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Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences may vary from year to year, but they all
focus on foundational and practical advances in software technology. The conferences
address all aspects of software technology, from object-oriented design, testing,
mathematical approaches to modeling and verification, transformation, model-driven
engineering, aspect-oriented techniques, and tools.

STAF 2017 took place in Marburg, Germany, during July 17–21, 2017, and hosted
the four conferences ECMFA 2017, ICGT 2017, ICMT 2017, and TAP 2017, the
transformation tool contest TTC 2017, six workshops, a doctoral symposium, and a
projects showcase event. STAF 2017 featured four internationally renowned keynote
speakers, and welcomed participants from around the world.

The STAF 2017 Organizing Committee would like to thank (a) all participants for
submitting to and attending the event, (b) the Program Committees and Steering
Committees of all the individual conferences and satellite events for their hard work,
(c) the keynote speakers for their thoughtful, insightful, and inspiring talks, and (d) the
Philipps-Universität, the city of Marburg, and all sponsors for their support. A special
thanks goes to Christoph Bockisch (local chair), Barbara Dinklage, and the rest of the
members of the Department of Mathematics and Computer Science of the
Philipps-Universität, coping with all the foreseen and unforeseen work to prepare a
memorable event.

July 2017 Gabriele Taentzer



Preface

This volume contains the papers presented at TAP 2017, the 11th International Con-
ference on Tests and Proofs. The TAP conference promotes research in verification and
formal methods that targets the interplay of proofs and testing: the advancement of
techniques of each kind and their combination, with the ultimate goal of improving
software and system dependability. As in the four previous editions, TAP 2017 was
part of STAF (Software Technologies: Applications and Foundations), a federation of
leading conferences in software technology.

TAP 2017 took place in Marburg during July 16–20, 2017. The Program Committee
(PC) received 16 paper submissions, each reviewed by three PC members. After two
weeks of lively discussion and careful deliberation, we selected nine contributions for
inclusion in this proceedings volume and presentation at the conference. The combi-
nation of topics highlights how testing and proving are increasingly seen as comple-
mentary rather than mutually exclusive techniques, and confirms TAP’s commitment to
bringing together researchers and practitioners from both areas of verification.

The program of TAP was nicely completed by a keynote talk by Reiner Hähnle
(Technical University of Darmstadt, Germany), who also contributed an invited paper
for this volume, and a tutorial by Achim D. Bruckner and Burkhart Wolff. We would
like to thank the invited speaker for contributing an exciting presentation to the par-
ticipants of STAF 2017.

We also thank the PC members and the additional reviewers for their timely and
thorough reviewing work, and for contributing to an animated and informed discussion.
Their names are listed on the following pages. The EasyChair system provided flawless
technical support.

The organization of STAF made for a successful and enjoyable conference in a
wonderful location. We thank all the organizers, and in particular the general chair,
Gabriele Taentzer, and the organization chair, Christoph Bockisch, for their hard work;
and we also thank the Technologie- und Tagungszentrum Marburg for hosting us.

July 2017 Sebastian Gabmeyer
Einar Broch Johnsen
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Abstraction Refinement for the Analysis
of Software Product Lines

Ferruccio Damiani1, Reiner Hähnle2(B), and Michael Lienhardt1

1 University of Torino, Torino, Italy
{ferruccio.damiani,michael.lienhardt}@unito.it

2 University of Darmstadt, Darmstadt, Germany
haehnle@cs.tu-darmstadt.de

Abstract. We generalize the principle of counter example-guided data
abstraction refinement (CEGAR) to guided refinement of Software Prod-
uct Lines (SPL) and of analysis tools. We also add a problem decom-
position step. The result is a framework for formal SPL analysis via
guided refinement and divide-and-conquer, through sound orchestration
of multiple tools.

1 Introduction

A Software Product Line (SPL) is a set of similar programs, called variants,
with a common code base and well documented variability [23]. An SPL can
be described by a triple consisting of a feature model, an artifact base, and
configuration knowledge. The feature model defines the set of variants in terms
of features: each feature represents an abstract description of functionality and
each variant is identified by a set of features, called a product. The artifact base
provides language dependent reusable code artifacts that are used to build the
variants. Configuration knowledge connects feature model and artifact base by
describing how to derive variants from the code artifacts given the products.

Tool-based analysis of software [12] is becoming more and more feasible and,
therefore, common. This includes functional verification [1], resource analysis [2],
safety verification [15], information flow [36], deadlock detection [30], to name
just a few. It is still a challenge, however, to lift such analyses from the level of
individual variants to whole SPLs. There are lifting approaches that, by making
analyses and tools variability aware (i.e., to operate directly on the code of the
SPL, not on the code of the variants) work for type systems [24,26] or lightweight
static analyses [17]. For more complex scenarios, such as formal verification,
relatively restrictive assumptions must be made [32] (see also [18,25]). There is no
general theory of lifting software analysis from individual products to SPLs [42].

This work has been partially supported by: EU Horizon 2020 project
HyVar (www.hyvar-project.eu), GA No. 644298; ICT COST Action IC1402
ARVI (www.cost-arvi.eu); Ateneo/CSP D16D15000360005 project RunVar
(runvar-project.di.unito.it); project FormbaR (formbar.raillab.de), Innovationsal-
lianz TU Darmstadt-Deutsche Bahn Netz AG.

c© Springer International Publishing AG 2017
S. Gabmeyer and E.B. Johnsen (Eds.): TAP 2017, LNCS 10375, pp. 3–20, 2017.
DOI: 10.1007/978-3-319-61467-0 1
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An alternative to making the analyses and the tools variability aware, is to
generate, for a given SPL, a meta variant or variant simulator (see, e.g., [45]).
This is an artifact, expressed in the same language as the variants are written in,
that takes as input any product and simulates the behavior of the corresponding
variant. A meta variant has the advantage that it can be analyzed with standard
tools for the implementation language of its variants. To ensure that this app-
roach is efficient, variability encoding (i.e., the process of transforming an SPL
into a meta variant) must avoid to duplicate code that is common to different
variants. Depending on the given SPL, its meta variant can be significantly more
complex than any of the variants, challenging the capabilities of available tools
[43]. Indeed, it has not yet been demonstrated that variability encoding provides
a scalable approach to family-based analysis of large SPLs.

In this paper we present a novel and systematic approach that permits to
apply software analyses to the meta variant of an SPL. We take our cue from
Counter Example-Guided Abstraction Refinement (CEGAR) [22], a well-known
and highly successful verification strategy to handle programs that are too com-
plex to be verified directly. We generalize the CEGAR principle to guided refine-
ment of SPLs and of analysis tools. We also add a problem decomposition step.
The result is a framework for formal SPL analysis via guided refinement and
divide-and-conquer, through sound orchestration of multiple tools.

Paper Organization. In Sect. 2 we briefly recall the main approaches to imple-
ment SPLs and introduce the running example of the paper. In Sect. 3 we recall
the CEGAR principle and explain our proposal to generalize it to the refinement
of SPLs and of tools. In Sect. 4 we recap the workflow of the running example
and outline how our framework can be instantiated to other scenarios. In Sect. 5
we discuss related work and in Sect. 6 we conclude.

2 Implementation of Software Product Lines

Currently, there exist three main approaches to implement SPLs [40]: annotative
approaches expressing negative variability (all variants are represented by a sin-
gle artifact); compositional approaches expressing positive variability (features
are associated to artifacts, possibly describing refinements to a base artifact);
and transformational approaches expressing both positive and negative variabil-
ity (feature combinations are associated to artifacts describing changes to a base
artifact to obtain other system variants).

A prominent example of an annotative approach is based on C preprocessor
directives (#define FEATURE and #ifdef FEATURE). Delta-Oriented Program-
ming (DOP, see [13,38] and [6, Sect. 6.6.1]) is a flexible transformational app-
roach in which the artifact base consists of a base program (that might be empty
or incomplete) and of a set of deltas, which are containers of modifications to a
program (e.g., for Java programs, a delta can add, remove or modify classes and
interfaces), while configuration knowledge associates to each delta an activation
condition over the features and specifies an application ordering between deltas.
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Fig. 1. Visual representation of the feature model of the Bank Account SPL example

Fig. 2. Base program

DOP supports the automatic generation of variants based on a selection of
features: once a user selects a product, the corresponding variant is derived by
applying the deltas with a satisfied activation condition to the base program
according to the application ordering. DOP can be seen as a generalization of
Feature-Oriented Programming (FOP) (see [11] and [6, Sect. 6.1]), a composi-
tional approach to SPL implementation, where deltas correspond one-to-one to
features and do not contain remove operations [39].

Our running example is a simple product line modeling a bank with different
features, depicted in Fig. 1. The feature Single Account (or SA) associates one
account with each client of the bank, while feature Multiple Account (or MA)
allows a client to maintain several accounts. Finally, the feature Logging adds
logging capabilities to the banking operations. Features SA and MA are alternative
(i.e., exactly one of them must be selected), while feature Logging is optional.
The code base of our example, presented in Figs. 2, 3, 4 and 5, is written in the
modeling language ABS [35], which realizes DOP.

Figure 2 contains the base program that implements the core functionali-
ties of our example. The data type Operation describes the possible banking
operations, Withdraw and Deposit, respectively for withdrawing or depositing a
specified amount. The Client class is empty, as its content depends on whether
feature SA or MA is selected, while the Account class, that implements an account,
simply stores the balance of the account.

The Bank has a list of clients and declares three methods: applyOperation
performs a banking operation in the bank, without any check; newOperation
is a wrapper around applyOperation that executes some checks in case the
operation is a withdrawal of a large amount of money; finally, checkAccounts
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Fig. 3. Delta for the SA feature

Fig. 4. Delta for the MA feature

performs the checks and is not part of the base program, as its implementation
entirely depends on the selected features.

Figure 3 presents the delta dSA implementing the SA feature. Here, the class
Client is defined, and simply contains an account (with a getter method). The
method checkAccounts of the class Bank is also implemented, and simply iter-
ates over all the accounts of the bank, to ensure that its overall balance is big
enough to allow the requested withdrawal.

Figure 4 presents the delta dMA implementing the MA feature. Here, the class
Client contains a list of accounts. The implementation of the checkAccounts
method still iterates over all the accounts of the bank to check that its overall
balance is large enough, but to do so, it now contains an inner loop that iterates
over all the accounts of a client.

Figure 5 contains the delta dLog that implements the feature Logging. This
delta redefines the method newOperation of the class Bank, surrounding the
original implementation (modeled with the keyword in place of the
method call) with two calls to print. These calls simply register which operation
was requested and whether it was performed.
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Fig. 5. Delta for the Logging feature

Finally, the configuration knowledge required to describe the Bank Account
SPL is straightforward and we omit the corresponding ABS declaration—it sim-
ply specifies that each delta is activated exactly by the feature that it realizes
(since for each product applying the activated deltas in any order yields the same
variant, no application ordering needs to be specified).

3 Counter Product-Guided Refinement

3.1 Counter Example-Guided Abstraction Refinement (CEGAR)

Assume we want to establish that a property P holds for any run of a program
m with an analysis tool t, denoted by m �t P . For example, m could be an ABS
program, P a safety property saying that certain bad states are unreachable, and
t might be a model checker: it can happen that m �t P cannot be established
because t times out or runs out of memory.

To render verification feasible, the CEGAR verification strategy (illustrated
in Fig. 6) executes t not with m, but with an abstraction of m, written A(m):
for example, all datatypes are initially abstracted to booleans which greatly
reduces the number of reachable states. Note that the chosen abstraction must
be sound in the sense that A(m) preserves all possible behaviors of m. Now we
can assume that the—simplified—problem A(m) �t P terminates. If A(m) �t P
holds, then also m �t P holds (because the abstraction is sound) and we are
done. If A(m) �t P doesn’t hold, then we extract a counter example, i.e., an
input c of m such that A(m)(c) violates P . If m(c) violates P as well, then
the counter example exhibits a real bug of m and we are done (i.e., we can try
to fix the bug and restart the process). If m(c) does not violate P , then we
use c to refine A to a more precise abstraction A′ so that A, (m)(c) does not
violate P , and we re-enter the CEGAR loop with the refined abstraction.1 A
concrete example of a CEGAR-style refinement is presented below in Sect. 3.3.

1 This abstract description of CEGAR leaves many issues open: how to make sure that
the refinement loop terminates? How to select a counter example? How to compute
the refinement? On each of these questions a considerable literature exists, but this
is not the focus of this paper.
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Fig. 6. Work flow of CEGAR

3.2 Counter Example-Guided Product Line Refinement (CEGPLR)

In the context of Software Product Lines, another kind of refinement can be
considered: CEGAR looks at one program at a time and performs refinement
on that program’s data abstraction, however, Software Product Lines add the
dimension of having to analyze different program variants at the same time. We
observe that the meta variant of an SPL is compatible with the CEGAR app-
roach in the following sense: A meta variant of an SPL by definition encompasses
the behavior of each of its variants. Hence, a meta variant constitutes a behav-
ioral abstraction of each variant or set of variants of a given SPL. Consequently,
a meta variant might be refined to the behavior embodied in any subset of its
variants.

For instance, the SPL presented in Sect. 2 defines four different variants iden-
tified by the four following products: {Bank, SA}, {Bank, SA, Logging}, {Bank, MA}
and {Bank, MA, Logging}. In this context, one can apply a CEGAR-like iteration
to the SPL: first one runs an analysis tool t on an abstraction that comprises all
variants. If t succeeds then, as with CEGAR, we are done. Otherwise, a counter
example consisting of an input c and a subset of the variants exhibiting the error
for c can be extracted. This triggers a decomposition step that consists of split-
ting the input SPL into two parts: one that has c as a possible counter example,
and one that has not. Both parts can then be analyzed independently, as they
don’t exhibit the same behavior. If the part where c is no counter example has
no other counter example, then that part of the SPL is verified.

To illustrate this approach to Product Line Refinement with a concrete exam-
ple, let us consider the Bank SPL presented in Sect. 2, simply called L from now:
assume we want to ensure the property P stating that the execution time of the
newOperation() method is at most linear in the number of accounts in the bank.
The analysis tool we consider is SACO [2], which is a state-of-art cost analysis
tool that abstracts every non-boolean datatype by its size.

For the abstraction of the variants of an SPL, we use its meta variant, i.e., a
program that contains each behavior in each variant of L (cf. Sect. 1). There are
different techniques to obtain it, and here we use the 150% test model of [29,31]
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Fig. 7. Excerpt of meta variant for the Bank SPL

which is an instance of a sound variability encoding [45]. An excerpt of our
meta variant is depicted in Fig. 7. The first two lines encode product selection
and what a valid product is. The third line relates the code delta dLog to the
feature Logging. This has to be completed for the remaining features and is not
necessarily one-to-one like here. The meta variant selection mechanism can be
seen in the method newOperation(). When the logging delta is requested, then
the main condition executes the code from Fig. 5, otherwise the core product
version of the method is executed (that version is stored in a new method with
a new name, to disambiguate the calls).

Running SACO on our meta variant yields an interesting result: it validates
the property P when the feature MA is not selected, but fails to prove it when
MA is selected. An analysis of the obtained counter example shows that during
its abstraction step, SACO replaced lists by integers corresponding to their size,
thus ignoring essential information about the accounts when the feature MA is
activated, as these are stored inside a list of lists. In the following decomposi-
tion step the meta variant is split in two parts. The first of these contains all
variants that do not have the behavior required by feature MA. We write this
as L[{SA}, {SA, Logging}] and call it a partial meta variant. SACO guarantees
that its two variants validate P . The second partial meta variant, where MA is
activated (written L[{MA}, {MA, Logging}]), does not have this guarantee. Of it
we know that to prove P , we must not abstract away the list of lists structure.

The general form of a partial meta variant is L[F1, . . . , Fn] where L is the
SPL from which the meta variant is generated and F1, . . . , Fn are the products
of L available in this meta variant.

We can now define (illustrated in Fig. 8) a CEGAR-like loop for refining and
decomposing a Software Product Line. The loop is started with the (full) meta
variant of the input SPL, i.e. initially F̄ = F1, . . . , Fn are all the products of
the SPL. Note that we work with an abstraction A(L[F̄ ]) of the meta variant,
implying that standard CEGAR and SPL refinement can be interleaved.
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Fig. 8. Work flow of CEGPLR

Like before, if we manage to verify the property, then we are done. If not, then
the counter example does not only consist of a concrete input c, but also of a set
of products F̄ ′ exhibiting this counter example. Like in CEGAR one checks now
whether the counter example is real: we test it against the partial meta variant
L[F̄ ′]. If L[F̄ ′](c) violates P , we found a bug. Otherwise, we attempt to refine
the current meta variant L[F̄ ] into L[F̄ \ F̄ ′], i.e., we assume that the selected
features were critical for the counter example to manifest itself, and, therefore
exclude them.2 If we manage to verify at some point A(L[F̄ \ F̄ ′]) �t P for some
F̄ ′ ⊆ F̄ , then we have refined the original verification problem to L[F̄ ′]. We call
this process counter example-guided product line refinement (CEGPLR).

In fact, CEGPLR goes beyond CEGAR, because it provides not only a prob-
lem refinement, but also a problem decomposition (into L[F̄ ′] and L[F̄ \ F̄ ′]).
Therefore, it is a combined abstraction refinement and divide-and-conquer
approach.

3.3 Tool Refinement

Existing CEGAR-like approaches work with a single verification or analysis tool,
for example, a model checker or symbolic execution, but this constitutes no
principal limitation. In fact, there is growing evidence that huge efficiency gains
can be obtained from systematic combination of different analysis tools [5,14,20].
One can even hypothesize that only the systematic combination of different tools
and methods will make it feasible to attack complex problems [12]. Hence, in
addition to abstraction and product line refinement, we suggest tool refinement.
This term is justified, as long as the refined tool analyzes at least as many
behaviors as the old one.

In Fig. 9 we present yet another variant of the CEGAR loop (Fig. 6), this time
based on tool refinement. The difference lies in the analysis of the failed proof.

2 This is a coarse-grained refinement step. Alternatively, one could branch into |F̄ ′|
many refinements of the form L[F̄ ′′] with F̄ ′′ ⊆ F̄ ′.
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Fig. 9. Work flow of CEGTR

Instead of looking for ways to refine the abstraction A or the partial meta variant
L[F̄ ], we now look for a verification tool t′ that refines the analysis performed
by t in a manner such that A(L[F̄ ]) �t′ P (or a refinement thereof) becomes
provable. Obviously, this is in general a step that requires deliberation by an
expert, in contrast to CEGAR, where abstractions are computed automatically.
Nevertheless, it is beneficial: (i) one obtains guidance in choosing an appropriate
tool, (ii) behavioral refinement of the tools preserves overall soundness, and
(iii) the input and instrumentation of tool t′ can be obtained from A and L[F̄ ].
The third point is, in principle, automatable.

We illustrate tool refinement with our running example. In the previous
section, SACO failed to analyze the partial meta variant L[{MA}, {MA, Logging}]:
SACO abstracted away lists into integers, and was unable to find a bound for
the nested loop in dMA (Fig. 4). SACO can, in principle, deal with nested loops,
but it has limited support for reference types (like lists) which are abstracted
by their size. For this reason, the tool doesn’t know enough about the structure
of type List<IAccount> to perform the analysis. The tool also cannot express
separation conditions (e.g., that the Account objects in a list are unaliased).

The abstraction of SACO cannot be further refined and we did the product
line refinement already, so the only possibility now is to refine the tool. In the
paper [3] a formal link between resource analysis tools and formal verification
tools is described. This makes it possible to use a formal verification tool such
as KeY [1] to reason about resource properties. Of course, KeY is an interactive
tool and might require input from a verification expert. But thanks to product
line refinement, we managed to reduce the problem already. In addition, all the
invariants derived by SACO are automatically imported into KeY, such that
only the additional annotations to prove the correctness of the meta variant
L[{MA}, {MA, Logging}] need to be supplied. A further reason to use the KeY
tool in the experiment is that it can be instrumented with user-defined data
type abstractions [46].

We first attempt to prove A(L[{MA}, {MA, Logging}]) �KeY P , where A is
the abstraction embodied in SACO. As A still abstracts the inner Account lists
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away, this fails in KeY as well, but now we can again enter the CEGAR loop
and refine the abstraction, based on the analysis above: we now model lists pre-
cisely, but we can still abstract completely away from Account. With this new
abstraction, denoted A′, the statement A′(L[{MA}, {MA, Logging}]) �KeY P was
successfully proven. Note that A′ simplifies the verification problem consider-
ably compared to the normal KeY verification workflow, because, in contrast to
CEGAR, KeY is usually started with no abstraction at all.3 The integration of
KeY into a CEGAR framework allows KeY to profit from a previously computed
abstraction.

3.4 Other Abstractions

Behavioral Abstraction. CEGAR is based on datatype refinement, but with SPL
and tool refinement we introduced behavioral refinement already. Therefore, it
is natural to look at further possibilities for the behavioral abstraction of a given
program. For example, if we are interested in deadlocks (i.e., we are out to prove
deadlock-freedom), it might be useful to abstract a program away to merely its
call and synchronization points and completely ignore datatypes.4 Even more
drastic abstractions, e.g., occurring in type-based analyses [30], abstract com-
pletely away from object creation. This fits perfectly well into our framework.
We simply extend the meaning of A to include behavioral abstractions as well.

Property Abstraction. It is also possible to abstract or refine the property to be
proven. Please note that both directions can be useful. If we have proven P ,
by abstraction soundness, we have also proven A(P ). In this case, it might be
worth trying to prove a stronger property. An example of a situation, where this
is useful is given in Sect. 4.3 under Formal Verification.

Vice versa, if we do not manage to prove P , a possible strategy is to prove
a weaker property A(P ). For example, in Sect. 3.3 we proved with KeY a linear
bound for L[{MA}, {MA, Logging}]. However, this requires a suitable modifica-
tion of the loop invariant. If we weaken P to prove just termination with no
concrete bound, then it is sufficient to provide termination witnesses for both
loops which are completely straightforward: length(clients)-length(tmp1)
and length(accounts)-length(tmp2), respectively.

4 Abstraction Refinement for Software Product Lines

4.1 An Abstraction Layer in the Analysis of SPLs

In the previous section we proposed two new CEGAR-like loops in the con-
text of static analysis of SPLs: CEGPLR (Fig. 8) realizes SPL refinement and
decomposition, based on the observation that the meta variant of a product line

3 In the standard workflow of KeY abstractions are computed on demand and are
mainly used for loop invariant generation and state merging.

4 Another way to view this is to abstract all data to a single value.
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Fig. 10. SPL implementation with explicit abstraction layer

constitutes a behavioral abstraction of each partial meta variant and, in par-
ticular, of each single product variant; CEGTR (Fig. 9) realizes refinement of
the underlying analysis tool with a tool that can distinguish more behavior. In
addition, it can also be useful to abstract or refine the properties to be proven
and to work with behavioral abstractions (not mere data abstractions) of the
system under verification.

The central role that is played by abstraction and refinement, both data-level
and behavioral, both of the target system and the target property, suggests to
maintain an explicit configuration and abstraction layer when analyzing SPLs
to achieve a clean and flexible separation between the problem space and the
solution space, see Fig. 10. To work out the details and to formalize such an
abstraction layer is the topic of future work.

4.2 Workflow in Abstraction Refinement for SPL

It is worth to recap the workflow of our example in Sects. 3.2 and 3.3: from a
failed attempt to prove a linear worst-case runtime bound with the tool SACO
we decomposed via SPL refinement the problem into two partial meta variants
and showed the desired property for all products in one of them (Sect. 3.2). No
further abstraction refinement in SACO is possible, so the only option (except to
weaken the targeted property) was to refine the tool. The verification tool KeY
offers more precision than SACO. It was instrumented with the data abstraction
of SACO and the invariants computed by it. After a standard CEGAR step,
KeY managed to prove the desired property (Sect. 3.3).

It is worth to note that (i) after the first refinement step, the exhaustion
of other options drove the choice to perform tool refinement and (ii) that the
output of the analysis in the first step provided the instrumentation of the next
tool in the chain. This suggests that our framework is suitable to orchestrate the
combination of static analysis and verification tools that work at different levels
of precision.

For our example, only one refinement loop of each kind was necessary, but this
is not true in general. For example, with a larger product line, after refinement
abstraction in KeY, probably another round of product line refinement makes
sense. It would be premature to speculate about concrete meta refinement loops
while a robust implementation of our framework is lacking, so we refrain from it.



14 F. Damiani et al.

Having said that, it seems a good idea to always attempt to refine and decompose
the product line as much as possible.

4.3 More Usage Scenarios

In the previous section we illustrated our framework with a usage scenario about
resource analysis. In fact, our approach is applicable to a wide range of analy-
ses and we want it to be understood as a general framework for the sound and
systematic combination and orchestration of software analysis tools. To substan-
tiate this claim, we instantiate our framework with three more scenarios. In each
case we assume that we have an SPL over ABS programs specified with DOP
following [21]. While this is not necessary in general, it makes it possible in what
follows to provide concrete examples of analysis methods and tools.

Feature Interference. With feature interference we mean feature interaction
within an SPL that has undesired effects. It is a practically important and
intensely studied problem [34]. Denote with that features f and f ′ from
a given valid product F interfere with each other, for example, they both have
write access to the same memory location. To analyze a given SPL for feature
interference, one may start with an obvious, but coarse abstraction: Assume that
for any method m required to implement f ∈ F and m′ required for f ′ ∈ F ,
such that both m and m′ share a critical resource r, it is the case that m can
never be executed in parallel to m′ (where both m = m′ and f = f ′ is possible).
This is a typically sufficient criterion to exclude feature interference.

As a first verification tool we choose a may-happen-in-parallel (MHP) analy-
sis: the predicate MHP(m,m′) holds for a given ABS program if it contains
methods m, m′ that can possibly be executed in parallel. An efficient over-
approximation of MHP is available for ABS [4]. Now we enter the product line
refinement loop of Fig. 8, where P is the absence of feature interference, t is
MHP, and A the not-in-parallel abstraction of the meta variant L[F̄ ]. As most
features tend not to interact, we can assume that the CEGPLR loop refines and
decomposes the problem into a much smaller partial meta variant L[F̄ ′], where
absence of feature interference was proven for L[F̄ \ F̄ ′].

An analysis of the failed proof for L[F̄ ′] now might show that certain methods
m, m′ actually do interfere, but not in a safety-critical manner. This is not
provable with MHP, but one may use deductive verification with KeY instead. To
this end, one refines P so as to express that for any m, m′ such that MHP(m,m′)
holds, their common resources r satisfy a safety invariant. It is possible to encode
this property in a program logic with the help of self composition [27] and use
KeY to prove it. However, one might abstract away from most datatypes in that
proof, because they are likely to be irrelevant for feature interaction. Hence, we
would instrument KeY to implement a CEGAR loop over symbolic execution
with abstraction [16,46].

Formal Verification. Deductive verification tools (e.g., KeY [1]) as well as safety
verification tools (e.g., CPAchecker [15]) have impressive, yet complementary
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strengths. KeY was used for functional verification of SPL’s using variability
encoding [43], but it quickly becomes very expensive in terms of runtime and
user interaction [19]. This indicates that variability encoding is not a scalable
strategy for formal verification of SPLs.

Instead, one could start formal verification of a property P for an SPL L with
a CEGAR-based safety verification tool [16], where P is abstracted to a weaker
property A(P ) that is expressible in it and the initial program is of the form
Boolean(L[F̄ ]) (where Boolean abstracts all data to booleans). A combination
of CEGAR and CEGPLR decomposes and reduces the problem to a partial
meta variant L[F̄ ′] and computes a refinement A′(L[F̄ ′]) from where no further
progress seems possible. Only then one uses a deductive verification tool such as
KeY, instrumented with A′. Once A(P ) has been shown for some A′′(L[F̄ ′]), one
can perform property refinement from A(P ) to P , followed by further product
line and abstraction refinement loops. This scenario shows that it can make
perfect sense to (i) work with different abstractions for programs and properties
and (ii) not just abstract from a property, but also refine it.

Information Flow. Information flow control is the problem to analyze whether a
program allows an attacker to deduce information about secret values by manip-
ulating its public interface. There is a wide variety of analysis tools and methods
for this problem with complementary strengths: type-based approaches [37] and
lightweight static analyses [33] scale well, even to SPL [17], but yield many false
positives and can only express limited security policies. Deductive approaches
[27,41] are expensive and often require manual annotation. As a consequence,
information flow is a natural usage scenario for our framework and it can be
developed in a similar manner as the previous scenarios.

5 Related Work

There are a number of verification approaches that decompose or transform a
complex analysis problem such that different tools can be used in combination
to solve it. CPAchecker [15] is a flexibly configurable tool framework for fully
automatic verification of safety properties that allows to integrate other tools in
a sound manner. Specifically, Beyer and Lemberger [16] applied CEGAR in the
context of symbolic execution within CPAchecker. However, it is not designed
to express complex functional properties. Ahrendt et al. [20] use the result of a
partial verification attempt of a given program to generate an optimized run-
time assertion checker that only monitors those properties that could not be
proven. Küsters et al. [36] combine static analysis and deductive verification for
information flow proofs: they transform the given program and prove with KeY
preservation of behavior, then use the static analyzer on the simplified program.
This corresponds to manual computation of a suitable program abstraction,
whereas we propagate abstraction refinement. None of these papers is concerned
with the analysis of SPLs.

Clafer [9] is a modeling language that is designed as an extension of Alloy
and has a unified representation of features as well as OO models. It has been
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used to model and analyse Software Product Lines [8], however, it is not directly
connected to executable code.

Batory [10] developed a theory of modular composition and decomposition
of software that has been used also in the context of SPLs and that has been
extended to verification proofs. It is also based on refinement, but requires a
theoretical framework that makes it not straightforward to apply to existing
languages and tools. To the best of our knowledge, it does not contain a CEGAR-
like strategy. Proof composition [44] relies on creating partial correctness proofs
for certain features that are then combined into proofs for a desired product.
However, this approach becomes problematic when properties of feature imple-
mentations depend on each other.

The 150% model technique [29,31] originates from model-based testing and
was then also employed in software analysis, e.g., [7,43]. All of these approaches
are an instance of variability encoding, as classified and formalized in [45].

Bodden et al. [17] lift static analysis of control flow properties from product
variants to software product lines, essentially by a form of variability encod-
ing into a somewhat more expressive static analysis framework. This approach,
however, does not work for more complex properties.

Independently of our work, Dimovski and W ↪asowski [28] recently imple-
mented what seems to be the first product line refinement approach for LTL
model checking. It follows the same pattern as ours, employing a notion of par-
tial meta variant containing all nodes and transitions of the included variants.
Like in our approach, the meta variant is a standard product, in their case an
LTS, that allows to use the SPIN model checker. As we do, upon finding a
spurious counter example, they split the meta variant, with the help of Craig
interpolation.

6 Conclusion and Future Work

In this paper we drafted an SPL analysis framework based on the principle
to perform as much work as possible with lightweight, efficient, and automatic
methods: this means to start analyzing product lines at a high level of abstrac-
tion, possibly with an abstract version of the targeted property. Then we apply
the main lesson behind the CEGAR principle: don’t throw away failed proof
attempts, but carefully analyze the information contained in them to improve
the analysis.

Based on the insight that a meta variant is a behavioral abstraction of each
subset of its variants, we designed a CEGAR-like loop to perform product line
refinement and, made possible through an extensional, feature-based represen-
tation of products, extended it to a divide-and-conquer approach that provides
product line decomposition. Crucially, even when neither CEGAR nor CEGPLR
are successful, this is not the end of the line: one refines the analysis tool and
uses a more precise, but also more heavyweight method, but benefits from the
refinement and decomposition made in the previous steps. Indeed, all four usage
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scenarios we discussed—resource analysis, feature interference, formal verifica-
tion, information flow—offer a variety of analysis tools working at differing lev-
els of abstraction. The concept of tool refinement soundly integrates these tools,
where a CEGAR-style refinement analysis guides the selection of the chosen tool
and helps to instrument it.

Overall, our framework implements a version of the subsidiarity principle in
the realm of software analysis: a subtask should be solved at the highest possible
level of abstraction, with the least expensive method.

CEGAR loops are normally part of a single, fully automated tool, but this is
an unnecessary limitation. Our work shows that manual abstraction refinement
for guiding the selection of a new tool makes perfect sense. Another important
lesson that can be drawn is that it is extremely useful to have tools that can
be flexibly instrumented with data abstraction. This is the case already, for
example, for CPAchecker [15] and KeY [1].

The next step is to provide a robust implementation of our framework, includ-
ing a suitable abstraction layer (see Fig. 10) and to conduct larger case studies.

Acknowledgment. The authors gratefully acknowledge the help of Antonio Flores
Montoya who ran a number of experiments with SACO for us and helped with their
analysis.
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M.W., Viganò, L. (eds.) IEEE 28th Computer Security Foundations Symposium,
CSF, Verona, Italy, pp. 305–319. IEEE Computer Society (2015)

37. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

38. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15579-6 6

http://dx.doi.org/10.1007/978-3-319-33693-0_4
http://dx.doi.org/10.1007/978-3-642-34026-0_15
http://dx.doi.org/10.1007/978-3-540-32004-3_20
http://dx.doi.org/10.1007/978-3-662-54494-5_24
http://dx.doi.org/10.1007/978-3-662-54494-5_24
http://dx.doi.org/10.1007/978-3-642-34026-0_4
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-642-15579-6_6


20 F. Damiani et al.

39. Schaefer, I., Damiani, F.: Pure delta-oriented programming. In: Apel, S., Batory,
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43. Thüm, T., Schaefer, I., Hentschel, M., Apel, S.: Family-based deductive verifica-
tion of software product lines. In: Ostermann, K., Binder, W. (eds.) Generative
Programming and Component Engineering, GPCE 2012, Dresden, Germany, pp.
11–20. ACM (2012)
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45. von Rhein, A., Thüm, T., Schaefer, I., Liebig, J., Apel, S.: Variability encod-
ing: from compile-time to load-time variability. J. Log. Algebr. Methods Program.
85(1), 125–145 (2016)
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Abstract. Information flow analysis models the propagation of data
through a software system and identifies unintended information leaks.
There is a wide range of such analyses, tracking flows statically, dynami-
cally, or in a hybrid way combining both static and dynamic approaches.

We present a hybrid information flow analysis for a large subset of the
C programming language. Extending previous work that handled a few
difficult features of C, our analysis can now deal with arrays, pointers
with pointer arithmetic, structures, dynamic memory allocation, com-
plex control flow, and statically resolvable indirect function calls. The
analysis is implemented as a plugin to the Frama-C framework.

We demonstrate the applicability and precision of our analyzer by
applying it to an open-source cryptographic library. By combining
abstract interpretation and monitoring techniques, we verify an infor-
mation flow policy that proves the absence of control-flow based tim-
ing attacks against the implementations of many common cryptographic
algorithms. Conversely, we demonstrate that our analysis is able to detect
a known instance of this kind of vulnerability in another cryptographic
primitive.

1 Introduction

Information flow analysis models the propagation of data through a software
system. It identifies unintended information leaks to guarantee confidentiality
of information. For instance, secret data are often forbidden from influencing
public outputs [10]. This is an instance of the non-interference property [12]
which states that certain kinds of computations have no effects on others. A more
precise standard property is termination-insensitive non-interference (TINI), i.e.,
non-interference without taking into account covert channels due to termination.

Information flow analyses for ensuring TINI can be static [15,23] or
dynamic [3]. The former examine the source code without executing it, while
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the latter check the desired properties at runtime. Dynamic monitors have nei-
ther knowledge of commands in non-executed control flow paths, nor knowledge
of commands ahead of their execution. Russo and Sabelfeld [21] prove that such
dynamic monitors cannot be sound with respect to non-interference, while being
at least as permissive as flow-sensitive type system à la Hunt and Sands [15].
Flow-sensitivity means that the same variable may carry data of different secu-
rity levels (e.g. secret and public) over the course of the program execution. It
is particularly important in practice in order to accept more programs without
jeopardizing security. This leads to hybrid information flow in which the dynamic
monitors are helped with statically-computed information [19,21]. This paper
describes an analysis in this category.

TINI monitoring was refined by Bielova and Rezk by introducing the concept
of termination-aware non-interference (TANI) [7]. TANI monitors are required
to enforce TINI with the additional constraint that they do not introduce new
termination channels. That is, no information about secret values may be derived
from the fact that the monitored program terminates normally. The authors
prove that hybrid monitors such as ours do enforce this property.

Flows tracked by monitors may be either explicit or implicit. Explicit flows
are propagated through assignments when assigning secret data to a memory
location which therefore becomes secret. Indirect flows are usually propagated
through program control dependencies. For instance, when considering a sensi-
tive variable secret and the code snippet if (secret) x = 0; else y = 1;,
both variables x and y become sensitive because the fact whether secret is
zero leaks to the values of both x and y. In order to detect such a flow at run-
time when executing the then-branch (resp. else-branch), it is required to have
the knowledge of the update of y in the non-executing else-branch (resp. x in
the then-branch). This information is unfortunately not available at runtime: a
static analysis using points-to information [22] is necessary to pre-compute it.

In this paper, we discuss hybrid flow-sensitive information flow analysis for C
programs. In previous work, Assaf et al. demonstrated that indirect flows may
be carried through pointers [1,2]. They proposed a hybrid analysis through a
sound program transformation which encodes the information flows in an inline
monitor to detect TINI (and TANI) violations. A prototype was implemented
as a Frama-C plugin named Secure Flow. The soundness of the program trans-
formation relies on a static analysis in order to compute over-approximations of
written memory locations in some pieces of code. Later Secure Flow was extended
to arrays [4]. One benefit of a transformation-based approach is that it lets end-
users choose their verification techniques: they can verify all execution paths of
the generated program by static analysis, or some individual paths by runtime
verification, or even use a combination of both.

Our contributions are threefold: extending hybrid information flow
analysis for C programs containing many complex constructs; improving
the Frama-C plugin Secure Flow with this extension; and evaluating it
on an open-source cryptographic library by combining static and dynamic
techniques.
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The structure of the paper is as follows. Section 2 gives an overview of Secure
Flow, while Sect. 3 details the recently added features. Section 4 evaluates our
tool on LibTomCrypt, and Sect. 5 describes related work.

2 An Overview of Secure Flow

This paper concerns the design and implementation of a hybrid information flow
monitor in the style of Le Guernic et al. [19] for the C programming language.
In this section we set the stage by describing the underlying Frama-C framework
and the constraints and goals that influenced our design. To make the paper
self-contained, we also discuss the handling of various language constructs of C
in our previous work [2,4].

2.1 Frama-C

Our analysis is implemented as a plugin for Frama-C [17], an open source analysis
and transformation framework for C programs. Frama-C parses the C source code
to build an abstract syntax tree (AST) that represents the input code. After
analyses and transformations, the AST can be pretty-printed to C source code
that can be processed by other tools, or compiled with a C compiler and executed.
Frama-C can be extended with plugins that implement new code analyzers and
transformers.

To ease implementation of analyzers, Frama-C performs some normalizations
of the AST: in particular, side effects can only occur due to assignments, func-
tion calls or assembly code, but not nested inside other expressions as in C.
When needed, the frontend introduces assignments to temporary variables to
hold the values of side effecting operations. In both our implementation and in
the discussion below, we make use of the fact that side effects only occur at
these well-defined places. Another normalization is relevant to our implementa-
tion: the control flow of the logical operators && and || is made explicit by the
frontend by generating appropriate if and goto statements. Finally, all C loop
constructs are normalized into infinite loops of the form while (1) { ... }
containing if statements controlling the loop’s exits via break.

Frama-C supports a rich contract-based annotation language called ACSL
that can express assertions, function pre- and post-conditions, loop variants and
invariants, and other attributes of data types and variables [5]. ACSL annota-
tions are formatted as special comments with a leading @ character. Annotated
programs are thus compatible with all other compilers and analyzers for C that
ignore comments. Plugins may extend ACSL syntax with new kinds of annota-
tions and new predicate symbols. Our plugin uses such custom ACSL annotations
to specify initial information flow labels for variables and to express information
flow policies as assertions to be verified.

Our hybrid information flow analysis needs precise information on the targets
of pointers. For this we rely on Eva [8], a mature abstract interpretation based
Frama-C plugin computing an over-approximation of the values of all variables
in a program. Its results are accessible programmatically through its API.
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2.2 Design Constraints

Our goal was to design an analysis that is as precise as possible while faithfully
preserving the semantics of programs that do not violate the given information
flow policy. The latter constraint was important for choosing the representation
of information flow labels in the instrumented program. A straightforward idea
would be to package each monitored variable x of type T in a structure with its
label, such as:

struct x label { label t label; T x };
However, this would change the sizes of such variables and of compound types
containing such members. As a consequence, programs using C’s sizeof or
offsetof operator would compute different values with and without instrumen-
tation. We therefore chose to completely separate the storage of the program’s
original variables and the label variables introduced by our instrumentation.
Other design goals were related to precision: we track information flow through
pointer-based data structures as precisely as possible. We also track information
flow in structures in a field-sensitive way. For example, we want to keep separate
labels for the members of a structure holding a pair of a public and a private
cryptographic key.

2.3 Security Lattice and Status Annotations

At the time of writing, our analysis uses a simple two-element lattice using the
values 0 (public) and 1 (private). We use the char type for storing the labels
and the bitwise-or (|) operator as the join operator over the lattice. It would
be easy to extend this scheme to support any lattice isomorphic to a lattice of
bit vectors up to 64 bits. More general lattices would require a more complex
combination operator.

Users can use the custom ACSL annotation /*@ private */ (specific to
Secure Flow) to mark declarations of variables that have to be treated as sensitive;
their label variables are initialized accordingly. All other variables are considered
initially public. Custom ACSL annotations are also used to express the intended
flow policy through security annotations at arbitrary program points e. g.,

/*@ assert security status(result) == public; */

Similarly, functions (such as I/O functions) may be annotated with preconditions
requiring their arguments to be public, e. g.

/*@ requires security status(*x) == public; */
int send(char *x);

Such annotations are considered proof obligations to be discharged using
Frama-C’s static analyzers or provers, or to be turned into runtime assertions in
the instrumented program. The predicate symbol security status is an ACSL
extension introduced by Secure Flow: its meaning is unknown to other Frama-C
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tools. To make the meaning explicit, our analysis translates such annotations
into a reference to the corresponding label variable. The resulting predicate can
then be analyzed by other Frama-C plugins as usual.

We do not predefine any flow policy: The policy is to be chosen by the user
and expressed in the form of assertions. However, as an optional tool we provide
a command line flag to ensure that the program’s control flow always depends
only on public information. The intention is to verify the absence of a certain
class of timing-based attacks against cryptographic software. The same policy
may be used to guard against denial-of-service attacks by users able to control
the iteration counts of loops. This policy is implemented by inserting an asser-
tion before every branching statement (if or switch) requiring the condition
expression’s label to be public.

2.4 Overview of Information Flow Monitoring

We briefly summarize the basics of the instrumentation done by Secure Flow.
These operations follow the literature [1,2,4,19].

For every variable x of arithmetic type, we add a label variable x of type char.
These are initialized to 1 (secret) for /*@ private */ annotations, to 0 (public)
otherwise. An expression’s label is obtained by mapping variables to labels and
replacing every operator by the combination operator |. Constants are public
(label 0). Every assignment in the program is instrumented with a corresponding
label assignment, e. g., for x = a + b we add x = a | b.

In a branching statement like if(c) x = 0; else y = 1; the final values
of x and y depend on the path taken and thus on the condition. This is an implicit
information flow. We model it by introducing a label variable pc for the pro-
gram counter context in each branch or loop, initializing it from the conditional
expression’s label (pc = c) and using it in each label assignment controlled by
the branch, e.g., x = 0 | pc. This handles dependencies in the branch that is
actually executed, but the other branch must also be modeled. In the running
example, we therefore add an update y |= pc in the true branch and the same
for x in the false branch. Thus, no matter which branch is taken, all variables
updated in the entire if statement have the implicit flow from the condition
tracked correctly.

Pointers p that can be dereferenced n times are treated by introducing n
corresponding label pointers p d1 to p dn [2]. We maintain the invariant that
whenever p points to some object x, its label pointer p d1 points to x, and
analogously for multiple dereferences. As the number of label pointers depends
on p’s type, pointer type casts are not supported in general. Reads/writes of *p
are instrumented with corresponding label reads/writes of *p d1. If p may refer
to several targets, say x and y, the actual choice of a target at run time may
depend on secret data (e.g., if (secret) p = &x; else p = &y;). An assign-
ment to *p has an information flow from p to all of its targets because inspecting
the targets after the assignment may allow inferences on p and thus the secret
data. We use pointer analysis to resolve a safe overapproximation of the set of
targets and insert appropriate label updates x |= p, y |= p.
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Arrays introduce information flows from indices to any element the index
may refer to [4]. The labels for distinct elements must therefore be shared; we
use a single summary label arr summary to model all elements of an array arr.
Due to sharing, writes to the array must be modeled using monotonically non-
decreasing weak updates of the summary label, e.g., arr summary |= i | v for
an assignment arr[i] = v. Pointers to array elements must be modeled by two
label pointers: One to the array’s summary label and one to the exact array
element, which is needed to preserve the above pointer invariant.

3 New Features of Secure Flow

We now move on to the main contributions of this paper by presenting the way
Secure Flow handles other features occurring in numerous C programs.

3.1 Structures and Unions

Our analysis treats structures in a field-sensitive way: for every struct type s
defined by the program, we define a corresponding label struct type s. The
members of this struct are the labels of the members of s computed in the usual
way; that is, if s has a member m of a pointer type, s has the appropriate number
of label pointer members m di and m di summary. Arrays of structures have a
corresponding summary structure.

We could, in principle, treat C’s union types in exactly the same field-
sensitive way as structs. In practice, there are problems with the precision of
our current implementation: mapping the results of the pointer analysis to our
symbolic lvalue representation may identify too many overlapping fields and thus
track too many information flows that are not present in the actual program.

3.2 Unstructured Control Flow: goto Statements

The use of the goto statement is widespread in systems software written in C:
it is frequently used in functions that check a series of conditions and jump to
cleanup code at the end of the function in case of an error. The goto statement
may also appear in Frama-C’s AST due to some normalizations: Frama-C intro-
duces goto statements to model early returns from the middle of a function,
for continue statements in for loops, and to model short-circuit evaluation of
the logical && and || operators. We must therefore be able to treat programs
with gotos, at least in these restricted forms.

A problem with goto is the propagation of information flows to objects that
might be modified if the branch containing the goto were not taken. This is
similar to the label updates we insert in if statements for the objects modified
in the other branch, but in the case of goto the effects are not local.

Consider the following example:
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x = 1;
if (cond) { goto end; }
x = 0;

end:
return x;

At the return statement, the value of x is 0 iff the value of cond is 0. There
is an information flow from the branch condition, via the goto statement, to x,
whose assignment is skipped when the goto is taken. We instrument this example
as follows:

x = 1;
x = 0 | pc;
pc |= cond | pc;
if (cond) { goto end; }
x = 0;
x = 0 | pc;

end:
x |= pc;
return x;

In general, we handle goto statements by ensuring that the program counter
label captures the condition controlling the goto no matter which path is taken.
We identify the branch controlling the goto and propagate its condition’s label
to all the program counter labels that may be traversed by the jump, including
the label for the goto’s target. In the example, the condition controlling the goto
is cond, and the only block possibly affected has the label pc (containing both the
controlling branch and the jump target). The update pc |= cond | pc performs
the propagation. Now, whether or not the jump is taken, subsequent assignments
in any affected block will take place in a context including the condition’s label.
For the case when the goto is taken, we also insert label updates at the target
statement. These update the labels of any variable whose assignments may have
been skipped by the goto. For simplicity, we just use the set of all variables that
may be modified anywhere in the target block (in the example, only x).

We handle not only goto statements from inner blocks to enclosing ones, but
also from outer blocks into more deeply nested ones. We omit the details, but
they follow the same principles as explained above. Our current implementation
only allows forward gotos, i.e., all goto statements must appear textually before
the corresponding target. This is just an artifact of the particular implementation
strategy we chose, but there are no theoretic difficulties with treating backwards
jumps the same way as forward jumps.

The analysis also handles break and continue statements in a similar way
as gotos: It propagates the program counter label of the branching statement
that controls the jump to the corresponding loop or switch statement.



30 G. Barany and J. Signoles

3.3 Function Calls

Our analysis handles function calls in different ways, depending on whether the
call is direct or indirect (i.e., through a function pointer) and whether the call’s
target has a definition in the same program or is external.

For direct calls to defined functions, we instrument both the caller and the
callee. The function’s parameter list is transformed by adding extra label para-
meters for the original parameters as well as a parameter for the program counter
label of the callee’s calling context. We also add global variables for the labels of
all defined functions’ return values; these labels are assigned before the function
returns. That is, a functionto add two numbers is instrumented as follows:

char add return;
float add(char local pc, float x, char x, float y, char y) {

float sum;
char sum;
sum = x + y;
sum = x | y | local pc;
add return = sum;
return sum;

}
At the call site, the function call is transformed accordingly to pass in all

the required labels. If the function’s return value is assigned to some object,
we insert corresponding assignments from the function’s return label variables
to the target object’s labels. This is the only case we need to handle because
function calls embedded in larger expressions are first transformed by Frama-C
into assignments to temporary variables.

Library functions which do not have definitions in the target program must
be treated separately. ACSL provides a syntax to express the side effects of such
functions using (possibly several) annotations of the form

assigns x1, ..., xn \from y1, ..., ym

meaning that the function may only modify the lvalues x1, ..., xn by using
at most the lvalues y1, ..., ym (but might not necessarily modify all the xi
or use all the yi).

We require such annotations for all functions without visible definitions;
Frama-C includes annotations for the C standard library functions. The analyzer
emits a warning for external functions without annotations and continues with
the (unsound) assumption that the called function has no visible side effects.
If a function is defined but has an assigns annotation, the analyzer trusts the
information from the annotation and does not use its own analysis of the func-
tion’s body to model the function’s externally visible effects. This improves the
analyzer’s efficiency while remaining safe since it is still possible to verify that
the function body satisfies this annotation thanks to other tools (for instance
Eva). Such annotations must be provided for recursive functions.

For a call to an external function with an annotation of
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assigns x1 \from y1,1, ..., yn,1;
...
assigns xk \from yk,1, ..., yn,k;

we insert the corresponding label updates:

x1 |= y1,1 | ...| yn,1 | pc;
...
xk |= yk,1 | ...| yn,k | pc;

This approach works even for functions taking void * parameters, such
as the standard memcpy function, whose assigns annotation expresses that it
assigns bytes in its output buffer from its input buffer. At the call site we use
the points-to analysis to resolve the pointer arguments to the underlying objects
of concrete types and are able to generate well-typed label updates.

However, the approach does not work for functions whose assigns annota-
tions include modifications to pointers. The semantics of assigns is that it
models all assignments that might be performed by the called function. As
we cannot be sure that these assignments will indeed take place, there is not
enough information to insert the label pointer assignments needed to main-
tain our pointer invariants (Sect. 2.4). In such cases the analysis must reject
the input program with an error message. For example, we allow memcpy on
objects of the type struct foo {int a; float b[10];} but not on objects
of the type struct bar {int a; float *b;}. In the latter case, the analysis
would conclude that it is not able to track all the pointer-based flows that may
be performed by the function. However, the practical impact of this restriction is
low: memcpy calls can often be rewritten as assignments if needed, and not many
other standard C functions may have side effects on pointer-based structures.

For indirect function calls, we require that the points-to analysis is able
to resolve the function pointer’s target to a fixed set of candidate functions.
The transformation generates a switch on the function pointer’s value that
dispatches to the appropriate direct function call.

Functions with variable argument lists are not handled directly. Instead we
first invoke another Frama-C plugin named Variadic that transforms variable-
argument functions into functions that take a fixed number of arguments. The
resulting program can then be treated as usual by the information flow analysis.

Finally, functions introduce the issue of visibility of identifiers. Functions may
refer to other functions’ local variables via pointers, as in a call like f(&a). Inside
the function f we must be able to refer to a’s label variable a. By default, we
allocate every variable’s label in the same scope as the original variable. However,
for such locals that may be referenced from other functions (as determined by
the points-to analysis), we make the corresponding label variables global instead.

3.4 Dynamic Memory Allocation

Our information flow analysis has special handling for the dynamic memory
allocation semantics of the standard C functions malloc, calloc, and realloc,
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as well as the free function. These functions operate on pointers of type void *,
which we do not allow in general. However, we do allow them in the context of
dynamic allocation, as long as the type conversions (made explicit as casts by
Frama-C) to or from more concrete types take place immediately at the place of
the function call. Otherwise (e.g., if the program assigns the result of malloc to
a pointer to void and only converts it at a later point), we reject the program.

We can thus obtain the concrete type of the allocated memory buffer. From
the expression specifying the size of the allocation, and knowing the target type,
we can compute the number of allocated elements. We insert calls to calloc to
dynamically allocate the same number of labels of the appropriate types:

float *q = (float *) malloc(42 * sizeof(float));
char *q d1 = (char *) calloc(42, sizeof(char));
char *q d1 summary = ...; // see text below

The information flow in dynamically allocated data structures is thus tracked
via dynamically allocated labels, which allows us to track pointers with maximal
precision. However, there is a problem related to label updates in branches for
dynamically allocated memory areas. Consider the following program:

p = malloc(sizeof (int));
if (...) { *p = 1; } else { ... }
As before, in the else branch we must insert updates for the summary labels

of all objects that may be referenced by p. This is easy if p may only point to
variables (say, x): We can insert an update x |= if pc. However, in the case
where p points to dynamically allocated memory, we have no simple way of nam-
ing and enumerating the correct summary label to insert the necessary updates.
We must therefore introduce an approximation. Our analysis introduces one sta-
tically allocated summary label (i.e., a global variable) per dynamic allocation
site. At each such call site, label arrays are allocated dynamically, but the tar-
get’s summary pointer is pointed to the call site’s shared summary label. The
example above is instrumented as follows:

p = malloc(sizeof (int));
p d1 = calloc(1, sizeof (char));
static char dynalloc site 1 summary = 0;
p d1 summary = &dynalloc site 1 summary;
if pc = cond | global pc;
if (cond) {

*p = 1;
*p d1 = 0 | if pc;

} else {
dynalloc site 1 summary |= if pc;
...

}
This approach thus introduces aliasing between the summary labels of differ-

ent buffers allocated at the same site. Raising the information flow label of one
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object allocated at a certain call site automatically raises the labels of any other
object allocated at the same site. In the extreme, if a program contains only a sin-
gle static allocation site (e.g., because it uses a wrapper function around malloc),
all dynamically allocated objects share one summary. This is a source of impre-
cision in our current implementation.

The simplest way to resolve this issue is to turn an allocation site that may
be used in different contexts into explicitly different allocation sites. This could
be done by automatic inlining of functions performing dynamic allocation. In our
experiments with cryptographic software, we manually duplicate an allocation
function, introducing a special variant for the allocation of secret keys.

3.5 Summary of Restrictions

We briefly summarize the restrictions on input programs that can be analyzed
by Secure Flow.

– Most kinds of type casts between pointer types are forbidden; casts to and
from void * related to dynamic memory allocation are allowed, as are casts
between void * and character pointer types.

– The program must contain assigns annotations for all external functions
(provided by Frama-C for the C standard library) and recursive functions.

– Calls to external functions may not have side effects on pointers, but may
have side effects on their targets.

– No backwards jumps with goto are allowed (this is only an artifact of the
current implementation).

– The analysis is imprecise (i.e., overly conservative) if logically separate mem-
ory areas are allocated at the same call site of malloc. This can be avoided
by inlining/specializing functions that perform dynamic allocation.

Overall, these conditions do not impose disproportional restrictions on well-
written systems code, as long as the entire program is available for whole-
program analysis, or annotated with assigns annotations for the missing parts.

4 Evaluation

We evaluate our hybrid information flow analysis by checking an information
flow policy to protect against timing attacks on a cryptographic library. This
verification also illustrates one of the main benefits of our hybrid approach:
combining static and dynamic verification.

4.1 Background on the Chosen Flow Policy

Timing attacks and other side-channel attacks are an important class of vulner-
ability in the implementations of cryptosystems; a recent article by Genkin et al.
gives a good overview of a wide range of techniques and targets [11]. The class
of timing attack that interests us is caused by conditional branching on data
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derived from the cryptosystem’s secret key. This type of vulnerability typically
occurs in asymmetric (also known as public-key) cryptosystems such as RSA,
where the core of the algorithm loops over the bits of the secret key and decides
based on the value of each bit which mathematical operation to perform.

In general, the two branches of an if statement take different amounts of
time, and an attacker who is able to measure a cryptographic operation’s execu-
tion time may use this to deduce information about the secret key. Such attacks
are known against implementations of several cryptosystems in common use,
including both RSA and elliptic curve cryptography [6,11]. Even if timing dif-
ferences cannot be measured directly, attackers on the same machine may be
able to observe instruction cache misses that allow them to deduce the same
kind of information [20].

We therefore chose a flow policy forbidding control flow based on secret infor-
mation; this is a useful property to verify on real-world cryptographic code. We
note in passing that there are also timing attacks based on the order of accesses
to lookup tables and the corresponding data cache misses. These are independent
of control flow and outside of the scope of our current analysis.

In the following sections we discuss our analysis of the cryptographic imple-
mentations in the LibTomCrypt library (http://www.libtom.org/).

4.2 Symmetric Cryptosystems

LibTomCrypt includes implementations of 14 different symmetric cryptosystems.
This class of system typically works by breaking the input into fixed-sized blocks,
then performing permutations and substitutions of the bytes in each block based
on look-up tables indexed by the key and a loop counter. The number of oper-
ations per block is fixed by the algorithm, and the number of blocks to be
processed depends only on the length of the message (which we do not consider
secret information). Thus we did not expect to find timing attacks against this
class of system. As these programs are safe with respect to our flow policy, they
are a good test to ensure that our analysis does not introduce imprecisions.

We use a separate driver program for each of the cryptosystems. The driver
calls LibTomCrypt’s initialization routines for the given system, then encrypts 10
megabytes of random data, decrypts the encrypted data, and quits. We perform
whole-program analysis, applying Frama-C to each driver program and the entire
LibTomCrypt source code. However, the (fixed) key and data to be encrypted
are not exposed to Frama-C to avoid the possibility that Eva specializes its results
to a given key or input.

Our analyzer was able to instrument and analyze all of the programs with
only one significant change to LibTomCrypt: the internal states of all the differ-
ent systems are stored in a union, only one member of which is used at a time.
As discussed in Sect. 3.1, our analysis is currently unable to analyze accesses to
unions precisely. We therefore changed the type of this union to struct. After
this change, we can successfully instrument each of the 14 different symmetric
cryptosystems. On the instrumented program, Eva successfully statically verifies

http://www.libtom.org/
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for each of the systems that the flow policy is satisfied, i.e., no branch condition
in the program depends on the key.

We next turned to dynamic analysis of the instrumented programs to evaluate
instrumentation overhead. We compiled both the original driver program and
the program instrumented by our hybrid information flow analysis with GCC
version 4.8.4 at optimization level -O2 and ran them on an Ubuntu Linux system
on an 8-core Intel Core i7 CPU clocked at 2.30 GHz. Table 1 shows the execution
times of the programs in seconds. We ran each program five times and report the
median of the runs. We report execution times of the original program and the
instrumented version in seconds as well as the slowdown due to instrumentation.

Table 1. Execution time of symmetric cryptographic algorithms with and without
instrumentation and with additional E-ACSL instrumentation.

Program Original Instrumented Slowdown +E-ACSL +Slowdown

aes 0.11 s 0.33 s 3.0× 6.87 s 20.8×
anubis 0.13 s 0.36 s 2.8× 6.84 s 19.0×
blowfish 0.19 s 0.44 s 2.3× 6.99 s 15.9×
cast5 0.26 s 0.50 s 1.9× 8.46 s 16.9×
kasumi 0.42 s 0.76 s 1.8× 11.24 s 14.8×
khazad 0.15 s 0.33 s 2.2× 7.26 s 22.0×
kseed 0.30 s 0.53 s 1.8× 7.60 s 14.3×
noekeon 0.22 s 0.41 s 1.9× 6.69 s 16.3×
rc2 0.42 s 0.61 s 1.5× 7.42 s 12.2×
rc5 0.15 s 0.35 s 2.3× 7.76 s 22.2×
rc6 0.18 s 0.36 s 2.0× 7.41 s 20.6×
saferp 0.28 s 1.97 s 7.0× 27.66 s 14.0×
twofish 0.15 s 0.36 s 2.4× 6.97 s 19.4×
xtea 0.30 s 0.47 s 1.6× 7.04 s 15.0×

Slowdowns for most of the programs are below or near a factor of 2. This is the
order of magnitude we expected, inserting one or more assignment statements
for every assignment in the program. We have not yet been able to determine
the reason for the large slowdown factor of 7.0 for the one outlier, saferp.

The last two columns in Table 1 show the additional instrumentation over-
head when using Frama-C’s E-ACSL plugin [18]. Indeed Eva proves all secu-
rity assertions, but must leave some memory safety properties unproved due to
approximations made during the analysis. E-ACSL instruments the program to
dynamically monitor accesses to memory blocks to ensure memory safety at run-
time. This is needed because the correctness of the information flow analysis is
only guaranteed if the program is memory safe. We report the absolute execution
time in seconds for each benchmark instrumented with information flow tracking
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and memory safety monitoring. The last column shows a slowdown of 10 to 20
which is typical of this monitoring for E-ACSL version 0.8 [24].

The table does not show the memory use of the programs, which behaves
fairly regularly: All of the original programs use about 32 MB as they are linked
statically to the same library containing the lookup tables for all the different
algorithms, and to the same buffer of random input data. These programs do
not use dynamic memory allocation. For the instrumented programs memory
use increases to about 52 MB, a factor of 1.6. This, too, is as expected: These
algorithms perform byte-oriented processing, and we currently monitor each byte
in the various byte arrays and lookup tables with a 1-byte label of type char.
That is, we essentially double the memory used by monitored data. The relative
overhead would be smaller for programs that mainly use larger types than char.
With E-ACSL, memory use grows to about 190 MB, an additional factor of 3.7.

This combination of Eva and E-ACSL demonstrates the ability of our hybrid
approach to combine static and dynamic analyses. Here Eva proves the security
assertions, while E-ACSL validates at runtime the remaining safety properties.
Both together ensure that our programs are safe with respect to our flow policy.

4.3 Elliptic Curve Cryptography

As a representative of the class of public-key (asymmetric) cryptosystems, we
chose to analyze LibTomCrypt’s implementation of elliptic curve cryptography
(ECC). The library offers two implementations of the underlying algorithm: one
of the implementations is known to be faster but vulnerable to timing attacks,
while the other is claimed to be resistant to timing attacks. The vulnerable
operation is the multiplication of a point on an elliptic curve with a scalar in
the function ltc ecc mulmod. The scalar k is part of the system’s private key.
In a loop, the function inspects k’s bits one by one and, depending on its value,
performs some arithmetic or continues to the next loop iteration.

Elliptic curve operations must be done on multiple-precision integers.
LibTomCrypt is able to use one of several multiple-precision arithmetic libraries;
we chose its sister project LibTomMath. Again, we perform whole-program
analysis using Frama-C on a driver program, the LibTomCrypt library, and
LibTomMath. Some rewrites were needed to make it possible to analyze this sys-
tem with our information flow analyzer. The biggest change concerned LibTom-
Crypt’s interface to its math library, which needlessly uses void * pointers
throughout to refer to multiple-precision integers. As discussed in Sect. 2.4, our
analysis cannot deal with such programs. We manually changed the types in this
internal interface to the concrete type of LibTomMath’s integers.

For the information flow analysis we also had to be able to label the private
ECC key as secret. In LibTomCrypt all integers are allocated by the mp init
function, which calls malloc. Due to the context sensitivity problem described
in Sect. 3.4, all integers share the same dynamic allocation summary label, thus
marking the secret key as secret would trivially make every number secret. To
avoid this we duplicated mp init as mp init secret and used this variant to
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allocate the numbers in the secret key. As the malloc call site is no longer shared,
this version no longer suffers from the false sharing issue.

We also had to change a few places where backwards jumps with goto state-
ments were used to implement loops. In all cases we were able to rewrite the
code to avoid using a goto. We added ACSL annotations of the form

assigns result->dp[..], result->sign \from
a->dp[..], a->sign, b->dp[..], b->sign[..]

to some of the basic mathematical functions in LibTomMath (addition, subtrac-
tion, multiplication) to speed up Eva. These annotations express that the sign
and digits (dp) of the result of such an operation depend only on the sign and
digits of the operands. Finally, we simplified code for parsing serialized ECC
keys. The code was in principle analyzable, but its complexity caused unneces-
sary slowdowns in Eva, hindering our experiments.

After these changes, we were able to apply our program transformation.
Subsequent static analysis using Eva has shown that the flow policy is indeed
violated: The secret label is propagated from the secret key to a conditional
branch as discussed above. We can thus confirm the known timing vulnerability.

However, our analysis also found essentially the same bug in the variant of
the ltc ecc mulmod function that is claimed to be resistant to timing attacks by
performing the same amount of work on different branches that depend on secret
information. We give a simplified description of this implementation. Depending
on a variable i (the next bit of the key, 0 or 1) and another 0–1 variable mode
derived from i, the code performs a conditional branch and executes either
a call ecc ptdbl(M[i], M[i]), doubling some value M[i] and storing it back
into M[i], or ecc ptdbl(M[1], M[2]), doubling M[1] and ignoring the result by
storing it into a dummy location M[2]. This is in violation of our flow policy, as
the conditional branch on secret data remains in the program. We believe that
this implementation may give a false sense of security in the light of cache-based
attacks, and that it should be replaced by a version that does not suffer from
this problem [6, Sect. 3].

A possible solution is to replace the branch on i and mode by a lookup table
to determine the arguments for the function call. The following variant of the
computation sketched above is correctly accepted by our static analysis without
raising an alarm about secret-dependent control flow:

int i1_tbl[2][2] = {{1,1},{i,i}}, i2_tbl[2][2] = {{2,2},{i,i}};
ecc_ptdbl(M[i1_tbl[mode][i]], M[i2_tbl[mode][i]]);

For dynamic analysis, we use a test program that performs 3000 repetitions
of the basic ECC operation ecc shared secret. The original program executes
in 0.73 s (median of five runs), using 1400 kB of memory. We run the dynamic
analysis with instrumentation to propagate labels, but without aborting the pro-
gram on policy violations (which would happen instantaneously). With instru-
mentation, execution time increases to 4.71 s (6.5×) and memory use to 1553 kB
(1.1×). The current version of E-ACSL does not scale well to programs of several
hundreds of thousands of lines of code, so we did not run it on this benchmark.



38 G. Barany and J. Signoles

5 Related Work

As mentioned before, this paper is based on work by Assaf et al. [1,2] and
Barany [4] which focused on sound hybrid information flow analysis of a subset
of C including pointers, arrays and pointer arithmetics. We extend this work
to a larger subset of C including structures, unstructured control flow, indirect
function calls and dynamic memory allocation.

There is an abundant literature on information flow analysis. However, as far
as we know, there is no hybrid information flow analysis that handles a subset
of the C programming language as large as ours. To our knowledge, the only
approaches that handle real-world programs target JavaScript [13,16].

First, Kerschbaumer et al. [16] handle JavaScript’s arrays, structures,
unstructured control flow and function calls. However, the details are omit-
ted except for unstructured control flow. There is no mention of indirect func-
tion calls. Second, Hedin et al. develop JSFlow [14] with its extended hybrid
version [13]. They track arrays, structures, function calls and dynamic alloca-
tions precisely. They also support JavaScript’s closures which are usually encoded
via function pointers in C. However, there is no mention of unstructured control
flow. Also they target a less permissive notion of non-interference than ours:
they do not allow to assign secret values to locations that previously held public
values (the converse, overwriting a secret value by a public value, is allowed). In
contrast, our approach only uses such constraints at user-defined program points
through security annotations. However, we could encode their non-interference
property by adding an assertion to every assignment statement.

Regarding the C programming language, previous work which aims at target-
ing a large variety of C programs is based on taint analysis, either statically [9]
or dynamically [25]. However taint analysis is not appropriate for verifying non-
interference properties similar to ours because it does not detect all kinds of
indirect flow. The aforementioned approaches are no exception.

6 Conclusions

We have presented Secure Flow, a hybrid information flow analysis for real-world
C programs. Secure Flow instruments C code with monitoring code after an aux-
iliary static analysis. The instrumented code tracks information flow labels for
all values of interest, as determined by a flexible annotation system for express-
ing information flow policies. After instrumentation, the code may be analyzed
statically or may be executed for dynamic monitoring. Our experiments show
that the overhead of dynamic monitoring is reasonable.

Secure Flow is implemented as a plugin for the Frama-C platform. It is about
3500 lines of OCaml code, blank lines excluded. It supports a large subset of C,
including important real-world features such as pointers with pointer arith-
metic, dynamic allocation, goto statements, and function pointers. Future work
includes removing current restrictions, including at least backwards jumps and
several memory allocations from the same call site.
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We have demonstrated Secure Flow, in combination with the static analysis
tool Eva and the monitoring tool E-ACSL, on a real-world cryptographic library.
Our experiments show that they can verify the absence of an important class
of timing attacks in many cryptosystem implementations. It has also found a
known timing vulnerability in another cryptosystem, but also a similar issue in
the alternative implementation supposedly correcting the vulnerability.
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https://hal.inria.fr/tel-01184857

2. Assaf, M., Signoles, J., Tronel, F., Totel, É.: Program transformation for non-
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Abstract. Reactive systems can be modeled with various kinds of
automata, such as Input Output Symbolic Transition Systems (IOSTS).
Symbolic execution (SE) applied to IOSTS allows computing constraints
associated to IOSTS path executions (path conditions). In this context,
generating test cases amounts to finding numerical input values satisfy-
ing such constraints using solvers. This paper explores the case where
IOSTS models contain functions which are outside of the scope of such
solvers. We propose to use function summaries which are logical formulas
built from concrete values describing some representative input/output
data tuples of the function. We define algorithmic strategies to solve
path conditions including such functions based on techniques using and
enriching function summaries. Our method has been implemented within
the Diversity tool and has been applied to several examples.

Keywords: Input Output Symbolic Transition Systems · Functions
summaries · Symbolic execution · Transition coverage

1 Introduction

Many testing theories and algorithms use Symbolic Execution (SE) tech-
niques [10]. In the last decade, it has received much attention and has been incor-
porated in several testing tools such as NASA’s Symbolic (Java) PathFinder [28],
UIUC’s CUTE and jCUTE [20], UC Berkeley’s CREST [13], and the CEA’s
PathCrawler [27] and DIVERSITY tools [15]. In particular, for the latter one,
SE has been adapted for models using variants of abstract labeled transition sys-
tems, namely Input Output Symbolic Transition Systems (IOSTS) [17]. Symbolic
trees representing all possible execution paths of the model (up to some coverage
goals) are computed by executing the model with variables instead of concrete
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values. For a particular path, a constraint on these variables, called path condi-
tion, characterizes concrete values ensuring its execution. Sequences of concrete
test inputs exercising a given path are computed by solving the corresponding
path condition. As is the case for programs, one of the main limits of this app-
roach is that the usage of some particular functions in the model may make the
process inapplicable, either because their symbolic analysis would cause com-
binatorial explosion in the number of paths to be considered, or because they
contain operations that go beyond the capacity of the solver used, or even simply
because they are black box functions from the model point of view. This latter
situation occurs for example when the modeler makes a reference to an exe-
cutable function without accessible source code in its model (or without source
code processable by the SE tool). In this paper, we call such functions external
functions and they are assumed to be functionally correct (i.e. we suppose that
we have a reference implementation for each of the external functions used in the
model). In the frame of Model-based Testing [32], a classical way to deal with
this situation is to fully abstract external functions by considering the results of
their calls as random values. This makes the model behaviors highly non deter-
ministic and causes the test case generation process to compute test cases with
a low level of controllability: the behavior of the system under test may deviate
from the execution path which it is supposed to exercise without revealing an
error in the system. Those situations are referred to as inconclusive.

In this paper we adapt to models an approach used at the code level, which is
based on a representation of external functions as so-called function summaries.
A function summary is a logical formula that can be computed from a partial
knowledge of the function, represented as a table containing some representative
tuples of inputs/output data. Those tuples are obtained by (concretely) execut-
ing the function on a set of inputs, either produced randomly or given by the
programmer. They may also result from pre-existing unit test campaigns. Path
conditions are then computed based on a joint analysis of the guards occurring in
executed transitions and of the function summaries associated to external func-
tions called in those transitions. A drawback of such an approach is of course
that the tables might be too incomplete to provide input/output data to fol-
low a given model path, meaning that their corresponding summaries are too
restrictive to follow the path. The main contribution of this paper is to define
a heuristic to deal with this situation by completing the function tables. The
heuristic is based on the computation of new inputs by solving formulas built to
avoid duplications in the tables and also to take benefits of the potential func-
tion dependencies. The overall approach can be seen as a reachability analysis
based on symbolic execution techniques and an heuristic search algorithm used
to solve path conditions. The resulting symbolic paths can then be used to gen-
erate test cases, in a classical model-based testing approach, for IOSTS extended
with function calls. Concrete test inputs can thus be given to an existing sys-
tem, in order to see if this system reacts according to its IOSTS model. This
contribution has potential applications for industrial software testing practices
especially integration testing, where units of code (i.e. external functions) must
be taken into account while testing the whole system.
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The remainder of the paper is organized as follows. Section 2 gives basic con-
cepts about IOSTS and SE. In Sect. 3, we define function summaries. The main
contribution of the paper is given in Sect. 4: it concerns the resolution of path con-
ditions involving function calls using function summaries. The implementation
and experiments of our approach are discussed in Sect. 5. Finally we conclude
the paper with a discussion of related work (Sect. 6) and some concluding words
(Sect. 7).

2 IOSTS

2.1 Preliminaries

A data signature is a pair (S, F ) where S is a set of types and F a set of functions
provided with a profile s1 · · · sn → sn+1 on S. For V =

∐
s∈S Vs a set of variables

typed in S, the set TF (V ) =
∐

s∈S TF (V )s of terms over V is defined as usual.
For two sets A and B, BA denotes the set of mappings f : A → B from A to B
and idA is the identity mapping on A. For a mapping f : A → B, f [ai �→ bi]i∈1..n

is the mapping associating bi to ai for all i in 1..n and f(a) to a not belonging
to {ai | i ∈ 1..n}.

The set SenF (V ) of formulas is built over Boolean constants � and ⊥, equal-
ities t = t′ for t and t′ terms in TF (V ) of same type and Boolean connectives
(∧, ∨, ¬). Substitutions over V are applications σ : V → TF (V ) that preserve
types. Substitutions can be canonically extended to TF (V ).

A F -model is a set of typed variables M =
∐

s∈S Ms provided with a func-
tion fM : Ms1 × · · · × Msn

→ Msn+1 for each f : s1 · · · sn → sn+1 in F . An
interpretation is an application ν in MV that preserves types and is canonically
extended to TF (V ). The satisfaction of a formula ϕ in SenF (V ) by an inter-
pretation ν ∈ MV , denoted M |=ν ϕ, is defined as usual. A formula ϕ is said
satisfiable or feasible if there exists an interpretation ν such that M |=ν ϕ.

In the sequel, a data signature (S, F ) and an F -model M are supposed given.
Moreover, when a formula ϕ is satisfiable and can be handled by a solver, Sat(ϕ)
will denote a solution computed by a solver (whatever are the solution or the
solver).

2.2 IOSTS

Input Output Symbolic Transition Systems (IOSTS) represent behaviors of reac-
tive systems as sequences of emissions or receptions of values through commu-
nication channels conditioned by guards expressed on some attribute values.
An IOSTS-signature Γ is a couple (A,Ch), where A =

∐
s∈S As is a set of

typed variables, called attribute variables. In the sequel, a variable v of A will be
denoted either as a simple identifier (id) or as an identifier (id) and an integer
(i) pair, denoted as id[i]. The latter case will be useful for dealing with modeling
of arrays. Ch is a set of communication channel names.

An IOSTS communicates with its environment through actions. The set of
symbolic actions over Γ = (A,Ch), denoted Act(Γ ), is I(Γ )∪O(Γ )∪{τ} where:
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I(Γ ) = {c?(x1, . . . , xn)|∀i ∈ 1..n, xi ∈ A, c ∈ Ch,∀i, j (i �= j ⇒ xi �= xj)} is
the set of inputs, O(Γ ) = {c!(t1, . . . , tn)|∀i ∈ 1..n, ti ∈ TF (A), c ∈ Ch} is the set
of outputs and τ is an internal action. If n = 0, (resp n = 1), then cΔ() (resp
cΔ(t1)) with Δ ∈ {?, !} is simply denoted cΔ (resp. cΔt1).

Values of attribute variables can be modified either by a reception from the
environment or by an assignment of a value issued from some internal process.

Definition 1 (IOSTS). An IOSTS (Q, q0, T r) over Γ = (A,Ch) is a triple
where Q is a set of states, q0 ∈ Q is the initial state and Tr ⊆ Q × SenF (A) ×
Act(Γ )×TF (A)A ×Q is a set of transitions tr of the form (q, ψ, act, ρ, q′) where:

– q and q′ are resp. the source (source(tr)) and target state (target(tr)) of tr;
– ψ ∈ SenF (A) is a guard;
– act ∈ Act(Γ ) is a communication action;
– ρ ∈ TF (A)A is a substitution.

Example 1. Let us illustrate an example of IOSTS inspired from the Sesam-
Grids project [12]: Fig. 1 describes a simple model of a Microgrid, that is, a
system of interconnected and distributed smart components (smart meters, con-
troller, ...) in connection with energy resources and energy consumption devices.
Our example describes a simplified model of a controller inside a Microgrid.
Electricity measurements are requested by a smart controller (mReq! action)
and sent by a smart meter (getmeas?V alue[cpt]). N measurements are stored
in the array V alue whose data can be accessed through variables of the form
V alue[i] with i integer. Then, they are used by the controller to compute the
total electricity consumption via an integral calculation (I �→ INTGR(V alue))
where INTGR is an external function. If the overall consumption is greater than
200, then the function RISE (which is also an external function) is called to
compute, according to the returned consumption I, a rate r that is added to the
energy price. The new price ((1 + r) ∗ i) is sent to the actuator via the (out)
channel, together with a message indicating whether the rise is normal (“ok”, if
r ≤ 1) or should trigger a warning (“alarm”, if r > 1). Otherwise, if the con-
sumption is lower than 200, an acknowledgment is sent (out!(“ok”, I)). In Fig. 1,
guards of the form t1 ≤ t2, t1 < t2, t1 > t2 or t1 ≥ t2 are concise representations
of respectively t1 ≤ t2 = �, t1 < t2 = �, t1 > t2 = � or t1 ≥ t2 = �.

2.3 Symbolic Execution of IOSTS

Symbolic execution (SE) consists in executing the IOSTS with symbolic vari-
ables rather than numerical values. SE gathers constraints (path condition) over
such variables that characterize under which circumstances a particular execu-
tion path is taken.

To store information concerning an execution, we use a set Fr of so-called
fresh variables with Fr ∩ A = ∅ and structures called symbolic states. Fr is an
infinite set in which, whenever necessary, it is possible to take a variable not
previously used. A symbolic state η is a tuple (q, π, λ) where: q (or q(η)) denotes
the state in Q reached after an execution leading to η, π ∈ SenF (Fr) (or π(η))
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Fig. 1. Micro grid controller IOSTS

is the path condition that should be satisfied for the execution to reach η and
λ : A → TF (Fr) (or λ(η)) denotes terms over variables in Fr that are assigned
to variables of A.

Definition 2 (SE of transitions). Let G = (Q, q0, T r) be an IOSTS,
tr = (q, ψ, act, ρ, q′) a transition of Tr and η = (q, π, λ) a symbolic state.

Let us define λi as λ[x1 �→ f1, . . . , xn �→ fn] if act is of the form
c?(x1, . . . , xn), where each fi is a fresh variable in Fr and as λ otherwise.
The symbolic execution SE(tr, η) of tr from η is the symbolic transition
(η, λi(act), η′) where η′ = (q′, π′, λ′), with π′ = π ∧ λ(ψ), and λ′ = λi ◦ ρ.

We denote Fr(SE(tr, η)) the set of all fresh variables of Fr occurring in its
definition while not already present in η.

The symbolic execution tree associated with the IOSTS is then defined sim-
ply by executing all transitions from all symbolic states.

Definition 3 (SE of IOSTS). Given an IOSTS G = (Q, q0, T r) over Γ =
(A,Ch), the symbolic execution SE(G) = (SS, Init, ST ) of G is minimally
defined by:

– Init = (q0,�, λ0) is the initial state. Init is in SS and we have ∀x ∈ A,
λ0(x) ∈ Fr, and ∀x �= y ∈ A, λ0(x) �= λ0(y). We denote Fr0 = {λ0(x) | x ∈
A} the set of variables used in Init.

– ST is a set of symbolic transitions such that for any η = (q, π, λ) in SS
and for any tr ∈ Tr of source state q, there exists one symbolic execution
SE(tr, η) = (η, actF , η′) of tr from η with SE(tr, η) ∈ ST and η′ ∈ SS.

Moreover Fr(SE(tr, η)) ∩ Fr0 = ∅ and for any two distinct symbolic transitions
SE(tr1, η1) and SE(tr2, η2) in ST , Fr(SE(tr1, η1)) ∩ Fr(SE(tr2, η2)) = ∅. For
st = (η, actF , η′) in ST , we denote source(st) = η and target(st) = η′.
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Now, we define paths of the symbolic tree resulting from the symbolic exe-
cution of an IOSTS:

Definition 4 (Symbolic Paths). The set Paths(SE(G)) of paths of SE(G) is
the set of all sequences st1 · · · stn with ∀i ∈ 1..n, sti ∈ ST such that source(st1) =
Init and for any j < n, q(target(stj)) = q(source(stj+1)).

For a path δ = st1 · · · stn with 1 ≤ n, we note End(δ) = target(stn) and
Fr(δ) = ∪i∈1..nFr(target(sti)). By convention, End(ε) = Init and Fr(ε) = ∅.

By construction, path conditions accumulate constraints from all the guards
of the IOSTS transitions over a path. Hence, feasibility of path pa is checked
by calling a solver over the path condition of the last state of pa. In the sequel,
such call will be denoted Sat(π(End(pa)).

As already mentioned in Sect. 1, external functions such as INTGR and RISE
have no built-in interpretations in standard constraint solvers. Thus, when path
conditions contain external functions, usual constraint solving techniques cannot
be applied directly. We thus propose an improved resolution method to guide the
symbolic execution by checking paths feasibility up to some function calls.

3 Function Summaries

Instead of either considering external functions as purely abstract by replacing
their output with a fresh variable or inserting their code (inlining) at model level
quickly leading to combinatorial explosion, our approach allows to control this
issue by replacing external functions with summaries that offer a partial and
extendable view of the function within the model.

In the sequel, P will denote a distinguished subset of F , the set of all external
functions.

3.1 Summaries

Values which are used to summarize an external function are taken from its
concrete execution on some inputs. This can be represented and saved as a table
mapping a finite set of tuples associating input and output data of the function.

Notation 3.1. For p ∈ P an external function of profile s1 . . . sn → sn+1 and
pM ∈ M its interpretation, we denote by tabp, a set of tuples (v1, . . . , vn, vn+1) ∈
Ms1 × · · ·×Msn

×Msn+1 verifying pM (v1, . . . , vn) = vn+1, a function table of p.
If tabp covers the entire domain of p then it will fully represent pM .

We associate with each external function a summary built on values in the
function table. More precisely, a function call will be stored in a given symbolic
state under the form

(p, (t1, · · · , tn), x)

indicating that a call has been performed for the external function p with argu-
ments (t1, · · · , tn) and that its result is stored in the fresh variable x.

We note Calls(P ) the set of all function calls.
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Definition 5 (Function call summaries). Let Cls ⊆ Calls(P ) be a set of
function calls and Tab = (tabp)p∈P , where tabp is a function table associated to
p in P .
The summary of Cls up to Tab is:

Sums(Cls, Tab) =
∧

cl=(p,(t1,··· ,tn),x)∈Cls,
tabp∈Tab

Sum(cl, tabp)

where Sum(cl, tabp) computes the disjunction of different inputs/output tuples
of tabp, i.e.:

Sum(cl, tabp) =
∨

(v1,··· ,vn+1)∈tabp

((
∧

i≤n

ti = vi) ∧ x = vn+1)

with the convention Sum(cl, ∅) = ⊥.

Example 2. Let us go back to the Microgrid example (Fig. 1) with the hypothesis
N = 2. Then, a scenario involves two measurements m1 and m2. For illustrative
purposes, values that will be used in the summaries associated to the external
functions INTGR and RISE are given in Table 1. Based on the values provided
by Table 1, we can then compute the corresponding summaries for the set of
function calls Cls = {cl1, cl2} with cl1 = (INTGR, ([m1,m2]), I) and cl2 =
(RISE, (I), r):

– Sum(cl1, tab(INTGR)) is
(m1 = 123 ∧ m2 = 96 ∧ I = 228) ∨ (m1 = 148 ∧ m2 = 141 ∧ I = 300)

– Sum(cl2, tab(RISE)) is
(I = 202 ∧ r = 0.7) ∨ (I = 300 ∧ r = 2.42)

Finally, Sums(Cls, Tab) is simply Sum(cl1, tab(INTGR)) ∧ Sum(cl2, tab
(RISE)).

Table 1. INTGR and RISE tables

tab(INTGR)

[123, 96] 228

[148, 141] 300

tab(RISE)

202 0.7

300 2.42

3.2 Formula Transformation

A path condition ϕ is built over terms of TF (V ) that may contain occurrences of
external functions. Since the satisfiability of ϕ requires to find an interpretation
ν ensuring M |=ν ϕ, the idea is to proceed in two steps:
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1. ϕ is transformed into a formula with no occurrence of external functions and
a set of function calls.

2. the satisfiability of ϕ is checked with a constraint solver and based on external
function summaries (built on concrete executions of called functions).

For a formula ϕ containing a term of the form p(t1, · · · , tn) with p ∈ P , we
will eliminate the occurrence of p in ϕ by introducing a new fresh variable x in
charge of storing the result of the application of p to the terms t1, . . . , tn. An
interpretation will be acceptable as a solution only if it evaluates terms t1, . . . , tn
and x so that they correspond to one of the elements of the function table
tabp. Thus, while eliminating all occurrences of external function in formulas,
we also collect all tuples (t1, . . . , tn, x) memorizing all contexts of calls of external
functions.

Let us first define a function χ : TF (V ) → TF (V ∪Fr)×Calls(P ) as follows:

– if t is a variable or a constant1, χ(t) = (t, ∅)
– if t is of form f(t1, . . . , tn) with f �∈ P , then2

χ(t) = (f(χ(t1)|1, . . . , χ(tn)|1),∪i∈1..nχ(ti)|2)
– if t is of form p(t1, . . . , tn) with p ∈ P , then χ(t) = (x, {(p, (χ(t1)|1, . . . ,

χ(tn)|1), x)} ∪i∈1..n χ(ti)|2) with x a fresh variable in Fr.

We assume that all fresh variables introduced by function calls (i.e. the sets
χ(t)|2) are pairwise disjoint. Note that the term substitution is performed itera-
tively by starting with the innermost sub-terms in case of nested function calls.
The function χ is canonically extended to formulas by preserving formula struc-
ture and accumulating all sets of function calls in a unique set. In the sequel, for
a formula ϕ, χ(ϕ)|1, the formula ϕ without external functions, will be denoted
ϕ and χ(ϕ)|2, the set of associated calls, will be denoted κ(ϕ).

Example 3. Let us denote ϕ0 the formula RISE(INTGR([x+1, 0])) > 1 defined
over the external functions INTGR and RISE and the variable x.

Then, ϕ0 is r > 1 while κ(ϕ0) is {(RISE, (I), r), (INTGR, ([x + 1, 0]), I)}
with I and r new fresh variables.

Now that we are able to remove external functions, we will propose an algo-
rithm to check formula satisfiability.

4 Satisfiability of Formulas up to Function Summaries

Given a formula ϕ possibly built over external functions, we aim at defining an
algorithm that analyzes the satisfiability of ϕ up to summaries of called external
functions. Recall that ϕ is transformed into a formula (ϕ) with no occurrence
of external functions, while we keep track of external function calls in κ(ϕ). We
also suppose that we have function tables for these external function calls in
Tab.
1 A constant is a function of profile of the form → s.
2 For a couple c = (e, f) of elements, c|1 is e and c|2 is f .
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Since by construction Sums(κ(ϕ), Tab) is the formula specifying that func-
tion calls of κ match with at least a tuple of Tab, if Sat(ϕ ∧ Sums(κ(ϕ), Tab))
returns a solution, then ϕ is satisfiable (i.e. there exists an interpretation ν such
that M |=ν ϕ). Otherwise, either ϕ is not satisfiable (i.e. ∀ν,M �|=ν ϕ) or ϕ is
satisfiable but the function tables (used to summarize functions) are not com-
plete enough to exhibit an interpretation ν such that M |=ν ϕ. Therefore, in the
sequel we place ourselves in the hypothesis that function tables can be enriched
during the satisfiability search. Furthermore, some heuristics are proposed to
help the solver finding a solution when current function summaries are not com-
patible with the formula, e.g. to find additional input data for external functions
that could make the formula feasible. We describe these heuristics in more detail
below.

4.1 Resolution Strategies

NoCorres Strategy: NoCorres computes a formula guaranteeing that the inputs
of called external functions are different from those already present in the current
function tables. This formula will be used later to get new inputs for the concrete
executions of external functions, ensuring the enrichment of the function tables,
which in turn increases chances to find a solution.

Definition 6 (NoCorres). Let Cls ⊆ Calls(P ) be a set of function calls and
Tab = (tabp)p∈P a set of tables where tabp is the table associated to p in P .
NoCorres(Cls, Tab) is defined as follows:

NoCorres(Cls, Tab) =
∨

cl=(p,(t1,··· ,tn),x)∈Cls,
tabp∈Tab

(NoCorres1(cl, tabp))

with NoCorres1((p, (t1, · · · , tn), x), tabp) being defined as follows:
∧

(v1,··· ,vn+1)∈tabp

(
∨

i≤n

ti �= vi)

By considering the conjunction of NoCorres(κ(ϕ), Tab) and ϕ, the solver can-
not compute interpretations of variables for which all function calls in κ(ϕ) are
already present in Tab.

Example 4. By applying the above NoCorres definition on the set of func-
tion calls and tables given in Example 2, NoCorres(Cls, Tab) is the formula
NoCorres1(cl1, Tab(INTGR)) ∨ NoCorres1(cl2, Tab(RISE)) where:

– NoCorres1(cl1, tab(INTGR)) is
(m1 �= 123 ∨ m2 �= 96) ∧ (m1 �= 148 ∨ m2 �= 141)

– NoCorres1(cl2, tab(RISE)) is (I �= 202) ∧ (I �= 300)
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Dependency Heuristic: Another way to accelerate and help the solver resolution
task to find new inputs, when no solution is found with the current function
tables, is to take advantage of direct dependencies between function calls. Indeed
when the arguments of a call to an external function f depend on the result
of calls to other external functions fi, we can indicate to the solver to search
for solutions in which the inputs of f are compatible with the outputs already
present in the tables of the fi.

Definition 7 (Dep). Let Cls ⊆ Calls(P ) be a set of function calls and Tab =
(tabp)p∈P a set of tables where tabp is the function table associated to p in P .

Dep(Cls, Tab) is defined as follows:

Dep(Cls, Tab) =
∧

cl∈Cls

(Dep1(cl, Cls, Tab))

with Dep1(cl, Cls, Tab) being defined as follows:
∧

cli=(q,(t′
1,··· ,t′

n),x
′)∈Depcl

(CorresRes(cli, tabq))

where:

– For cl = (p, (t1, · · · , tn), x), Depcl = {cli = (q, (t′1, · · · , t′n), x′) ∈ Cls \
{cl} | x′ ∈ ⋃

i≤n Occ(ti)} is the set of function calls on which the inputs
of cl depend, i.e. the result of these function calls occurs in one or several
input terms of cl.

– For cl′ = (q, (t′1, · · · , t′n), x′), CorresRes(cl′, tabq) is the formula
∨

(v1,··· ,vn+1)∈tabq

(x′ = vn+1)

CorresRes(cl′, tabq) extracts values from the tables of function calls on which
cl′ depends.

Example 5. Let us consider again the function calls introduced in Example 2.
We have:

– Depcl2 = {cl1} with cl1 = (INTGR, ([m1,m2]), I), because I (the variable
storing the result of cl1) is an input of cl2 = (RISE, (I), r).

– CorresRes(cl1, tab(INTGR)) is (I = 228 ∨ I = 300)

Therefore, to find new inputs for RISE, we can give to the solver Dep(cl2, Cls),
that is CorresRes(cl1, tab(INTGR)) to exploit the values of I already existing
in Tab(INTGR).

By combining both NoCorres and Dep heuristics, it is possible to generate
new sets of inputs, i.e. new rows in the tables of external functions that are
relevant for the overall path constraint resolution. Indeed, NoCorres ensures
that we will add at least one new row to a function table, while Dep takes care
of avoiding solutions that cannot be satisfied by the current summaries of the
callers, and are thus useless for the current solving process.



SE with Function Summaries 51

4.2 SolveTab Algorithm

Algorithm 1 describes our dynamic solving procedure SolveTab(m,ϕ, κ(ϕ), Tab).
The goal of SolveTab is to analyze the satisfiability up to some function tables
Tab of a formula (ϕ) with no occurrences of external functions, provided with a
set of function calls (κ(ϕ)). The integer parameter m is used to bound the number
of attempts that are made to increase the size of function tables. As explained
in the previous section, we resort to this mechanism when no tuple in a function
table is compatible with ϕ. However, since there is no guarantee that extending
function tables will eventually lead to find a solution for ϕ ∧ Sums(κ(ϕ), Tab),
we cut the search after at most m steps. If no solution is found beyond m or
no possible function inputs are found, then we can deduce that the formula is
unsatisfiable up to function tables. The case m = 0 corresponds to a purely static
version where a solution is searched without modifying function tables (i.e. Tab
is then a static variable).

Algorithm 1. SolveTab(m,ψ, κ, Tab)
Data: m: an integer, ψ: a formula without black-box functions, κ : a set of

function calls, Tab: function tables
Result: satisfiability of ψ up to κ; Tab: updated function tables

1 begin
2 sol ← Sat(ψ ∧ Sums(κ, Tab));
3 TabModified ← True;
4 while TabModified and sol = NONE and m �= 0 do
5 In ← Sat(ψ ∧ NoCorres(κ, Tab) ∧ Dep(κ, Tab)) /* Search for new

solutions while considering dependencies between function

calls */ ;
6 if In = NONE then /* no possible inputs for function */

7 In ← Sat(ψ ∧ NoCorres(κ, Tab)) /* Search for new possible

solutions without considering function dependencies */ ;

8 if In �= NONE then /* new possible inputs for function */

9 for each call cl = (p, (t1, · · · , tn), x) in κ do
10 V Ins ← Ins(In, cl) /* extract inputs for p from In */;
11 r ← Execp(V Ins) /* concrete execution of p */;
12 Tab(p) ← (V Ins, r).Tab(p) /* save new tuple in Tab */;

13 sol ← Sat(ψ ∧ Sums(κ, Tab));

14 else
15 TabModified ← False;

16 m ← m − 1;

17 return (sol, Tab);

Let us now give some few comments on Algorithm 1. By hypothesis, argu-
ments (ψ, κ) = χ(ϕ) for some ϕ, so that ψ and κ share external functions and
variables.
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If Sat(ψ∧Sums(κ, Tab)) gives back a result sol, then sol directly provides an
interpretation of variables that satisfies the formula ϕ in which external functions
are interpreted according to values given in their associated tables Tab. In other
words, by construction M |=sol ϕ.

In case no solution is found with Sat(ψ ∧ Sums(κ, Tab)) in Line 2 (ψ is
unsatisfiable up to current function summaries), then we try to find additional
input data for external functions that could enrich Tab (and function summaries)
and make the formula satisfiable. In order to guide the solver to find new inputs,
Dep and NoCorres heuristics can be used. NoCorres is necessary to compute
new inputs distinct from those already present in current tables (that failed to
provide us with a solution). On the other hand, Dep is an alternative option
that can facilitate the search for inputs that are compatible with dependencies
among function calls. However, this might restrict the search space too much, as
we may need to add a new output to the table of function f to find a suitable
input for g that depends on f . Therefore, if adding the Dep condition results in
an unsatisfiable formula (Line 7), we call the solver again with only the formula
and the NoCorres condition. Indeed, the new tuples might give us new outputs
that will in turn make Dep satisfiable at next step, or even give directly a solution
to the original problem.

If an interpretation (variable In) is found, then lines 10, 11 and 12 allow us
to add new tuples in function tables (variable Tab), by successively extracting
input values V Ins ← ins(In, cl) for each function call (line 10), concretely
executing the function (line 11) with V Ins as input data, (Execp being the
reference implementation of p), to obtain the corresponding output (variable
r) and finally storing new tuples in Tabp (line 12). Then, the solver is called
(line 13) to check the satisfiability of ψ, with the new summaries based on the
enriched function tables.

Last, let us point out that a bigger number m of allowed attempts to search
for new tuples enriching function tables gives more chances to find a solution,
but will possibly take longer to compute.

4.3 Discussion: SolveTab for Symbolic Execution

Since path conditions are formulas built over terms that may contain occurrences
of external functions, we proceed as detailed in the previous section in order to
check symbolic paths feasibility according to function summaries. For that, we
use the SolveTab solving Algorithm 1 based on concrete executions of called
functions to guide the symbolic execution of IOSTS. Therefore, we need to
extend symbolic states by accumulating function calls. An extended symbolic
state is of the form η = (q, π, λ, κ), where κ (or κ(η)) denotes the sequence of
function calls of the form (p, (t1, · · · , tn), x). By construction, the path condition
π does not contain occurrences of external functions.

A symbolic state (q, π, λ, κ) is satisfiable according to function summaries
only if there exists an integer m and function tables Tab such that the result
(sol, Tab) provided by SolveTab(m,π, κ, Tab) defines an interpretation sol of
fresh variables ensuring the interpretation of π as true.
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The symbolic execution in accordance with function tables is based on the
SolveTab resolution algorithm which takes as arguments, in addition to the path
condition and the set of accumulated function calls, the parameter m and the
set of tables Tab. If we note SETab,m(G) the symbolic execution of G using
SolveTab for building satisfiable symbolic states, then SETab,m(G) is highly
dependent on the initial tables (Tab) specifying called functions, the chosen
threshold of resolution attempts m, the choice of the solver and the strategy of
traversal (in depth, in width, . . . ) of the symbolic tree. Thus, the construction
of SETab,m(G) will more or less approach the ideal symbolic tree SE(G). If
elements of Tab are representative enough of the behavior of called functions,
with regard to the solicitations of the IOSTS or if m is large enough to find
a solution for each possible path of the IOSTS (by enriching function tables),
then SETab(G) becomes closer to SE(G) and more states become reachable.

5 Implementation and Experiments

5.1 Implementation

DIVERSITY Tool: DIVERSITY [3,14], is a multi-purpose and customizable
platform for formal analysis based on symbolic execution (test generation, proof,
deadlock search, etc.) that is on its way to becoming an Eclipse open-source
project3. DIVERSITY generates a symbolic tree (for a fixed maximal height)
by simulating the system specification with input symbols rather than concrete
values for data. Test inputs are computed by solving the path conditions. For
that purpose, DIVERSITY integrates solvers such as Z34, and CV C45.

We have implemented the SolveTab Algorithm 1 and the heuristics described
in Sect. 4 as additional Formal Analysis Module (FAM) for checking satisfiability
of path conditions within DIVERSITY. By default, constraints involving exter-
nal functions are left uninterpreted (i.e. out of the scope of solvers). In addition,
variable assignments within an IOSTS transition contain only basic operations.
Now, all such external functions can be handled with the newly implemented
technique, using values recorded in function tables. The SolveTab algorithm
allows to know whether a new execution context EC (a symbolic state) can be
built in the symbolic execution tree in accordance with called functions, after the
execution of a transition in the IOSTS. In other words, it checks if a transition
of the IOSTS could be fired or not according to called functions, with a possi-
ble enrichment of the function tables. Therefore, thanks to SolveTab we ensure
the symbolic tree’s construction with only feasible paths compatible with called
functions while ensuring a high transition coverage of the IOSTS transitions.

Microgrids Case Study: Here, we discuss the application of our technique to
the Microgrid Example 1 that uses external function calls (INTGR and RISE).

3 https://projects.eclipse.org/proposals/eclipse-formal-modeling-project.
4 https://z3.codeplex.com/.
5 http://cvc4.cs.nyu.edu/web/.

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project
https://z3.codeplex.com/
http://cvc4.cs.nyu.edu/web/
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For that, we present the resulting symbolic trees (to a depth of 6) by applying
the SolveTab algorithm with the initial function tables of Table 1 and various
values of m, the number of attempts made to increase the function tables. At
first, we use the static version (static tables, m = 0). Result is shown in the
left tree of Fig. 2. Then we progressively increase m until 196, function tables
are enriched by concretely executing functions with new inputs found thanks to
NoCorres and Dependency heuristics. As expected, this permits to cover more
transitions of the model, reach more symbolic states and explore more feasible
paths. Indeed the size of the generated tree grows with the value of m. The
middle tree of Fig. 2 is obtained with m = 1, while the one on the right is the
result of m = 196, where all transitions of the IOSTS are covered.

Fig. 2. Symbolic execution tree in DIVERSITY

5.2 Experiments

A summary of the main outcomes of the application of our technique to the
Microgrid example is provided in Table 2. It should be noted that our results
are based on the initial function tables given in Table 1 and that we dispose of
the functions’ implementation in order to be able to execute them with appro-
priate inputs in an unitary setting. For each experiment (i.e. each line), we fix
“m” (maximum number of attempts for the SolveTab algorithm) and the maxi-
mum “height” allowed for the symbolic tree. Then we record results concerning
the enriched tables (number of tuples) and the symbolic tree computation: the
number of reachable states, the achieved IOSTS transitions coverage and the
execution time. Again, when m = 196 all possible symbolic states are covered,
and there is no need to try to further enrich the function tables.

The resulting coverage rate and execution time depend on the initial function
tables. In fact, the more the elements of called function tables are representative
of the function behaviors and compatible with path conditions, the less attempts
are needed to achieve the same level of coverage. For instance, if we now start
with the initial function tables of Table 3 for the Microgrid example, all transi-
tions of the specification are covered (in 2 s 759 ms) without doing any concrete
execution (m = 0), as all possible outcomes are captured by one row of the tables
(Table 4).
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Table 2. Experiments with initial Tables 1

Micro-grid IOSTS: initial Tab (Tables 1)

“m” Height Enriched Tab States Transition coverage Time

INTGR RISE

0 15 2 2 16 62.5% 638ms

1 15 8 3 27 75% 2 s

196 15 198 3 120 100% 4m 15 s

Table 3. Other initial tables

tab(INTGR)

[0, 0] 0

[12, 18] 30

[123, 96] 228

[148, 141] 300

tab(RISE)

202 0.7

228 0.97

300 2.42

Table 4. Experiments with other initial Tables 3

Micro-grid IOSTS: other initial Tab (Tables 3)

“m” Height Enriched Tab States Coverage Time

INTGR RISE

0 15 4 3 120 100% 2 s 759ms

6 Related Work

IOSTS and symbolic execution have been used in many works [6,10,17] for
different purposes. Until now standard solvers were not capable of dealing with
functions occurring in path conditions. The usage of symbolic execution and
path feasibility analysis are studied in [7,34] but this is limited to the analysis of
functions themselves and does not take into consideration the impact of function
calls on the feasibility of the whole system.

Our work borrows the idea of mixing symbolic execution with information
obtained from instrumented concrete executions, from concolic testing, a method
that has been implemented in various settings, such as [9,18,31]. However, these
frameworks are primarily directed at source code level in the objective of unit
testing. Another concolic tool, PathCrawler [35] proposed an approach to encom-
pass function calls [24], using pre/post-condition couples as a specification.

Other unit testing frameworks traditionally use stubs [25], which are built
manually in an ad-hoc way, to replace external functions for which no implemen-
tation is available. Also, automatically-generated software stubs [18] are used for
abstracting (over-approximating) lower-level functions during dynamic test gen-
eration [16] based on code.
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[1,4,19,21], propose different techniques to conduct symbolic execution with
simplified summary representations. But these techniques do not include heuris-
tics similar to the ones (NoCorres, Dependency) we introduce in our paper.

Other techniques have been proposed to deal with constraints generated from
symbolic code execution [2,29]. These techniques fall back on concrete values and
use randomization to help simplify complex constraints that cannot be solved
directly. Our approach based on IOSTS models is orthogonal to these code-based
approaches and uses some heuristic search to solve path conditions including
external function calls.

In our previous work [8], like in the work [24], we specify external functions
by means of contracts (instead of tables): we unfolded the symbolic tree of an
IOSTS by replacing each transition including an external function call by as
many transitions as there are behaviors in the contract associated to the consid-
ered external function.

7 Conclusion and Future Work

In this work, we use the IOSTS framework extended with external functions.
We adapt existing symbolic execution techniques over IOSTS to deal with such
function calls, using function tables to summarize them with a formula. The
construction of a symbolic execution tree is based on an algorithm SolveTab
that permits to check path conditions satisfiability up to function summaries
with the possibility of enriching function tables by concretely executing them,
in order to achieve a high transition coverage of the IOSTS.

The proposed approach has been implemented within the DIVERSITY sym-
bolic execution tool. The results show that symbolic execution coupled with func-
tion summaries is a practical and effective approach to take into consideration
external functions for IOSTS models analysis mainly for model-based testing
which is a significant motivation for our work. Nevertheless, it could probably
be applied to other families of transition systems like those in [30,32,33].
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Abstract. The Java Enterprise Edition (Java EE) platform and its per-
sistence API are widely adopted technologies to develop applications that
interact with database systems. Many control flows of these applications
strongly depend on a specific database state. This paper presents an
automatic test-case generation approach for applications in this environ-
ment. The approach generates both test data for the application’s input,
as well as entity objects for the different database states that are required
to cover a respective control flow. We integrate constraints from symbol-
ically executing a control flow with constraints on a required database
state. We also support typical Java EE functionalities in the symbolic
execution, e.g. dependency injection. An experimental evaluation shows
an increase in control-flow coverage by our approach.

Keywords: Symbolic execution · Automated unit tests generation ·
Java Enterprise Edition · Java Persistence API · Database applications

1 Introduction

Java is widely used to develop enterprise applications [3]. Those applications
typically interact with external systems such as a database management system
(DBMS) providing transaction management for a proper concurrent user access
to persistent data. In such an environment, the behavior of an application can
strongly depend on the state of the connected systems. Manually generating
meaningful test cases for each path of an enterprise application is in most cases
impractical. Each test case must include the input data to the application under
test (AUT) and set up the state of each required external system for a specific
execution path of the AUT. The Java Enterprise Edition (Java EE) APIs define
a set of services for a typical enterprise application. There are many tools that
automatically generate unit tests for Java applications [13,15,16], and some of
them also target the Java EE platform [7]. These tools generate test cases for
the AUT but they do not consider the state of an external database system in
their test-case generation process. Other works [5] generate both input data for
the AUT as well as database records required for a specific path of the AUT,
c© Springer International Publishing AG 2017
S. Gabmeyer and E.B. Johnsen (Eds.): TAP 2017, LNCS 10375, pp. 59–76, 2017.
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but they do not specifically target the Java EE platform. In this paper, we
address the challenges that arise when generating unit tests for Java EE appli-
cations that use the Java Persistence API (JPA) to interact with an external
database system. The automatic generation of test cases for a database-driven
Java EE application A includes (1) the instantiation of A with a proper reso-
lution of injected dependencies, (2) the generation of input data for A, (3) the
generation of a data store leading to a specific control flow of A, and (4) oracles
to verify the result of a test-case execution. We have used the existing test-case
generator Muggl [6,12] that did not consider the state of an external database
yet. We have extended that system to dynamically generate both input data for
the AUT as well as entities that must exist in a data store for a particular path
to be executed. Moreover, we have implemented an initial support of important
Java EE functionalities, such as dependency injection, that allows us to run the
symbolic execution in a standalone environment. The test cases are stored as
JUnit files that can be executed on a real application server to enable integra-
tion testing of the AUT. Our approach has been evaluated by generating test
cases for a couple of example applications. The results show that we can generate
more meaningful test cases compared to an approach that does not consider the
state of an external database.

Fig. 1. An Enterprise Java Bean that selects JPA entity objects of type Customer and
increases the status level of these objects.

Based on a running example, we illustrate the challenges that arise when
symbolically executing Java EE applications that use JPA to interact with a
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data store. A Java session-bean class of this example is depicted in Fig. 1a and
the corresponding JPA entity classes in Fig. 1b. The method incrementStatus
has three arguments: two numeric values s and r, and one object reference d. It
selects all entities of type Customer that have made a revenue of at least r on all
their orders from the date d. The status of such a customer is increased to s, if it
is currently below s. In Fig. 1a the Java class CustomerService is implemented
as a stateless Enterprise Java Bean (EJB). It uses dependency injection to have
an instance of the JPA EntityManager injected into the field em. EJBs typically
run inside a Java EE container, which ensures that the declared dependencies
are resolved when an EJB is initialized. We assume that the EJB is executed in
such an environment and that all dependencies are properly resolved, and hence
em �= null. In the method incrementStatus, the string ql represents a select
statement written in the Java Persistence Query Language (JPQL). JPQL is
defined by JPA as an object-oriented query language that is independent of the
way the entity objects are actually stored1, e.g., in a relational database or in
an object database. The string ql is used by the entity manager em to create a
query object, set its parameters and retrieve entities satisfying the restrictions in
ql from a data store by invoking the method getResultList. As a result, cList
is a list of all those entities. Note that the elements in cList strongly depend on
the database state at the time the method getResultList is executed. Finally,
the method iterates over the elements in cList and updates the status in case
the current status level of a customer is lower than the given level in s. The
aim of our test-case generation approach is to increase the control-flow coverage
of an EJB method that interacts with a data store via JPA. In particular, our
approach generates both concrete input values for the method arguments, as
well as a database state that is required for a specific path through the method.
The database state is represented as a set of entity objects that must exist in
the data store before the test case is executed.

In order to generate test cases for such an application, we need to address
the following challenges:

(1) JPA offers many different methods to interact with a data store, e.g.,
getResultList and find. The result of most JPA methods depends on
the state of the data store at the time the method is invoked. In order to
identify a required state, we have implemented a symbolic object data store
that tracks all changes made by the application (e.g., persist an entity), and
is able to dynamically populate new entities that are required for a specific
control flow of the method under test. An entry in a table of the symbolic
data store is a tuple of expressions consisting of logic variables (in the sense
of logic programming [1]), constants, and operation symbols. Additionally,
there is a list of constraints relating these logic variables.

(2) The assumption that the dependencies of an EJB are properly resolved
poses two challenges. First, executing a test case that uses an EJB must
ensure that the EJB runs inside a Java EE container that supports depen-
dency injection. Second, the symbolic execution system that we have used

1 http://docs.oracle.com/html/E13946 04/ejb3 langref.html, accessed January 2017.

http://docs.oracle.com/html/E13946_04/ejb3_langref.html
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in this paper runs inside a standalone environment and had no support of
Java EE functionalities yet. For the first challenge, we have used a JUnit
integration testing framework2 to deploy and run the EJB inside a Java EE
container. The JUnit test connects to this container and invokes the method
under test of the EJB via a Web-Service. For the second challenge, we have
implemented support for dependency injection while symbolically executing
a Java method. This avoids NullPointerExceptions when accessing the
entity manager while symbolically executing the application.

(3) The JPQL query string can be built dynamically by the application, which
makes it hard to statically extract the query string from the program [8].
However, when the method createQuery of the entity manager is invoked,
the first parameter must be a symbolic object reference of type String
having a field value which contains the string representation of the query
to be executed. We use this string to get hold of the query which shall be
submitted to the database. In this context, we perform a concolic execution
since we operate on concrete query strings. When the query string has been
extracted, we have to determine its structure in order to generate entities
corresponding to this query and satisfying restrictions of the entities (e.g.
@NotNull or @Min(value = 0) in Fig. 1b). We have used the ANTLR parser
[14] to parse the JPQL string and deliver a tree representation of it. We also
have to integrate those constraints with the constraints from the method’s
control flow, such that the satisfiability of the constraints collected on an
explored path in the method can be determined.

(4) In order to generate an implicit test oracle, we have to distinguish between
the set of entities that are required to exist in the data store before the test
case is executed, and the set of entities that exist in the data store when the
symbolic execution of the method under test completes. We call the first set
pre-execution required and the second set post-execution expected. We have
implemented a symbolic object data store that manages both sets.

In summary, our contributions are the following:

– We have extended a Java bytecode based symbolic execution system to exe-
cute Java EE applications using JPA to interact with a data store. We have
integrated constraints from the entity definitions and queries with constraints
originating from the application’s control flow.

– By solving the resulting system of constraints for a representative set of exe-
cution paths, we can ensure that all nodes and edges of the control-flow graph
will be covered (if they are reachable), even if the control flow depends on
the state of the database.

– An evaluation of our approach on a set of benchmarks, including a comparison
to a state of the art tool to generate JUnit tests for Java applications.

The rest of this paper is structured as follows. In Sect. 2, we explain the symbolic
execution of Java bytecode and present a running example that motivates our

2 http://arquillian.org/, accessed March 2017.

http://arquillian.org/
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work. In Sect. 3, we show how we fill our symbolic data store such that it corre-
sponds to the JPQL queries and control-flow branches occurring on an execution
path of the considered program. In Sect. 4, we evaluate our approach based on
a set of benchmarks. In Sect. 5, we discuss related work. Finally in Sect. 6, we
conclude and point out future work. We also name the limitations of our current
prototypical implementation.

2 Symbolic Execution of Java Bytecode

Symbolic execution [9] is a program analysis technique for systematically explor-
ing paths through a program. A symbolic executor interprets the program with
symbolic values (represented by logic variables) instead of concrete values as
inputs. When it executes a conditional branch instruction depending on sym-
bolic values, it forks the execution and explores all possible continuations of the
control flow (in our case using backtracking with iterative deepening as search
strategy). As a result, a path condition is the conjunction of all conditions chosen
along a particular path, and it represents constraints over symbolic values that
must be satisfied for that particular path.

A constraint solver can examine the satisfiability of these constraints, and
thus determine whether a particular path can be triggered by any valid concrete
input values.3

A classic algorithm [18] to generate test cases with symbolic execution takes a
program P with a set V of variables, a set Vin ⊆ V of input variables, and a set I
of instructions. The aim is to find concrete values for all v ∈ Vin, such that (in the
case of control-flow coverage) every (reachable) node and edge of the control-flow
graph (see Fig. 2 for an example) is covered by the execution path corresponding
to at least one test case. In order to systematically explore all these paths, it is
necessary to track the different states a symbolically executed program has, when
it follows a particular path. Such a state includes the (possibly symbolic) values
of variables in V, the path condition, and a program counter for the currently
executed instruction [9]. A symbolic value is an expression consisting of logic
variables, constants, and operation symbols.

Since our approach must consider the state of a data store that is used by an
object-oriented program, we extend this definition. We define the state S of a
symbolically executed, database-driven, object-oriented program as a quintuple
S = (Γ , X, c, p, r). The database state Γ represents both the set of pre-execution
required entities as well as the set of post-execution expected entities. Both sets
are dynamically constructed during the symbolic execution. Each variable v ∈ V
has some (possibly) symbolic value xv ∈ X. c represents the condition of the
path currently being explored. The program counter p represents the current
instruction being executed, and r is the method’s result value. Hence, r = ⊥
until a path has been explored. Note that even a method without an explicit
return value (void) can have a result value r, e.g., an uncaught exception. The
3 If an explored path contains a bug, the input values that trigger it can be derived

from the path condition.



64 A. Fuchs and H. Kuchen

execution of an instruction i ∈ I changes the state S and might cause the
program to terminate. In that case, the exploration of the current path has
been completed and c can be evaluated in order to find concrete values for
the symbolic inputs in Vin that trigger the inspected path. Moreover, the path
condition c can also contain constraints over the attributes of entities in the pre-
execution required set of Γ . Thus, an evaluation of c also gives concrete values
for attributes of the entities that are required to exist in a data store to follow
a particular path in the program.

The symbolic execution of a Java program is challenging, since the Java
bytecode offers a broad range of instructions4 with possibly complex behavior.
Java uses a stack to provide the operands for an instruction. If the instruction
produces a result, it pushes this result onto the stack. The operand stack of a
method and the values of its local variables are organized in a frame that is
created each time a method is invoked and destroyed when it completes.

The symbolic execution that we use is based on a Symbolic Java Virtual
Machine (SJVM) [6,12]. Roughly speaking, the SJVM integrates the features of a
non-symbolic Java Virtual Machine [11] such as heap and frame stacks with com-
ponents known from the Warren Abstract Machine (WAM) [1], which is used for
the execution of Prolog programs. In particular, it includes a choice-point stack
and trail. A choice-point represents an alternative computation branch, which is
tried after backtracking. Backtracking happens, when the accumulated system
of constraints is no longer satisfiable or when a possible computation path is fin-
ished and alternative computations shall be tried. The trail records all changes
of the state of the SJVM. When backtracking, all such changes are undone that
happened since the creation of the last choice point. The symbolic execution
finishes, when every feasible branch of each choice point has been explored (or
another termination criterion is met). In Fig. 3, the state of our SJVM after exe-
cuting line 16 of the example in Fig. 1a is sketched. The corresponding picture
will be explained in more detail later on.

There are variables of a primitive data type (such as int). All other variables
refer to objects. An object may have several attributes, each of which may have
a symbolic or concrete value. We write o.a = b to assign the (possibly symbolic)
value b to the attribute a of the object o. A null reference is a special object
reference referring to no object.

We illustrate our extensions to that system with the class in Fig. 1a. The
symbolic execution of the method incrementStatus starts with initializing the
class CustomerService. After a class has been initialized, instances of it can be
generated. Since the method incrementStatus is not static, the SJVM requires
an object of type CustomerService to symbolically execute it. Thus, such an
object is created. Each attribute of this object is initially represented by a logic
variable, which may later on be bound to a (possibly structured) symbolic value
and eventually to a concrete value. Some attributes may receive a value by
dependency injection. In order to cope with this, we scan the respective Java

4 https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html, accessed March
2017.

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html
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class in order to find attributes that are annotated for dependency injection,
such as the attribute em in Fig. 1a. For each injectable attribute a of an object
o, we generate a new reference r to an object of the type t of the corresponding
attribute a, and set o.a = r. After an object of class CustomerService has been
created, a new frame for the method under test is generated and symbolically
executed by the SJVM, as explained in the following.

Figure 2 shows the control-flow graph based on Java bytecode of the method
in Fig. 1a. The program address of each instruction is written before a colon and
the mnemonic of the bytecode instruction after it, followed by a short comment
in italic. The instruction at program address 4 loads a reference to an object o
of type CustomerService onto the operand stack. The next instruction pushes
the (symbolic) value of the field em of the object o onto the stack, which is by
our construction a reference to an object of type EntityManager and guaranteed
not to be null. The instruction at program address 8 pushes a string constant
(variable ql in Fig. 1a), and the instruction at program address 10 a reference to
an object of class Customer onto the operand stack. The instruction at program
address 12 consumes both constants and creates a JPA query object.

At this point, we have made one of our major extensions to the system. The
JPA consists of a couple of Java interfaces, and thus its methods are executed by
the invokeinterface instruction. We have enhanced the symbolic execution of
this instruction in order to identify the invocation of JPA methods that require a
special handling. One of these methods is createQuery of the EntityManager.
Instead of just symbolically executing this method, we identify the concrete
query string from the first, and the concrete class type from the second argu-
ment. We use the Hibernate semantic query model (SQM) [4] to parse the JPQL
query string with an ANTLR 4 parser [14] into a comprehensive Java object of
type SqmStatement. We create an instance q of a wrapper class that stores the
SqmStatement object, and a hashmap for its parameters. As a result, the execu-
tion of the instruction at program address 12 pushes q onto the operand stack.
In block 3 and 4 of Fig. 2, q is used to set the parameters sum and date. Note
that the parameters r and d will have symbolic values that have been passed as
arguments to the method.

Fig. 2. Control-flow graph based on the Java bytecode of the method incrementStatus

in Fig. 1a.
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The instruction at program address 36 uses q to generate a result list rl for
the query. At this point, the result of the method invocation depends on the
state of the data store. The execution of an invokeinterface instruction, that
invokes the method getResultList on an object-reference of our wrapper class,
results in the generation of a symbolic query result list with a symbolic length
l and a reference to q. Roughly speaking, this list allows to dynamically add
elements to it that satisfy the restrictions in q while following a specific path of
the application. The construction of this list is explained in detail in Sect. 3. In
order to iterate over the elements in that list, we create a new symbolic iterator
in the instruction at program address 45. This iterator has a concrete counter
value idx for the index of the current iteration. Invoking method hasNext by
the instruction invokeinterface (at program address 84) results in a (symbolic)
value b. Via backtracking, we will try both possible values true and false for
b. Thus, we first set b to true and create a choice point referring to the other
alternative. Then, we push it onto the choice-point stack. In addition, we will
add the constraint l > idx to the constraint store making sure that the length
l of the result list rl is at least idx. When backtracking to this choice point, we
will set b to false and remove the choice point from the choice-point stack. In
addition, we will replace the mentioned constraint by l ≤ idx.

If b is true, we will enter the body of the for-loop (at program address 55).
Otherwise, we will continue at program address 92, where the current path ends.
In the body of the for-loop, the instruction at program address 57 pushes the
element eidx at position idx of the result list rl onto the operand stack. In our
example, eidx refers to an object of type Customer. Note that in general such
an object has to satisfy the restrictions made in the query and the restrictions
enforced by the entity class (here Customer). However, in our example there are
no such restrictions. Thus, eidx.status may assume any integer value. Next (at
program address 69), we push the symbolic values eidx.status and s (method
argument) onto the operand stack, and check whether eidx.status ≥ s. Since
there are no restrictions on eidx.status and on s, we can easily generate symbolic
values and corresponding constraints such that both possible results true and
false of the comparison will be tried via backtracking analogously as we did
it for the results of hasNext above. The first alternative continues with the
instruction at program address 82.

The corresponding state of the SJVM is depicted in Fig. 3. Here, boxes with
“?” represent logic variables. Note that also int variables such as s and r are
represented by logic variables in the heap of the SJVM. Note also that the
end of the list cList is represented by a logic variable. Thus, if this list needs
to have more elements in order to fulfill the constraints, new elements can be
appended by binding the logic variable correspondingly. Moreover note that the
two operands consumed by the instruction if cmpge are added to the trail such
that the previous state can be reestablished after backtracking. The correspond-
ing program address is stored in the newly created choice point on the choice
point stack. Finally, the constraint st > s is added to the constraint stack. If the
accumulated set of constraints gets unsatisfiable, backtracking will occur and an
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Fig. 3. State of the SJVM at instruction 73 of Fig. 2.

alternative computation indicated by the topmost choice point will be tried. Due
to the lack of space, we skip the explanation of the remaining symbolic execu-
tion. Note that the potential branching due to possible exceptions thrown by the
bytecode instructions getfield and invokeinterface can in fact not happen
due to data dependencies. Thus, when the symbolic execution tries to reach one
of the corresponding exits in Fig. 2, the constraint solver will determine that the
current set of constraints is no longer satisfiable and will initiate backtracking.
Since these exits are unreachable, the edges leading to them are dotted rather
than solid.

For the considered example in Fig. 2, our test-case generator produces three
test cases. Figure 4 shows the test case in which the query result list cList is
expected to have one entity ec of type Customer that has a lower status level
than the first method parameter s. Hence, it is expected that the method under
test increases the status level of ec to s. Note that at least one entity of each
JPA class CustomerOrder, Customer, and OrderItem is required to exist in the
database before the method under test is invoked (line 15). Those entities must
be joined (line 7 and 11), and some of their attributes require specific values.
The next section describes the generation of those entities in detail.
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Fig. 4. Example of generated JUnit test case for the method in Fig. 1a.

3 Generating Entities

The current database state Γ of the symbolic execution includes the set Ereq

of pre-execution required entities, and the set Eapp representing the data store
used by the AUT. At the end of the computation, Eapp corresponds to the set of
post-execution expected entities, and hence an implicit test oracle can compare
it with the actual database state after a test execution. When the AUT generates
a new entity ea during its symbolic execution, ea is added to Eapp, and when it
deletes an entity ea, ea is removed from Eapp. When an entity er is required to
exist in a data store in order to follow a specific path in the AUT, er is added
to Ereq. For each required entity er an entity ea cloned from er is added to
Eapp. The AUT operates on the set Eapp. The logic variables of the elements
in the set Ereq are used to generate path constraints. The AUT can set a new
logic variable to an attribute of an element in Eapp, but (without backtracking)
never reset a logic variable for an attribute of an element in Ereq. Therefore, in
our running example in Fig. 1a, we set ea.status = s in line 22, but we retain
er.status = η with η being a logic variable having the constraint η < s (see
line 21). The connection between ea and er is in particular useful for an auto-
generated identifier, where the concrete identifier is not known, when the JUnit
file is created by our symbolic execution system. For example in line 17 of Fig. 4,
the identifier of the pre-execution required entity customer1 is used to find the
post-execution expected entity customer1 db.

The EntityManager is a central component in JPA that allows both, to
operate on a single entity as well as to create a query that operates on multiple
entities. In the next two subsections, we describe how we dynamically generate
entities in both cases.
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3.1 Entity Manager Method Invocations

The persist(e) method of the EntityManager is a commonly used JPA method
to make an entity e persistent in the data store. However, if the data store already
contains an entity with the same identifier as e, the execution does not continue
with the next instruction in the application, but rather the method is supposed
to throw an unchecked exception that can result in a different control flow.
We analyze the identifier attribute aid of e and the database state Γ to decide
whether we fork the control flow into (1) a branch in which e already exists in
the data store, and (2) a branch in which e does not exist in the data store.

If aid is a generated value (@GeneratedValue annotation, see Fig. 1b), we
assume that the persistence framework (e.g. Hibernate) generates a non-existing
identifier for e. We therefore add e to Eapp and continue the symbolic execution
with the next instruction. If aid is not a generated value, but there already exists
an entity with the same identifier as e in the data store, the execution of the
invokeinterface instruction for this method throws an unchecked exception,
and we continue the symbolic execution with the instruction that catches the
execption. Otherwise, we create a new choice point that forks the current control
flow. In the first branch, we simply add e to Eapp and continue the symbolic
execution with the next instruction. In the second branch, we create a new entity
e∗, set e∗.aid = e.aid, add e∗.aid to Ereq, and throw an unchecked exception, since
the identifier of the entity e now already exists in the data store.

Since an entity is simply a Java object, we first create a new object o of the
given entity type t having logic variables as attributes. For an attribute that
has a static JPA entity constraint (e.g. @Min(1)), we add a constraint for the
corresponding logic variable to the path condition.

Another commonly used method of the EntityManager is find(c,id). It
returns an entity of the entity class c from the data store that has an identifier
id, or it returns null if no such entity exists in the data store. First, we check
whether Eapp contains any entity of type c that has id as its identifier. In that
case, we push that entity onto the operand stack and continue the symbolic
execution with the next instruction. Otherwise, we push a logic variable r repre-
senting the result onto the operand stack. In case a following instruction in the
program requires r �= null, we proceed as in described in the beginning of this
subsection and create a new object e to which r refers, set e.aid = id, and add e
to Ereq. If an instruction requires r = null, we do not change Ereq and simply
set r = null.

We currently support the following data types for entity objects: all Java
primitives, String, Date, Collection, and List. As data types for identifier,
we currently support numeric and string values.

Other JPA methods such as merge and remove are handled analogously.

3.2 Generating Entity Objects from a JPQL Query

The entity manager allows to create a query that selects entities from a data
store. This entity generation process is more challenging, since it can include the
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generation of multiple entities that must have specific values as specified by the
query. We support queries that are either using a JPQL string, or queries that
were built using the JPA Criteria API5.

When the JPA method getResultList is symbolically executed, we first
generate a result list. This list initially consists of all the elements in Eapp which
have been enforced by previous constraints concerning entities of the involved
entity types (i.e. database tables) and the query. The end of this list is repre-
sented by a logic variable, which may later on be bound in order to add further
elements enforced by subsequent constraints. From Eapp, we take all the ele-
ments of entity types (i.e. database tables) mentioned in the FROM clause of the
query and perform the corresponding join (see Fig. 5). Then, we eliminate all
results which violate the WHERE clause or HAVING clause. Finally, we project the
remaining tuples onto the attributes mentioned in the SELECT clause.

Once the initial query-result list has been generated, it can happen that due
to subsequent constraints the method under test requires later on more elements
to exist in the list. Since the elements in that list depend on the query as well
as on the state of the database, we have implemented an entity generator that
is associated to the result list. The generator is dynamically executed each time
a new entry in the result list is required and generates one entry at a time.
Additionally, it adds all the corresponding entities, which produce the entry
when joined, to Ereq and Eapp (see Table 1, initial entities, for an example).
An overview of the generator is depicted in Fig. 5. In a first step, it creates an
initial entity set E derived from the FROM and JOIN clauses. We join two (object
oriented) entities e1 and e2 by connecting them through a constraint of the form
e1.a = e2.6

Fig. 5. Overview of the element generator for the symbolic query result list.

After these initial entities are created, we use the selection predicate in the
query’s WHERE clause to generate additional constraints on the logic variables of
the attributes of the entities. We support selection predicates which are conjunc-
tions of clauses of the form a op b, where a and b are entity attributes, constants,
or symbolic values, and op ∈ {>,≥, <,≤,=, �=}.

Similarly to the previous step, we now apply potential aggregation con-
straints. We support the following aggregation operations: SUM, AVG, COUNT. Since

5 https://docs.oracle.com/javaee/7/tutorial/partpersist.htm, Chap. 40.
6 From a database point of view, this corresponds to a constraint e1.foreignKey =
e2.primaryKey.

https://docs.oracle.com/javaee/7/tutorial/partpersist.htm
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each aggregation operation is applied to entities of exactly one entity type t, we
know that the aggregation has failed on t, if the constraints derived from the
aggregation are not satisfiable. Thus, we will generate a new entity of type t and
try the aggregation again. In our running example in Fig. 1a, adding a new order
item could cause the sum of prices to reach the requested minimal amount (line
14).

If the aggregation clause can be satisfied, we can apply a projection as spec-
ified in the query’s SELECT clause to extract the result-list entry from the gen-
erated entities. Additionally, we add the generated entity references to Ereq and
Eapp inside the data store.

Table 1. Phases of the entity object-reference generation process.

Phase Entities Constraint stack

OrderItem eoi CustomerOrder eco Customer ec Level Constraint

Initial entities order = eco items = {eoi} orders = {eco} 1 items.length > 0

customer = ec 2 orders.length > 0

Static constraints price = p status = s 3 p ≥ 0

name = n 4 s ≥ 0

5 n �= null

Where orderDate = od 6 od ≥ d

Having 7 p ≥ r

We illustrate the result-list generator with the JPQL query from our running
example in Fig. 1a. Since we start the symbolic execution with an empty data
store and the method incrementStatus does not persist any data, the result
list cList is initially empty. In order to enter the for-loop in line 20, the list
requires at least one element of type Customer. We generate that element as an
entity object by first analyzing the FROM and JOIN clause of the query that selects
data from three entity types: OrderItem, CustomerOrder and Customer. First,
an entity eoi of type OrderItem is generated for the specified FROM clause. Next,
the query joins this entity with an entity of type CustomerOrder. We therefore
generate an entity eco of that type. Both entities eoi and eco are joined on the
specified attribute order in eoi, by setting eoi.order = eco. For the second join,
we generate an entity ec of type Customer, and set eco.customer = ec. In Table 1,
the result of these three entity generations and the respective join operations is
referred to as the initial entities in the first phase. In this phase, we add two
constraints for the list items in eco and the list orders in ec as shown in Table 1.

In the next step, we apply static constraints on the entities that are derived
from the entity specifications in Fig. 1b. The entity type OrderItem has a con-
straint the attribute price to be greater or equal to zero. We therefore add the
constraint eoi.price ≥ 0 to the constraint stack. For the entity of type Customer,
we add the constraints ec.status ≥ 0 and ec.name �= null to the constraint stack.

Subsequently, we generate constraints derived from the query’s WHERE clause:
eco.orderDate ≥ d, with d being a logic variable passed as method argument.
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Last, we generate constraints derived from the query’s HAVING clause, which is
applied to the attribute price of all OrderItem entities that have been generated
so far, i.e. eoi. We therefore add the constraint eoi.price ≥ r to the constraint
stack.

4 Empirical Study

We have implemented our test-case generation approach as an extension to the
symbolic execution system Muggl [12]. As a constraint solver, we have used
JaCoP [10]. For each discovered path through the method under test (MUT),
the system generates a test similar to the test shown in Fig. 4. All tests for a
method are stored in one JUnit file. A test case for a method is executed in three
steps: (1) persist the required entities in the database, (2) execute the MUT, and
(3) check the method result and the post-execution expected database state.

The test case has an instance of the session bean injected that is used to
invoke the MUT. It also has an instance of the JPA EntityManager injected
that is used to persist data in the test database before the MUT is executed,
and to query for entities to check the post-execution database state. Since the
test-case execution requires an implementation of this manager, we run our JUnit
tests on a WildFly7 application server that uses Hibernate as an implementation
of JPA. As a data store, we use a H2 in-memory database that is started by the
WildFly server. In order to deploy the AUT on the WildFly server and to run
the JUnit test inside its container, we use Arquillian8 as an integration testing
framework. In order to test a complete EJB class, we generate test cases for each
of the EJB’s methods and combine them in a JUnit test suite file.

We have evaluated our approach with the EJBs of the Java EE projects listed
in Table 2, that all use JPA to interact with a database. The methods of those
EJBs create, persist, update, and remove entities from a database, as well as
query for entities either via the find method of the EntityManager, or with a
query that is built by either a JPQL string or with the JPA Criteria API. In our
evaluation, we answer the research question:

What is the effect on branch coverage by a systematic generation of entities for
test cases for Java EE applications using JPA to interact with a database?

We compared our deterministic approach with the state of the art unit-test
generation tool EvoSuite [7]. Our main aim is to increase the branch coverage.
However, there are a couple of business methods that select entities from a
data store, and apply operations on these entities without explicitly branching
the control flow (e.g., with an if-statement). We therefore included the line
coverage in our evaluation results as well. The column headed with # shows
the total number of branches and lines per class. For the evaluated methods of
the EJBs, our approach generates test cases within a few seconds. We observe

7 http://wildfly.org/, accessed March 2017.
8 http://arquillian.org/, accessed March 2017.

http://wildfly.org/
http://arquillian.org/
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that our test cases execute the complete MUT, and do not throw unexpected
exceptions (e.g. JPA constraint violation exceptions). In order to enable the
repetition of our evaluation and to reproduce the results, we have released the
symbolic execution system including our extensions, as well as a couple of sample
Java EE projects, as open-source on a GitHub repository9.

We evaluated the session beans of the projects listed in Table 2. In order
to measure the branch and line coverage of our approach, we have used the
JaCoCo10 code-coverage tool. Similar to the empirical study in [2], we ran Evo-
Suite with a default configuration 30 times for each EJB class. We used the
statistics generated by EvoSuite to compare both test-case generation tools.
These statistics are very similar to the ones that JaCoCo produces.

Table 2. Comparison of generated unit tests statistics by Muggl and by EvoSuite on
different Java EE projects.

Java EE project EJB class Branch coverage Line coverage

# Muggl EvoSuite # Muggl EvoSuite

WWU Library BookServiceBean 9 100% 78% 21 100% 90%

CopyServiceBean 12 100% 83% 28 100% 93%

LoanServiceBean 10 100% 40% 25 100% 40%

UserServiceBean 8 100% 88% 16 100% 94%

Oracle Case Study Dukes Bookstore BookRequestBean 12 100% 67% 43 93% 63%

Oracle Case Study Dukes Tutoring AdminBean 47 87% 100% 172 90% 92%

Oracle Tutorial Order RequestBean 25 92% 68% 138 85% 58%

Oracle Tutorial Roster RequestBeanNoCriteria 18 89% 56% 119 97% 58%

RequestBeanQueries 29 55% 45% 188 83% 57%

We executed the generated test cases from EvoSuite with the EvoRunner.
Despite the fact that the generated test cases by EvoSuite run successfully, we
found that some of these tests – in contrast to our approach – do not consider
JPA constraints specified in the entity classes, which results in a JPA constraint
violation. We have used EvoSuite in version 1.0.4, which currently seems to
have trouble initializing EJBs with a @PostConstruct annotated method, i.e. a
method that is executed once dependency injection is done. In our evaluation,
we have therefore rewritten this method in order to be able to generate test cases
for the respective Java EE projects with EvoSuite as well. Some of the branches
that are not covered by our approach are due to JPQL queries that are currently
not supported by our approach, such as the locating of substrings (LOCATE); or
due to an unsupported initialization of classes, such as JavaServer Faces (JSF)
classes. For methods of the latter kind, EvoSuite produces test cases with a
higher coverage. In the Oracle Roster example, we know that certain branches
and lines cannot be reached for the EJB RequestBeanQueries, since we have
previously made sure that the required entity manager has in fact been injected.

9 https://github.com/wwu-pi/tap17-muggl-javaee.
10 http://www.eclemma.org/jacoco/, accessed March 2017.

https://github.com/wwu-pi/tap17-muggl-javaee
http://www.eclemma.org/jacoco/
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Thus, we actually cover 100% of the reachable branches and lines and refrain
from generating useless test cases.

The results show that our approach generates test cases with a high branch
coverage for EJBs that use JPA to interact with a database system. In particular,
our approach produces a higher branch coverage on methods of an EJB that
have a control flow which strongly depends on the result of a query made to a
database – compared to the state of the art testing tool EvoSuite. On the other
hand, EvoSuite produces better results on methods that use functionalities that
we currently do not support.

5 Related Work

There are two works that are closest to our work. First, Arcuri and Fraser [2]
implemented a proper bean initialization for the search-based test-case gener-
ation tool EvoSuite [7]. Their results show that a proper initialization of the
bean as class under test already increases the control-flow coverage, e.g., by
avoiding unexpected NullPointerExceptions. We support dependency injec-
tion typically used by EJBs that interact with a database system via JPA,
such as the injection of an instance of EntityManager, and the invocation of
a @PostConstruct annotated method after the initialization of a session bean
has completed. In addition to that, our main contribution is the generation of
entity objects that must exist in the database before a test case is executed.
This is especially useful to cover control-flow paths that dependent on a spe-
cific database state, as shown by our running example in Fig. 1a. Emmi et al.
[5] use a dynamic symbolic execution to generate both test input data for the
program and a required database state. Similarly to our approach, they have
also used a symbolic database, though our implementation of it is based on enti-
ties as objects in contrast to a relational database. In our symbolic data store,
we distinguish between the pre-execution required database state and the post-
execution expected state. In contrast to [5], we also support the challenging JOIN
operation and aggregation functions (e.g. SUM), which require the generation of
multiple entities for a required result of a query. Other works [17] mock the
database-related objects instead of using an actual database.

6 Conclusions, Limitations, and Future Work

We have presented an approach which generates a set of test cases such that
all (reachable) nodes and edges of the control-flow graph are covered. Our main
contribution is that we not only consider the constraints occurring when passing
branching statements but also consider the constraints imposed by the database.
Thus, we generate database states such that the control flow is covered. Our
prototypical implementation extends the test-case generator Muggl [6,12], which
is based on a symbolic Java virtual machine. We have compared our tool to a
state of the art test-case generator and shown that it increases the control-flow
coverage for a set of benchmarks.
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Currently, our prototypical implementation does not support multithreading
and reflection. Also, our implementation uses in case of an inadmissably long
runtime some artificial stopping criteria such as a maximal runtime or a maximal
nesting depth of method calls. If these criteria cause the test-case generation
to stop, a complete coverage of the control flow can no longer be guaranteed.
However as our experiments show, such a loss of completeness rarely happens in
practice. As future work, we would like to also support other coverage criteria
such as data-flow coverage.
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Abstract. This paper presents a model-based testing framework for
black-box probabilistic systems with stochastic continuous time. Markov
automata are used as an underlying model. We show how to generate,
execute and evaluate test cases automatically from a probabilistically
timed requirements model. In doing so, we connect classical ioco-theory
with statistical hypothesis testing; our ioco-style algorithms test for
functional behaviour, while χ2 hypothesis tests and confidence interval
estimations assess the statistical correctness of the system.

A crucial development are the classical soundness and completeness
properties of our framework. Soundness states that test cases assign the
correct verdict, while completeness states that our methods are powerful
enough to discover each discrepancy in functional or statistical misbe-
haviour, up to arbitrary precision.

We illustrate our framework via the Bluetooth device discovery
protocol.

1 Introduction

The role of computer-based systems is ever increasing: robots, drones and
autonomous cars will soon pervade our lives. Attuning to this progress, ver-
ification and validation techniques of these systems have grown to a field of
crucial importance. They provide methods that show whether the actual and
the intended behaviour of a system differ, or give confidence that they do not.

Conversely, the progressively intricate design of embedded systems continu-
ously brings new challenges to the field of verification engineers. The key question
of whether a system works as intended therefore has a variety of angles: Was
the functional behaviour correctly implemented? Does the system continue to
operate under a work overload? Is the average lifetime within safety regulations?
Can requirements be met on time?

Probabilistic aspects in many computer applications naturally add one of
those angles. Security protocols use random bits in their encryption methods [9],
control policies in robots lead to the emerging fields of probabilistic robotics [46],
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hidden Markov chains are used in speech recognition [39] and communication
protocols are often equipped with a stochastic delay [15,44]. Therefore, there is
a natural demand for a pendant in the verification and validation community
that accounts for probabilistic aspects.

Testing. To investigate such questions, probabilistic verification has become
a mature research field with techniques like stochastic model checking (SMC)
[38] based on models like probabilistic automata [40], Markov decision processes
[37], generalised stochastic Petri nets [33] or stochastic automata [12]. These
techniques are complemented with tools like PRISM [29], PLASMA [27] or the
MODEST toolset [20].

In practice, however, the most common validation technique is testing. The
system is subjected to many well-designed test cases and the outcome is compared
to a specification.Averdict, i.e. pass or fail, is then given based on the expectations.

This paper presents a model-based testing (MBT) approach that can handle
probabilistic and stochastic-time aspects in systems. MBT gained a lot of trac-
tion in recent years in both academia and industry. It mirrors the faster devel-
opment of systems, by providing access to faster test methods due to automa-
tion. Test cases are automatically generated, executed and evaluated based on
a requirements specification. A number of industrial and academic MBT tools
have been developed, such as TorXakis [35], MaTeLo [19], UPPAAL Tron [22]
or SpecExplorer [51].

There is a large body of different frameworks that accommodate a variety of
requirements aspects, like functional properties [50], real-time [2,6,30], quanti-
tative aspects [3,5] and coverage [7]. Surprisingly, only few papers are concerned
with the testing of probabilistic systems1, with some notable exceptions being
[24–26].

We present an applicable framework in an MBT setting, that is capable of
verifying if probabilistic choices made by the system itself were implemented cor-
rectly. Furthermore, the approach also accommodates stochastic-time aspects of
systems, such as specified delays, degradation rates or intended waiting periods.
This is of particular interest, if only the mean duration of an activity is known.

Our Approach. The foundation of our methodology are Markov automata
(MAs). MAs are equipped with both probabilistic and nondeterministic choices.
The first represent choices made by the system (e.g. coin tosses or random seeds)
or the environment (e.g. degradation rates or failure probabilities). The latter
model choices that are not under its control. As widely agreed [40,43], nonde-
terminism is crucial for implementation freedom, scheduling choices and inter-
leaving. Complementary, they are of particular interest because of their memo-
ryless exponential distributed timed transitions. These give a highly appropriate
stochastic approximation, if only the mean duration of an activity is known,
as is often the case in a practical setting. Mathematically, MAs arise as the

1 The topic of statistical testing, e.g. [1,52], is concerned with choosing test inputs
probabilistically; it does not check the correctness of the random choices made by a
system itself.
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conservative extension of both probabilistic automata (PAs) [40] and interactive
Markov chains (IMCs) [21].

An important contribution are our algorithms that automatically generate,
execute and evaluate probabilistic test cases from a specification MA. They
check the functional, probabilistic and stochastic-time behaviour of the system.
Probabilities are observed via frequencies, hence, test cases need to be repeated
multiple times. We use statistical hypothesis testing, in particular χ2 testing, to
assess whether a test should pass or fail.

To account for the correctness of our framework, we prove it to be sound
and complete. Soundness states that each test case assigns the correct verdict,
while completeness (a.k.a. exhaustiveness) guarantees that the test method is
powerful enough to discover each deviation from the requirements. Phrasing
these results requires a mathematical notion of conformance. We propose the
Mar-ioco relation, an implementation relation that pins down precisely when
an implementation modelled as an MA conforms to a requirements specification
model. We prove Mar-ioco to be a conservative extension to the ioco relation
known from MBT literature [47,50]. Lastly, we provide a case study on the
Bluetooth device discovery protocol showing the applicability of our framework.

While test efficiency is essential, this paper focusses on the methodological
set up and correctness. Imperative future research is to optimize the statistical
verdicts we give and provide fully fledged tool support.

We summarize our key contributions:

1. The general input output Markov automata model comprising discrete proba-
bility distributions, non-deterministic choices and exponentially delayed tran-
sitions,

2. a behavioural description for Markov automata based on trace semantics,
3. solid definitions of probabilistic test cases, test execution and verdicts,
4. the treatment of the absence of outputs in a stochastically time delayed setting

and
5. the soundness and completeness results of our framework.

Related Work. There is a large body of work on testing real-time systems
[2,6,28,30]. Briones and Brinksma [6] extend the framework to incorporate the
notion of quiescence, i.e. the absence of outputs.

Conversely, probabilistic testing preorders and equivalences are well-studied
[10,14,40]. Distinguished work by [31] introduces the concept of probabilistic
bisimulation via hypothesis testing. Largely influential work is given by [8], pre-
senting how to observe trace frequencies during a sampling process. Executable
probabilistic test frameworks are suggested for probabilistic finite state machines
in [23,26] and Petri nets [4].

Closely related to our work is the study of Markovian bisimulation. The
foundation of an observational equivalence is presented in [16] in the form of
weak bisimulation for Markov automata, and was refined by introducing late-
weak bisimulation [13,42] and branching bisimulation [49].

This paper is an extension of earlier work [17] that investigated the test
process in the probabilistic setting and a workshop paper [18] sketching how
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stochastic time and exponential delays can be incorporated. Novel contributions
of the current version are the complete integration of stochastic-time delays and
the treatment of quiescence.

Overview Over the Paper. In Sect. 2 we recall definitions of Markov
automata. Section 3 describes how Markov automata are used in the testing
process and Sect. 4 shows that our framework is sound and complete. We show
experimental results in Sect. 5. The paper ends in Sect. 6 with conclusions and
future work.

2 Markov Automata

We recall properties of Markov automata and show how nondeterminism is
resolved. We assume that the reader is acquainted with the basics of probabil-
ity theory, but recall integral definitions. In particular, we borrow the standard
construction of probability spaces via σ-fields. See [11] for an excellent overview
and further reading.

Probability. A discrete probability distribution over a set X is a function μ : X
→ [0, 1], such that

∑
x∈X μ (x) = 1. The set of all distributions over X is denoted

Distr (X) and subdistributions SubDistr (X) respectively.
Let Ω be a set, F a σ-field of Ω and (Ω,F) the resulting measurable space.

A σ-additive function μ : F → [0, 1] is called a probability measure, if μ (Ω) = 1.
We denote the set of all probability measures over X by Meas (X).

A probability space is a triple (Ω,F ,Pr), where Ω is a set, F is a σ-field
of Ω and Pr : F → [0, 1] is a probability measure, such that Pr (Ω) = 1 and
Pr (

⋃∞
i=1 Ai) =

∑∞
i=1 Pr (Ai) for Ai ∈ F , i = 1, 2 . . . pairwise disjoint.

2.1 The Markov Automaton Model

Markov automata [48] comprise nondeterministic choices, discrete probability
distributions and exponentially delayed transitions. They allow modelling choices
made by the system (e.g. coin tosses) or the environment (e.g. degradation rates)
and are an appropriate stochastic approximation, if only the mean duration of
an activity is known.

Definition 1. A Markov automaton M = 〈S, s0, L,→,�〉 is a five-tuple,
consisting of

– S a set of states, with s0 the unique starting state,
– L a set of actions,
– →⊆ S × L × Distr (S), the probabilistic transition relation and
– �⊆ S × R≥0 × S, the Markovian transition relation.

An IOMA is an MA, where L = Li � Lo � Lτ is the disjoint union of input,
output, and internal actions respectively, containing a special quiescence label
δ ∈ Lo.
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Fig. 1. Protocol specification IOMA and two erroneous implementations. After the
input send? there is an exponentially delayed transition, followed by an acknowledge-
ment or error output.

If we replace → by →′⊆ S × Distr (L × S) with the requirement that for all
(s, μ) ∈→′ if μ (s, a) > 0 for an input a ∈ Li, then μ (s, b) = 0 for all b �= a, the
input output MA becomes input-reactive and output-generative.

An action a is enabled in state s, if there is a distribution μ, such that
(s, μ) ∈→ and μ (a, s′) > 0 for some s′ ∈ S. We write enabled {s} for the set of
enabled actions in s. A state is called probabilistic, if at least one action of L is
enabled. A state is called input-enabled, if all actions of the set Li are enabled.
A state is called Markovian, if it has at least one transition (s, λ, s′) ∈�. The
Markovian actions are parameters for the exponentially delayed transitions and
therefore deemed invisible.

A distinctive feature of Markov automata are their exponentially distributed
timed transitions, i.e. the set �. The rate to go from a state s to a state s′ is the
sum of all λ, such that (s, λ, s′) ∈� and is denoted R (s, s′). The sum of all rates
in a state s is called exit rate of s and denoted by E (s). We require E (s) < ∞
for all s ∈ S. The delay associated with a Markovian state is exponentially
distributed with its exit rate. Multiple Markovian transitions in one state thus
lead to a race condition. The probability to move from s to a successor s′ equals
the probability that (one of) the Markovian transitions leading from s to s′ wins
the race. This induces the discrete branching probability distribution Ps for s
given by Ps (s′) = R (s, s′) /E (s).

A state is called stable, if it enables no internal action. We employ the maximal
progress assumption, meaning that time is not allowed to progress in unstable
states. This renders Markovian transitions in unstable states unnecessary [32].

Example 1. Fig. 1 shows three input-reactive output-generative IOMA. The
model describes a protocol that associates a delay with every sent action, followed
by an acknowledgement or error. Input is suffixed with “?” and output with “!”.
Discrete probability distributions are denoted with a dotted arc, together with
the action label and corresponding probabilities. Markovian actions are presented
as staggered arrows.
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After the send? input is received, there is an expected delay indicated by the
Markovian action λ. The delay is exponentially distributed, thus, the probability
to go from s1 to s2 in T time units is 1 − e−λT . In state s2 there is one outgoing
discrete probability distribution. The specification in Fig. 1a implies that only
10% of all messages should end in an error report and the remaining 90% get
delivered correctly. After a message is delivered, the automaton goes back to its
initial state where it stays quiescent until input is provided. This is denoted with
the δ self-loop, marking the desired absence of outputs.

2.2 Paths and Traces

Let M = 〈S, s0, L,→,�〉 be an IOMA. We define the usual language theoretic
concepts. A path π of M is a (possibly) infinite sequence of the form

π = s1 t1 μ1 α1 s2 t2 μ2 α2 . . . ,

where si ∈ S, ti ∈ R≥0, μi ∈→ ∪Psi
and αi ∈ L ∪ R≥0 for i = 1, 2, . . .. We

require that each finite path ends in a state. The sequence si ti μi αi si+1 means
that M resided ti time units in state si before moving to si+1 via αi using the
distribution μi. The length of a finite path, denoted |π|, is the number of input
and output actions occurring on it.

Note that measuring a single time point in continuous time results in proba-
bility zero. Hence, it is necessary to talk about time intervals instead of individ-
ual time values. An abstract path is a path, where each occurrence of single time
values ti is replaced by intervals Ii ⊆ R≥0. However, we limit our interested to
intervals of the form [0, t] with t ∈ R≥0. Consequently, any path can be replaced
with its abstract path by changing ti to [0, ti] or vice versa. This convention lets
us use both notions interchangeably.

The trace of a path tr (π) only records its visible behaviour, i.e. time and
input/output actions. It is given by the (possibly) infinite sequence of the form

σ = tr (π) = t1 a1 t2 a2 . . . ,

where ti ∈ R≥0 and ai ∈ Li∪Lo for i = 1, 2, . . .. The length of a trace is the length
of its corresponding paths. Note that a path fragment s1 t1 μ1 λ s2 t2 μ2 a s3 col-
lapses to (t1 + t2) a if λ is a Markovian action. Technically, Markovian actions
are just parameters for an exponential delay and therefore invisible. Similar to
abstract paths, an abstract trace is given, if all ti ∈ R≥0 of a trace are replaced by
intervals Ii ⊆ R≥0. Again, we limit ourselves to abstract traces only using inter-
vals of the form [0, t] with t ∈ R≥0. This enables us to use traces and abstract
traces interchangeably.

We denote the set finite paths Paths∗ (M) (Traces∗ (M) resp.) and abstract
paths as AbsPaths∗ (M) (AbsTraces∗ (M) resp.) and omit the asterisk to include
the infinite case. We use ctraces (M) to denote the set of traces ending in a
deadlock state. Lastly, let the operator act (π) return the action path of π by
removing all time values ti and distributions μi. For traces act (σ) returns visible
actions only.
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2.3 Traces and Their Probabilities

Similar to how the visible behaviour of a labelled transition system (LTS) is
given by its traces, the visible behaviour of an IOMA is given by its trace dis-
tributions. A trace distribution is a probability space, that assigns probabilities
to all traces. A trace of an LTS is obtained by removing all states and internal
actions from a given path. We do the same in the IOMA case: First we resolve all
nondeterministic choices via an adversary and then remove all invisible informa-
tion. The resolution of nondeterministic behaviour leads to a purely probabilistic
structure.

The mathematical framework for infinite abstract paths is technically more
involved, but completely standard [43]. A classical result in measure theory [11]
shows, that it is impossible to assign a probability to all sets of traces in non-
trivial scenarios. To illustrate: the probability of always rolling a 6 with a die
is 0, but the probability of rolling a 6 within the first 100 tries is positive. To
resolve this, we use a cone construction of sets of traces.

Adversaries and Path Probability. Similar to [40,43], adversaries form the
core concept of our framework. Given any finite piece of history leading to the
current state, an adversary returns a distribution over the available transitions.

Definition 2. An adversary A of an IOMA M = 〈S, s0, L,→,�〉 is a function

A : Paths∗ (M) −→ Distr (Distr (L × S) ∪ {⊥}) ,

such that for each finite path π only available distributions are scheduled, i.e.

∀π ∈ Paths∗ (M) : A (π) (μ) > 0, then (last (π) , μ) ∈→ .

The value A (π) (⊥) is the probability to interrupt/halt the process. An adversary
A halts on path π, if A (π) (⊥) = 1. We say an adversary is of length k ∈ N, if
it halts for all paths π with length greater or equal to k. We denote this set by
adv (M, k) and the set of all adversaries by adv (M) respectively.

An adversary resolves all nondeterministic choices of an IOMA making it pos-
sible to calculate the probability for each path via the probabilistic execution
function. Probabilistic executions assign the unique starting state probability 1
and each following transition either multiplies the probability that the sched-
uler assigned to an action or, if no action was scheduled, the probability of a
Markovian action taking place in a certain time interval.

Definition 3. Let A be an adversary of an IOMA M, then we define the proba-
bilistic execution function PA : AbsPaths (M) → [0, 1] inductively by PA (s0) = 1
and

PA (Π · Iαμs) = PA (Π) ·
{

A (π) (μ) · μ (α, s) if α ∈ L
∫

I
R (last (Π) , s) e−E(last(Π))tdt if α ∈ R≥0

,

where I = [0, T ] ⊆ R≥0 and π is the corresponding path to the abstract path Π.
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The probability space of an adversary is constructed based on cones of paths
[40]. The cone Cπ of a path π contains all paths that have π as prefix. Given
A ∈ adv (M) , let ΩA := Paths (M) be the sample set and FA be the smallest
σ-field generated by the set of cones {CΠ ⊆ Paths (M) | Π ∈ AbsPaths∗ (M)}.
Standard measure theory arguments [11] ensure that PA induces a unique prob-
ability measure on the measurable space (ΩA,FA). Hence, an adversary induces
a probability space (ΩA,FA, PA) on a Markov automaton.

Trace Distributions. A trace distribution is obtained from (the probability
space of) an adversary, in the way a trace is obtained from a path; all invisible
behaviour is removed. Intuitively, the probability assigned to a set of abstract
traces X, is defined as the probability assigned to all abstract paths whose
abstract trace is an element of X.

Definition 4. The trace distribution D of an adversary A is the probability
space (ΩD,FD,PrD) given by ΩD = Traces (M), FD as the smallest σ-field
generated by the set of cones {Cσ ⊆ Traces (M) | σ ∈ AbsTraces∗ (M)} and PD

as the unique probability measure on FD, such that PD (X) = PA

(
tr−1 (X)

)
for

X ∈ FD

A trace distribution is of length k ∈ N, if it based on an adversary of length
k. We denote the set of all such trace distributions by Trd (M, k). The set of all
trace distributions is denoted by Trd (M). This naturally induces an equivalence
relation, denoted =TD , that equates two IOMAs, if they have the same set of
trace distributions.

3 Testing with Markov Automata

Model-based testing entails automatic test case generation, execution, and eval-
uation. We formalize the notion of offline tests and show how they can be gen-
erated in batch or on-the-fly. The functional correctness of a system under test
(SUT) is assessed upon test execution. To evaluate the probabilistic correct-
ness of the system, tests are executed multiple times and recorded in a sample.
The trace frequencies observed in a sample are then compared to their expecta-
tions. Consequently, an implementation is deemed correct, if these frequencies
are within certain confidence intervals given by the requirements.

3.1 Test Generation

Test Cases. We consider test cases as sets of traces based on an action signature
consisting of inputs and outputs (Li, Lo). These traces describe the possible
behaviour of a tester. In each state of a test, a tester may decide to stimulate
the SUT, observe its possible outputs or stop the process altogether.

Mathematically, we consider test cases as input-reactive and output-
generative probabilistic automata, i.e. Markov automata with �= ∅. This
enables us to model the choices of stimulating, observing or stopping proba-
bilistically. Note that, even in the non-probabilistic case, the test cases are often
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created probabilistically in practice. However, this is rarely ever supported in
theory. Thus, our definition fills a small gap here.

Definition 5. A test over an action signature (Li, Lo) is an IOMA of the form
t = (S, s0, Lo\ {δ} , Li ∪ {δ} , {τstop , τstim , τobs},→, ∅), such that

– t is internally deterministic and does not contain an infinite path;
– t is acyclic and connected;
– For every state s ∈ S, either

• enabled {s} = ∅
• enabled {s} = {τstop , τstim , τobs}
• enabled {s} = Li ∪ {δ}
• enabled {s} ⊆ Lo\ {δ}

A test for a specification IOMA M = 〈S, s0, L,→,�〉 is a test over its action
signature.

Note that the action signature of tests has switched input and output labels.
This is to allow for synchronisation in a parallel composition with an implemen-
tation IOMA.

Fig. 2. A regular test and a probabilistic test derived for the specification of Fig. 1.

Example 2. Fig. 2 shows two test cases for the specification IOMA in Fig. 1.
The probabilistic test case models the possible behaviour of a tester. Here, a
probabilistic choice is made with 1

3 on whether to stop, stimulate or wait for
responses of the system. Traces in the tests are labelled pass or fail according
to Definition 6.

Annotations. To state whether observed functional behaviour is deemed cor-
rect, each trace of a test is annotated with a verdict; pass for correct and fail for
erroneous behaviour. The classical ioco test case annotation [47] suffices here.
Informally, all traces of a test, that are also present in the specification, get
annotated as correct.

Definition 6. For a test t, a test annotation is a function a : ctraces (t) −→
{pass, fail}. A pair t̂ = (t, a) consisting of a test and an annotation is called
an annotated test. If t is a test for a specification S we define the annotation
aS,t : ctraces (t) −→ {pass, fail} by
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aS,t (σ) =

{
fail if ∃ � ∈ Traces (S) , a! ∈ Lδ

O : �a! � σ ∧ �a! /∈ Traces (S) ;
pass otherwise,

where � denotes the prefix relation for traces.

Algorithms. Algorithm 1 presents the batch test generation according to Defi-
nition 5. The inputs are a specification IOMA M and a history trace, which is
initially empty. At each step of the computation, the algorithm decides proba-
bilistically to stop with pσ,1, stimulate with pσ,2 or observe with pσ,3. The latter
two choices recursively call the batch-gen algorithm again with updated trace
history. Note that pσ,1 + pσ,2 + pσ,3 = 1.

Algorithm 2 describes the on-the-fly test case derivation for a given speci-
fication S, implementation I and upper limit for the test length n. It returns
a verdict within the first n steps. The verdict is fail if unexpected output was
encountered and pass otherwise. With probability pσ,1 the algorithm observes
the output of the implementation and with probability pσ,2 it stimulates it with
a new input. Note that pσ,1 + pσ,2 = 1.

Algorithm 1: Batch test generation

for Mar-ioco.

Input: Specification IOMA S and
history σ ∈ traces (S).

Output: A test case t for S.
1 Procedure batch(S, σ)
2 pσ,1·[true] →
3 return {τstop}
4 pσ,2·[true] →
5 result := {τobs}
6 forall b! ∈ Lo do:
7 if σb! ∈ traces (S) :
8 result := result ∪ {b!σ′ |

σ′ ∈ batch (S, σb!)
}

9 else:
10 result := result ∪ {b!}
11 end

12 end
13 return result
14 pσ,3·[σa? ∈ traces (S)] →
15 result := {τstim} ∪{

a?σ′ | σ′ ∈ batch (S, σa?)
}

16 forall b! ∈ LO do:
17 if σb! ∈ traces (S) :
18 result := result ∪ {b!σ′ |

σ′ ∈ batch (S, σb!)
}

19 else:
20 result := result ∪ {b!}
21 end

22 end

23 return result

Algorithm 2: On-the-fly test

case derivation for Mar-ioco.

Input: Specification IOMA S, an
implementation I and an
upper bound for the test
length n ∈ N.

Output: Verdict pass if Impl. was
ioco conform in the first
n steps and fail if not.

1 σ := ε
2 while |σ| < n do:
3 pσ,1·[true] →
4 observe next output b!

(possibly δ) of I
5 σ := σb!
6 if σ /∈ traces (S) :
7 return fail
8 pσ,2 · [σa? ∈ traces (S)] →
9 try:

10 atomic
11 stimulate I with a?
12 σ := σa?

13 end

14 catch an output b! occurs
before a? could be applied

15 σ := σb!
16 if σ /∈ traces (S) :
17 return fail
18

19 end

20 end
21 return pass
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Theorem 7. All test cases generated by Algorithm1 are test cases according to
Definition 5. All test cases generated by Algorithm2 assign the correct functional
verdict according to Definition 6.

3.2 Test Execution

Since discrete probabilistic choices and stochastic time delay are integral parts
of Markov automata, there is a twofold evaluation process of functional and sta-
tistical behaviour. While functional behaviour is assessed via the test annotation
as in classic ioco-test theory [50], we focus on describing the sampling process
to validate statistical correctness.

Sampling. In order to reason about probabilistic correctness, a single test exe-
cution is insufficient. Rather, we collect a sample via multiple test runs. The sam-
pling process consists of a push-button experiment in the sense of [34]. Assume
a black-box timed trace machine is given with inputs, time and action windows,
and a reset button as illustrated in Fig. 3.

At the beginning of the experiment, we set the parameters for sample length
k ∈ N, sample width m ∈ N and a level of significance α ∈ (0, 1). That is, we
choose the length of individual runs, how many runs should be observed and
a limit for the statistical error of first kind, i.e. the probability of rejecting a
correct implementation.

Fig. 3. Black box timed trace machine with input alphabet a0?, . . . , an?, reset button,
and time and action windows. Running the machine m times and observing traces of
length k yields a sample. The ID together with the trace and the respective number of
occurrences are noted down.

We assume that the timer resets to 0 after every visible action and that
two consecutive occurrences of the same action are distinguishable. An external
observer records each individual execution before the reset button is pressed
and the machine starts again. Thus, we collect m traces of length k, which are
summarized as a sample O.

During each run the black-box I is governed by a trace distribution D ∈
Trd (I). In order for any statistical reasoning to work, we assume that D is the
same in every run. Thus, the SUT chooses a trace distribution D and D chooses
a trace σ to execute.

Frequencies and expectations. We evaluate the deviation of a collected sam-
ple to the expected distribution. The latter is given for any underlying trace dis-
tribution D of the specification IOMA. Since the trace distribution is assumed
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to be the same for all runs, the expected probability to observe a trace σ is given
by E

D (σ) = PD (σ).
Depending on the accuracy of time measurement, it is unlikely to record the

exact same timed trace more than once. Therefore, we group traces in classes
based on the same visible action behaviour. For a given abstract trace σ, its class
Σσ is the set of all abstract traces � ∈ O, such that act (σ) = act (�). A sample
of length k and width m then induces a frequency measure, given by

freq (O) (σ) =
|Σσ|
m

Πk
i=1

|{� ∈ Σσ | I	
i ⊆ Iσ

i }|
|Σσ| ,

where I	
i denotes the i-th time interval of trace �, for any abstract trace σ. The

implementation is rejected for statistical reasons, should the deviation of the
measure freq (O) to E

D exceed a certain threshold based on α.

Acceptable outcomes. Conversely, we accept a sample O if freq (O) lies within
some distance, say rα, of the expected distribution E

D. Recall the definition of a
closed ball centred at x ∈ X with radius r as Br (x) = {y ∈ X | dist (x, y) ≤ r}.
All measures deviating at most by r from the expected distribution are contained
within the ball Br(ED), where dist (u, v) := sup

σ∈(R≥0×L)k | u (σ) − v (σ) | is

the total variation distance of measures.
To limit the error of accepting an erroneous sample, we choose the smallest

radius, such that the error of rejecting a correct sample is not greater than the
a priori chosen level of significance α ∈ (0, 1) by 2

rα := inf
{
r ∈ R>0 | PD

(
freq−1

(
Br

(
E
D

)))
> 1 − α

}
.

Definition 8. For k,m ∈ N and an IOMA M the acceptable outcomes under
a trace distribution D ∈ Trd (M, k) of significance level α ∈ (0, 1) are given by
the set

Obs (D,α, k,m) =
{

O ∈
(
(R≥0 × L)k

)m

| dist
(
freq (O) ,ED

) ≤ rα

}
.

The set of observations of M of significance level α ∈ (0, 1) is given by

Obs (M, α, k,m) =
⋃

D∈Trd(M,k)

Obs (D,α, k,m) .

The set of observations therefore guarantees two properties, reflecting the
error of false rejection and false acceptance respectively:

1. If a sample O was truthfully generated by M or a behaviourally equivalent
IOMA, then there is a trace distribution D such that PD (O) ≥ 1 − α; and

2. if a sample O was generated by a behaviourally different MA, then for all
trace distributions D′ we have PD′ (O) ≤ βm,

2 Note that freq (O) is not a bijection, but used here for ease of notation.
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where α is the predefined level of significance and βm is unknown but minimal by
construction. Note that βm → 0 as m → ∞, thus the error of falsely accepting
an erroneous sample decreases with increasing sample width. Here, behavioural
equivalence is induced by trace distribution equivalence, cf. Definition 4.

Goodness of fit. In order to state whether a given sample O is a truthful
observation of M, we need to find a trace distribution D ∈ Trd (M) such that
O ∈ Obs (D,m, k, α). It guarantees that the error of rejecting a truthful sample
is at most α. These sets are crucial for the soundness and completeness proofs.
However, they are computationally intractable to gauge for every D, since there
are uncountably many.

Instead, we use χ2 hypothesis testing to assure that a sample is acceptable.
The χ2 score is calculated as:

χ2 =
l∑

i=1

(
n (Σσi

) − mE
D (Σσi

)
)2

mED (Σσi
)

with l ≤ m. (1)

To find a trace distribution that gives a high likelihood to an observed sample,
we need to find D, such that χ2 < χ2

crit . The critical value depends on α and
the degrees of freedom in the statistical test. In this case the degrees of freedom
are given by the number of trace classes minus one, i.e. the probability of one
class is determined, if we know all others. The critical value for χ2 tests can be
calculated or universally looked up in a table.

By construction of adversaries, cf. Definition 2, we are interested in the reso-
lution of the nondeterministic choices. Consequently, (1) turns into a satisfaction
problem over a probability vector p in a rational function of two polynomials
f and g as f (p) /g (p). As [36] shows, optimization over rational functions and
inequality constraints is NP-hard.

Since (1) neglects time stamps, we need to assure that the recorded time
intervals correspond to the α confidence intervals of specified Markovian actions.
That is

∀λ ∈ R≥0 with (s, λ, s′) ∈� for s, s′ ∈ S : λ ∈
[

2
∑n

i=1 ti
χ2
2n (1 − α/2)

,
2
∑n

i=1 ti
χ2
2n (α/2)

]

,

The confidence intervals depend on a scheduler that solves the satisfaction prob-
lem.

3.3 Test Evaluation and Verdicts

An implementation should pass the test suite, if it passes the two verdicts for
functional behaviour and probabilistic behaviour. This is reflected in the math-
ematical verdicts.

Definition 9. Given a specification S = 〈S, s0, L,→,�〉, an annotated test t̂ for
S, k,m ∈ N where k is given by the trace length of t̂ and a level of significance
α ∈ (0, 1), we define the functional verdict as the function vfunc : IOMA −→
{pass, fail}, with
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vfunc (I) =

{
pass if ∀σ ∈ ctraces (I || t) ∩ ctraces (t) : a (σ) = pass
fail otherwise,

and the probabilistic verdict as the function vprob : IOMA −→ {pass, fail}, with

vprob (I) =

{
pass if ∃D ∈ Trd (S, k) : PD (Obs (I || t, α, k,m)) ≥ 1 − α

fail otherwise,

where || denotes the parallel composition. The overall verdict is pass, iff an imple-
mentation passes both verdicts.

A note on quiescence. A test case needs to assess if an SUT is allowed to be
unresponsive when output was expected [45]. Quiescence δ models the absence
of output for indefinite time. Therefore, it should be regarded with caution in
practical test scenarios. Earlier work assumes a global fixed time-out value set
by a user [6].

Time progress of Markov automata is exponentially delayed, hence, a global
time-out value has two disadvantages: 1. a time-out might occur, before a speci-
fied Markovian action takes place and 2. a global time-out value might unneces-
sarily prolong the test process. Therefore, our interest is to minimize the proba-
bility of erroneously declaring quiescence, while keeping the overall testing time
as low as possible.

Assume a level of significance α ∈ (0, 1) is given. Let λ be the exit rate of a
state s. Then the exit rate of s is a random variable T that is exponentially dis-
tributed with parameter λ. The probability, that a Markovian action is executed
before a state-specific maximum waiting time tmax expires should be greater
than (1 − α), i.e.

P (T < tmax ) > 1 − α

Hence, choosing tmax > − log α
λ minimizes the probability of assigning quiescence,

when the SUT makes progress. Since the sum of exponential distributions is
not exponentially distributed, we resort to less sharper bounds for consecutive
Markovian transitions.

Example 3. Fig. 4 shows a simplistic specification of a file exchange protocol.
An exponential distribution is used to model the time delay between sending
a file and acknowledging its reception. Note that different expected delays are
associated with sending a small or a large file respectively.

After a file was send, there is a chance that it gets lost and we do not receive
the acknowledge! output. In this case the system is judged as quiescent, and
therefore faulty. However, since ν � λ a test should wait at least − log α

10 time
units in s1 and − log α in s2, to minimize the probability to erroneously judge
the system as quiescent, while also keeping the testing time as low as possible.

Regardless, for a sufficiently large sample size, an MBT-tool eventually erro-
neously observes quiescence. The right hand side of Fig. 4 therefore allows for
some amount of quiescence observations depending on α.
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Fig. 4. Specification of a file exchange protocol. Sending a small file is expected to take
less time. The right hand side models the possibility to erroneously declare quiescence
probabilistically.

4 Conformance, Soundness and Completeness

A fundamental result of our work is the correctness of our framework, phrased
as soundness and completeness. Soundness ensures that test cases assign the
correct verdict. Completeness postulates that the framework is powerful enough
to discover each deviation from the specification. In order to formulate these
properties, we require a formal notion of conformance that we define as the
Mar-ioco relation [18].

4.1 The Mar-Ioco Relation

The ioco relation as defined in [50] states, that an implementation conforms
to a specification, if it never provides any unspecified output or quiescence.
Mathematically, for two input-output transition systems I and S, with I input
enabled, we say I �ioco S, iff

∀σ ∈ Traces (S) : outI (σ) ⊆ outS (σ) .

This restricts the theory to functional behaviour in the case of classic transition
systems. To generalize ioco to Markov automata, we need two auxiliary concepts:

Trace Distribution Prefix. Given a trace distribution D of length k and a
trace distribution D′ of length greater or equal than k, we say D is a prefix
of D′, written D �k D′, if both assign the same probability to all traces of
length k.

Output Continuation. Given a trace distribution D of length k, its output
continuation is the set of trace distributions of length k+1 such that D �k D′,
assigning probability zero to traces of length k + 1 ending in inputs. This set
is denoted by outcontM (D).
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We are now able to define the conformance relation Mar-ioco. Intuitively, an
implementation is conforming, if the probability of every output trace can be
matched by the specification. This includes the three factors: 1. functional behav-
iour, 2. probabilistic behaviour and 3. stochastic timing.

Definition 10. Let I and S be IOMA with I input-enabled. We write
I �Mar−ioco S, if for all k ∈ N

∀D ∈ Trd (S, k) : outcontI (D) ⊆ outcontS (D) .

The Mar-ioco relation conservatively extends the ioco relation to Markov
automata. That is, both relations coincide for classic input output transition
systems (IOTSs).

Theorem 11. For two IOTSs I,S with I input enabled, we have

I �ioco S ⇐⇒ I �Mar−ioco S.

In ioco theory, the implementation is always assumed to be input enabled, to
model that a tester can give any input at any moment. If the specification is input
enabled too, ioco coincides with trace inclusion [50]. Assuming an input enabled
specification, our results show, that Mar-ioco coincides with trace distribution
inclusion. Moreover, the relation is transitive, just like ioco [50].

Theorem 12. Let A,B and C be IOMAs and let A and B be input enabled, then

– A �Mar−ioco B if and only if A �TD B.
– A �Mar−ioco B and B �Mar−ioco C imply A �Mar−ioco C.

4.2 Soundness and Completeness

Since the underlying model is probabilistic, there remains a degree of uncertainty
known as the errors of first and second kind. For MBT of probabilistic systems
this translates to the likelihood to reject a correct implementation, and to accept
an erroneous one respectively. Hence, a test suite can only be considered sound
and complete with a guaranteed (high) probability.

Soundness expresses for a given α ∈ (0, 1), that there is a (1 − α) probability,
that a correct system passes the test suite for sufficiently large sample width m.

Theorem 13. Each annotated test for an IOMA S is sound for every level of
significance α ∈ (0, 1) with respect to Mar-ioco.

Completeness of a test suite is inherently a theoretical result. Possible loops
and infinite behaviour in the SUT require a test suite of infinite size. Further,
there is the chance of accepting an erroneous implementation, i.e. the error of
second kind. However, the latter is bound from above and decreases with larger
sample size.

Theorem 14. The set of all annotated tests for an IOMA S is complete for
every level of significance α ∈ (0, 1) with respect to Mar-ioco.



Model-Based Testing of Probabilistic Systems with Stochastic Time 93

5 Experiments on the Bluetooth Device Discovery
Protocol

Bluetooth is a wireless communication technology standard [41] specifically
aimed at low-powered devices that communicate over short distances. To cope
with inference, the protocol uses a frequency hopping scheme in its initialisation
period. Before any communication can take place, Bluetooth devices organise
themselves into small networks called piconets consisting of one master and
up to seven slave devices.

To illustrate our framework, we study the discovery phase for one master
and one slave device. We give a high level overview of the protocol in this case.
The reader is referred to [15] for a detailed description on the protocol in a more
general setting.

To resolve possible interference, the master and slave device communicate on
a previously agreed sequence of 32 frequencies. Both devices have a 28-bit clock
that ticks every 312.5μs. Every two consecutive ticks, the master device sends
packages on two frequencies, followed by a two-tick listening period on the same
frequencies. It picks the broadcasting frequency according to the formula:

freq = [CLK 16−12 + off + (CLK 4−2,0 − CLK 16−12) mod 16] mod 32,

where CLK i−j marks the bits i, . . . , j of the clock and off ∈ N is an offset.
The master device chooses one of two tracks and switches to the other every
2.56s. Moreover, every 1.28s, i.e. every time the 12th bit of the clock changes, a
frequency is swapped between the two tracks. For simplicity, we chose off = 1 for
track one and off = 17 for track two, such that the two tracks initially comprise
frequencies 1, . . . , 16 and 17, . . . , 32.

Conversely, the slave device periodically scans on the 32 frequencies and is
either in a sleeping or listening state. To ensure the eventual connection, the
hopping rate of the slave device is much slower. Every 0.64s it listens to one
frequency in a window of 11.25ms and sleeps during the remaining time. It
cycles to the next frequency after 1.28s. This is enough for the master device to
broadcast on 16 different frequencies.

We implemented the protocol and two mutants in Java 7; 1. the master
mutant never switches between tracks one and two, therefore covering far less
different frequencies than the correct protocol in the same time and 2. the slave
mutant only listens for 5.65ms every 1.28s and therefore has a much longer
sleeping period.

Since the time to connect two devices is deterministic for any initial state, we
assumed that the clocks are desynchronized, i.e. the master sends out packages,
while the slave starts listening after a uniformly chosen random waiting time. The
expected waiting time 1/λ for an established connection is therefore estimated
as 1.325s, i.e. λ ≈ 0.755.

Figure 5a shows the high level specification of the protocol. The request
for both devices to synchronise is either followed by an acknowledgement or
a time-out. Note that the amount of allowed time-outs is part of the specifi-
cation and depends on α. A collected sample therefore consisted of the traces
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Fig. 5. High level specification of the Bluetooth device discovery protocol for one mas-
ter and one slave device. The time to establish a connection for a correct implementa-
tion and two mutants is compared to the assumed underlying exponential distribution
with parameter λ ≈ 0.755.

σ1 = 0 connect? t connected ! and σ2 = 0 connect? t δ. Figure 5b shows the cumu-
lative probability distribution to connect within T seconds of the assumed under-
lying distribution 1 − exp (−0.755T ) and sample data collected for 103 runs of
the correct implementation and the two mutants.

To mitigate statistical deviations, we collected 103 samples of the size 103 to
calculate the average confidence intervals for α = 0.05. The confidence interval
of the correct implementation resulted in [0.721, 0.824], containing the assumed
value λ = 0.755 and was therefore judged as correct. The average connection
time of the master mutant was 30.2s with a confidence interval of [0.030, 0.034]
and was therefore rejected. Dividing the listening time of the slave mutant into
half had a less significant impact and gave a confidence interval of [0.781, 0.887].
It was consequently rejected with a small margin.

6 Conclusions and Future Work

We presented a sound and complete framework to test probabilistic systems with
sotchastic-time delays based on a model. We defined a conformance relation in
the ioco tradition called Mar-ioco pinning down precisely what correctness
means. Our algorithms provide test cases that are sound with respect to this
notion. Probabilistic correctness is assessed after a sampling process that counts
frequencies of traces and compares them to statistical requirements.

Future work should comprise the practical aspects of our work: more powerful
statistical methods facilitating efficient tool support. Lastly, we plan to apply
our framework to a case study of larger size.
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12. D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems part I: stochastic

automata. Inf. Comput. 203(1), 1–38 (2005)
13. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222,

139–168 (2013)
14. Deng, Y., Hennessy, M., van Glabbeek, R.J., Morgan, C.: Characterising testing

preorders for finite probabilistic processes. CoRR (2008)
15. Duflot, M., Kwiatkowska, M., Norman, G., Parker, D.: A formal analysis of blue-

tooth device discovery. Int. J. Softw. Tools Technol. Transf. 8(6), 621–632 (2006)
16. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous

time. In: IEEE 25th Annual Symposium on LICS, pp. 342–351 (2010)
17. Gerhold, M., Stoelinga, M.: Model-based testing of probabilistic systems. In:

Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 251–268.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7 15

http://dx.doi.org/10.1007/11495628_9
http://dx.doi.org/10.1007/11495628_9
http://dx.doi.org/10.1007/11526841_13
http://dx.doi.org/10.1007/978-3-540-31848-4_5
http://dx.doi.org/10.1007/11901914_30
http://dx.doi.org/10.1007/978-3-642-10366-7_17
http://dx.doi.org/10.1007/978-3-662-49665-7_15


96 M. Gerhold and M. Stoelinga

18. Gerhold, M., Stoelinga, M.: Model-based testing of stochastic systems with IOCO
theory. In: A-TEST 2016, Proceedings of the 7th International Workshop on
Automating Test Case Design, Selection, and Evaluation, pp. 45–51. ACM (2016)

19. Guiotto, A., Acquaroli, B., Martelli, A.: MaTeLo: automated testing suite for soft-
ware validation. In: DASIA, vol. 532 (2003)

20. Hartmanns, A., Hermanns, H.: The Modest Toolset: An Integrated Environment
for Quantitative Modelling and Verification. In: Ábrahám, E., Havelund, K. (eds.)
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Abstract. Infrastructure as Code, which uses machine-processable code
for managing, provisioning, and configuring computing infrastructure,
has been attracting wide attention. In its application, the idempotence
of the code is essential: the system should converge to the desired state
even if the code is repeatedly executed possibly with failures or interrup-
tions. Previous studies have used testing or static verification techniques
to check whether the code is idempotent or not. The testing approach is
impractically time-consuming, whereas the static verification approach
is not applicable in many practical cases in which external scripts are
used. In this paper, we present a method for efficiently checking idempo-
tence by combining the testing and static verification approaches. The
method dramatically decreases the number of test cases used to check
code including external scripts by applying the static verification app-
roach.

1 Introduction

1.1 Idempotence in Infrastructure as Code

Infrastructure as Code is one of the promising disciplines to support DevOps,
which is an approach to increase agility and reliability in software systems by uni-
fying the previously-separate processes of software development (Dev) and sys-
tem operations (Ops) [15,19]. Infrastructure as Code uses machine-processable
code for managing, provisioning, and configuring computing infrastructure,
which we call infrastructure code. It thus aims at enabling effective and effi-
cient engineering of the operation procedures in the same way as the application
code. The essential foundations of Infrastructure as Code are Domain-Specific
Languages (DSLs) dedicated to specifying the operation procedures, such as
Chef [4], Ansible [17], and Puppet [16].

In practices of Infrastructure as Code, operators use a continuous integration
tool and execute the infrastructure code frequently to keep the newest version
deployed. Therefore, the infrastructure code is supposed to be executed many
times, sometimes suffering failures or interruptions, and in any case make the
system converge into the desired state. This expectation has been considered as
idempotence of the infrastructure code. Instead of idempotence as a property of
c© Springer International Publishing AG 2017
S. Gabmeyer and E.B. Johnsen (Eds.): TAP 2017, LNCS 10375, pp. 98–115, 2017.
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functions [13], idempotence here is a property of automated operations that can
be repeated and work robustly [1,8]. Without idempotence, we need to take the
cost to execute the code exactly once by initializing the servers and other targets
every time failures or interruptions occur.

Listing 1.1 is an example of a non-idempotent program in Chef [4], which
is one of the most common DSLs for Infrastructure as Code. This program
includes the sequential execution of two resources, which define the desired states
of configuration items (files this time) and actions to reach the states. Both
resources state a file to be created on the specified path by using the specified
content (if there is not already one that matches). Suppose the content of a.txt
is initially “XXX”. By reading this content, the first resource writes “copied:
XXX” on /tmp/a.txt. Then the second resource overwrites a.txt with it. If
we repeat the execution of the program, we obtain “copied: copied: XXX” and
more “copied:” on a.txt. Thus the program is considered non-idempotent even
though both resources are idempotent. Engineers needs to ensure their code is
idempotent by considering not only the whole execution this way but also failures
or interruptions in the middle. In addition to repeated execution as in the above
example, we need to consider cases such as when the execution is interrupted
after the first resource and resumed from the beginning.

Listing 1.1. Non-idempotent chef program
f i l e ’ / tmp/a . txt ’ do

content (” copied : ” + IO . read ( ’/ a . txt ’ ) )
ac t i on : c r e a t e

end
f i l e ’/ a . txt ’ do

content IO . read ( ’/ tmp/a . txt ’ )
ac t i on : c r e a t e

end

In addition, infrastructure code can include external legacy scripts. In the
case of Chef, there is a type of resource called script resources that state execu-
tion of string commands passed to other script engines such as bash, perl, and
python. According to Hummer et al. [12], 364 (more than 50%) cookbooks (code
artifacts), out of all 665 publicly available cookbooks in the Chef community [5],
use one or more script resources. This fact imposes further difficulties in ensuring
idempotence because various notations need to be handled including lower-level
ones, e.g., a for loop that writes each byte to copy a file.

1.2 Existing Approaches

There have been two approaches in research on checking of idempotence of
infrastructure code: testing and static verification. Hummer et al. [12] applied the
testing approach. They proposed a model-based testing framework for Infrastruc-
ture as Code. By considering different input parameters and every possible
restart patterns, their testing framework generates all the test cases to check
idempotence up to a specified maximum iteration count. They found that several
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open-source Chef code artifacts have unknown idempotence bugs. However, in
their experiment, test case execution took 44.07 CPU days and roughly five days
(sped up by parallel execution) even though they took advantage of lightweight
virtual machine environments.

On the other hand, Collard et al. [7] applied the static verification approach.
Their tool first tries to prove that the code behaves deterministically because
Puppet, the DSL they target, has adopted non-deterministic semantics, which
means the interpreter of Puppet can execute the program in an arbitrary order
as long as it satisfies given dependencies. Then the tool tries to prove idempo-
tence by using static verification mechanisms. Their approach has an inherent
limitation: it cannot be applied to infrastructure code including script resources
written in various languages.

1.3 Contributions

As we have discussed, the static verification approach is not applicable to many
infrastructure code artifacts that include script resources. In other words, the
dynamic testing approach is inevitably used to handle the unknown or hetero-
geneous aspects of (legacy) scripts. On the other hand, the testing approach
requires large cost in trying various test cases with different timings and num-
bers of restarts due to failure or interruption.

In response to this problem, we propose a method for test suite reduction:
eliminating test cases that use script resources. This method applies the static
verification technique to the non-script resources to find prunable test cases.
Specifically, we first convert the source program, e.g., in Chef, into a formal
model for ease of analysis and construct a graph that has paths representing
all the necessary test cases. Then we apply heuristics to judge which path of
the execution graph is likely to be redundant and apply the static verification
technique to check whether some test cases on the path can actually be skipped.
After iterating those steps, we eventually obtain a reduced test suite, with a
much smaller number of test cases. We evaluate our method by using real-world
infrastructure code artifacts and show that it effectively reduces the cost in
idempotence testing in spite of the existence of external scripts.

In the remainder of this paper, we first define notations used in the subsequent
sections (Sect. 2). Then we describe our method in detail (Sect. 3) and evaluate
it and discuss the result (Sect. 4). Finally, we discuss related work (Sect. 5) and
give concluding remarks (Sect. 6).

2 Preliminaries

In this section, we explain notations and supplementary notions used in the
subsequent sections.

Definition 1. A labeled directed graph G is an ordered pair that consists of a
set of nodes V and a set of edges E ⊆ V × L × V . Each edge e = (u, l, v) ∈ E
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has the source node from(e) := u, the label label(e) := l, and the destination
node to(e) := v.

Given a labeled directed graph G = (V,E) and a node v in V , incomingG(v)
and outgoingG(v) are the sets of incoming and outgoing edges of v.

incomingG(v) := {(u, l, v) ∈ E}, outgoingG(v) := {(v, l, w) ∈ E}
Definition 2. Given a labeled directed graph G = (V,E), a path on G is a
sequence of edges p = (e1, e2, ..., en) in which adjacent edges are connected at a
node, that is, for any i ∈ {1, ..., n − 1} to(ei) = from(ei+1).

For each path p = (e1, e2, ..., en), we may focus on its label sequence as
follows.

labels(p) := (label(e1), label(e2), ..., label(en))

Given a labeled directed graph G = (V,E), labelseq(G) is the set of label
sequences forw paths that starts from an entry node.

labelseq(G) := {labels(p) | p = (e1, e2, . . . , en) is a path on G

∧ incomingG(from(e1)) = ∅}
Definition 3. Labelseq-equivalence is an equivalence relation over labeled
directed graphs. G1 and G2 are labelseq-equivalent if and only if labelseq(G1) =
labelseq(G2).

Let us call a sequence s = (s1, s2, ..., sm) a front sub-sequence of a sequence
t = (t1, t2, ..., tn) if and only if m ≤ n and for any i ∈ {1, ...,m} si = ti. Note
that if a sequence of labels in a path s = (l1, l2, ..., ln) is in labelseq(G), its front
sub-sequence t = (l1, l2, ..., lm) (where m ≤ n) is also in labelseq(G). This is
because t also represents a path and shares the entry node with s. We call this
property as labelseq(G) is closed under taking a front sub-sequence.

Since labelseq(G) is closed under taking a front sub-sequence, it does not
break labelseq-equivalence to add a path labels of which are a front sub-sequence
of labels of an existing path. For example, the two graphs in Fig. 1 are labelseq-
equivalent.

Fig. 1. Two labeled directed labelseq-equivalent graphs

In our method (Sect. 3), we use this graph structure as a compact repre-
sentation for a set of test cases. Each edge represents an action, and thus each
path represents a test case. We introduce the concept of labelseq-equivalence as
later we manipulate the graph structure without changing the set of test cases
represented by the graph.
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3 Method

3.1 Overview

Our objective in this paper is to reduce the cost of testing, which is necessary to
check idempotence when the target infrastructure code includes script resources.
Thus, we follow the approach of [12] for testing idempotence. For example, sup-
pose there are three sequential actions (a, b, c) in the target code. Using their
approach, we consider all possible sequences with repetitions and interruptions,
such as (a, b, c, a, b, c) and (a, a, b, c). We consider each sequence as a test case
and compare the system states after its execution with those after execution
of the original sequence (a, b, c). Our method aims to eliminate redundant test
cases by finding equivalent sequences by using the static verification approach.

Here we overview the whole workflow of our proposed method. First we trans-
late a source program, e.g., in Chef, into an internal language (Sects. 3.2 and 3.3).
We then transform it into an execution graph, which represents all the test cases
to be considered (Sect. 3.4). The core of our method works on this graph. We
use heuristics to find a sequence of actions that is likely to be prunable and
then check whether it is actually prunable by using an SMT (Satisfiability Mod-
ulo Theories) solver (Sect. 3.5). We rewrite the graph to eliminate the prunable
sequences, being careful to keep other sequences and not to break what we call a
simplicity property (Sect. 3.6). We repeat this pruning procedure until no prun-
able sequence is found. Finally we obtain the reduced test suite from the reduced
execution graph (Sect. 3.7).

3.2 Intermediate Language

Source languages have a variety of syntax to write many types of resources and
actions, and their behavior may change depending on flags or between versions.
To isolate our method from this complexity, we define an intermediate language
to model the behavior of the source artifact of infrastructure code.

The intermediate language is a simple imperative language of programs that
manipulate the file-system. This language is almost the same as the language
defined by Collard et al. [7] but has two additional actions havoc and clear. The
havoc action is introduced to model effects of external programs or parts of the
program that cannot be analyzed. The clear action represents the error recovery
behavior when restarting the execution.

In this paper, we adopt deterministic semantics, which is also adopted by
Chef and Ansible, for the sake of simplicity. There are source languages that
adopt non-deterministic semantics, such as Puppet, which uses declaration of
dependencies rather than that of execution orders. Our method can be extended
to apply such semantics, though testing idempotence in such languages is more
costly as test cases increase when considering possible execution orders.

Programs written in the intermediate language manipulate the file system.
We consider the state space, or the set of possible environmental states, as Env =
Σ : P → C in our language. Here the file system is modeled as a function σ ∈ Σ
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that maps a path p ∈ P to file contents ∈ C. The file content may be a regular
file File(str) with a certain text str, a directory Dir or a nonexistent file None.

An action a in the intermediate language corresponds to a function of Σ →
Σ × Status. Here the set Status = {success, failure} represents whether the
action is succeeded or failed.

The intermediate language includes atomic actions as described below.

– The intermediate language has primitive actions to manipulate the file sys-
tem in deterministic manners. mkdir(p) creates a directory at the path p,
createFile(p, str) creates a file File(str) at the path p, cp(p, q) copies a file
at p into a nonexistent file at q, and rm(p) removes a regular file or an empty
directory at p.

– The skip action does nothing on Σ and results in the success status.
– The err action does nothing on Σ and results in the failure status.
– There is a non-deterministic action havoc(p) that reads or modifies a file at

p arbitrarily and results in either the success or failure status. This action is
introduced to model script resources or any other constructs in the original
language when their semantics cannot be analyzed and we need to pessimisti-
cally consider any effects for them.

These actions are recursively combined by composite actions as follows.

– There is a sequencing operator a; b that executes a, and then b. Its status is
the conjunction of those of a and b.

– There is a conditional syntax if (π) a else b end if that executes a if π holds, or
b otherwise. Its status is that of a or b depending on the evaluation of π. The
condition π is specified as any combination of predicates Test(p, c) and with
logical operators ∧, ∨, and ¬. Here the predicate Test(p, c) checks whether a
file path p meets a certain condition c. The condition c can be whether a file at
p is a regular file (IsFile), a regular file with a certain content (Contains(str)),
a directory (IsDir), an empty directory (IsEmptyDir), or a nonexistent file
(None).

For each action that works on the file system, we follow typical definitions
of the semantics. For example, mkdir results in the failure status if there is
already a directory. In any case, we follow the semantics of the original DSLs
for infrastrucutre such as Chef. For example, suppose we want to encode the
“mkdir”-like feature that does nothing and results in the success status if there
is already a directory. In that case, we can use the “if” conditional branch with
our mkdir to encode this semantics.

The whole program consists of a sequence of top-level actions ∈ TopAction =
Σ×Status → Σ×Status. A top action may be an action a described above, which
executes if it is success and does nothing otherwise, or clear, which always results
in the success status. This clear top-level action is just a label without any effect
and represents an occurrence of interruption, which leads to re-execution from
the beginning.
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We did not include syntax elements to represent loops. This is because we
assume that in infrastructure code loops are used to have the same processing
on a set of files or other system elements and the loops can be unrolled. In other
words, we do not consider use of loops such as computing a value by repeatedly
mutating the value until it satisfies some condition, which requires more careful
consideration.

3.3 Translation into Intermediate Language

Due to space limitations, we briefly describe how source languages can be trans-
lated into the intermediate language through examples using Chef as the source
language.

Files and directories can be manipulated directly by primitive actions. For
example, directory and cookbook file in Chef can be translated as shown
below.
d i r e c t o r y ”/d” do

ac t i on : c r e a t e
end
cookbook f i l e ’ / foo ’ do

source ’ foo . txt ’ # ”bar”
ac t i on : c r e a t e

end

i f Test (/d , None ) mkdir (/d)

i f ! Test (/ foo , Contains ( bar ) )
i f Test (/ foo , I s F i l e ) rm(/ foo )
c r e a t eF i l e (/ foo , bar )

end i f

Variables and loops are not supported in the internal language. Therefore,
we have to unroll the loops and expand the variables into their values. For
example, a Chef program that creates directories "a" and "b" under p by
using an iterating method array.each can be simply translated into if s and
mkdirs in the following ways.
p = ”/app”
[ ”a” , ”b” ] . each { | c |

d i r e c t o r y ”#{p}/#{c}” do
ac t i on : c r e a t e

end
}

i f Test (/ app/a , None ) mkdir (/ app/a )
i f Test (/ app/b , None ) mkdir (/ app/b)

Structured files. Configuration files such as /etc/hosts or SSH authorized keys
are usually structured, so there are actions defined in source languages to add,
edit or remove part of the files. In this case, instead of manipulating the file as
it is, individual parts of the file should be treated as a file in the intermediate
language. For example, a chef program that adds or updates an entry in
/etc/hosts file can be translated into an intermediate program that adds or
updates a corresponding file as shown below.

h o s t s f i l e e n t r y ’ 1 . 2 . 3 . 4 ’ do
hostname ’ host ’
a c t i on : c r e a t e

end

i f Test (/ e tc / hos t s : d , None ) mkdir (/
e tc / hos t s : d )

i f ! Test (/ e tc / hos t s : d / 1 . 2 . 3 . 4 , None )
rm(/ etc / hos t s : d / 1 . 2 . 3 . 4 )

c r e a t eF i l e (/ e tc / hos t s : d / 1 . 2 . 3 . 4 , ’
host ’ )

Services. In Chef, services control whether a specified external daemon program
is running or not. Although they do not really manipulate files, the states of
services should also be represented as files in an internal language.
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3.4 Construction of Execution Graph

As described in Sect. 3.1, we consider test cases that represent repeated execution
with interruptions (clear actions). For example, given the intermediate program
a; b and the iteration count 3, the set of test cases to be considered, i.e., the test
suite, is as follows:

– clear; a; clear; a; clear; a; b
– clear; a; clear; a; b; clear; a; b
– clear; a; b; clear; a; clear; a; b
– clear; a; b; clear; a; b; clear; a; b

Note that we listed test cases with the exactly three iterations. In the actual
setting, we also need to consider test cases with one iteration and those with
two iterations (and sometimes more than three if necessary to increase the con-
fidence). In this paper, we focus on a graph for a certain value of the iteration
count as in [12]. We can repeat the same process for different values of the iter-
ation count. Rather than just repeating, our method allows to reuse (cache) the
results of equivalence checking (Sect. 3.5), e.g., clear; a; clear; a; is equivalent to
clear; a;, for different values of the iteration count.

Because it would require too much memory to have this set naively, we rep-
resent this set as a labeled directed acyclic graph G = (V,E) called an execution
graph, where the set of nodes and that of edges satisfy the following:

– A node is represented by a natural number. V ⊂ N

– An edge is directed and labeled with a TopAction. E ⊆ V × TopAction × V
– There is only one node called the entry node that has empty incoming edges.

|{v ∈ V |incomingG(v) = ∅}| = 1
– For each node, its outgoing edges must have distinct labels. We call this a

simplicity property. ∀v ∈ V.|outgoing(v)| = |{l|∃w.(v, l, w) ∈ outgoing(v)}|
– The graph must be acyclic. ∃r ∈ V → N.∀e ∈ E.r(from(e)) < r(to(e))

Given an iteration count i, this graph is constructed straightforwardly as
described by Hummer et al. [12]. For example, from an internal program A;B;C,
an execution graph shown in Fig. 2 is constructed.

Fig. 2. Construction of execution graph with i = 2



106 K. Ikeshita et al.

3.5 Search for Prunable Action Sequences

To prune actions, first we search for a sequence of top-level actions that can be
pruned. There are O(ni+1) many paths in the execution graph for n actions and
the iteration count i. However, only a small number of them may be pruned. Thus
we expect and use typical patterns of prunable action sequences. For instance,
the following is an apparently prunable action sequence that ensures a path p1
is a directory twice, only one of which is sufficient.

if (is_dir(p1)) skip; else mkdir(p1)
if (is_dir(p1)) skip; else mkdir(p1)

It is inefficient to try to prove prunability of randomly chosen sub-sequences.
Instead, to determine which sub-sequences to check, we use the heuristics that
a sub-sequence matching one of the following patterns is likely to be prunable.

– a1; a2; ...an; ak may be equivalent to a1; a2; ...an where k − 1 ≤ n
– clear; a1; a2; ...an; clear; a1; a2; ...an may be equivalent to

clear; a1; a2; ...an where a1, a2, ..., an does not contain havoc

The above example of an internal program matches the first pattern. We
introduced this pattern because the internal program is supposed to be the
result of the inline expansion of function calls in a modularized infrastructure
code and should contain many redundant actions. Whereas the first pattern
is for redundancy in the internal program, the second pattern is for statically
verifiable idempotence. We have to treat these two patterns separately because
clear behaves differently from other actions. For example, an internal program
clear;mkdir(p1); clear would match the first pattern if a1, a2, ...an could be
clear. However, that match would falsely suggest that the program is equiv-
alent to a program clear;mkdir(p1). Whereas the former always succeeds, the
latter fails if the path p1 already has a directory. Thus, they are not equivalent.
Therefore, a1, a2, ...an in the first pattern cannot be clear.

We use an SMT solver to try to prove that the action sequence can in fact be
pruned. Since the internal language can only manipulate paths that appear in the
program, the set of states the SMT solver must maintain is finite. However, this
does not mean it suffices to store the state of files only at paths that appear in the
intermediate program. Since a file and a directory cannot exist without ancestor
directories, the states of every ancestor directory must be tracked. Moreover,
the semantics of rm(p) and emptydir(p) requires extra variables for maintaining
whether each directory has any children that do not appear in the intermediate
program. In our implementation, we realized this by adding an extra child file
under each path. We omit the explanation of how we constructed expressions
for an SMT solver because it is straightforward.

3.6 Graph Rewriting

Matching of Prunable Action Sequences. Next, we find a path in the
execution graph with known prunable action labels. We match edges of the
execution graph with known prunable action sequences to find prunable paths.
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Algorithm 1. splitNode: Calculate a graph Gr labelseq-equivalent to G, where
incoming edges of to(e) other than e are removed
Require: e = (u, l, v) ∈ E ∧ G is acyclic
Ensure: labelseq(G) = labelseq(Gr) ∧ V (G)\{v} ∪ {vr} ⊆ V (Gr) ∧ incomingGr

(vr) =
{(u, l, vr)}

Ensure: |V (G)|+1 ≥ |V (Gr)|∧∀v ∈ V.|outgoing(v)| = |{l|∃w.(v, l, w) ∈ outgoing(v)}

if |incomingG(v)| ≤ 1 then
Gr ← G
vr ← v

else
vr, v

′
r ← fresh nodes

V2 ← V \{v} ∪ {vr, v′
r}

E2 ← E\incomingG(v)\outgoingG(v) ∪ {(u, l, vr)} ∪ {(t, l′, v′
r)|(t, l′, v) ∈

incomingG(v)\{e}} ∪ {(vr, l
′, w), (v′

r, l
′, w)|(v, l′, w) ∈ outgoingG(v)}

Gr ← (V2, E2)
end if

Rewriting of Execution Graph. We may not be able to immediately rewrite
the prunable path, because there may be incoming edges in the middle of the
path. In that case, we have to rewrite the graph labelseq-equivalently so that
there is no incoming edge.

We start with a significant sub-algorithm called splitNode, shown in Algo-
rithm1. The objective of this algorithm is to prepare for modification on an
edge e = (u, l, v). The destination node v may have incoming edges other than
e. To separate the effect of modification, the algorithm splits v into vr and v′

r

so that e is connected to vr and the other incoming edges of v are connected to
v′
r in the output graph Gr. The paths, or labels of paths, are preserved by this

transformation from G to Gr, i.e., G and Gr are labelseq-equivalent.
The algorithm rewritePath is the core of our method and tries to replace a

certain path with another path (equivalent action sequence), e.g., (a, b, a, b) with
(a, b). This replacement is easy if the target path does not have any incoming
or outgoing edges that go out of the path. In that case, we can simply replace
the path with the new one. However, because this is not generally the case, we
need to be careful in removing a path so that we do not lose paths other than
the target of replacement.

Algorithm 2 describes how we handle this point in the algorithm rewritePath.
Below we explain how the algorithm works.

1. Thanks to the previous Algorithm1 (splitNode), we can transform the graph
so that there is no incoming edge that merges into a node on the target path.
Thus the algorithm starts by applying Algorithm1 (splitNode) to each node
of the target path

2. Then we worry about whether there is an outgoing edge that splits from a
node on the target path. For example, suppose we want to replace (a, b, c, d)
with (e, f). If b has an outgoing edge to a node g other than c, we need to
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Algorithm 2. rewritePath: Rewrite a path ((v1, l1, v2), ..., (vn−1, ln−1, vn)) in
G = (V,E) so that the sequence of the labels on the path will be l′1, l

′
2, ..., l

′
k−1

Require: ((v1, l1, v2), ..., (vn−1, ln−1, vn)) is a path in an execution graph G
Require: {l′1, l′2, ..., l′k−1} ⊆ T

for j = 1 to n − 1 do
(vj+1, G) ← splitNode(G, (vj , lj , vj+1))

end for
(V ′, E′) ← G
E′ ← E′\{(vn−1, ln−1, vn)}
j ← n − 1
while j > 0 ∧ outgoing(V ′,E′)(vj) = ∅ do

V ′ ← V ′\{vj}
E′ ← E′\{(vj−1, lj−1, vj)}
j ← j − 1

end while
v′
1 ← v1
for j = 1 to k − 1 do

if j = k − 1 then
v′
j+1 ← vn

else
v′
j+1 ← freshnode
V ′ ← V ′ ∪ {v′

j+1}
end if
E′ ← E′ ∪ {(v′

j , l
′
j , v

′
j+1)}

end for
G ← simplify((V ′, E′))

preserve the paths (..., a, b, g, ...) and cannot simply replace the target path
(a, b, c, d) with (e, f). Suppose c does not have an outgoing edge that splits
from the path. In this case, we delete only c and d to replace the paths
(..., a, b, c, d, ...) with (..., e, f, ...) but preserve the paths (..., a, b, g, ...). In this
way, the algorithm goes backward to remove nodes and edges on the path to
be replaced until it finds a node with an outgoing edge that splits from the
path.

3. In any case, we add the new path ((e, f) in the above example) to the graph
at the same point of the target path (i.e., sharing the incoming edges to the
first node).

At the end of Algorithm 2, we use another algorithm called simplify. Because
we added new edges, the simplicity property

∀v ∈ V.|outgoing(v)| = |{l|∃w.(v, l, w) ∈ outgoing(v)}|

may not be satisfied. The simplify algorithm is used for this purpose (Algo-
rithm3). This runs a depth-first search from the entry node, and checks the
nodes in a reverse postordering. If the node under consideration u has two or
more outgoing edges ∈ E′ with the same label l between u and every node in V ′,
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Algorithm 3. simplify: Recover the simplicity property
Require: G = (V,E) is an execution graph but the simplicity property may not hold
Ensure: (V,E) is an execution graph that satisfies the simplicity property and is

labelseq-equivalent to G
for all u ∈ V in a reverse postordering do

for all (l, V ′, E′) where V ′ = {v|(u, l, v) ∈ E} ∧ E′ = {(u, l, v)|v ∈ V } ∧ |V ′| > 1
do

v′ ← fresh node
V ← V \V ′ ∪ {v′}
E ← E\E′ ∪ {(u, l, v′)} ∪ {(v′, l′, w)|∃v ∈ V ′.(v, l′, w) ∈ E}

end for
end for

the nodes in V ′ are replaced with a fresh node v′ and all incoming and outgo-
ing edges of the old nodes in V ′ are properly replaced. Through this algorithm,
two paths, or test cases, can be unified into one if they have a common front
sub-sequence, as shown in Fig. 3.

Fig. 3. Unification of two test cases (upper side) into one (bottom side) by simplify

The computational cost of the whole rewriting procedure (Algorithm 2,
rewritePath) resides primarily in the simplify (Algorithm3). The rewritePath
algorithm focuses on the target path and simply iterates on each node on it.
It uses the splitNode algorithm, but this algorithm has an iteration only over
incoming and outgoing edges on the target node. On the other hand, the simplify
algorithm has iterations over the whole graph to have some processing for each
node if it has multiple edges with the same label. Thus, its computational order
is O(|V ||L|) where |V | is the number of nodes in the graph and |L| is the number
of labels.

3.7 Test Case Generation

When searchCandidateForPruning and Algorithm2 are executed a sufficient
number of times and candidates for pruning can no longer be found, we trans-
form the execution graph into test cases (enumerateTestCases, Algorithm 4). The
algorithm collects into R(u) ⊂ seq(TopAction) for each node u a set of sequences
of labels on the path from u to the exit nodes by running a depth-first search
from the entry node and visiting all the nodes in a postordering. At the end,
R(s) contains all the test cases, where s is the entry node.
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Algorithm 4. enumerateTestCases: Enumerate all the test cases represented by
the execution graph
Require: G = (V,E) is an execution graph

R ← ∅
for all u ∈ V in a postordering do

C ← {(l, ...rest)|(u, l, v) ∈ outgoingG(u) ∧ rest ∈ R(v)}
if outgoingG(u) = ∅ then

C ← {()}
end if
R ← R ∪ {u �→ C}

end for
{s} ← {s ∈ V |incomingG(s) = ∅}
return R(s)

4 Evaluation

4.1 Setup

We implemented our method in Scala with the Z3 Theorem Prover [9] as an
underlying SMT solver. We prepared three Chef programs for the evaluation and
added three variants to investigate characteristics of our method, as described
below.

The package installer program on the list is a simple Chef program that
installs a MySQL server. We implemented a program that executes an apt-file
command in a virtual machine (called Docker for Mac) so that we can enumerate
which files are touched during the installation process. Therefore, the number of
files and their file paths are realistic.

The mysql cookbook program is one of the most popular (and the most fre-
quently downloaded) public Chef programs of the main Chef community, which
supports tasks for MySQL servers (version 7.1.1). In this evaluation, database
operation was translated into a havoc action.

The tomcat6 program is based on a Chef program found to be non-
idempotent by Hummer et al. [12]. Because its problem was caused by file per-
missions, we represented permissions as files in the translation. Although the
original Chef program contains a bash script resource, we translated the inside
of the script into the intermediate language rather than using the havoc action
to observe effects of non-idempotent actions. Thus, this tomcat6 program is the
only one with no havoc action.

Three variants are obtained from the above programs. The programs of
worst case and worst case’ are variants of the package installer program
with havoc moved from the end to the beginning. This prevents the prover from
proving prunability in many paths. In worst case’, all the recursive mkdir
actions are preserved, while in worst case duplicate mkdir actions are removed.
The wrong package installer program is a variant of the package installer
program. We changed the order of directory creations randomly so that we can
investigate how potential errors in an internal program affect our method.
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Table 1. Results for test suite reduction

Target program Iteration Top actions Initial test cases Final test cases

Package installer 3 12 169 1

Mysql cookbook 3 38 1521 1

tomcat6 3 11 144 24

Worst case 3 12 169 144

Worst case’ 3 22 529 144

Wrong package installer 3 12 169 1

Table 2. Results for execution time

Target program searchCandidate

ForPruning (ms)

isPrunable (ms) rewritePath (ms) Simplify (ms) Total running

time (ms)

Package installer 246 2067 1379 7444 13376

Mysql cookbook 9690 7847 51393 368802 592651

tomcat6 859 6441 1210 5127 18651

Worst case 162 99 262 1510 9877

Worst case’ 2723 2341 7233 100644 159109

Wrong package installer 370 1847 1599 6884 13943

To reduce variance due to context switch and caches, we executed our method
five times with three iterations and measured the initial (before pruning) number
of test cases and the final test cases (Table 1). We also measured the execution
time of our method, for the whole method and each constituent algorithm, in
milliseconds. The results for execution times are the averages of five run-times
(Table 2).

4.2 Overall Results

Tables 1 and 2 show the evaluation result for the test suite reduction and execu-
tion time, respectively.

Table 1 shows that the number of test cases always decreased. This was true
even with the worst case and worst case’ programs, which were prepared as
the cases in which our method would not work effectively. This is because all
the test cases with a repetition count n − 1 times or fewer were absorbed into
test cases with repetition count of n. The reduction always includes reduction of
redundant clear; clear into clear. This reduction is trivial if we consider each test
case but requires careful processing not to lose paths in the graph representation
for a set of test cases (as explained in Sect. 3.6). In the other programs, our
method succeeded in dramatically decreasing the number of test cases, even into
just one test case for the three practical programs of package installer and
mysql cookbook. This is because in these programs we had havoc actions at
the latter part of them. Repetitions of the preceding part were eliminated as
it and its sub-sequence are idempotent: for a sequence a1; a2; ..., the repetition
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a1, a1 was equivalent to a1, a1, a2, a1, a2 was equivalent to a1, a2, and so on.
We confirmed that this actually happened by carefully checking the results (the
remaining test cases and some eliminated test cases).

Table 2 shows that the majority of the execution time was consumed in
simplify. This algorithm occupies 55% to 61% of the execution time, with the
exception of the tomcat program. This result was contrary to our expectation
that the execution time of isPrunable would be dominant (it was actually only
1% to 15%). The present SMT solver is quite efficient for our problem setting
in which idempotence of short sub-sequences is checked. On the other hand, we
found that simplify is time-consuming by updating the whole graph by adding
and removing edges very frequently, which suggests an important direction for
future improvement.

4.3 Individual Results

In the case of the package installer program, our method was able to elimi-
nate the most test cases. This was because the program was made of actions for
package file installation and an action of external script invocation (translated
into a havoc action). The sub-sequences that consist of installation actions were
idempotent and thus pruned effectively.

The mysql cookbook program was the most complicated program in the
evaluation. Although its longest execution time (about 10 min) suggests future
improvement, it is still practically effective given the much greater saving in
execution time by eliminating test cases. This program also benefited from our
method with a long prunable sequence by having the havoc action at the end of
the program.

The tomcat6 program was the case that includes non-idempotent sequences.
Remember that this case does not include the havoc action and was prepared in
order to investigate effects of non-idempotent action sequences, though the static
verification approach works for this case. As expected, the test cases cannot be
reduced into one as there are non-idempotent actions. The distribution of the
execution time is different from those for the other programs. Execution time of
isPrunable or simplify is not dominant and is almost the same as the time of
“others” omitted in Table 2, mainly the time of test case generation.

The programs of worst case and worst case’ were prepared as the cases in
which our method does not work effectively. Only obvious pruning of clear; clear
occurred as the minimum effect of our method. The worst case’ had more
redundancy than the worst case program, which allowed our method to prune
them. The execution time of isPrunable is very short for the worst case program
because the findPrunablePaths algorithm avoids trying to prune a path with
havoc on one of its edges.

The results for the wrong package installer were similar to those for the
package installer program. Our method is not sensitive to internal errors.
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4.4 Evaluation Summary

We have confirmed that our method effectively reduces teh test suite. What
affects the effectiveness is the position of the havoc action. In the extreme (worst)
case, when the havoc action is at the beginning, the remaining factor affecting
how many test cases can be reduced is mostly only whether duplicate or redun-
dant actions exist. As in the programs used in the evaluation, there are practical
programs that use havoc actions (database operations, custom file operations,
etc.) in the late part of the program. The execution time of our method is accept-
able given its saving in the time of test execution, though future work should
improve the execution time of the graph manipulation part (i.e., simplify) of the
method.

If there is no havoc but the number of test cases is more than one, this means
isPrunable failed for some sequence clear; a1; a2; ...; an; clear; a1; a2; ...; an. The
result suggests broken idempotence, and reporting such a case would be helpful
to a user. The problem when it comes to practical use is execution time. The
running times of isPrunable and the underlying SMT solver seem negligible
compared with those of graph rewriting algorithms. This problem would be
solved by improving graph rewriting algorithms, because the final execution
graph contained redundancy.

5 Related Work

Our work is motivated by the two existing approaches discussed in Sect. 1.2. In
this section, we briefly discuss other related studies.

There have been test frameworks that allow a programmer to write test code
for infrastructure code. For example, Test Kitchen [11] is a testing framework for
Chef. It usually creates virtual environments where test cases can be run within
various platforms and environment settings. It then runs the infrastructure code
till it converges and runs test cases against the converged environment to verify
their state. Such frameworks are complementary with our work as they support
efficient execution of generated test cases while needing our work (or its ancestor
[12]) to avoid costly and error-prone manual definitions of test cases.

Test suite reduction has been considered important in the field of testing. In a
general setting, a typical approach to evaluate and select test cases is to consider
what requirements are covered by each test case. Heuristics with this approach
has long been investigated and evaluated [6] but is still being actively improved
recently by using search-based methods or metaheuristics [20]. Heuristics for
test suite reduction can explore aspects other than requirements. Specifically,
bug finding capability is also essential so that we do not weaken it by reducing
test cases [14] and so that similar test cases may be eliminated more aggressively
[3]. In this paper, we instead rely on an approach to logically judge redundant
test cases, though we used a kind of heuristics in searching the prunable paths.
In this sense, similar directions can be found in the literature such as the work
of Vaysburg et al. [18]. In their approach, they judge whether two test cases are
redundant by dependency analysis based on state machine analysis. In this paper,
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we presented heuristics dedicated for idempotence testing given the increasing
demand for Infrastructure as Code.

6 Concluding Remarks

In application of Infrastructure as Code, the idempotence of the code is essential:
the system should converge into the desired state even if the code is executed
repeatedly possibly with failures or interruptions. Checking idempotence is not
trivial because combining idempotent snippets does not necessarily lead to idem-
potent programs and external legacy scripts are often used that are written in
various languages. Previous studies have used testing or static verification tech-
niques to check whether code is idempotent or not. The testing approach is
impractically time-consuming, whereas the static verification approach is not
applicable in many practical cases in which external scripts are used.

In this paper, we presented a method for efficiently checking idempotence by
combining the testing and static verification approaches. The method dramat-
ically decreases the number of test cases used to check code including external
scripts by applying the static verification approach. We demonstrated the effec-
tiveness of the method in terms of test suite reduction as well as the acceptability
of its execution time through experiments.

6.1 Future Directions

There are several directions for our future work, primarily in terms of practi-
cal implementations. First, we should improve the implementation of the graph
manipulation part in the method, as suggested by the experiment results. Sec-
ond, we should establish a robust mechanism to generate executable test cases.
This task contains a kind of view-update problem or bidirectional transformation
problem [2,10], as we first have executable test cases in the source language, then
conduct the reduction method after translation into the intermediate language,
and finally want to have reduced test cases in the source language. Finally, we
should release a practical toolset based on this work for a wide range of uses as
well as a large set of experiments.
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Abstract. This tool paper discusses how model behavior expressed in
a UML and OCL model can be analysed with filmstrips and classifying
terms in the tool USE. Classifying terms are a means for systematic
construction of test cases. In the case of behavior models these test cases
correspond to testing the model with different sequence diagrams. We
explain how behavior analysis can be carried out in the tool. We discuss
lessons learnt from the case study and how conceptual and technical
support can be improved.

1 Introduction

Models are the cornerstones in Model-Driven Engineering (MDE). Therefore
model analysis and quality improvement techniques like validation and verifica-
tion of properties are crucial for the success of MDE.

We here employ the UML (Unified Modeling Language) and OCL (Object
Constraint Language) for formulating models and focus on analysis techniques
for model properties regarding behavior in the context of the tool USE (UML-
based Specification Environment) [8]. In particular, USE allows the developer
to automatically construct test cases in form of system states (object diagrams)
for UML and OCL models. This opens the option to validate models against
informal expectations and to verify essential properties like model consistency.
Behavior is expressed in our approach by OCL operation contracts, i.e., pre-
and postconditions. In our approach, behavioral models are transformed into
so-called filmstrip models [9] that explicitly express behavior through operation
call objects. Behavior in filmstrip models is formulated with multiple snapshot
objects being part of a single system state. Our approach offers a high degree of
test automation through the use of so-called classifying terms [10] that partition
the test input space into relevant equivalence classes and allow to select equiva-
lence class representatives. We have not yet studied an approach that combines
filmstripping with classifying terms.

One main contribution of this paper is introducing the option to prove behav-
ioral consistency of a UML and OCL model through the construction of a test
case: the operations contracts (pre- and postconditions) together with the invari-
ants are shown to be satisfiable. The notion behavioral consistency is understood
here in the sense that there exists a sequence of operation calls, in which all
c© Springer International Publishing AG 2017
S. Gabmeyer and E.B. Johnsen (Eds.): TAP 2017, LNCS 10375, pp. 119–128, 2017.
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operations occur, and in which all invariants and all pre- and postconditions
are satisfied. To the best of our knowledge, showing consistency of operation
contracts considered together with class invariants has not been studied so far.

The rest of this paper is organized as follows. Section 2 explains the basics of
our approach to behavior modeling. Section 3 sketches behavior validation and
verification options. Section 4 discusses the lessons learnt from our example case.
The paper is closed with related work and a short conclusion.

2 Filmstripping UML and OCL Models

2.1 Application Model

Our starting example model MarriageWorld is a toy model as displayed in the
grey part of Fig. 1. We call this grey part the application model as we will later
use a transformation of it, the so-called filmstrip model. This application model
comprises invariants and operation contracts including operation frame condi-
tions that express which model parts are left unchanged by a particular oper-
ation. These complete operation contracts may be seen as an alternative to an
imperative operation implementation which is not needed in our approach.

The application model encompasses one set-valued OCL query operation and
OCL invariants and operation contracts. We show the single invariant and the
marry contract. The divorce contract is formulated analogously.

2.2 Filmstrip Model

The filmstrip model results from a transformation of the application model where
classes and associations are added (the non-grey part in Fig. 1) and in particular
pre- and postconditions are transformed into invariants. An application model
sequence of operation calls and intermediate object diagrams correspond to a
single object diagram in the filmstrip model. Operation calls in the application
model are represented as operation call objects in the filmstrip model. For exam-
ple, the top right sequence diagram in Fig. 2 corresponds to the top left object
diagram. The transformation is realized through a USE plugin. The resulting
filmstrip model is a plain UML class model with invariants only.

The filmstrip model organizes application model object diagram sequences
into a linear sequence of so-called snapshots (the Snapshot objects in Fig. 2)
encompassing the respective objects from the different application model object
diagrams. The filmstrip model introduces further operations on class Person not
shown in Fig. 1: succPlus(), succStar(), predPlus() and predStar() for the tran-
sitive closure and transitive-reflexive closure of the roles succ and pred, respec-
tively. The role succ, for example, points from one object to its next reincarnation
in the following snapshot. These operations employ the OCL operation closure
and are essential to navigate forward and backward between different ‘points in
time from the application model point of view’. Generated invariants take care
that the filmstrip model object diagrams behave correctly, e.g., that an object
and its reincarnations build a cycle-free pred-succ chain (for example, in the left
top part of Fig. 2 the reincarnations of person4 are person12 and then person2).
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spouse():Set(Person)=

if wife->notEmpty and husband->notEmpty then Set{wife,husband} else

if wife->notEmpty then Set{wife} else

if husband->notEmpty then Set{husband} else Set{} endif endif endif

context Person inv traditionalRoles:

(gender=#female implies wife->isEmpty) and

(gender=#male implies husband->isEmpty)

context Person::marry(aSpouse:Person)

pre unmarried:

self.spouse()->isEmpty and aSpouse.spouse()->isEmpty and

Set{self.gender,aSpouse.gender}=Set{#female,#male}

post married:

Set{aSpouse}=self.spouse() and Set{self}=aSpouse.spouse()

post personUnchangedExceptSet: let x=self.spouse()->including(self) in

Person.allInstances@pre=Person.allInstances and

Person.allInstances->forAll(p|

(p.gender@pre=p.gender) and

(x->excludes(p) implies p.wife@pre=p.wife) and

(x->excludes(p) implies p.husband@pre=p.husband))

Fig. 1. Example application model (grey) and filmstrip model.

3 Analysing Model Behavior

3.1 Configurations and Classifying Terms

The USE model validator [12] constructs object diagrams for a UML class dia-
gram enriched by OCL invariants and is based on relational logic [11]. The
validator has to be instructed by a so-called configuration that determines how
the classes and associations are populated. For every class a mandatory upper
bound and an optional lower bound for the number of objects is given. For every
association optional lower and upper bounds can be stated.
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Fig. 2. Generated behavior scenarios.

Figure 3 shows the used configuration (association bounds with grey back-
ground) in the example. The configuration determines scenarios having (a) two
snapshots with one operation call in between or (b) three snapshots with two
operation calls in between. In each snapshot two, three or four persons can be
present. The kind of operation call (marry or divorce) is left open as both oper-
ation call classes are allowed to have 0, 1 or 2 elements.

A central ingredient in our approach are so-called classifying terms that allow
the developer to construct test cases for a UML and OCL model in a systematic
way. They classify and determine test equivalence partitions. The test cases
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Fig. 3. Used model validator configuration.

are specified by a set of OCL query expressions on the UML class model, the
classifying terms, and are manifested in form of object diagrams. The constructed
object diagrams will show differences with respect to at least one classifying
term. The classifying terms used here are as follows.

[RemarriedPerson]
Person.allInstances->exists(p | p.spouse()->size=1 and

p.succPlus()->exists(q | q.spouse()->size=1 and
q.spouse().predStar()->excludesAll(p.spouse())))

[OneCall] OperationCall.allInstances->size=1
[TwoCalls] OperationCall.allInstances->size=2

The classifying terms refer to the filmstrip model. The three boolean typed
classifying terms ask for scenarios where the terms either yield false or true and
can be understood as follows: [RemarriedPerson] one person exists that is mar-
ried differently in two different snapshots; the variable p fixes that person, and
the variable q contains a later incarnation of p; the two snapshots are p.snapshot
and q.snapshot; furthermore the previous incarnations of the spouses of q must
be disjoint from the spouses of p; [OneCall] there is exactly one operation call;
[TwoCalls] there are exactly two operation calls.

The classifying terms [OneCall] and [TwoCalls] cannot both be true at the
same time. As the configuration allows one or two operation calls, the classify-
ing terms [OneCall] and [TwoCalls] assert that at least one scenario with one
operation call and at least one scenario with two operation calls will be con-
structed. As three boolean terms are given here, potentially 23 = 8 scenarios
will be constructed, but not all options can be realized.

3.2 Constructing Sequence Diagrams

In Fig. 2 the found three solutions for the configuration and the classifying terms
are shown: in the left in form of the found filmstrip object diagram and in the
right in form of a sequence diagram from the application model corresponding to
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the filmstrip object diagram. The links from the application model (the Marriage
links) are displayed with fat lines. From the 8 possible combinations of the
3 boolean terms only 3 are feasible.

The found scenarios illustrate the behavior of the UML and OCL model
with concrete behavior manifestations. Thus configurations and classifying terms
support the developer in exploring model behavior. The construction of sequence
diagrams with two operation calls employing different operations (marry and
divorce) furthermore verifies the consistency of the invariants and the operation
contracts taken together, because a scenario has been found where all invariants
and all pre- and postconditions are valid.

The classifying term [RemarriedPerson] is true only in the third generated
scenario in Fig. 2. In the figure, the distinguishing classifying term values are
shown in the comment nodes. In addition, the objects that must be substituted
for the OCL variables p and q are indicated. Furthermore, the values of the
central OCL expressions from [RemarriedPerson] are marked: p.succPlus()
and q.spouse().predStar() are disjoint collections.

Figure 4 gives an overview on the approach taken in this contribution. First
the application model is filmstripped which results in the filmstrip model. Then
the classifying terms and the model validator configuration (possessing parts
for the application and for the filmstrip model) are used to generate object
diagrams. The filmstrip parts of the configuration can guarantee, for example,
that all (application model) operations calls occur exactly once. Note that all

Fig. 4. Overview on combination of filmstripping with classifying terms.



Checking UML and OCL Model Behavior 125

OCL quantifications (for example in the invariants or the classifying terms)
range over finite domains, e.g., over classes or over constructed finite collections
of datatype values. Thus a mapping into SAT solvers is feasible.

As already mentioned, in our approach verification of properties like con-
sistency considering invariants and operation contracts together is possible. We
are not aware of approaches that explore behavioral consistency focussing on the
interplay of operation contracts and invariants.

4 Lessons Learnt

The small study shows that with the already existing options interesting results
can be obtained, but the study also revaled topics for future work.

– The access to objects and their incarnations is rather involved through com-
plicated OCL expressions. More standard filmstrip operations are needed to
simplify such expressions. Currently, there is also only a rather involved access
to the operations in which the objects occur. Again, more standard filmstrip
operations can help to make the expressions easier.

– Filmstrip configurations should distinguish between application objects (e.g.
from class Person) and filmstrip objects (from classes Snapshot or OpC).
Dependencies between configuration items should be handled automatically
(e.g. [Number of Snapshot objects]− 1 = Number of OpC objects).

– An automatic layout for filmstrip object diagrams (in which OpC objects are
placed between snapshots, and snapshots are placed above application model
objects) would be helpful. The automatic representation of filmstrip object
diagrams as application model sequence diagrams is needed.

– The approach scales to achieve larger scenarios. There is large potential
for optimization in the filmstrip model through the construction of (Snap-
shot,ApplicationModelObject) templates that only need to be completed by
the model validator. For example, if n operation calls on m application model
objects are wanted, one can pre-compute the needed n + 1 snapshot objects
each connected to m application objects and one could establish the proper
links automatically. Figure 5 sketches an example with 7 operation calls and
64 Person objects. The scenario was obtained by creating the snapshots and
the application objects explicitly with a script; then the model validator had
only to find the proper operation call objects and the attribute values.

5 Related Work

Many approaches and tools have been proposed to support UML validation and
verification. Using Constraint Logic Programming as the underlying formalism,
UMLtoCSP [5] can automatically check several correctness properties of a UML
class diagram enriched with OCL constraints. That approach also handles OCL
contracts [4], however operation call and snapshot sequences are not treated.



126 M. Gogolla et al.

F
ig
.
5
.

L
a
rg

e
ex

a
m

p
le

w
it

h
8

sn
a
p
sh

o
ts

a
n
d

7
o
p
er

a
ti

o
n

ca
ll
s;

ir
re

le
va

n
t

o
b
je

ct
s

h
id

d
en

w
it

h
a
n

O
C

L
ex

p
re

ss
io

n
;

‘O
b
je

ct
co

u
n
t’

a
n
d

‘L
in

k
co

u
n
t’

in
d
ic

a
te

th
e

co
m

p
le

te
st

a
te

.



Checking UML and OCL Model Behavior 127

In [6], DresdenOCL is employed as a tool for OCL constraints verification. The
HOL-TestGen tool presented in [3] is able to automatically generate test cases
based on a transformation of UML class models enhanced with OCL constraints
into higher-order logic. In [16], an approach for the validation both static and
dynamic aspects, e.g., class liveness property, of a UML model is introduced using
a toolset based on Abstract State Machines. The approach in [15] describes a
transformation of class diagrams and OCL constraints into first-order logic and
methods for verifying properties such as class liveliness. As presented in [1],
UML2Alloy can automatically transform UML model into Alloy, and then test
models for consistency using the Alloy analyzer. Another approach is presented
in [13], which uses a deep embedding strategy to allow for a transformation of
more UML class diagram features. The approach in [2] studies model tests based
on (positive and negative) UML sequence diagrams in connection with state
charts. The work in [14] describes an approach to transform structural properties
of class diagrams into Alloy and then verifies OCL constraints by finding valid
snapshots of models. Details of the example model of this contribution, e.g., the
complete filmstripped USE model, can be found in [7]. In contrast to the other
mentioned approaches, our approach is the only one supporting systematic test
case construction with classifying terms.

6 Conclusion and Future Work

We have presented an approach for automatically validating and verifying behav-
ioral model features. In our approach it is possible to check behavioral model
consistency and, in principle, behavioral model equivalence on the basis of gen-
erated test cases. The implementation of our model validator is based on the
relational model finder Kodkod which in turn is translating into SAT solvers.

Future work will address a number of topics. Optimizing our translation and
providing more SAT solvers could improve validation and verification efficiency.
Further state space reduction techniques have to be considered. The current user
interface in our tool for behavioral feature support is minimal. Advanced user
feedback in the case that a verification task could not be successfully finished is
desirable. Support for building frame conditions, automatic transformation into
the filmstrip model as well as advice and proposals for configuration settings for
the filmstrip model configuration are needed. Templates for verification tasks
could minimize the developer interaction and inspire the developer for checking
crucial properties. Expressing properties in an OCL version with temporal oper-
ators would increase readability and expressiveness of behavioral properties. Last
but not least, larger case studies should give more feedback on the practicability
of the approach.
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Abstract. Modern solvers for quantified Boolean formulas (QBF) not
only decide the satisfiability of a formula, but also return a set of Skolem
functions representing a model for a true QBF. Unfortunately, in combi-
nation with a preprocessor this ability is lost for many preprocessing tech-
niques. A preprocessor rewrites the input formula to an equi-satisfiable
formula which is often easier to solve than the original formula. Then
the Skolem functions returned by the solver represent a solution for the
preprocessed formula, but not necessarily for the original encoding.

Our solution to this problem is to combine Skolem functions obtained
from a QRAT trace as produced by the widely-used preprocessor Bloqqer
with Skolem functions for the preprocessed formula. This approach is
agnostic of the concrete rewritings performed by the preprocessor and
allows the combination of Bloqqer with any Skolem function producing
solver, hence realizing a smooth integration into the solving tool chain.

1 Introduction

Quantified Boolean formulas (QBFs) [1] extend propositional logic with existen-
tial and universal quantifiers over the Boolean variables. This extension allows
a compact formalization of PSPACE-hard problems, thus QBFs can be remark-
ably beneficial in applications of formal verification [2], synthesis [3], and artificial
intelligence [4], driving the demand for efficient and reliable QBF solving tools.

Modern QBF solvers not only decide the satisfiability of a formula, but also
produce certificates [5–14]. Such a certificate is either syntactical or semantical.
A syntactical certificate is basically a trace of the individual steps taken by a
solver to derive either a conflict in the case of unsatisfiability or to derive the
empty formula in the case of satisfiability. The correctness of the individual steps
has to be checkable efficiently, i.e., in polynomial time by an external tool that
independently confirms the correctness of the solving result. Examples of such
syntactical certificates are Q-resolution proofs [15], the QBF variant of resolution
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proofs produced by solvers based on conflict/solution-driven clause/cube learn-
ing (QCDCL) [16], and QRAT proofs [12]. Quantified Asymmetric Tautologies
(QRAT) is a redundancy criterion allowing for the safe addition/deletion/update
of clauses with this property. A semantic certificate is a model (counter-model)
of a satisfiable (unsatisfiable) QBF. Usually such certificates are represented
as so-called Skolem (Herbrand) functions, encoding a strategy to set the exis-
tential (universal) variables to satisfy (falsify) the QBF. Skolem functions are
of particular interest when solving application problems, because they contain
information about the solution. For example, if a verification approach based on
bounded model checking reports that an error state is reachable by the program
to be verified, then the Skolem function encodes a program trace showing the
erroneous behavior. Checking the correctness of a Skolem (Herbrand) function is
a coNP-complete (NP-complete) problem, because the validity (satisfiability) of
a propositional formula has to be checked. Skolem functions are either efficiently
extracted from syntactic certificates like Q-resolution and QRAT proofs [7,12],
or they are produced directly by a solver [17].

QBF solving tool chains often involve an additional preprocessing phase in
which the original QBF is rewritten to an equi-satisfiable formula that is then
passed to the solver. In many cases, solvers are only able to solve the preprocessed
formula, but not the original one [18,19]. Then, however, the found set of Skolem
functions is only a solution and witness for the preprocessed formula, because in
general, the preprocessing techniques are not model-preserving. To enable both
preprocessing and certification at the same time, Janota et al. [20] showed how
to obtain Skolem functions for a subset of the preprocessing techniques imple-
mented in the widely-used preprocessor Bloqqer [21] by establishing a solution
reconstruction rule for each of the considered preprocessing technique.

In this paper, we present a general approach to obtain Skolem functions with
all preprocessing techniques implemented in Bloqqer enabled. Therefore, we use
the QRAT trace produced by Bloqqer together with the Skolem function produced
by state-of-the-art QBF solvers like DepQBF [22] or Caqe [17]. The QRAT trace is
not a full syntactical certificate if the formula is not solved by Bloqqer, but it only
justifies the rewriting steps from the original QBF to the preprocessed formula.
We show that it is nevertheless sufficient to build an incomplete Skolem function
which—when continued with the Skolem function provided by the solver—yields
a complete Skolem function for the original problem.

This paper is structured as follows. First we review the basic concepts of
QBFs and Skolem functions in Sect. 2, then in Sect. 3 we present the formal
foundation of our procedure and illustrate the approach on a simple example.
In Sect. 4 we describe the main steps of our general tool chain to construct valid
Skolem functions for true QBFs in presence of preprocessing. Finally, the paper
ends with the experimental evaluation in Sect. 5 and concludes in Sect. 6.

2 Preliminaries

In this section, we introduce concepts and terminology used in the rest of the
paper. A literal is a variable (x) or the negation of a variable (x̄). The negation of
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a literal l is denoted by l̄ and var(l) := x if l = x or l = x̄. A clause is a disjunction
of literals and (possibly negated) truth constants � (verum) and ⊥ (falsum). A
propositional formula in conjunctive normal form (CNF) is a conjunction of
clauses. A QBF in prenex conjunctive normal form (PCNF) has the form Π.ψ
where ψ is a propositional CNF formula defined over the variables of prefix Π :=
Q1X1 . . . QnXn with Qi ∈ {∀,∃}, Qi �= Qi+1, and Xi ∩ Xj = ∅. The set of all
variables occurring in prefix Π is denoted by vars(Π). The quantifier quant(Π, l)
of literal l is Qi if var(l) ∈ Xi. If quant(Π, l) = Qi and quant(Π, k) = Qj , then
l <Π k if i < j. A QBF ∀xΠ.ψ is satisfiable iff both Π.ψ[x/�] and Π.ψ[x/⊥] are
satisfiable where ψ[x/t] denotes the replacement of x by t in ψ. Dually, a QBF
∃xΠ.ψ is satisfiable iff Π.ψ[x/�] or Π.ψ[x/⊥] is satisfiable. The truth constants
� and ⊥ as well as the Boolean connectives follow the standard propositional
semantics. Two QBFs φ1 and φ2 are equivalent (written as φ1 ∼ φ2) iff they have
the same truth value. The expression ite(c, b1, b2) stands for (c → b1)∧ (c̄ → b2).

The Skolem function of an existential variable x w.r.t. QBF φ = Π.ψ is a
propositional formula f(y1, . . . , yn) where y1, . . . , yn are all the universal vari-
ables of φ with yi <Π x. A Skolem function fx for variable x of QBF Π.ψ
is valid iff Π.ψ ∼ Π.ψ[x/fx]. A Skolem set F of QBF φ maps each existen-
tial variable x of φ to a Skolem function F(x) of x. A Skolem set is valid if it
maps existential variables only to valid Skolem functions. By φ[F] we denote
φ[x1/F(x1), . . . , xn/F(xn)] where x1, . . . , xn are the existential variables of φ. If
clear from the context, we sometimes speak about Skolem functions when refer-
ring to a complete Skolem set.

3 Skolem Function Continuation

Skolem functions as introduced above yield a strategy for assigning truth values
to the existential variables based on the truth values of the universal variables
such that the QBF under consideration evaluates to true. Some solvers are able
to directly produce Skolem functions [6,8,17] while for others it is possible to
extract the Skolem functions from proofs produced during the search [7,10,12].
In [12] we showed how to extract a Skolem function if the preprocessor Bloqqer
is able to solve a true formula. In that case the produced QRAT proof of Bloqqer
provides all the necessary information to construct a Skolem function. Now we
reuse this technique for the case that not Bloqqer solves the formula, but another
solver finds the solution for the preprocessed formula produced by Bloqqer.

In particular, we consider the following scenario: Given a satisfiable QBF φ,
a QRAT trace T produced by a preprocessor rewriting φ to a QBF φ′, and a
valid Skolem set F′ of φ′, we show how to obtain a valid Skolem set F for φ.

Definition 1. A QRAT trace T of a QBF Π.ψ is a sequence of clause addi-
tions and clause deletions in the form of (p1, C1), . . . , (pn, Cn), where prefix
pi ∈ {+,−}1 indicates if clause Ci is added (pi = +) or deleted (pi = −)
justified by the rules of the QRAT proof system [12].

1 In the QRAT format, clause deletion lines start with “d”.
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For the detailed definitions of the QRAT rules and soundness arguments, we
kindly refer to [12]. Note that the QRAT proof system also contains rules for
modifying clauses. We omit these rules here because for satisfiable formulas a
modification rule always can be expressed by a clause addition and a clause
deletion rule. Basically, a QRAT trace of a QBF Π.ψ compactly describes the
sequence ψ0

T , . . . , ψn
T of propositional formulas as follows:

ψi
T :=

⎧
⎪⎨

⎪⎩

ψ if i = 0
ψi−1

T ∪ {Ci} if pi = +
ψi−1

T \ {Ci} if pi = −

A clause addition step may even introduce new variables. We follow the con-
vention of the QRAT proof format that such variables are existentially quantified
and that they are appended right-most to the quantifier prefix. By Πi

T we there-
fore refer to the quantifier prefix of ψi

T . A QRAT trace T with |T | = n of a QBF
Π.ψ is a satisfaction proof if ψn

T = ∅. To construct a valid Skolem set from a
QRAT satisfaction proof, a randomly initialised Skolem set is refined by travers-
ing the proof backwards until it is valid [12]. For the case that the formula has
not been solved by the preprocessor, i.e., ψn

T �= ∅, we use the Skolem functions
of the preprocessed formula for this initialization.

Definition 2. Let φ = Π.ψ be a satisfiable QBF that is transformed to an equi-
satisfiable QBF φ′ = Π ′.ψ′ with valid Skolem set F′. Further, let T be a QRAT
trace, with |T | = n, that describes the transformation of ψ to ψ′ by the sequence
(ψ0

T , . . . , ψn
T ) of propositional formulas where ψ = ψ0

T , ψ′ = ψn
T , and Π ′ = Πn

T

as above.
Then a sequence of Skolem sets (F0

T , . . . ,Fn
T ) for (ψ0

T , . . . , ψn
T ) is defined as

follows. The Skolem sets Fi
T for 0 ≤ i < n are constructed as in [12] and

Fn
T (x) :=

{
F′(x) x ∈ vars(Π ′)
⊥ x ∈ ⋃n−1

j=0 vars(Πj
T ) \ vars(Π ′).

Variables not occurring in φ′, but somewhere in the QRAT trace are assigned
an arbitrary value in Fn

T (⊥ in our case). Next, we argue that each Fi
T is a valid

Skolem set for Πi
T .ψi

T and so F0
T is a valid Skolem set for φ, the formula for

which we want to construct the Skolem set.

Theorem 3. Let φ = Π.ψ be a satisfiable QBF that is transformed to an equi-
satisfiable QBF φ′ = Π ′.ψ′ with valid Skolem set F′. Further, let T be a QRAT
trace that describes the transformation of ψ to ψ′. Then the Skolem set FT = F0

T

obtained from (F0
T , . . . ,Fn

T ) as described above, is valid on φ.

Proof. We show by reverse induction that Skolem set Fi
T is valid on Πi

T .ψi
T , i.e.,

ψi
T [F i

T ] ∼ �, for all 0 ≤ i ≤ |T |. Since F′ is a valid Skolem set on φ′, the base
case (i = n = |T |) trivially holds. The induction step is the same as in [12]. ��
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Fig. 1. (a) original QBF φ in QDIMACS format, (b) QRAT trace, (c) preprocessed
formula φ′ in QDIMACS format, (d) Q-resolution satisfaction proof in QRP format.

As a consequence of Theorem 3 we can reuse the Skolem function extraction
algorithm of [12] and extract partial Skolem functions which we then continue
with the Skolem functions of the preprocessed formula resulting in a valid Skolem
set of the original formula. The approach is illustrated by the following example.

Example 4. Let φ be the true QBF ∀x ∃y .(x∨ ȳ)∧ (x̄∨ y) (the QDIMACS repre-
sentation is shown in Fig. 1(a)). Assume that a simple preprocessor removes the
first clause because it is a blocked clause [21] producing the QRAT trace T shown
in Fig. 1(b). The preprocessed formula φ′ = ∀x ∃y .(x̄ ∨ y) (see Fig. 1(c)) is then
passed to a QBF solver that decides its satisfiability. A solver like DepQBF also
produces a Q-resolution proof in the QRP format [10] as shown in Fig. 1(d). From
this proof, a Skolem set F′ can be extracted for φ′ with F′(y) = f ′

y(x) = � [7].
Note that F′ is not a valid Skolem set for φ because φ [y/�] ∼ ⊥. In order to
get a valid Skolem set for φ, we use the extraction algorithm of [12] and get
F0

T (y) = fy(x) = ite(x̄,⊥, I), where we plug in f ′
y for I. After simplifications, we

get fy(x) = x which is a valid Skolem function for φ.

4 Architecture

We implemented the Skolem function continuation approach described above in a
tool called extract, which is available on http://fmv.jku.at/sk-extract. The full
tool chain is shown in Fig. 2. The upper part shows the typical QBF evaluation
process involving preprocessing. The lower part shows the extension with our
new tool. Given a satisfiable QBF problem φ in PCNF, it is first simplified by
the preprocessor Bloqqer, that employs different rewritings on the formula and
produces a QRAT trace in order to ensure the correctness of these simplification
steps. We modified the qrat-trim tool for checking QRAT traces (the original
version only checks full QRAT proofs). The simplified formula φ′ is then passed
to a QBF solver that decides its truth value. The solver also generates (maybe
with the help of further tools) a valid Skolem set F′ on φ′. This Skolem set

http://fmv.jku.at/sk-extract
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Notations

φ: original QBF
φ′: preprocessed QBF
F′: Skolem set of φ′

Fφ: combined Skolem set

QBF φ Bloqqer QBF φ′ QBF Solver true/false

QRAT
Trace

extract F′

Fφ

Certifier ok/error

Fig. 2. Overview of our Skolem function continuation tool chain. The upper part of the
figure shows a standard QBF evaluation process including preprocessing with Bloqqer,
while the lower part presents the Skolem function combination steps.

is assumed to be represented as an And-Inverter-Graph (AIG) in the AIGER
format (see http://fmv.jku.at/aiger/). Note that the AIG is the only interface to
the QBF solver, hence the approach can be used with any solver that produces
Skolem functions in AIGER format.

Given QBF φ, the QRAT trace, as well as the Skolem set of the preprocessed
formula in AIGER format as input, extract constructs a valid Skolem function
set Fφ of the original QBF φ. In a final step, we check if the produced Skolem set
is valid. Therefore, the Certifier of Fig. 2 (1) checks the structural correctness of
the Skolem set with the tool cheskol and (2) builds φ [Fφ] that is a universally
quantified formula. For evaluating it with a SAT solver, its negation is translated
to a CNF formula that must be unsatisfiable if F is valid.

5 Experimental Evaluation

To evaluate our approach we consider 367 formulas of the QBF Eval 2016
main track that was claimed to be satisfiable by at least one QBF solver partic-
ipating in the competition. All experiments were run on a cluster of computers
with Intel Q9550 2.83 GHz CPUs equipped with 8 GB of memory. We set the
memory limit to 7 GB and the time limit to 900 s for the full solving tool chain.

For preprocessing with QRAT tracing, we use the preprocessor Bloqqer ver-
sion v038 in configurations FULL (all options enabled), noMS (miniscoping for
universal expansion disabled), and noCCE (covered clause elimination disabled).

http://fmv.jku.at/aiger/
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Table 1. Comparison of different Skolem function extraction tool chains

Solver pre-# sol-# ext-# che-# MO-# TO-# che-t tot-t

DepQBF – 160 151 123 10 234 21 30

Caqe – 148 148 111 186 70 31 40

Bloqqer-BP-DepQBF 114 273 268 251 12 104 14 48

Bloqqer-noCCE-QRAT-DepQBF 150 282 275 258 7 102 18 39

Bloqqer-FULL-QRAT-DepQBF 178 289 275 257 9 101 14 28

Bloqqer-noMS-QRAT-DepQBF 136 281 266 247 11 109 21 35

Bloqqer-noCCE-QRAT-Caqe 150 270 268 236 53 78 18 35

pre-#: formulas solved by preprocessor, sol-#: formulas solved in total, MO-#: memory-
outs, ext-#: extracted Skolem functions, che-#: checked Skolem functions, TO-#: timeouts,
ch-t: average checking time (s), tot-t: average total time without time/memoryouts (s)

Miniscoping is a syntactic-based technique relaxing the quantifier ordering and is
the only technique currently not supported by the qrat-trim checker which ver-
ifies that all steps of the QRAT trace are correct. If we keep miniscoping enabled,
we currently lose this additional check. CCE is a preprocessing technique that
often considerably increases the size of the Skolem functions. For comparison,
we also include the version of Bloqqer modified by Janota et al. [20] (called
Bloqqer-BP in the following) that performs only a subset of preprocessing tech-
niques for which solution reconstruction is implemented in a tool called backport.
Checking the extracted Skolem functions is done with the checker king-cc. In
all other tool chains, we use the SAT solver Lingeling version ayv for verifying
that the extracted Skolem functions are valid. We further checked syntactical
correctness of the Skolem functions generated by our approach with the tool
cheskol. As complete QBF solvers, we integrated the two recent tools Caqe [17]
and DepQBF [22] into the framework as shown in Fig. 2. Both of them provide
Skolem functions represented as AIG. The solver Caqe directly produces Skolem
functions during solving, while DepQBF dumps Q-resolution proofs from which
Skolem functions are extracted by qbfcert [10].

The results of our experiments are summarized in Table 1. Timeouts and
memory outs are given in columns TO-# and MO-#. Column sol-# shows the
number of solved formulas. Out of them pre-# formulas are directly solved by
the preprocessor. The column che-# shows the number of formulas that passed
the complete solving flow, i.e., for these formulas Skolem functions could be
extracted that were successfully checked. We did not encounter any formulas
where the check failed except for timeouts or memoryouts. With preprocessing
enabled more than 100 further formulas pass the whole solving flow. We also
observe that our general approach based on QRAT traces performs in the same
order of magnitude as the specialized approach based on the traces produced by
Bloqqer-BP. Detailed runtime comparisons between all solvers and a comparison
of Skolem function sizes produced by the Bloqqer-BP-DepQBF and the Bloqqer-
noCCE-QRAT-DepQBF configurations are shown in Fig. 3. Scripts and log-files of
the experiments are available on http://fmv.jku.at/sk-extract.

http://fmv.jku.at/sk-extract


136 K. Fazekas et al.

50 100 150 200 250

# certified instances

ru
nt

im
e 

(s
)

1
10

10
0

90
0

B−BP−DepQBF
B−noCCE−QRAT−DepQBF
B−full−QRAT−DepQBF
B−noMS−QRAT−DepQBF
B−noCCE−QRAT−Caqe
DepQBF
Caqe

●

●
●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●
●●

●
●
●

●

●●

●

●

●
●

●●
●●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●
●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●
●

●

●●

●
●●

●●●

●
● ●

●

●

●
●

●
●

●

●

●●●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●
●●

●

●●

●

●●●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●●

●

●

100 10000 1000000 100000000

10
0

10
00

0
10

00
00

0
10

00
00

00
0

Bloqqer−noCCE−QRAT−DepQBF (Byte)

B
lo

qq
er
−B

P
−D

ep
Q

B
F 

(B
yt

e)

Fig. 3. Runtime comparison of full tool chains (left) and size comparison of Skolem
functions by Bloqqer-BP-DepQBF and Bloqqer-noCCE-QRAT-DepQBF (right).

6 Conclusion

In this paper we described a general approach to obtain valid Skolem func-
tions for a quantified Boolean formula that has been preprocessed by a QRAT
trace producing preprocessor like Bloqqer. The described method reuses and
modifies a previously presented approach for extracting Skolem functions from
QRAT proofs [12]. We showed how to continue the incomplete Skolem functions
extracted from the QRAT trace with the Skolem functions of the preprocessed
formula. We implemented this method in a new Skolem function extraction tool
and performed an extensive evaluation on formulas of the QBF Eval 2016 main
track. We observed that our general method performs similarly well as the only
available specialized approach for that purpose. Thus, our tool can be smoothly
integrated into typical QBF solving tool chains in order to find semantic cer-
tificates of true QBFs. Such certificates are witnesses for the correctness of the
solving results as solutions of the application problem encoded in QBF.

Potential future work is the extraction of Herbrand functions as witnesses of
unsatisfiable QBFs as well as the optimization of extracted Skolem functions.
For obtaining a tighter integration of preprocessing and solving, we consider to
directly integrate proofs of different proof systems.

Acknowledgements. We would like to thank Luca Pulina for providing us with the
list of satisfiable instances of the QBF Eval 2016.
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Abstract. Web services compositions must provide different utilities to
hundreds even thousands of users simultaneously. An important chal-
lenge of testing these applications is load testing. For this purpose, we
proposed in a previous work a test architecture aiming to study the
limitations of WS-BPEL compositions under load conditions. We also
concretized our solution by implementing a tool support (WSCLim). We
introduce in this paper a case study on Hospital Blood Ordering for
Transfusion Purposes in order to best illustrate our solution.

Keywords: Web services composition · Timed Automata · Load test-
ing · Log analysis · Performance monitoring

1 Introduction

Clearly, not all service is able to respond the need of a user. In this case, it is
possible to combine existing services together in order to fulfil this need. The act
of combining these services is called Web service composition. Although much
researches have been focused on the discovery, selection and composition of Web
services, research areas such as testing of Web services (especially Web service
compositions) are still new and immature [1]. Some surveys on Web services test-
ing can be found in [2,3]. Furthermore, Bucchiarone and Severoni [4] and Zakaria
et al. [5] provided surveys focusing on testing of web service compositions.

Nowadays, Web services compositions (particularly BPEL1 [6] compositions)
are still considered as a major player in the implementation of distributed archi-
tectures. Such applications must offer different services to hundreds even thou-
sands of users instantaneously. An important challenge of testing these applica-
tions is load testing [7], which is frequently performed in order to ensure that a
system satisfies a particular performance requirement under a heavy load. In this
context and in addition to conventional functional testing procedures, load test-
ing is an important procedure that reveals programming errors which would not
1 Business Process Execution Language.
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appear if the SUT2 is executed with a limited workload or for a short time. Such
errors emerge when the system is executed under a heavy load or over a long
period of time. On the other hand, a given process may be correctly implemented
but fails under some particular load conditions because of external causes (e.g.
misconfiguration, hardware failures, etc.) [8]. Consequently, it is important to
identify and remedy these different problems. For that, we investigated in [9] the
opportunities as well as challenges of load testing in general.

The motivation of our work is to help practitioners to study the limitations of
BPEL compositions, in particular under load conditions. For that, we provided
a complete approach dedicated to BPEL compositions, that combines functional
and load testing [10]. The added value in this work is the treatment/use of
switch activity within the BPEL flow in order to choose between two actions.
In fact, conditional branching introduces decision points to control the flow of
execution of a BPEL process service component. Consequently, the treatment of
such activity needs the implementation of additional programming code in the
WSCLim core. Thus, our tool becomes more agile and generic so different other
case studies, particularly business processes containing switch activities, could
be tested under load conditions thanks to our tool.

We also concentrate on the combination of test and proof by the use of
a formal model for the testing. To explain, we highlight that in our work we
deal with model-based testing, so we check/verify some constraints of a BPEL
implementation with regard to a formal model (Timed Automata) considering
load conditions. Our WSCLim tool automatically executes the corresponding
random load tests on the implementation. At the end, test results are exhaus-
tively analyzed, with regard to specified constraints in the model, and advanced
information is provided, which permits to detect different natures and causes
of problems. For that, we take into consideration the execution context (con-
nections with partner services, SUT environment, etc.) of the application under
test while periodically capturing, under load, some performance metrics of the
system such as CPU usage, memory usage, etc. To detail, our test solution is
performed based on two steps. The first one is to run a load test during which
the process under test is monitored and performance data are recorded. The
second step is to analyze the resulting test logs in order to identify problems
under load. Besides the theoretical framework, we have developed a tool, called
WSCLim3 (WS-BPEL Compositions Limitations), that helps in the automation
of our testing approach [10].

The remainder of this paper is organized as follows. Section 2 discusses some
existing works on load testing. In Sect. 3, we describe the inputs and outputs of
our proposed WSCLim tool. In Sect. 4, we introduce a Hospital Blood Order-
ing for Transfusion Purposes (HBO-TP) case study, its corresponding reference
specification expressed in Timed Automata [11] and a BPEL Implementation of
a HBO-TP Scenario. Section 5 is dedicated to validate our approach by means of
the introduced case study and using our WSCLim tool. Finally, Sect. 6 provides
a conclusion that summarizes the paper and discusses items for future work.
2 System Under Test.
3 http://www.redcad.org/members/afef.jmal/WSCLim/Overview.html.

http://www.redcad.org/members/afef.jmal/WSCLim/Overview.html
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2 Comparison of Existing Works on Load Testing

Yang and Pollock [12] proposed a technique to identify the load sensitive parts
in sequential programs based on a static analysis of the code. They also illus-
trated some load sensitive programming errors, which may have no damaging
effect under small loads or short executions, but cause a program to fail when
it is executed under a heavy load or over a long period of time. In addition,
Zhang and Cheung [13] described a procedure for automating stress test case
generation in multimedia systems. For that, they identify test cases that can
lead to the saturation of one kind of resource, namely CPU usage of a node in
the distributed multimedia system. Furthermore, Grosso et al. [14] proposed to
combine static analysis and program slicing with evolutionary testing, in order
to detect buffer overflow threats. For that purpose, the authors used of Genetic
Algorithms in order to generate test cases. Garousi et al. [15] presented a stress
test methodology that aims at increasing chances of discovering faults related to
distributed traffic in distributed systems. The technique uses as input a specified
UML 2.0 model of a system, extended with timing information. Moreover, Jiang
et al. [16] and Jiang [17] presented an approach that accesses the execution logs
of an application to uncover its dominant behaviour and signals deviations from
the application basic behaviour.

Comparing the previous works, we notice that load testing concerns vari-
ous fields such as multimedia systems [13], network applications [14], etc. Fur-
thermore, all these solutions focus on the automatic generation of load test
suites. Besides, most of the existing works aim to detect anomalies which are
related to resource saturation or to performance issues as throughput, response
time, etc. Only Yang and Pollock [12] proposed a solution that allows to verify
functional errors in programs/implementations under load conditions. In fact,
detected faults according to Yang and Pollock [12] are related to dynamic mem-
ory allocation, and may occur because of memory leaks, incorrect dynamic mem-
ory allocation, etc. Besides, few research efforts, such as Jiang et al. [16] and
Jiang [17], are devoted to the automated analysis of load testing results in order
to uncover potential problems. Indeed, it is hard to detect problems in a load
test due to the large amount of data which must be analyzed. Current indus-
trial practice mainly involves time-consuming manual checks which, for instance,
search through the logs of the application for error messages. We also notice that
the identification of problem cause(s) (application, network or other) is not the
main goal behind load testing, rather than studying performance of the applica-
tion under test, this fact explains why few works address this issue. However, in
our work, we are able to recognize if the detected problem under load is caused
by implementation anomalies, network or other causes. Indeed, we defined and
validated our approach based on interception of exchanged messages between
the composition under test and its partner services. That way it would be pos-
sible to monitor exchanged messages instantaneously, and to recognize what is
the cause behind their loss or probably their reception delay, etc. To conclude,
we underline that the main contribution of our work is the verification of Web
service compositions requirements (which are supposed to be formally modeled)
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under diverse load conditions. Moreover, final results about abnormal behaviours
and observed error rates are also provided with the aim to identify and address
detected problems under load. Definitely all that makes our solution richer and
more interesting than existing ones.

3 Overview of Our WSCLim Tool

Java is the programming language used to implement our proposed WSCLim
tool. Our test solution is performed based on two steps. The first one is to run a
load test during which the process under test is monitored and performance data
are recorded. The second step is to analyze the resulting test logs, with regard
to specified constraints in the model (Timed Automata), in order to identify
problems under load. For that, the tool user is firstly asked to specify (1) the
path of the specification (Timed Automata) used as a reference in the test,
(2) the path of the composition WSDL specification, (3) the number of BPEL
concurrent instances, and (4) the delay between each two successive invocations
of the BPEL process under test. During the test execution, details are stored
in log files. At the end of a test, the analysis of results is launched and the
interface containing test verdicts is displayed. In fact, different errors’ natures
and causes are considered in our study of BPEL compositions limitations under
load conditions [10]. In particular, our WSCLim tool is able to detect problems
caused by (1) the application (BPEL implementation) such as (i) non specified
behaviours adding or required behaviours omission in addition to (ii) erroneous
delays. Another problem cause could be (2) the test environment either (i) a
problem of connection to a partner service or (ii) a problem of getting a response
from a partner service. The last possible cause is (3) the SUT Node (delay in
treatment of a partner service response).

4 Description of Our Illustrative Case Study

In this section, we introduce a HBO-TP (Hospital Blood Ordering for Transfu-
sion Purposes) case study for a better illustration of our solution later.

4.1 HBO-TP Case Study

The transfusion of blood or its components (plasma, platelets, etc.) has an impor-
tant role in modern medicine and surgery. In this context, we show our approach
by means of a case study consisting of a hospital ordering blood components for
transfusion purposes.

We suppose that the required business process (written in BPEL) composes
services of: local blood search (LBS), local blood ordering (LBO), hospital main-
tenance (HM) and unsatisfactory customer (UC). We also assume that the two
first partner services (LBS) and (LBO) are connected to a local blood bank which
is situated in the involved hospital. In fact, the blood bank is mainly responsible
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for rapid response to urgent requests for blood components and for selection of
suitable blood component for each clinical condition.

Once a hospital unit (such as emergency, surgery, etc.) sends a request to
the HBO-TP process, the (LBS) service is invoked to search for required blood
component from the local blood bank. This search is conditioned by a waiting
time. Indeed, the process should receive a response from (LBS) within maximum
60 s (for example). Otherwise, the process sends a connection problem report to
the (HM) service. In case of getting a blood search response before reaching
60 s, obtained search results are analyzed. If the conditions related to the needed
blood component are satisfied, then the (LBO) service is invoked to order blood
from the local blood bank. Otherwise, an unsatisfactory customer report is sent
to (UC) service for information about unavailable required blood component.
Thus, responsibles are put in charge to answer quickly the hospital unit need
for blood. Finally, a detailed reply informing about final results is sent to the
concerned hospital unit.

4.2 Reference Specification Expressed in Timed Automata

As a first input of our WSCLim tool, one should provide a written specifica-
tion in Timed Automata, which is an abstraction that expresses appropriately
functional requirements besides timing delays when modeling particularly Web
service compositions. For this reason, we first modeled the described HBO-TP
scenario using Uppaal4, an integrated tool environment for modeling, validation
and verification of systems modeled as networks of Timed Automata.

In Uppaal, synchronous communication between the Timed Automata is per-
formed by hand-shake synchronization using input and output actions. Output
and input actions are denoted with an exclamation mark and a question mark
respectively, e.g., a! and a?. Asynchronous communication is achieved by means
of shared variables.

Throughout the paper we use Uppaal syntax to illustrate Timed Automata.
The graph in Fig. 1 is directly exported from Uppaal, where x is a local clock. In
addition, initial locations are marked using a double circle. Edges are by conven-
tion labeled by the triple: guard, action, and assignment in that order (possible
but not necessary annotation). Finally, bold-faced clock conditions placed under
locations are location invariants.

Before referring to the elaborated specification expressed in Timed Automata
for testing different HBO-TP BPEL implementations, we should be sure that this
model respects both functional and non-functional system requirements. For that,
Uppaal proposes a simulation module of systems modeled in Timed Automata
which enables to follow how the built model can evolve in time. The realized simu-
lations allowed us to detect and correct some errors when modeling our considered
HBO-TP scenario in Timed Automata. Furthermore, we used Uppaal’s verifica-
tion module which enables to check various properties (safety, liveness, deadlock,
etc.) of our created model. That way, we obtain at the end a checked and valid
specification expressed in Timed Automata as a reference for testing later.
4 http://uppaal.org/.

http://uppaal.org/
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Fig. 1. The HBO-TP process modeled in Timed Automata

4.3 BPEL Implementation of the HBO-TP Scenario

The WSCLim tool requires, as a second input, a given BPEL implementa-
tion which corresponds in our case to the previously described HBO-TP sce-
nario. This implementation is then tested; with regard to the provided Timed
Automata for our tool; under various load conditions.

A BPEL model can be described in form of a graphical representation. In
Fig. 2, we illustrate a correct BPEL process corresponding to our considered
HBO-TP case study. It uses a pick activity for one of the following cases: (1) to
receive a response from (LBS) within 60 s maximum and to continue its execu-
tion, or (2) to send a connection problem report to (HM) service if there is no
received response from (LBS) after a delay of 60 s.

Besides, a switch activity is used to choose between two actions : (1) if the
branch condition is satisfied then the (LBO) service is invoked to order blood
from the local blood bank, else (2) an unsatisfactory customer report is sent to
(UC) service to inform about required blood component unavailability.

In order to validate our approach in a way that one has an idea of its fault-
detection effectiveness, we used mutation testing, i.e., we produced mutated ver-
sions of our HBO-TP BPEL process by seeding artificial defects that can cause
load testing faults, such as the implementation of non specified behaviours (wrt.
the model) or the omission of required behaviours in the BPEL flow, we may also
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Fig. 2. The HBO-TP process

consider erroneous delays within a pick activity of the BPEL process. It consists
of an implementation of a synchronous communication conditioned by a timeout
response of a partner service which is different from the specified one [10]. We
note that we designed BPEL processes using the Oracle JDeveloper environ-
ment5. In addition, we used Oracle BPEL Process Manager infrastructure6 for
deploying and managing designed processes.

5 Testing Scenarios: Results and Interpretations

In order to study the limitations of the HBO-TP process under load condi-
tions, we defined several test scenarios. We highlight that we made use of our
WSCLim tool for different mutated BPEL versions. For instance, we considered
wrong delays corresponding to blood search waiting times. That is in this case,
the implemented delay value (pick activity) is different from the specified one
(which is equal to 60 s according to the timed automaton in Fig. 1). Besides,
we considered the addition of some non required behaviours (e.g., new service
invocation), and in other altered BPEL processes, we omitted some specified
requirements. Other possible mutation may be the implementation of a wrong
branch condition (switch activity) which affects normal behaviour of the BPEL
process.

5 http://www.oracle.com/technetwork/developer-tools/jdev/.
6 http://www.oracle.com/technetwork/middleware/bpel/.

http://www.oracle.com/technetwork/developer-tools/jdev/
http://www.oracle.com/technetwork/middleware/bpel/


146 A.J. Maâlej et al.

In this paper, we present two proposed test scenarios. The first one is used
to illustrate some errors which may occur in the application, whereas the second
test scenario is designed to subject the composition to a higher load in order
to identify the non-functional problems. In the following, we assume that the
maximum network waiting time is equal to 120 s.

5.1 First Test Scenario

First, we consider a mutated version of the HBO-TP process where we suppose
that a developer made mistakes while coding the BPEL composition. In fact, a
non specified/required partner service was added in the BPEL implementation
just after the (UC) service. Moreover, the implemented timeout (30 s) of service
(LBS) response is different from the specified one (60 s) in the timed automaton
(see Fig. 1). In this scenario, we invoked 30 times the HBO-TP process consid-
ering a delay of one second between each two successive invocations. Figure 3
shows the graphical interface generated by our WSCLim tool according to the
first test scenario.

Fig. 3. Graphical interface generated by WSCLim tool - scenario 1 (Color figure online)

We notice that, for this scenario, the percentage of FAIL verdict is equal to
33.33% (red-coloured zone of Test Verdicts block), which means that 10 BPEL
instances among 30 ones failed during load testing. Concerning the FAIL natures
and causes of this execution, there are problems at the application level (problem
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cause) (24,92% of errors (magenta-coloured zone) correspond to non specified
added behaviours; first application FAIL nature; and 64.08% of errors (salmon-
coloured zone) are about erroneous delays; second application FAIL nature). The
source/cause of the rest of problems (10%) is test environment (cyan-coloured
zone) and their nature relates to problems of connection to a partner service.

According to the test report depicted in Listing 1.1, the BPEL instance of
identifier 450480 follows a path which does not exist in the specification. In fact,
it illustrates the invocation of an unexpected partner service (HM) at the level
of Switch activity in case where the response of (LBS) service is non satisfied,
while according to the specification, only the service (UC) should be invoked.
This added behaviour shows clearly the presence of an error while implementing
the BPEL process.

Listing 1.2 depicts an example which shows a problem of connection to part-
ner services. Concerning the BPEL instance 450469, the (LBS) service responded
to the composition before the implemented response delay (30 s). Thus, the
(LBO) service should be invoked. However, we did not observe this invocation in
the test report. Thus, we conclude that the (LBO) service could not be invoked
by the BPEL process. This problem of connection to service (LBO) under load
conditions is definitely caused by the test environment.

Listing 1.1. Test report corresponding to BPEL instance 450480

450480: Ho sp i t a l r e que s t ? , (123) ,Thu Sep 15 18 : 55 : 20 GMT+01:00 2014
450480: Invoke LBS ! , ( 1 2 3 )
450480: random1
450480: typeInput=PASS
450480: cAttente= 17452.3002696788
450480: resp LBS ? , (FuzSM) ,x=17
450480: Invoke UC ! , (FuzSM)
450480: random17
450480: typeInput=PASS
450480: resp UC ? , ( jZYZ3 ) ,0ms
450480: Invoke HM ! , ( jZYZ3 )
450480: random19
450480: typeInput=PASS
450480: resp HM? , ( ulHzX) ,16ms
450480: Hosp i t a l r e spon s e ! , ( ulHzX) ,Thu Sep 15 19 : 20 : 57 GMT+01:00

2014

Listing 1.2. Test report corresponding to BPEL instance 450469

450469: Ho sp i t a l r e que s t ? , (123) ,Thu Sep 15 18 : 54 : 50 GMT+01:00 2014
450469: Invoke LBS ! , ( 1 2 3 )
450469: random4
450469: typeInput=PASS
450469: cAttente= 4867.44407152456
450469: resp LBS ? , (Tnt2E) , x=4
450469: Hosp i t a l r e spon s e ! , ( Tnt2E) ,Thu Sep 15 18 : 56 : 00 GMT+01:00

2014
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5.2 Second Test Scenario

In this case, we invoked 50 times the HBO-TP process considering a delay of
one second between each two successive invocations. In addition, we consider
a BPEL implementation that complies with the specification. Consequently, we
do not suspect load sensitive faults within the application. Figure 4 shows the
graphical interface generated by our WSCLim tool according to the second test
scenario.

Fig. 4. Graphical interface generated by WSCLim tool - scenario 2 (Color figure online)

The analysis of the corresponding execution results shows that there is a
FAIL percentage of 74% (37 instances among 50). As explained in Fig. 4, 57%
of problems (purple-coloured zone) are located in the SUT node and 42% ones
(cyan-coloured zone) correspond to problems of connection to partner services
caused by the test environment.

According to the observed behaviour in the test report corresponding to
BPEL instance 330265 (see Listing 1.3), we notice that the (LBS) service was
invoked and it answered the BPEL process in a time less than the specified period
(60 s). However, the BPEL process follows the branch onAlarm. This could be
interpreted by a delay in treatment of the response sent from the (LBS) service
caused essentially by the load increase (particularly from the SUT node side).
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Listing 1.3. Test report corresponding to BPEL instance 330265

330265: Ho sp i t a l r e que s t ? , (123) ,Thu Aug 06 19 : 08 : 37 GMT+01:00 2014
330265: Invoke LBS ! , ( 1 2 3 )
330265: typeInput=PASS
330265: resp LBS ? , (TBUhZ) , x=9
330265: Invoke HM ! , (TBUhZ)
330265: typeInput=PASS
330265: resp HM? ,(34Fem) ,16ms
330265: Hosp i t a l r e spon s e ! , ( 3 4Fem) ,Thu Aug 06 19 : 08 : 48 GMT+01:00

2014
330265: typeOutput=PASS

Listing 1.4 illustrates an example that shows a problem of connection to part-
ner services. Concerning the BPEL instance 330277, the (LBS) service answered
the BPEL process in a time less than the specified period (60 s). Thus, the (LBO)
service should be invoked. However, we did not observe this invocation in the
test report. Thus, we conclude that the (LBO) service could not be invoked
by the BPEL process. This problem of connection to (LBO) service under load
conditions is definitely caused by the test environment.

According to our previous experiments based on seeding various artificial
defects within BPEL processes, the example shows that our proposed WSCLim
tool can detect and identify different BPEL implementation errors, which are
hidden under a certain load and may appear while increasing load placed on
BPEL composition under test.

Listing 1.4. Test report corresponding to BPEL instance 330277

330277: Ho sp i t a l r e que s t ? , (123) ,Thu Aug 06 19 : 08 : 54 GMT+01:00 2014
330277: Invoke LBS ! , ( 1 2 3 )
330277: typeInput=PASS
330277: resp LBS ? , (MDfyd) , x=19

5.3 Overhead of Our WSCLim Tool

Aiming to determine the overhead of our proposed WSCLim tool, we represented,
for both cases, the measurement curves of the execution time average while
varying the load conditions. In the first case, tests are performed using our
testing tool. In the second case, test executions are performed directly from the
console of the orchestration server and without turning to our WSCLim tool. To
lead these experiments, we considered again the same HBO-TP process structure
as described in Sect. 4.3.

As shown in Fig. 5, the use of our WSCLim tool does not cause a significant
additional overhead to the average of the process execution time. Indeed, for a
given load, the difference between the two corresponding times is of the order
of a few seconds (3 s on average). This negligible overhead (compared to the
average of one instance execution time) is due to additional activities such as
the verification of variable types, the logging activity, etc., which are carried out
by our tool during the load testing.
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Fig. 5. Evolution of the response time with and without considering the WSCLim Tool

6 Conclusion and Future Work

In this paper we firstly described the inputs and outputs of our WSCLim tool.
Then we presented a HBO-TP case study in order to validate the applicability of
our load testing approach for the study of BPEL compositions behaviours under
various load conditions. For that, we created, simulated and verified the reference
model (corresponding to our case study and written in Timed Automata) using
the Uppaal test environment. Then, we implemented different mutated versions
of the considered BPEL process, and we used our WSCLim tool to automati-
cally execute the corresponding load tests of these implementations. Finally, test
results were exhaustively analyzed and advanced information was provided by
our tool, which permits to detect different natures and causes of errors.

The provided results are clear evidence of the efficiency of our proposed
solution. As these results are based on relatively small scale compositions, case
studies with higher complexity are needed to validate the accuracy of our app-
roach. Another future work would be the extension of our testing tool for cloud
computing. In fact, we can benefit from this technology to distribute more real-
istically the components of our test architecture. Besides, it would be possible
to support the scalability issue by opting, as an example, for the load balancing
concept.
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Abstract. This paper attempts to address the question of how best to
assure the correctness of saturation-based automated theorem provers
using our experience with developing the theorem prover Vampire. We
describe the techniques we currently employ to ensure that Vampire
is correct and use this to motivate future challenges that need to be
addressed to make this process more straightforward and to achieve bet-
ter correctness guarantees.

1 Introduction

This paper considers the problem of checking that a saturation-based automated
theorem prover is correct. We consider this question within the context of the
Vampire theorem prover [14], but many of our discussions generalise to similar
theorem provers such as E [22], SPASS [26], and iProver [13]. We discuss what
we mean precisely by correctness, describe how we detect bugs and, as our main
contribution, outline the challenges that need to be addressed.

Automated theorem provers (ATPs) are often used as black boxes in other
techniques (e.g. program verification) and those techniques rely on the results
of the theorem prover for the correctness of their own results. Another area that
makes use of ATPs is the application of so-called hammers [12,15] in interactive
theorem proving. These combinations usually provide functionality to recon-
struct the proofs of the ATP using their own trusted kernels, although also offer
users the option to skip such steps.

It is clear that correctness is important here, so how are we doing? Most the-
orem provers seem to be generally correct. However, cases of unsoundness are
not uncommon. In SMT-COMP 2016 there were 603 conflicts (solvers return-
ing different results) on 73 benchmarks caused by three solvers giving incorrect
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results for various reasons.1 In the CASC competition [25], there is a period of
testing where soundness is checked and resolved, and there have been a number
of solvers later disqualified from the competition due to unsoundness. In our
experience, adding a new feature to a theorem prover is a highly complex task
and it is easy to introduce unsoundness, or general incorrectness, especially in
areas of the code that are encountered during proof search infrequently.

This paper begins by describing what we mean by correctness with respect to
saturation-based theorem provers (Sect. 2) and the approach we take to finding
and fixing bugs (Sect. 3). This provides sufficient context to present a set of
challenges that need to be addressed to produce a better solution to this problem
(Sect. 4). Addressing these challenges is part of our current ongoing research. An
extended version of this paper containing examples of bugs found in Vampire is
available online [20].

2 What Does Correctness Mean for Us?

Broadly there are two ways in which a theorem prover such as Vampire can be
incorrect: either it returns the wrong result, or it violates a contract of proper
behaviour.

2.1 Incorrect Result

To understand what a correct and incorrect result mean to Vampire, we need to
introduce some of the theoretical foundations of the underlying technique. We
note that the approach used by Vampire is the same as that taken by other first-
order theorem provers, so these discussions, and the challenges outlined later,
generalise beyond Vampire.

Vampire accepts problems (formulas) in the form

(Premise1 ∧ . . . ∧ Premisen) → Conjecture (1)

and can give one of three answers:

– Theorem, if (1) is true in all models,
– Non-Theorem, if there are models in which (1) is false, and
– Unknown, if Vampire cannot deduce one of the previous answers.

Providing one of the first two results when that result does not hold is clearly
incorrect. Providing Unknown as the result is clearly incorrect in the sense that
there is a known answer, but, due to the undecidability of first-order-logic and the
general hardness of the problem, it is often unavoidable. However, as discussed
below, we should understand the different ways in which Unknown as a result
can be produced. Note that Unknown will be returned if Vampire exceeds either
the time or memory allotted to it.

1 See http://smtcomp.sourceforge.net/2016/.

http://smtcomp.sourceforge.net/2016/
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More specifically, Vampire is a refutational theorem prover; it establishes the
validity of problems in the form (1) by detecting unsatisfiability of its negation:

Premise1 ∧ . . . ∧ Premisen ∧ ¬Conjecture. (2)

This works by translating (2) into a set of clauses S and adding consequences of
S until the contradiction false is derived or all possible consequences have been
added. This process is called saturation and may not terminate in general for a
satisfiable set S.

If Vampire derives a contradiction then it has shown that the problem (1)
is valid, i.e. a theorem. Deriving a contradiction when the problem in (1) is not
valid is unsound and an incorrect result.

If Vampire fails to derive a contradiction and saturates the set S in finitely
many steps then there is a result [2] telling us that under certain conditions we
can conclude that false cannot be a consequence of S and therefore problem (1)
is a non-theorem. These conditions capture the completeness of the underlying
inference system and generally require that all possible non-redundant inferences
have been performed.

However, there are many things that Vampire does to heuristically improve
proof search that break the completeness conditions. For example, (i) certain
well-performing selection functions [10] might prevent inferences that need to
be performed for completeness conditions to hold; and (ii) some preprocessing
steps and proof search strategies explicitly remove clauses from the search space
in an attempt to mitigate search space explosion [11,21]. If the completeness
conditions do not hold then upon saturation the result is Unknown. Sometimes
it is easy to detect when these conditions hold, sometimes it is non-trivial, and
sometimes they are erroneously broken. In this last case (when we think the
conditions hold but they do not) this will lead to incorrectly reporting non-
theorem i.e. this completeness issue is another kind of incorrect result.

To ensure the requirement that all possible non-redundant inferences will
in the end be performed, we impose certain fairness criteria on the satura-
tion process. More concretely, we require that no such inference is postponed
indefinitely. Notice that this is by nature a tricky condition to deal with as it
cannot be seen to have been violated after finitely many steps while the prover
is running. And since, due to the semi-decidability of first-order logic, there is
no upper bound on the length of the computation required to derive false, a
non-fair implementation might in certain cases never be able to return Theorem,
even if it is the correct answer and instead keep computing indefinitely. Thus,
this fairness issue does not lead to an incorrect result per se, but rather just
negatively influences performance. As such it may be extremely hard to detect
and deal with.

2.2 Violating the Contract of Proper Behaviour

There are two kinds of contracts of proper behaviour that Vampire can vio-
late: those introduced implicitly by the underlying system, and those introduced
explicitly by us in the form of assertions. We discuss both kinds of bug below:
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– Program crash. A program crash is where Vampire terminates unexpectedly,
usually due to an unhandled exception, floating point error (SIGFPE), or
segmentation fault (SIGSEG). Unhandled exceptions are bugs as we should
handle them. In general, Vampire handles all known classes of exceptions at
the top level, but we have recently had issues with integrated tools (MiniSAT
and Z3) producing exceptions that we did not handle. Floating point errors
and segmentation faults are typical software bugs that should be detected
and removed.

– Assertion violation. Vampire is developed defensively with frequent use of
assertions. For example, these are inserted wherever a function makes some
assumptions about its input or the results of a nested function call, and
wherever we believe a certain line to be unreachable. Vampire consists of
roughly 194,000 lines of C++ code with roughly 2,500 assertions, meaning
that there is roughly one assertion per 77 lines. The majority of potential
errors are detected early as assertion violations.

3 Finding Bugs

In this section we briefly describe how we detect and investigate bugs in Vampire
where these two steps can be equally difficult. The search space for Vampire is
vast, and finding the combination of inputs that triggers a bug is very difficult.
Some bugs are incredibly subtle, particularly soundness bugs or those involving
memory errors, and tracking them down can involve hunting through thousands
of lines of output.

3.1 The Input Search Space

The two inputs to Vampire are the input problem and a strategy capturing proof
search parameters. The space of possible input problems is infinite. However, we
do not currently explore this space systematically. Instead we sample from sets
of representative benchmarks, e.g. TPTP [24] (∼20k problems) and SMT-LIB
[4] (∼46k relevant problems). Vampire currently uses roughly 75 proof search
parameters with more than half of these having more than two possible values
and some taking arbitrary numeric values (although in testing we fix these to a
predefined sensible set). Therefore, the search space is significantly larger than
275, i.e. too large to explore systematically.

3.2 The Debug Process

Bug reports come from two sources:

– Users of the Vampire system may report bugs to us. Currently this is an
informal process carried out by personal email. Sometimes these bugs are
actually feature requests, and other times they can be due to a misuse of
Vampire.
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– More commonly, they come from randomly sampling the parameter space and
sets of available problems (ensuring reasonable diversity in terms of features
and status, e.g. theorems and non-theorems). We use a cluster2 that enables
us to carry out around a million checks a day (using varying short time limits).

Once an error is detected, we must diagnose and fix the fault. Below we describe
some of our methods for doing this.

– Tracing. Vampire has its own library for tracing function calls. A macro is
manually inserted at the start of each significant function. This macro enables
the tracing library to maintain the current call stack, which is then printed
on an assertion violation or during signal handling along with the number of
such call points passed so far. This second piece of information can be used
to explicitly log function calls for some range of call points, e.g. those just
before the erroneous point. This feature is invaluable in quickly locating the
cause of an assertion violation.

– Memory Checking. Vampire implements its own memory management library,
allowing fine-grained control of memory allocation and deallocation and
enforcement of soft memory limits. In debug mode, Vampire keeps track of
each allocated piece of memory and checks that the corresponding deallo-
cation is as expected. Vampire also reports memory leaks i.e. unallocated
memory at the end of the proof search.

– Segmentation Faults and Silent Memory Issues. The most difficult bug to
debug is a rogue pointer or piece of uninitialised memory. We find that a first
step of applying Valgrind3 will often detect the more straightforward issues.
However, such bugs are often only noticed via incorrect results and fixed by
much manual effort.

– Proof Checking. To detect unsoundness we employ proof checking, which we
discuss further below. We do not currently have a corresponding method for
checking that a saturated set complies with necessary completeness condi-
tions.

3.3 Proof Checking

The easiest way to confirm a result indicating that the input formula is a theorem
is to check that the associated proof only performs sound inference steps. This
process is called proof checking and here we briefly describe the capabilities and
limitations of the proof checking technique as currently realised in Vampire.

We introduce the idea of proof checking using an example (see [17] for more
information about proofs in Vampire). Given the clauses

p(a) ¬p(x) ∨ b = x ¬p(b)
Vampire will produce the following proof in TPTP format4

2 Consisting of 46 nodes with quad-core Intel Xeon CPUs and 12 GB RAM.
3 http://valgrind.org.
4 All TPTP-compliant provers must produce proofs in this format (see http://www.cs.

miami.edu/∼tptp/TPTP/QuickGuide/Derivations.html). We note that the TPTP
project also provides separate proof checking tools [23].

http://valgrind.org
http://www.cs.miami.edu/~tptp/TPTP/QuickGuide/Derivations.html
http://www.cs.miami.edu/~tptp/TPTP/QuickGuide/Derivations.html
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1. p(a) [input]
2. ~p(X0) | b = X0 [input]
3. ~p(b) [input]
4. a = b [resolution 2,1]
5. ~p(a) [backward demodulation 4,3]
7. $false [subsumption resolution 5,1]

A proof is a directed acyclic graph printed in a linear form where nodes that have
no incoming edges are either input formulas or axioms introduced by Vampire,
and the single node with no outgoing edges contains the contradiction. In the
above proof each derived clause is labelled with the name of the inference and
the lines of the premises.

To check a proof we just need to establish that for each inference its conclu-
sion logically follows from its premises. By running vampire -p proofcheck we
can produce a series of TPTP problems capturing each proof step. For example
the following problem captures step 5 in the above proof.

fof(pr4,axiom, a = b ).
fof(pr3,axiom, ~p(b) ).
fof(r5,conjecture, ~p(a) ).

We can pass these directly to an independent theorem prover5 and if a step
cannot be independently verified then it should be investigated.

4 Challenges

We now present a discussion of what we have identified as the main challenges
left to be solved, or at least addressed, given in order of importance, as we
perceive it.

4.1 Full and Automated Proof Checking

As described in Sect. 3.3, there is already reasonable support for indepen-
dently checking the correctness of proofs. However, this situation could still be
improved.

Missing Features. There are parts of proofs that cannot currently be proof
checked, the two main parts are:

– Symbol Introducing Preprocessing. Certain inference steps of the clausification
phase, e.g. Skolemization and formula naming [19], introduce new symbols
and as such do not preserve logical equivalence. This means the conclusion
of the inference does not logically follow from its premises. What these steps
preserve is global satisfiability of the clause set they modify. One necessary

5 Currently we use E [22], iProver [13], and CVC4 [3] as independent provers but could
use any accepting TPTP formatted problems.
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condition for correctness is that the introduced symbols be fresh, i.e. not
appearing elsewhere in the input. This requires a non-trivial extension to the
described approach.

– SAT and SMT solving. Vampire makes use of SAT and SMT solvers in various
ways (see [18]). This means that we have some inferences in Vampire that are
of the form P1 ∧ . . . ∧ Pn → C by SAT/SMT, or even the argument that
some abstraction or grounding of the premises leads to C by SAT or SMT
solving. To handle such proof steps we need to collect together the premises
(potentially apply the necessary abstraction or grounding) and run a SAT or
SMT solver as appropriate.

Extra information may need to be added to proofs to support these checks.

Automating Proof Checking. Having tools able to check the correctness of proofs
is irrelevant if those tools are not used. Ideally, theorem provers should provide
the functionality to check the proofs that they produce automatically. As the
problems produced during proof checking are often easy to solve, one could
imagine a situation where, in a certain mode, a theorem prover applied proof
checking to its proof output.

Independence. It might not be possible to find an independent solver able to
handle the problems produced by proof checking. A solver might not be able
to check an individual step, because it is too hard, or not be able to handle
the language features the problem contains. A weaker independence could be
achieved by making use of a previous version of the original theorem prover that
we are more confident in.

4.2 Analysability of Unsound Proofs

Checking whether a proof is correct or not is essential. However, knowing that
a proof is incorrect is not, in itself, very useful. Another missing piece to this
puzzle are tools that can analyse proofs and extract, summarise or explain the
reason the proof is incorrect. The proof checking process will reveal the proof
step that fails to hold, but the problem of detecting the underlying reason for
that proof step to have occurred is non-trivial.

One step in this direction is the application of delta-debugging [27] to reduce
the input to a simpler form to aid debugging efforts. This approach has been
explored for SAT/QBF solvers [1,5] applied to both the input problem and the
parameter space.

4.3 Handling Non-theorem Results

So far we have ignored the incorrect result of reporting a problem to be satisfiable
when it is not. It is not clear how to practically check whether a saturated
set is indeed saturated as the notion of saturation is dependent on the used
calculus and its instantiation with parameters such as the term ordering and
literal selection methods.
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Non-redundant Inferences. A necessary condition for completeness it that proof
search never deletes anything that is not redundant. Checking this is significantly
more complex than proof checking. In proof checking we must check that each
inference of the proof is sound i.e. that we were allowed to perform those infer-
ences to derive a contradiction. If we have a saturated set then we should check
that every inference that we chose not to perform was redundant; this is what
we often have to do manually, with some intuition about what such inferences
might be. The number of such inferences is typically a few orders of magnitude
larger than the length of a typical proof.

Monitoring Fairness. To avoid missing a saturated set we need to satisfy the
fairness criteria discussed in Sect. 2.1. However, this is not monitorable in a
formal sense [8,9] as it cannot be satisfied or violated based on a finite number
of observations. However, if we were to introduce a stronger property of bounded
fairness [7], e.g. a clause of age A will be processed within kA iterations for
some constant k, then this property becomes monitorable (this is now a response
property).

4.4 Achieving Better Coverage with Random Testing

As previously discussed, due to the enormous variability in proof search para-
meters and possible problem inputs, the best approach to detecting errors and
incorrect results is through random search. However, the current approaches to
random search are not optimal. Here we briefly outline areas of improvement.

Code Coverage. Our current approach makes no attempts to ensure that testing
covers all lines in the code. Even though this is a very weak notion of coverage, it
could be used to detect areas of code that should be tested, or removed if never
used.

Coverage of the Parameter Space. Whilst random sampling of the parameter
space can be effective at discovering bugs, it is not clear that all areas of the
parameter space are of equal interest. Clearly, combinations of features that have
not been tested together should have priority, and features added more recently
should be tested more thoroughly. In this vein we could borrow from T-wise test
case generation strategies for Software Product Lines [16] which aims to test all
T-combinations of features.

Coverage of the Problem Space. This is an area where relatively little has been
done (in the first-order setting). We currently use libraries of existing problems
as possible inputs to the testing process. However, if we do not have a problem
that exercises a certain feature sufficiently, we are unlikely to detect bugs related
to that feature. For example, the TPTP language contains features that are
very rarely used within the TPTP library. This issue is not confined to language
features. Proof search is dependent on particular dimensions of the input problem
(e.g. size, signature) that are difficult to quantify. If the input problems do not
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cover these dimensions sufficiently then certain parts of Vampire will not be
tested effectively. A useful area of research would be the automatic generation
of problems, or fuzzing of existing problems, to cover such dimensions. In this
direction we could borrow from successful results in SAT/QBF solving [5,6].

5 Conclusion

This paper describes our experience testing the Vampire theorem prover and
what we see as the challenges to overcome to help us improve this effort. The
ideas we discuss generalise to other theorem provers and some efforts, such as
proof checking techniques and better problem coverage, would be widely benefi-
cial. Addressing the challenges set out in this paper is part of our current research
and we plan to provide a proof checking tool that can fully and automatically
check proofs produced by Vampire.
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