
Mining Keystroke Timing Pattern for User
Authentication

Saket Maheshwary(B) and Vikram Pudi

Center for Data Engineering and Kohli Center on Intelligent Systems,
International Institute of Information Technology-Hyderabad, Hyderabad, India

saket.maheshwary@research.iiit.ac.in, vikram@iiit.ac.in

Abstract. In this paper we investigate the problem of user authenti-
cation based on keystroke timing pattern. We propose a simple, robust
and non parameterized nearest neighbor regression based feature rank-
ing algorithm for anomaly detection. Our approach successfully handle
drawbacks like outlier detection, scale variation and prevents overfitting.
Apart from using existing keystroke timing features from the dataset like
dwell time and flight time, other features namely bigram time and inver-
sion ratio time are engineered as well. The efficiency and effectiveness of
our method is demonstrated through extensive comparisons with other
state-of-the-art techniques using CMU keystroke dynamics benchmark
dataset and has shown great results in terms of average equal error rate
(EER) than other proposed techniques. We achieved an average equal
error rate of 0.051 for the user authentication task.

Keywords: Anomaly detection · Feature ranking · Nearest neighbor ·
Regression · Prediction · Security

1 Introduction

In this era where everyone wants secure, faster, reliable and easy to use means
of communication, there are many instances where user information such as per-
sonal details and passwords get compromised thus posing a threat to system
security. In order to tackle the challenges posed on the system security biomet-
rics [8] prove to be a vital asset. Biometric systems are divided into two classes
namely physiology based ones and the ones based on behavior. Physiology based
approach allows authentication via use of retina, voice and fingerprint touch. In
contrast, behavior based approach includes keystroke dynamics on keyboard or
touch screens and mouse click patterns.

In this paper we propose a learning model to deal with keystroke dynamics – a
behavior based unique timing patterns in an individuals typing rhythm which is
used as a protective measure. These rhythms and timing patterns of tapping
are idiosyncratic [1] the same way as handwriting or signatures are, due to
their similar governing neurophysiological mechanisms. Back in the 19th century,
telegraph operators could recognize each other based on ones specific tapping
c© Springer International Publishing AG 2017
A. Appice et al. (Eds.): NFMCP 2016, LNAI 10312, pp. 213–227, 2017.
DOI: 10.1007/978-3-319-61461-8 14

214 S. Maheshwary and V. Pudi

style [15]. Based on the analysis of the keystroke timing patterns, it is possible to
differentiate between actual user and an intruder. By keystroke dynamics we refer
to any feature related to the keys that a user presses such as key down time, key
up time, flight time etc. In this paper, we concentrate on classifying users based
on static text such as user password. The mechanism of keystroke dynamics can
be integrated easily into existing computer systems as it does not require any
additional hardware like sensors thus making it a cost effective and user friendly
technique for authenticating users with high accuracy. It is appropriate to use
keystroke dynamics for user authentication as studies [21,22] have shown that
users have unique typing patterns and style. Moreover [21,22] has proven some
interesting results in their research work as well. First, [21,22] proved is that the
users present significantly dissimilar typing patterns. Second they have shown
details about the relationship between users occurrence of sequence of events and
their typing style and ability. Then [21,22] explained sequence of key up and key
down events on the actual set of keys. Then [21,22] have also shown that there is
no correlation between users typing skills and the sequence of events. Hence all
these factors make it difficult for intruders to match with the actual users typing
patterns. Keystroke dynamics is concerned with users timing details of typing
data and hence various features could be generated from these timing patterns.
In this paper we are using timing features only on static text.

The rest of the paper is organized as follows. In Sect. 2 we discuss related
work and our contribution. In Sect. 3 we discuss the details of how manual fea-
tures are engineered from the dataset and in Sect. 4 we discuss the concept of
optimal fitting line. In Sect. 5 we present our proposed algorithm for feature
ranking which is divided into two sub sections where first subsection discusses
proposed approach on how feature ranking is done using nearest neighbor regres-
sion and second subsection discusses the neural network we used on the ranked
or weighted feature space for anomaly detection. In Sect. 6 we experimentally
evaluate our algorithm and show the results. Finally, we conclude our study and
identify future work in Sect. 7.

2 Related Work

Classifying users based on keystroke timing patterns has been in limelight
when [6] first investigated whether users could be distinguished by the way they
type on keyboard. Researchers have been studying the user typing patterns and
behavior for identification. Then [7] investigated the possibility of using key-
stroke timings as to whether typists could be identified by analyzing keystroke
times as they type long passages of text. Later [17] extracted keystroke features
using the mean and variance of digraphs and trigraphs. A detailed survey [18]
on the keystroke dynamics literature using the Euclidean distance metric with
Bayesian like classifiers. Initially [3] and later [9] proposed to use the relative
order of duration times for different n-graphs to extract keystroke features that
was found to be more robust to the intra-class variations than absolute timing.
Also [9] published great results for text-free keystroke dynamics identification

Mining Keystroke Timing Pattern for User Authentication 215

where they merge relative and absolute timing information on features. Then [23]
proposed a new distance metric by combining Mahalanobis and Manhattan dis-
tance metrics. Many machine learning techniques have been proposed as well
for keystroke dynamics as an authentication system. Keystroke dynamics can
be applied with variety of machine learning algorithms like Decision Trees, Sup-
port Vector Machines, Neural Networks, Nearest Neighbor Algorithms [5] and
Ensemble Algorithms [19] among others.

One problem faced by researchers working on these type of problems is that
majority of the researchers are preparing their own dataset by collecting data
via different techniques and the performance criteria is not uniform as well
hence comparison on similar grounds among the proposed algorithms becomes
a difficult task. To address this issue, keystroke dynamics benchmark dataset
is publicly provided with performance values of popular keystroke dynamics
algorithms [12] to provide a standard universal experimental platform. They
collected and published a keystroke dynamics benchmark dataset containing 51
subjects with 400 keystroke timing patterns collected for each subject. Besides
this they also evaluated fourteen available keystroke dynamics algorithms on
this dataset, including Neural Networks, KNNs, Outlier Elimination, SVMs etc.
Various distance metrics including Euclidean distance, Manhattan distance and
Mahalanobis distance were used. This keystroke timing pattern dataset along
with the evaluation criteria and performance values stated provides a benchmark
to compare the progresses of new proposed keystroke timing pattern algorithms
on same grounds.

2.1 Our Contribution

The performance study of the fourteen existing keystroke dynamics algorithms
implemented by [12] indicated that the top performers are the classifiers using
scaled Manhattan distance and the nearest neighbor classifier. In this paper we
present a new nearest neighbor regression based feature ranking algorithm for
anomaly detection that assigns weight to the feature vector.

Nowadays neural network based models are frequently used in the field of
computer vision, speech signal processing, text representation have now been
adopted in the fields of security as well. These neural network based techniques
have multiple advantages over previous approaches both in task specific perfor-
mance and scalability. Motivated by the superior results obtained by the neural
network models we decided to use it as a classifier for anomaly detection. We
used a simple 3 layer neural network classifier for anomaly detection by giving
the weighted feature space generated by our model as input to neural network.
Our proposed approach has the following desirable features:

– Parameterless: We first design our nearest neighbor based regression algo-
rithm and then show how the parameter can be automatically set, thereby
resulting in a parameterless algorithm. This removes the burden from the user
of having to set parameter values – a process that typically involves repeated
trial-and-error for every application domain and dataset.

216 S. Maheshwary and V. Pudi

– Accurate: Our experimental study in Sect. 6 shows that our algorithm pro-
vides more accurate estimates than its competitors. We compare our approach
with 14 other algorithm using the same evaluation criteria for objective com-
parison.

– Robust/Outlier Resilient: Another problem with the statistical
approaches is outlier sensitivity. Outliers (extreme cases) can seriously bias
the results by pulling or pushing the regression curve in a particular direc-
tion, leading to biased regression coefficients. Often, excluding just a single
extreme case can yield a completely different set. The output of our algorithm
for a particular input record is dependent only on its nearest neighbors hence
insensitive to far-away outliers.

– Simple: The design of our algorithm is simple, as it is based on the nearest
neighbor regression. This makes it easy to implement, maintain, embed and
modify as the situation demands.

Apart from our proposed algorithm we have engineered two new features namely
Bigram time and Inversion Ratio time as discussed in Sect. 3.

3 Feature Engineering

What are good timing features that classify a user correctly? This is still an open
research problem. Though keystroke up, keystroke down and latency timing are
the commonly used features, in this paper we have generated two new features
from the given dataset besides the existing features. The dataset [12] provides
three types of timing information namely the hold time, key down-key down
time and key up-key down time. Besides these three existing features, two new
features namely Bigram time and Inversion ratio time are engineered. Following
are the details of five categories of timing features which is used to generate 51
features using keystroke timing dataset [12]. Figure 1 illustrates various timing
features where up arrow indicates key press and down arrow indicates key release.

– Hold Time also known as dwell time, is the duration of time for which the
key is held down i.e. the amount of time between pressing and releasing a
single key. In Fig. 1, Hi represents the hold time.

– Down-Down Time key down key down time is the time from when key1
was pressed to when key2 was pressed. In Fig. 1, the times DDi depicts the
down time.

– Up-Down Time key up key down time is the time from when key1 was
released to when key2 was pressed. This time can be negative as well. In
Fig. 1, the times UDi depicts the up down time.

– Bigram Time is the combined time taken by two adjacent keystrokes i.e.
the time from pressing down of key1 to releasing to key2.

– Inversion Ratio Time it is the timing ratio of hold time of key1 and key2
where key1 and key2 are the two continuous keystrokes. In Fig. 1, Hi+1/Hi is
the inversion ratio time.

Mining Keystroke Timing Pattern for User Authentication 217

Fig. 1. Illustration of generated keystroke timing features where A, B, C, D are the keys

4 Optimal Fitting Line

Regression algorithms are used for predicting (time series data, forecasting),
testing hypothesis, investigating relationship between variables etc. Here in this
section we discuss how the optimal fitting line attempts to predict the relation-
ship between one variable from one or more other variables by fitting a linear
equation to observed data.

In this paper we assume that to construct the line of best fit, with increase
or decrease in each independent variable value the dependent variable changes
smoothly. Thus this helps us in achieving almost linear relationship between
dependent and independent variables thus allowing us to optimally fit a line onto
the points in a small neighborhood. The line which minimizes the mean squared
error is referred to as optimal fitting line. A low value of error indicates that the
line is optimally fitted to the neighborhood and has captured the linearity of the
locality. Let the k points have values {(x1, y1),, (xk, yk)} in dimension x and y
and let the variable to be predicted be y. Let the equation of line be of the form
y = ax + b. Hence, dependent variable will take the value axi + b corresponding
to tuple i. Let the error in prediction for tuple i be denoted as ei and is equal
to |y − axi − b|. Hence the local mean squared error (LME) is denoted as,

LME(a, b) =
∑k

i=1 ei
k

=
∑k

i=1(y − axi − b)2

k
(1)

By minimizing LME where a and b are the parameters denoted by,

218 S. Maheshwary and V. Pudi

a =

∑k
j=1 yj

∑k
i=1 xi − k

∑k
i=1 xiyi

∑k
j=1 xj

∑k
i=1 xi − k

∑k
i=1 xi

2
(2)

b =
∑k

i=1 yi − a
∑k

i=1 xi

k
(3)

Thus, we get the equation of the optimal fitting line. Now after constructing
the line of best fit, we are able to predict the dependent values for test tuple.
Then we compare the actual and the predicted values of dependent variable
to calculate least mean error for the given test tuple. Now based on the mean
error, we are assigning weights to our feature vector in inverse proportion which
is discussed in Sect. 5.

5 Our Proposed Approach

5.1 Support for Categorical Attributes

In this section we discuss how our proposed approach deals with categorical
data. The keystroke timing dataset that we used for evaluating our approach
has categorical attributes. One of the serious limitations of existing regression
algorithms is their support only for numeric attributes. So in order to tackle this
problem we are using a similarity measure which helps us to quantify the relation
between two classes using some real valued function. The section below explains
the similarity function that we have used in this paper. Most of real life datasets
have mixed attributes (set of both numeric and categorical type attributes) and
hence to overcome this situation we are using cosine similarity measure. The dot
product for two vectors A = (a1, a2, ...) and B = (b1, b2, ...) where an and bn are
the components of the vector and n is the dimension of the vector space. Hence
the dot product between A and B is formulated as A·B = a1b1+a2b2+...+anbn.

The cosine similarity between two vectors is a measure that calculates the
cosine of the angle between them. This metric is a measurement of orientation
and not magnitude, it can be seen as a comparison between timing vectors
on a normalized space because we are not taking into consideration only the
magnitude of each timing vector, but the angle between them. What we have
to do to build the cosine similarity equation is to solve the equation of the dot
product for the cos θ. Thus, the similarity values obtained using cosine similarity
gives us a clear estimate of how similar the categorical values are with respect
to the class labels.

cos θ =
A ·B

||A|| ||B|| (4)

5.2 Proposed Algorithm

In this section we discuss our proposed nearest neighbor regression algorithm in
detail. Our algorithm successfully eliminates nearest neighbor algorithm prob-
lems like choice of number of neighbors k by choosing the optimal k value cor-
responding to minimum error thus making our algorithm to be non parametric

Mining Keystroke Timing Pattern for User Authentication 219

in nature. Our algorithm uses a unique weighing criteria (Algorithm2) to assign
weights to the feature vector hence enabling us to determine the relative impor-
tance of dimensions. The notation used for the algorithm is as follows: The
training data has d dimensions with feature variables (A1, A2,, Ad) and the
value of the feature variable for the jth feature variable Aj corresponding to the
ith tuple can be accessed as data[i][j]. The value of the dependent variable of the
training tuple corresponding to id value i can be accessed as y[i]. The value of
the dependent variable is calculated using the cosine similarity and k represents
the number of nearest neighbors. For a given test tuple T the value of its k near-
est neighbors is determined using an iterative procedure (line 4 of Algorithm1)
hence making our algorithm to be non parametric in nature. The range for value
k is from low to high where low is set to value 5 (sufficiently small value) an high
is set to size of training data data/2 (sufficiently large value). Now we describe
our algorithm using the pseudo code below shown in Algorithms 1 and 2.

We iterate for k in range 5 to size of training data set/2 and calculate the
k nearest neighbors for test data. The k evaluated neighbors are stored in list
ClosestNeighbors (line 6 of Algorithm 1). Now Algorithm 2 constructs an optimal
fitting line Linei for each dimension of our feature vector (the dataset used by
us has 51 features) by fitting a linear equation to observed ClosestNeighbors list,
in the plane of feature variable and the dependent variable. The regression line
is constructed as discussed in Sect. 4. Using the parameters from the equation of
the line a and b (Eqs. 2 and 3) we predict the dependent value of test data (line
4 of Algorithm 2). Based on the predicted and actual values of the dependent
variable squared error Ei is calculated (line 5 of Algorithm 2).

Algorithm 1
1: procedure KNN based Dimensional Regression
2: MinimumError ← ∞, ErrorforK ← ∞
3: OutputWeights ← 1 // All d dimensions have same weight initially
4: for each k= low to high do
5: ErrorforK ← 0
6: ClosestNeighbors ← GetNeighbors(data, k, T)
7: DimensionalRegressor(T) // Algorithm 2
8: if MinimumError > Errorfork then
9: MinimumError ← Errorfork

10: OutputWeight ← WT

11: end if
12: end for
13: return OutputWeight
14: end procedure

220 S. Maheshwary and V. Pudi

Algorithm 2
1: procedure Dimensional Regression
2: for each i = 1 to d do // d is the number of dimensions
3: Linei ← ConstructLine(ClosestNeighbors, i) // As discussed in Sect. 4
4: PredictedTestV ali ← Ti ∗ a + b
5: Ei ← (PredictedTestV ali − ActualTestV ali)

2

6: end for
7: if ∀ i Ei is equal then
8: WT ← 1
9: else

10: for each i = 1 to d do
11: weighti ← max(Ei)/Ei

12: WT ← weighti
13: end for
14: end if

15: Errorfork ←
d∑

j=1

Ej

16: return WT

17: end procedure

It would be appropriate to state that a lower error value in predicting the
line indicates that the constructed regression line is optimal in nature and fits
the neighborhood of test data. Hence we conclude that the value of dependent
variable predicted via the line of best fit is approximately correct and thus a
higher weight should be assigned for a more optimal line or we can say a line
with lower squared error. This intuition is captured by assigning weights in
inverse proportion to the error in prediction for this dimension, hence a feature
with high error value is assigned lower weight and the feature with lower error
value is assigned higher weight. The squared error in prediction of neighbors (line
15 of Algorithm 2) is computed and stored in Errorfork. A lower value of the
squared error indicates that the weight values chosen using the nearest neighbors
are appropriate. We then select the value of the parameter k for which the
calculated error is minimum and hence assigns the corresponding weight vector
WT (line 8–10 of Algorithm 1). On this weighted feature vector we evaluate the
anomaly score via a scaled Manhattan distance metric as discussed in the section
below. The approach demonstrated in Algorithms 1 and 2 is a completely novel
idea for dimension wise assigning weights in inverse proportion to error.

5.3 Neural Network for Anomaly Detection

After the weights have been assigned to the feature vector via our proposed
algorithm, we calculate the anomaly scores as described by [12] for evaluating our
model. For calculating anomaly score we are using a simple feed-forward neural
network with a input layer with the size of our feature vectors and one hidden
layer of 200 dimensions. After experimenting with different number of neurons in
the hidden layer, we found out that results are best reported at 200 neurons. All

Mining Keystroke Timing Pattern for User Authentication 221

the layers are fully connected. The higher size of hidden layer introduces sparsity
in our network and helps in capturing the inter-feature relations which might be
present. Following subsections explain other building blocks of neural network.
We later discuss ablation studies for each in Table 2. We define the loss by the
negative log-likelihood function which maximized the probability that sample
gets classified as user or impostor. Learning is done through back-propagation
of the losses through our network [10] (Fig. 2).

Fig. 2. Illustration of neural network architecture. Here W1 and W2 represents the
weight matrices which are our parameters to be learnt. H is the hidden layers of size
200. I and O are input and output layers respectively.

5.4 Dropout

We use dropout [20] after our hidden layer which act as a regularizer and restricts
over-fitting. During our training stage we randomly delete the nodes of each
hidden layer with a certain probability p for each input sample. These neurons
do not participate in the back-propagation learning. In testing time, the weights
are correspondingly divided by 1−p. Using dropout, forces the rest of the neurons
in the hidden layers to learn more robust features and depend lesser on other
specific neurons. In [20] more details are provided which show that using dropout
can be an economic alternative to ensembling various network architectures.

5.5 Batch Normalization

After every fully-connected layer, we use batch normalization [11] before the
respective activation functions. Using batch normalization we monitored the

222 S. Maheshwary and V. Pudi

gap between training and testing loss over epochs narrowed down. This led to
better generalization.

5.6 Leaky ReLU

Non-linear function Rectified linear unit (ReLU) is preferred to sigmoid or
hyperbolic-tan because it simplifies backpropagation, makes learning faster while
also avoiding saturation. However for large gradients, ReLU [16] can cause par-
ticular neurons to die and not participate in learning at-all. LeakyReLU’s have a
small positive gradient f(z) = max(0.01x, x) which prevent this dying of a neu-
ron. We applied Leaky ReLU as our activation function after the fully connected
layers.

5.7 Adam

In recent times, several algorithms (with implemented software tools) are avail-
able for training a deep neural network. While stochastic gradient descent (SGD)
for quite some time have been the top choice, there has been study which indicate
some of the obvious flaws [14] in the vanilla implementation. There have been
some attempts to automatically tune its learning rate thus resulting in much
faster convergence. For anomaly detection we use Adam [13] instead of SGD
which required a lot of fine-tuning with the learning rate and over 500 epochs
to converge.

5.8 Inputs to Neural Network

The dataset consists of keystroke timing information of 51 users, where each user
is made to type .tie5Roanl as password. All the 51 users enrolled for this data
collection task typed the same password in 8 different sessions with 50 repetitions
per session thus making each user to type 400 times in total (Table 1).

Table 1. Hyperparameters used in our neural network

Name Specification

Dropout 0.3

LeakyReLU 0.01

Adam 0.001

Epochs 200

6 Experimental Setup

In this section we discuss the experimental setup, evaluation criteria used and
the performance of our proposed model. We evaluated our approach on the CMU

Mining Keystroke Timing Pattern for User Authentication 223

keystroke dynamics benchmark dataset [12] where 51 users were designated for
this task. We demonstrate the effectiveness of our model with the average equal
error rate (EER). We compare the results with various proposed anomaly detec-
tors/classifiers which have been used in literature. We used the python library
Keras [4] for building our neural network architecture. All our experiments were
carried out on a Pentium 4th generation machine with 4 GB memory. For experi-
ments, we took the same 200 initial timing feature vector per-user as before. 10%
of training data was kept aside as validation data for hyperparameter tuning.

6.1 Training

We frame keystroke dynamics based authentication as a one-class classification
problem. For authentication, neural network learns one model per user, rejects
anomalies to the learned model as impostors, and accepts inliers as the genuine
user. Consider a scenario in which a users long-time password has been com-
promised by an impostor. We assume the user to be practiced in typing their
own password, while the impostor is unfamiliar with it (e.g., typing it for the
first time). We measure how well each of our detectors is able to discriminate
between the impostors typing and the genuine users typing in this scenario. We
start by designating one of our 51 subjects as the genuine user, and the rest as
impostors. We train an anomaly detector by extracting 200 initial timing feature
vectors for a genuine user from the dataset. We repeat this process, designating
each of the other subjects as the genuine user in turn thus creating models equal
to number of distinct subjects or users. Unlike most existing approaches, which
only use actual users data at training time, our model leverage data from back-
ground users to enhance the models discriminative capability thus improving
the prediction performance. We randomly took 5 samples from each background
users as negative samples. Note that these 5 random samples were carefully cho-
sen such that no impostor samples that were used in testing were shown during
the time of training. For this problem setting, we use the evaluation criteria as
mentioned in [12] in order to have comparison on same grounds.

6.2 Testing

We take last 200 passwords typed by the genuine user from the dataset. These
200 timing feature vectors acts as test data. Scores generated in this step acts
as the user scores. Next, we take initial 5 passwords typed by each of the 50
impostors (i.e., all subjects other than the genuine user) from the dataset which
acts as the impostor scores. Thus we form a test dataset of 200 positive samples
and 250 negative samples per user which we provide to our neural network and
record the output predictions. If s denotes the predictions, the corresponding
anomaly score was calculated as 1−s [12]. Intuitively, if s is close to 1.0, the test
vector is similar to the training vectors, and with s close to 0.0, it is dissimilar
(Fig. 3).

224 S. Maheshwary and V. Pudi

Fig. 3. Shows ROC curve for different users with their equal error rate (EER) value
where user number corresponds to the user as labeled in CMU dataset.

6.3 Empirical Evaluation for User Authentication

Based on the genuine user scores and impostor scores generated in the steps
above, we generate the ROC curve for the actual (genuine) user. Then we calcu-
late the equal error rate from the ROC curve where the equal error rate corre-
sponds to that point on the curve where the false positive rate (false-alarm) and
false negative rate (miss) are equal. We repeat the above four steps, in total of
51 times where every time each of the subsequent user is taken as the genuine
user from the 51 distinct users in turn, and calculate the equal-error rate for each
of the genuine users. Finally we compute the mean of all 51 equal-error rates
which gives us the performance value for all users, and the standard deviation
which will give us the measure of its variance across subjects. In order to ensure
comparison on same grounds we have used exactly the same evaluation criteria
as stated by [12] on our proposed approach. The train-test data split was also
kept the same.

Table 2. Ablation study of our neural network model showcasing the increase of per-
formance for each additional component we use. Note that for this test we used tan-h
activation when we opt not to use LeakyReLU. All components are added indepen-
dently on the base model. Accuracy is based on the multiclass user recognition problem.

Model architecture EER Time taken (min)

Base model 0.0701 1.54

With Dropout 0.0674 3.18

With LReLU 0.0623 4.53

With Batch-Norm 0.0602 5.12

Our 3 layer model 0.051 5.81

Mining Keystroke Timing Pattern for User Authentication 225

7 Results

Table 3 shows the comparison of 16 other proposed keystroke timing algorithms
with our proposed approach. Comparison is shown with 16 other algorithms
which used the same dataset and the same evaluation criteria thus assuring
an objective comparison. Our model is able to achieve an average equal error
rate (EER) of 0.051 and with a standard deviation (stddev) of 0.042 across
51 subjects. The average equal error rate (EER) shown in the Table 3 are the
fractional rates between 0.0 and 1.0, not the percentages. Clearly from Table 3,
our model performs superior than other proposed techniques in comparison.

Table 3. Comparison of 16 different keystroke timing pattern algorithms that uses the
same CMU keystroke timing dataset and evaluation criteria in terms of average equal
error rate (EER) (with standard deviation shown in brackets).

Model/algorithm Average EER (stddev) Source

Our proposed algorithm
(with 2 new engineered features)

0.051(0.040)

Our proposed algorithm
(without 2 new engineered features)

0.054(0.042)

Median vector proximity 0.080(0.055) [2]

Manhattan-Mahalanobis
(no outlier)

0.084(0.056) [23]

Manhattan-Mahalanobis (outlier) 0.087(0.060) [23]

Manhattan (scaled) 0.0962(0.0694) [12]

Nearest neighbor (Mahalanobis) 0.0996(0.0642) [12]

Outlier count (z-score) 0.1022(0.0767) [12]

SVM (one-class) 0.1025(0.0650) [12]

Mahalanobis 0.1101(0.0645) [12]

Manhattan (filter) 0.1360(0.0828) [12]

Neural network (auto-assoc) 0.1614(0.0797) [12]

Euclidean 0.1706(0.0952) [12]

Fuzzy logic 0.2213(0.1051) [12]

k Means 0.3722(0.1391) [12]

Neural network (Standard) 0.8283(0.1483) [12]

8 Conclusion and Future Work

In this paper we investigate the problem of authenticating users based on key-
stroke timing pattern. We engineered new features namely bigram time and
inversion ratio time apart from the features already given in the CMU keystroke
timing dataset. Besides engineering new features we also proposed a simple and

226 S. Maheshwary and V. Pudi

robust nearest neighbor based regression algorithm. We evaluated our results
and compared it against 14 other algorithms that used the same dataset and
evaluation criteria thus providing performance comparison on equal grounds.
Although simple, it proved to be effective as it outperformed competing algo-
rithms as shown in Table 3.

Future work involves extending our work for soft keys or touch pad keys and
in addition to timing pattern features we can use users pressure patterns as well
in order to authenticate users. We are planning to experiment with different curve
fitting techniques as well. We plan on extending our models to other available
datasets on this domain. We would also like to investigate if transfer learning
can help with user authentication and identification for large pool of users when
trained from a limited dataset.

Acknowledgement. This work was supported by http://metabolomics.iiit.ac.in/ and
we would like to thank them for their support.

References

1. Dvorak, A., Merrick, N., Dealey, W., Ford, G.: Typewriting behavior (1936)
2. Al-Jarrah, M.M.: An anomaly detector for keystroke dynamics based on medians

vector proximity. J. Emerg. Trends Comput. Inf. Sci. 3(6), 988–993 (2012)
3. Bergadano, F., Gunetti, D., Picardi, C.: User authentication through keystroke

dynamics. ACM Trans. Inf. Syst. Secur. (TISSEC) 5(4), 367–397 (2002)
4. Chollet, F.: Keras (2015). https://github.com/fchollet/keras
5. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. The-

ory 13(1), 21–27 (1967)
6. Forsen, G.E., Nelson, M.R., Staron Jr., R.J.: Personal attributes authentication

techniques. Technical report, DTIC Document (1977)
7. Gaines, R.S., Lisowski, W., Press, S.J., Shapiro, N.: Authentication by keystroke

timing: some preliminary results. Technical report, DTIC Document (1980)
8. Giot, R., Hemery, B., Rosenberger, C.: Low cost and usable multimodal biometric

system based on keystroke dynamics and 2D face recognition. In: ICPR (2010)
9. Gunetti, D., Picardi, C.: Keystroke analysis of free text. ACM Trans. Inf. Syst.

Secur. (TISSEC) 8(3), 312–347 (2005)
10. Hecht-Nielsen, R.: Theory of the backpropagation neural network. In: International

Joint Conference on Neural Networks, IJCNN, vol. 1, pp. 593–605 (1989)
11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by

reducing internal covariate shift. In: ICML (2015)
12. Killourhy, K.S., Maxion, R.A.: Comparing anomaly-detection algorithms for key-

stroke dynamics. In: DSN (2009)
13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). CoRR

abs/1412.6980
14. Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y.: On optimiza-

tion methods for deep learning. In: ICML (2011)
15. Leggett, J., Williams, G.: Verifying identity via keystroke characterstics. Int. J.

Man Mach. Stud. 28(1), 67–76 (1988)
16. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-

work acoustic models (2013)

http://metabolomics.iiit.ac.in/
https://github.com/fchollet/keras

Mining Keystroke Timing Pattern for User Authentication 227

17. Monrose, F., Rubin, A.D.: Keystroke dynamics as a biometric for authentication.
Future Gener. Comput. Syst. 16(4), 351–359 (2000)

18. Peacock, A., Ke, X., Wilkerson, M.: Typing patterns: a key to user identification.
IEEE Secur. Priv. 2(5), 40–47 (2004)

19. Schapire, R.E.: A brief introduction to boosting. In: IJCAI (1999)
20. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:

Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

21. Syed, Z., Banerjee, S., Cheng, Q., Cukic, B.: Effects of user habituation in keystroke
dynamics on password security policy. In: HASE (2011)

22. Syed, Z., Banerjee, S., Cukic, B.: Leveraging variations in event sequences in
keystroke-dynamics authentication systems. In: HASE (2014)

23. Zhong, Y., Deng, Y., Jain, A.K.: Keystroke dynamics for user authentication. In:
CVPR (2012)

	Mining Keystroke Timing Pattern for User Authentication
	1 Introduction
	2 Related Work
	2.1 Our Contribution

	3 Feature Engineering
	4 Optimal Fitting Line
	5 Our Proposed Approach
	5.1 Support for Categorical Attributes
	5.2 Proposed Algorithm
	5.3 Neural Network for Anomaly Detection
	5.4 Dropout
	5.5 Batch Normalization
	5.6 Leaky ReLU
	5.7 Adam
	5.8 Inputs to Neural Network

	6 Experimental Setup
	6.1 Training
	6.2 Testing
	6.3 Empirical Evaluation for User Authentication

	7 Results
	8 Conclusion and Future Work
	References

