab′(e) for all e ∈ E′ is a
hypergraph with H ⊆ H + H ′. A special case of extension is used several times
further on, i.e. the addition of a single hyperedge with the attachment 1 · · · k and
label A. This extension is denoted by ([k] ⊆ H)A with [k] = {1, . . . , k}. If k is
known from the context, then the shorter denotation HA is used. If, in addition,
H is the discrete graph with the nodes 1, . . . , k, also denoted by [k], then one
writes A• instead of [k]A. A• is called a handle. Likewise, we write (A,B)• if
there are two hyperedges with labels A and B, the same attachment 1 · · · k and
no further nodes. The construction also works if H ′ ∈ HΣ . The only difference
is that attH′ : EH′ → V ∗

H′ and att ′ : E′ → (VH + V ′)∗ have different domains.
But this causes no problem because V ∗

H′ ⊆ (VH + VH′)∗. In this case, H + H ′ is
called disjoint union of H and H ′.

As the disjoint union of sets is unique up to bijection, extensions of hyper-
graphs and disjoint unions of hypergraphs are also unique up to isomorphism. It
is easy to see that the disjoint union is commutative and associative. Moreover,
there are injections (injective morphisms) inH : H → H + H ′ and inH′ : H ′ →
H + H ′ such that inH(H) ∪ inH′(H ′) = H + H ′ and inH(H) ∩ inH′(H ′) = ∅.
Each two morphisms gH : H → Y and gH′ : H ′ → Y define a unique morphism
〈gH , gH′〉 : H + H ′ → Y with 〈gH , gH′〉 ◦ inH = gH and 〈gH , gH′〉 ◦ inH′ = gH′ .
In particular, one gets g = 〈g ◦ inH , g ◦ inH′〉 for all morphisms g : H + H ′ → Y
and g + g′ = 〈inY ◦ g, inY ′ ◦ g′〉 : H + H ′ → Y + Y ′ for morphisms g : H → Y
and g′ : H ′ → Y ′. A special case is the disjoint union of H with itself k times,
denoted by k · H. We make frequently use of these facts throughout the paper.

The fusion of nodes is a further basic construction used in the paper. It is
defined as a quotient by means of an equivalence relation ≡ on the set of nodes
VH of H ∈ HΣ as follows: H/≡ = (VH/≡, EH , attH/≡, labH) with attH/≡(e) =
[v1] · · · [vk] for e ∈ EH , attH(e) = v1 · · · vk where [v] denotes the equivalence
class of v ∈ VH and VH/≡ is the set of equivalence classes. It is easy to see that

94 H.-J. Kreowski et al.

f : H → H/≡ given by fV (v) = [v] for all v ∈ VH and fE(e) = e for all e ∈ EH

defines a quotient morphism.
Let H ∈ HΣ . Then a sequence of triples (i1, e1, o1) . . . (in, en, on) ∈ (N ×

EH × N)∗ is a path from v ∈ VH to v′ ∈ VH if v = attH(e1)i1 , v
′ = attH(en)on

and attH(ej)oj
= attH(ej+1)ij+1 for j = 1, . . . , n − 1 where, for each e ∈ EH ,

attH(e)i = vi for attH(e) = v1 · · · vk and i = 1, . . . , k. H is connected if each two
nodes are connected by a path. A subgraph C of H is a connected component of
H if it is connected and there is no larger connected subgraph, i.e. C ⊆ C ′ ⊆ H
and C ′ connected implies C = C ′. The set of connected components of H is
denoted by C(H).

We use the multiplication of H defined by means of C(H) as follows. Let
m : C(H) → N>0 be a mapping, called multiplicity, then m·H =

∑

C∈C(H)

m(C)·C.

A rule r = (L ⊇ K → R) consists of L,K,R ∈ HΣ with K ⊆ L and a
morphism b : K → R that is injective on EK . To apply r to H ∈ HΣ , one needs
first a matching morphism g : L → H subject to the gluing condition consisting of
the dangling condition of H −(g(L)−g(K)), and the identification condition, i.e.
gV (v) = gV (v′) implies v = v′ or v, v′ ∈ VK for all v, v′ ∈ VL and gE(e) = gE(e′)
implies e = e′ or e, e′ ∈ EK for all e, e′ ∈ EL. Then one removes g(L) − g(K)
from H yielding the intermediate hypergraph X with X ⊆ H and a morphism
d : K → X restricting g to K and X. Finally, X and R are merged along the
morphisms d and b, i.e. the resulting hypergraph is H ′ = (X +R)/(d = b) being
the quotient of X+R through the equivalence relation d = b given by the relation
{(dV (v), bV (v)) | v ∈ VK}. The inclusions inX and inR into X + R followed by
the quotient morphism define morphisms c : X → H ′ and h : R → H ′ such that
c ◦ d = h ◦ b according to the definition of the equivalence d = b.

The application of a rule r to a hypergraph H is denoted by H =⇒
r

H ′ and
called a direct derivation. Its sequential composition of direct derivations der =
(H = H0 =⇒

r1
H1 =⇒

r2
· · · =⇒

rn

Hn = H ′) for some n ∈ N is called a derivation

from H to H ′. If r1, . . . , rn ∈ P (for some set P of rules), der can be denoted as
H

n=⇒
P

H ′ or H
∗=⇒
P

H ′ if the length does not matter.

Given two rules ri = (Li ⊇ Ki −→
bi

Ri) for i = 1, 2, the parallel rule of r1 and

r2 is defined by r1 + r2 = (L1 + L2 ⊇ K1 + K2 −→
b1+b2

R1 + R2). As parallel rules

are rules, the construction of a direct derivation can be applied to parallel rules
too. As the disjoint union is commutative and associative, one gets parallel rules∑n

i=1 ri for each sequence r1 · · · rn of rules and each permutation of r1 · · · rn

yields the same parallel rule. Given a set of rules, the set of all parallel rules is
denoted by P+.

Let H =⇒
r1+r2

H ′ be a direct derivation with the matching morphism g : L1 +

L2 → H. Then gi = g ◦ inLi
for i = 1, 2 yield the direct derivations H =⇒

ri

Hi

with the intermediate graphs Xi and the induced morphisms ci : Xi → Hi

for i = 1, 2. Moreover, the identification condition of g implies g1(L1) =
g(inL1(L1)) ⊆ X2 and g2(L2) = g(inL2(L2)) ⊆ X1 such that g1 and g2 can

Fusion Grammars: A Novel Approach to the Generation of Graph Languages 95

be restricted to X2 and X1 respectively yielding the morphisms e1 : L1 → X2

and e2 : L2 → X1. This property is called parallel independence. Consequently,
one gets matching morphisms g′

1 = c2 ◦ e1 and g′
2 = c1 ◦ e2 defining direct

derivations H1 =⇒
r2

H ′
1 and H2 =⇒

r1
H ′

2. In [8], it is shown for directed labeled

graphs that H ′
1

∼= H ′ ∼= H ′
2. The proof can be generalized to hypergraphs

in a straightforward way. Besides this Sequentialization Theorem, there are
two Parallelization Theorems. The first one states that two direct derivations
H =⇒

ri

Hi with the matching morphisms gi : Li → H for i = 1, 2 that are parallel

independent induce a direct derivation H =⇒
r1+r2

H ′ with the matching morphism

g = 〈g1, g2〉 : L1 + L2 → H. The second one concerns derivations of the form
H =⇒

r1
H1 =⇒

r2
H ′. Such a derivation is called sequentially independent if there are

morphisms e′
1 : R1 → X ′

2 restricting h1 : R1 → H1 and e′
2 : L2 → X1 restricting

g2 : L2 → H1 where X ′
2 is the intermediate graph of H1 =⇒

r2
H ′ and X1 is the

intermediate graph of H =⇒
r1

H1. In this case, one gets a parallel derivation step

H =⇒
r1+r2

H ′.

3 Hyperedge Replacement Grammars

In this section, we recall the notion of hyperedge replacement grammars (see,
e.g., [9,10]) as it is a typical example of a language-generating device and as it
is related to the novel notion of fusion grammars in Sect. 6.

Let N ⊆ Σ be a set of nonterminals where each A ∈ N has a type k(A) ∈ N.
Then a hypergraph replacement rule over N is of the form A• ⊇ [k(A)] ⊆ R for
some hypergraph R.

A hyperedge replacement grammar is a system HRG = (N,T, P, S) where
N ⊆ Σ is a set of typed nonterminals, T ⊆ Σ is a set of terminals with T∩N = ∅,
P is a set of hyperedge replacement rules over N and S ∈ N is the start symbol.
The language L(HRG) is defined as {X ∈ HT | S• ∗=⇒

P
X}.

Example 1. Consider the hyperedge replacement grammar SIER1 = ({�}, {∗},
{�• ⊇ [3] ⊆ R1,�• ⊇ [3] ⊆ R2},�) with R1 and R2 given as follows. The
numbering of nodes indicates the inclusion of the three gluing nodes.

R1 =

•
2

•
3

•
2

•
3

•
1

•
1

•
2

•
3

•
1

� �

�

1

2 3

•
2

•
3

•1

R2 =

One may interpret the structures iterating the Sierpinski triangle sketched in the
introduction as graphs using the corners of black triangles as nodes and their

96 H.-J. Kreowski et al.

edges between corners as undirected edges. Then these graphs can be generated
by SIER1 if one applies rule R1 with maximum parallelism and then R2 to
terminate the generation. But as a hyperedge replacement grammar does not
demand such a strict order of rule applications, SIER1 can also generate less
regular structures.

Of all the known very nice properties of hyperedge replacement grammars,
two are used in this paper.

Fact 1. Let HRG be a hyperedge replacement grammar with connected right-
hand sides. Then L(HRG) contains only connected hypergraphs.

Fact 2 (Context freeness lemma). Let HRG = (N,T, P, S) be a hyperedge
replacement grammar. Let A• n=⇒

P
H be a derivation with A ∈ N and H ∈ HT .

Then there is a rule A• ⊇ [k(A)] ⊆ R, and for each e ∈ ER there is a hyper-

graph H(e) ∈ HT such that labR(e)• n(e)
=⇒H(e) with

∑
e∈ER

n(e) = n − 1 and
REPL(R, repl) = H where repl : ER → HT is given by repl(e) = H(e) and
REPL(R, repl) is the parallel application of the rules labR(e)• ⊇ [k(labR(e))] ⊆
H(e) to e•, the subhypergraph of R consisting of e and its attachment.

Note that the rule related to e ∈ ER is defined because hyperedge replace-
ment does not remove nodes. We can assume [k(A)] ⊆ H whenever A• ∗=⇒H.

4 Fusion Grammars

In this section, we introduce the notion of fusion grammars as a novel type of
graph grammars. Besides a start hypergraph and a specification of generated
hypergraphs, a fusion grammar provides a set of fusion rules. The application of
a fusion rule merges certain nodes which are given by two complementary hyper-
edges. Complementarity is defined on a set F of fusion labels that comes together
with a complementary label A for each A ∈ F . Moreover, we assume that each
A ∈ F has a type k(A) ∈ N which is the number of tentacles of A-labeled hyper-
edges. Given a hypergraph, the set of all possible fusions is finite as fusion rules
never create anything. To overcome this limitation, we allow arbitrary multipli-
cations of disjoint components within derivations. The language generated by a
fusion grammar does not consist of all terminal hypergraphs that are derived
from the start hypergraph, but are chosen in a bit more complicated way. The
problem is that the multiplications may also produce components that are not
really needed. Therefore, we consider only terminal connected components of the
derived hypergraphs as members of the generated language. Moreover, we use
markers. They allow us to distinguish between wanted and unwanted terminal
components; that is, markers identify components of the start hypergraph that
contribute to the generation of a graph. This is particularly useful in the trans-
formation of hyperedge replacement grammars into fusion grammars in Sect. 6
because this mechanism can filter out all components that stem from the initial
handle of the hyperedge replacement grammar. Fusion grammars are illustrated
by two examples where the second one uses a marker.

Fusion Grammars: A Novel Approach to the Generation of Graph Languages 97

Definition 1 (Fusion rule). Let F ⊆ Σ and k : F → N be a type func-
tion. Let A /∈ F be the complementary label for each A ∈ F such that
A �= B for all A �= B. The typing is extended to complementary labels by
k(A) = k(A) for all A ∈ F . Then A ∈ F specifies the following fusion rule:

•1
1

•1
′

1
•2

2
•2

′

2

A A

• •
k(A)

k(A)

k(A)′

k(A)

⊇

•1 •1
′

•2 •2
′

•
k(A)

•
k(A)′

→

•1 = 1′

•2 = 2′

•
k(A) = k(A)′

This rule is denoted by fr(A). The underlying set F of labels is called fusion
alphabet. The number at the nodes identify them so that the left-hand side inclu-
sion and the right-hand side morphism are made visible. The morphism maps
each attachment node and its primed counterpart to the same right-hand side
node.

Definition 2 (Fusion grammar, derivation, and generated language). A fusion
grammar is a system FG = (Z,F,M, T) where Z is a start hypergraph, F ⊆ Σ
is a fusion alphabet, M ⊆ Σ with M ∩ (F ∪ F) = ∅ is a set of markers, and
T ⊆ Σ with T ∩ (F ∪ F) = ∅ = T ∩ M is a set of terminal labels.

A derivation step H =⇒H ′ for some H,H ′ ∈ HΣ is either a rule application
H =⇒

r
H ′ for some parallel rule over fr(F) = {fr(f) | f ∈ F} or a multiplication

H =⇒
m

m · H for some multiplicity m.

L(FG) = {remM (Y) | Z
∗=⇒H,Y ∈ C(H) ∩ (HT∪M − HT)} is the generated

language of FG where remM (Y) is the hypergraph obtained when removing all
hyperedges with labels in M from Y .

Remark 1. If all components of the start hypergraph have hyperedges with mark-
ers, then all connected components of derived hypergraphs have hyperedges with
markers so that markers have no selective effect. This defines a special case of
fusion grammars where the set of markers can be dropped and the hyperedges
with markers removed from the start hypergraph. For such a fusion grammar
FG , called fusion grammar without markers, the generated language is defined
by L(FG) = {Y | Z

∗=⇒H,Y ∈ C(H) ∩ HT }.

Example 2. Consider the set {N,W,S,E} and let F = {N,W} with k(N) =
k(W) = 1 and N = S,W = E. Then the fusion grammar without markers
PSEUDOTORI = (CHECK , F, {∗}) with CHECK depicted in Fig. 2a generates
graphs of structures related to tori and Klein bottles, as the following reasoning
indicates.

Starting with a multiplication by – say – 20, the fusion of disjoint compo-
nents only yields structures like the ones depicted in Fig. 2d where the loops
are omitted. If one continues now with fusions within connected components as
long as possible, then one gets the resulting connected components as members
of the generated language. Consider particularly the first connected component

98 H.-J. Kreowski et al.

•

•

•

•

W

�

�
S

�E

N�

(a) CHECK (b) Torus (c) Klein bottle

N

S

N

S

N

S

N

S

W E

W E

W E

N N

W

S

E

W E

S

W

S

E

N

W

W

E

E

N

S

N

S

S

N

(d) derived graph

Fig. 2. Pseudotori

in Fig. 2d. If one fuses the nodes with W - and E-loops from the top to bottom
and the nodes with N - and S-loops from left to right, then one gets a torus
(Fig. 2b, for simplicity the checks are replaced by rectangles). If one fuses the
nodes with W - and E-loops in opposite order, then one gets a Moebius strip.
The further fusion of the nodes with N - and S-loops from left to right yields the
Klein bottle (Fig. 2c). All other terminal structures where the fusion is done in
arbitrary order result in something between torus and Klein bottle. Hence we
call them pseudotori.

Example 3. Consider the fusion grammar SIER2 = ((�,#)• + R�
1 + R�

2 , {�},
{#}, {∗}) where � ∈ Σ is a fusion label with � = � and k(�) = 3. The three
components of the start hypergraph are depicted in Fig. 3a: (�,#)• in the upper
left, R�

1 on the right, and R�
2 in the lower left.

To illustrate how the derivations work, one may start by a multiplication
of R�

1 by 2 and R�
2 by 5. Then we may fuse the upper �-hyperedge of one

R�
1 with the �-hyperedge of the other R�

1 and all remaining five �-hyperedges
of the two fused R�

1 s with the �-hyperedges of the five R�
2 s. This results in

the hypergraph in Fig. 3b. The fusion of its hyperedge with the �-hyperedge of
(�,#)• yields the hypergraph in Fig. 3b – but with an #-hyperedge instead of
the �-hyperedge – so that one gets a member of the generated language if one
removes the #-hyperedge.

Fusion Grammars: A Novel Approach to the Generation of Graph Languages 99

2
•

3
•

1

•

� #

2
3

1

•
2

•
3
•

2
•

3

•
1

•
1

•
2

•
3

•
1

� �

�

2

3

1

�

• •

•

2
3

1

�

(a) The connected components of the start hypergraph

• •

•

•

• •

• •

• �

2

3

1

(b) Derived hypergraph

Fig. 3. The hypergraphs in SIER2

5 Properties of Fusion Grammars

In this section, we show that fusion grammars have very strong interchange and
parallelization properties. The proofs of Propositions 1–3 are omitted because
they follow straightforwardly from the definitions of fusion, multiplication and
independence. The main result of this section states that the membership prob-
lem for fusion grammars is decidable if they are substantial.

Proposition 1. Two fusions H =⇒
fr(A)

H1 and H =⇒
fr(B)

H2 are parallel indepen-

dent if and only if their matches are hyperedge-disjoint. Two successive fusions
H =⇒

fr(A)
H1 =⇒

fr(B)
H ′ are always sequentially independent.

Note that two matches on the same hypergraph are always hyperedge-disjoint
if A �= B, in the case of A = B one must make sure that the matches neither
share an A-hyperedge nor an A-hyperedge.

Proposition 2. Consider a fusion C +H =⇒
fr(A)

C1 +H for some connected com-

ponent C followed by a multiplication C1 + H =⇒ k · C1 + H. Then fusion and
multiplication can be exchanged in the following way: C+H =⇒ k·C+H =⇒

k·fr(A)
k·

C1 + H.
Analogously, a fusion C +C ′ +H =⇒

fr(A)
C1 +H for two connected components

followed by a multiplication C1 + H =⇒ k · C1 + H yields C + C ′ + H =⇒ k · C +
k · C ′ + H =⇒

k·fr(A)
k · C1 + H.

Finally, consider a fusion D+H =⇒
fr(A)

C1+H, where D consists of one or two

connected components and H = C2 + H ′, followed by a multiplication C1 + H =
C1 + C2 + H ′ =⇒C1 + k · C2 + H ′. Then one can also get: D + H = D + C2 +
H ′ =⇒D + k · C2 + H ′ =⇒

fr(A)
C1 + k · C2 + H ′.

Note that one must multiply the fusions in the first two cases to get the same
result. So it may be reasonable to delay multiplications.

100 H.-J. Kreowski et al.

Proposition 3. Consider two successive multiplications H =⇒
m

m · H =⇒
m′

m′ ·
(m · H). Then the multiplicity m′′ : C(H) → N>0 defined for all C ∈ C(H)
by m′′(C) =

∑

C′∈C(m(C)·C)

m′(C ′) yields the multiplication H =⇒
m′′

m′′ · H with

m′′ · H = m′ · (m · H).
Consider a multiplication H =⇒

m′′
m′′ · H where m′′(C) =

∑

C′∈C(m(C)·C)

m′(C ′)

for two multiplications H =⇒
m

m ·H =⇒
m′

m′ · (m ·H). Then m′′ ·H = m′ · (m ·H).

In particular, H =⇒
m′′

m′′ · H with m′′(C0) ≥ 2 for some C0 ∈ C(H) can be

decomposed in the following way. Let m : C(H) → N>0 and m′ : C(m ·H) → N>0

be defined by m(C0) = m′′(C0), m(C) = 1 for all C ∈ C(H) − {C0}, m′(C ′) = 1
if C ′ ∈ C(m(C0) ·C0) and m′(C ′) = m′′(C ′) otherwise. Then H =⇒

m
m(C0) ·C0 +

(H − C0)=⇒
m′

m′′ · H.

Altogether, the results above yield the following corollary.

Corollary 1. For each derivation H
∗=⇒X in a fusion grammar FG, one finds

a fully sequentialized derivation H
∗=⇒X consisting of single fusions and multi-

plications of single connected components on one hand and a most parallelized
derivation H =⇒

m
m · H =⇒

fr(F)+
X on the other hand.

In order to generate hypergraphs with terminal hyperedges, the start hyper-
graph must contain at least one terminal hyperedge. Fusion grammars in which
every component of the start hypergraph contains terminal edges are called
substantial. In these grammars each derivation step increases the number of ter-
minal hyperedges. For substantial fusion grammars the membership problem is
deciable.

Theorem 1. Let FG = (Z,F, T) or FG = (Z,F,M, T) be a fusion grammar
that is substantial, i.e. C /∈ HF∪F for all C ∈ C(Z). Then the membership
problem for L(FG) is decidable.

Proof. If FG = (Z,F, T) and H ∈ L(FG), then there is a derivation Z
∗=⇒X

with H ∈ C(X) ∩ HT . As FG is substantial, each C ∈ C(Z) contains at least
one terminal hyperedge. Hence, one needs at most the fusion of k connected
components of Z to get H where k is the number of hyperedges in H. In other
words, one may start with the multiplication Z =⇒

k
k · Z, and then try all pos-

sible fusions. The number of possible fusions is finite such that the procedure
terminates. If H appears in this way, then H ∈ L(FG). Otherwise, H /∈ L(FG).

In the case of FG = (Z,F,M, T), a similar reasoning works. The only differ-
ence is that the fusion phase must involve, in addition to the connected compo-
nents with terminal hyperedges, the connected components of Z that have no
terminal hyperedges, but marker hyperedges. If at all, a single fusion of this kind
is enough, to produce a hypergraph with marker. The process remains finite. If
H together with some marker hyperedge appears, then H ∈ L(FG). Otherwise,
H /∈ L(FG).

Fusion Grammars: A Novel Approach to the Generation of Graph Languages 101

Remark 2. As terminal and marker hyperedges do not get lost in fusions, all
components of derived hypergraphs have terminal or marker hyperedges if the
fusion grammar is substantial. Moreover, the result of a fusion has more terminal
or marker hyperedges than each of the fusion components. This is the reason
that membership can be decided in a similar way as for monotonic Chomsky
grammars. Concering our examples, only PSEUDOTORI is substantial, but
SIER2 is equivalent to the hyperedge replacement grammar SIER1 for which
the membership problem is known to be decidable.

6 Transformation of Hyperedge Replacement
Grammars into Fusion Grammars

The language of the fusion grammar SIER2 equals the language of the hyperedge
replacement grammar SIER1. This is not a mere coincidence, but exemplifies the
general relation between the two classes of grammars.

Each hyperedge replacement can be simulated by a fusion of the replaced
hyperedge and the replacing right-hand side of the applied rule if one adds a
hyperedge with complementary label to the right-hand side with the gluing nodes
as attachment. This is the basic observation that leads to a transformation of
hyperedge replacement grammars into fusion grammars. Formally, hypergraph
representations of the hyperedge replacement rules are added disjointly to the
initial handle of the hyperedge replacement grammars. To make sure that the
constructed fusion grammars generate the same language as the given hyperedge
replacement grammar, we must take into account that fusion grammars generate
connected hypergraphs while hyperedge replacement grammars can also generate
disconnected hypergraphs. Moreover, we use a marker to identify those fused
hypergraphs that involve the initial handle.

Definition 3 (Hypergraph representation of hyperedge replacement rules). Let
N ⊆ Σ be a set of labels with a typing k : N → N and a complementary label A
for each A ∈ N such that A /∈ N and A �= B if A �= B. Let r = (A• ⊇ [k(A)] ⊆ R)
be a hyperedge replacement rule. Then the hyperedge representation of the hyper-
edge replacement rule r is defined by hgr(r) = RA.

Proposition 4. Using the notations of Definition 3, the following implication
holds: H =⇒

r
H ′ implies H + hgr(r) =⇒

fr(A)
H ′ for all hypergraphs H,H ′.

Proof. Consider the graph H, depicted in Fig. 4a. Applying the rule r results
in the graph depicted in Fig. 4c. Now consider H together with the hyperedge
representation of r, depicted in Fig. 4b. A fusion rule fr(A) fuses the two hyper-
edges with labels A and A such that the resulting graph is also the one depicted
in Fig. 4c.

Definition 4 (From hyperedge replacement to fusion grammars). Let HRG =
(N,T, P, S) be a hyperedge replacement grammar. Let A /∈ N be a comple-
mentary label for each A ∈ N with A �= B if A �= B. Then the corresponding

102 H.-J. Kreowski et al.

•
•

•

A
2

1

k(A)

(a) H

RA

•
•

•

2

1

k(A)

(b) hgr(r)

•
•

•

R

(c) derived hy-
pergraph

Fig. 4. Components in the proof of Proposition 4

fusion grammar is defined by FG(HRG) = ((S,#)• +
∑

r∈P

hgr(r), N, {#}, T)

with # /∈ N ∪ T .

Example 4. Looking at the Examples 1 and 3, we have FG(SIER1) = SIER2.

Theorem 2. Let HRG = (N,T, P, S) be a hyperedge replacement grammar with
connected right-hand side of rules. Then L(HRG) = L(FG(HRG)).

Proof. We start to show that H ∈ L(HRG) implies H ∈ L(FG(HRG)). H is
terminal and connected as stated in Fact 1. Moreover, we can assume without
loss of generality that [k(S)] ⊆ H. If HS is derivable from hgr(P) =

∑

r∈P

hgr(r)

then one can fuse (S,#)• with HS yielding H#. Therefore, H ∈ L(FG(HRG))
after the removal of the marking #-hyperedge. We prove the following more
general statement by induction over the length of the derivation:

Claim. For all A ∈ N , for all n ≥ 1, A• n=⇒H with H ∈ HT implies hgr(P) ∗=⇒X

with HA ⊆ X.
Induction base: A• 1=⇒H means r = (A• ⊇ [k(A)] ⊆ H) ∈ P and, therefore,

hgr(P) 0=⇒hgr(P) and hgr(r) = RA ⊆ hgr(P).
Induction step: Consider A• n=⇒H with H ∈ HT and n > 1. Due to

the Contextfreeness Lemma for hyperedge replacement grammars (cf. Fact 2),
the derivation can be decomposed into its first step A• =⇒

r
R applying the

rule r = (A• ⊇ [k(A)] ⊆ R) and the remaining derivation R
n−1=⇒H where

the latter decomposes into derivations labR(e)• n(e)
=⇒H(e) for all e ∈ ER such

that
∑

e∈ER

n(e) = n − 1 and REPL(ER, repl) = H with repl(e) = H(e)

for e ∈ ER. In particular, we have n(e) ≤ n − 1 for e ∈ ER so that the
induction hypothesis can be applied yielding, for each e ∈ ER, a derivation
hgr(P) ∗=⇒X(e) with H(e) = H(e)labR(e) ⊆ X(e). Then one can construct a
derivation of the form hgr(P)=⇒ hgr(r) + k · hgr(P) ∗=⇒hgr(r) +

∑

e∈E

X(e) for

the rule r where k is the number of hyperedges of R. The hypergraph rep-
resentation of the rule r is multiplied by k + 1, all the others by k. After

Fusion Grammars: A Novel Approach to the Generation of Graph Languages 103

the multiplication, each of the components hgr(P) is derived separately into
X(e). Now each e ∈ ER in hgr(r) can be fused with the labR(e)-hyperedge of
H(e). Due to Proposition 4, this results in H = HA so that we have a deriva-
tion hgr(P) ∗=⇒hgr(r) +

∑

e∈ER

X(e) ∗=⇒X = H +
∑

e∈ER

(X(e) − H(e)) as stated.

This completes the proof by induction. The statement applies to the derivation
S• ∗=⇒H with H ∈ HT . Altogether, we get H ∈ L(FG(HRG)).

Conversely, we must show that H ∈ L(FG(HRG)) implies H ∈ L(HRG).
According to the definition of FG(HRG),H ∈ HT , and H is connected. More-
over, there is a derivation (S,#)• +hgr(P) ∗=⇒X where X contains a connected
component H#. The only way to derive a hypergraph with a #-hyperedge is
that, eventually, a fusion of the S-hyperedge of the start component (S,#)•

with an S-hyperedge takes place. Moreover by construction there is never a con-
nected component with more than one #-hyperedge. Without loss of generality,
we can assume that this very fusion is the last one so that the derivation decom-
poses into (S,#)• + hgr(P) ∗=⇒(S,#)• + HS + X ′ =⇒

fr(S)
X for some hypergraph

X ′. As no further hypergraph with a #-hyperedge is needed, we can assume
that (S,#)• is not multiplied during the derivation so that we can restrict the
derivation to hgr(P) ∗=⇒HS +X ′ and must make sure that there is a derivation
S• ∗=⇒H in HRG . We prove the following more general statement by induction:

Claim. Let hgr(P) n=⇒Y and H be a connected component of Y with a comple-
mentary hyperedge. Then H = HA for some A ∈ N and A• ∗=⇒H.

Induction base: hgr(P) 0=⇒hgr(P). The connected components are RA for
all rules so that one also gets A• =⇒R.

Induction step: Consider hgr(P) n+1=⇒Y for some n ∈ N. The derivation can
be decomposed into hgr(P) n=⇒Y ′ =⇒Y where, without loss of generality, the
last step is a multiplication or a single fusion. Due to the induction hypothesis,
the connected components of Y ′ have the stated properties. If the last step is a
multiplication, then the multiples in Y are isomorphic to their originals in Y ′

so that the statement holds for the connected components of Y , too. If the last
step is a fusion, without loss of generality, an application of the fusion rule fr(B)
to a connected component H (Case 1) or to two connected components H

′
,H

′′

(Case 2). All other connected components of Y stem from Y ′ so that they have
the claimed property by induction hypothesis. As the connected components
of the start hypergraph have at most one complementary hyperedge and as a
complementary hyperedge is consumed by each fusion, the connected compo-
nents of derived hypergraphs have also at most one complementary hyperedge.
Therefore, the result of the fusion in Case 1 has no complementary hyperedge
so that the claim holds trivially. In Case 2, we know by induction hypothesis
that H

′
= H ′A and H

′′
= H ′′C for some A,C ∈ N as well as that there are

A• ∗=⇒H ′ and C• ∗=⇒H ′′. Because of the applicability of fr(B), we know that
H ′ has a B-hyperedge and B = C. The fusion of H ′A and H ′′B yields a hype-
graph HA for some H. Moreover, one can apply the hyperedge replacement rule

104 H.-J. Kreowski et al.

B• ⊇ [k(B)] ⊆ H ′′ to H ′ yielding A• ∗=⇒ Ĥ. According to Proposition 4, we get
H = Ĥ so that the claim holds also in Case 2. This completes the proof.

If one can embed a class of languages into another class, then the question
emerges whether this inclusion is proper. One reviewer of an earlier version of this
paper gave the proper hint: While the graph languages generated by hyperedge
replacement grammars have bounded tree width, the set of square grids has
unbounded tree width and consequently the set of pseudotori, too.

Proposition 5. The set of pseudotori cannot be generated by a hyperedge
replacement grammar.

Proof. Using the Propositions 4.7, 4.13 and 4.27 in Courcelle and Engelfriet [11],
the language of a hyperedge replacement grammar turns out to have bounded
tree width while the set of square grids has unbounded tree width as shown in
Example 2.56. If one merges the corresponding leftmost and rightmost nodes as
well as the upmost and the downmost ones, then one gets a set of tori still with
unbounded tree width. As this is a subset of the set of pseudotori, the latter set
has also unbounded tree width. This proves the statement.

7 Conclusion

In this paper, we have introduced fusion grammars as devices for the generation
of hypergraph languages. The rules do nothing else than the fusion of nodes.
Besides the nodes and hyperedges of the start hypergraph, one gets new nodes
and hyperedges by copying connected components of intermediate derived hyper-
graphs, rather than by rule application as in most other grammar concepts. The
first study shows that fusion grammars have some promising properties. For
example, the membership problem is decidable and the well-known hyperedge
replacement grammars can be simulated. Further research may prove the signif-
icance of the approach.

There are many possible ways to generalize fusion grammars. Fusion rules
may be provided with positive and negative application conditions. The gram-
mars may be provided with control conditions to cut down the totally free order
of fusions and multiplications. The elements of the generated language may be
filtered from the derived hypergraphs by other means than connectedness, ter-
minality and removal of markers. It would be nice to overcome the limitation of
generating connected components.

Clearly, to get a deeper insight into fusion grammars, one can start with
the usual considerations of grammatical structures like closure properties, fur-
ther decidability and undecidability properties and further relationships to other
classes of grammars like, for example, context-sensitive hyperedge replacement
grammars and monotone graph grammars. A further interesting candidate for
comparison may be membrane systems introduced by Păun [12].

Fusion grammars allow massive parallelism where not only the derivation
process may be massively parallel, but also many members of the generated
language can be derived in parallel. Can one use this fact advantageously?

Fusion Grammars: A Novel Approach to the Generation of Graph Languages 105

Acknowledgment. We are greatful to the anonymous reviewers for their valuable
comments. To one of them we owe the idea to show Proposition 5.

References

1. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing - New Computing Para-
digms. Springer, Heidelberg (1998)

2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266, 1021–1024 (1994)

3. Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals - New Frontiers of
Science, 2nd edn. Springer, New York (2004)

4. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman and Com-
pany, New York (1987)

5. Kreowski, H.-J., Kuske, S.: Graph multiset transformation - a new framework for
massively parallel computation inspired by DNA computing. Nat. Comput. 10(2),
961–986 (2011). doi:10.1007/s11047-010-9245-6

6. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: A software package for
chemically inspired graph transformation. In: Echahed, R., Minas, M. (eds.)
ICGT 2016. LNCS, vol. 9761, pp. 73–88. Springer, Cham (2016). doi:10.1007/
978-3-319-40530-8 5

7. Kreowski, H.-J., Klempien-Hinrichs, R., Kuske, S.: Some essentials of graph trans-
formation. In: Esik, Z., Martin-Vide, C., Mitrana, V. (eds.) Recent Advances in
Formal Languages and Applications. Studies in Computational Intelligence, vol.
25, pp. 229–254. Springer (2006)

8. Ehrig, H., Kreowski, H.-J.: Parallelism of manipulations in multidimensional infor-
mation structures. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp.
284–293. Springer, Heidelberg (1976). doi:10.1007/3-540-07854-1 188

9. Drewes, F., Habel, A., Kreowski, H.-J.: Hyperedge replacement graph grammars.
In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph
Transformation, vol. 1: Foundations, Chap. 2, pp. 95–162. World Scientific (1997)

10. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992). doi:10.1007/BFb0013875

11. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach. Encyclopedia of Mathematics and Its Applications,
vol. 138. Cambridge University Press, Cambridge (2012)

12. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

http://dx.doi.org/10.1007/s11047-010-9245-6
http://dx.doi.org/10.1007/978-3-319-40530-8_5
http://dx.doi.org/10.1007/978-3-319-40530-8_5
http://dx.doi.org/10.1007/3-540-07854-1_188
http://dx.doi.org/10.1007/BFb0013875

Predictive Shift-Reduce Parsing
for Hyperedge Replacement Grammars

Frank Drewes1, Berthold Hoffmann2, and Mark Minas3(B)

1 Umeå universitet, Umeå , Sweden
drewes@cs.umu.se

2 Universität Bremen, Bremen, Germany
hof@informatik.uni-bremen.de

3 Universität der Bundeswehr München, Neubiberg, Germany
mark.minas@unibw.de

Abstract. Graph languages defined by hyperedge replacement gram-
mars can be NP-complete. We study predictive shift-reduce (PSR) pars-
ing for a subclass of these grammars, which generalizes the concepts of
SLR(1) string parsing to graphs. PSR parsers run in linear space and
time. In comparison to the predictive top-down (PTD) parsers recently
developed by the authors, PSR parsing is more efficient and more general,
while the required grammar analysis is easier than for PTD parsing.

Keywords: Hyperedge replacement grammar · Graph parsing · Gram-
mar analysis

1 Introduction

“It is well known that hyperedge replacement (HR, see [11]) can generate NP-
complete graph languages [1]. In other words, even for fixed HR languages pars-
ing is hard. Moreover, even if restrictions are employed that guarantee L to be
in P, the degree of the polynomial usually depends on L; see [16].1 Only under
rather strong restrictions the problem is known to become solvable in cubic time
[5,21].” This quote is from our paper [8] on predictive top-down (PTD) pars-
ing, an extension of SLL(1) string parsing [17] to HR graph grammars [11]. The
parser generator has been extended to the contextual HR grammars devised in
[6,7]; it approximates Parikh images of auxiliary grammars in order to deter-
mine whether a grammar is PTD-parsable [9], and generates parsers that run in
quadratic time, and in many cases in linear time.

Here we devise—somewhat complementary—efficient bottom-up parsers for
HR grammars, called predictive shift-reduce (PSR) parsers, which extend SLR(1)
parsers [4], a member of the LR(k) family of deterministic bottom-up parsers for
context-free grammars [15]. We describe how PSR parsers work and how they
can be constructed, and relate them to SLR(1) string and PTD graph parsers.

1 This result has been exploited for parsing natural language in the system Bolinas [2].
c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 106–122, 2017.
DOI: 10.1007/978-3-319-61470-0_7

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 107

In Sect. 2 we recall basic notions of HR grammars. We sketch SLR(1) string
parsing in Sect. 3 and describe in Sect. 4 how it can be lifted to PSR parsing
of graphs with HR grammars. Then, in Sect. 5, we describe how HR grammars
can be analysed for being PSR-parsable. Section 6 is devoted to the discussion
of related work. Further work is outlined in Sect. 7.

2 Hyperedge Replacement Grammars

We let N denote the non-negative integers. A∗ denotes the set of all finite sequences
over a set A; the empty sequence is denoted by ε, the length of a sequence α by |α|.
For a function f : A → B, its extension f∗ : A∗ → B∗ to sequences is defined by
f∗(a1 · · · an) = f(a1) · · · f(an), for all a1, . . . , an ∈ A, n � 0.

We consider an alphabet Σ of symbols for labeling edges that comes with an
arity function arity : Σ → N. The subset N ⊆ Σ is the set of nonterminal labels.

An edge-labeled hypergraph G = 〈Ġ, Ḡ, attG, �G〉 over Σ (a graph, for short)
consists of disjoint finite sets Ġ of nodes and Ḡ of hyperedges (edges, for short)
respectively, a function attG : Ḡ → Ġ∗ that attaches sequences of nodes to edges,
and a labeling function �G : Ḡ → Σ so that |attG(e)| = arity(�G(e)) for every
edge e ∈ Ḡ. Edges are said to be nonterminal if they carry a nonterminal label,
and terminal otherwise; the set of all graphs over Σ is denoted by GΣ . A handle
graph G for A ∈ N consists of just one edge x and k = arity(A) pairwise distinct
nodes n1, . . . , nk such that �G(x) = A and attG(x) = n1 . . . nk.

Given graphs G and H, a morphism m : G → H is a pair m = 〈ṁ, m̄〉 of
functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ that preserves labels and attachments:
�H ◦ m̄ = �G, and attH ◦ m̄ = ṁ∗ ◦ attG (where “◦” denotes function compo-
sition). A morphism m : G → H is injective and surjective if both ṁ and m̄
have the respective property. If m is injective and surjective, it makes G and H
isomorphic. We do not distinguish between isomorphic graphs.

Definition 1 (HR Rule). A hyperedge replacement rule (rule, for short) r =
L → R consists of graphs L and R over Σ such that the left-hand side L is a
handle graph with L̇ ⊆ Ṙ.

Let r be a rule as above, and consider some graph G. An injective morphism
m : L → G is called a matching for r in G. The replacement of m(L) by R is
then given as the graph H, which is obtained from the disjoint union of G and
R by removing the single edge in m(L̄) and identifying, for every node v ∈ L̇,
the nodes m(v) ∈ Ġ and v ∈ Ṙ. We then write G ⇒r,m H (or just G ⇒r H)
and say that H is derived from G by r.

The notion of rules introduced above gives rise to the class of HR grammars.

Definition 2 (HR Grammar [11]). A hyperedge-replacement grammar (HR
grammar, for short) is a triple Γ = 〈Σ,R, Z〉 consisting of a finite labeling
alphabet Σ, a finite set R of rules, and a start graph Z ∈ GΣ .

We write G ⇒R H if G ⇒r,m H for some rule r ∈ R and a matching
m : L → G, and denote the transitive-reflexive closure of ⇒R by ⇒∗

R. The
language generated by Γ is given by L(Γ) = {G ∈ GΣ\N | Z ⇒∗

R G}.

108 F. Drewes et al.

Without loss of generality, we assume that the start graph Z consists of a
single edge labeled with a symbol S ∈ N of arity 0, that it is the left-hand side
of just one rule, and that it does not occur in any right-hand side.

Graphs are drawn as in Example 1. Circles represent nodes, and boxes of
different shapes represent edges. The box of an edge contains its label, and is
connected to the circles of its attached nodes by lines; these lines are ordered
clockwise around the edge, starting to its left. Terminal edges with two attached
nodes are usually drawn as arrows from their first to their second attached
node, and the edge label is ascribed to that arrow (but omitted if there is just
one label, as in Example 1 below). In rules, identifiers like “x” at nodes identify
corresponding nodes on the left-hand and right-hand sides.

Example 1. With a start graph as assumed above, the HR grammar below
derives n-ary trees, like the graph on the right:

3 Shift-Reduce Parsing of Strings

Our shift-reduce parser for HR grammars borrows and extends concepts known
from the family of context-free LR(k) parsers [15], which is why we recall these
concepts first. As context-free grammars, shift-reduce parsing, and in particular
LR(k) parsing appear in every textbook on compiler construction, we discuss
these matters just at hand of an example.

Example 2. The Dyck language of matching nested parentheses consists of
strings over the symbols “ [” and “]”; it can be defined by a context-free string
grammar with four rules D = {S → T, T → [B], B → T B,B → ε}, to which
we refer by the numbers 0 to 3; S, T , and B are nonterminals, and ε denotes
the empty string.

Starting with the string consisting only of S, the rules are applied to strings
of nonterminals and terminals, by replacing an occurrence of their left-hand side
by their right-hand side; this is done repeatedly until all nonterminals have been
replaced. So we can derive a word of the Dyck language:

S ⇒
0

T ⇒
1
[B]⇒

2
[TB]⇒

3
[T]⇒

1
[[B]]⇒

3
[[]] (1)

A context-free parser checks whether a string like “ [[]]” belongs to the language
of a grammar, and constructs a derivation as above if this is the case. A parser
is modeled by a stack automaton that reads an input string from left to right,
and uses a stack for remembering its actions. In a (general) shift-reduce parser,
a configuration can be represented as α �w, where w is the unconsumed input, a
terminal string, and α is the stack, consisting of the nonterminal and terminal

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 109

symbols that have been parsed so far. (The rightmost symbol is the “top”.) The
parser has its name from the two kinds of actions it performs (where α is an
arbitrary string of symbols, and w an arbitrary terminal string):

– Shift consumes the first terminal symbol a of the input, and pushes it onto
the stack. Our parser does shifts for parentheses:

α � [w 	 α[�w α �]w 	 α] �w

– Reduce pops the right-hand side symbols of a production from the stack, and
pushes its left-hand side onto it. Our parser has the reductions (for symbol
sequences α and terminal symbol sequences w):

T � 	0 S � α[B] �w 	1 αT �w αTB �w 	2 αB �w α �w 	3 αB �w

If the rule is the start rule, and α and w are empty, the parser terminates,
and accepts the word, as in the first reduction.

A successful parse of a string w is a sequence of shift and reduce actions starting
from the initial configuration ε � w to the accepting configuration S � ε, as below:

� [[]] 	 [� []] 	 [[�]] 	
3
[[B �]] 	 [[B] �] 	

1
[T �] 	

3
[TB �] 	

2
[B �] 	 [B] � 	

1
T � 	

0
S �

The reduction steps of a successful parse, read in reverse, yield a rightmost
derivation of “ [[]]” from S, in this case the one in (1) above.

This parser is nondeterministic: E.g., in the configuration “ [TB �]”, the fol-
lowing actions are possible:

1. a reduction with rule B → T B, leading to the configuration [B �];
2. a reduction with rule B → ε, leading to the configuration [TBB �]; or
3. a shift of the symbol “]”, leading to the configuration [TB] � .

Only action 1 will lead to the successful parse above. After action 2, further
reduction is impossible, even after a subsequent shift of the unconsumed “]”;
after action 3, no further action is possible. In such situations, the parser must
backtrack, i.e., undo actions and try alternative ones, until it can accept the
word, or fails altogether.

Since backtracking is inefficient, shift-reduce parsers are extended by two
concepts so that they can predict which action in a configuration will lead to a
successful parse:

– A lookahead of k > 0 input symbols helps to decide for an action. In the
situation sketched above, the reductions 1 and 2 should only be done if the
first input symbol is “]”, which is the only terminal symbol that may follow
B in the derivations with the grammar.

110 F. Drewes et al.

– A characteristic finite automaton (CFA) controls the order in which actions
are performed; in the configuration α[T B �], the CFA should indicate that
rule B → T B shall be reduced, not rule B → ε.

Different lengths of lookahead, and several notions of CFAs can be used to con-
struct a predictive shift-reduce parser. The most general one is Knuth’s LR(k)
method [15]; here we just consider the simplest case of DeRemer’s SLR(k)
parser [4], namely for a single symbol of lookahead, i.e., k = 1.

Fig. 1. SLR(1) automaton AD of the Dyck grammar

The transition diagram of the CFA AD for the Dyck language is shown in
Fig. 1. It is constructed as follows. The nodes q0 to q6 define its states, which
are characterized by sets of so-called items; an item is a rule with a dot between
the symbols on the right-hand side; e.g., state q3 is characterized by the single
item T → [B �]; in this state, the parser has recognized the symbols [and B of
rule T → [B], but not the closing parenthesis. The transitions q

x→ q′ define the
successor state q′ of a state q after recognizing a symbol x.

The start state q0 is described by the item S → �T , which is called a kernel
item. Since recognizing the nonterminal T implies to recognize the rule of T ,
T → � [B] is the closure item of this state. The symbols appearing right of the
dot in state q0 can be recognized next; so, state q0 has two transitions: under the
nonterminal T to state q1 with the kernel item S → T � (T is being read), and
under the terminal “ [” to state q2 with the kernel item T → [�B]. State q2 has
closure items B → � ε and B → �TB, and the latter item has a further closure
item T → � [B]. While state q1 has no transitions (nothing more needs to be
recognized), state q2 has three successor states, under the nonterminals B, T ,
and the terminal “ [”. The transition under “ [” loops on state q2. The remaining
states and transitions are determined analogously.

The stack of the SLR(1) parser is extended to contain an alternating sequence

of states and symbols, e.g., “q0[q2[q2Tq4Tq4”, which record a path q0
[→ q2

[→
q2

T→ q4
T→ q4 in its CFA AD, starting in the initial state. The actions of the

parser are determined by its actual (topmost) state, and are modified wrt. those
of the nondeterministic parser as follows:

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 111

– Shift consumes the first terminal a of the input, and pushes it onto the stack,
with the successor state q′ so that q

a→ q′ is in AD. For our grammar, and
i ∈ {0, 2, 4}:

αq3 �]w 	 αq3]q5 �w αqi � [w 	 αqi[q2 �w

– Reduce pops the right-hand side of a production A → β (and the intermediate
states) from the stack, but only if the lookahead—the first input symbol—may
follow A in derivations, and pushes the left-hand side A, and the successor
state q′ so that q

A→ q′. If A = S and the input is empty, the parser accepts
the word. For our grammar:

q0Tq1 � 	0 S αq0[q2Bq3]q5 �w 	1 αq0Tq1 �w
αq2[q2Bq3]q5 �w 	1 αq2Tq4 �w αq4[q2Bq3]q5 �w 	1 αq4Tq4 �w
αq2Tq4Bq6 �]w 	2 αq2Bq3 �]w αq4Tq4Bq6 �]w 	2 αq4Bq6 �]w

αq2 �]w 	3 αq2Bq3 �]w αq4 �]w 	3 αq4Bq6 �]w

The CFA may reveal conflicts for predictive parsing:

– If a state allows to shift some terminal a, and a reduction under the lookahead
a, this is a shift-reduce conflict.

– If a state allows reductions of different productions under the same lookahead
symbol, this is a reduce-reduce conflict.

Whenever the automaton is conflict-free, the SLR(1) parser exists, and is deter-
ministic. The automaton AD for the Dyck language is conflict-free: In states q2
and q4, rule B → ε can be reduced if the input begins with the only follower
symbol “]” of B, which is not in conflict with the shift transitions from these
states under “ [”.

A deterministic parse with the SLR(1) parser for D is as follows:

q0 � [[]] 	 q0[q2 � []] 	 q0[q2[q2 �]] 	
3

q0[q2[q2Bq3 �]] 	 q0[q2[q2Bq3]q5 �]
	
1

q0[q2Tq4 �] 	
3

q0[q2Tq4Bq6 �] 	
2

q0[q2Bq3 �] 	 q0[q2Bq3]q5 �
	
1

q0Tq1 � 	
0

S (accept)

4 Predictive Shift-Reduce Parsing for HR Grammars

We shall now transfer the basic ideas of shift-reduce parsing to HR grammars.
First we define a textual notation for graphs and HR rules. A graph G can
be represented as a pair uG = 〈s, Ġ〉, called (graph) clause of G, where s is a
sequence of (edge) literals a(x1, . . . , xk), one for every edge e ∈ Ḡ with �G(e) = a
and attG(e) = x1 . . . xk. When writing down uG, we omit Ġ and write just s if
Ġ is clear from the context. For an HR rule L → R, the rule clause is uL → uR,
with L̇ ⊆ Ṙ.

112 F. Drewes et al.

While the order of literals in a graph clause is irrelevant, we shall process the
literals on the right-hand side of a rule clause in the given order.2

Example 3 (Tree Rule Clauses and Tree Clauses). The rules of the tree grammar
in Example 1 are represented by the clauses

S() → T (x) T (y) → T (y) edge(y, z)T (z) T (y) → ε

We shall refer to them by r1, r2, r3. The empty sequence ε in the last rule is a
short-hand for the clause 〈ε, {y}〉. One of the possible clauses representing the
graph in Example 1 is “edge(1, 2) edge(1, 3) edge(2, 4) edge(2, 5)”.

We will use this simple example to demonstrate the basic ideas of PSR parsing.
The PSR graph parser will use configurations α �w, and rely on a CFA for

its control, just like an SLR(1) parser. However, instead of just symbols, the
configurations will consist of literals, and something has to be done in order to
properly determine the nodes of these literals in the host graph. This makes the
construction more complicated.

If we disregard for a moment the assignment of host graph nodes to the
literals, the states of the CFA are defined as sets of items, i.e., of rule clauses
with a dot at some place in their right-hand side. Consider the kernel item
T (y) → T (y) edge(y, z) � T (z) as an example. It has closure items of the form
T (y) → �T (y)edge(y, z)T (z) and T (y) → � . However, we have to take care of
the node names: Since the closure is built according to the literal T (z), the y in
the closure items is actually the z of the kernel item, and their z is a node not
in the kernel item at all. This has to be reflected in the closure items, without
causing name clashes. Our method will be the following: First we distinguish
those nodes in the kernel items to which nodes of the host graph will have been
assigned when the state is entered. These are called the parameters of the state.
In the present state – let us call it q2 – the parameters will correspond to y and z
since the literals to the left of the dot are already on the stack in this state. First
we replace y and z by parameter names, say x and y , in the kernel item. Then
we rename the nodes on the left-hand side of the closure items according to the
kernel literal causing the closure, i.e., we replace y by y in the closure items.
The remaining node names are preserved – they correspond to nodes that have
not yet been assigned any host graph nodes and are thus not parameters.3 We
now call this state q2(x ,y) to indicate that x and y are its formal parameters
which have to be instantiated by concrete host graph nodes whenever the parser
enters the state.

2 We assume that this order is provided with the HR grammar. Finding an appropriate
order for PSR parsing automatically can be done by dataflow analysis, but is outside
the scope of this paper.

3 In general, we may have to introduce fresh names for non-parameter nodes in the
closure items as well in order to avoid name clashes, but this is not necessary in the
present example.

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 113

State q2(x ,y) now gets a transition under the literal T (y) to a state, let us
call it q3(x ,y), which has two kernel items

T (x) → T (x) edge(x ,y)T (y) � and T (y) → T (y) � edge(y , z)T (z).

This state also gets x and y as formal parameters. For the transition, we specify
which nodes of q2(x ,y) define the parameters in q3(x ,y), writing it in the form
of a “call” q3(x ,y). (Note that x and y are the parameters in state q2(x ,y) that
are thus transferred to the (equally named) formal parameters of q3(x ,y).)

The second item of q3(x ,y) causes a transition under edge(y , z) to a state
that would have a kernel item T (y) → T (y)edge(y , z) � T (z), where the actual
parameter z is determined by the shift. However, this kernel item equals the
one of q2(x ,y) up to the names of formal parameters so that we identify these
states, and “call” q2(x ,y), specifying its actual parameters by writing q2(y , z)
on the transition. In general, a transition is thus defined by a literal, and by a
call that defines the actual parameters, thereby passing nodes from one state to
the other.

Figure 2 shows the CFA for the tree grammar, built according to these con-
siderations. (Note that q2(x ,y) and q3(x ,y) are as discussed above.) A special
case arises in the start state q0(x). In order to work without backtracking, pars-
ing has to start at nodes of the start rule that can be uniquely determined before
parsing starts. In our example, the node u of the host graph that corresponds to
x in the start item S() → �T (x) must be determined, and assigned to the for-
mal parameter x of q0(x) before running the parser. This is done by a procedure
devised in [9, Sect. 4], computing the possible incidences of all nodes created by
a grammar; only if the start node u can be distinguished from all other nodes

Fig. 2. The PSR CFA for the tree grammar Example 3

114 F. Drewes et al.

generated by the grammar, predictive parsing is possible. In our example, u is
the unique node in the input graph that has no incoming edges, i.e., the root
of the tree. (If the input graph has more than one root, or no root at all, it
cannot be a tree, and parsing fails immediately.) So the start item is renamed
to S() → �T (x), and q0(x) is entered with the call q0(u).

Figure 4 shows moves of a PSR parser that accept the tree of Fig. 3 in state
q11 that indicates a reduction with the start rule. We are using a compact form to
denote concrete instances of states (i.e., with actual parameters being assigned
to them): for a state q(x 1, . . . ,x k) and an assignment μ : {x 1, . . . ,x k} → Ġ we
let qμ denote q(μ(x 1), . . . , μ(xk)). Moreover, in Fig. 4 we just denote μ by a list
of nodes, i.e., q10 denotes qμ

0 where μ(x) = 1. We use a similar shorthand for
literals, e.g., e12 and T 1 abbreviate literals edge(1, 2) and T (1), respectively.

Fig. 3. An input tree Fig. 4. Moves of a PSR parser recognizing Fig. 3;
places where reductions occur are underlined

The operations of the PSR parser work as follows on a host graph G:

Shift. Let the CFA contain a transition from state p(x 1, . . . ,xk) to state
q(y1, . . . ,y l) labeled by the terminal edge literal e(v1, . . . , vm) and the call
q(u1, . . . , ul), and consider a concrete instance pμ of p(x 1, . . . ,x k). Then there
is a shift from pμ to qν if

1. μ can be extended to the non-parameter nodes among v1, . . . , vm, yielding an
assignment μ′ such that e(μ′(v1), . . . , μ′(vm)) is a hitherto unconsumed edge
literal of G (which is thus consumed) and

2. ν is defined by setting ν(y i) = μ′(ui) for i = 1, . . . , l.

The shift then pushes the consumed edge e(μ′(v1), . . . , μ′(vm)) and qν onto the
stack.

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 115

Reduce. Let the topmost stack element be the state qνk

k , and assume that it
contains an item of the form A(w) → s1(w1) · · · sk(wk) � . Thus, w,w1, . . . , wk

are sequences of formal parameters of qk and the stack is of the form

· · · pμs1(w′
1) qν1

1 · · · sk(w′
k)q

νk

k

where w′
i = ν∗

k(wi) for all i.
The CFA would then allow a transition from pμ to consume the instantiated

left-hand side A(ν∗
k(w)). Let qν be the concrete target state of this transition.

Then a reduction can be performed by popping s1(w′
1)q

ν1
1 · · · sk(w′

k)q
νk

k from the
stack and pushing A(ν∗

k(w)) and qν onto it.
Note that the parser has to choose the next action in states like qν

1 or qν
3 ,

which allow for a shift, but also for a reduction with rule r1 and r2, respectively.
The parser predicts the next step by inspecting the unconsumed edges. We will
discuss this in the next section. Note also that the PSR shift step differs from
its SLR(1) counterpart in an important detail: while the string parser just reads
the uniquely determined next symbol of the input word, the graph parser must
choose an appropriate edge. There may be states with several outgoing shift
transitions (which do not occur in the present example), and the PSR parser
has to choose between them. The parser, when it has selected a specific shift
transition, may even have to choose between several edges to shift. E.g., in
Fig. 4 the second step could shift the edge edge(1, 3) instead of edge(1, 2). We
will discuss this problem below when considering shift-shift as well as other
conflicts and the free edge choice property.

5 Predictive Shift-Reduce Parsability

A CFA can be constructed for every HR grammar; the general procedure works
essentially as described above. However, one must usually deal with items whose
left-hand sides still contain nodes which have not yet been located in the host
graph. (Such items do not occur in the tree example.) We ignore this issue here
due to space restrictions and refer to [8]. We shall now outline the three criteria
for an HR grammar to be PSR-parsable (or just PSR for short):

1. Neighbor-determined start nodes: Prior to actual parsing, one must be able to
determine the nodes where parsing will start. This has already been examined
in [8,9] and is not considered in this paper.

2. Conflict-freeness: An SLR(1) parser can predict the next action iff its CFA is
conflict-free (cf. Sect. 3). We define a similar concept for PSR parsing in the
following.

3. Free edge choice: The parser, when it has selected a specific shift transition,
may have to choose between several edges matching the edge pattern, as
described above. A grammar has the free edge choice property if the parser can
always choose freely between these edges. There are sufficient conditions for
this property that can be effectively tested when testing for conflict-freeness.
This has already been examined in [8]; so we do not discuss it here.

116 F. Drewes et al.

We shall now define conflict-freeness in PSR parsing similar to SLR(1) pars-
ing so that conflict-freeness implies that the PSR parser can always predict the
next action. A graph parser, different from a string parser, must choose the next
edge to be consumed from a set of appropriate unconsumed edges. It depends on
the next action of the parser which edges are appropriate. We define a conflict
as the situation that an unconsumed edge is appropriate for an action, but could
be consumed also if another action was chosen. Conflict-freeness just means that
there are no conflicts. Obviously, conflict-freeness then allows to always predict
the correct action.

We now discuss how to identify host edges that are appropriate for the action
caused by an item. For this purpose, let us first define items in PSR parsing more
formally: An item I = 〈L → α �β | P 〉 consists of an HR rule L → αβ in clause
representation with a dot indicating a position in the right-hand side and the
set P of parameters, i.e., those nodes in the item to which we have already
assigned nodes in the host graph. These host nodes are not yet known when
constructing the CFA and the PSR parser, but we can interpret parameters as
abstract host nodes. A “real” host node assigned to a parameter during parsing
is mapped to the corresponding abstract node. All other host nodes are mapped
to a special abstract node −. Edges of the host graph are mapped to abstract
edges being attached to abstract nodes, i.e., P ∪ {−}, and each abstract edge
can be represented by an abstract (edge) literal in the usual way. Note that the
number of different abstract literals is finite because P ∪ {−} is finite.

Consider any valid host graph in L(Γ), represented by clause γ derived by the
derivation S = α1 ⇒ · · · ⇒ αn = γ. We assume that the ordering of edge literals
is preserved in each derivation step. We then select any mapping of nodes in γ
to abstract nodes P ∪ {−} such that no node in P is the image of two different
host nodes. Edge literals are mapped to the corresponding abstract literals. The
resulting sequence of literals can then be viewed as a derivation in a context-free
string grammar Γ (P) that can be effectively constructed from Γ in the same way
as described in [9, Sect. 4]; details are omitted here because of space restrictions.
Γ (P) has the nice property that we can use this context-free string grammar
instead of Γ to inspect conflicts. This is shown in the following.

Consider an item I = 〈L → α �β | P 〉. Each edge literal e = l(n1, . . . , nk) has
the corresponding abstract literal abstrP (e) = l(m1, . . . ,mk) where mi = ni if
ni ∈ P , and mi = − otherwise, for 1 � i � k. Let us now determine all host
edges, represented by their abstract literals, which can be consumed next if the
action caused by this item is selected. The host edge consumed next must have
the abstract literal FirstP (β) := abstrP (e) if I is a shift item, i.e., β starts with a
terminal literal e. If I, however, causes a reduction, i.e., β = ε, we can make use
of Γ (P). Any host edge consumed next must correspond to an abstract literal
that is a follower of the abstract literal of L in Γ (P). This is exactly the same
concept as it is used for SLR(1) parsing and indicated in Sect. 3. Let us use the
notion FollowP (L) for this set of followers.

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 117

As an example, consider state q3(x ,y) in Fig. 2 with its items 〈Li → αi � βi |
Pi〉, i = 1, 2, with P1 = {x, y} and P2 = {y}. For the first item, one can compute

FollowP1(L1) = FollowP1(T (x)) = {edge(x,−), edge(−,−), ε},

i.e., the host edge consumed next must either be an edge between the host node
assigned to x and a node different from the ones assigned to x or y, or it must
be a completely unrelated edge wrt. to the host nodes assigned to x or y, or all
edges of the host edge have been completely consumed, indicated by ε.

For the second item, one can compute

FirstP2(β2) = abstrP2(edge(y, z)) = edge(y,−),

i.e., the host edge under which the shift step is taken is an edge between the
host node assigned to y and a node different from the ones assigned to x or y.

As FirstP2(β2) is not in FollowP1(L1) the edge under which the shift step
is taken cannot be consumed next when the reduce step is taken instead. This
condition is sufficient to avoid a conflict in SLR(1) parsing, but this is not the
case for PSR parsing. Because host edges are not consumed in a fixed sequence,
edge(y,−) might be consumed later when the reduce step is taken. We must
actually compute the set of all abstract literals that may follow abstrP1(L)
immediately, or later in Γ (P). Let us denote the set of all such abstract literals
Follow∗

P (L), whose computation from Γ (P) is straightforward. In this example,
one can see that

Follow∗
P1
(L1) = {edge(x,−), edge(−,−), ε}.

We conclude that, if the parser can find a host edge matching edge(y,−), this
edge can never be consumed if the reduce step is taken; the parser must select
the shift step. If it cannot find such a host edge, it must select the reduce step.

Note that the test for a conflict (which we have not yet defined formally)
is not symmetric: we have just checked whether FirstP2(β2) /∈ Follow∗

P1
(L1).

But we could also check whether any abstract literal in FollowP1(L1), i.e., if the
reduce step is taken, can be consumed later when the shift step is taken instead.
Let us denote the set of these abstract literals as Follow∗

P2
(L2, β2), which can be

computed using Γ (P) in a straightforward way. In the tree example, it is

Follow∗
P2
(L2, β2) = {edge(y,−), edge(−,−)},

i.e., edge(−,−) ∈ FollowP1(L1)∩ Follow∗
P2
(L2, β2). Thus the parser cannot pre-

dict the next step by just checking the existence of host edges matching abstract
literals in FollowP1(L1). But this is insignificant, because it can predict the cor-
rect action based on the other test (in the “opposite direction”).

Analogous arguments apply if two different shift actions or two different
reduction actions are possible in a state. However, there are no such states in
the tree example.

118 F. Drewes et al.

We are now ready to define conflicting items in PSR parsing. In order to
simplify the definition, we refer to sets FollowP (I) and Follow∗

P (I) for an item
I = 〈L → α �β | P 〉. If I is a shift item, we define

FollowP (I) := {FirstP (β)} and Follow∗
P (I) := Follow∗

P (L, β).

If I is a reduce item, we define

FollowP (I) := FollowP (L) and Follow∗
P (I) := Follow∗

P (L).

Definition 3 (Conflicting items). Let I1 and I2 be two items with sets P1

and P2 of parameters, respectively. I1 and I2 are in conflict iff

FollowP (I1) ∩ Follow∗
P (I2) �= ∅ ∧ FollowP (I2) ∩ Follow∗

P (I1) �= ∅

where P = P1 ∩ P2. The conflict is called a shift-shift, shift-reduce, or reduce-
reduce conflict depending on the actions caused by I1 and I2.

The above considerations make clear that the parser can predict the next
action correctly if all states of its CFA are conflict-free. They also make clear
that the parser has to consider only a fixed number of abstract edge literals
in any state to choose the next action, and the host edge to shift if a shift
is chosen. However, each abstract literal may match several host edges. But
proper preprocessing of the host graph allows to find an (arbitrary, because of
the free edge choice property) unconsumed host edge in constant time. This
preprocessing is linear in the size of the graph (in space and time). Because the
number of actions of the parser is linear in the size of the input graph, it follows
that PSR parsing is linear in the size of the host graph.

The Grappa tool implemented by the third author generates PSR parsers
based on the construction of the PSR CFA and the analysis of the three criteria
outlined above. Table 1 summarizes test results for some HR grammars. The
columns under “Grammar” indicate the size of the grammar in terms of the
maximal arity of nonterminals (A), number of nonterminals (N), number of
terminals (T) and number of rules (R). The columns under “CFA” indicate the
size of the generated CFA in terms of the number of states (S), the overall
number of items (I) and the number of transitions (T). The number of conflicts
in the CFA are shown in the columns below “Conflicts” that report of shift-
shift (S/S), shift-reduce (S/R) and reduce-reduce conflicts (R/R). Note that the
grammars without any conflicts are PSR, the others are not. The columns under
“Analysis” report on the time in milliseconds needed for creating the CFA (CFA)
and checking for conflicts (Confl.), on a MacBook Pro 2013 (2,7 GHz Intel Core
i7, Java 1.8.0 and Scala 2.12.1).

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 119

Table 1. Test results of some HR grammars.

Example Grammar CFA Conflicts Analysis [ms]
A N T R S I T S/S S/R R/R CFA Confl

Trees (Example 3) 1 2 1 3 4 10 4 – – – 93 38

anbncn [8] 4 3 3 5 14 22 14 – – – 130 31

Nassi-Shneiderman diagrams [19] 4 3 3 6 12 78 59 – – – 233 76

Palindromes (1) 2 2 2 7 12 32 19 – – – 142 36

Arithmetic expressions 2 4 5 7 12 34 22 – – – 137 49

Series-parallel graphs 2 2 1 4 7 63 32 12 4 – 179 61

Structured flowcharts 2 3 4 6 14 75 50 – 4 – 212 81

6 Comparison with Related Work

PSR parsing can be compared with SLR(1) string parsing if we define the rep-
resentation of strings as graphs, and of context-free grammars as HR grammars.

The string graph w• of a string w = a1 · · · an ∈ A∗ (with n � 0) consists (in
clausal form) of n edge literals ai(xi−1, xi) over n + 1 distinct nodes x0, . . . , xn.
(The empty string ε is represented by an isolated node.) The HR rule of a
context-free rule A → α (where A ∈ N and α ∈ Σ∗) is A• → α•. For the
purpose of this section, we represent an ε-rule A → ε by a rule that maps
both nodes of A• to the only node in ε•. Such rules are called “merging” in [8].
Context-free grammars and HR grammars can be cleaned, i.e., transformed into
equivalent grammars without ε-rules and merging rules, respectively; however,
they may loose their SLL(1) and PTD property, respectively.

The string graph grammar of a context-free grammar G with a finite set P
of rules and a start symbol S is the HR grammar G• = (Σ,P•, S•) with the
rules P• = {A• → α• | A → α ∈ P}. It is easy to see that the HR language of
G• is L(G•) = {w• | w ∈ L(G)}.

The following can easily be shown by inspection of the automata of string
and HR grammars.

Proposition 1. For an SLR(1) grammar without ε-rules, the string graph
grammar is PSR.

This allows to establish the expected relation between PTD and PSR string
graph grammars.

Theorem 1. The clean version of a PTD string graph grammar is PSR.

Proof. The main result of [12] states that the ε-cleaned version G̃ of an SLL(1)
grammar G is SLR(1). This result can be lifted to string graph grammars as
follows: By [8, Theorem 2], the string graph grammar G• is PTD since G is
SLL(1). The string graph grammar G̃• is the clean version of G•. Since G̃ is
SLR(1), G̃• is PSR by Proposition 1. ��

120 F. Drewes et al.

The inclusion of SLR(1) grammars is proper, as is the inclusion of SLL(1)
grammars in PTD grammars.

Corollary 1. There are context-free languages that cannot be generated with an
SLR(1) grammar, but have a PSR string graph grammar.

Proof. The language of palindromes over V = {a, b}, i.e., all words which read
the same backward as forward, can be generated by the unambiguous grammar
with rules S → P and P → a | aa | aPa | b | bb | bPb. Since the language cannot
be recognized by a deterministic stack automaton [20, Prop. 5.10], this language
neither has an LL(k) parser, nor an LR(k) parser. However, the grammar is
PTD by [8, Theorem 2], and ε-free so that it is PSR by Theorem 1. ��
For graph languages beyond string graphs, a comparison of PTD and PSR
appears to be difficult: On the one hand, the tree grammar in Example 3 is
left-recursive, and not PTD. (However, moving the edge-literal to the front in
rule r2 makes the grammar PTD.) On the other hand, PTD grammars with
merging rules are not PSR, and it will be rather difficult to lift the main result
of [12] to the general case of graph languages.

For early related work on efficient parsing algorithms, we quote from the
conclusions of [8]: “Related work on parsing includes precedence graph gram-
mars based on node replacement [10,14]. These parsers are linear, but fail for
some PTD-parsable languages, e.g. the trees in Example 1. According to our
knowledge, early attempts to implement LR-like graph parsers [18] have never
been completed. Positional grammars [3] are used to specify visual languages,
but can also describe certain HR grammars. They can be parsed in an LR-like
fashion, but many decisions are deferred until the parser is actually executed.
The CYK-style parsers for unrestricted HR grammars (plus edge-embedding
rules) implemented in DiaGen [19] work for practical languages, although their
worst-case complexity is exponential.”

7 Conclusions

We have devised a predictive shift-reduce (PSR) parsing algorithm for HR gram-
mars, along the lines of SLR(1) string parsing. For string graphs, PSR is strictly
more powerful than SLR(1) and predictive top-down (PTD) parsing [8]. Check-
ing PSR-parsability is complicated enough, but easier than for PTD, as we do not
need to consider HR rules that merge nodes of their left-hand sides. PSR parsers
also work more efficiently than PTD parsers, namely in linear vs. quadratic time.
The reader is encouraged to download the Grappa generator of PTD and PSR
parsers and to conduct own experiments.4

Like PTD, PSR parsing can be lifted to contextual HR grammars [6,7], a
class of graph grammars that is more relevant for the practical definition of graph

4 The Grappa tool is available at www.unibw.de/inf2/grappa; the examples mentioned
in Table 1 can be found there as well.

www.unibw.de/inf2/grappa

Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars 121

languages. This remains as part of future work. We will also study whether the
specification of priorities for rules, as in the yacc parser generator [13], can be
lifted to PSR parsing. However, an extension of PSR corresponding to SLR(k)
or LR(k) may be computationally too difficult. A still open challenge is to find
a HR (or contextual HR) language that has a PSR parser, but no PTD parser.
The corresponding example for LL(k) and LR(k) string languages exploits that
strings are always parsed from left to right—the palindrome example shows that
this is not the case for PTD and PSR parsers.

References

1. Aalbersberg, I., Ehrenfeucht, A., Rozenberg, G.: On the membership problem for
regular DNLC grammars. Discrete Appl. Math. 13, 79–85 (1986)

2. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistic. Long Papers, vol. 1, pp.
924–932 (2013)

3. Costagliola, G., De Lucia, A., Orefice, S., Tortora, G.: A parsing methodology for
the implementation of visual systems. IEEE Trans. Softw. Eng. 23, 777–799 (1997)

4. DeRemer, F.L.: Simple LR(k) grammars. Commun. ACM 14(7), 453–460 (1971)
5. Drewes, F.: Recognising k-connected hypergraphs in cubic time. Theor. Comput.

Sci. 109, 83–122 (1993)
6. Drewes, F., Hoffmann, B.: Contextual hyperedge replacement. Acta Informatica

52, 497–524 (2015)
7. Drewes, F., Hoffmann, B., Minas, M.: Contextual hyperedge replacement. In:

Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 182–
197. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34176-2_16

8. Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyper-
edge replacement grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.)
ICGT 2015. LNCS, vol. 9151, pp. 19–34. Springer, Cham (2015). doi:10.1007/
978-3-319-21145-9_2

9. Drewes, F., Hoffmann, B., Minas, M.: Approximating Parikh images for gener-
ating deterministic graph parsers. In: Milazzo, P., Varró, D., Wimmer, M. (eds.)
STAF 2016. LNCS, vol. 9946, pp. 112–128. Springer, Cham (2016). doi:10.1007/
978-3-319-50230-4_9

10. Franck, R.: A class of linearly parsable graph grammars. Acta Informatica 10(2),
175–201 (1978)

11. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992). doi:10.1007/BFb0013875

12. Hoffmann, B.: Cleaned SLL(1) grammars are SLR(1). Technical Report 17–1,
Studiengang Informatik, Universität Bremen (2017). http://www.informatik.
uni-bremen.de/~hof/papers/sllr.pdf

13. Johnson, S.C.: Yacc: Yet another compiler-compiler. Computer Science Technical
Report 32, AT&T Bell Laboratories (1975)

14. Kaul, M.: Practical applications of precedence graph grammars. In: Ehrig, H.,
Nagl, M., Rozenberg, G., Rosenfeld, A. (eds.) Graph Grammars 1986. LNCS, vol.
291, pp. 326–342. Springer, Heidelberg (1987). doi:10.1007/3-540-18771-5_62

15. Knuth, D.E.: On the translation of languages from left to right. Inf. Control 8(6),
607–639 (1965)

http://dx.doi.org/10.1007/978-3-642-34176-2_16
http://dx.doi.org/10.1007/978-3-319-21145-9_2
http://dx.doi.org/10.1007/978-3-319-21145-9_2
http://dx.doi.org/10.1007/978-3-319-50230-4_9
http://dx.doi.org/10.1007/978-3-319-50230-4_9
http://dx.doi.org/10.1007/BFb0013875
http://www.informatik.uni-bremen.de/~hof/papers/sllr.pdf
http://www.informatik.uni-bremen.de/~hof/papers/sllr.pdf
http://dx.doi.org/10.1007/3-540-18771-5_62

122 F. Drewes et al.

16. Lautemann, C.: The complexity of graph languages generated by hyperedge
replacement. Acta Informatica 27, 399–421 (1990)

17. Lewis II, P.M., Stearns, R.E.: Syntax-directed transduction. J. ACM 15(3), 465–
488 (1968)

18. Ludwigs, H.J.: A LR-like analyzer algorithm for graphs. In: Wilhelm, R. (ed.)
GI - 10. Jahrestagung, Proceedings of the Saarbrücken, 30 September - 2 Oktober
1980. Informatik-Fachberichte, vol. 33, pp. 321–335 (1980)

19. Minas, M.: Diagram editing with hypergraph parser support. In: Proceedings of the
1997 IEEE Symposium on Visual Languages (VL 1997), Capri, Italy, pp. 226–233
(1997)

20. Sippu, S., Soisalon-Soininen, E.: Parsing Theroy I: Languages and Parsing, EATCS
Monographs in Theoretical Computer Science, vol. 15 (1988)

21. Vogler, W.: Recognizing edge replacement graph languages in cubic time. In:
Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS,
vol. 532, pp. 676–687. Springer, Heidelberg (1991). doi:10.1007/BFb0017421

http://dx.doi.org/10.1007/BFb0017421

Analysis and Verification

Granularity of Conflicts and Dependencies
in Graph Transformation Systems

Kristopher Born1, Leen Lambers2, Daniel Strüber3, and Gabriele Taentzer1(B)

1 Philipps-Universität Marburg, Marburg, Germany
{born,taentzer}@informatik.uni-marburg.de
2 Hasso-Plattner-Institut, Potsdam, Germany

leen.lambers@hpi.de
3 Universität Koblenz-Landau, Koblenz, Germany

strueber@uni-koblenz.de

Abstract. Conflict and dependency analysis (CDA) is a static analy-
sis for the detection of conflicting and dependent rule applications in a
graph transformation system. The state-of-the-art CDA technique, crit-
ical pair analysis, provides its users the benefits of completeness, i.e., its
output contains a precise representation of each potential conflict and
dependency in a minimal context, called critical pair. Yet, user feedback
has shown that critical pairs can be hard to understand; users are inter-
ested in core information about conflicts and dependencies occurring in
various combinations. In this paper, we investigate the granularity of con-
flicts and dependencies in graph transformation systems. We introduce
a variety of new concepts on different granularity levels: We start with
conflict atoms, representing individual graph elements as smallest build-
ing bricks that may cause a conflict. We show that each conflict atom can
be extended to at least one conflict reason and, conversely, each conflict
reason is covered by atoms. Moreover, we relate conflict atoms to mini-
mal conflict reasons, representing smallest element sets to be overlapped
in order to obtain a pair of conflicting transformations. We show how
conflict reasons are related to critical pairs. Finally, we introduce dual
concepts for dependency analysis. As we discuss in a running example,
our concepts pave the way for an improved CDA technique.

1 Introduction

Graph transformation systems (GTSs) are a fundamental modeling concept with
applications in a wide range of domains, including software engineering, mechan-
ical engineering, and chemistry. A GTS comprises a set of transformation rules
that are applied in coordination to achieve a higher-level goal. The order of
rule applications can either be specified explicitly using a control flow mech-
anism, or it is given implicitly by causal dependencies of rule applications. In
the latter case, conflicts and dependencies affect the control flow. For instance,
a rule may delete an element whose existence is required by another rule to
modify the graph.

c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 125–141, 2017.
DOI: 10.1007/978-3-319-61470-0_8

126 K. Born et al.

Fig. 1. Inter-relations of new and existing conflict notions

To better understand the implicit control flow of a GTS, one needs to ana-
lyze the potential conflicts and dependencies of its rule applications. Conflict and
dependency analysis (CDA) is a static analysis for the detection of such conflicts
and dependencies. An important CDA technique is critical pair analysis [1,2],
which has been used in the literature to detect conflicting functional require-
ments [3], feature interactions [4], conflicting and dependent change operations
for process models [5], causal dependencies of aspects in aspect modeling [6],
potential conflicts and dependencies between refactorings [7,8], and to validate
service-oriented architectures [9].

In these applications, there are generally two possible usage scenarios
for CDA: First, the user may start with a list of expected conflicts and dependen-
cies that are supposed to occur. CDA is then used to determine if the expected
conflicts and dependencies in fact arise, and/or if there are any unexpected con-
flicts and dependencies. Violations of expectations signify potential errors in the
rule specifications, and can be used for debugging [10]. Second, the user may
want to improve their transformation system to reduce conflicts and dependen-
cies, so that rules can be applied independently, e.g., to enable a collaborative
modeling process based on edit operation rules [11]. In this case, conflicts and
dependencies reported by CDA can be used to identify required modifications.
In both cases, users need to inspect conflicts or dependencies to pinpoint their
root causes.

To support users during this task, in this work, we lay the basis for a refined
CDA technique, distinguishing a variety of new concepts to describe conflicts
and dependencies between rules. Our investigation is guided by the notion of
granularity, and, building on the existing theory for algebraic graph transforma-
tion, focuses on delete-use-conflicts. We introduce a variety of new concepts and
their relations as summarized in Fig. 1. First, we introduce conflict atoms, i.e.,
single graph elements causing conflicts, to represent smallest entities of conflicts.

Granularity of Conflicts and Dependencies in Graph Transformation Systems 127

Each conflict atom can be embedded into the conflict reason of a pair of con-
flicting rules, while each such conflict reason is fully covered by conflict atoms. A
conflict reason comprises all elements being deleted by the first and required by
the second rule of the considered rule pair. Conflict reasons correspond to essen-
tial critical pairs as introduced in previous work [12]. A special type of conflict
reasons are minimal conflict reasons, representing conflicting graphs and embed-
dings that are minimal in the sense that they comprise smallest sets of elements
required to yield a valid pair of conflicting transformations. Fourth and finally,
conflict reasons can be augmented to conflict reason extensions, which have a
one-to-one relationship with the notion of critical pairs [1]. Conflict atoms and
minimal conflict reasons are more coarse-grained in the sense that they gener-
ally represent a larger number of potential conflicts while abstracting away many
details of these conflicts, whereas conflict reasons and conflict reason extensions
are more fine-grained since they describe conflicts more precisely.

With this contribution, we aim to improve on the state-of-the-art CDA tech-
nique, critical pair analysis (CPA) [1,2], by offering improved support for cases
where the CPA results did not match the user expectations. In CPA, all potential
conflicts and dependencies that can occur when applying two rules are displayed
in a minimal context. Confidence in CPA is established by positive fundamen-
tal results: via the Completeness Theorem, there exists a critical pair for each
conflict, representing this conflict in a minimal context. However, experiences
with the CPA indicate two drawbacks: (i) understanding the identified critical
pairs can be a challenging task since they display too much information (i.e.,
they are too fine-grained), (ii) calculating the results can be computationally
expensive. Our investigation provides the basis for a solution to compute and
report potential conflicts on a level of detail being suitable for the task at hand.

In this paper, we investigate the granularity of conflict and dependencies in
GTSs. Specifically, we make three contributions.

– We present a conceptual consideration of conflicts in GTSs, based on the
notion of granularity, and focusing on delete-use-conflicts.

– We introduce a variety of formal results for interrelating the new concepts
with each other and with the existing concepts. In particular, we relate the
new concepts to the well-known conflict concepts of essential and regular
critical pairs.

– We discuss how these concepts and results can be transferred to dependencies
in a straight-forward manner. In particular, we introduce dependency atoms
and reasons, the dual concepts to those introduced for conflict analysis.

The rest of this paper is structured as follows: In Sect. 2, we recall graph trans-
formation concepts and conflict notions from the literature. In Sect. 3, we present
the new concepts and formal results. Finally, we compare with related work and
conclude in Sect. 4.

128 K. Born et al.

2 Preliminaries

As a prerequisite for our new analysis of conflicts and dependencies, we recall the
double-pushout approach to graph transformation as presented in [2]. Further-
more, we reconsider two notions of conflicting transformation and their equiva-
lence as shown in [12].

2.1 Graph Transformation: Double-Pushout Approach

Throughout this paper we consider graphs and graph morphisms as presented in
[2]; since most of the definitions and results are given in a category-theoretical
way, the extension to e.g. typed, attributed graphs [2] is prepared, but up to
future work.

Graph transformation is the rule-based modification of graphs. A rule mainly
consists of two graphs: L is the left-hand side (LHS) of the rule representing
a pattern that has to be found to apply the rule. After the rule application, a
pattern equal to R, the right-hand side (RHS), has been created. The intersection
K = L ∩ R is the graph part that is not changed, the graph part that is to be
deleted is defined by L\(L ∩ R), while R\(L ∩ R) defines the graph part to be
created. Throughout this paper we consider a graph transformation system just
as a set of rules.

A graph transformation step G
m,r
=⇒ H between two graphs G and H is defined

by first finding a graph morphism1 m of the LHS L of rule r into G such that
m is injective, and second by constructing H in two passes: (1) build D :=
G\m(L\K), i.e., erase all graph elements that are to be deleted; (2) construct
H := D ∪ m′(R\K) such that a new copy of all graph elements that are to be
created is added. It has been shown for graphs and graph transformations that
r is applicable at m iff m fulfills the gluing condition [2]. In that case, m is called
a match. For injective morphisms as we use them here, the gluing condition
reduces to the dangling condition. It is satisfied if all adjacent graph edges of
a graph node to be deleted are deleted as well, such that D becomes a graph.
Injective matches are usually sufficient in applications and w.r.t. our work here,
they allow to explain constructions much easier than for general matches.

Definition 1 (Rule and transformation). A rule r is defined by r = (L ←↩
K ↪→ R) with L,K, and R being graphs connected by two graph inclusions. A
(direct) transformation G

m,r
=⇒ H which applies rule r to a graph G consists of

two pushouts as depicted below. Morphism m : L → G is injective and is called
match. Rule r is applicable at match m if there exists a graph D such that (PO1)
is a pushout.

1 A morphism between two graphs consists of two mappings between their nodes and
edges being both structure-preserving w.r.t. source and target functions. Note that
we denote inclusions by ↪→ and all other morphisms by →.

Granularity of Conflicts and Dependencies in Graph Transformation Systems 129

L K R

G D H

(PO1) (PO2)m m′

Example 1. Refactoring is a generally acknowledged technique to improve the
design of an object-oriented system [13]. To achieve a larger improvement there
is typically a sequence of refactorings required. Due to implicit conflicts and
dependencies that may occur between refactorings, it is not always easy for
developers to determine which refactorings to use and in which order to apply
them. To this aim, CDA can support the developer in finding out if there are
conflicts or dependencies at all and, if this is the case, in understanding them.

Fig. 2. Refactoring rules decapsulateAttribute and pullUpEncapsulatedAttribute.

Assuming graphs that model the class design of software systems, we consider
Fig. 2 for two class model refactorings being specified as graph-based transfor-
mation rules. Rules are depicted in an integrated form where annotations specify
which graph elements are deleted, preserved, and created. While the preserved
and deleted elements form the LHS of a rule, the preserved and created ele-
ments form its RHS. Moreover, negative application conditions specify graph
elements that are forbidden when applying a rule. Rule decapsulateAttribute
removes getter and setter methods for a given attribute, thus inverting the well-
known encapsulate attribute refactoring. Rule pullUpEncapsulatedAttribute takes
an attribute with its getter and setter methods and moves them to a superclass
if there are not already equally named elements.

2.2 Conflicting Transformations

In this subsection, we recall the essence of conflicting transformations. We con-
centrate on delete-use conflicts which means that the first rule application deletes

130 K. Born et al.

graph items that are used by the second rule application. In the literature, there
are two different definitions for delete-use conflicts. We recall these definitions
and a theorem which shows the equivalence between these two.

The first definition [2] of a delete-use conflict states that the match for the
second transformation cannot be found anymore after applying the first trans-
formation. Note that we do not consider delete-use conflicts of the second trans-
formation on the first one explicitly. To get also those ones, we simply consider
the inverse pair of transformations.

Definition 2 (Delete-use conflict). Given a pair of direct transformations

(t1, t2) = (H1
m1,r1⇐= G

m2,r2=⇒ H2) applying rules r1 : L1
le1←↩ K1

ri1
↪→ R1 and

r2 : L2
le2←↩ K2

ri2
↪→ R2 as depicted below. Transformation t1 causes a delete-use

conflict on transformation t2 if there does not exist a morphism x : L2 → D1

such that g1 ◦ x = m2.

L2 K2 R2

G D2 H2

le2 ri2

g2 h2

m2 d2 m′
2

L1K1R1

D1H1

x

le1ri1

g1h1

m1d1m′
1

In the following, we consider an alternative characterization for a transformation
to cause a delete-use conflict on another one (as introduced in [12]). It states that
at least one deleted element of the first transformation is overlapped with some
used element of the second transformation. This overlap is formally expressed
by a span of graph morphisms between the minimal graph C1, containing all
elements to be deleted by the first rule, and the LHS of the second rule (Fig. 3).
In particular, we use an initial pushout construction [2] over the left-hand side
morphism of the rule to compute the boundary graph B1 consisting of all nodes
needed to make L1\K1 a graph and the context graph C1 := L1\(K1\B1). We say
that the nodes in B1 are boundary nodes. The equivalence of these two conflict
notions is recalled in the following theorem.

Theorem 1 (Delete-use conflict characterization). Given a pair of trans-

formations (t1, t2) = (H1
m1,r1⇐= G

m2,r2=⇒ H2) via rules r1 : L1
le1←↩ K1

ri1
↪→ R1 and

r2 : L2
le2←↩ K2

ri2
↪→ R2, the initial pushout (1) for K1

le1
↪→ L1, and the pullback (2)

of (m1◦c1,m2) in Fig. 2 yielding the span s1 : C1
o1←↩ S1

q12→ L2, then the following
equivalence holds: t1 causes a delete-use conflict on t2 according to Definition 2
iff s1 : C1

o1←↩ S1
q12→ L2 satisfies the conflict condition i.e. there does not exist

any morphism x : S1 → B1 such that b1 ◦ x = o1.

In the rest of the paper we merely consider delete-use conflicts such that in
the following we abbreviate delete-use conflict with conflict.

Granularity of Conflicts and Dependencies in Graph Transformation Systems 131

L2 K2 R2

G D2 H2

le2 ri2

g2 h2

m2 d2 m′
2

(1)

(2)

S1

C1B1

L1K1R1

D1H1

x
o1 q12

b1

c1

le1ri1

g1h1

m1d1m′
1

Fig. 3. Delete-use conflict characterization for transformations

3 The Granularity of Conflicts and Dependencies

So far, a conflict between two transformations has always been considered as
a whole. In the following, we investigate new notions of conflicting rules pre-
senting them on different levels of granularity. Our intention is the possibility
to gradually introduce users to conflicts. Starting with a coarse-grained conflict
description in the form of conflict atoms, more information is gradually added
until we arrive at the fine-grained representation of conflicts by critical pairs (as
e.g. presented in [2]), representing each pair of conflicting transformations in a
minimal context. Following this path we introduce several new concepts for con-
flicting rules and show their interrelations as well as their relations to (essential)
critical pairs. Finally, we sketch dual concepts for dependencies.

3.1 Conflicting Rules: Considering Different Granularity Levels

Now, we lift our conflict considerations from transformations to the rule level,
i.e., we consider conflicting rules. Two rules are in conflict if there is a pair of
conflicting transformations applying these rules. According to Theorem 1 there
is a span between these rules specifying the conflict reasons or at least parts of
it. In the following, we will concentrate on these spans and distinguish several
forms of spans showing conflict reasons in different granularity.

We start focusing on minimal building bricks, called conflict atoms. In par-
ticular, we consider a conflict atom to be a minimal sub-graph of C1 which
can be embedded into L2 but not into B1 (conflict and minimality conditions).
Moreover, a pair of direct transformations needs to exist for which the match
morphisms overlap on the conflict atom (transformation condition). Note that,
in general, the matches of this pair of transformations may overlap also in graph
elements not contained in the conflict atom. Hence, such a pair of transforma-
tions may be chosen flexibly, it need not show a conflict in a minimal context
as critical pairs do. While conflict atoms describe the smallest conflict parts, a

132 K. Born et al.

conflict reason is a complete conflict part in the sense that all in the reported
conflict involved atoms are subsumed by it (completeness condition). While con-
flict reasons overlap in conflicting graph elements and boundary nodes only,
conflict reason extensions may overlap in non-conflicting elements of the LHSs
of participating rules as well (extended completeness condition).

Definition 3 (Basic conflict conditions). Given rules r1 : L1
le1←↩ K1

ri1
↪→ R1

and r2 : L2
le2←↩ K2

ri2
↪→ R2 with the initial pushout (1) for K1

le1
↪→ L1 as well as a

span s1 : C1
o1←↩ S1

q12→ L2 as depicted in Fig. 3, basic conflict conditions for the
span s1 of (r1, r2) are defined as follows:

1. Conflict condition: Span s1 satisfies the conflict condition if there does not
exist any injective morphism x : S1 → B1 such that b1 ◦ x = o1.

2. Transformation condition: Span s1 satisfies the transformation condition if
there is a pair of transformations (t1, t2) = (H1

m1,r1⇐= G
m2,r2=⇒ H2) via (r1, r2)

with m1(c1(o1(S1))) = m2(q12(S1)) (i.e. (2) is commuting in Fig. 3).
3. Completeness condition: Span s1 satisfies the completeness condition if there

is a pair of transformations (t1, t2) = (H1
m1,r1⇐= G

m2,r2=⇒ H2) via (r1, r2) such
that (2) is the pullback of (m1 ◦ c1,m2) in Fig. 3.

4. Minimality condition: A span s′
1 : C1

o′
1←↩ S′

1
q′

12→ L2 can be embedded into
span s1 if there is an injective morphism e : S′

1 → S1, called embedding
morphism, such that o1 ◦ e = o′

1 and q12 ◦ e = q′
12. If e is an isomorphism,

then we say that the spans s1 and s′
1 are isomorphic. (See (3) and (4) in

Fig. 4.) Span s1 satisfies the minimality condition w.r.t. a set SP of spans if
any s′

1 ∈ SP that can be embedded into s1 is isomorphic to s1.

Finally, span s : L1
a1←↩ S

b2→ L2 fulfills the
extended completeness condition if there is a
pair of transformations (t1, t2) = (H1

m1,r1⇐=
G

m2,r2=⇒ H2) via (r1, r2) such that s arises
from the pullback of (m1,m2) in the figure
on the right.

S

L2L1

G

a1 b2

m1 m2

(PB)

In the following, we define the building bricks of conflicts. The most basic
notion to describe a conflict between two rules is that of a conflict part. Conflict
parts may not describe the whole conflict between two rules. The smallest conflict
parts are conflict atoms. If a conflict part describes a complete conflict, it is called
conflict reason.

Definition 4 (Conflict notions for rules). Let the rules r1 : L1
le1←↩ K1

ri1
↪→ R1

and r2 : L2
le2←↩ K2

ri2
↪→ R2 with initial pushout (1) for K1

le1
↪→ L1 and a span

s1 : C1
o1←↩ S1

q12→ L2 as depicted in Fig. 3, be given.

1. Span s1 is called conflict part candidate for the pair of rules (r1, r2) if it
satisfies the conflict condition. Graph S1 is called the conflict graph of s1.

Granularity of Conflicts and Dependencies in Graph Transformation Systems 133

L2 K2 R2
le2 ri2

(1)

(3) (4)

S′
1

S1

SC1B1

L1K1R1

o1

q12

o′
1

q′
12

e

c1

le1ri1

a1 b2

e′
(5) (6)

Fig. 4. Illustrating span embeddings

2. A conflict part candidate s1 for (r1, r2) is a conflict part for (r1, r2) if s1
fulfills the transformation condition.

3. A conflict part candidate s1 for (r1, r2) is a conflict atom candidate for (r1, r2)
if it fulfills the minimality condition w.r.t. the set of all conflict part candidates
for (r1, r2).

4. A conflict atom candidate s1 for (r1, r2) is a conflict atom for (r1, r2) if s1
fulfills the transformation condition.

5. A conflict part s1 for (r1, r2) is a conflict reason for (r1, r2) if s1 fulfills the
completeness condition.

6. A conflict reason s1 for (r1, r2) is minimal if it fulfills the minimality condi-
tion w.r.t. the set of all conflict reasons for (r1, r2).

7. Span s : L1
a1←↩ S

b2→ L2 is a conflict reason extension for (r1, r2) if it fulfills
the extended completeness condition and if there exists a conflict reason s1
for (r1, r2) with e′ : S1 → S a so-called embedding morphism being injective
such that (5) and (6) in Fig. 4 commute. If the latter is the case, we say that
s1 can be embedded via e′ into s.

Note that a conflict part fulfilling the minimality condition is a conflict atom.

Example 2 (Conflict atoms and minimal conflict reasons). Our two example
rules in Fig. 2 lead to four pairs of rule combinations to analyze regarding poten-
tial conflicts. To discuss the afore introduced building bricks of conflicts we
focus on conflicts that may arise by the rule pair (decapsulateAttribute, pullUp-
EncapsulatedAttribute), that means by applying the rule decapsulateAttribute
and making rule pullUpEncapsulatedAttribute inapplicable. Since we do not con-
sider attributes and NACs explicitly in this paper, we neglect them within our
conflict analysis. Since these features may restrict rule applications, this decision
might lead to an over-approximation of potential conflicts.

The root cause of potential conflicts are the three nodes 2:Method, 3:Method
and 5:Parameter to be deleted by rule decapsulateAttribute. Nodes of the same
type are to be used in rule pullUpEncapsulatedAttribute. Method -nodes are to
be deleted twice by rule decapsulateAttribute as well as to be used twice in
rule pullUpEncapsulatedAttribute. Building all combinations this leads to four

134 K. Born et al.

1,11 : Class 2,13 : Methodmethods

1,11 : Class 3,14 : Methodmethods parameters 5,15 : Parameter 6,16 : Classtype

6,16 : Classtype2,13 : Method

3,14 : Method

5,15 : Parameter

Fig. 5. Conflict atoms (left) and minimal conflict reasons (right) of rule pair (decapsu-
lateAttribute, pullUpEncapsulatedAttribute)

different conflict atom candidates. Due to the transformation condition, only
two of them are conflict atoms: 2,13:Method and 3,14:Method, as depicted in
Fig. 5 on the left. A further conflict atom is 5,15:Parameter which is deleted
by decapsulateAttribute and used by pullUpEncapsulatedAttribute. Note that the
span notation is rather compact here: Identifying node numbers of rules are
used to indicate the mappings of the atom graph into rule graphs. The three
conflict atoms are embedded into two minimal conflict reasons. Conflict atom
2,13:Method and the nodes 1,11:Class and 6,16:Class are involved within the
first minimal conflict reason. The remaining two conflict atoms, 3,14:Method and
5,15:Parameter can only be covered by a common minimal conflict reason due
to the completeness condition. This second minimal conflict reason also involves
nodes 1,11:Class and 6,16:Class. These results provide a concise overview on
the root causes of the potential conflicts. The three conflict atoms outline the
elements responsible for conflicts and the minimal conflict reasons put them into
context to their adjacent nodes.

Remark 1 (Conflict reasons for rules). In [12], a conflict reason is defined for a
given pair of direct transformations (t1, t2). Here, we lift the notion of conflict
reason to a given pair of rules and relate it with the notion of conflict part. In
fact, the above definition of conflict reason for rules requires that at least one pair
of transformations exists with exactly this conflict part as conflict reason. While
a pair of conflicting transformations has a unique conflict reason, two rules may
be related by multiple conflict reasons. Note, moreover, that our conflict reason
notion for rules is not completely analogous to the notion of conflict reason for
transformations in [12]. It would be analogous if we considered conflict reasons
where both rules are responsible together for delete-use-conflicts. Since such
conflict reasons would be constructed from the other ones, and since we aim
for compact representations of conflicts, we opted for not including this case
separately.

Table 1 provides a conflict notion overview and basic conditions.

3.2 Relations Between Conflict Notions of Different Granularities

The subsequent results clarify the main interrelations between the new descrip-
tion forms for conflicting rules. All proofs of new results can be found in [14].

Granularity of Conflicts and Dependencies in Graph Transformation Systems 135

Table 1. Overview of conflict concepts

Basic condition/conflict concept Conflict
condition

Transf.
condition

Compl.
condition

Minimality
condition

Conflict part candidate x
Conflict part x x
Conflict atom candidate x x
Conflict atom x x x
Conflict reason x x x
Min. conflict reason x x x x

In the following extension theorem we state that each conflict part can be
extended to a conflict reason. As a special case, it follows automatically that
each conflict atom (being a special conflict part) can be extended to a conflict
reason.

Theorem 2 (Extension of conflict part to reason). Given a conflict part

s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1 : L1
le1←↩ K1

ri1
↪→ R1, r2 : L2

le2←↩ K2
ri2
↪→ R2),

there is a conflict reason s′
1 : C1

o′
1←↩ S′

1
q′

12→ L2 for (r1, r2) such that the conflict
part s1 can be embedded into it.

The following lemma gives a more constructive characterization of conflict
atom candidates compared to their introduction in Definition 4. This result helps
us to characterize conflict atom candidates for a given pair of rules. Candidates
are either nodes deleted by rule r1 and used by rule r2 or edges deleted by r1 and
used by r2 if their incident nodes are preserved by r1. Edges with at least one
incident deleted node are not considered as atom candidates since their deletion
is caused by node deletions.

Lemma 1 (Conflict atom candidate characterization). A conflict atom

candidate s1 : C1
o1←↩ S1

q12→ L2 for rules (r1 : L1
le1←↩ K1

ri1
↪→ R1, r2 : L2

le2←↩ K2
ri2
↪→

R2) has a conflict graph S1 either consisting of a node v s.t. o1(v) ∈ C1\B1 or
consisting of an edge e with its incident nodes v1 and v2 s.t. o1(e) ∈ C1\B1 and
o1(v1), o1(v2) ∈ B1.

Note that, for attributed graphs, the edge in a conflict atom may also be an
attribute edge. In this case, the conflict atom would describe an attribute change
which is in conflict with an attribute use.

The following theorem states that each conflict reason is covered by a unique
set of atoms, i.e. all atoms that can be embedded into that conflict reason. With
atoms we mean conflict atoms as well as boundary atoms, where a latter one
consists merely of a single boundary node. This means that by investigating the
set of conflict atoms one gets a complete overview of graph elements that can
cause conflicts in a given conflict reason. Moreover, the set of boundary atoms

136 K. Born et al.

indicates how this conflict reason might be still enlarged with other conflict-
inducing edges. Of course, this result also holds for the special case that the
conflict reason is minimal.

Definition 5 (Boundary atom). A span sb1 : C1

ob1←↩ Sb
1

qb12→ L2 is a boundary
part for rules (r1, r2) with initial pushout (1) as in Fig. 3 if there is a morphism
sB : Sb

1 → B1 such that b1 ◦ sB = ob1 and sb1 fulfills the transformation condition.
A non-empty boundary part sb1 is a boundary atom if it fulfills the minimality
condition w.r.t. the set of boundary parts for (r1, r2).

It is straightforward to show that graph Sb
1 of a boundary atom consists of

exactly one boundary node being the source or target node of an edge that is
potentially conflict-inducing.

Theorem 3 (Covering of conflict reasons by atoms). Given a conflict
reason s1 : C1

o1←↩ S1
q12→ L2 for rules (r1, r2), then the set A of all conflict atoms

together with the set AB of all boundary atoms that can be embedded into s1

covers s1, i.e. for each conflict reason s′
1 : C1

o′
1←↩ S′

1
q′

12→ L2 for (r1, r2) that can
be embedded into s1 it holds that, if each atom in A ∪ AB can be embedded into
s′
1, then s′

1 is isomorphic to s1.

Conflict reason extensions contain all graph elements that overlap in a pair
of conflicting transformations, even elements that are not deleted and at the
same time used by any of the two participating rules. Hence, a conflict reason
extension might show too much information. By definition, for each conflict
reason extension, there is a conflict reason which can be embedded into this
extension. Hence, an extension can always be restricted to a conflict reason.
Vice versa, the following theorem shows that each conflict reason (being defined
over C1 and L2) can be extended to at least one conflict reason extension (being
defined over L1 and L2).

Theorem 4 (Extension of conflict reason to conflict reason extension).
Given a conflict reason s1 : C1

o1←↩ S′
1

q12→ L2 for rules (r1, r2), there exists at
least one conflict reason extension s : L1

a1←↩ S
b2→ L2 for rules (r1, r2) such that

s1 can be embedded into s.

3.3 Relations of Conflicting Rule Concepts to Critical Pairs

As illustrated in Fig. 1, for each critical pair, there exists an essential critical pair
that can be embedded into it (see Completeness Theorem 4.1 in [12]). Match
pairs of each (essential) critical pair are jointly surjective (according to the min-
imal context idea). Thus a critical pair might overlap in elements that are just
read by both rules and are not boundary nodes, and exactly these overlaps are
unfolded again in the essential critical pair. This is because the latter overlaps
do not contribute to a new kind of conflict. The set of essential critical pairs

Granularity of Conflicts and Dependencies in Graph Transformation Systems 137

is thus smaller than the set of critical pairs and, in particular, each essential
critical pair is a critical pair (see Fact 3.2 in [12]).

The following two theorems formalize, on the one hand, the relations between
conflict reasons for rule pairs as introduced in this paper and essential critical
pairs, and on the other hand, the relations between conflict reason extensions and
critical pairs. Note that, as explained in Remark 1, there is no 1–1 correspondence
of conflict reasons for rules and essential critical pairs, since we abstract from
building symmetrical conflict reasons on the rule level for compactness reasons.

Theorem 5 (Essential critical pair and conflict reason). Restriction.
Given an essential critical pair (t1, t2) = (P1

m1,r1⇐= K
m2,r2=⇒ P2) such that t1

causes a delete-use conflict on t2 then the span s1 : C1
o1←↩ S1

q12→ L2 arising from
taking the pullback of (m1 ◦ c1,m2) is a conflict reason for (r1, r2).

Extension. Given a conflict reason s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2)
then there exists an essential critical pair (t1, t2) = (P1

m1,r1⇐= K
m2,r2=⇒ P2) such

that t1 causes a delete-use conflict on t2 with the pullback of (m1 ◦ c1,m2) being
isomorphic to s1.

Theorem 6 (Critical pair and conflict reason extension). Restriction.
Given a critical pair (t1, t2) = (P1

m1,r1⇐= K
m2,r2=⇒ P2) such that t1 causes a delete-

use conflict on t2 then the span arising from taking the pullback of (m1,m2) is
a conflict reason extension for (r1, r2).
Extension. Given a conflict reason extension s : L1

a1←↩ S
b2→ L2 for (r1, r2)

then the cospan arising from building the pushout of (a1, b2) defines the matches
(m1,m2) of a critical pair (t1, t2) = (P1

m1,r1⇐= K
m2,r2=⇒ P2) such that t1 causes a

delete-use conflict on t2.

Bijective correspondence. The restriction and extension constructions are
inverse to each other up to isomorphism.

Example 3 (Conflict reason extension). Figure 5 focuses on the conflict atoms
and minimal conflict reasons of the rule pair (decapsulateAttribute, pullUpEncap-
sulatedAttribute). Figure 6 relates these new conflict notions with the six critical
pairs of the considered rule pair. The two minimal conflict reasons sufficiently
characterize the overlap in the results 3 and 5. Result 1 presents the combina-
tion of both minimal conflict reasons. Since these results make no use of further
overlapping of non-deleting elements they are also conflict reason extensions.
Moreover, they correspond to the results of the essential critical pair analysis.
1,11:Class and 6,16:Class are two boundary atoms. Additional overlapping of
the Attribute-nodes of both rules in 4,12:Attribute leads to larger conflict reason
extensions and to the remaining three results 2, 4, and 6. Adding the remaining
elements of the LHS of both rules, we obtain a compact representation of all six
critical pairs.

138 K. Born et al.

Fig. 6. Representation of six critical pairs arising from the application of rule decapsu-
lateAttribute so that rule pullUpEncapsulatedAttribute becomes inapplicable; examples
of newly introduced conflict notions are indicated.

3.4 Dual Notions for Dependencies

To reason about dependencies of rules and transformations, we consider the
dual concepts and results that we get when inverting the left transformation of

a conflicting pair. This means that we check if H1
p−1
1 ,m′

1⇐= G
p2,m2=⇒ H2 is paral-

lel dependent, which is equivalent to the sequence G
p1,m1=⇒ H1

p2,m2=⇒ H2 being
sequentially dependent. This is possible since a transformation is symmetrically
defined by two pushouts. They ensure in particular that morphisms m : L → G
as well as m′ : R → H fulfill the gluing condition.

Dependency parts, atoms, reasons, and reason extensions can be defined anal-
ogously to Definition 4. They characterize graph elements being produced by the

Granularity of Conflicts and Dependencies in Graph Transformation Systems 139

first rule application and used by the second one. Results presented for conflicts
above can be formulated and proven for dependencies in an analogous way.

4 Related Work and Conclusion

The critical pair analysis (CPA) has developed into the standard technique
for detecting conflicts and dependencies in graph transformation systems [1]
at design time. Originally being developed for term and term graph rewrit-
ing [15], it extends the theory of graph transformation and, more generally, of
M-adhesive transformation systems [2,16]. The CPA is not only available for
plain rules but also for rules with application conditions [17].

In this paper, we lay the basis for a refined analysis of conflicts and depen-
dencies by presenting conflict and dependency notions of different granularity.
Furthermore, we investigate their interrelations. The formal consideration shall
be used in a new CDA technique where conflict and dependency analysis can
go from coarse-grained information about the potential existence of conflicts or
dependencies and their main reasons, to fine-grained considerations of conflict
and dependency reasons in different settings.

The CPA is offered by the graph transformation tools AGG [18] and Veri-
graph [19] and the graph-based model transformation tool Henshin [20]. All of
them provide the user with a set of (essential) critical pairs for each pair of rules
as analysis result. The computation of conflicts and dependencies using the con-
cepted introduced in the present work has been prototypically implemented in
Henshin. First tests indicate that our analysis is very fast and yields concise
results that are promising to facilitate understandability. However, it is up to
future work to further investigate this aspect in a user study.

Currently, we restrict our formal considerations to graphs and graph trans-
formations. Since all main concepts are based on concepts from category the-
ory, our work is prepared to adapt to more sophisticated forms of graphs or
graph transformation. Furthermore, it is interesting to adapt the new notions
to transformation rules with negative [21] or more complex nested application
conditions [17]. Analogously, to handle attributes within conflicts appropriately
it is promising to adapt our approach to lazy graph transformations [22] and to
come up with a light-weight conflict analysis complementing the work of Deck-
werth et al. [23] on conflict detection of edit operations on feature models. They
combine CPA with an SMT solver for an improved handling of conflicts based
on attribute changes. Performance is still a limiting factor for applying the CPA
to large rule sets. A family-based analysis based on the unification of multiple
similar rules [24] is a promising idea to save redundant computation effort.

Acknowledgements. We wish to thank Jens Kosiol and the anonymous reviewers for
their constructive comments. This work was partially funded by the German Research
Foundation, Priority Program SPP 1593 “Design for Future – Managed Software Evo-
lution”. This research was partially supported by the research project Visual Privacy
Management in User Centric Open Environments (supported by the EU’s Horizon 2020
programme, Proposal number: 653642).

140 K. Born et al.

References

1. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph trans-
formation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002).
doi:10.1007/3-540-45832-8_14

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Monographs in Theoretical Computer Science. Springer,
Heidelberg (2006)

3. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional
requirements in a use case-driven approach: a static analysis technique based on
graph transformation. In: Proceedings of the 22nd International Conference on
Software Engineering (ICSE), pp. 105–115. ACM (2002)

4. Jayaraman, P., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition in
product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol.
4735, pp. 151–165. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75209-7_11

5. Küster, J.M., Gerth, C., Engels, G.: Dependent and conflicting change operations
of process models. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 158–173. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02674-4_12

6. Mehner-Heindl, K., Monga, M., Taentzer, G.: Analysis of aspect-oriented mod-
els using graph transformation systems. In: Moreira, A., Chitchyan, R., Araújo,
J., Rashid, A. (eds.) Aspect-Oriented Requirements Engineering, pp. 243–270.
Springer, Heidelberg (2013)

7. Mens, T., Straeten, R., D’Hondt, M.: Detecting and resolving model inconsistencies
using transformation dependency analysis. In: Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp. 200–214. Springer,
Heidelberg (2006). doi:10.1007/11880240_15

8. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. Softw. Syst. Model. 6(3), 269–285 (2007)

9. Baresi, L., Heckel, R., Thöne, S., Varró, D.: Modeling and validation of service-
oriented architectures: application vs. style. In: ACM SIGSOFT Symposium on
Foundations of Software Engineering Held Jointly with 9th European Software
Engineering Conference, pp. 68–77. ACM (2003)

10. Ermel, C., Gall, J., Lambers, L., Taentzer, G.: Modeling with plausibility
checking: inspecting favorable and critical signs for consistency between control
flow and functional behavior. In: Giannakopoulou, D., Orejas, F. (eds.) FASE
2011. LNCS, vol. 6603, pp. 156–170. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19811-3_12

11. Strüber, D., Taentzer, G., Jurack, S., Schäfer, T.: Towards a distributed mod-
eling process based on composite models. In: Cortellessa, V., Varró, D. (eds.)
FASE 2013. LNCS, vol. 7793, pp. 6–20. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37057-1_2

12. Lambers, L., Ehrig, H., Orejas, F.: Efficient conflict detection in graph transfor-
mation systems by essential critical pairs. Electr. Notes Theor. Comput. Sci. 211,
17–26 (2008)

13. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

http://dx.doi.org/10.1007/3-540-45832-8_14
http://dx.doi.org/10.1007/978-3-540-75209-7_11
http://dx.doi.org/10.1007/978-3-642-02674-4_12
http://dx.doi.org/10.1007/978-3-642-02674-4_12
http://dx.doi.org/10.1007/11880240_15
http://dx.doi.org/10.1007/978-3-642-19811-3_12
http://dx.doi.org/10.1007/978-3-642-19811-3_12
http://dx.doi.org/10.1007/978-3-642-37057-1_2
http://dx.doi.org/10.1007/978-3-642-37057-1_2

Granularity of Conflicts and Dependencies in Graph Transformation Systems 141

14. Born, K., Lambers, L., Strüber, D., Taentzer, G.: Granularity of conflicts
and dependencies in graph transformation systems: extended version, Philipps-
Universität Marburg, Technical Report (2017). www.uni-marburg.de/fb12/swt/
research/publications

15. Plump, D.: Critical pairs in term graph rewriting. In: Prívara, I., Rovan, B.,
Ruzička, P. (eds.) MFCS 1994. LNCS, vol. 841, pp. 556–566. Springer, Heidelberg
(1994). doi:10.1007/3-540-58338-6_102

16. Ehrig, H., Padberg, J., Prange, U., Habel, A.: Adhesive high-level replacement
systems: a new categorical framework for graph transformation. Fundam. Inform.
74(1), 1–29 (2006)

17. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive trans-
formation systems with nested application conditions. part 2: embedding, crit-
ical pairs and local confluence. Fundam. Inform. 118(1–2), 35–63 (2012).
http://dx.doi.org/10.3233/FI-2012-705

18. Taentzer, G.: AGG: a graph transformation environment for modeling and val-
idation of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE
2003. LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25959-6_35

19. Verigraph. https://github.com/Verites/verigraph
20. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced

concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16145-2_9

21. Lambers, L.: Certifying rule-based models using graph transformation, Ph.D. dis-
sertation, Berlin Institute of Technology (2010)

22. Orejas, F., Lambers, L.: Lazy graph transformation. Fundam. Inform. 118(1–2),
65–96 (2012)

23. Deckwerth, F., Kulcsár, G., Lochau, M., Varró, G., Schürr, A.: Conflict detection
for edits on extended feature models using symbolic graph transformation. In:
International Workshop on Formal Methods and Analysis in Software Product
Line Engineering. EPTCS, vol. 206, pp. 17–31 (2016)

24. Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G., Plöger, J.: Rule-
Merger : automatic construction of variability-based model transformation rules.
In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 122–140.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7_8

www.uni-marburg.de/fb12/swt/research/publications
www.uni-marburg.de/fb12/swt/research/publications
http://dx.doi.org/10.1007/3-540-58338-6_102
http://dx.doi.org/10.3233/FI-2012-705
http://dx.doi.org/10.1007/978-3-540-25959-6_35
http://dx.doi.org/10.1007/978-3-540-25959-6_35
https://github.com/Verites/verigraph
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-662-49665-7_8

k-Inductive Invariant Checking
for Graph Transformation Systems

Johannes Dyck(B) and Holger Giese

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{Johannes.Dyck,Holger.Giese}@hpi.de

Abstract. While offering significant expressive power, graph transfor-
mation systems often come with rather limited capabilities for automated
analysis, particularly if systems with many possible initial graphs and
large or infinite state spaces are concerned. One approach that tries to
overcome these limitations is inductive invariant checking. However, the
verification of inductive invariants often requires extensive knowledge
about the system in question and faces the approach-inherent challenges
of locality and lack of context.

To address that, this paper discusses k-inductive invariant checking
for graph transformation systems as a generalization of inductive invari-
ants. The additional context acquired by taking multiple (k) steps into
account is the key difference to inductive invariant checking and is often
enough to establish the desired invariants without requiring the iterative
development of additional properties.

To analyze possibly infinite systems in a finite fashion, we introduce
a symbolic encoding for transformation traces using a restricted form of
nested application conditions. As its central contribution, this paper then
presents a formal approach and algorithm to verify graph constraints as
k-inductive invariants. We prove the approach’s correctness and demon-
strate its applicability by means of several examples evaluated with a
prototypical implementation of our algorithm.

1 Introduction

The expressive power of graph transformation systems often leads to rather lim-
ited capabilities for automated analysis, particularly if systems with many initial
graphs and large or infinite state spaces are concerned. Model checkers can typ-
ically only be employed for the analysis of graph transformation systems with a
finite state space of moderate size (e.g., [9,14]). Other fully automatic approaches
that can handle infinite state spaces by abstraction [2,3,11,12,16] are limited in
their expressiveness, supporting only limited forms of negative application con-
ditions at most. In some cases, additional limitations concerning the graphs of
the state space apply (cf. [2]). In contrast to that, the SeekSat/ProCon tool
[10,13] is able to prove correctness of graph programs with respect to pre- and

This work was partially developed in the course of the project Correct Model Trans-
formations II (GI 765/1-2), which is funded by the Deutsche Forschungsgemeinschaft.

c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 142–158, 2017.
DOI: 10.1007/978-3-319-61470-0 9

k-Inductive Invariant Checking for Graph Transformation Systems 143

postconditions specified as nested graph constraints; however, it may require too
expensive (cf. [5]) or infeasible computations.

One direction that tries to overcome these limitations is the automated ver-
ification of inductive invariants (cf. our own work [1,5]), where we analyze the
capability of system behavior (captured by a number of graph rules) to preserve
or violate desired properties (captured by graph constraints) as inductive invari-
ants. However, the technique faces the approach-inherent challenges of locality
and lack of context information. The analysis of single transformation steps
does not take the broader context, prior rule applications, or the state space
into account, which is both the primary objective and a main challenge of the
approach. Hence, in order to develop successfully verifiable inductive invariants
(if the system is, indeed, safe) or establish meaningful counterexamples (if the
system is not), additional knowledge encoded by additional properties may be
required and often has to be accumulated by an iterative and manual procedure.

Therefore, this paper applies the notion of k-induction [15] to graph trans-
formation systems by extending our previous work in [1,5]. In particular, k-
inductive invariants are a generalization of inductive invariants; conversely, the
latter are a special case of the former for k = 1. Our approach takes paths of
length k into account [15]: a k-inductive invariant is a property whose validity in
a path of length k − 1 implies its validity in the subsequent step. By analyzing
system behavior over multiple transformation steps, more context information
is available and the resulting analysis will be more precise. While the idea of k-
induction has been successfully employed in the field of software verification [4],
to the best of our knowledge, no approach to automatically check k-inductive
invariants for graph transformation systems has been developed so far.

In order to analyze possibly infinite systems in a finite fashion, we first intro-
duce a symbolic encoding for transformation traces. Our main contribution is a
formal approach and algorithm to verify a restricted form of graph constraints as
k-inductive invariants. We prove the approach’s correctness and demonstrate its
applicability by means of several examples evaluated with a prototypical imple-
mentation of our algorithm. While our technique takes care of the inductive step
(verifying the k-inductive invariant), the base of induction for traces of length
k − 1 from an initial graph is established with the model checker GROOVE [9].

This paper is organized as follows: In Sect. 2, we reintroduce the necessary
foundations and our formal model. Section 3 defines our notion of k-inductive
invariants and the symbolic encoding. We present our formal approach to k-
inductive invariant checking in Sect. 4. In Sect. 5, we evaluate our algorithm
and approach, before summarizing our results in Sect. 6. Omitted constructions,
proofs, and more details to our examples can be found in the respective sources
and in [6], which is an extended version of this paper.

2 Prerequisites

This section cites formal foundations [7,8,10], introduces our running example,
and reintroduces the restricted formal model employed in our approach and tool.

144 J. Dyck and H. Giese

2.1 Foundations

The formalism we use (see [7] and our previous paper [5]) considers a graph to
consist of node and edge sets V and E and source and target functions s, t : E→V
assigning source and target nodes to edges. A graph morphism f : G1 →G2 for
graphs Gi = (Vi, Ei, si, ti) with i = 1, 2 consists of two functions mapping nodes
and edges f = (fV , fE) with fV : V1→V2 and fE : E1→E2 that preserve source
and target functions. Injective graph morphisms (or monomorphisms) are graph
morphisms with injective mapping functions and are denoted as f : G1 ↪ G2.
A typed graph G is typed over a special type graph TG by a typing morphism
type : G→ TG ; typed graph morphisms must preserve the typing morphism.

Additionally, we require (nested) application conditions [8] and (nested)
graph constraints [10] to describe more complex conditions over morphisms and
graphs, respectively. Here, an application condition (graph constraint) can also
be interpreted as describing the set of morphisms (graphs) that satisfy it.

Application conditions (or nested application conditions) are inductively
defined as in [8]: (1) for every graph P , true is an application condition over
P ; (2) for every morphism a : P ↪C and every application condition ac over C,
∃(a, ac) is an application condition over P . Application conditions can also be
extended over boolean combinations: (3) for application conditions ac, aci over
P (for all index sets I), ¬ac and ⋀i∈Iaci are application conditions over P .

Satisfiability of application conditions is inductively defined as in [8]: (1) every
morphism satisfies true; (2) a morphism g : P →G satisfies ∃(a, ac) over P with
a : P →C if there exists an injective q : C↪G such that q ◦ a = g and q satisfies
ac. Finally, (3) a morphism g : P →G satisfies ¬ac over P if g does not satisfy
ac and g satisfies ⋀i∈Iaci over P if g satisfies each aci (i ∈ I).

We write g ⊧ ac to denote that the morphism g satisfies ac. Two conditions
ac and ac′ are equivalent (ac ≡ ac′), if for all morphisms g : P → G, g ⊧ ac if
and only if g ⊧ ac′. Also, ∃p and ∀(p, ac) abbreviate ∃(p, true) and ¬∃(p,¬ac).

A graph constraint [10] is a condition over the empty graph ∅. A graph G
then satisfies such a condition if the initial morphism iG : ∅↪G satisfies it.

We use graph rules to describe how graphs can be transformed by rule appli-
cations. As defined in [8], a plain rule p = (L↩K ↪R) consists of two injective
morphisms K↪L and K↪R. L and R are called left- and right-hand side of p,
respectively. A rule b = 〈p, acL, acR〉 consists of a plain rule p and a left (right)
application condition acL (acR) over L (R).

A transformation (also [8]) consists of two
pushouts (1) and (2) such that m ⊧ acL and
m′
⊧ acR. We write G ⇒b,m,m′ H and say that

m : L→G (m′ : R→H) is the match (comatch)
of b in G (in H). We write G ⇒b H to express
that there exist m and m′ such that G ⇒b,m,m′

H. For a set of rules R, G ⇒R H expresses
that there exist b ∈ R and m,m′ such that G ⇒b,m,m′ H. Also, given a rule
b = 〈(L↩K ↪R), acL, acR〉, its inverse rule is denoted as b−1 and defined as
b−1 = 〈(R↩K ↪ L), acR, acL〉.

k-Inductive Invariant Checking for Graph Transformation Systems 145

Fig. 1. Example type graph, graph constraint, mode transitions, and rules (Color figure
online)

Finally, a typed graph transformation system GTS = (R,TG) consists of a
set of graph rules R and a type graph TG [7].

Example 1 (variant 1; see [6] for all details). Our running example is a system
where a single shuttle moves on a topology of connected tracks in different speed
modes (slow, acc(elerate), fast, and brake), which follow a certain protocol (Fig.
1(c)). The system also has a forbidden property, which describes a shuttle driving
on a switch in mode fast. Fig. 1 shows our system modeled as a typed graph
transformation system: a type graph (Fig. 1(a)), the forbidden property as a
graph constraint (F , Fig. 1(b)), and seven rules modeling shuttle movement and
driving mode transitions. Two of those rules are depicted: s2s (slow to slow) in
Fig. 1(d) and s2a (slow to acc(elerate)) in Fig. 1(e). All other rules (a2b, a2f, f2b,
b2s, f2f) function analogously and follow the scheme of s2a or s2s, respectively.
Graph rules are pictured in a compact notation: deleted (created) elements are
drawn in red (green) and annotated −− (++); unchanged elements are in black.

This example variant exhibits unsafe behavior in the sense of possible vio-
lations of our forbidden property, because rule s2a (Fig. 1(e)) does not prevent
the shuttle from accelerating from slow to acc when there is a switch two tracks
ahead. Subsequent application of a2f could then lead to the violation. In our
second variant, this error has been fixed:

Example 2 (variant 2; see [6] for all details). While the type graph, forbidden
property, and most rules remain the same, variant 2 modifies variant 1 by extend-
ing a number of rules with a left (negative) application condition: s2a as in Fig.
1(f), a2f and f2f in a similar fashion. The application condition is designed to
prevent the shuttle from acc(elerating) (and, for a2f and f2f, from driving fast)
if a switch is two tracks ahead.

Since k-inductive invariant checking considers paths of transformations
instead of single steps, we require the notion of transformation sequences. Given

146 J. Dyck and H. Giese

Fig. 2. Example transformation sequence trans = G0 ⇒b1,m1,m
′
1
G1 ⇒b2,m2,m

′
2
G2

a set of rules R = {bi}, graphs G0, Gi, and matches (comatches) mi (m′
i) for i =

1, ..., k, a sequence of transformations to R trans = G0 ⇒b1,m1,m′
1
G1 ⇒b2,m2,m′

2

... ⇒bk,mk,m′
k
Gk denotes subsequent graph transformations G0 ⇒b1,m1,m′

1
G1,

G1 ⇒b2,m2,m′
2
G2, ..., Gk−1 ⇒bk,mk,m′

k
Gk. Also, G0 ⇒R G1 ⇒R ... ⇒R Gk

denotes G0 ⇒R G1, G1 ⇒R G2, ..., Gk−1 ⇒R Gk and is abbreviated as
G0 ⇒k

R Gk.
We say that a sequence of transformations trans = G0 ⇒b1 ... ⇒bk Gk leads

to a graph constraint F , if Gk ⊧ F .

Example 3 (transformation sequence). Figure 2 shows a transformation sequ-
ence trans = G0 ⇒b1,m1,m′

1
G1 ⇒b2,m2,m′

2
G2, where b1 and b2 are graph rules

s2a and a2f from Example 1. Matches and comatches are not depicted. Here, G2

contains a shuttle on a switch driving in mode fast, which matches our forbidden
property F (Fig. 1(b)). Thus, we have G2 ⊧ F and trans leads to F . Note that
trans would not be a valid transformation sequence in variant 2 due to the
additional negative application condition preventing the application of s2a (b1).

An important part of our algorithm is the Shift-construction
[8]. Given an application condition ac over a graph P and a mor-
phism b : P →P ′, Shift(b, ac) transforms ac via b into an applica-
tion condition over P ′ such that, for each morphism n : P ′

↪H,
it holds that n ◦ b ⊧ ac ⇔ n ⊧ Shift(b, ac). Shift is constructed
as follows [8]: (1) Shift(b, true) = true, (2) Shift(b,∃(a, ac)) =
∨(a′,b′)∈F∃(a′,Shift(b′, ac)) for a non-empty set F of jointly sur-
jective and injective morphism pairs (a′, b′) such that b′ ◦ a = a′ ◦ b, and
false, if F = ∅, (3) Shift(b,¬ac) = ¬Shift(b, ac), and (4) Shift(b,⋀i∈Iaci) =
⋀i∈I Shift(b, aci).

Furthermore, we use the L-construction [8,10]: Given b = (L ↩ K ↪ R)
and a condition ac over R, L(b, ac) transforms ac via b into a condition
over L such that, for each transformation G ⇒b,m,m′

H, we have m ⊧ L(b, ac) ⇔ m′
⊧ ac. L is inductively

defined [8,10]: (1) L(b, true) = true, (2) L(b,∃(a, ac)) =
∃(a′,L(b′, ac)) if b′ = 〈L′

↩K ′
↪R′〉 constructed via

the pushouts (1) and (2) exists and false, otherwise,
(3) L(b,¬ac) = ¬L(b, ac), and (4) L(b,⋀i∈Iaci) =
⋀i∈I L(b, aci).

Both Shift and L produce finite results by construction.

k-Inductive Invariant Checking for Graph Transformation Systems 147

2.2 Formal Model

As described in [5], our verification approach and tool impose certain restrictions
on rules and properties in order to strike a balance between expressiveness and
computational complexity while ensuring termination. In the following, we dis-
cuss those restrictions, starting with composed negative application conditions
as a restricted form of nested application conditions.

Definition 4 (composed negative application condition [5]). A com-
posed negative application condition is an application condition of the form
ac = true or ac = ⋀i∈I¬∃ai for monomorphisms ai. An individual condition
¬∃ai is called negative application condition.

Our properties to be verified as k-inductive invariants are described by so-
called forbidden patterns, which follow a restricted form of graph constraints.

Definition 5 (pattern [5]). A pattern is a graph constraint of the form F =
∃(iP : ∅↪P, acP), with P being a graph and acP a composed negative application
condition over P . A composed forbidden pattern is a graph constraint of the form
F = ⋀i∈I¬Fi for some index set I and patterns Fi. Patterns Fi occurring in a
composed forbidden pattern are also called forbidden patterns.

Besides forbidden patterns, we allow our systems to be equipped with (com-
posed) assumed forbidden patterns, which are similar in form to (composed)
forbidden patterns and which will be explained below (see Example 8).

In order to compare patterns, we reintroduce the notion of pattern impli-
cation. Our technique to actually check for pattern implication is described in
[5,6]. More general approaches discussing implication of (unrestricted) graph
constraints can be found in [10,13].

Definition 6 (implication of patterns [5]). Let C and C ′ be two patterns.
C ′ implies C, denoted C ′

⊧ C, if, for all graphs G, G ⊧ C ′ implies G ⊧ C.

In summary, our formal model is subject to the restrictions listed below [5].
However, only the requirements concerned with left application conditions and
graph constraints actually result in a limitation of expressive power [7,8,10].

Morphisms in application conditions (see Sect. 2.1) must be injective.
Left application conditions (see Sect. 2.1) in rules are required to be com-

posed negative application conditions.
Right application conditions (Sect. 2.1) in rules are required to be true.
Rule applicability (see Sect. 2.1) requires injective matches and comatches.
Graph constraints must be patterns (Definition 5).

Since k-inductive invariants are a generalization of inductive invariants, we
also reiterate the notion of inductive invariants as defined in our previous work.

148 J. Dyck and H. Giese

Definition 7 (inductive invariant [5]). Given a typed graph transformation
system GTS = (R,TG) and graph constraints F and H, F is an inductive
invariant for GTS under H, if, for each rule b in R, it holds that:

∀G0, G1((G0 ⇒b G1) ⇒ ((G0 ⊧ F ∧G0 ⊧H) ⇒ (G1 ⊧ F ∨ G1 ⊭H)))

An inductive invariant (here: F) is a property that, given its validity before
rule application (G0 ⊧F), will also hold after rule application (G1 ⊧F). In addi-
tion, we allow our system to be equipped with an additional assumed graph con-
straint (H). This constraint is assumed to be guaranteed by other means, such as
additional verification steps. Typical examples include cardinality restrictions of
the type graph, which, in our tool, are not automatically enforced otherwise. As
defined above, rule applications involving violations of those properties are not
considered as possible violations of the inductive invariant (cf. G0⊧H, G1⊭H). In
our approach, both types of constraints are required to be composed (assumed)
forbidden patterns.

Fig. 3. Assumed forbidden
patterns

Example 8. Figure 3(a) depicts an assumed forbid-
den pattern H1 of our running example implement-
ing a cardinality constraint resulting from the phys-
ical impossibility of a shuttle being located on two
tracks. Figure 3(b) (H2) describes an undesired
track topology. Both (and all other assumed forbid-
den patterns in our examples, see [6]) are negated
and conjunctively joined in a composed assumed
forbidden pattern H = ¬H1 ∧¬H2 ∧ ...∧¬H15. H is
an inductive invariant and can be separately verified
as such by our existing algorithm [5]. In contrast to
that, the composed forbidden pattern F = ¬F (Fig.
1(b)), which consists of just one forbidden pattern
F , is not an inductive invariant for either variant.

3 k-Induction and Symbolic Encoding of Sequences

With the foundations established, we can now define the notion of k-induction
[15] and k-inductive invariants for graph transformation systems. We also intro-
duce a symbolic encoding for transformation sequences.

As established, an inductive invariant (Definition 7) is a property that, given
its validity before rule application, will also hold after rule application. Likewise,
a k-inductive invariant is a property whose validity in a path of length k − 1
(Gz ⊧ F , below) implies its validity after the next rule application (Gk ⊧ F).

Definition 9 (k-inductive invariant). Given a typed graph transformation
system GTS = (R,TG) and graph constraints F and H, F is a k-inductive
invariant for GTS under H, if, for all sequences of transformations to R trans =
G0 ⇒R G1 ⇒R ... ⇒R Gk it holds that:

∀z(0 ≤ z ≤ k − 1 ⇒ Gz ⊧ F ∧H) ⇒ (Gk ⊧ F ∨ Gk ⊭H)

k-Inductive Invariant Checking for Graph Transformation Systems 149

As with inductive invariants, which are k-inductive invariants with k = 1,
our formal model requires the graph constraints F and H to be a composed
(assumed) forbidden pattern, respectively.

In order to deduce from the existence of a k-inductive invariant its validity in
all states of an executable system, we need to consider graph grammars [7] and
their initial states. In particular, a k-inductive invariant (inductive step) holds
in every reachable state of the grammar if it is also valid in all transformation
sequences of length k − 1 from the initial state (induction base).

Lemma 10. Given a graph grammar GG = ((R,TG), G0) with a k-inductive
invariant F for GTS = (R,TG), F is satisfied in all states reachable from G0,
if the following holds:

G0 ⊧ F ∧ ∀i(1 ≤ i ≤ k − 1 ⇒ ∀G((G0 ⇒i
R G) ⇒ (G ⊧ F)))

While our verification approach and contribution focus on establishing k-
inductive invariants, we will shortly discuss the base of induction in our evalua-
tion. In the following, the notion that a transformation system is safe (unsafe)
will refer to the inductive step; i.e. will mean that the respective composed for-
bidden pattern can (cannot) be established as a k-inductive invariant.

Since there is a possibly infinite amount of transformation sequences to be
analyzed in order to establish a composed forbidden pattern as a k-inductive
invariant, we require a symbolic encoding for sequences of transformations. Then,
reasoning over transformation sequences can be reduced to reasoning over a finite
set of representative symbolic encodings. To establish such an encoding, we first
require application conditions that can represent graph rule applications, sim-
ilar to patterns and application conditions representing the set of graphs and
morphisms that satisfy them. Source (target) patterns describe rule applica-
tions in an extended context (the application condition) beyond the left (right)
rule side. Target/source patterns combine both and represent the context after
one rule application and before another. Then, we combine source, target, and
target/source patterns in k-sequences of s/t (source/target) patterns (Defini-
tion 12).

Definition 11 (source, target, and target/source pattern [5]). A source
pattern (target pattern) over a rule – specifically, over its left (right) side L
(R) – is an application condition src (tar) of the form false or the form ∃(s :
L↪ S, acS) (∃(t : R ↪ T, acT)) with a composed negative application condition
acS (acT) over S (T).

A target/source pattern is a pair of a target and a source pattern (tar , src)
which share the same codomain and application condition, i.e. tar = ∃(t : R ↪
T, acT) and src = ∃(s : L↪T, acT). A pair of morphisms (m′,m) with the same
codomain (m′ : R↪G and m : L↪G) satisfies a target/source pattern (tar , src),
denoted (m′,m)⊧(tar , src), if m′

⊧ tar and m⊧src by a common monomorphism
y : T ↪G, i.e. if there exists a monomorphism y : T ↪ G such that y ◦ t = m′,
y ◦ s = m, and y ⊧ acT .

150 J. Dyck and H. Giese

Definition 12 (k-sequences of s/t-patterns). Given k ≥ 1, a source pat-
tern src1 over a rule b1, a target pattern tark over a rule bk and a number
of target/source patterns (tar i, srci+1) over a number of rules bi (1 ≤ i ≤ k − 1),
seq = src1 ⇒b1 tar1, src2 ⇒b2 ... ⇒bk tark is a k-sequence of s/t-patterns.

Satisfiability of k-sequences of s/t-patterns is defined as follows:
Given a sequence of transformations (of length k) trans = G0 ⇒c1,m1,m′

1

... ⇒ck,mk,m′
k
Gk and a k-sequence of s/t-patterns seq = src1 ⇒b1 tar1, src2 ⇒b2

... ⇒bk tark, trans satisfies seq, denoted as trans ⊧ seq, if, for all i with 1 ≤ i ≤ k,
ci = bi, mi ⊧ srci, m′

i ⊧ tar i and, in particular, for all i with 1 ≤ i ≤ k − 1,
(m′

i,mi+1) ⊧ (tar i, srci+1).
Two k-sequences of s/t-patterns seq , seq ′ are equivalent (seq ≡ seq ′), if for

all transformation sequences trans it holds that trans ⊧ seq ⇔ trans ⊧ seq ′.

The idea of k-sequences of s/t-patterns (or simply s/t-pattern sequences)
is to not only describe subsequent transformations but, with source and tar-
get patterns, additional context in which those transformations occur. As such,
an s/t-pattern sequence is a symbolic encoding for the set of transformation
sequences that satisfy it. The construction of specific s/t-pattern sequences for
the verification of k-inductive invariants will be explained in the next section. It
bears certain similarities to the notion of E-concurrent rules from [8].

Fig. 4. Example sequence of patterns seq = src1 ⇒b1 tar1, src2 ⇒b2 tar2

Example 13 (s/t-pattern sequence). Figure 4 shows a 2-sequence of s/t-patterns
seq = src1 ⇒b1 tar1, src2 ⇒b2 tar2, where rules bi = 〈Li ↩Ki ↪Ri〉 (i = 1, 2)
are s2a and a2f from variant 1 (Example 1). In particular, src1 = ∃s1 and
src2 = ∃s2 are source patterns, tar1 = ∃t1 and tar2 = ∃t2 are target patterns,
and (tar1, src2) is a target/source pattern. The transformation sequence trans
(Example 3, Fig. 2) satisfies seq (trans ⊧seq). On the other hand, no transforma-
tion sequence from variant 2 (Example 2) could satisfy seq due to the negative
application condition in s2a.

As a side note, src1 ⇒b1 tar1 and src2 ⇒b2 tar2 would also be valid 1-
sequences of s/t-patterns.

Since we will need to compare elements of s/t-pattern sequences to (assumed)
forbidden patterns, we establish a connection between source and target patterns
and (forbidden) patterns with respect to pattern implication:

k-Inductive Invariant Checking for Graph Transformation Systems 151

Lemma 14 (reduction to pattern [5]). Let ac = ∃(s : L ↪ S, acS) be an
application condition over L with acS being a composed negative application
condition. For the reduction to a pattern ac∅ = ∃(iS : ∅ ↪ S, acS) of ac we
have: For each graph G with m : L↪G such that m ⊧ ac, we have G ⊧ ac∅.

4 k-Inductive Invariant Checking

Our formal approach to verify a composed forbidden pattern as a k-inductive
invariant consists of the following steps: We split the composed forbidden pattern
into its individual forbidden patterns (step 1, Sect. 4.1). Then, we construct a
finite set of k-sequences of s/t-patterns per forbidden pattern such that these
sequences represent all transformation sequences leading to the forbidden pattern
(step 2, Sect. 4.2). Finally, we analyze each s/t-pattern sequence in each set for
possible violations of (assumed) forbidden patterns earlier in the sequence (step
3, Sect. 4.3). Sequences with such violations can be discarded; all others present
counterexamples with respect to the validity of the k-inductive invariant.

4.1 Step 1: Separation of Forbidden Patterns

The following lemma is the formal basis for investigating individual forbidden
patterns and transformation sequences that lead (see Sect. 2.1) to those pat-
terns. It is based on the contraposition of Definition 9; its intention is to justify
the procedure of finding all possible violations of individual forbidden patterns
(the implication’s precondition below) and trying to disprove them by finding
violations earlier in the path (postcondition). The latter loosely corresponds to
step 2 and 3 (Sects. 4.2 and 4.3) below.

Lemma 15. Given a typed graph transformation system GTS = (R,TG) and a
composed (assumed) forbidden pattern F = ⋀i∈I¬Fi (H = ⋀j∈J¬Hj), F is a k-
inductive invariant for GTS under H, if the following holds for each k-sequence
of transformations trans = G0 ⇒R ... ⇒R Gk:

∃n(Gk ⊧ Fn) ⇒ (∃z, v(0 ≤ z ≤ k ∧Gz ⊧Hv) ∨ ∃z, v(0 ≤ z ≤ k − 1 ∧Gz ⊧ Fv))

4.2 Step 2: Construction of k-Sequences and Context Propagation

The following theorem describes the construction of finite sets of s/t-pattern
sequences, which represent all transformation sequences leading to a specific for-
bidden pattern. Those sequences are possible violations of the desired k-inductive
invariant.

Theorem 16 (construction of sequences). There is a construction Seqk

such that for every pattern F = ∃(iP , acP), rule set R, and k, Seqk(R, F) is
a set of k-sequences of s/t-patterns and for each transformation sequence trans
to R of length k that leads to F , there is a seq ∈ Seqk(R, F) with trans ⊧ seq.

152 J. Dyck and H. Giese

Construction. Seqk is inductively constructed as follows (with appropriate
indexes and index sets u, j and U, Ju, respectively), starting with Seq1 (left
figure):

1. For each rule bu = 〈(Lu ↩Ku ↪Ru), acLu
〉 ∈ R, Shift(iRu

, F) = ∨j∈Ju
taru,j

is a disjunction of target patterns over Ru of the form taru,j = ∃(tj , acTj
).

2. For each such target pattern taru,j, src′
u,j = L(bu, taru,j) is a source pattern

over Lu of the form src′
u,j = false or src′

u,j = ∃(sj , ac′
Sj

).
3. For the latter case, srcu,j = ∃(sj , ac′

Sj
∧ Shift(sj , acLu

)) is a source pattern.
4. For each such pair of source and target pattern srcu,j and taru,j, srcu,j ⇒bu

taru,j is a 1-sequence of s/t-patterns.
5. Finally, we define Seq1(R, F) = {srcu,j ⇒bu taru,j | bu ∈ R ∧ j ∈ Ju} as the

set of these sequences.

Given Seqk(R, F), we construct Seqk+1(R, F) as follows (right figure).

1. For each sequence seq = src1 ⇒ ... ⇒ tark ∈ Seqk(R, F) with src1 = ∃(s : L↪
S, acS) and each bu = 〈(Lu ↩Ku ↪Ru), acLu

〉 ∈ R, Shift(iRu
,∃(iS , acS)) =

∨j∈Ju
taru,j is a disjunction of target patterns over Ru with taru,j =

∃(tj , acTj
).

1’. For each such target pattern taru,j , src∗
1 = ∃(s′

j ◦ s, acTj
) is a source pattern.

2. For each such target pattern taru,j, src′
u,j = L(bu, taru,j) is a source pattern

over Lu of the form src′
u,j = false or src′

u,j = ∃(sj , ac′
Sj

).
3. For the latter case, srcu,j = ∃(sj , ac′

Sj
∧ Shift(sj , acLu

)) is a source pattern.
4. For each such pair of source and target pattern srcu,j and taru,j, srcu,j ⇒bu

taru,j , src∗
1 ⇒ ... ⇒ tark is a k+1-sequence of s/t-patterns.

5. Finally, we define Seqk+1(R, F) = {srcu,j ⇒bu taru,j , src∗
1 ⇒ ... ⇒

tark | bu ∈ R ∧ j ∈ Ju ∧ seq ∈ Seqk(R, F)} as the set of these sequences.

Also, given a set of rules R and a composed forbidden pattern F = ⋀i∈I¬Fi with
forbidden patterns Fi, we define Seqk(R,F) = ∪i∈I Seqk(R, Fi).

To encode all situations in which a forbidden pattern is violated after a
rule application, Seq1(R, F) first builds target patterns for all overlappings of
right rule sides and the forbidden pattern (cf. Shift(iRu

, F) in 1). Then, for each
of those target patterns, the respective source pattern – the context before rule
application – is computed (L(bu, taru,j), 2). Finally, the left application condition
of the applied rule is transferred from its left rule side to the context of the

k-Inductive Invariant Checking for Graph Transformation Systems 153

source pattern (Shift(sj , acLu
), 3). All pairs of a source and a target pattern

thusly created then constitute a 1-sequence of s/t-patterns in Seq1(R, F) (4, 5).
Given the set of sequences created by Seqk, Seqk+1 repeats this process

until the sequences reach a fixed length k. In particular, it creates all
overlappings of right rule sides and leftmost source patterns of k-sequences
(Shift(iRu

,∃(iS , acS)), 1) to create target patterns, then adds the newly accu-
mulated context to the leftmost source patterns (src∗

1 = ∃(s′
j ◦ s), acTj

, 1’). 2–5
mirror the respective computations of Seq1. Since all involved constructions (par-
ticularly Shift and L) produce finite results, Seqk always yields finite results for
a fixed k.

Theorem 16 states that all transformation sequences of length k that lead to
a forbidden pattern F have a representative s/t-pattern sequence in Seqk(R, F).
We also proof that each s/t-pattern sequence is meaningful in the sense that every
transformation sequence it represents actually leads to the forbidden pattern:

Lemma 17. Given a set of rules R, a pattern F , and the set Seqk(R, F), for
each k-sequence of s/t-patterns seq ∈ Seqk(R, F), every transformation sequence
trans with trans ⊧ seq leads to F .

Example 18. Figure 4 in Example 13 also serves as an example of one sequence
(of many) found in Seq2(R, F) – F as in Fig. 1(b) – for variant 1 of our exam-
ple. However, the context of the second rule application described by the tar-
get pattern tar2 does not yet take accumulated context of subsequent Seqk-
constructions into account; in particular, it lacks the fourth track (tr1) required
in transformation sequences satisfying seq. Also, note that our transformation
sequence trans with trans ⊧ seq (Example 13) leads to F (cf. Lemma 17).

For variant 2 of our example system, the Seq2-construction for the case above
would calculate Shift(s1, acL), where acL is the additional negative application
condition of graph rule s2a (Fig. 1(f)). Since acL – forbidding the existence of
a subsequent switch – actually exists in S1, the result of Shift(s1, acL) would
(upon evaluation) default to false. Since no transformation sequence can satisfy
such a sequence of s/t-patterns, the sequence is invalid as a counterexample,
which would become apparent in our analysis in step 3 (Sect. 4.3).

Repeating the Seqk-construction only accumulates context in backward direc-
tion by reverse rule applications (via L). Similarly, acquired context can also be
propagated in forward direction. In particular, our construction below uses L to
recursively propagate context from the leftmost source pattern over the respec-
tive rules through the whole sequence. To justify the process, Lemma 19 estab-
lishes that the set of all transformation sequences represented by the s/t-pattern
sequences in Seqk equals the set of transformation sequences represented by the
propagated s/t-pattern sequences in Seqk. Although that set of transformation
sequences remains unchanged, forward propagation enriches our symbolic rep-
resentation in order to discard false negatives in the subsequent analysis step.

154 J. Dyck and H. Giese

Lemma 19 (forward propagation over sequences). Given a set of graph
rules R, a pattern F , and the set of sequences constructed by Seqk(R, F),
we describe forward propagation as a function prop such that for all seq ∈
Seqk(R, F), we have seq ≡ prop(seq).

Construction. We construct prop recursively as follows:

prop(src1 ⇒b1 tar1) = src1 ⇒b1 tar ′
1

prop(src1 ⇒b1 tar1, src2 ⇒b2 tar2, ..., srck ⇒bk tark)
=src1 ⇒b1 tar ′

1,prop(comb(tar ′
1, src2) ⇒b2 tar2, ..., srck ⇒bk tark),

as in the diagram on the right, with src1 = ∃(t′0◦s1, acT ′
0
), tar1 = ∃(t1, acT1),

tar ′
1 = ∃(t′1 ◦ t1, acT ′

1
) = L(b−1

1 , src1), and src2 = ∃(s′
2 ◦ s2, acS).

Note that for the first call of prop on a sequence constructed by Seqk, we
have src1 = ∃(s1, acS1) and T ′

0 and T ′
1 will not exist. For the purpose of prop

and comb, T ′
0 and S1 can be treated as isomorphic (with acT ′

0
= acS1); then, T1

and T ′
1 are isomorphic as well, t′1 is an isomorphism, and acT1 = acT ′

1
.

Fig. 5. Sequence seq ′ = prop(seq) = src1 ⇒b1 tar1, src2 ⇒b1 tar ′
2, with seq ≡ seq ′

Example 20. Figure 5 shows the 2-sequence of s/t-patterns seq ′ = prop(seq).
The difference to seq (Fig. 4, Example 13) lies in the additional context (tr1)
in target pattern tar2. This also exemplifies the intention of calculating prop:
additional information may make a difference in our subsequent analysis (step
3, below).

k-Inductive Invariant Checking for Graph Transformation Systems 155

4.3 Step 3: Analysis of Sequences

Our final and central theorem describes the main result of our approach and
formalization: the analysis of s/t-pattern sequences created by our earlier steps.

Theorem 21 (k-inductive invariant checking). Let GTS = (R,TG) be
a graph transformation system and F = ⋀i∈I¬Fi (H = ⋀j∈J¬Hj) be com-
posed (assumed) forbidden patterns. Let Seqk(R, F) be the set of k-sequences
constructed from the pattern F and Seqk(R,F) = ∪i∈I Seqk(R, Fi). Let, for a
source (target) pattern srcz (tarz), srcz,∅ (tarz,∅) be the reduction of srcz (tarz)
to a pattern.

F is a k-inductive invariant under H if, for all sequences prop(seq) = src1 ⇒b1

... ⇒bk tark with seq ∈ Seqk(R,F), one of the following conditions holds:

1. ∃z, v(1 ≤ z ≤ k ∧ (srcz,∅ ⊧Hv ∨ srcz,∅ ⊧ Fv)). 2. ∃v(tark,∅ ⊧Hv).

Example 22. For k = 2, there is a counterexample for variant 1 (Fig. 5,
Example 20). All sequences of length 2 for variant 2 would be discarded by
Theorem 21. Hence, ¬F is a 2-inductive invariant for variant 2, but not for
variant 1.

Our approach is sound in the sense that for every violating transformation
sequence, a symbolic counterexample (s/t-pattern sequence) will be found. It
is not necessarily complete: spurious counterexamples can occur, because the
theorem above only describes a sufficient condition. Addressing this approach-
inherent drawback requires a more complex notion of pattern implication, which
is, in general, an undecidable problem [13]. However, previous [5] and current
evaluation show the applicability of our approach even without such extensions.

Our implementation and tool closely follow the formalization established
above. Given a fixed value for k, a set of graph rules, and a composed forbidden
pattern to be verified as a k-inductive invariant under a composed assumed for-
bidden pattern, the tool: (a) constructs all 1-sequences of s/t-patterns leading
to forbidden patterns (Theorem 16), (b) analyzes those sequences (Theorem 21),
(c) prolonges the remaining sequences by one step (Theorem 16), (d) applies for-
ward propagation (Lemma 19) and (e) analysis (Theorem 21, again), and then
repeats (c), (d), and (e) until the sequences’ length reaches k. If all sequences of
length k have been discarded, the composed forbidden pattern is a k-inductive
invariant. Otherwise, the remaining sequences serve as counterexamples. Because
of the finiteness of all involved constructions, this algorithm always terminates.

5 Evaluation

In the following, we discuss the experimental evaluation of our approach, which
we implemented as an extension of our tool described in [1,5]. We considered
variants 1 (Example 1) and 2 (Example 2) of our running example as two cases
where a k-inductive invariant cannot and can (for k = 2) be established, i.e.,

156 J. Dyck and H. Giese

as cases for an unsafe and a safe system. Variants 3 and 4 (see [6]) present two
more elaborate cases, which include sensor faults and a single fault assumption.

First, we used our existing tool for the verification of (1-)inductive invariants [5]
for all example variants (k = 1). Then, we used our extensions implementing the
algorithm formalized in this paper (k > 1). We consider configurations with and
without forward propagation1 (Lemma 19), configurations that compute all coun-
terexamples (denoted by full), and configurations that enforce termination as soon
as one counterexample of length k has been found (stop on ce).

Our results2 are shown in Table 1. The numbers in brackets denote the
number of rules, forbidden properties, and assumed forbidden properties for
the respective variants. Columns k, c, and t denote the length of the path for
the inductive step, the number of counterexamples, and runtime in seconds,
respectively. Column r shows the verification result, which can take the values
false (f) for an unsafe system, fn for false negatives (spurious counterexamples),
f+fn for a combination of both, true (t) for a safe system, or na (not applicable).

The term false negative refers to counterexamples, i.e. s/t-pattern sequences
of the respective length k, for which there cannot exist a satisfying transfor-
mation sequence that describes an actual violation of the k-inductive invariant.
Such counterexamples may occur (1) if forward propagation is not considered,
which leads to incomplete information during the analysis, and (2) if a more
complex (potentially undecidable) notion of pattern implication is required (cf.
Section 4.3). However, since all forbidden and assumed forbidden patterns in our
examples are of the simple form F = ∃(iP : ∅↪P, true), the second type of false
negatives cannot occur here. Hence, all counterexamples resulting from exper-
iments that include forward propagation are true negatives (f) and could be
instantiated as transformation sequences that violate the k-inductive invariant.

For the full case with forward propagation, the property is not a k-inductive
invariant (up to k = 6) for the erroneous variant 1, as expected (cf. Examples 1
and 22). The corrections resulting in variant 2 (Example 2) lead to a safe system
where the property can be established as a 2-inductive invariant. Likewise, vari-
ant 4 is a fixed version of the erroneous variant 3. While the computational effort
for variants 2 and 4 is minimal, variants 1 and 3 show strongly increasing num-
bers for counterexamples and computation time. This will almost always be the
case for erroneous systems. However, in both cases, execution with the stop on ce
option will quickly return results for manual inspection of unsafe systems.

As explained before, execution without forward propagation can lead to false
negatives. In particular, without forward propagation the safety property cannot
be established even for the (actually safe) variant 4. Also, the high number of false
negatives in variant 3 leads to even higher numbers of (false) counterexamples
for subsequent values of k and significantly higher computation times.

1 To allow verification without forward propagation, Theorem 21 can be modified by
considering all seq ∈ Seqk(R,F) instead of all prop(seq) ∈ Seqk(R,F).

2 Setup: 64-bit system, two cores at 2.8 GHz, 8 GB main memory, Eclipse 4.5.1, Java
8, Windows 7. Java heap space limit was set to 1 GB, with the exception of variant
4 with forward propagation and k = 6, which required 4 GB.

k-Inductive Invariant Checking for Graph Transformation Systems 157

Table 1. Results for 1- and k-inductive invariant checking ([5] and current approach).

To establish the base of induction (see Lemma 10) for a graph grammar with
an initial graph, we used the model checker GROOVE [9] to (successfully) check
all paths of length 1 (k − 1 = 2 − 1) from the initial graph for variants 2 and 4.

An important issue is the choice of k for the verification. There exist cases
(variants 2 and 4) where the desired property can be established as a k-inductive
invariant for small k, but not as a 1-inductive invariant. If the estimated value
of k for an invariant is not known, we suggest to verify systems with increasing
k, starting with 1, and to use counterexamples to fix system errors, as seen in
variants 1 (fixed in variant 2) and 3 (fixed in 4). While we are confident that
the technique is also applicable for different examples of similar size and values
for k, we cannot yet generalize that claim for larger examples. However, since
the approach’s complexity is independent from a system’s state space, it may be
applied where approaches based on the state space are impractical.

6 Conclusion and Outlook

We presented an approach for automatic verification of k-inductive invariants
that supports reasonably expressive graph rules and properties. We have proven
and implemented our approach, which employs a finite symbolic encoding of
traces. Further, our evaluation has demonstrated that k-inductive invariants can
be established for some examples where inductive invariants are not sufficient.

Moving on, we plan to study further options to enrich k-sequences, optimize
our algorithm, and apply suitable counterexample-guided refinement techniques.

Acknowledgments. We would like to thank Leen Lambers for her comprehensive
feedback on a draft version of this paper.

158 J. Dyck and H. Giese

References

1. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant ver-
ification for systems with dynamic structural adaptation. In: Proceedings of the
28th International Conference on Software Engineering (ICSE). ACM, New York
(2006)

2. Blume, C., Bruggink, H.J.S., Engelke, D., König, B.: Efficient symbolic implemen-
tation of graph automata with applications to invariant checking. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562,
pp. 264–278. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33654-6 18

3. Boneva, I.B., Kreiker, J., Kurban, M.E., Rensink, A., Zambon, E.: Graph abstrac-
tion and abstract graph transformations (amended version). Technical report TR-
CTIT-12-26, University of Twente, Enschede (2012)

4. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
k -induction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 351–368. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23702-7 26

5. Dyck, J., Giese, H.: Inductive invariant checking with partial negative application
conditions. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol.
9151, pp. 237–253. Springer, Cham (2015). doi:10.1007/978-3-319-21145-9 15

6. Dyck, J., Giese, H.: k-Inductive Invariant Checking for Graph Transformation Sys-
tems. Technical report, University of Potsdam (2017)

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Secaucus (2006)

8. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive transforma-
tion systems with nested application conditions. part 1: parallelism, concurrency
and amalgamation. Math. Struct. Comput. Sci. 24, 1–48 (2014)

9. Ghamarian, A.H., de Mol, M.J., Rensink, A., Zambon, E., Zimakova, M.V.: Mod-
elling and analysis using GROOVE. Int. J. Softw. Tools Technol. Transf. 14(1),
15–40 (2012)

10. Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19, 1–52 (2009)

11. König, B., Kozioura, V.: Augur 2 - a new version of a tool for the analysis of
graph transformation systems. Electron. Notes Theoret. Comput. Sci. 211, 201–
210 (2008)

12. König, B., Stückrath, J.: A general framework for well-structured graph transfor-
mation systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704,
pp. 467–481. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44584-6 32

13. Pennemann, K.-H.: Development of correct graph transformation systems. Ph.D.
thesis, University of Oldenburg (2009)

14. Schmidt, Á., Varró, D.: CheckVML: a tool for model checking visual modeling
languages. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol.
2863, pp. 92–95. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45221-8 8

15. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol.
1954, pp. 127–144. Springer, Heidelberg (2000). doi:10.1007/3-540-40922-X 8

16. Steenken, D.: Verification of infinite-state graph transformation systems via
abstraction. Ph.D. thesis, University of Paderborn (2015)

http://dx.doi.org/10.1007/978-3-642-33654-6_18
http://dx.doi.org/10.1007/978-3-642-23702-7_26
http://dx.doi.org/10.1007/978-3-319-21145-9_15
http://dx.doi.org/10.1007/978-3-662-44584-6_32
http://dx.doi.org/10.1007/978-3-540-45221-8_8
http://dx.doi.org/10.1007/3-540-40922-X_8

Probabilistic Timed Graph
Transformation Systems

Maria Maximova1(B), Holger Giese1, and Christian Krause2

1 Hasso Plattner Institute at the University of Potsdam, Potsdam, Germany
{maria.maximova,holger.giese}@hpi.de

2 SAP SE, Potsdam, Germany
christian.krause01@sap.com

Abstract. Today, software has become an intrinsic part of complex dis-
tributed embedded real-time systems. The next generation of embed-
ded real-time systems will interconnect the today unconnected systems
via complex software parts and the service-oriented paradigm. Therefore
besides timed behavior and probabilistic behavior also structure dynam-
ics, where the architecture can be subject to changes at run-time, e.g.
when dynamic binding of service end-points is employed or complex col-
laborations are established dynamically, is required. However, a modeling
and analysis approach that combines all these necessary aspects does not
exist so far.

To fill the identified gap, we propose Probabilistic Timed Graph
Transformation Systems (PTGTSs) as a high-level description language
that supports all the necessary aspects of structure dynamics, timed
behavior, and probabilistic behavior. We introduce the formal model
of PTGTSs in this paper and present a mapping of models with finite
state spaces to probabilistic timed automata (PTA) that allows to use
the PRISM model checker to analyze PTGTS models with respect to
PTCTL properties.

1 Introduction

Today, software has become an intrinsic part of complex distributed embedded
real-time systems, which need to realize more advanced functionality. The next
generation of embedded real-time systems will interconnect the today uncon-
nected systems via complex software parts and the service-oriented paradigm.
It is envisioned that such networked systems will be able to behave much more
intelligently by building communities of autonomous agents that exploit local
and global networking to adapt and optimize their functionality [6].

In contrast to today’s real-time systems, their behavior will in addition be
characterized by structure dynamics that results from their complex coordination
behavior. This structure dynamics requires execution in real-time and reconfig-
uration at run-time to adjust the systems behavior to its changing context and
goals, leading to self-adaptation and self-optimization [25]. For these systems,
also the structure resp. architecture is subject to changes at run-time, e.g. when
c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 159–175, 2017.
DOI: 10.1007/978-3-319-61470-0_10

160 M. Maximova et al.

dynamic binding of service end-points is employed or complex collaborations are
established dynamically. In the latter case, often the structural context in the
form of local topology and distribution information is particularly important.

As a concrete example for such an advanced embedded real-time system, the
RailCab research project [24] aims at combining a passive track system with
intelligent shuttles that operate autonomously, act individually, and make inde-
pendent and decentralized operational decisions. For the RailCab application
example it holds that some functionality may be safety-critical such as the con-
voy coordination, or mission-critical for economic reasons such as the negotiation
of the transport contracts. Furthermore, the required properties are not merely
qualitative ones but also quantitative ones involving time as well as probabili-
ties. For instance, convoy coordination protocols have to be established between
shuttles nearby in the topology, usually involving hard real-time constraints, and
the sent protocol message may be lost with a non-zero probability. Consequently,
we need methods and tools to guarantee critical quantitative properties when
developing such systems, which include structure dynamics, timed behavior, and
probabilistic behavior.

Combinations of different modeling approaches have led to a number of new
interesting applications in the last couple of years. In the following, we briefly
describe related modeling and analysis approaches, which combine some of the
aspects of structure dynamics, timed behavior, and probabilistic behavior.

Timed graph transformation systems (TGTSs) [4,10,22] facilitate the mod-
eling of timed behavior in graph transformation systems using timed automata
concepts.1 Specifically, nodes can be annotated with real-valued clocks which can
be dynamically added and removed from the systems. Rules can include clock
constraints as additional application conditions, and clocks can be reset. Using
symbolic, zone-based representations [7,18] and an implementation in an exten-
sion [22] of the GROOVE tool [15], the state spaces of TGTSs can be explored and
analyzed, e.g. for time-bounded reachability checks. Moreover, inductive invariant
checking [4] for TGTSs provides a means to deal with infinite-state systems. Thus,
TGTSs enable the analysis of combined models with structure dynamics and real-
time behavior. However, probabilistic behavior is not supported.

A combination of structure dynamics and probabilistic behavior is supported
by probabilistic graph transformation systems (PGTSs) [16], which are an exten-
sion of the graph transformation theory with discrete probabilistic behavior. In
PGTSs, transformation rules are allowed to have multiple right-hand sides, where
each of them is annotated with a probability. The choice for a rule match is non-
deterministic, whereas the effect of a rule is probabilistic. This approach can be
used to model randomized behavior and on-demand probabilistic failures, such
as message loss in unreliable communication channels and supports modeling

1 An alternative approach for graph transformation systems with time was developed
in [11]. However, this approach is not suitable in our context since symbolic state
space representations and quantitative analysis methods are not considered in [11].

Probabilistic Timed Graph Transformation Systems 161

and analysis by an extension of the HENSHIN [8] tool and a mapping to the
PRISM [17] model checker.2

Real-time rewrite theories as supported by the executable specification lan-
guage of Real-time Maude [23] facilitate combined modeling of structure dynam-
ics and real-time behavior. Analysis goals include reachability checks for failures
of safety properties and model checking of time-bounded temporal logic prop-
erties. Such properties are in general not decidable and therefore the provided
tool support is incomplete.

Probabilistic rewrite theories implemented in PMaude [1] provide a combi-
nation of structure dynamics, probabilistic behavior for discrete branching, and
stochastic timed behavior. Properties for PRTs are specified using probabilistic
temporal logic and checked using discrete event simulation, e.g. using the Vesta
tool [27]. However, in order to simulate and analyze models in PMaude, all non-
determinism has to be resolved, i.e., neither discrete nondeterministic choice nor
timed nondeterminism as required for real-time behavior, are allowed.

Probabilistic Timed Automata (PTA) [19] combine the modeling features
of Markov decision processes (MDPs) [5] and timed automata (TA) [2,3] and
thereby allow to analyze systems exhibiting both timed and probabilistic phe-
nomena. Analysis goals for PTA include the checking of probabilistic time-
bounded reachability, computation of rewards, as well as PTCTL model check-
ing [19]. Such properties can be analyzed for PTA, e.g., using the PRISM tool.

The timed and probabilistic extensions of rewrite systems, specifically rewrite
theories in Maude variants and GTSs, provide the best coverage for the required
modeling features. However, none of the existing models facilitates the modeling
and analysis of all identified requirements.

To fill the identified gap, we propose to combine and extend the existing
models to the formalism of Probabilistic Timed Graph Transformation Systems
(PTGTSs) that supports modeling and analysis of structure dynamics, timed
behavior, and probabilistic behavior. We introduce the formal model of PTGTSs
in this paper and present a mapping of models with finite state spaces to prob-
abilistic timed automata (PTA) that allows to use the PRISM model checker to
analyze PTGTS models with respect to PTCTL properties.

The paper is structured as follows. First, the necessary prerequisites in form of
probabilistic timed automata (PTA) are recapitulated in Sect. 2. Then, we intro-
duce Probabilistic Timed Graph Transformation Systems (PTGTSs) in Sect. 3.
Subsequently in Sect. 4, we present the tool support for our approach using the
graph transformation tool HENSHIN and apply it to model our running exam-
ple handling a shuttle scenario. Finally in Sect. 5, we consider the analysis of
PTGTS models by combining the state space generation of HENSHIN and the

2 Also stochastic graph transformation systems (SGTSs) [13] that incorporate stochas-
tic timed behavior into GTSs by including continuous-time probability distributions
that describe the average delay of firing of rules, once they are enabled, have been
proposed. However, note that they do neither support probabilistic behavior nor
real-time behavior as they assume a different model of time.

162 M. Maximova et al.

PTA model checking of the PRISM tool via a mapping. The paper is closed with
some final conclusions and an outlook on planned future work.

2 Probabilistic Timed Automata

In this section we first informally introduce the formalisms of probabilistic [26]
resp. timed automata [2,3] and then combine them to the notion of probabilistic
timed automata [19] used for modeling of real-time systems with probability.
Probabilistic automata (PA) were introduced in [26] to add probabilistic choice
to finite automata by assigning to each edge a probability. The notion of dis-
crete probability distribution plays a central role in the context of PA. For a
denumerable set A a discrete probability distribution is given by the function
μ : A→[0, 1] with

∑
a∈A μ(a) = 1. Furthermore, Dist(A) denotes the set of all

discrete probability distributions μ : A→[0, 1].
Timed automata (TA) [2,3] have proven to be a very successful modeling

and analysis formalism for real-time systems such as embedded software. TA
extend finite automata by making use of clocks, which restrict the behavior of
the TA based on invariants, guards, and clock resets making use of constraints
over clocks. For a set X of clocks Φ(X) denotes the set of all clock constraints
φ generated by φ ::= xi ∼ c | xi − xj ∼ c | φ ∧ φ where ∼ ∈ {<,>,≤,≥},
c ∈ N ∪ {∞} are constants, and xi, xj ∈ X are clocks.

The configurations of TA consist of the current location of the automaton
and an assignment of each clock to a current clock value given as a real number,
called clock valuation. This clock valuation is used to evaluate clock constraints
introduced before to restrict the behavior of an automaton.

Definition 1 (Clock Valuation). For a set X of clocks V(X) denotes the
set of all functions v : X → R called clock valuations, which are also used in the
context of the following notions:

– Clock Reset: Let v : X → R and X ′ ⊆ X. Then v[X ′ := 0] : X → R is a
clock reset such that for any x ∈ X holds if x ∈ X ′ then v[X ′ := 0](x) = 0
else v[X ′ := 0](x) = v(x).

– Clock Increment: Let v : X → R and δ ∈ R. Then v + δ : X → R is a clock
increment such that for any x ∈ X holds (v + δ)(x) = v(x) + δ.

– Clock Constraint Satisfaction: Let v : X → R and φ be some constraint
over X. Then v |= φ denotes that v satisfies the constraint φ.

– Initial Clock Valuation: v0 : X → R is the initial clock valuation if v0(x) =
0 for every x ∈ X. V0(X) is the singleton set containing the (unique) initial
clock valuation.

The formalism of probabilistic timed automata (PTA) is an extension of TA.
PTA allow for nondeterministic system behavior and, in addition, a probabilistic
choice between follower states using discrete probability distributions over edges.
An important feature of PTA are invariants given by clock constraints. Invariants
enable the specification of upper time bounds for steps to be executed and, hence,
restrict the set of admissible reachable states of a system. In the following we
consider the formal definition of PTA in the sense as introduced in [19].

Probabilistic Timed Graph Transformation Systems 163

Definition 2 (Probabilistic Timed Automata). A tuple A = (S,LAP , s0,
X, I, P, τ) is a probabilistic timed automaton (PTA) if

– S is a finite set of locations,
– LAP : S → 2AP is a labeling function assigning to each location the set of

atomic propositions that are true in that location,
– s0 is an initial location with s0 ∈ S,
– X is a finite set of clocks,
– I : S →Φ(X) is a function assigning to each location a clock constraint (also

called an invariant),
– P : S → 2Dist(S×2X)

fn is a function assigning to each location a finite non-
empty set3 of discrete probability distributions containing follower locations
and corresponding clock resets,

– τ = (τs)s∈S is a family of functions where, for any s ∈ S, τs : P (s)→ Φ(X)
assigns to each p ∈ P (s) a clock constraint (also called a guard).

The single step relation describes the behavior of PTA by defining two kinds
of steps: timed steps where all clock values are increased by the time elapsed and
transition steps where a PTA switches states when allowed by the current clock
values according to the used probability distributions without elapsing of time.

Definition 3 (Single Step Relation). Let A = (S,LAP , S0,X, I, P, τ) be a
PTA and states of A elements of S × V(X). Then the single step relation is
given as follows:

– Timed Step: (s, v) δ−→ PTA
A (s, v + δ) if δ > 0 and for each δ′ it holds that

0 ≤ δ′ ≤ δ implies that v + δ′ |= I(s),
– Transition Step: (s, v)

μ−→ PTA
A (s′, v[X ′ := 0]) if X ′ ⊆ X, μ ∈ P (s),

μ(s′,X ′) > 0, v |= τs(μ), and v[X ′ := 0] |= I(s′).

For a concrete example of a PTA and its step relation see [21, Chap. 2].
According to [19], the underlying model for PTA is given by so-called proba-

bilistic timed structures (PTSs). A PTS is a variant of a Markov decision process
(MDP) [5], which is obtained by extension of a timed structure [14] with the
probabilistic choice over transitions, i.e., the transition function Steps of a PTS
results in a choice over pairs consisting of a duration of a transition and a discrete
probability distribution over the follower states.

Definition 4 (Probabilistic Timed Structure). A probabilistic timed
structure (PTS) M = (Q,Steps , LAP) is a labeled MDP where

– Q is a set of states,
– Steps : Q→ 2R×Dist(Q) is a transition function assigning to each state q ∈ Q

a set Steps(q) of pairs (t, p), where t ∈ R is a duration of a transition and
p ∈ Dist(Q) is a discrete probability distribution over the follower states,

– LAP : Q→ 2AP is a state labeling function.
3 For an arbitrary set M , 2M

fn denotes the set of finite nonempty subsets of M .

164 M. Maximova et al.

Besides the definition of PTA behavior in the form of the single step rela-
tion, we also define in the following how PTA give rise to PTSs to enable the
comparison of PTA and PTGTS models later on and to be able to make use of
the PTCTL logic [19], which has a semantics defined on PTSs as well.

Definition 5 (Induced PTS for a PTA). Let A = (S,LAP , s0,X, I, P, τ) be
a PTA. Then MA = (QA,StepsA, LA) is the induced PTS if

– QA = {(s, v) | (s0, v0) ∗−→ PTA
A (s, v)},

– LA(s, v) = LAP (s),
– StepsA(s, v) = {(δ, ν) | (s, v) δ−→ PTA

A (s, v + δ) ∧ ν(s, v + δ) = 1}
∪ { (0, ν) | (s, v)

μ−→ PTA
A (s′, v[X ′ := 0])

∧ ν(s, v) =
∑

μ∈P (s): μ(s′′,X′′)>0 ∧ (s,v)
μ−→PTA

A (s′′,v[X′′:=0])=(s,v)
μ(s′′,X ′′)}.

For the case of a transition step we define the probability distribution ν on
the possible follower states such that if alternative PTA steps result in identical
PTA configurations, the probabilities for their occurrence are added, as required
to obtain a well-defined probability distribution.

We use the PTCTL logic defined on PTSs to state various relevant properties
on probabilistic real-time systems (see [21, Chap. 2] for detailed definitions). In
our running example, introduced in Sect. 4, we state the desired probabilistic
reachability properties and verify them using the PRISM model checker, which
is able to check a subset of PTCTL using multiple back-end engines.

3 Probabilistic Timed Graph Transformation Systems

In this section we recall the framework of graph transformation systems (GTSs)
and introduce a new formalism of Probabilistic Timed Graph Transformation
Systems (PTGTSs) allowing for modeling and analysis of structure dynamics,
timed behavior as well as probabilistic behavior of systems.

In context of our approach we focus on the formalism of typed graphs. A
graph G = (GV , GE , sG, tG) consists of a set GV of nodes, a set GE of edges,
and source and target functions sG, tG : GE → GV . For two given graphs G =
(GV , GE , sG, tG) and H = (HV ,HE , sH , tH), a graph morphism f : G→ H is a
pair of mappings fV : GV →HV , fE : GE → HE compatible with the source and
target functions, i.e., fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE .

Let TG be a distinguished graph, called a type graph. Then a typed graph
is given by a tuple (G, type) consisting of a graph G together with a graph
morphism type : G→ TG. For two given typed graphs G′

1 = (G1, type1) and
G′

2 = (G2, type2), a typed graph morphism f : G′
1 →G′

2 is a graph morphism
f : G1 →G2 compatible with the typing functions, i.e., type2 ◦ f = type1.

The adaptation of graphs can be realized using graph transformation rules,
which are to be understood as local rule-based modifications defining additions
and removals of substructures. A rule ρ = L

l←− K
r−→ R is given by a span of

injective typed graph morphisms with the graphs L and R called the left-hand

Probabilistic Timed Graph Transformation Systems 165

resp. the right-hand side of the rule. The transformation procedure defining a
graph transformation step is formally introduced by the DPO approach [9].

In the following we introduce the new formalism of PTGTSs. We assume here
that all graphs considered in the context of PTGTSs are typed over some type
graph TG containing at least a type node Clock . Furthermore, for every graph
G we use the function CN(G) = {n | n ∈ GV ∧ typeV(n) = Clock} returning
all nodes of the type Clock contained in G to identify in every graph the nodes
used for time measurement only. In the following we call such identified nodes
simply clocks.

The formalism of PTGTSs is a combination of Probabilistic Graph Trans-
formation Systems (PGTSs) [16] and Timed Graph Transformation Systems
(TGTSs) [4,10,22]. Similarly to PGTSs, transformation rules in PTGTSs can
have multiple right-hand sides, where each of them is annotated with a probabil-
ity. The choice for a rule match is nondeterministic, whereas the effect of a rule
is probabilistic. Similarly to TGTSs, each probabilistic timed graph transforma-
tion rule has a guard formulated over clocks contained in the left-hand side of the
rule, which is used to control the rule application. Moreover, each rule contains
the information about clocks that have to be reset during the rule application.

Definition 6 (Probabilistic Timed Graph Transformation Rule). R =
(L,P, μ, φ, rC) is a probabilistic timed graph transformation rule if

– L is a common left-hand side graph,
– P is a finite set of graph transformation rules ρ with lhs(ρ) = L, where lhs(ρ)

provides the left-hand side of the rule ρ,
– μ ∈ Dist(P) is a probability distribution,
– φ ∈ Φ(CN(L)) is a guard over nodes of the type Clock contained in the left-

hand side graph L,
– rC ⊆ CN(L) is a set of nodes of the type Clock contained in the left-hand

side graph L to be reset.

In the following we give a short example for a probabilistic timed rule.

Example 7 [Probabilistic Timed Graph Transformation Rule]. As an example we
model the failure of a hardware node using a probabilistic timed rule fail, which
has two right-hand sides for the case where the node fails with the probability of
10% or not with the probability of 90%. The adjacent clock is used to ensure that
the probabilistic timed rule is executed not more than every two time units by
resetting the clock during each application and by using a guard that requires the
clock to have a value greater than or equal two to capture that the hardware node
can fail for not modeled external requests with a minimal arrival time greater
than or equal two time units. The underlying type graph for this rule is depicted
in the picture (a) below. Formally, the rule is given by fail = (L1, P1, μ1, φ1, rC1)
with L1 as given in the picture (b) to the left, P1 = {ρ01, ρ

1
1} with rhs(ρ01)

4

and rhs(ρ11) as given in the picture (b) to the right, μ1 = {(ρ01, 0.1), (ρ11, 0.9)},
φ1 = (c ≥ 2), and rC1 = {c}.
4 rhs(ρ) denotes the right-hand side of the rule ρ.

166 M. Maximova et al.

Node
failed : bool

Clock
at

(a)
x : Node
failed = false

c : Clock

x : Node
failed = true

c : Clock

x : Node
failed = false

c : Clock

at

at

at

(b)

L1

rhs(ρ01)

rhs(ρ11)

Invariants, as a central concept of PTA, are given for PTGTSs in the form of
conditions over clocks that are checked to be satisfied for a given configuration.

Definition 8 (Probabilistic Timed Graph Transformation Invariant).
Θ = (L, φ) is a probabilistic timed graph transformation invariant if

– L is a graph,
– φ ∈ Φ(CN(L)) is an invariant formula over nodes of the type Clock contained

in the graph L.

For atomic propositions, which are used in the context of the PTCTL logic,
we make use of the same kind of conditions as for invariants. For this reason we
formally denote an atomic proposition also by Θ = (L, φ). The atomic proposi-
tions are checked to set the appropriate labels to the PTGTS configurations.

In the following we define PTGTSs comprising the notions introduced above.
For a concrete example of a PTGTS see Sect. 4.

Definition 9 (Probabilistic Timed Graph Transformation System).
S = (TG,G0, v0,Π, I,AP , prio) is a probabilistic timed graph transformation
system (PTGTS) if

– TG is a finite type graph including the type node Clock ,
– G0 is a finite initial graph over TG,
– v0 : CN(G0)→ R is the initial clock valuation assigning the clock value 0 to

every node of the type Clock in G0,
– Π is a finite set of probabilistic timed rules,
– I is a finite set of probabilistic timed invariants,
– AP is a finite set of probabilistic timed atomic propositions,
– prio : Π → N is a priority function assigning a priority to each rule5.

As a next step we define when a PTGTS configuration consisting of a graph
and a current clock valuation satisfies some invariant.

Definition 10 (Probabilistic Timed Invariant Satisfaction). Let S =
(TG,G0, v0,Π, I,AP , prio) be a PTGTS, Θ = (L, φ) ∈ I, G be a graph typed
over TG, and v ∈ V(CN(G)) be a clock valuation for nodes of the type Clock in
G. Then (G, v) |= Θ if for every injective match m : L→ G with m = (mV,mE)
it holds that v ◦ mV |= φ.

5 For the priority function it holds that the higher the number assigned to a rule the
higher is the priority of the rule.

Probabilistic Timed Graph Transformation Systems 167

Not every configuration of a PTGTS reached by rule based structure adap-
tation is valid since the invariants of the PTGTS need to be considered, too.

Definition 11 (Probabilistic Timed Graph Transformation State). Let
S = (TG,G0, v0,Π, I,AP , prio) be a PTGTS. Then q = (G, v) is a probabilistic
timed graph transformation state (also called configuration) of S (written q ∈
states(S)) if

– G is a graph typed over TG,
– v ∈ V(CN(G)) is a clock valuation for nodes of the type Clock in G,
– (G, v) |= Θ for each Θ ∈ I.

The behavior of PTGTSs is defined by the probabilistic timed graph trans-
formation steps. We distinguish here similarly to PTA two kinds of steps: timed
steps increasing the clock values by the time elapsed and transition steps allow-
ing to switch a configuration under certain conditions as defined below. For the
transition steps we ensure that the guard of the rule is satisfied by the cur-
rent clock valuation and match, that no transition step with higher priority can
be executed, and that all steps in the selected probability distribution μ are
enabled. Furthermore, considering a rule ρ with non-zero probability μ(ρ), we
define the single rule single step relation based on the expected DPO transfor-
mation step and ensure that the clock valuations of the source and target states
are compatible also enforcing the clock resets of the rule.

Definition 12 (Probabilistic Timed Graph Transformation Step). Let
S = (TG,G0, v0,Π, I,AP , prio) be a PTGTS. Then the single step relation is
given as follows:

– Timed Step: (G, v) δ−→ PTGTS
S (G, v + δ) if δ > 0 and for each δ′ it holds that

0 ≤ δ′ ≤ δ implies that (G, v + δ′) ∈ states(S).
– Transition Step: (G1, v)

R,ρ,m−−−−→ PTGTS
S (G2, v

′) if
• R = (L,P, μ, φ, rC) ∈ Π is a probabilistic timed rule,
• m : L→ G1 with m = (mV,mE) is an injective match,
• v ◦ mV |= φ,
• ρ ∈ P is a transformation rule with non-zero probability μ(ρ) > 0,

• �G′
2, v

′′, R′, ρ′,m′ such that (G1, v)
R′,ρ′,m′
−−−−−→ PTGTS

S (G′
2, v

′′) and
prio(R′) > prio(R),

• (G1, v)
R,ρ,m−−−−→→ PTGTS

S (G2, v
′),

• ∀ρ′ ∈ P\{ρ} such that μ(ρ′) > 0 there is a graph G′
2 such that

(G1, v)
R,ρ′,m−−−−→→ PTGTS

S (G′
2, v

′),

where (G1, v)
R,ρ,m−−−−→→ PTGTS

S (G2, v
′) is the single rule single step relation if

• (G1, v), (G2, v
′) ∈ states(S),

• ρ = (L l← K
r→ R) is a graph transformation rule,

• (1) + (2) is a DPO diagram for the transformation step G1 =⇒ ρ,mG2,

168 M. Maximova et al.

• clock valuation functions v : CN(G1)→ R and v′ : CN(G2)→ R are
compatible, i.e., ∀X ∈ CN(G1). (∀Y ∈ CN(D). (l′V(Y) = X) ⇒
(v′(r′

V(Y)) = v[mV(rC) := 0](X)))6,
• the clock value 0 is assigned to all created nodes of the type Clock , i.e.,

∀Z ∈ CN(G2)\r′
V(CN(D)). v′(Z) = 0.

L K R

(1) (2)

G1 D G2

l r

m

l′

k

r′

CN(L) CN(K) CN(R)

= =

CN(G1) CN(D) CN(G2)

R
v v′

lV rV

mV

l′V

kV

r′
V

In our subsequent translation of PTGTSs into the corresponding PTSs we
identify configurations of PTGTSs up to isomorphism. For this purpose we now
introduce such isomorphisms.

Definition 13 (Isomorphisms on States of PTGTSs). Let S be a PTGTS
and (G1, v1), (G2, v2) ∈ states(S).

Then (G1, v1) ∼= (G2, v2) if

– i : G1 → G2 with i = (iV, iE) is an isomorphism,
– ∀X ∈ CN(G1) it holds that v1(X) = v2(iV(X)).

CN(G1) CN
V (G2)

R

=

i

v2v1

Analogously to PTA we provide a PTS for every PTGTS and, hence, allow
for a comparison of PTA and PTGTSs by comparing their semantics in the sense
of the corresponding PTSs.

Definition 14 (Induced PTS for a PTGTS). Let S = (TG,G0, v0,Π, I,
AP , prio) be a PTGTS. Then MS = (QS ,StepsS , LS) is the induced PTS if

– QS = {[(G, v)]∼= | (G0, v0)
∗−→ PTGTS

S (G, v)},
– LS([(G, v)]∼=) = {Θ ∈ AP | (G, v) |= Θ},
– StepsS([(G, v)]∼=)={(δ, ν) | (G, v)

δ−→ PTGTS
S (G′, v′) ∧ν([(G′, v′)]∼=)=1} ∪ { (0, ν) |

R = (L, P, μ, φ, rC) ∈ Π ∧ρ ∈ P ∧(G, v)
R,ρ,m−−−−→ PTGTS

S (G′, v′)} where ν([(G, v)]∼=) =∑

ρ′∈P :(G,v)
R,ρ′,m−−−−→PTGTS

S
(G′′,v′′)∼=(G,v)

μ(ρ′).

In the induced PTS we consider configurations up to isomorphism using their
equivalence classes and derive the labeling of configurations by evaluating the
atomic propositions of the PTGTS. For the step relation we need to collate
PTGTS steps with common target when constructing the probability distribu-
tion ν to ensure well-definedness.

We furthermore employ negative application conditions (NACs) [12] and
attributes for PTGTSs. They allow to increase the descriptive expressiveness
of the rules and can be added straightforwardly to the presented formalization.
6 For morphisms between clocks we omit the restricted notation fV|CN(G1) :

CN(G1)→ CN(G2) and use the unrestricted notation fV : CN(G1)→ CN(G2) to
simplify the representation.

Probabilistic Timed Graph Transformation Systems 169

4 Modeling

To support modeling and, subsequently, analysis of PTGTS models with their
probabilistic and timed behavior, we extended the existing support of HEN-
SHIN [8] for PGTSs [16]. Analogously to PGTSs, the elements and links between
the elements are captured by an EMF model represented as a class diagram (the
type graph of the PTGTS as given in Fig. 1a). In addition, we require a Clock ele-
ment to be present in the EMF model to enable the modeling of timed behavior.
The probabilistic choices are modeled as for PGTSs with multiple HENSHIN
transformation rules with the same name and the same left-hand side (e.g.,
depicted in Figs. 2d and e for the rule connect). To support the modeling of real-
time behavior, we associate clock guards (CG), clock invariants (CI), and clock
resets (CR) to the rules via corresponding annotations added to the property
list of the GTS in HENSHIN. Consequently, the HENSHIN model includes all
details of a PTGTS model. Since HENSHIN does not include rules’ annotations
in their visual representation we label the rules in this paper (e.g., in Fig. 2) with
(CG); (CI); (CR) where void elements are represented by —.

Syntactically, a rule L
l←− K

r−→ R in HENSHIN is given by a single graph
annotated with specific stereotypes. The stereotypes «preserve», «delete», and
«create» correspond to the elements of K, L without K, and R without K,
respectively. The stereotype «forbid» is used to specify NACs and can be para-
metrized as in «forbid#n» for n ∈ N to distinguish between multiple NACs.

Shuttle

mode : {DRIVE ,BRAKE}
canConnect : bool

Connection

Track

ConflictClock

sourcetarget

next

at

atat at

: Track

: Track

: Track

: Track

: Track

: Track

: Conflict

: Track

: Track

: Conflict

: Track

: Track

: Conflict

: Track

: Track

: Shuttle

mode = DRIVE

: Shuttle

mode = DRIVE

next

next
next

next

next

at

at

next

next

at

at

next

next

at

at

next

next

at

at

Fig. 1. Type graph of the shuttle scenario (a) and topology with 3 conflict nodes (b)

As a running example, we model a scenario inspired by the RailCab project
[24], where a service choreography coordinates the movement of shuttles on
tracks, as a PTGTS using HENSHIN. The type graph and the initial track
topology are given in Fig. 1. In the context of our scenario, tracks are connected
to the adjacent tracks by next edges. Shuttles are located on tracks, which is rep-
resented by at edges. Shuttles can move forward on tracks being in the DRIVE
mode or can initiate emergency brakes changing to the BRAKE mode to avoid

170 M. Maximova et al.

collisions. To avoid collisions shuttles can also communicate and establish con-
nections. A connection is associated with the leading shuttle via a target edge and
with the following shuttle via a source edge. The connection attempt between
two shuttles may fail, but it can be repeated after both involved shuttles moved
one track forward. This aspect is expressed by the shuttle’s attribute canCon-
nect. Two connected shuttles are allowed to be at the same track without being
involved in a collision. In the initial topology parallel tracks leading to the same
track after one, two or more successor tracks are marked by conflict nodes. Two
shuttles can try to establish a connection if they are on tracks connected by a
conflict node. Another reason for communication of the shuttles is the reduction
of energy consumption. For this reason shuttles can form convoys also estab-
lishing a connection. We also equip shuttles and tracks with clocks needed for
time measurement only to be able to control the time for rule applications. Note
that we do not depict the nodes of the type Clock in the rules explicitly to keep
the rule representation concise but use the annotation e.c to refer to the clock c
linked to some element e.

The behavior of the shuttle scenario is modeled in HENSHIN using the fol-
lowing probabilistic timed rules. Shuttles can drive alone or can build convoys
to reduce the energy consumption. The rule driveAlone (see Fig. 2a) allows a
shuttle that is leading a convoy or a shuttle driving without a convoy to move
forward if there are no shuttles located at the track after the subsequent track
and any of that track’s predecessor tracks. The four driveConvoy rules (see
[21, Chap. 4]) allow a shuttle to follow a leading shuttle depending on the lay-
out of single tracks in the current situation. Following the aim to reflect the
real-time behavior properly, we require that moving on a single track can take
between 3 and 4min, which we express using the corresponding guards and
invariants, respectively, formulated over the track clocks for the driving rules.
For the rule driveAlone, the corresponding guard is given by the annotation
t1.c ≥ 3 and the corresponding invariant is not depicted in Fig. 2a but is given
by ΘdriveAlone = (lhs(driveAlone), t1.c ≤ 4) for a track t1 with its clock c. To
be able to measure the time spent on a track properly, we reset the clock of a
track to which a shuttle is moving after applying one of the driving rules. Con-
sidering again the rule driveAlone, the corresponding clock reset is given by the
annotation t2.c′ = 0 for a track t2 with its clock c′. The corresponding guards,
clock resets, and invariants for driveConvoy rules look similar to that of the
driveAlone rule and can be found in [21, Chap. 4].

Shuttles may connect with each other to create convoys and to prevent colli-
sions. Figures 2d and e depict the probabilistic timed rule connect allowing two
driving shuttles located at parallel critical tracks to communicate and to create
a convoy. The NACs of the rule express intuitively that there must not already
exist a connection between the two considered shuttles, the shuttle chosen as the
leader must not be leading another convoy, and the shuttle chosen as the follow-
ing shuttle must not be following another shuttle. Since a connection request can
be lost after its sending, the rule connect has two different right-hand sides repre-
senting on the one hand, the case that the connection is established successfully

Probabilistic Timed Graph Transformation Systems 171

(2a) t1.c ≥ 3 p = 1 t2.c′ = 0 & x.c′ = 0

(2b) true

(2c) true

(2d) x.c ≥ 2 & y.c ≥ 2 p = 0.9 (2e) x.c ≥ 2 & y.c ≥ 2 p = 0.1

Fig. 2. Rules and atomic propositions of the shuttle PTGTS

as depicted in Fig. 2d (which happens with the probability of 90%) and on the
other hand the situation that the connection request has been lost as depicted
in Fig. 2e (which occurs with the probability of 10%). We assume furthermore
that each communication attempt takes at least two minutes for each shuttle
and model this behavior by using the corresponding guard x.c ≥ 2 & y.c ≥ 2
(for two shuttles x, y and their respective clocks c) for communicating shuttles in
both basic rules connect (see Figs. 2d and e). Moreover, since a communication
attempt can be repeated only after each of the shuttles has moved one track
forward, we reset a clock of a shuttle each time it has used the rule driveAlone
after a communication attempt, which is formulated by the corresponding clock
reset x.c′ = 0 of the rule driveAlone for a shuttle x with its clock c′.

In the case if no connection attempt was successful, a shuttle, which is driving
behind another one, has to brake to avoid a collision, if both shuttles come too
close to each other. The two situations in which a shuttle has to initiate an
emergency brake are depicted in [21, Chap. 4].

After a shuttle has changed into braking mode, the system detects the safety-
critical situation and terminates using the rule cleanupError. Otherwise, if one of
both shuttles can reach the end state of the track system successfully, the system
terminates using the rule cleanupOk. Both rules are given in [21, Chap. 4].

In the context of our shuttle scenario, we consider two atomic propositions
collision and brake modeled as non-changing rules in HENSHIN as depicted in

172 M. Maximova et al.

Figs. 2b and c, respectively. The atomic proposition collision depicts the sit-
uation when a collision occurs, which means that two shuttles are located at
the same track without having a connection, while the atomic proposition brake
shows a shuttle in braking mode. Using these atomic propositions we can mark
the configurations in the state space that satisfy these atomic propositions and
subsequently use these marked configurations for the analysis of the system.
Since atomic propositions are used in the context of our example for marking
purposes only, we equip them always with the clock constraint true.

In our running example we also make use of priorities (also for the non-
changing rules representing atomic propositions) to ensure (a) that collisions are
detected properly (prio(collision) = 2 as a highest priority for the atomic propo-
sition collision), (b) that the rule cleanupError and the atomic proposition brake
detect emergency brakes immediately (prio(brake) = prio(cleanupError) = 2),
and (c) that the rule connect is applied whenever possible to guarantee that the
shuttles do not continue to drive alone without executing connection attempts
(prio(connect) = 1). All other rules have the default priority 0.

The extension of HENSHIN as well as the full details of the shuttle scenario
modeled as a PTGTS are available at http://mde-lab.de/ptgts-checking.

5 Analysis

As outlined in the previous section, we can model PTGTSs using the HENSHIN
tool. To analyze a PTGTS model, we can chain together the capabilities of the
HENSHIN tool for GTSs and the PRISM model checker for PTA.

In Step 1 we use the capability of HENSHIN to generate the state space
of a GTS by considering the probabilistic choices between the different right-
hand sides of probabilistic timed rules as if they were nondeterministic and
ignoring clock guards, clock resets as well as clock invariants. In Step 2 we
extend our mapping from PGTSs to PA [16] to be able to convert the state space
generated for the PTGTS into the corresponding PTA. In this step we replace
the nondeterministic choice between the different right-hand sides of probabilistic
timed rules by probabilistic transitions, including clock guards and clock resets
as well as adding atomic propositions and the set of clock invariants, which
must hold for all valid states of the system. The PTA generated in this way has
an input format of PRISM allowing to verify PTCTL properties by computing
the corresponding minimum and maximum probabilities. Finally, in Step 3 we
can model check the resulting PTA with PRISM according to the properties of
interest for the PTGTS. Note that this tool chain can only be used in practice,
if the state space generation using HENSHIN terminates in Step 1 and results
in a finite state space of moderate size, which PRISM is capable to analyze.

For the shuttle PTGTS described in the previous section, we executed several
experiments by using this outlined tool chain.

In our first experiment we determined using PRISM the states generated by
HENSHIN that remain reachable with non-zero probability when considering the
timing behavior. Thereby we exclude many of the calculated traces from the

http://mde-lab.de/ptgts-checking

Probabilistic Timed Graph Transformation Systems 173

0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

Fig. 3. Visualization for the probability of an emergency brake

further analysis since they do not satisfy the corresponding time constraints. For
the shuttle example PRISM detects for the topologies with 2–6 conflict nodes
53.1%, 58.0%, 62.0%, 64.3%, and 65.8% of the states generated by HENSHIN
to be non-reachable. The results of this experiment are plotted in [21, Chap. 5].

In our second experiment we analyzed whether the considered shuttle sce-
nario can under any circumstances exhibit a collision. In fact, collisions between
shuttles cannot occur due to the nature of the contained transformation rules,
which ensure that emergency brakes are applied if necessary. This can be verified
already in HENSHIN after Step 1 by using the atomic proposition collision (see
Fig. 2b) with the highest priority detecting a collision by marking configurations
in the state space where the atomic proposition can be matched. In HENSHIN
we then observe that this atomic proposition labels no state and, hence, no
additional analysis using PRISM is required.

Finally, in our third experiment we verified using PRISM the maximal
probability with which the described shuttle system executes an emergency
brake. For this reason we generated first using HENSHIN in 11.8–17.5 s state
spaces with 81–269 states for the different topologies with 2–6 conflict nodes,
respectively. The property of interest is represented in PRISM notation by
Pmax =? [F “brake”] for the atomic proposition brake given in Fig. 2c and the
exists-eventually-operator F . In Fig. 3 we show for topologies with 2–6 conflict
nodes, which also determine the initial distance of the shuttles to the critical
track element, how the corresponding maximal probabilities depend on the like-
lihood of the successful connection establishment. As expected, the lower the
probability for a non-successful connection attempt (x-axis) the lower the max-
imal probability for emergency brake execution (y-axis), which is the worst case

174 M. Maximova et al.

scenario7. The computation of the probability values using PRISM required for
topologies with 2–6 conflict nodes 0.3–181.7 s, respectively.

We can conclude that our running example modeled as a PTGTS behaves
as desired because (a) collisions are avoided altogether and (b) the worst case
probabilities for emergency brake can be controlled using the number of conflict
nodes based on the likelihood of unsuccessful connection attempts. Our exper-
iments demonstrate that we can analyze PTGTSs by employing the explained
tool chain of HENSHIN operating on GTSs and PRISM analyzing PTA.

6 Conclusion and Future Work

In this paper we introduced Probabilistic Timed Graph Transformation Sys-
tems (PTGTSs) as a high-level description language supporting all the neces-
sary aspects of structure dynamics, timed behavior, and probabilistic behavior
that we identified as relevant for the next generation of embedded real-time sys-
tems employing the service-oriented paradigm. We presented the formal model
of PTGTSs and outlined a mapping of PTGTS models employing the HENSHIN
tool to probabilistic timed automata (PTA) such that the PRISM model checker
can be used to analyze PTGTS models with respect to PTCTL properties.

As a future work we plan to provide a specification formalism operating on
PTGTS to be able to state more complex properties on the structure dynam-
ics, timed behavior, and probabilistic behavior of the given PTGTS model in
a coherent way. Such an extension is then to be included in the mapping of
PTGTS to PTA to allow for their automated verification using PRISM.

References

1. Agha, G., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language for
probabilistic object systems. ENTCS 153, 213–239 (2006)

2. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

3. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
4. Becker, B., Giese, H.: On safe service-oriented real-time coordination for

autonomous vehicles. In: ISORC 2008, pp. 203–210 (2008)
5. Bellman, R.: A Markovian decision process. Indiana Univ. Math. J. 6, 679–684

(1957)
6. Bouyssounouse, B., Sifakis, J. (eds.): Embedded Systems Design: The ARTIST

Roadmap for Research and Development. Springer, Heidelberg (2005)
7. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool Kronos. In: Alur, R., Hen-

zinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer,
Heidelberg (1996). doi:10.1007/BFb0020947

8. The Eclipse Foundation: EMF Henshin (2013). http://www.eclipse.org/modeling/
emft/henshin

7 The range of the considered probabilities for non-successful connection attempts has
been taken from [20] where for close range communication and high data rates an
error rate of at most 13% has been observed for wireless communication.

http://dx.doi.org/10.1007/BFb0020947
http://www.eclipse.org/modeling/emft/henshin
http://www.eclipse.org/modeling/emft/henshin

Probabilistic Timed Graph Transformation Systems 175

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

10. Giese, H.: Modeling and verification of cooperative self-adaptive mechatronic sys-
tems. In: Kordon, F., Sztipanovits, J. (eds.) Monterey Workshop 2005. LNCS, vol.
4322, pp. 258–280. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71156-8_14

11. Gyapay, S., Varró, D., Heckel, R.: Graph transformation with time. Fundam. Inf.
58, 1–22 (2003)

12. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inf. 26(3,4), 287–313 (1996)

13. Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation systems. Fun-
dam. Inf. 74, 63–84 (2006)

14. Henzinger, T.A., Kupferman, O.: From quantity to quality. In: Maler, O. (ed.)
HART 1997. LNCS, vol. 1201, pp. 48–62. Springer, Heidelberg (1997). doi:10.1007/
BFb0014712

15. Kastenberg, H., Rensink, A.: Model checking dynamic states in GROOVE. In:
Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 299–305. Springer, Heidelberg
(2006). doi:10.1007/11691617_19

16. Krause, C., Giese, H.: Probabilistic graph transformation systems. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562,
pp. 311–325. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33654-6_21

17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_47

18. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205, 1027–1077 (2007)

19. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. TCS 282(1), 101–150
(2002)

20. Lan, K., Chou, C., Jin, D.: The effect of 802.11 a on DSRC for ETC communication.
In: WCNC 2012, pp. 2483–2487 (2012)

21. Maximova, M., Giese, H., Krause, C.: Probabilistic timed graph transformation
systems. Technical report 118, Hasso-Plattner Institute at the University of Pots-
dam (2017)

22. Neumann, S.: Modellierung und Verifikation zeitbehafteter Graphtransformation-
ssysteme mittels Groove. Master’s thesis, University of Paderborn (2007)

23. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time Maude. HOSC
20, 161–196 (2007)

24. RailCab homepage. http://www.railcab.de
25. Schäfer, W., Wehrheim, H.: The challenges of building advanced mechatronic sys-

tems. In: FOSE 2007, pp. 72–84 (2007)
26. Segala, R.: Modeling and verification of randomized distributed real-time systems.

Ph.D. thesis, Massachusetts Institute of Technology (1996)
27. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-checker and

analyzer for probabilistic systems. In: QEST 2005, pp. 251–252 (2005)

http://dx.doi.org/10.1007/978-3-540-71156-8_14
http://dx.doi.org/10.1007/BFb0014712
http://dx.doi.org/10.1007/BFb0014712
http://dx.doi.org/10.1007/11691617_19
http://dx.doi.org/10.1007/978-3-642-33654-6_21
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://www.railcab.de

Model Transformation and Tools

Leveraging Incremental Pattern Matching
Techniques for Model Synchronisation

Erhan Leblebici1(B), Anthony Anjorin2, Lars Fritsche1, Gergely Varró1,
and Andy Schürr1

1 Technische Universität Darmstadt, Darmstadt, Germany
{erhan.leblebici,lars.fritsche,

gergely.varro,andy.schurr}@es.tu-darmstadt.de
2 Universität Paderborn, Paderborn, Germany

anthony.anjorin@uni-paderborn.de

Abstract. Triple Graph Grammars (TGGs) are a declarative, rule-
based approach to model synchronisation with numerous implementa-
tions. TGG-based approaches derive typically a set of operational graph
transformations from direction-agnostic TGG rules to realise model syn-
chronisation. In addition to these derived graph transformations, how-
ever, further runtime analyses are required to calculate the consequences
of model changes in a synchronisation run. This part of TGG-based syn-
chronisation is currently manually implemented, which not only increases
implementation and tool maintenance effort, but also requires tool or at
least approach-specific proofs for correctness. In this paper, therefore,
we discuss how incremental graph pattern matchers can be leveraged to
simplify the runtime steps of TGG-based synchronisation. We propose
to outsource the task of calculating the consequences of model changes
to an underlying incremental pattern matcher. As a result, a TGG-based
synchroniser is reduced to a component reacting solely to appearing and
disappearing matches. This abstracts high-level synchronisation goals
from low-level details of handling model changes, providing a viable and
unifying foundation for a new generation of TGG tools.

1 Introduction and Motivation

Bidirectional model synchronisation is a current challenge that is becoming
increasingly relevant in numerous domains [4]. In our context, bidirectional
model synchronisation refers to the task of keeping two models (called source
and target) consistent by propagating changes (called deltas) applied to one of
the models, i.e., by executing a forward or backward transformation to restore
consistency. The task of implementing an incremental synchroniser with clear
and precise semantics is non-trivial. In this paper, an incremental forward1 syn-
chroniser takes the old target model into account when propagating source deltas

1 In the entire paper, symmetric statements that hold analogously in both forward
and backward directions are only formulated in the forward direction for brevity.

c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 179–195, 2017.
DOI: 10.1007/978-3-319-61470-0 11

180 E. Leblebici et al.

(and does not create the target model from scratch). Bidirectional transforma-
tion (bx) languages address this task via diverse techniques [4].

Triple Graph Grammars (TGGs) [16] as a bx language, represent a declar-
ative, rule-based approach to model synchronisation based on the mature field
of graph transformations [5]. TGG rules are direction-agnostic, describing how
consistent pairs of source and target models can be created simultaneously.
TGG-based model synchronisation typically involves compile time and runtime
subtasks: At compile time, operational (forward and backward) graph transfor-
mation rules are derived from TGG rules. At runtime, consequences of deltas
with respect to applying these operational rules are calculated, and consistency
is restored by revoking invalidated rule applications from former runs and per-
forming new ones. This step ideally guarantees correctness, i.e., that the resulting
pair of a source and target model can be created by applying the TGG rules.

All state-of-the-art TGG-based synchronisation frameworks we are aware
of [7,8,10,11,13,15] address the runtime step (i) in a simple but non-scalable
manner, starting each time from scratch and considering the entire models [10],
or (ii) by providing auxiliary dependency analyses over the source (target) model
[13,15] or correspondences [7], or (iii) by applying practically useful but as yet
informal heuristics without proofs of correctness for all possible cases [8,11].
Our observation is that the complexity in addressing the runtime steps of a
TGG-based synchronisation is accidental and is caused by entangling high-level
incremental propagation strategies with low-level details of how deltas and their
transitive consequences must be handled efficiently and correctly.

Incremental pattern matching techniques (e.g., [6]) provide a viable means
of monitoring all matches of a given set of patterns in a host graph and thus
can observe and report consequences of deltas. Although this naturally addresses
the runtime requirements of TGG-based model synchronisation, incorporating
incremental pattern matchers into TGGs has not yet been analysed up until now.
Our contribution is, therefore, to integrate incremental pattern matching and
TGG-based model synchronisation. Our aim is to provide a formal foundation for
a new generation of TGG tools that can now leverage available incremental graph
pattern matching tools [17,18]. We are able to reduce a TGG-based synchroniser
to a relatively simple component that reacts to invalidated or available rule
applications reported by its underlying incremental pattern matcher.

The paper is structured as follows: We present in Sect. 2 a compact but non-
trivial synchronisation scenario and discuss the diverse delta propagation strate-
gies. A novel concept for TGG-based synchronisers making use of incremental
pattern matching techniques is presented intuitively in Sect. 3, and formalised
in Sect. 4 with correctness arguments, shaping our main contribution. Related
approaches and future work are discussed in Sects. 5 and 6, respectively.

2 Running Example and Preliminaries

A TGG specification consists of a schema and a set of rules. A schema is a
triple of metamodels representing the abstract syntax of source, target, and
correspondence models used for mappings between source and target elements.

Leveraging Incremental Pattern Matching Techniques 181

Example: Our running example is Ecore2HTML.2 The scenario addressed is
the general usage of models for editable report generation; we only focus here
on packages and their corresponding folders and files. The TGG schema for
our running example is depicted in Fig. 1a. Source models are hierarchies of
packages and target models (representing reports) are hierarchies of folders where
folders may contain files. The single correspondence type (P2F) connects packages
to folders. With respect to this TGG schema, a correctly typed model triple
is depicted in Fig. 1b consisting of three packages p1, p2, and p3 as well as
three corresponding folders f1, f2, and f3. The outermost folders f1 and f3
additionally contain a file fe1 and fe3, respectively.

Package Folder

File

sub

P2F

sub
src trg

(a) TGG schema

p1:Package f1:Folder

fe1:File

c1:P2F

p2:Package f2:Folderc2:P2F

p3:Package f3:Folderc3:P2F

fe3:File

(b) Correctly typed model triple

Fig. 1. Schema and typed model triple

We use a compact syntax to represent TGG rules, merging both the precon-
dition L and the postcondition R together in a single diagram. The elements in L
(also referred to as context elements of the rule) are black, while elements in R\L
(also referred to as created elements of the rule) are green with a ++ markup.
Edges that are incident to a created node do not have explicit ++ markup as
they must also obviously be created. A model triple is consistent with respect
to a TGG, if it can be created by applying the rules of the TGG.

Example: Intuitively, what we want to specify is that packages correspond to
folders and, additionally, that outermost packages require an extra file containing
project-level documentation in their corresponding folder. To achieve this with
TGGs, we need two rules: PackageDocRule (we shall also refer to this as R1)
depicted in Fig. 2a, creates a package p, together with a corresponding folder
f with a file fe. The created package and folder are also connected with a
correspondence link c. R1 has no context elements and can thus be applied
to the empty triple. SubPackageDocRule (R2) depicted in Fig. 2b, requires a
package p and a corresponding folder f (note how the correspondence link c is
used to enforce this), and extends the package and folder hierarchies by creating
a new sub-package p’ and subfolder f’, connected via the correspondence link
c’. In contrast to R1, rule R2 has context elements and can only be applied to

2 The entire synchronisation scenario including our excerpt is documented in the bx
example repository at http://bx-community.wikidot.com/examples:ecore2html.

http://bx-community.wikidot.com/examples:ecore2html

182 E. Leblebici et al.

(a) PackageDocRule (R1) (b) SubPackageDocRule (R2)

Fig. 2. TGG rules for the running example

extend an existing model triple. In this sense, the triple depicted in Fig. 1b can
be created with these rules and is thus consistent with respect to the TGG.

2.1 From TGG Rules to Operational Rules

When propagating a source delta in an existing model triple, an important step is
handling newly created source elements by creating the corresponding structure
in the target model. This is referred to as marking and captured as forward
marking rules, which are derived from an original TGG rule. Explicit markers
are used to keep track of which elements are processed/unprocessed in a model
synchronisation run. Note that the correspondence model does not necessarily
provide this information as correspondences in general do not have to exist for
each element or multiple correspondences might exist for the same element.

Intuitively, the forward marking rule of a TGG rule does not create any source
element but requires them, marks all created elements of its respective TGG rule,
and requires that all context elements of the TGG rule be marked (e.g., by former
applications of forward marking rules). Additionally, Negative Application Condi-
tions (NACs) are used to ensure that source elements (the input elements in case
of a forward synchronisation) are marked only once as they would be created once
by the original TGG rules. Such NACs are referred to as marker NACs. Finally,
an optional set of filter NACs is used to avoid invalid rule applications that would
lead to a state where, e.g., certain edges can no longer be marked (such NACs are
constructed automatically via static analysis techniques [9]).

Example: The forward marking rules for our running example are depicted
in Fig. 3. All elements belonging to a NAC are depicted blue and crossed-out.
For presentation purposes, markers are denoted by circles that are connected to
elements (nodes and edges). The forward marking rule derived from R1 (Fig. 3a)
creates an R1 marker connected to the package p and all created elements c, f
and fe. The package p is demanded as context that must not already be marked
(via the blue, crossed-out marker connected to it). If this forward marking rule
were ever used to mark a sub-package p, it would be impossible to ever mark the
incoming sub edge to p, as there does not exist a rule that creates an incoming
sub edge to an existing package. Hence, a filter NAC is used to forbid the presence
of such edges, i.e., the forward marking rule derived from R1 can only mark
outermost packages (as the original TGG rule R1 can only create outermost
packages). In the forward marking rule derived from R2 (Fig. 3b), the context

Leveraging Incremental Pattern Matching Techniques 183

(a) R1: Forward marking rule (b) R2: Forward marking rule

Fig. 3. Derived marking rules for the running example

elements of the original TGG rule are additionally required as already marked
(no matter whether by the same or different markers).

2.2 Delta Propagation via Operational Rules

Given a consistent model triple and a source delta, the main task of forward
synchronisation is to detect invalidated and available applications of forward
marking rules. Invalidated applications (e.g., due to deleted context elements)
must be revoked by deleting their created correspondence and target elements as
well as obsolete markers. Conversely, available applications of forward marking
rules lead to new correspondence and target elements with new markers.

Example: A simple source delta in our example is given by creating (deleting) a
package, leading to an available (invalidated) application of the forward marking
rule of R1 or R2 (depending on whether the package is an outermost package or
not). A non-trivial source delta is given by creating a sub edge such that a former
outermost package becomes a child package, e.g., creating a sub edge from p2
to p3 in Fig. 1b. In this case, an application of the forward marking rule of R1
becomes invalid (the filter NAC is violated as the outermost package p3 now
becomes a child package). After deleting the obsolete marker of p3 (and the
corresponding target elements), an application of the forward marking rule of
R2 becomes available, i.e., p3 can now be re-marked as a subpackage.

Existing TGG approaches differ from each other mainly concerning how
invalid or available applications of operational rules are detected. In precedence-
driven approaches [13,15], an auxiliary precedence analysis between model ele-
ments is performed (and maintained) to determine which model elements are
potentially affected by deletions or creations of others. Alternatively, this analy-
sis is performed between correspondences [7] (affected correspondences are cal-
culated for a given source delta). Such hand-crafted analyses, however, either
overestimate the actual dependencies as dependencies are retrieved at the type
level [13], or underestimate them relying on additional information via user-
interaction [15] or special correspondences [7]. A completely different strategy is
to re-mark an existing triple from scratch and to complement missing markers
in a final step [10]. This, however, makes the synchronisation process dependent

184 E. Leblebici et al.

on the entire model size even if a small change is to be propagated. We argue
in the following section that incremental pattern matchers naturally address the
same tasks and can thus be exploited to simplify and to unify TGG approaches.

3 Using Incremental Pattern Matching Techniques
for TGG-Based Model Synchronisation

Graph transformation applications depend highly on the discovery of occurrences
of patterns in a host graph (called pattern matching). When an application oper-
ates on relatively large models where individual model changes usually concern
only a small part, it is impractical to restart the pattern matching process each
time from scratch. While auxiliary data structures (such as precedences, look-up
tables, or rule application protocols) strive to avoid this in an application-specific
manner, incremental pattern matching techniques (e.g., [6]) with recently devel-
oped practical solutions (e.g., [17,18]) address the same challenges in a generic
and reusable manner. An incremental pattern matcher is capable of maintaining
partial and complete matches of a given set of patterns found in a possibly chang-
ing host graph. Consequently, appearing or disappearing matches for a given set
of patterns can be determined between two points in time (e.g., before and after
changing the models). This enables client applications to focus on their business
logic and high-level goals by reacting to appearance or disappearance of these
matches (without searching and maintaining them manually). We discuss in the
following how this vision can be realised for TGG-based model synchronisation.

For forward synchronisation, we propose to monitor two types of patterns in
a model triple: available and processed markings with forward marking rules. In
Fig. 4, these patterns are depicted for our running example. Basically, the pattern

R2

Fig. 4. Patterns to be monitored by an incremental pattern matcher

Leveraging Incremental Pattern Matching Techniques 185

for an available marking with a forward marking rule is the precondition (L) of
the forward marking rule together with its filter NACs as well as marker NACs.
The pattern for a processed marking comprises the postcondition (R) of the
forward marking rule together with its filter NACs.

Assuming that matches for available and processed markings are monitored
in a model triple by an incremental pattern matcher, Algorithm1 represents our
proposed concept for TGG-based model synchronisation in pseudo code. The
procedure PropagateSourceDelta takes the following inputs: (i) a consistent
model triple G = GS ← GC → GT which is fully marked (from former runs),
(ii) a source delta δS that changes GS to G′

S , and (iii) an incremental pattern
matcher pm that is initialised with G and monitors patterns for available and
processed markings. The outcome of the procedure is a new model triple G′ =
G′

S ← G′
C → G′

T which reflects the source delta and is again consistent.

Algorithm 1. Model Synchronisation
1: procedure PropagateSourceDelta(G, δS , pm)
2:
3: G′ ← change G via δS � Phase 1
4: pm.update(δS)
5:
6: while pm has a disappearing match for processed markings do � Phase 2
7: m− ← choose a disappearing match for processed markings
8: (G′, δ−) ← revoke the fwd marking rule for m− in G′

9: pm.update(δ−)
10: end while
11:
12: while pm has an appearing match for available markings do � Phase 3
13: m+ ← choose a match for available markings
14: (G′, δ+) ← apply the fwd marking rule for m+ in G′

15: pm.update(δ+)
16: end while
17:
18: return G′

19:
20: end procedure

Overall, PropagateSourceDelta consists of three main phases:

Phase 1 (Line 3–4): The source delta is applied to the model triple and the
incremental pattern matcher updates its matches for available and processed
markings in the model triple.

Phase 2 (Line 6–10): Disappearing matches of processed markings indicate that
the respective applications of the forward marking rules from former runs are
invalidated due to the source delta. Such invalidated rule applications must be
revoked by deleting their created markers, correspondences, and target elements.

186 E. Leblebici et al.

The incremental pattern matcher updates its matches after these deletions. Note
that this can trigger further disappearances of processed marking patterns which
again must be handled in the same manner until the pattern matcher does not
report any further disappearing match for processed markings.

Phase 3 (Line 12–16): Appearing matches of available markings indicate that
the respective forward marking rules are applicable. An arbitrary match is chosen
and the forward marking rule is applied by creating a marker, correspondences,
and target elements. The incremental pattern matcher updates its matches after
these creations. Some matches for available markings disappear (at least the
chosen match itself disappears) as some elements are now marked and violate
marker NACs. Note that disappearing matches for available markings in this
phase indicate progress in the synchronisation process (not to be confused with
disappearing matches due to the source delta in Phase 2). Further matches for
available markings can also appear due to the creation of new elements and must
be handled in the same manner until the pattern matcher does not report any
further appearing match for available markings.

In the following, we exemplify the intermediate and end results of Algorithm1
based on two synchronisation runs with our running example.

Example (initial transformation): We first discuss an initial forward trans-
formation of a source model to a target model. This is a special case of forward
synchronisation where the entire source model is a delta applied to an empty
triple. We assume that the incremental pattern matcher is initialised with an
empty triple and that the source delta is the creation of two outermost pack-
ages. Applying this delta in Phase 1, two matches occur as available markings
for the forward marking rule of R1, depicted in Fig. 5a via an R1-labeled arrow
at the bottom-right corner of each match. No matches for processed markings
disappear in this example as the model triple was initially empty, i.e., no rule
application is to be revoked in Phase 2. Finally, applying forward marking rules
for available markings in Phase 3, two matches occur for processed markings,
depicted in Fig. 5b. The model triple is again consistent and fully marked.

p1:Package

p2:Package

R1

R1

(a) Appearing matches for available
markings match after Phase 1 and 2

fe1:File

p1:Package f1:Folderc1:P2F

R1

fe2:File

p2:Package f2:Folderc2:P2F

R1

(b) Consistent state after Phase 3

Fig. 5. Intermediate results of propagating two outermost packages

Leveraging Incremental Pattern Matching Techniques 187

Example (creating a sub edge): We now assume that the incremental pattern
matcher is initialised with the result of the previous example (Fig. 6a) and create
a sub edge between the two packages making one of them, namely p2, a child
package. After applying this delta, a match for a processed marking disappears
as p2, being no longer an outermost package, violates the filter NAC. The sub
edge violating the filter NAC is depicted bold in Fig. 6b while the rectangle
with red filling and dashed border represents the disappearing match. Revoking
the respective forward marking rule application of this match (i.e., deleting the
marker of p2 as well as its corresponding target elements) in Phase 2, a new
marking becomes available for the forward marking rule of R2, depicted in Fig. 6c.
Applying the forward marking rule for the available marking in Phase 3, the
model triple is consistent and fully-marked again (Fig. 6d).

fe1:File

p1:Package f1:Folderc1:P2F

R1

fe2:File

p2:Package f2:Folderc2:P2F

R1

(a) Consistent state at the beginning

fe1:File

p1:Package f1:Folderc1:P2F

R1

fe2:File

p2:Package f2:Folderc2:P2F

R1

(b) Disappearing match for processed
marking after Phase 1

fe1:File

p1:Package f1:Folderc1:P2F

R1

p2:Package

R2

(c) Appearing match for available marking
after Phase 2

fe1:File

p1:Package f1:Folderc1:P2F

R1

p2:Package f2':Folderc2':P2F

R2

(d) Final consistent state after Phase 3

Fig. 6. Intermediate results of propagating a sub edge

Finally, it should be mentioned that the phases of Algorithm1 represent a
straightforward approach without any heuristics to improve the quality of model
synchronisation, especially with regard to information preservation capabilities.
While Phase 2 revokes rule applications until no more disappearing match is
reported, another possible reaction to disappearing matches would be to repair
them (instead of revoking) as discussed in [7]. Alternatively, target elements
deleted in Phase 2 can be reused in Phase 3 for new rule applications as proposed
in [8]. In both cases, the goal is to preserve as much as possible from the older
version of the target model. These extensions are orthogonal to our contribution

188 E. Leblebici et al.

and can analogously be supported via an incremental pattern matcher. Basically,
new types of reactions to appearing/disappearing matches are required for this
but the idea of a reactive synchroniser concept remains the same.

4 Correctness of Delta Propagation

We formalise in the following triple graphs and forward marking rules via con-
struction techniques over functor categories [5], and prove the correctness of
Algorithm 1 under sufficient conditions. Our correctness proof is in line with
that of [10,13,15] but eliminates the need of an entire marking from scratch as
in [10], or an additional dependency analysis as in [13,15]. The added value of
our formalisation thus lies in its simplified form.

A functor category [S, C] consists of structure preserving arrows between
objects of shape S, constructed from objects and arrows in the host category C.
This is used to construct graphs from sets, marked graphs from graphs, and triple
graphs from marked graphs. A marked graph is of the form G ← G → M where
the intermediate graph G indicates the part of G that is mapped to a marker
graph M . A triple graph is then of the form GS ← GC → GT where each of GS ,
GC , and GT are marked graphs (the suffixes S, C, and T refer to the source,
correspondence, and target domain, respectively). We provide our formalisation
without attribute and type information in graphs for brevity. The formalisation,
however, can compatibly be extended to attributed graphs [5] where typing can
be captured as a slice category of triple graphs over a distinguished type object.

Definition 1 (Triple Graphs). Let Sets be the category of sets and total func-
tions. The category Graphs of graphs and graph morphisms is the functor cate-
gory [E V , Sets]. The category MGraphs of marked graphs is the functor
category

[
G ← G → M,Graphs

]
. The category Triples of triple graphs and

triple graph morphisms is the functor category [GS ← GC → GT ,MGraphs].

Definition 2 (Triple Rule and Derivation). A triple rule is a morphism
r : L → R in Triples. A Negative Application Condition (NAC) for a triple
rule r : L → R is a morphism n : L → N in Triples.

Given a triple rule r with a set N of NACs, a direct derivation G
r@m=⇒ G′ (or

just G
r=⇒ G′) is given by the pushout (r′ : G → G′, m′ : R → G′) of r : L → R,

and m : L → G in Triples if � n : L → N ∈ N ,∃n′ : N → G,m = n′ ◦ n.
A derivation G

∗=⇒ G′ with a set R of triple rules is a sequence of k direct
derivations G

r1=⇒ G1
r2=⇒ · · · rk=⇒ G′, r1, r2, · · · , rk ∈ R (G′ = G for k = 0).

In a TGG, the original rules do not create or require markers (e.g., Fig. 2)
but forward marking rules do (e.g., Fig. 3).

Leveraging Incremental Pattern Matching Techniques 189

∅

LS LC LT

∅∅

∅ ∅ ∅
σL τL

∅ ∅∅

∅ ∅ ∅

RTRCRS
τRσRrS , rC , rT

L R

Definition 3 (Triple
Graph Grammar).
A triple graph grammar
(TGG) is a finite set R
of triple rules, each of
the form depicted to the
right. A TGG is source
progressive if rs 	= id.
The language of a TGG
is given by L(TGG) :=
{G | ∃ G∅

∗=⇒ G with
R} where G∅ is the empty
triple graph.

A forward marking rule fr for a TGG rule r as introduced in Definition 3
(i) does not create the elements in RS\LS but requires them, (ii) creates all
elements in RC\LC and RT \LT , (iii) requires markers for all elements in LS ,
LC , and LT , (iv) forbids markers for elements in RS\LS , and finally (v) creates
new markers for all elements in RS\LS , RC\LC , and RT \LT (cf. Fig. 3).

Definition 4 (Forward Marking Rule). Given a TGG = R, the forward
marking rule fr : FL → FR for each r ∈ R has the structure as follows:

LC LT
τL

RTRCRS
τRσRRS

LS LC LT
σL τL RTRCRS

τRσR

MLS
MLC

MLT MRT
MRS

MRC

rS ◦ σL

σML
τML σMR

τMR

rS id id id id id

μLS
μLC μLT

μRT
μRC

μRS

rS , rC , rT

id, rC , rT

μrS , μrC , μrT

RS

MNS

NS

n

FL FRN

For X ∈ {S,C, T}, the graphs MLX
are isomorphic to LX . The graphs MRX

extend MLX
by an extra node m. All nodes in RX\LX are mapped by μRX

to
m. Every edge in RX\LX is mapped to an edge added to MRX

so that μRX
is

structure preserving. Furthermore, the forward rule fr is equipped with a set N
of marker NACs. Marker NACs n : FL → N extend the source components of
FL (all other components remain the same and are not depicted explicitly) to
forbid the presence of markers for any element in RS\LS.

Example: The diagram below depicts the forward marking rule for R1 (Fig. 3a)
formally. In FL a node p is required in the source component and the presence of
markers for p is forbidden by the marker NAC N . In FR, the correspondence and
target elements (c, f, fe, and an edge between f and fe) are created together
with a marker m in each component. Note that all nodes that are created in the
original TGG rule (RX\LX) are mapped to one marker m in each component
(shown explicitly via dashed lines for f and fe) where edges are mapped to a
self-edge of markers (e.g., the edge between f and fe).

190 E. Leblebici et al.

rS , rC , rT

id, rC , rT

μrS , μrC , μrT

n

FL FRN
pp

p

mp

p

p

m

c

c

m

f
fe

f
fe

m

Furthermore, the diagram below depicts the forward marking rule for R2
(Fig. 3b) formally. In this case, markers (mp, mc, mf) are required in FL for
context elements (p, c, f, respectively) while created elements as well as cre-
ated/forbidden markers are analogous to the previous diagram.

rS , rC , rT

id, rC , rT

μrS , μrC , μrT

FL FR
f

f'

f
f'

p c f

mp mc mf

c fp
p'

p
p'

c

c'

c

c'

p
p'

mp
m

mc

m
mf

m

p
p'

p
p'

mp

mp'

N

n

Next, we define the source language of a TGG, i.e., source graphs GS for
which a triple GS ← GC → GT exists in L(TGG). Accordingly, the forward
marked language of a TGG is given by derivations via forward marking rules
beginning with triples of the form GS ← ∅ → ∅.

Definition 5 (Source Language, Forward Marked Language). Given a
TGG = R, the source language of TGG is defined as
L(TGG)S = {GS | ∃GS ← GC → GT ∈ L(TGG)}.

The forward marking grammar fwd(TGG) for TGG consists of the set
fwd(R) of forward marking rules for R.

The forward marked language of fwd(TGG) for GS ∈ L(TGG)S is defined as
L(fwd(TGG), GS) = {G | ∃ (GS ← ∅ → ∅) ∗=⇒ G with fwd(R)}.
A triple graph is fully marked if every node/edge in its source, correspondence,
and target components are mapped to a marker node/edge. Fully marked triples
are of interest as every derivation with triple rules from a TGG can be traced
back to a unique derivation with the respective forward marking rules where the
result is fully marked. We furthermore introduce an operator Φ to extract an
unmarked triple graph from a marked one.

Definition 6 (Fully Marked and Unmarked Triple Graphs). Let G =
GS ← GC → GT be a triple graph. G is fully marked if each of its marked graphs
GX , X ∈ {S,C, T}, is of the form X

id← X → MX . A triple graph is unmarked
if each of its marked graphs is of the form X ← ∅ → ∅ and Φ(G) denotes the
unmarked triple graph obtained from G by removing its markers.

Fact 1 (Bijection Between TGG and Forward Marking Grammar).
Given a TGG with a forward marking grammar fwd(TGG), ∃ G = GS ← GC →

Leveraging Incremental Pattern Matching Techniques 191

GT ∈ L(TGG) ⇐⇒ ∃ G ∈ L(fwd(TGG), GS) where G is fully marked and
G = Φ(G).

Proof (Sketch). This is a standard operationalisation result for TGGs [10],
applied to marked graphs and marking rules. Basically, a forward marking rule
fr for a TGG rule r maps exactly those source elements to a marker that
are created by r. Both r and fr create the same correspondence and target
elements whereas fr maps each of them additionally to markers (cf. Definitions 3
and 4). ��

We now introduce the notion of confluence, a well-known property of graph
grammars that can be checked statically [5]. Every partial derivation of a con-
fluent graph grammar can be completed to a derivation that produces the same
result, and this ensures (together with Fact 1) that applying forward marking
rules (e.g., as in Algorithm 1) results always in a fully marked triple graph.

Definition 7 (Confluence). A pair G1
∗⇐= G ∗=⇒ G2 of derivations with a

set R of triple rules is confluent if there exists a G′ together with derivations
G1

∗=⇒ G′ and G2
∗=⇒ G′.

We refer to R as confluent if all pairs of its derivations are confluent.

Fact 2 (Confluence of Forward Marking Rules). Given a TGG = R with
forward marking rules fwd(R), source language L(TGG)S and GS ∈ L(TGG)S,
if fwd(R) is confluent, then every derivation d̃ = GS ← ∅ → ∅ ∗=⇒ G̃ with
fwd(R) can be extended to a derivation d = GS ← ∅ → ∅ ∗=⇒ G̃

∗=⇒ G, where
G is fully marked.

Proof. GS ∈ L(TGG)S
Definition 5

=⇒ ∃GS ← GC → GT ∈ L(TGG) Fact 1=⇒ ∃ fully
marked G ∈ L(fwd(TGG), GS). Extension of d̃ to d follows from Definition 7
with G = GS ← ∅ → ∅, G1 = G̃,G2 = G′ = G. ��

To ensure practical applicability of TGGs, forward marking rules are often
enriched with filter NACs (cf., Fig. 3). The goal of filter NACs is to make a non-
confluent forward marking grammar confluent [9]. That is, filter NACs block
only those derivations that do not lead to a fully marked graph.

Definition 8 (Filter NACs). Given a TGG = R and its forward marking
rules fwd(R), each forward marking rule fr : FL → FR in fwd(R) can be
equipped with a set N ′ of filter NACs that do not block any derivation GS ←
∅ → ∅ ∗=⇒ G in fwd(R) without filter NACs where G is fully marked. Filter
NACs are, therefore, only used to ensure that fwd(R) is confluent. We refer to,
e.g., [9] for a construction technique.

Next, we define matches that are to be monitored in a forward synchro-
nisation process as discussed in Sect. 3 for Algorithm 1. Matches for available
markings are simply matches for direct derivations via forward marking rules,
while matches for processed markings appear after a direct derivation via forward
marking rules and forbid the violation of filter NACs.

192 E. Leblebici et al.

Definition 9 (Matches for Available and Processed Markings). Let
fr : FL → FR be a forward marking rule and N ′ the set of filter NACs of fr.
Given a triple graph G, for each possible direct derivation G

fr@m
=⇒ G′, we refer to

m as a match for available marking with fr. A match for processed marking with
fr is given by the comatch m′ : FR → G′. A match m′ for processed marking is
valid if it does not violate any filter NAC, i.e., ∀n : FL → N ∈ N ′, �n′ : N → G
such that n′ ◦ n = m′ ◦ fr.

Deltas represent changes to graphs (to a source graph in case of a forward
synchronisation) and lead to appearance or disappearance of matches for avail-
able or processed markings.

Definition 10 (Delta). A delta is a span of graphs and graph morphisms δX =
GX ← ΔX → G′

X . Elements in GX\ΔX and G′
X\ΔX are referred to as deleted

and created, respectively, by δX .

Finally, the following Theorem states the correctness of Algorithm1, i.e.,
that the result G′ is a fully marked triple where Φ(G′) ∈ L(TGG). We require a
source progressive TGG (Definition 3) with a confluent forward marking gram-
mar (Definition 7) as sufficient conditions.

Theorem 1 (Correctness of Delta Propagation). Given a source progres-
sive TGG = R, let G ∈ L(fwd(TGG), GS) be a fully marked triple, and
δS = GS ← ΔS → G′

S a delta. We assume a pattern matcher pm monitor-
ing matches in G for available and processed markings with forward marking
rules in fwd(R). If fwd(R) is confluent and G′

S ∈ L(TGG)S, the result of
propagateSourceDeltaG, δS, pm (Algorithm1) is a triple graph G′ such
that Φ(G′) ∈ L(TGG), i.e., propagateSourceDeltaG, δS , pm is correct.

Proof. We use in the following the intermediate results of Phase 1, 2, and 3 in
propagateSourceDeltaG, δS , pm for the proof.

Phase 1: G ∈ L(fwd(TGG), GS) is fully marked. Hence, there exists a deriva-
tion d1 = (GS ← ∅ → ∅) ∗=⇒ G with fwd(R). The comatch of each direct
derivation in d1 leads to a match for processed marking (Definition 9). When
changing GS according to δS , such matches can disappear while new matches
for available markings can appear.

Phase 2: For each disappearing match for processed markings, direct derivations
with fwd(R) in d1 are revoked. This step does not create any match for processed
markings and thus terminates when no more matches disappear (d1 has finitely
many direct derivations). With the remaining direct derivations from d1 (i.e.,
direct derivations that have not been revoked), we get a derivation d2 = G′

S ←
∅ → ∅ ∗=⇒ G̃ with fwd(R).

Phase 3: Given that G′
S ∈ L(TGG)S and fwd(R) is confluent, d2 can be

extended to a derivation d3 = G′
S ← ∅ → ∅ ∗=⇒ G̃

∗=⇒ G′ by applying available
marking matches in any order where the result is a fully marked triple G′ due to

Leveraging Incremental Pattern Matching Techniques 193

Fact 2 and Φ(G′) ∈ L(TGG) due to Fact 1. Termination of this step is guaran-
teed as the TGG is source progressive (Definition 3), i.e., each direct derivation
marks at least one source element and reduces the number of source elements
for which available matches can appear (due to marker NACs in Definition 4). ��

5 Related Work

Bx approaches can be classified mainly in three categories: relational (e.g., [3]),
programming-based (e.g., [12]), and rule-based approaches such as TGGs. Our
contribution exploits the rule-based characteristics of TGGs and governs a syn-
chronisation process via appearing/disappearing rule matches. We believe, nev-
ertheless, that at least relation-based approaches can be inspired by our contri-
bution to monitor (un-)satisfied relations between two models.

We have already discussed in Sect. 2 different TGG approaches [7,8,10,11,
13,15] to emphasise what our contribution exactly simplifies with regard to the
runtime tasks of a TGG-based synchronisation. While our focus is the underlying
technology of TGG-based synchronisation, practical extensions including repair
rules [7] or reusing deleted elements [8] are useful to improve the quality of TGG-
based synchronisation (by keeping as many elements as possible from the older
versions of models). An incremental pattern matcher can facilitate such exten-
sions by introducing new types of reactions to appearing/disappearing matches.
Furthermore, the confluence requirement in our formalisation can be relaxed via
static analysis techniques [1] such that model synchronisation can have more
than one possible valid result. This is orthogonal to our contribution and non-
confluence has not been considered due to space limitations.

Our work is inspired by model synchronisation applications operating with
incremental pattern matching techniques. Most closely, Bergmann et al. [2]
demonstrate how to transform a source delta to a target delta by using incre-
mental pattern matchers. The transformation step, however, is a manually
implemented forward transformation, while TGGs introduce a grammatical and
declarative consistency notion and the forward transformation is automatically
derived together with its backward counterpart.

6 Conclusion and Future Work

We have presented a novel concept for TGG-based model synchronisation based
on an underlying incremental pattern matcher. A TGG-based synchroniser is
reduced to a component that simply reacts to appearing or disappearing matches
monitored by its underlying incremental pattern matcher. We have formalised
our synchroniser concept and shown its correctness under sufficient conditions.

Future work has already started on, first and foremost, implementing a
feature-complete TGG tool with our concept and evaluating its capabilities with
comparisons to other TGG and bx approaches. Incremental pattern matchers
strive for scalable computations of matches whose runtime depends on delta size

194 E. Leblebici et al.

and not on model size. Our expectation, therefore, is that improved scalabil-
ity will be a second advantage besides the simplified synchroniser concept when
integrating incremental pattern matchers into TGGs. This is yet to be validated
by extending the comparison of TGG-based model synchronisation tools [14].

We are also interested in (incremental) consistency checking and model inte-
gration (two-way model synchronisation potentially with conflict resolution)
with TGGs. Such advanced use cases become tractable and can be handled
uniformly after abstracting TGGs from low-level details of match maintenance.

Acknowledgement. This work has been funded by the German Federal Ministry
of Education and Research within the Software Campus project GraTraM at TU
Darmstadt, funding code 01IS12054.

References

1. Anjorin, A., Leblebici, E., Schürr, A., Taentzer, G.: A static analysis of non-
confluent triple graph grammars for efficient model transformation. In: Giese, H.,
König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 130–145. Springer, Cham (2014).
doi:10.1007/978-3-319-09108-2 9

2. Bergmann, G., Ráth, I., Varró, G., Varró, D.: Change-driven model transformations -
change (in) the rule to rule the change. SoSym 11(3), 431–461 (2012)

3. Cicchetti, A., Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and
change propagating transformation language. In: Malloy, B., Staab, S., Brand, M.
(eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19440-5 11

4. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: a cross-discipline perspective. In: Paige, R.F. (ed.) ICMT
2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02408-5 19

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006)

6. Forgy, C.: Rete: a fast algorithm for the many patterns/many objects match prob-
lem. Artif. Intell. 19(1), 17–37 (1982)

7. Giese, H., Hildebrandt, S.: Efficient model synchronization of large-scale models.
Technical report, HPI at the University of Potsdam (2009)

8. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model
synchronization by reusing elements. In: France, R.B., Kuester, J.M., Bordbar, B.,
Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 144–159. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21470-7 11

9. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and execution of
correct and complete model transformations based on triple graph grammars. In:
Bézivin, J., Soley, R.M., Vallecillo, A. (eds.) MDI 2010, pp. 22–31. ACM (2010)

10. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness
of model synchronization based on triple graph grammars. In: Whittle, J., Clark, T.,
Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 668–682. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-24485-8 49

11. Klassen, L., Wagner, R.: EMorF - a tool for model transformations. ECEASST 54
(2012)

http://dx.doi.org/10.1007/978-3-319-09108-2_9
http://dx.doi.org/10.1007/978-3-642-19440-5_11
http://dx.doi.org/10.1007/978-3-642-19440-5_11
http://dx.doi.org/10.1007/978-3-642-02408-5_19
http://dx.doi.org/10.1007/978-3-642-02408-5_19
http://dx.doi.org/10.1007/978-3-642-21470-7_11
http://dx.doi.org/10.1007/978-3-642-24485-8_49

Leveraging Incremental Pattern Matching Techniques 195

12. Ko, H.-S., Zan, T., Hu, Z.: BiGUL: a formally verified core language for putback-
based bidirectional programming. In: PPEPM 2016, pp. 61–72. ACM, New York
(2016)

13. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient model synchronization
with precedence triple graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.-
J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 401–415. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33654-6 27

14. Leblebici, E., Anjorin, A., Schürr, A., Hildebrandt, S., Rieke, J., Greenyer, J.: A
comparison of incremental triple graph grammar tools. ECEASST 67 (2014)

15. Orejas, F., Pino, E.: Correctness of incremental model synchronization with triple
graph grammars. In: Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568,
pp. 74–90. Springer, Cham (2014). doi:10.1007/978-3-319-08789-4 6

16. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). doi:10.1007/3-540-59071-4 45

17. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári, Z.,
Varró, D.: EMF-IncQuery: an integrated development environment for live model
queries. Sci. Comput. Program. 98(1), 80–99 (2015)

18. Varró, G., Deckwerth, F.: A rete network construction algorithm for incremental
pattern matching. In: Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol. 7909,
pp. 125–140. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38883-5 13

http://dx.doi.org/10.1007/978-3-642-33654-6_27
http://dx.doi.org/10.1007/978-3-319-08789-4_6
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/978-3-642-38883-5_13

Henshin: A Usability-Focused Framework
for EMF Model Transformation Development

Daniel Strüber1(B), Kristopher Born2, Kanwal Daud Gill1, Raffaela Groner3,
Timo Kehrer4, Manuel Ohrndorf5, and Matthias Tichy3

1 Universität Koblenz-Landau, Koblenz, Germany
{strueber,daud}@uni-koblenz.de

2 Philipps-Universität Marburg, Marburg, Germany
born@mathematik.uni-marburg.de
3 Universität Ulm, Ulm, Germany

{raffaela.groner,matthias.tichy}@uni-ulm.de
4 Humboldt-Universität zu Berlin, Berlin, Germany

timo.kehrer@informatik.hu-berlin.de
5 Universität Siegen, Siegen, Germany
mohrndorf@informatik.uni-siegen.de

Abstract. Improved usability of tools is a fundamental prerequisite for
a more widespread industrial adoption of Model-Driven Engineering. We
present the current state of Henshin, a model transformation language
and framework based on algebraic graph transformations. Our demon-
stration focuses on Henshin’s novel usability-oriented features, specifi-
cally: (i) a textual syntax, complementing the existing graphical one by
improved support for rapid transformation development, (ii) extended
static validation, including checks for correct integration with general-
purpose-language code, (iii) advanced refactoring support, in particular,
for splitting large transformation programs, (iv) editing utilities for facil-
itating recurring tasks in model transformation development. We demon-
strate the usefulness of these features using a running example.

1 Introduction

Model-Driven Engineering (MDE) aims to improve the productivity of software
engineers by emphasizing model transformation as a central activity during soft-
ware development [1]. Still, a major roadblock to a more widespread adoption of
MDE is the insufficient maturity of MDE tools [2,3]. Specifically, to make MDE
tools appealing to a broader user base, it is key to increase their level of usability.

Henshin [4] is a model transformation framework for the Eclipse Modeling
Framework, comprising a transformation language with a graph-transformation-
based visual syntax, and a tool environment with an execution engine and analy-
sis features, including model checking and conflict analysis support. Originally
designed to offer the benefits of a solid formal foundation and efficient transfor-
mation execution, Henshin was not built with usability as an explicit goal.

In fact, based on user feedback, we identify a number of critical usability lim-
itations: First, while its visual syntax is beneficial when reading a transformation
c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 196–208, 2017.
DOI: 10.1007/978-3-319-61470-0_12

Henshin: A Usability-Focused Framework 197

program, writing a transformation program can be complicated due to layout-
ing issues. Second, programs can contain subtle errors that are not caught by
adequate static checks. In particular, this applies when transformations are not
specified in isolation, but embedded into a richer software infrastructure. Third,
when working with large transformation programs, scalability issues occur; the
performance of Henshin’s visual editor may suffer to the point that it becomes
unusable [5]. Fourth, users are required to perform intricate and error-prone
tasks, such as creating large rules that reflect the complexity of the involved
meta-models.

Therefore, in Sect. 2 of this paper, we present the current state of Henshin,
focusing on its novel features for addressing these issues. Specifically,

– we introduce a textual syntax for the rapid development of transformations
(Sect. 2.1). This syntax is not intended as a replacement for the graphical one,
but as a complementary means to facilitate the initial creation of a transfor-
mation program. To support long-term maintenance, we provide a higher-
order transformation that can be used to derive a graphical concrete-syntax
representation of the transformation program. The design of our textual syn-
tax was informed by a qualitative interview study.

– we provide extended static checks for validating the well-definedness of a
transformation and its use (Sect. 2.2). Using this checks, one can validate
if a Henshin transformation program is used correctly in general-purpose-
language code, e.g., if all referred rules actually exist and their parameters
are assigned correctly. Furthermore, we provide checks to see if parameters
are specified and used correctly within and across particular units and rules.

– we present advanced refactoring support, in particular, for splitting a large
transformation program into multiple sub-programs (Sect. 2.3). Using a wiz-
ard, the user can specify target sub-programs and assign particular units and
rules to them. This splitting of programs (i.e. the abstract syntax) can also
be propagated to their diagram files (i.e., the concrete syntax).

– we demonstrate a selection of editing utilities for complicated tasks during
the development of transformations (Sect. 2.4), including utilities to create,
simplify, generalize, or clean up Henshin rules.

Running Example. We use the following transformation program as a running
example throughout this paper. The program solves one of the tasks in the
classical Comb benchmark by Varró et al. [6]: It constructs a sparse grid in
the shape of Fig. 1 for a given pair of dimensions, width and height. Note that
the grid has two kinds of edges: vertical and horizontal ones (dashed and bold
arrows, respectively).

Fig. 1. Sparse grid

In Henshin, programs are specified in the form of
modules. A module contains a set of rules, specifying
in-place transformations, and a set of composite units,
managing the control flow. Specifically, composite units
coordinate the execution of their sub-units, which can
be either rules or other composite units.

198 D. Strüber et al.

Fig. 2. Henshin module (program) for building a sparse grid.

The example module shown in Fig. 2 includes three rules and four units. The
entry point is the sequential unit buildGrid which has two input parameters,
width and height, and one output parameter, grid. This unit calls two sub-units
in sequential order: rule initGrid creates an initially empty grid to be delivered as
output of the overall transformation. Iterated unit buildColumns has an iteration
condition, specifying that its sub-unit createColumn is executed width/2 times.
Sequential unit createColumn uses parameter next as a pointer to build a column
of a particular height; next is initialized in rule startColumn, where the first two
rows of a column are created. Note the syntactic sugar @Grid, which specifies
the presence of a grid to be used as a container for all newly created nodes.
Parameters next and height are passed to iterated unit expandColumn, which
executes rule extendColumn height-2 times. Each execution of extendColumn
uses the next pointer to add another column at this node, changing the pointer
to one of the newly created nodes afterwards. The program terminates after all
columns have been constructed by unit buildColumns, yielding the sparse grid.

This graphical syntax uses a compact representation of rules, where left- and
right-hand sides (LHS, RHS) are combined to one graph with annotations such as
«create» for RHS nodes without a LHS counterpart. The abstract syntax main-
tained in the background of the visual editor captures LHS and RHS explicitly.

2 Novel Usability-Oriented Features

In this section, we walk through the novel usability-oriented features.

Henshin: A Usability-Focused Framework 199

2.1 Textual Syntax for Henshin

While much of research and practice in modeling has focused on graphical mod-
eling languages, there has been a trend in recent years to use textual concrete
syntaxes for modeling languages. The reason for that is the increasing feedback
from industrial practice that graphical editors (1) require a high effort to create
something usable in practice (which has been shown as a huge issue in model-
ing in practice [3]), (2) require syntax correctness, resulting in cumbersome user
actions to avoid intermediate incorrect models during complex editing steps, and
(3) lack acceptance by many end-users, particularly, software developers.

The resurgence of modeling languages with a textual syntax is fueled by easy-
to-use and feature-rich frameworks like Xtext and recent advances in projection-
based modeling frameworks [7]. Finally, there is a trend to seamlessly combine
graphical and textual editors to reap benefits of both worlds [8].

Fig. 3. Simple rule in the textual syntax

Henshin currently supports
both a graphical editor as well
as a tree-based editor. The
graphical editor supports some
syntactic sugar in both syntax
and visualization, e.g., com-
bined notation for LHS and
RHS, NACs, container syn-
tax. However, one needs to
use the tree-based editor for
more complex rules, e.g., rules
with complex nesting of condi-
tion graphs. Furthermore, the
usability in terms of efficiency
is quite low as both the graphical editor and the tree-based editor require many
steps to perform changes and high amount of focus change when moving between
the graphical editor pane and the property editor.

Methodology. Last year, we performed a qualitative study to explore different
alternatives of a potential textual syntax for Henshin. Particularly, we focused
on the following variation points:

combined syntax vs. explicit LHS and RHS. Shall a combined syntax
using mark-ups for created and deleted elements and positive and negative
applications conditions be used as in the graphical editor, or a specific LHS
and RHS as in the tree-based editor?

complex application conditions. How shall complex application conditions
with multiple condition graphs be specified?

control flow specification. Shall the control flow specification follow the cur-
rent Henshin style of different units for different control flow constructs, e.g.,
sequences, conditions, loops, priorities or should the textual syntax resemble
typical programming languages?

200 D. Strüber et al.

Fig. 4. Rule with complex conditions

Furthermore, we explored other syntax variation points such as syntax for
the specification of nodes, edges, and attribute assignments.

We built multiple prototypes covering the different variation points and dis-
cussed them in an interview study with 6 current and former Henshin key devel-
opers covering a diverse set of expertise in language design and experience using
and developing Henshin. The interviews were based on a semi-structured ques-
tionnaire, covering demographics on the interviewees, general questions on tex-
tual vs. graphical editors and the mentioned variation points of the prototypes.
They took between 1 and 1.5 h and were executed by two of the authors of this
paper. The interviews were transcribed and analyzed using thematic analysis.

Threats to Validity. The external validity of our methodology is threatened
by the fact that we only interviewed advanced users. Arguably, advanced users
can particularly benefit from a textual syntax since they write more complicated
programs, in which the limitations of graphical syntax are more obvious. Still,
it yet needs to be studied if our design decisions are also useful for novice users.

Language Design. The general conclusion with respect to the first variation
point was that a combined syntax using markups as in the graphical editor
and in various other graph transformation tools is preferable. Figure 3 shows a

Henshin: A Usability-Focused Framework 201

transformation rule from “Full Grid”, a slightly modified version of our running
example.

Figure 4 shows a transformation rule with complex condition graphs. The
example describes the creation of a new initial node in a new column connected
to the top node of an existing column, i.e., it neither has a horizontal incoming
node nor a vertical outgoing node. Complex conditions are defined with multiple
conditionGraphs and the formula keyword which contains the complex boolean
condition. Furthermore, the example contains the implicit reuse of nodes of the
LHS in the conditionGraphs on the example of the node unnamed. This is
similarly possible for multi rules.

Fig. 5. Units

Finally, Fig. 5 shows the
addColumns transformation unit.
In contrast to standard Hen-
shin where for each type of con-
trol flow (sequence, if, loop)
covering multiple rules an indi-
vidual unit has to be declared,
the textual syntax provides
syntax constructs which are
similar to imperative program-
ming languages.

Realization. We realized the textual syntax editor using Xtext with custom
extensions like scoping and syntax validation. Since the language differs in syn-
tax significantly from the Henshin meta-model, we used the Xtext generated
meta-model. Instances of that meta-model are transformed by model transfor-
mations to instances of the standard Henshin meta-model. Doing so, we can
reuse Henshin’s visual syntax, and its interpretation and analysis plug-ins. The
realized plug-ins contain automated test for the generated parser as well as auto-
mated tests for the transformation.

2.2 Static Checks

Identification and fixing of errors in the development process of a transformation
program as early as possible is crucial for user satisfaction. Static checks provide
an important feedback to identify such errors. Henshin supports three groups of
static checks: (1) basic checks regarding the well-formedness of units and rules,
(2) semantic checks regarding consistency preservation and potential mismatches
between intended and specified meaning, and (3) checks for the validity of code
for loading and executing units and rules. Identified violations are reported to
the user using Eclipse’s warning and errors markers in the respective editors.

Well-Definedness Checks. Violations to well-definedness constraints are
detected and highlighted with an error marker. First, this applies to obvious
issues such as rules and units with duplicate signatures, i.e., identical name and
parameter lists. Second, parameter handling inside and between rules is checked.

202 D. Strüber et al.

Parameters have a name, type, and kind, where the kinds in, out, inout, var spec-
ify the usage context: in and inout parameters have to be set externally; var and
out parameters are set during the rule application. The value of var parameters
is hidden to the outside world, whereas in, out, and inout parameters can be
used to pass values between rules and units. Checks ensure that parameters are
used consistently to their kind (e.g., a var parameter must be used in the LHS
of a rule) and that parameters are passed consistently. For example, inout para-
meter next of rule extendColumn requires all units invoking the rule to specify a
value, which is the case since unit expandColumn passes its own next parameter
value.

Semantic checks. With semantic checks, we catch some mistakes that are fre-
quently made by novice users. For example, if a node is to be deleted, double-
pushout semantics requires that the deletion of all adjacent edges—in the case of
EMF, at least the containment edge—is specified as well. Users unaware of this
fact might be puzzled when an affected rule cannot be applied. Thus, for delete
nodes specified without a containment edge, we show a warning (rather than an
error, to support corner cases where a single root node is deleted). Moreover, we
provide checks to identify rules that threaten model consistency (see [9]). For
example, the application of a rule may not create containment cycles.

Fig. 6. Error markers in the programmatic use.

Integration with Java Code.
Transformation programs are
often used in the context of
larger programs, such as Eclipse
plug-ins. Henshin’s Java API
provides an interface for load-
ing transformation programs,
applying them, and saving the
results. The API requires that
certain inputs, such as unit and rule names and parameter values, are pro-
vided using method parameters. Errors such as mismatches between specified
and allowed values can occur that are only discovered at runtime – a drawback
resulting from Henshin’s interpreter semantics. To mitigate this drawback while
keeping the benefits of interpreted languages, such as flexibility w.r.t. higher-
order transformations, we introduce custom checks. In Fig. 6, typos init_grid
and WIDTH are detected since no suitable elements of these names exist in the
input module; "two" yields a type error as an int was expected.

2.3 Advanced Refactoring

Refactorings aim to improve the non-functional properties of a program, with-
out changing its behavior. We distinguish advanced refactorings for achieving a
higher-level goal from fine-grained micro-refactorings. In Henshin, typical micro-
refactorings such as rename rule and move rule are supported by design: Hen-
shin inherits EMF’s features for changing models consistently in the sense that

Henshin: A Usability-Focused Framework 203

references to renamed or moved elements within the same model remain valid
automatically. Therefore, in this section, we focus on advanced refactorings.

Transformation programs are typically developed iteratively. The user starts
with a small module that easily fits into one screen, such as the one in Fig. 2, and
end up with a large module with dozens of rules. Maintaining such a large mod-
ule is difficult: Navigating the resulting diagram becomes tedious quickly; the
performance of the editor may suffer to the point that it is not usable anymore.

Splitting of Modules. To overcome these limitations, we provide a split refac-
toring that takes a module, and partitions the contained rules and units into
sets that are saved into distinct modules. The splitting works in two steps: First,
using the wizard shown in Fig. 7, a splitting specification is created. Users can
edit the specification by adding and removing target modules, and by reassigning
rules and units using drag and drop functionality. In this example, two separate
target modules are specified, one including all rules, the other including all units.

Fig. 7. Splitting wizard.

As an aid to reduce the
manual specification effort, the
button “Groups” produces a
default suggestion based on an
connected-component analysis of
the call graph of units, so that
each component of units and
rules becomes a module. Second,
the modules are created and pop-
ulated with the specified rules
and units. The splitting of the
concrete syntax models is prop-
agated to the diagram files, i.e.,
for each target module, a corre-
sponding pair of model and dia-
gram files is created.

Merging of Rules. A special type of complexity in transformations arises
when many similar rules are required to achieve a common task. In earlier work,
we extended Henshin with mechanism detecting rule clones [10] and merging
them into an integrated representation that users can interact with [11,12].

2.4 Advanced Editing Support

In this section, we introduce advanced editing utilities for the development of
model transformations. First, we present a basic utility that enables users to
infer an initial version of a transformation rule from existing models instead of
creating the rule from scratch. Second, we give a set of complex editing operations
for simplifying, generalizing and cleaning up transformation programs.

Generation of Transformation Rules. We provide a facility to generate a
transformation rule from a pair of models demonstrating the effect of the rule,

204 D. Strüber et al.

following the principle of model transformation by-example [13]. Technically, the
models serving as input of our rule generation procedure are compared with each
other using EMF Compare in order to identify the corresponding elements in
the original and the changed model, i.e. those elements which are considered
to be the same in both models. Thereupon, a transformation rule is basically
generated as follows: The original model is converted to a Henshin graph and
used as the LHS of the resulting rule, while the Henshin graph obtained from
the changed model is used as the RHS. Finally, LHS-RHS mappings are created
for all nodes obtained from a pair of corresponding elements.

For instance, an initial version of the rule startColumn shown in Fig. 2 can
be obtained from an example where the original model contains a container
element of type Grid and the changed model includes a Grid element including
the four elements of type Node and their respective connections. Thereupon, a
Henshin module including the necessary meta-model imports and the generated
transformation rule is obtained. To finally obtain the rule startColumn, we may
first add the node identifier next to the lower left node, and subsequently use
the advanced editing operation “Deduce Parameters” creating the out parameter
next and adding it to the rule’s signature.

Despite the simplicity of this example, this mechanism can reduce the devel-
opment effort largely, particularly in the presence of accidental complexity in the
sense that rules simply reflect the complexity of the involved meta-model. For
instance, the UML meta-model is infamous for its size and complexity that leads
to complicated rules even when expressing transformations that are simple on a
conceptual level [14]. Here, examples can be provided in a much more compact
form using a graphical UML editor [14]. Moreover, when transformation devel-
opers are no experts for the meta-model(s) over which the transformation rules
to be developed are typed, their development from scratch is likely to be error-
prone, e.g. because developers forget to specify certain edges which may lead to
unexpected violations of dangling reference constraints in case of deletions.

Complex Editing Operations. In the sequel, we present a set of complex edit-
ing operations, each of them taking a structural element of an existing transfor-
mation (Module, Unit or Rule) as input and performing the update of the given
element in an in-place fashion. All operations are made available through the
“Advanced Editing” menu of the Henshin editor, their visibility depends on the
selected context element. Each of these operations formalizes a recurring task
during transformation development.

reduceToMinimalRule(Rule) takes a transformation rule as input and reduces
it to the minimal rule yielding the same effect. Essentially, it (i) deletes all
application conditions and (ii) cuts all context not needed to achieve the
specified change, i.e. elements to be preserved by the rule which are not
serving as boundary element of a change action are being deleted.

generalizeNodeTypes(Rule) takes a transformation rule as input and converts the
types of all LHS nodes to the most general yet still valid supertype. Given a
LHS node n of type T , then a supertype Tsup of T is a valid supertype in this

Henshin: A Usability-Focused Framework 205

context if all edges incident to n may be also incident to nodes of type Tsup

without violating the conformance to the underlying meta-model.
cleanUp(Rule) has been introduced in an earlier Henshin release, e.g. to remove

invalid LHS-RHS mappings as well as invalid multi-mappings from the given
input rule. We extend this editing operation by also deleting unused rule
parameters, i.e., all rule parameters which are neither mapped to a node
identifier nor to an attribute variable.

3 Related Work

Usability in Model Transformations. Most works on addressing usability
during model transformations focus on the usability in the resulting system.
Panach et al. [15] propose to map reusable usability patterns, such as cancel,
undo, and warnings, to system models and their transformations, so that the
generated systems can benefit from these features. Ammar et al. [16] investigate
parametrized model transformations, where usability requirements can be used
to select the most suitable among different alternatives. The paradigm of end-
user model transformation [14] enables users to specify model transformations
using regular model editors. This approach is orthogonal to ours, as it aims to
replace specialized transformation editors, rather than to improve them.

Textual Syntax. Interestingly, most model transformation languages based on
the graph transformation formalism provide a graphical concrete syntax, e.g.,
Fujaba, VMTS, ModGraph, whereas other model transformation languages like
QVT, ATL, provide a textual concrete syntax. Viatra2 [17] and GrGen [18]
are the exceptions as they are based on graph transformations but provide a
textual syntax. PROGRES [19] uses an hybrid syntax, whereas eMoflon [20]
offers a textual syntax with a generated read-only visualisation, an interesting
compromise for supporting both textual and visual notations. Arguably, in our
case, having an editable graphical syntax is beneficial since users may use custom
layout to give cues beyond the formal language semantics. To the best of our
knowledge our work is the first empirical work on designing a textual syntax for
model transformations.

Static Checks. Existing works on verifying or testing model transformations
focus on correctness w.r.t. a behaviour specification [21,22]. In contrast, our
semantic checks can be applied when no specification is available: they represent
an heuristics based on accrued experiences with users who were unfamiliar with
Henshin’s double-pushout semantics. Moreover, to the best of our knowledge, the
validation of code that uses a transformation has not been considered before. It is
worth pointing out that such validation only make sense for interpreted languages
such as Henshin. Compiled ones such as PROGRES avoid the encountered issues
via the type system of the target language. However, compilation has certain
trade-offs, such as less flexible usage workflows. PROGRES also allows defining
precisely how external code is to be integrated with the system.

206 D. Strüber et al.

Advanced Refactoring. Our split module refactoring is inspired by an earlier
tool-supported approach to meta-model splitting [23]. While this earlier work
used clustering algorithms to identify groups of related classes, our default split-
ting suggestion is based on a component analysis of the call graph of units and
rules. Another related work allows remodularizing ATL transformations using
clustering [24], where the focus was on the identification of explicit interfaces.

Editing Utilities. Our most advanced editing utility is the generation of rules
from existing examples. Learning model transformations from examples is highly
desirable and has motivated a plethora of work, as surveyed in [13,25]. How-
ever, most approaches are not usable for our purposes since they (i) rely on the
logging of editing commands demonstrating the transformation, or (ii) target
model-to-model transformations. For state-based approaches targeting in-place
transformations, tool support is scarcely available and, to the best of our knowl-
edge, none of the existing tools generates Henshin rules. Our current solution is
lightweight in the sense that it abstains from using sophisticated inference algo-
rithms, machine learning techniques or other third-party software, which was a
major design decision to keep the deployment of Henshin easy to handle.

4 Conclusion and Future Work

Compared to purely textual languages, where developers have to piece together
graph structures in their minds while reading a model transformation program, it
is tempting to view graph-based ones as inherently user-friendly. Still, experience
has shown that the devil is often in the details: while particular usability issues
might not be obvious in smaller examples, the development of larger transforma-
tion program can be a tedious task. With the present work, we make a number
of contributions to resolve the issues encountered during such tasks.

In the future, we are interested to study the impact of our usability-oriented
features. An empirical user study would be an appropriate basis to determine
the usefulness of our contributions. A key challenge for advanced features such
as those introduced here is to make users aware of usage opportunities [26]. Fur-
thermore, we plan to extend Henshin with additional features. Inferring trans-
formation rules from a set of examples instead of a single one is an interesting
goal, in which we may benefit from the existing literature on transformation-
by-example. Finally, in our ongoing work, we aim to support the debugging of
Henshin rules via an integration into the Eclipse Debugging infrastructure.

Acknowledgement. We thank the reviewers for their valuable and constructive sug-
gestions. This research was partially supported by the research project Visual Privacy
Management in User Centric Open Environments (supported by the EU’s Horizon 2020
programme, Proposal number: 653642). This work was partially supported by the DFG
(German Research Foundation) (grant numbers TI 803/2-2 and TI 803/4-1).

Henshin: A Usability-Focused Framework 207

References

1. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003)

2. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial
adoption of model-driven engineering: are the tools really the problem? In: Moreira,
A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol.
8107, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41533-3_1

3. Liebel, G., Marko, N., Tichy, M., Leitner, A., Hansson, J.: Assessing the state-of-
practice of model-based engineering in the embedded systems domain. In: Dingel, J.,
Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol.
8767, pp. 166–182. Springer, Cham (2014). doi:10.1007/978-3-319-11653-2_11

4. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16145-2_9

5. Strüber, D., Kehrer, T., Arendt, T., Pietsch, C., Reuling, D.: Scalability of model
transformations: position paper and benchmark set. In: Workshop on Scalable
Model Driven Engineering (BigMDE), pp. 21–30 (2016)

6. Varró, G., Schurr, A., Varró, D.: Benchmarking for graph transformation. In: Sym-
posion on Visual Languages and Human-Centric Computing, pp. 79–88. IEEE
(2005)

7. Voelter, M., Szabó, T., Lisson, S., Kolb, B., Erdweg, S., Berger, T.: Efficient devel-
opment of consistent projectional editors using grammar cells. In: International
Conference on Software Language Engineering (SLE), pp. 28–40 (2016)

8. Maro, S., Steghöfer, J., Anjorin, A., Tichy, M., Gelin, L.: On integrating graphical
and textual editors for a UML profile based domain specific language: an industrial
experience. In: International Conference on Software Language Engineering (SLE),
pp. 1–12 (2015)

9. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent EMF model
transformations by algebraic graph transformation. Softw. Syst. Model. 11(2), 227–
250 (2012)

10. Strüber, D., Plöger, J., Acreţoaie, V.: Clone detection for graph-based model trans-
formation languages. In: Van Gorp, P., Engels, G. (eds.) ICMT 2016. LNCS, vol.
9765, pp. 191–206. Springer, Cham (2016). doi:10.1007/978-3-319-42064-6_13

11. Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G., Plöger, J.: Rule-
Merger : automatic construction of variability-based model transformation rules.
In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 122–140.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7_8

12. Strüber, D., Schulz, S.: A tool environment for managing families of model trans-
formation rules. In: Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761,
pp. 89–101. Springer, Cham (2016). doi:10.1007/978-3-319-40530-8_6

13. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
transformation by-example: a survey of the first wave. In: Düsterhöft, A., Klet-
tke, M., Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical Founda-
tions. LNCS, vol. 7260, pp. 197–215. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28279-9_15

14. Acreţoaie, V., Störrle, H., Strüber, D.: VMTL: a language for end-user model
transformation. Softw. Syst. Model. 1–29 (2016)

http://dx.doi.org/10.1007/978-3-642-41533-3_1
http://dx.doi.org/10.1007/978-3-319-11653-2_11
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-319-42064-6_13
http://dx.doi.org/10.1007/978-3-662-49665-7_8
http://dx.doi.org/10.1007/978-3-319-40530-8_6
http://dx.doi.org/10.1007/978-3-642-28279-9_15
http://dx.doi.org/10.1007/978-3-642-28279-9_15

208 D. Strüber et al.

15. Panach, J.I., España, S., Moreno, A.M., Pastor, Ó.: Dealing with usability in model
transformation technologies. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.)
ER 2008. LNCS, vol. 5231, pp. 498–511. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-87877-3_36

16. Ammar, L.B., Trabelsi, A., Mahfoudhi, A.: Incorporating usability requirements
into model transformation technologies. Requir. Eng. 20(4), 465–479 (2015)

17. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Sci. Comput. Program. 68(3), 214–234 (2007)

18. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: a fast SPO-
based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L.,
Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006). doi:10.1007/11841883_27

19. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES Approach: Language and
Environment. Handbook of Graph Grammars and Computing by Graph Transfor-
mation. World Scientific Publishing Co. Inc., River Edge (1999)

20. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: Ruscio,
D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 138–145. Springer, Cham
(2014). doi:10.1007/978-3-319-08789-4_10

21. Rensink, A., Schmidt, Á., Varró, D.: Model checking graph transformations: a com-
parison of two approaches. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 226–241. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30203-2_17

22. Cabot, J., Clarisó, R., Guerra, E., De Lara, J.: Verification and validation of declar-
ative model-to-model transformations through invariants. J. Syst. Softw. 83(2),
283–302 (2010)

23. Strüber, D., Selter, M., Taentzer, G.: Tool support for clustering large meta-models.
In: Workshop on Scalability in Model Driven Engineering (BigMDE), pp. 7:1–7:4
(2013)

24. Rentschler, A., Werle, D., Noorshams, Q., Happe, L., Reussner, R.H.: Remodu-
larizing legacy model transformations with automatic clustering techniques. In:
Workshop on Analysis of Model Transformations (AMT), pp. 4–13 (2014)

25. Baki, I., Sahraoui, H.: Multi-step learning and adaptive search for learning complex
model transformations from examples. ACM Trans. Softw. Eng. Methodol. 25(3),
20:1–20:37 (2016)

26. Buchmann, T., Westfechtel, B., Winetzhammer, S.: The added value of pro-
grammed graph transformations – a case study from software configuration man-
agement. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol.
7233, pp. 198–209. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34176-2_17

http://dx.doi.org/10.1007/978-3-540-87877-3_36
http://dx.doi.org/10.1007/978-3-540-87877-3_36
http://dx.doi.org/10.1007/11841883_27
http://dx.doi.org/10.1007/978-3-319-08789-4_10
http://dx.doi.org/10.1007/978-3-540-30203-2_17
http://dx.doi.org/10.1007/978-3-642-34176-2_17

GRAPE – A Graph Rewriting and Persistence
Engine

Jens H. Weber(&)

LEADlab, Department of Computer Science,
University of Victoria, BC Victoria, Canada

jens@acm.org

Abstract. Graph-based data structures are fundamental to many applications in
Computer Science and Software Engineering. Operations on graphs can be
formalized as graph transformations or graph rewriting rules and a rich theo-
retical underpinning has been developed in the research community that sup-
ports reasoning about the properties of graph transformation systems. Various
tools exist for developing graph transformations, including visual editors as well
as textual languages that can be integrated with general purpose programming
languages. This paper introduces Grape (Graph Rewriting and Persistence
Engine), a hybrid, embedded Domain Specific Language (DSL) for Clojure.
Grape is a lightweight approach to computing with persistent graphs within
Clojure. It combines the ease of use of a textual DSL with a graphical visual-
ization that is inlined with the program code when needed to aid comprehension
and documentation of graph rewriting rules. Moreover, Grape supports persis-
tence, programmed transactions and backtracking.

Keywords: Graph transformations � Tool support � DSL � Persistence � Clojure

1 Introduction

Graph-based data structures play an important role in many applications of Computer
Science and Software Engineering. Operations on graphs can be formalized with graph
transformation rules (also referred to as graph rewriting rules). A rich theoretical
background exists on the formal properties of graph transformation systems (GTS) and
various tools have been developed in support of their development [1, 2]. Current tool
support ranges from visual development environments (with underlying transformation
engines) to textual languages that may be integrated with general purpose programming
languages. Visual development environments for GTS provide the benefit of a more
intuitive, graphical way of specifying operations on graphs. However, these tools are
often expensive to build and maintain. Moreover, visual development tools may pose
usability challenges, as developers need to learn how to use them properly [3]. Other
challenges pertain to the integration of visual programming in the overall software
development lifecycle, such as the integration with other parts of a software program,
configuration management and merging of different versions, etc.

Textual graph transformation languages provide a more lightweight approach to
developing graph-based computations and avoid many of these challenges. However,

© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 209–220, 2017.
DOI: 10.1007/978-3-319-61470-0_13

textual graph rewriting rules may not be as easy to understand as their visual coun-
terparts. Hybrid approaches in which graph transformations are specified textually but
documented visually have been suggested as a compromise. However, textual pro-
grams and visual documentations are often not well integrated, which impede incre-
mental and dynamic development of graph-based programs.

Another concern with existing graph transformation tools pertains to their scala-
bility and the persistence of large graphs. Most current tools process graph models in
main memory, which imposes practical limits to the scalability of their applications.
Moreover, most current tools do not provide support for complex transactions of
programmed graph rewrite operations, in the sense of the typical ACID properties
(Atomicity, Consistency, Integrity and Durability).

This paper introduces Grape (Graph Rewriting and Persistence Engine) as a
lightweight, hybrid GTS development tool that seeks to address the above concerns.
Grape provides a lightweight, hybrid GTS extension to the Clojure programming
language. Graph transformations are programmed textually, but visualized graphically,
inline with the program code, within the LightTable general purpose text editor1. Grape
utilizes the highly scalable Neo4 J graph database for graph persistence and transaction
support. Grape programs provide full support for transactions, including backtracking.
It has been made available under an open source license on Github.

The rest of this paper is structured as follows. The next section provides a short
introduction to graph rewriting and graph transformation systems. Section 3 provides
an overview of the work related to tool support for developing graph transformation
systems in software applications. Section 4 provides an overview of the architecture of
Grape, while Sect. 5 introduces the Grape DSL within Clojure and demonstrates the
use of LightTable as a lightweight hybrid development environment. Finally, Sect. 6
provides concluding remarks and an outlook on future work.

2 Graph Rewriting and Graph Transformation Systems

2.1 Directed, Attributed, and Labeled (DAL) Graphs

A directed graph is a data structure that consists of a set of nodes N and a set of
edges E, such that each edge e 2 E has a source sðeÞ and target tðeÞ in N. Labeled
graphs allow nodes and edges to be labeled, i.e., a labeling function lðoÞ associates each
graph object o 2 N [E with a set of labels. Attributed graphs further allow the
association of graph objects with attribute properties, i.e., an attributation function aðoÞ
associates each graph object with a set of key/value pairs.

2.2 Graph Transformation Rules

A graph transformation rule L ! R consists of two graphs, commonly referred to as
left-hand side (LHS) and right-hand side (RHS), respectively. The LHS specifies a

1 http://lighttable.com.

210 J.H. Weber

http://lighttable.com

subgraph pattern to find in a given graph (the host graph) and the RHS defines how a
found subgraph is to be rewritten as a result of the transformation. In other words, LHS
acts as a precondition of the rule, while RHS specifies its post-condition. Graph
transformation rules are applied in a three-stepped process:

1. Match: The hostgraph is searched for a subgraph that matches the rule’s LHS.
2. Delete: Graph objects in the rule’s LHS that are not in the rule’s RHS are deleted

from the hostgraph.
3. Add: Graph elements in the rule’s RHS that are not included in its LHS are added

to the host graph.

When a rule matches multiple subgraphs in the host graph, a match is chosen
non-deterministically.

The above process of applying graph transformation rules may result in a structure
that is not a graph. This is the case when a node is deleted that is a source or a target of
an edge in the host graph that is not part of the match found for the rule’s LHS. The
graph transformation community has developed different approaches on how to prevent
this situation. One approach is to permit the deletion of such a node and to delete all
edges that may be left “dangling” in the host graph. This approach is based on the
“single pushout” (SPO) theory for graph transformations [1]. Another approach is to
prohibit the application of a transformation rule in cases where its execution would
result in dangling edges. This more restrictive condition is commonly referred to as the
gluing condition in the double-pushout (DPO) theory for graph transformations [1].

Different approaches exist as well with respect to the type of morphism that is used
to find a match for a rule’s LHS in the host graph. Isomorphic matching requires that
each object in a rule’s LHS matches a distinct graph object in the host graph, while
homomorphic matching allows different objects in a rule’s LHS to match to the same
graph object in the host graph.

Graph transformation rules may also have a set of negative application conditions
(NACs) that may be used to prevent rule application in certain contexts. NACs are an
important concept for many practical applications of GTS [4]. NACs can be specified
as graph patterns (and conditions on attributes) that extend a rule’s LHS. The appli-
cation of graph transformation rules with NACs becomes a four-step process:

1. Match: The hostgraph is searched for a subgraph that matches the rule’s LHS.
2. Check: Attempt to extend the matched subgraph with a match for any of the rule’s

NACs. If this is possible, prevent rule application in this context.
3. Delete: Graph objects in the rule’s LHS that are not in the rule’s RHS are deleted

from the hostgraph. (Validate gluing condition for DPO rewriting approach.)
4. Add: Graph elements in the rule’s RHS that are not included in its LHS are added

to the host graph.

A graph transformation system (GTS) is defined as a set of graph transformation
rules. A graph grammar is a GTS with a defined start graph. Graph grammars are
commonly used for defining and parsing graph-based languages. In this paper, we are less
concerned with the definition of graph-based languages and rather focus on engineering
applications of graph rewriting. Such applications typically require imperative control

GRAPE – A Graph Rewriting and Persistence Engine 211

structures to govern the execution of graph transformation rules. A programmedGTS is a
GTS that has been associated with an imperative control program.

3 Related Work: Tool Support for Graph Rewriting

3.1 Visual Tools

PROGRES is an integrated development environment for visual developing of pro-
grammed GTS [5]. PROGRES provides a powerful specification language and uses a
graph database for scalability and persistence with support for complex transactions
and backtracking. However, PROGRES lacks integration with general purpose pro-
gramming languages and its development has been discontinued.

FUJABA supports the development of programmed GTS for Java [6]. Control
structures are specified using “story diagrams”, a combination of activity diagrams and
graph rewriting rules. Graph transformations are carried out in main memory. Graphs
can be serialized for file-based storage. FUJABA generates Java code, which can be
integrated with general purpose Java programs. FUJABA does not support transactions
and backtracking.

AGG is a visual development environment for GTS [7, 8]. Transformation rules are
executed based on an interpreter and the graph is held in main memory. The definition
of control structures is supported. An API allows the integration with the Java general
purpose programming language.

GROOVE is another visual GTS development environment that is particularly
suitable for formal verification and state space exploration [9]. The graph is held in
main memory and transformations are executed by an interpreter. Control structures are
provided in form of a dedicated scripting language. Backtracking and transactions are
not supported. Integration with general purpose programming languages is possible
through an internal (undocumented) API.

Henshin is a visual graph transformation tool based on the Eclipse modelling
framework (EMF) [10]. Graph transformations are carried out by an interpreter that can
be interfaced with general purpose programming languages (Java) through an API.
Graphs are kept in main memory. No transactions or backtracking is supported.

3.2 Textual Tools

Viatra is an Eclipse plugin that provides a textual language for specifying graph
transformations [11, 12]. Control structures are specified using abstract state machines.

GrGen provides a textual language to define graph transformations on object graphs
held in main memory (C# or Java) or kept in a relational database [13]. GrGen gen-
erates C# code or .net assemblies.

SDMlib is an internal DSL for graph transformations with Java [14]. Graphs are
kept in main memory and can be persisted in a file. Graphs and graph transformations
can be visually documented. Transactions and backtracking is not supported.

212 J.H. Weber

FunnyQT is an internal graph transformation DSL for Clojure [15]. Homomorphic
as well as isomorphic graph pattern matching is supported. FunnyQT provides a
framework for in-place graph rewriting with arbitrary Clojure actions. The semantics of
rewriting rules is not grounded in a particular theory (such as DPO or SPO). Graphs are
held in main memory and transactions are not supported.

4 The Grape Architecture

Grape provides an internal domain-specific language (DSL) for programming GTS
with Clojure (cf. Fig. 1). Grape uses the Neo4J graph database for storing the host-
graph, i.e., the graph is not held in main memory. Graph transformation rules defined in
the Grape DSL are translated to Cypher, Neo4J’s native query language. Cypher
provides powerful constructs for graph pattern matching, which are leveraged by
Grape. Grape also provides a visualizer for graph transformation rules based on
GraphViz [16]. Grape does not depend on any particular development tool or IDE, but
provides a convenient integration with LightTable, which allows developers to visu-
alize their graph transformation rules “in line” with their textual definition. Indepen-
dently of the editor used, the Grape visualizer also provides functions to generate
visual representations of GTS in the file system. Neo4J also provides an extensible
graph browser that can be used to visualize graphs.

Grape provides support for complex transactions of programmed graph transfor-
mations with full support for backtracking. This functionality is based on Neo4J’s flat
transaction model and implemented in Grape’s transaction module. (Neo4J native
“flat” transaction model needs to be extended to support nested transactions, as
required for the desired backtracking behaviour.)

Fig. 1. The Grape architecture

GRAPE – A Graph Rewriting and Persistence Engine 213

5 A Taste of Grape – Introduction to Programming
with Grape

5.1 Simple Rule Definition and Execution

The Grape DSL uses native Clojure syntax. Graphs are schema-less (untyped), fol-
lowing the schema-less design philosophy of no-SQL databases such as Neo4 J.
Figure 2 provides a first example of the Grape language. It defines a new GTS (using
the gts form) and a simple transformation rule that matches two graph nodes that are
connected with a works_for edge in order to replace that edge with a new Con-
tract node with employee and employer edges.

As the example in Fig. 2 shows, Grape rules have three main parts: read, delete
and create. (Of course, some of these parts may be missing. For example, a rule that
simply creates a graph structure will not have a read or delete part.) Nodes and edges
are identified by id symbols, e.g., ‘n1. Labels are defined using the :label key and
assertions on attributes are defined using the :asserts key. In the above example,
two attributes are defined for the new Contract node: the first attribute (name) is

Fig. 2. Definition of a GTS and a simple transformation rule

214 J.H. Weber

assigned the literal value “Contract”, while the second attribute (with) is assigned the
value of the name attribute of node n1.

The visualization of the rule in Fig. 2 is automatically generated by Grape and
inlined after the textual definition (if LightTable is used as the editor). The visualization
uses the popular representation of graph transformation rules where LHS and RHS are
merged into the same graph, with red colours showing deleted graph elements and
green colour showing new ones. Grape programmers who do not use LightTable can
still make use of the rule visualization by generating visual documentation in the
project’s file system.

Once a rule has been defined (as above), it can be invoked simply by calling an
equally named function, i.e., by calling (rewrite_contract!) in the above
example. Calling this function will return true if the rule could be applied and false
otherwise. Its invocation will non-deterministically select a possible match and attempt
its transformation. The usual Clojure control structures can be used with this function.
For example, if all works_for occurrences are to be rewritten, a programmer may
simply use (while (rewrite-contract!)).

Grape does not implement its own tool for visualizing the state of the hostgraph,
since Neo4J provides a powerful graph browser as part of its community edition.
Figure 3 shows a hostgraph visualized with the Neo4J browser for the Ferryman
example discussed at the end of this section.

Fig. 3. Hostgraph visualization using Neo4J’s graph browser

GRAPE – A Graph Rewriting and Persistence Engine 215

5.2 Customizing Matching and Rewrite Semantics

Grape performs isomorphic graph matching by default. This means that in the above
example, self-employment relationships (where n1 and n2 match the same node in the
host graph) would not be matched. If homomorphic matching is desired, a :homo key
can be added to the definition of the read pattern.

Furthermore, Grape rules implement SPO rewrite semantics by default, i.e., any
“dangling” edges that may arise from deleting nodes are automatically deleted as well.
If the more restrictive DPO semantics is desired, an :dpo key can be added to a rule,
which results in checking the gluing condition prior to executing the transformation.

5.3 Parameters and NACs

Grape transformation rules can by parameterized and contain an arbitrary number of
NACs. Figure 4 provides an example for a rule “promote!” with a formal parameter
and one NAC. It searches for a Worker who works_for an Employer with a
given name (parameter) and replaces the Worker node with a Director node, if that
worker does not also work for another Employer (i.e., if there is not a work_for edge
from node w to another node in the host graph). Graph patterns defined in NACs are
visualized with dashed lines and using a different colour for each defined NAC, if
multiple NACs are defined. Invoking a parameterized rule uses the normal Clojure
parameter passing, e.g., (promote! “John”) in the above example.

Fig. 4. A parameterized rule with a single NAC

216 J.H. Weber

5.4 Transactions

Grape supports transactions of complex graph rewriting operations consisting of
multiple transformation rules, with full backtracking support. Transactions are created
using the transact form. The left-hand side of Fig. 5 shows a simple transaction
consisting of a sequence of programmed transformation rules.

Note that programmed transformation rules require the apl form to define each
rule application. Writing (rule1) instead of (apl ‘rule1) would cause the Clo-
jure REPL to execute “rule1” at the time of defining the transaction. Of course, we
could have used a macro instead of a regular Clojure function for defining the transact
form to prevent this behaviour. However, we intentionally decided to avoid macros in
the development of Grape to keep the code simple and functional.

Grape also allows parameter passing between different transformation rules in a
transaction. This is realized using two forms: bind and consult. The first form
binds a graph element (node or edge) matched by the previously executed graph
transformation rule to a symbol, while the second form (consult) dereferences the
bound graph object for the purpose of passing it to a subsequent transformation rule.
The right-hand side of Fig. 5 shows an example. Here, the graph element n matched in
rule1 is bound to symbol out and then passed to rule2 as a parameter.

The transact form returns a value that can be passed to the attempt form for
execution. Of course, parameterized transactions can be defined as regular Clojure
functions, using the defn form. Figure 6 shows an example of defining a transaction
with an example parameter p (left) and attempting to execute it with an example
argument “hello” (right). The result of executing an attempt form is true or false,
depending on whether the transaction succeeded.

(transact
(apl ‘rule1)
(apl ‘rule2)
..
(apl ‘ruleN))

(transact
(apl ‘rule1 p)
(bind ‘out ‘n)
(apl ‘rule2 (consult ‘out))
..)

Fig. 5. Defining simple transactions (left) and defining parameterized transaction operations
with parameter passing (right).

(defn tx [p]
(transact
(apl ‘rule1 p)
..
))

(attempt (tx! “hello”))

Fig. 6. Defining and attempting to execute a parameterized transaction.

GRAPE – A Graph Rewriting and Persistence Engine 217

5.5 Control Structures

As Grape is an embedded DSL the full breadth of control structures of the host
language (Clojure) can be utilized for programming with graph transformation rules.
(An example was given at the end of Sect. 5.1.) Moreover, since Clojure is a
JVM-based language, other JVM languages can also be used.

A limitation of using the GPL host language’s control structures is that they provide
no support for backtracking in operations that compose multiple graph transformations.
Grape provides a set of native DSL control structures that can be used to program
complex graph operations where backtracking is desired. In particular, Grape provides
control structures for loops, non-deterministic choice, and negative graph tests.

Figure 7 shows an example program for solving the well-known Ferry Crossing
puzzle [17]. In that problem, a ferryman has the task to safely transport three items
across the river. He can only take one item at a time. Two unsafe states exist: (1) the
wolf will eat the goat and (2) the goat will eat the cabbage, if left unsupervised.

The until form is used to define a loop with a break condition given as its first
argument, followed by a set of Grape transactions that are to be executed in each
iteration. The break condition ‘all_on_the_other_side? is a graph test. It is
defined as a regular Grape graph transformation rule that only has a read part. The
choice form takes a list of Grape rule applications or transactions and
non-deterministically selects one of them for execution. Finally, the avoid form takes
a list of graph tests and checks whether any of them have a match in the host graph. In
that case, the current state of the graph exploration is considered a failure and the
program will backtrack. Note that the avoid form is not strictly necessary for
expressiveness, since Grape rules support the definition of NACs. However, we believe
that its existence may increase the readability and conciseness of programs.

The program in Fig. 6 is an example for implementing a graph exploration search
algorithm in Grape. Essentially, the program implements a forward rule-chaining
algorithm. Rule selection by the choice operator is non-deterministic, which means
that the above search is not guaranteed to find a solution (and to terminate). Of course,
the graph transformation rules can be defined to limit the search space. A common
approach is to define a cost for each ferry crossing and allocate a budget. This can be
done using graph attribute assignments and application conditions. In the future, we are
interested in extending Grape with a heuristics guided choice operator that uses a utility
function to aid the prioritization of alternative rule applications.

(until 'all_on_the_other_side?
(transact (choice (apl 'ferry_one_over!)

(apl 'cross_empty!))
(avoid (apl 'wolf-can-eat-goat?)

(apl 'goat-can-eat-grape?)))))

Fig. 7. Example using Grape control structures

218 J.H. Weber

6 Conclusions and Future Work

The choice of a graph transformation tool ultimately depends on the application it is
used for. Several graph transformation tools have been developed and made available.
We found that for our applications, graph persistence, scalability, transaction handling
and the ability to easily integrate with general purpose programming languages were
important requirements. Moreover, we found that the user interfaces of fully visual
graph transformation tools often create usability challenges and do not integrate
seamlessly with modern, distributed software development practices, e.g., versioning,
merging, test-driven development, etc.

In this paper, we have introduced Grape as a lightweight, hybrid graph transfor-
mation engine embedded in Clojure. Grape is highly scalable, as graphs are not kept in
main memory but in a graph database (Neo4J scales to graphs consisting of tens of
billions of nodes). Grape is considered a “hybrid” tool, since rules are authored tex-
tually but visualized graphically “in line” with the textual code (if LightTable is used as
the editor). Since Grape programs are authored with an embedded DSL in Clojure, they
can easily be interfaced with the rest of a software program. Moreover, Grape provides
full support for complex transactions, including backtracking.

Grape has been made available for public use on Github2. So far, we have used
Grape in the development of one small-sized application in the medical domain. The
source code for this example application is also available on Github3. While in this first
application we did not make use of some of Grape’s advanced concepts (such as
complex transactions and backtracking), it illustrates nicely how easy it is to integrate a
Grape GTS with the rest of a typical Web-based software system.

There are many avenues for future work on improving Grape. We already men-
tioned at the end of the last section the plan to add a heuristics guided choice operator,
to direct the selection of alternative graph transformation rules in complex transactions.
Moreover, Grape currently operates on untyped graphs. This provides a great degree of
flexibility but also increases the likelihood of specification errors. We will be adding
the option of working with typed graphs in the future. Another worthwhile extension to
Grape would be the addition of path expressions. Neo4J provides support for powerful
graph expressions in its query language Cypher. We expect to be able to use this
feature as a basis for implementing path expressions in Grape.

Finally, we are intending to extend Grape with respect to supporting bidirectional
transformations between graph structures. Triple Graph Grammars (TGG) have been
proposed and successfully used for bidirectional graph model synchronization prob-
lems. Their integration in Grape is planned for a future release [18].

2 https://github.com/jenshweber/grape.
3 https://github.com/sdiemert/app-project.

GRAPE – A Graph Rewriting and Persistence Engine 219

https://github.com/jenshweber/grape
https://github.com/sdiemert/app-project

References

1. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation -
Volume 1: Foundations. World Scientific Publishing Company (1999)

2. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.: Handbook of Graph Grammars and
Computing by Graph Transformation - Volume 2: Applications, Languages, Tools. World
Scientific Publishing Company (1999)

3. Rouly, J.M., Orbeck, J.D., Syriani, E.: Usability and suitability survey of features in visual
ides for non-programmers. In: Proceeding of the 5th Workshop on Evaluation and Usability
of Programming Languages and Tools, New York, NY, USA, pp. 31–42 (2014)

4. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions.
Fundam. Informaticae 26(3), 287–313 (1996)

5. Schürr, A., Winter, A.J., Zündorf, A.: Graph grammar engineering with PROGRES. In:
Schäfer, W., Botella, P. (eds.) ESEC 1995. LNCS, vol. 989, pp. 219–234. Springer,
Heidelberg (1995). doi:10.1007/3-540-60406-5_17

6. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Proceeding of the 22nd
Intl Conference on Software Engineering, New York, NY, USA, pp. 742–745 (2000)

7. Taentzer, G.: AGG: a graph transformation environment for modeling and validation of
software. In: Applications of Graph Transformations with Industrial Relevance, pp. 446–453
(2003)

8. Runge, O., Ermel, C., Taentzer, G.: AGG 2.0 – new features for specifying and analyzing
algebraic graph transformations. In: Applications of Graph Transformations with Industrial
Relevance, pp. 81–88 (2011)

9. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and
analysis using GROOVE. Int. J. Softw. Tools Technol. Transf. 14(1), 15–40 (2012)

10. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced concepts
and tools for in-place EMF model transformations. In: Model Driven Engineering
Languages and Systems, pp. 121–135 (2010)

11. Balogh, A., Varró, D.: Advanced model transformation language constructs in the
VIATRA2 framework. In: Proceedings of the 2006 ACM Symposium on Applied
Computing, New York, NY, USA, pp. 1280–1287 (2006)

12. Bergmann, G., et al.: Viatra 3: a reactive model transformation platform. In: Theory and
Practice of Model Transformations, pp. 101–110 (2015)

13. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: a fast SPO-based graph
rewriting tool. In: Graph Transformations, pp. 383–397 (2006)

14. Priemer, D., George, T., Hahn, M., Raesch, L., Zündorf, A.: Using graph transformation for
puzzle game level generation and validation. In: Graph Transformation, pp. 223–235 (2016)

15. Horn, T.: Graph pattern matching as an embedded clojure DSL. In: Graph Transformation,
pp. 189–204 (2015)

16. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz— open source
graph drawing tools. In: Graph Drawing, pp. 483–484 (2001)

17. Gasarch, W.: Review of algorithmic puzzles by Anany Levitin and Maria Levitin. SIGACT
News 44(4), 47–48 (2013)

18. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Graph Transformations,
pp. 411–425 (2008)

220 J.H. Weber

http://dx.doi.org/10.1007/3-540-60406-5_17

Table Graphs

Albert Zündorf1(B), Daniel Gebauer2, and Clemens Reichmann2

1 Kassel University, Kassel, Germany
zuendorf@uni-kassel.de

2 Vector Informatik GmbH, Stuttgart, Germany
{Daniel.Gebauer,Clemens.Reichmann}@vector.com

Abstract. Inspired by the PREEvision tool of Vector Informatik GmbH
Stuttgart, we have extended SDMLib with so-called Table Graphs. Table
Graphs model the matches of graph rewrite rules as explicit graphs added
to a given host graph. Table graphs allow to do relational operations
like filter and projection. We also provide support for the extension of
matches with new nodes or attribute values. Table Graphs also allow to
do many spreadsheet like computations via simple graph rewrite rules.
Finally, Table Graphs may be exported as HTML Tables or CSV files.
This allows e.g. to generate a nice PIE chart from a graph query result.

Keywords: Graph grammars · Graph transformations · Fujaba ·
SDMLib

1 Introduction

The PREEvision tool of Vector Informatik GmbH, Stuttgart, [1] supports the
design and modeling of the complete car electronic including ECUs, sensors,
actors, wiring harness, software components, communication bus system, and
signals. The PREEvision tool is graph based and utilizes a complete graph trans-
formation engine developed by Clemens Reichmann. This graph engine realizes
complex editing and analysis operations and e.g. model to model transforma-
tions between different levels of abstraction. Still, the users of the PREEvision
tool asked for better support of frequent statistic queries like “list of all com-
ponents (within the motor area)”, “total costs”, “total weight”, “total length of
all wires”, etc. Therefore, in their Phd thesis [2] Daniel Gebauer and Johannes
Matheis [3] extended the PREEvision graph engine with Table Graphs. At first,
a Table Graph lists all matches of a graph rewrite rule. This may be used e.g. to
count all components of a certain type. In addition, Table Graphs provide filter
operations that may narrow down the interesting matches. Additional operations
allow to extend a Table Graph with additional columns e.g. for attribute values
like sizes, weights, or prices. Then you may compute column sums, minimum,
maximum, or average, etc. You may also forward a table graph e.g. to a spread-
sheet program. The spreadsheet program may than produce colorful charts for
your next PowerPoint presentation.

c© Springer International Publishing AG 2017
J. de Lara and D. Plump (Eds.): ICGT 2017, LNCS 10373, pp. 221–230, 2017.
DOI: 10.1007/978-3-319-61470-0 14

222 A. Zündorf et al.

Fig. 1. Example graph

I (Albert) was the second reviewer of the PhD thesis of Daniel Gebauer.
Impressed by the possibilities provided by Table Graphs, I decided to add similar
features to the SDMLib graph engine [4,5]. In SDMLib, Table Graphs are first
class citizens, i.e. Table Graphs become actually part of the original host graph.
Thus, Table Graphs may be further analyzed and extended with the help of
other graph transformations. Similarly, a set of predefined graph transformations
may be used to filter Table Graphs or to extend a Table Graph with additional
columns or to derive new Table Graphs from existing ones or to do some attribute
computations. In addition, Table Graphs may be exported as HTML tables or
as CSV files for use in web pages or in spreadsheet programs, respectively.

This paper outlines the graph structure of Table Graphs, how to specify typ-
ical graph transformations on Table Graphs and some predefined graph trans-
formations frequently used on Table Graphs and some export functionality.

Table Graphs 223

2 Background: SDMLib Graph Transformation Rules

As one of the reviewers pointed out, we need to introduce SDMLib graph trans-
formation rules in order to discuss Table Graphs. Thus, this section gives a short
introduction into SDMLib.

Figure 1 shows a graph of a university with some rooms and some students
and some assignments. On this graph we may run the simple graph query shown
in Fig. 2. This graph query matches all pairs of University and Room nodes
connected via a rooms edge. Actually, SDMLib generates a model specific Java
API for the creation and execution of graph rewrite rules. Thus the graph rewrite
rule shown in Fig. 2 is created by the following Java code:

1 public Table findRooms (Un ive r s i ty u) {
2 UniversityPO u1 = new UniversityPO (u) ;
3 RoomPO r2 = u1 . createRooms () ;
4 return u1 . c reateResu l tTab le () ;
5 }

Listing 1.1. Example Graph Query in Java

Line 2 creates the UniversityPO object u1 that is a so-called Pattern Object
that matches host graph objects of type University. In addition, the host graph
object passed as parameter u is provided to the pattern object a match candidate.
Thus, u1 will match u. We call the pattern object u1 bound, cf. the correspond-
ing stereotype in the graphical representation of our graph rewrite rule in Fig. 2.
Line 3 of Listing 1.1 extends the graph rewrite rule with a rooms link connecting
u1 to a new RoomPO pattern object r2. Finally, line 4 of Listing 1.1 calls method
createResultTable() on pattern object u1. (Any pattern node may serve as
pars-pro-toto for the whole pattern.) Method createTable() is discussed in the
next section. Once the graph transformation rule is constructed, it may be ren-
dered as an SVG graphics e.g. with the command u1.dumpDiagram("diag1").

Fig. 2. Example graph query

The operations used to create pattern elements may have additional para-
meters allowing to mark the pattern elements with <<create>> or <<destroy>>
stereotypes, cf. Figs. 5 and 6. In the SVG graphics such elements are rendered

224 A. Zündorf et al.

with green or red color, respectively. (In an earlier version of this paper, we used
a somewhat inconsistent color coding of pattern elements. We have addressed
the corresponding reviewer comments and now adapt the color coding proposed
by Henshin [6].)

In addition, SDMLib allows to group pattern elements into (nested) sub-
patterns. In our graphical representation sub-patters are shown by extra rec-
tangles, cf. Fig. 5. Sub-patterns may have additional stereotypes marking them
as <<optional>> or <<allmatches>> or <<NAC>>. Optional sub-patterns do
not affect the applicability of a graph rewrite rule but allow to handle addi-
tional host graph elements in the area of a core match, if such elements exist.
Optional sub-pattern are rendered as dashed black rectangles with the stereotype
<<optional>>. Allmatches sub-pattern are iterated or amalgamated, i.e. they
match as often as possible. Allmatches sub-pattern are rendered as two stacked
solid black rectangles with the stereotype <<allmatches>>. NAC sub-pattern
represent negative application conditions. NAC sub-pattern are rendered as a
blue solid rectangle with a blue forbidden icon in the top left corner, cf. Fig. 5.

Fig. 3. Table graph meta model

3 Table Graph Structure

In our example, the command u1.createResultTable() generates the Table
Graph shown in Fig. 4. Figure 3 shows the meta model of Table Graphs. Table
Graphs are integrated into (become a part of) the host graphs. A Table Graph
consists of a Table node t0 and Column nodes c1, c2 and Row nodes r3 - r7.
The table content is modeled by Cell nodes c8 - c17. Cell nodes may contain
attribute values or refer to host graph nodes via value edges, cf. nodes c16, c17
and u19, r18, respectively. (Other host graph nodes are omitted for brevity.)
In Fig. 4 the cell nodes show a String derived by the toString() method of the
corresponding host graph node.

Each Row node in our Table Graph represents one match of our example
graph query. Each Cell node represents the match of one node from our graph

Table Graphs 225

Fig. 4. Example table graph (cutout)

query to a node in our host graph. All Cell nodes belonging to the same graph
query node are attached to a Column node via a column--cells link. Ideally, the
Column nodes would refer to the corresponding graph query node, unfortunately,
the graph query nodes are not yet first class citizens of the SDMLib graphs. Thus,
the Column nodes are just marked by running letters A, B, Similarly, the
Row nodes have running numbers 1, 2, This schema has been borrowed
from spreadsheet programs, intentionally. However, this schema also resembles
the structure of relational database tables.

226 A. Zündorf et al.

Fig. 5. Remove empty room rows rule (Color figure online)

Generally, it is pretty common to represent the results of a query as a set
of tuples or as a table. However, by turning the table structure into an explicit
graph structure, the resulting Table Graph becomes a first class citizen of our
SDMLib graph structures and thus we may now run graph rewrite rules on it.
Note, Table Graphs may also be interpreted as a set of morphisms between graph
query nodes and host graph nodes. Thus, Table Graphs also turn such morphism
into a first class graph structure and we may now apply graph rewrite rules on
morphisms.

4 Table Graph Rewriting

The first simple thing you may want to do with a Table Graph is to filter or
remove some matches. The graph rewrite rule shown in Fig. 5 removes all rows r2
(and corresponding cells) that have a cell c3 that refers to a room r4 that does
NOT have a student s5 in it. (The forbidden sign marks a negative application
condition.) (Note, alternatively we might extend our findRooms() rule shown
in Fig. 2 with some application condition excluding empty rooms.)

Similarly, one may use a graph rewrite rule to drop a column (e.g. with a
certain column name). However, our Graph Table class provides a predefined
method withoutColumn(String... colName) that does this job.

More frequently we use rules that extend a table with new columns. The
rule addTopicColumn() shown in Fig. 6 first creates a column node with name
"Topic". In addition it has an iterated sub-pattern that matches all rows r3 of
table t1 and cells c4 with a value link to some room r5. For each sub-match, a
cell c6 with value r5.topic is created and attached to its column and row.

As adding columns with attribute values is a quite frequent task, our Graph
Table class provides method createColumns(String colName, RowLambda l)

Table Graphs 227

that takes a column name and an Java 8 lambda expression as parameter, cf.
Listing 1.2.

1 tab l e . createColumns ("Credits" ,
2 row −> ((Room) row . getCe l lVa lue ("B")) . g e tCred i t s ()) ;
3 t ab l e . createColumns ("Students" ,
4 row −> ((Room) row . getCe l lVa lue ("B")) . getStudents () . s i z e ()) ;
5 t ab l e . withoutColumns ("A" , "B") ;

Listing 1.2. Add Attribute Columns

After adding a "Topic", a "Credits", and a "Students" column and drop-
ping the original columns "A" and "B", we may dump our table e.g. as HTML
table and open it within a browser, cf. Fig. 7. We may also dump the table in CSV
format and import it into a spreadsheet program and e.g. produce a nice pie chart
from the credits column, cf. Fig. 8. Alternatively, we may compute charts directly.
Our Table Graphs also support some spreadsheet functionality, directly, e.g. the
path expression table.getColumn("Credits").getValueSum() computes the
sum of all credits for our example.

Fig. 6. Add Topic Column Rule (Color figure online)

With respect to relational table operations, we might also model a graph
rewrite rule doing a (natural) join of two tables. We leave this as an exercise for
the interested reader.

228 A. Zündorf et al.

Fig. 7. Refined table rendered via HTML

5 Discussion

The idea for Table Graphs stems from the work of Daniel Gebauer [2] and
Johannes Matheis [3] within the PREEvision tool for Electronic Design [1].
PREEvision users had an urgent need for some accounting functionality like
listing all components of a car electric system or sum up their prices or sum up
their weight even in the early concept phase [7]. Similarly, the PREEvision users
needed functionality to sum up the electric current used by a set of electrical
components in order to dimension fuses and wires. To address such functionality,
the PREEvision table engine uses the graphical model to model transformation
language M2ToS presented by Clemens Reichmann [8] in background. First,
Daniel extended model queries with the possibility to annotate its nodes and

Fig. 8. Pie Chart for our example.

Table Graphs 229

attributes to become part of the resulting Table Graph. Then, he added a data
flow oriented graphical notation for filter, projection and aggregation operations.
Similarly, Daniel allows subsequent graph rewrite rules (based on M2ToS [8]) to
operate on intermediate Table Graphs. This Table Graph functionality was very
well accepted by the PREEvision users as it enables them to do frequent jobs
that formerly required some tedious manual programming for data export and
then import into a spreadsheet program and then doing the accounting.

Generally, the idea of reporting the results of a graph query is quite obvious.
In Fujaba and SDMLib we usually did this by creating some kind of marker nodes
within a graph rewrite rule and by connecting the marker node with the matched
host graph node via some edges. Such marker nodes somehow correspond to the
Row nodes of our Table Graphs. Sometimes you have multiple host graph nodes
of the same type within one match. In such cases you want to mark the different
roles of these host graph nodes e.g. by using different edge labels. As Fujaba and
SDMLib are strongly typed, you cannot introduce new edge labels on the fly but
you need to extend the graph schema first. To avoid such efforts, we frequently
used attributed edges which means in our case an edge - node - edge combination
where the middle node carries e.g. a key attribute. In Table Graphs this would
correspond to Cell nodes with a key attribute holding e.g. the column name.
While such marker nodes with attributed edges work perfectly well, they do not
explicitly model that you have a set of matches that share a similar structure,
i.e. that all employ the same set of attributed edges and keys. Within Table
Graphs the Column nodes serve exactly this purpose. Table Graph Column nodes
facilitate a number of column related operations like drop column or add column.
Having an explicit Column node especially facilitates the management of Table
Graphs via graph queries and graph rules.

Formerly, SDMLib did not create the result of a graph query as an explicit
data structure. Instead, we used Java control structures, for example while
(rule.hasMatch()) loops where in each iteration one asked the elements of the
graph query for their current match. While this works in principle we somehow
had the same problems as the PREEvision users that certain accounting tasks
were tedious and were done in plain Java. The real contribution of Table Graphs
is to make the graph query results an explicit graph structure that is open for
the application of subsequent graph rewrite rules.

Within the PREEvision tool, Daniel finally dropped explicit Cell nodes
and connected the corresponding host graph nodes to their rows and columns,
directly. The reason is the huge number of Cell nodes created by matches. You
easily have multiple times the number of Cell nodes compared to the number of
host graph nodes. In SDMLib we did not yet adopt this idea in order to maintain
the Table Graph structure more expli and more direct.

6 Summary

We have introduced Table Graphs as an explicit graph representation of graph
query results. Table Graphs make graph query and graph rewrite rule matches

230 A. Zündorf et al.

an explicit data structure that may be used as input for further graph transfor-
mations. Table Graphs also resemble the structure of relation database tables
and the structure used in spreadsheet programs. Thus, to some extend Table
Graphs are a bridge between graph technology and table technologies and theo-
ries. While this is not rocket science, Table Graphs turned out to be very handy
for quite a number of cases. As it is very simple to add Table Graph concepts
to any graph engine, we propose that any graph engine should provide Table
Graph functionality as it serves very well for many accounting functionalities.

References

1. Muller-Glaser, K.D., Reichmann, C., Graf, P., Kuhl, M., Ritter, K.: Heterogeneous
modeling for automotive electronic control units using a case-tool integration plat-
form. In: IEEE International Symposium on Computer Aided Control Systems
Design, pp. 83–88. IEEE (2004)

2. Gebauer,D.J.: Ein modellbasiertes, graphisch notiertes, integriertes Verfahren zur
Bewertung und zum Vergleich von Elektrik/Elektronik-Architekturen. PhD thesis,
Dissertation, Karlsruhe, Karlsruher Institut für Technologie (KIT) (2016)

3. Matheis, J.: Abstraktionsebenenbergreifende Darstellung von Elektrik/Elektronik-
Architekturen in Kraftfahrzeugen zur Ableitung von Sicherheitszielen nach ISO
26262. PhD thesis, Dissertation, Karlsruhe, Karlsruher Institut für Technologie
(KIT) (2009)

4. Norbisrath, U., Jubeh, R., Zündorf, A.: Story Driven Modeling. CreateSpace Pub-
lishing Platform (2013)

5. Story Driven Modeling Library (2014). http://sdmlib.org/
6. Henshin (2017). https://www.eclipse.org/henshin/
7. Matheis, J., Gebauer, D., Kuhl, M., Reichmann, C., Muller-Glaser, K.D.: Vorstel-

lung einer methodik zur e/e-architekturmodellierung und -bewertung in der fruhen
konzepthase. In: 26. Tagung ’Elektronik im Kraftfahrzeug’ vom Haus der Technik
Essen e.V., Dresden, Germany (2006). Haus der Technik

8. Reichmann, C.: Grafisch notierte Modell-zu-Modell- Transformationen fr den
Entwurf eingebetteter elektronischer Systeme. PhD thesis, Dissertation, Karlsruhe,
Universität Karlsruhe (TH), 2005 (2005)

http://sdmlib.org/
https://www.eclipse.org/henshin/

Author Index

Andersen, Jakob Lykke 54
Anjorin, Anthony 179
Arnould, Agnès 36

Belhaouari, Hakim 36
Bellet, Thomas 36
Born, Kristopher 125, 196

Corradini, Andrea 3, 73

Drewes, Frank 106
Duval, Dominque 3
Dyck, Johannes 142

Echahed, Rachid 3

Flamm, Christoph 54
Fritsche, Lars 179

Gebauer, Daniel 221
Giese, Holger 142, 159
Gill, Kanwal Daud 196
Groner, Raffaela 196

Hoffmann, Berthold 106

Kehrer, Timo 196
König, Barbara 73
Krause, Christian 159
Kreowski, Hans-Jörg 90
Kuske, Sabine 90

Lambers, Leen 125
Le Gall, Pascale 36
Leblebici, Erhan 179
Lye, Aaron 90

Maximova, Maria 159
Merkle, Daniel 54
Minas, Mark 106

Nolte, Dennis 73

Ohrndorf, Manuel 196

Padberg, Julia 20
Prost, Frédéric 3

Reichmann, Clemens 221
Ribeiro, Leila 3

Schürr, Andy 179
Stadler, Peter F. 54
Strüber, Daniel 125, 196

Taentzer, Gabriele 125
Tichy, Matthias 196

Varró, Gergely 179

Weber, Jens H. 209

Zündorf, Albert 221

	Foreword
	Preface
	Organization
	General and Fractional Hypertree Decompositions: Hard and Easy Cases (Invited Talk)
	Contents
	Foundations
	The Pullback-Pushout Approach to Algebraic Graph Transformation
	1 Introduction
	2 The pb-po Transformation of Structures
	3 Relating pb-po with agree and sqpo Rewriting
	4 Constraining the Effects of pb-po Rewriting
	5 The pb-po Transformation of Attributed Structures
	6 Conclusions and Related Works
	References

	Hierarchical Graph Transformation Revisited
	1 Motivation
	2 Extension of the Powerset
	3 M -Adhesive Categories Using Coalgebras
	4 M -Adhesive Categories of Hierarchical Graphs
	5 Transformations of Hierarchical Graphs
	5.1 Hierarchical Graphs
	5.2 Multi-Hierarchical Graphs
	5.3 Bigraphs as an Hierarchy
	5.4 Graph Grouping

	6 Related Work
	7 Concluding Remarks
	References

	Geometric Modeling: Consistency Preservation Using Two-Layered Variable Substitutions
	1 Introduction
	2 G-maps and Their Transformations
	2.1 G-maps
	2.2 Consistent G-map Transformations Using DPO

	3 Rule Variables for Geometric Modeling
	3.1 Graph Transformations with Variables
	3.2 Node Variables for Embedding Computation
	3.3 Orbit Variables for Topological Rewriting

	4 Rule Schemes for Specifying Modeling Operations
	4.1 Combining Orbit Variables and Node Variables
	4.2 Consistency Preservation

	5 Conclusion
	References

	Chemical Graph Transformation with Stereo-Information
	1 Introduction
	2 Molecular Shapes
	3 Model
	3.1 Molecules as Typed Attributed Graphs
	3.2 Transformation Rules and Derivations

	4 Application Examples
	4.1 Stereospecific Aconitase
	4.2 Generation of Stereoisomers

	5 Concluding Remarks
	A Code Examples
	A.1 Stereospecific Aconitase
	A.2 Stereoisomers of Tartaric Acid
	A.3 Non-trivial Stereoisomers

	References

	Graph Languages and Parsing
	Specifying Graph Languages with Type Graphs
	1 Introduction
	2 Preliminaries
	3 Languages Specified by Type or Restriction Graphs
	3.1 Closure and Decidability Properties
	3.2 Closure Under Double-Pushout Rewriting
	3.3 Relating Type Graph and Restriction Graph Languages

	4 Type Graph Logic
	5 Annotated Type Graphs
	5.1 Decidability Properties for Multiply Annotated Graphs
	5.2 Deciding Language Inclusion for Annotated Type Graphs
	5.3 Closure Properties for Multiply Annotated Graphs

	6 Conclusion
	References

	Fusion Grammars: A Novel Approach to the Generation of Graph Languages
	1 Introduction
	2 Graph-Transformational Preliminaries
	3 Hyperedge Replacement Grammars
	4 Fusion Grammars
	5 Properties of Fusion Grammars
	6 Transformation of Hyperedge Replacement Grammars into Fusion Grammars
	7 Conclusion
	References

	Predictive Shift-Reduce Parsing for Hyperedge Replacement Grammars
	1 Introduction
	2 Hyperedge Replacement Grammars
	3 Shift-Reduce Parsing of Strings
	4 Predictive Shift-Reduce Parsing for HR Grammars
	5 Predictive Shift-Reduce Parsability
	6 Comparison with Related Work
	7 Conclusions
	References

	Analysis and Verification
	Granularity of Conflicts and Dependencies in Graph Transformation Systems
	1 Introduction
	2 Preliminaries
	2.1 Graph Transformation: Double-Pushout Approach
	2.2 Conflicting Transformations

	3 The Granularity of Conflicts and Dependencies
	3.1 Conflicting Rules: Considering Different Granularity Levels
	3.2 Relations Between Conflict Notions of Different Granularities
	3.3 Relations of Conflicting Rule Concepts to Critical Pairs
	3.4 Dual Notions for Dependencies

	4 Related Work and Conclusion
	References

	k-Inductive Invariant Checking for Graph Transformation Systems
	1 Introduction
	2 Prerequisites
	2.1 Foundations
	2.2 Formal Model

	3 k-Induction and Symbolic Encoding of Sequences
	4 k-Inductive Invariant Checking
	4.1 Step 1: Separation of Forbidden Patterns
	4.2 Step 2: Construction of k-Sequences and Context Propagation
	4.3 Step 3: Analysis of Sequences

	5 Evaluation
	6 Conclusion and Outlook
	References

	Probabilistic Timed Graph Transformation Systems
	1 Introduction
	2 Probabilistic Timed Automata
	3 Probabilistic Timed Graph Transformation Systems
	4 Modeling
	5 Analysis
	6 Conclusion and Future Work
	References

	Model Transformation and Tools
	Leveraging Incremental Pattern Matching Techniques for Model Synchronisation
	1 Introduction and Motivation
	2 Running Example and Preliminaries
	2.1 From TGG Rules to Operational Rules
	2.2 Delta Propagation via Operational Rules

	3 Using Incremental Pattern Matching Techniques for TGG-Based Model Synchronisation
	4 Correctness of Delta Propagation
	5 Related Work
	6 Conclusion and Future Work
	References

	Henshin: A Usability-Focused Framework for EMF Model Transformation Development
	1 Introduction
	2 Novel Usability-Oriented Features
	2.1 Textual Syntax for Henshin
	2.2 Static Checks
	2.3 Advanced Refactoring
	2.4 Advanced Editing Support

	3 Related Work
	4 Conclusion and Future Work
	References

	GRAPE – A Graph Rewriting and Persistence Engine
	Abstract
	1 Introduction
	2 Graph Rewriting and Graph Transformation Systems
	2.1 Directed, Attributed, and Labeled (DAL) Graphs
	2.2 Graph Transformation Rules

	3 Related Work: Tool Support for Graph Rewriting
	3.1 Visual Tools
	3.2 Textual Tools

	4 The Grape Architecture
	5 A Taste of Grape – Introduction to Programming with Grape
	5.1 Simple Rule Definition and Execution
	5.2 Customizing Matching and Rewrite Semantics
	5.3 Parameters and NACs
	5.4 Transactions
	5.5 Control Structures

	6 Conclusions and Future Work
	References

	Table Graphs
	1 Introduction
	2 Background: SDMLib Graph Transformation Rules
	3 Table Graph Structure
	4 Table Graph Rewriting
	5 Discussion
	6 Summary
	References

	Author Index

