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Preface

Modern automatic systems are able to collect huge volumes of data, often with a
complex structure (e.g., multi-table data, XML data, Web data, time series and
sequences, graphs, and trees). This fact poses new challenges for current information
systems with respect to storing, managing, and mining these big sets of complex data.

The 5th International Workshop on New Frontiers in Mining Complex Patterns
(NFMCP 2016) was held in Riva del Garda in conjunction with the European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML-PKDD 2016) on September 19, 2016. The purpose of this workshop
was to bring together researchers and practitioners in data mining who are interested in
the advances and latest developments in the area of extracting patterns from big and
complex data sources. The workshop was aimed at integrating recent results from
existing fields such as data mining, statistics, machine learning, and relational databases
to discuss and introduce new algorithmic foundations and representation formalisms in
complex pattern discovery.

This book features a collection of revised and significantly extended versions of
papers accepted for presentation at the workshop. These papers went through a rigorous
review process to ensure compliance with Springer’s high-quality publication stan-
dards. The individual contributions of this book illustrate advanced data-mining
techniques that preserve the informative richness of complex data and allow for effi-
cient and effective identification of complex information units present in such data.

The book is composed of five parts and a total of 16 chapters.
Part I analyzes Feature Selection and Induction in the presence of complex data. It

consists of two chapters. Chapter 1 introduces an unsupervised algorithm for feature
construction based on tree ensembles. It defines an informative data representation that
is able to handle complex data structures, combining information from multiple
sources. Chapter 2 presents a graph-based algorithm for feature selection. It ranks
features by identifying the most important ones into an arbitrary set of cues.

Part II focuses on Classification and Prediction by illustrating some complex pre-
dictive problems. It consists of five chapters. Chapter 3 tackles the problem of pruning
rule classifiers, while retaining their descriptive properties. It uses confirmation mea-
sures as representatives of interestingness measures designed to select rules with
desirable descriptive properties. Chapter 4 studies the problem of automatically rec-
ognizing speed changes from audio data recorded in controlled conditions. The clas-
sification of the audio data is performed using random forests, deep learning
architectures and support vector machines. Chapter 5 describes a classification task that
aims at determining whether two voices are spoken by the same person or not. It
illustrates an algorithm that performs the classification by evaluating the dissimilarity
between a speech sample and a set of known models. Chapter 6 investigates the
problem of interpreting rules induced from imbalanced data. It proposes three different
strategies that combine Bayesian confirmation measures, in order to select rules having



good descriptive characteristics. Chapter 7 addresses the problem of modeling trust
network evolution through social communications among users in a social media site. It
introduces a link prediction algorithm based on mediating-objects and analyzes the
effect of time-decay in creating trust-links.

Part III analyzes issues posed by Clustering in the presence of complex data. It
consists of four chapters. Chapter 8 investigates the adoption of cluster analysis to
predict the primary medical procedure for a patient. The processed patients are clus-
tered according to their set of diagnoses. This cluster knowledge is then used to identify
other existing patients that are considered similar to the new patient. Chapter 9
describes a clustering algorithm allowing us to group features that are likely to take
extreme values simultaneously. It exploits the graphical structure stemming from the
definition of the clusters. Chapter 10 presents a latent-factor-based approach whose
goal is to profile users according to their behavior. It considers the actions as set of
features instead of single atomic elements. Chapter 11 proposes a multiview clustering
methodology that determines clusters of patients with similar symptoms and detects
patterns of medication changes that lead to the improvement or decline of patients’
quality of life.

Part IV presents algorithms Pattern Discovery. It consists of three chapters. Chapter
12 introduces an approach to extract recurrent deviations from historical logging data
and generate anomalous patterns representing high-level deviations. It applies a fre-
quent subgraph mining technique together with an ad hoc conformance-checking
technique. Chapter 13 investigates the task of detecting weather changes, which are
periodically repeated over time and space. It introduces a spatiotemporal pattern to
represent a periodic change and describes a computational solution to discover this kind
of pattern. Chapter 14 investigates the problem of user authentication based on key-
stroke timing pattern. It proposes a simple, robust, and nonparameterized nearest-
neighbor regression-based feature-ranking algorithm for anomaly detection.

Finally, Part V gives a general overview of Applications in sensor network and
game scenarios. It contains two chapters. Chapter 15 provides a formalization of a
graph-based approach that extends a directed weighted graph using a sequential state
transformation function. It interprets the graph to model state transition matrices and
describes an algorithm for deriving these interpretations in large-scale real-world sensor
networks. Chapter 16 checks whether, and to what extent, advanced process mining
techniques can support efficient and effective knowledge discovery in chess playing. It
also provides interesting insight into the game rules and strategies, and/or may support
effective game playing in future matches.

We would like to thank all the authors who submitted papers for publication in this
book and all the workshop participants and speakers. We are also grateful to the
members of the Program Committee and additional reviewers for their excellent work
in reviewing submitted and revised contributions with expertise and patience. We
would like to thank Jaakko Hollmen for his invited talk on “On Model, Patterns, and
Prediction.” A special thanks is due to both the ECML PKDD Workshop Chairs and to
the ECML PKDD organizers who made the event possible. We would like to
acknowledge the support of the European Commission through the projects

VI Preface



MAESTRA–Learning from Massive, Incompletely Annotated, and Structured Data
(Grant number ICT-2013-612944) and TOREADOR–Trustworthy Model-Aware
Analytics Data Platform (Grant number H2020-688797). Last but not the least, we
thank Alfred Hofmann of Springer for his continuous support.

March 2017 Annalisa Appice
Michelangelo Ceci
Corrado Loglisci

Elio Masciari
Zbigniew Ras
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On Models, Patterns, and Prediction
(Invited Talk)

Jaakko Hollmen

Department of Computer Science, Aalto University in Espoo, Espoo, Finland

Abstract. Pattern discovery has been the center of attention of data mining
research for a long time, with patterns languages varying from simple to com-
plex, according to the needs of the applications and the format of data. In this
talk, I will take a view on pattern mining that combines elements from neigh-
boring areas. More specifically, I will describe our previous research work in the
intersection of the three areas: probabilistic modeling, pattern mining and pre-
dictive modeling. Clustering in the context of pattern mining will be explored, as
well as linguistic summarization of patterns. Also, multiresolution pattern
mining as well as semantic pattern discovery and pattern visualization will be
visited. Time allowing, I will speak about patterns of missing data and it sim-
plications on predictive modeling.
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Feature Induction and Network Mining
with Clustering Tree Ensembles

Konstantinos Pliakos(B) and Celine Vens

Department of Public Health and Primary Care, KU Leuven, Campus KULAK,
Etienne Sabbelaan 53, 8500 Kortrijk, Belgium

{konstantinos.pliakos,celine.vens}@kuleuven.be

Abstract. The volume of data generated and collected using modern
technologies grows exponentially. This vast amount of data often follows
a complex structure, and the problem of efficiently mining and analyz-
ing such data is crucial for the performance of various machine learning
tasks. Here, a novel data mining framework for unsupervised learning
tasks is proposed based on decision tree learning and ensembles of trees.
The proposed approach introduces an informative feature representation
and is able to handle data diversity and complexity. Moreover, a new
scheme is proposed based on the aforementioned approach for mining
interaction data. These data are often modeled as homogeneous or het-
erogeneous networks and they are present in various fields, such as social
media, recommender systems, and bioinformatics. The learning process is
performed in an unsupervised manner, following also the inductive setup.
The experimental evaluation confirms the effectiveness of the proposed
approach.

Keywords: Tree-ensembles · Extremely randomized trees · Tree-
embedding · Network mining

1 Introduction

Nowadays, a great advance in data acquisition and feature construction meth-
ods is witnessed. Due to modern technological advances, huge amounts of data
are generated in terms of both cardinality (i.e., the number of samples) and
dimensionality (i.e., the number of features that describe each sample). These
data often follow more complex structures, combining information from multiple
sources. One example that is often encountered is interaction data. Instead of
one set of objects described by a set of features, interaction data is characterized
by two sets of objects, each described by its own set of features. Interaction data
is omni-present: in social network analysis, recommender systems, ecology (habi-
tat modeling), bioinformatics (gene expression analysis, drug response analysis,
predicting drug-target reactions), technology-enhanced education, etc. Further-
more, as the volume of data grows, problems such as the existing noise in the
data or the missing values in some datasets remain. To this end, methods that

c© Springer International Publishing AG 2017
A. Appice et al. (Eds.): NFMCP 2016, LNAI 10312, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-61461-8 1



4 K. Pliakos and C. Vens

can handle the aforementioned issues and succeed in mining complex patterns
in big datasets are indisputably needed.

During the last years, an interest was witnessed in leveraging the mining of
complex patterns by mapping the data to different feature spaces. This way, the
performance of machine learning algorithms was improved. Most of the devel-
oped methods were based on kernel learning [1,2], mainly due to the very good
performance of Support Vector Machines (SVMs) [3]. However, these methods
are often characterized by high computational costs and limited flexibility as one
should compute and handle the whole Gram matrix. Many of these kernel-based
methods have also been developed in a transductive setup where test instances
are available during the training phase [1].

There are several studies where new features are constructed inductively
using clustering techniques or decision tree learning. Most of the recently devel-
oped feature construction methods were developed for supervised learning tasks.
In [4], a feature induction method based on random forests [5] was proposed. It
was based on a metric transformation that mapped the identity of the tests per-
formed in each node of a decision tree to a feature indicator. Feature vectors
were generated by concatenating all the features corresponding to each tree in
the forest and they were further encoded using hashing. A similar transforma-
tion of the data, using a set of random clustering forests was proposed in [6,7]
for visual codebook construction. In particular, the features were generated by
randomized trees. The data encoding was based only on the indices of the leaves
where a data sample ends up. The approach leads to a high dimensional, sparse
binary coding. In [8], a label-specific feature scheme for multi-label classification
was proposed. For each label, a distinct feature set was constructed by cluster-
ing the label’s positive and negative instances (separately), and then calculating
the distances of each instance to the obtained cluster centroids. This way, the
predictive performance of a classifier trained for that specific label was increased.

Here, we focus on developing a feature representation using tree ensembles.
The main goal is to leverage unsupervised machine learning tasks, such as cluster-
ing or information retrieval. Decision tree induction algorithms [9,10] are among
the most popular data mining algorithms. They have been applied extensively in
many fields such as systems biology [11] or social media analysis [12]. The inter-
pretability of the models they produce is among the main advantages of these
methods, making them transparent and understandable to human experts, also
leveraging knowledge discovery. Other advantages include their scalability from
a computational point of view and their fair predictive accuracy. Combining
them with ensemble methods [5,13] improves their predictive performance and
provides state-of-the-art results.

Motivated by [4], here we propose an unsupervised framework for feature
construction based on tree ensembles and specifically Extremely Randomized
Trees [14], hereafter denoted as ERT . In particular, the nodes of each decision
tree of the ensemble are treated as clusters, containing all the samples that
fall into that tree node. Next, binary feature vectors are generated, where each
component represents the presence or absence of a sample in a cluster (node).
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The new features are generated in an inductive manner (i.e., the test samples
are not needed during learning). Different from [4], the learning procedure is
performed in an unsupervised manner. In addition, the employment of dimen-
sionality reduction techniques [15,16] is studied and the efficiency in detecting
an underlying manifold over complex data is tested.

Furthermore, the proposed data representation approach is extended towards
interaction data. Relations between entities that interact with each other such
as user-item relations in recommender systems or drug-patient interactions in
medicine are often represented by networks (here, equally referred to as graphs).
Generally, there are two types of networks, homogeneous that model samples of
the same type (e.g., protein-protein network) and bi-partite modeling samples of
different type (e.g., drug-protein network). Despite the continuous rising in the
amount of available data, usually we have only a very partial knowledge of these
networks [17]. Both supervised and unsupervised machine learning methods have
been used to complete a partially known network or to reveal unprecedented
knowledge by extracting existing patterns from it [18,19]. There are mainly two
methodologies to apply a learning technique in the aforementioned framework,
the local approach [20] and the global one [21]. Following the local approach one
should first decompose the data into separate (traditional) feature vector repre-
sentations, solve each representation ’s learning task independently, and combine
the results. In the global approach, the learning technique is adapted so that it
can handle the structured representation directly. In [17], the global approach
was based on building a global representation of the network and then treat the
interaction prediction problem as a binary classification task. Here, a method is
proposed that combines these two approaches in a unified framework. More pre-
cisely, the aforementioned feature induction approach based on ERT is applied
on each set of the two interacting entities separately (local part), producing two
new high-dimensional sparse representations. Next, after transferring the two
sets to lower dimensional spaces we combine the two separate low-dimensional
feature representations, building this way a global representation of the network.
To this end, it can be concluded that the proposed approach yields a new global
network representation that is more informative and computationally more effi-
cient. The experimental results demonstrate the effectiveness of the proposed
approach.

The outline of the paper is as follows. In Sect. 2, the proposed approach is
described in detail. The experimental evaluation is presented in Sect. 3. Conclu-
sions are drawn and topics of future research are discussed in Sect. 4.

2 Method

2.1 Learning Using Extremely Randomized Trees

Decision trees are typically constructed with a top-down induction method.
Starting from the root node that is associated with the complete training set,
the nodes are recursively split by applying a test to one of the features. In order
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to find the best split, all features and their corresponding split points are consid-
ered and a split quality criterion is evaluated. In supervised learning tasks, this
criterion is often information gain (classification), or variance reduction (regres-
sion). When the data contained in a node is pure w.r.t. the target, or when some
other stopping criterion holds, the node becomes a leaf node and a prediction
is assigned to it. This prediction is the majority class assigned to the training
instances in the leaf for classification, or the average of their target values for
regression. The prediction for test instances is obtained by sorting them through
the tree into a leaf node. In this work, the decision tree learners employed are
set in the Predictive Clustering Tree (PCT) [10] framework, adopting the hier-
archical clustering view of decision trees. PCTs are constructed by maximally
reducing intra-cluster variance at each split. By computing the variance over
the feature set, rather than the target, PCTs can be applied to (unsupervised)
clustering tasks.

Since decision trees often have a large variance, their predictive performance
can be improved by having several trees returning an aggregated prediction.
Such a collection of decision trees is called an ensemble, and several instances
of ensembles exist. In this work, we consider the ensemble method of Extremely
Randomized Trees (ERT) [14,22]. The ERT algorithm builds an ensemble of
unpruned decision trees following the traditional top-down procedure. In an
ERT ensemble, each tree is constructed by considering only a random set of
split candidates at each node. More precisely, a random subset of features is
picked, and for each feature, a random split point is picked. From these candi-
dates, the candidate yielding the best value for the split criterion is chosen. The
growing of each tree is stopped when the tree is fully grown (i.e., one sample
in each leaf) or a criterion has been reached (e.g., maximum depth, minimum
number of samples to split, etc.). The rationale behind the ERT algorithm is
that the explicit randomization of the splitting threshold and attribute in com-
bination with ensemble averaging reduces bias-variance more strongly than the
randomization performed by other methods. ERT was shown to have a better
predictive performance than the more popular Random Forests [14] and it is
also computationally less expensive due to the simplicity of the node splitting
procedure.

2.2 Feature Construction with Extremely Randomized Trees

A new feature set is generated by applying ERT on the initial feature set, as
follows. The nodes of each tree in the ERT setting, C = {c1, c2, · · · , c|C|} are
treated as clusters containing all the samples that fall into them traversing the
tree. Clearly, there is no point into including the root nodes in the procedure.
Let X ∈ �|S|×|M | be the dataset and F ∈ �|S|×|C| the induced feature set, where
|S|, |M | and |C| correspond to the number of samples, the number of original
features, and the number of induced features of the dataset, respectively. Next,
the clusters cj ∈ C are treated as features of the feature set F. Each fij ∈ F
equals to 1 if the sample i ∈ S is contained in the cluster (node) cj and 0
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Fig. 1. Illustration of the proposed approach. The example associated with the induced
feature vector is depicted as red. (Color figure online)

otherwise. The proposed approach is coined as ERCP (Extremely Randomized
Clustering tree-Paths). In Fig. 1, the feature induction approach is shown.

The proposed feature representation is rationally more informative than the
original one. Due to the feature selection mechanism of the ERT, features that
contain redundant information are not included in the procedure (i.e., no split
occurs on these features). The induced features are generated by computing clus-
terings over the whole dataset and therefore information from the whole instance
space is exploited. Samples that are outliers in the dataset can be discriminated
easily, as splitting an outlier from the rest of the dataset rationally leads to large
variance reduction. In addition, regions of the instance space with high variance
will lead to longer paths in the trees, thereby making the procedure adaptive
towards the difficulty of the instances considered. Moreover, one can control the
growing of the trees by setting specific stopping criteria.

At this point, it has to be noted that a similar encoding could be produced
by any hierarchical clustering method. However, the employment of ERT is ben-
eficial. First, ERT is a tree ensemble method, and therefore it is robust to small
perturbations in the data. It is also robust to non-informative or noisy features
due to the implicit feature selection mechanism. This way, the generated feature
representation is considered more noise invariant. Moreover, another advantage
is that the tree ensembles can generally treat both numerical and non-numerical
values, making the method more easily applied and robust. In addition to that,
in contrast to many other methods, it offers a natural way to deal with missing
values by distributing instances with a missing split value over all branches or
by selecting at random one branch to follow. Other advantages of the proposed
approach is that it is parameter-free and it is performed in an inductive manner.
After the training, the model can handle any new data without any need of the
training set. Furthermore, it is expected that a greater number of examples will
lead to bigger trees in the forest. The proposed representation will be therefore
larger but also very sparse. This way, the application of our approach to modern
online systems as well as systems that handle large scale data is feasible.
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2.3 Mining Interaction Data

As mentioned before, the relations between two entities that interact with each
other are often represented as a network (here, equally referred to as a graph).
Let G define a network with two finite sets of nodes Nr = {nr1, · · · , nr|Nr|} and
Nq = {nq1, · · · , nq|Nq|}. Each node of the network is described by a feature rep-
resentation. The network corresponds to a bipartite graph over the two sets of
nodes Nr and Nq. The interactions between Nr and Nq are modeled as edges con-
necting the nodes and are represented in the adjacency matrix Y ∈ �|Nr|×|Nq|.
Every item y(i, j) ∈ Y is equal to 1 if an interaction between items nri and nqj

exists and 0 otherwise. Homogeneous graphs defined on only one type of nodes
can be obtained as a particular case of the aforementioned general framework
by considering two identical sets of nodes (i.e., Nr = Nq).

In the proposed approach the bipartite graph is first decomposed into two
separate sets of nodes. For example in a drug-protein interaction network one
has a set of nodes corresponding to drugs and one corresponding to proteins.
Each set of nodes Nr or Nq is represented by a feature set Xr ∈ �|Nr|×|Mr|

or Xq ∈ �|Nq|×|Mq|, respectively. Next, two feature sets Fr ∈ �|Nr|×|Cr| and
Fq ∈ �|Nq|×|Cq| are induced by applying ERCP on Xr and Xq respectively, as
described in Sect. 2.2. The new high dimensional feature representation of the
nodes is then transferred to a lower dimensional space d (dr � |Cr|, dq � |Cq|).
This transformation could be performed by embedding the data into a linear
or non-linear subspace of lower dimensionality. Although many techniques exist,
here the most popular Principal Components Analysis (PCA) was employed.
By applying PCA the inductive setup of the method is maintained. Next, a
global data representation is built as the cartesian product of the two feature
spaces. More precisely, a feature vector is generated for each pair of nodes as the
concatenation of the feature vectors corresponding to the nodes of each pair. To
this end, a global representation F′ is yielded, where F′ ∈ �‖|Nr|∗|Nq|‖×‖|dr|+|dq|‖.
In Fig. 2, the proposed model for mining interaction data is displayed.

3 Experimental Evaluation

3.1 Datasets

The evaluation procedure of the proposed approach starts by employing some
well-known datasets from UCI repository [23] in order to reveal the global
potential of our approach. The evaluation continues by employing more com-
plex datasets and specifically two datasets that correspond to homogeneous bio-
logical networks. Next, the evaluation of the interaction data mining approach
(Sect. 2.3) follows. Including several datasets from various fields contributes in
avoiding any biased conclusions and revealing the robustness of our method.
The labels contained in these datasets were used only for evaluation purposes
and were not included in any part of the learning process. In Table 1, further
information about the used datasets is provided. A pre-processing step was also
introduced as in [4]. In particular, the data have been whitened by normalizing
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Fig. 2. A description of the proposed interaction data representation model.

all features to have zero mean and unit standard deviation. Non-binary clas-
sification tasks were transformed into binary ones by considering the majority
class versus all the others or by grouping the classes in two sets of balanced size.
Despite the fact that tree-ensembles do not require any pre-processing of the
data, in order to compare the proposed feature representation to the original
one the missing values were replaced by the features ’s average and the nomi-
nal features in some datasets were transformed into a set of binary ones using
one-hot encoding. This way, algorithms that can not handle missing values (e.g.,
k-NN, k-means) can be applied on both data representations (original features,
induced features) for comparison purposes.

In order to prove the efficiency of the proposed feature representation app-
roach on more complex data structures, 5 interaction prediction datasets [17]
were also introduced. They are interaction datasets representing homogeneous
and heterogeneous biological networks. In particular:

– Metabolic network (MN) [24]. This homogeneous network consists of 668
S. cerivisiae enzymes and the connections represent the catalysation of succe-
sive reactions between two enzymes. The enzymes are originally represented
by 325 features. They are a set of expression data, phylogenetic profiles and
localization data.

– Protein-protein interaction network (PPI) [25]. This homogeneous net-
work contains interactions between 984 S. cerivisiae proteins. The input
features are also a set of expression data, phylogenetic profiles and local-
ization data.
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Table 1. The datasets used in the evaluation procedure.

Dataset Nb of instances Nb of features

Pima Indians diabetes 768 8

Ecoli 336 7

Glass identification 163 9

Haberman’s survival 306 3

Ionosphere 351 34

Iris 150 4

Libras movement 192 90

Robot execution failures (Lp5) 164 90

Mammographic mass 961 14

Sonar 208 60

Spectf heart 267 44

Statlog (vehicle) 846 18

Breast cancer (orig.) 699 9

Breast cancer (diag.) 569 30

Wine 178 13

Breast cancer (prog.) 198 32

– E. coli regulatory network (ERN) [26]. This heterogeneous network con-
sists of 179256 pairs of 154 transcription factors (TF) and 1164 genes of E.
coli (154 × 1164 = 179256). The feature vectors that represent the two sets
consist of 445 expression values.

– S. cerevisiae regulatory network (SRN) [27]. This heterogeneous net-
work is composed by interactions between TFs and their target S. cerevisiae
genes. It is composed of 205773 pairs of 1821 genes and 113 TFs. The input
features are 1685 expression values. For genes, motifs features were concate-
nated to the expression values yielding feature vectors of 9884 values.

– Drug–protein interaction network (DPI) [28]. In this heterogeneous
network a drug is connected with a protein when the drug targets the pro-
tein. This network contains interactions between 683 proteins and 1779 drugs,
yielding a set of 1215057 pairs. The input feature vectors represent the pres-
ence or absence of 660 chemical substructures for each drug, and the presence
or absence of 876 PFAM domains for each protein.

3.2 Experimental Results

Although we target unsupervised learning tasks, datasets with known class labels
were used in order to better evaluate the proposed feature construction tech-
nique, denoted as Extremely Randomized Clustering tree Paths (ERCP). In
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particular, the class labels were used only as ground truth during evaluation
and were disregarded during the learning phase. The performance of a k-NN
algorithm applied on the induced features generated by ERCP was measured
and compared to the performance of k-NN applied on the original data. The
underlying idea is that instances with the same class should get a similar feature
representation, even though that class information is not used in the construction
of the features.

Furthermore, totally random trees embedding [6] was also used in compar-
ison. It was employed as an unsupervised transformation of the data, using a
forest of Extremely Random Clustering trees (ERC) with a single random split
candidate per node. In ERC the data are transformed using only the indices of
the leaves of each tree. Similar to our approach, ERT was also chosen as the
base estimator.

The number of trees used in the ensembles for all the compared methods
was set to 300. At that number, the Gram matrix induced on the new features
converged in the supervised setting [4]. The number of the features selected
as splitting candidates (Tf ) was set equal to the square root of the number of
original features (Tf =

√|M |). The variance over the feature set was computed as
the sum of the variances over the individual features. All trees were unpruned,
and the minimal number of instances a leaf has to cover was set equal to 3.
As for k-NN, the 3 nearest neighbors were considered (k = 3). Experiments
selecting other numbers of nearest neighbors or splitting candidates (Tf ) were
also performed without showing a different trend. The evaluation was performed
in a 10-fold cross validation (10 CV) scheme.

The evaluation measures that were employed were the common accuracy and
the area under the receiver operating characteristic curve (AUROC). A ROC
curve is defined as the true positive rate (TPR) against the false positive rate
(FPR) at various thresholds. Alternatively, the true-positive rate is known as
sensitivity and the false-positive rate as (1 - specificity).

As it is reflected in Tables 2 and 3 the proposed method ERCP outperforms
ERC in terms of AUROC. For each dataset, the best result is indicated with
∗. Furthermore, both tree-based ensemble methods succeed in generating a bet-
ter feature representation set than the original one. More precisely, the average
AUROC results for ERCP and ERC are 0.854 and 0.844, respectively. On the
original set the average drops to 0.836. Further experiments were performed
using different number of trees in the ensemble and different number of nearest
neighbors. The obtained results, that are shown in Table 3, reaffirm the perfor-
mance of the proposed approach. When it comes to accuracy the same behavior
was witnessed as the average rates are 0.831, 0.827, and 0.824 for the ERCP ,
ERC, and the original set respectively.

In addition to k-NN, k-means was employed extending the evaluation of the
proposed method to a clustering setting. Although there are many clustering
algorithms, k-means was selected out of simplicity. The number of clusters was
set equal to 2 as all the datasets contain 2 classes. The evaluation metric that
was used was the adjusted Rand index [29], measuring the similarity between the



12 K. Pliakos and C. Vens

Table 2. AUROC measures for the compared approaches.

Data Original ERC ERCP

Pima Indians diabetes *0.767 0.726 0.731

Ecoli *0.966 0.965 0.965

Glass identification 0.805 0.823 *0.871

Haberman’s survival 0.629 0.609 *0.630

Ionosphere 0.897 0.937 *0.957

Iris *1 *1 *1

Libras movement 0.753 *0.801 0.735

Robot execution failures (Lp5) 0.915 0.886 *0.968

Mammographic mass 0.791 *0.795 0.791

Sonar 0.718 0.713 *0.734

Spectf heart 0.707 0.748 *0.779

Statlog (vehicle) 0.981 *0.986 0.971

Breast cancer (orig.) 0.982 *0.983 *0.983

Breast cancer (diag.) 0.984 *0.985 0.977

Wine 0.970 *0.991 0.973

Breast cancer (prog.) 0.503 0.546 *0.590

Average 0.836 0.844 *0.854

Nb wins 3 7 *9

Average ranks 2.31 1.94 *1.75

Table 3. Average AUROC with different numbers of trees and nearest neighbors.

ERC50 ERCP50 ERC100 ERCP100 ERC200 ERCP200 ERC400 ERCP400 Original

k=2 0.813 *0.830 0.827 *0.837 0.832 *0.840 0.840 *0.840 0.834

k=4 0.834 *0.852 0.837 *0.853 0.853 *0.855 0.850 *0.860 0.839

k=5 0.837 *0.857 0.842 *0.857 0.854 *0.855 0.853 *0.861 0.844

k=6 0.842 *0.858 0.844 *0.856 0.853 *0.856 0.854 *0.862 0.844

k=8 0.850 *0.859 0.847 *0.860 0.855 *0.857 0.857 *0.860 0.848

ground truth class assignments and the clustering algorithm assignments. The
compared approaches correspond to different dimensional spaces, making the
application of an evaluation metric based on the distances or the variances of the
clusters difficult. Although the labels assigned to the samples by unsupervised
clustering are without intrinsic meaning, the rational idea is that samples with
the same ground truth are similar and therefore should be grouped together.
As it is reflected in Table 4, the proposed method ERCP outperforms the other
comparing approaches for both Tf =

√|M | and Tf = 1. It is interesting to
note that the best results in clustering (k-means) are obtained with Tf = 1
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Table 4. Adjusted Rand index results for the compared approaches.

Data Original ERC ERCP Tf =
√|M| ERCP (Tf = 1)

Pima Indians diabetes �0.11 0.09 0.04 *0.15

Ecoli �*0.62 0.58 0.58 0.58

Glass identification 0 0 0 0

Haberman’s survival 0 0 0 0

Ionosphere 0.17 0.15 �0.18 *0.20

Iris 1 1 1 1

Libras movement 0 0 0 0

Robot execution failures (Lp5) *−0.03 −0.07 �0.09 −0.07

Mammographic mass �*0.36 0.30 0.31 0.32

Sonar 0 0 0 *0.01

Spectf heart −0.1 *−0.07 �−0.04 *−0.07

Statlog (vehicle) 0.15 �*0.17 0.15 *0.17

Breast cancer (orig.) 0.84 0.82 �0.89 *0.89

Breast cancer (diag.) 0.65 �0.69 0.68 *0.73

Wine 0.01 �*0.11 0.02 *0.11

Breast cancer (prog.) 0.02 �*0.03 0.02 *0.03

Average 0.238 0.238 �0.244 *0.253

Nb wins� (average ranks) 3(2.06) 4(2.04) 4(1.9) -

Nb wins* (average ranks) 3(2.16) 4(2.22) - 9(1.63)

(totally randomized tree-paths, as in ERC). The best results among the ERC,
ERCP

Tf=
√

|M |, and the original features are reported with �. The best results
among the ERC, ERCPTf=1, and the original features are reported with ∗. It
has to be mentioned that optimizing some parameters for each dataset was not
part of the study performed here, even though it could possibly lead to better
results.

In Figs. 3 and 4, a visualization of PPI and MN datasets (homogeneous net-
works) is displayed by projecting the data in a 2-dimensional (2D) space using
PCA. Other linear or non-linear techniques such as the t-SNE [30] could have
been used but the common PCA was chosen out of simplicity. As reflected in the
Figs. 3 and 4, the generated data distribution after applying PCA to the original
data fails to detect any underlying manifold and it is similar to a common ran-
dom projection, especially for the MN dataset. In the case of ERC, two clusters
seem to appear, however it is not clear where to dichotomize the data. Finally,
the application of PCA to the ERCP -induced feature space leads to a more
informative distribution and shows two clearly disconnected clusters. The two
clusters have been color coded with colors blue and red, and the same coding
scheme was applied in the other graphs. For the PPI dataset, a Gene Ontology
Enrichment analysis was performed using YeastMine [31] in order to assign a bio-
logical interpretation to the obtained clusters. Using the complete set of proteins
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Fig. 3. MN network data projection. Upper left a totally random projection of the
data is depicted. Upper right the PCA projection of the original data is shown. Down
left the PCA projection of the ERC feature representation is displayed. Down right
the PCA projection of the ERPC is displayed. (Color figure online)

as background, it turns out that the bigger cluster (red) is enriched with pro-
teins localized in the nucleus (p = 3.26e-60), while the smaller cluster is enriched
with cytoplasm cellular component annotations (p = 0.038). It is concluded that
ERCP succeeds in providing a more informative feature representation for com-
plex datasets.

Next, the experimental evaluation of the proposed interaction data mining
scheme is presented. The global representation was constructed as described in
Sect. 2.3. It consists of all the possible pairs of network nodes. For evaluation
purposes, the known interactions or non-interactions between these nodes were
coded as 1 and 0, respectively. They were used as ground truth without taking
part in the learning process. Then, the performance of a k-NN algorithm applied
to that global representation was measured. The global network representation
based on the proposed approach that was described in Sect. 2.3 is referred to as
MID-CT (Mining Interaction Data with Clustering Trees). The global represen-
tation based on the original features is coined as Global Network Representation
(GNR) and a global representation based on the original features and PCA is
coined as GNR-PCA. More specifically, in GNR-PCA only PCA is applied on
the original features of each node-set. Here, the number of components that were
kept was set equal to the square root of the original features (

√|M |). In Table 5,
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Fig. 4. PPI network data projection. Upper left a totally random projection of the
data is depicted. Upper right the PCA projection of the original data is shown. Down
left the PCA projection of the ERC feature representation is displayed. Down right
the PCA projection of the ERPC is displayed. (Color figure online)

the accuracy results of k-NN for the first nearest neighbor (1-NN) as well as the
sizes of the compared representations are shown. In Fig. 5, the AUROC values
for different numbers of nearest neighbors are shown. As it is reflected, the MID-
CT clearly outperforms the other approaches. It is also shown that the results
are improved using high values of k in k-NN. To this end, it could be deducted
that the representation yielded by our approach is characterized by more pure
neighborhoods. Moreover, it has to be mentioned that MID-CT yields a compu-
tationally much more efficient representation than GNR as it reduces the size of
the two interaction sets before the final construction of the global representation.
This way, a global network representation of much less dimensions is obtained.

Table 5. Accuracy results (1-NN) for the compared approaches.

Dataset Size of GNR Size of MID-CT GNR GNR-PCA MID-CT

DPI (drug-protein) 1215057× 1536 1215057× 56 0.7655 0.7757 *0.9180

SRN (genes-TF) 205773× 11569 205773× 140 0.5495 0.5510 *0.9293

ERN (genes-TF) 179256× 890 179256× 42 0.9415 0.9515 *0.9719
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Fig. 5. AUROC results for different numbers of nearest neighbors.

4 Conclusions and Future Work

In this paper, we proposed an efficient feature representation framework based
on decision tree ensembles for unsupervised learning tasks. In particular, we
employed Extremely Randomized Trees in an unsupervised manner, by evalu-
ating the quality of a split on the feature space, rather than the target space.
By registering the tree nodes that are encountered by a given sample, a high-
dimensional, very sparse feature space is obtained. The proposed approach is
inductive and can handle complex data structures. Moreover, we proposed a new
scheme based on the aforementioned approach for mining interaction data orga-
nized as heterogeneous networks. Finally, we empirically evaluated the proposed
data representation using UCI datasets as well as more complex datasets repre-
senting interaction networks. The effectiveness of the approach was confirmed by
showing improved performance when a mining algorithm or data visualisation
step is applied on the obtained feature representation.

Possible topics for future research include the application of various machine
learning algorithms to the generated feature representation or the development
of an efficient weighing scheme, assigning a different weight to each tree-node
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of the ensemble. This way, the information contained in each generated feature
will be distilled.
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Abstract. In an era where accumulating data is easy and storing it
inexpensive, feature selection plays a central role in helping to reduce
the high-dimensionality of huge amounts of otherwise meaningless data.
In this paper, we propose a graph-based method for feature selection
that ranks features by identifying the most important ones into arbi-
trary set of cues. Mapping the problem on an affinity graph - where
features are the nodes - the solution is given by assessing the importance
of nodes through some indicators of centrality, in particular, the Eigen-
vector Centrality (EC). The gist of EC is to estimate the importance of
a feature as a function of the importance of its neighbors. Ranking cen-
tral nodes individuates candidate features, which turn out to be effective
from a classification point of view, as proved by a thoroughly experi-
mental section. Our approach has been tested on 7 diverse datasets from
recent literature (e.g., biological data and object recognition, among oth-
ers), and compared against filter, embedded and wrappers methods. The
results are remarkable in terms of accuracy, stability and low execution
time.

Keywords: Feature selection · Ranking · High dimensionality · Data
mining

1 Introduction

As data collection technologies advance and computer power grows, a torrent
of data is generated in almost every field computers are used [5]. Because the
volume, velocity, variety and complexity of datasets is continuously increasing,
pattern recognition methodologies have become indispensable in order to extract
useful information from huge amounts of otherwise meaningless data.

Feature Selection (FS) is one of the long existing methods that deals with
these problems [14]. Its objective is to select a minimal subset of those attributes
that allows a problem to be clearly defined. By choosing a minimal subset of fea-
tures, irrelevant and redundant features are removed according to some reason-
able criteria so that the original task can be achieved equally well, if not better.
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FS techniques can be partitioned into three classes [14]: wrappers (see Fig. 1),
which use classifiers to score a given subset of features; embedded methods (in
Fig. 3), which inject the selection process into the learning of the classifier; and
filter methods (see Fig. 2), which analyze intrinsic properties of data, ignoring
the classifier. Filters are also (relatively) robust against overfitting.

Most of these methods can perform two operations, ranking and subset selec-
tion: in the former, the importance of each individual feature is evaluated, usually
by neglecting potential interactions among the elements of the joint set [8]; in the
latter, the final subset of features to be selected is provided. In some cases, these
two operations are performed sequentially (first the ranking, then the selection)
[7,12,17,24,35]; in other cases, only the selection is carried out [13]. Usually,
the subset selection is supervised, while in the ranking case, methods can be
supervised or not. FS is NP-hard [14]; if there are n features in total, the goal is
to select the optimal subset of m � n, by evaluating

(
n
m

)
combinations; there-

fore, suboptimal search strategies are considered (see Sect. 2 for an overview).
With the filters, features are first considered individually, ranked, and then a
subset is extracted, some examples are Mutual Information [35], Relief-F [24],
Inf-FS [30,31] unsupervised and not [26], and mRMR [27]. Conversely, with
wrapper and embedded methods, subsets of features are sampled, evaluated,
and finally kept as the final output, for instance, FSV[7,12] and SVM-RFE [17].

In this work, we propose a novel graph-based feature selection algorithm
that ranks features according to a graph centrality measure (Eigenvector
centrality [6]). The main idea behind the method is to map the problem on an
affinity graph, and to model pairwise relationships among feature distributions
by weighting the edges connecting them.

The novelty of the proposed method in terms of the state of the art is that
it assigns a score of “importance” to each feature by taking into account all
the other features mapped as nodes on the graph, bypassing the combinatorial
problem in a methodologically sound fashion. Indeed, eigenvector centrality dif-
fers from other measurements (e.g., degree centrality) since a node - feature -
receiving many links does not necessarily have a high eigenvector centrality. The
reason is that not all nodes are equivalent, some are more relevant than others,
and, reasonably, endorsements from important nodes count more (see Sect. 3.2).
Noteworthy, another important contribution of this work is the scalability of the
method. Indeed, centrality measurements can be implemented using the Map
Reduce paradigm [20,23,34], which makes the algorithm prone to a possible
distributed version [29].

Our approach is extensively tested on 7 benchmarks of cancer classifica-
tion and prediction on genetic data (Colon [2], Prostate [11], Leukemia [11],
Lymphoma [11]), handwritten recognition (GINA [1]), generic feature selection
datasets (MADELON [15]), and object recognition (PASCAL VOC 2007 [9]). We
compare the proposed method on these data, while comparing it against seven
efficient approaches under different conditions (number of features selected and
number of training samples considered), overcoming all of them in terms of rank-
ing stability or classification accuracy.
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Finally, we provide an open and portable library of feature selection algo-
rithms, integrating the methods with uniform input and output formats to facil-
itate large scale performance evaluation. The Feature Selection Library (FSLib
Matlab Toolbox1) and interfaces are fully documented. The library integrates
directly with MATLAB, a popular language for machine learning and pattern
recognition research.

The rest of the paper is organized as follows. A brief overview of the related
literature is given in Sect. 2, mostly focusing on the comparative approaches
we consider in this work. Our feature selection algorithm is described in Sect. 3.
Graph construction and weighting are presented in Sects. 3.1 and 3.2 respectively,
while the employed Eigenvector centrality is discussed in Sect. 3.3. Section 4 con-
tains the experimental evaluations and results. Finally, conclusions are provided
in Sect. 6.

2 Related Work

Since the mid-1990s, few domains explored used more than 50 features. The sit-
uation has changed considerably in the past few years and most papers explore
domains with hundreds to tens of thousands of features. New approaches are
proposed to address these challenging tasks involving many irrelevant and redun-
dant cues and often comparably few training examples. Among the most used
FS strategies, Relief-F [24] is an iterative, randomized, and supervised approach
that estimates the quality of the features according to how well their values
differentiate data samples that are near to each other; it does not discriminate
among redundant features (i.e., may fail to select the most useful features),
and performance decreases with few data. Similar problems affect SVM-RFE
(RFE) [17], which is a wrapper method (see Fig. 1) that selects features in a
sequential, backward elimination manner, ranking high a feature if it strongly
separates the samples by means of a linear SVM.

Fig. 1. Wrapper models involve optimizing a predictor as part of the selection process.
They tend to give better results but filter methods are usually computationally less
expensive than wrappers.

1 The FSLib is publicly available on File Exchange - MATLAB Central at: https://it.
mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library.

https://it.mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library
https://it.mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library
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Fig. 2. Filter methods: the selection of features is independent of the classifier used.
They rely on the general characteristics of the training data to select features with
independence of any predictor.

Fig. 3. In embedded methods the learning part and the feature selection part can not
be separated.

Batti [4] has developed the Mutual Information-Based Feature Selection
(MIFS) criterion, where the features are selected in a greedy manner. Given a
set of existing selected features, at each step it locates the feature xi that max-
imizes the relevance to the class. The selection is regulated by a proportional
term β that measures the overlap information between the candidate feature and
existing features. In [36] the authors proposed a graph-based filter approach to
feature selection, that constructs a graph in which each node corresponds to each
feature, and each edge has a weight corresponding to mutual information (MI)
between features connected by that edge. This method performs dominant set
clustering to select a highly coherent set of features and then it selects features
based on the multidimensional interaction information (MII). Another effective
yet fast filter method is the Fisher method [13], it computes a score for a feature
as the ratio of interclass separation and intraclass variance, where features are
evaluated independently, and the final feature selection occurs by aggregating
the m top ranked ones. Other widely used filters are based on mutual informa-
tion, dubbed MI here [35], which considers as a selection criterion the mutual
information between the distribution of the values of a given feature and the
membership to a particular class. Mutual information provides a principled way
of measuring the mutual dependence of two variables, and has been used by a
number of researchers to develop information theoretic feature selection criteria.
Even in the last case, features are evaluated independently, and the final feature
selection occurs by aggregating the m top ranked ones. Maximum-Relevance
Minimum-Redundancy criterion (MRMR) [27] is an efficient incremental search
algorithm. Relevance scores are assigned by maximizing the joint mutual infor-
mation between the class variables and the subset of selected features. The com-
putation of the information between high-dimensional vectors is impractical, as
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the time required becomes prohibitive. To face this problem the mRMR pro-
pose to estimate the mutual information for continuous variables using Parzen
Gaussian windows. This estimate is based on a heuristic framework to minimize
redundancy and uses a series of intuitive measures of relevance and redundancy
to select features. Note, it is equivalent to MIFS with β = 1

n−1 , where n is
the number of features. Selecting features in unsupervised learning scenarios is
a much harder problem, due to the absence of class labels that would guide
the search for relevant information. In this scenario, we compare our approach
against the recent unsupervised graph-based filter dubbed Inf-FS [31]. In the
Inf-FS formulation, each feature is a node in the graph, a path is a selection
of features, and the higher the centrality score, the most important (or most
different) the feature. It assigns a score of “importance” to each feature by tak-
ing into account all the possible feature subsets as paths on a graph. Another
unsupervised method is the Laplacian Score (LS) [19], where the importance
of a feature is evaluated by its power of locality preserving. In order to model
the local geometric structure, this method constructs a nearest neighbor graph.
LS algorithm seeks those features that respect this graph structure. Finally, for
the embedded method (see Fig. 3), we include the feature selection via concave
minimization (FSV ) [7], where the selection process is injected into the training
of an SVM by a linear programming technique.

3 Proposed Method

3.1 Building the Graph

Given a set of features X = {x(1), . . . , x(n)} we build an undirected graph
G = (V,E); where V is the set of vertices corresponding, one by one, to each vari-
able x. E codifies (weighted) edges among features. Let the adjacency matrix A
associated with G define the nature of the weighted edges: each element aij of A,
1 ≤ i, j ≤ n, represents a pairwise potential term. Potentials can be represented
as a binary function ϕ(x(i), x(j)) of the nodes x(k) such as:

aij = ϕ(x(i), x(j)). (1)

The graph can be weighted according to different heuristics, therefore the
function ϕ can be handcrafted or automatically learned from data.

3.2 ϕ-Design

The design of the ϕ function is a crucial operation. In this work, we weight the
graph according to good reasonable criteria, related to class separation, so as
to address the classification problem. In other words, we want to rank features
according to how well they discriminate between two classes. Hence, we draw
upon best-practice in FS and propose an ensemble of two different measures
capturing both relevance (supervised) and redundancy (unsupervised) proposing



24 G. Roffo and S. Melzi

a kernelized-based adjacency matrix. Before continuing with the discussion, note
that each feature distribution x(i) is normalized so as to sum to 1.

Firstly, we apply the Fisher criterion:

fi =
|μi,1 − μi,2|2
σ2

i,1 + σ2
i,2

,

where μi,C and σi,C are the mean and standard deviation, respectively, assumed
by the i-th feature when considering the samples of the C-th class. The higher
fi, the more discriminative the i-th feature. However, a natural generalization
of this score into a multi-class framework is given by

fi =
∑C

c=1(μi,c − μi)2

σ2
i

where μi and σi denote the mean and standard deviation of the whole data set
corresponding to the i-th feature (i.e., σ2

i =
∑C

c=1(σi,c)2).
Because we are given class labels, it is natural that we want to keep only the

features that are related to or lead to these classes. Therefore, we use mutual
information to obtain a good feature ranking that score high features highly
predictive of the class.

mi =
∑

y∈Y

∑

z∈x(i)

p(z, y)log
( p(z, y)

p(z)p(y)

)
,

where Y is the set of class labels, and p(·, ·) the joint probability distribution.
A kernel k is then obtained by the matrix product

k = (f · m�),

where f and m are n × 1 column vectors normalized in the range 0 to 1, and k
results in a n × n matrix.

To boost the performance, we introduce a second feature-evaluation metric
based on standard deviation [17] – capturing the amount of variation or disper-
sion of features from average – as follows:

Σ(i, j) = max
(
σ(i), σ(j)

)
,

where σ being the standard deviation over the samples of x, and Σ turns out to
be a n × n matrix with values ∈ [0,1].

Finally, the adjacency matrix A of the graph G is given by

A = αk + (1 − α)Σ, (2)

where α is a loading coefficient ∈ [0,1]. The generic entry aij accounts for how
much discriminative are the feature i and j when they are jointly considered;
at the same time, aij can be considered as a weight of the edge connecting the
nodes i and j of a graph, where the i-th node models the i-th feature distribution
(we report the sketch of our method in Algorithm1).
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Algorithm 1. Eigenvector Centrality Feature Selection (EC-FS)
Input: X = {x(1), ..., x(n)} , Y = {y(1), ..., y(n)}
Output: v0 ranking scores for each feature

- Building the graph
C1 positive class, C2 negative class
for i = 1 : n do

Compute μi,1, μi,2, σi,1, and σi,2

Fisher score: f(i) =
(μi,1−μi,2)

2

σ2
i,1+σ2

i,2

Mutual Information: m(i) =
∑

y∈Y

∑
z∈x(i) p(z, y)log

(
p(z,y)

p(z)p(y)

)

end for
for i = 1 : n do

for j = 1 : n do
k(i, j) = f(i)m(j),

Σ(i, j) = max
(
σ(i), σ(j)

)
,

A(i, j) = αk(i, j) + (1 − α)Σ(i, j)
end for

end for
- Ranking
Compute eigenvalues {Λ} and eigenvectors {V } of A
λ0 = max

λ∈Λ
(abs(λ))

return v0 the eigenvector associated to λ0

3.3 Eigenvector Centrality

From a graph theory perspective identifying the most important nodes corre-
sponds to individuate some indicators of centrality within a graph (e.g., the
relative importance of nodes). A first way used in graph theory is to study
accessibility of nodes, see [10,28] for example. The idea is to compute Al for
some suitably large l (often the diameter of the graph), and then use the row
sums of its entries as a measure of accessibility (i.e. scores(i) = [Ale]i, where e
is a vector with all entries equal to 1). The accessibility index of node i would
thus be the sum of the entries in the i-th row of Al, and this is the total number
of paths of length l (allowing stopovers) from node i to all nodes in the graph.
One problem with this method is that the integer l seems arbitrary. However,
as we count longer and longer paths, this measure of accessibility converges to
a index known as eigenvector centrality measure (EC) [6].

The basic idea behind the EC is to calculate v0 the eigenvector of A associated
to the largest eigenvalue. Its values are representative of how strongly each node
is connected to the other nodes. Since the limit of Al as l approaches a large
positive number L converges to v0,

lim
l→L

[Ale] = v0, (3)

the EC index makes the estimation of indicators of centrality free of manual
tuning over l, and computationally efficient.
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Let us consider a vector, for example e, that is not orthogonal to the principal
vector v0 of A. It is always possible to decompose e using the eigenvectors as
basis with a coefficient β0 �= 0 for v0. Hence:

e = β0v0 + β1v1 + . . . + βnvn, (β0 �= 0). (4)

Then

Ae = A(β0v0 + β1v1 + . . . + βnvn) = β0Av0 + β1Av1 + . . . + βnAvn

= β0λ0v0 + β1λ1v1 + . . . + βnλnvn.
(5)

So in the same way:

Ale=Al(β0v0+β1v1+. . .+βnvn) = β0A
lv0 + β1A

lv1 + . . . + βnAlvn

= β0λ
l
0v0 + β1λ

l
1v1+. . .+βnλl

nvn, (β0 �= 0).
(6)

Finally we divide by the constant λl
0 �= 0 (see Perron-Frobenius theorem [25]),

Ale
λl
0

= β0v0 +
λl
1β1v1
λl
0

+ . . . +
λl

nβnvn

λl
0

, (β0 �= 0). (7)

The limit of Ale
λl
0

as l approaches infinity equals β0v0 since liml→∞
λl
1

λl
0

= 0, ∀l > 0.
What we see here is that as we let l increase, the ratio of the components of
Ale converges to v0. Therefore, marginalizing over the columns of Al, with a
sufficiently large l, corresponds to calculate the principal eigenvector of matrix
A [6]. Figure 4 illustrates a toy example of three random planar graphs. Graphs
are made of 700 nodes and they are weighted by the Euclidean distance between
each pair of points. In the example, high scoring nodes are those ones farther
from the mean (i.e., the distance is conceived as quantity to maximize), the
peculiarity of the eigenvector centrality is that a node is important if it is linked
to by other important nodes (higher scores).

Fig. 4. Eigenvector centrality plots for three random planar graphs. On the left, a sim-
ple Gaussian distribution where central nodes are at the peripheral part of the distrib-
ution as expected. The central and right plots, some more complicated distributions, a
node receiving many links does not necessarily have a high eigenvector centrality. Best
viewed in color.
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To the aim of this work, the use of eigenvector centrality allows to individuate
candidate features, which turn out to be effective from a classification point of
view, since indicators of centrality characterize the global (as opposed to local)
prominence of a feature in the graph. Summarizing, the gist of eigenvector cen-
trality is to compute the centrality of a node as a function of the centralities of
its neighbors.

4 Experiments and Results

4.1 Datasets and Comparative Approaches

The datasets are chosen for letting the proposed method deal with diverse FS
scenarios, as shown on Table 1. In the details, we consider the problems of dealing
with few training samples and many features (few train in the table), unbalanced
classes (unbalanced), or classes that severely overlap (overlap), or whose samples
are noisy (noise) due to: (a) complex scenes where the object to be classified is
located (as in the VOC series) or (b) many outliers (as in the genetic datasets,
where samples are often contaminated, that is, artefacts are injected into the
data during the creation of the samples). Lastly we consider the shift problem,
where the samples used for the test are not congruent (coming from the same
experimental conditions) with the training data.

Table 1. This table reports several attributes of the datasets used. The abbreviation
n.s. stands for not specified (for example, in the object recognition datasets, the features
are not given in advance).

Name # samples # classes # feat. few train unbal. (+/−) overlap noise shift

GINA [1] 3153 2 970 X

MADELON [16] 4.4K 2 500 X

Colon [2] 62 2 2K X (40/22) X

Lymphoma [11] 45 2 4026 X (23/22)

Prostate [33] 102 2 6034 X (50/52)

Leukemia [11] 72 2 7129 X (47/25) X X

VOC 2007 [9] 10K 20 n.s X X

Table 2 lists the methods in comparison, whose details can be found in Sect. 2.
Here we just note their type, that is, f = filters, w = wrappers, e = embedded
methods, and their class, that is, s = supervised or u = unsupervised (using or
not using the labels associated with the training samples in the ranking oper-
ation). Additionally, we report their computational complexity (if it is docu-
mented in the literature). The computational complexity of our approach is
O(Tn + n2).

The term Tn is due to the computation of the mean values among the T
samples of every feature (n). The n2 concerns the construction of the matrix A.
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Table 2. List of the FS approaches considered in the experiments, specified according
to their Type, class (Cl.), and complexity (Compl.). As for the complexity, T is the
number of samples, n is the number of initial features, K is a multiplicative constant,
i is the number of iterations in the case of iterative algorithms, and C is the number
of classes. N/A indicates that the computational complexity is not specified in the
reference paper.

Acronym Type Cl Compl.

Fisher [13] f s O(Tn)

FSV [7,12] e s N/A

Inf-FS [31] f u O(n2.37(1 + T ))

MI [35] f s ∼O(n2T 2)

LS [19] f u N/A

Relief-F [24] f s O(iTnC)

RFE [17] w/e s O(T 2nlog2n)

Ours f s O(Tn + n2)

As for the computation of the leading eigenvector, it costs O(m2n), where m is
a number much smaller than n that is selected within the algorithm [22]. In the
case that the algorithm can not be executed on a single computer, we refer the
reader to [20,23,29,34] for distributed algorithms.

4.2 Exp. 1: Deep Representation (CNN) with Pre-training

This section proposes a set of tests on the PASCAL VOC-2007 [9] dataset. In
object recognition VOC-2007 is a suitable tool for testing models, therefore, we
use it as reference benchmark to assess the strengths and weaknesses of using
our approach regarding the classification task. For this reason, we compare our
approach against 8 state-of-the-art FS methods reported in Table 2. This exper-
iment considers as features the cues extracted with a deep convolutional neural
network architecture (CNN). We selected the pre-trained model called very deep
ConvNets [32], which performs favorably to the state of the art for classification
and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRC). We use the 4,096-dimension activations of the last layer as image
descriptors (i.e., 4,096 features in total). The VOC-2007 edition contains about
10,000 images split into train, validation, and test sets, and labeled with twenty
object classes. A one-vs-rest SVM classifier for each class is learnt (where cross-
validation is used to find the best parameter C and α mixing coefficient in Eq. 2
on the training data) and evaluated independently and the performance is mea-
sured as mean Average Precision (mAP) across all classes.

Table 3 serves to analyze and empirically clarify how well important features
are ranked high by several FS algorithms. The amount of features used for the
two experiments is very low: ≈3% and ≈6% of the total. The results are sig-
nificant: our method achieved the best performance in terms of mean average
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Table 3. Varying the cardinality of the selected features. The image classification
results achieved in terms of average precision (AP) scores while selecting the first 128
(3%) and 256 (6%) features from the total 4, 096.

PASCAL VOC 2007
First 128/4096 Features Selected First 256/4096 Features Selected

Fisher FSV Inf-FS LS MI ReliefF RFE Ours Fisher FSV Inf-FS LS MI ReliefF RFE Ours

52.43 87.90 88.96 89.37 12.84 57.20 86.42 88.09 82.65 90.22 91.16 90.94 73.51 81.67 88.17 90.79

13.49 80.74 80.43 80.56 13.49 49.10 82.14 80.94 83.21 80.07 83.36 84.21 75.04 71.27 83.30 84.72

85.46 86.77 87.04 86.96 80.91 75.42 83.16 88.74 89.14 86.15 88.88 89.31 85.48 83.54 86.12 89.15

79.04 83.58 85.31 83.51 61.50 63.75 78.55 86.90 87.05 80.68 87.24 87.84 75.25 73.30 86.13 87.42

46.61 39.80 44.83 49.36 35.39 18.33 46.24 47.37 52.54 49.00 52.65 49.44 48.94 35.67 47.28 53.20

12.29 72.89 76.69 76.98 12.29 31.54 74.68 76.27 77.32 78.69 79.23 79.97 59.23 63.83 79.38 80.57

82.09 78.61 85.78 85.82 63.58 74.95 83.94 85.92 85.86 84.01 86.74 87.06 85.27 82.76 85.61 86.56

75.29 82.25 83.34 81.81 40.96 66.95 81.02 83.29 83.46 83.49 85.61 84.98 79.16 76.78 84.50 85.57

54.81 52.37 58.62 60.07 16.95 29.07 59.84 60.57 63.14 62.54 63.93 64.23 63.20 48.19 62.16 64.53

47.98 61.68 59.23 65.50 11.42 11.42 62.96 60.55 66.51 70.18 67.96 71.54 22.96 51.28 64.20 69.71

49.68 63.50 67.69 63.86 12.62 12.62 67.05 67.70 68.42 69.27 71.78 71.01 65.77 52.24 71.43 70.95

81.06 80.57 83.16 83.21 70.70 68.12 80.07 83.00 84.24 84.15 85.08 85.20 82.03 74.85 83.52 85.20

74.91 83.33 81.23 81.75 14.13 63.06 81.55 82.79 85.68 83.13 85.28 85.41 71.36 75.53 83.47 85.28

13.18 71.42 81.32 80.24 13.18 34.43 76.57 82.20 84.29 81.16 84.20 83.81 81.01 70.68 82.97 84.12

91.33 90.03 89.10 89.33 91.08 88.85 89.03 91.27 91.95 89.99 90.65 90.64 91.77 90.38 90.64 91.99

47.89 39.40 45.38 47.94 13.23 13.30 48.61 49.05 54.94 47.95 53.86 54.31 48.98 34.74 50.18 55.88

10.87 68.82 73.35 74.05 10.87 10.87 66.86 73.80 73.43 75.84 79.01 81.57 10.87 11.73 75.47 78.85

45.87 56.08 58.94 58.92 13.30 13.31 62.06 61.32 66.46 59.77 63.07 63.92 58.78 44.74 66.68 64.86

63.51 88.52 91.42 91.48 58.62 73.32 88.46 91.30 84.05 90.61 93.21 93.16 81.33 82.93 90.24 92.31

64.29 65.61 66.79 62.99 47.25 24.96 67.10 67.30 71.44 69.19 70.56 70.75 71.39 55.59 73.17 72.49

54.60 71.69 74.43 74.69 34.72 44.03 73.32 75.42 76.79 75.80 78.17 78.47 66.57 63.09 76.73 78.71

precision (mAP) followed by the unsupervised filter methods LS and Inf-FS. As
for the methods in comparison, one can observe the high variability in classifi-
cation accuracy; indeed, results show that our method is robust to classes (i.e.,
by changing the testing class its performance is always comparable with the top
scoring method).

4.3 Exp. 2: Testing on Microarray Databases

In application fields like biology is inconceivable to devise an analysis procedure
which does not comprise a FS step. A clear example can be found in the analysis
of expression microarray data, where the expression level of thousands of genes
is simultaneously measured. Within this scenario, we tested the proposed app-
roach on four well-known microarray benchmark datasets for two-class problems.
Results are reported in Table 4. The testing protocol adopted in this experiment
consists in splitting the dataset up to 2/3 for training and 1/3 for testing. In
order to have a fair evaluation, the feature ranking has been calculated using only
the training samples, and then applied to the testing samples. The classification
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is performed using a linear SVM. For setting the best parameters (C of the linear
SVM, and α mixing coefficient) we used a 5-fold cross validation on the training
data. This procedure is repeated several times and results are averaged over the
trials. Results are reported in terms of the Receiver Operating Characteristic or
ROC curves. A widely used measurement that summarizes the ROC curve is the
Area Under the ROC Curve (AUC) [3] which is useful for comparing algorithms
independently of application. Hence, classification results for the datasets used
show that the proposed approach produces superior results in all the cases. The
overall performance indicates that our approach is more robust than the others,
by changing the data it still produces high quality rankings.

Table 4. The tables show results obtained on the expression microarray scenario. Tests
have been repeated 100 times, and the means of the computed AUCs are reported for
each dataset.

Microarray databases

Colon Leukemia

# Features # Features

Method 50 100 150 200 Average Time 50 100 150 200 Average Time

Fisher-S 91.25 88.44 89.38 87.81 89.22 0.02 99.33 99.78 99.78 99.78 99.66 0.01

FSV 85.00 88.12 89.38 89.69 88.04 0.18 98.22 98.44 99.11 99.33 98.77 0.37

Inf-FS 88.99 89.41 89.32 89.01 89.18 0.91 99.91 99.92 99.97 99.98 99.95 5.49

LS 90.31 89.06 89.38 90.00 89.68 0.03 98.67 99.33 99.56 99.56 99.28 0.07

MI 89.38 90.31 90.63 90.94 90.31 0.31 99.33 99.33 99.56 99.33 98.38 0.21

ReliefF 80.94 84.38 85.94 87.50 84.69 0.52 99.56 99.78 99.78 99.78 99.72 1.09

RFE 89.06 85.00 86.88 85.62 86.64 0.18 100 99.78 99.56 99.78 99.78 0.14

EC-FS 91.40 91.10 91.11 90.63 91.06 0.45 99.92 99.92 99.77 99.85 99.86 1.50

Lymphoma Prostate

# Features # Features

Method 50 100 150 200 Average Time 50 100 150 200 Average Time

Fisher-S 98.75 98.38 98.38 100 98.87 0.01 96.10 96.20 96.30 97.30 96.47 0.02

FSV 98.22 98.44 99.11 99.33 98.77 0.18 96.70 96.70 96.50 96.30 96.55 0.63

Inf-FS 98.12 98.75 98.75 99.38 98.75 7.61 96.80 96.90 97.10 96.70 96.87 26.85

LS 90.00 96.88 99.38 98.75 96.25 0.04 85.80 94.60 96.90 97.00 93.57 0.24

MI 97.50 98.75 99.38 99.38 98.75 0.59 96.00 96.90 96.00 96.20 96.27 1.01

ReliefF 96.80 97.00 98.80 98.80 97.85 0.74 92.72 93.46 93.62 93.85 93.41 2.68

RFE 96.00 98.00 98.80 99.00 97.95 0.02 93.40 96.40 97.10 96.32 95.80 0.3

EC-FS 99.40 99.20 99.60 99.20 99.20 1.50 96.28 96.90 96.80 98.10 97.02 2.81

The quality of a feature subset is measured by an estimate of the classifica-
tion accuracy of a chosen classifier trained on the candidate subset. Stability of
the ranking is an important aspect when the task is knowledge discovery. The
rationale behind this fact is that the estimate of the quality of the candidate
subsets usually depends on many the training/testing split of the data. There-
fore different sequences of features may be returned from repeated runs of FS
approaches. In such a case, it is important to define if these numerous different
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subsets of features have approximately equal quality, otherwise presenting the
user with only one subset may be misleading. We assessed the stability of the
selected features using the Kuncheva index [21]. This stability measure repre-
sents the similarity between the set of rankings generated over the different splits
of the dataset. The similarity between sequences of size N can be seen as the
number of elements n they have in common (i.e. the size of their intersection).
The Kuncheva index takes values in [−1, 1], and the higher its value, the larger
the number of commonly selected features in both sequences. The index is shown
in Fig. 5, comparing our approach and the other methods. A valid alternative is
the stability index based on Jensen-Shannon Divergence DJS , proposed by [18],
with a [0, 1] range, where 0 indicates completely random rankings and 1 means
stable rankings. Unlike Kuncheva measure, this metric is suitable for different
algorithm outcomes: partial sublists (top-k lists) as well as the least studied par-
tial ranked lists. Since in our case we work with full ranked lists, because all
the feature selection algorithms considered in this study produce permutations
of the original set of features, we preferred the widely used Kuncheva index.
The proposed method shows, in most of the cases, a high stability whereas the
highest performance is achieved.
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Fig. 5. The Kuncheva stability indices for each method in comparison are presented.
The figure reports the stability while varying the cardinality of the selected features
from 10 to 200 on different benchmarks.
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4.4 Exp. 2: Other Benchmarks

GINA has sparse input variables consisting of 970 features. It is a balanced data
set with 49.2% instances belonging to the positive class. Results obtained on
GINA indicate that the proposed approach overcomes the methods in compari-
son, and select the most useful features from a data set with high-complexity and
dimensionality. MADELON is an artificial dataset, which was part of the NIPS
2003 feature selection challenge. It represents a two-class classification problem
with continuous input variables. The difficulty is that the problem is multivariate
and highly non-linear. Results are reported in Table 5. This gives a proof about
the classification performance of our approach that is attained on the test sets
of GINA and MADELON.

Table 5. Varying the cardinality of the selected features. (ROC) AUC (%) on different
datasets by SVM classification. Performance obtained with the first 50, 100, 150, and
200 features.

FS challenge datasets

GINA - handwritten recognition MADELON - artificial data

# Features # Features

Method 50 100 150 200 Average Time 50 100 150 200 Average Time

Fisher-S 89.8 89.4 90.2 90.4 89.9 0.05 61.9 63.0 62.3 64.0 62.5 0.02

FSV 81.9 83.7 82.0 83.6 82.7 138 59.9 60.6 61.0 61.0 60.7 732

Inf-FS 89.0 88.7 89.1 89.0 88.9 41 62.6 63.8 65.4 60.8 63.2 0.04

LS 82.2 82.4 83.4 83.2 82.7 1.30 62.8 62.9 63.3 64.7 63.4 8.13

MI 89.3 89.7 89.8 90.1 89.6 1.13 63.0 63.7 63.5 64.7 63.6 0.4

ReliefF 77.9 76.3 77.3 76.9 77.2 0.12 62.9 63.1 63.2 64.9 63.5 10.41

RFE 82.2 82.4 83.4 83.2 82.7 6.60 55.0 61.2 57.1 60.2 56.5 50163

EC-FS 90.9 90.3 90.4 89.5 90.3 1.56 63.6 63.8 63.7 63.3 63.7 0.57

FS techniques definitely represent an important class of preprocessing tools,
by eliminating uninformative features and strongly reducing the dimension of
the problem space, it allows to achieve high performance, useful for practical
purposes in those domains where high speed is required.

5 Reliability and Validity

In order to assess if the difference in performance is statistically significant, t-
tests have been used for comparing the accuracies. Statistical tests are used to
determine if the accuracies obtained with the proposed approach are significantly
different from the others (whereas both the distribution of values were normal).
The test for assessing whether the data come from normal distributions with
unknown, but equal, variances is the Lilliefors test. Results have been obtained
by comparing the results produced by each method over 100 trials (at each
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trial corresponds a different split of the data). Given the two distributions xp of
the proposed method and xc of the current competitor, of size 1 × 100, a two-
sample t-test has been applied obtaining a test decision for the null hypothesis
that the data in vectors xp and xc comes from independent random samples
from normal distributions with equal means and equal but unknown variances.
Results (highlighted in Tables 4 and 5) show a statistical significant effect in
performance (p-value < 0.05, Lilliefors test H = 0).

6 Conclusion

In this paper we present the idea of solving feature selection via the Eigenvector
centrality measure. We design a graph – where features are the nodes – weighted
by a kernelized adjacency matrix, which draws upon the best-practice in fea-
ture selection while assigning scores according to how well features discriminate
between classes. The method (supervised) estimates some indicators of centrality
identifying the most important features within the graph. The results are remark-
able: the proposed method has been extensively tested on 7 different datasets
selected from different scenarios (i.e., object recognition, handwritten recogni-
tion, biological data, and synthetic testing datasets), in all the cases we achieve
top performances against 7 competitors selected from recent literature in feature
selection. Our approach is also robust and stable on different splits of the training
data, it performs effectively in ranking high the most relevant features, and it has
a very competitive complexity. This study also points to many future directions;
focusing on the investigation of different implementations for parallel computing
for big data analysis or focusing on the investigation of different relations among
the features. Finally, we provide an open and portable library of feature selec-
tion algorithms, integrating the methods with uniform input and output formats
to facilitate large scale performance evaluation. The Feature Selection Library
(FSLib is available on Matlab F ile Exchange at https://goo.gl/bvg1ha) and
interfaces are fully documented. The library integrates directly with MATLAB,
a popular language for machine learning and pattern recognition research.
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Abstract. With the rapid growth of available data, learning models are
also gaining in sizes. As a result, end-users are often faced with classi-
fication results that are hard to understand. This problem also involves
rule-based classifiers, which usually concentrate on predictive accuracy
and produce too many rules for a human expert to interpret. In this
paper, we tackle the problem of pruning rule classifiers while retain-
ing their descriptive properties. For this purpose, we analyze the use
of confirmation measures as representatives of interestingness measures
designed to select rules with desirable descriptive properties. To perform
the analysis, we put forward the CM-CAR algorithm, which uses interest-
ingness measures during rule pruning. Experiments involving 20 datasets
show that out of 12 analyzed confirmation measures c1, F , and Z are
best for general-purpose rule pruning and sorting. An additional analysis
comparing results on balanced/imbalanced and binary/multi-class prob-
lems highlights also N , S, and c3 as measures for sorting rules on binary
imbalanced datasets. The obtained results can be used to devise new
classifiers that optimize confirmation measures during model training.

Keywords: Rule classifiers · Interestingness measures · Bayesian con-
firmation · Rule pruning

1 Introduction

Recent years have seen the rise of such terms as big data and data science, which
brought many machine learning and data mining methods to public attention.
This growing popularity of pattern mining methods results in numerous practical
applications, such as healthcare, online education, social network analysis, or
smart houses [18,20]. Many of these applications involve cooperation with human
experts, who often have to understand not only direct algorithm results, but also
entire learning models.

Arguably the most studied data mining task is classification [18]. Various
types of classifiers have been developed over the years, however rules are contin-
uously regarded as one of the most popular approaches to practical applications
involving non-data-mining experts. It is due to the symbolic form of rules, which

c© Springer International Publishing AG 2017
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makes them comprehensible. Thus, when both pattern usage and understanding
are key goals, rules are a common form of knowledge representation.

Nevertheless, in most studies data miners tend to focus solely on the predic-
tive performance of learning models [2,6,13]. This is also the case of rule mining.
As a result, the descriptive value that rules can carry is often neglected. Unques-
tionably, a compilation of good predictive and descriptive abilities of a classifier is
sought for in many applications. Preferably, these abilities should also be accom-
panied by a compact representation. In particular, for rule-based classifiers this
requirement can be achieved by limiting the number of rules, since otherwise
the set of rules could exceed the human-expert’s understanding capabilities. For
example, in medical applications, doctors are usually interested in a reduced set
of rules that describes the patients well and offers good predictions [26].

The evaluation and, thus, pruning of rule sets is usually done by interesting-
ness measures; for a survey see e.g. [14,24]. In classification, these measures are
used to improve the predictive performance of learning models, often neglecting
the descriptive value of each rule. Nonetheless, many interestingness measures
were designed especially for evaluating the descriptive properties of rules. In
particular, Bayesian confirmation measures [12] constitute a group of measures
that quantify the degree with which the rule’s premise supports the conclusion.
Confirmation measures obtain positive values only when the premise widens our
knowledge about the conclusion, thus, they allow to swiftly choose meaningful
rules and filter out the misleading ones. Additionally, the usefulness of confirma-
tion measures in the descriptive context has been depicted with many desirable
properties they possess [7,12,15,16].

In this paper, we analyze the impact of using confirmation measures in rule-
based classification. For this purpose, we put forward the CM-CAR algorithm,
which uses confirmation measures to sort and prune a list of rules. As a result,
the proposed algorithm is capable of producing a concise set of descriptive rules,
while retaining high predictive performance. Summarizing, the main contribu-
tions of this paper are as follows:

– the analysis of interestingness measures with good descriptive properties in
the context of predictive classification problems;

– the proposal of the CM-CAR algorithm for discovering and pruning decision
rules with high confirmation;

– a comprehensive series of experiments analyzing 12 Bayesian confirmation
measures for sorting and pruning rule lists.

The remainder of this paper is organized as follows. Section 2 provides basic
notation, definitions, reviews Bayesian confirmation measures, and discusses
related works. Section 3 presents the CM-CAR algorithm. In Sect. 4, we discuss
experimental results, which demonstrate the properties of the analyzed mea-
sures. Finally, Sect. 5 concludes the paper and draws lines of future research.
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2 Preliminaries and Related Works

Among various knowledge representations, patterns in the form of rules are
known and appreciated for their high comprehensibility and interpretability.
Such form of knowledge representation is often found easy to understand and
use by decision makers.

Rules are usually induced from a dataset being a set of objects characterized
by a set of attributes. Rules are consequence relations, denoted as E → H
(“if E then H”), between the condition E and conclusion H formulas built from
attribute-value pairs. The condition formulas are called the premise (or evidence)
and the conclusion formulas are referred to as the conclusion (or hypothesis) of
the rule. If the set of attributes that can occur in the conclusion is limited to a
predefined class attribute, then the rule is regarded as a decision rule.

The evaluation of the quality and utility of rules induced from data is most
commonly done by means of interestingness measures, which quantify the rela-
tionship between E and H. In the context of a particular dataset, interestingness
measures can be usually defined on the basis of four non-negative values: a, b, c
and d, briefly represented in Table 1.

Table 1. An exemplary contingency table of the rule’s premise and conclusion

H ¬H Σ

E a c a + c

¬E b d b + d

Σ a + b c + d n

The number of objects in a dataset that satisfy both the rule’s premise and
conclusion is quantified by a. The number of objects for which the premise is
not satisfied, but the conclusion is, will be denoted by b, etc. This notation can
be effectively used for defining such interestingness measures as, for example,
confidence: conf (H,E) = a/(a + c) or support: sup(H,E) = a.

In this paper we focus on a particular group of interestingness measures
that are referred to as Bayesian confirmation measures (or simply confirmation
measures). Their common feature is that they obtain:

– positive values when P (H|E) > P (H),
– 0 when P (H|E) = P (H),
– negative values when P (H|E) < P (H).

Observe that the notation based on a, b, c, and d can also be used to estimate
probabilities, e.g. P (H) = (a+b)/n or P (H|E) = a/(a+c). Thus, the conditions
that a confirmation measure, denoted as cm(H,E), must satisfy can be expressed
as follows:

cm(H,E)

⎧
⎨

⎩

> 0 when a
a+c > a+b

n ,

= 0 when a
a+c = a+b

n ,

< 0 when a
a+c < a+b

n .

(1)
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Thus, confirmation measures quantify the degree to which E provides support
for or against H [12].

Due to the fact that the above conditions do not favor any single measure
as the most adequate, there are many alternative, ordinally non-equivalent mea-
sures of confirmation [7,12]. Definitions of 12 popular confirmation measures are
listed in Table 2.

Table 2. Popular confirmation measures

D(H, E) = P (H|E) − P (H) =
a

a + c
− a + b

n
=

ad − bc

n(a + c)
[11]

M(H, E) = P (E|H) − P (E) =
a

a + b
− a + c

n
=

ad − bc

n(a + b)
[25]

S(H, E) = P (H|E) − P (H|¬E) =
a

a + c
− b

b + d
=

ad − bc

(a + c)(b + d)
[5]

N(H, E) = P (E|H) − P (E|¬H) =
a

a + b
− c

c + d
=

ad − bc

(a + b)(c + d)
[27]

C(H, E) = P (E ∧ H) − P (E)P (H) =
a

n
− (a + c)(a + b)

n2
=

ad − bc

n2
[3]

F (H, E) =
P (E|H) − P (E|¬H)

P (E|H) + P (E|¬H)
=

a

a + b
− c

c + d
a

a + b
+

c

c + d

=
ad − bc

ad + bc + 2ac
[21]

Z(H, E) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − P (¬H|E)

P (¬H)
=

ad − bc

(a + c)(c + d)
in case of confirmation

P (H|E)

P (H)
− 1 =

ad − bc

(a + c)(a + b)
in case of disconfirmation

[7]

A(H, E) =

⎧
⎪⎪⎨

⎪⎪⎩

P (E|H) − P (E)

1 − P (E)
=

ad − bc

(a + b)(b + d)
in case of confirmation

P (H) − P (H|¬E)

1 − P (H)
=

ad − bc

(b + d)(c + d)
in case of disconfirmation

[16]

c1(H, E) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α + βA(H, E) in case of confirmation when c = 0

αZ(H, E) in case of confirmation when c > 0

αZ(H, E) in case of disconfirmation when a > 0

−α + βA(H, E) in case of disconfirmation when a = 0

[16]

c2(H, E) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α + βZ(H, E) in case of confirmation when b = 0

αA(H, E) in case of confirmation when b > 0

αA(H, E) in case of disconfirmation when d > 0

−α + βZ(H, E) in case of disconfirmation when d = 0

[16]

c3(H, E) =

{
A(H, E)Z(H, E) in case of confirmation

−A(H, E)Z(H, E) in case of disconfirmation
[16]

c4(H, E) =

{
min(A(H, E), Z(H, E)) in case of confirmation

max(A(H, E), Z(H, E)) in case of disconfirmation
[16]

The selected confirmation measures obtain values ranging from −1 to +1,
except for measures D(H,E) and M(H,E), whose values approach −1 or +1
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only for n approaching +∞. Moreover, measure C(H,E) originally obtains val-
ues from −1/4 to +1/4 (regardless of n), so a simple linear transformation (a
multiplication by 4) has been introduced and all further results concern the
transformed C(H,E). For brevity and clarity of presentation, the definitions
of measures Z(H,E), A(H,E), c1(H,E), c2(H,E), c3(H,E) and c4(H,E) in
Table 2 omit the situation of neutrality, in which the measures default to 0.
Moreover, measures c1(H,E) and c2(H,E) have been computed for the values
of α = β = 1/2.

Our interest in confirmation measures results mostly from their valuable scale
semantics. Notice, how easy it is to filter out misleading rules (i.e., those for which
the premise actually disconfirms the conclusion) only by observing the value of
the measure. Especially when working with imbalanced data, it is important not
to give credit to rules in which the probability of the conclusion given the premise
is smaller than the genuine probability of the conclusion itself. Nevertheless
not all popular interestingness measures depict such situations, e.g. confidence,
support. That is why, we direct our interest to confirmation measures. They have
been widely studied as measures in single-rule evaluation [7,12,16] for descriptive
purposes, neglecting however their potential usefulness in classifiers. Thus, our
experimental study intentionally focuses only on confirmation measures, which in
our opinion should gain in popularity in the context of rule-based classification.

Although classical approaches to rule classification concentrate on predic-
tive performance and rule coverage [6,9,13,28], there have already been stud-
ies on using interestingness measures in rule-based classification. The algorithm
that particularly inspired our work is CBA [23]. The Classification Based on
Associations (CBA) algorithm is based on applying association rule induction
approaches to finding classification rules. In CBA the classifier construction
process starts by generating association rules characterized by minimal support.
Next, the obtained associations are transformed to classification rules by select-
ing only those rules where the conclusion is the class attribute. Furthermore,
these classification rules are filtered and limited only to those with confidence
equal or greater than a user-defined threshold. Finally, the set of rules is ordered
on the basis of their confidence, support, and length.

Other attempts to use frequent patterns/association rules in classification
include the CAEP classifier [10], which is based on emerging patterns. Emerg-
ing patterns are defined as patterns whose supports increase significantly from
one class to another and, as the CAEP method shows, prove to work well even
with high dimensional problems [10]. Among more recent proposals, Ceci and
Appice [4] focus on propositional and structural approaches to spatial classifica-
tion in multi-relational data mining. This work also studies an associative clas-
sification framework, one that employs spatial association rules. Nevertheless,
none of the cited works investigates the use of Bayesian confirmation measures,
which are the main focus of this paper.
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3 The CM-CAR Algorithm

In this paper, we analyze the potential of using confirmation measures in classi-
fication. However, existing rule classifiers [6,9,13,28] try to optimize accuracy or
instance coverage rather than the descriptive value of the created rules. There-
fore, we put forward a new algorithm called Confirmation Measure Class Asso-
ciation Rules (CM-CAR), which creates a user-defined number of decision rules
based on Bayesian confirmation measures. The pseudocode of CM-CAR is pre-
sented in Algorithm 1.

Algorithm 1. CM-CAR
Input: D: data set, minsup: minimal support, k: number of rules, C: class attribute,
Qs: ordered set of sorting measures, Qp: ordered set of pruning measures
Output: CAR: decision rule list of length k
1: CAR ← ∅
2: L ← itemsets with support ≥ minsup � Find frequent associations
3: for all subsets lk of itemsets l ∈ L do � Create decision rules
4: if l − lk = {C} then
5: r ← decision rule lk → C
6: CAR ← CAR ∪ r
7: Sort CAR according to Qs � Create decision list
8: Leave in CAR k-best rules according to Qp � Prune decision list

First, the CM-CAR algorithm finds frequent itemsets. For this purpose we
use the Apriori algorithm [1], however, in practice any frequent itemset mining
algorithm could be used. Next, CM-CAR creates decision rules based on those
frequent sets that contain the class attribute C. Finally, two sets of interesting-
ness measures, Qs and Qp, are used to sort and filter the rules, respectively. As
its classification model, the algorithm outputs a list of k decision rules, where k
is a user-defined value.

CM-CAR can be considered a generalization of the CBA algorithm proposed
by Liu et al. [23], where instead of using support and confidence, we use arbitrary
interestingness measures to create a list of rules. As in the CBA algorithm, the
time performance of CM-CAR depends mostly on the frequent pattern mining
phase which has a complexity of O(2n), n being the dataset size.

It is worth noting that the proposed algorithm uses two sets of measures
for two distinct purposes. Qs is a set of measures that order the rules and,
therefore, decide which rule is used if more than one rule covers an example. If
Qs = {sup, conf }, rules are sorted according to their support and then, in case
of ties, confidence. On the other hand, Qp prunes the sorted rules. For example,
if Qp = {S,N} then the rule list is limited to k best rules according to measure
S and, in case of ties, N .

With two separate sets of measures, CM-CAR is capable of dividing the
responsibility for the predictive (Qs) and descriptive (Qp) properties of its clas-
sification model. In the following section, we use this feature to compare various
confirmation measures in a series of experiments.
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4 Experimental Study

The goal of this paper is to perform a comparison of confirmation measures. For
this purpose, we use the CM-CAR algorithm with varying values of Qs and Qp.
The use of other rule-based classifiers is out of the scope of this study.

The experiments are divided into two groups. In the first group, we are
interested in assessing confirmation measures in the context of rule pruning.
Therefore, we set Qs = {conf , sup, length} and Qp = {CM }, where length sig-
nifies the number of conditional attributes in a rule and CM is one of the 12
confirmation measures from Table 2. For reference, we also analyzed the usage
of conf as a pruning measure. It is worth noting that using conf for pruning
makes CM-CAR work exactly like the CBA algorithm. Therefore, conf can be
considered a baseline against which the remaining measures can be compared.
By keeping Qs fixed in this group of experiments, we ensure that differences in
model performance are only due to the measure used for pruning.

In the second group of experiments, we focus on verifying the utility of
confirmation measures in the context of classification. To achieve this, we set
Qs = {CM , sup, length} and Qp = {CM }, making one of the 12 confirmation
measures (or conf ) a key factor responsible for the predictive and descriptive
performance. As in the first group of experiments, conf serves as a baseline
approach against which other measures can be compared.

The minsup parameter for frequent pattern mining was set to obtain a num-
ber of rules close to 10 000 for each dataset. Such a number was selected to
ensure that it is possible to perform a long series of rule prunings. The use of
each confirmation measure was evaluated on a holdout test set consisting of 34%
of the original dataset using [19]:

• Balanced accuracy: 1
2 (sensitivity + specificity),

• G-mean:
√

sensitivity · specificity,
• F1-score: 2 · sensitivity·precision

precision+sensitivity ,
• AUC: area under the Receiver Operator Characteristic curve [19].

For multi-class problems, performance was calculated using macro averaging, i.e.,
evaluation measures where computed “one-vs-all” for each class and averaged
without weighting. All four measures were chosen based on their ability to assess
classifiers on imbalanced data. The CM-CAR algorithm was written in Java as
part of the WEKA [17] framework.1

4.1 Datasets

In our study, we used 20 datasets with various numbers of classes, imbal-
ance ratios, and containing nominal as well as numeric attributes. All of the
used datasets are publicly available, mostly through the UCI machine learning
repository [22]. Table 3 presents the main characteristics of each dataset.

1 Sources available at: http://www.cs.put.poznan.pl/dbrzezinski/software.php.

http://www.cs.put.poznan.pl/dbrzezinski/software.php
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Table 3. Dataset characteristics

Dataset Size Num. attr. Nom. attr. Classes Maj. class Mined rules Balanced Binary

adult-census 32,561 6 8 2 75.90% 4,299 × �
autos 205 15 10 7 32.68% 8,109 × ×
cmc 1,473 2 7 3 43.70% 10,001 � ×
credit-g 1,000 7 13 2 70.00% 8,540 × �
diabetes 768 8 0 2 64.10% 10,085 � �
electricity 45,312 7 1 2 57.50% 9,210 � �
hepato 536 9 0 4 33.20% 5,055 � ×
king-and-rook 28,056 0 6 18 16.20% 10,266 × ×
kr-vs-kp 3,196 0 36 2 52.20% 10,542 � �
lymph 148 3 15 4 54.73% 8,934 × ×
madelon 2,600 500 0 2 50.00% 2,431 � �
mushroom 8,124 0 22 2 51.80% 6,468 � �
nursery 12,960 0 8 5 33.30% 9,642 × ×
poker-hand 829,201 5 5 10 50.10% 9,267 × ×
spect 267 0 22 2 79.40% 9,290 × �
splice 3,190 0 61 3 51.88% 8,313 × ×
tic-tac-toe 958 0 9 2 65.34% 9,134 × �
vowel 990 10 3 11 9.09% 6,921 � ×
waveform 5,000 40 0 3 33.80% 10,644 � ×
wine 153 13 0 3 39.87% 4,697 � ×

Out of all the datasets, 10 can be considered balanced, whereas 10 suffer from
class-imbalance. Similarly, 9 datasets represent binary classification problems,
while 11 have more than two classes. Most datasets have from few hundred to
few thousand examples, with the notable exception of poker-hand which contains
829,201 instances. It is also worth highlighting madelon as the dataset with
most descriptive attributes (500) and king-and-rook as the one with most class
attribute values (18).

Due to the fact that CM-CAR creates rules from frequent itemsets, it
requires instances described only by nominal attributes. Therefore, all numerical
attributes were discretized into ten equal-frequency bins. Datasets preprocessed
in this way were used in all the discussed experiments.

4.2 Rule Pruning

In this group of experiments, the generated rule set was pruned subsequently
by: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99% of
the original model size. Thus, at the extremes the rule set was not pruned at all
or was limited to only 1% of the initial set. Due to the large number of tested
measures and datasets, we will only present the most interesting results; detailed
tables and additional plots are available in the supplementary materials.2

2 Supplement: http://www.cs.put.poznan.pl/dbrzezinski/software/CMCAR.html.

http://www.cs.put.poznan.pl/dbrzezinski/software/CMCAR.html
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For evaluations using the G-mean measure, it was observed that since G-
mean multiplies the true positive rate of each class, in situations where the rules
did not cover examples from one of the classes the reported performance was
zero. This shows that for highly imbalanced data coverage should be additionally
controlled. Partially due to this phenomenon, on some of the datasets (made-
lon, spect, tic-tac-toe, poker-hand, kr-vs-kp, king-and-rook) the differences in
performance were very small and did not discriminate confirmation measures in
terms of pruning capabilities. However, on the remaining data clear differences
were visible, and two cohesive groups of measures were identified: (1) A and c2;
(2) F , Z, and c1. Figure 1 presents measure performance on two datasets, which
exemplify the relations between these two groups.

Fig. 1. CM-CAR’s AUC on the mushroom dataset and F1-score on adult-census for
different pruning levels with Qs = {conf , sup, length} and Qp = {CM }, where CM is
one of the measures listed in the legend.

The dependency between measures A and c2 can be explained by the fact
that the value of c2 is in some cases proportional to the value of A. Such a
situation occurs in the case of confirmation and when additionally b (the number
of objects not supporting the premise, but supporting the conclusion) is greater
than 0. Indeed, analyzing the obtained frequent itemsets we noticed that these
two requirements were met for most datasets.

The relation between measures in the second group is more difficult to
explain. Under certain conditions, c1 is proportional to Z, however the inter-
dependence with F is not expressed in any way in the definitions of these mea-
sure. It is worth noting that all three measures were among the best performing
pruning measures, when evaluated using balanced accuracy, G-mean, AUC, and
F1-score.

To verify the significance of the observed differences, we performed the non-
parametric Friedman test [8]. The null-hypothesis of the Friedman test (that
there is no difference between the performance of all the tested confirmation
measures) can be rejected for balanced accuracy, G-mean, and the F1-score
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with p < 0.05, but not for AUC. To verify which confirmation measures per-
form better than the other, we computed the critical difference (CD) chosen by
the Nemenyi post-hoc test [8] at α = 0.05. Figure 2 depicts the results of the
test for balanced accuracy, F1-score, and G-mean by connecting the groups of
measures that are not significantly different (the lower the rank the better).

Fig. 2. Performance ranking of all measures (Qs = {conf, sup, length}, Qp = {CM})
averaged over all the analyzed pruning levels. Measures that are not significantly dif-
ferent according to the Nemenyi test (at α = 0.05) are connected.

As mentioned earlier, F , Z, c1 are among the best measures according to
balanced accuracy and the F1-score. Similar rankings were found for G-mean,
however, due to the large number of compared measures the post-hoc test for
these measures was unable to distinguish groups of measures performing signif-
icantly differently. For balanced accuracy and F1-score, the test was not able to
showcase a significant difference with conf , S, D and c3, however, at α = 0.05 the
three highlighted measures pruned significantly better than C, N , c4, M , c2, and
A. It is also worth noticing, that according to G-mean conf performs much worse
than according to balanced accuracy or F1-score. This may suggest that conf
promotes focusing on overall accuracy potentially neglecting underrepresented
minority classes.

4.3 Classification Using Confirmation Measures

In the second group of experiments, we used confirmation measures to sort
the rule list and, thus, influence the classification procedure. Tables with bal-
anced accuracy, G-mean, AUC, and F1-score performance for CM-CAR using
each of the analyzed measures are available in the supplementary material
(See footnote 2), whereas below we summarize the main findings.

In terms of average predictive performance for all pruning levels, F , Z, c1
were once again the best performing measures. It is also worth highlighting S and
c3, which were also among the best measures. This is particularly interesting as
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these measures possess desirable properties, such as minimality/maximality or
evidence symmetry and evidence-hypothesis symmetry, which are not showcased
by F , Z, or c1 [16]. Another consistent observation was that of M , A, and c2
being the worst measures for rule sorting. Two exemplary datasets where these
relations can be seen are presented in Fig. 3.

Fig. 3. CM-CAR’s G-mean on the splice dataset and AUC on nursery for different
pruning levels with Qs = {CM , sup, length} and Qp = {CM }.

As in the first group of experiments, we performed the Friedman test. The
null-hypothesis of the Friedman test can be rejected for all four evaluation mea-
sures (balanced accuracy, G-mean, AUC, F-score) with p < 0.001. Figure 4 visu-
ally presents the results of the Nemenyi test.

Fig. 4. Performance ranking of all measures (Qs = {CM , sup, length}, Qp = {CM })
averaged over all the analyzed pruning levels. Measures that are not significantly
different according to the Nemenyi test (at α = 0.05) are connected.

As the results show, F , Z, c1 are once again the best measures, and are
significantly better at rule sorting than c4, M , c2, and A.
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4.4 The Impact of Imbalance Data and Multiple Classes

The previous two subsections analyzed the potential of using Bayesian confir-
mation measures for rule list pruning and sorting. However, datasets selected
for this study allow us to differentiate the performance of the measures on bal-
anced/imbalanced and binary/multi-class problems. The last two columns of
Table 3 distinguish both types of dataset categorizations.

Figures 5 and 6 present the results of Nemenyi post-hoc tests at α = 0.05,
with performance on balanced/binary in the left column and imbalanced/multi-
class data in the right column. Due to space limitations we only show results
for strategies where the confirmation measure was used for both pruning and
sorting; for additional plots please refer to the supplementary materials (See
footnote 2).

Fig. 5. Performance ranking of all measures (Qs = {CM , sup, length}, Qp = {CM })
analyzed separately for balanced and imbalanced datasets. Measures that are not sig-
nificantly different according to the Nemenyi test (at α = 0.05) are connected.

Considering balanced datasets, the results are fairly similar to those obtained
when analyzing all datasets and highlight F , Z, and c1. However, when looking
at critical distance plots for AUC and G-mean it is also worth mentioning S, N ,
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Fig. 6. Performance ranking of all measures (Qs = {CM , sup, length}, Qp = {CM })
analyzed separately for binary and multi-class problems. Measures that are not signif-
icantly different at α = 0.05 are connected.

and c3 as highly ranked measures. This is interesting as all three measures possess
minimality/maximality, evidence symmetry, and evidence-hypothesis symmetry
properties, mentioned previously [16].

Comparing measure rankings on binary and multi-class problems we can see
that most evaluations still promote F , Z, and c1. A slight deviation from this
pattern can be seen on critical distance plots of AUC and G-mean for binary
datasets, where c3, N , and C are the three highest ranked confirmation measures.

5 Conclusions

Mining a concise set of descriptive rules that is characterized by good predictive
performance is a challenging task. In this paper, to tackle this problem we pro-
posed the CM-CAR algorithm, which uses confirmation measures to sort and
prune a list of rules. Using the proposed algorithm we reviewed the applicability
of 12 confirmation measures to rule pruning and sorting.

The results of the experiments show that Bayesian confirmation measures can
be successfully applied to reduce the set of rules while maintaining satisfactory
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predictive performance. In particular, the F , Z, c1 measures consistently showed
better performance than the popularly used confidence measure.

An additional analysis comparing results for balanced and imbalanced
datasets highlighted N , c3, and S as promising measures for imbalanced data.
This result is particularly interesting as all three measures are well established
in the field of interestingness measures and possess additional properties com-
pared to F , Z, c1, such as: evidence symmetry, evidence-hypothesis symmetry,
or minimality/maximality. A similar analysis comparing results for binary and
multi-class problems revealed that F , Z, c1 are ranked highest on both types of
problems, with the exception of AUC and G-mean results for binary datasets
where c3, N , and C were the three best confirmation measures.

The results of the research described in this paper inspire us to continue
working with confirmation measures in the context of rule-based classification.
In particular, we plan to analyze the impact that confirmation measures can
have on the coverage of the training set of objects, as in certain applications it is
advisable to propose a set of rules that covers the whole or the vast part of the
training set. Moreover, based on the results of the comparison performed in this
paper, we plan to use selected measures as components of more specialized rule-
based classifiers. Finally, a possible extension of CM-CAR can include optimizing
the set of classification association rules to those that are not contained by other
discovered rules.
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Abstract. Vehicle speed is an important factor influencing highway
traffic safety. Radars are applied to control the speed of vehicles, but
the drivers often decelerate when approaching radar, and then acceler-
ate after passing by. We address automatic recognition of speed change
from audio data, based on recordings taken in controlled conditions. Data
description and classification experiments illustrate both changing speed
and maintaining constant speed. This is a starting point to investigate
what percentage of drivers actually maintain constant speed, or slow
down only to speed up immediately afterwards. Automatic classification
and building an appropriate database can help improving traffic safety.

Keywords: Intelligent transport system · Road traffic safety · Audio
signal analysis

1 Introduction

Development of transport brings numerous benefits, but it also brings problems,
including pollution of the environment, and decreased safety. More than 1 million
people die each year as a result of road traffic crashes, and people aged 15–44
years account for almost a half of global traffic deaths [20]. Pedestrians, cyclists
and motorcyclists are especially vulnerable road users. Road crashes also cause
economic losses. Additionally, people from low- and middle-income backgrounds
and countries are more often involved in road crashes.

Improving the safety of roads and enhancing the behavior of road users
became priority in actions related to transport in Poland and around the world.
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Crashes and dangerous situations are analyzed, and the society is informed about
the results, which sometimes evoke heated discussions. The use of photo radars,
traffic calming zones, speed bumps and other means of improving traffic safety
are often criticized by the drivers. However, the statistics confirm that road
safety improves, and the number of fatalities in road crashes decreases (Fig. 1).
The main factors decreasing safety are:

– low quality of many roads, and of vehicles;
– lack of protection for pedestrians and bikers,
– deficiencies of the road safety systems - prolonged implementation of laws

relating to risk factors, insufficient financial support, low public awareness;
– reckless behavior of drivers and other road users - speeding, driving and walk-

ing while impaired; not using seat belts.

Fig. 1. Fatalities in road traffic crashes in selected European countries [8]

The road safety can be improved through setting and enforcing appropriate
regulations, through public awareness campaigns, and interventions targeting
the road users behavior. The reports from the operators of navigation systems
show that drivers increase speed when passing a speed camera, after slowing
down when approaching it. However, these reports describe the behavior of the
users of these navigation systems, and further research on other drivers’ behavior
is needed. The data on drivers’ behavior can be collected from audio recording
systems, if such systems are developed and deployed. Therefore, the goal of our
research is to investigate if changing (or maintaining) speed can be recognized
from audio data, as this can be the first step to prepare a system to collect
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data on drivers’ behavior around speed cameras. Vehicle speed also influences
the noise level generated by the vehicle, as the speed increase increases the noise
level. Other factors increasing the noise level are:

– road inclination - traveling uphill generates more noise, but average traffic
speed decreases; traveling downhill generates less noise than on flat road,

– road surface, and its dampness,
– the technical condition of vehicles; especially old vehicles generate more noise

and exhaust fumes, and these vehicles also decrease the traffic road safety.

Out of all the factors influencing the road traffic safety and noise generated,
the speed of vehicles can be relatively easily addressed, so we decided to address
the behavior of drivers when speed is controlled, and prepare audio data rep-
resenting acceleration, deceleration, and constant speed. These data are very
complex, since audio signal depends on many factors, and changes quickly over
time. The audio data represent amplitude changes of the audio waveform with
time; close-up of a segment of such data is shown in Fig. 2. We can see some peri-
odicity here, but irregular variations are also clearly visible. Also, if the phases
of some components of a complex sound change, the wave shape may change
dramatically, even though the sound still sounds the same. Therefore, sounds
representative for particular sound classes (e.g. for speed increase) do not follow
a particular pattern nor trend in time domain. Thus, time domain data are usu-
ally parameterized, based on frequency content (i.e. on the spectrum), to capture
sound characteristics. The spectrum is usually calculated for short segments of
data, to show frequency contents of the sound, and changes of the spectrum
over time can be observed in spectrogram, where the amplitude of particular
frequencies is represented using a selected color scale, see Fig. 3 (in grayscale).

Fig. 2. Audio data in time domain: horizontal axis represents time, vertical - amplitude.
Recording for Fiat Ducato (plot from Adobe Audition [1])

Since the vehicle sound contains noise and harmonic components, we designed
a feature vector that allows capturing noise features, harmonic features, and
their changes in time. Speed is usually monitored by radars, but with a single
measurement, and the drivers are aware of this fact. We hope that monitoring
how drivers change speed in these circumstances and launching public awareness
campaign can increase the road traffic safety.
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Fig. 3. Spectrogram of Fiat Ducato accelerating, then decelerating, accelerating again
and decelerating, for 450N load (a). A close-up for low frequencies is shown in (b).
Higher luminance represents higher amplitude. Plots from Adobe Audition [1]

Audio data has been used in research on automotive control, e.g. for vehicle
identification, or fault diagnosis [2,6,7,17], but, to the best of our knowledge,
there is no prior research on automatic speed change recognition.

Although audio data represent changes over time, direct time-domain repre-
sentation is rarely applied in classification. The data represent very fast changes,
i.e. thousands of samples per second, and the values of a small number of audio
samples are not of particular interest, contrary to typical time series data, where
one observation per day or hour or minute is taken. Spectrum or spectrogram are
much more useful in audio data analysis [9], but they are still very complex and
are usually parameterized before further processing [21]. However, the finding an
appropriate parametrization that can capture the features of the target classes
of the investigated automotive audio is not an easy task. There is no standard
set of parameters that can be used successfully for all research goals in audio
data. Also acquiring the automotive data can be challenging, as many factors
influence the data values, and the acquired data should be representative for any
new data that can be anticipated in tests.

The main contribution of this paper is the parametrization of the vehicle
audio data in order to capture the speed changes, or to recognize the speed as
approximately stable. Additionally, we performed experiments on time-domain
data directly, using time series methods. Also, we prepared the data in controlled
conditions. We first recorded vehicles on a dyno test bench, with a constant mic
position with respect to the vehicle. Three types of classifiers were carefully
tuned for further work. After classification experiments on these data, the on-
road recordings were prepared. These data are different than dyno recordings,
as the vehicles move with respect the position of the mic, and Doppler effect is
present. We describe experiments on dyno data, and then trials on the on-road
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data, using also dyno data in training, with Doppler effect added. Time domain
based and feature set based approaches are compared on a subset of these data,
using features designed for this experiment. This illustrates how difficult the task
is, and that goal-oriented features can improve the results dramatically.

2 Data

The recordings in controlled conditions at the dyno test bench, with OBD (On-
Board Diagnostics) acquisition, were done in May and June 2016, at the Uni-
versity of Life Sciences in Lublin, see Fig. 4. We recorded 8 vehicles:

– Smart ForFour - car with gasoline engine,
– Ford Focus - car with gasoline and LPG (Liquid Petroleum Gas) engine,
– Hyundai i30 - car with Diesel engine,
– Toyota Corolla Verso - car with Diesel engine,
– Daewoo Lublin - van with Diesel engine,
– Fiat Ducato - van with Diesel engine,
– Volkswagen (VW) Transporters, 2004 and 2007 year - vans, Diesel engines.

Fig. 4. Dyno recording. OBD acquisition shown, and the audio recorder (on the tripod)

The vehicles, all with manual transmission, accelerated to 110 km/h (with the
exception of Daewoo - to 90 only), then decelerated to low speed at fifth gear, to
about 40–45 km/h, when the gear was changed. When accelerating, the driver
changed gear and attempted to maintain a constant speed for a few seconds at
50, 70, 90 and 110 km/h. We recorded data (48 kHz/24 bit, stereo) for 3 classes:
accelerating, decelerating, and maintaining constant speed. Two versions of dyno
loads were recorded: 450 Newton, for all cars with the exception of Ford, and load
adjusted to on-road conditions (with the exception of Daewoo and Hyundai), i.e.
depending on vehicle speed, weight, and road coefficients.
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2.1 On-Road Data

We also prepared on-road recordings in controlled conditions. The mic was posi-
tioned as close to the road as possible (Fig. 5), 1.5 m above the road. The record-
ings were taken on August 2nd 2016, on a sunny summer day (weekday), on a
little road in Ciecierzyn, in Lublin Voivodeship in Poland. We chose a little
and unfrequented road, to avoid uncontrolled traffic. Unfortunately, the road is
not flat here, but the mic was positioned in a mild basin (so the vehicles neither
travel uphill nor downhill when passing the mic), with very gentle slopes, similar
both to the East and to the West. Three cars were recorded:

– Renault Espace - car with gasoline and LPG engine,
– Toyota Corolla Verso - car with Diesel engine,
– Skoda Octavia - car with Diesel engine.

Fig. 5. The road and microphone position in on-road recordings

The recordings were made on a 100 m long portion of the road. Addition-
ally, video was recorded inside each vehicle, showing the speedometer, in order
to facilitate ground-truth labeling of these data. Each vehicle was recorded as
follows (twice, eastbound and westbound):

– increasing speed from 50 km/h to 70 km/h,
– decreasing speed from 70 km/h to 50 km/h,
– maintaining stable speed, 50 km/h; additionally, 70 km/h for Skoda.

3 Feature Set

There exist many parameters that can be extracted as audio data features, see
[11,12] for a broad review; these parameters mainly come from speech recognition
and musical instrument classification tasks. Still, there is no standard all-purpose
feature set, and the feature vector is usually designed for the task in hand. The
classification results depend on the feature set used. Since we wanted to capture
changes of audio signal properties with speed changes, if any, we decided to
observe how sound properties change within 1-s audio frames. Our feature vector
consists of 5 groups of features. We are aware that the feature vector is long, but
we assumed feature selection when calculating the features. Next, we performed
feature selection in these groups.
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Basic Features. For each 1 s frame, we calculate spectral features for the start-
ing 330 ms sub-frame, and for the ending 330 ms sub-frame. Next, the calculated
features for the starting part, together with the vector of differences between fea-
tures for the starting and ending part, are placed in the feature vector. Addition-
ally, one time-domain parameter is calculated, i.e. zero-crossing rate, together
with its change between the value for the beginning and the ending part. Also, a
parameter capturing the spectrum change between the starting and ending part
is added to the feature set.

Features describing spectrum and time domain for the starting 330 ms of a
1-s frame include:

– Zero Crossing Rate (ZCR) in the time-domain of the sound; a zero-crossing
is a point where the sign of the function (amplitude vs. time) changes;

– Audio Spectrum Envelope (SE) SE0, . . . SE32 calculated as sums of the power
spectrum coefficients within logarithmically spaced frequency bands [12];

– SUM SE - sum of the spectrum envelope values;
– MAX SE V, MAX SE IND - value and index of the SE maximum;
– Audio Spectrum Flatness, flat1, . . . , flat25 - a vector describing the flatness

property of the power spectrum [12], i.e. the deviation of the signal’s power
spectrum from a flat shape, for each band of the spectrum envelope; bands
up to SE25 were used, as in the research on audio data for vehicles the
spectrum is usually limited, so even the sampling rate is often decreased,

– MFCC - 13 mel frequency cepstral coefficients (MFCC) [13]. The cepstrum
is calculated as the logarithm of the magnitude of the spectral coefficients,
and then transformed to the mel scale, reflecting the properties of the human
perception of frequency; 24 mel filters were applied, and the obtained results
were transformed (averaged) to 12 coefficients. The 13th coefficient is the
0-order coefficient of MFCC, corresponding to the logarithm of the energy;

– F0 ACor - fundamental frequency (from the autocorrelation function); this
frequency changes with the speed change;

– Energy - energy of the entire spectrum;
– EnAb4kHz - proportion of the spectral energy above 4 kHz to Energy ;
– Audio Spectrum Centroid (SC) - the power weighted average of the fre-

quency bins in the power spectrum. Coefficients were scaled to an octave
scale anchored at 1 kHz [12];

– Audio Spectrum Spread (SS) - RMS (root mean square) of the deviation of
the log frequency power spectrum wrt. Audio Spectrum Centroid [12];

– RollOff - the frequency below which 85% (experimentally chosen threshold)
of the accumulated magnitudes of the spectrum is concentrated,

– BW 10dB, BW 20dB, BW 30dB - bandwidth of the frequency band compris-
ing the spectrum maximum (in dB scale) and the level drop by 10, 20 and 30
dB, respectively, towards both lower and upper frequencies.

All these features are placed in the feature vector. Next, they are also calcu-
lated for the ending 330 ms of the 1-s frame, and

– the differences between these values and the values for the starting part are
added to the feature vector;
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– Flux1 parameter is added to the feature set. Flux1 is the sum of squared
differences between the magnitudes of the spectrum points calculated for the
starting and ending 330 ms sub-frames within the one-second frame.

Altogether, this group of features consists of 169 features (Basic group). Fast
Fourier transform (FFT) was used for spectrum calculation, and sliding frame
with 330 ms hop size was applied when analyzing the audio data and calculat-
ing the feature vector. The 330 ms analyzing frame yields sufficient frequency
resolution, needed when calculating low frequencies.

One Second Analysis-Based Binned Spectral Features. We decided to
add groups of features, representing binned FFT coefficients. This follows [17],
with non-stationary automotive data: car engine recordings using mobile phone
moved above the engine. They applied FFT on 2.5 s segments, and created a
1000-element feature vector representing averaged magnitudes within 10 Hz bins
up to 10 kHz. Since our audio data change too fast to apply 2.5 s analysis, we
performed 1 s FFT instead, thus obtaining FT1s group (1000 features).

330 ms Analysis-Based Binned Spectral Features. Similarly, we calcu-
lated binned spectral features based on 330 ms segments, as this is the frame
length used for calculating Basic features. Again, 1000 features were calculated
(FT330 ms group), representing averaged FFT magnitudes within 10 Hz bins
up to 10 kHz. The first 330 ms of a 1 s frame was used for calculating these
features.

330 ms Analysis-Based Spectral Differences. As our goal is to capture
changes over time, we also calculated features describing differences between
the starting and ending 330 ms of each analyzed 1 s frame. To this end, we
additionally calculated 330 ms binned spectral features for the ending 330 ms.
Next, we calculated differences between the corresponding bins of the starting
and ending 330 ms frames, yielding 1000 features (dFT330 ms group).

3.1 Feature Selection

Since our feature vector is large, we also performed feature selection, as it is
recommended in such a case [10]. In our first experiments (on dyno data), we
performed feature selection and classification for the basic features only (169
features). For each of the classifiers investigated, cross validation (CV) procedure
was applied. We applied 8-fold CV, and each fold represented data from one
vehicle. Since we used random forests, we decided to apply feature importance
from these classifiers. We tested 2 versions: with constant number of features to
be selected (10 features; number arbitrarily chosen), and with feature importance
above various thresholds based on mean decrease of Gini criterion. The threshold
0.01 was selected, as giving a small number of features. After threshold based
selection, the number of features left varied from several to more than 20 features.
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Next, feature selection was performed for each 1000-element group of fea-
tures, using rfcv function in R’s randomForest package. We applied log step, i.e.
reducing a fixed proportion of variables at each run. The rfcv output is ranked by
decreasing feature importance and the number of features left is chosen to min-
imize the out-of-bag (OOB, i.e. trees that did not have the validation examples
in their bootstrap sample, see Sect. 4.1) error in CV. As a result, 8 dFT330 ms
features were left, (OOB error 25.8%), 125 FT1s features (OOB error 13.4%),
62 FT330 ms features (OOB error 20.4%). For Basic features we performed a
similar procedure, but since in this case the log step removes a significant num-
ber of features, the output number of features was next increased and decreased
with linear step, i.e. by a constant number of features, one by one. Initially 84
features were left (OOB error 6.11%), and after linear search 116 features were
kept as a result. Altogether, 8 + 125 + 62 + 116 = 311 features were left.

4 Classification

The experiments on the classification of the acquired data were performed using
random forests (RF, [5]), deep learning (DL) architecture (neural network), and
support vector machines (SVM), using R [18]. These classifiers were selected as
they were used and performed well in other similar research, see [17,19].

The data were classified into three classes:

– deceleration, with speed decrease more than 5 km/h per second; this class
represents fast deceleration, often happening when the driver must quickly
reduce speed when speeding, before radar registers speed;

– stable speed, with speed change within 3 km/h range per second: from
decrease below 1.5 km/h per second up to increase below 1.5 km/h per second;

– acceleration, with speed increase more than 2.5 km/h per second.

Dyno Data. The experiments were first performed on the data recorded at
the dyno in Lublin. The data were labeled according to OBD data and other
information recorded at the dyno. The speed ranges do not represent neighbor-
ing intervals, since we wanted to capture clear cases of intent acceleration or
deceleration. The remaining data were not taken into account in our experi-
ments. Altogether, we had 101 examples (1-s frames) representing deceleration,
423 examples for acceleration, and 579 examples for stable speed. Since decel-
eration was underrepresented, compared to the other classes, we also performed
upsampling during training of classifiers (i.e. replicated examples, to match the
number of examples in each fold with the biggest class), in order to balance
classes.

On-Road Data. A pilot study on the on-road data was also performed. In this
case a vehicle is moving wrt. the mic, and Doppler effect affects the recording.
Since vehicles move fast, few audio frames are acquired in each move. Thus,
we obtained a small set for pilot tests, with 18 examples for acceleration, 18 for
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deceleration, and 24 for stable speed. The examples were taken from twenty 1.66 s
audio segments, i.e. three 1 s frames with 0.33 s hop size within each segment.

4.1 Classifiers

RF is a set of decision trees, and bias and correlations between the trees are
minimized during the classifier construction. Each tree is built without pruning,
using a different N -element bootstrap sample (i.e. obtained through drawing
with replacement) of the N -element training set. For a K-element feature set, k
features are randomly selected for each node of any tree (k � K, often k =

√
K).

The best split on these k (called mtry in R) features is applied to split the data
in the node. Gini impurity criterion is applied (minimized) to choose the split.
This criterion measures how often an element would be incorrectly labeled, if
random labeling an object according to the distribution of labels in the subset is
applied. The forest of M trees is obtained by repeating this procedure M times.
Classification using RF is performed by simple voting of all trees. RF yielded
the best results in our experiments.

DL neural network in our experiments is a multi-layer feedforward neural
net, with many hidden layers, with data standardization. Training is performed
through back propagation with adaptive learning. We used R package h2o [15];
training parameters include large weight penalization and drop-out regulariza-
tion (ignoring a random fraction of neuron inputs). In training, weights are
iteratively updated in so-called epochs, with grid-search of the parameter space.
DL yielded good results in our previous research on audio data for vehicles [19].

We also applied SVM classifiers, which look for a decision surface (hyper-
plane) maximizing the margin around the decision boundary. The training data
points are called support vectors. SVM projects data into a higher dimensional
space, using a kernel function, e.g. linear, quadratic, RBF (radial basis function).
Each kernel has parameters which must be tuned to achieve good performance.

4.2 Classifier Tuning

Each of the classifiers we applied depends on some parameters. These parameters
were tuned in the initial stage of the classification experiments.

The tuned parameters of RF were mtry, i.e. the number of features which are
randomly selected for each node of any tree, nodesize, i.e. minimum size of leafs,
and the number of trees. First, number of trees was estimated based on (averaged
within 10 runs of RF training) OOB errors for consecutive number of trees, up to
500 trees. The lowest OOB error was found for about 420 trees. Next, grid search of
RF parameters was performed using tune.randomForest from e1071 package in R
[14], with the following search parameters: nodesize changing sequentially from
1 to 10, mtry= 17 (the square root of the feature set length), also doubled and
halved (9 and 34), and the number of trees to grow 420 and nearest hundredths
(400, 500). The output of the tuning is: 420 trees, mtry equal to the square root
of the feature set length, and nodesize= 2. Additionally, we also built a model
with nodesize= 1, as it is default setting in RF.
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DL was trained using R’s h2o package [15], with grid search for model tuning
with the following search parameters:

– activation function: Rectifier, Tanh, Maxout, RectifierWithDropout,
TanhWithDropout, MaxoutWithDropout.

– hidden layers - up to 4 layers: (20,20), (50,50), (30,30,30), (25,25,25,25).
– input dropout ratio = (0,0.05).
– regularization: l1, l2, searched sequentially within (0,1e-4) with 1e-6 step.

The model found is: activation function Tanh, 2 hidden layers (50,50), input
dropout ratio = 0.05, regularization l1 = 6.3E-5, l2 = 5.1E-5.

SVM was tuned using tune.svm from e1071 package in R [14]. Grid search
of SVM parameters was done for linear, quadratic, and RBF kernel. Parameter
c for the linear kernel was searched within (2, 210) range, with c = 2 found as
best. For the quadratic and RBF kernels, γ was searched within (2−5, 25), and
c within (2, 210), with γ = 0.03125 and c = 2 found as best in both cases.

5 Experiments

In the described experiments, we trained RF, DL and SVM classifiers to recognize
acceleration, deceleration and stable speed for our data. Since the feature vector
is large, we also performed feature selection. Initial tests (see Table 1) on dyno
data, for Basic features only, were performed in 2 versions: with 10 best features
kept, and with features of importance above 0.01 threshold, as 8-fold CV, where
each fold represented data from one vehicle. The results for SVM without feature
selection are low, but after feature selection the accuracy is better than for DL.

Table 1. Classification accuracy for speed changes

Classifier RF DL SVM (RBF)

No feature selection 70.6% 60.9% 37.2%

Top 10 features 68.8% 58.7% 62.6%

Features above threshold 70.1% 55.5% 64.9%

We repeated these experiments after upsampling (Table 2). This increases
accuracy in some cases, and our best result was for RF with feature selection
above the threshold. However, upsampling decreases accuracy for DL with fea-
ture selection with top 10 features, which means that such a small amount of
features is insufficient to classify such complex data.

The results show how difficult it is to classify such data, but looking into
details (Tables 3 and 4) we can see that RF most often mistake stable speed with
acceleration. Accelerating is a relatively slow process, so such mistakes are not
surprising. Deceleration is mistaken with stable speed, but only engine braking
deceleration was recorded, without applying brakes. Acceleration vs. deceleration
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Table 2. Classification accuracy for speed changes after data balancing (upsampling)

Classifier RF DL SVM (RBF)

No feature selection 66.9% 64.4% 36.4%

Top 10 features 67.3% 46.1% 60.7%

Features above threshold 72.6% 68.9% 65.7%

Table 3. Confusion matrix for RF (features above threshold, upsampling in training)

Class/Identified as: Acceleration Stable speed Deceleration

Acceleration 300 118 5

Stable speed 106 447 26

Deceleration 0 47 54

Table 4. Confusion matrix for DL (features above threshold, upsampling in training)

Class/Identified as: Acceleration Stable speed Deceleration

Acceleration 264 152 7

Stable speed 454 120 5

Deceleration 25 34 42

mistakes are rare, and deceleration was never mistaken for acceleration. The
performance of DL is much worse for deceleration, and stable speed is much
more often classified as acceleration than as stable speed.

Next, experiments were performed on full feature set, subjected to feature
selection; we did not use the complete set in classification, as feature selection
was assumed when creating the feature set. The results are similar to those from
Table 1, but SVM with linear and quadratic kernels performed better than RBF:

– RF with nodesize= 2: 67.18%, with nodesize= 1: 66.46%,
– SVM with quadratic kernel 50.60%, linear 52.58%, RBF 41.16%,
– DL 57.30%.

5.1 Experiments on On-Road Data

For the purpose of our pilot study on the on-road data, it was necessary to
take the Doppler effect into account. The Doppler shift changes frequencies in
the spectrum, depending the moving object velocity, and the angle between the
moving object with respect to the mic [3]. In order to obtain the training data
with Doppler shift, we decided to use Adobe Audition CC [1] for adding Doppler
effect to all dyno recordings. Only constant speed simulation was available in [1].
To obtain data approximating speed increase and decrease, we used frames repre-
senting different speed values when calculating dFT330 ms and difference-based
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Basic features. Lower speed in the starting frame and higher speed in the end-
ing frame simulated increasing speed, whereas higher speed in the starting frame
and lower speed in the ending frame simulated decreasing speed. The following
speed pairs were used: 50 km/h and 55 km/h (or 55 + 50), 55 + 60 (60 + 55),
60 + 65 (65 + 60), 65 + 70 (70 + 65), and for deceleration also 60 + 50, 65 + 55,
and 70 + 60. Two versions of Doppler shift were simulated: car moving left and
right. Altogether, we had 101*14 = 1414 examples representing deceleration (101
original examples, 7 versions of deceleration in 2 directions ), 423*8 = 3384 exam-
ples for acceleration (423 original examples, 4 versions of speed changes in 2
directions), and 579*10 = 5790 examples for stable speed (579 original exam-
ples and 5 speed values in 2 directions: 50, 55, 60, 65 and 70 km/h). For these
data, the tuning of the classifiers was done again, with the following parameters
obtained:

– RF: mtry= 248, 200 trees (error 1.8%), obtained using tuneRF from R’s ran-
domForest; nodesize= 1 as standard setting;

– DL: activation function Tanh, hidden layers (50,50), input dropout
ratio = 0.05, regularization l1 = 6.3E-5 - as previously,

– SVM for linear kernel: c = 2 with lowest error (0.996724%), quadratic: γ =
0.03125, c = 2, RBF γ = 0.03125, c = 2.

Unfortunately, the results of classification were much lower than for the dyno
data, i.e. 43.33% for DL, 40% for RF and SVM (RBF). We also performed tests
on combined dyno and on-road recordings, divided into 10 folds, representing
vehicles (for Toyota, both recordings were in one fold, other folds had either
dyno or on-road data), obtaining 52.71% for DL, 54.43% for SVM (RBF), and
63.71% for RF, but we are aware that dyno-based folds raise the results.

Discussion. We are aware that on-road data differ from the dyno data, even
after adding Doppler shift to the dyno recordings, and Doppler shift was only
approximated for speed changes. Also, the on-road noises differ from the dyno
noises, even for the same vehicle and tires. The road surface is more rough than
the dyno, which is relatively smooth. There are also external noises around the
road (birds etc.) and at the dyno (noises from outside when the door was open).

Time Series Approach. We also applied time series approach to the on-
road data, namely shapelets [21], i.e. patterns in time domain. The experiments
were performed on time-domain data directly, on MFCC coefficients observed in
consequent frames (i.e. time series), and on spectrum magnitudes treated as a
time series; these approaches are used in the literature. The data were limited
to 1.5 s of each recording of a vehicle approaching the mic, i.e. with the Doppler
shift in one direction only. The 0.1 s segment (4800 samples - we could not take
48000 for this algorithm) of one-channel audio data, taken from the center part
of this 1.5 s, was used to find a shapelet, for each 1.5 recording, with results:

– time domain data: for 3 runs of the fast shapelet algorithm, the accuracy was
52.33%, 46.50%, and 44.92%,
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– spectrum treated as a time series (magnitudes up to 150 Hz): 42.16%,
– MFCC coefficients as a time series: 38.77%,
– changes in time of spectrum bins; up to 150 Hz: 32.2% on average (17.5–

52.5%), up to 500 Hz: 33% on average (12.5–65%),

The results are not satisfactory, even though these data were limited to relatively
uniform (cars approaching, road data only).

Since these data differ from the data used earlier, we also performed exper-
iments on such limited data (vehicles approaching the mic) after parameteriza-
tion, using SVM, RF, and DL. Thus, we can compare results obtained for the
same data. We also designed a new subset of features for this experiment.

Lines. We describe 3 strongest lines in 50–500 Hz spectrogram, present in the
entire 1 s segment. No harmonicity is assumed. Each line is approximated with a
linear function. The intercept, gradient, and quotient of the ending and starting
frequencies for each line within the segment constitute a 9-feature group (Lines).
No feature selection was applied. In classification with Lines only we obtained:
DL 73.7%, RF 85.4%, SVM linear 73.6%, quadratic 62.3%, RBF 72.6%.

The results for the features from Sect. 3.1 and Lines for this limited dataset
were as follows (results with Lines given if improved):

– DL, features from Sect. 3.1: 95.8%,
– RF, features from Sect. 3.1: 91.5% (94.3% with Lines),
– SVM, features from Sect. 3.1, linear kernel: 95.8%, quadratic: 92%, RBF:

61.3%.

These results show that carefully designed features can improve audio signal
classification, and show the usefulness of our features.

6 Summary and Conclusions

In this paper, we aimed at automatic recognition of accelerating and decelerating
of vehicles, as well as recognizing stable speed. Sound parameterization was
devised to capture potential sound changes, but time domain was also directly
applied using methods for time series. The data for the main experiments were
recorded at the dyno, so we had access to the speed data and rpm (revolutions
per minute) information. We also performed a pilot study with a small sample
of on-road recordings. We used the dyno recordings with Doppler shift added,
but these data were only approximation of Doppler effect, because of continuous
speed changes in real world conditions.

The experiments on on-road data only were also performed using a time-series
approach, on shorter audio segments, and compared with feature based approach.
We designed an additional feature set for this experiment. The accuracy for these
features only reached 85%, which shows that carefully designed feature set allows
good classification.

We are planning to acquire more such data, use other classifiers, including
classifier ensembles [16], and try other approaches to data balancing [4].
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Abstract. Speaker identification can be summarized as the classifica-
tion task that determines if two voices were spoken by the same person
or not. It is a thoroughly studied topic, since it has applications in many
fields. One is forensic phonetics, considered very hard since the expert
has to face ambient noise, very short recordings, interference, loss of
signal, and so on. For decades, these problems have been tackled by
experts using their listening abilities, and each of them might represent
a research area on its own. The use of semi-automatic techniques may
represent a modern alternative to the subjective evaluation of experts,
that may enforce fairness of the classification procedure. In a nutshell, we
use the differences in speech of a set of different voices to build a popu-
lation model, and the suspected person’s voice to build a speaker model.
The classification is carried out evaluating the similarity of a further
speech sample (the evidence) with respect to the models. Preliminary
evaluations shown that our approach reaches promising results.

1 Introduction

The speaker identification problem [11,15,16,35] can be cast as a classification
task aimed at determining if two voices were spoken by the same person or
not. In this broad sense, it has applications in many fields. In particular, it is a
crucial task in forensics, where there is a need to determine the speaker in phone
calls. This application domain adds further complexity to the task because calls
are typically short in duration with poor quality, ambient noise, interference,
loss of signal (in the case of mobile phones), and reduced bandwidth may yield
dramatic consequences. Traditionally, the problem has been tackled leveraging
abilities of human experts in evaluating the similarities between voices, or in
finding peculiarities and defects that allow one to identify the speaker. However,
this practice has its drawbacks, among which the limited capabilities of humans
in considering complex mixes of parameters and their subjectivity in evaluation.

Nowadays, the most popular methods for speaker identification are the
following: (1) listening based methods [24]; (2) spectrograms comparison
c© Springer International Publishing AG 2017
A. Appice et al. (Eds.): NFMCP 2016, LNAI 10312, pp. 69–83, 2017.
DOI: 10.1007/978-3-319-61461-8 5
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techniques [10,19]; (3) phonetic parameters analysis [1,12,27,37]; (4) automatic
techniques [8,9]. In particular, the latter represents a modern alternative to
overcome the subjective evaluation of experts, since it relies on algorithmic pro-
cedures to predict whether two voices come from the same speaker or not. So, it
may ensure more fairness to the classification procedure.

The need of fairness is one of the main motivations for which this research
field is so primary for judiciary contexts. Forensics aims to be a fair scientific
support to the logical composition of crime events. In this case, such support
regards the phone-speaker identification.

From a technical point of view, we can distinguish between closed tests
(aimed at finding the speaker in a set of voices that surely includes a sample of
the speaker’s voice) and open tests (where this is not ensured). This paper deals
with the open case, proposing a technique that uses the differences in speech
of a set of different voices to build a population model, and the suspected per-
son’s voice to build a speaker model, and then carries out the classification by
evaluating the similarity among these models and the anonymous voice. While
a preliminary evaluation of this approach was presented in [34], this work aims
at a specific analysis of results with respect to the feature selection perspective.

The remainder of this work will present some related work and preprocessing
details in Sect. 2, then our approach follows in Sect. 3, after that experimental
evaluation is reported in Sect. 4. Forensic results must be understandable to the
Court, then Sect. 6 proposes a human understandable translation of the possible
classification outcome. Finally, Sect. 7 will conclude with some considerations
and future works.

2 Related Works, Background and Preprocessing

Different features may describe the sounds produced by the human vocal appara-
tus, depending on how it is classified. A first classification is between consonants
and vowels. Consonants are produced by forcing air passage in the restricted
vocal apparatus. They can be further divided in voiceless, if produced with-
out vibration of vocal cords, or voiced, otherwise. Vowels are produced when
the apparatus puts no obstacles, and the sound is determined by the position
of tongue and lips. Specifically, they are a periodic signal produced by three
factors: the periodic movement of vocal cords that produces the fundamental
frequency (f0 – related with the vocal tone of a person); the noise produced by
the phonation; the modification of the sound caused by the sound expansion
in the mouth. Such components make up the frequency spectrum. It is char-
acterized by a sequence of peaks that change depending on the type of sound
pronounced, a complex result of the cooperation of tongue, teeth, palate, lips,
and so on. The frequency spectrum interacts with the harmonic structure of
speech (integer multiples of the fundamental frequency). The harmonics near to
the resonance frequency are called formants.

A spectrogram is a plot that represents the components of the sound in three
dimensions: time (on the x axis), frequency (on the y axis) and intensity (repre-
sented using several color scales, here intensities of gray are exploited. The inner
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values are usually represented in Hertz. The lower frequency is known as first
formant f1, followed by the successive peaks named f2, f3, and so on. Generally,
vowels are captured by f1 and f2, since the first formant indicates the vertical
tongue movement (i.e., up or down), and the second indicates the horizontal
tongue movement (i.e., back or forth). Furthermore, f2 and f3 may provide use-
ful hints for the lips rounding. Formant frequencies are widely accepted features
for use in forensic phonetics [18]. Several works are based on the study of f0 only
(e.g., [23]). Unfortunately, to date we cannot assert that voice is like a signature.
So, in order to identify the speaker one needs as much information as possible,
and it is questionable the fundamental frequency, alone, can be enough.

In order to overcome the uncertainty of the results using the fundamental
frequency, [3] investigated the use of the first three formant frequencies and
associated bandwidth. They are modeled using a multivariate Gaussian Mix-
ture Model, in order to represent the vocal tract characteristics of the speaker,
accounting for within-speaker variability. The results are expressed as a like-
lihood ratio, and highlight that since formants describe the cavity resonance,
they are better suited for application in forensic speaker verification than Mel-
Frequency Cepstral Coefficients (MFCC).

In [2], the authors focused on feature selection, investigating several ways
to extract Cepstral Coefficients using the two major technologies for mobile
communication (GSM and CDMA). Their approach uses the likelihood ratio
to quantify the strength of speech evidence. The experiment highlighted the
goodness of the MFCC, in spite of the outcomes obtained in [3]. They argue
that such results are justified by the removal of the relevant information about
the glottal shaping and lip radiation components due to the coding in mobile
phone networks (both GSM and CDMA), that should make formant features
useless.

In speaker verification task (i.e., the process of verifying the claimed identity
of a speaker based on the speech signal), [5,25] create speakers model by mea-
suring the fundamental frequency and formant frequencies of vowels (a, e, i, o),
and estimating their distributions via Gaussian kernel density estimator. The
long-term formant distributions are plotted and examined, accepting or reject-
ing the speaker. However, the authors pointed out that other information can
be extracted from the shape of distributions. Likelihood Ratio [26] is exploited,
like in this work, to evaluate the results in [5].

Our approach is text-independent, i.e. it tries to verify the identity with-
out constraint on the speech content. We consider only a real-valued, limited,
and continuous signal, i.e., a function that represents the proceeding of a given
physical quantity (in our case, sound waves and their spectrum) over time. If a
signal has period T (i.e., x(t + T ) = x(t)), then the function is known when its
proceeding in a range of length T is known. The inverse of T is the fundamental
frequency F = 1

T , measured in Hertz if time is expressed in seconds.
Conversely, formants are obtained from the signal spectrum. They are the res-

onance frequency measured where there is an energy peak in the sound produced
by the air passage in the vocal apparatus, keeping into account absorptions due



72 F. Leuzzi et al.

to the sound reflection. The fundamental frequency and the first three formants
are the features of our speaker model.

The preprocessing step is carried out by a human operator that considers, for
each word, only emphasized vowels, that are less affected by co-articulation and
have a more constant signal than others. According to the literature (e.g., [5]),
vowel U is not considered in this study. The human operator uses Praat1, a
software system able to show the graphical trend of the signal energy, allowing
one to select the vowel to be analysed and to estimate the power spectrum.
He selects the fundamental frequency f0 using the CEPSTRUM method (the
result of the Fourier transformation applied to the signal spectrum measured
in Decibel), and the formants f1, f2 and f3 (i.e., the first three peaks of the
frequency spectrum captured via Fast Fourier Transform). Subsequent formants
cannot be detected, due to the poor signal quality.

Figure 1 shows the measurement of the formants of the first vowel E in the
Italian word gente (this particular GUI reports peaks of the spectrum, then the
fundamental frequency f0 is not reported in this Figure).

Fig. 1. Formants recognition using Praat.

3 Statistical Method Applied to the Recognition
of the Talker - SMART

Suppose we have a distance measure. Then, we can describe the (possibly) large
variability of voices among several speakers, as well as the small variability of
1 www.fon.hum.uva.nl/praat/.

www.fon.hum.uva.nl/praat/
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several dialogues of the same speaker. Such a variability can be represented
estimating a distribution of the distances, making a model of the population
diversities, together with a distribution of the diversities of the speech produced
by a speaker in several contexts. Unfortunately, often there are not enough tracks
of the same speaker to evaluate such distributions. So, a method to artificially
populate a dataset related to the single speaker is needed. Bootstrap [28] re-
samples the dataset randomly picking whole records and repeating them. It
cannot do otherwise, since the formants are related by complex relationships
that impose to keep them together [30].

Missing Data. Often the recordings have poor quality, making hard the detec-
tion of some formants. We need to manage missing data. In order to face this
necessity we adopted some policies. If the fundamental frequency is missing, the
average of the known values is assigned to this cell; if a formant is missing, the cell
is filled by its average conditioned by the values of the other formants, obtained
via multiple regression; if the missing values are too many in a dimension (i.e. a
feature), such dimension is removed completely, since estimations over few val-
ues are not reliable; it is noteworthy that first and second formants hardly are
lacking. However, it might happen that there are no values for a vowel. In such
a case the subject is pulled out from the dataset.

Speaker Representation. Given a generic speaker k, a generic vowel will be
represented as Vk ∈ R

N×4, where N is the number of that vowel instances,
whereas 4 stands for the fundamental frequency and the three formants. Con-
sidering that we measured only the instances of vowels A, E, I and O, we have
Vkj ∈ R

Nkj×4 such that j ∈ {A,E, I,O}, and Nkj is the total amount of instances
of the vowel j, speaker k. A speaker will be represented averaging the values over
the columns, obtaining, for each Vkj a row vector V̄kj . Then:

S̄k = [V̄kA, V̄kE , V̄kI , V̄kO] ∈ R
1×16

where 16 is the total amount of vowels formants.
For the sake of completeness, we can give a fast look to an example of real

data. Fixed the speaker k and the instance i0 of the vowel A, we have:

VkA(i0) = [f00, f01, f02, f03]

an example record of which might be:

VkA(i0) = [129, 635, 1288, 2325]

Mahalanobis Distance and Statistical Distribution. Several measures
have been investigated in [6,7,17,29]. Summing up the results, these works shown
the goodness of the Mahalanobis distance, that considers the position of the
observations, it weights each observation with a coefficient extracted from the
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empirical covariance matrix. Such a matrix can be computed over the observed
values, it represents the relationship between the features and shows how much
a feature changes if related to the other ones.

A covariance matrix Σ ∈ R16×16 is computed over population matrix S,
obtained chaining down the subjects in the population as shown in the following.
In particular, recalling that each vowel of a speaker k is Vkj ∈ R

Nkj×4 with
j ∈ {A,E, I,O}, we expect different values for each Nkj , from which we can
compute:

Mk = maxj={A,E,I,O}(Nkj)

The gap of each matrix that does not have Mk rows is filled. The instances are
duplicated in the same order starting from the first, until the Mk number of rows
is reached. The result, for each vowel, is a new matrix V ′

kj . The representation
of the speaker’s data Sk will be:

Sk = [V ′
kA, V ′

kE , V ′
kI , V

′
kO] ∈ R

Mk×16

where 16 is the total amount of vowels formants. Putting in a single matrix the
set of available speakers, we obtain S.

At this point, given two subjects represented as S̄i and S̄j , computed aver-
aging column values of the respective matrices, the Mahalanobis distance d(·, ·)
is:

d(S̄i, S̄j) =
√

(S̄i − S̄j)Σ−1(S̄i − S̄j)T

Now, suppose we have a pair of voices and we want to evaluate the possibil-
ity that they are produced by the same speaker or not. From a Bayesian point
of view, we can introduce two statistical hypotheses to encode these possibili-
ties. Say H0 is the hypothesis that the two voices come from the same person
(accusatory hypothesis):

P (H0|d) =
P (H0)P (d|H0)

nf

and H1 is the hypothesis that the two voices do not come from the same person
(defensive hypothesis):

P (H1|d) =
P (H1)P (d|H1)

nf

where nf is a normalization factor, which can be overlooked. We can combine
them, obtaining:

P (H0|d)
P (H1|d)

=
P (H0)
P (H1)

P (d|H0)
P (d|H1)

nf

nf
=

(
P (H0)
P (H1)

)
· lr(d)

lr(d) =
P (d|H0)
P (d|H1)

=
pB(d)
pW (d)

where lr(d) denotes the likelihood ratio over d, pB(d) is the distribution of dis-
tance between the suspected speaker and the population (a.k.a. inter-distance),
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whereas pW (d) is the distribution of distance taken within different instances of
the suspected speaker (a.k.a. intra-distance). Note that pB(d) and pW (d) are real
valued functions of d. The strength of evidence is computed in d(Si, Sj) where
Si is the evidence speaker and Sj is the suspected speaker. Then, in our case,
d is:

lr
(
d(Si, Sj)

)
=

P
(
d(Si, Sj)|H0

)

P
(
d(Si, Sj)|H1

) =
pB

(
d(Si, Sj)

)

pW
(
d(Si, Sj)

)

Anyhow, the computation of pW (d) is not so direct, since often the sample
is poor (just a few minutes of recording for the suspected person’s voice). We
need to refill the gap in order to have a number of simulated suspected-person’s
recordings comparable to the size of the population dataset. Then we recur
to the bootstrap [28] procedure. It builds simulated registration using a random
movement of the suspected person’s data, generating as many suspected-person’s
samples as the subjects of the population. The Mahalanobis distance is computed
for each pair of samples.

Estimating Speakers Distributions. In order to estimate pB/W (d) we exploit
a semi-parametric kernel estimator method. Direct Plug-in Kernel [36] (as used
in [7,17]), needs to estimate its smoothing parameter h, using lsdpi(·), shown in
Algorithm 1. The semi-parametric kernel [4] is:

p̃B/W (d) =
1
N

N∑
j=1

1
h

H

(
d − dj

h

)

where p̃B/W (d) denotes the model density of pB or pW , N is the size of the
population, dj is the distance between Sk and Sj , h is the smoothing parameter
chosen via l -stage Direct Plug-in Kernel, H(·) is the kernel function (Gaussian
in our case).

Such parameters ensure the satisfaction of:

H(·) ≥ 0

and ∫
H(·)du = 1

in this way the first formula will satisfy p̃B/W (d) ≥ 0 and
∫

p̃B/W (d)dx = 1, as
required for a function to be a probability density function.

4 Evaluation

We considered a dataset of Italian-male phone-call recordings, represented as
described in Sect. 2 and made up as follows. K = {k1, · · · , ki, · · · , km} is the set
of pairs of same-speaker’s recordings (in this experimental setting, recording 50
speakers twice). P is the set of single entries (they have not a paired recordings,
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Algorithm 1. lsdpi(·) – l -stage Direct Plug-in.
Input: Number of stages l, kernel function K(·) of order 2, a data sample X.
Output: Approximation of ψc.

σ̂ ←√V ar(X)
c ← r + 2l

ψc ← (−1)
c
2 c!

(2σ̂)c+1( c
2 )!

√
π

c ← c − 1
while c ≥ 1 do

g ←
[

−2Kc0
μ2(K)ψc+2n

] 1
2c+5

ψc ← n−1
n
∑

i=1

n
∑

j=1

Kr
g (Xi − Xj)

c ← c − 2
end while
return ψc

so they can be used only as negative examples – in this experimental setting, we
evaluated 350 single entries). So, we have just K positive test, while the number
of negative tests will be:

nt(K,P ) =
P (P − 1)

2
+ 2KP +

(
4
K(K − 1)

2

)

In this experimental setting, nt(50, 350) = 100.975. Our evaluation has a two-
fold objective: on the one hand, understanding the performance, on the other,
finding the set of formants that best represent a voice signature.

Table 1. Feature-subset performances

Tested features EER AUC

f0, f1, f2, f3 0.07692 0.98620

f1, f2, f3 0.07692 0.98108

f0, f2, f3 0.05406 0.99295

f0, f1, f3 0.07658 0.98587

f0, f1, f2 0.07182 0.98295

f0, f1 0.11538 0.96489

f0, f2 0.08800 0.97306

f0, f3 0.03980 0.98952

f1, f2 0.09615 0.97104

f1, f3 0.11022 0.96991

f2, f3 0.07692 0.97328
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Fig. 2. Diagram of the feature-subset performances

The Likelihood-Ratio lr(·), reported in Sect. 3, expresses how many times
more likely we can observe distance d between unknown and evidence voices
under the accusatory hypothesis than the defensive hypothesis. It has been used
to build the graph in Fig. 2, that shows Detection Error Curve for each subset
of features. Table 1 shows the Equal Error Rate (EER) and the Area Under the
ROC Curve (AUC) for each subset. The former value is useful to balance the
misclassification types, whereas the latter is used to identify the subset that
makes less mistakes. The best EER in Table 1 is the curve nearest to zero in
Fig. 2, i.e. the subset {f0, f3}, whereas the best AUC in Table 1 is the curve that
goes faster to zero in both dimensions in Fig. 2, i.e. {f0, f2, f3}.

Since both include f0 and f3, we should comment the role of f2. Examining
the subset {f0, f2, f3} in Fig. 2 we can see that the false alarm rate (the worst
justice mistake) goes to zero faster than others. Looking at the values in Table 1,
the EER of {f0, f2, f3} is greater than the EER of {f0, f3} just a little bit with
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respect the trend of growth of the EER in general. Furthermore, the subset
{f0, f2, f3} gives the maximum value of AUC, denoting the smallest error area.

5 SMART: A Particular Case of a Biometric System
in the Bayesian Framework

In Sect. 3 we have described step-by-step how the system SMART works. Any-
way, it can be seen as a particular case of a more general Biometric system used
to compute the strength of evidence in terms of Likelihood Ratio in the Bayesian
Framework. Let us give a look to Fig. 3. Say E1 is the crime-scene evidence, and
E0 is the suspected-person’s one. For the sake of clarity, example of such pairs
could be DNAs, fingerprints, Photos (one from a video-surveillance system that
recorded the crime, and the other from suspected-person’s); audio tracks, as in
our case; and so on.

Whatever is the evidence type, the objective is to establish the strength of
evidence that E0 and E1 belong to the same person versus the hypothesis that
they come from different persons. This objective can be framed in the Bayesian
framework as introduced in Sect. 3, in which the Likelihood Ratio is the strength-
of-evidence measure.

Fig. 3. Biometric Bayesian framework

In order to estimate the Likelihood Ratio all we need is a “black box” able to
compute the similarity “score”, between two evidences and a database contain-
ing both pairs of evidences coming from same persons and pairs coming from
different ones. Note that in SMART such black box is simply the Mahalanobis
distance between a pair of speakers and the score that can be obtained by the
inverse of the distance. Going on, the black box Likelihood Ratio computation
works in two steps:
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– the training phase, in which two sets of scores are computed from pairs
of evidences coming from same (i.e. SS1) and different (i.e. SS2) source(s)
contained in the database. The sets of scores SS1 and SS2 are used to infer
the score distributions given the accusatory (i.e. H1) and the defense (i.e. H2)
hypothesis respectively. In SMART, the set SS1 is obtained using the boot-
strap, whereas the score distributions are computed using a semi-parametric
kernel estimator method. After that SMART estimates the Likelihood-Ratio
function (i.e. lr(·), or lr(1/d) as defined in Sect. 3). For the computation of
SS2 there are two different approaches: suspect anchored and suspect inde-
pendent. The former computes SS2 as the set of scores between the suspected-
person’s evidence and each other evidence belonging to the database. The lat-
ter approach computes SS2 as the set of scores between all possible (different)
pairs of evidences stored in the database. SMART is a suspect-anchored app-
roach;

– the test phase, in which the Biometric-system box is used to compute the
score between E0 and E1. The resulting score value is exploited to obtain the
final Likelihood Ratio.

6 Presenting Likelihood Ratio to the Court

Noteworthy, the bootstrap makes our approach non-deterministic, for which the
evaluation between speakers (S1, S2) is different from (S2, S1). There is no theo-
retical reason to apply the bootstrap to the suspected speaker instead of anony-
mous one; given that the same classification is expected applying the approach
in both directions. Anyway, from a practical point of view, suspected-person’s
data are often more rich than anonymous, since when the suspects arise, there
is enough time to organize the activities in order to record as much dialogues
as possible. This is the reason for which the only reliable classification is carried
out applying the bootstrap to the suspected-person’s data.

We recall that the value of Likelihood Ratio lr(·) quantifies the strength of the
evidence. This values must be presented to the Court, then the European Network
of Forensic Science Institutes (a.k.a. ENFSI) provided detailed guidelines for this
purpose2.

In order to cope with the great amount of different applications of lr(·),
its logarithm is commonly used, known as Log-Likelihood Ratio. Given two
speakers Si and Sj , and a distance d(Si, Sj) on which lr(d) is computed, the
Log-Likelihood Ratio function llr(d) is:

llr(d) = Log10
(
lr(d)

)

Tables 2 and 3 show the ranges used to evaluate this proposal. For the sake
of completeness, corresponding Log-Likelihood Ratio is reported, given that it
2 With the financial support of the Prevention and Fight against Crime Program of

the European Union European Commission - Directorate - General Justice, Free-
dom and Security. A project funded by the EU ISEC 2010. Agreement number:
HOME/2010/ISEC/MO/4000001759.
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Table 2. lr(·) values supporting the prosecution hypothesis

lr(·) llr(·) Typical translation

>10000 >4 Very strong evidence to support

1000 to 10000 3 to 4 Strong evidence to support

100 to 1000 2 to 3 Moderately strong evidence to support

10 to 100 1 to 2 Moderately evidence to support

1 to 10 0 to 1 Limited evidence to support

Table 3. lr(·) values supporting the defense hypothesis

lr(·) llr(·) Typical translation

<0.0001 <−4 Very strong evidence to support

0.001 to 0.0001 −3 to −4 Strong evidence to support

0.01 to 0.001 −2 to −3 Moderately strong evidence to support

0.1 to 0.01 −1 to −2 Moderately evidence to support

1 to 0.1 0 to −1 Limited evidence to support

is easy to use and widely adopted. Since the numeric form of a lr(·) may not
be readily interpretable to the Court, the last column reports translations into
verbal scale, that prosecutor (Table 2) and defender (Table 3) lawyers can use to
present the classification result to the Court.

7 Conclusion

This work presented an approach to Speaker Identification that models the
speaker via fundamental frequency and formant features. Distances among these
descriptions have been computed using the Mahalanobis distance, in order to
model the typical distance in speech among several speakers. Such a model has
been obtained estimating the distributions of the differences. In particular, both
the set of different speakers and the set of tracks recorded from the same speaker
have been modeled, in order to obtain comparable models useful to decide if a
novel speaker description is nearest to the unknown speaker model or it is nearest
to the population model.

The interpretation of SMART as a general Biometric System, working in the
Bayesian framework, provides novel insights for future developments and tests.
For instance, one could try to assess how the performance change varying score
functions, after that the investigation could follow with the comparison of the
outcomes using suspect anchored or suspect independent approach. Moreover, we
recall that in forensics it is mandatory to have a system with good discrimination
ability (generally verified by AUC and/or EER), but it is mandatory also to have
a reliable Likelihood Ratio, making fundamental an investigation about the use
of Cost Likelihood Ratio.
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Other future works will be focused on clustering speaker description via unsu-
pervised techniques, in order to understand whether formant features are enough
to obtain clusters representing italian dialects. Moreover in forensics the discrim-
ination of the model measured by AUC and EER does not suffice to measure
the reliability of the computed Likelihood Ratio. For example it is mandatory
that the system does not give high positive/negative Log-Likelihood Ratio for
the wrong hypothesis. To this aim other error functions, such as Cost-Likelihood
Ratio error function, will be investigated in future works.
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Abstract. Approaches to support an interpretation of rules induced
from imbalanced data are discussed. In this paper, the rule learning algo-
rithm BRACID dedicated to class imbalance is considered. As it may
induce too many rules, which hinders their interpretation, their filtering
is applied. We introduce three different strategies, which aim at selecting
rules having good descriptive characteristics. The strategies are based on
combining Bayesian confirmation measures with rule support, which have
not yet been studied in the class imbalance context. Experimental results
show that these strategies reduce the number of rules and improve values
of rule interestingness measures at the same time, without considerable
losses of prediction abilities, especially for the minority class.

Keywords: Bayesian confirmation measures · Interpretability of rules ·
Class imbalance · Rule post-pruning

1 Introduction

Learning classification rules is one of mature and well studied tasks in machine
learning. The popularity of rules comes from the fact that they directly provide a
symbolic representation of knowledge discovered from data, which is more com-
prehensible and human-readable than other representations [5]. Many various
algorithms for inducing rules have been already introduced (for their review see,
e.g. [5]). Nevertheless, such aspects of data complexity as class imbalance still
constitute difficulties [11]. The majority of standard rule algorithms are biased
towards the majority classes and tend to neglect the minority class. Two kinds
of reasons for poor performance of rule based classifiers for imbalanced data are
usually pointed out – algorithmic and data level ones [11,16].

Some extensions of rule classifiers for class imbalances have been already
proposed, for their review see [16]. However, most of them address only a single
or at most a few of algorithmic or data-related factors. In [16] we introduced
a new rule induction algorithm, called BRACID (the acronym of Bottom-up
induction of Rules And Cases for Imbalanced Data), which attempts to deal with
c© Springer International Publishing AG 2017
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more of the aforementioned factors. The previous comparative experiments have
clearly demonstrated that the rule classifier induced by BRACID significantly
outperformed other rule classifiers generated by the best, standard rule learning
algorithms as well as the rule extensions specialized to class imbalances, with
respect to predictive measures [16]. On the other hand, BRACID may generate
too many rules (see also experiments in Sect. 6). As it restricts human experts’
abilities to analyze or interpret the rules, we are looking for a post-processing
approach that could identify the most valuable rules. The first attempt, recently
undertaken in [18], has shown that it is possible to select rules characterized by
high supports and still leading to sufficient predictive performance.

Nevertheless, focusing attention on the most interesting rules should also take
into account other characteristics than simply the rule support. In particular,
it is important not to neglect the descriptive abilities of rules, which are often
overwhelmed by the need to increase the predictive performance. Note that the
predictive and descriptive aspects often stand in opposition to each other [13,20].
However, when human experts seek for a compact knowledge representation,
improving the interpretability of each single rule can even justify some loses on
the predictive performance.

Establishing when rules are interesting to users touches both subjective and
objective aspects [4]. In this paper we follow the latter aspect and consider rule
interestingness measures which are often applied to filter the set of rules [7,15].
They are calculated from learning data and aim at quantifying the relationship
between a rule’s premise and its conclusion. A particular group of these mea-
sures, called Bayesian confirmation measures, is well suited for supporting rule
interpretability, as it focuses on advancing rules for which the probability of
the conclusion given the premise is greater than the genuine probability of the
conclusion itself [3,10]. In other words, confirmation measures promote rules, in
which the value that the premise adds to conclusion is considerably high.

Although the concept of confirmation has been firstly considered by philoso-
phers of science in a very different context (see e.g. [2,3,19]), it has been adopted
to rule interestingness measures, mainly for filtering association rules [8]. Never-
theless, these measures have not been considered for imbalanced data yet. Their
application should turn out to be particularly useful in the context of imbal-
ance since considering the probability of each conclusion separately, as done by
confirmation measures, would be related to imbalance ratios.

For the purpose of this paper we focus on two particular confirmation mea-
sures called S [2] and N [19]. We have chosen them from a wider collection of
confirmation measures discussed in the literature because of the desired prop-
erties that they possess [9,10]. In our opinion, these measures satisfy properties
that should influence the interpretability of rules [10].

The main aim of this paper is to introduce an approach that uses confirmation
measures S and N to post-prune rules induced by BRACID. We focus this study
on BRACID only, as experiments [16] have shown that it outperformed other
best rule based classifiers over a large collection of imbalanced data. The new
approach should reduce the number of its rules while improving values of rule
interestingness measures at the same time, especially for the minority class.
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The paper is organized as follows. Firstly, we briefly review related works in
Sect. 2. Section 3 introduces the concept of Bayesian confirmation and defines
two particularly valuable representatives of confirmation measures: measures S
and N . The algorithm used for rule induction, called BRACID, is summarized
in Sect. 4. The three new rule filtering strategies are introduced in Sect. 5. Their
usefulness to improve BRACID rules is evaluated in several experiments, which
are described in Sect. 6. The experimental results are discussed in Sect. 7. In the
final section we draw lines of future research.

2 Related Works on Rule Evaluation and Filtering

Many algorithms for constructing rule based classifiers employ rule pruning.
The representative approaches are Grow, IREP or RIPPER; for their review,
see Chap. 9 in [5]. However, these approaches follow the classification perspective
of rule induction and pruning is oriented toward good predictive ability of the
complete set of rules. Other objectives are stated in the descriptive knowledge
discovery which aims at discovering from data information patterns and regu-
larities (or sometimes exceptions) which are potentially interesting and useful to
different kinds of users [20].

The descriptive rule discovery perspective, which is considered in this paper,
requires other algorithmic strategies than in the classification perspective, e.g.,
classification versions of association rules, richer sets of satisfactory rules [20] or
rule representations of subgroup discovery [6]. However, these algorithms often
generate a too high number of rules which makes it impossible for users or
domain expert to inspect them. Thus, users lose the opportunity to interpret
the results, find interesting rules or to further modify them to have a more
accurate classifier [12].

To help the user find relevant knowledge inside huge rule sets, the rule
interestingness measures have been proposed (for their review see [7,15]). They
are divided into two categories: subjective (user-oriented) and objective (data-
oriented) ones. The subjective measures take into account the user’s goals, back-
ground knowledge or his belief on the data domain [4]. Objective measures are
those that are not application- or user-specific and depend only on raw data.
Many of them are defined on the basis of contingency tables summarizing the
data set (see the next section). Support and confidence are the most universal
interestingness measures which are often applied in the process of rule genera-
tion (e.g., Apriori search for association rules) and sometimes in post-filtering
[1]. Although they are so popular, other measures could be better suited to deal
with larger sets of rules and to select the most relevant (i.e. interesting) candi-
dates. Numerous rule interestingness measures have been proposed (lists can be
found for example in [7,12,13,15]) and choosing the best one for a given problem
is not a trivial task.

In general, the interestingness measures are used to assess, rank (sort) and
filter the rules according to various points of view [7]. For these aims, the experts
either select some single measures or consider their aggregated, more complex
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versions. For instance, [13] describes a case study in which several measures have
been used, and the results were interpreted by an expert with a recommendation
to use a weighted relative accuracy. Another, more multiple-criteria analysis
has been advocated by Bayardo and Agrawal, who proposed to analyze partial
ordering of the rules (instead of the typical total ordering of rules) according to
different interestingness measures [1]. The authors of [12], on the other hand,
discussed other related proposals and proposed a subset of measures based on
specialist’s preferences; see also [14]. The authors of [9] analyzed properties of
the interestingness measures and showed that some measures may be preferred
to others. Furthermore, other researchers looked for concise representations (e.g.
closed items in associations), rule summaries, grouping of similar rules (with
respect to rule condition parts or to subsets of covered examples), or developed
interactive visualization tools.

Nevertheless, the choice of the interestingness measures still depends on the
expert’s preferences and the problem at hand. In this paper, following motiva-
tions presented in Sect. 1, we direct our interest to a particular class of measures
based on Bayesian confirmation. Although they have been recently used to filter
association rules [8], they have not been considered for classification rules in the
class imbalanced tasks.

3 Bayesian Confirmation Measures

To present Bayesian confirmation measures the basic notation is introduced.
Rules are consequence relations represented as IF (condition part) THEN (target
class), where a condition part (premise) is a conjunction of elementary tests on
values of attributes characterizing learning examples and a target class points
to one of the predefined values of the decision attribute (represented in a rule
conclusion). For simplicity, rules will be denoted as E → H or simpler as R.

Interestingness measures quantify the relationship between E and H, and
are usually defined as functions of four non-negative values that can be gathered
in a 2 × 2 contingency table (see Table 1). For a particular data set, a is the
number of objects that satisfy both the rule’s premise and its conclusion, b is
the number of learning examples for which only H is satisfied, etc. For instance,
the support of E → H rule is defined as sup(H,E) = a and its confidence as
conf(H,E) = a/(a+c). Note that a, b, c and d can also be regarded as frequencies
for estimating probabilities: e.g. P (E) = (a + c)/n or P (H) = (a + b)/n.

Table 1. An exemplary contingency table of the rule’s premise and conclusion

H ¬H Σ

E a c a + c

¬E b d b + d

Σ a + b c + d n
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Among many interestingness measures, we drew our attention to a particular
group of Bayesian confirmation measures (or simply confirmation measures).
All those measures are characterized by a feature called property of Bayesian
confirmation, which requires that an interestingness measure c(H,E) obtains:
positive values when P (H|E) > P (H); 0 when P (H|E) = P (H); and negative
values when P (H|E) < P (H).

Thus, confirmation measures are designed to depict simply through their
scale the confirmatory, neutral or disconfirmatory impact of the rule’s premise
on its conclusion. Confirmation, interpreted as an increase in the probability
of the conclusion H provided by the premise E, is a desirable situation. Let
us stress that basic interestingness measures such as support or confidence do
not possess the property of confirmation and thus, their utility is lower for the
descriptive perspective of knowledge discovery.

The difference of semantics and utility of confidence on one hand, and mea-
sure S(H,E) (defined below in Eq. 1) being a representative of confirmation
measures on the other hand, can be shown on the following illustrative example.
Consider the possible result of rolling a dice: 1, 2, 3, 4, 5, 6 points, and let the
conclusion H = “the result is divisible by 2”. Given two different potential rule
premises:

E1 = “the result is a number from a set {1, 2, 3}”,
E2 = “the result is a number from a set {2, 3, 4}”

we get, respectively: conf(H,E1) = 1/3, S(H,E1) = −1/3 and conf(H,E2) =
2/3, S(H,E2) = 1/3. This example clearly shows that the values of confirmation
measures have a more useful interpretation than confidence. In particular, in the
case of rule E1 → H, the premise actually disconfirms the conclusion as it
reduces the probability of conclusion H from 1/2 = P (H) to 1/3 = P (H|E1) =
conf(H,E1). This fact is expressed by a negative value of confirmation measure
S(H,E) (and in fact any confirmation measure), but it cannot be concluded by
observing only the value of confidence.

Note that the property of confirmation leaves plenty of space for defining
various, non-equivalent confirmation measures (for their review see [3,9]). To
guide the user towards the measures that reflect his expectations, researchers
proposed special properties of confirmation measures. These properties express
requirements for a measure behavior in certain situations. Taking into account
possession of desirable properties, we focus our further interest only on two
representatives of confirmation measures. The chosen measures S(H,E) [2] and
N(H,E) [19], both ranging from −1 (showing complete disconfirmation) to +1
(showing complete confirmation), are defined as:

S(H,E) = P (H|E) − P (H|¬E) =
a

a + c
− b

b + d
, (1)

N(H,E) = P (E|H) − P (E|¬H) =
a

a + b
− c

c + d
. (2)

Among properties that valuable confirmation measures should sat-
isfy let us mention property of monotonicity M [10] and property of
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maximality/minimality [8]. Monotonicity M favors measures that are non-
decreasing with respect to a and d, and non-increasing with respect to b and c.
It is intuitively clear that we would like higher values of measures for rules that
are supported by a greater number of positive examples (i.e. increase of a), and
exactly the opposite when the number of counter-examples grows (i.e. increase
of c). The property of maximality/minimality on the other hand, requires that
a measure obtains its maximal value if and only if b = c = 0, and its minimal
values if and only if a = d = 0. It is thus a property concentrated on the behav-
ior of measures in the extreme cases. It was verified in [9,10] that the measures
S(H,E) and N(H,E) are among few confirmation measures that satisfy both
monotonicity M and maximality/minimality.

We have focused our study on those two measures also because the inter-
pretation of their definitions is rather straightforward (contrary to some other
confirmation measures possessing M and maximality/minimality e.g. measure
c3(H,E) [9]1). Measure S(H,E) expresses how much more probable is H with E
rather than with ¬E. Following some medical examples, e.g. if some symptoms
occur then a certain disease is diagnosed, we could say that measure S(H,E)
assesses how much more probable becomes the disease when we know that the
symptoms occurred (instead of knowing that the symptoms did not occur). In
case of measure N(H,E), we would say that is expresses how much more prob-
able are some symptoms for a certain disease than for a case when the disease is
excluded (does not occur). Measures S(H,E) and N(H,E) are thus somewhat
complementary, as they look at rules from different perspectives: that of the
rule’s premise and that of the rule’s conclusion.

Summing up, taking into account possession of desirable properties and inter-
pretation of the measures’ definitions, this study focuses only on application of
confirmation measures S(H,E) and N(H,E).

4 Rule Induction with BRACID

BRACID is a specialized algorithm to learn rules from imbalanced data. For its
details see [16]. Here, we summarize its main characteristics:

– Hybrid representation of rules and instances: BRACID tries to create a
general description in regions where the examples form large disjuncts (using
rules) and instances to better approximate the more difficult decision bound-
aries. BRACID allows some (difficult) examples to remain not generalized to
rules. They can be treated as maximally specific rules.

1 c3(H,E) = A(H,E)Z(H,E) in case of confirmation and
c3(H,E) = −A(H,E)Z(H,E) in case of disconfirmation
where
Z(H,E) = 1 − P (¬H|E) ÷ P (¬H) in case of confirmation and
Z(H,E) = P (H|E) ÷ P (H) − 1 in case of disconfirmation;
A(H,E) = [P (E|H) − P (E)] ÷ [1 − P (E)] in case of confirmation and
A(H,E) = [P (H) − P (H|¬E)] ÷ [1 − P (H)] in case of disconfirmation.
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– Bottom-up rule induction: Unlike a top-down strategy typical for rule
induction, BRACID follows a bottom-up (or a specific-to-general) strategy
as a more appropriate for imbalanced data. It starts from the set of most
specific rules each covering a single learning example – which is called a seed
of the rule. Then, in every iteration each rule is generalized in the direction
of the nearest neighbour example from the same class, provided that it does
not decrease the classification abilities of the whole rule set. The procedure
is repeated until no rule in the set can be further generalized.

– Resignation from greedy, sequential covering technique: As this tech-
nique, popular in typical rule learning algorithms, increases the data frag-
mentation and is problematic for the minority examples, BRACID takes into
account all the learning examples when evaluating new rule candidate.

– Facing borderline minority examples: Types of learning examples are
evaluated and rules are generated differently depending on the type of the
seed example of a rule [17]. The minority examples belonging to the borderline
region are allowed to be generalized into more than one rule, to lessen the
dominance of the majority class in this region.

– Facing noisy examples from the majority class: Noisy majority exam-
ples, present inside the minority class regions, may hinder the induction of
general minority rules. BRACID has an embedded mechanism for detecting
and removing such examples from the learning data set.

– Less biased classification strategy: BRACID employs a classification
strategy based on nearest rules to diminish the domination of strong majority
rules during solving conflict situations while a new instance matches condition
parts of many rules.

Note that some mechanisms employed in this algorithm lead to the increase
of the number of rules (mainly a bottom-up rule induction and generation of
more rules in the borderline regions). However, the increased number of rules
for the minority class, coupled with an increased rule support, are beneficial
for final classification. The experimental evaluation of classification performance
of BRACID showed indeed that it significantly outperformed many standard
rule classifiers (induced by RIPPER, PART, C4.5rules, and others) as well as
other rule approaches specialized for class imbalance such as modifications of
rule search and classification strategies, or the best standard algorithms (e.g.,
PART) combined with SMOTE methods transforming class distributions [16].

5 Selecting Rules with Respect to Confirmation

We aim to select a subset of induced rules with respect to appropriate rule evalu-
ation measures. In [18] we have already postulated that it would be profitable to
find rules which cover diverse sets of examples referring to different sub-parts of
the class distribution. Focusing the expert’s attention on a subset of rules having
such characteristics should be particularly good for the minority class which is
often decomposed into many rare sub-concepts.
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Recall that several post-pruning techniques have already been proposed to
order rules or to reduce their number. However, as we discussed in [18], it may
not lead to diverse subsets of rules in BRACID, as e.g. high supports may charac-
terize many rules having similar syntax and covering similar subsets of learning
examples. Other post-pruning techniques considered in rule classifiers are focused
on optimizing the predictive performance of the rules rather than on improving
their descriptive properties [5].

Therefore, we follow a different inspiration, coming from using rules to rep-
resent patterns in subgroup discovery, where the task is to find subgroups of
individuals that are statistically “most interesting” (e.g. covering as many exam-
ples as possible and having the most unusual statistical characteristics [5]). In
our opinion these kinds of local, diverse patterns correspond to decomposition
of the minority class in sub-concepts. In this paper we generalize the algorithm
originally proposed in [6] to find rules describing subgroups.

Our approach to select a given number of diverse rules with respect to a
given rule evaluation measure is presented in Algorithm 1. It is run for each
class separately and takes as an input the set of all rules induced for this class
and their required number after selection – later on we discuss how to tune it.

Algorithm 1. Rule Filtering Algorithm
Input: Set of Rules SR for class P , required NUMBER of rules; rule evaluation ev;
Output: Prunned set of rules FR

Delete rules with too low confirmation from SR
FR ← ∅
for every example e ∈ P do

c(e) ← 1
end for
repeat

for each rule R ∈ SR do
calculate rule evaluation measure ev(R)

end for
Select Rmax = arg maxR(ev(R))
for each e covered by Rmax do

c(e) ← c(e) + 1
end for
Remove Rmax from SR
FR = FR ∪ Rmax

until size of FR = NUMBER

Firstly, we remove all rules with the non-positive value of a selected confir-
mation measure (except the option where rules are evaluated with the support
only). The key idea of the algorithm is to assign a weight c(e) to each learning
example. It is initialized with c(e) = 1 for all examples from the given class.
When rule R is selected, then weights for examples covered by this rule are
increased by adding 1. Then, while evaluating the next rule being a candidate
for selection, the example takes part in all calculation with the weight 1/c(e).
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For instance, the support of a rule is computed as a sum of 1/c(e) for all target
class examples covered by this rule.

This weighted coverage causes that in the subsequent iterations of the algo-
rithm, examples already covered by the selected rules contribute less to the eval-
uation of new rule. It promotes the rules referring to examples not yet covered
and directs the search toward diverse regions of the class.

In this study we will consider three different versions of the rule evaluation
ev(R)2 for selecting rules:

1. a standard rule support sup(R);
2. a product of support with a confirmation measure S: sup(R) × S(R);
3. a product sup(R) × N(R).

The choice of rule support sup(R) results from earlier experiments in [18] and
we want to consider it as a baseline. The choice of both confirmation measures
S and N has been justified in Sect. 3. We want to aggregate them with a rule
support to represent a trade off in a bi-criteria evaluation where the user is
interested in sufficiently strong patterns describing the classes.

6 Experimental Evaluation

In the experiments we will verify whether the proposed post-pruning strategies
select a limited number of BRACID rules having better values of interestingness
measures than in case of non-pruned rules.

As the evaluation criteria we choose the average values of confirmation mea-
sures S and N , rule support and rule confidence. We consider the last two mea-
sures due to their popularity in the previous rule filtering techniques and to
their easy interpretation for the users. These criteria represent descriptive prop-
erties of single rules with respect to their possible interpretability and they are
treated as primary criteria in our study. As a secondary criterion, we also eval-
uate the predictive ability of the rule set, which will be estimated by G-mean
and F-measure, both well suited for cases with imbalanced data sets. We use
this criterion to control whether pruning the set of rules does not dramatically
deteriorate the performance compared to all rules produced by the BRACID
algorithm. The predictive measures are evaluated in a repeated stratified 10-fold
cross validation procedure while rule evaluation measures are calculated for a
set of rules induced from the complete data set.

We analysed previous experiments from [16] and chose 11 data sets where
BRACID generated too many rules compared to other, standard rule induction
algorithms. They are characterized by different imbalance ratios (from 3% to
30%), data sizes (from 155 to 1728) and types of attributes (only nominal, only
numeric, or mixed). Although the imbalance ratios of some of these data sets

2 For simplicity we will further use a notation of a rule as R instead of (H,E) in
symbols of measures.
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Table 2. Basic characteristics of data sets

Data set #Examples Minority
class size

Imbalance
ratio [%]

#Attributes
(numeric)

Minority
class name

balance-scale 625 49 7.84 4(4) B

breast-cancer 286 85 29.72 9(0) rec-events

car 1728 69 3.99 6(0) good

cleveland 303 35 11.55 13(6) positive

cmc 1473 333 22.61 9(2) long-term

ecoli 336 35 10.42 7(7) imU

haberman 306 81 26.47 3(3) died

hepatitis 155 32 20.65 19(6) die

solar-flareF 1066 43 4.03 12(0) F

transfusion 748 178 23.80 4(4) yes

yeast-ME2 1484 51 3.44 8(8) ME2

are medium, all these data are also affected by different difficulty factors char-
acterizing the distribution of examples from the minority class. According to
experimental studies [17] these factors lead to difficulties while learning rules.

All these data sets come from the UCI repository. We analyzed them as binary
problems – the minority class vs. majority one (which may aggregate others),
as it is a typical view of class imbalances with focusing attention on improving
recognition of the class of special importance. The basic characteristics of these
data sets are presented in Table 2.

We checked that for all data sets (except cleveland and hepatitis), the
BRACID rule sets contained some rules with negative values of confirmation
measures. For instance, balance-scale contained 8, car 36, cmc 19, solar-flareF
18 and transfusion 14 such rules.

While using the algorithm for selecting rules we need to define a number
of required rules as the stopping condition. In general, this parameter should
represent the analyst’s expectations and his abilities to inspect the rules. Here we
recall our previous experiments [18], where we studied a wide range of values of
this parameter (up to 30%). The results showed that the threshold 10% often led
to rule sets having the good average rule support and comparable classification
performance as the original set of BRACID rules.

Yet another option is to select all the rules which are necessary to cover all
the learning examples in each class. We studied this coverage option in [18] and
observed that it usually produced higher classification prediction (with respect
to G-mean or sensitivity measure) than the percentage option. However, it also
selected more rules than the percentage option. As in this study we aim at
reducing the number of rules, we decided to consider the percentage option with
the parameter tuned to 10% of the original set of rules for each class3.

3 More detailed experimental results, including also the coverage option are provided
at the page http://www.cs.put.poznan.pl/iszczech/publications/nfmcp-2016.html.

http://www.cs.put.poznan.pl/iszczech/publications/nfmcp-2016.html
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Table 3. Characteristics of filtered rules for the minority class

Data set Pruning #Rules Avg.sup Avg.conf Avg.S Avg.N

balance-scale none 52 2.077 0.611 0.535 0.033

sup 5 6.000 0.266 0.192 0.056

sup ∗ S 5 2.000 0.875 0.799 0.037

sup ∗ N 5 4.600 0.317 0.243 0.065

breast-cancer none 77 3.364 0.711 0.420 0.030

sup 8 9.625 0.711 0.434 0.089

sup ∗ S 8 9.125 0.817 0.541 0.094

sup ∗ N 8 10.125 0.736 0.460 0.095

car none 54 1.444 0.972 0.933 0.021

sup 5 5.200 0.700 0.663 0.073

sup ∗ S 5 4.800 0.800 0.763 0.068

sup ∗ N 5 5.200 0.700 0.663 0.073

cleveland none 97 5.495 0.910 0.811 0.154

sup 10 8.300 0.864 0.773 0.232

sup ∗ S 10 7.300 0.966 0.873 0.207

sup ∗ N 10 8.600 0.864 0.774 0.240

cmc none 354 6.588 0.723 0.500 0.016

sup 35 14.914 0.666 0.447 0.037

sup ∗ S 35 12.686 0.782 0.562 0.033

sup ∗ N 35 18.571 0.652 0.434 0.046

ecoli none 46 10.413 0.872 0.796 0.291

sup 5 17.400 0.802 0.746 0.483

sup ∗ S 5 17.000 0.889 0.832 0.478

sup ∗ N 5 18.200 0.788 0.734 0.503

haberman none 122 6.049 0.716 0.464 0.062

sup 12 9.917 0.650 0.406 0.099

sup ∗ S 12 9.417 0.900 0.658 0.109

sup ∗ N 12 12.250 0.783 0.546 0.135

hepatitis none 66 7.424 0.986 0.820 0.231

sup 7 12.000 0.971 0.832 0.373

sup ∗ S 7 12.571 1.000 0.864 0.393

sup ∗ N 7 12.571 1.000 0.864 0.393

solar-flareF none 39 3.051 0.527 0.490 0.066

sup 4 6.750 0.362 0.327 0.142

sup ∗ S 4 4.500 0.790 0.753 0.102

sup ∗ N 4 7.750 0.382 0.348 0.164

transfusion none 161 6.360 0.673 0.440 0.028

sup 16 16.062 0.630 0.404 0.067

sup ∗ S 16 15.562 0.768 0.543 0.071

sup ∗ N 16 18.500 0.679 0.456 0.083

yeast-ME2 none 155 7.432 0.905 0.875 0.145

sup 16 9.375 0.915 0.886 0.183

sup ∗ S 16 8.875 0.944 0.915 0.174

sup ∗ N 16 10.688 0.904 0.877 0.209
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Table 4. Characteristics of filtered rules for the majority class

Data set Pruning #Rules Avg.sup Avg.conf Avg.S Avg.N

balance-scale none 306 12.889 0.996 0.076 0.021

sup 31 30.097 0.994 0.076 0.049

sup ∗ S 31 30.452 0.997 0.079 0.051

sup ∗ N 31 34.194 0.996 0.079 0.057

breast-cancer none 75 4.973 0.959 0.261 0.022

sup 8 11.750 0.925 0.234 0.050

sup ∗ S 8 12.500 0.994 0.304 0.061

sup ∗ N 8 13.375 0.994 0.305 0.065

car none 69 68.478 0.924 −0.036 0.017

sup 7 361.286 0.987 0.037 0.187

sup ∗ S 7 351.429 1.000 0.051 0.212

sup ∗ N 7 356.571 1.000 0.051 0.215

cleveland none 94 16.426 1.000 0.123 0.061

sup 9 53.444 1.000 0.142 0.199

sup ∗ S 9 53.444 1.000 0.142 0.199

sup ∗ N 9 54.111 1.000 0.142 0.202

cmc none 401 7.302 0.971 0.198 0.006

sup 40 21.725 0.975 0.204 0.017

sup ∗ S 40 21.500 0.987 0.217 0.018

sup ∗ N 40 22.975 0.986 0.216 0.019

ecoli none 47 64.128 0.990 0.141 0.210

sup 5 207.800 0.999 0.271 0.685

sup ∗ S 5 208.000 0.999 0.271 0.685

sup ∗ N 5 208.000 0.999 0.271 0.685

haberman none 60 6.383 0.977 0.247 0.027

sup 6 15.833 0.990 0.269 0.068

sup ∗ S 6 15.833 0.990 0.269 0.068

sup ∗ N 6 15.833 0.990 0.269 0.068

hepatitis none 52 18.615 1.000 0.241 0.151

sup 5 59.600 1.000 0.341 0.485

sup ∗ S 5 59.600 1.000 0.341 0.485

sup ∗ N 5 65.200 1.000 0.357 0.530

solar-flareF none 64 27.781 0.957 −0.002 0.012

sup 6 165.333 0.982 0.031 0.123

sup ∗ S 6 158.500 0.989 0.039 0.128

sup ∗ N 6 163.833 0.986 0.036 0.129

transfusion none 118 11.720 0.965 0.206 0.016

sup 12 51.500 0.932 0.183 0.064

sup ∗ S 12 41.750 0.959 0.209 0.060

sup ∗ N 12 51.750 0.947 0.200 0.073

yeast-ME2 none 613 204.979 1.000 0.041 0.143

sup 61 514.000 1.000 0.055 0.358

sup ∗ S 61 566.131 1.000 0.057 0.395

sup ∗ N 61 609.197 1.000 0.059 0.425
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In our study, we will examine three proposed strategies to select rules with
the rule evaluation ev(R) (see Sect. 5), defined as: (1) a standard rule support
sup(R); (2) a product sup(R) × S(R); and (3) a product sup(R) × N(R).

The rule characteristics with respect to considered criteria are given in
Tables 3 and 4, for the minority and majority class, respectively. The column
“pruning” corresponds to the selection strategy (note that results for using the
standard version of BRACID without pruning is presented in the first row for
each data set with an abbreviation “none”).

Additionally, we constructed rule classifiers with the three filtering strategies
and evaluated their classification performance. The values of G-mean and F-
measure are presented in Table 5.

Table 5. G-mean and F-measure for BRACID with all rules vs. filtered rules

G-mean F-measure

Data set BRACID sup sup ∗ S sup ∗ N BRACID sup sup ∗ S sup ∗ N

balance-scale 0.56 0.63 0.59 0.60 0.19 0.23 0.22 0.21

breast-cancer 0.56 0.59 0.61 0.61 0.44 0.48 0.49 0.49

car 0.88 0.60 0.61 0.64 0.73 0.41 0.42 0.44

cleveland 0.57 0.71 0.72 0.73 0.33 0.41 0.41 0.42

cmc 0.64 0.64 0.64 0.64 0.45 0.45 0.45 0.45

ecoli 0.83 0.85 0.85 0.84 0.60 0.55 0.54 0.55

haberman 0.58 0.54 0.54 0.54 0.44 0.44 0.43 0.43

hepatitis 0.75 0.76 0.75 0.74 0.60 0.59 0.57 0.54

solar-flareF 0.64 0.73 0.65 0.73 0.28 0.32 0.32 0.31

transfusion 0.64 0.63 0.63 0.65 0.47 0.47 0.46 0.48

yeast-ME2 0.71 0.72 0.73 0.77 0.42 0.40 0.40 0.38

7 Discussion of the Experiments

Each of the filtering strategies improves the interestingness measure used in the
given strategy. Note that all of them improve average rule supports for both
minority and majority classes. For some data sets these improvements are quite
high, for instance, for cmc data the average rule supports increase from 6.59 to
18.57 examples in the minority class, and from 7.30 to 22.98 examples in the
majority class. Similar high improvements also occur for car, solar flare, ecoli
and transfusion data.

The third strategy (based on sup(R) and N(R)) increases the average value
of measure N for all data sets in both classes—see e.g. hepatitis data, where
the improvements are from 0.23 to 0.39 for the minority class and from 0.15
to 0.53 for the majority class. Similar increases have been observed for other
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data. Similarly, the second strategy (based on sup(R) and S(R)) improves the
average values of the confirmation measure S – however, it is more visible for
the minority class than for the majority one, for instance changes from 0.46 to
0.65 in the minority class and from 0.25 to 0.27 in the majority one for haberman
data. Note that values of the confirmation measure S are always higher than N .

It is worth observing that the proposed strategies also improve rule evaluation
measures other than the ones used in each strategy. In particular, the third
strategy usually provides the highest values of the average support – in the
majority of data sets it is better than the first strategy that uses the support
only. Although it sometimes slightly improves the confirmation measure S, it
usually decreases the average confidence of rules. On the other hand, the second
strategy offers the highest increases of the rule confidence. It is more visible for
the minority class as the confidence of majority rules is already quite high.

What is also interesting, classification performance of such filtered rules does
not decrease too much compared to the original set of rules and for few data it
is even better – see results in Table 5.

The differences in results obtained by strategies using S and N measures
could be explained by analyzing their formulae (see Eqs. 1 and 2). They exploit
the contingency matrix in a different, although symmetric, way. Measure S is
more focused on considering a pair of numbers (a and c) decreased by (b and d),
while N aggregates a different combination. As BRACID tries to induce rules
with a very high confidence (which refers to the pair a and c), it is naturally
oriented on obtaining higher values of the S measure. On the other hand, as
measure N exploits complementary information to the one used in BRACID
rule induction process, it may better co-operate with the rule support in the
pruning strategy and may lead to better descriptive rule evaluation as well as
classification results.

8 Conclusions and Final Remarks

To sum up, our experiments have clearly demonstrated that all proposed filtering
strategies lead to selecting a much smaller number of BRACID induced rules,
which are characterized by better values of considered interestingness measures
than in case of non-pruned rules.

As future research, we plan to extend the experimental evaluation with other
rule classifiers specialized for class imbalances in order to show the generality of
our approach. We also intend to confront our pruning strategies with a baseline
approach involving a simple rule filtering. Furthermore, we plan to investigate a
more local way of calculating the interestingness measures, which will be based
on the analysis of neighbor examples to the given rule rather than on all data
elements as it is currently done.

Acknowledgement. The research was supported by NCN grant DEC-2013/11/B/
ST6/00963.
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Abstract. We address the problem of modeling trust network evolution
through social communications among users in a social media site. In
particular, we focus on a social trust-link created between two users hav-
ing mediating-objects such as mediating-users and mediating-items, and
analyze the time-decay effects of mediating-objects on social trust-link
creation. To this end, we first introduce the basic TCM model that can be
regarded as a conventional link prediction method based on mediating-
objects, and propose the TCM model with time-decay by incorporating
an appropriate time-decay function into it. We present an efficient learn-
ing method of the proposed model, and apply it to an analysis of social
trust-link creation for two real item-review sites. We show that the pro-
posed model significantly outperforms the basic TCM model in terms of
prediction performance, and clarify several properties of user behavior
for social trust-link creation.

Keywords: Trust-network evolution model · Mediating-user ·
Mediating-item · Time-decay effect

1 Introduction

The advancement of Social Media such as eBay, Epinions and Facebook has
allowed us to construct large trust networks, where a trust-link (u, v) from a user
u to a user v indicates that u trusts v and tends to be influenced by v. Previous
studies [3,6–8,11,13,14,17,18] have already established the importance of trust
in social networks for various processes such as information spreading or search.

Modeling human communication behavior in an online world is an underpin-
ning of mining complex social networks, and a central problem in social network
analysis. A trust-link established through mediating-objects in a social media site
can be regarded as the one created through social communications among users.
Representative examples of a mediating-object α from a user u to a user v are
as follows. The first one is a mediating-user α who has both trust-links from
user u and to user v. In this case, user u can meet user v by tracing the trust-
links via user α. The second one is a mediating-item α for which user u found
an activity of user v and thereby knew user v. In the case of a product review
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A. Appice et al. (Eds.): NFMCP 2016, LNAI 10312, pp. 99–114, 2017.
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site, this indicates that user v posted a review for product α, and user u read
it with interest. In this paper, we refer a trust-link created between two users
having a mediating-object to as a social trust-link, and address the problem of
modeling the mechanism of how a social trust-link is created in the context of
trust network evolution in discrete-time steps.

To confirm the effects of mediating-objects on social trust-link creation, we
first introduce a basic model of creating a trust-link under mediating-objects,
which is referred to as the basic TCM model. Note that the basic TCM model
does not reflect when the corresponding mediating-objects were formed, but
manages all of them equally. Analyzing to whom a user creates a social trust-link
from the viewpoint of mediating-objects is connected with conventional methods
for link prediction. In fact, when two representative methods are employed to
assess the mediating-value of each mediating-object (i.e., its essential value on
trust-link creation), the basic TCM model leads to two widely-used methods in
the context of link prediction. One is the naive method in which all mediating-
objects are equally valued regardless of their intrinsic properties. Then, the basic
TCM model corresponds to the Common Neighbor/Feature method [2,12] for
link prediction. The other is the A-A method in which the intrinsic properties of
mediating-objects are taken into account and less active mediating-objects (e.g.,
mediating-users that have a smaller number of trust-links, mediating-items for
which a smaller number of users perform activities, etc.) are more highly valued.
In this case, the basic TCM model corresponds to the Adamic-Adar method [2,12]
for link prediction. As for creation of a social trust-link, it would in general be
reasonable to suppose that older mediating-objects are less influential and recent
ones are more influential. However, little attention has been given to analyzing
the time-decay effects of mediating-objects in creating a trust-link so far.

To analyze the effects of mediating-objects on social trust-link creation in
terms of time-decay, we propose the TCM model with time-decay by extending
the basic TCM model. As time-decay functions that should be incorporated into
the proposed TCM model with time-decay, we adopt two typical ones, exponen-
tial decay and power-law decay. We present an efficient learning method of the
proposed model, and apply it to an analysis of social trust-link creation for two
real item-review sites. We show that the proposed model significantly outper-
forms the basic TCM model in terms of prediction performance, the power-law
decay can be more suitable than the exponential decay for the time-decay func-
tion, and the A-A method can be more effective than the naive method for
determining mediating-values. Moreover, by employing the TCM model with
power-law decay under the A-A method, we analyze how an individual user cre-
ates social trust-links from the perspectives of mediating-user, mediating-item
and time-decay, and clarify several properties of user behavior.

2 Related Work

Social trust-link creation based on mediating-users is closely related to the tri-
adic closure mechanism which is derived from the concept that two people with
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mutual friends have a higher chance to create a link, and which was regarded as
a powerful principle to explain link creation in online social networks [10]. By
reflecting other social theories as well, this mechanism was extended to predict
positive (trust) and negative (distrust) links in a signed social network [11]. A
method of predicting negative links based on positive links and content-centric
interactions was also proposed [16]. Weng et al. [19] extended the triadic closure
mechanism by exploring the role of information diffusion in the evolution of a
social network, and showed that shortcuts based on information flow are another
key factor in explaining link formation.

Modeling network evolution can be connected with link prediction and rating
prediction in recommender systems. Various link prediction methods were pre-
sented in this context, including supervised trust prediction [13,14], non-negative
matrix factorization based on both link and rating information [17], link pre-
diction with explanations for user recommendation systems [2], link prediction
from information diffusion data [5], and link prediction in multiple networks [20].
To represent the temporal change of user preference in a recommender system,
Koren [9] incorporated a time decay function, and improved the performance in
rating prediction. Tang et al. [18] enhanced this framework by combining trust
network information, and demonstrated its effectiveness in rating prediction and
link prediction. Note that these researches were not intended for directly mod-
eling the dynamics of trust network evolution.

Unlike the previous work such as the approaches mentioned above, we
focus on modeling the mechanism of creating trust-links under the presence
of mediating-objects, and deal with both mediating-user and mediating-item as
mediating-object. Furthermore, we provide a novel model and its efficient learn-
ing method in order to analyze the time-decay effects of mediating-objects and
the difference of mediating-user and mediating-item in influence strength.

3 Analysis Model

3.1 Problem Formulation

For a social media site offering trust-links and activities, we investigate the
evolution of trust network in a given time-period J = [Tf , T�) in discrete-time
steps, where Tf and T� are positive integers with Tf < T�. Here, we assume
that J is not so long (e.g., around six months) since users’ behavioral patterns
and preferences in an online world can largely change over a long time frame in
general. We focus on a social trust-link (i.e., a trust-link created between two
users having a mediating-object), and consider analyzing the effects of mediating-
objects in creating social trust-links. For each mediating-object α from a user u
to a user v, let τα(u, v) denote the time-step at which α first became a mediating-
object from u to v. Here, τα(u, v) is called the mediating-time of α from u to
v. Since validity period of information cannot in general be so long in an online
world, we only treat such trust-links and activities that have been relatively
recently generated. Thus, we regard α as a mediating-object from u to v at
a time-step t if and only if t − Δt0 ≤ τα(u, v) < t, where Δt0 is a positive
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integer (e.g., around three months) specified in advance, and stands for the
validity period of information in this social media site. We also assume that the
set of mediating-objects are divided into K (≥ 2) kinds of categories including
“Mediating-user”, “Mediating-item”, etc.

Let U be the set of all users in the site during time-period J . For an arbitrary
time-step t ∈ J , let Ut denote the set of all users at time-step t, and let Ēt

(⊂ U × U) denote the set of all trust-links created in the set of users U before
time-step t. Then, we have U =

⋃
t∈J Ut, and Ēt+1 \ Ēt indicates the set of all

trust-links created in U at time-step t. For any u, v ∈ Ut and k ∈ {1, . . . , K}, let
Mk,t(u, v) denote the set of all mediating-objects of category k from user u to
user v at time step t. We assume that Mk,t(u, v) ∩ M�,t(u, v) = ∅ if k �= �. For
any u ∈ Ut, we define Vt(u) by

Vt(u) =

{

v ∈ Ut

∣
∣
∣
∣
∣

K⋃

k=1

Mk,t(u, v) �= ∅, (u, v) /∈ Ēt

}

.

Note that a social trust-link created at a time-step t ∈ J is represented by (u, v),
where u ∈ Ut and v ∈ Vt(u).

Suppose that a user u ∈ Ut creates a social trust-link to some user belonging
to Vt(u) at a time-step t ∈ J . Then, to analyze the effects of mediating-objects
on social trust-link creation, we consider modeling the probability P (v |u, t) that
the user u creates a trust-link (u, v) to a user v ∈ Vt(u) at the time-step t. It
is conceivable that the influence of a mediating-object α ∈ Mk,t(u, v) depends
on how close the mediating-time τα(u, v) is to the time-step t. Moreover, it is
expected that the larger t − τα(u, v) is, the smaller the influence of α becomes.
We can also speculate that how influential a mediating-object α ∈ Mk,t(u, v) is
on the creation of trust-link (u, v) depends on its category k. In this paper, we
construct such a model of probability P (v |u, t) that can analyze the effects of
time-decay and category for mediating-objects in creating social trust-links.

3.2 Basic Model

First, we introduce a basic model for evaluating the effects of mediating-objects
on social trust-link creation, which is shown to be associated with a conventional
method for link prediction when a widely-used simple method is employed to
assess the essential value of a mediating-object on the basis of its observed fea-
tures (see Sect. 5.2). Here, we fix such an assessment method, and determine the
mediating-value of each mediating-object α ∈ Mk,t(u, v) of category k from user
u to user v at time-step t. Let rk,t(α) denote the mediating-value of α, where
0 < rk,t(α) ≤ 1.

It can be expected that the probability P (v |u, t) becomes high if there are
many mediating-objects of high mediating-values from user u to user v ∈ Vt(u)
at time-step t. Thus, as a model of probability P (v |u, t) for v ∈ Vt(u), we define

P basic(v |u, t) ∝
K∑

k=1

∑

α∈Mk,t(u,v)

rk,t(α) (∀v ∈ Vt(u)), (1)
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where it is set that
∑

α∈Mk,t(u,v) rk,t(α) = 0 if Mk,t(u, v) = ∅. This model
(see Eq. (1)) can be regarded as a basic model of trust-link creation based on
mediating-objects, and is referred to as the basic TCM model.

3.3 Proposed Model

In order to analyze the effects of mediating-objects on creation of social trust-
links in terms of time-decay and category, we consider extending the basic TCM
model, and propose modeling probability P (v |u, t) as

P decay(v | u, t; λ, μ) ∝
K∑

k=1

eμk
∑

α∈Mk,t(u,v)

rk,t(α) f(t − τα(u, v); λk) (∀v ∈ Vt(u)),

(2)
where λ = (λ1, . . . , λK), (λ1, . . . , λK > 0) and μ = (μ1, . . . , μK), (μ1, . . . , μK ∈
R) are the model parameters whose values are estimated from the observed data,
and it is set that

∑
α∈Mk,t(u,v) rk,t(α) f(t − τα(u, v);λk) = 0 if Mk,t(u, v) = ∅.

Here, for each k ∈ {1, . . . , K}, λk represents the time-decay rate of a mediating-
object belonging to category k, and eμk represents the relative influence strength
of mediating-objects belonging to category k. Moreover, f(s;λk) is a monotone
decreasing function for s > 0, and models a time-decay effect. In this paper, we
adopt two typical time-decay functions related to human behavior [1,9,15]. One is

fex(s;λk) = C0e
−λks (3)

for s > 0, which is called the exponential decay function, and the other is

fpl(s;λk) = C1s
−λk (4)

for s > 0, which is called the power-law decay function. Here, C0 and C1 are the
normalization constants with C0, C1 > 0.

The proposed analysis model (see Eq. (2)) is referred to as the TCM
model with time-decay. In particular, the TCM model with time-decay function
fex(s;λk) and the TCM model with time-decay function fpl(s;λk) are called the
TCM model with exponential decay and the TCM model with power-law decay,
respectively.

4 Parameter Estimation Method

Let D∗ = {(u, v, t)} denote the set of all social trust-links created within a time-
period J∗ = [Tf , T∗), where T∗ is a positive integer with Tf < T∗ ≤ T�. Here,
(u, v, t) ∈ D∗ indicates that user u created a social trust-link to user v at time-
step t ∈ J∗. Then, we consider estimating the parameter values of the TCM
model with time-decay from the observed data D∗. Note that to determine the
mediating-time τα(u, v) of a mediating-object α from a user u to a user v in the
observed time-period J∗, the data in the time-period J ′ = [Tf − Δt0, Tf ) before
J∗ is also required for the parameter estimation.
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To estimate the values of λ = (λ1, . . . , λK) and μ = (μ1, . . . , μK) from D∗,
we conform to the framework of MAP estimation, and consider maximizing the
function

L(λ, μ) =
∑

(u,v,t)∈D∗

log P decay(v | u, t; λ, μ) +
K∑

k=1

(
(bk − 1) log λk − ckλk − μk

2

2dk
2

)

(5)

with respect to λ and μ (see Eqs. (2), (3) and (4)), where bk ≥ 1, ck > 0 and dk >
0 are regularization constants for k = 1, . . . , K. Here, we assume a gamma prior
for each λk and a Gaussian prior for each μk. We consider deriving an iterative
algorithm. Let λ̄ and μ̄ denote the current estimates of λ and μ, respectively.
By applying Jensen’s inequality, we can obtain a convex function Q(λ,μ | λ̄, μ̄)
of λ and μ such that L(λ,μ) − L(λ̄, μ̄) ≥ Q(λ,μ | λ̄, μ̄) and Q(λ̄, μ̄ | λ̄, μ̄) = 0.
Thus, we can derive an update formula for λ and μ by maximizing Q(λ,μ | λ̄, μ̄)
(see Appendix for the details of the learning algorithm).

5 Experiments

5.1 Social Media Data

We collected real data from two social media sites, Epinions1 and @cosme2,
where Epinions is a product-review site, and @cosme is a Japanese word-of-
mouth communication site for cosmetics. In both sites, a user can create a trust-
link to another user, and post a review for an item. As for Epinions, we traced
the trust-links by the breadth-first search from a user who was featured as the
most popular user in October 2012 until no new users appeared, and collected
sets of trust-links and reviews. In a similar way, we also collected such data for
@cosme in June 2010. We aggregated the data into day granularity (i.e., one
time-step is set as one day). The collected data includes 64,268 users, 509,293
trust-links and 809,517 reviews for 268,891 items for Epinions, and 30,369 users,
359,817 trust-links, 3,815,622 reviews for 122, 927 items for @cosme.

We confirmed that all of the indegree distribution (i.e., the fraction of the
number of trust-links a user received), the outdegree distribution (i.e., the frac-
tion of the number of trust-links a user created) and the activity distribution
(i.e., the fraction of the number of reviews a user posted) exhibit power-law
tails, which are known as typical properties of social data in an online world. By
taking into consideration the fact that trust-links were constantly generated in
2003, we constructed datasets from the trust-links and the reviews generated in
October 2002 to December 2003 for both sites. These datasets are referred to as
the Epinions data and the @cosme data, respectively.

1 http://www.epinions.com/.
2 http://www.cosme.net/.

http://www.epinions.com/
http://www.cosme.net/
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5.2 Definition of Mediating-Objects

As for mediating-objects to be examined, we focused on two categories (i.e.,
K = 2); category 1 is “Mediating-user” and category 2 is “Mediating-item”. For
each t ∈ J , let Et (⊂ U × U) denote the set of all trust-links created in the
set of users U within time-period [t − Δt0, t). For each t ∈ J and u ∈ U , let
At(u) denote the set of items for which user u posted reviews within time-period
[t − Δt0, t). Here, by considering the volume of data involved, we simply set the
validity period Δt0 as three months. For each (u,w) ∈ Et and a ∈ At(u), let
T1(u,w) denote the time-step at which user u creates trust-link (u,w), and let
T2(u, a) denote the time-step at which user u posts a review for item a. First,
we define the category “Mediating-user” as follows: A user α is a mediating-
user from a user u to a user v at a time-step t when there exist trust-links
(u, α), (α, v) ∈ Et. For a mediating-user α from user u to user v at time-step t,
we have t−Δt0 ≤ T1(u, α), T1(α, v) < t, and define the mediating-time τα(u, v) as
the maximum of T1(u, α) and T1(α, v). Next, we define the category “Mediating-
item” as follows: An item α is a mediating-item from a user u to a user v at a
time-step t when (1) α ∈ At(u)∩At(v) or (2) there exists some user w ∈ Ut such
that (u,w) ∈ Et and α ∈ At(w) ∩ At(v). For a mediating-item α from user u to
user v at time-step t, we have t − Δt0 ≤ T2(w,α), T2(α, v) < t, and also define
the mediating-time τα(u, v) as the maximum of T2(u, α) and T2(α, v). Here, we
note that to identify the items for which user v has recently posted reviews and
user u can read those reviews with interest, we examine not only the items for
which user u has recently posted reviews but also the items for which the users
to whom user u has recently created trust-links has recently posted reviews.

For the Epinions and @cosme data, we investigated a relationship between
the creation of a social trust-link and the number of mediating-objects according
to the work of Crandall et al. [4]. In 2003, there were 7,965 and 8,699 social trust-
links for the Epinions data and the @cosme data, respectively. For such a social
trust-link (u, v), we examined change in the number of mediating-objects from
user u to user v as a function of the number of days after the social trust-link
(u, v) was created. Figure 1 indicates change in the average number of mediating
users and items for all the social trust-links for the Epinions and @cosme data.
We can observe a sharp increase in the numbers of mediating users and items
immediately before the social trust-link creation. These results imply that there
exists a correlation between the creation of a social trust-link and the number
of mediating-objects, and suggest that incorporating the number of mediating-
objects can be a promising approach for modeling social trust-link creation.

5.3 Definition of Mediating-Values

As for determining the mediating-value rk,t(α) of a mediating-object α ∈
Mk,t(u, v) of a category k from a user u ∈ Ut to a user v ∈ Vt(u) at a time-step
t ∈ J , we employed two representative methods in the experiments.

First, we examined the method of equally assessing all mediating-objects;
i.e.,

rk,t(α) = 1



106 H. Takahashi and M. Kimura

−15−10−5 0 5 10 151.1

1.8

2.5

3.2

Number of days after link creation

N
um

be
r o

f m
ed

ia
tin

g 
ob

je
ct

s

(a) Epinions data

−15−10 −5 0 5 10 152.3

3

3.7

4.4

Number of days after link creation

N
um

be
r o

f m
ed

ia
tin

g 
ob

je
ct

s

(b) @cosme data

Fig. 1. Relation between the creation of social trust-links and the number of mediating-
objects.

for any α ∈ Mk,t(u, v). This method is referred to as the naive method for
mediating-values. In this case, we have P base(v |u, t) ∝ |M1,t(u, v)|+|M2,t(u, v)|
for v ∈ Vt(u). Here, note that M1,t(u, v) = N out

1,t (u) ∩ N in
1,t(v) and M2,t(u, v) =

(⋃
w∈N out

1,t (u)∪ {u} At(w)
)
∩At(v), where N out

1,t (w) = {w′ ∈ Ut | (w,w′) ∈ Et} and

N in
1,t(w) = {w′ ∈ Ut | (w′, w) ∈ Et} for any user w ∈ Ut. Thus, the basic TCM

model can be regarded as a kind of Common Neighbor/Feature method [2,12]
for link prediction.

Next, we examined a method in which (1) mediating-users having a smaller
number of trust-links are more highly valued and (2) mediating-items for which
a smaller number of users posted reviews are more highly valued. We defined
rk,t(α) by

rk,t(α) =
C2

|Nk,t(α)| + C3

for any α ∈ Mk,t(u, v), where the constants C2 (> 0) and C3 were deter-
mined as follows: rk,t(α) = 1 if |Nk,t(α)| = 2 and rk,t(α) = 0.2 if |N1,t(α)| =
max{|N1,t′(α′)|; t′ ∈ J0, α′ ∈ Ut′} for k = 1 and |N2,t(α)| = max{|N2,t′(α′)|;
t′ ∈ J0, α′ ∈ A} for k = 2. Here, N1,t(α) = N out

1,t (α) ∪ N in
1,t(α), N2,t(α) =

{w ∈ Ut |α ∈ At(w)} and A is the set of all items. This method is referred to
as the A-A method for mediating-values. We note that in this case, the basic
TCM model can be regarded as a kind of Adamic-Adar method [2,12] for link
prediction (see Eq. (1)).

5.4 Datasets

Using the proposed TCM model with time-decay, we analyze how social trust-
links are created in time-period J = [Tf , T�) for the Epinions and @cosme data.
Let D = {(u, v, t)} denote the set of all social trust-links created within time-
period J , where (u, v, t) ∈ D indicates that user u created a social trust-link to
user v at time-step t. To evaluate the prediction performance of the proposed
model, we divide time-period J into a training time-period J0 = [Tf , Tm) and a
test time-period J1 = [Tm, T�), and define a training set D0 and a test set D1
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by D0 = {(u, v, t) ∈ D | t ∈ J0} and D1 = {(u, v, t) ∈ D | t ∈ J1}, where Tm is a
positive integer with Tf < Tm < T�. In the experiments, we set |J0| = |J1| = Δt0;
i.e., T� = Tf + 2Δt0 and Tm = Tf + Δt0. As mentioned before, we also use the
data in time-period J ′ = [Tf − Δt0, Tf ) before time-period J = [Tf , T�) in order
to determine mediating-time.

The TCM model with time-decay is learned from training set D0, and its
generalization capability is evaluated using test set D1. Here, the regularization
constants were set as bk = 1, ck = 1, dk = 0.1 for each category k. For each of
the Epinions and @cosme data, we constructed three datasets D1, D2 and D3 by
setting J0 as January to March in 2003 for D1, April to June in 2003 for D2 and
July to September in 2003 for D3, respectively. Here, for example, as for D1, J1

is April to June in 2003 and J ′ is October to December in 2002.

5.5 Evaluation Results

For each of the three datasets D1, D2 and D3 in the Epinions and @cosme
data, we estimated the parameter values of the TCM model with time-decay
from training set D0 (see Sect. 4), and evaluated the prediction capability of the
learned model using test set D1 in terms of prediction log-likelihood ratio PLR
since it is a probabilistic generative model.3 Here, PLR is defined by

PLR =
∑

(u,v,t)∈D1

(

log P̂ (v |u, t) − log
1

|Vt(u)|
)

(6)

where P̂ (v |u, t) stands for a prediction of probability P (v |u, t) for (u, v, t) ∈ D1

by a specified model. Note that 1/|Vt(u)| indicates the prediction likelihood of
the random guessing for (u, v, t) ∈ D1. We compared the basic TCM model
and the proposed TCM models in terms of PLR, and examined which model is
suitable. Figures 2 and 3 show the results of the basic TCM model (Bs), the TCM
model with exponential decay (ED) and the TCM model with power-law decay
(PD) for the Epinions data and the @cosme data, respectively. Here, Figs. 2(a)–
(c), 3(a)–(c) indicate the results for the naive method for mediating-values, and
Figs. 2(d)–(f), 3(d)–(f) indicate the results for the A-A method for mediating-
values. PLR measures the relative performance versus the random guessing.
We observe that the basic TCM model provided much better performance than
the random guessing, and reconfirm the importance of exploiting mediating-
objects (i.e., the conventional methods for link prediction). Moreover, we see
that the TCM model with power-law decay performed the best, the TCM model
with exponential decay followed the next, and the basic TCM model was always
much worse than these two models. These results demonstrate the effectiveness
of incorporating time-decay, and also coincide with the observations that many
human behaviors follow power-laws [1,15]. Thus, we focus on the TCM model

3 We also evaluated its prediction capability in terms of the area under the ROC curve
(AUC) for trust-link prediction, and confirmed that the results for AUC were similar
to those for PLR.
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Fig. 2. Evaluation results of the proposed models for the Epinions data.
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Fig. 3. Evaluation results of the proposed models for the @come data.

with power-law decay. Then, in the matter of determining mediating-values, we
see that the A-A method can be more effective than the naive method. Hence,
for the behavior analysis, we employed the TCM model with power-law decay
under the A-A method for mediating-values.

Table 1 indicates the estimated results for the parameters in the TCM model
with power-law decay under the A-A method. We observe that λ2 was larger
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Table 1. The estimated results for the parameters in the TCM model with power-law
decay.

than λ1, and eμ1 was larger than eμ2 . These results show that from a system-
wide point of view, the time-decay rate of a mediating-item is higher than that
of a mediating-user, and mediating-users are more influential than mediating-
items. In particular, this implies that the influence of mediating-items tends to
decrease more rapidly than that of mediating-users as time passes.

5.6 Analysis Results

Now, we focus on the behavior of an individual user in creating social trust-links,
and analyze it by the TCM model with power-law decay under the A-A method.
In the experiments, we investigated the users who created at least 5 social trust-
links during the entire time-period J . Such a user is referred to as the analysis
target user. The number of analysis target users was 96 and 46 in dataset D1, 78
and 59 in dataset D2, and 87 and 45 in dataset D3 for the Epinions data and the
@cosme data, respectively. For each analysis target user u of each dataset, we
estimated the values of parameters λ1, λ2, eμ1 and eμ2 in the TCM model with
power-law decay by using the data of both the social trust-links created by the
user u during the entire time-period J and the corresponding mediating-objects.

Figure 4 shows the analysis results, where it plots eμ2/eμ1 versus λ2/λ1 for
all the analysis target users. We observe that the points (λ2/λ1, e

μ2/eμ1) plotted
on the coordinate plane vary substantially depending on the users. However, the
entire tendencies of the results do not depend largely on the datasets. Most users
have the property that λ2 is larger than λ1, and eμ2 is smaller than eμ1 , that
is, the time-decay rate of a mediating-item tends to be higher than that of a
mediating-user, and mediating-items tend to be less influential than mediating-
users, which coincides with the system-wide property observed in Sect. 5.5. In
particular, we observe that @cosme tends to have smaller eμ2/eμ1 than Epin-
ions. This implies that mediating-users tend to be much more influential than
mediating-items in @cosme. Moreover, through our analysis, we can identify
several characteristic users, including the users for whom mediating-items are
substantially more influential than mediating-users (i.e., eμ2 � eμ1), and the
users for whom the time-decay rate of a mediating-item is substantially lower
than that of a mediating-user (i.e., λ2  λ1). These results demonstrate the
effectiveness of the analysis method based on the TCM model with time-decay.
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Fig. 4. Analysis results of user behavior by the TCM model with power-law decay.

6 Conclusion

Aiming to construct a better model for trust network evolution through social
communications among users in a social media site, we have proposed a novel
model that can analyze the effects of time-decay and category with respect to
mediating-objects in creating social trust-links. As a basic model of creating
social trust-links under mediating-objects, we first introduced the basic TCM
model that can be regarded as a conventional link prediction method. In fact,
it leads to the Common Neighbor/Feature and the Adamic-Adar methods when
the naive and A-A methods are employed to determine mediating-values, respec-
tively. To analyze the effects of mediating-objects in terms of time-decay and
category, we proposed the TCM model with time-decay, which derives two mod-
els depending on the time-decay functions incorporated; i.e., the TCM model
with exponential decay and the TCM model with power-law decay. We pre-
sented an efficient method of estimating the values of parameters in the proposed
model from the observed data of social trust-links and corresponding mediating-
objects. We applied the proposed TCM model with time-decay to real data
from two item-review sites “Epinions” and “@cosme”, where mediating-users
and mediating-items were examined as mediating-objects.

Then, we first showed that the TCM model with time-decay exhibits higher
prediction capability than the basic TCM model, demonstrating the effective-
ness of incorporating time-decay. We also showed that the TCM model with
power-law decay outperforms the TCM model with exponential decay, and as
for determining mediating-values, the A-A method is more effective than the
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naive method. Thus, using the TCM model with power-law decay under the
A-A method, we analyzed the behavior of creating social trust-links in the Epin-
ions and @cosme data. From a system-wide point of view, the time-decay rate
of a mediating-item was higher than that of a mediating-user, and mediating-
users were more influential than mediating-items. Moreover, we identified sev-
eral characteristic users according to our analysis method. These results demon-
strate the effectiveness of the proposed analysis model. Our immediate future
work includes extensively evaluating the model for various social media data,
investigating various kinds of mediating-objects, and exploring better ways to
determine mediating-values.
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entific Research (C) (No. 26330352), Japan.

Appendix: Learning Algorithm

We consider learning the TCM model with time-decay from the observed data
D∗. We derive an iterative algorithm for estimating the values of λ and μ by
maximizing the objective function (see Eq. (5)). Let λ̄ = (λ̄1, . . . , λ̄K) and μ̄ =
(μ̄1, . . . , μ̄K) be the current estimates of λ and μ, respectively. By Jensen’s
inequality, we have

log

⎛

⎝
K∑

k=1

eμk

∑

α∈Mk,t(u,v)

rk,t(α)f(t − τα(u, v);λk)

⎞

⎠

− log

⎛

⎝
K∑

k=1

eμ̄k

∑

α∈Mk,t(u,v)

rk,t(α)f(t − τα(u, v); λ̄k)

⎞

⎠

≥
K∑

k=1

∑

α∈Mk,t(u,v)

q̄k,α(u, v, t) log
(

eμk f(t − τα(u, v);λk)
eμ̄k f(t − τα(u, v); λ̄k)

)

, (7)

for any (u, v, t) ∈ D∗, where

q̄k,α(u, v, t) =
eμ̄k rk,t(α) f(t − τα(u, v); λ̄k)

∑K
�=1

∑
β∈M�,t(u,v) eμ̄� r�,t(β) f(t − τβ(u, v); λ̄�)

> 0 (8)

for k = 1, . . . , K and α ∈ Mk,t(u, v). Note that
∑K

k=1

∑
α∈Mk

u,v,t
q̄k,α(u, v, t) =

1. Thus, by Eqs. (2), (5) and (7), we have L(λ,μ) − L(λ̄, μ̄) ≥ Q(λ,μ | λ̄, μ̄),
where

Q(λ, μ | λ̄, μ̄) = −
∑

(u,v,t)∈D∗

K∑

k=1

∑

α∈Mk,t(u,v)

q̄k,α(u, v, t) (gα(u, v, t) λk − μk)
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−
∑

(u,v,t)∈D∗

log

⎛

⎝
∑

w∈Vt(u)

K∑

k=1

∑

α∈Mk,t(u,w)

exp(−gα(u, w, t) λk + μk)

⎞

⎠

+

K∑

k=1

(
(bk − 1) log λk − ckλk − μk

2

2dk
2

)
+ const. (9)

Here, for (u, v, t) ∈ D∗, w ∈ Vt(u) ∪ {v}, k = 1, . . . , K and α ∈ Mk,t(u,w),
gα(u,w, t) is defined as follows: gα(u,w, t) = t − τα(u,w) if f(s;λk) = fex(s;λk)
and gα(u,w, t) = log(t − τα(u,w)) if f(s;λk) = fpl(s;λk) (see Eqs. (3) and (4)).
Also, const indicates such a constant term that does not depend on λ and μ.
Note that Q(λ̄, μ̄ | λ̄, μ̄) = 0. Thus, we consider increasing the value of L(λ,μ)
by maximizing Q(λ,μ | λ̄, μ̄). We define hk,α(u, v, t;λ,μ) by

hk,α(u, v, t;λ,μ) =
exp (−gα(u, v, t)λk + μk)

∑
w∈Vt(u)

∑K
�=1

∑
β∈M�,t(u,w) exp (−gβ(u,w, t)λ� + μ�)

(10)

for (u, v, t) ∈ D, k = 1, . . . , K and α ∈ Mk,t(u, v). From Eqs.(9) and (10), we
have

∂Q(λ, μ | λ̄, μ̄)

∂λk
= −

∑

(u,v,t)∈D∗

∑

α∈Mk,t(u,v)

q̄k,α(u, v, t) gα(u, v, t) +
bk − 1

λk
− ck

+
∑

(u,v,t)∈D∗

∑

w∈Vu,t

∑

α∈Mk,t(u,w)

gα(u, w, t) hk,α(u, w, t; λ, μ) (11)

∂Q(λ, μ | λ̄, μ̄)

∂μk
= −

∑

(u,v,t)∈D∗

∑

α∈Mk,t(u,v)

q̄k,α(u, v, t) − μk

dk
2

+
∑

(u,v,t)∈D∗

∑

w∈Vt(u)

∑

α∈Mk,t(u,w)

hk,α(u, w, t; λ, μ) (12)

for k = 1, . . . , K. Also, from Eqs.(10), (11) and (12), we have

∂2Q(λ, μ | λ̄, μ̄)
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⎝
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⎞

⎠

×
⎛

⎝
∑

w∈Vt(u)

∑

α∈M�,t(u,w)

gα(u, w, t) h�,α(u, w, t; λ, μ)

⎞
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− δk,� (bk − 1)

λk
2 (13)
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∂2Q(λ, μ | λ̄, μ̄)

∂λk ∂μ�

=
∑

(u,v,t)∈D∗

⎛
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∑

w∈Vt(u)

∑

α∈Mk,t(u,w)
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∂2Q(λ, μ | λ̄, μ̄)
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α∈Mk,t(u,w)
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⎟⎠

×

⎛
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dk
2 (15)

for k, � = 1, . . . , K, where δk,� is the Kronecker delta. We consider a quadratic
form

HQ(x, y) =

K∑

k,�=1

(
∂2Q(λ, μ | λ̄, μ̄)

∂λk ∂λ�

xk x� + 2
∂2Q(λ, μ | λ̄, μ̄)

∂λk ∂μ�
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−
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2
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− 〈yk〉2
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−
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k=1
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(bk − 1) xk

2

λk
2 +

yk
2

dk
2

)
(16)

for x = (x1, . . . , xK), y = (y1, . . . , yK) ∈ R
K , where 〈zk,α(w)〉 stands for

〈zk,α(w)〉 =
K∑

k=1

∑

w∈Vt(u)

∑

α∈Mk,t(u,w)

hk,α(u,w, t;λ,μ) zk,α(w)

for (u, v, t) ∈ D∗, k = 1, . . . , K, w ∈ Vt(u) and α ∈ Mk,t(u,w). From Eq. (10),
note that

K∑

k=1

∑

w∈Vt(u)

∑

α∈Mk,t(u,w)

hk,α(u,w, t;λ,μ) = 1.

Thus, by Eq. (16), we have

HQ(x,y) = −
∑

(u,v,t)∈D∗

〈
(gα(u,w, t)xk − 〈gα(u,w, t)xk〉 − yk + 〈yk〉)2

〉

−
K∑

k=1

(
(bk − 1)xk

2

λk
2 +

yk
2

dk
2

)

for x = (x1, . . . , xK), y = (y1, . . . , yK) ∈ R
K . This implies that the Hessian

matrix of function Q(λ,μ | λ̄, μ̄) is negative definite. Hence, we can find the
point (λ,μ) at which function Q(λ,μ | λ̄, μ̄) attains the maximum by solving
∂Q(λ,μ | λ̄, μ̄)/∂λk = 0, ∂Q(λ,μ | λ̄, μ̄)/∂μk = 0 for k = 1, . . . , K. We employ
Newton’s method and obtain an update formula for λ and μ (see Eqs. (11), (12),
(13), (14) and (15)).
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Abstract. Healthcare spending has been increasing in the last few
decades. This increase can be attributed to hospital readmissions, which
is defined as a re-hospitalization of a patient after being discharged from
a hospital within a short period of time. The correct selection of the
primary medical procedure by physicians is the first step in the patient
treatment process and is considered to be of the main causes for hospital
readmissions. In this paper, we propose a recommender system that can
accurately predict the primary medical procedure for a new admitted
patient, given his or her set of diagnoses. The core of the recommender
system relies on identifying other existing patients that are considered
similar to the new patient. That said, we propose three approaches to
predict the primary procedure. The results show the ability of our pro-
posed system to identify the primary procedure. It can be later used to
build a graph which shows all possible paths that a patient may under-
take during the course of treatment.

Keywords: Hospital readmission · Main procedure prediction ·
Clustering · Personalization

1 Introduction

Recently, expenditure on healthcare has risen rapidly in the United States.
According to [1], healthcare spending has been rising at twice the rate of growth
of our income for the past 40 years. The projection of the growth rate in health-
care spending is 5.8% during the period 2014–2024, which means that the spend-
ing will rise to 5.4 trillion by 2024. At the same time, the gross domestic prod-
uct (GDP) growth rate is only 4.7% (as of 2014) [2]. This increase in healthcare
c© Springer International Publishing AG 2017
A. Appice et al. (Eds.): NFMCP 2016, LNAI 10312, pp. 117–131, 2017.
DOI: 10.1007/978-3-319-61461-8 8
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spending can be attributed to several factors as listed by Price Waterhouse Coop-
ers (PWC) Research Institute: over-testing, processing claims, ignoring doctors
orders, ineffective use of technology, hospital readmissions, medical errors, unnec-
essary ER visits, and hospital acquired infections [3]. Figure 1 shows that 25
billion are spent annually on readmissions. Hospital readmissions and surgery
outcomes prediction has gained a great interest recently in the scientific research
community [4–8]. Analyzing the reasons behind readmissions and reducing them
can save a great amount of money. A hospital readmission is defined as a hospi-
talization of the patient after being discharged from the hospital. The period in
average is 30 days [7].

Fig. 1. Waste in healthcare spending as listed by Price Waterhouse Coopers (PWC)
Research Institute [3]

One of the reasons for hospital readmissions is the wrong diagnosis of the
patients. It is very important to provide the patients with the proper diagnosis
in order to avoid any future readmissions and reduce the healthcare spending.
In this paper, we extend our work in [9,10], where we introduced a system for
physicians that recommends diagnoses transitions which would, as a result, yield
to reduction in the number of anticipated hospital readmissions. The input for
our system were the set of diagnoses of a new admitted patient, and the primary
medical procedure assigned for that patient. However, in this research, we mine
the medical dataset to predict the primary medical procedure for the patient
by clustering the patients according to their set of diagnoses. We propose three
new approaches to identify the patients, from the dataset, that are similar to
the newly admitted patient.

2 HCUP Dataset Description

In this work, we mined the Florida State Inpatient Databases (SID) that are part
of the Healthcare Cost and Utilization Project (HCUP) [11]. The SID dataset
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is primarily a state-level discharge data that is collected from non-federal com-
munity hospitals, which constitute the majority of hospitals in USA. The SID
includes patients’ demographic data, such as age, gender, and race. In addition
to the demographic information, SID includes patients’ medical data, such as
diagnoses, procedures, status of the patient, and the length of stay. The dataset
is mainly composed of three tables, namely: American Hospital Association
(AHA) Linkage, Charges, and Core. The most important table in the SID
is the Core table, which is considered as the nucleus of the SID. The Core
table contains over 280 features (attributes); however, many of those features
are repeated with different values according to the patient’s status. There are
two types of coding schemes used in the Core table for labeling and formatting,
which are the International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM) and the Clinical Classifications Software (CCS). The
ICD-9-CM coding is detailed and uses more codes to label the procedures and
diagnoses. On the other hand, CCS is more generalized and it is a collapsed form
of the ICD-9-CM. For example, there are 15,072 diagnosis categories and 3,948
procedure categories in the ICD-9-CM. CCS coding however, collapses these
categories into a smaller number of more generalized categories; totaling only
285 diagnoses categories, and 231 procedures categories. In the following experi-
ments, we used the CCS coding, as it provides more meaningful and descriptive
presentation of the clinical categories.

Table 1. Description of the used core table features.

Features Concepts

VisitLink Patient identifier

DaysToEvent Temporal visit ordering

LOS Length of stay

DXCCSn nth diagnosis, flexible feature

PRCCSn nth procedure, meta-action

DXPOAn Present on admission indicator

In our experiments, we only used the features listed in Table 1 that are rele-
vant to the examined problem. Visit linkage (V isitLink) feature is an encrypted
identifier for patients. Each patient has a unique identifier among the hospitals
within the same state. Days to event (DaysToEvent) feature provides infor-
mation about the number of days between two consecutive visits for the same
patient identified by the V isitLink feature. The value of this feature is set ran-
domly for the first visit to maintain the privacy of patients. The value of the
following visit would be the initial random value assigned for the first visit plus
the number of days between the admission dates of the two consecutive visits.
For example, the patient can be assigned DaysToEvent= 12 in the first visit;
which is an entirely arbitrary number and does not provide us with any informa-
tion about the actual admission date. The value of DaysToEvent in the second
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visit will be the first value (12) plus the number of days between the two visits.
For example, if DaysToEvent= 12 for the first visit and DaysToEvent= 40 for
the second visit, then the number of days between the two admission dates is
40 − 12 = 28 days. It is worth mentioning here that DaysToEvent represents
the number of days between the admission dates, and not between the discharge
date and the next admission date. V isitLink and DaysToEvent features are
encrypted identifiers of the patients. They are used together to track patients
across multiple visits within the same hospital or multiple hospitals within the
same state without revealing the patient’s identity. The Length of Stay (LOS)
feature represents the number of days a patient stays at the hospital, which is
the number of days from the admission date to the discharge date. V isitLink
and LOS can be used together to calculate the number of days between the dis-
charge date and the next admission date. Referring back to our example above,
if V isitLink= 12 and LOS = 10 for the first visit, and V isitLink= 40 for the
second visit, then the number of days between these two visits is 40−12−10 = 18
days. Following is the equation used to calculate the number of days between
the discharge date and the next admission date:

DischargeToAdmissionDays = DaysToEvent2−DaysToEvent1−LOS1 (1)

where DischargeToAdmissionDays refers to the number of days between the
discharge date and the next admission date, DaysToEvent refers to the number
of days between any two consecutive admission dates, and LOS refers to the
length of stay at the hospital. The subscript in the variable names indicates the
visit number; 1 being the first visit and 2 being the second visit.

Calculating the number of days between the discharge date and the next
admission date is of substantial importance, especially when the research con-
cerns hospital readmissions. In order to consider that a patient had a readmis-
sion, the result of Eq. 1 should be less than or equal to 30 days for any two
consecutive visits, as shown in Eq. 2.

ReadmissionIndicator =
{
Y es, DaysBetweenDischarges ≤ 30
No, DaysBetweenDischarges > 30 (2)

The Core table reports up to 31 diagnoses (DXCCSn) and up to 31 proce-
dures (PRCCSn) per discharge as it has 31 diagnosis columns and 31 procedure
columns. It is worth mentioning that it is often the case that patients exami-
nation returns less than 31 diagnoses, and that the number of procedures they
undergo is less than 31. Furthermore, even though a patient might have gone
through several procedures during a given visit, the primary procedure that
occurred at the visit discharge is assumed to be the first procedure (PRCCS1).
The Present on Admission (DXPOAn) indicator identifies the diagnoses that
were present when the patient was admitted. Since the dataset represents dis-
charge data, then this feature is useful for identifying the diagnoses that were
present at the time of admission rather than the time of discharge. In addition
to the features explained above, there are several demographic data that are
reported in the Core table as well, such as race, age range, sex, living area, etc.
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3 Predicting the Primary Procedure

In the previous section, we provided a concise description of our information
system (HCUP), in which each instance (or visit) consists of one primary pro-
cedure and a set of diagnoses; when a new patient is admitted to the hospital,
the physicians examine his or her set of diagnoses and assign a primary proce-
dure accordingly. In [9], Almardini et al. introduced a system for physicians that
recommends diagnoses transitions which would, as a result, yield to reduction
in the number of anticipated hospital readmissions. The input for their system
were the set of diagnoses of a new admitted patient, and the primary procedure
assigned for that patient. The recommender system presented in [9] however,
was not built to provide any recommendations on what the primary procedure
should be. In this paper, we examine few approaches that address the challenge of
predicting the primary procedure for a patient, given his or her set of diagnoses.

The goal of our system, which is to accurately predict the primary procedure
for a newly admitted patient, is almost wholly determined by its ability to iden-
tify other existing patients that are considered similar to our admitted patient.
The basis for determining similarities between different patients however, which
we will explore next, is an intricate endeavor, given that the input of our patients
is a set of diagnoses that differ greatly in the level of significance. Figure 2 shows
the architecture of the proposed system.

Fig. 2. The architecture of the system

3.1 Minimum Similarity Match

The first approach that we propose to predict the primary procedure, is to have
our similarity function be defined in a way that marks a newly admitted patient
(pn) similar to an existing patient (pe) if and only if the existing patient exhibits
every single diagnoses present in the admitted patient:
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similarity(pn, pe) =
{

1, if diag(pn) ⊂ diag(pe)
0, otherwise (3)

where 1 indicates that the new patient (pn) is similar to the existing patient
(pe), and 0 otherwise. Consequently, we can define An as the set of all existing
patients that the new patient (pn) is similar to:

An =
m⋃
i=1

{pi : similarity(pn, pi) = 1} (4)

where m is the number of existing patients in our dataset who are similar to
pn, and pi is the ith existing patient in that set. The final output for our recom-
mender system is a probability distribution for the primary procedures obtained
by the set of all similar existing patients (An). To demonstrate with an example,
say we have a newly admitted patient (pn) with the following set of diagnoses:
diag(pn) = {d1, d3, d5}, let us also assume that our dataset consists of the set
of seven patients shown in Table 2.

Looking at our dataset of patients in Table 2, we can conclude the following:

– similarity(pn, pi) = 0, for i = 1 and 4
– similarity(pn, pi) = 1, for i = 2, 3, 5, 6, and 7

Table 2. Dataset S, containing all existing patients

Diagnoses Primary procedure

p1 {d1, d2, d5, d8} Procedure 6

p2 {d1, d2, d3, d5} Procedure 3

p3 {d1, d3, d4, d5, d9} Procedure 6

p4 {d1, d2, d3, d6} Procedure 2

p5 {d1, d3, d4, d5, d8} Procedure 3

p6 {d1, d2, d3, d4, d5} Procedure 2

p7 {d1, d3, d5, d6, d7} Procedure 3

According to our previous definitions, An will contain the set of elements: p2,
p3, p5, p6, and p7 and the primary procedures for these patients are 3, 6, 3, 2, and
3 respectively. Therefore, the output to our recommender system will be 60%
Procedure 3, 20% Procedure 6, and 20% Procedure 2, which is the probability
distribution of the primary procedures of An.

Table 3 shows a list of the accuracies for our system when tested on 815
randomly selected instances, each being compared to roughly 4 millions exist-
ing patients using our definition of similarity presented earlier. As can be seen
in Table 2, the procedure with the highest probability in the existing matches
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distribution was predicted correctly 18.5% of the time, the correct primary pro-
cedure was predicted correctly as one of the two procedures 23.6% of the time,
and the correct primary procedure was predicted correctly as one of the three
procedures 26.5% of the time. The frequency is the number of instances, out of
the 815, for which the primary procedure was predicted correctly.

Table 3. Prediction accuracy of the minimum similarity match using the N most
probable primary procedures

N Frequency Accuracy

1 152 18.5%

2 192 23.6%

3 216 26.5%

4 233 28.6%

5 243 29.8%

6 250 30.7%

7 260 31.9%

8 265 32.5%

9 268 32.9%

10 270 33.1%

Although the approach presented in this section is showing reasonably good
results, the fact that our definition of similarities requires an existing patient (pe)
to exhibit all diagnoses of the new patient (pn) makes this system rather limited.
Therefore, we need to apply a more flexible system for identifying similarities
that can increase the number of patients that are similar to the newly admitted
patient.

3.2 Jaccard Similarity Match

According to our dataset, a patient has on average 7.55 diagnoses presented on
admission. In addition, there are 30.99%, 10.67%, and 2.68% of patients having
10 diagnoses or more, 15 diagnoses or more, and 20 diagnoses or more, respec-
tively. Therefore, there is a high probability that a newly admitted patient will
exhibit a large number of diagnoses, which would make it hard to identify similar
patients in our dataset using the algorithm presented in Sect. 3.1. One way to
tackle this limitation is to modify the definition of the similarity between patients
in a way that when a new patient gets admitted to the hospital, rather than find-
ing patients who have all the diagnoses that the new patient has, we measure
the percentage of diagnoses that are common between the new patient and the
existing patients in the dataset. This can be achieved by applying Jaccard sim-
ilarity index, which measures the similarity between two sets by dividing the
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cardinality of the intersection by the cardinality of the union as described in the
following equation:

J(A,B) =
|A ∩ B|
|A ∪ B| (5)

where A and B represent the two sets of diagnoses, and where |.| represents the
cardinality of the intersection and union of the two sets.

The elements of the sets are the diagnoses of the patients. One of the sets
contains the new patient’s diagnoses and the other set contains the existing
patient’s diagnoses. In our dataset, we calculate Jaccard similarity of the new
patients with every patient in the dataset. The patient with the highest Jaccard
index is considered the most similar to the new patient. Now that we have
identified the patient that is most similar to our newly admitted patient, we
can consequently use the existing patient’s main procedure to predict the main
procedure for our new patient. However, doing so is rather unfavorable, since
building an entire prediction system based upon one patient, may lead to a
bias in our results. Therefore, it would be more robust to instead consider all
patients that satisfy a similarity value within a given margin (e.g. x top most
similar patients). In our implementation, we have tested using different margins
and found that 5% would yield the best results. For example, suppose we have
a dataset of 40 patients and the similarities of these patients with the newly
admitted patient fall in this range [40–90%]. Given a margin of 5%, we would
select the top 2 similarities out of the 40 similarities; which means that we will
select the primary procedures of the patients with the two highest similarities.

The best way to explain how this algorithm works is by providing an example.
Suppose a new patient pat0 comes to the hospital with a certain number of
diagnoses {d1, d3, d5}. Also, suppose that our dataset contains 10,000 patients
as listed in Table 4. The first step would be to find the intersection and union
of p0 with all the patients in the dataset, then calculate the Jaccard index. For
example, the similarity index of pat0 and pat1 is calculated as follows:

J(pat0, pat1) =
|pat0 ∩ pat1|
|pat0 ∪ pat1| =

|{d1, d5}|
|{d1, d2, d3, d5, d8}| = 2/5 = 0.4 (6)

As seen in Table 4, the range of the similarities is [40–75]. Given this range, we
would select the highest 5% similarities and store the primary procedures associ-
ated with them. After that, we find the average similarity of each procedure. So,
assuming that the only patients with most frequent primary procedure p6 that
are within our specified margins are pat2 and pat3, then the average similarity
index for p6 would be the average of 75% and 60%, which is equal to 67.5%; and
the average similarity index of p3 would be 75%, assuming that pat4 is the only
patient that exhibits p3 whom also lies within our specified similarity margin.
Finally, our prediction will be the procedure with the highest average (weight).
We have run Jaccard similarity algorithm on a dataset of 10,000 patients and
measured the accuracy using 10-fold cross validation. The resulted accuracy was
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20.25%, which is slightly better than the accuracy of the Minimum Similarity
Match (MSM) method used in Sect. 3.1.

Table 4. Jaccard similarity calculations example

Patient Diagnoses Most frequent primary procedure Similarity index

pat1 {d1, d2, d5, d8} p6 40%

pat2 {d1, d2, d3, d5} p6 75%

pat3 {d1, d3, d4, d5, d9} p6 60%

pat4 {d1, d3, d4, d5} p3 75%

. . . . . . . . . . . .

pat9999 {d1, d2, d3, d6} p2 40%

pat1000 {d1, d3, d4} p3 50%

The approaches presented in Sects. 3.1 and 3.2 are showing reasonably good
results in predicting the primary procedure. In these approaches however, we
based our definition of the patients’ similarity on the number of diagnoses that
the patients exhibit. However, we should shift our focus to the level of importance
of each diagnoses with respect to their abilities to predict the primary procedure.
There is typically only a small number of subsets that are capable of determining
the primary procedure. In the next subsection, we present a new and novel
approach on how to identify such sets.

3.3 Selective Similarity Match

In this subsection, we introduce an enhanced system for predicting the primary
procedure for new patients. Our approach presented here is based on the fact
that there is only a selected number of combinations for diagnoses subsets that
are capable of predicting primary procedures. This means that for a new patient
exhibiting x number of diagnoses, it would be more likely the case that matching
our dataset for patients that exhibit only a subset of the x diagnoses will yield
better result; by doing so, our system will not only avoid overfitting, but it
will also result in many more matches in our existing dataset and the same in
a higher level of prediction accuracy. The level of predictability for a subset
of diagnoses s, can be determined based on the distribution of the primary
procedures for existing patients that exhibit s. By calculating the entropy of the
main procedures for each possible subset of the diagnoses, we are able to identify
subsets that can most accurately predict the primary procedure (subsets that
have the least entropy values).

Our system starts by generating all possible combinations of k-diagnosis sets,
starting with k= 1 and ending with k= 3, then calculating the entropy of the
primary procedures for each combination. For each combination of diagnoses s,
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we identify all existing patients that belong to s, then we calculate the entropy
H(s) according to the distribution of the primary procedures for s:

H(s) = −
m∑
i=1

pi log(pi) (7)

where pi is the probability of the ith primary procedure, and m is the number
of primary procedures in s.

The reason for why we stop at the number 3 is because the number of distinct
subsets that can be generated from the set of all 285 diagnoses grows exponen-
tially large as k increases. For example, the number of unique 3-diagnoses subsets
that can be chosen from 285 diagnoses is roughly 4 millions; the number of unique
4-diagnoses subsets however, exceeds 250 millions.

For a new admitted patient with x number of diagnoses, we generate all
subsets of k-diagnoses for k = 1, 2, and 3; then, using our previously calculated
entropies for all possible diagnoses, we identify the subset of the patient diag-
noses with the lowest entropy (highest level of predictability), and use its most
frequent procedure as the anticipated primary procedures. We have run the
Selective Similarity Match (SSM) algorithm on a dataset of 10,000 patients and
measured the accuracy using 10-fold cross validation. The resulted accuracy was
25.25%, which is better than both the accuracies of the Minimum Similarity
Match (MSM) and Jaccard Similarity Match approaches used in Sects. 3.1 and
3.2 respectively.

Next, we provide a real example from our dataset to demonstrate the algo-
rithm.

Let us first assume that the first step of the algorithm, which is to generate
all possible combinations of k-diagnosis sets, starting with k = 1 and ending with
k = 3 has been performed. Now, say that a new patient (pn) has been admitted
to the hospital with the following set of diagnoses {181, 183, 101, 164}:

– 181: Other complications of pregnancy.
– 183: Hypertension complicating pregnancy; childbirth and the puerperium.
– 184: Early or threatened labor.
– 189: Previous C-section.

The next step would be to generate all 1-diagnosis, 2-diagnoses, and 3-
diagnoses subsets of (pn), which is shown in the first column of Table 5.

According to Table 5, the list of diagnoses that has the least entropy is {181,
183, 189}, in which the most probable primary procedure is 134 (Cesarean
section), which is indeed the correct primary procedure for our patient (pn).
Following is a description of the procedure codes found in Table 5:

– 134: Cesarean section.
– 137: Other procedures to assist delivery.

Table 6 shows few procedures with their prediction accuracy for a testing sam-
ple of 1,000 instances, using a training set of size 10,000 instances. For example,
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Table 5. An example of one of the tested patients

List of diagnoses in cluster Entropy Primary procedure

181 2.414 137

183 2.258 137

184 1.564 137

189 1.293 134

181, 183 2.419 137

181, 184 1.783 137

181, 189 1.224 134

183, 184 1.241 134

183, 189 0.622 134

184, 189 0.884 134

181, 183, 184 - -

181, 183, 189 0.337 134

181, 184, 189 1.095 134

183, 184, 189 - -

Table 6. Sample of main procedures with their frequencies and accuracies for a testing
sample of 1,000 instances, using a training set of size 10,000 instances

Procedure Frequency Accuracy

137 (Other Procedures to Assist Delivery) 23 65%

84 (Cholecystectomy and Common Duct Exploration) 21 62%

158 (Spinal Fusion) 10 60%

152 (Arthroplasty Knee) 14 57%

134 (Cesarean Section) 38 45%

61 (Other OR Procedures on Vessels Other than Head and Neck) 18 44%

45 (Percutaneous Transluminal Coronary Angioplasty PTCA) 45 42%

78 (Colorectal Resection) 32 39%

124 (Hysterectomy Abdominal and Vaginal) 19 32%

70 (Upper Gastrointestinal Endoscopy Biopsy) 148 31%

47(Diagnostic Cardiac Catheterization Coronary Arteriography) 27 30%

the third row in our table states that we encountered 10 instances (out of our
1,000 testing sample) with main procedure ‘Spinal Fusion’, and that we were
able to predict this procedure with accuracy 60%, meaning that we were able to
correctly predict that the main procedure is Spinal Fusion, for 6 instances out
of 10.
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4 Introducing Procedure Paths and Procedure Graph

In previous sections, we have shown how to predict the primary procedure using
different approaches. Given the prediction of the primary procedure for a newly
admitted patient, we can also predict the procedure path; which is defined as
the sequence of procedures that a given patient undertakes to reach a desired
treatment. In other words, a procedure path is a detailed description for the
course of treatments provided to an admitted patient. The length of any given
procedure path is an indicator of the number of readmissions that occurred or
will occur throughout the course of treatment. For example, one procedure path
for a patient could be the following: pathx = (p1, p3, p3, p6), where pi (i= 1, 3, 6)
indicates a particular procedure; according to procedure path pathx, the number
of readmissions was 3.

The procedure graph for some procedure p is defined as the tree of all possible
procedure paths extracted from our dataset for patients who underwent proce-
dure p as their first procedure. Figure 3 shows a depiction of the procedure graph;
P(0,1) is the initial procedure that patients start with; the next procedure could
be any procedure from P(1,1) to P(1,n), which is determined by the resulting set
of diagnoses after performing the initial procedure P(0,1). The first argument
x in the notation P(x,y) refers to the number (or rather level) of readmissions,
and the second argument y refers to the procedure identifier at that level. For
example, P(1,2) refers to the procedure with identifier 2 that occurred at the first
level of readmissions (e.g. first readmission following the initial procedure). The
portions of the graph that are contained in dashed boxes depict the personaliza-
tion part that we introduce in the next section. The idea of personalization is to
cluster patients that are scheduled to undergo procedure P(0,1) according to their
diagnoses; as a result of this clustering, we will be able to anticipate with higher
accuracy the following procedure (readmission) that the patient will undergo by
identifying which cluster the new patient belongs to. In the following sections,
we will provide some information about the number of different possible paths
and the length of each path.

4.1 Unique Procedure Paths

The number of all procedure paths is extremely high. This high number of unique
procedure paths indicates that it is not true that there exists a single universal
course of treatment that patients typically follow to reach the desired state. For
example, the number of patients that underwent procedure 222 (Blood Trans-
fusion), as their first procedure, is 72,521 and the number of unique procedure
paths that those patients underwent is 1,230 paths. Blood transfusion is consid-
ered a minor procedure and this could explain the high number of unique proce-
dure paths. Now, let us consider a major procedure, such as 158 (Spinal fusion),
the number of patients who underwent this procedure, as their first procedure, is
72,928 and the number of unique procedure paths that those patients underwent
is 443 paths. Although the number of unique paths, in case of the major proce-
dure, is reduced by 1/3. However, the number is still high and this emphasizes the
fact that patients do not follow the same path in their course of treatment.
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Fig. 3. Depiction of a procedure graph

4.2 Lengths of Procedures Paths

The length of the procedure path is an indicator of the number of readmissions
during the course of treatment. A procedure may have different paths’ lengths
depending on the number of possible unique paths that the patient may follow.
Knowing the length of the path is a valuable information for the physicians in
the treatment process. The fact that the physicians can now anticipate the next
procedure in the course of treatment makes them reconsider their decisions and
select a better path that has a shorter length. The relation between the length
of the path (number of readmissions) and the number of nodes (procedures) in
that path is defined as follows:

Path length (Number of readmissions) = Number of nodes (procedures) − 1

Let us now consider a real example from the dataset showing the different
paths’ lengths for a certain procedure. Suppose that a new patient is admitted
to the hospital and our system predicted that procedure 58 (Hemodialysis) to be
the initial procedure based on the patient’s diagnoses. Knowing that the patient
will undertake procedure 58 as the initial procedure allows us to anticipate what
could be the maximum and the average number of possible readmissions; which
are in this case 36 and 4.2 respectively.
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5 Conclusion

Predicting the primary medical procedure for a new patient is of great help to
physicians; since it gives them confidence of their medical decisions and helps
to achieve the desired outcomes. In this research, we proposed a recommender
system that can accurately predict the primary medical procedure for a newly
admitted patient through finding the similarity with the old patients accord-
ing to their set of diagnoses. We proposed three approaches, namely: Minimum
Similarity Match (MSM), Jaccard Similarity Match (JSM) and Silictive Similar-
ity Match (SSM) to address the challenge of predicting the primary procedure
for a patient, given his or her set of diagnoses. The three approaches showed a
high level of predictability. However, the third approach is more accurate due
to its ability of identifying the significant diagnoses that are responsible for the
patient’s admission. The predicted primary procedure is then used to anticipate
all possible paths that a patient may undertake during the course of treatment;
which plays a significant role in the medical decision making process. As a future
work, we are planning to mine the procedures that are medically associated with
the primary procedure and then recommend a set of procedures according to the
patient’s demographic and medical details.
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9. Almardini, M., Hajja, A., Raś, Z.W., Clover, L., Olaleye, D., Park, Y., Paulson,
J., Xiao, Y.: Reduction of readmissions to hospitals based on actionable knowl-
edge discovery and personalization. In: Kozielski, S., Mrozek, D., Kasprowski, P.,
Ma�lysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015-2016. CCIS, vol. 613, pp.
39–55. Springer, Cham (2016). doi:10.1007/978-3-319-34099-9 3

10. Almardini, M., Hajja, A., Clover, L., Olaleye, D., Park, Y., Paulson, J., Xiao, Y.:
Reduction of hospital readmissions through clustering based actionable knowledge
mining. In: Proceedings of IEEE/WIC/ACM International Conference on Web
Intelligence (WI 2016), pp. 444–448. IEEE Computer Society (2016)

11. Healthcare Cost and Utilization Project (HCUP). Clinical classifications software
(ccs). http://www.hcup-us.ahrq.gov

http://dx.doi.org/10.1007/978-3-319-34099-9_3
http://www.hcup-us.ahrq.gov


Feature Clustering for Extreme Events Analysis,
with Application to Extreme Stream-Flow Data
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Abstract. The dependence structure of extreme events of multivariate
nature plays a special role for risk management applications, in particu-
lar in hydrology (flood risk). In a high dimensional context (d > 50), a
natural first step is dimension reduction. Analyzing the tails of a dataset
requires specific approaches: earlier works have proposed a definition
of sparsity adapted for extremes, together with an algorithm detect-
ing such a pattern under strong sparsity assumptions. Given a dataset
that exhibits no clear sparsity pattern we propose a clustering algo-
rithm allowing to group together the features that are ‘dependent at
extreme level’, i.e.,that are likely to take extreme values simultaneously.
To bypass the computational issues that arise when it comes to dealing
with possibly O(2d) subsets of features, our algorithm exploits the graph-
ical structure stemming from the definition of the clusters, similarly to
the Apriori algorithm, which reduces drastically the number of subsets
to be screened. Results on simulated and real data show that our method
allows a fast recovery of a meaningful summary of the dependence struc-
ture of extremes.

Keywords: Extreme values · Dimension reduction · Pattern mining ·
Subspace clustering · Subgroup discovery

1 Introduction

Extreme value analysis is of primarily interest in many contexts. One example is
the machine learning problem of anomaly detection, where one needs to control
the false positive rate in the most remote regions of the sample space [7,16,
17,21]. Another example is the field of environmental sciences, where extreme
events (floods, droughts, heavy rainfall, . . . ) are of particular concern to risk
management, considering the disastrous impact these events may have. Using
Extreme Value Theory (EVT) as a general setting to understand or predict
extreme events has a long history [20]. In spatial problems, exhibiting areas
(groups of weather stations) which may be concomitantly impacted by severe
events is of direct interest for risk management policies. Identifying these groups
may also serve as a preliminary dimensionality reduction step before more precise
modeling. Before proceeding further, we emphasize that standard dimension
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reduction techniques such as PCA do not apply to extremes as these methods
essentially focus on the data around the mean by analyzing their covariance
structure, which does not characterize the behavior of extremes (i.e., data far
away in the tails of the distribution). In the present paper, the quantity of interest
is river water-flow recorded at several locations of the French river system. The
features of the experiment are thus the stream-flow records at different gauging
stations, and the goal is to recover maximal groups of stations where extreme
discharge may occur simultaneously. Our dataset consists of daily stream-flow
recorded at 92 gauging stations scattered over the French river system, from
1969, January 1st to 2008, December 31st. It is the same dataset as in [14],
up to 220 gauging stations presenting missing or censored records, which have
been removed from our analysis, which results in n = 14610 vectors X1, ..,Xn in
R

d, with d = 92 the number of stations. The reader is referred to [14] for more
details.

Related Work. Dimensionality reduction for extreme value analysis has
emerged very recently in the literature. As far as we know, the seminal con-
tribution is [6] and is restricted to moderate dimensional settings (d ≤ 20, see
Sect. 3.1 for more details). The methodology proposed by [6] allows to recover
groups of components (features) which may take large values simultaneously,
while the other features stay small. For the purpose of anomaly detection, [16,17]
proposed an alternative algorithm to do so with a reduced computational com-
plexity of order O(nd log n). To the best of our knowledge, these are currently
the only available examples in the literature to handle the recovery of groups
of features which are representative of the extremal dependence structure. (See
Sect. 2.2 for a precise definition of the latter). In [16,17], the extremal dependence
structure is called sparse if the number of such groups is small compared with
2d −1, the total number of groups. The output of [16,17]’s DAMEX algorithm is
a (hopefully sparse) vector M̂ = (μ̂α, α ⊂ {1, . . . , d}) of size 2d − 1, where μ̂α is
a summary of the dependence strength at extreme levels between features j ∈ α.
The fact that μ̂α is positive means that the probability that all features in α be
large while all others stay small, is not negligible. Various datasets have been
analyzed in [16,17] (wave data from the north sea, standard anomaly detection
datasets, simulated data) for which the DAMEX algorithm does exhibit a spar-
sity pattern, thus pointing to a relatively small number of groups of features α
(each being of relatively small size |α| compared to the original dimension of
the problem) which could be jointly extreme. However, DAMEX becomes unus-
able in situations where the subsets of features impacted by extreme events vary
from one event to another: DAMEX then finds a very large number of subsets
to be dependent, but not significantly so, (i.e.,0 < μ̂α � 1), so that no sparsity
pattern emerges. This is precisely the case with the river flow dataset analyzed
in the present paper (see Sect. 5).

Contributions. One remarkable aspect of the preliminary analysis of the river
flow dataset using DAMEX is the tendency of those many subsets α’s such that
μ̂α > 0, to form clusters, whose members differ from each other by a single
or two features only. In practice, this means that several distinct events have
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impacted ‘almost’ the same group (cluster) of stations. The aim of this paper
is to propose a methodology enabling to gather together such ‘close-by’ feature
subsets into feature clusters. This is done by relaxing the constraint that ‘fea-
tures not in α take small values’ when constructing the representation of the
dependence structure. The output of the CLEF algorithm (CLustering Extreme
Features) proposed in the present work (Sect. 4) is an alternative representation
which remains usable in this ‘weakly sparse’ context. This representation can
still be explained and understood in the multivariate EVT framework (Sect. 3),
as in [6,16,17]. We emphasize that the scope of CLEF algorithm concerns situ-
ations similar to the hydrological problem considered here, where the DAMEX
algorithm does not yield a readable output. In the opposite case (e.g. with the
wave dataset or the anomaly detection datasets analyzed in [16,17]), DAMEX
remains a better option than CLEF in view of its computational simplicity.

Relationships with Apriori. The dimension reduction problem considered
here (determining for which subgroups of features concomitant large values are
frequent) is closely related to the problem of frequent itemsets mining, specifi-
cally to the well known Apriori algorithm introduced by [2], see also [19]. Indeed,
the present problem can be recast as follows: encoding as a ‘1’ any value above
a specified threshold and as a ‘0’ any value below this threshold, one obtains a
binary dataset. The goal is now to recover the groups items (features) for which
concomitant ‘1’ values are frequent, which is precisely the frequent itemsets min-
ing problem. The combinatorial issue that arises with possibly 2d − 1 subsets
is circumvented in Apriori by considering subsets of increasing sizes, letting a
subset ‘grow’ until its frequency in the database is not significant anymore. This
incremental principle is also related to a subset clustering method proposed in
[1]. CLEF proceeds in a similar way to Apriori, the main difference being that
CLEF comes with a natural interpretation in terms of multivariate EVT. Also,
in practice, the stopping criterion used to decide whether incrementing a fea-
ture subset is different in CLEF and in Apriori, allowing CLEF to detect larger
groups, as discussed in Sects. 3.2 and 4.1.

The paper is organized as follows. Section 2 sets up the extremal feature clus-
tering problem and establishes connections with multivariate EVT. The dimen-
sion reduction method that we promote is explained in Sect. 3: Sect. 3.1 recalls
existing work and points out some limitations, Sect. 3.2 makes explicit the links
between the considered problem and the Apriori algorithm. The CLEF algo-
rithm is described in Sect. 4. Section 5 gathers results: the output of CLEF is
compared with that of DAMEX and Apriori. Section 6 concludes. The Python
code for CLEF, the scripts and the dataset used for our hydrological case study
are available at https://bitbucket.org/mchiapino/clef algo.

2 Problem Statement and Multivariate EVT Viewpoint

2.1 Formal Statement of the Problem

Consider a random vector X = (X1, . . . , Xd) in R
d (here, Xj is the water

discharge recorded at location j). The first step when it comes to learning

https://bitbucket.org/mchiapino/clef_algo
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dependence properties of X is to standardize the features, in the same spirit
as in the copula framework, which allows one to focus only on the dependence
structure of X. One popular standardization choice in multivariate EVT is the
probability integral transform: Denote by F the joint cumulative distribution
function (c.d.f.) of X and by F j the marginal c.d.f. of Xj . For simplicity, let us
assume that each F j is continuous (no point masses), so that with probability
one, 0 < F j(Xj) < 1. The standardized variable used for dependence analy-
sis are V j = (1 − F j(Xj))−1, j = 1, . . . , d and V = (V 1, . . . , V d). Doing so,
the V j ’s are identically distributed according to standard Pareto distribution,
P(V j > t) = 1/t, t ≥ 1. Our goal here is to recover all the maximal subsets of fea-
tures (stations) α ⊂ {1, . . . , d} which ‘may be large together’ with non negligible
probability. In more formal terms, define the extremal joint excess coefficient,

ρα := lim
t→∞ tP

(∀j ∈ α, V j > t
)

= lim
t→∞ P

(∀j ∈ α, V j > t | V α1 > t
) ∈ [0, 1]. (1)

The variable t plays the role of a high threshold above which the standardized
feature V j is considered as extreme. In practice, estimation will be done by
fixing a large t and assuming that the limit in (1) is approximately reached.
An advantage of the standardization procedure is that a single threshold t is
needed to define an extreme event, not d thresholds, since all the features share
the same scale. The limit in (1) exists under the regularity property (3) in the
next paragraph. Notice already that the second equality also comes from our
standardization choice ensuring that for any j ≤ d, t−1 = P(V j > t) = P(V α1 >
t), which justifies the scaling factor t in the definition. The coefficient ρα ∈ [0, 1]
may be seen as a ‘correlation’ coefficient for the features Xj , j ∈ α at extreme
levels. We say that the features {V j , j ∈ α} ‘may be large together’ if ρα > 0.
One relevant summary of the dependence structure of extremes is thus the set
of subgroups

M = {α ⊂ {1, . . . , d} : ρα > 0}. (2)

More precisely, we would like to recover those subgroups α ∈ M which are
maximal for inclusion in M, i.e., ∀β such that α � β, β /∈ M. A maximal set
of features α ∈ M may be viewed as a cluster, in the sense that every subset
β ⊂ α is dependent at extreme level (i.e., ρβ > 0), and that α ‘gathers’ all of
them together. In this paper, a ‘cluster’ of features is understood as a maximal
element α ∈ M.

2.2 Connections with Multivariate EVT

The working hypothesis in EVT is that, up to marginal standardization, the
distribution of X is ‘approximately homogeneous’ on extreme regions. As pointed
out above, if the margins F j are continuous, then the V j ’s have the homogeneity
property: tP

(
V j

t ≥ x
)

= 1/x, for 1 ≤ j ≤ d, t > 1, x > 0. The key assumption
is that the latter property holds jointly at extreme levels, i.e., that V is jointly
regularly varying (see e.g. [23]), which writes

tP

(
V

t
∈ A

)
−−−→
t→∞ μ(A), (3)
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where μ is the so-called exponent measure and where A is any set in R
d which

is bounded away from 0 and such that μ(∂A) = 0. The exponent measure is
finite on any such set A and satisfies, for t > 0, A ⊂ R

d
+, tμ(tA) = μ(A), where

tA = {tx : x ∈ A}. Notice that many commonly used textbook multivariate dis-
tributions (e.g. multivariate Gaussian or Student distributions) satisfy (3), after
standardization to V variables. The measure μ characterizes the distribution of
V at extreme levels, since for t large enough (so that the region tA is an ’extreme
region’ of interest), one may use the approximation P(V ∈ tA) 	 t−1μ(A). The
connection between μ and the ρα’s is as follows: consider the ‘rectangle’

Γα := {x ∈ R
d
+ : ∀j ∈ α, xj > 1} (4)

From the definitions (1) and (3), it follows that ρα = μ(Γα). Thus the family of
subset M in (2) writes M = {α : μ(Γα) > 0}.

Non Parametric Estimation. In a word, non parametric estimation of
extremal characteristics based on i .i .d . data X1, . . . , Xn (distributed as X)
is performed by replacing probability distributions with their empirical coun-
terparts, and by proceeding as if the limit in (3) were reached above some
large threshold t. Since the F j ’s are unknown, set V̂ j

i = 1/(1 − F̂ j(Xj
i )), =

1, . . . , n, j = 1, . . . , d, where F̂ j(x) = n−1
∑n

i=1 1{Xj
i < x}. Thus V̂ j

i ∈
{1, n/(n − 1), n/(n − 2), . . . , n/2, n} and for each fixed j, and t ≤ n, the number
of examples i such that V̂ j

i > t is equal to 
n/t�. This suggests that t should be
chosen as a function of the sample size and indeed, theoretical guarantees on the
estimators are obtained for t = o(n) and t → ∞, e.g. t ∼ √

n, see [3], Chap. 3
for more details. After this data preprocessing step, the exponent measure μ of
any region A ⊂ R

d
+ \ {0} is approximated by

μn(A) = tP̂n(tA), where P̂n(A) = n−1
n∑

i=1

δV̂i
(A), (5)

where δ denotes the Dirac mass. Statistical properties of μn (or of other
functional summaries of it) have been investigated by many authors, see e.g.
[11,12,22] for the asymptotic behavior, [15] for finite sample error bounds.

3 Dimension Reduction for Multivariate Extremes

3.1 Existing Work

Numerous modeling strategies for low dimensional multivariate extremes (say
d ≤ 10) have been proposed, see e.g. [9,10,25] for parametric modeling,
[4,13,18,24] for semi- or non-parametric ones. For higher dimensional problems,
to this date, the only available dimensionality reduction methods are (to our
best knowledge) the recent works [6,16,17]. These three references share the
common idea of recovering the sub-cones of R

d
+ on which the exponent measure

μ concentrates. The seminal paper on this subject appears to be [6]. It relies
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on principle nested spheres and spherical k-means and is designed for moderate
dimensional problems only (d ≤ 20 in their simulation experiments and d = 4
in their case study) with a relatively simple dependence structure (at most 4
groups of features with extremal dependence, only two for d = 20 in their simu-
lation experiments). The computational burden significantly increases for larger
dimensions or more elaborate dependence structures, as discussed in Sect. 4.4 of
the cited reference. In particular the dimensionality of the problem considered in
the present paper (d = 92 with up to 53 dependent groups of features) is outside
the scope of [6]’s algorithm.

The present work is mainly related to [16,17] insofar as it relies on a simple
counting procedure on rectangular regions as in (4). As a comparison, [16,17]
consider the truncated cones

Cα = {x : ‖x‖∞ ≥ 1, xj > 0 for j ∈ α ; xj = 0 for j /∈ α}. (6)

The importance of such cones in the analysis comes from the homogeneity prop-
erty of μ. More precisely, a subset of features α may take large values together
while the others take small values, if and only if μ assigns a positive mass to Cα.
The approach proposed in [17] consists in ‘thickening’ the cones Cα, i.e., defining
for some small ε > 0 (typically, ε = 0.1),

Cα,ε = {x ∈ R
d
+ : ‖x‖∞ ≥ 1 ; ‖x‖−1

∞ xj > ε for j ∈ α ; ‖x‖−1
∞ xj ≤ ε for j /∈ α}.

(7)

The quantity μα := μ(Cα) is approximated by its empirical counterpart on Cα,ε,
μ̂(Cα) = μn(Cα,ε), where μn is the empirical estimator defined in (5). In practice a
tolerance parameter μmin has to be chosen: for any α such that μn(Cα,ε) < μmin,
one sets μ̂(Cα) = 0. The final output of [17]’s DAMEX algorithm is the poten-
tially sparse 2d − 1-vector M̂ = (μ̂α)α⊂{1,...,d} mentioned in the introduction,
with μ̂α := μ̂(Cα).

One shortcoming of DAMEX is that no sparsity pattern is produced in case
of ‘noise’. Here, noise is understood as a small variability affecting the groups of
features concomitantly impacted by an extreme event. As an example, for the
hydrological dataset considered here, geophysics determines the main underly-
ing dependence patterns, i.e., the groups of stations where floods tend to occur
simultaneously (such as, say, group α0 = {1, 2, 3, 4}); however due to meteo-
rological variability, the actual observed floods sometimes affect some neigh-
boring stations 5, 6, so that in the dataset, the observed groups would be e.g.{{1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 4}}. In such a case, the empirical mass is
scattered over many sub-cones Cα,ε (three instead of one). This example sug-
gests an alternative approach allowing to gather together those Cα,ε’s that are
‘close’, as detailed next.

3.2 Gathering Together ‘Close-By’ Cones, Incremental Strategy

One way to gather different Cα,ε’s together is to relax the condition that ‘all the
features V j for j /∈ α take small values’ in the definition of Cα,ε. This yields the
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rectangular region Γα defined in (4). Unlike the regions Cα,ε’s, the Γα’s do not
form a partition of the positive orthant of R

d, and indeed the fact that a point
Vi belongs to Γα does not tell anything about its features V j

i for j /∈ α. The
problem addressed in [17] (recovering M := {α : μ(Cα) > 0}) and the relaxed
problem considered here (recovering M := {α : ρα > 0} = {α : μ(Γα) > 0}) are
different but however related through the maximal elements of M and M, as
stated in the following lemma. Recall that α is said to be maximal in M (resp.
M) if there is no superset α′

� α in M (resp. M).

Lemma 1. For α ⊂ {1, . . . , d},

α is maximal in M ⇔ α is maximal in M. (8)

The proof is deferred to the Appendix.
Another important property from an algorithmic perspective is the following:

Lemma 2. For α ⊂ {1, . . . , d}, if ρα = 0 then also for all α′ ⊃ α, ρα′ = 0.

The proof is immediate: remind that ρα = μ(Γα) and notice that for α ⊂ α′,
Γα′ ⊂ Γα.

Apriori-Like Incremental Strategy. Lemma 2 suggests searching for α’s sat-
isfying ρα > 0 following the Hasse diagram, among α’s of increasing size, and
stopping the search along a given path as soon as ρα = 0 for some α. This
incremental strategy is also the main ingredient of the Apriori algorithm ([2]),
which we recall for convenience: Let I = {item1, . . . , itemd} be set of items
and let T = {t1, . . . , tn} be a set of transactions with ti ⊂ I,∀i ∈ {1, . . . , n}.
The frequency of occurrence of the list of items (itemset) α ⊂ I is defined as
fα := 1

n

∑
1≤i≤n 1α⊂ti

. Apriori returns the set {α : fα > fmin} with fmin > 0.
It begins with pairs of items and then increments the size of the itemsets at each
step. Indeed if fα ≤ fmin then all supersets α′ ⊃ α verify fα′ ≤ fmin as well,
which reduces drastically the number of subsets to be tested.

The CLEF algorithm described next proceeds similarly: a concomitant occur-
rence of threshold excesses {V j

i > t for features j ∈ α} can be identified with a
transaction and the dependence parameter ρα can be seen as a (rescaled) theo-
retical frequency. The main difference between CLEF and Apriori concerns the
stopping criterion used by CLEF, which involves a ratio between frequencies for
a group α and for subgroups β ⊂ α. The idea behind is to allow detection of
larger groups, as described in the following section.

4 Empirical Criterion and Implementation

4.1 Conditional Criterion for Extremal Dependence

Considering the relaxed framework where the goal is to recover the set M defined
in (2), one needs an empirical criterion for testing the condition ‘ρα(= μ(Γα)) >
0’. One option would be to consider the empirical estimator ρ̂α = μn(Γα) where
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μn is defined in (5) which would be the (rescaled) counterpart of the empirical
frequency fα used in Apriori. Then the stopping criterion would be ‘ρ̂α ≤ ρmin’,
with ρmin a user-defined tolerance level. However, since the Γα’s (for increasing
α’s) are nested, the ρα’s can only decrease with increasing sizes of α. In other
words larger groups tend to be less frequent than smaller groups, even depen-
dent ones. Thus in principle, detecting larger groups as well as smaller ones
would require the tolerance level ρmin to depend on the size |α| of the considered
subgroup, which would result in d − 1 tuning parameters instead of one.

The alternative chosen in the present paper is to consider a conditional fre-
quency, the conditioning event for a group α of size s being such that at least
s − 1 features are large among the s considered ones. Now, there is no reason
why the conditional frequency of occurrence should decrease with |α|, so that a
single tuning parameter needs to be chosen, without preventing the detection of
large groups. In practice, computing conditional frequencies amounts to compare
μn(Γα) with μn(Γβ), with β ⊂ α. More precisely, let α ⊂ {1, . . . , d} be such that
for some j ∈ α, ρα\{j} > 0. Consider the probability that all the features in α
be large given that all of them but at most one are large and call κα the limiting
conditional probability, namely

κα = lim
t→∞

P

(
∀j ∈ α, V j

i > t
)

P

(
for all but at most one j ∈ α, V j

i > t
) . (9)

In the sequel, κα is referred to as the conditional dependence coefficient of α.
Notice that the limit in (9) does exist: indeed, let

Δα = ∪j∈αΓα\{j} = {x ∈ R
d
+ : ‖x‖∞ > 1,

∑

j∈α
1xj≥1 ≥ |α| − 1}.

Since by assumption on α, for some j μ(Γα\{j}) = ρα\{j} > 0, in view of (3), we
have

μ(Δα) = lim
t→∞ tP( for all but at most one j ∈ α, V j

i > t) > 0,

so that an equivalent definition of κα is

κα =
limt→∞ tP

(
∀j ∈ α, V j

i > t
)

limt→∞ tP
(
for all but at most one j ∈ α, V j

i > t
)

=
μ(Γα)
μ(Δα)

. (10)

The idea is now to compare empirical counterparts of κα –using μn instead
of μ, see (5)–with a single fixed tolerance parameter κmin > 0. This amounts to
decide that μn(Γα) results from noise if μn(Γα) � μn(Δα). Notice that Γα ⊂ Δα,
so that the empirical version of κα is again a conditional probability and thus
belongs to [0, 1] whenever μn(Γβ) > 0 for some β ⊂ α such that |α \ β| = 1,
which is another argument in favor of an incremental strategy.
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4.2 Algorithm

CLEF (summarized in Algorithm 1) uses the empirical counterpart of the con-
ditional criterion κα, which depends on a (high) threshold t as in (5):

κ̂α,t :=
μn(Γα)
μn(Δα)

=

∑n
i=1 1{#{j∈α: V̂ j

i >t} = |α|}∑n
i=1 1{#{j∈α: V̂ j

i >t} ≥ |α|−1}
. (11)

For s ≥ 2, families Âs of subsets α of size s are constructed in an incremental
way, among a set of candidates A′

s, as follows: Set Â1 = {{1}, . . . , {d}}, then

A′
s =

{
α ⊂ {1, . . . , d} : |α| = s,∀β ⊂ α s.t. |β| = s − 1 : β ∈ Âs−1}

Âs = {α ∈ A′
s : κ̂α,t > κmin

}
. (12)

The procedure stops at step S ≤ d − 1 if ÂS+1 = ∅, at which point our
estimator of the family M of dependent subsets is M̂ = ∪S

s=1Âs. Notice that
restricting the search to the set of candidates A′

s ensures that the ‘empirical
counterpart’ of Lemma 2 is satisfied, namely α /∈ M̂ ⇒ ∀β ⊃ α, β /∈ M̂. It also
avoids division by zero when computing (12). The final output of CLEF is the
set M̂max of maximal elements of M̂.

Remark 1 (Choice of the parameters t and κmin). The choice of t is a classical
bias/variance trade-off: according to standard good practice in EVT (see e.g.
[8]), t is chosen in a ‘stability region’ of relevant summaries of the output. Here
we consider the cardinal of M̂ and the mean cardinal of maximal subsets α ∈ M̂.
When t is too small, the observed data may not have reached there ultimate
regime (the extremal dependence structure characterized by μ in (3)), so that
the bias of κ̂α,t may be large. In contrast, for too large values of t, very few
excesses are observed so that the sample size of the data used to compute κ̂α,t

is very small and the variance becomes too large. To wit, due to our standard-
ization choice it holds that P(V j

i > t) = 1/t. Thus for each j ∈ {1, . . . , d},∣
∣{i : V̂ j

i > t}| 	 1/t, so that the total number of data points for which at least
one feature exceeds t is approximately within the interval [n/t, dn/t]. Results
on real and simulated data (Sect. 5.3) bring out such a stability region for the
above mentioned output summaries. It is empirically verified on simulated data
that this region corresponds to near optimal values of t.

As for the tolerance parameter κmin, it should be chosen according to the
context, keeping in mind that κ̂α,t is an empirical conditional probability of a
joint threshold excess of all features j ∈ α (given that at least |α| − 1 excesses
have occurred). κmin is the level above which this probability is considered as
non negligible. The higher κmin, the more stringent the condition, the smaller
and fewer the discovered groups α. In this work, we set κmin = 0.25.

Remark 2 (Construction of the candidates A′
s+1 ). The graphical structure of

the groups of features is exploited to construct candidate incremented groups
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Algorithm 1. CLEF (CLustering Extreme Features)
INPUT: High threshold t, tolerance parameter κmin > 0.
STAGE 1: constructing the Âs’s .
Initialization: set S = d.
Step 1: Construct the family of extremal-dependent pairs:
set Â2 =

{{i, j} ⊂ {1, . . . , d}, such that κ̂{i,j} > κmin

}
.

Step 2: If Â2 = ∅, set S = 2; end STAGE 1. Otherwise

– generate candidate triplets A′
3 = {i, j, k} ⊂ {1, . . . , d} s.t {i, j}, {i, k}, {j, k} ∈

Â2},
– set Â3 =

{
α ∈ A′

3 s.t. κ̂α > κmin

}
.

...
Step s(s ≤ d): If Âs = ∅, set S = s; end STAGE 1. Otherwise

– generate candidates of size s + 1:
A′

s+1 = {α ⊂ {1, . . . , d}, |α| = s + 1, α \ {j} ∈ Âs for all j ∈ α},
– set Âs+1 =

{
α ∈ A′

s+1 such that κ̂α > κmin

}
.

Output: M̂ = ∪S
s=1Âs.

STAGE 2: pruning (keeping maximal α’s only)
Initialization: M̂max ← ÂS .
for s = (S − 1) : 2, for α ∈ Âs,

If there is no β ∈ M̂max such that α ⊂ β, M̂max ← M̂max ∪ {α}.
Output: M̂max

of features. Namely, members of A′
s+1 are the maximal cliques of size s in the

graph (As, Es), where Es = {(α, α′) ∈ As × As : |α ∩ α′| = s − 1}. The maximal
clique problem is typically attacked via the max-clique algorithm ([29]). In the
present work, clique extraction is performed using the function find clique
of the Python package NetworkX, which uses the Bron & Kerbosch ([5],[28])
algorithm.

5 Results

The aim of our experiments is threefold. First, CLEF’s output on the hydro-
logical data is illustrated and compared with DAMEX’s (Sect. 5.1). Second, the
respective performances of CLEF, DAMEX and Apriori are compared quanti-
tatively on simulated data (Sect. 5.2). Finally (Sect. 5.3), the question of the
threshold choice is investigated: the goal is to verify whether a stability region
such as the one mentioned in Remark 1 exists and whether it corresponds to
optimal performances of CLEF.

5.1 Stream-Flow Data

The output of CLEF for the stream-flow data may be visualized in Fig. 1 (Exe-
cution time: 0.09 s on a recent 4 cores laptop computer). Following the heuristic
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mentioned in Remark 1, the extremal threshold t was fixed to 320, yielding
k = 1186 extreme events (time indexes i such that ‖V̂i‖∞ ≥ t). The parameter
κmin was fixed to 0.25. A total number of 53 clusters (elements of M̂max) are
returned by the CLEF algorithm, the size of which varies between 2 and 7. At
first inspection, Fig. 1 agrees with general climatologic facts: in the north-western
part of France, the climate is driven by large scale oceanographic perturbations,
so that extreme floods tend to impact a large number of gauging stations simul-
taneously. The south-eastern part of France is rather subject to localized events
(e.g. the so-called ‘orages Cévenols’ in the vicinity of the Mediterranean coast).
This yields smaller clusters, both in terms of number of stations and of spatial
extent.

Fig. 1. Output of CLEF for the stream-flow dataset: maximal groups of stations α ∈ M̂

that are likely to be jointly impacted by an extreme event. Clusters of stations are
marked by colored edges between their members, the color scale indicates the number
of stations forming the cluster. (Color figure online)

As a comparison, Table 1 shows the outcome of [17]’s DAMEX algorithm
with the stream-flow data. These results show that no matter the choice of the
thickening parameter ε in (7), the data do not concentrate on ‘a few’ thickened
cones Cα,ε, instead most of the empirical mass is spread onto many of them.
In other words, there are too many subcones with positive mass, but not in a
significant way.

5.2 Simulation Experiments

In order to quantify the relative performances of CLEF, DAMEX and Apriori, we
generate d-dimensional datasets under a model such that the exponent measure μ
concentrates on p specified cones (Cα1 , . . . , Cαp

). Notice that p, (α1, . . . , αp) only
determine the generating model, they are not used as inputs of any of the three
algorithms compared here. The generated data are ‘realistic’ in the sense that all
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Table 1. Output of [17]’s DAMEX algorithm with the hydrological dataset. Columns 1
and 2 indicate respectively the number of thickened cones Cα,ε with non zero empirical
mass, and the percentage of cones (among those such that μn(Cα,ε) > 0) containing
less than 1% of the ‘extreme data’, that is of #{i : ‖V̂i‖∞ > t}.

ε # {α : μn(Cα,ε) > 0} %
{

α :
#{i:t−1Vi∈Cα,ε}

#{i:‖Vi‖≥t} < 1%
}

0.01 740 100%

0.05 688 98%

0.1 639 94%

0.2 559 88%

the features are positive (the points lie in the interior cone C{1,...,d}), even though
the furthest points in the tails concentrate near the subcones Cαk

’s. Namely, we
use the asymmetric logistic extreme value model ([27]), from which data is sim-
ulated using Algorithm 2.2 in [26]. 20 datasets of size n = 100 .103, d = 100,
are generated. For each dataset, p subsets α1, . . . , αp of {1, . . . , d} are randomly
chosen, which sizes follow a truncated geometric distribution (the maximum
cluster size is 8). We aim at reproducing the fact that different events asso-
ciated with a single α usually impact a group of stations which differs from
α by a few stations (the impacted area is not deterministic). To this end, for
each step i = 1, . . . , n, and each subset αj , j = 1, . . . , p, one randomly cho-
sen ‘noisy’ feature li,j ∈ {1, . . . , d} \ αj is added to αj . For CLEF, DAMEX
and Apriori algorithms, the extreme threshold parameter t is chosen so that
#{i≤n:‖V̂i‖∞≥t}

n ≈ 5%. Table 2 summarizes the average performance of the three
algorithms, for p = 40, 50, 60, 70. In these experiments, the CLEF algorithm
recovers most of the charged p subsets α1, . . . , αp in average, and significantly
more than Apriori. In contrast, DAMEX does not recover the sparse structure
of the data. It should be noted that in situations (not reported here) where no
noisy feature is added, Apriori and DAMEX perform as well as CLEF.

Table 2. Average number of errors (non recovered and falsely discovered clusters) of
CLEF, Apriori and DAMEX with simulated, noisy data.

p # errors CLEF # errors Apriori # errors DAMEX

40 1.2 6.4 72.2

50 3.5 10.9 91.0

60 6.3 14.6 112.4

70 10.1 25.8 134.0
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Fig. 2. Stability region for k (number of extreme points) on the stream-flow data.
Upper panel: number of detected clusters, lower panel: average cluster size. Vertical
red lines (k ∈ {1000, . . . , 1200} / t ∈ [320, 400]): stability region. (Color figure online)

Fig. 3. Stability region for k (number of extreme points) on simulated data. Upper
panel: number of detected clusters, middle panel: average cluster size, lower panel:
number of errors of CLEF (as in Table 2). Vertical red lines (k ∈ {12000, . . . , 81000}):
stability region. (Color figure online)
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5.3 Influence of the Threshold Choice

The high threshold t plays a decisive role in our framework as it determines which
standardized features V j

i are considered as extreme. Recall that the estimate V̂ j
i

is discrete (see Sect. 2.2). A more convenient way to evaluate the influence of
the threshold t is thus to consider instead k := #

{
i ∈ {1, . . . , n} : ||V̂i||∞ > t

}

the total number of extreme points. Two significant summaries of CLEF output
which are the number of clusters |M̂| and their average sizes 1

|M̂|
∑

α∈M̂
|α|, are

plotted as a function of k. Figure 2 (hydrological data) and the first two panels
of Fig. 3 (simulated data) confirm the existence of stability regions (vertical red
lines). The simulation experiments show that choosing the parameter in such
regions ensures an optimal performance for CLEF, since both match exactly the
one of lowest errors. The large width of the stability region for the simulated
data (Fig. 3 compared to Fig. 2) may be explained by the fact that the generative
model is a classical parametric extreme value model for which the asymptotic
regime is nearly reached even for small thresholds, leading to large stability
regions.

6 Conclusion

We propose a novel dimension reduction method for the analysis of extremes of
multivariate datasets via feature clustering. This is done in adequacy with the
framework of multivariate extreme value theory. The proposed algorithm makes
use of the graphical structure of the problem, scanning the multiple possible
subsets of features in a time efficient way. Results on a hydrological stream-
flow data and on simulated data demonstrate the relevance of this approach on
datasets which would not exhibit any sufficiently sparse structure when analyzed
with existing algorithms. Future work will focus on the statistical properties of
the empirical criteria κ̂α,t involved in the algorithm, which would allow to analyze
the output as a statistical test for independence at extreme levels.
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A Appendix: Proof of Lemma1

Step 1. As a first step we show that M ⊂ M, i.e.,μ(Cα) > 0 ⇒ μ(Γα) > 0.

Proof Write Cα =
⋃

ε>0,ε∈Q
Rα,ε, where Rα,ε = {x ∈ R

d
+ : ‖x‖∞ ≥ 1; xj >

ε (j ∈ α); xi = 0 (i /∈ α)}. Assume μ(Cα) > 0. Since μ(Cα) < ∞, by the
monotonous limit property of the measure μ, we have μ(Cα) = limε→0 μ(Rα,ε).
Also, from the definitions, Rα,ε ⊂ εΓα. Thus,

μ(Cα) > 0 ⇒ ∃ε ∈ (0, 1) : μ(Rα,ε) > 0 ⇒ μ(εΓα) > 0
⇒ ρα = μ(Γα) = εμ(εΓα) > 0.
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Step 2. We now prove the reverse inclusion for maximal elements of M, i.e.,

α is maximal in M ⇒ α ∈ M. (13)

Proof Consider, for i /∈ α, the set Δi,ε = Γα ∩ {x ∈ R
d
+ : xi > ε}, so that

Γα =
{ ⋃

i∈{1,...,d}\α
ε∈Q∩(0,1)

Δi,ε

} ∪ Rα,1. Thus,

α ∈ M ⇒ μ(Γα) > 0 ⇒
(
∃i, μ(Δi,ε) > 0 or μ(Rα,1) > 0

)
(14)

To prove (13), it is enough to show that

α ∈ M ⇒ for i /∈ α, μ(Δi,ε) = 0. (15)

Indeed if (15) is true, and if α ∈ M, then (14) implies that μ(Rα,1) > 0, and the
result follows from the inclusion Rα,1 ⊂ Cα. We show (15) by contradiction. If
μ(Δi,ε) > 0 for some i /∈ α, then

1
ε
Δi,ε =

(
1
ε

Γα

)
∩ {x ∈ R

d
+ : xi > 1} ⊂ Γα∪{i},

thus μ(Γα∪{i}) > 0, which contradicts the maximality of α in M.

Step 3. From (13), if α is maximal in M then α ∈ M. Now if α is maximal
in M but not in M, there exists β � α in M. Thus from Step 1, β ∈ M, a
contradiction. Hence α is also maximal in M. Conversely, if α is maximal in
M then (Step 1) α ∈ M. If α was not maximal in M, there would exist β � α
maximal in M, and from (13), β ∈ M, contradicting the maximality of α in M.
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Abstract. The Human Behavioral Analysis is a growing research area
due to its big impact on several scientific and industrial applications. One
of the most popular family of techniques addressing this problem is the
Latent Factor Modeling which aims at identifying interesting features
that determine human behavior. In most cases, latent factors are used
to relate atomic features to each other: for example, semantically similar
words in documents of a textual corpus (text analysis), products to buy
and customers (recommendation), users (social influence) or news in a
social network (information diffusion). In this paper, we propose a new
latent-factor-based approach whose goal is to profile users according to
their behavior. The novelty of our proposal consists in considering the
actions as set of features instead of single atomic elements. A single
action is characterized by several components that can be exploited in
order to define fine-grain user profiles. These components can be, for
instance, “what is being done”, “where”, “when” or “how”. We evaluated
our approach in two application scenarios. A first test is performed on
real data and it is aimed at semantically validate the model identifying
behavioral clusters of users; a second test is a predictive experiment on
synthetic data generated to assess model’s anomaly detection capability.

1 Introduction

Increasing attention has been paid to the problem of identifying and explaining
human activities based on the user behavior. The concept of behavior is a rel-
evant aspect for several challenging application domains such as Recommender
Systems, Cyber Security, Fraud Detection, Surveillance and Fault Detection Sys-
tems. The aim is to learn the usual/normal behavior of a person in order to better
understand how she acts and to detect potential anomalies.

Behavior Computing [6] is an emerging research field whose goal is to investi-
gate mathematical models that could summarize the dynamics of a complex sys-
tem such as a human being. Several big companies such as Facebook1, Twitter2,

1 https://www.facebook.com/.
2 https://twitter.com/.
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Youtube 3 or Tumblr4 are investing resources and money to equip their services
with advanced analytic functions able to discover user profiles. These profiles are
used to learn the causes that triggers users’ actions, with the aim to recommend
items that match their taste, suggest personalized information, share interesting
contents or propose social connections, detect anomalous events/actions (e.g. due
to identity theft).

Several research areas are addressing the Behavior Computing problem under
different perspectives. Particular interest has been shown for Latent Factor Mod-
eling [16] that is able to define and estimate a set of unobserved variables, called
latent factors or topics, summarizing the observable features of an underlying
data sample. Considering as sample a human activity log, data are the set of the
actions per user and the latent factors are the unobserved causes that explain
somehow why the user performed those actions. Hence, a distribution probabil-
ity over the latent factors can be translated as a behavior profile for the target
user.

Literature is rich of latent factor techniques aimed to model complex behav-
iors. Some example are. [1,4,7,11,13]. All of these approaches share the assump-
tion that actions are represented as atomic data or sometimes as a twofold piece
of information: what is done and when. In other words, most part of the Behav-
ior Computing approaches assumes that the underlying phenomenon is charac-
terized by elementary elements governed by some distribution probability, for
instance:

– Recommender systems deal with users and items (in many cases as ID);
– Link predictors in social networks deal with users and their atomic features;
– Community detectors deal with humans and links;
– Information diffusion predictors deal with humans and topics.

In this work we propose a novel technique for discovering user profiles able to
handle multidimensional data which is based on an extended version of Latent
Dirichlet Allocation (LDA) [5]. As aforesaid, human behavior is defined according
to the set of actions performed by a person, but each action is multivariate since it
is composed by a set of features: what is done, where and when, how, near what,
and so on represent some types of these features. In other words, actions are not
atomic. The contribution to the literature of the proposed approach consists in
the definition a fine-grained human behavior learning schema where each user
action is analyzed from different angles of view (contexts or dimensions). The
objective is to capture a full set of aspects that characterize human activities.
For a better understanding, consider the action “a user is entering in a bank”,
there is a big difference if the action is performed during the day or the night.

In literature there is a strong research field that deals with multivariate latent
factor models, such as the Gaussian Processes. However, the main drawback of
this kind of models is the computational complexity of a prediction: for instance,

3 https://www.youtube.com/.
4 https://www.tumblr.com/.

https://www.youtube.com/
https://www.tumblr.com/
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in many definition of gaussian process, the complexity is cubic in the number of
elements [2,17], hence, it does not scale for very large dataset.

The rest of the paper is organized as follows. Section 2 formally defines the
proposed approach and explains how perform the parameter estimation; Sect. 3
describes the multivariate nature of the data which will be used to learn the
model; Sect. 4 evaluates the model in two application scenarios; finally, Sect. 5
concludes the paper.

2 Multidimensional Latent Dirichlet Allocation

In this paper we propose a model based on Latent Dirichlet Allocation (LDA)
[5], and basically we extend this technique to a multidimensional setting. Indeed,
LDA usually considers a dyadic system and then tries to establish an association
scheme between two related sets of atomic elements, for instance: documents and
words, users and items, etc. Observing that there are scenarios in which at least
one of the two considered sets may actually contain composed elements, i.e. that
are characterized by multiple values that range in domains of different dimen-
sions, it is then natural to try to employ LDA related techniques in this more
general setting. The proposed model is then named Multidimensional Latent
Dirichlet Allocation, (MDLDA); for reader convenience, in Table 1 we summa-
rize all the variables and quantities used in the model definition, Fig. 1 gives a
graphical overview of the model and, finally, its generative process is given in
Table 2.

An action a performed by a user u is composed by a set of observable val-
ues {i(1), . . . , i(n)} belonging to n different domains, one for each dimension
characterizing a. We assume that each user u performs Au actions, each one is
governed by a latent variable z that represents a topic. Given a topic z = k
where k ∈ {1, . . . , K}, the observable values are sampled according the Discrete
distributions φ

(d)
k , with d ∈ {1, . . . , n}. The value of the latent variable z is sam-

pled from a Discrete distribution dependent on u, θu, we are assuming that our
data set is composed by the actions of U users. Each Discrete distribution is
generated by Dirichlet distributions, whose hyper parameters are α for θu and
βd for each φ

(d)
k , where d ∈ {1, . . . , n} and k ∈ {1, . . . , K}.

2.1 Parameter Inference

In what follows we are going to infer parameters for the proposed model,
MDLDA. First of all, let us consider the complete-data likelihood:

Pr (A,Z,Θ,Φ|α, β) ={
n∏

d=1

K∏
k=1

Pr
(
φ
(d)
k |β(d)

)} ∏
u∈U

Pr (θu|α)
∏

a∈Au

Pr (zu,a|θu)
∏
d∈D

Pr
(
i(d)u,a|φ(d)

zu,a

)
,
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Table 1. Notation table.

Variable Description

U The set of users u

K Number of topics

Z Latent variable

D The set of all dimensions, the index of a dimension is d, and
|D| = n

A The set of actions, Au is the actions taken by user u
−→α Hyperparameter mixture on users (a vector of K elements or a

scalar if symmetric)−→
β (d) Hyperparameter mixture on topics for each dimension d (a

vector of V elements or a scalar if symmetric)

θu Profile of user u, i.e. multinomial distribution over number of
topics K

φ
(d)
k Mixture components over the elements given a topic k and a

dimension d(
i
(1)
a , . . . , i

(n)
a

)
Vector representing action a where each i

(d)
a is the value of

dimension d within action a. Given Z, values in each dimension
are conditionally independent from each other

α θ z

i(1)

i(n)

φ(1)

φ(n)

β(1)

β(n)

Au

U

K

K

Fig. 1. Multidimensional Latent Dirichlet Model in plate notation.

by applying to θ and φ the Law of Total Probability, from the above equation
we obtain a formula for the complete data likelihood:

Pr (A,Z|α, β) =
∫

θ

∫
φ(1)

. . .

∫
φ(n)

Pr (A,Z,Θ,Φ|α, β) dθdφ(1) . . . dφ(n).

Since the integrals in the above equality are independent, we can group them in
the following way:
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θ

∏
u∈U

Pr (θu|α)
∏

a∈Au

Pr (zu,a|θu)dθ

)
·

(
n∏

d=1

∫
φ(d)

[
K∏

k=1

Pr
(
φ
(d)
k |β(d)

)] ∏
u∈U

∏
a∈Au

Pr
(
i(d)u,a|φ(d)

zu,a

)
dφ(d)

)
.

(1)

Table 2. Generative process for the proposed model

– For every user u ∈ U choose θu ∼ Dirichlet (α)
– For every dimension d ∈ D

• Choose φ
(d)
k ∼ Dirichlet

(
β(d)

)
for k ∈ {1, . . . , K}

– For every user u ∈ U and every action a ∈ Au

• Choose the latent variable z ∼ Discrete (θu)
• For every dimension d ∈ D

∗ Choose a value i(d) ∼ Discrete
(
φ
(d)
z

)

In the above formula, let us consider the first integral, after introducing some
notation, we are going to reformulate it. First of all, denote by nk

u the number
of times a user u get associated to the latent variable k, we then have:

∏
a∈Au

Pr (zu,a|θu) =
K∏

k=1

θ
nk

u

u,k,

since Pr (θu|α) is given by a Dirichlet distribution, then

Pr (θu|α) =
1

Δ (α)

K∏
k=1

θαk−1
u,k ,

where for every vector w= {w1, . . . , wr}, Δ (w) is given by:

Δ (w) =
∏r

i=1 Γ (wi)
Γ (

∑r
i=1 wi)

,

and as usual by Γ (·) we denote the Gamma function. By a straightforward
computation we can then rewrite the first integral in (1) as:∫

θ

∏
u∈U

Pr (θu|α)
∏

a∈Au

Pr (zu,a|θu)dθ =
∏
u∈U

Δ (α + nu)
Δ (α)

,
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where nu =
{
nk

u

}K

k=1
. By an analogous derivation, we are able to reformulate

the second integral in (1). Indeed we have:

Pr
(
φ
(d)
k |β(d)

)
=

1
Δ (β)

⎛
⎝ ∏

i(d)∈val(d)

(
φ
(d)

k,i(d)

)β
i(d)−1

⎞
⎠ ,

and ∏
u∈U

∏
a∈Au

Pr
(
i(d)u,a|φ(d)

zu,a

)
=

K∏
k=1

∏
i(d)∈val(d)

(
φ
(d)

k,i(d)

)nk

i(d)
,

then
n∏

d=1

∫

φ(d)

[
K∏

k=1

Pr
(
φ
(d)
k |β(d)

)] ∏
u∈U

∏
a∈Au

Pr
(
i(d)u,a|φ(d)

zu,a

)
dφ(d) =

n∏
d=1

K∏
k=1

Δ
(
β+nk

d

)
Δ (β)

,

where nk
d =

{
nk

i(d)

}
i(d)∈val(d)

, nk
i(d) is a counter of how many times a topic k is

related in dimension d with the item i(d) and val(d) is the set of all possible values
of the dimension d. Finally, we are able to write the complete-data likelihood:

Pr (A,Z|α, β) =

( ∏
u∈U

Δ (α + nu)
Δ (α)

)
·

n∏
d=1

K∏
k=1

Δ
(
β+nk

d

)
Δ (β)

. (2)

2.2 Final Equations

It is clear that the formulation of the likelihood in Eq. (2) is rather hard to
manage from a computational point of view, and as usual, we are forced to use
a simpler approximation of it by some sort of heuristic argument. In order to
achieve this goal, in the present work, we choose Gibbs Sampling technique, see
for instance [9,10,15], that belongs to the family of Monte Carlo methods. At
this point we are able to summarize the MDLDA model that we are going to
employ in our experiments.

– Sampling of latent variables:

Pr (zu,a = k|Z−u,a, A;α, β) ∝
(
nk

u + αk − 1
) ∏

d∈Dim(a)

nk
i(d) + β

(d)

i(d) − 1

−1 +
∑

j(d) nk
j(d) + β

(d)

j(d)

.
(3)

– Computation of behavioral profiles:

θu,k =
nk

u + αk∑K
h=1 nh

u + αh

. (4)
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– Computation of similarity between domains and latent variables:

φd
k,i(d) =

nk
i(d) + β

(d)

i(d)∑
j(d) nk

j(d) + β
(d)

j(d)

. (5)

– Moreover we add a module that updates hyper parameters of behavioral
profiles:

αnew
k = αk

∑
u∈U

[
Ψ

(
nk

u + αk

) − Ψ (αk)
]

∑
u∈U

[
Ψ

(∑K
k=1 nk

u + αk

)
− Ψ

(∑K
k=1 αk

)] , (6)

where Ψ (·) represents the function Digamma, see Minka [14] for the above
formulation.

2.3 Inference Algorithm

We are now ready to present our algorithm for inferring behavioral profiles in the
MLDA model, it is based on the formulation contained in the preceding section,
and it is illustrated in the pseudocode contained in Algorithm1.

input : nIterations, maximal number of iterations; burnIn, number of iterations of the burn-in step

output: Θ behavioral profiles matrix; Φ(d) latent variables – values of dimensions matrix

Θ∗ ← ∅1
for d ∈ D do2

Φ∗(d) ← ∅3
end4
for u ∈ U do5

for a ∈ Au do6
Choose latent factor zu,a ∼ Uniform (K)7

end8
end9
for it ← 1 to nIterations do10

for u ∈ U do11
for a ∈ Au do12

Update zu,a ∼ Pr
(

zu,a|Z−u,a, A; α, β
)
, (3)13

end14
end15
if it > burnIn ∧ (it ≡ 0 mod sampleLag) then16

Compute Θ, (4)17
Θ∗ = Θ∗ ∪ Θ18
for d ∈ D do19

Compute Φ(d), (5)20
Φ∗(d) = Φ∗(d) ∪ Φ(d)21

end22
end23
Update α, (6)24

end25
return mean

(
Θ∗) and for each d ∈ D, mean

(
Φ∗(d)

)
26

Algorithm 1: Pseudocode for MDLDA’s parameter inference.

The algorithm starts with a random initialization of latent variables involved
and proceeds with a fixed point search procedure based on Gibbs Sampling. This
fixed point search comprises two main steps. The first one, that we call burn-
in, intended as a measure to mitigate the influence of the random initialization,
resamples various times latent variables. As soon as this burn-in phase is finished,
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in the subsequent step the algorithm performs various iterations of the sample-
lag procedure and in each iteration user profiles are computed. Once the maximal
number of iterations are reached, the algorithm returns users behavioral profiles
as mean over all results of sample-lag iterations, as well as associations between
latent variables and contextual domains values.

3 Data Model

The model-feeding data are based on three main concepts: users, actions and
dimensions. In particular, in our approach, a user is represented by a numeric
identifier, actions are n-ary vectors of discrete values which are defined on
domains that represent the various dimensions. A dimension is a suitable feature
able to define an aspect of the action, for instance it may be the object of the
action, a time stamp that keeps track of when the action has been performed,
where the action took place, number and types of devices involved (e.g. com-
puter, telephone, etc.), files that are accessed during the action, active services
and so on. Hence, an action is defined by the set of its dimension values and the
sequences of the user actions are processed in order to discover typical behavioral
profiles within a user set.

3.1 Data Manipulation

First of all, it is worth noting that the dimensions, specifically their number
and type, depend on the scenario to be analyzed. For instance in a scenario
related to a business environment, some dimensions are related to security and
permissions issues. They are useful to describe a general user behavior, but in a
scenario where all users are granted the same rights or share unrestricted access
to a set of places/documents those types of dimensions are no more relevant.

In our proposal we assume that each dimension domain is discrete and finite,
i.e. it a characterizing feature with a fixed number of possible values. In this
process then, each real value (e.g. the time for a time context, the places for
a location type, etc. ) needs to be converted to a nominal value in a previous
pre-processing phase.

According to this definition, the target data structure is a sparse three-
dimensional tensor: the first dimension represents users, the second one actions,
while the last one the action features. Each user action is defined as a tuple
whose fields are the user unique identifier, the action unique identifier and a
sequence of integers mapping all dimension values.

As stated above, data are stored in a cubic structure in which the users, the
performed actions and the dimensions are, respectively, represented by the first,
second and third cube’s dimension. A possible software implementation of the
data cube is based on the sparse matrix structure concept: the missing values
for each dimension are ignored, since they are empty values. Moreover, users do
not performed the same number of actions and the completely empty slices of
the cube may occur and ignored as well.
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4 Experimental Evaluation

To validate the capability of our approach in discovering user profiles, we eval-
uate MDLDA on two datasets: the first is a real scenario while the second is
synthetically generated. Real data are used to assess the capability of the frame-
work in profiling users, exploiting simultaneously their observable-action set and
environmental information. Synthetic data are exploited to test the anomaly
detection capability of MDLDA.

4.1 Real Scenario

MovieLens1M 5 is the first dataset employed in our experimentation. Data are
public and collected by “The GroupLens Research Project” developed within
the Department of Computer Science and Engineering at the University of Min-
nesota [12]. This dataset contains 1,000,209 anonymous appreciation ratings on
approximately 3,700 movies made by 6,040 users and it is widely used as a
benchmark for several mining tasks.

MovieLens1M contains tuples 〈u; i; r; t〉, where u and i are, respectively, user
and item identifiers, t is a timestamp, r ∈ {1, ..., 5} is the rating value. The
data collection period is between 1997 and 1998. To extract a useful sample for
analyzing the model performances, data were filtered according to two criteria:
(i) we removed user with less than 20 ratings and (ii) without demographical
information.

Demographical information is gender, age and occupation while for each
movie we know title and genre. In our case, these attributes represent the differ-
ent dimensions that characterize user actions, in other words their preferences.
The age values are discrete and are shown in Table 3.

Table 3. Discretization of the users’ ages.

Age label Real age

1 <18

18 18–24

25 25–34

35 35–44

45 45–49

50 50–55

56 >55

Occupation and genre are represented using codes. So, the fully-preprocessed
dataset was obtained by combining user preferences, demographic information
and information about movies. Following we report a table record as example:
5 https://grouplens.org/datasets/movielens/1m/.

https://grouplens.org/datasets/movielens/1m/
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u1;F ; 45; 10; 2389; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 1; 0; 0; 0; 0; 1; 0; 0; 4

the first four attributes are the user’s code, the gender, the age and the employ-
ment code, respectively. The value 2389 is the code of the movie (in this case
Psycho 1998). The next sequence of eighteen numbers refers to the categories: if
a category field is valued 1 the movie belongs to category, 0 otherwise. In this
case, the categories valued with 1 are Crime, Horror and Thriller. The last value
is the rating provided by this user: in this case four stars.

User Profiles Discovery Analysis. MovieLens1M have been used as case
study to evaluate the proposed algorithm performance in discovering user pro-
files. In this application scenario, a behavioral profile identifies a group of users
who share both a preference for a particular type of movie and additional fea-
tures which can be exploited to predict their interests. It is worth to notice
that, exploiting the profile, it is quite easy suggesting new movie to see, plan-
ning promotions, etc. The experiment consists of two steps. First, we apply the
algorithm for the discovering behavioral profiles and a clustering algorithm for
identifying the groups. Then, we analyzed the results by assigning semantics to
the identified groups.

The algorithm MDLDA extracts a set of latent variables from the data, i.e.
the links between the users and the provided preferences. Latent variables allow
us to associate the users to the movies which can meet their interests. In par-
ticular, the aim of this analysis is to understand the features that the users,
belonging to a particular group, share. MDLDA finds for each user a behavior
profile presented by a probability distribution over the topics, so, in order to
cluster the users, we used the Expectation-Maximization (EM) clustering algo-
rithm [8] with a random initialization over the profiles. We identified 10 user’s
groups which exhibit similar behaviors and exploiting the result of the MDLDA
algorithm we have been able to discriminate the representative features for each
cluster.

In Table 4, we report the parameter setting for MDLDA algorithm according
to the experience in [18].

For the clustering step, the EM algorithm was executed with 10 clusters.

Table 4. Parameter setting.

Parameter Value

αk, with k ∈ {1, . . . , K} 2

βk(d) with k ∈ {1, . . . , K} and d ∈ {1, . . . , n} 0.1

Max number of iterations 800

burnIn 300

sampleLag 25

Max number of α update iterations 30
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Table 5. Latent variables - clusters

LV/Cluster C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

LV#1 0.0167 0.0155 0.016 0.0171 0.017 0.0162 0.1291 0.0142 0.0164 0.0164

LV#2 0.0175 0.0155 0.0161 0.017 0.017 0.016 0.0787 0.0143 0.0165 0.0164

LV#3 0.0169 0.0155 0.0167 0.6425 0.017 0.0165 0.0165 0.0142 0.0164 0.0164

LV#4 0.0169 0.0155 0.016 0.017 0.017 0.0161 0.0162 0.6963 0.0164 0.0164

LV#5 0.0168 0.0158 0.0166 0.0177 0.0179 0.016 0.1061 0.0142 0.0165 0.0168

LV#6 0.0183 0.0164 0.016 0.017 0.0171 0.209 0.0164 0.0144 0.0174 0.0165

LV#7 0.0169 0.0155 0.0169 0.017 0.017 0.0159 0.0947 0.0142 0.0164 0.0166

LV#8 0.0168 0.6478 0.0162 0.0172 0.017 0.0159 0.0162 0.0142 0.0164 0.0165

LV#9 0.0168 0.0158 0.016 0.017 0.017 0.0165 0.0163 0.0142 0.6191 0.0166

LV#10 0.0179 0.0157 0.6258 0.017 0.017 0.016 0.0164 0.0142 0.0168 0.0164

LV#11 0.057 0.0703 0.0826 0.0495 0.0218 0.0755 0.0545 0.0446 0.0833 0.0644

LV#12 0.0167 0.0157 0.016 0.0174 0.0174 0.0161 0.0162 0.0142 0.0164 0.6378

LV#13 0.6357 0.0159 0.016 0.017 0.017 0.016 0.0162 0.0159 0.0164 0.0169

LV#14 0.0168 0.0155 0.016 0.017 0.6701 0.016 0.0163 0.0148 0.0164 0.0164

LV#15 0.0168 0.0155 0.0168 0.017 0.017 0.0159 0.0893 0.0142 0.017 0.0164

LV#16 0.0167 0.0156 0.0167 0.017 0.017 0.2355 0.0163 0.0142 0.0164 0.0164

LV#17 0.0181 0.0156 0.016 0.017 0.017 0.0159 0.0954 0.0153 0.0164 0.0165

LV#18 0.0167 0.0155 0.016 0.017 0.0172 0.0159 0.0874 0.0142 0.0164 0.0164

LV#19 0.0167 0.0155 0.016 0.017 0.0171 0.016 0.0853 0.0142 0.0164 0.0173

LV#20 0.0172 0.0157 0.016 0.0179 0.0174 0.223 0.0163 0.0142 0.0165 0.0167

Evaluation Results. In this section we analyzed the clustering results. First,
we selected the most influential latent variables for each cluster and then, for
each latent variable we identified the user attributes and the predominant genres.

In Table 5, we show for each cluster the most characterizing latent variables.
In some cases, we can note that a cluster is denoted by more latent variables.

In Table 6 we show the distribution of the instances for each cluster. A pre-
liminary analysis allows to identify a larger cluster compared with the others,
which exhibit similar sizes.

A more detailed analysis, based on the discriminative latent variables, per-
mits to associate interesting knowledge to the clusters. The identified features
don’t allow to model all users, but are discriminative for the groups. For example,
cluster 1 is composed by male users (59% of the cluster), in particular students
aged between 18 and 24 years. The mainly genres watched by these users are
drama and comedy. Another group of users (cluster 4) contains women aged
between 25 and 34 years employed in the health sector. The preferred genre
is romance. The cluster 2 is characterized by male users (68% of the cluster)
between 25 and 34 years who prefer action movies. Many users belonging to
this cluster declared to be artists. Another interesting group is cluster 9. In this
case, the 80% of the users are young men (25–34), who work as programmers
and watch thriller movies. The largest cluster is made up of retirees, teachers or
engineers and most part of users belong mainly to two age groups: 25–34 years
and over-56. It is the largest cluster so it is difficult to identify a predominant
gender (male/female). In this case, comedy is the most watched genre.
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These cohesive results prove the effectiveness of the algorithm in profiling
and identifying groups of users that exhibit similar behavior. The obtained
profiles describe mainly young, with high level of education and who are big
“consumers” of movies. This demographic composition depends on how the data
were collected.

Table 6. Cluster distributions

ClusterId Distribution

C1 410 (7%)

C2 259 (4%)

C3 409 (7%)

C4 322 (5%)

C5 281 (5%)

C6 895 (15%)

C7 2443 (40%)

C8 414 (7%)

C9 319 (5%)

C10 288 (5%)

Finally, we tried to compare our solution with a standard clustering app-
roach, specifically with the algorithm Expectation Maximization (EM). In order
to make a fair comparison between the two techniques, we needed to preprocess
our data pivoting the preferences in movielens on the user column, so to obtain a
suitable and correct input for EM. The preprocessed table was sparse and exhib-
ited a very high dimensionality (over 75 K attributes). Even if we employed sev-
eral feature selection strategies, the EM algorithm (in different implementations)
was unable to return a result in a reasonable time, against tens of minutes of our
approaches. In the below table, we show how the proposed approach was able
to provide the results varying the number of topics exhibiting a linear behavior
(Table 7).

Table 7. Computation times of our algorithm on movielens dataset

Number of topics Time (in min.)

5 12

10 23

15 35

20 44

50 118
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4.2 Synthetic Scenario

In this section we describe the experiments on a synthetic dataset generated
with different distribution and different level of noise. This set of experiments
gives us the opportunity to understand how our approach is capable of detecting
different types of anomalous behaviors, i.e. behaviors with multi-level differences,
from actions quite close to the normal behavior to actions very different from
normal ones.

The input data of our algorithm are human actions specified by a sequence
of values, each one belonging to a specific context, i.e. the type of action (see
Sect. 3). At the end of preprocessing process, all data are normalized and dis-
cretized, for this reason the synthetic dataset generation process produces records
with nominal values with generic labels. The algorithm for the data generation
can be divided in two phases. In the first phase, we generate the action templates
that are the distinct records for all users and they are duplicated in the second
phase to create the dataset. Each template describes an action of a user and
it is defined by a tuple with a user ID, an action ID and all values of possible
contexts. The number of contexts is a configuration parameter. In our experi-
mentation we set this value to 20. Each template is equipped with a random non
negative weight. Then, we sample (with replacement) actions from the template
set according to the assigned weights. A template with high weight will be cho-
sen more frequently than a low-weighted one. In the next phase, we add noise
within the obtained actions in order to generate anomalies for each user.

Then, we assign a label to each action which represent the anomaly level.
The label is the type of the action (i.e. normal vs anomaly) and it can have
three possible values: 0, 1 and 2. With 0 we mark the action as normal. With 1
we mark the action as an anomalous one with x different contexts compared to
a normal action (x is a configuration parameter) in the generated dataset. With
2 we mark the actions which strongly differ from the original template.

In the second phase, we resample the data previously generated according to
three parameters: the number of normal actions, the number of anomaly actions
of type 1 and the number of anomaly actions of type 2 to generate for each user.

This data generation is motivated by the fact that we can simulate users fre-
quently doing typical actions and sometimes performing unexpected operations,
like for instance a manager working on files in its office or a student studying at
the school. The two types of anomaly action are required to model two different
deviation from a normal behavior. With anomaly action of type 1, we model
the case of an action that is considered almost normal with little variations,
for instance a student that studying math during night time: most contexts are
equal like in a normal action, but very few of them (the time) are different. The
other type of anomaly is an action completely different from the normality.

Given a user u, we define the anomaly level of an action a according to a
probabilistic framework:
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Pr(a|u) =
K∑

k=1

Pr(k|u) Pr(a|k)

=
K∑

k=1

θu,k

∏
d∈D

Pr(i(d)u,a|k)

=
K∑

k=1

θu,k

∏
d∈D

φ
k,i

(d)
u,a

.

(7)

The lower is the value of this probability the higher is the anomaly degree of the
action for the target user:

degree(a, u) = 1 − Pr(a|u). (8)

Table 8 contains the results of the anomaly detection experiments. We consid-
ered 1, 000 users, for each user we generated 5 normal-action templates, 3 nearly
normal action templates and 50 anomaly templates. Each row of the table repre-
sents a noise injection with the proportion 2:1 for (resp.) low and high anomaly
templates. The first column represents the noise rate within the data, while the
columns labelled “Gain (y%)” represent the relative number of correctly pre-
dicted anomalies exploiting the first y% predictions of our model according to
the anomaly degree (Eq. 8), in other words is a tabular representation of the
Cumulative Gains Chart.

According to the obtained results, the model seems to show a quite good
ability in detecting anomalies within the generated data.

Table 8. Cumulative gains with different noise level.

Noise % Gain (5%) Gain (10%) Gain (15%) Gain (20%)

5 42 48 57 61.8

10 45 49 54 59.9

25 24.4 37.5 41.7 45.9

35 15.7 26.6 29.7 33.3

5 Conclusion

In this paper we proposed a novel approach for the Human Behavior Computing
based on Multidimensional Latent Factor Modeling. We defined an extension
of the well-known approach LDA, namely Multidimensional Latent Dirichlet
Allocation (MDLDA), capable of deal with arbitrary multivariate elements. An
experimental experience has been shown in order to prove the utility of a multi-
dimensional perspective on human behavior. This paper represents a preliminary
work in this direction, that, with further investigation, seems to be a promising
branch of research for a better fitting of models for human actions.
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Abstract. Parkinson’s disease is a neurodegenerative disorder that
affects people worldwide. While the motor symptoms such as tremor,
rigidity, bradykinesia and postural instability are predominant, patients
experience also non-motor symptoms, such as decline of cognitive abili-
ties, behavioural problems, sleep disturbances, and other symptoms that
greatly affect their quality of life. Careful management of patient’s condi-
tion is crucial to ensure the patient’s independence and the best possible
quality of life. This is achieved by personalized medication treatment
based on individual patient’s symptoms and medical history. This paper
explores the utility of machine learning to help development of decision
models, aimed to support clinicians’ decisions regarding patients’ thera-
pies. We propose a new multi-view methodology for determining groups
of patients with similar symptoms and detecting patterns of medications
changes that lead to the improvement or decline of patients’ quality of
life. We identify groups of patients ordered in accordance to their qual-
ity of life assessment and find examples of therapy modifications which
induce positive or negative change of patients’ symptoms. The results
demonstrate that motor and autonomic symptoms are the most infor-
mative for evaluating the quality of life of Parkinson’s disease patients.

Keywords: Multi-view learning · Parkinson’s disease · Subgroup dis-
covery · Rule learning · Personalized medicine

1 Introduction

Parkinson’s disease is a neurodegenerative disorder that affects people world-
wide. Due to the death of nigral neurons, there is a shortage of dopamine in
human brain causing several motor symptoms: tremor, rigidity, bradykinesia
and postural instability. In addition to motor symptoms, Parkinson’s disease is
associated also with non-motor symptoms, which include cognitive, behavioural,
and autonomic problems. These symptoms significantly decrease the quality of
life of both the patients affected by Parkinson’s disease and their families.
c© Springer International Publishing AG 2017
A. Appice et al. (Eds.): NFMCP 2016, LNAI 10312, pp. 163–178, 2017.
DOI: 10.1007/978-3-319-61461-8 11
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Around 6.3 million people have the condition worldwide [1]. In Europe, more
than one million people live with Parkinson’s disease and this number is expected
to double by 2030 [11]. Parkinson’s disease is the second most common neurode-
generative disease (after Alzheimer’s disease) and its prevalence continues to
grow as the population ages. Currently, there is no cure for Parkinson’s disease.
The reasons for the cell death are still poorly understood. The management of
symptoms is of crucial importance for patients’ quality of life, mainly addressed
with antiparkinson medication, such as levodopa and dopamine agonists.

While many different studies found in the literature address specific aspects
of the disease, there are few research efforts that adopt a holistic approach to
disease management [13]. The PERFORM [21], REMPARK [19] and SENSE-
PARK [3] systems are intelligent closed-loop systems that seamlessly integrate
a range of wearable sensors (mainly accelerometers and gyroscopes), constantly
monitoring several motor signals of the patients and enabling the prescribing
clinicians to remotely assess the status of the patients. Clinicians have a real
time image of the patients’ condition. Based on each patient’s response to her
therapy (manifested by the change of the motor symptoms), the prescribing
physician is able to adjust medication schedules and personalize the treatment
[13]. However, no data mining paradigms are used in the mentioned systems.

The PD manager [2] EU Horizon 2020 project aims at developing an inno-
vative, mobile-health, patient-centric platform for Parkinson’s disease manage-
ment. One of the PD manager phases involves mining of data collected from
Parkinson’s disease patients in order to help to construct a decision support sys-
tem assisting clinicians and patients in personalized disease management. Our
goal is to develop a multi-view clustering methodology, which will—based on the
patients’ allocation to clusters at each time point and their history of medica-
tion therapies—be able to make suggestions about modifications of particular
patient’s therapy, with the aim to improve the patient’s quality of life.

This paper present the idea of using multi-view clusters of short time series
data as reference points through which a patient potentially moves as the diseases
progresses. Each cluster groups patients-at-some-time-point with similar charac-
teristics. The difference in feature values and medications of any given patients
as she moves from one cluster to another represent possible causes for that move.
Computing statistics of the moves allows us to infer significant features and rele-
vant medication changes for group of patients and to suggest medication changes
for individual patients.

After presenting the background and motivation, Sect. 3 describes the Parkin-
son’s Progression Markers Initiative (PPMI) data [17], captured for monitoring
the development of the Parkinson’s disease, together with the medications used
for symptoms control. Section 4 proposes the methodology for analyzing the
Parkinson’s disease data through multi-view clustering of short time series and
connecting the changes of symptoms-based clustering of patients to the changes
in medication therapies with the goal to find treatment recommendation pat-
terns. Section 5 presents the results of data analysis, tested on two data set
variants. Finally, Sect. 6 presents the conclusions and ideas for further work.
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2 Background and Motivation

Multi-view learning is a machine learning technique whose aim is to build a model
from multiple views (data sets) by considering the diversity of different views
[28]. These views may be obtained from multiple sources or different feature
subsets and describe the same set of examples. Co-training [6] is one of the
earliest representatives of multi-view learning. This approach considers two views
consisted of both labeled and unlabeled data. Using any labeled data, co-training
constructs a separate classifier for each view. The most confident predictions
of each classifier on the unlabeled data are then used to iteratively construct
additional labeled training data.

Multi-view clustering is concerned with clustering of data by considering the
information shared by each of the separate views. Many multi-view clustering
algorithms initially transform the available views into one common subspace
(early integration), where they perform the clustering process [28]. Chaudhuri
et al. [8] propose method for multi-view clustering where the translation to
a lower vector space is done by using Canonical Correlation Analysis (CCA).
Tzortzis and Likas [22] propose a multi-view convex mixture model that locates
clusters’ representatives (exemplars) using all views simultaneously. These exem-
plars are identified by defining a convex mixture model distribution for each view.
Cleuziou et al. [9] present a method where in each view they obtain a specific
organization using fuzzy k-means [5] and introduce a penalty term in order to
reduce the disagreement between organizations in the different views. Cai et al.
[7] propose a multi-view k-means clustering algorithm for big data. The algo-
rithm utilizes a common cluster indicator in order to establish common patterns
across views.

Kumar and Daumé [16] apply the co-training principle [6] in unsupervised
learning. Clustering is performed on both views. Afterwards, cluster points from
one view are used to modify the clustering structure of the other view. Appice
and Malerba [4] employ the co-training principle in the multi-view setting for
process mining clustering. The above mentioned approaches presume that each
of the respective views is capable of producing clusters of similar quality when
considered separately. He et al. [15] do not make that presumption. They com-
bine multiple views under a principled framework, CoNMF (Co-regularized Non-
negative Matrix Factorization), which extends NMF (Non-negative matrix fac-
torization) for multi-view clustering by jointly factorizing the multiple matrices
through co-regularization. The matrix factorization process is constrained by
maximizing the correlation between pairs of views, thus utilizing information
from each of the considered views. CoNMF is a multi-view clustering approach
with intermediate integration of views, where different views are fused during
the clustering process. The co-regularization of each pair of views makes the
clustering process more robust to noisy views. The decision to use the CoNMF
approach in our work was made based on the presumptions of the algorithm and
the availability of their Python code.

Symptoms of patients suffering from Parkinson’s disease can be divided into
several views. When these views are combined they offer a better image of the
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patients’ condition. We believe that the usage of multi-view clustering on the
Parkinson’s disease data will be able to identify clusters of patients that share
similar symptoms. All patients’ symptoms are susceptible to change through
time: the symptoms will change depending on the received therapies, develop-
ment of the disease, every day habits, etc. This will eventually lead to patients’
allocation in different clusters in different time points depending on the progres-
sion of the disease. By identifying the migration of patients from one cluster to
another, modifications of the medication treatments will be suggested in order
to keep the patients in the clusters where patients share symptoms that show
good quality of life. In the following sections we present a brief description of the
available Parkinson’s disease data, the proposed methodology and data analysis
results.

3 Data

In this study we use the PPMI1 data collection [17] gathered in the observational
clinical study to verify progression markers in Parkinsons disease. The PPMI
data collection consists of data sets describing different aspects of the patients’
daily life. Below we describe the selection of PPMI data used in the experiments.

3.1 PPMI Symptoms Data Sets

The medical condition and the quality of life of a patient suffering from
Parkinson’s disease can be determined using the Movement Disorder Soci-
ety (MDS)-sponsored revision of the Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) [14]. It is a questionnaire consisting of 65 questions concerning
the development of the disease symptoms. The MDS-UPDRS is divided into four
parts. Part I consists of questions about the ‘non-motor experiences of daily liv-
ing’. These questions address complex behaviors, such as hallucinations, depres-
sion, apathy, etc., and patient’s experiences of daily living, such as, sleeping
problems, daytime sleepiness, urinary problems, etc. Part II expresses ‘motor
experiences of daily living’. This part of the questionnaire examines whether
the patient experiences speech problems, the need for an assistance with the
daily routines, such as eating or dressing, etc. Part III is retained as the ‘motor
examination’, while Part IV concerns ‘motor complications’, which are mostly
developed when the main antiparkinson drug levodopa is used for a longer time
period. Each question is anchored with five responses that are linked to com-
monly accepted clinical terms: 0 = normal (patient’s condition is normal, symp-
tom is not present), 1 = slight (symptom is present and has a slight influence on

1 Data used in the preparation of this article were obtained from the Parkinsons
Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data). For
up-to-date information on the study, visit www.ppmi-info.org. PPMI—a public-
private partnership—is funded by the Michael J. Fox Foundation for Parkin-
son’s Research and funding partners. List of funding partners can be found at
www.ppmi-info.org/fundingpartners.

http://www.ppmi-info.org/data
http://www.ppmi-info.org/
http://www.ppmi-info.org/fundingpartners
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the patient’s quality of life), 2 = mild, 3 = moderate, and 4 = severe (symptom
is present and severely affects the normal and independent functioning of the
patient, i.e. her quality of life is significantly decreased).

The Montreal Cognitive Assessment (MoCA) [10] is a rapid screening instru-
ment for mild cognitive dysfunction. It is a 30 point questionnaire consisting
of 11 questions, designed to assess different cognitive domains: attention and
concentration, executive functions, memory, language, visuoconstructional skills,
conceptual thinking, calculations, and orientation.

The Scales for Outcomes in Parkinson’s disease Autonomic (SCOPA-AUT)
is a specific scale to assess autonomic dysfunction in Parkinson’s disease patients
[26]. The Physical Activity Scale for the Elderly (PASE) [27] is a questionnaire
which is a practical and widely used approach for physical activity assessment in
epidemiologic investigations. Cognitive categorization (COGCAT) is a question-
naire filled in by clinicians evaluating the cognitive state and possible cognitive
decline of patients.

The above data sets are periodically updated, thus allowing clinicians to
monitor patients’ disease development through time. Answers to the questions
from each questionnaire form the vectors of attribute values. All of the consid-
ered data sets consist of attributes with ordered values: larger values indicate
worsening of the symptoms described by the attributes, denoting a decreased
patient’s quality of life, while the opposite is true for attributes from the MoCA
and PASE data sets.

When considering the possibility of using a multi-view framework, the inde-
pendence of the separate views should be inspected. In their work of 2008, Goetz
et al. [14] stated that the four parts of the MDS-UPDRS scale are considered to
be independent due to the fact that obtained reliable factor structures for each
part with the comparative fit index > 0.90 for each part, which supports the use
of sum scores for each part in preference to a total score of all parts.

3.2 PPMI Concomitant Medications Log

The PPMI data collection offers information about all of the concomitant med-
ications patients used during their involvement in the study. These medications
are described by their name, the medical condition they are prescribed for, and
when the patient has started and (if) ended the therapy. For the purpose of
our research, we initially concentrate on whether the patient receives a therapy
with antiparkinson medications, and which combination of antiparkinson med-
ications she has received between each of the time points when the MDS-UPDRS
test and the MoCA test have been administered. The main families of drugs
used for treating motor symptoms are levodopa, dopamine agonists and MAO-B
inhibitors [12]. Medications which treat Parkinson’s disease related symptoms
but are not from the above mentioned groups of medications are referred to as
other.
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3.3 Experimental Data Sets

Symptoms of patients suffering from Parkinson’s disease are grouped into several
data sets, representing distinct views of the data. These views consist of data
from MoCA test, motor experiences of daily living, non-motor experiences of
daily living, complex motor examination data, etc. For each patient these data
are obtained and updated periodically (on each patient’s visit to the clinician’s
office)—in the beginning of the patient’s involvement in the PPMI study, and
approximately every 6 months, in total duration of 5 years—providing the clin-
icians with the opportunity to follow the development of the disease. The visits
of patient can be viewed as time points, and the collected data on each visit is
data about the patient in the respective time point. All time points collected for
one patient form a short time series. The experiments will address two settings:
the analysis of merged symptoms data and the analysis of multi-view symptoms
data.

The merged symptoms data are represented in a single data table, constructed
by using the sums of values of attributes of the following data sets: MDS-UPDRS
Part I (subpart 1 and subpart 2), Part II, Part III, MoCA, PASE, SCOPA-AUT,
and COGSUM. Table 1 outlines the attributes used to construct the merged
symptoms data, together with their range of values. This is a simplified repre-
sentation using eight attributes, each representing the severity of symptoms of a
given symptoms group, which proved to be valuable in initial experiments [24].

The multi-view data consist of eight data sets: MDS-UPDRS Part I, Part Ip,
Part II, Part III, MoCA, SCOPA-AUT, PASE, and COGCAT. Each of these data
sets consists of values of attributes, which represent answers to the questions from
a particular questionnaire. In each data set, we included an additional attribute,
which is the sum of values of attributes of the given data set (this equals the
values of individual attributes used in the merged symptoms data).

Table 1. List of attributes used in the merged symptoms data set.

Dataset Attribute name Value range Increased value decreases

quality of life?

MDS-UPDRS Part I NP1SUM 0–24 Yes

MDS-UPDRS Part Ip NP1PSUM 0–28 Yes

MDS-UPDRS Part II NP2SUM 0–52 Yes

MDS-UPDRS Part III NP3SUM 0–138 Yes

MoCA MCATOT 0–30 No

PASE PASESUM 0–24 No

SCOPA-AUT SCAUSUM 0–63 Yes

COGCAT COGSUM 2–9 Yes
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4 Methodology

To assist the clinicians in making decisions regarding the patients’ therapy,
we propose a method which involves a combination of multi-view clustering
on patients’ symptoms data and the analysis of histories of patients’ medica-
tion treatments. Figure 1 shows an outline of the proposed methodology, which
addresses changes of data over time (i.e. over several patient’s visits) with the
goal to suggest possible modifications of the medication treatment. The input to
the methodology are PPMI data sets of patient symptoms (described in Sect. 3.1)
and the PPMI medications log data set (described in Sect. 3.2), and the output
are treatment recommendation patterns, which can be used to assist the clinician
in deciding about further treatment of a patient.

Fig. 1. Outline of the multi-view approach to Parkinson’s disease quality of life data
analysis.

The methodology consists of two separate threads whose outputs are com-
bined to identify treatment recommendation patterns. The first thread, referred
to as Symptoms Analysis in the top part of Fig. 1, concerns finding groups of
patients with similar symptoms by grouping of patient instances, defined as
(patient, visit) pairs, through multi-view clustering and describing these groups
with induced classification rules from cluster labeled data instances. The second
thread, referred to as Medication analysis in the bottom part of Fig. 1, concerns
finding changes of medications and their dosages based on patients’ symptoms
changes between two consecutive visits to the clinician’s (e.g., disease aggrava-
tion, improvement or no change). In this thread we observe patients moving from
one cluster to another cluster in two consecutive time points, i.e. in two consec-
utive (patient, visit) pairs. The outcomes of the two threads are combined to a
set of treatment recommendation patterns (i.e. increased/decreased/unchanged
dosage of medications, for the four groups of medications, mentioned in Sect. 3.2).
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Initially, we construct patient-visit pairs (pi, vij) based on the patients and
their visits to the clinician. For each patient pi a set of pairs (pi, vij) is con-
structed, where vij corresponds to an individual visit, and vij and vij+1 corre-
spond to two consecutive patient’s visits. This is followed by clustering of the
available data. These patient-visit pairs, called instances, represent the basic unit
of analysis in the Symptoms Analysis thread of the methodology. The instance’s
(pi, vij) attribute values correspond to symptoms severity of patient pi on visit j.
On the other hand, the basic unit of analysis in the Medications Analysis thread
of the methodology are (pi, vij , cij ,mij , vij+1, cij+1,mij+1) tuples, where cij is
the cluster label for instance (pi, vij) and mij are the medications the patient pi
takes at the time of visit j. Elements cij+1 and mij+1 are the cluster assignment
and medications information about the same patient on visit j + 1, i.e. at the
time of the next visit.

Symptoms Analysis. This thread consists of three steps. First, we perform
clustering on instances in order to determine groups of patients with similar
symptoms. Our methodology can address both the merged symptoms data and
the multi-view data analysis setting. The only difference is the clustering method
applied in step B of the methodology outlined in Fig. 1. For clustering of the
multi-view data, which is the case illustrated in Fig. 1, we use the multi-view
clustering approach proposed in [15]. In the case of merged symptoms data, we
perform k-means clustering.

In the second step, we use the cluster membership as class labels in rule
learning in order to obtain meaningful descriptions of patients in each cluster
(step C ). Rule sets describing the data are induced on a concatenated data
set consisting of data sets considered in the clustering step B. In this work,
the rule sets for each class variable are learned using our recently developed
DoubleBeam-RL algorithm [23,25]. This is a separate-and-conquer rule learning
algorithm which uses two beams and separate heuristics for rule refinement and
rule selection. By using heuristics that take full advantage of the refinement and
selection process separately, the algorithm is able to find rules which maximize
the number of covered positive examples and minimize the number of covered
negative examples - which is the goal of classification rule learning algorithms
[20]. In the third step, expert knowledge was used to interpret the obtained
groups of patients and to order them according to the severity of symptoms
exhibited by patient instances assigned to them.

Based on the experts’ interpretation of clusters, we consider cluster changes
to be either positive or negative. When patient moved from a cluster described
by symptoms indicating worse quality of life to one depicted by better quality
of life indicators, we consider this change to be positive. A negative cluster
change occurs when the symptoms of a patient worsened. In step I we combine
detected medications changes from step H and cluster severity information from
step D. The combined information contains medications changes for positive
cluster changes and for negative cluster changes i.e. medication changes with
improvement or aggravation of the patients’ symptoms.
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Medications Analysis. In this thread of the methodology we determine the
medications changes that have occurred simultaneously to moves between clus-
ters observed in patients during two consecutive time points (two consecutive
visits). An important benefit of our approach is that each patient provides a con-
text for herself. By following the development of symptoms for each patient sep-
arately, we remove the influence of any chronic conditions the patient is treated
for.

Information about patients’ assignment to clusters and their medication ther-
apy in two consecutive visits is held in (pi, vij , cij ,mij , vij+1, cij+1,mij+1) tuples.
In step H we follow all patients through time. For each pair of patients’ con-
secutive visits to the clinician, we record the cluster change that has occurred
between the two visits, cij → cij+1, as well as the change in medications prescrip-
tions, mij → mij+1, which patients received in the consecutive time points. For
each antiparkinson drug group (levodopa, dopamine agonists, MAOB inhibitors,
and others) we record whether their dosage has increased, decreased or stayed
unchanged between the two visits. Dosages of PD medications are translated into
a common Levodopa Equivalent Daily Dosage (LEDD) which allows for compar-
ison of different therapies (different medications with personalized daily plans
of intake). Based on the clusters ordered by the experts and the information of
medications change for each cluster change, we determine patterns of medica-
tions adaptations, which have resulted in patients’ symptoms’ improvement or
aggravation.

5 Data Analysis

The experiments are divided into two parts: the analysis of merged symptoms
data and the analysis of multi-view symptoms data, briefly described in Sect. 3.3.
As described in Sect. 4, the merged symptoms data are clustered using k-means,
where we set the number of clusters to 3 by using the silhouette analysis tech-
nique [18] and by manual inspection of the silhouette graphs, while clustering
of multi-view data is performed using the CoNMF approach [15], explained in
Sect. 2.

5.1 Results of Merged Symptoms Data Analysis

To determine the patients’ symptoms evolution, for each Parkinson’s disease
patient considered in our data we investigate how the clusters in which the
patient was involved have changed between two consecutive time points. When
a patient has moved from cluster with a lower index to one with higher index,
we note that the patient’s symptoms have worsen and thus consider this change
to be negative. A positive cluster change is recorded if patient’s symptoms have
improved and the patient has moved to a cluster with smaller index. The med-
ications change patterns for positive and negative cluster change are obtained
by using the methods described in Sect. 4.
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Table 2 outlines rules describing the clusters obtained from the merged symp-
toms data analysis. These rules indicate that the clusters are ordered and contain
instances (patient at certain time point) with different severity of their motor
symptoms. Cluster 0 consists of instances with sum of motor symptoms severity
up to 22 (out of 138). Patients that have slightly worse motor symptoms are
assigned to cluster 1 (sum of motor symptoms severity between 23 and 42).
In cluster 2 there are patients whose motor symptoms significantly affect their
motor functions (sum of motor symptoms severity greater than 42). The wors-
ening of motor symptoms is followed by aggravation of non-motor symptoms,
mostly autonomic symptoms (sleeping, urinary, or constipation problems). This
can be observed by the increased values of attributes SCAUSUM and NP2SUM
in rule sets describing cluster1 and cluster2.

Table 2. Rules describing clusters obtained by k-means clustering on the unified data
set of attribute sums. Variables p and n denote the number of covered true positive
and false positive examples respectively.

Rule p n

Rules for cluster 0

NP3SUM ≤ 20 ← cluster = 0 488 4
NP3SUM ≤ 21 AND NP2SUM ≤ 6 ← cluster = 0 321 0
NP3SUM = (19, 22] AND NP1SUM = 0 ← cluster = 0 54 23

Rules for cluster 1

NP3SUM = (22,30] ← cluster = 1 323 13
NP3SUM = (30, 39] AND SCAUSUM = (4, 10] ← cluster = 1 91 17
NP3SUM = (22, 42] AND NP2SUM = (0, 6] ← cluster = 1 206 6
NP3SUM = (22, 34] AND SCAUSUM = (10, 17] AND
PASESUM >9 ← cluster = 1 101 6

Rules for cluster 2

NP3SUM >42 ← cluster = 2 125 1
NP3SUM >37 AND NP1PSUM >5 AND MCAVFNUM ≤ 18 ← cluster = 2 123 6
NP3SUM >30 AND NP2SUM >17 ← cluster = 2 82 0
SCAUSUM >20 AND NP2SUM >9 AND MCAVFNUM ≤ 24 ← cluster = 2 54 18
NP3SUM >30 AND SCAUSUM >11 AND NP2SUM >12 ← cluster = 2 123 2
NP3SUM >36 AND SCAUSUM >6 AND NP2SUM >6 AND
NP1PSUM >2 ← cluster = 2 168 6

Figure 2 indicates that patients’ motor symptoms improve when the dosage
of medications from the levodopa drug group is increased and the dosage of
dopamine agonists is decreased or stays the same. When the dosage of both
levodopa medications and dopamine agonists is increased the motor symptoms
of the patients worsen. Clinicians prescribe and gradually increase dosages of
levodopa to handle the motor symptoms of patients. The usage of inadequately
high dosages of dopamine agonists produces side effects affecting the non-motor
symptoms of patients. A decrease of dosage eliminates these side effects and
improves the patient’s status. Figure 2(a) presents the medications changes when
a positive cluster change has occurred. Red bars represent the number of times
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the dosage of medications from certain medication group has increased. Simi-
larly, the number of times the medication dosage has decreased is shown with
green. Blue bars present the number of times when a positive cluster change has
occurred, but the medication dosage has stayed unchanged. Figure 2(b) outlines
the medications changes when a negative cluster change has taken place.

(a) Positive cluster change. (b) Negative cluster change.

Fig. 2. Recorded Parkinson’s disease medication change when patient’s cluster allo-
cation has changed. Clusters were obtained from merged symptoms data set. Positive
cluster change indicates that patient’s symptoms improved. A negative cluster change
occurs when patient’s symptoms worsen. (Color figure online)

5.2 Multi-view Results

Table 3 outlines rules describing the first cluster obtained from the applied multi-
view clustering method. Attribute names (their IDs in the PPMI data collection)
are written in parenthesis. Rules presented in Table 3 contain attributes from the
following data sets: MDS-UPDRS Part Ip (NP1LTHD), MDS-UPDRS Part II
(NP2TRMR, NP2HYGN, NP2TURN), MDS-UPDRS Part III (DYSKPRES,
NP3FTAPR), MOCA (MCADATE, MCASER7, MCABDS, MCAVF, MCA-
CLCKH, MCACITY, MCALION, MCAABSTR, MCAABDS), SCOPA-AUT
(SCAUSUM, SCAU3, SCAU4, SCAU7, SCAU8, SCAU9, SCAU10, SCAU11,
SCAU13, SCAU15), PASE (LAWNWRK), and COGCAT (FNCDTCOG).

Similar to the results from the merged view clustering approach, clusters
obtained by the multi-view approach can be ordered by the severity of symp-
toms of patients assigned to them. In cluster 0 there are patients whose symp-
toms are most tolerable, while in cluster 2 are patients experiencing symptoms
that significantly affect their motor functions. Cluster 1 contains patients with
symptoms worse than patients assigned to cluster 0, but better than symptoms
of patients involved in cluster 2. A post analysis has revealed that there are
no significant intersections of instances assigned to clusters in the merged view
approach and instances assigned to clusters in the multi-view approach.

Clusters obtained by the multi-view approach are described with specific
rules. In addition to the sums of symptoms severity, we were able to determine
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Table 3. Rules describing cluster1 obtained by the multi-view clustering approach
proposed in [15]. Variables p and n denote the number of covered true positive and
false positive examples respectively.

Rule p n

IF: SCAUSUM ≤ 0 ← cluster = 1 18 0

ELSE IF: SCAUSUM ≤ 4
AND (SCAU13) PASS URINE AT NIGHT = 2 ← cluster = 1 26 0

ELSE IF: (SCAU8) DIFFICULTY RETAINING URINE = 0
AND SCAUSUM ≤ 3
AND (SCAU10) AFTER PASSING URINE BLADDER NOT COMPLETELY EMPTY = 0
AND (SCAU13) PASS URINE AT NIGHT = 1
AND (NP1LTHD) LIGHTHEADEDNESS ON STANDING = 0 ← cluster = 1 41 0

ELSE IF: (FNCDTCOG) FUNCTIONAL IMPAIRMENT DUE TO COGNITIVE = 0
AND (MCADATE) ORIENTATION - DATE = 1
AND (MCASER7) ATTENTION - SERIAL 7S = 3
AND SCAUSUM = (8,15] AND (SCAU13) PASS URINE AT NIGHT = 3
AND (MCABDS) ATTENTION - BACKWARD DIGIT SPAN = 1
AND (SCAU15) LIGHT-HEADED FOR SOME TIME AFTER STANDING = 0 ← cluster = 1 50 6

ELSE IF: (MCAVF) VERBAL FLUENCY = 1
AND SCAUSUM ≤ 7
AND (SCAU13) PASS URINE AT NIGHT = 2
AND (NP2TRMR) REST TREMOR AMPLITUDE - LLE = 0 ← cluster = 1 46 5

ELSE IF: (MCACLCKH) VISUOCONSTRUCTIONAL SKILLS (CLOCK HANDS) = 1
AND (MCADATE) ORIENTATION - DATE = 1
AND (MCAVF) VERBAL FLUENCYNUM ≤ 26
AND (DYSKPRES) WERE DYSKINESIAS PRESENT = 0
AND (MCACITY) ORIENTATION - CITY = 1
AND (MCALION) NAMING - LION = 1
AND (SCAU9) INVOLUNTARY LOSS OF URINE = 0
AND (SCAU7) INVOLUNTARY LOSS OF STOOLS = 0
AND (SCAU3) FOOD STUCK IN THROAT = 0
AND SCAUSUM = (7,10]
AND (SCAU13) PASS URINE AT NIGHT = 2
AND (MCAABSTR) ABSTRACTION = 2
AND (MCABDS) ATTENTION - BACKWARD DIGIT SPAN = 1 ← cluster = 1 28 10

ELSE IF: (SCAU4) FULL VERY QUICKLY DURING A MEAL = 0
AND SCAUSUM ≤ 5
AND (SCAU11) WEAK STREAM OF URINE = 0
AND (SCAU13) PASS URINE AT NIGHT = 1
AND (NP3FTAPR) FINGER TAPPING RIGHT HAND = 1
AND (LAWNWRK) LAWN WORK = 2 ← cluster = 1 13 3
ELSE IF: SCAUSUM = (8,15]
AND (SCAU13) PASS URINE AT NIGHT = 3
AND (NP2HYGN) HYGIENE = 0
AND (NP2TURN) TURNING IN BED = 1 ← cluster = 1 8 3

specific symptoms which describe patients’ status. Due to space restrictions we
only outline rules describing cluster 1.

Figure 3(a) presents the medications changes when the symptoms of a patient
improved and a positive cluster change occurred. Figure 3(b) outlines the med-
ications changes when a negative cluster change took place.

Results from the medications change pattern analysis in the multi-view clus-
tering setting are similar to those obtained in the merged view setting—the
improvement of patients’ symptoms takes place when the dosage of medications
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(a) Positive cluster change. (b) Negative cluster change.

Fig. 3. Recorded Parkinson’s disease medication change when patient’s cluster alloca-
tion has changed. Clusters were obtained with multi-view clustering. Positive cluster
change indicates that patient’s symptoms have improved. A negative cluster change
occurs when patient’s symptoms worsen.

from the levodopa medications group increased and the dosage of dopamine ago-
nists decreased or stayed the same. When patients move to a cluster with worse
symptoms, the change in the treatment plan is characterized by the increased
dosage of both levodopa medications and dopamine agonists. Increased dosages
of dopamine agonists can cause worsening of patients’ cognitive symptoms.
Figures 2 and 3 outline that the dosage of MAOB inhibitors does not have any
significant influence on the change of the symptoms. In all observed cases when a
cluster change occurred, dosage of MAOB inhibitors remained the same. This is
in accordance with the Parkinson’s disease literature and the clinicians’ practice
of medication prescription for Parkinson’s disease treatment.

6 Conclusions

The aim of our research is to develop a methodology which will make sug-
gestions to clinicians about possible treatment changes that will improve the
patient’s quality of life. We present the results from the proposed methodology
obtained by rule learning and clustering on patients’ data. The results confirm
known facts about the Parkinson’s disease: the motor symptoms, tremor, shak-
ing, involuntary movement, etc. are the characteristic symptoms of the disease
and significantly affect the quality of life of the suffering patient. Our experimen-
tal work also revealed that the autonomic symptoms (SCOPA-AUT) are very
informative when dividing patients into groups defined by patients’ quality of
life evaluation. We show that Parkinson’s disease patients can be divided into
clusters ordered in accordance to the severity of their symptoms. By following
the evolution of symptoms for each patient separately, we were able to determine
patterns of medications change which can lead to the improvement or worsening
of the patients’ quality of life.

The rules describing the obtained clusters were either too general (merged
view setting) or too specific (multi-view setting) and may not be of sufficient
assistance to the clinicians. This is due to the nature of the used data, i.e. a vec-
tor of attribute sums (merged view) or a broad vector of attributes with numeric
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values. In future work we will test our methodology with only a handful of care-
fully chosen attributes. These attributes, selected with the help of Parkinson’s
disease specialists, will be described by nominal values used in their everyday
practice. We believe that by manually decreasing the attribute space we will
be able to obtain description of groups of patients which are meaningful and
helpful for the clinicians. Additionally, we will improve the medications sugges-
tion process to produce numerical suggestions of drugs’ dosage which should be
prescribed to patients. Furthermore, we plan to formalize the patients’ cluster
changes and define a probabilistic model. The same approach will be applied for
the determination of medications changes, which will allow more personalized
approach for change of treatment recommendation. We will also explore the pos-
sibility of comparing the state of the proposed framework in a given time point
with all of its past time points.

Acknowledgements. This work was supported by the PD manager project, funded
within the EU Framework Programme for Research and Innovation Horizon 2020 grant
643706. We acknowledge the support of the Slovenian Research Agency and the Euro-
pean Commission through The Human Brain Project (HBP), grant FP7-ICT-604102.

References

1. European Parkinson’s Disease Association. http://www.epda.eu.com/. Accessed
01 July 2016

2. PD manager: m-Health platform for Parkinson’s disease management. EU Frame-
work Programme for Research and Innovation Horizon 2020, Grant number 643706,
2015–2017. http://www.parkinson-manager.eu/

3. SENSE-PARK. Project’s website. http://www.sense-park.eu/. Accessed 01 July
2016

4. Appice, A., Malerba, D.: A co-training strategy for multiple view clustering in
process mining. IEEE Trans. Serv. Comput. 9(6), 832–845 (2016)

5. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York (1981)

6. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
In: Proceedings of the Eleventh Annual Conference on Computational Learning
Theory. COLT 1998, pp. 92–100. ACM, New York (1998)

7. Cai, X., Nie, F., Huang, H.: Multi-view k-means clustering on big data. In: IJCAI
2013, Proceedings of the 23rd International Joint Conference on Artificial Intelli-
gence, Beijing, China, August 3–9, 2013, pp. 2598–2604 (2013)

8. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering via
canonical correlation analysis. In: Proceedings of the 26th Annual International
Conference on Machine Learning, ICML 2009, pp. 129–136 (2009)

9. Cleuziou, G., Exbrayat, M., Martin, L., Sublemontier, J.: Cofkm: a centralized
method for multiple-view clustering. In: The Ninth IEEE International Conference
on Data Mining, ICDM 2009, Miami, Florida, USA, 6–9, pp. 752–757 (2009)

10. Dalrymple-Alford, J., MacAskill, M., Nakas, C., Livingston, L., Graham, C.,
Crucian, G., Melzer, T., Kirwan, J., Keenan, R., Wells, S., et al.: The MoCA: well-
suited screen for cognitive impairment in Parkinson disease. Neurology 75(19),
1717–1725 (2010)

http://www.epda.eu.com/
http://www.parkinson-manager.eu/
http://www.sense-park.eu/


Multi-view Approach to Parkinson’s Disease Quality of Life Data Analysis 177

11. Dorsey, E., Constantinescu, R., Thompson, J., Biglan, K., Holloway, R., Kieburtz,
K., Marshall, F., Ravina, B., Schifitto, G., Siderowf, A., et al.: Projected number
of people with Parkinson disease in the most populous nations, 2005 through 2030.
Neurology 68(5), 384–386 (2007)

12. N.C.C. for Chronic Conditions (UK et al. Symptomatic pharmacological therapy
in Parkinsons disease) (2006)

13. Gatsios, D., Rigas, G., Miljkovic, D., Seljak, B.K., Bohanec, M.: m-health plat-
form for Parkinson’s disease management. In: Proceedings of 18th International
Conference on Biomedicine and Health Informatics CBHI (2016)

14. Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebbins, G.T., Fahn, S., Martinez-
Martin, P., Poewe, W., Sampaio, C., Stern, M.B., Dodel, R., et al.: Movement
disorder society-sponsored revision of the unified Parkinson’s disease rating scale
(MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord.
23(15), 2129–2170 (2008)

15. He, X., Kan, M.-Y., Xie, P., Chen, X.: Comment-based multi-view clustering of
web 2.0 items. In: Proceedings of the 23rd International Conference on World Wide
Web, pp. 771–782. ACM (2014)
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Abstract. Conformance checking allows organizations to verify whether
their IT system complies with the prescribed behavior by comparing
process executions recorded by the IT system against a process model
(representing the normative behavior). However, most of the existing
techniques are only able to identify low-level deviations, which provide
a scarce support to investigate what actually happened when a process
execution deviates from the specification. In this work, we introduce an
approach to extract recurrent deviations from historical logging data and
generate anomalous patterns representing high-level deviations. These
patterns provide analysts with a valuable aid for investigating noncon-
forming behaviors; moreover, they can be exploited to detect high-level
deviations during conformance checking. To identify anomalous behav-
iors from historical logging data, we apply frequent subgraph mining
techniques together with an ad-hoc conformance checking technique.
Anomalous patterns are then derived by applying frequent items algo-
rithms to determine highly-correlated deviations, among which ordering
relations are inferred. The approach has been validated by means of a
set of experiments.

1 Introduction

Organizations are required to monitor their business processes to ensure that
their system complies with the prescribed behavior. To this end, organiza-
tions usually employ logging mechanisms to record process executions in logs
and auditing mechanisms to analyze those logs. Conformance checking has
been proposed to assist organizations in verifying whether the observed behav-
ior recorded in an event log matches the prescribed behavior represented as
a process model. The notion of alignment [1] provides a robust approach to
conformance checking, which pinpoints the causes of nonconformity. Given a
trace, i.e. a sequence of events recording a process execution, and a process
model, an alignment maps the trace to a complete run of the model (see
[1] for a formal definition of alignment). Take, for example, a trace σ1 =

c© Springer International Publishing AG 2017
A. Appice et al. (Eds.): NFMCP 2016, LNAI 10312, pp. 181–197, 2017.
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〈customer identification, prepare loan application, check financial status, check
external credit rating, check credit purpose, refuse loan〉 and the loan process in
Fig. 1, modeled in the form of a Petri net (Definition 1). Figure 2 shows two pos-
sible alignments of σ1 and the net, where activities are abbreviated according to
their initial letter(s). The top row of the alignments shows the sequence of events
in the trace; the bottom row shows the sequence of activities in the run of the
net. Deviations are explicitly shown by columns that contain �. For example,
the fifth column in γ1 shows that an activity must occur in σ1 according to the
net, but it is absent in the trace, i.e. a so-called move on model. The fourth and
fifth columns in γ2 show that some events occur in the trace although they are
not allowed according to the net, i.e. a so-called move on log. Other columns for
which events in the trace match the activities in the run of the net represent
synchronous moves.

Fig. 1. Loan process represented as a Petri net. Boxes represent transitions (denoting
process activities) and circles represent places. The text below the transitions represents
the activity label, which is shortened as indicated inside the transitions. Gray boxes
represent invisible transitions (i.e. transitions that are not recorded in event logs).

γ1 =
CI PL CFS CEC � CCP RL

CI PL CFS CEC GIR CCP RL
γ2 =

CI PL � CFS CEC CCP RL

CI PL CIR � � CCP RL

Fig. 2. Alignments of σ1 = 〈CI,PL,CFS,CEC,CCP,RL〉 and the Petri net in Fig. 1

As shown in Fig. 2, there can be several (possibly an infinite number of)
alignments of a trace and a Petri net, each of them representing a possible
explanation of nonconformity. To determine the quality of alignments, a cost is
assigned to each move in the alignment. An optimal alignment of a trace and a
Petri net according to a given cost function is the one with the least total cost.
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For instance, if we assign cost 1 to moves on log/model and 0 to synchronous
moves, γ1 is the optimal alignment.

Alignments provide diagnostics in terms of low level deviations, i.e. elemen-
tary deviations like insertions (i.e., moves on log) and suppressions (i.e., moves
on model). While low level deviations indicate where the process deviates, they
may not provide meaningful diagnostics. Low level deviations need to be ana-
lyzed and correlated together into high level deviations, e.g. to show whether an
activity has been executed instead of another activity or whether the execution
of two activities has been swapped.

However, identifying low level deviations and then using them to diagnose
high level deviations has a number of drawbacks. First, it requires analysts reex-
amining the detected deviations to reconstruct what happened, thus resulting
in high operational costs. More importantly, it can lead to inaccurate diag-
nostics. We illustrate this using the alignments in Fig. 2: γ1 indicates that
activity generate internal rating should have been executed, whereas γ2 indi-
cates that activity check internal rating should have been executed and that
check financial status and check external credit rating should not have been exe-
cuted. The low level deviations in γ2 can be “interpreted” as a high level devi-
ation indicating that check financial status and check external credit rating were
executed instead of check internal rating. An analyst can deem this deviation
possible and more plausible than a suppression of generate internal rating (i.e.,
the analyst would choose this replacement as the explanation of nonconformity
rather than to the suppression of generate internal rating). As the number of
possible alignments can be infinite, existing alignment-based techniques usually
return only optimal alignments, i.e. γ1 in our case. This alignment, however, does
not allow the analyst to reconstruct the deemed deviation. The main problem is
that optimal alignments are ‘optimal’ with respect to low level deviations, and
it may not be possible to infer what really happened from the moves in these
alignments.

To obtain accurate diagnostics, high level deviations should be treated as
‘first class citizens’ within conformance checking. Adriansyah et al. [3] show how
alignment-based techniques can be adapted to explicitly capture high level devi-
ations using anomalous patterns. Intuitively, an anomalous pattern is an artifact
representing a behavior that does not comply with the process model. In par-
ticular, Adriansyah et al. construct patterns to detect replacements and swaps
of (sequences of) activities as Petri nets and show how these patterns can be
used to augment a process model. Existing alignment-based techniques can then
be applied to construct alignments that exhibit high-level deviations, providing
analysts with accurate diagnostic information. Figure 3a shows an anomalous
pattern representing the replacement of activity check internal rating with activ-
ities check financial status and check external credit rating, and Fig. 3b shows the
alignment of σ1 and the net of Fig. 1 exhibiting high-level deviations constructed
using the approach in [3].

Although the work in [3] makes a first step toward the detection and diagnosis
of high level deviations, a number of questions are still left open. In particular:
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(a) Excerpt of the net in Fig. 1, appended with
the anomalous pattern encoding the replace-
ment.

γ3 =

CI PL CFS CEC CCP RL

CI PL CFS CEC CCP RL
(replacing CIR) (replacing CIR)

(b) Alignment of σ1 and the net in Fig. 1 showing
the replacement.

Fig. 3. Replacement of CIR with 〈CFS,CEC〉

1. Can we learn patterns representing high level deviations?
The approach proposed in [3] is able to identify complex anomalous behav-
iors for which an anomalous pattern has been defined. In particular, the
authors provide some predefined patterns to identify replacements and swaps
of activities. However, we envision that other types of deviations can occur
in practice. Analysts may want to identify these deviations in their analysis.
This requires defining patterns capturing the desired anomalous behavior.
However, the definition of such patterns can be difficult and time consum-
ing. Thus, it is desirable to provide analysts with tool-supported methods for
extracting anomalous patterns from past process executions.

2. Which patterns should be considered in the analysis?
An analyst might want to recognize any type of deviation in the constructed
alignments. However, this significantly increases the search space of align-
ments, making the approach in [3] unpractical. It is worth noting that some
anomalous behavior might never occur or be very rare. It is reasonable
to ignore these deviations, restricting the attention to recurring anomalous
behaviors which are envisaged to occur in the future.

In this work, we address these questions. In particular, our goal is to devise
tool-supported methods for the extraction of patterns representing recurrent
(complex) anomalous behaviors from historical logging data. To this end, we
introduce a novel approach to extract partially ordered anomalous subgraphs.
Given an event log and a process model, we apply a frequent subgraph mining
technique to extract relevant subgraphs and propose a conformance checking
algorithm to identify the anomalous ones. Anomalous patterns are derived by
detecting correlated anomalous subgraphs by means of frequent itemset algo-
rithms and inferring ordering relations among them. Our approach for the extrac-
tion of anomalous patterns from historical logging data has been validated by
means of a set of experiments.

The anomalous patterns extracted using our approach can support analysts
in various ways, for instance providing them with an analysis of frequent anom-
alous behaviors in historical logging data or supporting them in the definition
of a library of anomalous patterns that can be used in combination with confor-
mance checking techniques in the style of [3] to construct alignments exhibiting
high-level deviations as the one shown in Fig. 3b. In the latter application, the
use of the patterns extracted using our approach will allow analysts to obtain
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accurate diagnostics concerning recurring anomalous behaviors when analyzing
new process executions, relieving them from the burden of reevaluating situa-
tions already analyzed.

The remainder of the work is organized as follows. Next section introduces
preliminaries on Petri nets. Section 3 details the main steps of the approach.
Section 4 presents experimental results. Finally, Sect. 5 discusses related work
and Sect. 6 draws some conclusions and delineates future work.

2 Preliminaries

In this work we represent process models using Petri Net notation.

Definition 1 (Labeled Petri Net). A Labeled Petri net is a tuple (P, T, F,A,
�,mi,mf ) where P is a set of places; T is a set of transitions; F ⊆ (P × T ) ∪
(T × P ) is the flow relation connecting places and transitions; A is the set of
labels for transitions; � : T → A is a function that associates a label with every
transition in T ; mi is the initial marking; mf is the final marking.

In a Petri net, transitions represent activities and places represent states.
Multiple transitions can have the same label. Such transitions are called dupli-
cate transitions. We distinguish two types of transitions, namely invisible and
visible transitions. Visible transitions are labeled with activity names. Invisi-
ble transitions are used for routing purposes or related to activities that are
not observed by the IT system. Given a Petri net N , the set of activity labels
associated with invisible transitions is denoted with InvN ⊆ A.

The state of a process model is represented by a marking, i.e. a multiset of
tokens on the places of the net. A process model has an initial marking mi and
a final marking mf . A transition is enabled if each of its input places contains
at least a token. When an enabled transition is fired (i.e., executed), a token is
taken from each of its input places and a token is added to each of its output
places.

Process executions are often recorded by the IT system.

Definition 2 (Event, Event Trace, Event Log). Let N = (P, T, F,A, �,
mi,mf ) be a labeled Petri net and InvN ⊆ A the set of invisible transitions in
N . An event e consists of an executed activity a ∈ A \ InvN . The set of events
is denoted by E. An event trace σ ∈ E∗ is a sequence of events. An event log
L ∈ B(E∗) is a multiset of event traces.1

In this work, we use the coverability graph [23] of a Petri net to assess the
conformance of event traces with a process model. Given a Petri net N , the
coverability graph of N is a directed graph whose nodes are the markings reach-
able from the initial marking of N and arcs are labeled by the transitions of
N . Intuitively, the coverability graph of a Petri net overapproximates the state
space of the net and, thus, exhibits all behaviors allowed by the net. We refer to
[23] for a formal definition of coverability graph.
1

B(X) represents the set of all multisets over X.
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3 Methodology

The goal of this work is to support analysts in the detection and analysis of anom-
alous behaviors in historical logging data. In particular, we present an approach
to discover recurrent deviations from the analysis of past process executions and
explore their correlation in order to extract anomalous patterns. The extracted
patterns can be used, for instance, to augment alignment-based techniques like
the one in [3] to construct alignments exhibiting complex anomalous behaviors
alongside insertions and suppressions of activities.

Fig. 4. Overview of the approach

Figure 4 provides an overview of our approach, which comprises three main
steps. Given an event log recording past process executions, relevant subgraphs
mining transforms the log traces into directed graphs and extracts the most rele-
vant subgraphs occurring in the traces using a Frequent Subgraph Mining (FSM)
technique. These subgraphs are then analyzed to identify the minimal subgraphs
that do not comply with the process model (anomalous subgraph extraction).
The extracted anomalous subgraphs are used to construct patterns representing
frequent (complex) anomalous behavior (partial order discovery). In particular,
we capture the sets of anomalous subgraphs that frequently occur together by
means of frequent itemset discovery algorithms. For each of these itemsets, we
infer ordering relations between subgraphs by analyzing their ‘position’ in the
log traces. The obtained structures (i.e., the subgraphs along the partial ordering
among them) provide the baseline for the definition of anomalous patterns. In
the remainder, we describe each step in detail.

3.1 Relevant Subgraph Mining

The first step of our approach aims to mine relevant subgraphs from the process
executions recorded in an event log L. We transform each event trace σi ∈ L into
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a directed graph gi = (Vi, Ei, φi), where Vi is the set of nodes, each corresponding
to an event in the trace, Ei is the set of the edges, showing ordering relations
among the events, and φi is a labeling function associating each node to the
activity of the corresponding event. For the sake of simplicity, in this work we
adopt a simple transformation: a node is created for each event in the trace and
each pair of subsequent events is linked through an edge. By doing so, every log
trace is transformed in a sequence of events ordered according to their order in
the log trace. Note that more advanced strategies can be exploited, e.g. to derive
graphs also showing possible parallelisms [12]. For instance, many IT systems
record both the start and completion time of process activities. Accounting for
this information makes it possible to infer situations in which some activities
were executed concurrently. We plan to explore methods able to capture and
reason on the concurrency occurring in process executions in future work.

To mine relevant subgraphs, we apply a FSM technique, which allows deriving
from a given graph set the set of subgraphs whose support (i.e., relevance) is
above a certain threshold. In this work, we relate the relevance of a subgraph
both to its occurrence frequency and size. Given two subgraphs with the same
occurrence frequency but different sizes, we are interested in the largest, since
we expect to derive a larger amount of knowledge from it. The size of a graph
g can be represented in terms of its Description Length (DL), i.e. the number
of bits needed to encode its representation (further details on DL are provided
in [15]).

To the best of our knowledge, the only FSM algorithm that explicitly consid-
ers DL is SUBDUE [18], which evaluates the relevance of a subgraph in terms of
its compression capability. Namely, given a graph set G and a subgraph s, SUB-
DUE uses an index based on DL, here denoted by ν(s,G), which is computed
as ν(s,G) = DL(G)

DL(s)+DL(G|s) where DL(G) is the DL of G, DL(s) is the DL of
s and DL(G|s) is the DL of G compressed using s, i.e. the graph set in which
each occurrence of s is replaced with a single node. The lower is the DL of the
compressed dataset, the higher is the compression capability of s.

SUBDUE works iteratively. At each step, it extracts the subgraph with the
highest compression capability, which is then used to compress the graph set. The
compressed graphs are presented to SUBDUE again. These steps are repeated
until no more compression is possible. The outcome of SUBDUE is a hierarchi-
cal structure, where mined subgraphs are ordered according to their relevance,
showing the existing inclusion relationships among them. Top-level subgraphs
are defined only through elements belonging to input graphs (i.e., nodes and
arcs), while lower-level subgraphs contain also upper-level subgraphs as nodes.
Descending the hierarchy, we pass from subgraphs that are very common in the
input graph set to subgraphs occurring in a few input graphs. An example of
SUBDUE outcome is shown in Fig. 4. Interested readers can find a description of
the approach to extract relevant subgraphs from event logs in [11]. The hierar-
chical structure of subgraphs discovered by SUBDUE becomes the input of the
next step of the methodology.
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3.2 Anomalous Subgraph Extraction

The second step aims to extract the subgraphs that do not fit the given process
model. To this end, we have developed the Subgraph Conformance Checking
(SCC) algorithm. In contrast to most of the existing conformance checking algo-
rithms, the SCC algorithm is tailored to check conformance of subgraphs corre-
sponding to portions of process executions. The core idea of the SCC algorithm
is to replay a subgraph against the given process model represented by its cov-
erability graph.

Given a subgraph s and the coverability graph R of a Petri net, the SCC
algorithm identifies all the arcs in R whose labels match with the first activity
of s. Starting from each of these edges, the algorithm checks if there exists a
sequence of edges in R whose labels match with the sequence of activities in
the subgraph. If such a sequence exists, the subgraph is marked as ‘compliant’;
otherwise, the subgraph is marked as ‘anomalous’. The algorithm is robust with
respect to the presence of invisible transitions. Edges labeled with invisible tran-
sitions are taken into account while exploring the search space, but are not used
while matching the paths with the subgraph. It is easy to observe that checking
whether a subgraph corresponds to a path in the coverability graph starting
from a given arc, is linear in the length of the subgraph.

Figure 5 shows an example of application of the SCC algorithm. Consider
subgraph s1 in Fig. 5a and (a portion of) the coverability graph corresponding
to the Petri net of Fig. 1 in Fig. 5b. The SCC algorithm first looks for arcs labeled
with the first event in s1, i.e. CFS, in the coverability graph. There is only one
arc labeled with that activity, i.e. ([p2], [p12]). The algorithm marks state [p12]
as reachable (denoted by gray) and checks whether there exists an arc outgoing
that state with label CEC, i.e. the label of the second node of s1. As the arc exists
(i.e., ([p12], [p13])), also state [p13] is marked as reachable. From [p13], however,
there is not any edge labeled with CCP, i.e. the last event of s1. Therefore, the
subgraph is marked as “anomalous”.

Note that if a process involves parallel activities, its coverability graph con-
tains one path for each activities execution ordering allowed by the process
model. SCC algorithm can hence be applied also on subgraphs involving parallel
activities.

It is worth noting that among the subgraphs mined by SUBDUE there might
occur inclusion or overlapping relationships, i.e. subgraphs can be completely or
partially included in other subgraphs. Let si = (Vi, Ei, φi) and sj = (Vj , Ej , φj)
be two subgraphs. We say that si includes sj , denoted as si →incl sj , if (i)
∀v ∈ Vj there exists v′ ∈ Vi s.t. φi(v) = φj(v′) and (ii) ∀(u, v) ∈ Ej there exists
(u′, v′) ∈ Ei s.t. φi(u) = φj(u′) and φi(v) = φj(v′). We say that si overlaps sj , if
exists a subgraph sz such that si strictly includes sz and sj strictly includes sz.

The presence of inclusion relationships affects the extraction of correlations
among deviations and, consequently, the analysis of the outcome of the approach.
In fact, subgraphs related by an inclusion relationship are highly correlated; how-
ever, this information is redundant and only introduces noise into the analysis.
Given two subgraphs si, sj such that si →incl sj , it is easy to observe that
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Fig. 5. Example of application of SCC algorithm.

sj is able to detect all process executions containing si but not the other way
around. sj is hence more general than si and thus preferable for the definition of
anomalous patterns. To capture this intuition, we introduce the notion of mini-
mal anomalous subgraphs. Given a set of subgraphs S = {s1, . . . , sn}, the set of
minimal subgraphs is Smin = {si | si ∈ S ∧ �sj ∈ Smin s.t. si →incl sj}.

For the definition of anomalous patterns, we only consider minimal sub-
graphs. Given the hierarchical structure returned by SUBDUE, we start assessing
the conformance of the root subgraphs using the SCC algorithm. If a subgraph
is marked as ‘anomalous’, the algorithm prunes all the branches involving the
descendants of the subgraph, since, although they are anomalous ‘by inheri-
tance’, none of them is minimal. Otherwise, if a subgraph fits the process model,
it is marked as ‘compliant’ and its child subgraphs are iteratively analyzed using
the SCC algorithm. The algorithm terminates when all subgraphs in the hier-
archical structure of subgraphs computed by SUBDUE are marked as either
‘complaint’ or ‘anomalous’. In the example of Fig. 5a, subgraph s3 is marked as
‘anomalous’ as it includes an anomalous subgraph (i.e., s1).

Overlapping subgraphs, on the other hand, can provide useful insights about
potential anomalous behavior. In fact, two subgraphs overlap on some activities
if there are some process executions which differ before/after those activities. By
analyzing overlapping subgraphs that frequently occur together, we can explore
some portions of these alternative execution paths. Thus, we consider subgraphs
relationships in the final step of the methodology, as explained in the following
section.

3.3 Partial Order Discovery

The final step of the approach aims to derive ordering relations among minimal
anomalous subgraphs. These ordering relations are used to generate anomalous
patterns, i.e. partially ordered subgraphs that show how apparently different
anomalous behaviors are usually correlated. First, we generate an occurrence
matrix where each cell cij represents the number of occurrence of the j-th sub-
graph in the i-th trace. We apply well-known frequent itemset algorithms [14]
to this matrix, thus deriving all the subgraphs which co-occur with a support
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above a given threshold. To determine how the subgraphs in a frequent itemset
are combined, we infer ordering relations between the elements of the itemset
pairwise. More precisely, for each pair of subgraphs si, sj belonging to the same
itemset, we define one of the following relations: (i) the sequentially relation,
denoted as si →seq sj , which states that sj occurs immediately after si, (ii) the
overlapping relation, denoted as si →ov sj , which states that si occurs before sj
and their executions overlap, (iii) the eventually relation, denoted as si →ev sj ,
which states that sj will occur after si, but an arbitrary number of other activi-
ties (at least one) occurred between the two subgraphs. To derive these relations,
we analyze the position of the events forming each subgraph of the itemset in
the log traces in which the itemset occurs. In particular, we evaluate the occur-
rence frequency of sequentially, overlapping and eventually relations by means
of Mseq, Mov and Mev matrices respectively. Each cell of a matrix represents
the number of times in which the ordering relation represented by the matrix
occurred for a given pair of subgraphs. It is worth noting that in the presence of
noisy logs we can detect unreliable relations. To deal with this issue, we consider
only ordering relations whose occurrence frequency is above a given threshold.

As an example, let consider the frequent itemset {s26, s266, s67} where
s26 = 〈CI,CI〉, s266 = 〈PL,CCP〉 and s67 = 〈CCP,CIR〉. Analyzing the posi-
tions of subgraphs in the log traces in which these subgraphs occur (see Fig. 6a
for an example of such traces), we can observe that s266 usually occurs immedi-
ately after s26 (i.e., s26 →seq s266). Moreover, we can observe that s266 overlaps
s67 (i.e., s266 →ov s67) and s67 eventually occurs after s26 (i.e., s26 →ev s67).
Figure 6b shows matrices Mseq, Mov and Mev for itemset {s26, s266, s67}. As can
be observed in the matrices, these relations are reliable as they have a high
occurrence frequency. Figure 6c shows the obtained partially ordered subgraph.

Fig. 6. Ordering relations discovery for itemset {s26, s266, s67}.

4 Experiments

We have implemented our approach as two modules of the ESub tool [10], namely
Anomalous Subgraphs Checking (implementing steps 1 and 2) and Partial Order
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Discovery (implementing step 3).2 The first module takes as input an event
log and the coverability graph of a Petri net and uses SUBDUE to generate
a hierarchical structure of subgraphs and the SCC algorithm to extract the
anomalous subgraphs. Figure 7a shows a screenshot of the module displaying
a portion of the hierarchical structure derived by SUBDUE where anomalous
subgraphs are denoted by a (red) thick border, their children by a (orange) dotted
border and compliant subgraphs by a (green) normal border. The second module
takes as input the set of frequent itemsets and the graphs generated from the log
and derives the partially ordered subgraphs. A screenshot of this module is shown
in Fig. 7b. Each edge is labeled with the type of relation it represents. Normal
lines are used for sequentially relations, bold lines for overlapping relations and
dotted lines for eventually relations.

(a) Anomalous Subgraphs Checking (b) Partial Order Discovery

Fig. 7. ESub modules for anomalous pattern extraction. (Color figure online)

To evaluate the approach we performed a number of experiments using a
synthetic event log generated by simulating the Petri net in Fig. 1. This model
represents a real-world loan application management process, which has been
defined and validated through interviews with the managers of a bank [2]. The
results discussed in this section can hence be considered, to a certain extent,
representative of the outcome that can be obtained in real-world contexts. Based
on the process model in Fig. 1, we generated 3905 traces consisting of 43673
events using CPN Tools (http://cpntools.org/).

To encompass anomalous behaviors in the generated event log, we artificially
manipulated the log by introducing noise. In particular, we introduced 20% of
noise to each generated event trace by adding or removing some events, randomly
chosen among the activities of the model. In addition, we inserted some high-level
deviations, namely swaps, repetitions and replacements. A swap occurs when
two or more activities are executed in the opposite order compared to the order
defined by the model; we swapped the execution of sequence 〈CCP〉 with the one
of 〈CIR〉 in 18.0% of the traces, and the execution of 〈GIR〉 with the execution
of 〈CFS〉 in 15.5% of the traces. A repetition means that a given (sequence of)

2 http://kdmg.dii.univpm.it/?q=content/esub.

http://cpntools.org/
http://kdmg.dii.univpm.it/?q=content/esub
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activity(ies) is repeated multiple times (without belonging to a loop); we added
two repetitions, namely the repetition of sequence 〈CI〉 and of sequence 〈CER〉
in 33.6% and 9.0% of the traces respectively. Finally, a replacement indicates
that a given (sequence of) activity(ies) is executed instead of another one; in our
experiments, sequence of activities 〈ACO〉 was replaced with sequence 〈SBO〉,
〈ACO,AL〉 with 〈PLA,BHF,GIR〉 and 〈PC,S〉 with 〈CCP,CCP〉 in 12.0%, 3.7%
and 12.0% of the traces respectively.

By doing so, we obtain an event log involving several heterogeneous anom-
alous behaviors, among which is however possible to recognize some regularities.
This reflects what we reasonable expect to find in a real-world context. Note that
this implies that we cannot expect to detect patterns with a very high support
value. However, this does not affect the validity of the approach. The importance
of a deviation is not necessarily related to its frequency. For instance, in several
domains (e.g., security), undesired behaviors have to be detected even if they
are not very frequent.

The event log was given as input to the Anomalous Subgraphs Checking
module. SUBDUE extracted 1245 subgraphs, from which 186 minimal anom-
alous subgraphs were identified using the SCC algorithm. This set of minimal
anomalous subgraphs was used to derive the frequent itemsets. For our experi-
ments, we used FP-Growth [14] with a minimum support threshold of 5%. The
outcome of the FP-Growth algorithm was passed to the Partial Order Discov-
ery module. Based on the derived itemsets and a threshold of 40%, the module
extracted ten partially ordered subgraphs. Table 1 shows the support of each pat-
tern with respect to the traces where its itemset occurs (δitem) and with respect
to the overall set of traces (δall). We can observe that ordering relations hold for
most of the occurrences of their itemsets. Moreover, most of the derived partial
orders have good support values, higher than (or anyway closed to) 5%. Note
that the support of a pattern is always lower or at most equal to the support of
its corresponding itemset. In fact, there can be some traces where the itemset
occurs, but its subgraphs do not match the ordering relations of the pattern.
This explains why po1 and po9 have a δall lower than 5%.

Table 1. Support values of the discovered partially ordered subgraphs with respect to
the traces where the itemset occurs (δitem) and with respect to all traces (δall).

Id po1 po2 po3 po4 po5 po6 po7 po8 po9 po10

δitem 85.6 96.7 99.8 97.3 96.8 100 99.6 96.4 86.4 99.5

δall 4.7 5.2 17.9 14.7 11.6 12.2 11.9 8.3 4.4 11.6

We observed that all high-level deviations that were inserted during the gen-
eration of the event log are captured by the discovered partially ordered sub-
graphs. Moreover, the support values of those patterns are coherent with the sup-
port of the corresponding deviations. Therefore, the results demonstrate that our
approach is able to detect frequent anomalous behaviors. Note that some of the
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discovered patterns encompass the combination of the inserted high-level devi-
ations with low-level deviations (i.e., inserted and skipped activities) randomly
inserted in log traces and/or with other high-level deviations, thus originating
behaviors more complex than the designed ones.

To provide a concrete example of the outcome of the approach and illustrate
its capability, next we discuss in detail some of the discovered patterns. For the
sake of space, we only focus on three of them, namely po4, po5 and po9, which
allow us to point out some interesting aspects of the approach.

Partially ordered subgraphs po4 (Fig. 8a) and po5 (Fig. 9) show a swap of
activities CFS and GIR and a replacement of sequence 〈PC,SB〉 with sequence
〈CCP,CCP〉, respectively. The support of these patterns (see Table 1) is close with
the support we set for the deviations: the support of po4 is 14.7 whereas the exe-
cution of CFS and GIR was swapped in 15.5% of the traces; the support of po5 is
11.6, whereas sequence 〈PC,SB〉 was replaced by sequence 〈CCP,CCP〉 in 12% of
the traces. The difference is due to some traces which do not fit the ordering rela-
tions of the patterns because of other inserted/deleted activities. We would like
to point out that detecting these high-level deviations is quite straightforward
by analyzing po4 and po5. On the other hand, detecting them using, for instance,
alignments requires additional efforts by the human analyst and is usually far
from trivial. For example, Fig. 8b shows the alignments returned by the ProM
plug-in PNetReplayer for the trace σ5 = 〈CI,CI,PL,GIR,CEC,CFS,CCP,RL〉 and
the net of Fig. 1, which involves the swap of po4, and Fig. 9b shows the alignments
for trace σ13 = 〈CI,CI,PL,CIR,CCP,CCW,AC,AL,FRM,CCP,CCP,DH,BH〉,
which involves the replacement exhibited by po5. Using alignments, the ana-
lyst has to relate several not synchronous moves to recognize the occurrence of
a high-level deviation. For instance, in order to derive the replacement from γ5
(Fig. 9b) the analyst has to relate the deletion of activities PC and SB with the
insertion of activities CCP and CCP. The detection of the swap in γ4 (Fig. 8b)
requires even more efforts, since requires to relate the deletion of CFS and the
insertion of GIR, occurring before CEC, with the deletion of GIR and the insertion
of CFS occurring after CEC. Clearly, this can easily lead to misleading diagnos-
tics, especially when more than one activity occur between the activities involved
by the high-level deviation or other deviations occur.

Fig. 8. Analysis of anomalous pattern po4

Partially ordered subgraph po9 (Fig. 6c) corresponds to the combination of
two high-level deviations, namely the repetition of activity CI and the swap of
activities CCP and CIR, thus originating a new, not a-priori known, pattern.
This provides an example of the capability of our approach to extract general
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Fig. 9. Analysis of anomalous pattern po5

patterns that do not necessarily reflect a-priori knowledge of deviations. On the
other hand, it also points out the need of post-processing the discovered patterns;
it is easy to see that the edge between s26 and s67 is not needed to interpret the
pattern. We plan to address this issue in future work.

5 Related Work

A number of approaches have been proposed for conformance checking. Some
approaches [7,9,22] check whether event traces satisfy a set of compliance rules.
Rozinat and van der Aalst [21] propose a token-based technique to replay event
traces over a process model and use the information obtained from remaining
and missing tokens to detect deviations. Banescu et al. [6] extend the work in
[21] to identify and classify high level deviations by analyzing the configuration
of remaining and missing tokens. However, it has been shown that token-based
techniques can provide misleading diagnostics.

Recently, alignments have been proposed as a robust approach to confor-
mance checking [1]. Alignments are able to pinpoint deviations causing non-
conformity based on a given cost function. These cost functions, however, are
usually based on human judgment and, hence, prone to imperfections, which
can ultimately lead to incorrect diagnostics. To obtain probable explanations
of nonconformity, Alizadeh et al. [4] propose an approach to compute the cost
function by analyzing historical logging data, which is extended in [5] to consider
multiple process perspectives. Alignment-based techniques rely on total order-
ing of events; thus, diagnostics obtained by these techniques can be unreliable
when timestamps of events are coarse or incorrect. Lu et al. [20] describe how
partially ordered traces can be obtained from sequential event logs and propose
an approach for computing partially ordered alignments using these partially
ordered traces. However, alignment-based approaches usually provide the diag-
nostic information in terms of low level deviations. Our work, instead, focuses on
the identification and analysis of high-level deviations. Adriansyah et al. [3] show
how alignment-based techniques can be extended to directly capture high level
deviations in alignments using (a few simple) predefined anomalous patterns.
Our approach complements the work in [3] by showing how to construct anom-
alous patterns from the analysis of historical logging data. In particular, our
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approach constructs anomalous patterns by extracting recurrent nonconforming
subprocesses from event logs.

Several approaches for subprocess extraction have been proposed in the liter-
ature. Well-known approaches for the extraction of subprocesses from sequential
traces are: [8], which detects subprocesses by identifying sequences of events
that fit a-priori defined templates; [16], which exploits a sequence pattern min-
ing algorithm to derive frequent sequences of clinical activities from clinical logs;
and [19], which introduces an approach to derive “episodes”, i.e. directed graphs
where nodes correspond to activities and edges to eventually-follow precedence
relations, which, given a pair of activities, state which one occurs later. Compared
to these approaches, the one proposed in this work does not require defining any
predefined template and extracts the subprocesses that are the most relevant
according to their description length, thus taking into account both frequency
and size in determining the relevance of each subprocess. Other approaches aim
to convert traces into directed graphs representing execution flows and, then,
apply frequent subgraph mining techniques to derive the most relevant sub-
graphs. For instance, Hwang et al. [17] generates “temporal graphs”, where two
nodes are linked only if the corresponding activities have to be executed sequen-
tially. The applicability of this approach, however, is limited to event logs stor-
ing starting and completion time of events. Greco et al. [13] proposes a FSM
algorithm that exploits knowledge about relationships among activities (e.g.,
AND/OR split) to drive subgraphs mining. Graphs are generated by replaying
traces over the process model; however, this algorithm requires a model prop-
erly representing the event log, which may not be available for many real-world
processes. In contrast, our approach for subprocess extraction does not require
neither the presence of special attributes in the event log nor a-priori models of
the process or other domain knowledge.

6 Conclusions and Future Work

In this work, we have presented a novel approach to discover complex anomalous
patterns from historical logging data, showing high-level deviations in process
executions. Main novelties consists in (i) an approach to extract anomalous
subgraphs representing raw deviations and (ii) an approach to derive partially
ordered anomalous subgraphs representing complex anomalous behaviors. Our
experiments demonstrated the capability of the approach by returning meaning-
ful patterns capturing high-level deviations that, on the other hand, would be
hard to identify using, e.g. alignment-based techniques.

Although the experiments show promising results, more efforts are required
in order to move from partially ordered anomalous subgraphs, describing basic
ordering relations, to anomalous subprocesses describing the execution flows of
deviations. First, a post-processing of the discovered patterns is needed to remove
redundant relations, as mentioned in Sect. 4. Moreover, it is desirable to derive
more complex flow constructs, e.g. loops and AND/OR relations. A possible
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direction in this regard consists in investigating the application of process dis-
covery algorithms. A further extension consists in devising (semi)automatic tech-
niques able to detect in which portions of the process anomalous subprocesses
occurred, thus simplifying the analysis of deviations. Extending the original
model with the detected subprocesses also paves the way for implementing effi-
cient strategies to detect future instances of anomalous behaviors, both in an
on-line and an off-line setting. This can be obtained by investigating how to
combine our approach with the one proposed in [3].

In future work, we plan to address these issues. Furthermore, we intend to
perform more extensive experiments on real-life event logs, exploring also other
approaches, for instance, model building approaches.
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programme under the PriCE project and by the Dutch national program COMMIT
under the THeCS project.
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Abstract. The climate changes have attracted always interest because
they may have great impact on the life on Earth and living beings. Com-
putational solutions may be useful both for the prediction of the cli-
mate changes and for their characterization, perhaps in association with
other phenomena. Due to the cyclic and seasonal nature of many climate
processes, studying their repeatability may be relevant and, in many
cases, determinant. In this paper, we investigate the task of determin-
ing changes of the weather conditions, which are periodically repeated
over time and space. We introduce the spatio-temporal patterns of peri-
odic changes and propose a computational solution to discover them.
These patterns allows us to represent spatial regions with same periodic
changes. The method works on a grid-based data representation and
relies on a time-windows analysis model to detect periodic changes in
the grid cells. Then, the cells with same changes are selected to form a
spatial region of interest. The usefulness of the method is demonstrated
on a real-world dataset collecting weather conditions.

1 Introduction

Climatology is a discipline essentially focused on the study of the weather con-
ditions and it is one of the scientific fields characterized by a large variety of
data-intensive and dynamic processes. Studying the evolution of the weather
becomes thus determinant because might support the understanding of other
processes, such as the industrialization and atmospheric changes. In this sense,
a valid contribution is represented from the application of data-driven techniques
[5], which opens to the possibility to analyze climate observations in order to
unearth empirical knowledge without demanding a-priori hypothesis, as the stan-
dard statistics method do instead. The proliferation of the technologies able to
record and store massive meteorological data has definitely confirmed the use-
fulness of the data analysis algorithms for several problems in Climatology.

One of the most scientifically and technologically challenging problems is
building and refining predictive models with changes and events of the weather
c© Springer International Publishing AG 2017
A. Appice et al. (Eds.): NFMCP 2016, LNAI 10312, pp. 198–212, 2017.
DOI: 10.1007/978-3-319-61461-8 13
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conditions. Although in data mining we can find a long list of works on event
and change detection [3], the identification of changes in climate data is challeng-
ing for several reasons. First, climate data tend to be noisy, therefore we could
have difficulty in distinguishing, with an high degree of certainty, the difference
between significant changes and spurious outliers. Second, changes that persist
over time and that cover relatively long intervals of time (e.g., days) can be orig-
inated from instantaneous deviations (e.g., rainfall extreme events which span
few hours), which we could erroneously assess as meaningless. Third, the global
models provide reliable indications for world-wide climate, while they could be
no longer appropriate capture features of the regional weather conditions, where
instead local models could be effective [17].

In Climatology, many phenomena are cyclic in nature and can exhibit repet-
itive behaviors. Likewise, changes in weather conditions can be periodic because
they can be repeated at regular intervals of time. For instance, seasonal changes
reflect the occurrence of the expected variations of the weather conditions and
can recur up to one year of distance. The periodicity becomes thus a good indi-
cator of the repeatability and meaningfulness of the changes since the variations
which regularly recur may be considered more interesting than those episodic.

This paper focuses on the analysis of time-series describing the weather con-
ditions recorded in geographically distributed locations and, in particular, intro-
duces the problem to discover spatio-temporal patterns able to relate periodic
changes of the weather conditions with the spatial regions in which the changes
occur. The geographic information of the weather conditions is used to deter-
mine the spatial component of the patterns, while the periodicity associated
with the changes denotes the temporal component of the patterns. In this work,
we propose a data mining framework which analyzes weather conditions data
partitioned over a gridded data space. It proceeds in two subsequent steps, first
detects periodic changes at the level of individual cells of the grid and then it
finds sequential patterns of the periodic changes only over the cells in which
the changes are present. The use of a technique of data partitioning is to not
under-estimate the periodicity of local changes, which instead we could experi-
ence working on (global) statistical regularities. More precisely, in the first step,
we combine a time windows-based analysis model with a frequent pattern mining
method, in order to search for periodic changes in each grid cell. Changes are
detected as significant variations of the frequency of the patterns mined from
two different time-windows of data. The rationale in using the frequency is that
it denotes regularity, therefore frequent patterns can provide empirical evidence
about changes really happened. Building time-windows allows us to summarize
the changes occurring at the level of time instants and model them at a higher
level of temporal granularity, that is, intervals of time. Not all the changes are
considered, but only those which are repeated over time-windows in several grid
cells. The second step operates on the detected periodic changes and uses a
sequential pattern mining method, in order to find changes common to different
cells. Sequential patterns allows us to find changes at a higher level of spatial
granularity based on aggregations of cells.
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The paper is organized as follows. In Sect. 2, we report necessary notions,
while the method is described in Sect. 3. An application to the real-world dataset
is described in Sect. 4. Then, we discuss the related literature (Sect. 5). Finally,
conclusions close the paper (Sect. 6).

2 Basics and Definitions

Before formally describing the proposed method, we report basic notions and
definitions necessary for the paper.

Let {t1 . . . tn} be a sequence of discrete time-points. For each time-point ti, we
have the values Ai ∈ �d of the weather parameters measured in geographically
distributed areal units. A time-window τ is a sequence of consecutive time-points
{ti, . . . , tj} (t1 ≤ ti, tj ≤ tn), which we denote as [ti; tj ]. The width w of a time-
window is the number of time-points in τ , i.e. w = j − i + 1. We assume that all
the time-windows have the same width w. Two time-windows τ and τ ′ defined
as τ = [ti; ti+w−1] and τ ′ = [ti+w; ti+2w−1] are consecutive.

Let τ = [ti; ti+w−1], τ ′ = [ti+w; ti+2w−1], τ ′′ = [tj ; tj+w−1], and τ ′′′ =
[tj+w; tj+2w−1] be time-windows, two pairs of consecutive time-windows (τ, τ ′)
and (τ ′′, τ ′′′) are δ-separated if (j +w)− (i+w) ≤ δ (δ > 0, δ ≥ w). Two pairs of
consecutive time-windows (τ, τ ′) and (τ ′′, τ ′′′) are chronologically ordered if j > i.
In the remaining of the paper, we use the notation τhk

to refer to a time-window
and the notation (τh1 , τh2) to indicate a pair of consecutive time-windows.

The following notions are crucial for this work. A pattern P is a set of pairs,
each pair is composed by a weather parameter and its value. It can have at
most d pairs, which is the number of weather parameters. We say that P occurs
at a time-point ti if all pairs of P occur at the same time-point ti. A pattern
P is characterized by a statistical parameter, namely the support (denoted as
supτhk

(P )), which denotes the relative frequency of P in the time-window τhk
. It

is computed as the number of the time-points of τhk
in which P occurs divided

by the total number of time-points of τhk
. When the support exceeds a minimum

user-defined threshold minSUP , P is frequent (FP) in the time-window τhk
.

Definition 1. Emerging Pattern (EP)
Let (τh1 , τh2) be a pair of consecutive time-windows; P be a frequent pattern

in the time-windows τh1 and τh2 ; supτh1
(P ) and supτh2

(P ) be the support of the
pattern P in τh1 and τh2 respectively, P is an emerging pattern in (τh1 , τh2) iff
supτh1

(P )

supτh2
(P ) ≥ minGR ∨ supτh2

(P )

supτh1
(P ) ≥ minGR

where, minGR (>1) is a user-defined minimum threshold.
The ratio supτh1

(P )/supτh2
(P ) (supτh2

(P )/supτh1
(P )) is denoted with

GRτh1 ,τh2
(P ) (GRτh2 ,τh1

(P )) and it is called growth-rate of P from τh1 to
τh2 (from τh2 to τh1). When GRτh1 ,τh2

(P ) exceeds minGR, the support of P
decreases from τh1 to τh2 by a factor equal to the ratio supτh1

(P )/supτh2
(P ),

while when GRτh2 ,τh1
(P ) exceeds minGR, the support of P increases by a factor

equal to supτh2
(P )/supτh1

(P ).
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The concept of emerging pattern is not novel in the literature [4]. In its
classical formulation, it refers to the values of support of a pattern discovered
on two different classes of data, while, in this work, we extend that notion to
represent the differences between the data collected in two intervals of time,
and therefore, we refer to the values of support of a pattern which has been
discovered on two time-windows.

Definition 2. Periodic Change (PC)
Let T : 〈(τi1 , τi2), . . . , (τm1 , τm2)〉 be a sequence of chronologically ordered

pairs of time-windows; P be an emerging pattern between the time-windows τh1

and τh2 ,∀h ∈ {i, . . . , m}; 〈GRτi1 ,τi2
, . . . , GRτm1 ,τm2

〉 be the values of growth-
rate of P in the pairs 〈(τi1 , τi2), . . . , (τm1 , τm2)〉 respectively; ΘP : � → Ψ be
a function which maps GRτh1 ,τh2

(P ) to a nominal value ψτh1 ,τh2
∈ Ψ,∀h ∈

{i, . . . , m}, P is a periodic change iff:

1. |T | ≥ minREP
2. (τh1 , τh2) and (τk1 , τk2) are δ-separated ∀h ∈ {i, . . . , m − 1}, k= h+1 and

there is no pair (τl1 , τl2), h < l, s.t. (τh1 , τh2) and (τl1 , τl2) are δ-separated
3. ψ = ψτi1 ,τi2

= . . . = ψτm1 ,τm2

where, minREP is a minimum user-defined threshold. The function Θ is used to
handle the numerical information associated to the growth-rate and allows us to
crisply distinguish the magnitude of different growth-rate values. A PC is a fre-
quent pattern whose support increases (decreases) at least minREP times with
an order of magnitude greater than minGR. Each change (increase/decrease)
occurs within δ time-points and it is represented by the nominal value ψ ∈ Ψ .
We denote a periodic change PC with the notation 〈P, T, ψ〉. An example of
periodic change is reported here. Consider the pattern

P : air temperature = [301; 307], pressure = [95; 100], relative humidity = [60; 70]

where supapr 2011(P ) = supapr 2012(P ) = supapr 2013(P ) = 0.25, supmay 2011(P )
= supmay 2012(P ) = supmay 2013(P ) = 0.5, supnov 2011(P ) = supnov 2012(P ) =
supnov 2013(P ) = 0.5, supdec 2011(P ) = supdec 2012(P ) = supdec 2013(P ) = 0.1.
Here, the values of the support of the pattern P increase through the pairs of the
windows [apr 2011,may 2011], [apr 2012,may 2012] and [apr 2013,may 2013]
respectively, indeed the values of growth-rate GRapr 2011,may 2011(P ),
GRapr 2012,may 2012(P ), GRapr 2013,may 2013(P ) are equal to 2 (0.5/0.25). While,
the values of the support of the pattern P decrease through the pairs of
the windows [nov 2011, dec 2011], [nov 2012, dec 2012] and [nov 2013, dec 2013]
and the values of growth-rate GRdec 2011,nov 2011(P ), GRdec 2012,nov 2012(P ),
GRdec 2013,nov 2013(P ) are equal to 5. By supposing minGR = 1.5, the pat-
tern P is considered emerging over the windows [apr 2011,may 2011], [nov 2011,
dec 2011], [apr 2012,may 2012], [nov 2012, dec 2012], [apr 2013,may 2013] and
[nov 2013, dec 2013]. However, in the windows [nov 2011, dec 2011], [nov 2012,
dec 2012] and [apr 2013,may 2013] its variation of support is different from the
variation detected in the windows [apr 2011,may 2011], [apr 2012,may 2012],
[apr 2013,may 2013] both in terms of quantity (5 against 2) and in terms of growth
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(decrease against increase). This means that we could build different periodic
changes from P . Indeed, by supposing a function Θ which maps the values of
growth-rate 2 and 5 to the nominal values weak change and strong change, the
values of minREP and δ equal 2 and 365 days respectively, we can generate two
PCs having the same conjunction of weather parameters.

Definition 3. Spatio-temporal Periodic Change (SPC)
Let T : 〈(τi1 , τi2), . . . , (τu1 , τu2)〉 be a sequence of chronologically ordered pairs

of time-windows, let Π : {PC1 : 〈P, T1, ψ〉, . . . , PCv : 〈P, Tv, ψ〉} be a set of v
periodic changes detected in v different geographic areal units, P is a spatio-
temporal periodic change iff

1. |Π| ≥ minUNITS
2. ∀h ∈ {i, . . . , u},∀k = 1, . . . , v(τh1 , τh2) ∈ Tk

3. ∀h ∈ {i, . . . , u − 1}(τh1 , τh2) and (τk1 , τk2) are δ-separated, k = h + 1

Intuitively, a SPC represents a periodic variation (quantified by ψ) of the
frequency of weather parameters conjunction P . Such a variation is observed in
v different geographic areal units.

3 The Method

In this section we propose a method to mine SPCs from the measurements
of the weather parameters A1, ...Ad recorded by sensors equally displaced over
a geographic area on the sequence of time-points {t1 . . . tn}. The method is
structured in two steps performed consecutively (see Fig. 1). Initially, we build
a gridded data space over the input geographic area in order to define the areal
units as cells of equal size {c11, . . . , cα,β}. This means that the cells comprise
the same number of sensors. The first step works on the values of the weather
parameters of each cell crs and mines PCs in accordance with the Definition 2.
The second step inputs the PCs detected on all the cells, it selects the PCs which
are present in at least minUNITS cells and then mines SPCs in accordance with
the Definition 3. The details of these two steps are reported in the following.

3.1 Detection of Periodic Changes

To detect PCs, we adapt the algorithm proposed in [11] originally designed for
data represented in relational logic, to the case of multi-dimensional time-series.
In particular, it works on the succession 〈(τ11 , τ12), . . . , (τh1 , τh2), . . . , (τz1 , τz2)〉
of pairs of time-windows obtained from {t1, . . . , tn} (see Sect. 2). Each time-
window τuv

(except the first and last one) is present in two consecutive pairs, so,
given two pairs (τh1 , τh2) and (τ(h+1)1 , τ(h+1)2), we have that τuv

= τh2 = τ(h+1)1 .
This is done to capture the changes of support of the patterns from τh1 to τuv

and from τuv
to τ(h+1)2 . The algorithm performs three main procedures.
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1. Discovery of frequent patterns for each time-window. Frequent patterns
are discovered from each time-window with the technique of evaluation-
generation of candidate patterns used in [11], which exploits the monotonicity
property of the support. Obviously, the decision of using that specific tech-
nique does not exclude the possibility of considering alternative solutions
based on evaluation-generation of patterns, which do not imply modifications
neither to our proposal nor to the set of frequent patterns resulting from the
current procedure.

2. Extraction of the EPs from the frequent patterns discovered on τh1 against
the frequent patterns discovered from τh2 in accordance with the Definition 1.
To efficiently perform this operation, we can act on the support of the pat-
terns. Indeed, we avoid the evaluation of a pattern P2, which is super-set
of a pattern P1 (P1 ⊂ P2), if P1 is frequent in the time-window τh1 (τh2)
but it is not frequent in the time-window τh2 (τh1). Instead, we cannot apply
no optimization on the growth-rate because, unfortunately, the monotonic-
ity property does not hold. In fact, given two frequent patterns P1 and P2
with P1 ⊂ P2, if P1 is not emerging, namely GRτh1 ,τh2

(P1) < minGR
(GRτh2 ,τh1

(P1) < minGR), then the pattern P2 may or may not be emerg-
ing, namely its growth-rate could exceed the threshold minGR.

The final EPs are stored in a pattern base, which hence contains the fre-
quent patterns that satisfy the constraint set by minGR on at least one pair
of time-windows. Each EP is associated with two lists, named as TWlist
and GRlist. TWlist is used to store the pairs of time-windows in which the
growth-rate of the pattern exceeds minGR, while GRlist is used to store the
corresponding values of growth-rate. The technical details can be found in
the paper [11].

3. Detection of PCs from the EPs stored in the pattern base. To implement the
function ΘP (Definition 2) we resort to an equal-width discretization tech-
nique, which is able to return a set of ranges used here as nominal values Ψ .
The discretization technique is applied to the set of values of the lists GRlist
of all the stored EPs. Thus, we can map a value of growth-rate to the range
in which the value falls in. The choice of the equal-width discretization allows
us to take the different magnitude orders into account and uniformly map
the growth-rate values into different ranges, without making the distribution
of the values unbalanced.

The PCs are built with a procedure of generation-evaluation of candidates.
In particular, we work on the EPs one at a time by generating as many can-
didates as the nominal values associated with the growth-rate of that EP. A
PC is built incrementally by examining the pairs of time-windows of TWlist
in chronological order and joining those pairs that have the same nominal
value ψ on the condition that they are δ-separated.

In order to clarify how the detection of PCs works, we report an explana-
tory example of generation of PCs from one EP. Consider the time-points as
years, Ψ = {ψ′, ψ′′}, minREP = 3, δ = 13 and the lists TWlist and GRlist
built as follows (the nominal value has the same position in GRlist of the
corresponding pair of time-windows in TWlist):
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TWlist : 〈([1970; 1972], [1973; 1975]) , ([1976; 1978], [1979; 1981]) , ([1982; 1984], [1985, 1987]) ,

([1988; 1990], [1991; 1993]) , ([1994; 1996], [1997; 1999]) , ([2010; 2012], [2013; 2015])〉
GRlist : ψ

′
, ψ

′
, ψ

′′
, ψ

′
, ψ

′′
, ψ

′〉

By scanning the list TWlist, we can initialize the sequence T of a can-
didate PC’ by using the pairs ([1970;1972], [1973;1975]) and ([1976;1978],
[1979;1981]) since they are δ-separated (1979–1973 < δ) and they have the
same nominal value ψ′. The pair ([1982;1984], [1985;1987]) instead refers
to a different nominal value (ψ′′) and therefore it cannot be inserted into
T of PC’. We use it to initialize the sequence T of a new candidate PC”,
which thus will include the time-windows referred to ψ′′. Subsequently, the
pair ([1988;1990], [1991;1993]) is inserted into T of PC’ since its distance
from the latest pair is less than δ (1991–1979 < δ). Then, T of PC” is
updated with ([1994;1996], [1997;1999]) since 1997–1985 is less than δ, while
the pair ([2010;2012], [2013;2015]) cannot be inserted into T because the
distance between 2013 and 1997 is greater than δ. Thus, we use the pair
([2010;2012], [2013;2015]) to initialize the sequence T of a new candidate
PC”’. The sequence T of PC’ cannot be further updated, but, since its size
exceeds minREP , we consider the candidate PC’ as valid periodic change.
Finally, the candidate PC” cannot be considered as valid since its size is less
than minREP . The candidate PC”’ is not even considered since its sequence
T has less than minREP elements.

Fig. 1. The block-diagram of the two-step method for mining spatio-temporal patterns
of periodic changes.
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3.2 Mining Spatio-Temporal Periodic Changes

As result of the first step, we have a set of PCs for each cell. A preliminary
operation we perform is the removal of redundant PCs. Indeed, the invalidity of
the property of monotonicity of the growth-rate and the procedure of detection
of PCs do not allow us to exclude the presence of redundancies, that is, PCs
whose information is expressed also by other PCs. For instance, given two PCs,
PC’: 〈P ′, T ′, ψ〉 and PC”: 〈P ′′, T ′′, ψ〉, P ′ is redundant if (i) the conjunction of
weather parameters of P ′′ includes the conjunction of weather parameters of
P ′ (P ′ ⊂ P ′′); (ii) the pairs of time-windows of PC” comprise those of PC’
(T ′ ⊂ T ′′); (iii) they have the same nominal value ψ.

After having removed the redundant PCs, to find SPCs we should act on the
sequences T . Different alternatives can be considered, which we discuss briefly
in the following. Using a grouping/clustering algorithm could turn out to be
inapplicable because the lengths of T can be different. This is also the reason for
which we cannot adopt algorithms for the generation of frequent itemsets. The
distance-based techniques, for instance those implementing the dynamic-time-
warping distance, could be ineffective because, although able to handle sequences
of different lengths, they return groups of sequences with similar/close time-
windows, whilst we are interested in obtaining sequences with identical time-
windows. Our proposal is investigating this problem with a sequence mining
approach, which naturally handles sequences of different lengths and takes the
chronological order of the time-windows into account [14]. Here, the input data of
the sequence mining problem is the set of the sequences T of one PC in common
to several cells, for instance {PC11, . . . , PCrs} in Fig. 1. So, we take the set of
the sequences T associated with a specific emerging pattern P ′ having a specific
nominal value ψ′. The output is the complete set of SPCs in form of sequential
patterns whose elements are pairs of time-windows. By considering that there
are different PCs, the algorithm of sequence mining is applied to one collection
of sets of sequences, whose cardinality is equal to the total number of PCs. Not
all the PCs are used for the sequence mining algorithm but only those found in
at least minUNITS cells.

Here, we could experience the problem of redundant patterns, so we decide to
use an algorithm able to mine closed sequential patterns. A sequential pattern
S′ is closed if there exists no sequential pattern S′′ such that S′ ⊂ S′′ and
S′′ occurs in the same sequences of S′. The use of closed sequential patterns
allows us to additionally maximize both the number of cells in which the change
occurs and number of repetitions of the change in each cell. We exploit the
algorithm CloSpan [18], which implements a candidate maintenance-and-test
approach. It first generates a set of closed sequence candidates, which is stored
in a hash-based tree structure and then performs a post-pruning operation on
that set. The post-pruning operation exploits search space techniques. Obviously,
the decision of using the algorithm CloSpan does not exclude the possibility of
considering alternative solutions. Indeed, other algorithms of closed sequential
patterns mining do not imply modifications to the method, considering that our
purpose here is the generation of the minimal set of frequent sequences of pairs
of the windows for each periodic change.
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Finally, not all the closed sequential patterns are considered but only those
that meet two conditions: (i) the pairs of time-windows are δ-separated and
(ii) the grid cells associated to the patterns are adjacent. These cells denote
together the spatial region in which a periodic change occurs.

4 Experiments

We applied the proposed method to real-world climate data generated from
the NCEP/NCAR Reanalysis project and available on the data bank NOAA
[15]. The climate data were recorded every day from January 1997 to Decem-
ber 1999 by 697 sensors uniformly distributed over a grid of 41× 17 points (41
sensors by longitude, 17 sensors by latitude). So, totally we have 1094 daily
measurements (1094 time-points). The distribution of the sensors delimits a
specific geographic area localized between Atlantic Ocean and Indian Ocean and
covers almost 36,000,000 km2. The weather parameters are “Air temperature”,
“Pressure”, “Relative humidity”, “Eastward Wind”, “Northward Wind” and
“Precipitable Water”.

Experimental Setup. We pre-processed the time-series by using an equal-
frequency discretization technique, which guarantees a uniform distribution
on the five (discretized) ranges of the same parameter when generating pat-
terns with the ranges of different parameters. In particular, for each parame-
ter, we considered 5 ranges. To implement the function ΘP , we applied an
equal-width discretization technique to the values of the growth-rate exper-
imentally obtained, which fall in the interval [1.2, 5]. The number of the
ranges generated is 6, namely {[1.5, 2), [2, 2.5), [2.5, 3), [3, 3.5), [3.5, 4), [4, 4.5)},
to which we manually assign the nominal values very weak change, weak
change,middle weak change, middle strong change, strong change, very st-
rong change. So, the function ΘP maps values from the interval [1.2, 5] to the set
{very weak change, weak change,middle weak change, middle strong chan-
ge, strong change, very strong change}.

We built three different configurations of the grid from the geographic area. In
each configuration, the grid cells cover the same number of sensors and therefore
have the same size. Specifically, the distribution of the sensors in each cell is
10× 8, 5× 8, 8× 4, respectively, so the three configurations have 8 cells, 16 cells,
20 cells. Experiments are performed by tuning minGR, δ and minREP . The
value of minimum support for the step of PCs detection is fixed to 0.1, while the
value of minimum support for the step of SPCs mining is fixed to 0.5 in order to
find patterns which cover at least the half of the minimum number of cells fixed
by minUNITS. The value of minUNITS equals the half of the total number
of cells for each grid configuration, that is, 4, 8, 10 respectively. The value of the
width w of the windows is 30 (days).

Results. We collected three kinds of quantitative results. Specifically, Table 1
illustrates the values of PCs averaged by the number of cells and the total number
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of SPCs. Table 2 reports the evaluation of the SPCs in form of average portion
of cells in which the final SPCs occur. More precisely, the evaluation considers
the number of cells covered by the SPCs divided by the minimum number of
requested cells (minUNITS) and has values in [0;1], where 1 refers the best
coverage and indicates that the SPCs cover all the cells provided by minUNITS.
In the following, we discuss the influence of the input thresholds minGR, δ and
minREP on these results.

Discussion. In the boxes (a), (b) and (c) of Table 1, we report the results
obtained with the three grid configurations. We see that the smaller the area
of the cells the lower the number of PCs and SPCs, meaning that the method
is able to capture a quite expected behavior, that is, the spatial regions with
greater extent show there higher variability of the weather conditions compared
with the smaller regions. As to the influence of minGR, we observe that there
not are PCs and SPCs when it is higher than 6. This indicates that there is no
conjunction of weather parameters whose frequency increases or decreases by an
order of magnitude higher of 6.

By increasing only the threshold δ, we have greater sets of PCs. Indeed, at
higher values of δ the method detects both the changes which are replicated
more frequently (that is, at δ = 60 days) and the changes which are replicated
less frequently, that is, with distant repetitions (δ = 365). Consequently, the sets
of the PCs (which are the input of the step of SPCs mining) are greater and this
implies the discovery of greater sets of SPCs.

By increasing only the threshold minREP , we obtain smaller sets of PCs. In
fact, when setting higher values of minREP , we require climate changes with a
relatively high number of repetitions, which is a requirement that only the PCs
with longer sequences of T can satisfy. Consequently, the number of PCs that
feeds the second step (SPCs mining) is lower and the set of SPCs is smaller but it
is composed by the longer SPCs since generated with longer PCs. This is evident
whether comparing the tables in the box (a) against those in the boxes (b) and
(c). A concrete example is when minREP is 5 (w = 90 days). In that case, we
search changes repeated at a distance of even 5 semesters, that is, almost the
whole dataset (6 semester long).

Table 2 reports a quantitative evaluation of the SPCs. We see that the better
coverage is almost three-quarters of the requested cells and it is reached at the
lowest values of minGR and minREP and highest value of δ. By considering only
minGR, we observe that the better result is obtained at minGR = 1.5, which
corresponds to SPCs with “very weak changes”. Instead, when minGR > 4,
we have SPCs with “very strong changes” but replicated in a smaller set of
cells. By considering only δ, we note that there is a discrete coverage of the
cells at relatively low values δ. This can be explained by the lower number of
SPCs. Finally, by increasing only the threshold minREP , the coverage decreases
because of the combined effect of the number of the SPCs and their length. This
is not surprising because weather changes with less repetitions occur in larger
spatial regions, while those with more repetitions are present in smaller regions.
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Table 1. Results obtained by tuning a parameter at time on three grid configura-
tions, that is, 8 cells (a), 16 cells (b) and 20 cells (c). When tuning minGR, δ is 365
and minREP is 3. When tuning δ, minGR is 2 and minREP is 3. When tuning
minREP, minGR is 2 and δ is 365. Each slot of the tables reports the average values
of PCs and the total number of SPCs. The average values of PCs are computed on the
number of the cells.

minGR
1.5 2 4 6
102–47 71–32 26–17 0-0

δ
60 90 120 180 365
9–2 20–12 21–12 58–17 71–32

minREP
3 4 5 6
71–32 29–12 17–3 4–0

(a)
minGR

1.5 2 4 6
54–2 32–6 16–4 0–0

δ
60 90 120 180 365
2–0 2–0 9–2 10–2 32–6

minREP
3 4 5 6
32–6 14–3 3–0 0–0

(b)
minGR

1.5 2 4 6
42–11 27–7 9–0 0–0

δ
60 90 120 180 365
2–0 2–0 5–3 11–4 27–7

minREP
3 4 5 6
27–7 19–6 9–0 0–0

(c)

Table 2. A quantitative evaluation of the SPCs in terms of average portion of distinct
cells covered by the final SPCs.

minGR
1.2 2 4 6
0.72 0.71 0.52 –

δ
60 90 120 180 365
0.55 0.53 0.59 0.66 0.71

minREP
3 4 5 6
0.71 0.56 0.51 –

Interpretation of the Spatio-Temporal Patterns. Here we present some
examples of SPCs mined from the real-word climate data and report the pairs of
windows over which they are repeated and the modelled change. The grid cells
are graphically drawn on the geographic map for ease of the interpretation.

For instance, the following SPC has been mined with minGR = 2, δ = 365,
minREP = 3

SPC1 : [P : air temperature = [301.5; 307.2], pressure = [96, 99; 100],

relative humidity = [82.75; 89.75], precipitable water = [0.46; 10.89];

T : 〈([june 1997, july 1997], [may 1998, june 1998]), ([may 1999, june 1999])〉;
Ψ = middle weak change]

SPC1 represents a change of frequency denoted as middle weak change,
which corresponds to the range [2.5;3]. This variation recurs three times,
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specifically over the pairs of windows 〈([june 1997, july 1997], [may 1998, june
1998]), ([may 1999, june 1999])〉 and it is replicated on the five cells drawn
Fig. 2a. Intuitively, we see that such a change recurs with a periodicity of at
most 12 months and covers the land of the geographic area under examination.

Another SPC the method discovered with minGR = 2, δ = 365, minREP =
3 is the following

SPC2 : [P : air temperature = [301.5; 307.2], pressure = [96, 99; 100],

relative humidity = [82.75; 89.75];

T : 〈([june 1997, july 1997], [may 1998, june 1998]), ([may 1999, june 1999])〉;
Ψ = middle strong change]

It exhibits a frequency variation included in the range [3;3.5) (middle strong
change) over the pairs of windows T : 〈([june 1997, july 1997], [may 1998,
june 1998]), ([may 1999, june 1999])〉 and on the five cells drawn in dashed in
Fig. 2b. We see that SPC2 has a conjunction of weather parameters, which is a
subset of SPC1, additionally, it appears in the same sequence and same spatial
region of SPC1, but it denotes a stronger change. This means that the support
of SPC2 is higher than the support of SPC1 either in the windows june 1997,
may 1998, may 1999 or in the windows july 1997, june 1998, june 1999. This
is explained with the monotonicity property of the support.

(a)

(b)

Fig. 2. Visualization of the grid obtained by collecting 5 × 8 (a) and 8 × 4 (b) sensors
per cell. The spatio-temporal periodic changes SPC1 and SPC2 occur in the dashed
cells of the grid (a). The spatio-temporal periodic changes SPC2 occurs also in the
dashed cells of the grid (b).
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The same periodic change represented by SPC2 has been mined with
minGR = 2, δ = 365, minREP = 3 by using the grid configuration with 20
cells (Fig. 2b). In this case, it has the same pairs of windows T that had within
the grid at 16 cells and clearly covers a different subset of cells. We see that
the spatial region of SPC2 in the first grid (Fig. 2a) greatly overlaps the spatial
region of SPC2 in the second grid (Fig. 2b).

5 Related Work

The analysis of climate data has always attracted interest by different disciplines
and the study of the dynamics is considered particularly relevant for the effects
on the Earth. Günnemann et al. [6] work on the hypothesis that the changes
can regard subspaces of the descriptive attributes. Then, they describe a clus-
tering technique based on the similarity which tracks the changes of subspaces
in time-variable climate data and associates a type of climate behaviour with
each cluster. Kleynhans et al. [8] propose a method to detect and evaluate land
cover change by examining at each point in time for a specific pixel neighborhood
the spatial covariance of a hyper-temporal time series. McGuire et al. [13] intro-
duce the problem of mining moving dynamic regions. Their solution is based
on spatial auto-correlation and finds dynamic spatial regions across time peri-
ods and dynamic time periods over space. Finally, moving dynamic regions are
identified by determining the spatio-temporal connectivity, extent, and trajec-
tory for groups of locally dynamic spatial locations whose position has shifted
from one time period to the next. Lian and McGuire [9] propose an algorithm
to detect high change regions based on quadtree-based index and classify het-
erogeneous and homogeneous change. Finally, spatio-temporal changes are ana-
lyzed at long time scales to find high change persistent regions and high change
dynamic regions. In [1], the authors investigate a problem of change analysis with
a descriptive method aiming at summarizing evolving data streams in spatial
domains. They propose a clustering-based technique to detect groups of geo-
referenced data which vary according to a similar trend, which is determined
over time-windows.

The periodicity has been often seen as a disturbance effect to be removed from
the climate data because makes the applicability of the classical methods unfea-
sible. Tan et al. [16] present a comprehensive study based on classical pattern
discovery algorithms to find spatio-temporal patterns from spatial zones over
time. Preliminarily, seasonal variation is removed from data with data transfor-
mation techniques, like discrete Fourier transform. Patterns denote regularities
within individual zones, among different zones, within the same time-interval or
along a series of time-intervals. The study presented in [10] focused on the peri-
odic variation of phenotype data and applied the solution to seasonal diseases.
However, as our knowledge, very few attempts have been done to investigate
the periodicity of the change over space and no attempt focused on the use of
patterns. Boriah et al. [2] proposed a recursive merging algorithm that exploited
the seasonality to distinguish between locations that experienced a land cover
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change and locations that did not. However, it does provide no information on
the change and on the spatial and temporal components associated to it. In [12]
the authors investigated the effect of the periodicity in form of temporal auto-
correlation for regression problems on time-stamped networks. Spatio-temporal
patterns are the main subject of study in trajectory mining. In [7] the authors
propose unifying incremental approaches to automatically extract different kinds
of spatio-temporal patterns by applying frequent closed item-set mining tech-
niques.

6 Conclusions

The research presented in this paper has two main contributions. First, we extend
a previous method, in order to identify different occurrences of the same periodic
changing behavior. Second, we explore the possibility to identify periodic chang-
ing behaviors in Climatology, which is typically characterized by temporal and
spatial component. We have introduced the notion of spatial-temporal pattern
of periodic changes to denote the spatial extent of variations repeated on the
temporal axis. The proposed method relies on the frequent pattern mining frame-
work, which enables us to (i) capture the changes in terms of variations of the
frequency, (ii) estimate the regularity over time of these changes, and (iii) iden-
tify contiguous areal units in which the change can be tracked. The application
to a real dataset highlights the viability and usefulness of the proposed method
to a real-world problem. We performed experiments to test the sensibility of the
method with respect to input thresholds. We plan to explore different future
directions: (i) automatic determination of the input parameters, (ii) qualitative
evaluation the discovered patterns against ground-truth on weather changes (iii)
study of the usefulness of the patterns for predictive problems.
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Abstract. In this paper we investigate the problem of user authenti-
cation based on keystroke timing pattern. We propose a simple, robust
and non parameterized nearest neighbor regression based feature rank-
ing algorithm for anomaly detection. Our approach successfully handle
drawbacks like outlier detection, scale variation and prevents overfitting.
Apart from using existing keystroke timing features from the dataset like
dwell time and flight time, other features namely bigram time and inver-
sion ratio time are engineered as well. The efficiency and effectiveness of
our method is demonstrated through extensive comparisons with other
state-of-the-art techniques using CMU keystroke dynamics benchmark
dataset and has shown great results in terms of average equal error rate
(EER) than other proposed techniques. We achieved an average equal
error rate of 0.051 for the user authentication task.

Keywords: Anomaly detection · Feature ranking · Nearest neighbor ·
Regression · Prediction · Security

1 Introduction

In this era where everyone wants secure, faster, reliable and easy to use means
of communication, there are many instances where user information such as per-
sonal details and passwords get compromised thus posing a threat to system
security. In order to tackle the challenges posed on the system security biomet-
rics [8] prove to be a vital asset. Biometric systems are divided into two classes
namely physiology based ones and the ones based on behavior. Physiology based
approach allows authentication via use of retina, voice and fingerprint touch. In
contrast, behavior based approach includes keystroke dynamics on keyboard or
touch screens and mouse click patterns.

In this paper we propose a learning model to deal with keystroke dynamics – a
behavior based unique timing patterns in an individuals typing rhythm which is
used as a protective measure. These rhythms and timing patterns of tapping
are idiosyncratic [1] the same way as handwriting or signatures are, due to
their similar governing neurophysiological mechanisms. Back in the 19th century,
telegraph operators could recognize each other based on ones specific tapping
c© Springer International Publishing AG 2017
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style [15]. Based on the analysis of the keystroke timing patterns, it is possible to
differentiate between actual user and an intruder. By keystroke dynamics we refer
to any feature related to the keys that a user presses such as key down time, key
up time, flight time etc. In this paper, we concentrate on classifying users based
on static text such as user password. The mechanism of keystroke dynamics can
be integrated easily into existing computer systems as it does not require any
additional hardware like sensors thus making it a cost effective and user friendly
technique for authenticating users with high accuracy. It is appropriate to use
keystroke dynamics for user authentication as studies [21,22] have shown that
users have unique typing patterns and style. Moreover [21,22] has proven some
interesting results in their research work as well. First, [21,22] proved is that the
users present significantly dissimilar typing patterns. Second they have shown
details about the relationship between users occurrence of sequence of events and
their typing style and ability. Then [21,22] explained sequence of key up and key
down events on the actual set of keys. Then [21,22] have also shown that there is
no correlation between users typing skills and the sequence of events. Hence all
these factors make it difficult for intruders to match with the actual users typing
patterns. Keystroke dynamics is concerned with users timing details of typing
data and hence various features could be generated from these timing patterns.
In this paper we are using timing features only on static text.

The rest of the paper is organized as follows. In Sect. 2 we discuss related
work and our contribution. In Sect. 3 we discuss the details of how manual fea-
tures are engineered from the dataset and in Sect. 4 we discuss the concept of
optimal fitting line. In Sect. 5 we present our proposed algorithm for feature
ranking which is divided into two sub sections where first subsection discusses
proposed approach on how feature ranking is done using nearest neighbor regres-
sion and second subsection discusses the neural network we used on the ranked
or weighted feature space for anomaly detection. In Sect. 6 we experimentally
evaluate our algorithm and show the results. Finally, we conclude our study and
identify future work in Sect. 7.

2 Related Work

Classifying users based on keystroke timing patterns has been in limelight
when [6] first investigated whether users could be distinguished by the way they
type on keyboard. Researchers have been studying the user typing patterns and
behavior for identification. Then [7] investigated the possibility of using key-
stroke timings as to whether typists could be identified by analyzing keystroke
times as they type long passages of text. Later [17] extracted keystroke features
using the mean and variance of digraphs and trigraphs. A detailed survey [18]
on the keystroke dynamics literature using the Euclidean distance metric with
Bayesian like classifiers. Initially [3] and later [9] proposed to use the relative
order of duration times for different n-graphs to extract keystroke features that
was found to be more robust to the intra-class variations than absolute timing.
Also [9] published great results for text-free keystroke dynamics identification
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where they merge relative and absolute timing information on features. Then [23]
proposed a new distance metric by combining Mahalanobis and Manhattan dis-
tance metrics. Many machine learning techniques have been proposed as well
for keystroke dynamics as an authentication system. Keystroke dynamics can
be applied with variety of machine learning algorithms like Decision Trees, Sup-
port Vector Machines, Neural Networks, Nearest Neighbor Algorithms [5] and
Ensemble Algorithms [19] among others.

One problem faced by researchers working on these type of problems is that
majority of the researchers are preparing their own dataset by collecting data
via different techniques and the performance criteria is not uniform as well
hence comparison on similar grounds among the proposed algorithms becomes
a difficult task. To address this issue, keystroke dynamics benchmark dataset
is publicly provided with performance values of popular keystroke dynamics
algorithms [12] to provide a standard universal experimental platform. They
collected and published a keystroke dynamics benchmark dataset containing 51
subjects with 400 keystroke timing patterns collected for each subject. Besides
this they also evaluated fourteen available keystroke dynamics algorithms on
this dataset, including Neural Networks, KNNs, Outlier Elimination, SVMs etc.
Various distance metrics including Euclidean distance, Manhattan distance and
Mahalanobis distance were used. This keystroke timing pattern dataset along
with the evaluation criteria and performance values stated provides a benchmark
to compare the progresses of new proposed keystroke timing pattern algorithms
on same grounds.

2.1 Our Contribution

The performance study of the fourteen existing keystroke dynamics algorithms
implemented by [12] indicated that the top performers are the classifiers using
scaled Manhattan distance and the nearest neighbor classifier. In this paper we
present a new nearest neighbor regression based feature ranking algorithm for
anomaly detection that assigns weight to the feature vector.

Nowadays neural network based models are frequently used in the field of
computer vision, speech signal processing, text representation have now been
adopted in the fields of security as well. These neural network based techniques
have multiple advantages over previous approaches both in task specific perfor-
mance and scalability. Motivated by the superior results obtained by the neural
network models we decided to use it as a classifier for anomaly detection. We
used a simple 3 layer neural network classifier for anomaly detection by giving
the weighted feature space generated by our model as input to neural network.
Our proposed approach has the following desirable features:

– Parameterless: We first design our nearest neighbor based regression algo-
rithm and then show how the parameter can be automatically set, thereby
resulting in a parameterless algorithm. This removes the burden from the user
of having to set parameter values – a process that typically involves repeated
trial-and-error for every application domain and dataset.
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– Accurate: Our experimental study in Sect. 6 shows that our algorithm pro-
vides more accurate estimates than its competitors. We compare our approach
with 14 other algorithm using the same evaluation criteria for objective com-
parison.

– Robust/Outlier Resilient: Another problem with the statistical
approaches is outlier sensitivity. Outliers (extreme cases) can seriously bias
the results by pulling or pushing the regression curve in a particular direc-
tion, leading to biased regression coefficients. Often, excluding just a single
extreme case can yield a completely different set. The output of our algorithm
for a particular input record is dependent only on its nearest neighbors hence
insensitive to far-away outliers.

– Simple: The design of our algorithm is simple, as it is based on the nearest
neighbor regression. This makes it easy to implement, maintain, embed and
modify as the situation demands.

Apart from our proposed algorithm we have engineered two new features namely
Bigram time and Inversion Ratio time as discussed in Sect. 3.

3 Feature Engineering

What are good timing features that classify a user correctly? This is still an open
research problem. Though keystroke up, keystroke down and latency timing are
the commonly used features, in this paper we have generated two new features
from the given dataset besides the existing features. The dataset [12] provides
three types of timing information namely the hold time, key down-key down
time and key up-key down time. Besides these three existing features, two new
features namely Bigram time and Inversion ratio time are engineered. Following
are the details of five categories of timing features which is used to generate 51
features using keystroke timing dataset [12]. Figure 1 illustrates various timing
features where up arrow indicates key press and down arrow indicates key release.

– Hold Time also known as dwell time, is the duration of time for which the
key is held down i.e. the amount of time between pressing and releasing a
single key. In Fig. 1, Hi represents the hold time.

– Down-Down Time key down key down time is the time from when key1
was pressed to when key2 was pressed. In Fig. 1, the times DDi depicts the
down time.

– Up-Down Time key up key down time is the time from when key1 was
released to when key2 was pressed. This time can be negative as well. In
Fig. 1, the times UDi depicts the up down time.

– Bigram Time is the combined time taken by two adjacent keystrokes i.e.
the time from pressing down of key1 to releasing to key2.

– Inversion Ratio Time it is the timing ratio of hold time of key1 and key2
where key1 and key2 are the two continuous keystrokes. In Fig. 1, Hi+1/Hi is
the inversion ratio time.
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Fig. 1. Illustration of generated keystroke timing features where A, B, C, D are the keys

4 Optimal Fitting Line

Regression algorithms are used for predicting (time series data, forecasting),
testing hypothesis, investigating relationship between variables etc. Here in this
section we discuss how the optimal fitting line attempts to predict the relation-
ship between one variable from one or more other variables by fitting a linear
equation to observed data.

In this paper we assume that to construct the line of best fit, with increase
or decrease in each independent variable value the dependent variable changes
smoothly. Thus this helps us in achieving almost linear relationship between
dependent and independent variables thus allowing us to optimally fit a line onto
the points in a small neighborhood. The line which minimizes the mean squared
error is referred to as optimal fitting line. A low value of error indicates that the
line is optimally fitted to the neighborhood and has captured the linearity of the
locality. Let the k points have values {(x1, y1), ...., (xk, yk)} in dimension x and y
and let the variable to be predicted be y. Let the equation of line be of the form
y = ax + b. Hence, dependent variable will take the value axi + b corresponding
to tuple i. Let the error in prediction for tuple i be denoted as ei and is equal
to |y − axi − b|. Hence the local mean squared error (LME) is denoted as,

LME(a, b) =
∑k

i=1 ei
k

=
∑k

i=1(y − axi − b)2

k
(1)

By minimizing LME where a and b are the parameters denoted by,
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a =

∑k
j=1 yj

∑k
i=1 xi − k

∑k
i=1 xiyi

∑k
j=1 xj

∑k
i=1 xi − k

∑k
i=1 xi

2
(2)

b =
∑k

i=1 yi − a
∑k

i=1 xi

k
(3)

Thus, we get the equation of the optimal fitting line. Now after constructing
the line of best fit, we are able to predict the dependent values for test tuple.
Then we compare the actual and the predicted values of dependent variable
to calculate least mean error for the given test tuple. Now based on the mean
error, we are assigning weights to our feature vector in inverse proportion which
is discussed in Sect. 5.

5 Our Proposed Approach

5.1 Support for Categorical Attributes

In this section we discuss how our proposed approach deals with categorical
data. The keystroke timing dataset that we used for evaluating our approach
has categorical attributes. One of the serious limitations of existing regression
algorithms is their support only for numeric attributes. So in order to tackle this
problem we are using a similarity measure which helps us to quantify the relation
between two classes using some real valued function. The section below explains
the similarity function that we have used in this paper. Most of real life datasets
have mixed attributes (set of both numeric and categorical type attributes) and
hence to overcome this situation we are using cosine similarity measure. The dot
product for two vectors A = (a1, a2, ...) and B = (b1, b2, ...) where an and bn are
the components of the vector and n is the dimension of the vector space. Hence
the dot product between A and B is formulated as A·B = a1b1+a2b2+...+anbn.

The cosine similarity between two vectors is a measure that calculates the
cosine of the angle between them. This metric is a measurement of orientation
and not magnitude, it can be seen as a comparison between timing vectors
on a normalized space because we are not taking into consideration only the
magnitude of each timing vector, but the angle between them. What we have
to do to build the cosine similarity equation is to solve the equation of the dot
product for the cos θ. Thus, the similarity values obtained using cosine similarity
gives us a clear estimate of how similar the categorical values are with respect
to the class labels.

cos θ =
A ·B

||A|| ||B|| (4)

5.2 Proposed Algorithm

In this section we discuss our proposed nearest neighbor regression algorithm in
detail. Our algorithm successfully eliminates nearest neighbor algorithm prob-
lems like choice of number of neighbors k by choosing the optimal k value cor-
responding to minimum error thus making our algorithm to be non parametric
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in nature. Our algorithm uses a unique weighing criteria (Algorithm2) to assign
weights to the feature vector hence enabling us to determine the relative impor-
tance of dimensions. The notation used for the algorithm is as follows: The
training data has d dimensions with feature variables (A1, A2, ....., Ad) and the
value of the feature variable for the jth feature variable Aj corresponding to the
ith tuple can be accessed as data[i][j]. The value of the dependent variable of the
training tuple corresponding to id value i can be accessed as y[i]. The value of
the dependent variable is calculated using the cosine similarity and k represents
the number of nearest neighbors. For a given test tuple T the value of its k near-
est neighbors is determined using an iterative procedure (line 4 of Algorithm1)
hence making our algorithm to be non parametric in nature. The range for value
k is from low to high where low is set to value 5 (sufficiently small value) an high
is set to size of training data data/2 (sufficiently large value). Now we describe
our algorithm using the pseudo code below shown in Algorithms 1 and 2.

We iterate for k in range 5 to size of training data set/2 and calculate the
k nearest neighbors for test data. The k evaluated neighbors are stored in list
ClosestNeighbors (line 6 of Algorithm 1). Now Algorithm 2 constructs an optimal
fitting line Linei for each dimension of our feature vector (the dataset used by
us has 51 features) by fitting a linear equation to observed ClosestNeighbors list,
in the plane of feature variable and the dependent variable. The regression line
is constructed as discussed in Sect. 4. Using the parameters from the equation of
the line a and b (Eqs. 2 and 3) we predict the dependent value of test data (line
4 of Algorithm 2). Based on the predicted and actual values of the dependent
variable squared error Ei is calculated (line 5 of Algorithm 2).

Algorithm 1
1: procedure KNN based Dimensional Regression
2: MinimumError ← ∞, ErrorforK ← ∞
3: OutputWeights ← 1 // All d dimensions have same weight initially
4: for each k= low to high do
5: ErrorforK ← 0
6: ClosestNeighbors ← GetNeighbors(data, k, T )
7: DimensionalRegressor(T ) // Algorithm 2
8: if MinimumError > Errorfork then
9: MinimumError ← Errorfork

10: OutputWeight ← WT

11: end if
12: end for
13: return OutputWeight
14: end procedure
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Algorithm 2
1: procedure Dimensional Regression
2: for each i = 1 to d do // d is the number of dimensions
3: Linei ← ConstructLine(ClosestNeighbors, i) // As discussed in Sect. 4
4: PredictedTestV ali ← Ti ∗ a + b
5: Ei ← (PredictedTestV ali − ActualTestV ali)

2

6: end for
7: if ∀ i Ei is equal then
8: WT ← 1
9: else

10: for each i = 1 to d do
11: weighti ← max(Ei)/Ei

12: WT ← weighti
13: end for
14: end if

15: Errorfork ←
d∑

j=1

Ej

16: return WT

17: end procedure

It would be appropriate to state that a lower error value in predicting the
line indicates that the constructed regression line is optimal in nature and fits
the neighborhood of test data. Hence we conclude that the value of dependent
variable predicted via the line of best fit is approximately correct and thus a
higher weight should be assigned for a more optimal line or we can say a line
with lower squared error. This intuition is captured by assigning weights in
inverse proportion to the error in prediction for this dimension, hence a feature
with high error value is assigned lower weight and the feature with lower error
value is assigned higher weight. The squared error in prediction of neighbors (line
15 of Algorithm 2) is computed and stored in Errorfork. A lower value of the
squared error indicates that the weight values chosen using the nearest neighbors
are appropriate. We then select the value of the parameter k for which the
calculated error is minimum and hence assigns the corresponding weight vector
WT (line 8–10 of Algorithm 1). On this weighted feature vector we evaluate the
anomaly score via a scaled Manhattan distance metric as discussed in the section
below. The approach demonstrated in Algorithms 1 and 2 is a completely novel
idea for dimension wise assigning weights in inverse proportion to error.

5.3 Neural Network for Anomaly Detection

After the weights have been assigned to the feature vector via our proposed
algorithm, we calculate the anomaly scores as described by [12] for evaluating our
model. For calculating anomaly score we are using a simple feed-forward neural
network with a input layer with the size of our feature vectors and one hidden
layer of 200 dimensions. After experimenting with different number of neurons in
the hidden layer, we found out that results are best reported at 200 neurons. All
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the layers are fully connected. The higher size of hidden layer introduces sparsity
in our network and helps in capturing the inter-feature relations which might be
present. Following subsections explain other building blocks of neural network.
We later discuss ablation studies for each in Table 2. We define the loss by the
negative log-likelihood function which maximized the probability that sample
gets classified as user or impostor. Learning is done through back-propagation
of the losses through our network [10] (Fig. 2).

Fig. 2. Illustration of neural network architecture. Here W1 and W2 represents the
weight matrices which are our parameters to be learnt. H is the hidden layers of size
200. I and O are input and output layers respectively.

5.4 Dropout

We use dropout [20] after our hidden layer which act as a regularizer and restricts
over-fitting. During our training stage we randomly delete the nodes of each
hidden layer with a certain probability p for each input sample. These neurons
do not participate in the back-propagation learning. In testing time, the weights
are correspondingly divided by 1−p. Using dropout, forces the rest of the neurons
in the hidden layers to learn more robust features and depend lesser on other
specific neurons. In [20] more details are provided which show that using dropout
can be an economic alternative to ensembling various network architectures.

5.5 Batch Normalization

After every fully-connected layer, we use batch normalization [11] before the
respective activation functions. Using batch normalization we monitored the
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gap between training and testing loss over epochs narrowed down. This led to
better generalization.

5.6 Leaky ReLU

Non-linear function Rectified linear unit (ReLU) is preferred to sigmoid or
hyperbolic-tan because it simplifies backpropagation, makes learning faster while
also avoiding saturation. However for large gradients, ReLU [16] can cause par-
ticular neurons to die and not participate in learning at-all. LeakyReLU’s have a
small positive gradient f(z) = max(0.01x, x) which prevent this dying of a neu-
ron. We applied Leaky ReLU as our activation function after the fully connected
layers.

5.7 Adam

In recent times, several algorithms (with implemented software tools) are avail-
able for training a deep neural network. While stochastic gradient descent (SGD)
for quite some time have been the top choice, there has been study which indicate
some of the obvious flaws [14] in the vanilla implementation. There have been
some attempts to automatically tune its learning rate thus resulting in much
faster convergence. For anomaly detection we use Adam [13] instead of SGD
which required a lot of fine-tuning with the learning rate and over 500 epochs
to converge.

5.8 Inputs to Neural Network

The dataset consists of keystroke timing information of 51 users, where each user
is made to type .tie5Roanl as password. All the 51 users enrolled for this data
collection task typed the same password in 8 different sessions with 50 repetitions
per session thus making each user to type 400 times in total (Table 1).

Table 1. Hyperparameters used in our neural network

Name Specification

Dropout 0.3

LeakyReLU 0.01

Adam 0.001

Epochs 200

6 Experimental Setup

In this section we discuss the experimental setup, evaluation criteria used and
the performance of our proposed model. We evaluated our approach on the CMU
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keystroke dynamics benchmark dataset [12] where 51 users were designated for
this task. We demonstrate the effectiveness of our model with the average equal
error rate (EER). We compare the results with various proposed anomaly detec-
tors/classifiers which have been used in literature. We used the python library
Keras [4] for building our neural network architecture. All our experiments were
carried out on a Pentium 4th generation machine with 4 GB memory. For experi-
ments, we took the same 200 initial timing feature vector per-user as before. 10%
of training data was kept aside as validation data for hyperparameter tuning.

6.1 Training

We frame keystroke dynamics based authentication as a one-class classification
problem. For authentication, neural network learns one model per user, rejects
anomalies to the learned model as impostors, and accepts inliers as the genuine
user. Consider a scenario in which a users long-time password has been com-
promised by an impostor. We assume the user to be practiced in typing their
own password, while the impostor is unfamiliar with it (e.g., typing it for the
first time). We measure how well each of our detectors is able to discriminate
between the impostors typing and the genuine users typing in this scenario. We
start by designating one of our 51 subjects as the genuine user, and the rest as
impostors. We train an anomaly detector by extracting 200 initial timing feature
vectors for a genuine user from the dataset. We repeat this process, designating
each of the other subjects as the genuine user in turn thus creating models equal
to number of distinct subjects or users. Unlike most existing approaches, which
only use actual users data at training time, our model leverage data from back-
ground users to enhance the models discriminative capability thus improving
the prediction performance. We randomly took 5 samples from each background
users as negative samples. Note that these 5 random samples were carefully cho-
sen such that no impostor samples that were used in testing were shown during
the time of training. For this problem setting, we use the evaluation criteria as
mentioned in [12] in order to have comparison on same grounds.

6.2 Testing

We take last 200 passwords typed by the genuine user from the dataset. These
200 timing feature vectors acts as test data. Scores generated in this step acts
as the user scores. Next, we take initial 5 passwords typed by each of the 50
impostors (i.e., all subjects other than the genuine user) from the dataset which
acts as the impostor scores. Thus we form a test dataset of 200 positive samples
and 250 negative samples per user which we provide to our neural network and
record the output predictions. If s denotes the predictions, the corresponding
anomaly score was calculated as 1−s [12]. Intuitively, if s is close to 1.0, the test
vector is similar to the training vectors, and with s close to 0.0, it is dissimilar
(Fig. 3).
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Fig. 3. Shows ROC curve for different users with their equal error rate (EER) value
where user number corresponds to the user as labeled in CMU dataset.

6.3 Empirical Evaluation for User Authentication

Based on the genuine user scores and impostor scores generated in the steps
above, we generate the ROC curve for the actual (genuine) user. Then we calcu-
late the equal error rate from the ROC curve where the equal error rate corre-
sponds to that point on the curve where the false positive rate (false-alarm) and
false negative rate (miss) are equal. We repeat the above four steps, in total of
51 times where every time each of the subsequent user is taken as the genuine
user from the 51 distinct users in turn, and calculate the equal-error rate for each
of the genuine users. Finally we compute the mean of all 51 equal-error rates
which gives us the performance value for all users, and the standard deviation
which will give us the measure of its variance across subjects. In order to ensure
comparison on same grounds we have used exactly the same evaluation criteria
as stated by [12] on our proposed approach. The train-test data split was also
kept the same.

Table 2. Ablation study of our neural network model showcasing the increase of per-
formance for each additional component we use. Note that for this test we used tan-h
activation when we opt not to use LeakyReLU. All components are added indepen-
dently on the base model. Accuracy is based on the multiclass user recognition problem.

Model architecture EER Time taken (min)

Base model 0.0701 1.54

With Dropout 0.0674 3.18

With LReLU 0.0623 4.53

With Batch-Norm 0.0602 5.12

Our 3 layer model 0.051 5.81
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7 Results

Table 3 shows the comparison of 16 other proposed keystroke timing algorithms
with our proposed approach. Comparison is shown with 16 other algorithms
which used the same dataset and the same evaluation criteria thus assuring
an objective comparison. Our model is able to achieve an average equal error
rate (EER) of 0.051 and with a standard deviation (stddev) of 0.042 across
51 subjects. The average equal error rate (EER) shown in the Table 3 are the
fractional rates between 0.0 and 1.0, not the percentages. Clearly from Table 3,
our model performs superior than other proposed techniques in comparison.

Table 3. Comparison of 16 different keystroke timing pattern algorithms that uses the
same CMU keystroke timing dataset and evaluation criteria in terms of average equal
error rate (EER) (with standard deviation shown in brackets).

Model/algorithm Average EER (stddev) Source

Our proposed algorithm
(with 2 new engineered features)

0.051(0.040)

Our proposed algorithm
(without 2 new engineered features)

0.054(0.042)

Median vector proximity 0.080(0.055) [2]

Manhattan-Mahalanobis
(no outlier)

0.084(0.056) [23]

Manhattan-Mahalanobis (outlier) 0.087(0.060) [23]

Manhattan (scaled) 0.0962(0.0694) [12]

Nearest neighbor (Mahalanobis) 0.0996(0.0642) [12]

Outlier count (z-score) 0.1022(0.0767) [12]

SVM (one-class) 0.1025(0.0650) [12]

Mahalanobis 0.1101(0.0645) [12]

Manhattan (filter) 0.1360(0.0828) [12]

Neural network (auto-assoc) 0.1614(0.0797) [12]

Euclidean 0.1706(0.0952) [12]

Fuzzy logic 0.2213(0.1051) [12]

k Means 0.3722(0.1391) [12]

Neural network (Standard) 0.8283(0.1483) [12]

8 Conclusion and Future Work

In this paper we investigate the problem of authenticating users based on key-
stroke timing pattern. We engineered new features namely bigram time and
inversion ratio time apart from the features already given in the CMU keystroke
timing dataset. Besides engineering new features we also proposed a simple and
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robust nearest neighbor based regression algorithm. We evaluated our results
and compared it against 14 other algorithms that used the same dataset and
evaluation criteria thus providing performance comparison on equal grounds.
Although simple, it proved to be effective as it outperformed competing algo-
rithms as shown in Table 3.

Future work involves extending our work for soft keys or touch pad keys and
in addition to timing pattern features we can use users pressure patterns as well
in order to authenticate users. We are planning to experiment with different curve
fitting techniques as well. We plan on extending our models to other available
datasets on this domain. We would also like to investigate if transfer learning
can help with user authentication and identification for large pool of users when
trained from a limited dataset.
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we would like to thank them for their support.
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Abstract. The analysis of sequential patterns is a prominent research
topic. In this paper, we provide a formalization of a graph-based app-
roach, such that a directed weighted graph/network can be extended
using a sequential state transformation function, that “interprets” the
network in order to model state transition matrices. We exemplify the
approach for deriving such interpretations, in order to assess these and
according hypotheses in an industrial application context. Specifically, we
present and discuss results of applying the proposed approach for topol-
ogy and anomaly analytics in a large-scale real-world sensor-network.

1 Introduction

The analysis of sequential patterns, e.g., as a sequence of states, is a prominent
research topic with broad applicability, ranging from exploring mobility patterns
[7] to technical applications [9]. The DASHTrails approach [7] provides a com-
prehensive modeling approach for comparing hypotheses with such sequences
(trails), in order to identify those hypotheses that show the largest evidence
concerning the observed data.

This paper presents the HypGraphs analysis approach (extending DASH-
Trails) for analyzing and assessing sequential hypotheses in the form of transition
matrices given a directed weighted network. The application context is given by
(abstracted) alarm sequences in industrial production plants in an Industry 4.0
context. Specifically, we consider the analysis of the plant topology and anomaly
detection in alarm logs. The assessment of the static structure can help in identi-
fying problems in the setup of the production plant, while dynamic relations can
be applied for the analysis of unexpected (critical) situations. Our contribution
is summarized as follows:
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1. We outline a flexible analytics approach for assessing graph-based and sequen-
tial hypotheses in a graph interpretation of weight-attributed directed net-
works.

2. For that, we show how to embed the recent DASHTrails [7] approach for
distribution-adapted modeling and analysis of sequential hypotheses and
trails. Furthermore, we motivate and show the advantages of this state-of-the-
art Bayesian approach compared to a typically applied frequentist approach
for testing network associations.

3. Furthermore, we outline the application of the proposed approach in an indus-
trial context, for the analysis of plant structures in industrial production
contexts, as well as for detecting anomaly indicators concerning disrupting
dynamic processes.

The remainder of the paper is structured as follows: Sect. 2 discusses related
work. After that, Sect. 3 outlines the proposed method. Next, Sect. 4 presents
results of a case study of HypGraphs in the industrial context. Finally, Sect. 5
concludes with a discussion and outlines interesting directions for future work.

2 Related Work

The investigation of sequential patterns and sequential trails are interesting and
challenging tasks in data mining and network science, in particular in graph
mining and social network analysis. A general view on modeling and mining
of ubiquitous and social multi-relational data is given in [5] focusing on social
interaction networks. Orman et al. [18] defines a sequence-based representation
of networks. Then the sequential patterns are used to characterize communities.
For comparing hypotheses and sequential trails, the HypTrails [20] algorithm
has been applied to sequential (human) navigational trails derived from web
data. In [7] we have presented the DASHTrails approach that incorporates prob-
ability distributions for deriving transitions. Extending the latter, the proposed
HypGraphs framework provides a more general modeling approach. Using gen-
eral weight-attributed network representations, we can infer transition matrices
as graph interpretations, while HypGraphs consequently also relies on Markov
chain modeling [15,21] and Bayesian inference [21,22].

Sequential pattern analysis has also been performed in the context of alarm
management systems, where sequences are represented by the order of alarm
notifications. Folmer et al. [11] proposed an algorithm for discovering temporal
alarm dependencies based on conditional probabilities in an adjustable time win-
dow. To reduce the number of alarms in alarm floods, Abele et al. [3] performed
root cause analysis with a Bayesian network approach and compared different
methods for learning the network probabilities. Vogel-Heuser et al. [23] proposed
a pattern-based algorithm for identifying causal dependencies in the alarm logs,
which can be used to aggregate alarm information and therefore reduce the load
of information for the operator. In contrast to those approaches, the proposed
approach is not only about detecting sequential patterns. We provide a system-
atic approach for the analysis of (derived) sequential transition matrices and



HypGraphs: An Approach for Analysis and Assessment 233

their comparison relative to a set of hypotheses. Thus, similar to evidence net-
works in the context of social networks, e.g., [17], we model transitions assuming
a certain interpretation of the data towards a sequential representation.

The detection and analysis of anomalies and outliers [12] in network-
structured data is a novel research area, e.g., for identifying new and/or emerging
behavior, or for identifying detrimental or malicious activities. The former can be
used for deriving new information and knowledge from the data, for identifying
events in time or space, or for identifying interesting, important or exceptional
groups [4,19]. In contrast to approaches for anomaly detection that only provide
a classification of anomalous and normal events, we can assess different anomaly
hypotheses: applying the proposed approach, we can then generate an anom-
aly indicator – as a potential kind of second opinion method, e.g., for assessing
the state of a production plant that can help for indicating explanations and
traces of unusual alarm sequences. Then, using the network representation, we
can analyze anomalous episodes relative to structural (plant topology) as well
as dynamic (alarm sequence) episodes.

3 Method

In the following section, we first provide an overview on the proposed approach.
After that, we discuss the modeling and analysis steps in detail.

3.1 Overview

We start with a set of directed weighted networks. Then, we interpret these
weights for constructing transitions between states (denoted by the nodes of
the network) and compare this data to hypotheses that can also be constructed
using the network-based formalizations. Adapting the modeling principles of the
DASHTrails approach that we have presented in [7] to our network formalism, we
model transition matrices given a probability distribution of certain states. We
assume a discrete set of such states Ω corresponding to the nodes of the network
(without loss of generality Ω = {1, . . . , n}, n ∈ N, |Ω| = n). Then, assuming a
certain network interpretation of the weights of the edges, we construct transi-
tions between states. As shown in Fig. 1, we perform the three following steps,
that we discuss below in more detail:

1. Modeling: Determine a transition model given the respective weighted net-
work using a transition modeling function τ : Ω×Ω → R. Transitions between
sequential states i, j ∈ Ω are captured by the elements mij of the transition
matrix M , i.e., mij = τ(i, j). Then, we collect sequential transition matrices
for the given network (data) and hypotheses.

2. Estimation: Apply HypTrails, cf. [20] on the given data transition matrix and
the respective hypotheses, and return the resulting evidence.

3. Analysis: Present the results for semi-automatic introspection and analysis,
e.g., by visualizing the network as a heatmap or characteristic sequence of
nodes.
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Fig. 1. Overview on the HypGraphs modeling and analysis process.

3.2 Modeling and Comparing Graph-Based Network Interpretations

As outlined above, we derive the transition matrices (modeling transitions
between states) using a certain transition modeling function τ : Ω × Ω → R,
as described below. The transition modeling function τ captures a certain inter-
pretation of these weights. In the case of hypotheses, these correspond to link
traversal probabilities from one state to another state, represented by the respec-
tive individual nodes. Equivalently, we can represent the obtained directed and
weighted graph in the form of an adjacency matrix, where the individual values
of an entry (i, j) correspond to the weight of the link between nodes i and j;
as an hypothesis this can be interpreted as a transition probability between two
states i and j.

Modeling. For modeling, we consider a sequential interpretation (according to
the first order Markov property) of the original data with respect to the obtained
transition probabilities (Markov chain). Thus, using τ , we can model (derived)
transition matrices corresponding to the observed data, e.g., given frequencies of
alarms on measurement points, as well as hypotheses on sequences of alarms.
For data transition matrices, we need to map the transitions into derived counts
in relation to the data; for hypotheses we provide the (normalized) transition
probabilities. That is, for hypothesis testing, we can directly convert the weighted
network using the defined transition modeling function (i.e., we convert the
obtained values to probabilities by row-normalization).

For observed sequences, we can simply construct transition matrices count-
ing the transitions between the individual states, e.g., corresponding to the
set of alarms. Then, τ(i, j) = |suc(i, j)|, where suc(i, j) denotes the successive
sequences from state i to state j contained in the sequence. For deriving tran-
sition matrices from a probability distribution over certain events, for example,
we need to apply a more complex modeling approach. We refer to [7,20] for more
details on modeling and inference, respectively.
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Assessment. For assessing a set of hypotheses that consider different transition
probabilities between the respective states, we apply the core Bayesian estima-
tion step of HypTrails [20] for comparing a set of hypotheses representing beliefs
about transitions between states. In summary, we utilize Bayesian inference on
a first-order Markov chain model. As an input, we provide a (data) matrix,
containing the transitional information (frequencies) of transition between the
respective states, according to the (observed) data. In addition, we utilize a set of
hypotheses given by (row-normalized) stochastic matrices, modeling the given
hypotheses. The estimation method outputs a set of evidence values, for the
set of hypotheses, that can be used for ranking these. Also, using the evidence
values, we can compare the hypotheses in terms of their significance.

Specifically, hypotheses are expressed in terms of belief in Markov transitions,
such that we distinguish between common and uncommon transitions between
the respective states. Then, for each hypothesis, we construct the belief matrix
for subsequent inference. Given the data (matrix), we elicit a conjugate Dirichlet
prior and finally obtain the evidence using marginal likelihood estimation. Here,
the evidence denotes the probability of the data given a specific hypothesis.
Thus, this can also be interpreted as the relative plausibility of a hypothesis.
Then, the hypotheses can be ranked in terms of their evidence.

Furthermore, a central aspect of the method is an additional parameter (k)
indicating the belief in a given hypothesis: the higher the value of is k the higher
is the belief in the respective hypothesis matrix, i.e., its parameter configuration.
Given a lower value of k, the hypothesis is assigned more tolerance, such that
other (but similar) parameter configurations become more probable. Then, for
assessing a hypothesis, we monitor its performance with increasing k, typically
relative to the data itself (as a kind of upper bound), the uniform hypothesis (as
a random baseline) and competing hypotheses.

In contrast, the quadratic assignment procedure [14] (QAP) is a frequentist
approach for comparing network structures. For comparing two graphs G1 and
G2, it estimates the correlation of the respective adjacency matrices [14] and
tests a given graph level statistic, e.g., the graph covariance, against a QAP null
hypothesis. QAP compares the observed graph correlation of (G1, G2) to the
distribution of the respective resulting correlation scores obtained on repeated
random row and column permutations of the adjacency matrix of G2. As a result,
we obtain a correlation value and a statistical significance level according to the
randomized distribution scores.

As we will show in our experiments below, the applied Bayesian inference
technique has significant advantages compared to the typically applied frequen-
tist approach for comparing networks based on graph correlation using the QAP
test [14]: we not only know whether a hypothesis is significantly correlated with
the data, but we can also compare hypotheses (and their significance) relative to
each other (given Bayes factor analysis, cf. [13]). In particular, this also holds for
those hypotheses that are not correlated with the data, obtaining a total ranking
for likely and unlikely hypotheses. Furthermore, we can express our belief in the
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hypothesis relative to the data, and analyze the impact of that on the evidence
concerning the likelihood estimate.

4 Case Study

Below, we first outline our application context and discuss the instantiation of
the proposed approach. After that, we discuss the collected datasets before we
describe results of a case study of HypGraphs in the industrial context in detail.

4.1 Application Context

In many industrial areas, production facilities have reached a high level of
automation nowadays. Here, knowledge about the production process is cru-
cial, targeting both static relations like the topological structure of a plant and
the modeling of operator notifications (alarms), and dynamic relations like unex-
pected (critical) situations. Assessment of the static structure can help in iden-
tifying problems in the setup of the production plant. The dynamic relations
involve analytics for supporting the operators, e.g., for diagnosis of a certain
problem. The objective of the BMBF funded research project “Early detection
and decision support for critical situations in production environments”1 (short
FEE) is to detect critical situations in production environments as early as possi-
ble and to support the facility operator with a warning or even a recommendation
on how to handle this particular situation. The consortium of the FEE project
consists of several partners including also application partners from the chemical
industry. These partners provide use cases for the project and background knowl-
edge about the production process, which is important for designing analytical
methods. In this paper, we utilize HypGraphs in this application context, both
for static (topology) and dynamic (alarm log) analysis.

4.2 HYPGRAPHS Instantiation

In an industrial production plant, alarms for certain measurement points occur if
the value of the measurement is not within a specified value range. Therefore, by
intuition, an alarm sequence (for a given point in time, or interval) represents an
abstracted state of the production plant. Then, we can utilize the “normal” long
running state of the plant as the “normal behavior”, excluding known anomalous
episodes.

We perform two kinds of analyses. First, we compare the normal behavior
to the overall topology of the plant, i.e., corresponding to transitions between
different functional units of the plant. Second, we compare the normal behavior
to our anomaly hypotheses, which are defined by the captured anomalies. Doing
that, we assume that the sequence of alarms indicates a certain normal or abnor-
mal (process) behavior. We can then compare the (historic) long running state
of the plant to the current state for obtaining indicators about possible normal
or abnormal situations.
1 http://www.fee-projekt.de.

http://www.fee-projekt.de
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4.3 Dataset

In our experiments, we used a dataset from the FEE project that was collected
in a petrochemical plant; it includes a variety of data from different sources such
as sensor data, alarm logs, engineering- and asset data, data from the process
information management system as well as unstructured data extracted from
operation journals and instructions.

We used alarm logs for a period of two months as well as Piping and Instru-
mentation Diagrams (P&IDs) [10] which represent the topological structure of
the facility, i.e., capturing the piping of the considered petro-chemical process
along with installed equipment (pumps, valves, heat-exchangers, etc.) and instru-
mentation used to control the process. P&IDs are usually composed of several
sub-diagrams with disjoint system elements. Connections between elements on
different P&IDs are captured in textual form at the corresponding pipe or other
connecting elements. Commonly, the structuring of P&IDs follows in some way
the structure of the captured process and plant capturing different areas. In
our dataset, the titles of P&IDs suggest such a structuring of the P&IDs around
major equipment like tanks, reactors, processing columns, etc. (e.g. ‘Input vessel
- desorption plant’, ‘Preheater - desorption plant’, ‘Desorber - desorption plant’,
‘Steam/condensate - auxiliary materials’). We also used text data from the oper-
ation journals to verify anomalous events. The characteristics of the applied real-
world dataset are shown in Tables 1 and 2. According to standards [1,2] P&IDs
are used to identify the measurements (temperatures, flows, level, pressures, etc.)
in the process, using identifiers of the respective measurement points with up to
5 letters. The alarms in the alarms logs are defined based on measurements cap-
tured in the P&ID diagrams, usually as a threshold value on the corresponding
measurements; the entries in the alarm log reference the measurements in the
P&IDs by a matching identifier.

Table 1. Characteristics of the real-world dataset (petrochemical plant) for a period
of two months

Count

Anomalies 4

P&IDs 63

P&IDs referenced in alarm log 55

Alarms referencing measurement points in P&IDs 59.623

Distinct alarms referencing P&IDs 327

P&ID transitions (between distinct P&IDs) 384

Topological connections (between distinct P&IDs) 299
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4.4 Matrix Construction

Before constructing the transition matrices, we first identified anomalous events
by looking at the operation journals. We used this background knowledge to
divide the dataset into nine disjoint time slots with five normal and four abnor-
mal episodes. For abnormal episodes, we empirically determined a time window
of one hour spanning the anomalous event starting half an hour before the event
and ending half an hour after the event. In practice, the length of this time
window is a parameter that needs to be determined according to application
requirements. All nine time slots together covered the whole time (two months).
Note that we only used the alarms that could be mapped to a P&ID. The dis-
tribution of alarms and P&IDs for the different time slots is shown in Table 2.

Table 2. Overview on normal/abnormal episodes for the real-world dataset (petro-
chemical plant)

# Episode #Alarms #Distinct alarms #Distinct P&IDs

1 Normal1 10503 66 34

2 Abnormal1 86 12 9

3 Normal2 8382 91 31

4 Abnormal2 212 14 5

5 Normal3 6130 74 31

6 Abnormal3 220 17 7

7 Normal4 6318 89 29

8 Abnormal4 1516 127 30

9 Normal5 26256 278 44

For each time slot, we constructed a transition matrix M by counting
the consecutive transitions in the sequence of the alarm log. Formally, let
A = <a1, a2, ..., an> be a sequence of alarms which represents the alarm log.
We created a function, which maps alarms to P&IDs map(at) and retrieved the
P&IDs contained in the alarm log P = {map(at)|at ∈ A}. Then, the weights
mij for the |P |× |P | transition matrix M are given by the number of transitions
from pi to pj with (pi, pj) ∈ P × P :

mij = |{(at, at+1), at, at+1 ∈ A,map(at) = pi,map(at+1) = pj}|

For the data matrix corresponding to the alarm data, we can then just utilize
the obtained count data, denoting the number of transitions between the states.
For creating hypotheses, we normalize the data by row in order to obtain a
stochastic matrix.

We also extracted data from the P&IDs corresponding to the plant organiza-
tion in terms of functional units. As described above each P&ID corresponds to
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such a functional unit, containing several sensors that can then trigger respec-
tive alarms if the corresponding measurements are not within a specified value
range. A P&ID shows the process and instrumentation structure and also links
to other P&IDs with respect to certain flows (material, energy, information)
that connects the process structure. Given the P&IDs in PDF format, we con-
verted the data to XML and extracted the necessary information for modeling
all possible (directed) links between the individual P&IDs in a network-based
representation of the overall plant modeling.

4.5 Results and Discussion

According to our hypotheses, we expect that the functional units of the plant also
model functional dependencies as observed by alarm sequences. Furthermore, we
expect, that normal episodes (sequences) should be “close” to the normal (long
running) behavior. Accordingly, abnormal sequences should be “away” from the
normal (reference) behavior – in terms of evidence. As we will see below, we
can confirm these hypotheses using Bayes factor analysis [13]. As a baseline,
we furthermore apply the presented QAP method. Since a (data) transition
matrix should be explained best by its corresponding hypothesis, we constructed
a respective row-normalized data transition matrix. In addition, we constructed
a uniform hypotheses (square matrix, all entries being 1) as a random baseline.
A good hypothesis explaining the normal behavior should be between both,
however, relatively close to the data.

Topological Analysis. As previously discussed, the document structure of
P&IDs capture to a certain extent the structure of the process plant they
describe. Simply put, the designer of the P&IDs decided to put elements on
the same diagram because they are closely related (although, sometimes graph
layout consideration might override this rule of thumb). Consequently, the mea-
surements captured on a P&ID are more closely related to measurements across
different P&IDs. Since measurements are used to define alarm messages, it seems
a valid assumption that consequently alarms in the alarm logs should reference
measurements on the same P&ID with a higher probability than measurements
from different P&IDs. Based on this assumption, we formulated our first hypoth-
esis to test HypGraphs on the industrial dataset: For topological analysis, we
utilized the given P&ID graph containing directed links between the P&IDs. We
checked whether the alarm sequences (normal behavior) can be explained by a
uniform topology model, where we assume that transitions between all linked
P&IDs are equally likely. The results are shown in Fig. 2. We observe that the
uniform topology hypothesis does not explain the data well since it is signifi-
cantly away (larger k) compared to the data and close to the random baseline.
In contrast, an “encapsulated topology” hypothesis fits the data relatively well,
assuming that transitions in alarm sequences mainly occur local to the specific
P&IDs. This confirms our expectations and indicates a good performance of
plant and alarm management in general.
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Fig. 2. Topological analysis: uniform topology hypothesis and local topology
hypothesis.
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Fig. 3. Artificial local topology baseline: example of an anomalous and a normal
hypothesis.

Furthermore, we double-checked the data against an artificial baseline,
assuming only transitions local to P&IDs (in that case, the transition matrix
becomes a diagonal matrix). Results are shown in Fig. 3. We observed strict
differences between normal and abnormal episodes, two examples are shown in
the figure. While abnormal situations are far away from the local hypothesis,
normal situations are significantly closer, but these, cannot “explain” only local
transitions, indicating that most transitions but not all conform to this artificial
situation. We also checked the rankings of the normal and abnormal episodes
comparing the respective hypotheses to the real data (normal behavior) and the
artificial local topology baseline. Using Kendall’s-Tau as a correlation measure
(0.61), the ranking was not very consistent, indicating that the local topology
assumption alone is too simple in order to be explainable by the observed data.

Overall, we observe that we can verify structural modeling assumptions using
HypGraphs (given in the P&ID structure) using the collected data from the
alarm logs. We already observe distinct differences between abnormal and normal
episodes.
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Anomaly Analytics. In the start phase of the FEE project, a series of work-
shops and interviews were executed for identifying potential Big Data and ana-
lytics applications. One of the identified analytics tasks was anomaly detection.
The idea behind that application scenario is that retrospective analysis of dis-
rupting events often uncovers that a situation could have been handled better, if
the operators or process experts had been involved earlier and would have been
pointed to the relevant data. Thus, we developed a description of the current
and desired situation to identify the right analytics questions:

– Current Situation:
• Who: Operator in the operating room, shift leader (in the operating room),

process engineer, process manager (in the office).
• What : Anomalies (e.g., uncommon oscillations) in a plant need to be recog-

nized as early as possible. If such cases are not recognized by the operator,
serious problems can occur (product is not usable, unplanned plant shut-
down, etc.) and staff with higher expertise need to be informed.

• Challenge: Anomalies are not easy to detect manually. New technologies
like advanced controllers make anomalies even more difficult to detect. Fur-
thermore, operators usually inform an expert when a problem has occurred
and they are not able to handle it. In addition, diagnostics of an anomaly
by process engineers and managers is usually time-consuming.

– Desired Situation:
• System: informs the operator about a possible anomaly. The operator per-

forms an analysis and diagnosis of the situation and informs the expert.
• Expert: automated updates about possible anomalies; can track long term

trends.
• Users: pointed to relevant measurements for supporting diagnostic activi-

ties.

In the context of anomaly analytics, our results indicate the significance of the
proposed HypGraphs approach for specifically supporting analysis and diagno-
sis tasks.

In particular, for anomaly analysis of the alarm data, we used the partition-
ing of the dataset into normal and abnormal episodes. Then, we checked both
abnormal and normal situations against the assumed “normal behavior” of the
plant that is observed for the long running continuous process. In the analy-
sis, we applied a typical estimation procedure using separate training and tests
sets, such that the data and the tested hypotheses do not overlap in time. How-
ever, since we have only had data covering a two months period available we
also tested the hypotheses against the aggregated normal behavior covering all
normal episodes. It turned out, that the findings reported below are also consis-
tent across these different evaluation periods; we observe the same (significant)
trends, confirming the individual results even on larger scale.

Figure 4 shows the different anomaly hypotheses corresponding to the dif-
ferent anomaly episodes (cf. Table 2). We observe that the anomalies are well
distinguishable (using Bayes factor analysis [13]). The anomalies are “well away”
from data (more than factor 3 for higher k), indicating a significant deviation
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Fig. 4. Normal behavior (data) compared to different anomaly episodes (anomaly 1–4)
and a random baseline (uniform hypothesis).

from the data. Furthermore, we observe distinct characteristics of the anomalies,
observing the trends with increasing k. Anomalies 1–3 are of the same class and
show similar characteristics, while Anomaly 4 conforms to another real-world
class of a disrupting event, also showing different characteristics in terms of evi-
dence. We also performed an analysis using the QAP procedure for the anomaly
data, correlating the transition matrices corresponding to the normal behavior
and the abnormal episodes. These results support the findings of the Bayesian
approach, showing a correlation close to zero that was not significant. However,
while confirming the deviation, QAP does not allow to derive a (significance-
based) ranking of the different hypotheses here, in contrast to our proposed
approach.

Figure 5 shows results of comparing exemplary normal episodes (as hypothe-
ses) with the normal behavior (data) – the results for the rest of the normal
episodes show equivalent trends. We observe significant differences compared to
the anomaly hypotheses. Using the Bayes factors technique, we also observe that
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Fig. 5. Normal behavior (data) compared to different normal episodes and a random
baseline (uniform hypothesis).

the normal behavior is well detectable, the hypotheses are sufficiently “close”
to the data hypotheses. In addition, we also compared shorter normal periods
(using random samples of the normal behavior) in order to exclude control for
the different sizes of the alarm distributions. The bottom right chart of Fig. 5
shows an example - the findings confirm our results for the other episodes well.

For the normal episodes, we also applied QAP analysis, using the graph cor-
relation measure on transition matrices corresponding to the normal behavior
and the respective normal episodes described above. Here, we observed signifi-
cant (p = 0.01) correlation values between 0.42 and 0.72, with a ranking of the
normal hypotheses that is consistent with the Bayesian approach. In essence,
this suggests that our findings are rather robust against the selected statistical
measure.

Retrospective as well as realtime analysis can be supported, for example, by
according visualization approaches summarizing anomalous episodes in the form
of heatmaps, or by directly tracing anomalous sequences on a detailed level of
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analysis. Figure 6 demonstrates an example of a heatmap visualization, showing
data for the (aggregated) anomalies 1–3 compared to the long term behavior
of the data: Rows/columns of the matrix refer to the individual P&IDs. The
aggregations refer to different types of real-world anomalies and we can observe
distinct “fingerprints” of the transitional episodes. Then, by inspecting the dif-
ferent cells (corresponding to transitions of alarms between a pair of P&IDs),
the respective data points (sequences of alarms) can be assessed in detail, e.g.,
showing the corresponding alarm messages or sensor reading. Please note, that
this visualization can be applied for static data, i.e., for retrospective analysis,
as well as for dynamic analysis, e.g., utilizing a suitable time window for data
aggregation on the current (alarm) log data stream.

In summary, these analysis results indicate the significance of the
HypGraphs approach for anomaly analytics, concerning detection, analysis and
diagnosis tasks. Applying HypGraphs we can compare different hypotheses to
the “normal behavior” and identify normal and abnormal episodes in a data-
driven way. In contrast to typical frequentist approaches like QAP, we can obtain
a ranking of both the normal and abnormal episodes, enabling a comprehensive
view on the data for anomaly analytics, complemented by suitable visualizations.
Furthermore, there are several visualization options to be used for dashboards,

Fig. 6. Example of a dashboard with a heatmap visualization, showing “fingerprints”
for the long term behavior and for an anomalous sequence. Rows/columns refer to the
individual P&IDs.
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e.g., the obtained evidence plots, using extended heatmaps, or a detailed view
on sequences of nodes corresponding to individual alarms.

4.6 Big Data Aspects

With time periods longer than two months or with very detailed sensor readings,
the amount of data can quickly get overwhelming for normal computation sys-
tems. In this case, a distributed storage and computation system can handle the
requirements of evaluating several years of production data. The RapidMiner
[16] platform, for example, can be integrated with Hadoop systems such that
preprocessing and analytical processes built on a local machine can be trans-
ferred to the big data environment. In the context of the FEE project, we target
a two layered architecture where long running and computationally expensive
processes run in the Hadoop infrastructure and either the prepared data or the
final models, in this case the transition matrix M , can be applied on a local
machine. The computation can be executed, e.g., in a Spark/MapReduce [8]
process and the orchestration and deployment can be handled with RapidMiner,
for which the HypGraphs approach is already implemented as an independent
extension.2

5 Conclusions

This paper outlined the HypGraphs approach for modeling and comparing
graph-based and sequential hypotheses using first-order Markov chain models.
Our application context is given by structural and anomaly analytics in Industry
4.0 contexts, i.e., of (abstracted) alarm sequences in industrial production plants.
We applied a real-world dataset in an Industry 4.0 context, specifically in the
scope of the FEE project.

In summary, we considered the analysis of the plant topology and anom-
aly analytics in alarm logs, which was identified as one major application in
the project. Our results indicate that the proposed HypGraphs approach is
well suited for analyzing and assessing the transition networks, respectively the
corresponding alarm sequences. We could identify distinct differences between
abnormal and normal episodes, e.g., in order to derive an anomaly indicator. We
also verified the modeling of plant topology and alarm setup. The results can
help for analysis and inspection of the corresponding alarm sequences, e.g., for
detailed analysis and diagnosis of anomalies. This enabled directly the inspection,
for example, of a deviating sequence through a drill-down into the data. Fur-
thermore, results can be transparently visualized, e.g., in the form of heatmaps,
and embedded into Big Data dashboards.

For future work, we aim to extend the analysis using high diversity data,
i.e., with longer time periods, different event and anomaly settings. We are also

2 https://github.com/rapidminer/rapidminer-extension-hypgraphs.

https://github.com/rapidminer/rapidminer-extension-hypgraphs
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investigating options for detecting descriptive anomaly patterns [6]. Further-
more, including more background knowledge on known relations on plant con-
figuration and the extension to an unsupervised approach for anomaly detection
is another interesting direction.
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Abstract. The main objective of this paper is checking whether, and
to what extent, advanced process mining techniques can support effi-
cient and effective knowledge discovery in complex domains. This is done
on chess playing, cast as a process. A secondary objective is checking
whether the discovered information can provide interesting insight in
the game rules and strategies, and/or may support effective game play-
ing in future matches. Experimental results provide a positive answer to
the former question, and encouraging clues on the latter.

1 Introduction

The increasing complexity of the processes that underlie most human activities
nowadays motivated the research on automatic process mining [14] and man-
aging. The WoMan framework for process management was shown in [5,6] to
be able to handle efficiently and effectively very complex processes where other
state-of-the-art systems fail, especially due to short loops, duplicate activities
and large concurrency (4–5 activities). Motivated by these results, the main
objective of this paper is to stress WoMan and check whether it is able to han-
dle even much more complex processes, this way confirming its power. We pursue
our objective considering the domain of chess playing, that we cast as a (com-
plex) process. Since WoMan is a general framework, it does not need any specific
tailoring for handling this new domain. More specifically, in our vision, playing a
chess match corresponds to enacting a process. We consider a task as the occupa-
tion of a specific square of the chessboard by a specific kind of piece (e.g., “black
rook in a8”), and the involved resources as the two players: ‘white’ and ‘black’.
Matches are initialized by starting 32 activities corresponding to the initial posi-
tions of all pieces on the chessboard. Each move terminates some activities (i.e.,
removes pieces from the squares they occupy) and starts new activities (i.e.,
occupies some squares by pieces). This setting represents a tough testbed to
evaluate the process mining state-of-the-art due to the following features:

– very high concurrency (the number of pieces on the chessboard during most
of the match is in the order of dozens, which is beyond the reach of many
current process mining systems [6]);

– huge number of tasks (in principle, 752 possible combinations piece-square);

c© Springer International Publishing AG 2017
A. Appice et al. (Eds.): NFMCP 2016, LNAI 10312, pp. 248–262, 2017.
DOI: 10.1007/978-3-319-61461-8 16
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– very huge number of transitions (moves are in the order of 10123, and we may
have different transitions for the same move, depending on whether it is a
take or not); and

– extremely huge number of cases (estimated to be 1010
50

).

It also features short and nested loops (a piece going back on a square after a
number of moves), optional activities (a given move may or may not take an
opponent’s piece) and duplicate tasks (a piece may occupy the same square at
different stages of the match, and thus in different contexts).

WoMan adopts the declarative setting [11], working in First-Order Logic
(FOL). This is a further advantage in this domain, since various kinds of rela-
tionships involved in chess playing are fundamental to correctly grasp high-level
information about it. Based on these premises, a secondary objective emerged:
that is, to check whether the learned information provides useful hints to humans
about chess playing, using both qualitative and quantitative evaluations. How-
ever, it is important to point out that we are not interested in assessing the
superiority of declarative approaches to process mining versus more classical
ones in general, nor in directly comparing WoMan to other systems.

This paper is organized as follows. After summarizing basics and related
work on Process Mining, we briefly recall the architecture and formalism of
WoMan, and we present some considerations about the issues and opportunities
raised by the formalism, which is more powerful than those usually adopted in
the Process Mining literature. Section 5 deals with experimental settings and
results, showing that WoMan is able to learn this complex kind of process and
to discover interesting information in that domain. Finally, Sect. 6 draws some
conclusions and outlines future work issues.

2 Basics and Related Work

A process consists of a suitable combination of actions, performed by any kind
of agents [1,2]. It may involve sequential, concurrent, conditional, or iterative
execution [12]. A workflow is a formal specification of a process [12]. A case is
a particular execution of actions compliant to a given workflow. Cases can be
described by traces, consisting of lists of events associated to steps (time points).
Several traces may be collected in logs [13]. A task is a generic piece of work,
defined to be executed for many cases of the same type. An activity is the actual
execution of a task by a resource (an agent that can carry it out). A workflow
can be modeled as a directed graph, where Nodes are associated to states or
activities, while Edges represent the potential flow of control among activities;
they can be labeled with probabilities and/or boolean conditions on the state
of the process, which determine whether they will be traversed or not [1]. In
literature have been proposed, for representing processes, Finite State Machines
(FSMs) [3] and Hidden Markov Models (HMMs); both are unsuitable to model
concurrency. Subsequent works have mainly focused on Petri nets, or on their
restriction WorkFlow nets (WF-nets) [12], purposely developed to express the
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control flow in a process. E.g., [12,14] learn models in the form of WF-nets. The
α-algorithm family [4,13,15] mines processes in the class of sound Structured
WF-nets, which can handle parallelism only between pairs of tasks. WoMan
framework describes process models with a FOL-based approach. This setting
is called Declarative Process Mining and is recognized as being very important
when dealing with particularly complex models and domains [11]. Control flow
is modeled by imposing only a set of constraints that must be satisfied when
executing the process activities. The chess domain is far from the purposes of
classical process mining techniques, indeed nothing is done in the literature.
Others approaches dealt with this domain and recent work on Machine Learning
applied to chess playing investigated the use of Deep Learning [8] and Neural
Networks [10]. However, the proposed approaches are sub-symbolic (i.e., models
are not human readable) and require huge amounts of examples. Thanks to its
declarative approach, WoMan overcomes both these shortcomings.

3 Advanced Process Mining with WoMan

The WoMan framework [5,6] introduced some important novelties and peculiari-
ties in the process mining and management landscape. A fundamental one is the
pervasive use of FOL as a representation formalism, that allows to describe con-
textual information using relationships. In particular, it works in the Logic Pro-
gramming fragment of FOL [9]. Due to space limitations, the interested reader
is referred to [5,6] for a detailed presentation of WoMan’s architecture, features
and representation formalism. Here, we will briefly and intuitively recall the
notions that will be useful to understand the proposed application.

3.1 Architecture

Several modules are included in WoMan to perform the different tasks involved
in learning and managing process models. WIND (Workflow INDucer) allows
one to learn or refine a process model according to a case, after the case events
are completely acquired. The refinement may affect the structure and/or the
probabilities. Differently from all previous approaches in the literature, WoMan’s
learning module is fully incremental : not only can it refine an existing model
according to new cases whenever they become available, it can even start learning
from an empty model and a single case, while others need a (large) number of
cases to draw significant statistics before learning starts. This is a significant
advance with respect to the state-of-the-art, because continuous adaptation of
the learned model to the actual practice can be carried out efficiently, effectively
and transparently to the users [5].

PAT (Process Analysis Tool) allows one to perform several kinds of analysis
on the learned model, such as identifying the most frequently used model compo-
nents, comparing the frequent components among different models, comparing
the structure of different models, etc.
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The supervision module allows one to check whether new cases are compliant
with a given model. WEST (Workflow Enactment Supervisor and Trainer) takes
the case events as long as they are available, and returns information about
their compliance with the currently available model for the process they refer
to. The output for each event can be ‘ok’, ‘error’ (e.g., when closing activities
that had never begun, or ending the execution while activities are still running),
or a set of warnings denoting different kinds of deviations from the model (e.g.,
unexpected task or transition, preconditions not fulfilled, unexpected resource
running a given activity, etc.).

While in supervision mode, the prediction modules allow one to foresee which
activities the user is likely to perform next, or to understand which process is
being carried out among a given set of candidates. Specifically, SNAP (Suggester
of Next Action in Process) hypothesizes which are the possible/appropriate next
activities that can be expected given the current intermediate status of a process
execution, ranked by confidence. Confidence here is not to be interpreted in the
mathematical sense; it is determined based on a heuristic combination of several
parameters associated with the history of the current partial process execution.
Finally, given a case of an unknown workflow, WoGue (Workflow Guesser)
returns a ranking (by confidence) of a set of candidate process models.

3.2 Representation

Following the foundational literature [1,7], WoMan takes as input trace elements
consisting of 7-tuples, represented as logic atoms of the form:

entry(T,E,W,P,A,O,R).

where T is the event timestamp, E is the type of the event (one of ‘begin process’,
‘end process’, ‘begin activity’, ‘end activity’), W is the name of the workflow
the process refers to, P is a unique identifier for each case, A is the name of the
activity, O is the progressive number of occurrence of that activity in that case,
and R is an optional field can be used to specify the resource that is carrying
out the activity (it was not present in [1,7]).

A model describes the structure of a workflow using the following elements:

tasks: the kinds of activities that are allowed in the process;
transitions: the allowed connections between activities.

The core of the model is the set of transitions, since they carry all the informa-
tion about the flow of activities during process execution. A transition can be
formalized as

t : I ⇒ O

where t is a unique identifier and I,O are multisets of tasks. t is enabled if
all input tasks in I are concurrently active. It occurs when, after stopping (in
any order) the concurrent execution of all tasks in I, the concurrent execution
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of all output tasks in O is started (again, in any order). Given this behavior,
activities that terminate play the same role as tokens in Petri Nets. Carrying
on this analogy, the current set of terminated activities not yet used to fire any
transition is the marking, and firing a transition consumes all the tokens reported
in the corresponding multiset I.

Each task or transition t is associated to the multiset Ct of training cases
in which it occurred (a multiset because a task or transition may occur several
times in the same case). It can be exploited both for guiding the conformance
check of new cases and for computing statistics on the use of tasks and tran-
sitions. In particular, it allows us to compute the probability of occurrence of
a task/transition t in a model learned from n training cases as the relative fre-
quency |Ct|/n. Tasks and transitions can also specify the involved resources (i.e.,
for transitions, the agents that must carry out the activities in I and O).

As shown in [5,6], this representation formalism is more powerful than Petri
or Workflow Nets [14], that are the current standard in Process Mining. It can
smoothly express complex task combinations and models involving invisible or
duplicate tasks, which are problematic for those formalisms.

4 Supervision and Prediction Issues

The increased power of WoMan’s representation formalism for workflow models
raises some issues that must be tackled. In Petri Nets, since a single graph is
used to represent the allowed flow(s) of activities in a process, at any moment in
time during a process enactment, the supervisor knows exactly which tokens are
available in which places, and thus which tasks are enabled. So, the prediction
of the next activities that may be carried out is quite obvious, and checking
the compliance of a new activity with the model means just checking that the
associated task is in the set of enabled ones. Conversely, in WoMan the activity
flow model is split into several ‘transitions’, and different transitions may share
some input and output activities, which allows them to be composed in different
ways with each other. As a consequence, many transitions may be eligible for
application at any moment, and when a new activity takes place there may be
some ambiguity about which one is actually being fired. Such an ambiguity can
be resolved only at a later time. Let us see this through an example.

Example 1. Suppose that the given model includes the following transitions:

t1: {x} ⇒ {a, b} t2: {x, y} ⇒ {a} t3: {w} ⇒ {d, a}
and that the current marking (i.e., the set of the latest activities that were termi-
nated in the current process enactment, but not yet used to fire any transition)
is {x, y, z}. Now, suppose that activity a is started. It might indicate that either
transition t1 or transition t2 have been fired. Also, if an activity d is currently
being executed due to transition t3, the current execution of a might correspond
to the other output activity of transition t3, which we are still waiting to happen
to complete that transition. Each of these options would change in a different
way the process evolution, as follows:
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t1: firing this transition would consume x, yielding the new marking {y, z} and
causing the system to wait for a later activation of b;

t2: firing this transition would consume x and y, yielding the new marking {z}
and causing the completion of transition t2;

t3: firing this transition would not consume any element in the marking, but
would cause the completion of transition t3.

We call each of these alternatives a status. So, given an intermediate status of
the process enactment and a new activity that is started, there may be different
combinations of transitions that are compliant with the new activity, and one
may not know which is the correct one until a later time. Thus, all the corre-
sponding alternate evolutions of the status must be carried on by the system.
When the next event is considered, each of these evolutions is a possible status
of the process enactment. On the one hand, it poses again the same ambiguity
issues; on the other hand, it may point out that some current alternate statuses
were wrong. So, as long as the process enactment proceeds, the set of alter-
nate statuses that are compliant with the activities carried out so far can be
both expanded with new branches, and pruned of all alternatives that become
incompatible with the activities carried out so far.

Note also that each alternative may be compliant with a different set of train-
ing cases, and may rise different warnings (in the previous example, one option
might be fully compliant with the model, another might rise a warning for task
preconditions not fulfilled, and the other might rise a warning for an unexpected
agent running that activity). WEST takes note of the warnings for each alterna-
tive and carries them on, because they might reflect secondary deviations from
the model that one is willing to accept. Wrong alternatives will be removed when
they will be found out to be inconsistent with later events in the process enact-
ment. So, the question arises about how to represent each alternative status. As
suggested by the previous example, we may see each status as a 5-tuple

〈M,R,C, T,W 〉

recording the following information:

M the marking, i.e., the set of terminated activities that have not been used
yet to fire a transition, each associated with the agent that carried it out
and to the transition in which it was involved as an output activity;

R the set of activities that are ‘ready’ to start, i.e., the output activities of
transitions that have been fired in the status, and that the system is waiting
for in order to complete those transitions;

C the set of training cases that are compliant with that status;
T the set of (hypothesized) transitions that have been fired to reach that sta-

tus;
W the set of warnings raised by the various events that led to that status.

The system also needs to remember, at any moment in time, the set Running
of currently running activities and the list Transitions of transitions actually
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carried out so far in the case. The set of statuses is maintained by WEST, as
long as the events in a case are processed.

As regards predictions, we recall that, due to the discussed set of alternate
statuses that are compliant with the activities carried out at any moment, differ-
ently from Petri Nets it is not obvious to determine which are the next activities
that will be carried out. Indeed, any status might be associated to different
expected evolutions. The good news is that, having several alternate statuses,
we can compute statistics on the expected activities in the different statuses,
and use these statistics to determine a ranking of those that most likely will be
carried out next.

Confidence of activity predictions carried out by SNAP is determined based
on a heuristic combination of several parameters associated with the possible
alternate process statuses that are compliant with the current partial process
execution. Specifically, the activities that can be carried out next in a given status
are those included in the Ready component of that status, or those belonging
to the output set of transitions that are enabled by the Marking component of
that status. The status parameters used for the predictions are the following:

1. frequency of activities across the various statuses (activities that appear in
more statuses are more likely to be carried out next);

2. number of cases with which each status is compliant (activities expected in
the statuses supported by more training cases are more likely to be carried
out next);

3. number of warnings raised by the status (activities expected in statuses that
raised less warnings are more likely to be carried out next);

4. confidence of the tasks and transitions as computed by the multiset of cases
supporting them in the model (activities supported by more confidence, or
belonging to transitions that are associated to more confidence, are more
likely to be carried out next).

Also process prediction carried out by WoGue is based on the possible alter-
nate statuses identified by WEST when applying the events of the current process
enactment to the candidate models. In this case, the candidate models are ranked
by decreasing performance of their ‘best’ status, i.e. the status reporting best
performance in (one or a combination of) the above parameters.

5 Evaluation: Chess Playing as Process Execution

In the following, we evaluate the performance of the WoMan’s activity prediction
approach in the chess playing domain. This domain is appropriate because it is
characterized by much more variability and subjectivity in the users’ behavior,
and it does not involve a ‘correct’ underlying model, just some kind of ‘typicality’
can be expected. The chess domain also allows us to evaluate the performance
of the process prediction approach.
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For our experiments, we downloaded from the Website of the Italian Chess
Federation (http://scacchi.qnet.it) 400 reports of actual top-level matches played
by Anatolij Karpov and Garry Kasparov (200 matches each), and translated
them from PGN (Portable Game Notation), an open source format representing
the moves in algebraic notation, to the input format of WoMan.

As already pointed out, playing a chess match corresponds to enacting a
process. A task is the occupation of a specific square of the chessboard by a cer-
tain piece and the corresponding activities are characterized by the time at which
the piece starts occupying a square and the time at which it leaves that square.
Each task/activity is encoded as a 4-characters string denoting, respectively:
chessboard file, chessboard rank, piece (in the following we used the Italian ini-
tials: p = pawn, t = rook, a = bishop, c= knight, d = queen, r = king), and player
(b = white, n = black). Transitions correspond to moves: indeed, each move of a
player (resource) terminates some activities (since it moves pieces away from the
squares they currently occupy) and starts new activities (that is, the occupation
by pieces of their destination squares). Three kinds of transitions are allowed:
normal moves, takes and castlings. Note that a transition just reports the initial
and final piece positions, without any specification of the game constraints that
allow it to be a valid move (e.g., no pieces on the pathway, no own piece in
destination square, etc.).

Example 2. The following are valid examples of chess-based tasks/activities:

b4pb means that a white pawn is in square b4;
c8rn means that the black king is in square c8.

On the other hand, the following are valid examples of chess-based transitions
on some activities:

tj : {c6cn} ⇒ {e5cn} a black knight moves from square c6 to square e5 without
taking any piece;

tk: {b4pb, c3an} ⇒ {b4an} a black bishop moves from square c3 to square b4
and takes a white pawn (indeed, activity c3an is terminated, indicating that
the pawn is removed from square b4);

tl: {e1rb, a1tb} ⇒ {c1rb, d1tb} castling: the white king moves two squares left
from its initial square e1, and a white rook goes from its initial square a1 to
the square immediately right of the white king.

Each log entry bears the following information:

T a progressive number indicating the event timestamp;
E one of the allowed event types:

begin of process the start of a match;
begin of activity a certain piece is placed in a certain square;
end of activity a certain piece is removed from a certain square;
end of process the end of a match.

W the name of the process model the entry is referred to;
P a unique match identifier, obtained by concatenation of the following data:

name of white player, name of black player, place and date of the match;

http://scacchi.qnet.it


256 S. Ferilli and S. Angelastro

Table 1. Dataset statistics

Player # Matches Events Tasks Runtime (sec)

Total White Black Draw Total Avg Total Avg Total Avg

Karpov 200 79 48 73 45088 225.44 22344 111.72 43.192 0.215

Kasparov 200 79 39 82 45244 226.22 22422 112.11 41.192 0.205

Total 400 158 87 155 90332 225.83 44366 110.915 94.4 0.236

Fig. 1. Incremental learning behavior for white (Color figure online)

A the name of the activity;
O the progressive number of occurrence of A in P
R the player (white or black) responsible for the beginning or end of activity.

As regards the processes of interest, we considered three processes, corre-
sponding to the possible match outcomes: white wins, black wins, or draw. Then
we used the following WoMan functionality. First we used WEST, to check
compliance of each training case with the current models, in combination with
WIND, to learn and refine the models after the compliance check of each case.
On the final learned models, we used PAT, to see whether interesting information
was discovered and ‘compiled’ in the models. Finally, we used SNAP and WEST
to check whether correct predictions could be obtained using the learned models,
in this way indirectly evaluating the quality of the discovered information.

Table 1 reports statistics on the dataset and on the learning runtime of
WoMan. The number of matches for the three processes is similar for the two
players. Note that the average (avg) number of events and tasks are nearly iden-
tical, suggesting that it does not depend on the specific players. Also the average
runtime needed to learn the models is almost identical for the two subsets, sug-
gesting it only depends on the number of cases. For the whole dataset, including
twice as much cases as the single subsets, average runtime is still comparable
to those of the subsets, which confirms that WoMan has an acceptable time
complexity (linear or loglinear) in the number of processed cases. Less than a
quarter of a second is needed on average to incorporate a new match in the
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Fig. 2. Incremental learning behavior for black (Color figure online)

Fig. 3. Incremental learning behavior for draw (Color figure online)

available model, which means, considering that each match involves nearly 226
events on average, that each event is processed in about 1 ms. We may conclude
that WoMan has proven its ability to learn such complex kinds of workflows.
Figures 1, 2 and 3 show the dynamic learning behavior. The graphics report the
number of new tasks (blue line) and transitions (red line) that were found in each
new training case, compared to those already learned from all previous cases.
The peaks, especially for tasks, become progressively lower and sparser, which
confirms that the system is actually converging on a subset of very relevant tasks
and transitions.

Table 2 shows that the number of tasks and transitions is comparable in the
models learned from the two training subsets. The number of tasks is almost
the same also in the overall dataset, which was expected because the number
of all possible piece positions is small (752) compared to the number of tasks
in the training sets. Nevertheless, the models actually use only up to 90% of all
possible tasks, suggesting that some piece positions are undesirable. Conversely,
the number of different transitions from the subsets to the overall dataset grows,
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Table 2. Model statistics

Karpov Kasparov Karpov+Kasparov

White Black Draw White Black Draw White Black Draw

# Matches 79 48 73 79 39 82 158 87 155

# Tasks (avg) 629 624 588 635 567 615 681 663 658

3.14 3.12 2.94 3.17 2.83 3.07 1.7 1.65 1.39

# Transitions (avg) 2665 2055 1949 2445 1575 2318 4083 3006 3434

13.32 10.27 9.74 12.22 7.87 11.59 10.20 7.51 8.58

Fig. 4. Statistics on tasks frequency for the white process (Color figure online)

as expected, but the growth is less than linear, even if they are much less than
all possible ones. This may indicate that only a small portion of moves is really
relevant to players. We also note that the number of different moves is neatly
larger when the white wins than when the black wins.

Let us now focus on the frequency of tasks and transitions. Figures 4 and 5
refer to the white process, but it is representative of black and draw, as well.
So, we will not report the graphics for these processes. The blue line plots the
number of cases in which the different tasks (a) and transitions (b) occur in the
model, by decreasing frequency. The same information is shown also as difference
between adjacent values (red line), and as cumulative difference in occurrences
(yellow line). The initial plateau in (a) is given by the initial position of pieces
on the chessboard, that of course occurs in all training cases. The shape shows a
clear drop in frequency very early (i.e., toward the left) along the x-axis, that is
evident also in the series of close peaks in the red line. It suggests which are the
most frequent items on which further analysis can be carried out. Table 3 shows
the 20 most frequent (non-initial) tasks for each process (in decreasing order
from left to right). The frequency of task/transition t refers to the probability
of occurrence of t (|Ct|/n) in its model. Very interestingly, we find in the top
positions the tasks that correspond to well-known openings widely acknowledged
in the chess literature. E.g., in all processes d4pb (white pawn in d4) is in the top
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Fig. 5. Statistics on transitions frequency for the white process (Color figure online)

Table 3. Most frequent tasks for the different processes

1 2 3 4 5 6 7 8 9 10

w d4pb f6cn f3cb f1tb e4pb g1rb f8tn g8rn c3cb c5pn

b f6cn f3cb d4pb g8rn f8tn c3cb g1rb f1tb e4pb c5pn

d f6cn d4pb f8tn f3cb g8rn f1tb g1rb c3cb c5pn c4pb

11 12 13 14 15 16 17 18 19 20

w c4pb e6pn d5pn c6cn d6pn d1tb d7cn f4pb g6pn e5pn

b c4pb d5pn c6cn e6pn e5pn d1tb d6pn d4pn d5pb b5pn

d e6pn e7an e4pb d5pn c6cn d5pb d6pn e5pn g3pb d4pn

3 positions, f3cb (white knight in f3) is in the top 4 positions, and e4pb (white
pawn in e4) is in the top 13 positions.

Since many tasks and transitions appear in all processes, the question arises
about which ones, if any, are more characteristic or discriminant for the final
outcomes of a match (i.e., for each process). We took the set of k most frequent
tasks for each process, for different values of k, and computed the differences
among such sets. The lower k, the more characteristic the items in such a differ-
ence are expected to be for a given process. E.g., considering the top 10 tasks in
Table 3, e4pb (white pawn in e4) is present in white and black, but not in draw,
suggesting that it may be discriminant for the latter. Conversely, c4pb (white
pawn in c4) somehow characterizes draw, because it is in its 10 most frequent
tasks, but not in the top 10 of the others. Clearly, there is an obvious skew of
frequencies in favor of initial moves, where the possibilities are more limited, and
thus we expect to find initial moves of the pieces for low values of k, while for
higher values of k we expect that all kinds of processes have exploited all possible
initial moves, and thus the characterizing or discriminant items are more related
to the middle of the match. Table 4 shows, for each process, all the tasks that
never occurred (but that occurred in the other processes), and all those that
always occurred (but never occurred in the other processes).
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Table 4. Characteristic and discriminant tasks for the different processes

White Never a4cn, a5an, b2pn, b2rb, b4cb, b7cb, c1cn, c8ab, d2pn, e2cn, e8cb, f1cn, f1dn,
f2cn, f2dn, f3tn, f4an, g1dn, g1tn, g2dn, g2tb, h1dn, h2an, h3db, h7ab

Always a1cn, a7cn, a7pb, a7rn, a8cn, a8rn, b2rn, b7pb, b7rb, b8ab, c2pn, c2rn,
c5rb, d7rb, d8cb, e7pb, e7rb, f7ab, f7rb, g1ab, g1rn, g2pn, g2rn, g3rn, g8an,
h1cb, h2db, h2pn, h2tb, h3rn, h5rb, h7cb, h8cn, h8db, h8dn

Black Never a1db, a2cb, a2cn, a4rn, a5rb, a5rn, a6ab, a6db, a6pb, a6rb, a7ab, a7tn,
b1db, b3tb, b4tn, b5rb, b6rb, b7cn, b8an, b8rn, c4rb, c6rb, c8cn, c8db, d1an,
d2an, d3rn, d3tn, d6rb, d7ab, d8rn, d8tb, e1dn, e2an, e4rb, e5rb, e6db, e8ab,
e8dn, f6cn, f6db, f6rb, f6tb, f7cn, f7dn, f7pb, f7tn, f8cb, f8cn, g2cb, g3an,
g4cb, g4tb, g5an, g5cn, g5db, g6cb, g6db, g7dn, g7pb, h2ab, h2dn, h3pn,
h4cn, h4rn, h4tb, h5db, h5rn, h6cb, h6db, h6dn, h6tn, h7db, h7dn, h7tn

Always a1ab, a1cb, a1rb, a1tb, a2rb, a3cn, a3rb, c1rn, c3rn, d2rn, e1cn, f3rn, f4rn,
g1an, g5rb, g8ab, h1db

Draw Never a2db, a4rb, a5ab, a6cb, b1an, b3dn, b4rb, b6db, b6pb, b8cb, c7pb, c7rn,
d1cn, d4rn, e2pn, e3pn, e6ab, f2pn, f3cn, f4tn, f5rb, f5rn, f5tb, f8ab, g2tn,
h1tn, h2tn, h3tn, h4tn, h5ab, h8an, h8tb

Always a1an, a2an, a6rn, a8ab, b3an, b4rn, b5cn, b5rn, c1an, c1cb, c4rn, c5rn, d8cn,
e1ab, e1an, e2rn, e3rn, f1an, g1db, g8db, h4an, h7pb

These considerations are confirmed for transitions. For k = 20, characteriz-
ing moves for white-winning matches are [f2pb]-[f4pb] (white pawn moving two
squares from its initial position f2) and [b8cn]-[d7cn] (black knight moving from
b8 to d7). The latter move may be interesting, because it cannot be done before
the pawn initially placed in d7 moves away, and thus there are less chances that
it happens frequently in the initial moves.

As regards the prediction of next activities, we report in Table 5 some sta-
tistics obtained from an 80%–20% training-test set random split procedure for
the different processes. Column ‘predictions’ reports in how many cases SNAP
returned a prediction (when tasks or transitions not present in the model are
executed in the current enactment, WoMan assumes a new kind of process is
enacted, and avoids making predictions). Among the cases in which WoMan
makes a prediction, column ‘correct’ reports in how many of those predictions
the correct activity (i.e., the activity that is actually carried out next) is present,
and column ‘Ranking’ reports how close it is to the first element of the ranking
(1.0 meaning it is the first in the ranking, possibly with other activities, and 0.0
meaning it is the last in the ranking). The ‘Quality’ index is the product of these
values:

Quality = Predictions · Correct · Ranking

It ranges from 0.0, meaning that predictions are completely unreliable, to 1.0,
meaning that WoMan always makes a correct prediction. Interestingly, when a
prediction is made it is almost certainly correct, and contains the next actual
activity at the top of the ranking. The number of predictions made is also inter-
esting, given that in more than half of the match WoMan is able to suggest
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which will be the next action in the game. This is noteworthy, also compared to
the state-of-the-art [8,10], and indicates that significant information about chess
was discovered in the models. The worse performance is on ‘black’, which is the
one with less training cases.

Table 5. Prediction statistics

Activity Process

Predictions Correct Ranking Quality Acc Avg F A L

Black 0.42 0.98 1.0 0.41 0.50 2.0 0.25 14.62 77.12

White 0.53 0.98 1.0 0.52 0.37 2.26 0.25 18.75 69.17

Draw 0.69 0.97 1.0 0.67 0.73 1.54 0.85 32.35 73.5

Overall 0.55 0.98 1.0 0.53 0.53 1.93 0.45 21.91 73.26

Finally, Table 5 reports also the performance on the process prediction. Avg
is the average position of the correct prediction in the ranking; Acc reports the
accuracy, computed by normalizing Avg (1 meaning the correct process is the
first in the ranking, 0 meaning it is the last). Columns F , A, L report respectively,
on average, at what point during a case the following events occur: the correct
process becomes the F irst in the ranking for the first time (possibly sharing
the first position with others); the correct process becomes Alone the first in
the ranking for the first time; the correct process is not the first in the ranking
for the Last time (i.e., there are no more incorrect predictions after L). Each
process performs best on a different parameter: ‘black’ on A, ‘white’ on L, ‘draw’
on Acc. Interestingly, while the overall accuracy is not outstanding, the correct
process appears very early at the top of the ranking, and after less than 3/4 of
the process enactment on average the correct process is definitively assessed.

6 Conclusions and Future Work

The main objective of this paper was checking whether, and to what extent,
advanced process mining techniques, and specifically the WoMan framework for
process mining and management, can support efficient and effective knowledge
discovery in complex domains. For this purpose, we focused on chess playing,
and cast it as a process. The experimental outcomes showed that, albeit further
work is to be carried out, satisfactory initial results have been obtained for all
objectives. From the process mining perspective, WoMan proved able to learn
chess models effectively and efficiently. From the chess perspective, the learned
models discovered interesting features of the game, including (fragments of) some
well-known notions and techniques in the chess literature.

As a future work, we will investigate the other features of WoMan, to check
whether additional useful information can be discovered (e.g., it may learn pre-
conditions that correspond to the rules of the game or to relevant game strate-
gies). We also plan to find other domains that provide complex processes from
which trying to discover useful information.
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