
Chapter 5
Knowing Ratio and Proportion for Teaching

James J. Madden

Abstract Ratio and proportion have been part of school mathematics since the
earliest manifestations of anything like school math in the Middle Ages. In
this paper, I compile and comment on statements from primary sources of the
last 2300 years to exhibit ideas that appear to have influenced the treatment of
these topics in schoolbooks today. Historical sources clarify many points about
the contemporary curriculum, supporting the contention that an understanding of
history of ideas concerning ratio and proportion is an important component of
knowledge of mathematics for teaching.

5.1 Introduction

Some of the occasionally puzzling things that we read in school mathematics
textbooks, or find in discussions about standards or in commentaries about school
math, can best be explained by reference to the long, complicated history of the
curriculum. When we read that the quantities used in forming a ratio must be of the
same kind, we are catching an echo of Definition 3 of Book V of Euclid’s Elements:
“A ratio is a sort of relation in respect of size between two magnitudes of the same
kind.” Similarly, the statement that a proportion is an equality between two ratios
refers back to Definition 6 of the same book: “Let magnitudes which have the same
ratio be called proportional.” Euclid, and two millennia of scholarly writings on
Euclid, have influenced the way we speak about proportion today.

Another powerful influence, largely independent of the classical tradition, de-
veloped with the emergence of mercantilism in Europe in the Middle Ages. The
rule of three is a method for solving the proportions that arise in trade, such as
deducing the cost of one amount of a commodity from the cost of another amount,
assuming that the conditions of the sale remain the same. The rule was known in
antiquity and was described in texts such as al-Khwārizmı̄’s Algebra (c. 820 CE) and
Fibonacci’s Liber Abaci (1202 CE). It was always closely associated with numerical
computations and the use of units. From the thirteenth to the sixteenth century, the
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method was taught in the so-called abbaco schools that sprang up in northern Italy
to provide the training in calculation required for the trades. As the Renaissance
spread northward from Italy across Europe, the curriculum of these schools spread
with it (Bjarnadóttir, 2014; Heeffer, 2009), eventually making its way to the New
World and helping to shape the American mathematics curriculum in the eighteenth
and nineteenth centuries. Abraham Lincoln wrote of learning the rule of three in the
brief autobiography he prepared for his 1860 presidential campaign. Even today,
one finds on the Internet many problems that are modern versions of schoolbook
exercises from this tradition.

Ideas and habits that shape teaching practice tend to persist from generation
to generation by a kind of cultural replication (Stigler & Hiebert, 2009). With
respect to ratio and proportion, it is not merely that artifacts of the past survive.
An examination of history shows continuity over more than a millennium. Some
traditions have imprinted the practices of the present to such an extent that it can
be difficult to make sense of the latter without reference to the former. A deep,
mathematically informed understanding of the history of mathematics—not at the
higher levels of scholarship, which is where most histories tend to focus, but at
the level of the classroom—has practical relevance for teachers, teacher-educators,
textbook authors, curriculum specialists, and anyone else who might influence
mathematics education.

This essay assembles evidence in support of this thesis. In Sect. 5.2, I collect
numerous statements of the rule of three from the seventh century up to the present.
As we shall see, the formulations of this rule remained stable over more than ten
centuries. Clearly, there has been a tendency for teachers (or at least textbooks) to
perpetuate certain ways of thinking and behaving mathematically.

In Sect. 5.3, I return to Book V of the Elements. This work influenced scholarly
writing about ratio and proportion from the Middle Ages onward. Wallis and
Newton referred to Euclidean proportion in explaining the new conception of the
number system that was beginning to emerge in the seventeenth century. Wallis
discussed explicitly the reasons why ratios (as comparisons of magnitudes) could
only be formed between magnitudes of the same kind. Galileo used patterns of
reasoning borrowed from Euclid in considering the proportional relationships that
arise in physics. Thinking in terms of magnitudes and their classical ratios—
rather than numbers and operations on them—is characteristic of physics from the
early Enlightenment up till today. In addition, important influences of Book V on
contemporary mathematics occur in the theory of measurement (see Hölder, 1901
and Michell, 1999) and in the mathematics of ordered algebraic structures (Bigard,
Keimel, & Wolfenstein, 1977). The Common Core Standards for grades K-5 treat
measurement in a manner that is consistent with the Euclidean approach. However
Book V shows a profound connection between the topic of ratio and proportion and
the topic of measurement that seems to be overlooked in contemporary school math.

In Sect. 5.4, I examine some comments by mathematicians and mathematics
educators about ratio and proportion in the contemporary curriculum. I believe
that they sacrifice some aspects of the Euclidean theory that are meaningful in the
sciences. In Sect. 5.5, I present a modern interpretation of a central idea of Elements,
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Book V. The point here is to show that the contents of this book are neither quaint
nor outdated. It contains ideas that are relevant to how we think about the modern
curriculum. I have tried to present the most important ideas in a way that will be
accessible to a broad audience. Finally, in the last section, I gather together the
conclusions that I think can be gleaned from this historical sight-seeing tour, and I
share some final thoughts.

This essay is not intended to be a contribution to scholarship on the history of
mathematics in the usual sense. I wish to suggest the relevance of the history of the
mathematics curriculum to modern problems of teaching and instructional design.
I hope that the reader will conclude that significant “discursive formations” (to
borrow a phrase from M. Foucault) can be identified in the history of mathematics
teaching and that they illuminate the structure of the modern curriculum. This paper
will have achieved its goal if readers come away convinced that there is something
to be gained by studying what one might call the “archeology of the mathematics
curriculum.” The task for the future is to pursue this in a disciplined and systematic
way, with the aim of contributing to knowledge of mathematics for teaching.

5.2 The Rule of Three

Early in 1859, Abraham Lincoln’s friend, Jesse Fell, asked Lincoln to prepare
an autobiography, hoping to use it to help generate publicity for the potential
presidential nominee. Lincoln’s response, a letter of four paragraphs,1 was used
as a basis for an article that appeared in the Chester County Times, February 11,
1860, the day before Lincoln’s fifty-first birthday. In the second paragraph, Lincoln
described his boyhood in Spencer County, Indiana, where his family moved in 1816:

. . . It was a wild region, with many bears and other wild animals still in the woods. There
I grew up. There were some schools, so called; but no qualification was ever required
of a teacher, beyond “readin, writin, and cipherin” to the Rule of Three. If a straggler
supposed to understand latin, happened to sojourn in the neighborhood, he was looked upon
as a. . . wizzard. There was absolutely nothing to excite ambition for education. Of course
when I came of age I did not know much. Still somehow, I could read, write, and cipher to
the Rule of Three, but that was all.

In pioneer communities like Lincoln’s, families contracted a schoolmaster and
paid a fee for each child. When he was around eleven, Lincoln attended Azel
Dorsey’s school in Little Pigeon Creek, Indiana, a mile and a half from the Lincoln
cabin. “It was built of unhewn logs, and had holes for windows, in which greased
paper served for glass. The roof was just high enough for a man to stand erect”
(Lamon, 1872, p. 33). At the schools he attended during the next several years, he
kept a “ciphering book” much of which his stepmother preserved. After Lincoln’s

1The Library of Congress holds authenticated reproductions of the original letter, which may be
viewed on the internet.
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death, his law partner, William Herndon, acquired it. Ten of the surviving pages are
reproduced in the first volume of the Rutgers edition of Lincoln’s collected works
(1953). One page bears the title “The Single Rule of Three.”

Besides the so-called subscription schools like those that Lincoln attended,
there were other forms of basic education at that time. Many boys in their early
teens entered indentures, or contracts of apprenticeship, which obligated them to
work for a master and reciprocally obligated the master to care for and educate
the young person. Often, these contracts required the master to teach his charge
to read, write, and “cipher to [or as far as, or through] the rule of three.” This
meant learning arithmetic with whole numbers and fractions, conversions of units
of measure, weight and currency, and techniques for basic proportions. Numerous
examples of such contracts can be found in genealogical databases, accessible via
the Internet. One web site, for example, contains a copy of the Apprentice Bonds
from Cumberland County, North Carolina. There we read that on December 6, 1823,
the orphan Leonord Cason, about 14 years of age (thus sharing his birth year with
Lincoln), was bound to a certain David D. Salmon, “To learn the art and trade of a
saddler and harness maker and to be taught to read, write and cypher through the
rule of three.” Other boys were bound in apprenticeships as carpenters, bricklayers,
coopers, blacksmiths, chair-makers, cabinetmakers, hatters, shoemakers, tailors,
carriage-makers, farmers, millwrights, clerks, accountants, printers, bookbinders,
and so on—all of them to be trained to “read, write and cipher through the rule of
three.” Lincoln’s words echo the formulaic language of the learning standards of
his day. In writing what he did in his autobiography, Lincoln was saying that his
education met the typical requirements for the education of young man preparing
for a trade.

What, then, is the rule of three? In modern algebraic notation, the rule is
expressed as follows:

for any positive numbers a; b; c; x if
a

b
D

c

x
then x D

b c

a
:

However, the algebraic formulation tells us little about the teaching and use of the
rule. Every application of the rule requires recognizing the roles of the numbers
involved, including the units of measure in which the problem is stated and the units
required for the answer. This is the pragmatic dimension of the rule, distinct from
the symbolic structure by which the rule is expressed and the idea it encapsulates,
but essential in teaching, learning, and using the rule.

In early sources, the rule was presented as a procedure for finding the value of x,
given a, b, and c and an understanding of the roles they play in a transaction. For
example, given that b shillings are paid for a ounces, if you want to find what must
be paid for c ounces, multiply b and c and divide this number by a. This is a number
of shillings, which must be expressed as a number of pounds, a number of shillings,
and a number of pence before the solution is complete.
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Smith (1958, p. 483) states that the name for the rule originated in India, though
similar rules were stated in older materials from other places. Brahmagupta, who
wrote around 630 CE, says (in translation):

In the rule of three, argument, fruit and requisition [are names of the terms]: the first and
last terms must be similar. Requisition, multiplied by the fruit, and divided by the argument
is the produce. (Colebrooke, 1817, p. 287)

The procedure was described by al-Khwārizmı̄ in his Treatise on Algebra, written
early in the ninth century in Baghdad. The brief Chapter on Transactions (which
is more or less independent of the other major chapters of the work) contains the
following statement:

Know that all transactions between people, be they sales, purchases, exchange, hire, or
any others, take place according to two modes, and according to four numbers pronounced
by the enquirer: the evaluative quantity, the rate, the price, and the evaluated quantity. : : :

[A]mong these four numbers, three are always obvious and known, and one of them is
unknown : : : You examine the three obvious numbers. Among them it is necessary that
there be two, of which each is not proportional to its associate. You multiply [them] and
divide the product by the other obvious number : : :; what you get is the unknown number
sought : : : . (Rasheed, 2009, p. 196)

The words evaluative quantity, rate, price, and evaluated quantity are translations
of Arabic words that were used to differentiate the roles of the numbers. In
modern notation, according to the translator, these numbers stand in the following
relationship:

evaluative quantity

rate
D

evaluated quantity

price
:

The chapter contains only a few, trivial examples to illustrate the application of the
rule. It seems to be a report on widely used commercial practices, rather than guide
for teaching them.

Now we jump ahead several centuries and shift focus from the East to pre-
Renaissance Italy. Here, between 1200 and 1300 CE, as the mercantile revolution
gathered momentum, communal and independent schools grew up to meet the needs
of increasing numbers of young men headed for commercial and civic careers. The
mathematics required for commerce was taught in the abbaco schools, which first
appeared in northern Italy after 1250 (Goldthwaite, 1972). Historian Jens Høyrup
has argued that the curriculum of the abbaco schools was derived from a culture of
practical mathematics based on the Hindu-Arabic system that was well established
in northern Africa, Spain, and southern France by the twelfth century (Høyrup,
2005). Presumably, this had been carried from the East by the expansion of Islamic
civilization.

Late in the twelfth century, the young Fibonacci traveled through northern Africa,
absorbing the mathematics used there and recording it in his Liber Abaci (1202).
Fibonacci’s book is often cited as a source for the emerging abbaco curriculum,
but Fibonacci clearly was not the only conduit (Høyrup, 2005). In the abbaco
schools, boys (roughly) between the ages of 10 and 13 learned how to write numbers
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with Hindu-Arabic numerals; how to perform the basic algorithms for whole-
number addition, subtraction, multiplication, and division; and how to calculate with
fractions. After this, they studied “commercial mathematics (in varying order): the
rule of three, monetary and metrological conversions, simple and composite interest
and reduction to interest per day, partnership, simple and composite discounting,
alloying, the technique of a single false position and area measurement” (Høyrup,
2014, page 120). In short, boys in the abbaco schools learned to cipher to the rule of
three—plus some.

Chapter 8 of the Liber Abaci opens with a paragraph that echoes al-Khwārizmı̄:

In all commercial transactions, four proportional numbers are always found, of which three
are known, but the remaining one is unknown. The first of the three known numbers is the
number of units sold, be they bundles, or weights, or measures. A bundle might be, for
example, a hundred hides or a hundred goatskins, or similar things: a weight might be a
cantarum, or a centum, or a libra or an uncia, or something similar. A measure might be a
metra of oil, or a sestario of corn, or a canne of cloth. The second number is the price of the
sale to which the first number refers, and it may be a quantity of denari, or of bezants, or of
tareni or some other monetary unit. The third is another quantity of the same merchandise
as in the sale, and the fourth is the unknown price [to be determined]. (Boncompagni, 1857,
page 83; free translation by JJM, aided by Sigler, 2012)

The first example in the chapter asks, “If 100 rolls cost 40 pounds, how many
rolls can I buy for 2 pounds?” (a roll is a unit of weight.) Solutions were found
by means of what Fibonacci called the “Principal Method,” which goes as follows.
Write the number of items of the first sale in the upper right of a square and in the
upper left write the price paid; in the lower left, write the price in the second sale
and to the right, leave a blank:

40 100

2 ‹

Multiply the two numbers that lie in the ascending diagonal and then divide by the
number in the upper left. The result is the price to be paid.

The simple problem in the previous paragraph illustrates the procedure, but it is
not at all representative of the kinds of problems that Fibonacci discusses. In the
third problem, for example, the price of 27 rolls is sought, given that 100 rolls sells
for 13 pounds. This is found to be 3 C 51=100 pounds, by the Principal Method.
Fibonacci goes on to express the result in the form that would be needed in an
actual transaction, as a number of pounds plus a number of soldi plus a number
of denari. There being 20 soldi in a pound and 12 denari in a soldo, the result is
3 pounds, 10 soldi, and 2 C 4=10 denari. Chapter 8 contains nearly 150 examples
illustrating the rule and, in virtually all cases, the units of measure, and the monetary
denominations require attention. Eventually, in some problems, four different units
are used in stating the problem, and much of the effort in finding a solution goes
into making the required conversions. The problems, we can assume, are typical of
those that merchants encountered in an age when different regions had their own
systems of weights and measures and their own coinage.
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During the 1300s, the abbaco curriculum acquired a stable, durable form. From
the earliest times, many abbaco masters prepared handwritten manuscripts recording
problems and solutions, as they may have been used in instruction. About 250
of these survive in libraries all over the world (van Egmond, 1981). As the new
technology for printing spread across Europe after 1450, printed textbooks in
practical mathematics began to appear. It is said that the first of these was the Treviso
Arithmetic, of 1478. (A translation of this anonymous work is in Swetz, 1987.) A
large part of this text is devoted to examples of applications of the rule of three. As in
Fibonacci’s work, there is much attention to units, unit conversions, and expressing
monetary amounts in mixed denominations.

As Renaissance culture spread north through Europe, the mathematical culture
of the abbaco schools spread with it. The Bamberger Rechenbuch by Ulrich Wagner
(1483) contains a section on the rule, though here it is called the golden rule.
Robert Recorde’s The Ground of Artes (1543), one of the earliest printed books
on arithmetic in the English language, has a chapter entitled “The golden rule, and
the backer rule with divers questions therto belongynge.” Recorde’s book does not
appear to me to be a manual for instruction, but more an exposition for a literate
audience. Only a few illustrative examples of the rule are provided, but as in the
works already mentioned, they require careful attention to the roles of the numbers
involved and to the required unit conversions.

The rule was featured in Cocker’s famous Arithmetick, which first appeared in
1677. (Several editions can be viewed complete on Google Books.) In the 48th
edition (1736), Chapter 10 is entitled The Single Rule of Three Direct. It begins
on page 87 as follows:

1. The Rule of Three (not undeservedly called the Golden Rule) is, that by which we find
out a fourth Number, in Proportion unto three given Numbers, so as this fourth Number that
is sought may bear the same Rate, Reason, or Proportion to the third (given) Number, as the
second doth to the first, from whence it is also called the Rule of Proportion.

A few paragraphs later, we read:

6. In the Rule of Three, the greatest Difficulty is to discover the Order of the 3 Terms of
the Question propounded, viz., which is the first, second and third; which that you may
understand; observe that of the Three given Numbers, two always are of one Kind, and the
other [is] of the same Kind, with the proportional Number that is sought : : :

7. : : : to find out the fourth number : : :, multiply the second Number by the third, and divide
the Product thereof by the first : : :

Following a page of explanation, there are 15 examples worked in detail, each
filling about a page. These are very much like the problems in the Liber Abaci, in that
they require discerning the roles of the quantities, converting units, and expressing
the answer in a form appropriate for trade. In the following example, C: stands for
a hundredweight, which consists of 4 quarters (qrs:), each being 28 pounds (l:) in
weight. A pound (money) (l:) is 20 shillings (s:).

Quest. 10. If 3 C: 1 qr: 14 l: of Raisins cost 9 l: 9 s: what will 6 C: 3 qrs: 14 l: cost?
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Thomas Dilworth’s Schoolmaster’s Assistant, first published in London in 1743
and surely influenced by Cocker, became one of the most popular early arithmetic
texts in the United States, with numerous North American printings between 1770
and 1820. Dilworth begins his presentation of the rule of three with the following
catechism:

Q. By what is the Single Rule of Three known?
A. By three Terms, which are always given in the Question to find a Fourth.

: : :

Q. What do you observe concerning the first and third Terms?
A. They must be of the same Name and Kind.
Q. What do you observe concerning the fourth Term?
A. It must be of the same Name and Kind with the Second.

: : :

Q. How is the fourth Term in Direct Proportion found?
A. By multiplying the second and third Terms together and dividing that Product by the

first Term.

The first problem following the instructional part reads, “If 3 Oz: of silver cost 17s:
what will 48 Oz: cost?” The answer is worked out by multiplying 48 and 17 to get
816 and then dividing by 3 to get 272. This number of shillings is then converted
to pounds and shillings by dividing by 20 (the number of shillings in a pound)
to get the final answer: 13l: and 12s. The questions and answers from Dilworth
quoted above are written out verbatim in Lincoln’s ciphering book. Here we also
read in Lincoln’s hand the statement of the problem of the 3 Oz: of silver and its
solution, as well as several other problems from Dilworth. Lincoln’s teacher must
have been using a copy of the Schoolmaster’s Assistant. (Much more information
about Lincoln’s mathematics education, and his ciphering book in particular, can be
found in Ellerton and Clements, 2014.)

In the late nineteenth century, schoolbooks began incorporating modern algebraic
notation; see White (1870), for example. Rather than a cipher with four numbers,
students would write an equation between two ratios, e.g., 12=30 D 42=x: In a 1921
manual for teachers (Klapper, 1921), we read:

A proportion is merely one method of writing a simple equation, and with the use of the
letter x allowed, the equation form is likely to replace that of proportion. : : : For example,
consider this problem: If a shrub 4 ft. high casts a shadow 6 ft. long at a time that a tree
casts one 54 ft. long, how high is the tree? Here we may write a proportion in the form

6 ft: W 4 ft: D 54 ft: W .‹/;

not attempting to explain it, but applying only an arbitrary rule. This is the old plan. Or we
may put the work into equation form,

x

54
D

4

6
;

and deduce the rule for dividing the product of the means by the given extreme : : : (page
183)
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No less than before, students need to discern the roles of the various numbers in
order to place them in the appropriate graphical schema. Operationally, the method
remains as it has been all along. The connection to algebra clarifies some points that
would not have been evident from the rule for the manipulation of numbers. For
example, various cancelations that are justified by the algebraic content can be used
to simplify the calculation.

We have seen the use of the word “proportion” in the historical sources. The
quotes from Cocker (and other remarks made by Cocker in the chapter we looked
at) give the impression that he regarded proportion as a more theoretical topic
that provided the justification for the rule of three. By the time of Cocker, Euclid
was widely studied and written about by English scholars, and the connections
to practical mathematics were probably recognized. The language in the teachers’
manual suggests that the author understood the phrase “a proportion” to refer a
problem of the type that the rule of three was meant to dispatch and that he expected
students to deal with such problems by well-practiced but poorly grasped routines.

Looking back, we see that the rule of three has been a robust schema that for
hundreds of years has been a stable part of the school mathematics experience. There
have been changes in appearance, including more prominent reference to proportion
and attempts to link the notation to algebra. Yet even today, if one searches the web
for problems on ratio and proportion, much of what one finds reflects the ancient
patterns with modern adaptations. The following comes from the Khan Academy
web site: “Pamela drove her car 99 kilometers and used 9 liters of fuel. She wants
to know how many kilometers (k) she can drive with 12 liters of fuel.”

In the Common Core Standards for Mathematics, the rule of three is not
mentioned, nor are the manipulations associated with it. In grade 6, students
represent and reason about ratios and collections of equivalent ratios, and in grade
7 they learn to recognize proportional relationships between varying quantities and
to represent them with an equation of the form y D k x, where k is a constant. The
standards shift away from setting up and solving proportions, i.e., equations of the
form A

B D C
x with A, B, and C constants, and focus on proportional relationships,

i.e., the relationships between variables x and y that are expressed by y D k x. It is
not my intention to describe the vision of the new standards here, but I would like to
draw attention to the fact that some observers of teachers have noted that the rule of
three schema seems to have a powerful hold on the thinking of many, to the extent of
creating the suspicion that it hinders the understanding of proportional relationships
in the manner suggested by the standards; see (Stanley, 2014).

5.3 Euclidean Ratio and Proportion

A completely different tradition concerning proportion springs from Greek mathe-
matics. This is described in Book V of Euclid’s Elements. The terms A and B in the
Euclidean ratio of A to B are not numbers but things, classically called “magnitudes.”
Lengths, areas, weights, and temporal durations are kinds of magnitudes. When
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forming a Euclidean ratio, the magnitudes must be of the same kind; otherwise,
the sort of direct comparison required to make a ratio is not possible. According to
Plato, understanding this was basic knowledge; those who believed that a line might
measure a surface, or a surface a volume, exhibited an ignorance “more worthy of a
stupid beast like the hog than of a human being” (Laws, 819d, A. E. Taylor, trans.).

The ancient Greek concept of number was fundamentally different from ours.
In Greek mathematics, number—ἀριθμός (arithmos)—referred to a multitude com-
posed of units. This idea encompassed the counting numbers 2; 3; 4; : : : but none of
the other things that today we call number. On the other hand, the ancient Greeks
understood there to be nonnumerical quantities of many kinds: line segments, areas,
volumes, weights, etc. The generic term for these was μεγέθη (megethe), typically
translated as magnitudes. These were not numbers and were not associated with
numbers, but nonetheless one could operate upon magnitudes of a given kind by
doing some (but not all) of the things we do with numbers. For example, given
two different magnitudes of the same kind, one could determine which is larger by
direct juxtaposition, or one could add them together by manipulations specific to
the kind: in the case of lengths, by placing them end to end in a straight line; for
polygonal areas, by cutting along lines and joining along edges; and for volumes of
a liquid, by putting them in a single container. Most importantly (for us), given two
magnitudes of the same kind, one could form a ratio—λόγος (logos)—between
them. Magnitudes forming equivalent ratios were said to be in proportion—
ἀνάλογον (analogon). Because Greek ratios are not formed from numbers, but
from magnitudes, the meaning of ratio and proportion in ancient Greek thought
was different from present-day schoolbook notions, but it is nonetheless relevant to
the modern curriculum in some unexpected ways, especially in measurement and in
understanding quantity concepts.

Euclid’s Elements was influential in European mathematics from the late Middle
Ages. Translations into the vernacular languages of Europe were made in the
sixteenth century, and in the seventeenth century, the study of Euclid was basic to a
scientific education. During the seventeenth century, some English mathematicians
strove to blend the Euclidean framework with the more modern number concepts
that were then emerging. John Wallis (1685, page 79) described the idea of a
Euclidean ratio as follows (with italics as in the original):

[The] whole definition of λόγος (Ratio, Rate, or Proportion) . . . [is] that Relation of two
Homogeneous Magnitudes (or Magnitudes of the same kind,) how the one stands related to
the other, as to the (Quotient, or) Quantuplicity: That is, How many times, (or How much of
a time, or times,) one of them contains the other. The English word How-many-fold, doth in
part answer it, . . . but because beside these which are properly called Multiple or Many-fold,
(such as the Double, Treble, &c. which are denominated by whole Numbers,) there be many
others to be denominated by Fractions, (proper or improper,) or Surds, or otherwise; . . . to
which would answer (in English,) How-much-fold, (if we had such a word) . . .

Ratio in the sense described here is not a relationship between numbers but is
the means by which we pass from magnitudes of a nonnumerical kind to numbers.
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Wallis was explicit on this point: “When a comparison in terms of ratio is made,
the resultant ratio often (namely with the exception of the ‘numerical genus’ itself)
leaves the genus of quantities compared, and passes into the numerical genus,
whatever the genus of quantities compared may have been” (Wallis, 1968). This, of
course, is not something that Euclid said; it is a new spin on Euclid, made possible
by the new conception of number. The closest analog we have in modern thought to
the Euclidean ratio of A to B is the measure of A by B. Indeed, Otto Hölder referred
to Euclid in proposing an axiomatization for measurement in his fundamental paper
of 1901 (Hölder, 1901). We shall return to Hölder’s work in Sect. 5.5.

One of the most important applications of ratio in the Elements occurs at the
beginning of Book VI, where Euclid shows that the ratio of the areas of two triangles
with the same altitude is equal to the ratio of their bases. Although Euclidean
ratios are relationships between magnitudes of the same kind, Euclid can compare
a ratio between things of one kind to a ratio between things of another. The famous
criterion for sameness of ratio is given in Definition 5 of Book V and is recognized
as a precursor of the modern definition of real number. (We will say more about
Definition 5 in §5, below.) As we have already mentioned, the term that Euclid
used to describe equal ratios is ἀνάλογον, which is translated into English as “in
proportion.” The term is introduced in Definition 6: “Magnitudes which have the
same ratio are said to be in proportion.” That is to say, when the ratio of A to B is
the same as the ratio of C to D, we say that the magnitudes form a proportion. (As
we can see in the first quote from Wallis, the word “proportion” has in addition been
used to refer to ratios.)

There is a powerful tradition related to Euclid’s definitions. If one looks for “ratio
and proportion” on the Internet, one finds numerous statements along the lines of
the following:

The ratio of two quantities of the same kind is the quotient of their measures. . . . An equality
of two ratios is called a proportion. (1977, p. 38)

The influence of the Euclidean paradigm is evident, but the use of measurement
to pass to numbers before taking ratios is a modern twist and a very peculiar—if
not incoherent—one if viewed from a Euclidean perspective. Measurement itself is
the formation of a ratio between nonnumerical inputs. Therefore, we cannot explain
what a ratio is by reference to measurement. To do so would be circular. An orthodox
modern Euclidean would explain the meaning of “in proportion” in the following
way: “If the measure of A by B is the same as the measure of C by D, we say that
the four quantities are in proportion.” To repeat, the quantities A, B, C, and D are not
themselves numbers, and no one of them is naturally associated with any number. It
is only the measure of A by B and the measure of C by D that can be thought of as
numbers.

At this point, some of the statements made in this section may seem obscure. We
will elaborate and clarify in the following sections.
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5.4 Mathematicians on School Math

In recent years, many mathematicians have commented on the meaning of ratio in
school mathematics. They seldom mention the Euclidean conception or take it seri-
ously. The following passages are from texts or papers by mathematicians. Because
I am quoting out of context, these snippets may not communicate accurately the
intent of the author. Therefore I make no attributions. Regardless of the author’s
intent, these passages contain ideas about ratio that I think we can recognize and
identify in many discussions of school math.

Ratios are essentially just fractions, and understanding and working with ratios and
proportions really just involves understanding and working with multiplication, division,
and fractions. . . . To say that two quantities are in a ratio A to B means that for every A units
of the first quantity there are B units of the second quantity.

By definition, given two . . . [numbers] A and B, where B 6D 0 and both refer to the same
unit (i.e., they are points on the same number line), the ratio of A to B, sometimes denoted
by AWB, is the . . . [number] A=B.

We say that the ratio between two quantities is A W B if there is a unit so that the first
quantity measures A units and the second measures B units. . . . Two ratios are equivalent if
one is obtained from the other by multiplying or dividing all the measurements by the same
nonzero number. . . . A proportion is a statement that two ratios are equal.

In one way or another, the authors of these passages all say that we form a ratio
out of a pair of numbers or that a ratio is nothing but a pair of numbers. Notice that
in all three statements, A and B stand for numbers. The things themselves—what
I have been calling the magnitudes—are mentioned but never named. If we take
these statements seriously, the term “ratio” is not essential part of mathematical
vocabulary, but rather it is a word used to signal that the numbers that are involved
originate as the measures of two things whose relationship is of concern. The
words quoted above are suggestive of the notion that the vocabulary of mathematics
includes words for numbers, for sets of numbers, for arrays of numbers, for
relationships between numbers, and for operations on numbers but does not include
words that refer to things in the world.

The sciences other than mathematics take a different view. The quantities
of physics are not labeled numbers but magnitudes much as conceptualized by
Euclid. The basic magnitudes are length, mass, and time, and other magnitudes
are composites of the basic magnitudes, e.g., velocity is length/time, acceleration
is velocity/time, force is mass � acceleration, energy is length � force, and power is
energy/time. If a unit is chosen for each basic magnitude, then each instance of
each magnitude has an associated number. But in physics, it is more productive
to reason with the magnitudes than with the numbers assigned to them through a
choice of unit. This is the position advocated in many physics textbooks. Physicist
Sanjoy Mahajan explains as follows; see Mahajan (2010, page 4). The inclusion
of units, such as feet or feet per second in a problem about a falling body, he
says, “creates a significant problem. Because [if we are given that] the height
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is h feet, the variable h does not contain the units of height: h is therefore
dimensionless.” If the other variables in the given problem are also numerical, then
they are also dimensionless, and likewise any combination of them is dimensionless.
Consequently, no combination is favored. However, the kinds of the given quantities
can guide us—and indeed they will guide us—if we use variables to stand directly
for magnitudes. We should not pose the problem of a falling body by asking for
“the number v of feet per second that the body is moving after falling h feet, given
the acceleration a in feet per s2.” Instead, we should understand each variable to
stand for a quantity with a kind (or “dimension”), and we should recognize that we
may only combine and compare magnitudes in a manner that is consistent with their
kinds. We benefit thereby, because the physical meaning is built in to the terms with
which we reason. If we ask, “What is the velocity v after falling a distance h, given
the acceleration a,” then evidently, the only magnitude we can compound from h
and a that has the same genus as v is the square root of h � a, and so we can expect
v to be proportional to the square root of h � a. We double the velocity by increasing
the height by a factor of 4. Readers of Newton’s Principia will find it filled with
passages where the reasoning is of this kind but far more sophisticated. Newton’s
arguments about complex proportional relationships typically do not mention units
or numbers. He uses units and numbers only when presenting experimental data.

5.5 Euclidean Magnitudes and Measurement

Above, we quoted Wallis saying that when we take the ratio of two magnitudes
(which need not be numbers) we create a number. Two centuries after Wallis, Hölder
provided a systematic elaboration of this idea. In this section, I will give a simplified
account of what Hölder said. This is based on a set of basic ideas about magnitudes
that are implicit in Book V of the Elements, together with some modern ideas about
number.

From the presentation in Book V, we can infer that Euclid assumed several
things about the members of each specific kind of magnitude. Hölder carefully
disentangled these assumptions and called them the axioms for measurement. We
can express them as follows:

(1) Compare. Given two objects of one kind, either they are equivalent (as members
of their kind), or if they are not equivalent, then one is larger than the other.
Moreover, if A is larger than B and B is larger than C, then A is larger than C.

(2) Add and subtract. Given two objects of a kind, we can add them to make a larger
thing of the same kind. For example, we can put things with length end to end,
or we can bind two masses together, etc. (We are not adding numbers! We are
operating directly on things, much as first-graders do in some curricula before
they ever learn to make measurements and represent the sizes of things with
numbers; see the contribution of H. Bass to the present volume.) A smaller
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magnitude may be removed from a larger one of the same kind. Moreover,
addition and subtraction of magnitudes have the following properties:

(a) Addition is not sensitive to the order in which the parts are joined or
assembled (i.e., it is associative and commutative).

(b) Subtraction is the inverse of addition; that is to say, if we add B to A and
then subtract it, then we get back to A. And if we subtract B from A and
then add it back, we get back to A.

(c) Adding the same magnitude to two others preserves their order. In other
words, if A is less than B, then A C C is less than B C C. The same is
true of subtraction; if A is less than B, then A � C is less than B � C. If
A is equivalent to B and the same magnitude is added to—or subtracted
from—both, then the resulting magnitudes are equivalent.

(3) Duplicate and form integer multiples. We can make copies of a magnitude—as
many as we like. We may add two, three, or any number of duplicates of a given
magnitude to itself and thus double, or triple, or form any multiple we please of
the given magnitude.

Remark Let us stop for a moment to note some important consequences of the first
three items. If A is a magnitude and we add together m copies of A, we call the result
mA. The properties of addition imply that if A < B (respectively, A D B, A > B),
then mA < mB (respectively, mA D mB, mA > mB) for all m. By assumption (1), for
any A and B, exactly one of the conditions A < B, A D B, A > B holds. Therefore,
if mA < mB (respectively, mA D mB, mA > mB) for any particular m, then A < B
(respectively, A D B, A > B).

Infinitesimal magnitudes had no role in the Euclidean theory of ratio. On this
point, Euclid was explicit. Definition 4 states, “Magnitudes are said to have a ratio
to one another which can, when multiplied, exceed one another.” Accordingly, we
add the Archimedean axiom to the list of properties that the magnitudes of a given
kind must possess:

(4) Given a lesser and a greater magnitude, some multiple of the lesser exceeds the
greater.

If we take conditions (1)–(4) together, they form a system of axioms. As we
have said, they were first isolated by Hölder in (1901). Today, mathematicians will
recognize them as an informal statement of the axioms for the positive part of an
Archimedean totally ordered group. Math educators, on the other hand, will see
here a collection of ideas that are closely related to the sequence of developmental
benchmarks that children attain in mastering measurement. By age 5, children are
able to identify measurable attributes, such as length and weight, to compare things
with respect to length or weight and to use representations to make comparisons
between objects that cannot be compared directly. After this, they acquire the ability
to put several things in order with respect to a measurable attribute that they all share
and to build up varying lengths by laying units end to end (or varying weights by
combining weights in an appropriate way). Following this, the ability to compare
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and add are elaborated and refined, while the idea of using a number of identical
units to represent an arbitrary length (or weight) develops (Sarama & Clements,
2009, pp. 289–292). The Common Core proposes standards for measurement in
grades K-5 that reflect these stages. In grades K-2, children work with materials that
directly mirror the abstract attributes of magnitudes that we listed.

At this point, we can continue the exposition in two ways. One way will be
agreeable to mathematicians. It is brief and it states the mathematical content with
great efficiency, but it is likely to be meaningless to many readers. The other way
will be accessible to patient readers who have a modest mathematical background. It
reveals historical connections and elaborates notions in the present-day curriculum
concerning measurement, ratio, and proportion in interesting ways. We will go
quickly through the first way and go carefully through the second.

For mathematicians, the heart of the matter is Hölder’s theorem, which says the
following. Suppose G is an Archimedean totally ordered group. (We will write G in
additive notation.) Let 0 < B 2 G. For each 0 < A 2 G, define the real number
ŒAWB � by the following rule:

ŒAWB � WD sup
n n

m

ˇ̌
ˇ mA � nB I m; n 2 N n f0g

o
2 R;

where sup means supremum, i.e., least upper bound. Evidently ŒB W B � D 1. It can
be shown that for all A; C 2 G>0, the following are true:

(i) A � C ) ŒAWB � � ŒC WB �;
(ii) ŒA C C WB � D ŒAWB � C ŒC WB �.

Furthermore, A 7! ŒA W B � has a unique extension to an injective order-preserving
group homomorphism from G to the additive real numbers. (Interestingly, Hölder’s
theorem does not require the hypothesis that G be commutative—the commutative
property for G is implied by the other hypotheses; for background and a complete
proof, the reader may consult (Bigard et al., 1977, pp. 48–50); see also Madden
(2008) for elaborations relevant to measurement.) Notice that if mA D nB for some
positive integers m; n, then ŒA W B � D n=m. If there are no positive integers m; n
such that mA D nB, then ŒA W B � is an irrational number. We never assumed that
a magnitude could be divided into equal parts—that is to say, we did not assume
G to be divisible. If G is divisible, then ŒA W B � is simply the supremum of the set
of positive rational numbers q such that qB � A. In view of this, ŒA W B � may
reasonably be called “the ratio of A to B” or “the measure of A by B,” because it
has the properties that we expect of these things. In particular, to recall the words of
Wallis, ŒAWB � answers How-much-fold of B there is in A.

Now, let us examine the same material from a less technical vantage point.
For concreteness, we will concentrate on lengths. Recall that we can (in principle)
compare any two lengths by putting them side by side, lining them up at one end,
and observing which goes further. If your pencil and mine line up at both ends,
then as lengths they are the same. (Of course, the two pencils are different physical
objects, but when we are concerned with them as lengths, this difference makes no
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difference; a philosopher might say that lengths are “equivalence classes” of objects
of experience.) We can add any two lengths by putting them end to end. We can form
multiples by duplicating and adding repeatedly. We can do all this with no need to
measure or to assign numbers to the lengths, and these operations are well-behaved
in the sense that the assumptions above are true of them. It is precisely because we
can do these things, and because the outcomes are so governed, that we can form
and compare ratios. How so? This will take some space to explain.

Suppose A and B are lengths. If we form a multiple of A and a multiple of B,
then we can compare those multiples. Either they will be the same (with respect to
length) or one will be larger than the other. Further, we need not stop with a single
pair of multiples. We may consider all pairs, mA and nB, where m and n are allowed
to range over all whole numbers. As we shall see, when we reason about the ratio of
A to B, we must consider all such pairs of multiples.

Imagine all possible number pairs arrayed as a grid in the first quadrant of the
coordinate plane, where .m; n/ is the point lying m steps to the right of the origin
and n steps above it. For each pair .m; n/, just one of the following is true: mA < nB
or mA D nB or mA > nB. Let us decorate the grid points according to which of
the options we find. If mA < nB, we draw an open circle at .m; n/. If mA D nB, we
draw a red dot at .m; n/. If mA > nB, we draw a black dot at .m; n/. Note that we use
a square grid—the horizontal steps are the same size as the vertical ones. Our grid
is being used to record and label the number pairs only. We do not use the multiples
of A and B in laying out the grid. We refer to the magnitudes only in deciding how
to decorate the points with circles or dots.

The picture below shows the result of following this rule when A is the side of
a square and B is its diagonal. The point .2; 1/ in the grid is black, because two As
placed end-to-end exceed one B. Similarly, the point .3; 2/ is black, because three As
exceed two Bs. We have drawn a light gray line through the origin in such a manner
that it separates the black dots from the open circles. The point at .7; 5/ is above
the line because 7A < 5B (though the circle around it happens to touch the line).
There are no red dots in this picture, nor will there be any if the picture is extended,
because we can never find a multiple of A that is equal to a multiple of B.
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According to Euclid, the classification of the number pairs .m; n/, which is
illustrated in the grid diagram, tells us all there is to know about the ratio of A
to B. That is, if we know for which .m; n/ it is true that mA < nB, and we know for
which .m; n/ it is true that mA D nB, and we know for which .m; n/ it is true that
mA > nB, then we know everything about the ratio of A to B. All this is recorded
in the diagram of dots and circles, since every .m; n/ eventually gets marked with
a circle or a red dot or a black one as the diagram is extended. Euclid says that if
A and B are magnitudes of the same kind and C and D are magnitudes of the same
kind as one another (but possibly of a different kind than A and B), then the ratio of
A to B is the same as the ratio of C to D if and only if the diagram for A and B is
the same as the diagram of C and D. This explains the meaning of the famous (and
famously obscure) Definition 5 of Book V:

Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth,
when, if any equimultiples whatever are taken of the first and third, and any equimultiples
whatever of the second and fourth, the former equimultiples alike exceed, are alike equal
to, or alike fall short of, the latter equimultiples respectively taken in corresponding order.

Returning to our exposition of Hölder’s ideas, we will use diagrams in place of
the formal reasoning he employed. We will show that every ratio of magnitudes has
a real number associated with it in a canonical way. We begin by listing some things
that follow from conditions (1)–(4) concerning the diagram for a pair of magnitudes
A; B. These are all things that Euclid would have understood, though of course he
did not use dot diagrams.

First, if we draw a line through the origin and a point .m; n/, then all the grid
points on that line will be decorated in the same way—if one is circled, then they all
are; if one is colored black (respectively, red), then they all are. This follows from
the remarks after (3).

Second, in any diagram, there will be some circles and some black dots. This
follows from (4), since given any m, there will be some n such that mA > nB. Thus,
every column will have some circles. Symmetrically, given any n, there will be some
m such that nB < mA. Thus, every row will have some black dots.

Third, if a line through the origin passes through a black grid point, then all the
grid points below this line are black. Similarly, if a line through the origin passes
through a circled grid point, then all the grid points above this line are circled. To
see this, suppose .m; n/ is black and ` is the line through .0; 0/ and .m; n/. Suppose
.m0; n0/ lies below `. Then .m n0; n n0/ lies on `, and .m0 n; n0 n/ lies below .m n0; n n0/

on the same vertical line, so it’s black. Since .m0; n0/ and .m0 n; n0 n/ lie on the same
line through the origin, the former is also black. The claim about circled points is
seen by a similar argument.

Fourth, if a line through the origin passes through a red grid point, then all the
grid points below that line are black and all the grid points above that line are circled.
This can be seen by the same reasoning used in the previous observation.

Let us consider what happens if mA D nB for some .m; n/. In this case, the
line through .0; 0/ and .m; n/ marks the boundary between the black points and the
circled points. Of course, all the grid points that lie on this line are red. According to
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Euclid’s Definition 5, the ratio of the numerical quantity n to the numerical quantity
m is the same as the ratio of A to B. The reason for this is that the diagram for A
and B is the same as the diagram for n and m since both diagrams have a red dot
at .m; n/. In this case, we associate the rational number n=m with the ratio of A
to B. This takes care of the ratios that, as Wallis said, are “denominated by whole
Numbers : : : [or] by Fractions, (proper or improper).”

Now, let us consider what happens if mA 6D nB for all .m; n/. In this case, we need
a different approach. With each grid point .m; n/, we can associate the fractional
number n=m. We may color the points on the fraction line in conformity with the
decorations on the grid: color n=m black if the grid point .m; n/ is black and color
n=m gray if the grid point .m; n/ is circled. Since mA 6D nB for all .m; n/, no points
will be red. The first observation above shows that there is no ambiguity in the way
we assign colorings. Condition (1) assures that every grid point is decorated, and
therefore every positive fraction will be either black or gray. The second observation
shows that some positive fractions will be colored black and some will be gray.
Finally, the third observation shows that if n=m is colored black, then every positive
fraction less than n=m will also be black, while if n=m is colored gray, then every
positive fraction greater than n=m will also be gray. In particular every black number
is less than every gray number. Hence, the decorated fraction line will appear as in
the picture below. Here, we have marked the fractions corresponding to the grid
points closest to the line we drew in the previous diagram.
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The last step appeals to the modern definition of the real number system. A
partition of the (positive) rational numbers into two sets with the properties of the
black and gray sets above is called a Dedekind cut. To be precise, a Dedekind cut
is a coloring of the rational numbers by two colors—black and gray, say—in such
a manner that every rational number is colored, some rational numbers are black
and some are gray and every black number is less than every gray number. The real
number system has the property that for any Dedekind cut, there is a unique real
number that is greater than or equal to each rational number colored black and less
than or equal to each rational number colored gray. This is the number we associate
with the ratio of A to B.

This has been rather long-winded, and essentially it has brought us to the
definition of the function A 7! ŒA W B � that we made above in a single line.
On the other hand, the ideas and imagery that have entered this discussion might
conceivably be incorporated in actual curriculum materials. For example, imagine a
lab experiment where we attempt to measure the weight of a 10d common nail using
a (lighter) 6d common nail as a unit. We might set up a balance and place various
numbers of 10d nails in one pan and then add 6d nails to the other pan until the
balance tips. We could record the data on a chart like what we made above, coloring
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the point .m; n/ black if m 10d nails weigh more than n 6d nails. Specifically,
beginning with a square grid of open circles in rows and columns labeled 1 through
20 (say), we could start by placing a 10d nail in one pan and then adding 6d nails to
the other pan until the balance tips. Then we blacken the circles in the first column,
up to the last one before the tipping point. Next, add a 10d nail to the first pan,
and then add 6d nails to the other pan until tipping, and blacken dots in the second
column by the same rule as the first. After moving through several columns, draw a
line separating the black dots from the open ones. The slope is a good approximation
of the measure of a 10d nail by a 6d one. The more columns we mark before making
the line, the better the approximation, and since when there are m 10d nails in a pan,
we are in essence measuring one 10d nail by mth parts of a 6d nail.

5.6 Conclusions

As we survey ideas related to ratio and proportion, a couple of things stand out. The
first has to do with the meaning of the symbols that are used in reasoning about
quantities. Even in the simplest of situations, such as the problem with the rolls,
there is a problem in the world (How much should I receive for 2 pounds?), and
there are symbols that we use to represent the problem and that we manipulate to
find the answer. In several different contexts, we raised the question of whether the
symbols refer to numbers or to objects in the world (or possibly to abstractions
intermediate between the things we experience and the objects of the orthodox
modern mathematical universe). In some respects, this does not seem to matter.
The question might be dismissed as a philosophical concern with no implications
for teaching, since it really makes no difference what the symbols mean in a
metaphysical sense, but only what students do with them. But this assumes that
the question makes no difference to the learners themselves. It very well might! The
symbols that we use are present in our experience alongside everything else that we
experience. That is, we are aware of the symbols themselves and are instinctively
interested in how they work. When a child draws a picture, the picture itself becomes
part of the world, and the child will speak about the picture, explain its parts, and
develop and modify its meaning by talking about it (Woleck, 2001). In a manner
that is not entirely different, learners are concerned about how meanings work
in the symbol systems they use: “What refers to what? How do I recognize the
connections? Why do I say or write this or that, and what does the result mean?” A
good account of the meanings of things is not a philosophical indulgence but a solid
support for student learning.

Laying out what the terms in a domain of knowledge refer to is a basic
task of artificial intelligence. In order to develop a system for recording, filing,
and systematically searching and retrieving medical information, for example,
information engineers need a representation of the kinds of things that might be
mentioned in a medical record and the kinds of relationships each might have to
every other thing. A patient has a name, a date of birth, a weight, a pancreas, a



112 J.J. Madden

prescription for eyeglasses, and innumerable other things. These things fall into
classes and are related (or not) in ways dictated by the classes. Some things may
change, some not. The weight may cause concern for the pancreas, but not for
the eyeglasses. To sort these things out, the engineer will create what is called an
ontology: a set of specifications about what there is in this knowledge domain, what
the terminology refers to, and what properties and relations the objects may have to
one another. The word “ontology” also has philosophical connections, but here we
understand an ontology simply as a very explicit, practical specification of what a
domain of discourse is about.

Our historical review of ratio and proportion has demonstrated that there are
several competing ontologies for proportional reasoning. Up till now, no one has
attempted to make the different competing ontologies fully explicit or to compare
how the different alternatives might work out in a curriculum. The first step,
clearly, should be to find an appropriate framework for sketching out the ontological
alternatives. How to do this and how to put the final results to use are topics for future
research.

The second thing that stands out is the intimate connection between measurement
and proportional reasoning. It is interesting that in the Common Core Standards,
the measurement and data domain spans kindergarten through grade 5, whence
in sixth grade this domain vanishes and the ratio and proportional relationships
domain appears. Reasoning with rates and proportions, I suggest, is more dependent
upon the ability to understand the measurement process than widely acknowledged.
The history of ratio and proportion bears this out. Of course, the ability to take
measurements, calculate rates, put measure numbers into formulae, and “cancel
units” at the appropriate times is important. But we need to attend to more than
the mechanics. What is the explanation for a cancelation such as the following?

10;000��feet �
0:3048 m

1��foot
D 3048 m

Perhaps you think that the words are just decorations to remind us that the
10;000 refers to feet, and the 0:3048 refers to meters. Or perhaps you prefer to
think of the words as symbols for magnitudes that are here being multiplied by
numbers. In either case, why is it that this cancelation procedure, which we have
validated previously for numbers, can be carried over to this nonnumerical context?
I cannot provide a complete rigorous answer that could be grasped in any seventh-
grade classroom. I challenge readers to propose one. Most interesting proportional
relationships involve heterogeneous quantities and a rate that relates the amount of
one quantity in given units to the amount of the other, in other units. How do we
change units—convert the driver’s miles per hour to the runner’s minutes per mile?
We need a deep grasp of measurement in order to do this. It seems to me that the
opportunity to produce a curriculum that ties measurement more closely to ratio and
proportion is wide open and that the work to be done is great but has great potential.

I would like to close with some remarks of a broader nature. What teachers know
and the knowledge that they value depends upon the knowledge and the values
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that are distributed throughout the systems that support teachers and teaching. The
authors of textbooks; the people who train, observe, and evaluate math teachers; the
people who develop and promote school policies; the people who compile standards;
and the people who design and evaluate tests—all of them use special forms of
mathematical knowledge and have their own mathematical priorities. At the system
level, as opposed to the level of the individual teacher, “mathematical knowledge for
teaching” becomes a matrix of meanings, understandings, habits of mind, and values
that circulate among individuals in different roles in the organizations, agencies,
and institutions that impact teaching. At this level, “mathematical knowledge for
teaching” is more of a cultural entity than the set of understandings and abilities
that we might find, or fail to find, in an individual. Culture is an emergent social
phenomenon, not what is in someone’s head.

Until the end of the twentieth century, the most powerful influencers of this
culture were probably the traditions within the teaching community, the textbook
writers and publishers, the professional organizations for teachers, and the university
programs that prepared teachers. Textbooks, as concrete records of practice, were
surely very influential. In the past several decades, new forces have come on
the scene: the various systems of standards (created by the NCTM, the states
themselves, and now the producers of the Common Core), the massive high-stake
testing programs resulting from federal legislation, and increased use of test data
in teacher evaluation. Within the last few years, there has been an explosion in the
availability of curriculum materials on the Internet.

The scholarly discipline of mathematics has always been about creating and
describing efficient, coherent systems of ideas. The same mindset ought to be
applicable to school mathematics. It should be possible to lay out the content of
school mathematics in good mathematical style, with rigorous definitions, clear
logic, and appropriate, unambiguous symbolism. Roger Howe’s essays on topics
in school mathematics are examples of this. Historically, however, mathematicians
have not been the chief architects of school mathematics—it has had no chief
architects. It has developed like the ancient cities that Descartes contemplated in
the Discourse on Method, which “from being at first only villages, have become, in
course of time, large towns” and which, as a consequence, are “usually but ill-laid
out compared with the regularly constructed towns which a professional architect
has freely planned on an open plain.” He added that “it is not customary to pull
down all the houses of a town with the single design of rebuilding them differently,
and thereby rendering the streets more handsome : : :,” and similarly, it would be
“preposterous for a private individual to think of reforming a state by fundamentally
changing it throughout, and overturning it in order to set it up amended : : : [or to
contemplate a] similar project for reforming the body of the Sciences, or the order
of teaching them established in the Schools : : :.”

The culture of the curriculum, as sustained by the institutions described above,
is traditional and syncretic. For whatever reasons and by whatever mechanisms, this
culture preserves patterns of expression and habits of thought, meeting pressure for
change by absorbing and transforming what is newly thrust upon it, forcing new
things into the spaces between old structures, or on top of them, or within them.
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It mixes and juxtaposes ideas, in much the same way popular culture samples and
remixes styles, cuisines, icons, and beliefs. Knowledge for teaching as it is at the
present time, rather than as we might wish it to be, resembles what knowledge for
healing was 150 years ago: a mixture of folkways, craft wisdom, and science, shaped
as much by social influence as by reason. To change it one would need to change
the institutional conditions around teaching, . . . but all this is something to take up
at another time. My main thesis here is that the knowledge for teaching that we
have at present—no matter what anyone might envision as a replacement—is the
result of cultural process spanning centuries. In many cases, the intellectual sources
have been reasonable and coherent, though this is not always evident in the resulting
hodgepodge. If we wish to replace what we presently have with something better,
the first step should be to understand truly what we have.

I would like to end on an inspirational note that Dick Stanley mentioned to me.
Descartes may have been quite right that it would be preposterous for an individual
to undertake the rebuilding of a city. But the preposterous and the impossible are two
different things. At the behest of Napoleon III, between 1853 and 1870, Georges-
Eugène Haussmann led a massive renovation of Paris, tearing down vast tracts of
ancient buildings and laying out the majestic city we know today. Though he was
forced from his position as Prefect of the Seine in 1870 by political opponents, the
project continued, reaching completion in 1927 with the opening of the Boulevard
Haussmann. Might we, in the present century, achieve something analogous for the
mathematics curriculum?
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