
Increasing the Interpretability of Rules Induced
from Imbalanced Data by Using Bayesian

Confirmation Measures

Krystyna Napiera�la1,2, Jerzy Stefanowski1, and Izabela Szczȩch1(B)
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Abstract. Approaches to support an interpretation of rules induced
from imbalanced data are discussed. In this paper, the rule learning algo-
rithm BRACID dedicated to class imbalance is considered. As it may
induce too many rules, which hinders their interpretation, their filtering
is applied. We introduce three different strategies, which aim at selecting
rules having good descriptive characteristics. The strategies are based on
combining Bayesian confirmation measures with rule support, which have
not yet been studied in the class imbalance context. Experimental results
show that these strategies reduce the number of rules and improve values
of rule interestingness measures at the same time, without considerable
losses of prediction abilities, especially for the minority class.
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1 Introduction

Learning classification rules is one of mature and well studied tasks in machine
learning. The popularity of rules comes from the fact that they directly provide a
symbolic representation of knowledge discovered from data, which is more com-
prehensible and human-readable than other representations [5]. Many various
algorithms for inducing rules have been already introduced (for their review see,
e.g. [5]). Nevertheless, such aspects of data complexity as class imbalance still
constitute difficulties [11]. The majority of standard rule algorithms are biased
towards the majority classes and tend to neglect the minority class. Two kinds
of reasons for poor performance of rule based classifiers for imbalanced data are
usually pointed out – algorithmic and data level ones [11,16].

Some extensions of rule classifiers for class imbalances have been already
proposed, for their review see [16]. However, most of them address only a single
or at most a few of algorithmic or data-related factors. In [16] we introduced
a new rule induction algorithm, called BRACID (the acronym of Bottom-up
induction of Rules And Cases for Imbalanced Data), which attempts to deal with
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more of the aforementioned factors. The previous comparative experiments have
clearly demonstrated that the rule classifier induced by BRACID significantly
outperformed other rule classifiers generated by the best, standard rule learning
algorithms as well as the rule extensions specialized to class imbalances, with
respect to predictive measures [16]. On the other hand, BRACID may generate
too many rules (see also experiments in Sect. 6). As it restricts human experts’
abilities to analyze or interpret the rules, we are looking for a post-processing
approach that could identify the most valuable rules. The first attempt, recently
undertaken in [18], has shown that it is possible to select rules characterized by
high supports and still leading to sufficient predictive performance.

Nevertheless, focusing attention on the most interesting rules should also take
into account other characteristics than simply the rule support. In particular,
it is important not to neglect the descriptive abilities of rules, which are often
overwhelmed by the need to increase the predictive performance. Note that the
predictive and descriptive aspects often stand in opposition to each other [13,20].
However, when human experts seek for a compact knowledge representation,
improving the interpretability of each single rule can even justify some loses on
the predictive performance.

Establishing when rules are interesting to users touches both subjective and
objective aspects [4]. In this paper we follow the latter aspect and consider rule
interestingness measures which are often applied to filter the set of rules [7,15].
They are calculated from learning data and aim at quantifying the relationship
between a rule’s premise and its conclusion. A particular group of these mea-
sures, called Bayesian confirmation measures, is well suited for supporting rule
interpretability, as it focuses on advancing rules for which the probability of
the conclusion given the premise is greater than the genuine probability of the
conclusion itself [3,10]. In other words, confirmation measures promote rules, in
which the value that the premise adds to conclusion is considerably high.

Although the concept of confirmation has been firstly considered by philoso-
phers of science in a very different context (see e.g. [2,3,19]), it has been adopted
to rule interestingness measures, mainly for filtering association rules [8]. Never-
theless, these measures have not been considered for imbalanced data yet. Their
application should turn out to be particularly useful in the context of imbal-
ance since considering the probability of each conclusion separately, as done by
confirmation measures, would be related to imbalance ratios.

For the purpose of this paper we focus on two particular confirmation mea-
sures called S [2] and N [19]. We have chosen them from a wider collection of
confirmation measures discussed in the literature because of the desired prop-
erties that they possess [9,10]. In our opinion, these measures satisfy properties
that should influence the interpretability of rules [10].

The main aim of this paper is to introduce an approach that uses confirmation
measures S and N to post-prune rules induced by BRACID. We focus this study
on BRACID only, as experiments [16] have shown that it outperformed other
best rule based classifiers over a large collection of imbalanced data. The new
approach should reduce the number of its rules while improving values of rule
interestingness measures at the same time, especially for the minority class.
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The paper is organized as follows. Firstly, we briefly review related works in
Sect. 2. Section 3 introduces the concept of Bayesian confirmation and defines
two particularly valuable representatives of confirmation measures: measures S
and N . The algorithm used for rule induction, called BRACID, is summarized
in Sect. 4. The three new rule filtering strategies are introduced in Sect. 5. Their
usefulness to improve BRACID rules is evaluated in several experiments, which
are described in Sect. 6. The experimental results are discussed in Sect. 7. In the
final section we draw lines of future research.

2 Related Works on Rule Evaluation and Filtering

Many algorithms for constructing rule based classifiers employ rule pruning.
The representative approaches are Grow, IREP or RIPPER; for their review,
see Chap. 9 in [5]. However, these approaches follow the classification perspective
of rule induction and pruning is oriented toward good predictive ability of the
complete set of rules. Other objectives are stated in the descriptive knowledge
discovery which aims at discovering from data information patterns and regu-
larities (or sometimes exceptions) which are potentially interesting and useful to
different kinds of users [20].

The descriptive rule discovery perspective, which is considered in this paper,
requires other algorithmic strategies than in the classification perspective, e.g.,
classification versions of association rules, richer sets of satisfactory rules [20] or
rule representations of subgroup discovery [6]. However, these algorithms often
generate a too high number of rules which makes it impossible for users or
domain expert to inspect them. Thus, users lose the opportunity to interpret
the results, find interesting rules or to further modify them to have a more
accurate classifier [12].

To help the user find relevant knowledge inside huge rule sets, the rule
interestingness measures have been proposed (for their review see [7,15]). They
are divided into two categories: subjective (user-oriented) and objective (data-
oriented) ones. The subjective measures take into account the user’s goals, back-
ground knowledge or his belief on the data domain [4]. Objective measures are
those that are not application- or user-specific and depend only on raw data.
Many of them are defined on the basis of contingency tables summarizing the
data set (see the next section). Support and confidence are the most universal
interestingness measures which are often applied in the process of rule genera-
tion (e.g., Apriori search for association rules) and sometimes in post-filtering
[1]. Although they are so popular, other measures could be better suited to deal
with larger sets of rules and to select the most relevant (i.e. interesting) candi-
dates. Numerous rule interestingness measures have been proposed (lists can be
found for example in [7,12,13,15]) and choosing the best one for a given problem
is not a trivial task.

In general, the interestingness measures are used to assess, rank (sort) and
filter the rules according to various points of view [7]. For these aims, the experts
either select some single measures or consider their aggregated, more complex
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versions. For instance, [13] describes a case study in which several measures have
been used, and the results were interpreted by an expert with a recommendation
to use a weighted relative accuracy. Another, more multiple-criteria analysis
has been advocated by Bayardo and Agrawal, who proposed to analyze partial
ordering of the rules (instead of the typical total ordering of rules) according to
different interestingness measures [1]. The authors of [12], on the other hand,
discussed other related proposals and proposed a subset of measures based on
specialist’s preferences; see also [14]. The authors of [9] analyzed properties of
the interestingness measures and showed that some measures may be preferred
to others. Furthermore, other researchers looked for concise representations (e.g.
closed items in associations), rule summaries, grouping of similar rules (with
respect to rule condition parts or to subsets of covered examples), or developed
interactive visualization tools.

Nevertheless, the choice of the interestingness measures still depends on the
expert’s preferences and the problem at hand. In this paper, following motiva-
tions presented in Sect. 1, we direct our interest to a particular class of measures
based on Bayesian confirmation. Although they have been recently used to filter
association rules [8], they have not been considered for classification rules in the
class imbalanced tasks.

3 Bayesian Confirmation Measures

To present Bayesian confirmation measures the basic notation is introduced.
Rules are consequence relations represented as IF (condition part) THEN (target
class), where a condition part (premise) is a conjunction of elementary tests on
values of attributes characterizing learning examples and a target class points
to one of the predefined values of the decision attribute (represented in a rule
conclusion). For simplicity, rules will be denoted as E → H or simpler as R.

Interestingness measures quantify the relationship between E and H, and
are usually defined as functions of four non-negative values that can be gathered
in a 2 × 2 contingency table (see Table 1). For a particular data set, a is the
number of objects that satisfy both the rule’s premise and its conclusion, b is
the number of learning examples for which only H is satisfied, etc. For instance,
the support of E → H rule is defined as sup(H,E) = a and its confidence as
conf(H,E) = a/(a+c). Note that a, b, c and d can also be regarded as frequencies
for estimating probabilities: e.g. P (E) = (a + c)/n or P (H) = (a + b)/n.

Table 1. An exemplary contingency table of the rule’s premise and conclusion

H ¬H Σ

E a c a + c

¬E b d b + d

Σ a + b c + d n
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Among many interestingness measures, we drew our attention to a particular
group of Bayesian confirmation measures (or simply confirmation measures).
All those measures are characterized by a feature called property of Bayesian
confirmation, which requires that an interestingness measure c(H,E) obtains:
positive values when P (H|E) > P (H); 0 when P (H|E) = P (H); and negative
values when P (H|E) < P (H).

Thus, confirmation measures are designed to depict simply through their
scale the confirmatory, neutral or disconfirmatory impact of the rule’s premise
on its conclusion. Confirmation, interpreted as an increase in the probability
of the conclusion H provided by the premise E, is a desirable situation. Let
us stress that basic interestingness measures such as support or confidence do
not possess the property of confirmation and thus, their utility is lower for the
descriptive perspective of knowledge discovery.

The difference of semantics and utility of confidence on one hand, and mea-
sure S(H,E) (defined below in Eq. 1) being a representative of confirmation
measures on the other hand, can be shown on the following illustrative example.
Consider the possible result of rolling a dice: 1, 2, 3, 4, 5, 6 points, and let the
conclusion H = “the result is divisible by 2”. Given two different potential rule
premises:

E1 = “the result is a number from a set {1, 2, 3}”,
E2 = “the result is a number from a set {2, 3, 4}”

we get, respectively: conf(H,E1) = 1/3, S(H,E1) = −1/3 and conf(H,E2) =
2/3, S(H,E2) = 1/3. This example clearly shows that the values of confirmation
measures have a more useful interpretation than confidence. In particular, in the
case of rule E1 → H, the premise actually disconfirms the conclusion as it
reduces the probability of conclusion H from 1/2 = P (H) to 1/3 = P (H|E1) =
conf(H,E1). This fact is expressed by a negative value of confirmation measure
S(H,E) (and in fact any confirmation measure), but it cannot be concluded by
observing only the value of confidence.

Note that the property of confirmation leaves plenty of space for defining
various, non-equivalent confirmation measures (for their review see [3,9]). To
guide the user towards the measures that reflect his expectations, researchers
proposed special properties of confirmation measures. These properties express
requirements for a measure behavior in certain situations. Taking into account
possession of desirable properties, we focus our further interest only on two
representatives of confirmation measures. The chosen measures S(H,E) [2] and
N(H,E) [19], both ranging from −1 (showing complete disconfirmation) to +1
(showing complete confirmation), are defined as:

S(H,E) = P (H|E) − P (H|¬E) =
a

a + c
− b

b + d
, (1)

N(H,E) = P (E|H) − P (E|¬H) =
a

a + b
− c

c + d
. (2)

Among properties that valuable confirmation measures should sat-
isfy let us mention property of monotonicity M [10] and property of
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maximality/minimality [8]. Monotonicity M favors measures that are non-
decreasing with respect to a and d, and non-increasing with respect to b and c.
It is intuitively clear that we would like higher values of measures for rules that
are supported by a greater number of positive examples (i.e. increase of a), and
exactly the opposite when the number of counter-examples grows (i.e. increase
of c). The property of maximality/minimality on the other hand, requires that
a measure obtains its maximal value if and only if b = c = 0, and its minimal
values if and only if a = d = 0. It is thus a property concentrated on the behav-
ior of measures in the extreme cases. It was verified in [9,10] that the measures
S(H,E) and N(H,E) are among few confirmation measures that satisfy both
monotonicity M and maximality/minimality.

We have focused our study on those two measures also because the inter-
pretation of their definitions is rather straightforward (contrary to some other
confirmation measures possessing M and maximality/minimality e.g. measure
c3(H,E) [9]1). Measure S(H,E) expresses how much more probable is H with E
rather than with ¬E. Following some medical examples, e.g. if some symptoms
occur then a certain disease is diagnosed, we could say that measure S(H,E)
assesses how much more probable becomes the disease when we know that the
symptoms occurred (instead of knowing that the symptoms did not occur). In
case of measure N(H,E), we would say that is expresses how much more prob-
able are some symptoms for a certain disease than for a case when the disease is
excluded (does not occur). Measures S(H,E) and N(H,E) are thus somewhat
complementary, as they look at rules from different perspectives: that of the
rule’s premise and that of the rule’s conclusion.

Summing up, taking into account possession of desirable properties and inter-
pretation of the measures’ definitions, this study focuses only on application of
confirmation measures S(H,E) and N(H,E).

4 Rule Induction with BRACID

BRACID is a specialized algorithm to learn rules from imbalanced data. For its
details see [16]. Here, we summarize its main characteristics:

– Hybrid representation of rules and instances: BRACID tries to create a
general description in regions where the examples form large disjuncts (using
rules) and instances to better approximate the more difficult decision bound-
aries. BRACID allows some (difficult) examples to remain not generalized to
rules. They can be treated as maximally specific rules.

1 c3(H,E) = A(H,E)Z(H,E) in case of confirmation and
c3(H,E) = −A(H,E)Z(H,E) in case of disconfirmation
where
Z(H,E) = 1 − P (¬H|E) ÷ P (¬H) in case of confirmation and
Z(H,E) = P (H|E) ÷ P (H) − 1 in case of disconfirmation;
A(H,E) = [P (E|H) − P (E)] ÷ [1 − P (E)] in case of confirmation and
A(H,E) = [P (H) − P (H|¬E)] ÷ [1 − P (H)] in case of disconfirmation.
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– Bottom-up rule induction: Unlike a top-down strategy typical for rule
induction, BRACID follows a bottom-up (or a specific-to-general) strategy
as a more appropriate for imbalanced data. It starts from the set of most
specific rules each covering a single learning example – which is called a seed
of the rule. Then, in every iteration each rule is generalized in the direction
of the nearest neighbour example from the same class, provided that it does
not decrease the classification abilities of the whole rule set. The procedure
is repeated until no rule in the set can be further generalized.

– Resignation from greedy, sequential covering technique: As this tech-
nique, popular in typical rule learning algorithms, increases the data frag-
mentation and is problematic for the minority examples, BRACID takes into
account all the learning examples when evaluating new rule candidate.

– Facing borderline minority examples: Types of learning examples are
evaluated and rules are generated differently depending on the type of the
seed example of a rule [17]. The minority examples belonging to the borderline
region are allowed to be generalized into more than one rule, to lessen the
dominance of the majority class in this region.

– Facing noisy examples from the majority class: Noisy majority exam-
ples, present inside the minority class regions, may hinder the induction of
general minority rules. BRACID has an embedded mechanism for detecting
and removing such examples from the learning data set.

– Less biased classification strategy: BRACID employs a classification
strategy based on nearest rules to diminish the domination of strong majority
rules during solving conflict situations while a new instance matches condition
parts of many rules.

Note that some mechanisms employed in this algorithm lead to the increase
of the number of rules (mainly a bottom-up rule induction and generation of
more rules in the borderline regions). However, the increased number of rules
for the minority class, coupled with an increased rule support, are beneficial
for final classification. The experimental evaluation of classification performance
of BRACID showed indeed that it significantly outperformed many standard
rule classifiers (induced by RIPPER, PART, C4.5rules, and others) as well as
other rule approaches specialized for class imbalance such as modifications of
rule search and classification strategies, or the best standard algorithms (e.g.,
PART) combined with SMOTE methods transforming class distributions [16].

5 Selecting Rules with Respect to Confirmation

We aim to select a subset of induced rules with respect to appropriate rule evalu-
ation measures. In [18] we have already postulated that it would be profitable to
find rules which cover diverse sets of examples referring to different sub-parts of
the class distribution. Focusing the expert’s attention on a subset of rules having
such characteristics should be particularly good for the minority class which is
often decomposed into many rare sub-concepts.
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Recall that several post-pruning techniques have already been proposed to
order rules or to reduce their number. However, as we discussed in [18], it may
not lead to diverse subsets of rules in BRACID, as e.g. high supports may charac-
terize many rules having similar syntax and covering similar subsets of learning
examples. Other post-pruning techniques considered in rule classifiers are focused
on optimizing the predictive performance of the rules rather than on improving
their descriptive properties [5].

Therefore, we follow a different inspiration, coming from using rules to rep-
resent patterns in subgroup discovery, where the task is to find subgroups of
individuals that are statistically “most interesting” (e.g. covering as many exam-
ples as possible and having the most unusual statistical characteristics [5]). In
our opinion these kinds of local, diverse patterns correspond to decomposition
of the minority class in sub-concepts. In this paper we generalize the algorithm
originally proposed in [6] to find rules describing subgroups.

Our approach to select a given number of diverse rules with respect to a
given rule evaluation measure is presented in Algorithm 1. It is run for each
class separately and takes as an input the set of all rules induced for this class
and their required number after selection – later on we discuss how to tune it.

Algorithm 1. Rule Filtering Algorithm
Input: Set of Rules SR for class P , required NUMBER of rules; rule evaluation ev;
Output: Prunned set of rules FR

Delete rules with too low confirmation from SR
FR ← ∅
for every example e ∈ P do

c(e) ← 1
end for
repeat

for each rule R ∈ SR do
calculate rule evaluation measure ev(R)

end for
Select Rmax = arg maxR(ev(R))
for each e covered by Rmax do

c(e) ← c(e) + 1
end for
Remove Rmax from SR
FR = FR ∪ Rmax

until size of FR = NUMBER

Firstly, we remove all rules with the non-positive value of a selected confir-
mation measure (except the option where rules are evaluated with the support
only). The key idea of the algorithm is to assign a weight c(e) to each learning
example. It is initialized with c(e) = 1 for all examples from the given class.
When rule R is selected, then weights for examples covered by this rule are
increased by adding 1. Then, while evaluating the next rule being a candidate
for selection, the example takes part in all calculation with the weight 1/c(e).
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For instance, the support of a rule is computed as a sum of 1/c(e) for all target
class examples covered by this rule.

This weighted coverage causes that in the subsequent iterations of the algo-
rithm, examples already covered by the selected rules contribute less to the eval-
uation of new rule. It promotes the rules referring to examples not yet covered
and directs the search toward diverse regions of the class.

In this study we will consider three different versions of the rule evaluation
ev(R)2 for selecting rules:

1. a standard rule support sup(R);
2. a product of support with a confirmation measure S: sup(R) × S(R);
3. a product sup(R) × N(R).

The choice of rule support sup(R) results from earlier experiments in [18] and
we want to consider it as a baseline. The choice of both confirmation measures
S and N has been justified in Sect. 3. We want to aggregate them with a rule
support to represent a trade off in a bi-criteria evaluation where the user is
interested in sufficiently strong patterns describing the classes.

6 Experimental Evaluation

In the experiments we will verify whether the proposed post-pruning strategies
select a limited number of BRACID rules having better values of interestingness
measures than in case of non-pruned rules.

As the evaluation criteria we choose the average values of confirmation mea-
sures S and N , rule support and rule confidence. We consider the last two mea-
sures due to their popularity in the previous rule filtering techniques and to
their easy interpretation for the users. These criteria represent descriptive prop-
erties of single rules with respect to their possible interpretability and they are
treated as primary criteria in our study. As a secondary criterion, we also eval-
uate the predictive ability of the rule set, which will be estimated by G-mean
and F-measure, both well suited for cases with imbalanced data sets. We use
this criterion to control whether pruning the set of rules does not dramatically
deteriorate the performance compared to all rules produced by the BRACID
algorithm. The predictive measures are evaluated in a repeated stratified 10-fold
cross validation procedure while rule evaluation measures are calculated for a
set of rules induced from the complete data set.

We analysed previous experiments from [16] and chose 11 data sets where
BRACID generated too many rules compared to other, standard rule induction
algorithms. They are characterized by different imbalance ratios (from 3% to
30%), data sizes (from 155 to 1728) and types of attributes (only nominal, only
numeric, or mixed). Although the imbalance ratios of some of these data sets

2 For simplicity we will further use a notation of a rule as R instead of (H,E) in
symbols of measures.
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Table 2. Basic characteristics of data sets

Data set #Examples Minority
class size

Imbalance
ratio [%]

#Attributes
(numeric)

Minority
class name

balance-scale 625 49 7.84 4(4) B

breast-cancer 286 85 29.72 9(0) rec-events

car 1728 69 3.99 6(0) good

cleveland 303 35 11.55 13(6) positive

cmc 1473 333 22.61 9(2) long-term

ecoli 336 35 10.42 7(7) imU

haberman 306 81 26.47 3(3) died

hepatitis 155 32 20.65 19(6) die

solar-flareF 1066 43 4.03 12(0) F

transfusion 748 178 23.80 4(4) yes

yeast-ME2 1484 51 3.44 8(8) ME2

are medium, all these data are also affected by different difficulty factors char-
acterizing the distribution of examples from the minority class. According to
experimental studies [17] these factors lead to difficulties while learning rules.

All these data sets come from the UCI repository. We analyzed them as binary
problems – the minority class vs. majority one (which may aggregate others),
as it is a typical view of class imbalances with focusing attention on improving
recognition of the class of special importance. The basic characteristics of these
data sets are presented in Table 2.

We checked that for all data sets (except cleveland and hepatitis), the
BRACID rule sets contained some rules with negative values of confirmation
measures. For instance, balance-scale contained 8, car 36, cmc 19, solar-flareF
18 and transfusion 14 such rules.

While using the algorithm for selecting rules we need to define a number
of required rules as the stopping condition. In general, this parameter should
represent the analyst’s expectations and his abilities to inspect the rules. Here we
recall our previous experiments [18], where we studied a wide range of values of
this parameter (up to 30%). The results showed that the threshold 10% often led
to rule sets having the good average rule support and comparable classification
performance as the original set of BRACID rules.

Yet another option is to select all the rules which are necessary to cover all
the learning examples in each class. We studied this coverage option in [18] and
observed that it usually produced higher classification prediction (with respect
to G-mean or sensitivity measure) than the percentage option. However, it also
selected more rules than the percentage option. As in this study we aim at
reducing the number of rules, we decided to consider the percentage option with
the parameter tuned to 10% of the original set of rules for each class3.

3 More detailed experimental results, including also the coverage option are provided
at the page http://www.cs.put.poznan.pl/iszczech/publications/nfmcp-2016.html.

http://www.cs.put.poznan.pl/iszczech/publications/nfmcp-2016.html
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Table 3. Characteristics of filtered rules for the minority class

Data set Pruning #Rules Avg.sup Avg.conf Avg.S Avg.N

balance-scale none 52 2.077 0.611 0.535 0.033

sup 5 6.000 0.266 0.192 0.056

sup ∗ S 5 2.000 0.875 0.799 0.037

sup ∗ N 5 4.600 0.317 0.243 0.065

breast-cancer none 77 3.364 0.711 0.420 0.030

sup 8 9.625 0.711 0.434 0.089

sup ∗ S 8 9.125 0.817 0.541 0.094

sup ∗ N 8 10.125 0.736 0.460 0.095

car none 54 1.444 0.972 0.933 0.021

sup 5 5.200 0.700 0.663 0.073

sup ∗ S 5 4.800 0.800 0.763 0.068

sup ∗ N 5 5.200 0.700 0.663 0.073

cleveland none 97 5.495 0.910 0.811 0.154

sup 10 8.300 0.864 0.773 0.232

sup ∗ S 10 7.300 0.966 0.873 0.207

sup ∗ N 10 8.600 0.864 0.774 0.240

cmc none 354 6.588 0.723 0.500 0.016

sup 35 14.914 0.666 0.447 0.037

sup ∗ S 35 12.686 0.782 0.562 0.033

sup ∗ N 35 18.571 0.652 0.434 0.046

ecoli none 46 10.413 0.872 0.796 0.291

sup 5 17.400 0.802 0.746 0.483

sup ∗ S 5 17.000 0.889 0.832 0.478

sup ∗ N 5 18.200 0.788 0.734 0.503

haberman none 122 6.049 0.716 0.464 0.062

sup 12 9.917 0.650 0.406 0.099

sup ∗ S 12 9.417 0.900 0.658 0.109

sup ∗ N 12 12.250 0.783 0.546 0.135

hepatitis none 66 7.424 0.986 0.820 0.231

sup 7 12.000 0.971 0.832 0.373

sup ∗ S 7 12.571 1.000 0.864 0.393

sup ∗ N 7 12.571 1.000 0.864 0.393

solar-flareF none 39 3.051 0.527 0.490 0.066

sup 4 6.750 0.362 0.327 0.142

sup ∗ S 4 4.500 0.790 0.753 0.102

sup ∗ N 4 7.750 0.382 0.348 0.164

transfusion none 161 6.360 0.673 0.440 0.028

sup 16 16.062 0.630 0.404 0.067

sup ∗ S 16 15.562 0.768 0.543 0.071

sup ∗ N 16 18.500 0.679 0.456 0.083

yeast-ME2 none 155 7.432 0.905 0.875 0.145

sup 16 9.375 0.915 0.886 0.183

sup ∗ S 16 8.875 0.944 0.915 0.174

sup ∗ N 16 10.688 0.904 0.877 0.209



Increasing the Interpretability of Rules Induced from Imbalanced Data 95

Table 4. Characteristics of filtered rules for the majority class

Data set Pruning #Rules Avg.sup Avg.conf Avg.S Avg.N

balance-scale none 306 12.889 0.996 0.076 0.021

sup 31 30.097 0.994 0.076 0.049

sup ∗ S 31 30.452 0.997 0.079 0.051

sup ∗ N 31 34.194 0.996 0.079 0.057

breast-cancer none 75 4.973 0.959 0.261 0.022

sup 8 11.750 0.925 0.234 0.050

sup ∗ S 8 12.500 0.994 0.304 0.061

sup ∗ N 8 13.375 0.994 0.305 0.065

car none 69 68.478 0.924 −0.036 0.017

sup 7 361.286 0.987 0.037 0.187

sup ∗ S 7 351.429 1.000 0.051 0.212

sup ∗ N 7 356.571 1.000 0.051 0.215

cleveland none 94 16.426 1.000 0.123 0.061

sup 9 53.444 1.000 0.142 0.199

sup ∗ S 9 53.444 1.000 0.142 0.199

sup ∗ N 9 54.111 1.000 0.142 0.202

cmc none 401 7.302 0.971 0.198 0.006

sup 40 21.725 0.975 0.204 0.017

sup ∗ S 40 21.500 0.987 0.217 0.018

sup ∗ N 40 22.975 0.986 0.216 0.019

ecoli none 47 64.128 0.990 0.141 0.210

sup 5 207.800 0.999 0.271 0.685

sup ∗ S 5 208.000 0.999 0.271 0.685

sup ∗ N 5 208.000 0.999 0.271 0.685

haberman none 60 6.383 0.977 0.247 0.027

sup 6 15.833 0.990 0.269 0.068

sup ∗ S 6 15.833 0.990 0.269 0.068

sup ∗ N 6 15.833 0.990 0.269 0.068

hepatitis none 52 18.615 1.000 0.241 0.151

sup 5 59.600 1.000 0.341 0.485

sup ∗ S 5 59.600 1.000 0.341 0.485

sup ∗ N 5 65.200 1.000 0.357 0.530

solar-flareF none 64 27.781 0.957 −0.002 0.012

sup 6 165.333 0.982 0.031 0.123

sup ∗ S 6 158.500 0.989 0.039 0.128

sup ∗ N 6 163.833 0.986 0.036 0.129

transfusion none 118 11.720 0.965 0.206 0.016

sup 12 51.500 0.932 0.183 0.064

sup ∗ S 12 41.750 0.959 0.209 0.060

sup ∗ N 12 51.750 0.947 0.200 0.073

yeast-ME2 none 613 204.979 1.000 0.041 0.143

sup 61 514.000 1.000 0.055 0.358

sup ∗ S 61 566.131 1.000 0.057 0.395

sup ∗ N 61 609.197 1.000 0.059 0.425
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In our study, we will examine three proposed strategies to select rules with
the rule evaluation ev(R) (see Sect. 5), defined as: (1) a standard rule support
sup(R); (2) a product sup(R) × S(R); and (3) a product sup(R) × N(R).

The rule characteristics with respect to considered criteria are given in
Tables 3 and 4, for the minority and majority class, respectively. The column
“pruning” corresponds to the selection strategy (note that results for using the
standard version of BRACID without pruning is presented in the first row for
each data set with an abbreviation “none”).

Additionally, we constructed rule classifiers with the three filtering strategies
and evaluated their classification performance. The values of G-mean and F-
measure are presented in Table 5.

Table 5. G-mean and F-measure for BRACID with all rules vs. filtered rules

G-mean F-measure

Data set BRACID sup sup ∗ S sup ∗ N BRACID sup sup ∗ S sup ∗ N

balance-scale 0.56 0.63 0.59 0.60 0.19 0.23 0.22 0.21

breast-cancer 0.56 0.59 0.61 0.61 0.44 0.48 0.49 0.49

car 0.88 0.60 0.61 0.64 0.73 0.41 0.42 0.44

cleveland 0.57 0.71 0.72 0.73 0.33 0.41 0.41 0.42

cmc 0.64 0.64 0.64 0.64 0.45 0.45 0.45 0.45

ecoli 0.83 0.85 0.85 0.84 0.60 0.55 0.54 0.55

haberman 0.58 0.54 0.54 0.54 0.44 0.44 0.43 0.43

hepatitis 0.75 0.76 0.75 0.74 0.60 0.59 0.57 0.54

solar-flareF 0.64 0.73 0.65 0.73 0.28 0.32 0.32 0.31

transfusion 0.64 0.63 0.63 0.65 0.47 0.47 0.46 0.48

yeast-ME2 0.71 0.72 0.73 0.77 0.42 0.40 0.40 0.38

7 Discussion of the Experiments

Each of the filtering strategies improves the interestingness measure used in the
given strategy. Note that all of them improve average rule supports for both
minority and majority classes. For some data sets these improvements are quite
high, for instance, for cmc data the average rule supports increase from 6.59 to
18.57 examples in the minority class, and from 7.30 to 22.98 examples in the
majority class. Similar high improvements also occur for car, solar flare, ecoli
and transfusion data.

The third strategy (based on sup(R) and N(R)) increases the average value
of measure N for all data sets in both classes—see e.g. hepatitis data, where
the improvements are from 0.23 to 0.39 for the minority class and from 0.15
to 0.53 for the majority class. Similar increases have been observed for other
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data. Similarly, the second strategy (based on sup(R) and S(R)) improves the
average values of the confirmation measure S – however, it is more visible for
the minority class than for the majority one, for instance changes from 0.46 to
0.65 in the minority class and from 0.25 to 0.27 in the majority one for haberman
data. Note that values of the confirmation measure S are always higher than N .

It is worth observing that the proposed strategies also improve rule evaluation
measures other than the ones used in each strategy. In particular, the third
strategy usually provides the highest values of the average support – in the
majority of data sets it is better than the first strategy that uses the support
only. Although it sometimes slightly improves the confirmation measure S, it
usually decreases the average confidence of rules. On the other hand, the second
strategy offers the highest increases of the rule confidence. It is more visible for
the minority class as the confidence of majority rules is already quite high.

What is also interesting, classification performance of such filtered rules does
not decrease too much compared to the original set of rules and for few data it
is even better – see results in Table 5.

The differences in results obtained by strategies using S and N measures
could be explained by analyzing their formulae (see Eqs. 1 and 2). They exploit
the contingency matrix in a different, although symmetric, way. Measure S is
more focused on considering a pair of numbers (a and c) decreased by (b and d),
while N aggregates a different combination. As BRACID tries to induce rules
with a very high confidence (which refers to the pair a and c), it is naturally
oriented on obtaining higher values of the S measure. On the other hand, as
measure N exploits complementary information to the one used in BRACID
rule induction process, it may better co-operate with the rule support in the
pruning strategy and may lead to better descriptive rule evaluation as well as
classification results.

8 Conclusions and Final Remarks

To sum up, our experiments have clearly demonstrated that all proposed filtering
strategies lead to selecting a much smaller number of BRACID induced rules,
which are characterized by better values of considered interestingness measures
than in case of non-pruned rules.

As future research, we plan to extend the experimental evaluation with other
rule classifiers specialized for class imbalances in order to show the generality of
our approach. We also intend to confront our pruning strategies with a baseline
approach involving a simple rule filtering. Furthermore, we plan to investigate a
more local way of calculating the interestingness measures, which will be based
on the analysis of neighbor examples to the given rule rather than on all data
elements as it is currently done.

Acknowledgement. The research was supported by NCN grant DEC-2013/11/B/
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13. Lavrač, N., Flach, P., Zupan, B.: Rule evaluation measures: a unifying view. In:
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