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Abstract. Speaker identification can be summarized as the classifica-
tion task that determines if two voices were spoken by the same person
or not. It is a thoroughly studied topic, since it has applications in many
fields. One is forensic phonetics, considered very hard since the expert
has to face ambient noise, very short recordings, interference, loss of
signal, and so on. For decades, these problems have been tackled by
experts using their listening abilities, and each of them might represent
a research area on its own. The use of semi-automatic techniques may
represent a modern alternative to the subjective evaluation of experts,
that may enforce fairness of the classification procedure. In a nutshell, we
use the differences in speech of a set of different voices to build a popu-
lation model, and the suspected person’s voice to build a speaker model.
The classification is carried out evaluating the similarity of a further
speech sample (the evidence) with respect to the models. Preliminary
evaluations shown that our approach reaches promising results.

1 Introduction

The speaker identification problem [11,15,16,35] can be cast as a classification
task aimed at determining if two voices were spoken by the same person or
not. In this broad sense, it has applications in many fields. In particular, it is a
crucial task in forensics, where there is a need to determine the speaker in phone
calls. This application domain adds further complexity to the task because calls
are typically short in duration with poor quality, ambient noise, interference,
loss of signal (in the case of mobile phones), and reduced bandwidth may yield
dramatic consequences. Traditionally, the problem has been tackled leveraging
abilities of human experts in evaluating the similarities between voices, or in
finding peculiarities and defects that allow one to identify the speaker. However,
this practice has its drawbacks, among which the limited capabilities of humans
in considering complex mixes of parameters and their subjectivity in evaluation.

Nowadays, the most popular methods for speaker identification are the
following: (1) listening based methods [24]; (2) spectrograms comparison
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techniques [10,19]; (3) phonetic parameters analysis [1,12,27,37]; (4) automatic
techniques [8,9]. In particular, the latter represents a modern alternative to
overcome the subjective evaluation of experts, since it relies on algorithmic pro-
cedures to predict whether two voices come from the same speaker or not. So, it
may ensure more fairness to the classification procedure.

The need of fairness is one of the main motivations for which this research
field is so primary for judiciary contexts. Forensics aims to be a fair scientific
support to the logical composition of crime events. In this case, such support
regards the phone-speaker identification.

From a technical point of view, we can distinguish between closed tests
(aimed at finding the speaker in a set of voices that surely includes a sample of
the speaker’s voice) and open tests (where this is not ensured). This paper deals
with the open case, proposing a technique that uses the differences in speech
of a set of different voices to build a population model, and the suspected per-
son’s voice to build a speaker model, and then carries out the classification by
evaluating the similarity among these models and the anonymous voice. While
a preliminary evaluation of this approach was presented in [34], this work aims
at a specific analysis of results with respect to the feature selection perspective.

The remainder of this work will present some related work and preprocessing
details in Sect. 2, then our approach follows in Sect. 3, after that experimental
evaluation is reported in Sect. 4. Forensic results must be understandable to the
Court, then Sect. 6 proposes a human understandable translation of the possible
classification outcome. Finally, Sect. 7 will conclude with some considerations
and future works.

2 Related Works, Background and Preprocessing

Different features may describe the sounds produced by the human vocal appara-
tus, depending on how it is classified. A first classification is between consonants
and vowels. Consonants are produced by forcing air passage in the restricted
vocal apparatus. They can be further divided in voiceless, if produced with-
out vibration of vocal cords, or voiced, otherwise. Vowels are produced when
the apparatus puts no obstacles, and the sound is determined by the position
of tongue and lips. Specifically, they are a periodic signal produced by three
factors: the periodic movement of vocal cords that produces the fundamental
frequency (f0 – related with the vocal tone of a person); the noise produced by
the phonation; the modification of the sound caused by the sound expansion
in the mouth. Such components make up the frequency spectrum. It is char-
acterized by a sequence of peaks that change depending on the type of sound
pronounced, a complex result of the cooperation of tongue, teeth, palate, lips,
and so on. The frequency spectrum interacts with the harmonic structure of
speech (integer multiples of the fundamental frequency). The harmonics near to
the resonance frequency are called formants.

A spectrogram is a plot that represents the components of the sound in three
dimensions: time (on the x axis), frequency (on the y axis) and intensity (repre-
sented using several color scales, here intensities of gray are exploited. The inner
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values are usually represented in Hertz. The lower frequency is known as first
formant f1, followed by the successive peaks named f2, f3, and so on. Generally,
vowels are captured by f1 and f2, since the first formant indicates the vertical
tongue movement (i.e., up or down), and the second indicates the horizontal
tongue movement (i.e., back or forth). Furthermore, f2 and f3 may provide use-
ful hints for the lips rounding. Formant frequencies are widely accepted features
for use in forensic phonetics [18]. Several works are based on the study of f0 only
(e.g., [23]). Unfortunately, to date we cannot assert that voice is like a signature.
So, in order to identify the speaker one needs as much information as possible,
and it is questionable the fundamental frequency, alone, can be enough.

In order to overcome the uncertainty of the results using the fundamental
frequency, [3] investigated the use of the first three formant frequencies and
associated bandwidth. They are modeled using a multivariate Gaussian Mix-
ture Model, in order to represent the vocal tract characteristics of the speaker,
accounting for within-speaker variability. The results are expressed as a like-
lihood ratio, and highlight that since formants describe the cavity resonance,
they are better suited for application in forensic speaker verification than Mel-
Frequency Cepstral Coefficients (MFCC).

In [2], the authors focused on feature selection, investigating several ways
to extract Cepstral Coefficients using the two major technologies for mobile
communication (GSM and CDMA). Their approach uses the likelihood ratio
to quantify the strength of speech evidence. The experiment highlighted the
goodness of the MFCC, in spite of the outcomes obtained in [3]. They argue
that such results are justified by the removal of the relevant information about
the glottal shaping and lip radiation components due to the coding in mobile
phone networks (both GSM and CDMA), that should make formant features
useless.

In speaker verification task (i.e., the process of verifying the claimed identity
of a speaker based on the speech signal), [5,25] create speakers model by mea-
suring the fundamental frequency and formant frequencies of vowels (a, e, i, o),
and estimating their distributions via Gaussian kernel density estimator. The
long-term formant distributions are plotted and examined, accepting or reject-
ing the speaker. However, the authors pointed out that other information can
be extracted from the shape of distributions. Likelihood Ratio [26] is exploited,
like in this work, to evaluate the results in [5].

Our approach is text-independent, i.e. it tries to verify the identity with-
out constraint on the speech content. We consider only a real-valued, limited,
and continuous signal, i.e., a function that represents the proceeding of a given
physical quantity (in our case, sound waves and their spectrum) over time. If a
signal has period T (i.e., x(t + T ) = x(t)), then the function is known when its
proceeding in a range of length T is known. The inverse of T is the fundamental
frequency F = 1

T , measured in Hertz if time is expressed in seconds.
Conversely, formants are obtained from the signal spectrum. They are the res-

onance frequency measured where there is an energy peak in the sound produced
by the air passage in the vocal apparatus, keeping into account absorptions due
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to the sound reflection. The fundamental frequency and the first three formants
are the features of our speaker model.

The preprocessing step is carried out by a human operator that considers, for
each word, only emphasized vowels, that are less affected by co-articulation and
have a more constant signal than others. According to the literature (e.g., [5]),
vowel U is not considered in this study. The human operator uses Praat1, a
software system able to show the graphical trend of the signal energy, allowing
one to select the vowel to be analysed and to estimate the power spectrum.
He selects the fundamental frequency f0 using the CEPSTRUM method (the
result of the Fourier transformation applied to the signal spectrum measured
in Decibel), and the formants f1, f2 and f3 (i.e., the first three peaks of the
frequency spectrum captured via Fast Fourier Transform). Subsequent formants
cannot be detected, due to the poor signal quality.

Figure 1 shows the measurement of the formants of the first vowel E in the
Italian word gente (this particular GUI reports peaks of the spectrum, then the
fundamental frequency f0 is not reported in this Figure).

Fig. 1. Formants recognition using Praat.

3 Statistical Method Applied to the Recognition
of the Talker - SMART

Suppose we have a distance measure. Then, we can describe the (possibly) large
variability of voices among several speakers, as well as the small variability of
1 www.fon.hum.uva.nl/praat/.

www.fon.hum.uva.nl/praat/
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several dialogues of the same speaker. Such a variability can be represented
estimating a distribution of the distances, making a model of the population
diversities, together with a distribution of the diversities of the speech produced
by a speaker in several contexts. Unfortunately, often there are not enough tracks
of the same speaker to evaluate such distributions. So, a method to artificially
populate a dataset related to the single speaker is needed. Bootstrap [28] re-
samples the dataset randomly picking whole records and repeating them. It
cannot do otherwise, since the formants are related by complex relationships
that impose to keep them together [30].

Missing Data. Often the recordings have poor quality, making hard the detec-
tion of some formants. We need to manage missing data. In order to face this
necessity we adopted some policies. If the fundamental frequency is missing, the
average of the known values is assigned to this cell; if a formant is missing, the cell
is filled by its average conditioned by the values of the other formants, obtained
via multiple regression; if the missing values are too many in a dimension (i.e. a
feature), such dimension is removed completely, since estimations over few val-
ues are not reliable; it is noteworthy that first and second formants hardly are
lacking. However, it might happen that there are no values for a vowel. In such
a case the subject is pulled out from the dataset.

Speaker Representation. Given a generic speaker k, a generic vowel will be
represented as Vk ∈ R

N×4, where N is the number of that vowel instances,
whereas 4 stands for the fundamental frequency and the three formants. Con-
sidering that we measured only the instances of vowels A, E, I and O, we have
Vkj ∈ R

Nkj×4 such that j ∈ {A,E, I,O}, and Nkj is the total amount of instances
of the vowel j, speaker k. A speaker will be represented averaging the values over
the columns, obtaining, for each Vkj a row vector V̄kj . Then:

S̄k = [V̄kA, V̄kE , V̄kI , V̄kO] ∈ R
1×16

where 16 is the total amount of vowels formants.
For the sake of completeness, we can give a fast look to an example of real

data. Fixed the speaker k and the instance i0 of the vowel A, we have:

VkA(i0) = [f00, f01, f02, f03]

an example record of which might be:

VkA(i0) = [129, 635, 1288, 2325]

Mahalanobis Distance and Statistical Distribution. Several measures
have been investigated in [6,7,17,29]. Summing up the results, these works shown
the goodness of the Mahalanobis distance, that considers the position of the
observations, it weights each observation with a coefficient extracted from the
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empirical covariance matrix. Such a matrix can be computed over the observed
values, it represents the relationship between the features and shows how much
a feature changes if related to the other ones.

A covariance matrix Σ ∈ R16×16 is computed over population matrix S,
obtained chaining down the subjects in the population as shown in the following.
In particular, recalling that each vowel of a speaker k is Vkj ∈ R

Nkj×4 with
j ∈ {A,E, I,O}, we expect different values for each Nkj , from which we can
compute:

Mk = maxj={A,E,I,O}(Nkj)

The gap of each matrix that does not have Mk rows is filled. The instances are
duplicated in the same order starting from the first, until the Mk number of rows
is reached. The result, for each vowel, is a new matrix V ′

kj . The representation
of the speaker’s data Sk will be:

Sk = [V ′
kA, V ′

kE , V ′
kI , V

′
kO] ∈ R

Mk×16

where 16 is the total amount of vowels formants. Putting in a single matrix the
set of available speakers, we obtain S.

At this point, given two subjects represented as S̄i and S̄j , computed aver-
aging column values of the respective matrices, the Mahalanobis distance d(·, ·)
is:

d(S̄i, S̄j) =
√

(S̄i − S̄j)Σ−1(S̄i − S̄j)T

Now, suppose we have a pair of voices and we want to evaluate the possibil-
ity that they are produced by the same speaker or not. From a Bayesian point
of view, we can introduce two statistical hypotheses to encode these possibili-
ties. Say H0 is the hypothesis that the two voices come from the same person
(accusatory hypothesis):

P (H0|d) =
P (H0)P (d|H0)

nf

and H1 is the hypothesis that the two voices do not come from the same person
(defensive hypothesis):

P (H1|d) =
P (H1)P (d|H1)

nf

where nf is a normalization factor, which can be overlooked. We can combine
them, obtaining:

P (H0|d)
P (H1|d)

=
P (H0)
P (H1)

P (d|H0)
P (d|H1)

nf

nf
=

(
P (H0)
P (H1)

)
· lr(d)

lr(d) =
P (d|H0)
P (d|H1)

=
pB(d)
pW (d)

where lr(d) denotes the likelihood ratio over d, pB(d) is the distribution of dis-
tance between the suspected speaker and the population (a.k.a. inter-distance),
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whereas pW (d) is the distribution of distance taken within different instances of
the suspected speaker (a.k.a. intra-distance). Note that pB(d) and pW (d) are real
valued functions of d. The strength of evidence is computed in d(Si, Sj) where
Si is the evidence speaker and Sj is the suspected speaker. Then, in our case,
d is:

lr
(
d(Si, Sj)

)
=

P
(
d(Si, Sj)|H0

)

P
(
d(Si, Sj)|H1

) =
pB

(
d(Si, Sj)

)

pW
(
d(Si, Sj)

)

Anyhow, the computation of pW (d) is not so direct, since often the sample
is poor (just a few minutes of recording for the suspected person’s voice). We
need to refill the gap in order to have a number of simulated suspected-person’s
recordings comparable to the size of the population dataset. Then we recur
to the bootstrap [28] procedure. It builds simulated registration using a random
movement of the suspected person’s data, generating as many suspected-person’s
samples as the subjects of the population. The Mahalanobis distance is computed
for each pair of samples.

Estimating Speakers Distributions. In order to estimate pB/W (d) we exploit
a semi-parametric kernel estimator method. Direct Plug-in Kernel [36] (as used
in [7,17]), needs to estimate its smoothing parameter h, using lsdpi(·), shown in
Algorithm 1. The semi-parametric kernel [4] is:

p̃B/W (d) =
1
N

N∑
j=1

1
h

H

(
d − dj

h

)

where p̃B/W (d) denotes the model density of pB or pW , N is the size of the
population, dj is the distance between Sk and Sj , h is the smoothing parameter
chosen via l -stage Direct Plug-in Kernel, H(·) is the kernel function (Gaussian
in our case).

Such parameters ensure the satisfaction of:

H(·) ≥ 0

and ∫
H(·)du = 1

in this way the first formula will satisfy p̃B/W (d) ≥ 0 and
∫

p̃B/W (d)dx = 1, as
required for a function to be a probability density function.

4 Evaluation

We considered a dataset of Italian-male phone-call recordings, represented as
described in Sect. 2 and made up as follows. K = {k1, · · · , ki, · · · , km} is the set
of pairs of same-speaker’s recordings (in this experimental setting, recording 50
speakers twice). P is the set of single entries (they have not a paired recordings,
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Algorithm 1. lsdpi(·) – l -stage Direct Plug-in.
Input: Number of stages l, kernel function K(·) of order 2, a data sample X.
Output: Approximation of ψc.

σ̂ ←√V ar(X)
c ← r + 2l

ψc ← (−1)
c
2 c!

(2σ̂)c+1( c
2 )!

√
π

c ← c − 1
while c ≥ 1 do

g ←
[

−2Kc0
μ2(K)ψc+2n

] 1
2c+5

ψc ← n−1
n
∑

i=1

n
∑

j=1

Kr
g (Xi − Xj)

c ← c − 2
end while
return ψc

so they can be used only as negative examples – in this experimental setting, we
evaluated 350 single entries). So, we have just K positive test, while the number
of negative tests will be:

nt(K,P ) =
P (P − 1)

2
+ 2KP +

(
4
K(K − 1)

2

)

In this experimental setting, nt(50, 350) = 100.975. Our evaluation has a two-
fold objective: on the one hand, understanding the performance, on the other,
finding the set of formants that best represent a voice signature.

Table 1. Feature-subset performances

Tested features EER AUC

f0, f1, f2, f3 0.07692 0.98620

f1, f2, f3 0.07692 0.98108

f0, f2, f3 0.05406 0.99295

f0, f1, f3 0.07658 0.98587

f0, f1, f2 0.07182 0.98295

f0, f1 0.11538 0.96489

f0, f2 0.08800 0.97306

f0, f3 0.03980 0.98952

f1, f2 0.09615 0.97104

f1, f3 0.11022 0.96991

f2, f3 0.07692 0.97328
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Fig. 2. Diagram of the feature-subset performances

The Likelihood-Ratio lr(·), reported in Sect. 3, expresses how many times
more likely we can observe distance d between unknown and evidence voices
under the accusatory hypothesis than the defensive hypothesis. It has been used
to build the graph in Fig. 2, that shows Detection Error Curve for each subset
of features. Table 1 shows the Equal Error Rate (EER) and the Area Under the
ROC Curve (AUC) for each subset. The former value is useful to balance the
misclassification types, whereas the latter is used to identify the subset that
makes less mistakes. The best EER in Table 1 is the curve nearest to zero in
Fig. 2, i.e. the subset {f0, f3}, whereas the best AUC in Table 1 is the curve that
goes faster to zero in both dimensions in Fig. 2, i.e. {f0, f2, f3}.

Since both include f0 and f3, we should comment the role of f2. Examining
the subset {f0, f2, f3} in Fig. 2 we can see that the false alarm rate (the worst
justice mistake) goes to zero faster than others. Looking at the values in Table 1,
the EER of {f0, f2, f3} is greater than the EER of {f0, f3} just a little bit with
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respect the trend of growth of the EER in general. Furthermore, the subset
{f0, f2, f3} gives the maximum value of AUC, denoting the smallest error area.

5 SMART: A Particular Case of a Biometric System
in the Bayesian Framework

In Sect. 3 we have described step-by-step how the system SMART works. Any-
way, it can be seen as a particular case of a more general Biometric system used
to compute the strength of evidence in terms of Likelihood Ratio in the Bayesian
Framework. Let us give a look to Fig. 3. Say E1 is the crime-scene evidence, and
E0 is the suspected-person’s one. For the sake of clarity, example of such pairs
could be DNAs, fingerprints, Photos (one from a video-surveillance system that
recorded the crime, and the other from suspected-person’s); audio tracks, as in
our case; and so on.

Whatever is the evidence type, the objective is to establish the strength of
evidence that E0 and E1 belong to the same person versus the hypothesis that
they come from different persons. This objective can be framed in the Bayesian
framework as introduced in Sect. 3, in which the Likelihood Ratio is the strength-
of-evidence measure.

Fig. 3. Biometric Bayesian framework

In order to estimate the Likelihood Ratio all we need is a “black box” able to
compute the similarity “score”, between two evidences and a database contain-
ing both pairs of evidences coming from same persons and pairs coming from
different ones. Note that in SMART such black box is simply the Mahalanobis
distance between a pair of speakers and the score that can be obtained by the
inverse of the distance. Going on, the black box Likelihood Ratio computation
works in two steps:
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– the training phase, in which two sets of scores are computed from pairs
of evidences coming from same (i.e. SS1) and different (i.e. SS2) source(s)
contained in the database. The sets of scores SS1 and SS2 are used to infer
the score distributions given the accusatory (i.e. H1) and the defense (i.e. H2)
hypothesis respectively. In SMART, the set SS1 is obtained using the boot-
strap, whereas the score distributions are computed using a semi-parametric
kernel estimator method. After that SMART estimates the Likelihood-Ratio
function (i.e. lr(·), or lr(1/d) as defined in Sect. 3). For the computation of
SS2 there are two different approaches: suspect anchored and suspect inde-
pendent. The former computes SS2 as the set of scores between the suspected-
person’s evidence and each other evidence belonging to the database. The lat-
ter approach computes SS2 as the set of scores between all possible (different)
pairs of evidences stored in the database. SMART is a suspect-anchored app-
roach;

– the test phase, in which the Biometric-system box is used to compute the
score between E0 and E1. The resulting score value is exploited to obtain the
final Likelihood Ratio.

6 Presenting Likelihood Ratio to the Court

Noteworthy, the bootstrap makes our approach non-deterministic, for which the
evaluation between speakers (S1, S2) is different from (S2, S1). There is no theo-
retical reason to apply the bootstrap to the suspected speaker instead of anony-
mous one; given that the same classification is expected applying the approach
in both directions. Anyway, from a practical point of view, suspected-person’s
data are often more rich than anonymous, since when the suspects arise, there
is enough time to organize the activities in order to record as much dialogues
as possible. This is the reason for which the only reliable classification is carried
out applying the bootstrap to the suspected-person’s data.

We recall that the value of Likelihood Ratio lr(·) quantifies the strength of the
evidence. This values must be presented to the Court, then the European Network
of Forensic Science Institutes (a.k.a. ENFSI) provided detailed guidelines for this
purpose2.

In order to cope with the great amount of different applications of lr(·),
its logarithm is commonly used, known as Log-Likelihood Ratio. Given two
speakers Si and Sj , and a distance d(Si, Sj) on which lr(d) is computed, the
Log-Likelihood Ratio function llr(d) is:

llr(d) = Log10
(
lr(d)

)

Tables 2 and 3 show the ranges used to evaluate this proposal. For the sake
of completeness, corresponding Log-Likelihood Ratio is reported, given that it
2 With the financial support of the Prevention and Fight against Crime Program of

the European Union European Commission - Directorate - General Justice, Free-
dom and Security. A project funded by the EU ISEC 2010. Agreement number:
HOME/2010/ISEC/MO/4000001759.
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Table 2. lr(·) values supporting the prosecution hypothesis

lr(·) llr(·) Typical translation

>10000 >4 Very strong evidence to support

1000 to 10000 3 to 4 Strong evidence to support

100 to 1000 2 to 3 Moderately strong evidence to support

10 to 100 1 to 2 Moderately evidence to support

1 to 10 0 to 1 Limited evidence to support

Table 3. lr(·) values supporting the defense hypothesis

lr(·) llr(·) Typical translation

<0.0001 <−4 Very strong evidence to support

0.001 to 0.0001 −3 to −4 Strong evidence to support

0.01 to 0.001 −2 to −3 Moderately strong evidence to support

0.1 to 0.01 −1 to −2 Moderately evidence to support

1 to 0.1 0 to −1 Limited evidence to support

is easy to use and widely adopted. Since the numeric form of a lr(·) may not
be readily interpretable to the Court, the last column reports translations into
verbal scale, that prosecutor (Table 2) and defender (Table 3) lawyers can use to
present the classification result to the Court.

7 Conclusion

This work presented an approach to Speaker Identification that models the
speaker via fundamental frequency and formant features. Distances among these
descriptions have been computed using the Mahalanobis distance, in order to
model the typical distance in speech among several speakers. Such a model has
been obtained estimating the distributions of the differences. In particular, both
the set of different speakers and the set of tracks recorded from the same speaker
have been modeled, in order to obtain comparable models useful to decide if a
novel speaker description is nearest to the unknown speaker model or it is nearest
to the population model.

The interpretation of SMART as a general Biometric System, working in the
Bayesian framework, provides novel insights for future developments and tests.
For instance, one could try to assess how the performance change varying score
functions, after that the investigation could follow with the comparison of the
outcomes using suspect anchored or suspect independent approach. Moreover, we
recall that in forensics it is mandatory to have a system with good discrimination
ability (generally verified by AUC and/or EER), but it is mandatory also to have
a reliable Likelihood Ratio, making fundamental an investigation about the use
of Cost Likelihood Ratio.
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Other future works will be focused on clustering speaker description via unsu-
pervised techniques, in order to understand whether formant features are enough
to obtain clusters representing italian dialects. Moreover in forensics the discrim-
ination of the model measured by AUC and EER does not suffice to measure
the reliability of the computed Likelihood Ratio. For example it is mandatory
that the system does not give high positive/negative Log-Likelihood Ratio for
the wrong hypothesis. To this aim other error functions, such as Cost-Likelihood
Ratio error function, will be investigated in future works.
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