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Abstract. The climate changes have attracted always interest because
they may have great impact on the life on Earth and living beings. Com-
putational solutions may be useful both for the prediction of the cli-
mate changes and for their characterization, perhaps in association with
other phenomena. Due to the cyclic and seasonal nature of many climate
processes, studying their repeatability may be relevant and, in many
cases, determinant. In this paper, we investigate the task of determin-
ing changes of the weather conditions, which are periodically repeated
over time and space. We introduce the spatio-temporal patterns of peri-
odic changes and propose a computational solution to discover them.
These patterns allows us to represent spatial regions with same periodic
changes. The method works on a grid-based data representation and
relies on a time-windows analysis model to detect periodic changes in
the grid cells. Then, the cells with same changes are selected to form a
spatial region of interest. The usefulness of the method is demonstrated
on a real-world dataset collecting weather conditions.

1 Introduction

Climatology is a discipline essentially focused on the study of the weather con-
ditions and it is one of the scientific fields characterized by a large variety of
data-intensive and dynamic processes. Studying the evolution of the weather
becomes thus determinant because might support the understanding of other
processes, such as the industrialization and atmospheric changes. In this sense,
a valid contribution is represented from the application of data-driven techniques
[5], which opens to the possibility to analyze climate observations in order to
unearth empirical knowledge without demanding a-priori hypothesis, as the stan-
dard statistics method do instead. The proliferation of the technologies able to
record and store massive meteorological data has definitely confirmed the use-
fulness of the data analysis algorithms for several problems in Climatology.

One of the most scientifically and technologically challenging problems is
building and refining predictive models with changes and events of the weather
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conditions. Although in data mining we can find a long list of works on event
and change detection [3], the identification of changes in climate data is challeng-
ing for several reasons. First, climate data tend to be noisy, therefore we could
have difficulty in distinguishing, with an high degree of certainty, the difference
between significant changes and spurious outliers. Second, changes that persist
over time and that cover relatively long intervals of time (e.g., days) can be orig-
inated from instantaneous deviations (e.g., rainfall extreme events which span
few hours), which we could erroneously assess as meaningless. Third, the global
models provide reliable indications for world-wide climate, while they could be
no longer appropriate capture features of the regional weather conditions, where
instead local models could be effective [17].

In Climatology, many phenomena are cyclic in nature and can exhibit repet-
itive behaviors. Likewise, changes in weather conditions can be periodic because
they can be repeated at regular intervals of time. For instance, seasonal changes
reflect the occurrence of the expected variations of the weather conditions and
can recur up to one year of distance. The periodicity becomes thus a good indi-
cator of the repeatability and meaningfulness of the changes since the variations
which regularly recur may be considered more interesting than those episodic.

This paper focuses on the analysis of time-series describing the weather con-
ditions recorded in geographically distributed locations and, in particular, intro-
duces the problem to discover spatio-temporal patterns able to relate periodic
changes of the weather conditions with the spatial regions in which the changes
occur. The geographic information of the weather conditions is used to deter-
mine the spatial component of the patterns, while the periodicity associated
with the changes denotes the temporal component of the patterns. In this work,
we propose a data mining framework which analyzes weather conditions data
partitioned over a gridded data space. It proceeds in two subsequent steps, first
detects periodic changes at the level of individual cells of the grid and then it
finds sequential patterns of the periodic changes only over the cells in which
the changes are present. The use of a technique of data partitioning is to not
under-estimate the periodicity of local changes, which instead we could experi-
ence working on (global) statistical regularities. More precisely, in the first step,
we combine a time windows-based analysis model with a frequent pattern mining
method, in order to search for periodic changes in each grid cell. Changes are
detected as significant variations of the frequency of the patterns mined from
two different time-windows of data. The rationale in using the frequency is that
it denotes regularity, therefore frequent patterns can provide empirical evidence
about changes really happened. Building time-windows allows us to summarize
the changes occurring at the level of time instants and model them at a higher
level of temporal granularity, that is, intervals of time. Not all the changes are
considered, but only those which are repeated over time-windows in several grid
cells. The second step operates on the detected periodic changes and uses a
sequential pattern mining method, in order to find changes common to different
cells. Sequential patterns allows us to find changes at a higher level of spatial
granularity based on aggregations of cells.
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The paper is organized as follows. In Sect. 2, we report necessary notions,
while the method is described in Sect. 3. An application to the real-world dataset
is described in Sect. 4. Then, we discuss the related literature (Sect. 5). Finally,
conclusions close the paper (Sect. 6).

2 Basics and Definitions

Before formally describing the proposed method, we report basic notions and
definitions necessary for the paper.

Let {t1 . . . tn} be a sequence of discrete time-points. For each time-point ti, we
have the values Ai ∈ �d of the weather parameters measured in geographically
distributed areal units. A time-window τ is a sequence of consecutive time-points
{ti, . . . , tj} (t1 ≤ ti, tj ≤ tn), which we denote as [ti; tj ]. The width w of a time-
window is the number of time-points in τ , i.e. w = j − i + 1. We assume that all
the time-windows have the same width w. Two time-windows τ and τ ′ defined
as τ = [ti; ti+w−1] and τ ′ = [ti+w; ti+2w−1] are consecutive.

Let τ = [ti; ti+w−1], τ ′ = [ti+w; ti+2w−1], τ ′′ = [tj ; tj+w−1], and τ ′′′ =
[tj+w; tj+2w−1] be time-windows, two pairs of consecutive time-windows (τ, τ ′)
and (τ ′′, τ ′′′) are δ-separated if (j +w)− (i+w) ≤ δ (δ > 0, δ ≥ w). Two pairs of
consecutive time-windows (τ, τ ′) and (τ ′′, τ ′′′) are chronologically ordered if j > i.
In the remaining of the paper, we use the notation τhk

to refer to a time-window
and the notation (τh1 , τh2) to indicate a pair of consecutive time-windows.

The following notions are crucial for this work. A pattern P is a set of pairs,
each pair is composed by a weather parameter and its value. It can have at
most d pairs, which is the number of weather parameters. We say that P occurs
at a time-point ti if all pairs of P occur at the same time-point ti. A pattern
P is characterized by a statistical parameter, namely the support (denoted as
supτhk

(P )), which denotes the relative frequency of P in the time-window τhk
. It

is computed as the number of the time-points of τhk
in which P occurs divided

by the total number of time-points of τhk
. When the support exceeds a minimum

user-defined threshold minSUP , P is frequent (FP) in the time-window τhk
.

Definition 1. Emerging Pattern (EP)
Let (τh1 , τh2) be a pair of consecutive time-windows; P be a frequent pattern

in the time-windows τh1 and τh2 ; supτh1
(P ) and supτh2

(P ) be the support of the
pattern P in τh1 and τh2 respectively, P is an emerging pattern in (τh1 , τh2) iff
supτh1

(P )

supτh2
(P ) ≥ minGR ∨ supτh2

(P )

supτh1
(P ) ≥ minGR

where, minGR (>1) is a user-defined minimum threshold.
The ratio supτh1

(P )/supτh2
(P ) (supτh2

(P )/supτh1
(P )) is denoted with

GRτh1 ,τh2
(P ) (GRτh2 ,τh1

(P )) and it is called growth-rate of P from τh1 to
τh2 (from τh2 to τh1). When GRτh1 ,τh2

(P ) exceeds minGR, the support of P
decreases from τh1 to τh2 by a factor equal to the ratio supτh1

(P )/supτh2
(P ),

while when GRτh2 ,τh1
(P ) exceeds minGR, the support of P increases by a factor

equal to supτh2
(P )/supτh1

(P ).
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The concept of emerging pattern is not novel in the literature [4]. In its
classical formulation, it refers to the values of support of a pattern discovered
on two different classes of data, while, in this work, we extend that notion to
represent the differences between the data collected in two intervals of time,
and therefore, we refer to the values of support of a pattern which has been
discovered on two time-windows.

Definition 2. Periodic Change (PC)
Let T : 〈(τi1 , τi2), . . . , (τm1 , τm2)〉 be a sequence of chronologically ordered

pairs of time-windows; P be an emerging pattern between the time-windows τh1

and τh2 ,∀h ∈ {i, . . . , m}; 〈GRτi1 ,τi2
, . . . , GRτm1 ,τm2

〉 be the values of growth-
rate of P in the pairs 〈(τi1 , τi2), . . . , (τm1 , τm2)〉 respectively; ΘP : � → Ψ be
a function which maps GRτh1 ,τh2

(P ) to a nominal value ψτh1 ,τh2
∈ Ψ,∀h ∈

{i, . . . , m}, P is a periodic change iff:

1. |T | ≥ minREP
2. (τh1 , τh2) and (τk1 , τk2) are δ-separated ∀h ∈ {i, . . . , m − 1}, k= h+1 and

there is no pair (τl1 , τl2), h < l, s.t. (τh1 , τh2) and (τl1 , τl2) are δ-separated
3. ψ = ψτi1 ,τi2

= . . . = ψτm1 ,τm2

where, minREP is a minimum user-defined threshold. The function Θ is used to
handle the numerical information associated to the growth-rate and allows us to
crisply distinguish the magnitude of different growth-rate values. A PC is a fre-
quent pattern whose support increases (decreases) at least minREP times with
an order of magnitude greater than minGR. Each change (increase/decrease)
occurs within δ time-points and it is represented by the nominal value ψ ∈ Ψ .
We denote a periodic change PC with the notation 〈P, T, ψ〉. An example of
periodic change is reported here. Consider the pattern

P : air temperature = [301; 307], pressure = [95; 100], relative humidity = [60; 70]

where supapr 2011(P ) = supapr 2012(P ) = supapr 2013(P ) = 0.25, supmay 2011(P )
= supmay 2012(P ) = supmay 2013(P ) = 0.5, supnov 2011(P ) = supnov 2012(P ) =
supnov 2013(P ) = 0.5, supdec 2011(P ) = supdec 2012(P ) = supdec 2013(P ) = 0.1.
Here, the values of the support of the pattern P increase through the pairs of the
windows [apr 2011,may 2011], [apr 2012,may 2012] and [apr 2013,may 2013]
respectively, indeed the values of growth-rate GRapr 2011,may 2011(P ),
GRapr 2012,may 2012(P ), GRapr 2013,may 2013(P ) are equal to 2 (0.5/0.25). While,
the values of the support of the pattern P decrease through the pairs of
the windows [nov 2011, dec 2011], [nov 2012, dec 2012] and [nov 2013, dec 2013]
and the values of growth-rate GRdec 2011,nov 2011(P ), GRdec 2012,nov 2012(P ),
GRdec 2013,nov 2013(P ) are equal to 5. By supposing minGR = 1.5, the pat-
tern P is considered emerging over the windows [apr 2011,may 2011], [nov 2011,
dec 2011], [apr 2012,may 2012], [nov 2012, dec 2012], [apr 2013,may 2013] and
[nov 2013, dec 2013]. However, in the windows [nov 2011, dec 2011], [nov 2012,
dec 2012] and [apr 2013,may 2013] its variation of support is different from the
variation detected in the windows [apr 2011,may 2011], [apr 2012,may 2012],
[apr 2013,may 2013] both in terms of quantity (5 against 2) and in terms of growth
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(decrease against increase). This means that we could build different periodic
changes from P . Indeed, by supposing a function Θ which maps the values of
growth-rate 2 and 5 to the nominal values weak change and strong change, the
values of minREP and δ equal 2 and 365 days respectively, we can generate two
PCs having the same conjunction of weather parameters.

Definition 3. Spatio-temporal Periodic Change (SPC)
Let T : 〈(τi1 , τi2), . . . , (τu1 , τu2)〉 be a sequence of chronologically ordered pairs

of time-windows, let Π : {PC1 : 〈P, T1, ψ〉, . . . , PCv : 〈P, Tv, ψ〉} be a set of v
periodic changes detected in v different geographic areal units, P is a spatio-
temporal periodic change iff

1. |Π| ≥ minUNITS
2. ∀h ∈ {i, . . . , u},∀k = 1, . . . , v(τh1 , τh2) ∈ Tk

3. ∀h ∈ {i, . . . , u − 1}(τh1 , τh2) and (τk1 , τk2) are δ-separated, k = h + 1

Intuitively, a SPC represents a periodic variation (quantified by ψ) of the
frequency of weather parameters conjunction P . Such a variation is observed in
v different geographic areal units.

3 The Method

In this section we propose a method to mine SPCs from the measurements
of the weather parameters A1, ...Ad recorded by sensors equally displaced over
a geographic area on the sequence of time-points {t1 . . . tn}. The method is
structured in two steps performed consecutively (see Fig. 1). Initially, we build
a gridded data space over the input geographic area in order to define the areal
units as cells of equal size {c11, . . . , cα,β}. This means that the cells comprise
the same number of sensors. The first step works on the values of the weather
parameters of each cell crs and mines PCs in accordance with the Definition 2.
The second step inputs the PCs detected on all the cells, it selects the PCs which
are present in at least minUNITS cells and then mines SPCs in accordance with
the Definition 3. The details of these two steps are reported in the following.

3.1 Detection of Periodic Changes

To detect PCs, we adapt the algorithm proposed in [11] originally designed for
data represented in relational logic, to the case of multi-dimensional time-series.
In particular, it works on the succession 〈(τ11 , τ12), . . . , (τh1 , τh2), . . . , (τz1 , τz2)〉
of pairs of time-windows obtained from {t1, . . . , tn} (see Sect. 2). Each time-
window τuv

(except the first and last one) is present in two consecutive pairs, so,
given two pairs (τh1 , τh2) and (τ(h+1)1 , τ(h+1)2), we have that τuv

= τh2 = τ(h+1)1 .
This is done to capture the changes of support of the patterns from τh1 to τuv

and from τuv
to τ(h+1)2 . The algorithm performs three main procedures.
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1. Discovery of frequent patterns for each time-window. Frequent patterns
are discovered from each time-window with the technique of evaluation-
generation of candidate patterns used in [11], which exploits the monotonicity
property of the support. Obviously, the decision of using that specific tech-
nique does not exclude the possibility of considering alternative solutions
based on evaluation-generation of patterns, which do not imply modifications
neither to our proposal nor to the set of frequent patterns resulting from the
current procedure.

2. Extraction of the EPs from the frequent patterns discovered on τh1 against
the frequent patterns discovered from τh2 in accordance with the Definition 1.
To efficiently perform this operation, we can act on the support of the pat-
terns. Indeed, we avoid the evaluation of a pattern P2, which is super-set
of a pattern P1 (P1 ⊂ P2), if P1 is frequent in the time-window τh1 (τh2)
but it is not frequent in the time-window τh2 (τh1). Instead, we cannot apply
no optimization on the growth-rate because, unfortunately, the monotonic-
ity property does not hold. In fact, given two frequent patterns P1 and P2
with P1 ⊂ P2, if P1 is not emerging, namely GRτh1 ,τh2

(P1) < minGR
(GRτh2 ,τh1

(P1) < minGR), then the pattern P2 may or may not be emerg-
ing, namely its growth-rate could exceed the threshold minGR.

The final EPs are stored in a pattern base, which hence contains the fre-
quent patterns that satisfy the constraint set by minGR on at least one pair
of time-windows. Each EP is associated with two lists, named as TWlist
and GRlist. TWlist is used to store the pairs of time-windows in which the
growth-rate of the pattern exceeds minGR, while GRlist is used to store the
corresponding values of growth-rate. The technical details can be found in
the paper [11].

3. Detection of PCs from the EPs stored in the pattern base. To implement the
function ΘP (Definition 2) we resort to an equal-width discretization tech-
nique, which is able to return a set of ranges used here as nominal values Ψ .
The discretization technique is applied to the set of values of the lists GRlist
of all the stored EPs. Thus, we can map a value of growth-rate to the range
in which the value falls in. The choice of the equal-width discretization allows
us to take the different magnitude orders into account and uniformly map
the growth-rate values into different ranges, without making the distribution
of the values unbalanced.

The PCs are built with a procedure of generation-evaluation of candidates.
In particular, we work on the EPs one at a time by generating as many can-
didates as the nominal values associated with the growth-rate of that EP. A
PC is built incrementally by examining the pairs of time-windows of TWlist
in chronological order and joining those pairs that have the same nominal
value ψ on the condition that they are δ-separated.

In order to clarify how the detection of PCs works, we report an explana-
tory example of generation of PCs from one EP. Consider the time-points as
years, Ψ = {ψ′, ψ′′}, minREP = 3, δ = 13 and the lists TWlist and GRlist
built as follows (the nominal value has the same position in GRlist of the
corresponding pair of time-windows in TWlist):
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TWlist : 〈([1970; 1972], [1973; 1975]) , ([1976; 1978], [1979; 1981]) , ([1982; 1984], [1985, 1987]) ,

([1988; 1990], [1991; 1993]) , ([1994; 1996], [1997; 1999]) , ([2010; 2012], [2013; 2015])〉
GRlist : ψ

′
, ψ

′
, ψ

′′
, ψ

′
, ψ

′′
, ψ

′〉

By scanning the list TWlist, we can initialize the sequence T of a can-
didate PC’ by using the pairs ([1970;1972], [1973;1975]) and ([1976;1978],
[1979;1981]) since they are δ-separated (1979–1973 < δ) and they have the
same nominal value ψ′. The pair ([1982;1984], [1985;1987]) instead refers
to a different nominal value (ψ′′) and therefore it cannot be inserted into
T of PC’. We use it to initialize the sequence T of a new candidate PC”,
which thus will include the time-windows referred to ψ′′. Subsequently, the
pair ([1988;1990], [1991;1993]) is inserted into T of PC’ since its distance
from the latest pair is less than δ (1991–1979 < δ). Then, T of PC” is
updated with ([1994;1996], [1997;1999]) since 1997–1985 is less than δ, while
the pair ([2010;2012], [2013;2015]) cannot be inserted into T because the
distance between 2013 and 1997 is greater than δ. Thus, we use the pair
([2010;2012], [2013;2015]) to initialize the sequence T of a new candidate
PC”’. The sequence T of PC’ cannot be further updated, but, since its size
exceeds minREP , we consider the candidate PC’ as valid periodic change.
Finally, the candidate PC” cannot be considered as valid since its size is less
than minREP . The candidate PC”’ is not even considered since its sequence
T has less than minREP elements.

Fig. 1. The block-diagram of the two-step method for mining spatio-temporal patterns
of periodic changes.
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3.2 Mining Spatio-Temporal Periodic Changes

As result of the first step, we have a set of PCs for each cell. A preliminary
operation we perform is the removal of redundant PCs. Indeed, the invalidity of
the property of monotonicity of the growth-rate and the procedure of detection
of PCs do not allow us to exclude the presence of redundancies, that is, PCs
whose information is expressed also by other PCs. For instance, given two PCs,
PC’: 〈P ′, T ′, ψ〉 and PC”: 〈P ′′, T ′′, ψ〉, P ′ is redundant if (i) the conjunction of
weather parameters of P ′′ includes the conjunction of weather parameters of
P ′ (P ′ ⊂ P ′′); (ii) the pairs of time-windows of PC” comprise those of PC’
(T ′ ⊂ T ′′); (iii) they have the same nominal value ψ.

After having removed the redundant PCs, to find SPCs we should act on the
sequences T . Different alternatives can be considered, which we discuss briefly
in the following. Using a grouping/clustering algorithm could turn out to be
inapplicable because the lengths of T can be different. This is also the reason for
which we cannot adopt algorithms for the generation of frequent itemsets. The
distance-based techniques, for instance those implementing the dynamic-time-
warping distance, could be ineffective because, although able to handle sequences
of different lengths, they return groups of sequences with similar/close time-
windows, whilst we are interested in obtaining sequences with identical time-
windows. Our proposal is investigating this problem with a sequence mining
approach, which naturally handles sequences of different lengths and takes the
chronological order of the time-windows into account [14]. Here, the input data of
the sequence mining problem is the set of the sequences T of one PC in common
to several cells, for instance {PC11, . . . , PCrs} in Fig. 1. So, we take the set of
the sequences T associated with a specific emerging pattern P ′ having a specific
nominal value ψ′. The output is the complete set of SPCs in form of sequential
patterns whose elements are pairs of time-windows. By considering that there
are different PCs, the algorithm of sequence mining is applied to one collection
of sets of sequences, whose cardinality is equal to the total number of PCs. Not
all the PCs are used for the sequence mining algorithm but only those found in
at least minUNITS cells.

Here, we could experience the problem of redundant patterns, so we decide to
use an algorithm able to mine closed sequential patterns. A sequential pattern
S′ is closed if there exists no sequential pattern S′′ such that S′ ⊂ S′′ and
S′′ occurs in the same sequences of S′. The use of closed sequential patterns
allows us to additionally maximize both the number of cells in which the change
occurs and number of repetitions of the change in each cell. We exploit the
algorithm CloSpan [18], which implements a candidate maintenance-and-test
approach. It first generates a set of closed sequence candidates, which is stored
in a hash-based tree structure and then performs a post-pruning operation on
that set. The post-pruning operation exploits search space techniques. Obviously,
the decision of using the algorithm CloSpan does not exclude the possibility of
considering alternative solutions. Indeed, other algorithms of closed sequential
patterns mining do not imply modifications to the method, considering that our
purpose here is the generation of the minimal set of frequent sequences of pairs
of the windows for each periodic change.
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Finally, not all the closed sequential patterns are considered but only those
that meet two conditions: (i) the pairs of time-windows are δ-separated and
(ii) the grid cells associated to the patterns are adjacent. These cells denote
together the spatial region in which a periodic change occurs.

4 Experiments

We applied the proposed method to real-world climate data generated from
the NCEP/NCAR Reanalysis project and available on the data bank NOAA
[15]. The climate data were recorded every day from January 1997 to Decem-
ber 1999 by 697 sensors uniformly distributed over a grid of 41× 17 points (41
sensors by longitude, 17 sensors by latitude). So, totally we have 1094 daily
measurements (1094 time-points). The distribution of the sensors delimits a
specific geographic area localized between Atlantic Ocean and Indian Ocean and
covers almost 36,000,000 km2. The weather parameters are “Air temperature”,
“Pressure”, “Relative humidity”, “Eastward Wind”, “Northward Wind” and
“Precipitable Water”.

Experimental Setup. We pre-processed the time-series by using an equal-
frequency discretization technique, which guarantees a uniform distribution
on the five (discretized) ranges of the same parameter when generating pat-
terns with the ranges of different parameters. In particular, for each parame-
ter, we considered 5 ranges. To implement the function ΘP , we applied an
equal-width discretization technique to the values of the growth-rate exper-
imentally obtained, which fall in the interval [1.2, 5]. The number of the
ranges generated is 6, namely {[1.5, 2), [2, 2.5), [2.5, 3), [3, 3.5), [3.5, 4), [4, 4.5)},
to which we manually assign the nominal values very weak change, weak
change,middle weak change, middle strong change, strong change, very st-
rong change. So, the function ΘP maps values from the interval [1.2, 5] to the set
{very weak change, weak change,middle weak change, middle strong chan-
ge, strong change, very strong change}.

We built three different configurations of the grid from the geographic area. In
each configuration, the grid cells cover the same number of sensors and therefore
have the same size. Specifically, the distribution of the sensors in each cell is
10× 8, 5× 8, 8× 4, respectively, so the three configurations have 8 cells, 16 cells,
20 cells. Experiments are performed by tuning minGR, δ and minREP . The
value of minimum support for the step of PCs detection is fixed to 0.1, while the
value of minimum support for the step of SPCs mining is fixed to 0.5 in order to
find patterns which cover at least the half of the minimum number of cells fixed
by minUNITS. The value of minUNITS equals the half of the total number
of cells for each grid configuration, that is, 4, 8, 10 respectively. The value of the
width w of the windows is 30 (days).

Results. We collected three kinds of quantitative results. Specifically, Table 1
illustrates the values of PCs averaged by the number of cells and the total number
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of SPCs. Table 2 reports the evaluation of the SPCs in form of average portion
of cells in which the final SPCs occur. More precisely, the evaluation considers
the number of cells covered by the SPCs divided by the minimum number of
requested cells (minUNITS) and has values in [0;1], where 1 refers the best
coverage and indicates that the SPCs cover all the cells provided by minUNITS.
In the following, we discuss the influence of the input thresholds minGR, δ and
minREP on these results.

Discussion. In the boxes (a), (b) and (c) of Table 1, we report the results
obtained with the three grid configurations. We see that the smaller the area
of the cells the lower the number of PCs and SPCs, meaning that the method
is able to capture a quite expected behavior, that is, the spatial regions with
greater extent show there higher variability of the weather conditions compared
with the smaller regions. As to the influence of minGR, we observe that there
not are PCs and SPCs when it is higher than 6. This indicates that there is no
conjunction of weather parameters whose frequency increases or decreases by an
order of magnitude higher of 6.

By increasing only the threshold δ, we have greater sets of PCs. Indeed, at
higher values of δ the method detects both the changes which are replicated
more frequently (that is, at δ = 60 days) and the changes which are replicated
less frequently, that is, with distant repetitions (δ = 365). Consequently, the sets
of the PCs (which are the input of the step of SPCs mining) are greater and this
implies the discovery of greater sets of SPCs.

By increasing only the threshold minREP , we obtain smaller sets of PCs. In
fact, when setting higher values of minREP , we require climate changes with a
relatively high number of repetitions, which is a requirement that only the PCs
with longer sequences of T can satisfy. Consequently, the number of PCs that
feeds the second step (SPCs mining) is lower and the set of SPCs is smaller but it
is composed by the longer SPCs since generated with longer PCs. This is evident
whether comparing the tables in the box (a) against those in the boxes (b) and
(c). A concrete example is when minREP is 5 (w = 90 days). In that case, we
search changes repeated at a distance of even 5 semesters, that is, almost the
whole dataset (6 semester long).

Table 2 reports a quantitative evaluation of the SPCs. We see that the better
coverage is almost three-quarters of the requested cells and it is reached at the
lowest values of minGR and minREP and highest value of δ. By considering only
minGR, we observe that the better result is obtained at minGR = 1.5, which
corresponds to SPCs with “very weak changes”. Instead, when minGR > 4,
we have SPCs with “very strong changes” but replicated in a smaller set of
cells. By considering only δ, we note that there is a discrete coverage of the
cells at relatively low values δ. This can be explained by the lower number of
SPCs. Finally, by increasing only the threshold minREP , the coverage decreases
because of the combined effect of the number of the SPCs and their length. This
is not surprising because weather changes with less repetitions occur in larger
spatial regions, while those with more repetitions are present in smaller regions.
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Table 1. Results obtained by tuning a parameter at time on three grid configura-
tions, that is, 8 cells (a), 16 cells (b) and 20 cells (c). When tuning minGR, δ is 365
and minREP is 3. When tuning δ, minGR is 2 and minREP is 3. When tuning
minREP, minGR is 2 and δ is 365. Each slot of the tables reports the average values
of PCs and the total number of SPCs. The average values of PCs are computed on the
number of the cells.

minGR
1.5 2 4 6
102–47 71–32 26–17 0-0

δ
60 90 120 180 365
9–2 20–12 21–12 58–17 71–32

minREP
3 4 5 6
71–32 29–12 17–3 4–0

(a)
minGR

1.5 2 4 6
54–2 32–6 16–4 0–0

δ
60 90 120 180 365
2–0 2–0 9–2 10–2 32–6

minREP
3 4 5 6
32–6 14–3 3–0 0–0

(b)
minGR

1.5 2 4 6
42–11 27–7 9–0 0–0

δ
60 90 120 180 365
2–0 2–0 5–3 11–4 27–7

minREP
3 4 5 6
27–7 19–6 9–0 0–0

(c)

Table 2. A quantitative evaluation of the SPCs in terms of average portion of distinct
cells covered by the final SPCs.

minGR
1.2 2 4 6
0.72 0.71 0.52 –

δ
60 90 120 180 365
0.55 0.53 0.59 0.66 0.71

minREP
3 4 5 6
0.71 0.56 0.51 –

Interpretation of the Spatio-Temporal Patterns. Here we present some
examples of SPCs mined from the real-word climate data and report the pairs of
windows over which they are repeated and the modelled change. The grid cells
are graphically drawn on the geographic map for ease of the interpretation.

For instance, the following SPC has been mined with minGR = 2, δ = 365,
minREP = 3

SPC1 : [P : air temperature = [301.5; 307.2], pressure = [96, 99; 100],

relative humidity = [82.75; 89.75], precipitable water = [0.46; 10.89];

T : 〈([june 1997, july 1997], [may 1998, june 1998]), ([may 1999, june 1999])〉;
Ψ = middle weak change]

SPC1 represents a change of frequency denoted as middle weak change,
which corresponds to the range [2.5;3]. This variation recurs three times,
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specifically over the pairs of windows 〈([june 1997, july 1997], [may 1998, june
1998]), ([may 1999, june 1999])〉 and it is replicated on the five cells drawn
Fig. 2a. Intuitively, we see that such a change recurs with a periodicity of at
most 12 months and covers the land of the geographic area under examination.

Another SPC the method discovered with minGR = 2, δ = 365, minREP =
3 is the following

SPC2 : [P : air temperature = [301.5; 307.2], pressure = [96, 99; 100],

relative humidity = [82.75; 89.75];

T : 〈([june 1997, july 1997], [may 1998, june 1998]), ([may 1999, june 1999])〉;
Ψ = middle strong change]

It exhibits a frequency variation included in the range [3;3.5) (middle strong
change) over the pairs of windows T : 〈([june 1997, july 1997], [may 1998,
june 1998]), ([may 1999, june 1999])〉 and on the five cells drawn in dashed in
Fig. 2b. We see that SPC2 has a conjunction of weather parameters, which is a
subset of SPC1, additionally, it appears in the same sequence and same spatial
region of SPC1, but it denotes a stronger change. This means that the support
of SPC2 is higher than the support of SPC1 either in the windows june 1997,
may 1998, may 1999 or in the windows july 1997, june 1998, june 1999. This
is explained with the monotonicity property of the support.

(a)

(b)

Fig. 2. Visualization of the grid obtained by collecting 5 × 8 (a) and 8 × 4 (b) sensors
per cell. The spatio-temporal periodic changes SPC1 and SPC2 occur in the dashed
cells of the grid (a). The spatio-temporal periodic changes SPC2 occurs also in the
dashed cells of the grid (b).
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The same periodic change represented by SPC2 has been mined with
minGR = 2, δ = 365, minREP = 3 by using the grid configuration with 20
cells (Fig. 2b). In this case, it has the same pairs of windows T that had within
the grid at 16 cells and clearly covers a different subset of cells. We see that
the spatial region of SPC2 in the first grid (Fig. 2a) greatly overlaps the spatial
region of SPC2 in the second grid (Fig. 2b).

5 Related Work

The analysis of climate data has always attracted interest by different disciplines
and the study of the dynamics is considered particularly relevant for the effects
on the Earth. Günnemann et al. [6] work on the hypothesis that the changes
can regard subspaces of the descriptive attributes. Then, they describe a clus-
tering technique based on the similarity which tracks the changes of subspaces
in time-variable climate data and associates a type of climate behaviour with
each cluster. Kleynhans et al. [8] propose a method to detect and evaluate land
cover change by examining at each point in time for a specific pixel neighborhood
the spatial covariance of a hyper-temporal time series. McGuire et al. [13] intro-
duce the problem of mining moving dynamic regions. Their solution is based
on spatial auto-correlation and finds dynamic spatial regions across time peri-
ods and dynamic time periods over space. Finally, moving dynamic regions are
identified by determining the spatio-temporal connectivity, extent, and trajec-
tory for groups of locally dynamic spatial locations whose position has shifted
from one time period to the next. Lian and McGuire [9] propose an algorithm
to detect high change regions based on quadtree-based index and classify het-
erogeneous and homogeneous change. Finally, spatio-temporal changes are ana-
lyzed at long time scales to find high change persistent regions and high change
dynamic regions. In [1], the authors investigate a problem of change analysis with
a descriptive method aiming at summarizing evolving data streams in spatial
domains. They propose a clustering-based technique to detect groups of geo-
referenced data which vary according to a similar trend, which is determined
over time-windows.

The periodicity has been often seen as a disturbance effect to be removed from
the climate data because makes the applicability of the classical methods unfea-
sible. Tan et al. [16] present a comprehensive study based on classical pattern
discovery algorithms to find spatio-temporal patterns from spatial zones over
time. Preliminarily, seasonal variation is removed from data with data transfor-
mation techniques, like discrete Fourier transform. Patterns denote regularities
within individual zones, among different zones, within the same time-interval or
along a series of time-intervals. The study presented in [10] focused on the peri-
odic variation of phenotype data and applied the solution to seasonal diseases.
However, as our knowledge, very few attempts have been done to investigate
the periodicity of the change over space and no attempt focused on the use of
patterns. Boriah et al. [2] proposed a recursive merging algorithm that exploited
the seasonality to distinguish between locations that experienced a land cover
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change and locations that did not. However, it does provide no information on
the change and on the spatial and temporal components associated to it. In [12]
the authors investigated the effect of the periodicity in form of temporal auto-
correlation for regression problems on time-stamped networks. Spatio-temporal
patterns are the main subject of study in trajectory mining. In [7] the authors
propose unifying incremental approaches to automatically extract different kinds
of spatio-temporal patterns by applying frequent closed item-set mining tech-
niques.

6 Conclusions

The research presented in this paper has two main contributions. First, we extend
a previous method, in order to identify different occurrences of the same periodic
changing behavior. Second, we explore the possibility to identify periodic chang-
ing behaviors in Climatology, which is typically characterized by temporal and
spatial component. We have introduced the notion of spatial-temporal pattern
of periodic changes to denote the spatial extent of variations repeated on the
temporal axis. The proposed method relies on the frequent pattern mining frame-
work, which enables us to (i) capture the changes in terms of variations of the
frequency, (ii) estimate the regularity over time of these changes, and (iii) iden-
tify contiguous areal units in which the change can be tracked. The application
to a real dataset highlights the viability and usefulness of the proposed method
to a real-world problem. We performed experiments to test the sensibility of the
method with respect to input thresholds. We plan to explore different future
directions: (i) automatic determination of the input parameters, (ii) qualitative
evaluation the discovered patterns against ground-truth on weather changes (iii)
study of the usefulness of the patterns for predictive problems.
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