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Chapter 1
“Mathematics Matters in Education”
to Roger E. Howe and to All: An Introduction

Yeping Li, W. James Lewis, and James J. Madden

Abstract Roger Howe is one of a small group of prominent mathematicians in
the United States who has acted vigorously and productively out of concern for
the quality of K-12 mathematics education. Moreover, his work has encouraged and
supported the engagement of other mathematicians in this important endeavour. This
book is a Festschrift to recognize Howe for his more than 20 years of exemplary
efforts in addressing important issues in mathematics education and promoting
the development of mathematics education as an interdisciplinary field. It brings
together mathematicians and mathematics educators to demonstrate not only the
possibility but also the importance of joint efforts in improving the quality of
mathematics education.

1.1 Introduction

This volume grew out of a workshop held in 2015 on the campus of Texas A&M
University, College Station, in honor of Roger Howe’s 70th birthday. At that time,
Howe was a faculty fellow of the Texas A&M University Institute for Advanced
Study. Conceived with the theme “mathematics matters in education,” the workshop
aimed to highlight the importance of mathematics not only as a scientific discipline
but also as an essential component of school education. The theme reflects Howe’s
career, which began in pure research and expanded to accommodate his deep
concern for the quality of mathematics education and teacher education (see Li and
Lewis, in this book).
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4 Y. Li et al.

Mathematicians, mathematics educators, and other scholars from many higher
education institutions and professional organizations across the United States
attended the workshop. The broad participation demonstrates the significance of
the workshop’s theme and represents a tribute to Howe’s work and efforts in
mathematics education. This book is a collection of contributions developed from
the workshop that show how other mathematicians and mathematics educators have
connected to, learned from, or built upon several aspects of Howe’s work. As a
scholarly product of the workshop, this book is a celebration in print of Howe’s
contributions to mathematics education as an interdisciplinary field.

The workshop was structured with three topic areas in which Howe has invested
time and effort for more than 20 years. To make the workshop an occasion for
promoting further scholarly exchanges, Deborah Ball (also a co-organizer of the
workshop) helped to formulate these topic areas as the following questions for
workshop participants to share and discuss:

1. What is the state of our understanding of mathematical knowledge needed for
teaching? Howe has been engaged in the question of what teachers need to know
to teach in mathematically serious ways. We will explore what progress has been
made in identifying what teachers need to know in order to teach mathematics
with integrity.

2. What are some of the core ideas and practices in the K-12 mathematics curricu-
lum? Bringing coherence to the broad span of the school curriculum depends
on the identification of fundamental mathematical structures that underlie the
proliferation of disconnected topics and skills that muddle many US textbooks.
Howe has worked on this, focusing especially on the whole-number curriculum,
and has worked to bring the critical structural components of the curriculum in
sharp focus.

3. What can be done to support mathematicians who want to engage productively
in K-12 mathematics education, but who will not become full-time mathematics
educators? This is a question that Howe has been asking for over 15 years, and
it inspired the Institute for Mathematics Education, led by Bill McCallum at
the University of Arizona, to start a series of annual professional development
workshops for mathematicians. What other models may support mathematicians’
engagement in education? What do mathematicians need to understand about
education research or teaching teachers mathematics? What are the incentives?
What are the contextual issues that mathematicians must appreciate?

Howe’s work and leadership have helped draw together a diverse group of
mathematicians, mathematics educators, and other scholars. The spirit of interdisci-
plinary discussion and collaboration among them is evident, not only in terms of the
joint participation of the workshop itself but also in terms of their complementary
contributions to this book. The workshop’s speakers and discussion panellists
were invited because they had worked with Howe or used his work in their own
research in these topic areas, but there are certainly many other mathematicians and
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mathematics educators who have worked with him. The contributors of this book
by no means exhaust the community of those who have collaborated or cooperated
with Howe in mathematics education over the years.

This book demonstrates in a unique way the importance and benefits of joint
efforts of mathematicians and mathematics educators in addressing problems in
mathematics education. Although there have been a growing number of articles and
books that exemplify such joint efforts in recent years (e.g. Bass, 2005; Dewar,
Hsu, & Pollatsek, 2016; Fried & Dreyfus, 2014), more collaborations are needed.
We hope that the publication of this book will help serve as a call for further
collaborations among scholars of numerous backgrounds to improve mathematics
education in the United States and beyond.

This book is also the inaugural volume of the new international book series
on Advances in STEM Education, the first book series on science, technology,
engineering, and mathematics (STEM) education published by Springer. This new
series aims to provide a venue for sharing the research, policy, and practice of STEM
education and to promote cross-disciplinary collaborations in STEM education at
all school levels as well as through teacher education around the world. The spirit
of cross-disciplinary collaboration evident in this volume provides a starting point
for this book series to promote and advance multidisciplinary and interdisciplinary
research in STEM education across the globe.

1.2 Structure of the Book

This book is designed to offer mathematicians and mathematics educators with the
opportunity to share their work and reflect on how their work connects with or
builds upon Roger Howe’s efforts in mathematics education. It is organized in four
parts that parallel the structure of the workshop: (I) Introduction, (II) Knowledge
of mathematics for teaching and teacher education, (III) Core ideas and practices
in K-12 mathematics, and (IV) Supporting and engaging mathematicians in K-12
education.

Part I contains three chapters. The present introductory chapter provides readers
with an overview of the book. Chapter 2 reviews Howe’s contributions to mathe-
matics education, and Chap. 3 describes Howe’s views about selected challenges
faced by elementary school mathematics in the United States.

Part II focuses on the nature of the knowledge and expertise that teachers need
for effective teaching and the means by which they obtain it. Scholarly inquiries
and research about these questions have gone on for years, yet much remains
unclear. This is a problem that Howe has been interested in exploring, both in
terms of the mathematics itself, as well as the design of teacher preparation. Five
chapters are included in this part. In Chap. 4, Wu discusses the mathematical content
knowledge that teachers need in order to achieve a basic level of competence in
mathematics teaching and contrasts this with the incomplete form of understanding
that is perpetuated by what he calls “Textbook School Mathematics” (TSM).

http://dx.doi.org/10.1007/978-3-319-61434-2_2
http://dx.doi.org/10.1007/978-3-319-61434-2_3
http://dx.doi.org/10.1007/978-3-319-61434-2_4
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Wu emphasizes the importance of mathematical integrity, precision, and coherence
in teachers’ knowing of mathematics for teaching. In the next chapter, Madden
reviews the history of ratio and proportion attempting to isolate those ideas that
are most relevant to teaching. He suggests that not only teachers but also textbook
authors and curriculum supervisors ought to be aware of the ways in which very
old traditions have shaped the way we treat these topics. In Chap. 6, Beckmann
and Kulow discuss preservice teachers’ learning of mathematics for teaching.
They provide a case study of six preservice middle-grade teachers’ reasoning
related to proportional relationships. Their results highlight the importance of
supporting preservice teachers’ learning by identifying and responding to their
learning difficulties. Lai, Carlson, and Heaton (Chap. 7) consider the importance
of “knowing why” and “knowing what” in teaching in order to help students make
meaningful connections. They emphasize the importance of “giving reason” (why)
and “giving purpose” (what) in teaching and planning instruction. They analyse
one first-grade teacher’s classroom work to illustrate how these components relate
to one another. Ewing (Chap. 8) highlights the importance of learning from K-12
mathematics teachers. In particular, he offers a dramatic call for all involved in
mathematics education to respect K-12 mathematics teachers’ expertise and learn
from them when thinking about teaching and its improvement.

Part III takes on core ideas and practices in the K-12 mathematics curriculum.
This is a topic that has fascinated Howe for many years, as he has worked
meticulously to design proposals for change and improvement in elementary
school mathematics. The five chapters, contributed by both mathematicians and
mathematics educators, treat topics spanning kindergarten to high school. In Chap.
9, Fuson builds upon Howe’s proposed three pillars for first-grade mathematics and
beyond (Howe, 2014), to propose visual models that can help students learn the
aspects of mathematics identified by Howe. Bass (Chap. 10) contrasts two different
perspectives on number concept development using the number line: the occupation
narrative and the construction narrative. The first is the dominant approach in
current teaching practice, which begins by learning to count and then placing the
counting numbers and subsequently the fractions and the reals on the number line.
The second, exemplified by the Danilov curriculum, gives priority to reasoning
about quantity rather than the symbolic expressions for numbers. In Chap. 11,
Askey argues that some important topics in the curriculum can and should be
presented and taught in a manner that is more precisely motivated by mathematics.
He illustrates his ideas with the topic of geometric measurement and fractions.
Usiskin (Chap. 12) reflects on his work in developing a high school geometry course
based on transformations. This is closely connected to Howe’s work on continuous
symmetries in Euclidean geometry (Barker & Howe, 2007). Usiskin discusses the
similarities and differences in these approaches. In Chap. 13, Cuoco and McCallum
present a definition of curricular coherence with two aspects: coherence of content,
which deals with the arrangement of topics in curriculum, and coherence of practice,
which focuses on the habits of mind the curriculum fosters in students. They also
distinguish curriculum and standards and illustrate the two aspects of curricular
coherence with examples.

http://dx.doi.org/10.1007/978-3-319-61434-2_6
http://dx.doi.org/10.1007/978-3-319-61434-2_7
http://dx.doi.org/10.1007/978-3-319-61434-2_8
http://dx.doi.org/10.1007/978-3-319-61434-2_9
http://dx.doi.org/10.1007/978-3-319-61434-2_10
http://dx.doi.org/10.1007/978-3-319-61434-2_11
http://dx.doi.org/10.1007/978-3-319-61434-2_12
http://dx.doi.org/10.1007/978-3-319-61434-2_13
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Part IV focuses on ways of supporting and engaging mathematicians in K-12
school education. Over many years, Howe has actively advocated and supported
work in this important area, using his status as a leader in research to increase the
level of attention and respect for such work in the whole mathematical community.
The three chapters included here take perspectives at different administrative levels.
In Chap. 14, Cohen presents extensive evidence gleaned from her own experiences
concerning how mathematicians can work productively with teachers. There is a
significant intellectual challenge in finding ways to support teachers’ mathematical
work. But this must be joined with a respect for the broader intellectual work that
teachers engage in, which is of a different character from what mathematicians
are likely to be familiar with. Friedberg in Chap. 15 presents a department chair’s
perspective. He suggests ways to encourage conversations within the mathematics
department and beyond and reminds us that if the contributions of mathematicians to
education are to be valued, they must be recognized and evaluated in a sustainable,
professional way. Finally, Dwyer and Schovanec in Chap. 16 share their perspectives
and insights about getting support for mathematicians at different administrative
levels, with a specific emphasis on how to include output in education and outreach
in procedures for evaluation, merit recognition, tenure, and promotion.
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Chapter 2
About Roger E. Howe and His Contributions
to Mathematics Education

Yeping Li and W. James Lewis

Abstract Roger Howe is one of a few notable research mathematicians who
is also well respected in the mathematics education community nationally and
internationally. In this paper, we outline three aspects of his achievements related
to mathematics education: his accomplishments as an educator, his contributions
and achievements as a leader and his contributions and achievements as a scholar in
mathematics education.

2.1 Introduction

Born in 1945, Roger Howe began his career as a research mathematician. After
obtaining his bachelor’s degree in mathematics from Harvard College in 1966, he
pursued doctoral study in mathematics at the University of California at Berkeley,
earning a PhD. in 1969. He became an assistant professor and later associate
professor of mathematics at the State University of New York at Stony Brook
from 1969 to 1974 and then moved to New Haven as a full professor at the Yale
University from 1974 to 2016. He served as chair of the Mathematics Department
from 1992 to 1995. He was the inaugural Frederick Phineas Rose Professor (1997–
2002) and then the William Kenan Jr. Professor of Mathematics (2002–2016). He
became interested in issues in mathematics education in the early 1990s and has
been involved in the field of mathematics education nationally and internationally
ever since. Among his numerous honorary and visiting positions, Dr. Howe was
selected and appointed as a faculty fellow (class 2013–2014) at the Texas A&M
University Institute for Advanced Study, which allowed him to study issues of
curriculum and teacher preparation in mathematics. He was subsequently invited

Y. Li (�)
Department of Teaching, Learning, and Culture, College of Education and Human Development,
Texas A&M University, College Station, TX, 77843-4232, USA

Shanghai Normal University, Shanghai, China
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10 Y. Li and W.J. Lewis

to join Texas A&M University in 2015 to improve the efforts in preservice teachers’
preparation in mathematics, which he accepted. He has been a full professor
and the holder of Curtis D. Robert Endowed Chair in Mathematics Education in
the Department of Teaching, Learning and Culture since 2016 and an affiliated
professor of mathematics in the Mathematics Department, Texas A&M University.

Trained as a mathematician, Dr. Howe built his legacy for his achievements in
mathematical research since the early stage of his professional career. He is best
known for his breakthroughs in representation theory, which allows mathematicians
to translate problems from abstract algebra into linear algebra, thus making the
problems easier to manage. He first introduced the concept of the reductive dual
pair – often referred to as a “Howe pair” – in a preprint during the 1970s, followed
by a formal paper in 1989. This and other significant contributions to mathematics
research earned him election as a member of the American Academy of Arts and
Sciences and as a member of the US National Academy of Sciences in 1994. He
is also a recipient of the Lester R. Ford Award from the American Mathematical
Society (AMS), and he was a member of the inaugural class of AMS Fellows
in 2013. Today, he continues to work on representation theory, as well as other
applications of symmetry, including harmonic analysis, automorphic forms and
invariant theory.

As a mathematician who has made many contributions to mathematics education,
Dr. Howe has championed national initiatives to advance mathematics education
through engaging mathematicians and contributing to issues in mathematics cur-
riculum, teaching and teacher education. His professional service on numerous
committees and panels has allowed him to help shape the direction of impor-
tant developments in mathematics education nationally and internationally, and
strengthen connections between mathematics and mathematics education. At the
same time, such service helped inform his writing and thinking over many issues
in mathematics education. He is a great thinker and is also widely recognized as
a scholar. Together with his professional interest and care about educating future
generations of mathematicians, he has kept investing time and effort in the study and
improvement of K-12 mathematics education as an essential part of his obligation
as a mathematician and educator.

Dr. Howe’s achievements have been recognized in the awards he has received.
In addition to numerous recognitions he has received in mathematics, including a
Guggenheim Fellowship in 1984, he received the American Mathematical Society
Award for Distinguished Public Service in 2006 for his “multifaceted contributions
to mathematics and to mathematics education” and the Texas A&M University
Inaugural Award for Excellence in Mathematics Education in 2015 “for his more
than forty years of sustained and distinguished lifetime achievement in mathematics
research, work impacting mathematics education and promoting interdisciplinary
collaboration in mathematics education”.

The following sections outline three aspects of Dr. Howe’s achievements: his
accomplishments as an educator, his contributions and achievements as a leader
and his contributions and achievements as a scholar in mathematics education. We
describe each of them in a bit more detail and point to references that will be helpful
to those who want to learn more.
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2.2 Accomplishments as an Educator

Dr. Howe’s thinking about mathematics education started with his own teaching
of undergraduate mathematics courses at Yale. His interest in engaging students
more in mathematical thinking and learning in classrooms led him to develop and
use more effective pedagogy. Instead of simply giving lectures in an undergraduate
course, he put more questions in his presentations to get students to think about the
mathematical and conceptual issues they were addressing. This helped focus student
attention and created mathematical dialogue in real time. The process gave students
more time to think and understand the ideas under discussion and at the same time
provided the instructor feedback about what students knew and were thinking. His
teaching was clearly appreciated by more and more undergraduate students over
the years. In 1997, Yale presented him with the Yale College/Dylan Hixon ‘88
Prize for Teaching Excellence in the Natural Sciences. In part, his citation reads,
“ : : : if mathematics is a language, you certainly speak it beautifully. Fortunately
for those who are not themselves native speakers, you have demonstrated a gift for
making fundamental concepts in the structure of mathematics become familiar and
intelligible”.

As a world-class mathematician, Dr. Howe’s dedication in nurturing future
generations of mathematicians certainly includes graduate education and mentoring
of junior faculty on and off campus. He is making a qualitative difference through
his work as mentor. The majority of his graduate students have gone on to solid
academic positions and are regularly achieving tenure and advancement to full
professor at research-intensive institutions in the USA and other countries, including
China, Hong Kong, Israel and Singapore. A substantial number of the PhDs
who studied with him have, themselves, come to wield significant influence in
mathematics both nationally and internationally. This is illustrated by the multiple
conferences that were organized and held in his honour. In January 2006, an
international conference on harmonic analysis, group representations, automorphic
forms and invariant theory was organized and held in Singapore on the occasion
of his 60th birthday (see http://www.ims.nus.edu.sg/activities/rogerhoweconf/). A
research volume was produced and published out of the conference (Li, Tan, Wal-
lach, & Zhu, 2007). In June 2015, another international conference on representation
theory, number theory and invariant theory was organized and held at Yale as an
occasion to celebrate his 70th birthday (see http://math.mit.edu/conferences/howe/).
Research volumes will also soon be published out of this conference.

Dr. Howe’s mentoring of younger mathematicians goes well beyond the campus
of Yale. He is an easily accessed and beloved mathematician by many nationally
and internationally. He regularly interacts and mentors junior faculty in many other
institutions in the USA and other countries. In fact, another conference on repre-
sentation theory and applications was organized and held in his honour in Istanbul,
Turkey, in June, 2013 (see http://dauns.math.tulane.edu/~mcan/Istanbul.html).

Dr. Howe is dedicated to education and mentoring not only in mathematics but
also in mathematics education. Now at Texas A&M University, he regularly sits in

http://www.ims.nus.edu.sg/activities/rogerhoweconf/
http://math.mit.edu/conferences/howe/
http://dauns.math.tulane.edu/~mcan/Istanbul.html
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undergraduate courses for preservice elementary teachers and occasionally teaches
such classes. He has started to mentor graduate students in mathematics education
as well, serving as chair/co-chair for two PhD students in mathematics education.
At the time when we organized and held this “Mathematics Matters in Education”
workshop in honour of his 70th birthday, we had great responses and participations
from many different universities in Texas and across the nation. Indeed, he has a
popular following in mathematics education as well.

2.3 Contributions and Achievements as a Leader

Dr. Howe’s research and scholarship in mathematics earned him numerous recog-
nitions and professional leadership positions in mathematics and mathematics
education. As noted earlier, he was elected as a member of the US National
Academy of Sciences in 1994 and as an inaugural fellow of the American
Mathematical Society in 2013.

As one of a few well-respected mathematicians in the USA working simul-
taneously, and continuously, in the two “distant” areas of mathematical research
and mathematics education, Dr. Howe has worked hard to bridge the discipline of
mathematics and mathematics education through professional service. In so doing,
he emphasizes the importance of education and encourages other mathematicians to
get involved in mathematics education.

Dr. Howe served on the Mathematical Sciences Education Board (MSEB) from
1995 to 1998, as chair of the American Mathematical Society (AMS) Consultative
Committee to the National Council of Teachers of Mathematics (NCTM) mathemat-
ics standards revision project in 1998, the AMS Committee on Education from 2000
to 2006 (as chair from 2000 to 2004), the Study Committee for the report Adding It
Up of the National Academy of Sciences on the state of US mathematics education,
the Steering Committee for the first Conference Board of the Mathematical Sciences
(CBMS) report on The Mathematical Education of Teachers and several committees
for the College Board. Currently he is on the Education Advisory Committee of
the Mathematical Sciences Research Institute (MSRI), among many others. He
also served on the Steering Committee of the Park City Mathematics Institute
as its undergraduate program coordinator from 2000 to 2007, and he served on
the planning board of the Institute for Mathematics and Education (IME) at the
University of Arizona. He has also been instrumental in helping establish IME’s
workshop series: Mathematicians in Mathematics Education.

Internationally, Dr. Howe served for 6 years (2006–2012) on the US National
Commission on Mathematics Instruction (USNC/MI) and on the Executive Com-
mittee of the International Commission on Mathematics Instruction (ICMI) from
2008 to 2016. When serving on the Executive Committee of ICMI, he proposed to
carry out a series of ICMI studies on school mathematics, starting on elementary
mathematics. This led to the first successful ICME study in this direction: ICMI
Study 23, primary mathematics study on whole number, which was held in Macao,
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June 2015. Indeed, with his leadership roles in mathematics and mathematics
education in the USA and internationally, Dr. Howe has promoted communica-
tion, understanding and collaboration between mathematicians and mathematics
educators.

Through his committee services, Dr. Howe has made many important contri-
butions to influential committee reports in mathematics education. They include:
Adding It Up, published by the National Academies Press, 2001; The Mathematical
Education of Teachers, CBMS Issues in Mathematics Education, volume 11, pub-
lished by American Mathematical Society, 2001; Mathematical Proficiency for All
Students: Toward a Strategic Research and Development Program in Mathematics
Education (report of the Rand Mathematics Study Panel), published by RAND
Corporation, 2003; Focus in High School Mathematics: Reasoning and Sense-
Making, published by National Council of Teachers of Mathematics, 2009. As
a member of the USNC/MI, he also helped to convene a workshop comparing
teaching careers in the USA and China. The proceedings were published by the
National Academies Press as The Teacher Development Continuum in the United
States and China in 2010.

2.4 Contributions and Achievements as a Scholar
in Mathematics Education

Although Dr. Howe’s involvement with mathematics education started as primarily
a service activity, it has gradually evolved in a more scholarly direction. His critical
thinking of information about mathematics education, together with his professional
interests in pondering over many unresolved questions and issues, has led him
to become increasingly involved in mathematics education and to think critically
in searching for possible solutions. His passion for preparing future generations
of mathematicians has evolved to thinking about ways to elevate the quality of
mathematics education in K-12, focusing on curriculum, teaching and teacher
preparation. In particular, he has focused on elementary mathematics education.
We highlight here his work in curriculum and teacher education at the elementary
school level.

2.4.1 Identifying and Articulating Core Ideas and Practices
in K-12 Mathematics Curriculum, Especially
in Elementary School Mathematics

Around the time when Dr. Howe served on the Mathematical Sciences Education
Board (MSEB) of the National Research Council (NRC) in the mid-1990s, the
results of the Third International Mathematics and Science Study (TIMSS) was
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released and alarmed many educators, policy makers and the general public about
the unsatisfactory performance of US students in school mathematics. The results
led to many further discussions and reflections about the state of mathematics
education and possible ways for improvements in the USA among mathematics
educators, mathematicians and those who care about school education. Specifically,
questions and concerns about mathematics teaching and curriculum were raised
and discussed. Dr. Howe paid close attention to problems related to subject matter
coverage, especially on such topics and ideas that were clearly germane but seemed
not to get as much attention as they might need.

The first topic Dr. Howe identified was place value. He has written several essays
on this topic. The first piece was for Harcourt Publishers, when he was asked to
review for them for an edition of their elementary mathematics textbooks. His
remarks about place value were included in “Teacher Pages” in one of the books
of the set. His initial intention of broadening such ideas led to more extensive and
serious work about place value. He worked together with Susanna Epp of the DePaul
University on this topic and published a rather long and detailed essay (Howe & Epp,
2008). In this article, they made connections among arithmetic of whole numbers,
then of decimals and fractions and later of rational expressions through a systematic
emphasis on place-value structure in the base 10 number system. The article helps
make the study of arithmetic more unified and conceptual.

Continuing on this topic, Dr. Howe also thought about its treatment and place-
ment in school mathematics curriculum. He worked together with Harold Reiter of
the University of North Carolina at Charlotte to publish an article of “the five stages
of place value” (Howe & Reiter, 2012). Most recently, he has written another article
that emphasizes the importance of studying the underlying structure of place value,
“The most important thing for your child to learn about arithmetic” (Howe, 2015).
His thinking and work on such topics have allowed him to make important and
thoughtful suggestions on the development of school mathematics curriculum, such
as the Common Core State Standards in Mathematics (CCSSM). In fact, CCSSM
gives place-value ideas more attention than most of the state mathematics standards
that it replaced.

According to Dr. Howe, he developed his work in mathematics education using
approaches of inquiry similar to what he does in mathematical research. He thinks
about questions and issues in mathematics that arise in reading, or are presented
in talks, or most importantly after a certain point is raised by his previous work.
Likewise, his work in mathematics education has primarily been guided by thinking
about questions and issues that he observed through his involvement in committee
services, from talks or through reading. In particular, his extensive participations
in numerous committees at the national and international levels have allowed
him not only to jointly set up the directions of some important developments in
mathematics education but also to further his thinking, clarify his ideas about
mathematics education and inform his writing. For example, with his involvement in
the formulation of the CCSSM and working with teachers through the Yale Teachers
Institute (YTI), he wrote an article, “Three pillars of first grade mathematics, and
beyond” (Howe, 2014), describing some key topics to be covered and a coherent
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way of teaching these essential topics of first grade mathematics and beyond. Fuson
(in this book) further illustrates how visual models can be built upon each of these
three pillars to help students learn these aspects identified by Dr. Howe.

Based on his work with teachers through YTI, Dr. Howe developed several
briefs on other important content topics in elementary school mathematics, such
as fractions and the transition from arithmetic to algebra (Howe, 2010). Indeed,
his writing on mathematics education seeks to illuminate and clarify the ideas
underlying key stages of mathematical learning.

Dr. Howe often takes an advanced perspective when looking at questions and
issues in elementary school mathematics. His work is not only thorough and
rigorous but also conceptual, which often makes others keep his work as a regular
reference. This approach extends to the work he has done on geometry and his
advocacy that it needs to be a greater part of the undergraduate mathematics
curriculum. He has worked together with William Barker of Bowdoin College to
produce a textbook on euclidean geometry from the transformational point of view.
The original intent of this book was to show how the transformational approach
allowed them to connect classical euclidean geometry with Einstein’s special theory
of relativity. However, just the euclidean part ended up filling a full textbook (see
Barker & Howe, 2007). Usiskin (in this book) indicated that “ : : : it is valuable to
mathematics teaching at all levels because it provides a mathematical grounding for
approaching euclidean geometry via transformations that is sorely needed in today’s
environment”.

2.4.2 Developing and Improving Mathematics Training for
Preservice Elementary Teachers and In-Service Teachers

Dr. Howe has been very interested in learning and examining school mathematics
curriculum and practices in some high-achieving education systems, especially
those in East Asia. For example, he was fascinated to learn about what Chinese
teachers know and are able to do, in comparison to their counterparts in the
USA, through reading Ma’s book (1999) of “Knowing and teaching elementary
mathematics”. He thus wrote a book review that was first published in Notices of
the American Mathematical Society (Howe, 1999), then reprinted in Journal for
Research in Mathematics Education. The book review helped call for scholars’
attention, especially mathematicians, to this book, and also reinforced the idea that
mathematics teachers need to have strong training in mathematics.

Starting in 2004, Dr. Howe has run seminars for the Yale Teachers Institute (YTI).
YTI offers an unusual form of professional development for teachers. Teachers,
known as fellows, participate in seminars run by Yale faculty. Instead of showing
mastery of the material through an examination, teacher fellows are required to write
a curriculum unit for their class based on the theme of the seminar. According to Dr.
Howe, this is a big challenge for teacher fellows but they respond with alacrity, and
their overall response to the YTI experience is amazing enthusiasm. This makes it
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very rewarding to run YTI seminars, and he has done so roughly every 2 years since
starting. Preparing and giving those seminars to teachers have afforded Dr. Howe
great opportunities to refine his ideas about mathematics education. For example,
some of the ideas for the essay Three Pillars of First Grade Mathematics (Howe,
2014) were developed in the course of running YTI seminars. He has also written
several brief articles for On Common Ground, the publication of the Yale Teachers
Institute, in connection with seminars he has led for the institute. They are Leading
the Seminar on the Craft of Word Problems, #12, Spring 2008; Making Estimation
Precise, #13, Spring 2009; The Mathematics of Wallpaper, #14, Fall 2011; and Can
We Teach the Common Core Standards in Mathematics? #15, Fall 2015.

Building upon his reflection on issues in mathematics education and working
with teachers, Dr. Howe believes that a different approach needs to be used
in elementary teacher preparation in mathematics, an approach that develops
teachers’ in-depth understanding of some key ideas in school mathematics. It is
strongly mathematical but pays attention to the step-by-step growth of mathematical
constructs over time. The hope is that such an approach can help teachers absorb and
understand the mathematics better and also give them a better idea of what and how
to teach their students. The progression of such mathematical constructs aligns with
school mathematics curriculum standards, such as the CCSSM. As an example, he
wants to ensure that preservice elementary teachers know and understand, but not
simply memorize, all five expressions of the base 10 number place-value notation
system (see below) and their corresponding placement in school mathematics.

256

D 200 C50 C6

D 2 � 100 C5 � 10 C6 � 1

D 2 � .10 � 10/ C5 � 10 C6 � 1

D 2 � 102 C5 � 101 C6 � 100

He emphasizes the importance for preservice elementary teachers to understand
how these various expressions underlie the familiar computation algorithms of
arithmetic and, especially, how all the algorithms reflect the basic strategy of the
place-value system, which is to break up numbers as sums of place-value pieces.
Preservice teachers need to learn how to think in terms of the pieces and also how to
help their students do so, at whatever grade level they find themselves teaching. The
mathematical training should enable preservice teachers to learn how to integrate
such ideas into their thinking about number and operations in the curriculum and
how to design instruction to help students learn.

Now at the Texas A&M University, to provide preservice elementary teachers’
systematic training in mathematics, Dr. Howe is working with a group of faculty
from both the College of Education and the Mathematics Department to redesign
and develop three new courses as a sequence. The sequence is planned to take a de-
velopmental approach, as described above, with a close alignment with curriculum
standards. Careful consideration is also given to linking topics that should interact,
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but frequently don’t, in the current curriculum. For example, careful attention is paid
to the measurement aspects of the number line and to using manipulatives such as
base 10 blocks to create length models of numbers and of addition and subtraction,
so that linear measurement and whole number arithmetic can develop in tandem,
and the number line model can be available to deal with fractions in productive
ways. Moreover, each of these three new courses combines mathematics content
and pedagogical considerations directly related to that content.

2.5 Summary

Dr. Howe is one of a few notable research mathematicians who is also well
respected in mathematics education community nationally and internationally. His
achievements include not only a remarkable amount of distinguished contributions
to mathematical research but also his contributions and dedications to connecting
mathematics and mathematics education and the improvement of mathematics edu-
cation at the regional, national and international levels. He has provided important
leadership in prestigious professional associations and joint research endeavours,
both nationally and internationally, as a chair or co-chair of a panel or task force,
a committee or board member, a faculty fellow at prestigious research institutes,
a visiting professor in several institutions and an invited speaker at numerous
conferences across the globe.

To a research mathematician, mathematics matters as one’s own passion. And
Dr. Howe knows well that one needs to be smart and also love mathematics in
order to make possible breakthrough contributions in mathematical research. As
a mathematics educator, he takes another great challenge, that is, to help others to
become smart and love mathematics. To Dr. Howe, mathematics matters not only
to himself but many others in education. Even more, he is working to help teachers
to learn how to help their students to become smart and love mathematics. It is a
new territory with many unknowns, and he is willing to take such challenges as next
chapter of his legacy.
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Chapter 3
Cultural Knowledge for Teaching Mathematics

Roger E. Howe

Abstract This paper discusses selected topics of elementary mathematics that have
been problematic in the US mathematics curriculum. It notes some ways that the
CCSSM promises to improve on previous practice and offers suggestions for other
possibilities for improvement. The main topics mentioned are place value, the
concept of number, the notion of unit, linear measurement and the number line,
and symmetry in geometry.

Deborah Ball (1989, 1991, etc.), among others (Hill, Ball, Sleep & Lewis (2007),
Hill & Ball (2009), Hill (2010), etc.), has emphasized that teaching mathematics is
a special kind of applied mathematics, distinct from, say, engineering or statistics or
operations research or other fields that use mathematics heavily in order to produce
practical results. Correspondingly, it calls on specialized knowledge different from
the mathematical knowledge of those other fields or of pure mathematics. She
and her coworkers have produced test items that a university-based mathematician
might find difficult to answer correctly but that, when given to teachers, distinguish
effective teachers of mathematics from less effective ones.

This is a very important insight and one that provokes many follow-up questions.
What are some of the key mathematical skills and insights that promote effective
mathematics teaching? How can we identify them and promote their use? And,
in light of the study of Chinese teachers by Liping Ma (1999) combined with
the continuing mediocre performance of US students on a variety of international
comparisons of mathematics achievement (Mullis, Martin, Foy, & Arora (2012),
NCES (2013)), one is provoked to wonder: Are there some important aspects of
mathematics or the teaching of it that none (or almost none) of us in the USA
know? In other words, do we have cultural deficits in our knowledge for teaching
mathematics? Although not originally explicit, this latter question can be seen as an
impetus for much of my thinking about mathematics education in the last roughly
15 years. Here I would like to describe some guesses and some further questions.
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3.1 Place Value

The first topic that caught my attention as problematic in the US curriculum was
place value or, more completely, the base ten place value system that we use to
write numbers. This is a marvelous notational device that lets us express numbers
compactly (with a unique expression for each whole number) and compute with
them efficiently, including estimation and approximation, which are crucial for real-
world use. Its virtues have led to its essentially worldwide use for dealing with whole
numbers and their arithmetic. However, it accomplishes its wonders by using clever
conventions that harness a huge amount of mathematical structure in service of its
very compact notation. In a rather long essay (Howe & Epp, 2008) on the basic ideas
of computation with the base ten place value system, Susanna Epp and I identify
“five stages of place value,” meaning five levels of interpretation of the standard
positional notation. The levels are expressed through the following sequence of
equations:

356 D 300 C50 C6

D 3 � 100 C5 � 10 C6 � 1

D 3 � .10 � 10/ C5 � 10 C6 � 1

D 3 � 102 C5 � 101 C6 � 100:

(3.1)

When writing these equations for (Howe & Epp, 2008), I thought of them as simply
a straightforward exegesis of what the standard compact notation signified in more
conceptual mathematical terms. However, as I realized later, each of these five stages
represents a substantial intellectual advance over the previous one, and, in toto,
they constitute a long intellectual development for children learning mathematics.
The second stage is presented in the second and sometimes even first grade, under
the rubric of “expanded form.” However, the third stage requires understanding
of multiplication, which, in the Common Core State Standards for Mathematics
(CCSSM), is not introduced until third grade. The further decomposition of the base
ten units (e.g., 100) into multiple products of 10s would require greater comfort
with multiplication, probably not achieved before fourth grade. And the use of
exponents in the final stage would mean that it could not be presented before sixth
grade in a CCSSM-based curriculum. The exact time of introduction of the required
concepts might vary from curriculum to curriculum, but the overall thesis, that it
takes a substantial part of the elementary to middle school curriculum to develop
all the ideas required to understand the five stages of place value identified by the
sequence of equations (3.1), is evident. A corollary would be that it would take
a highly coherent curriculum to ensure that students did come to understand all
the five stages and the consequent relationship of base ten place value notation
to polynomial algebra. Curricula in the USA, however, have, at least for several
decades and perhaps longer (Schmidt, (online)), been far from coherent. The result
has been that many students have not come anywhere near understanding the
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structure that enables our workhorse place value notation. Indeed, a recent study
(Thanheiser, 2009) showed that of preservice teachers in an important teacher
preparation program, only a small minority thought even in terms of the third stage.

In any case, what the second stage of place value, aka expanded form, reveals
is that the key idea of the place value system is to break up a number into a sum
of pieces of a very special sort. While working on the paper (Howe & Epp, 2008),
I came to realize that mathematics education does not have a standard short name
for these pieces. They can be described in mathematical terminology as “a digit
times a power of 10,” but this is long and invokes the idea of exponents, which,
as noted above, comes rather late in a student’s mathematical career. I have been
campaigning, with very limited success so far, for the adoption of such a term. In
my own writing, I have taken up using “base ten pieces.” It is not very descriptive,
but it is short.

I would argue that “base ten pieces” or some other short name for these numbers,
plus another short name, like “base ten unit” for the powers of 10, could be quite
useful in mathematics education, especially in the training of teachers. In particular,
it would afford short descriptions of what is going on in the various operations of
arithmetic.

One further piece of terminology that refines the idea of base ten pieces enhances
its affordances. Each base ten piece is a digit times a power of 10. Sometimes one
would like to specify which power of 10. In formal mathematical terminology, this
would be the “exponent” of the power, but since, for many applications, their most
salient feature is their size, the term order of magnitude of a base ten piece will
be used here to refer to the number of zeroes in its standard base ten representation,
which, in algebraic terms, is the exponent in the power of 10. Thus, 1 has magnitude
zero, 10 has magnitude one, and so on. Note that a base ten piece and its associated
base ten unit have the same order of magnitude.

With these ideas, we can give succinct descriptions of addition and multipli-
cation, or, more precisely, the procedures for expressing the result of adding or
multiplying two base ten numbers as a new base ten number, as follows.

For addition:

(i) To add two base ten numbers, for each order of magnitude, take the base ten
pieces of that order of magnitude from the two numbers, and add them together.

(ii) The sum of two base ten pieces of the same order of magnitude is the sum of
their digits times their common base ten unit.

(iii) If the sum of the digits for a particular order of magnitude is greater than 10,
convert 10 of that unit to 1 of the next larger unit, and combine with the sum
for that unit.

For multiplication:

(i) To multiply two base ten numbers, multiply each base ten piece of one number
with each base ten piece of the other number, and add all the products.
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(ii) The product of two base ten pieces is the product of their digits times the
product of their base ten units. This latter product is another base ten unit, of
order of magnitude equal to the sum of the orders of magnitude of the two factor
units.

Such succinct recipes might be of considerable value to teachers, both for helping
them achieve a higher-level understanding of what is entailed in the standard
algorithms and as a focus of discussion, to check whether they have indeed achieved
that higher-level understanding. For example, from the description of addition, one
can argue that:

(a) Starting from magnitude zero (the “ones place”) and continuing in order to
larger orders of magnitude will produce in succession the correct base ten pieces
at each place.

(b) The procedure for regrouping (aka “carrying”) is exactly the same at each order
of magnitude and reduces to knowing the “addition facts” – the sums of digits.

Also, although the descriptions above are on the spare side, they can be elabo-
rated until they give a full description of a commonly used algorithm. Discussion of
the details that should be added could be very beneficial for teachers. In addition,
these summary descriptions could serve as a point of reference for comparing
algorithms, e.g., the standard US multiplication algorithm versus the lattice method.

3.2 Units and Numbers

Just as the base ten units and their associated base ten pieces should be recognized
by suitable terminology, I would claim that units in general need more attention in
US mathematics education. This is related to the concept of number. To quote Herb
Gross (online) in his works on “Mathematics as a Second Language,”1. “A number
is an adjective that modifies a noun.” This was a mantra adopted to benefit adult
learners of arithmetic. For teachers, it might be worthwhile being more specific,
and saying what sort of adjective a number is: that a number expresses a quantity
relationship, and that it tells you how large one quantity is in (multiplicative)
comparison to another quantity, which plays the role of a unit. Effectively, it is a
ratio. In particular, a number by itself does not specify a quantity; one must know
the unit to which the number refers. The lesson for teaching is that students should
be reminded to specify the units attached to the numbers they report, until it becomes
a habit.

According to Klein (1992) and Bashmakova and Smirnova (1999), this point of
view on number was not part of classical Greek thinking. They separated number,
by which they meant the counting numbers, or the cardinality of a multitude, from

1Adapted to form the core course for the Vermont Mathematics Initiative, which, in turn, has
influenced other significant professional development programs, e.g., Nebraska Math.
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the idea of ratio, which they used in geometry to compare lengths, or areas, or other
geometric quantities. Thus, in particular, they did not have the number � nor the
formula A D �r2 for the area of a circle. Instead, Euclid stated that “Two circles
are to each other as the squares on their diameters.” And by “squares on their
diameters,” he did not mean d2; he was referring to the geometric figures with the
diameter as side length. Thus, while we now express proportional relationships in
the form

y D cx or
y

x
D c;

where c is the “constant of proportionality” the Greeks would consistently express
them in the form

y2

x2

D
y1

x1

where x1, x2 and y1, y2 are corresponding values of two proportionally varying
quantities x and y. Our modern view of number, and the coalescence of the notions
of number and ratio, developed gradually and was especially stimulated by the
development of symbolic algebra by François Viète and others around the turn of
the seventeenth century. One of the first formal declarations of this conception of
number was given by Newton in his book Arithmetica Universalis on arithmetic.
He declared:

By number we understand not so much a multitude of unities, as the abstracted ratio of
any quantity, to another quantity of the same kind, which we take for unity. And this is
threefold, integer, fracted, and surd: an integer is what is measured by unity; a fraction, that
which a submultiple part of unity measures; and a surd, to which unity is incommensurable.
(Bashmakova & Smirnova, 1999)

Note that the main statement, the description of the number concept, is essentially
identical to the formulation advocated here. He then goes on to articulate three types
of number, of increasing order of difficulty to describe.

This convention that, in addition, all numbers must refer to the same unit is
especially relevant to fractions, but it even is relevant to whole number arithmetic.
For example, many students feel that the recipes for adding base ten whole numbers
and for adding decimal fractions are “different.” For whole numbers, the recipe is:

Put the numbers under each other, right justified, and add the columns (with
carrying, aka regrouping, as needed).

For decimal fractions, the recipe is:
Put the numbers under each other, with the decimal points lined up, and add the

columns (with carrying, aka regrouping, as needed).
A teacher in command of the ideas of base ten piece and base ten unit could

explain that the purpose of both recipes is to make sure that the digits referring to
the same base ten unit are added together and that is what is the same between the
two. In other words, both recipes ensure that the base ten pieces of the same order
of magnitude are combined.
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The teacher should also make the broader point that, in performing addition, there
is a, generally unspoken, convention that all numbers must refer to the same unit.
If you add together numbers that refer to different units, you get what we would
consider to be nonsense. A favorite example of Herb Gross (online) is

3 C 4 D 2; .notŠ/

which violates what we think of as addition but makes perfect sense if you include
suitable units:

3 dimes C 4 nickels D 2 quarters:

It is especially important to attend to units when dealing with fractions. The
popular procedure for adding fractions, by adding the numerators and adding the
denominators, commits the same sin, of having each term refer to a different unit.
For example, if we talk about fractions as “so many out of so many,” which is a
popular way of describing them, we need to make sure that the student understands
that the second “so many” is the unit. Thus, if we represent ½ as

fX Og

and 1
3

as

fX O Og

and think of adding as “putting together,” then we might conclude that we can
represent 1

2
C 1

3
as

fX X O O Og ;

which would correspond to the symbolic relationship

1

2
C

1

3
D

2

5
.notŠ/ :

But just as in Herb Gross’ example with coins, each number in this “equation” is
referring to a different unit. The ½ refers to a set of two elements as its unit, the 1

3
to

a set of three elements, and the 2
5

to a set of five elements. If we settle on a common
unit, for example, a single element, then we should write the equation as

1

2
� 2 C

1

3
� 3 D

2

5
� 5;

which is a complicated way of writing the unremarkable equation 1 C 1 D 2.
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Failure to attend to units is the deeper reason why the popular method is wrong,
beyond the fact that it gives what we regard as the wrong answer. This same sin,
of ignoring units, gets serious attention in statistics, where it has earned the title of
“Simpson’s paradox” (Wikipedia-Simpson, online).

Batting averages afford examples of Simpson’s paradox. Suppose there are two
baseball players, A and B, and A’s batting average for the first half of the season is
.333, and B’s average is .500. Then for the second half, they have slumps, with A
going to a .200 average and B going to .250. Since B has a better batting average
than A in both halves of the season, you expect that B has a better batting average
than A for the whole season, but it may not be so. Suppose that A hit 30 out of 90
times at bat in the first half and B hit 10 out of 20 times and then for the second
half, A hit only 2 out of 10 times at bat, while B hit 20 out of 80 times. Then for
the whole season, A has 32 hits out of 100 times at bat, for a .320 batting average,
while B has 30 hits out of 100 times at bat, for a .300 average. The point here that is
relevant for us is that the unit to which B’s batting average in the first half refers is
much smaller than the unit to which A’s refers, while in the second half season, it
is the reverse, with A’s total times at bat being much smaller than B’s in the second
half.

More attention to the function of numbers as describing quantity relationships
might be useful in teacher preparation. In a number of teacher preparation textbooks
(e.g., Van de Walle, 2006), one can read about fractions, that they have five aspects
or that there are five “fraction constructs” (Kieren, 1976; Post, Harel, Behr, & Lesh,
1988):

(i) Part-whole relationships
(ii) Measurement

(iii) Division
(iv) Operator
(v) Ratio

I would argue that these are all encompassed in the idea that a number expresses
how large something is in relation to a unit. More precisely, they are manifestations
of this basic idea in different contexts.

Part-whole relationships: If you want to compare something that is in fact part
of a whole to the whole, then the relevant fraction would indeed be a part-
whole relationship. Thus, this is a special (albeit important) case of the general
relationship. It could only apply to “proper fractions,” that is, fractions between 0
and 1. Even a proper fraction, however, need not refer to an actual part of the unit.
For example, a pint is half of a quart, whether or not a particular pint is actually
part of a particular quart or completely separate. It is the size relationship that is
described by the 1/2, not belongingness.2

2Here a secondary issue of units is relevant: the substance in the pint and the quart should be the
same. Whether a pint of cream is half of a quart of water would depend very much on the context
(and perhaps usually would not be so).
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Measurement: If you have your quantity and do not know how large it is relative
to a unit, but want to know, then you need to measure it in terms of that unit. The
measurement process allows you to find the size relationship. The size relationship
is, in some sense, playing a passive role here. You have the two quantities, and you
are asking, “What is the size relation between them?” Finding the answer is the
process of measurement. It is the basis for defining length, or area, or volume, or
many other amounts that depend on comparing a given quantity to a unit of the
same type. Whole number relationships appear when the given quantity is exactly
equal to some number of copies of the unit. Fractional relationships appear when
the given quantity is exactly equal to some number of copies of (to quote Newton)
a “submultiple part” (i.e., a unit fraction – see below) of the unit.

Division: Measurement, especially length measurement, is closely related to di-
vision. Measuring one quantity relative to another is asking, “How many of the
second quantity does it take to make the first quantity?” This is what we also mean
by division – for example, 24 divided by 4 is 6 because 6 4s make 24. Indeed, if
both quantities are lengths, then division amounts exactly to seeing how many of
the smaller lengths are needed to compose the longer one, and this can literally be
pictured as a measurement process. The situation here is that both quantities are
expressed in relation to a third quantity, which had been taken as unit, and now
you seek the direct relation between them, and this relation is found by division.
Precisely, if both quantities are known multiples of the unit, then the relation
between them is found by dividing one multiple by the other. The simplest situation
is when one quantity is a whole number multiple of the other, and then the two
processes coincide in the most naive way. When the multiple is a more complicated
number, the process needs appropriate adaptation. One must form unit fractions of
the quantity functioning as the unit and repeat the measurement process using these.
If one imagines the whole process, it can become quite cumbersome, but this only
serves to highlight the complexity of the idea we call “number.”

Division is also implicated in the definition of fractions via the unit fraction
approach (described below). There we see that a unit fraction 1

d can be thought of
as what you get when you divide the unit into d equal parts, and take one of them. It
is still a definite size relationship: It is the inverse of being d times as large. General
fractions can also be thought of as the result of division: 3

4
is what you get when

you divide three units into four equal pieces. This is a very important alternative
interpretation of fractions. (Note: However, this is not immediate in the unit fraction
approach; it must be demonstrated.)

Operator: If we don’t have the quantity, but want to produce it, the number tells us
what we have to multiply the unit by to get the quantity we want; this can be thought
of as operating on the unit to make the quantity. It is an active way of thinking about
the number, with measurement being the passive way of thinking about it.

Ratio: Finally, ratio is indeed just another name for the multiplicative relationship
between two like quantities.

Thus, rather than requiring five distinct constructs, the idea of fraction is
essentially captured in the idea of size relationship, with the five commonly
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mentioned constructs describing how to operationalize this idea in different familiar
contexts where numbers are used. One could hope that this conception of fraction (or
of number in general), with an underlying unity being operationalized in somewhat
differing ways to fit different contexts, might help teachers and students think about
this basic idea. In particular, one could hope that it could help them conceptualize
fractions in a more productive way than what seems currently to be the case for
many.

Although the conception of number as quantity or size relationship is one that I
would like to be understood by teachers, it is plausible that it is not easily taught
directly to young students. One needs pedagogical approaches that ease students
into thinking in this way. Indeed, from a pedagogical point of view, one needs a
way of saying specifically what size or quantity relationship is specified by a given
fraction. Since students being introduced to fractions have so far only met whole
numbers, the relationship should be couched in terms of whole numbers. For the
typical fraction, say 3

5
, this relationship is somewhat awkward. To say that

A D
3

5
B

means that five copies of A equal three copies of B. Grasping this requires holding
the three quantities, A, B, and C D 5A D 3B in the mind at one time, which can be
a mental challenge for many young children.

However, the special case of unit fractions, with numerator 1, is significantly
simpler than the general case. To say that A D 1

5
B is the same as saying that 5

copies of A make B, or 5A D B; which can easily be translated to: if you partition
B into five equal pieces, i.e., divide it by 5, then one piece is equal to A. This is
much more readily visualizable. Also, somewhat later on, when multiplication by
fractions is considered, this relationship can be reformulated as: multiplication by 1

5

is the same thing as division by 5. This of course is a special case of the fundamental
relationship between division and multiplication – that division by a number is the
same operation as multiplying by its reciprocal (aka “multiplicative inverse”). It can
be a step toward establishing the principle in general.

These considerations would suggest that approaching fractions via unit fractions,
that is, starting by describing the quantity relationship defined by a unit fraction
and then defining a general fraction as a whole number multiple of a unit fraction,
might provide a more accessible path to learning. I would have been happy to have
proposed this approach but instead have been delighted that it has been adopted by
the CCSSM. One can hope that the approach to fractions through unit fractions,
together with instilling the habit of specifying the unit to which any number refers,
will improve our students’ ability to understand and work with fractions.

Here it should also be mentioned that the importance of units was also appre-
ciated by Scott Baldridge, who learned it by studying the Singapore mathematics
curriculum. He has incorporated this viewpoint into the Eureka Math/Engage New
York curriculum (https://greatminds.org/math), whose development he supervised
and which has found widespread use. The elementary part of this curriculum has
the subtitle, A Story of Units.

https://greatminds.org/math
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3.3 Length and the Number Line

The number line is a beloved object for mathematicians and central to modern
mathematics. Lines, of course, are basic geometric objects, and the number line
provides the marriage of geometry with number. In the 1600s, Descartes showed
how to use two number lines to create the coordinate plane, and since then
extensions of his construction have been used to create spaces of arbitrarily many,
and even infinite, dimensions.

The issue of coordinating the line to create the number line, although done
in tentative ways in the late Middle Ages, was in fact a substantial intellectual
challenge, finally met to modern satisfaction only in the late nineteenth century. The
ideas invoked are still a source of provocative thinking (G. Chaitin 1998, 1999). It
stimulated Cantor to investigate the idea of infinity and led him to the conclusion
that the number of points on the line must be considered to be larger than the number
of whole numbers, raising issues that continue to occupy logicians.

In view of the central role that the number line plays in mathematics, and
the status of the line in geometry and the real world, many mathematicians have
wondered why the number line does not play a more prominent role in the K-12
mathematics curriculum. It is used in the early years as a model for one- and
sometimes two-digit arithmetic, and then it more or less goes into hibernation.
One can see video clips of classrooms where a class struggles to put ½ or some
similarly simple fraction on the number line. What lies behind such difficulties?
While observing some demonstration classes of Deborah Ball, in which the number
line was being discussed, I noticed that some of her students (who were rising fifth
graders) appeared to think about the number line in ways that were not connected
with length or distance. It was as if the number line was simply the number row – the
whole numbers lined up, one after the other. That they happened all to be at equal
distances from their neighbors was either incidental (or perhaps only approximate,
since, for example, two-digit numbers take more space to write, so they may appear
to be closer together). Similarly, in video clips I have seen about placing fractions
on the number line, length or distance does not seem often to be invoked in the
arguments of students. In a similar vein, I have heard several mathematics educators
remark that students seem to pay more attention to the tick marks separating
intervals on the line, rather than to the intervals themselves.

All this suggests that we are failing to teach a prerequisite idea: that the number
line is about length and distance, and that length is an arena where number can be
applied. It raises the question whether more explicit attention to length issues before
working with the number line, and recalling them at the start of study of the number
line, would improve student understanding of the line – whether they would have
more success in placing fractions and perhaps be able to use the line to think about
other issues.

The line seemed particularly attractive to me as a means of providing insight into
addition and subtraction of fractions. In the arena of length measurement, addition
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and subtraction have very attractive, very physical, and visual interpretations.
Addition amounts to putting bars together end to end, to create a longer bar, and
subtraction amounts to comparing bars – putting them side by side and measuring
the overhang of the longer one. These physical operations carry over to addition
and subtraction of bars of any length. In particular, the addition and subtraction
of fractions can be represented concretely in exactly the same way as with whole
numbers. The length versions of addition and subtraction can be understood in a
very physical and symbol-free way.

But to add two numbers by combining lengths, one must of course have the bars
of those lengths. This reverts back to the issue of placing fractions on the number
line. To address this issue, the expression of the key idea in a compact form gradually
emerged, in what I have come to call the

Measurement Principle:
The number labeling a point on the number line

tells the distance of the point from the origin,
as a multiple of the unit distance.

This statement identifies the key ideas involved in number placement. It helps
both to appreciate the complexity of the act and to break it down into its compo-
nents. One could hope that explicit teaching of this principle with preparation by
representing whole numbers as lengths, especially trains of ten rods and one cubes,
as sketched in (Howe, 2014), and with lots of examples, could help students figure
out how to place fractions on the number line.

Indeed, this principle fits very well with the approach to fractions through unit
fractions. It should be relatively easy to argue that ½ goes where it does, right in
the middle of the unit interval, because moving twice the distance from 0 to ½
would then get you to 1, as it should, according to the definition of 1

2
. Likewise, 1

3

should go where it does because then moving 3 times from 0 to 1
3

will get you to 1.
Similar reasoning will apply to unit fractions with larger denominators. From this, it
is easy to place general fractions, since these are just whole number multiples of unit
fractions. If we fix a denominator d and look at all its whole number multiples, we
get pictures like the following: the multiples of 1

d form an evenly spaced sequence
that look very much like the whole numbers but are closer together – there are d
intervals of length 1

d in every unit interval. We show in Fig. 3.1 these pictures for
the multiples of ½ and 1

5
.

Fig. 3.1 Number lines marked in half-unit intervals and one-fifth-unit intervals
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One could hope that such pictures are sufficiently compelling visually to make
students comfortable both with the placement process for fractions and with
adding and subtracting fractions with a fixed denominator. Beyond that, it also
seems possible that using the length model for addition and subtraction, probably
supplemented by a better treatment of renaming/equivalence of fraction, can help
students improve their grasp of this issue.

Greater success with addition and subtraction of fractions was one of my main
hopes for more effective use of the number line. However, two teachers (Jeffrey
Rossiter and Aaron Bingea, from the Chicago Public Schools), who participated in
a seminar I led for the Yale Teachers Institute, have broadened my perspective on
the possibilities for the number line to contribute to student understanding. Jeff and
Aaron had noticed that their students tended to “silo,” i.e., compartmentalize, the
various types of numbers they had been presented with. Whole numbers, integers,
fractions, and decimals all occupied their own worlds, with minimal interactions
between the different types. It is true that each of these classes of numbers has
special symbolism adapted to dealing with that specific class, and if students deal
with numbers primarily symbolically, the differences in symbolism apparently lead
students to put them in different conceptual bins. Jeff and Aaron had the idea that
showing students how all these numbers could live together happily on the number
line would promote a unified concept of number. So far, they have carried out their
plan with whole numbers and integers and have found that students talk in a much
more flexible way about how to determine the sign of a sum of integers and about
the fundamental idea that subtraction amounts to addition of the additive inverse.
Results from Aaron’s class were sufficiently encouraging that his lessons are being
adapted by the math coach for his cluster of schools for purposes of professional
development. All this provides encouragement for the mathematician’s hope that
the number line could contribute much more to mathematical understanding than it
now does.

Summarizing to this point, consideration of these various topics – place value, the
idea of number and its relation to units and to measurement, the relationship between
number and linear measurement, and the role of the number line in mathematics
instruction – seems to reveal fairly important areas in which the approaches and
practices of the US mathematical education community as a whole have not been
as productive as possible. Our relative ineffectiveness in these areas is probably
reflected in US performance on the various international benchmark exams –
TIMMS, PISA, etc. The bright side of this picture is that identification of areas
where our practice is problematic offers promise of improvement. Especially, the
greater emphasis the CCSSM puts on place value ideas, and on the approach to
fractions through unit fractions, gives encouragement that we will improve results
on those topics.
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3.4 Symmetry

Since Felix Klein pointed out in his Erlanger Programm the intimate connection
between geometry and symmetry, symmetry has been gradually receiving more and
more attention in geometry instruction. Indeed, the CCSSM calls for basing the
study of geometry on symmetry.3

Still, there are some topics that currently appear well before any formal treatment
of geometry and to which fairly simple symmetry considerations bring substantial
insight. Incorporating symmetry ideas into the treatment of such topics might help
students gain intuition for the transformations themselves and provide an analog for
geometry of “early algebra.”

One such topic is the standard nomenclature for quadrilaterals; we have squares,
rectangles, rhombuses (rhombi to an earlier generation more attuned to Greek
derivations), parallelograms, trapezoids, and kites (probably a neologism). It should
be pretty easy for students to appreciate that quadrilaterals in these various classes
have symmetries.

A square has four lines of reflection symmetry: the two diagonals and the two
perpendicular bisectors of pairs of opposite sides. In addition (or as a consequence,
one could say after some study of transformations), it has rotational symmetries.
It is unchanged by rotation around its center (which is the common point of
intersection of all the lines of symmetry) by 90

ı

, 180
ı

, 270
ı

, and 360
ı

(which in
fact accomplishes the same thing as rotation by 0

ı

, i.e., doing nothing; this is the
identity transformation). Counting the identity transformation, this is in all eight
symmetries. A square and its lines of symmetry are shown in Fig. 3.2.

Fig. 3.2 A square has four
lines of symmetry and eight
symmetries

3On the other hand, it stops short of dealing with the idea of composition of transformations.
Admittedly, this is a difficult idea. However, it is the source of the power of the transformational
approach to geometry.
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Fig. 3.3 A typical rectangle
has two lines of symmetry,
connecting opposite sides,
and four symmetries

Fig. 3.4 A rhombus has two
lines of symmetry, connecting
opposite vertices, and four
symmetries

A rectangle has two lines of reflection symmetry: the two perpendicular bisectors
of the pairs of opposite sides. Note that these two lines of symmetry are mutually
perpendicular (Fig. 3.3).

If you think of a rectangle as resulting from a square by stretching (equally) one
of the pairs of opposite sides, you can think that the symmetries of the square arising
from the perpendicular bisectors of these sides are preserved during the deformation,
while the symmetries across the diagonals are destroyed. Although they are much
less prominent than in the case of the square, the rectangle also has two rotational
symmetries, the rotation of 180ı around its central point, the intersection of the two
lines of symmetry, and the identity transformation. If we count all of these, we get
four symmetries.

A rhombus also has two lines of symmetry: the diagonals. Like the pair of
perpendicular bisectors of the opposite sides of a rectangle, these diagonals are
mutually perpendicular (Fig. 3.4).

In close analogy to the comments in the previous paragraph about rectangles,
if you think of a rhombus as resulting from a square by deforming the angles
while keeping the sides equal, then the diagonals survive as lines of symmetry,
while the lines bisecting a pair of opposite sides do not. Again, in addition to
the reflections across the diagonals, the rhombus is unchanged by rotation by 180ı
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Fig. 3.5 A parallelogram has
no lines of symmetry but has
a center of symmetry

around its center, the point of intersection of the diagonals; of course, the identity
transformation will preserve it. Again counting all of these, we find four symmetries
of a rhombus.

A parallelogram can be thought of as resulting from a square by performing both
of the deformations that produce rectangles and rhombuses. First one can push on
the corners to turn a square into a rhombus, without changing the side lengths, and
then one can stretch one pair of mutually parallel opposite sides by the same factor,
keeping the other pair unchanged in length. This double deformation destroys all
lines of symmetry, so the typical parallelogram has no lines of symmetry.

Yet the parallelogram does have a nontrivial symmetry. A well-known fact about
a parallelogram is that its diagonals bisect each other. From this, it is easy to see
that rotating by 180ı around this point of intersection will preserve the diagonals
and therefore preserve the set of their endpoints, which are the vertices of the
parallelogram; therefore, this rotation preserves the parallelogram. Counting also
the identity transformation, this gives two symmetries for a typical parallelogram
(Fig. 3.5).

Continuing the survey of quadrilateral terminology, we can look at kites, which
can be thought of as deformations of rhombuses. Take one of the two mutually
orthogonal, mutually bisecting diagonals, and slide it in the direction of the other
diagonal, keeping it perpendicular and keeping its midpoint on the other diagonal.
The result is a shape that is still symmetric across the second diagonal but with sides
of two different lengths. This is the shape in which many kites are made, hence the
name. It has reflection in the second diagonal as a symmetry. Counting the identity,
it has two symmetries (Fig. 3.6).

We can also deform rectangles by stretching (or shrinking) one of a pair of
parallel sides while leaving the other unchanged. This will keep the pair of sides
parallel, but the other pair will no longer be parallel. The resulting quadrilaterals
constitute the class of trapezoids. If the stretching is performed symmetrically
on both sides of the perpendicular bisector of the sides that remain parallel, the
symmetry in this line will remain as a symmetry, and the result is usually referred
to as an isosceles trapezoid. However, in general, trapezoids will not have any
nontrivial (meaning, other than the identity) symmetry (Fig. 3.7).

This survey of the commonly distinguished classes of quadrilaterals has empha-
sized the symmetries possessed by each class. These symmetries are not usually
pointed out explicitly, but they are probably recognized implicitly by many people.
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Fig. 3.6 A kite has one line
of symmetry, through a pair
of opposite vertices

Fig. 3.7 An isosceles
trapezoid has one line of
symmetry, through a pair of
opposite sides

A deeper consequence of describing the symmetries explicitly is that it sets the
stage for recognizing that the symmetries of these various classes of quadrilaterals
actually characterize the classes: any quadrilateral with the symmetries noted for
the various classes above will in fact belong to that class.

This statement requires some justification. For example, suppose a quadrilateral
has a line of symmetry. If the line goes through a vertex, then, since the set of
vertices must be mapped to itself by the reflection across the line and since the line
either exchanges pairs of points not on the line or leaves points on the line fixed, one
of the other vertices must also be on the line. So the line of symmetry is a diagonal
of the quadrilateral. The other two vertices are symmetric across this diagonal, and
the line segments connecting a vertex on the diagonal to these other two will be
mutual reflections across the diagonal. In particular, they will be equal. Thus, the
quadrilateral is a kite, with two pairs of equal adjacent sides.

On the other hand, suppose the line of symmetry does not go through a
vertex. Then it must intersect a side of the quadrilateral, and its continuation
to the inside of the quadrilateral will have to exit by a second side. Since the
quadrilateral is symmetric across the line, each of these sides that intersect the
line of symmetry must be perpendicular to it. Otherwise, their reflections would be
different lines, intersecting the originals on the line of symmetry, so the quadrilateral
would have its sides intersecting in pairs on the line of symmetry. This is clearly
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impossible. (Notice here that we are not allowing a quadrilateral to have sides that
intersect anywhere but at the vertices. That is, part of our understanding of what a
quadrilateral is includes the condition that sides intersect only at vertices.)

So, the quadrilateral has two sides that are perpendicular to the lines of symmetry.
These sides are, therefore, parallel to each other. Also, the line of symmetry
must be the perpendicular bisector of each of these sides. The other two sides of
the quadrilateral will then be mutual reflections across the line of symmetry. In
particular, the angles of intersection of both of these sides with one of the invariant
sides will be the same. Thus, this quadrilateral is an isosceles trapezoid.

Now suppose that the quadrilateral has another line of symmetry. If both lines of
symmetry are diagonals, then each side will be equal to both of its adjacent sides.
This means that all sides are equal, and we have a rhombus. If both lines go through
a pair of sides, then both pairs of opposite sides are mutually parallel, and the angles
at the vertices on each side are equal. Therefore all angles are equal, so are all 90ı,
and we have a rectangle.

If one line is a diagonal and one line goes through the middle of a pair of opposite
sides, then the angles at the end of either of these sides are equal, and, also, the two
angles at the pair of vertices that are symmetric across the diagonal are equal. Thus,
all angles are equal, and we again have a rectangle. This means that opposite sides
are equal, but also, pairs of adjacent sides across the diagonal of symmetry are equal.
Thus, all sides are equal, so we have a rectangle with equal sides, i.e., a square.

The above shows that all quadrilaterals that have one or more lines of symmetry
belong to the appropriate class. In other words, each of those classes could be
defined as the class of quadrilaterals with the relevant kinds of lines of symmetry,
instead of the more pedestrian definitions/descriptions usually given.

The case we have not yet covered is the class of parallelograms. This is, in
some sense, the subtlest case, because the typical parallelogram does not have any
line of symmetry. Instead, parallelograms have a center of symmetry and are taken
into themselves by a rotation of 180

ı

around that center. We can again argue that,
conversely, any quadrilateral that has a center of symmetry must be a parallelogram.
We will not give the details of the argument, but it is not hard to show that, in
a quadrilateral with central symmetry, opposite sides must be equal and parallel,
which characterizes parallelograms.

The symmetry of a parallelogram around its center is an elegant way of rolling
all the standard geometric theorems about parallelograms into one tidy package.
Moreover, it provides an elegant connection between parallelograms and trapezoids,
which are the one commonly recognized class of quadrilateral whose members
typically have no symmetry, and, therefore, cannot be separated from generic
quadrilaterals by symmetry considerations.

Take a parallelogram ABCD. We know it has a central point, P. Draw any straight
line l through P. Assume that l is not one of the diagonals of ABCD. Then it will
exit ABCD through two of the opposite sides of ABCD. Let E and F be the points
of intersection of l with the edges of ABCD. See Fig. 3.8.
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Fig. 3.8 A typical line
through the center of a
parallelogram divides it into
two congruent trapezoids

Fig. 3.9 A trapezoid can be
half of two different
parallelograms

The line l divides ABCD into two pieces, ABEF and FECD. Both of these are
clearly quadrilaterals. Moreover, each has a pair of parallel sides, namely, AF and
BE in ABEF, and FD and EC in FECD. Thus, both pieces are trapezoids.

Furthermore, the trapezoids ABEF and FECD are congruent. Indeed, they are
mapped to each other by the 180ı rotation around the center P of ABCD. We can
summarize this by saying that cutting a parallelogram in half by a straight line,
other than one of the diagonals, produces two congruent trapezoids, which are
interchanged by the symmetry of 180ı rotation around P.

In fact, we can produce any trapezoid by this construction. If you start with a
given trapezoid ABEF, and if you rotate ABEF by 180ı around the midpoint P
of EF, then the transformed trapezoid FECD will fit together with ABEF to form
a parallelogram ABCD. Then ABEF appears as the half of ABCD produced by
cutting ABCD along the line l D EF.

We see then that a typical trapezoid ABEF will arise as half of a parallelogram
in two ways. In one way, the side EF will play the role of the dividing line, and in
the other, the side AB will play this role. See Fig. 3.9.

The two parallelograms from which ABEF can be obtained by cutting in half will
be congruent exactly when ABEF is an isosceles trapezoid.

In summary, then, although typical trapezoids do not in themselves have any
symmetry, they are linked to parallelograms by symmetry considerations. In this
way, they are more special than general quadrilaterals.
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Fig. 3.10 A triangle can be
half of three different
parallelograms

We should complete this discussion by looking at what happens when the line
l through the center P of the parallelogram ABCD happens to be a diagonal of
ABCD. The line l still separates ABCD into two congruent halves, but these halves
are now triangles instead of trapezoids. From a given parallelogram, one can get two
triangles, depending on which diagonal one takes.

Just as we can produce all trapezoids by cutting a parallelogram, we can get all
triangles. Indeed, the typical triangle is obtained in three different ways as half a
parallelogram. Given a triangle ABC, we can rotate it by 180

ı

around the midpoint
of any one of its sides. The original triangle and its rotated image will fit together
to create a parallelogram, of which the original triangle is half. Three of the vertices
of the parallelogram will belong to the original triangle, and the fourth vertex will
be new. If we perform such operations on all three sides of a triangle, the three
new vertices will form a new triangle, similar to the original triangle, but with side
lengths twice as long. The vertices of the original triangle are then the midpoints of
the sides of the new triangle. In other words, the original triangle is what is called the
medial triangle of the new triangle. The other diagonals of the three parallelograms
are the medians of the new triangle. They are concurrent in a point that is called the
centroid, of both triangles. This configuration, usually arrived at from the opposite
direction, is a staple of plane geometry courses. It is shown above (Fig. 3.10).

As a final remark, we note that symmetry is also relevant to triangle geometry
in a more direct way. Indeed, the commonly recognized special classes of triangles,
isosceles triangles and equilateral triangles, although not usually defined in terms of
symmetries, could be so defined. A triangle is isosceles if and only if it has a line
of symmetry, and a triangle is equilateral if and only if it has more than one line
of symmetry. In the latter case, it will have exactly three lines of symmetry and,
in addition, will be unchanged by rotations of 120ı, 240ı, and 360ı (the identity),
for a total of six symmetries. In comparison to the connections with quadrilateral
geometry, as sketched above, these observations are fairly straightforward.

It would be absurd to equate this topic in seriousness to the issues of place value,
units, and the length measurement – number connection provided by the number
line – but hopefully, the above account makes a case for early attention to at least
some simple geometric transformations (reflection in a line and 180

ı

rotation around
a point, sometimes also called “reflection in a point”). More important here, as with



38 R.E. Howe

the other topics, are the connections. Study of the transformations can be interesting
in itself, but the value added from connecting it with other more standard parts of
the curriculum, specifically special types of quadrilaterals, substantially enriches
both understanding of those topics and of the role of symmetry in understanding the
world.
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Knowing and Connecting Mathematics
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Chapter 4
The Content Knowledge Mathematics
Teachers Need

Hung-Hsi Wu

Abstract We describe the mathematical content knowledge a teacher needs in
order to achieve a basic level of competence in mathematics teaching. We also
explain why content knowledge is essential for this purpose, how Textbook School
Mathematics (TSM) stands in the way of providing teachers with this knowledge,
and the relationship of this concept of content knowledge with pedagogical content
knowledge (PCK).

4.1 Introduction

This is the first in a projected series of papers that examine the content knowledge
that mathematics teachers need in order to achieve a basic level of competence in
mathematics teaching.1 We share the belief with Ball, Thames, and Phelps (2008)
that “Teachers must know the subject they teach. Indeed, there may be nothing more
foundational to teacher competency.” (Ibid., p. 404.) In subsequent articles, we will
discuss specifically how to teach various topics from this perspective, such as long
division, percent, ratio, rate, proportional reasoning, congruence and similarity, and
slope.

I owe the reviewers of this article several useful suggestions for improvement. I wish to thank Katie
Bunsey, Kyle Kirkman, and Rebecca Poon for going the extra mile to provide me with the needed
data, and Dick Askey, Larry Francis, and Bob LeBoeuf for their corrections and suggestions. In
particular, Larry Francis’ devotion to this project—his willingness to put himself through the dreary
task of reading multiple drafts—is beyond the call of duty or friendship.
1There should be no misunderstanding about what is being asserted: having this content knowledge
is necessary for competent teaching.
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What mathematics teachers need to know for teaching is a contentious issue in
mathematics education. It is indeed a tall order to prescribe the content knowledge—
beyond what is in the standard school mathematics2 curriculum—that would enable
a teacher to teach “effectively” in a school classroom. It becomes all the more
forbidding when the desired level of effectiveness is not specified.

Since 1998, I have been engaged in providing a detailed answer to a far simpler
question: “What is the mathematical knowledge that teachers need in order to
achieve teaching competence on the most basic level”? I will give a more precise
description of “basic teaching competence” in the next section, but it is much easier
to begin by describing several examples of teaching that I consider to be below this
basic level.3 One example is to teach a concept through several grades without ever
giving that concept a precise definition, e.g., fraction, decimal, variable, slope, etc.
This used to be the universal practice before the advent of the Common Core State
Standards for Mathematics (CCSSM for short; see Common Core, 2010), but given
the poor state of school textbooks, it is possible that this is still happening in many
classrooms. Another is the failure to draw a sharp distinction between what is being
defined and what is being proved, e.g., the assertion that a fraction is a division (of
the numerator by the denominator), or the statement that b0 D 1 (for a positive
number b), or the statement that the graph of a quadratic function is a parabola (i.e.,
is this the definition of a “parabola” or is this a theorem that proves that the graph
is a well-defined curve called a “parabola”?). Yet another is the careless blurring
of the fine line between what is true and what is merely plausible. One of many
such examples is the not uncommon attempt to show that, without a definition of
the division of fractions, one can nevertheless arrive at the invert-and-multiply rule.
Thus,

2
3
4
5

D
2

3
�

5

4

because:

2
3
4
5

D

2
3

� .3 � 5/
4
5

� .3 � 5/
D

2 � 5

4 � 3
D

2

3
�

5

4
(4.1)

This chain of pseudo-reasoning is most seductive, but it suffers from a multitude of
errors, the most glaring being the justification for the first equality: it is supposed to
be based on equivalent fractions. Unfortunately, equivalent fractions only guarantees
that if m and n are whole numbers, then

2By school mathematics, we mean the mathematics of K–12.
3These examples illustrate the almost universal bad practice forced on teachers by school textbooks
from roughly 1970–2010; see Sect. 4.2.3 below.
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m

n
D

m � .3 � 5/

n � .3 � 5/
(4.2)

What is needed to justify the first equality in (4.1), however, is for m and n in (4.2) to
be equal to 2

3
and 4

5
, respectively, and 2

3
and 4

5
are emphatically not whole numbers.

As a final example of the kind of teaching that is below the most basic level, perhaps
the failure to provide the reasoning for truly basic facts such as a

b � c
d D ac

bd or
.�a/.�b/ D ab requires no further comment.

It is unfortunately a fact that, because of our collective dereliction of duty, most of
our teachers have been forced to teach at a level below the basic level of competence
(see, e.g., Wu, 2011b).

My effort to find out what content knowledge teachers need in order to
achieve basic teaching competence took a practical turn when I began to provide
professional development to preservice and in-service mathematics teachers of
all grade levels in 2000; it lasted until 2013. Current practices in mathematics
professional development have been to concentrate on instructional strategies (U.S.
Department of Education, 2009, p. 89; Wu, 1999). Moreover, the teachers I taught
have consistently told me that, whatever content-based professional development
they got, it would be given in short workshops (half-day or one day, rarely two
days) on specific topics. There have also been extended workshops lasting several
weeks for teachers on “immersion in mathematics” devoted to problem-solving
or doing mathematical research on topics sufficiently close to school mathematics
(e.g., PCMI, 2016, or PROMYS, 2016). I made the decision from the beginning
that I could better serve teachers by breaking with tradition. I would teach them,
systematically, the mathematics they have to teach, but in a way that is both
mathematically correct and adaptable to their classrooms. Such an endeavor requires
long-term effort, e.g., 3-week institutes strictly devoted to the mathematics of one or
two major topics, with follow-up sessions throughout the year, or course sequences
in the mathematics departments of universities (see Wu, 1998, 2011a for elementary
teachers; Wu, 2010a,b for middle school teachers; and the Appendix of Wu, 2011c
for high school teachers).

It did not take me long to realize that these efforts will ultimately go nowhere
unless we have on record at least one default model of a logical, coherent
presentation of school mathematics that is adaptable to the K–12 classroom.
Without such a presentation it is difficult to make the case that school mathematics,
despite the need to be cognitively sensitive to the learning trajectory of school
students, is nevertheless a discipline that respects mathematical integrity. In other
words, the concepts and skills of school mathematics can be developed logically
from one level to the next, and the transparency that one expects of mathematics
proper is also attainable there. Without such a detailed presentation, our insistence
that reasoning—and therewith problem-solving—must be everywhere in the school
curriculum would also sound a bit hollow. Incidentally, an explanation of the need
for such a presentation from the perspective of professional development will also
be given on page 83.
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For these reasons, I have embarked on a project of writing a series of textbooks
for teachers that will cover all of school mathematics. Three have already appeared
(Wu, 2011a, 2016a,b), and three more to round out the series will probably be in
print by 2018 (Wu, to appear).4 This article will attempt to explain from the vantage
point of what may be called principle-based mathematics (to be explained in
detail on page 56) the content knowledge that teachers need in order to carry out
their basic duty of teaching mathematics. In the process, we will also make contact
with Shulman’s concept of pedagogical content knowledge (Shulman, 1986) and its
refinement in Ball et al. (2008).

If there is one thing I have learned through my many years of involvement
with teachers, it is the melancholic realization that—as of 2016—relatively few
educators and mathematicians seem to be aware of the urgency of the need to
provide this content knowledge to mathematics teachers (compare the last paragraph
of Sect. 4.5). Our failure to do this has indirectly forced school students to memorize
things that are unreasonable and incoherent and therefore ultimately unlearnable.
Yet we expect students to be proficient in “sense making,” “problem-solving,” and
attaining “conceptual understanding,” and when such irrational expectations are
not met, we evaluate these same students and pass judgment on their inability to
learn. It is time to stop inflicting such cruel and unusual punishment on the young.
There is another victim of this strange education philosophy too: the teachers. In
my experience, many of them are unhappy with the limitations in their content
knowledge and are eager to expand their mathematical horizon, only to be frustrated
by the overwhelming scarcity of resources to help them. We have let our teachers
down for far too long.

Let us take a modest first step to making amends by providing a better
mathematical education for teachers.

This article is organized as follows. Section 4.2 describes, on the one hand, the
mathematical knowledge base of most teachers at present (which we call TSM;
see pp. 53 ff.) and, on the other, the minimum mathematical knowledge that
teachers need in order to achieve basic teaching competence. We also provide some
threadbare data that is available to show why this knowledge would be beneficial
to student learning. Section 4.3 attempts to give a more detailed description of the
chasm that separates the two kinds of content knowledge. Section 4.4 explains what
we mean by “knowing” a concept or a skill, and Sect. 4.5 makes some comments on
the state of professional development at present and the hard work that lies ahead if
our goal of providing teachers with this minimum knowledge is to be achieved. The
last section, Sect. 4.6, makes contact with pedagogical content knowledge.

4Although these professional development materials were written well before the CCSSM, they
are compatible with the CCSSM because the first two served as a reference for the writing of
the CCSSM. The CCSSM came to the same conclusion on numerous topics as these materials
(fractions, rational numbers, use of symbols, middle school and high school geometry, etc.).
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4.2 The Two Basic Requirements

What is the mathematical knowledge that teachers need in order to teach at a basic
competence level, and how to assess whether teachers know it? We will postpone
the answer to the latter question to Sect. 4.4 but will try to answer the former
in this section. Broadly speaking, this knowledge should enable teachers to teach
procedural knowledge as well as the reasoning that supports it. It therefore asks
for a knowledge of the most basic facts (e.g., the standard algorithms, operations
on fractions, standard algebraic identities, and foundational theorems such as the
Pythagorean theorem or the angle sum of a triangle being 180ı) as well as correct,
grade-level appropriate mathematical explanations for them and the ability to
“distinguish right from wrong,” e.g., spot errors in “routine” situations related to
these facts and be able to correct them. In particular, we will explicitly leave out
from our considerations the more refined aspects of teaching (insofar as they are
related to content knowledge) such as the ability to find more than one explanation
for an assertion, give fruitful guidance to students’ extemporaneous mathematical
discussions, make up good examples or mathematical questions to pique students’
interest, or make up good assessment items that probe students’ understanding.

In the preceding section, it has already been mentioned in passing that the content
knowledge that meets such a modest demand of basic teaching competence must
satisfy, at least, both of the following requirements:

(1) It closely parallels what is taught in the school classroom.
(2) It respects the integrity of mathematics.

The first point should be self-evident: teachers should not be required to create
new mathematics for their lessons, any more than violinists should compose the
music they perform.5 They should have a ready reference for what they teach. An
additional reason for making this point explicit is that the mathematics community
generally holds the conviction that teaching teachers the kind of mathematics
it deems important will lead to educational improvement. The idea that, once
teachers know the good stuff, they will somehow know the elementary stuff
(school mathematics) better and therefore teach better6 has led to the disastrous
consequence that preservice teachers are typically not taught the mathematics of
the K–12 curriculum in college. Another consequence is that many mathematicians,
in their attempt to improve K–12 education, adopt the default position of teaching
(preservice and in-service) teachers college topics that are elementary at the college
level but are nevertheless too advanced for the K–12 curriculum, such as finite
geometry, discrete mathematics, number theory, etc. There is as yet no widespread
recognition that the mathematics of the K–12 curriculum is not a proper subset

5I am paraphrasing something said by Harold Stevenson at a TIMSS conference; see Math
Forum@Drexel (1998).
6This is the Intellectual Trickle Down Theory as described on page 41 of Wu (2015).
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of the mathematics taught in college (see p. 404 of Ball et al., 2008; Wu, 2006;
and pp. 42–47 of Wu, 2015), and therefore preservice mathematics teachers need
explicit instruction on school mathematics.

The second point about teachers’ need for content knowledge that respects the
integrity of mathematics is even more of a no-brainer. If the goal of mathematics
education is to teach students mathematics, then it is incumbent on us not to
teach them anything less than correct mathematics. Therefore teachers’ content
knowledge cannot afford to be polluted by any kind of mathematics that has no
mathematical integrity. Those not familiar with school mathematics or the state of
school mathematics textbooks may be shocked that one would consider something
this obvious to be worthy of discussion. Unfortunately, the reality is that our
teachers’ content knowledge—due to reasons to be explained in Sect. 4.2.3—has
been a very flawed version of mathematics for a long time. There is some reason
to believe that this kind of flawed mathematical knowledge is also shared by many
education researchers so that these flaws cease to be noticeable in the education
literature after a while. We bring up the issue of mathematical integrity precisely
because we wish to provide a proper context for a fresh analysis of this body of
flawed mathematical knowledge. This analysis will also reveal why it is so difficult
for teachers to acquire the content knowledge they need.

Because we are mainly concerned with the nature of the content knowledge
mathematics teachers need for basic teaching competence, we will leave out any
discussion about the scope of the content knowledge that a teacher of a particular
grade needs for this purpose. Without getting into details, we can nevertheless
agree with the recommendation of the National Mathematics Advisory Panel
that “teachers must know in detail and from a more advanced perspective the
mathematical content they are responsible for teaching and the connections of that
content to other important mathematics, both prior to and beyond the level they are
assigned to teach” (National Mathematics Advisory Panel, 2008, p. 38).

In the first subsection below, we will propose a workable definition of mathe-
matical integrity. Because the idea of emphasizing definitions is so new in K–12,
we make a few additional comments in Sect. 4.2.2 on this advocacy to preclude any
misunderstanding. Then using this definition of mathematical integrity, we briefly
describe in Sect. 4.2.3 the current state of most teachers’ content knowledge. In
the last subsection (pp. 56 ff.), we give some indication of why teaching correct
mathematics is beneficial to mathematics learning.

4.2.1 Five Fundamental Principles

Any detailed discussion of teachers’ content knowledge requires first of all a
definition of “mathematical integrity.” Like the concept of “beauty” in art and music,
it is not likely that there will ever be a comprehensive definition of “mathematical
integrity” that is agreeable to everyone. Nevertheless, we can propose a usable
and reasonably short definition that most working mathematicians would consider
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unobjectionable. With this in mind, here are five fundamental principles that we
believe characterize mathematical integrity (see Wu, 2011b):

(A) Every concept is precisely defined.
(B) Every assertion is supported by reasoning.
(C) Every assertion is precise.
(D) The presentation of mathematical topics is coherent.
(E) The presentation of mathematical topics is purposeful.

Before we amplify on these principles, let it be mentioned that, strictly speaking,
these are fundamental principles that undergird what is called pure mathematics.
For so-called applied mathematics, each of these principles will acquire a slightly
different flavor. Nevertheless, for reasons to be discussed in Appendix 1: Applied
Mathematics (p. 85), it suffices to limit ourselves to (A)–(E) if our goal is to
safeguard the mathematical integrity of school mathematics.

The first three principles, (A)–(C), are closely interrelated and therefore have
to be discussed together. In mathematics, the starting point for any reasoning is a
collection of precise definitions of concepts7 and a collection of explicit assumptions
or facts already known to be true. It is the unambiguous nature of the definitions,
assumptions, or facts that enables them to serve as the foundation for correct logical
deductions. The process of making logical deductions from precise definitions,
assumptions, and facts in order to arrive at a desired conclusion is what we call
reasoning, and reasoning is the vehicle that drives problem-solving.8 It is therefore
in the nature of mathematics that, without precise definitions, reasoning cannot get
off the ground and therefore there will be no problem-solving. Those who lament
students’ inability to solve problems should look no further than the defective
curricula around us that offer no precise (and correct) definitions for the most basic
bread-and-butter concepts such as fractions, decimals, negative numbers, constant
speed, slope, etc. (See Sects. 4.3.1 and 4.3.2 on pp. 60 and 65, respectively.)

It is easy to explain in everyday language why any mathematical discussion must
rest on precise definitions. In a rational discourse, we must know exactly what we
are talking about, and precise definitions serve the purpose of reminding us what we
are talking about. Precision becomes even more critical when the discussion turns
to abstract concepts and skills, which is what happens in the mathematics of middle
school and high school. We need precision to minimize misunderstanding in the
teaching and learning of mathematics because the precision helps to delimit, exactly,
what each concept or assertion does or does not say. While human communication,
being human, cannot maintain such precision at all times in a school classroom,
there will come a time in any discussion of mathematics when such precision
becomes absolutely indispensable. This is a persuasive argument that teachers
should learn to judiciously nurture precision in the school classroom.

7Or undefined terms at the beginning of an axiomatic development.
8In mathematics, there is no difference between proving and problem-solving.
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Beyond definitions, precision manifests itself in school mathematics in almost
every conceivable way, and there is no end of such examples. Thus the domain of
definition of the function log x is not fx � 0g but fx > 0g; indeed the difference
between the two is only one number, namely, 0, but that is the difference between
nonsense and being correct. Another example: it seems plausible that if we have an
inequality between numbers, let us say a < b, and if c is another number, then we
have ca < cb. As is well known, this is not correct because if c is negative, then the
opposite is true, i.e., ca > cb, and if c D 0, then ca D cb. Therefore this assertion
must be precisely announced as follows:

Suppose two numbers a and b satisfy a < b. If c > 0, then ca < cb, but if c < 0, then
ca > cb.

As a final example, if the three sides of a triangle are (of length) 20, 67.1, and
70, then it is not a right triangle. If you draw such a triangle using any unit of
length (e.g., 20, 67.1, 70 cm) and measure the angles, you are most likely going to
conclude, within the margin of error in measurements, that this is a right triangle.
Yet, because 202 C 67:12 ¤ 702 (the left side is 4902.41, while the right side is
4900), we know by the Pythagorean theorem that this cannot be a right triangle.

As for the critical role of reasoning in mathematics education, suffice it to
note that rote learning—the one quality in education that is universally decried—
is nothing but the attempt to memorize in the absence of reasoning. When every
assertion is seen to be supported by reasoning, students realize that mathematics is
learnable after all because it is not faith-based and submission to another person’s
whimsical dictates is not required. For example, every elementary student has
probably wondered why we cannot add fractions in the same simple way that we
multiply fractions, i.e., why a

b � c
d D ac

bd but a
b C c

d ¤ aCc
bCd . If people in education

had ever given serious thought to this question, they would have realized the urgency
of defining precisely the meaning of adding and multiplying fractions and then
proving the addition and multiplication formulas for fractions (see Wu, 1998). Such
a realization might have changed the landscape of teaching fractions several decades
earlier. Needless to say, the same goes for all the arithmetic operations for fractions
and for rational numbers9 and, indeed, for every assertion in school mathematics.

Next, let us turn to the concept of coherence in (D). The term “coherence” is
often invoked in recent education discussions, but perhaps without realizing that it
is quite subtle and can only be explained in terms of technical details. Roughly, it
means that the body of knowledge we call mathematics, far from being a random
collection of facts, is a tapestry in which all the concepts and skills are logically
interwoven to form a single piece. For example, the concept of division, when
presented correctly, is qualitatively the same for whole numbers, fractions, rational
numbers, and real numbers (this fact is emphasized in Wu, 2011a) and even for
complex numbers. Right there, we see why coherence is vital for the teaching and

9Rational numbers is the correct terminology for fractions and negative fractions; it should not be
conflated with fractions. Fractions are nonnegative rational numbers.
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learning of mathematics because it means that, if the concept of division is taught
correctly the first time for whole numbers, it will spare learners the need to learn
division anew on subsequent occasions. This message bears repeating because the
division of fractions is still a much feared concept at the moment.10 For another
example, although the standard algorithms for whole numbers may seem to be four
unrelated and unfathomable skills, they are all unified by a single idea: how to
reduce all multi-digit computations to single-digit computations (cf. Wu, 2011a,
Chapter 3). From this perspective, the success and the beauty of the standard
algorithms are nothing short of stunning. They teach students the important lesson of
reducing the complex to the simple, which is after all a main driving force behind all
scientific investigations. Had this kind of coherence about the standard algorithms
been widely understood among teachers and routinely taught in textbooks, it is
doubtful that the math wars of the 1990s would have erupted at all. We can push
this line of reasoning one step further: the four arithmetic operations on fractions
may seem to be unrelated skills until one realizes that they are conceptually the
same as those on the whole numbers (this fact is especially emphasized in Part 2 of
Wu 2011a). Insofar as the whole of mathematics is coherent, there is no end of such
examples, and some of them will naturally emerge in the discussions of the next
section (Sect. 4.3). However, it should be obvious from this brief discussion that
teachers must be aware of the coherence of mathematics if they want to be effective
in the classroom.

Finally, the concept of purposefulness may also be a characteristic of math-
ematics that is hidden from a casual observer’s view, but it is one of the main
forces that shapes mathematics from the most elementary part to the most advanced.
Mathematics is goal-oriented, and every concept or skill is therefore a mathematical
purpose. This is especially true of school mathematics because the intense competi-
tion among the various topics to stay in the school curriculum naturally weeds out all
but those that serve a compelling purpose. One of the most striking examples is the
concept of basic rigid motions in the plane—translation, rotation, and reflection—
that are standard topics in middle school. In TSM, these rigid motions are regarded
as fun activities that shed light on the beauty of tessellations and Escher’s prints
(cf. p. 33 of Conference Board of the Mathematical Sciences, 2001), and they lead
to so-called transformational geometry, a novelty whose charm quickly gets lost in
the technicalities of high school mathematics. But when these basic rigid motions
are properly realized as the cornerstone for the concept of congruence in the plane,
the mathematics of these rigid motions comes to the forefront, and they become
the thread that unifies middle and high school geometry (cf. Wu, 2010a, Chapter 4;
CCSSM, 8.G and High School-Geometry; Wu, 2016a, Chapter 4). Another example
is rational numbers (fractions and negative fractions). They are not just “another
collection of numbers” that students must put up with, but are rather the agents that
render the computations that one normally performs in solving linear equations, for
example, entirely routine. (This may be likened to what the standard algorithms

10Ours is not to reason why, just invert and multiply.
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do for computations with whole numbers.) A final example is the concept of place
value. In the way it is commonly taught in schools, this is a concept that primary
students must accept, by rote, at all costs. Would it not be more productive to explain
to them, no matter how informally, the fact that we need place value in order to
count (and write) to any number by using only ten symbols {0, 1, 2, . . . 9} and to
also make number computations manageable at the same time? (See Sections 1.1
and 1.2 in Wu, 2011a, and pp. 13–31 in Wu, 2013a.)

4.2.2 Two Caveats

Before we proceed further, we should clear up a common misunderstanding
concerning the use of definitions in school mathematics. At present, there is great
resistance to the idea of making the formulation of precise definitions a main
focus of K–12 mathematics. Some textbook writers go so far as to refuse to let
any reasoning be based on precise definitions because—as the saying goes—the
definition of a concept emerges only after many explorations. Therefore some
amplification on this idea is necessary.

Our insistence on the use of precise definitions as the basis for reasoning is not
meant to be, literally, applicable to all of K–12 but only to roughly grade 5 and
up.11 These are the grades where reasoning begins to assume a critical role and the
non-learning of mathematics starts to become most pronounced. We hasten to add
that we do not by any means imply that definitions and reasoning do not matter
in grades K–4; emphatically they do. After all, the foundation of learning how to
reason from precise definitions must be laid in those grades. However, at least in
K–3, the pedagogical and psychological components of teaching may be even more
important than the content component. Therefore, a discussion of definitions and
reasoning in the early grades will have to be more nuanced than is possible in the
limited space we have here.

A second point we should make is that the use of definitions and the presentation
of proofs in grades 5–12 must respect the reality of the school classroom. It is
time to recall requirements (1) and (2) at the beginning of Sect. 4.2: we want
mathematics that is both correct and usable in the school classroom. We therefore
expect definitions to be introduced with motivation and background information, in
ways that are grade-level appropriate.

We can illustrate with the teaching of fractions. By no later than the fifth grade,
we expect a fraction to be defined as a point on the number line constructed in a
prescribed way (see Wu, 1998, 2011a, Part 2, and CCSSM, 5.NF).12 But does this

11In making this assertion, I am trying to be as conservative as possible. Larry Francis pointed
out to me, for example, that the definition of a fraction as a certain point on the number line is
essentially given in the third grade of the CCSSM: 3.NF.2.
12Also see the preceding footnote.
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mean a fifth grade teacher should ram this definition down students’ throats on day
one of a fifth grade class? Not at all. We would expect something more persuasive to
precede it. For example, when a textbook for teachers introduces this definition, it
devotes six-and-a-half pages to explain the genesis and the need for such a definition
(see Wu, 2011a, pp. 177–183). In fact, by the time this book gets to fractions, it
has already spent a chapter explaining the virtues of the number line as a tool for
codifying the mathematics of whole numbers (Wu, 2011a, Chapter 8). For another
example, when the same book for teachers defines what fraction division means, it
spends four pages reviewing the relevant definitions of subtraction and division for
whole numbers and giving an intuitive meaning to the division of “simple” fractions
(Wu, 2011a, pp. 283–286).

A final example is about the definition of a genuinely abstract concept, that of
the probability of an event. This is without a doubt a difficult concept for middle
school students. Therefore in a book for teachers (Wu, 2016a, pp. 121–141), no
general definition of probability is given in the first 12 pages of the exposition on
this topic. Instead, these 12 pages are devoted entirely to examples of coin tossing
and dice throwing, and the probability of each example is defined specifically for
that example; these definitions are relatively easy to accept because experiments can
be performed to test the plausibility of each of these definitions. When the general
definition is finally given at the end of these 12 pages of examples, the abstract
pattern of the earlier definitions of the probability for each individual example is
already in clear evidence, and the general definition becomes nothing but a summary
of the earlier ones.

It remains to point out that the motivation for definitions in student textbooks will
have to be even more expansive and more considerate. While one would not expect
such elaborate preparation for the introduction of each and every definition, these
three examples do serve the purpose of clarifying the recommendation that precise
definitions be given in grades 5–12.

4.2.3 Textbook School Mathematics (TSM)

School textbooks are a powerful force in teachers’ lives because teachers’ lessons
usually follow the textbooks. It is unfortunately the case that the mathematics
encoded in the school textbooks of roughly the four decades from 1970 to 2010 is a
very defective version of mathematics. Let us call it Textbook School Mathematics
(TSM) (Wu, 2014a, Introduction; Wu, 2015). Because colleges and universities—
as pointed out on page 47—make scant effort to help preservice teachers revisit and
revamp their knowledge of TSM, what teachers know about school mathematics
generally consists of nothing more than TSM. Consequently, teachers have no
choice but to teach their students what they themselves were taught as school
students so that they too imprint TSM on their own students. It therefore comes
to pass that this body of defective mathematics knowledge gets recycled in schools
from generation to generation.
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In order for teachers to acquire a content knowledge base that respects math-
ematical integrity, i.e., satisfies condition (2), we must begin by helping them to
recognize and replace their knowledge of TSM.

It is a legitimate question whether the concept of TSM has any validity. Does
it exist? This question becomes all the more pressing when one realizes that
the mathematics education reform of the 1990s (National Council of Teachers
of Mathematics, 1989, 2000) took place within the last four decades and the
reform was a revolt against the school mathematics of the 1970s and 1980s. How
can TSM possibly span both eras, pre-reform and post-reform? We will leave a
more detailed answer to these questions to Appendix 2: The Existence of TSM
(p. 86) so as not to interrupt the present discussion of teachers’ content knowledge.
However, a little reflection will immediately reveal that the following features are
equally common in pre-reform or post-reform texts: lack of precise definitions
(e.g., fractions, negative numbers, the meaning of division of fractions, decimals,
constant rate, percent, slope, etc.), the absence of precise reasoning for major
skills (e.g., how to add or multiply fractions, how to multiply or divide decimals,
why negative times negative is positive, how to write down the equation of a line
passing two given points, how to locate the maximum or minimum of a quadratic
function, etc.), and the failure to explain the purpose of studying major topics such
as the standard algorithms, rounding off whole numbers or decimals, functions,
exponential notation of numbers (why write

p
b as b1=2?), trigonometric functions

(are right triangles that important?), etc. (Also see Wu, 2014a.)
The most egregious errors of TSM lie in rational numbers (especially in

fractions), linear equations of two variables and linear functions of one variable,
and middle school and high school geometry. Since these topics will be discussed at
some length in the next section, what we are going to do here is describe how TSM,
in its treatment of the laws of exponents in high school algebra, manages to violate
all five fundamental principles of mathematics.

The laws of exponents in question state that for all a; b > 0 and for all real
numbers s and t, we have:

.E1/ as � at D asCt

.E2/ .as/t D ast

.E3/ .a � b/s D as � bs

The starting point is of course the easily verified simpler versions of (E1)–(E3)
for all a; b > 0 and for all positive integers m and n,

.E10/ am � an D amCn

.E20/ .am/n D amn

.E30/ .a � b/n D an � bn

The first order of business in generalizing (E10)–(E30) to (E1)–(E3) is to define
a0 and a�n for any positive integer n. The way TSM tries to motivate the definition
a0 D 1 is by either asking students to believe that the validity of patterns (. . . a3 D

a4=a, a2 D a3=a, a D a2=a) also validates a0 D a1=a D 1 or by claiming that
since (E10) holds, we must have a2a0 D a2C0 D a2 so that by dividing both sides
of a2a0 D a2 by a2, we get a0 D 1. This kind of speculative reasoning is of
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course an integral part of doing mathematics provided it is clearly understood to be
speculative. However, precision not being a main concern of TSM, this motivation
for the definition of a0 is presented—informally to be sure—as “reasoning,” and the
result is that this motivation for a definition is commonly misconstrued as a proof of
the theorem that for any a > 0, a0 D 1. The same comment applies to the definitions
of a�n D 1=an and a1=n D n

p
a. Such imprecision contributes to teachers’ confusion

between what a definition is and what a theorem is.13

Once the concept of ar has been defined for all rational numbers, the next step is
to explain, to the extent possible, why (E1)–(E3) are valid for all rational numbers
s and t. Unfortunately, TSM simply dumps these laws of exponents for rational
exponents on students with nary a word of explanation. Let us be clear: we do not
want these laws for rational exponents to be completely proved in a high school
classroom either, because these proofs are long and tedious (see, e.g., Wu, 2010b,
pp. 183–191). Yet some special cases are so important that they deserve to be proved
in full, e.g., the following special case of (E3):

n
p

a
n
p

b D
n
p

ab for all positive integers n (4.3)

This equality, especially the case n D 2, is almost ubiquitous in the middle and high
school mathematics curriculum, but it seems to be the case that either TSM assumes
(4.3) without comment or, if a proof is attempted, it is not correct.14

Now the laws of exponents are taken up in textbooks long after the concept
of a function has been taught. Therefore, there is no excuse for not pointing out,
emphatically, that these laws are in fact remarkable properties of the exponential
functions. Yet TSM introduces these laws almost always as “number facts,” and even
when it gets around to discussing exponential functions, no special effort is made
to finally establish the relation of these so-called number facts with the exponential
functions. Thus the real purpose of studying these laws of exponents (i.e., they are
characteristic properties of exponential functions) goes by the wayside, and students
are likely to lose sight of the fact that it is automatic in mathematics to isolate the
properties common to a given class of functions. In this light, the laws of exponents
are to exponential functions as the addition theorems (of sine and cosine) are to the
trigonometric functions.15 This is mathematical coherence in action. But, instead,
TSM makes students believe that the exponential notation is a just a game we play in
order to rewrite n

p
a in the fancy notation a1=n. Without any exposure to the reasoning

behind the laws of exponents, students end up seeing these laws as undecipherable
statements about a quaint notation that they must commit to memory.

13I have personally witnessed this confusion not just in the USA but also in Australia and China.
14Part of the difficulty of obtaining a correct proof of (4.3) is that the uniqueness of the positive
n-th root of a is part of the definition of n

p
a, but TSM seems unwilling to confront the concept of

uniqueness.
15Or, more generally, as the addition theorems are to complex exponential functions.
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There is an additional flaw in TSM in its failure to at least comment on the
meaning of as when s is an irrational number such as � or

p
3. See the discussion

in Chapter 9 of Wu (2016b) that presents a more reasonable way to address the laws
of exponents overall.

4.2.4 The Data

Since the two requirements (1) and (2) on page 56 for the content knowledge that
teachers need pull in opposite directions, it is by no means obvious how to provide
teachers with this knowledge. Following Poon (2014), let us call content knowledge
that satisfies both requirements of principle-based mathematics. TSM certainly
satisfies requirement (1) of principle-based mathematics, but it fails requirement (2)
in spectacular ways as we have just seen. Conversely, one can easily cobble together
a coherent exposition of all the standard topics in school mathematics by making a
judicious selection of various pieces from the required courses of a university math
major, but the result will not come close to resembling school mathematics, i.e.,
it cannot satisfy requirement (1). For example, to college math majors, a rational
number—in particular a fraction—is just an equivalence class of ordered pairs of
integers, but that is not something we would try to teach to fourth or fifth graders.
Similarly, to these majors, the maximum of a quadratic function can be simply
obtained by differentiating the function and setting the derivative equal to zero to
obtain the point at which the function achieves the maximum. However, 10th or
11th graders have to learn how to locate this maximum point without the benefit
of calculus and so on. Incidentally, these examples also give an indication of why
school mathematics cannot be a proper subset of college mathematics (see page 48).

To the extent that the goal of school math education is to teach students
mathematics, teachers cannot afford to teach them TSM, period. TSM is incorrect
mathematics. The need to replace teachers’ knowledge of TSM by principle-
based mathematics is therefore absolute. Beyond such theoretical considerations,
it would also be reassuring if we could get some indication from another source
that principle-based mathematics is beneficial to mathematics learning. There is
an indirect reassurance from the CCSSM. These standards have taken a major
step in moving away from TSM to principle-based mathematics. One look at the
standards on fractions (grade 3 to grade 6), rational numbers (grade 6 to grade 7),
and geometry in grade 8 and high school will be enough to convince a reader of
this fact. The belief in principle-based mathematics is therefore at least shared by
some reasonable people. Beyond that, one would like to have some large-scale data
for this purpose. Thus far, there is little or no such data for the obvious reason that
principle-based mathematics has not yet been available on a reasonable scale either
in professional development for teachers or in the K–12 classroom. Perhaps more
telling is the fact that, with rare exceptions (e.g., Hill, Rowan, and Ball, 2005; Ball,
Hill, and Bass, 2005), the education research community has traditionally neglected
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content and its role in instruction (see the reference to the “missing paradigm” on
page 6 of Shulman, 1986). What data we have is so meager that it borders on the
anecdotal.

In her Berkeley dissertation (Poon, 2014), Rebecca Poon explored the impact
of content knowledge training on student learning. She did a case study of four
teachers (three in fourth grade and one in sixth grade) who received (to varying
degrees) training in principle-based mathematics. Three were on the West Coast
(but not in California) and one on the East Coast. Through personal interviews
and teachers’ notes, she studied how these teachers taught one topic: the division
interpretation of a fraction. This allowed her to sample the teachers’ ability to
faithfully implement the basic message of principle-based mathematics, especially
definitions, precision, and reasoning. Then she looked at their students’ state test
scores and compared them to the scores of other comparably matched16 students
who were taught by teachers without any training in principle-based mathematics.
Her conclusion is that “the average effect of PBM (principle-based mathematics)
training on student achievement was significant and substantial” (ibid., p. 63), but
there are uncertainties about whether the positive effect on student achievement can
be attributed exclusively to the training in principle-based mathematics.

The article Alm and Jones (2015) would seem to be the only relevant published
article we can cite. The authors reported a success story about students in remedial
courses in a small liberal arts college when principle-based mathematics (based
on Wu, 2011a) was taught. They attribute the success to the emphasis on the use
of precise definitions (particularly in fractions) and coherence (of fractions and
algebra). The authors added:

The a priori case that students are better off learning better mathematics is clear enough.
The a posteriori case that student learning in the classroom is actually improved is more
complicated (but anecdotal evidence and our observations certainly support it). In particular,
small sample sizes are a major issue. We are currently working on constructing a multiyear
study over several cohorts to measure the practical effectiveness of the approach described
here. (Ibid., footnote on page 1364.)

My own summer institutes from 2000 to 2013 were devoted to principle-
based mathematics. Over the years, teachers from those institutes have let me
know how the institutes had impacted their students’ learning, but none—with two
exceptions—provided me with usable data. I will now briefly mention the results
from those two exceptions. I will also mention the data from another teacher at the
end.

Kyle Kirkman (kirkmanks1@gmail.com) was a first-year K–6 Math Inter-
ventionist in 2015–2016 at the Pan-American Charter School of Phoenix, AZ.
The school uses the Galileo K–12 Online Assessment System from Assessment
Technology Incorporated (ATI). His charge was to work with RTI (Response
to Intervention) students to bring them up to grade level. Students’ progress is
monitored by the “growth” of their test scores, measured in the following way. For

16This is a long story. Please see Sections 4.3, 6.1–6.3 of Poon (2014).

kirkmanks1@gmail.com
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each quarter (of the school year), students take a Galileo K–12 test at the beginning
and another one at the end, and the score of the latter minus the score of the former
is by definition their growth in the quarter. (The Galileo K–12 test at the end of
the first quarter doubles as the test at the beginning of the second quarter, the test
at the end of the second quarter doubles as the test at the beginning of the third
quarter, and so on.) The following tables (numbers are rounded to the nearest one)
summarize the comparison of the average growth of Kirkman’s RTI students with
that of the non-RTI students. Some comments will also be found after the tables.

Fall-QT 1, 2015:

Gr K Gr 1 Gr 2 Gr 3 Gr 4 Gr 5 Gr 6 K–6 Av

Non-RTI students 126 �31 15 49 30 37 8 33

RTI students 236 50 55 74 59 139 68 97

RTI student growth minus
non-RTI student growth 110 80 40 25 29 102 59 64

Fall-QT 2, 2015:

Gr K Gr 1 Gr 2 Gr 3 Gr 4 Gr 5 Gr 6 K–6 Av

Non-RTI students �13 63 48 41 98 15 63 45

RTI students 19 119 30 36 95 �10 64 50

RTI student growth minus
non-RTI student growth 32 56 �19 �5 �13 �25 2 6

Spring, 2016:

Gr K Gr 1 Gr 2 Gr 3 Gr 4 Gr 5 Gr 6 K–6 Av

Non-RTI students 108 97 63 51 85 58 1 66

RTI students 188 177 78 96 142 100 52 119

RTI student growth minus
non-RTI student growth 80 80 15 45 57 42 51 53

The average growth of the RTI students obviously far exceeds that of the non-RTI
students except in the second table. Kirkman explained that in the second quarter,
he stopped working with his students of the first quarter and got a new group of
students. Moreover, in an effort to work with more students, he moved students
in and out of his class in shorter intervals than a quarter. The strategy backfired,
as the table shows. In the Spring, he worked with the same group of students all
through the semester, and the Galileo K–12 test at the end of the third quarter was
not administered.
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He described how his knowledge of principle-based mathematics helped him:

I have learned that precise mathematical definitions are critical. If precision is lacking,
students will fill in any missing or vague elements of the definition with whatever happens
to be present in their paradigm that seems to fit the idea. Not all of mathematics is intuitive
in nature, so this can definitely lead to erroneous conclusions.

Larry Francis (larrydotfrancis@gmail.com) taught Title 1 math intervention
groups, in 2014–2015, in grades 1–5 at Helman Elementary School of Ashland, OR.
Grouped by grades, students came to his classroom for 30 min four times each week.
Below is a comparison of the average grade-by-grade gains in percentile scores on
the 2014–2015 fall-spring easyCBMTM CCSS benchmark tests of his Title 1 students
compared with those of their classmates in their home classrooms (classroom A
and classroom B). In nine out of ten classrooms, these previously underperforming
Title 1 students outperformed their classmates, sometimes dramatically. Title 1
students’ scores have been removed from their respective classrooms’ scores for
this comparison. Furthermore, the fall-spring numbers are the nationally normed
percentile scores according to easyCBMTM.

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

Title 1 math 19 10 11 2 16

Classroom A 2 �12 7 �8 1

Classroom B �3 �8 3 4 12

According to Francis, “Precise definitions were crucial. Helping first and second
graders with counting doesn’t mean you need to tell them a bunch of definitions,
but you need to make it clear that fundamentally a number is a thing you count
with.” What he learned from the summer institutes is “to reorganize my knowledge
of arithmetic into a much more mathematical form. I continued to ‘know’ almost
all the old things I used to know, but your [institutes] got me to reorganize
that knowledge. . . . I am sure that reorganizing my knowledge contributed to my
students’ successes.”

Finally, I have some data from a teacher who was not at any of my summer
institutes. Katie Bunsey (kate.bunsey@lakewoodcityschools.org) teaches fourth and
fifth grades at Hayes Elementary School of Lakewood, OH. I happen to have been
mentoring her, long distance, for the past three years on whole numbers and fraction
using Wu (2011a). She has just reported to me her fifth grade students’ 2016 math
scores on the Ohio State Assessment (administered by AIR):

• Seventy-seven percent of her students scored proficient or above, whereas only
62% of Ohio’s fifth graders scored proficient or above, and only 63% of her
school district’s fifth graders were proficient or above.

• Among those students who had her for 2 years (in their fourth and fifth grades),
84% were proficient or above, but among those who had her for only 1 year (in
fifth grade), only 70% were proficient or above.

larrydotfrancis@gmail.com
kate.bunsey@lakewoodcityschools.org
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• Her students comprised only 16% of the district’s fifth grade population (65
out of 397), but 27% (respectively, 21%) of the district’s students who scored
proficient (respectively, accelerated) were her students.

For the record, let it be mentioned that, together with an evaluation specialist,
I did apply for grants (to NSF-EHR in 2010 and to IES in 2013) to evaluate
the effectiveness of principle-based mathematics in the classroom. They were not
funded.

4.3 TSM Confronts Mathematical Integrity

We will discuss in this section, in considerable detail, the chasm that separates TSM
from principle-based mathematics. It reveals the vast distance we will have to travel
if we want to provide mathematics teachers with the content knowledge they need in
order to competently discharge their basic obligation as teachers. What should stand
out in the following discussion is the damage TSM has inflicted on mathematics
learning. TSM is not learnable except by rote, as all irrational ideas are not learnable
except by rote. If nothing else, this recognition should be incentive enough for us to
join forces to undo this damage by eradicating TSM.

4.3.1 The Importance of Definitions: The Case of Fractions

Consider the teaching of fractions in grade 5 and up. In TSM, a fraction is not given
a precise definition that can be used as the starting point for logical reasoning.
The resulting absence of reasoning in the teaching of fractions therefore opens the
floodgates to mathematics-with-no-reasoning, a.k.a. rote-learning, regardless of all
the hands-on activities, analogies, and metaphors that rush in to fill this vacuum
(cf. Wu, 2010c). Although such a statement about the teaching of fractions is
generally accepted by most as a given, it may nevertheless strike others as being
too harsh. Let us therefore back it up by giving a more detailed analysis.

In TSM, fractions are usually introduced with pictures galore and fascinating
stories about the different ways fractions are used in everyday life, together with the
statement that a fraction can be interpreted as at least one of three things: parts-of-
a-whole, quotient (division), and ratio. Here is one example:

A fraction has three distinct meanings.

Part-whole. The part-whole interpretation of a fraction such as 2
3

indicates that a whole
has been partitioned into three equal parts and two of those parts are being considered.

Quotient. The fraction 2
3

may also be considered as a quotient, 2 � 3. This interpretation
also arises from a partitioning situation. Suppose you have some big cookies to give to three
people. . . . [If] you only have two cookies, one way to solve the problem is to divide each
cookie into three equal parts and give each person 1

3
of each cookie so that at the end, each

person gets 1
3

C 1
3

or 2
3

cookies. So 2 � 3 D 2
3
.
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Ratio. The fraction 2
3

may also represent a ratio situation, such as there are two boys for
every three girls. (Reys, Lindquist, Lambdin, and Smith, 2009, p. 266.)

The same viewpoint persists in the research literature. The usual introduction of
the concept of a fraction is by way of the same multiple representation approach:

Rational numbers17 can be interpreted in at least these six ways (referred to as subcon-
structs): a part-to-whole comparison, a decimal, a ratio, an indicated division (quotient), an
operator, and a measure of continuous or discrete quantities. Kieren (1976) contends that a
complete understanding of rational numbers requires not only an understanding of each of
these separate subconstructs but also of how they interrelate. (Behr, Lesh, Post, and Silver,
1983, p. 92.)

The mathematical flaws of these “multiple interpretations” of fractions are
analyzed in Wu (2011a, p. 178; 2016a, pp. 5–6), respectively, but we are here to
focus on the impact of such teaching on student learning. The overriding fact is that
none of this information answers students’ burning question about what a fraction
is. To ask students to accept a fraction as part-whole, quotient, and ratio all at once
is pedagogically untenable. First of all, the part-whole interpretation involves two
whole numbers: the number of equal parts the whole has been divided and also
the number of parts that are taken, so are we trying to tell them that a fraction
is two numbers? The same is true for the ratio interpretation: the fraction 2

3
is the

number 2 (the number of boys) and the number 3 (the number of girls), two numbers
again.18 The pedagogical issue with the “quotient” interpretation is far more subtle
and therefore far more insidious in the long run. Students’ knowledge of “quotient”
(division) is based entirely on their experience with whole numbers, where it is
always about 24 � 6, 72 � 4, or 45 � 15. In other words, the dividend is known
ahead of time to be a multiple of the divisor so that the “equal group” interpretation
of division can make sense. Now teaching is generally about building on students’
prior knowledge, and this time the prior knowledge is about “quotient.” Keeping
this in mind, can we as competent teachers ask students to divide two cookies into
three equal groups? Six cookies or nine cookies, that is for sure. But 2 cookies?
This is pedagogically unsound to say the least, because students’ prior knowledge
would not allow them to absorb this information. But since TSM insists on ramming
this unnatural demand down their throats, right here TSM is pulling the rug from
under their feet. Indeed, if they had any illusion at all about mathematics being
learnable in the sense of a careful scaffolding of its steps with reasons given for
the progression from one step to the next, it has been wiped out in one fell swoop.
The formidable task they face is to try to understand a new gadget called a fraction
by first submitting themselves to the uncomfortable proposition that whatever they
have strived to learn about “quotient” is simply not good enough. Now they must
ask themselves: what else must they unlearn before they can climb the mathematical
ladder? Such thoughts cannot be an auspicious beginning for the arduous journey
ahead.

17This term is being used erroneously for fractions.
18Teachers that I have worked with told me consistently that students have difficulty conceptualiz-
ing a fraction as a single number.
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It may be thought that the preceding analysis of “quotient” is not accurate
because students do know about dividing an arbitrary whole number by a nonzero
whole number before coming to fractions. For example, 5�3 is so-called 1 R2,19 i.e.,
quotient 1 and remainder 2. In this light, 2�3 would be the two numbers 0 and 2, as
in 0 R2. This then leads back to an earlier impasse about the meaning of the fraction
2
3
: this meaning of the fraction is two numbers 0 and 2. It is an insurmountable task

to relate “0 and 2” to the concept of part-whole (i.e., partition the whole into three
equal parts and consider two of them), and failing to do that, we are guaranteeing
non-learning again.

If we may use an analogy, asking students to believe at the outset that a fraction
is three dissimilar things all at once is akin to asking them to look at a picture of a
house obtained by superimposing three different views of the same house on each
other. Students get no clarity. Such multiple representations of a fraction also beg the
question: In a given situation, which representation should students use? Or should
they use all three to make sure? Teaching based on TSM cannot provide answers to
these natural questions.

Leaving students in this state of puzzlement, TSM nevertheless asks them to
freely compute with fractions and use them to solve word problems. Can competent
teaching afford to make students do things by rote for 6 or 7 years (from grade 5 to
grade 12) without informing them what they are doing? To make matters worse—or
perhaps because of the lack of definition of a fraction—definitions for all concepts
related to fractions seem to be completely missing as well. For example, students
never get a precise definition for the intuitive and basic concept of “one fraction
being bigger than another.” Instead, they are taught that if they change both fractions
to fractions with the same denominator, and then they can see which is bigger. Now
the reason this is worth pointing out is that it exemplifies a recurrent theme in TSM:
Never mind whether you know what you are doing or not, because we are going
to tell you what to do, and then you will get the right answer. As for the arithmetic
operations on fractions, the plaintive refrain of “Ours is not to reason why, just invert
and multiply” says it all: in TSM, one does not teach the definition for the division
of fractions. The case of fraction addition, however, deserves a closer look (Wu,
1998, p. 24; 2011a, p. 228), and we will do just that.

In place of a precise definition of the addition of two fractions, TSM usually
provides profuse verbal descriptions and pictorial illustrations of putting parts-of-
a-whole together. Competent teaching on the most basic level however demands
that, at this juncture of students’ mathematics learning trajectory, they be exposed
to a clear and logical argument that leads from the definition of the sum of two
fractions to an explicit formula for the sum. Unhappily, without a precise definition
of a fraction and a precise definition of the addition of fractions in TSM, such a
demand cannot be met. What students get in place of reasoning is a formula for
the sum involving LCD (least common denominator) that has to be memorized by

19The multiple errors inherent in this notation 1 R2 should be better known. See, e.g., Wu (2014b,
p. 6).
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rote. This is where fraction phobia seems to begin. Being cognizant of this fact,
some have gone so far as to advocate de-emphasizing the addition of fractions,
perhaps with a view toward reducing students’ anxiety (e.g., National Council of
Teachers of Mathematics, 1989, p. 96). In a climate of no definitions and therefore
no reasoning, any attempt at teaching fractions for understanding—no matter how
well-intentioned—becomes an oxymoron.

It remains to explain why we believe students in grade 5 and up deserve to learn
about the reasoning that leads from the definition of the sum of two fractions to the
explicit formula for the sum. In a nutshell, this is the basic survival skill in navigating
the mathematical waters of roughly grades 6–12. It therefore behooves students
to begin acquiring this skill through the study of fractions. We have to recognize
that the mathematics in grade 5 and beyond will be increasingly abstract and will
be increasingly dependent on having precise definitions and logical deductions
therefrom to make sense of the abstractions. The concept of fractions is the first
genuine abstraction students face in school mathematics because fractions do not
show up naturally in the real world (think of 7

13
or 21

11
); if we want students to learn

what a fraction is, it is incumbent on us to tell them, precisely, what we want them
to know about fractions. This is what precise definitions can accomplish. If our
goal is to nurture students’ mastery of abstractions, then we can do no better than
employ precise definitions in the teaching of fractions. Indeed, once students enter
the world of fractions around the fourth or fifth grade, the march toward abstraction
in the school curriculum becomes inexorable. Fractions are followed by negative
numbers (particularly the multiplication and division of negative numbers), the use
of “variables”20 and the concept of generality, transformations of the plane and
basic isometries, congruence and especially similarity, functions and their graphs,
principle of mathematical induction, complex numbers, etc. The learning of each
and every one of these concepts will require extra effort on the part of students—
in the same way that the learning of fractions requires extra effort—because of the
elevation in the level of abstraction. Competent teaching must therefore take note of
students’ battles ahead and prepare them accordingly.

Let it be known in no uncertain terms that we do not argue against appropriate
use of stories, hand-on activities, and multiple representations to round off the
intuitive picture of a concept if a precise definition is part of the presentation
and the primacy of the definition is understood (see the protracted discussion of
the definition of a fraction in Wu, 2011a, pp. 173–182, or Wu, 2016a, pp. 2–10).
However, TSM promotes the idea that students can learn what an abstract concept
such as fraction is, without a definition, solely by being exposed to a multitude of
stories and activities to illustrate these multiple “meanings.” This idea is predicated
on the assumption that mathematics can be learned by what we call inductive
guessing. This is the process of letting students work informally with a given
concept to guess the properties this concept might possess and allowing their guesses
to coalesce, over time, to form a complete picture of the concept. But no precise

20Please see the discussion of “variables” on page 67.
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definitions. The fact that mathematics learning largely fails to materialize when
fractions are taught exclusively by inductive guessing is by now beyond dispute. For
example, fraction phobia has become almost a national pastime (there are numerous
strips in the Peanuts and FoxTrot comic strips on fraction phobia). This failure has
dramatically crystallized in a TIMSS fraction item for eighth grade, as pointed out
in Askey (2013). To my knowledge, there is no data to establish a causal relationship
between inductive guessing and students’ non-learning, but the ongoing school
mathematics education crisis (cf. National Academy of Sciences, National Academy
of Engineering, and Institute of Medicine, 2010; National Mathematics Advisory
Panel, 2008) would seem to strongly suggest that such a causal relationship does
exist.

The case against the sole reliance on inductive guessing in mathematics learning
is rooted in the fact that correct reasoning requires a precise hypothesis as the
starting point and a precise conclusion as the endpoint. If an abstract concept is
nothing but the amalgamation of impressions accrued from inductive guessing, then
it would be, by its very nature, imprecise because impressions vary from person
to person. Consequently it cannot be reliably used in either the hypothesis or the
conclusion of any reasoning and, without reasoning, there would be no mathematics.
The virtue of a precise definition for an abstract concept is therefore that it “tames”
the abstractness by providing precise information about what the concept is, no more
and no less. Moreover, it is in the nature of mathematics that, once a definition is
given, it will not change with time. If a fraction is defined in grade 4 to be a point
on the number line constructed in a specific manner, then students can count on its
being the same in every grade thereafter. This property of permanence makes the
concept learnable because it allows students to stop wasting time trying to guess
what a fraction might be in another situation but concentrate instead on getting to
know fractions by using them in logical reasoning. In this way, students will get to
derive all the known properties of fractions, including, in particular, what it means
to add fractions and why the formula for adding fractions without using LCD is
correct (cf. Wu, 2011a, Part 2, especially Section 14.1). No guesses, and no deus ex
machina. Such an experience will give students the confidence that mathematics is
learnable, and this confidence will in turn empower them to conquer the many more
abstractions to come.

It remains to make a comment about the definition of a fraction as a point on
the number line constructed in a prescribed manner (cf. Jensen, 2003; Wu, 1998,
2011a). In the event that such a definition is adopted, it is imperative to use the same
definition throughout the whole development of fractions, including multiplication,
division, ratio, and percent. If we abandon this definition at any point and choose,
for example, to represent a fraction as a rectangle to discuss multiplication (as some
have done), then we would be sending the erroneous signal that a definition is
something we use when it is convenient but, otherwise, it is not to be taken seriously.
Worse, we will be showing clearly that mathematics has no coherence, because it
does not always tell the same story about a concept (fraction) but changes its story
line at will. This will wreak havoc with student learning.
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4.3.2 Other Garbled Definitions in TSM

There are more garbled definitions in TSM than we can count that have a profound
effect on teaching and learning, but we will limit ourselves to four of them: decimals,
constant rate, variable, and slope.

First, decimals. A finite decimal such as 0.2037 is defined in TSM as “2 tenths, 3
thousandths and 7 ten-thousandths.” In terms of student learning, this causes damage
in at least two different ways. The first is that it leads to students’ misconception of
a decimal as a fragmented collection of little bits of 2 tenths, 3 thousandths, and
7 ten-thousandths when they should be learning that a decimal is a single number.
This is because thousandths, ten-thousandths, etc. are almost invisible quantities
to students in elementary school, and they don’t know how to integrate these new
tidbits into a single number. Could such a fragmented conception of a decimal be a
factor in students’ difficulty in comparing decimals and computing with decimals?
This would make for an interesting research project in cognition. Secondly, if the
vague statement “2 tenths, 3 thousandths and 7 ten-thousandths” is phrased in
precise language, then it will state clearly that 0.2037 is the sum of the following
fractions:

0:2037 D
2

10
C

0

100
C

3

1000
C

7

10;000
(4.4)

Unfortunately, TSM teaches decimals and fractions separately, making believe that
they are different kinds of numbers (this may be the reason TSM uses the imprecise
language “2 tenths, 3 thousandths and 7 ten-thousandths” to hide the fact that a finite
decimal is a fraction). Since there is no attempt in TSM to ensure that the arithmetic
of decimals is taught only after fraction addition has been introduced, the teaching
of finite decimals in TSM is mathematically unlearnable.

A correct definition of 0.2037—historically as well as mathematically—is that it
is the fraction

2037

10;000

which is of course equal to the sum of four fractions on the right side of (4.4).
Likewise, all finite decimals are nothing but fractions whose denominators are
powers of 10 (see Wu, 2011a, p. 187; 2016a, p. 17; CCSSM, 4.NF.5 and 4.NF.6). We
may summarize the need of a correct definition for finite decimals as follows. On the
one hand, it restores the coherence of mathematics by showing that, instead of three
kinds of numbers—whole numbers, decimals, and fractions—there is only one kind
of numbers, namely, fractions. On the other hand, the correct definition allows for
simple (and correct) explanations of the addition and multiplication algorithms for
finite decimals. For the multiplication algorithm, TSM has forced teachers to teach
by rote the correct placement of the decimal point in the product, whereas it is a
simple consequence of the product formula for fractions (see Wu, 2011a, p. 269;
2016a, pp. 68–69).
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We will next look at the absence of any definition for constant speed or, more
generally, for constant rate in TSM. We will show that this absence has very serious
consequences because it spawns the bogus concept of proportional reasoning. We
can begin the discussion with a typical rate problem:

(P1). David drove 936 miles in 13 hours. At the same rate, how long will it take him to drive
576 miles?

According to TSM, we teach students that the “rate” of 936 miles in 13 hours
should immediately suggest that we look for the “unit rate,” which is 936=13 D

72 mph. Therefore, proportional reasoning tells us that the answer is 576=72 D

8 hours. Very simple. But is it?
If the problem had asked instead,

(P2). David drove 936 miles in 13 hours. At the same rate, how long will it take him to drive
2808 miles?

then this would be a reasonable problem for the following reason. No matter how
one interprets “at the same rate,” one would agree that it carries the information
that, in every 13 hours, David covers 936 miles. So in 26 hours, he would cover
1872 miles (1872 D 2 � 936), and every 39 hours he would cover 2808 miles
(2808 D 3 � 936). The answer to (P2) is therefore 39 hours.

But to ask how long it would take David to drive 576 miles? This adds complexity
to the problem that makes (P1) unsolvable. Indeed, suppose David cruised for the
first 10 hours at 70 mph, so that at the end of 10 hours, he had driven 700 miles.
Knowing that he should get to his destination in 13 hours, he sped up and managed
to cover the remaining 236 miles in 3 hours.21 That was how he drove the 936 miles
in 13 hours. Now if you want to know at the same rate, how long it would take him
to drive 576 miles, he will have to ask you whether it is the rate in the first 576 miles
of his trip or the last 576 miles or somewhere in between. If the first 576 miles,
for example, then at 70 mph, it will take him 576=70 D 8 8

35
hours. Not 8 hours as

claimed. Can anyone dispute that 8 8
35

is as good an answer as 8 to (P1)? Moreover,
if we consider his rate in the last 576 miles of his trip, then it will take him 7 6

7
hours

to cover 576 miles. Obviously there are other possibilities. Therefore, as is, (P1) is
a problem that admits many correct solutions, and as such, it is not an acceptable
mathematics problem.

What happens is that the given data that David drives 936 miles in 13 hours is
not precise enough to yield a definitive answer to (P1). The implicit assumption in
all such problems in TSM that would render a definitive answer possible is that
David drives at the same constant speed throughout. By bringing out this implicit
assumption, we reformulate (P1) to read:

(P3). David drives at a constant speed and he drove 936 miles in 13 hours. At the same
constant speed, how long will it take him to drive 576 miles?

21He drove the last stretch of 236 miles in New Mexico where the freeway speed limit is 75 mph
most of the time.
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In TSM, the assumption of constant speed in such problems is usually missing,
and even when it is mentioned, the concept of “constant speed” is understood
intuitively without a precise definition. The idea seems to be that if the words
themselves sound familiar, then definitions will be superfluous. Since an expression
such as “driving at 70 miles an hour” is part of everyday language and people
already have a vague understanding of it, a precise definition would be considered
unnecessary in TSM. The fact is that the definition of “constant speed” is quite
subtle, but when it is defined precisely and is put to use in the solution of (P3),22 the
solution turns out to be very simple. In particular, the correct solution does not make
use of “proportional reasoning” in any shape or form (Wu, 2016a, pp. 108–115,
and especially Section 7.2 of Wu, 2016b), and instead of the mysterious invocation
of “unit rate,” it shows how the concept of “unit rate” follows naturally from the
definition of constant speed. Most importantly, the correct solution of such rate
problems restores reasoning to teaching and mathematics education.

The cavalier attitude that TSM takes toward definitions also materializes in
another form. Freed of the responsibility to provide definitions, TSM is at liberty
to create fictitious mathematical concepts, the most notorious among these being
that of a variable, “a quantity that varies.” The inability to master this concept,
according to an informal survey of the teachers that I have come in contact with,
has been a real stumbling block for teachers and students alike in the learning of
algebra. Yet, they feel compelled to grapple with this concept because:

Understanding the concept of variable is crucial to the study of algebra; a major problem
in students’ efforts to understand and do algebra results from their narrow interpretation of
the term. (National Council of Teachers of Mathematics, 1989, p. 102.)

I believe it is time for mathematics education to face the reality that “variable” is
not a mathematical concept but is a cultural vestige of the way mathematicians in the
eighteenth and nineteenth centuries referred to elements in the domain of definition
of a function. If the function f .t/ describes the location of a moving particle in 3-
space at time t, then as t changes its value, so does f .t/. So it is suggestive to think
of t as a “variable.” However, it is wrong to believe that learning must always be
built on students’ prior existing knowledge. Sometimes learning requires a revision,
or at least some form of modification, of this knowledge. For example, we routinely
speak about sunrise and sunset in everyday life, which suggests unmistakably that
the sun revolves around the earth. Few would object to these expressions. But it
will not do—purely for the sake of building on this prior misperception—to tell
students in a science class that indeed the sun rises and sets because it revolves
around the earth. At that point of students’ education, it is time for them to recognize
the limitations of the commonly used suggestive language and embrace the correct
scientific information that it is the rotation of the earth that causes the illusion that
the sun revolves around the earth. The truth is that the earth revolves around the sun.

22We cannot overemphasize the fact that we need definitions in mathematics because they furnish
the foundation for logical reasoning.
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If we feel scandalized by a science class that does not clear up “sunrise” as
a human misconception, then why do we complacently accept the teaching of
“variable” in a mathematics class as a valid mathematical concept, or worse, that
it is a “concept crucial to the study of algebra”? We do not advocate that we banish
the word “variable” from mathematics because,

. . . the word variable has been in use for more than three centuries and, sooner or later, you
will run across it in the mathematics literature. The point is not to pretend that this word
doesn’t exist but, rather, to understand enough about the use of symbols to put so-called
“variables” in the proper perspective. Think of the analogy with the concept of alchemy
in chemistry; this word has been in use longer than variable. On the one hand, we do not
want alchemy to be a basic building block of school chemistry, and, on the other hand, we
want every school student to acquire enough knowledge about the structure of molecules to
know why alchemy is an absurd idea. In a similar vein, while we do not make the concept of
“variable” a basic building block of algebra, we want students to be so at ease with the use
of symbols that they are not fazed by the abuse of the word “variable” because they know
how to interpret it correctly. (Wu, 2016b, p. 3.)

This discussion points to the need for school mathematics to move away from
concepts without definitions—“variable” in this case—and engage students instead
in the far more important issue of the correct use of symbols. When symbols are
used correctly in school mathematics, “variable” as a mathematical concept will
disappear from the school curriculum (cf. Wu, 2010b, Section 1; 2016b, Chapter 1).

Our final example of the mishandling of definitions in TSM is the concept of
the slope of a line in the coordinate plane. Students’ difficulty with slope is well
documented (cf. Postelnicu, 2011), but it does not seem that the education research
that looks into this difficulty has taken note of a serious mathematical flaw in the
usual definition given in TSM (the two papers of Newton & Poon, 2015a,b are
among the exceptions). The TSM definition states that the slope of a (nonvertical)
line L in the coordinate plane is the following “rise over run”: let P D .p1; p2/ and
Q D .q1; q2/ be two distinct points on L, and then the “rise over run” is RQ

RP (the
“rise” RQ and the “run” RP), where R is the point of intersection of the vertical line
through Q and the horizontal line through P, and it would be minus this quantity
if the line slants the other way. In a more compact form, the slope is the following

ratio:
p2 � q2

p1 � q1

.

X

Y

B

AC

P

Q

R

L

O
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What is obviously missing in this definition is the assurance that this ratio is the
same regardless of which two points on L are chosen. In other words, suppose we
take two other points A D .a1; a2/ and B D .b1; b2/ on L instead of P and Q, then
the ratio computed with A and B is the same as the one above computed with P and
Q. More precisely, we should have

p2 � q2

p1 � q1

D
a2 � b2

a1 � b1

(4.5)

This equality is important because if the slope of L is really a property of the
line L itself, then it has to be the same number regardless of which two points on L
are chosen. Fortunately, Eq. (4.5) is indeed correct (see Section 4.3 of Wu, 2016b),
but its proof requires some knowledge of similar triangles. The latter fact is not
mentioned in TSM.

The reason a correct definition of slope, in the sense of making explicit Eq. (4.5),
is important for mathematics learning is twofold. The first is that the general
confusion about slope appears to include the misconception that it is a pair of
numbers, “rise” and “run,” but not a single number attached to the line itself.23

In this light, one virtue of providing a proof of Eq. (4.5) is to reinforce the message
that these are numbers that we are trying to prove to be equal. Such a proof may help
to dislodge those students from this misconception.24 A second reason is that it is
difficult to solve problems related to slope without the explicit knowledge that slope
can be computed by choosing any two points on the line that suit one’s purpose.
(Compare Wu, 2016b, pp. 72–76 on the proof of the graph of ax C by D c being
a line.) The lack of this knowledge is the cause of students’ well-known difficulty
with learning all aspects of the graphs of linear equations. For example, they are
forced to memorize by brute force—often without success—the four forms of the
equation of a line (two-point, point-slope, slope-intercept, and standard) because
they are not taught any reasoning in connection with any part of the concept of
slope. According to a recent survey (Postelnicu & Greenes, 2012) of students’
understanding of (straight) lines in introductory algebra, the most difficult problems
for students are those requiring the identification of the slope of a line from its graph.
That these research findings could actually be correct is almost unfathomable. Think
about this for a moment: to compute the slope of a line, all you have to do is grab
any two points P D .p1; p2/ and Q D .q1; q2/ on the line and form the ratio p2�q2

p1�q1
.

This is trivial, but only if you happen to know, emphatically, that you can take any
two points on the line for this purpose.

The correct use of definitions in school mathematics does matter after all.

23This echoes the phenomenon mentioned in Sect. 4.3.1 about students’ confusion over a fraction
also being a pair of numbers.
24It may be mentioned that the particular definition of slope in Section 4.3 of Wu (2016b), brings
out the fact from the beginning that the slope is a single number.



70 H.-H. Wu

4.3.3 Geometry in Middle School and High School

The non-learning that has been taking place in the high school geometry course
of TSM is perhaps too well known to require comments (see, e.g., Schoenfeld,
1988). Incidentally, there may never be a better argument for the importance
of teachers’ content knowledge than Schoenfeld’s account of what passes for
“geometry teaching” in a TSM classroom. This kind of non-learning actually has
its roots in the middle school curriculum and beyond. In this subsection, we will
briefly summarize the three main issues and leave the more extended discussion to
Section 4.1 of Wu (2016a).

(A) In TSM, the high school geometry course sticks out like a sore thumb among other
courses in school mathematics. In the latter, reasoning is lacking and the opportunity to
write a proof is nearly nonexistent, but in the former, literally everything demands a proof.
This incongruity breeds non-learning.
(B) The discord between what is taught in middle school geometry regarding congruence,
similarity, and scale drawing and what is taught about the same topics in the high school
geometry course is too great for an average student to overcome.
(C) The high school geometry course is taught in isolation, as if it were unrelated to the
rest of the school curriculum. In reality, certain geometric tools are critically needed for the
teaching of slope of a line and the graphs of quadratic functions. The failure of the typical
course to meet this need is an unfortunate missed opportunity to broaden its appeal and
make it relevant to school mathematics.

We will add a few comments to round off the picture. Regarding (A), it has been
a recurrent theme of this article to emphasize the overall lack of reasoning in TSM.
Therefore students’ transition into the high school geometry course may be likened
to a nonswimmer being thrown into a lake in icy January and told to sink or swim.
Trauma and bad results are preordained. To make matters worse, the TSM high
school geometry course also insists on starting with axioms and proving a series of
boring and geometrically obvious theorems at the beginning.25 For illustration, we
will make use of the well-known text of Moise and Downs (1964). We hasten to
add that the text of Moise and Downs is on a higher plane than TSM, but it does
following the tradition of “trying to prove everything.” It was written in response to
the call of the New Math of the 1960s (see Raimi, 2005; Wikipedia, New Math). It
purports to use a modified version of Hilbert’s axioms of 1899 (cf. Hilbert, 1950) to
prove every theorem in plane geometry. With this in mind, we find on page 177 the
following theorem.

Theorem 6-5. If M is a point between points A and C on a line L, then M and A are on the
same side of any other line that contains C.

25For the lack of space, we will not take up the opposite kind of TSM geometry course which is all
hands-on activities without a single proof. See, for example, Serra (1997).
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One can imagine that not much of the discussion in the first 176 pages can be
stimulating to the average beginner.

To give a little context to this discussion, let me relate a personal experiment.
I taught the mathematics of the secondary curriculum (see Wu, 2011c, pp. 44–
54) to preservice high school teachers many times in 2006–2010. In these courses,
proofs are provided for all the theorems, including all the major geometry theorems
to be found in a high school course and beyond (e.g., the nine-point circle). One
day I suddenly popped the following question to a class of about 20 preservice
teachers: “You know that proofs in the high school geometry course are considered
very difficult. Now that you have proved many geometric theorems much harder
than those in your high school course, can you tell me whether you still find the
proofs of these geometric theorems to be too hard?” It took them a few seconds to
even understand my question, because (they later told me) having been with me for
almost a year up to that point and having been conditioned to proving everything,
they had ceased to differentiate between a geometric theorem and a nongeometric
one. That was the reason they didn’t understand what I was referring to. Naturally,
their answer was no. The geometric proofs were not harder.

If principle-based mathematics is taught in K–12, the overall situation regarding
(A) will improve considerably because students would be already accustomed to
reasoning and proofs before they take the high school geometry course. The course
itself can be improved too. One proposal of a new foundation for the course is to use
the basic isometries (rotations, reflections, and translations) to define congruence
and use congruence and dilation to define similarity. Congruence and similarity
now become tactile concepts rather than abstract inscrutable ones, and the classical
criteria for triangle congruence (SAS, ASA, SSS) can now be proved as theorems.
In addition, by assuming sufficiently many facts to get the geometric development
started, we also avoid having to prove many uninteresting and possibly subtle
theorems at the beginning, such as Theorem 6-5 in Moise and Downs (1964). (For
more details, see Wu, 2013b, 2016a, Chapters 4 and 5.) It is easy to believe that
such a new foundation will provide an easier access to geometry for students, but
obtaining data to verify this fact may be less easy. It will have to be large scale, long
term, and therefore expensive. However, the fact that the CCSSM also came to the
same conclusion regarding such a new foundation gives us hope that there will be
ample data on this issue in the years ahead.

Congruence and similarity provide a natural segue to (B) above on the disconti-
nuity between middle school geometry and high school geometry in TSM.
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There are two major disruptions in the transition from middle school geometry to
high school geometry. First, TSM defines congruence as same size and same shape
and similarity as same shape but not necessarily the same size. These statements
are intuitive and attractive, but they are comically inadequate as mathematical
definitions because they lack precision. For example, if we draw the acute triangle
with three sides of lengths 20, 67.1, and 70 with respect to any unit of measurement
(see page 50), then it will appear to have the same size and same shape as the right
triangle of sides 20, 30

p
5, and 70.26 But these two triangles are not congruent.

Of course, such a “definition” of congruence or similarity has the virtue that it
is applicable to any shape, curved or otherwise. But high school congruence and
similarity are suddenly defined precisely for polygons in terms of corresponding
angles and corresponding sides and for nothing else. Does this mean that one can
only reason about polygons when it comes to the concepts of congruence and
similarity but that there is no way to express whether two parabolas, for example,
are congruent or similar? This jarring discrepancy does no service to the coherence
of mathematics or to mathematics learning.

It goes without saying that, with such inadequate definitions, the middle school
geometry of TSM cannot sustain any reasoning about congruence or similarity. And
there is none.

A second major disruption in the teaching of congruence and similarity lies in the
way TSM treats the basic isometries in middle school and high school. In middle
school, basic isometries are taught only for the purpose of fun activities and art
appreciation, e.g., the sometimes subtle symmetries exhibited in Escher’s prints
and how the beauty of tessellations in church windows and Islamic mosaic art is
enhanced by the different kinds of symmetries. Nothing is about the purposefulness
of the basic isometries in school mathematics. Consequently, teachers who are
immersed in TSM get the mistaken idea that the basic isometries are valuable
only for so-called transformational geometry, which is roughly about doing the fun
activities of moving geometric figures around the plane—using a coordinate system
if necessary—and identifying symmetries in art works. To these teachers, the basic
isometries are not about mathematics at all because the isometries appear to have
nothing to do with the proofs of theorems in the high school course. While there are
references to basic isometries near the end of some high school textbooks, they are
mostly ornamental. In TSM, the basic isometries are long forgotten by the time of
the high school geometry course. In this climate, it is therefore not surprising that,
when in 2012 the Department of Education of a state on the East Coast produced a
document on CCSSM geometry for its high school teachers, all 80 pages of it were
devoted to transformational geometry but not a word about the serious business
of using the basic isometries to understand congruence and proofs in high school
geometry.

It should be quite clear that teachers’ knowledge of TSM geometry will not
enable them to teach the geometry of middle school or high school in any sensible

26Note that 30
p

5 D 67:082. . . .
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way. We must help them to revamp their knowledge base. This is another reminder
that teachers’ content knowledge does matter.

Finally we briefly discuss the critical role of geometry in making sense of the
algebra of linear and quadratic functions. The need of similar triangles for an
understanding of the slope of a line has already been brought out in Sect. 4.3.2.
The CCSSM have already asked for a reshuffling of our middle school curriculum
so that eighth graders are at ease with the AA criterion for triangle similarity when
they take up the graph of linear equations in two variables (CCSSM, 8.G.5). As for
quadratic functions, the long and short of it is that the graph of f .x/ D ax2 C bx C c
is a translation (in the sense of basic isometries) of Fa.x/ D ax2, and furthermore,
the graphs of Fa.x/ D ax2 (where a > 0) are similar to each other under a dilation
with center at the origin O (Sections 10.2 and 10.3 in Wu, 2016b). These two facts
together clarify the structure of quadratic functions: at least conceptually, every
quadratic function is qualitatively the same as the function F1.x/ D x2.

At the moment, the above approach to quadratic functions is inaccessible to
students because translations are not precisely defined in the usual high school
geometry course, and similarity between graphs of quadratic function does not make
mathematical sense because similarity applies only to polygons. The chasm between
TSM and principle-based mathematics is real indeed.

4.3.4 How Coherence and Purposefulness Impact Learning

It is easy to explain, in theory, the reason that mathematics developed coherently and
purposefully will improve student learning. Obviously, when some events are told
as a coherent story and the narrative is propelled forward with a purpose, they will
be more memorable to readers than if the same events are presented as a laundry list.
This is why even a rushed reading of Don Quixote—all 1000 pages of it—will leave
readers with vivid memories of the Don’s amazing exploits, whereas reading pages
of a phone book, no matter how conscientiously done, will leave the readers with no
memorable highlights whatsoever. We will present two examples that are consistent
with such a narrative. The first one shows how incoherent mathematics can impede
mathematics learning, and the other suggests that, by infusing the teaching of a
seemingly boring topic with purposefulness, one can make it more learnable.

The first example is the way TSM teaches equivalent fractions, the basic
tool students need to put any two fractions on a common footing (Wu, 2011a,
Section 13.4). To see, for example, why 7

3
D 14

6
, TSM provides the following

explanation:

7

3
D 1 �

7

3
D

2

2
�

7

3
D

2 � 7

2 � 3
D

14

6
(4.6)
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The problem with such an “explanation” lies in the step enclosed in the box: It
assumes, inexplicably, that before students know what it means to add two fractions
with unequal denominators, they already know how to multiply them

�
2
2

and 7
3

�
by

the so-called product formula, a
b � c

d D ac
bd . In greater detail, a coherent mathematical

progression through fractions could reach the product formula by at least one of two
ways: either

definition of fraction �! equivalent fractions �! definition of fraction
multiplication using “fraction of a fraction” �! the product formula

(Jensen, 2003, Section 7.1; Wu, 2016a, pp. 60 ff.; CCSSM, 5.NF.4) or

definition of fraction �! definition of fraction multiplication using area
of a rectangle �! the product formula

(Wu, 1998, p. 25, 2011a, pp. 263 ff.). In either case, the proof of the product
formula is a difficult one for fifth graders and should by no means be used to explain
something as basic as equivalent fractions. What TSM has done in (4.6) is to shred
the basic structure of mathematics for the expediency of making equivalent fractions
look easy. However, there is a price to pay: Students get the idea that, although they
don’t know what “ a

b � c
d D ac

bd ” means, they are supposed to believe it because it
looks right. This naturally suggests to them that, in mathematics, if it looks right, it
must be true. So why not a

b C c
d D aCc

bCd ? It is a popular sport to lament that even
some freshmen in prestigious universities make such a ghastly mistake, but this is
not students’ fall from grace. This is our collective handiwork!

Before giving the second example, we first make a few observations about
purposefulness in the context of mathematics learning. The first is that mathematical
research is overwhelmingly about investigations with a purpose. The purpose of an
investigation is always front-and-center because it provides a focal point for the
researcher’s thinking. Serious mathematical work is rarely the result of a random
walk through the mathematical jungle to pick up low-hanging fruits. The school
curriculum, being the distillation of serious mathematical work through the ages,
should reflect as much as possible the purposefulness of such investigations. There
is an additional connection between research and learning: they are fundamentally
two sides of the same coin. They are both driven by curiosity, and researchers and
learners alike try to peer into the (to them) unknown.27 For this reason, learners will
benefit from knowing the purpose of learning a new concept or a new skill because
the purpose helps them to focus their own thinking too. Teachers should be aware
of this aspect of mathematics learning and, for this reason, should get to know the
purpose behind every concept and every theorem.28

Now consider the teaching of the skill of rounding (to the nearest hundred,
nearest thousand, etc.) in TSM. Personally I have never come across a teacher who

27Of course there is also a big difference: whereas a helping hand is usually available if the learner
fails to learn, there is no such helping hand when a researcher gets stuck!
28In this day and age when inquiry-based learning is encouraged, we hope that such learning can
be conducted by emphasizing the purpose of any inquiry.
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is not bored by this skill as presented in TSM; it seems to be totally pointless and
mechanical, but it doesn’t have to be that way. Imagine a teacher engaging students
in a discussion of what they hear from TV or radio about the temperature of the day.
Ask students why they often hear things like “today is a mild day in the 70s.” Why
not say, “today’s temperature will be 74”? Make them realize that such precision is
both unattainable and unnecessary. Ask them if they would change the way they
dress if the temperature were 72 instead of 74, but also point out that they would
likely change if the temperature were “in the 60s” rather than “in the 70s.” Next,
ask them in case the temperature is 68ı whether they would describe it as “about
60 degrees” or “about 70 degrees”? Pursuing this line of give-and-take, a teacher
can lead students to naturally round to the nearest ten without using any jargon or
imposing any rigid rules. Then tell them after the fact that what they did is what is
known as “rounding to the nearest ten” and that they did so because they were in
fact trying to strike a happy medium between being informative and being sensible.
In any case, by the time the teacher gets around to summarizing their findings of
“rounding to the nearest ten” into some simple rules (“34 will be rounded down
to 30, but 78 will be rounded up to 80”), the rules will sound neither boring nor
pointless. They have a purpose.

The teacher can likewise talk about the population of a city like Berkeley. In
Wikipedia, the estimated 2014 population is 118,853. Ask the students how much
faith they have in this estimate. Consider the daily births and deaths, the expected
influx and outflow of people, and other issues such as the homeless population and
undocumented immigrants. Ask them whether they think it is appropriate to list the
estimate as 118,853. Do they think the last three digits, 853, mean anything? If not,
how do they want to list it? 118,000 or 119,000? In fact, for the purpose of general
information, wouldn’t an estimate of 120,000 make more sense? Now let them know
they are learning to make a decision about whether to round to the nearest thousand
or nearest ten thousand. In this case, the skill of rounding serves the purpose of
making sense of the world around us. It doesn’t have to be a fossilized skill from
TSM at all.

For more details on rounding and estimation from this perspective, see Wu
(2011a, Chapter 10).

4.4 What Does It Mean to Know a Fact in Mathematics

We started off this article by asking what mathematics teachers need to know in
order to achieve basic teaching competence. Having described in some detail the
nature of this content knowledge, we now bring closure by addressing what it
means to know a fact mathematically (this discussion should be compared with Ball
et al., 2005). In mathematics education, knowing a fact commonly means knowing
it by heart (having memorized it). In mathematics, however, the same word means
much more. To say you know a fact in mathematics means you know:
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(a) what it says precisely,
(b) what it says intuitively,
(c) why it is true,
(d) why it is worth knowing,
(e) in what ways it can be put to use,
(f) how to put it in the proper perspective.

See Wu (2013a, p. 11). As in the case of “mathematical integrity,” there
is no pretense that such a characterization of “know” will be accepted by all
mathematicians, but undoubtedly most would find it acceptable. The idea is that
knowing a fact means being able to tell the whole story about this fact rather than
just a few sound bites. It should also be said that there may not always be a good
answer to each and every one of (d)–(f) in every situation. Moreover, since we
are asking for content knowledge to ensure teaching competence at the most basic
level, we will ignore (f) in subsequent discussions as its answer tends to be more
sophisticated (see, e.g., pp. 25 and 38 of Wu, 2013a). That said, I believe a teacher
should certainly make an effort to raise these questions all the time and try to get as
many of them answered as possible. (Incidentally, the ability to answer most of these
questions most of the time is intimately related to the coherence of mathematics.)

Again, it should come as no surprise that these are questions all mathematics
researchers ask themselves again and again throughout the course of their work.
Recalling once more the kinship between research and learning, we recognize that
many students will be pondering the same questions (regardless of whether or not
they can explicitly articulate them) when they are confronted by a new concept or a
new theorem. A teacher must come prepared for these questions.

We give an example: what should a teacher know about the theorem on equivalent
fractions? We will answer the preceding questions (a)–(e) in the same order:

(a) Given a fraction m
n , then for any nonzero whole number c, m

n D cm
cn . (In a fifth grade

classroom, one will have to begin by using concrete numbers rather than symbols.)
(b) Don’t get hung-up on the fraction symbol, e.g., 2

3
; it is the corresponding point on the

number line that counts. A fraction is a certain point on the number line, and the symbol is
nothing more than a representation of the point. Also get used to recognizing 2

3
as 24

36
or 18

27
.

The moral is: nether the numerator nor the denominator in a fraction symbol means all that
much by itself; it is the relative size of the numerator and the denominator that matters. For
example, if we ask for half of 2

3
of an apple pie, it is obvious: 1

3
of the pie. Now if we ask

for a fifth of the same amount of apple pie, is it any harder? Not much, because 2
3

D 10
15

, so
a fifth of 10

15
of the apple pie is 2

15
of the pie.

(c) To prove 2
3

D 5�2
5�3

, for example, we ask whether the 2nd point in the sequence of thirds
on the number line is the same point as the 10th point in the sequence of fifteenths. If we
divide each segment between consecutive points in the sequence of thirds into 5 segments
of equal length, the unit Œ0; 1� is immediately divided into 15 equal parts and we get the
sequence of fifteenths. Now count carefully, and the truth of the assertion is obvious.
The general proof is no different.
(d) If you work with fractions at all, you will be seeing equivalent fractions all day long.
This theorem figures prominently in every discussion of fractions, including the hows and
whys of the arithmetic operations on fractions: C, �, �, �.
(e) Each time you get stuck on a problem involving fractions, your conditioned reflex ought
to be: can I use equivalent fractions to get me out of this jam? More often than you can
imagine, this strategy will work. For example, see (b) above.
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4.5 Professional Development

It may be self-evident at this point, but we will nevertheless demonstrate presently,
that any professional development (PD) that manages to pry open the grip of TSM
on teachers and introduce them to principle-based mathematics will not be easy to
come by. Let us consider two examples.

First, suppose some high school teachers want you to help them learn about
quadratic functions. TSM being what it is, you know they are likely to have been
misinformed about the need to understand the graphs of quadratic functions for the
purpose of understanding the functions themselves. Equally likely, they may not
realize that the study of quadratic equations is a very small part of the study of
quadratic functions. They may also have been misinformed about the technique of
completing the square, the fact that it is just as important for the study of functions
as for the derivation of the quadratic formula. There will be a lot to talk about, but
you feel comfortable telling the teachers that 2 days of PD should be enough.

Next, suppose some elementary teachers come to you and ask for PD that
explains why definitions are important. You probably do a double take before
replying because that is a big job! In your thinking, you may likely begin with
the definition of fractions. Considering how much misinformation about fractions
has been handed out in TSM, you figure that 1 day may not be enough to explain
why the various TSM “definitions” of a fraction are not mathematically acceptable
and why the definition in terms of the number line will promote better learning.
Because the teachers are likely not to have come across any definitions for the
addition, subtraction, multiplication, and division of fractions either, you want to
take this opportunity to explain how this absence has led to “Ours is not to reason
why, just invert and multiply,” among other things. You want to convince them that
having definitions for these operations is as important as getting the computational
formulas because the definitions will make it possible to explain these formulas.
This will take more time, because you cannot just tell them what the definitions of
the operations are and move on; you must also explain the associated reasoning in
detail because they have never seen it before. There is another reason you cannot
rush them: they have been living with mathematics-without-definitions all through
K–16 as well as all through their professional lives. You cannot change someone’s
habits of 20-some years overnight. You will need even more time.

But it is not just fractions that need definitions; whole numbers do too. In TSM,
even concepts in the whole numbers do not have definitions. Few teachers will
remember the definition of adding or multiplying two whole numbers (see, e.g.,
Case 12 of Schifter, Bastable, and Russell, 1999), much less why these definitions
are relevant. After all, can the algorithms not be taught simply by rote? Therefore
few will be able to explain the virtues of the standard algorithms for addition and
multiplication, among other things. In fact, even fewer will be able to give a precise
definition of the long division algorithm. Recall: to define an algorithm one must
state the precise procedure as well as the desired outcome in a general context.
To the extent that neither appears to have been done in the education literature,
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you begin to realize that explaining the significance of definitions is much more
than changing the teachers’ perception about “definitions” per se. You are in fact
called upon to revamp their mathematical knowledge base—which is steeped in
TSM—into principle-based mathematics. You have to change their belief system
and rebuild their content knowledge from the ground up. Clearly two weeks will not
be enough.

These examples hint at the difference between the run-of-the-mill kind of PD
and the kind that aims at providing teachers with principle-based mathematics.
The fundamental difficulty with the latter is the stranglehold that TSM has had
on teachers for such a long time; if we want to enable teachers to teach correct
mathematics, we will have to retrofit their knowledge base. This is hard, unpleasant
work.29 Let us start with preservice teachers. They have had 13 years of TSM by
the time they get to college. Even if their undergraduate program offers courses on
K–12 mathematics, these courses will have the burden of convincing them, point-
counter-point, that the TSM they are familiar with is not correct and therefore not
learnable by students, so that they had better replace it with something that is logical
and coherent. This is a hard sell because, in all the years preservice teachers were
in school, they saw with their own eyes that “mathematics” (i.e., TSM) was nothing
more than a bag of tricks to memorize in order to score well on standardized tests
and move on to the next class. They had no conception of the logical and coherent
progression of ideas in principle-based mathematics. For example, they have all
been taught that it is legitimate to “prove” equivalent fractions, i.e., m

n D mc
nc , by the

following string of equalities (see Eq. (4.6) on page 73),

m

n
D

m

n
� 1 D

m

n
�

c

c
D

mc

nc
:

Now imagine the hard work that is necessary to retroactively explain to them the
fatal mathematical incoherence in this one line.

If we try to teach fractions without directly confronting preservice teachers with
such fatal errors but only tell them what the correct reasoning is, will they realize on
their own that what they think they know is wrong? If not, how then can we expect
them to turn around and be advocates for principle-based mathematics? Changing
teachers’ minds about the precision, reasoning, and coherence of mathematics is
clearly more than making a few tweaks here and there in the TSM they know. We
will have to retrace essentially all the mathematics they have ever learned in school
and revamp it systematically before any new ideas of principle-based mathematics
can hope to sink in. At this point, perhaps what was said in Sect. 4.1 about the need
for long-term PD will begin to make sense.

The last I heard, the pervasive dominance of TSM in school mathematics is
largely unknown and unmentioned in the education literature and in Schools of
Education, and the need for content-based professional development is widely
ignored. Certainly the urgent need of professional development to explicitly undo

29For an example of why there can be no shortcuts in this kind of professional development, see
the analysis of Garet et al. (2011), in Wu (2011c, pp. 20–31).
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the ills of TSM is unheard of. In addition, there is as yet no awareness in most
mathematics departments that the standard math majors do not necessarily make
good high school teachers. If there are still any doubts about this fact, the recent
study of Newton and Poon (2015a), should lay them to rest. Beyond this awareness,
there is the obstacle of finding the right personnel to do this kind of PD. We have a
long way to go.

The issues facing the PD of inservice teachers are even more dire. Districts
do not invest (or do not have the funds to invest) in long-term professional
development, and the teachers in the trenches do not have the time and energy to
make the intensive effort to relearn the content during the regular school year. Unless
something extraordinary happens soon, TSM will continue to be the default content
in teaching and learning in schools for the foreseeable future.

Finally, we should address the naive question of why not just expunge TSM by
the most direct method possible, namely, by rewriting school textbooks? To properly
answer this question will take a separate article, but the short answer is that textbook
publishers worry about their bottom line but not necessarily about good education.
For slightly more details, see Keeghan (2012), and pp. 84 ff. of Wu (2015).

In summary, we have isolated the singularly destructive presence of TSM in
school mathematics—especially its wanton disregard of definitions and reasoning—
as a target for the mathematical reconstruction of the average teacher’s knowledge
base. Some may question whether this critique of TSM and the advocacy of its
obliteration are necessary or appropriate. Our answer is affirmative, very much so.
The school curriculum is a vast terrain, and teachers’ misconceptions from TSM
in this terrain are not confined to a few spots or a few chosen pathways; they
are minefields that lay waste to the entire territory. Any attempt at professional
development without confronting and removing TSM, such as the above “proof”
of equivalent fractions or the pseudo-definition of the slope of a line mentioned in
Sect. 4.3.2, runs the danger of “floating down a smooth-flowing river, so broad that
you can seldom see either bank; but, when from time to time a promontory comes
into view, you are surprised that it is a new one, as you have been unconscious of
movement.”30 It would be irresponsible of us to usher complacent teachers through
a tour of the K–12 landscape that they think they recognize through the lens of their
TSM-infused misconceptions without explicitly making them realize that they must
now leave these misconceptions behind. We want teachers and teacher-educators to
become aware of the pressing need to eradicate TSM.

Having said that, I am compelled to point out in the spirit of full disclosure that
the emphasis on the need to replace TSM—especially the malpractice of pretending
to do mathematics-without-definitions and reasoning—and the urgency of the need
to implement (content-based) PD to help teachers dislodge TSM are strictly my
personal conviction thus far. These issues are not to be found in other recent
discussions of teachers’ content knowledge, e.g., Common Core (2012), Conference
Board of the Mathematical Sciences (2001, 2010), National Council of Teachers of
Mathematics (2014), and Zimba (2016). Caveat emptor.

30Bertrand Russell’s critique of George Santayana’s literary style; see Russell (1956, p. 96).
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4.6 Pedagogical Content Knowledge (PCK)

So far, we have focused our attention on the reality of teaching and learning in
the classroom. However, the question about what mathematical content knowledge
teachers need has theoretical implications as well. In his well-known address
(Shulman, 1986), Shulman initiated an inquiry into the kind of content knowledge
that all teachers need for teaching. He introduced the concept of pedagogical
content knowledge (PCK), which is roughly the bridge that leads from content
expertise to the process of teaching. The starting point is thus subject matter content
knowledge. According to Shulman:

We assume that most teachers begin with some expertise in the content they teach. . . . Our
central question concerns the transition from expert student to novice teacher. . . . How does
the novice teacher (or even the seasoned veteran) draw on expertise in the subject matter in
the process of teaching? (ibid., p. 8).

The precise nature of this “expertise in the content” is therefore foundational to
his work on teacher education. This naturally leads us to ask what “some expertise
in the content they teach” might mean and what it entails.

To the extent that Shulman was looking into all content disciplines all at once, a
precise definition of this content expertise in general is out of the question because
such a definition would have to be specific to each discipline. However, since we
are now only considering the teaching of mathematics, it is incumbent on us to be
as precise as possible about what constitutes mathematical content expertise. At this
point, the picture can get murky. Since the content knowledge that an overwhelming
majority of teachers possess is TSM, can mathematics teacher education be built on
a foundation of TSM? Obviously not. So how then should the discussion of PCK
in mathematics proceed? Can we assume that this requisite content knowledge is
principle-based mathematics? An affirmative answer will bring clarification to the
concept of PCK in mathematics and clear the way for us to get to work on providing
the minimum content knowledge for PCK. Unfortunately, this remains very much
an open question at the moment.

We can perhaps more deeply appreciate the preceding concerns if we take up the
refinement of PCK in mathematics teaching proposed in Ball et al. (2008). These
authors isolated what they called subject matter knowledge for teaching (ibid.,
p. 402) as the content foundation of PCK. In their work, this knowledge is further
subdivided into three categories. In our effort to understand what this subject matter
knowledge for teaching consists of in mathematical terms, however, we find it more
revealing to turn to a series of questions posed on page 402 of their article.

Where, for example, do teachers develop explicit and fluent use of mathematical notation?
Where do they learn to inspect definitions and to establish the equivalence of alternative
definitions for a given concept? Where do they learn definitions for fractions and compare
their utility? Where do they learn what constitutes a good mathematical explanation? Do
they learn why 1 is not considered prime or how and why the long division algorithm works?
(Ball et al., 2008, p. 402)
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In the view of Ball et al., the subject matter knowledge for teaching that they
have in mind is the home for answers to questions such as these. Let us therefore try
to answer them one by one.

� “Where, for example, do teachers develop explicit and fluent use of mathemat-
ical notation?”

The authors have put their fingers on a key issue in the school curriculum: how
to properly use mathematical symbols. Since TSM is cavalier with the symbolic
notation—lack of precision—it ends up with the bogus concept of a “variable”
(see page 67).31 Clearly TSM is very far from being the requisite subject matter
knowledge for teaching, at least in this instance. The need to address the use
of mathematical notation naturally comes with the requirement of precision in
principle-based mathematics. In fact, precision suggests that symbols be used, albeit
gently, in the elementary classroom in the statements of the commutative laws and
associative laws for whole numbers and fractions (cf. Wu, 2011a, p. 42; also see
Section 1.3). When in the middle grades the use of symbols becomes both necessary
and intensive, teachers must come to terms with a fundamental fact regarding the
use of symbols:

Each time one uses a symbol, one must specify precisely what the symbol stands for.

This is given the name the basic protocol in the use of symbols in Wu (2016b,
p. 4) (also see Wu, 2010b, Section 1). When such precision is duly observed, the
usual symbolic computations in school mathematics are demystified as nothing
more than computations with numbers. The whole of Chapters 1 and 3 and
Section 2.1 of Wu (2016b) are devoted to an explanation of this fact from different
angles. To the extent that this aspect of principle-based mathematics seems to be
neglected in the mathematics literature—not to mention the education literature—
the concerns of Ball et al. are entirely justified. We must teach teachers more than
TSM.

� “Where do they learn to inspect definitions and to establish the equivalence of
alternative definitions for a given concept?”

This question does not even make sense in TSM because TSM has shown no
appetite for definitions. So once again, teachers who know only TSM will not
possess the subject matter knowledge for teaching.

In professional development materials, establishing the equivalence of definitions
is a very rare occurrence even in principle-based mathematics because such an
occasion is not commonly called for. For example, because there is as yet no usable
definition of a fraction in school mathematics other than that using the number line
(see the discussion of the following question), we are not in a position to compare
the pedagogical pros and cons of different definitions or prove their equivalence, no
matter how desirable such a discussion may be. A slight exception is the equivalence

31Some go even further and define a “variable” as a symbol without qualification, and sentences
involving symbols-without-qualification are then called open sentences (e.g., UCSMP, 1990, p. 4).
But the concept of “open sentence” is not needed for doing mathematics.
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of the two definitions of fraction multiplication that is implicit in the discussion on
page 74 of the product formula, i.e., the definition using “fraction of a fraction” (Wu,
2016a, p. 58; CCSSM, 5.NF.4) and the definition using the area of a rectangle (Wu,
2011a, p. 263). This equivalence is mentioned on page 262 of Wu (2011a), but no
proof was offered. The equivalence is implicitly proved by combining Section 17.3
of Wu (2011a) and Theorem 1.6 on page 65 of Wu (2016a). Indeed, the former
proves that the area definition implies the “fraction of a fraction” definition, while
the latter proves the converse. In any case, this kind of knowledge is beyond
principle-based mathematics even if it is compatible with it.

� “Where do they learn definitions for fractions and compare their utility?”
Again, not in TSM, because there is no definition for a fraction in TSM. See

the discussion in Sect. 4.3.1. The first part of this question implicitly assumes that
there are usable definitions of a fraction in school mathematics. As of 2016, the
assumption is correct, but unfortunately there is only one such definition at the
moment, which was the one was put forth in Wu (1998), and subsequently put
to use in Jensen (2003) and Wu (2011a, 2016a), and put to partial use in Siegler
et al. (2010). It would also appear to be the one in CCSSM, 3.NF.2. So as far as
mathematics is concerned, a comparison of different definitions of a fraction is not
yet a reality in 2016.

The second part of this question suggests that, perhaps, the authors meant to ask
whether any of the existing TSM “interpretations” of a fraction (see Sect. 4.3.1)
can be used as a definition of a fraction and, if so, how do they compare? Let us
first consider this question in the context of advanced mathematics. Then one of
them—the quotient interpretation—can indeed serve as a definition, but perhaps not
others. It is known (in advanced mathematics) that a fraction m

n can be defined as a
division, m�n, but this has to be done with great care. For example, m�n cannot be
recklessly tossed around as in TSM (see page 61), but has to be defined abstractly
as the solution of nx D m. Then this solution can be proved to be equal to the
fraction m

n , which is understood to be the equivalence class of the ordered pair .m; n/.
However, even this brief description is enough to reveal that such a discussion is
way beyond the level of school mathematics and is therefore inappropriate for the
consumption by teachers. In summary then, the answer as of 2016 is that there is
only one usable definition of a fraction in school mathematics.

� “Where do they learn what constitutes a good mathematical explanation?”
A “mathematical explanation” is of course just a “proof.” Given the paucity of

reasoning in TSM, one does not look for proofs in TSM. So emphatically TSM does
not provide the subject matter knowledge for teaching that Ball et al. are looking
for. If I understand the question, Ball and her co-authors are asking how teachers
can learn to decide whether a proof is correct or not and, if correct, how to present
it in an accessible way to students. Let us start with the former.

The ability to reason is not an instinctive one and has to be carefully nurtured.
My own observation is that among teachers, especially elementary teachers, their
prolonged immersion in TSM has often rendered them incapable of routinely asking
why, much less looking for the answer. In the mathematical education of teachers,
I believe we have to help teachers regain their reasoning faculty in at least two
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ways. First, they have to get used to the mechanics of proofs by a process of total
immersion: learn the proof of every assertion in the mathematics they teach. Second,
they have to get a feel for the overall architecture of mathematics by working
through a systematic logical development of school mathematics.

To illustrate the first point, consider the assertion that, even without a definition
of fraction division, one can derive the invert-and-multiply rule (see page 44):

2
3
4
5

D

2
3

� .3 � 5/
4
5

� .3 � 5/
D

2 � 5

4 � 3
D

2

3
�

5

4

If teachers’ sensibilities in reasoning have been heightened by a prolonged exposure
to proofs, their conditioned reflex would be immediately alarmed by the fact that,
in the first equality above, the left side of the equality, 2

3
= 4

5
, is as yet undefined.

They know that to say A D B is to say they already know what each of A and B
is before asserting that they are equal. Therefore they would see right away that
there is no way the equality can make sense. Next, let us see why they need to have
an overview of the hierarchical structure of school mathematics. Look at the TSM
proof of a special case of equivalent fractions, 7

3
D 14

6
, quoted on page 73:

7

3
D 1 �

7

3
D

2

2
�

7

3
D

2 � 7

2 � 3
D

14

6

Now equivalent fractions come near the beginning of every discussion of fractions,
but this proof makes use the product formula for the multiplication of fractions. That
should be enough to raise a red flag to teachers reading this proof, because they
should have an overall understanding of the logical structure of fractions: no matter
how fractions are developed, multiplication is never easy, and the product formula
requires hard work. They should suspect right away that it is probably wrong to
make use of a result that only appears down the road to prove something that is
foundational.

In 2016, most teachers only know TSM but not principle-based mathematics. If
we expect them to know the subject matter knowledge for teaching, we must begin
by helping them go through an immersion in proofs and a point-by-point systematic
development of the mathematics they teach. It was exactly the lack of any systematic
exposition of principle-based mathematics that provided the initial impetus for the
writing of the six-volume work: Wu (2011a, 2016a,b, to appear).

� “Do they learn why 1 is not considered prime or how and why the long division
algorithm works?”

As usual, this question has no answer in TSM. The fact that 1 is not defined to be
a prime has to do with the uniqueness of prime factorization (see Section 3.1 of Wu,
2016a), but TSM skirts any explicit mention of either existence or uniqueness (e.g.,
what

p
2 means is never seriously discussed in TSM). Next, if we reformulate the

second part of this question about the long division algorithm in mathematical terms,
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then what it asks for is a formal statement of the algorithm as a theorem (i.e., with
a hypothesis and a conclusion) as well as a proof of this theorem. This by itself is a
most remarkable question because it seems not to have been previously raised in the
education literature (and therefore never answered either). At its best, TSM provides
heuristic arguments for the “division house” by using analogies or metaphors, but
nothing remotely resembling a proof, i.e., a sequence of precise steps that progresses
logically from hypothesis to conclusion. One of the difficulties is that, in TSM,
the hypothesis of such a theorem has never been clearly stated. Moreover, the
conclusion in TSM of the division-with-remainder of 125 by 4 is “31 R1,” but there
is no known mathematical reasoning that has the nonsensical statement “31 R1” as a
conclusion. Now, it is possible in principle-based mathematics to explicitly describe
the algorithm and—following the description—to systematically present a sequence
of simpler divisions-with-remainders that ends with the equality 125 D .31�4/C1.
This may be the proof that Ball et al. are looking for. See Section 7.3 of Wu
(2011a) for a formulation of such a theorem, and ibid., Section 7.5 for its proof.
The recognition of the long division algorithm as a theorem and a knowledge of its
proof should without a doubt be part of every elementary teacher’s minimal content
knowledge.

In summary: If we are interested in the kind of content knowledge that can
provide answers to the preceding five questions from Ball et al. (2008), then we must
abandon TSM and look for something even more comprehensive than principle-
based mathematics. Our conclusion is therefore that the subject matter knowledge
for teaching that Ball et al. assumed to be foundational for PCK is a bit beyond
principle-based mathematics.

In Sect. 4.5, we expressed the pessimism that we may not have a system in
place, nor the requisite personnel, to provide mathematics teachers with the content
knowledge for achieving basic teaching competence. If the preceding analysis of
Ball et al. (2008), is correct, then fundamental to both Shulman’s theory of PCK
in mathematics and its refinement in Ball et al., is a content expertise for teaching
that exceeds principle-based mathematics. We must therefore pool our resources
together to try to provide this basic content knowledge for teachers before we can
seriously contemplate tackling PCK. Let us begin by teaching them principle-based
mathematics.

In a 2005 article (Shulman, 2005), Shulman said tongue-in-cheek that “Teacher
education does not exist” because educators had failed to converge on a set of
“signature pedagogies” that characterize all of teacher education. In the same vein,
we can say that teacher education in mathematics does not exist because we haven’t
found (yet) a way to give teachers the content knowledge they need to achieve a
basic level of competence in mathematics teaching.
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Appendix 1: Applied Mathematics

The five principles (A)–(E) of Sect. 4.2.1 may be said to be foundational to the
integrity of pure mathematics, which is the discipline that is driven principally by its
internal logic and its internal imperatives (the sense of beauty, the sense of structure,
etc.). However, its allied discipline of applied mathematics, which mediates between
pure mathematics on the one hand and science and technology on the other, is never
far from school mathematics. Consider, for example, the following problem:

Two shuttle trains traveling at constant speed go between cities A and B which are 15 miles
apart. It takes the first train 10 hours to make the trip, but it takes the second train 12 hours.
Suppose now the first train is at city A and the second train is at city B and they take off at
the same time on parallel tracks. How long will it be before they meet?

Notice that, as stated, this problem cannot be solved because we don’t know
precisely what “distance between cities” means, and we are also not given the
lengths of the trains. Does the “distance between cities” mean the distance between
city centers or the shortest distance between the outskirts of the cities, or is it the
distance between the train stations? Let us assume that it is the latter. Now suppose
the first train is 528 ft long (= 1/10 miles). Then the train doesn’t travel 15 miles
in going from city A to city B; it only travels .15 � 1

10
/ miles and the given data

actually means this train travels .15 � 1
10

/ miles in 10 hours. Similarly, suppose the
second train has length 264 ft (= 1/20 miles). Then this train travels .15 � 1

20
/ miles

in 12 hours. Now a little reflection will reveal that if “meeting” of the trains means
the meeting of the fronts of the trains, then they will meet after they have traveled
a combined distance of .15 � 1

10
� 1

20
/ miles. Without proceeding further with this

analysis, it is quite clear that a seventh grade school mathematics problem cannot
afford to be this unwieldy.

In order to make the problem manageable to a middle school classroom, the
standard simplification is to imagine that both trains are points without length. By
further assuming the precise distance between the train stations of the two cities
to be 15 miles, we are now given that these trains will travel 15 miles in 10 and
12 hours, respectively. With these simplifications understood, then this problem can
be solved in the usual way as a typical mathematics problem.

This process of translating a word problem into a “doable” mathematics problem
by making “reasonable simplification” is what is formally called “modeling.”
Applied mathematics may be said to be the study of mathematical problems whose
solutions require modeling. The train problem is a rather trivial example of problems
in applied mathematics. Most such problems arise from science or technology, and
the modeling that is required for their solutions usually requires a heavy dose of
scientific knowledge. To solve these problems, we will have to deal with concepts
whose primary definitions lie “in the real world,” so to speak, outside mathematics.
For example, in dealing with the electric field in Newtonian physics, mathematicians
may believe that the electric field is precisely defined by the gradient of the solution
of Poisson’s equation. But in physics, what truly matters is the force exerted on a test
charge by the field. Therefore if the same problem is taken up in nineteenth century
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electrodynamics, the modeling of the field changes. The mathematical definition
of the field will now involve Maxwell’s equation and the combined electric plus
magnetic force on a test charge. There will be other variations if the context changes
to non-quantum special relativity or special relativistic quantum field theory. All the
while, the electric field “out there” remains the same. Moreover, the reasoning used
will involve a substantial amount of science in addition to mathematics, and the
purpose behind the problem would likely lie more in science rather than in pure
mathematics. The fundamental principles that characterize the integrity of applied
mathematics will therefore be a slightly modified version of each of (A)–(E), as we
have just indicated.

However, given the lack of coordination between the teaching of school science
and school mathematics as of 2016, the chances of being able to do substantive
applied school mathematics are essentially nonexistent, because such problems
inevitably involve serious science. Problems like the train problem above typically
constitute the only kind of applied mathematics that can be taught in K–12, and
the modeling that is required for their solution is no more than certain formal
conventions that—like the modeling of a train by a point—once set up can be
learned quickly.32 As the preceding solution of the train problem shows, once
these conventions are understood, the usual applied problems in school mathematics
quickly become part of pure mathematics again.

It is for this reason that we believe that the fundamental principles (A)–(E) are
sufficient to characterize the integrity of the mathematics of K–12 in year 2016.

Appendix 2: The Existence of TSM

To people not directly involved with the professional development for mathematics
teachers or the evaluation of school mathematics textbooks, TSM is an unbelievable
concept: could a nation’s textbooks be so bad for so long? Could it be that someone
is taking poetic license to create this concept for purposes that are not entirely
intellectual? This appendix addresses these doubts and suggests projects for research
to confirm or refute the validity of this concept.

The most reliable way to identify TSM is to read, in succession, several textbooks
for the same grade from major publishers. Using this article as a guide, the reader
will not fail to notice the many similarities—and the anti-mathematical qualities—
among these books. In order to generate data for research, however, we will have
to suggest a far cruder methodology. We are going to write down a small list of
observable characteristics to be used for detecting the presence of TSM. Note that it
is easy to expand this list. For middle school mathematics, simply look up “TSM”

32This may explain why it is almost impossible to find sensible assessment items on modeling.
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in the indices33 of Wu (2016a,b). For high school mathematics, the volumes of Wu
(to appear) will serve the same purpose when they are finally published. Because
the volume Wu (2011a) was published before the term TSM was coined, it is
slightly more difficult to come up with a list for elementary school mathematics.
Nevertheless, it is not difficult to single out the many implicit references to TSM in
Wu (e.g., pp. 106, 177–178, 206, 228, 332, 335, etc.).

What we suggest is to use the items on the following list to check the school
mathematics textbooks from the major publishers. If over 75% of these books (in a
fixed grade band) contain the error described by each item on this list (i.e., relevant
to the grade band), then the validity of TSM would be beyond doubt. Moreover, one
can get further confirmation by a survey of teachers using these items. Again if over
75% of the teachers confirm that these errors were exactly what they were taught
when they were students, that would be a double confirmation of the validity of the
concept of TSM. For this kind of research, the participation of a very competent
mathematician will be crucial.

It should also be pointed out that many of the errors in the following list are
recorded in the lessons of the teachers in the casebooks of Barnett, Goldstein,
and Jackson (1994), Merseth (2003), Schifter et al. (1999), and Stein, Smith,
Henningsen, and Silver (2000).

Here is the list:

(I) Missing or garbled basic definitions. (By “definition,” we mean as in
Sect. 4.2.1 a precise and mathematically correct statement about a concept that is
put to use in the textbook for reasoning.)

Number; division-with-remainder; fraction; decimal; one fraction bigger than another;
addition, subtraction, multiplication, and division of fractions; ratio; percent; constant
speed; negative fraction; addition, subtraction, multiplication, and division of rational
numbers; variable; expression; equation; polynomial; length of curve, area of region in a
plane, and volume of solid in 3-space; scale drawing; slope of a line; half-plane of a line in
the plane; the graph of an inequality, equation, or function.

(II) Wrong instructions.

.a/ Writing a division-with-remainder, e.g., 17 by 5, as 17 � 5 D 3 R2.

.b/ Add two fractions by the use of the least common denominator of the fractions.

.c/ Introduce mixed numbers before fraction addition.

.d/ Expanding the product of two linear polynomials by the mnemonic device of FOIL.

.e/ Teach order of operations as a major skill by the mnemonic device of PEMDAS.

.f / Define slope of a line as rise-over-run without emphasizing that it is a single number
attached to the line.
.g/ Define in a high school algebra text that two lines in the plane are perpendicular if and
only if the product of their slopes is �1:

33These indices are not in those volumes but are obtainable from http://www.ams.org/
publications/authors/books/postpub/mbk-98 and http://www.ams.org/publications/authors/books/
postpub/mbk-99.

http://www.ams.org/publications/authors/books/postpub/mbk-98
http://www.ams.org/publications/authors/books/postpub/mbk-98
http://www.ams.org/publications/authors/books/postpub/mbk-99
http://www.ams.org/publications/authors/books/postpub/mbk-99
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(III) Lack of reasoning (proof) for any of the following basic facts:

.a/ The long division algorithm for whole numbers.

.b/ The product formula of fractions: a
b � c

d D ac
bd .

.c/ The invert-and-multiply rule for the division of fractions.

.d/ The multiplication algorithm for the product of two finite decimals.

.e/ The theorem .�x/.�y/ D xy for rational numbers x and y.

.f / The theorem a
�b D �a

b D � a
b for all rational numbers a and b (b ¤ 0).

.g/ The theorem that the graph of ax C by D c is a line.

.h/ The theorem that the graph of a linear inequality is a half-plane.

.i/ The theorem that the solution of a system of two linear equations in two variables is the
point of intersection of the two lines defined by the linear system.
.j/ The theorem that a linear function attains its maximum or minimum at a vertex of the
feasibility region in linear programming.
.k/ The formula for the vertex of the graph of a quadratic function.
.`/ For any positive a and b and any positive integer n, n

p
a �

n
p

b D
n

p
ab.

.m/ The Factor Theorem for polynomials of one variable.

.n/ The addition formulas for sine and cosine for all angles (i.e., not just acute angles).

(IV) Lack of purpose for basic skills or concepts.

.a/ Why round off whole numbers or decimals?

.b/ Why do we need negative numbers?

.c/ Why do we need absolute values?

.d/ Why teach rotations, translations, and reflections in middle school if they seem to be
useful only for art appreciation?
.e/ Why do we need to know the slope of a line?
.f / Why change the notation of n

p
a to a1=n and 1

a to a�1?

(V) Incoherence in the teaching of geometry.

Congruence is defined to be same size and same shape in middle school, but
in the high school geometry course, it is redefined as equal sides and equal angles
for polygons but nothing else. There is no explanation as to why once students are
in high school, they will no longer be concerned about the congruence of curved
figures. Similarly, similarity is defined to be same shape but not necessarily the
same size in middle school, but in the high school geometry course, it is redefined
as proportional sides and equal angles for polygons but nothing else. (See Sect. 4.3.3
for a more nuanced discussion.)
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Chapter 5
Knowing Ratio and Proportion for Teaching

James J. Madden

Abstract Ratio and proportion have been part of school mathematics since the
earliest manifestations of anything like school math in the Middle Ages. In
this paper, I compile and comment on statements from primary sources of the
last 2300 years to exhibit ideas that appear to have influenced the treatment of
these topics in schoolbooks today. Historical sources clarify many points about
the contemporary curriculum, supporting the contention that an understanding of
history of ideas concerning ratio and proportion is an important component of
knowledge of mathematics for teaching.

5.1 Introduction

Some of the occasionally puzzling things that we read in school mathematics
textbooks, or find in discussions about standards or in commentaries about school
math, can best be explained by reference to the long, complicated history of the
curriculum. When we read that the quantities used in forming a ratio must be of the
same kind, we are catching an echo of Definition 3 of Book V of Euclid’s Elements:
“A ratio is a sort of relation in respect of size between two magnitudes of the same
kind.” Similarly, the statement that a proportion is an equality between two ratios
refers back to Definition 6 of the same book: “Let magnitudes which have the same
ratio be called proportional.” Euclid, and two millennia of scholarly writings on
Euclid, have influenced the way we speak about proportion today.

Another powerful influence, largely independent of the classical tradition, de-
veloped with the emergence of mercantilism in Europe in the Middle Ages. The
rule of three is a method for solving the proportions that arise in trade, such as
deducing the cost of one amount of a commodity from the cost of another amount,
assuming that the conditions of the sale remain the same. The rule was known in
antiquity and was described in texts such as al-Khwārizmı̄’s Algebra (c. 820 CE) and
Fibonacci’s Liber Abaci (1202 CE). It was always closely associated with numerical
computations and the use of units. From the thirteenth to the sixteenth century, the
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method was taught in the so-called abbaco schools that sprang up in northern Italy
to provide the training in calculation required for the trades. As the Renaissance
spread northward from Italy across Europe, the curriculum of these schools spread
with it (Bjarnadóttir, 2014; Heeffer, 2009), eventually making its way to the New
World and helping to shape the American mathematics curriculum in the eighteenth
and nineteenth centuries. Abraham Lincoln wrote of learning the rule of three in the
brief autobiography he prepared for his 1860 presidential campaign. Even today,
one finds on the Internet many problems that are modern versions of schoolbook
exercises from this tradition.

Ideas and habits that shape teaching practice tend to persist from generation
to generation by a kind of cultural replication (Stigler & Hiebert, 2009). With
respect to ratio and proportion, it is not merely that artifacts of the past survive.
An examination of history shows continuity over more than a millennium. Some
traditions have imprinted the practices of the present to such an extent that it can
be difficult to make sense of the latter without reference to the former. A deep,
mathematically informed understanding of the history of mathematics—not at the
higher levels of scholarship, which is where most histories tend to focus, but at
the level of the classroom—has practical relevance for teachers, teacher-educators,
textbook authors, curriculum specialists, and anyone else who might influence
mathematics education.

This essay assembles evidence in support of this thesis. In Sect. 5.2, I collect
numerous statements of the rule of three from the seventh century up to the present.
As we shall see, the formulations of this rule remained stable over more than ten
centuries. Clearly, there has been a tendency for teachers (or at least textbooks) to
perpetuate certain ways of thinking and behaving mathematically.

In Sect. 5.3, I return to Book V of the Elements. This work influenced scholarly
writing about ratio and proportion from the Middle Ages onward. Wallis and
Newton referred to Euclidean proportion in explaining the new conception of the
number system that was beginning to emerge in the seventeenth century. Wallis
discussed explicitly the reasons why ratios (as comparisons of magnitudes) could
only be formed between magnitudes of the same kind. Galileo used patterns of
reasoning borrowed from Euclid in considering the proportional relationships that
arise in physics. Thinking in terms of magnitudes and their classical ratios—
rather than numbers and operations on them—is characteristic of physics from the
early Enlightenment up till today. In addition, important influences of Book V on
contemporary mathematics occur in the theory of measurement (see Hölder, 1901
and Michell, 1999) and in the mathematics of ordered algebraic structures (Bigard,
Keimel, & Wolfenstein, 1977). The Common Core Standards for grades K-5 treat
measurement in a manner that is consistent with the Euclidean approach. However
Book V shows a profound connection between the topic of ratio and proportion and
the topic of measurement that seems to be overlooked in contemporary school math.

In Sect. 5.4, I examine some comments by mathematicians and mathematics
educators about ratio and proportion in the contemporary curriculum. I believe
that they sacrifice some aspects of the Euclidean theory that are meaningful in the
sciences. In Sect. 5.5, I present a modern interpretation of a central idea of Elements,
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Book V. The point here is to show that the contents of this book are neither quaint
nor outdated. It contains ideas that are relevant to how we think about the modern
curriculum. I have tried to present the most important ideas in a way that will be
accessible to a broad audience. Finally, in the last section, I gather together the
conclusions that I think can be gleaned from this historical sight-seeing tour, and I
share some final thoughts.

This essay is not intended to be a contribution to scholarship on the history of
mathematics in the usual sense. I wish to suggest the relevance of the history of the
mathematics curriculum to modern problems of teaching and instructional design.
I hope that the reader will conclude that significant “discursive formations” (to
borrow a phrase from M. Foucault) can be identified in the history of mathematics
teaching and that they illuminate the structure of the modern curriculum. This paper
will have achieved its goal if readers come away convinced that there is something
to be gained by studying what one might call the “archeology of the mathematics
curriculum.” The task for the future is to pursue this in a disciplined and systematic
way, with the aim of contributing to knowledge of mathematics for teaching.

5.2 The Rule of Three

Early in 1859, Abraham Lincoln’s friend, Jesse Fell, asked Lincoln to prepare
an autobiography, hoping to use it to help generate publicity for the potential
presidential nominee. Lincoln’s response, a letter of four paragraphs,1 was used
as a basis for an article that appeared in the Chester County Times, February 11,
1860, the day before Lincoln’s fifty-first birthday. In the second paragraph, Lincoln
described his boyhood in Spencer County, Indiana, where his family moved in 1816:

. . . It was a wild region, with many bears and other wild animals still in the woods. There
I grew up. There were some schools, so called; but no qualification was ever required
of a teacher, beyond “readin, writin, and cipherin” to the Rule of Three. If a straggler
supposed to understand latin, happened to sojourn in the neighborhood, he was looked upon
as a. . . wizzard. There was absolutely nothing to excite ambition for education. Of course
when I came of age I did not know much. Still somehow, I could read, write, and cipher to
the Rule of Three, but that was all.

In pioneer communities like Lincoln’s, families contracted a schoolmaster and
paid a fee for each child. When he was around eleven, Lincoln attended Azel
Dorsey’s school in Little Pigeon Creek, Indiana, a mile and a half from the Lincoln
cabin. “It was built of unhewn logs, and had holes for windows, in which greased
paper served for glass. The roof was just high enough for a man to stand erect”
(Lamon, 1872, p. 33). At the schools he attended during the next several years, he
kept a “ciphering book” much of which his stepmother preserved. After Lincoln’s

1The Library of Congress holds authenticated reproductions of the original letter, which may be
viewed on the internet.
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death, his law partner, William Herndon, acquired it. Ten of the surviving pages are
reproduced in the first volume of the Rutgers edition of Lincoln’s collected works
(1953). One page bears the title “The Single Rule of Three.”

Besides the so-called subscription schools like those that Lincoln attended,
there were other forms of basic education at that time. Many boys in their early
teens entered indentures, or contracts of apprenticeship, which obligated them to
work for a master and reciprocally obligated the master to care for and educate
the young person. Often, these contracts required the master to teach his charge
to read, write, and “cipher to [or as far as, or through] the rule of three.” This
meant learning arithmetic with whole numbers and fractions, conversions of units
of measure, weight and currency, and techniques for basic proportions. Numerous
examples of such contracts can be found in genealogical databases, accessible via
the Internet. One web site, for example, contains a copy of the Apprentice Bonds
from Cumberland County, North Carolina. There we read that on December 6, 1823,
the orphan Leonord Cason, about 14 years of age (thus sharing his birth year with
Lincoln), was bound to a certain David D. Salmon, “To learn the art and trade of a
saddler and harness maker and to be taught to read, write and cypher through the
rule of three.” Other boys were bound in apprenticeships as carpenters, bricklayers,
coopers, blacksmiths, chair-makers, cabinetmakers, hatters, shoemakers, tailors,
carriage-makers, farmers, millwrights, clerks, accountants, printers, bookbinders,
and so on—all of them to be trained to “read, write and cipher through the rule of
three.” Lincoln’s words echo the formulaic language of the learning standards of
his day. In writing what he did in his autobiography, Lincoln was saying that his
education met the typical requirements for the education of young man preparing
for a trade.

What, then, is the rule of three? In modern algebraic notation, the rule is
expressed as follows:

for any positive numbers a; b; c; x if
a

b
D

c

x
then x D

b c

a
:

However, the algebraic formulation tells us little about the teaching and use of the
rule. Every application of the rule requires recognizing the roles of the numbers
involved, including the units of measure in which the problem is stated and the units
required for the answer. This is the pragmatic dimension of the rule, distinct from
the symbolic structure by which the rule is expressed and the idea it encapsulates,
but essential in teaching, learning, and using the rule.

In early sources, the rule was presented as a procedure for finding the value of x,
given a, b, and c and an understanding of the roles they play in a transaction. For
example, given that b shillings are paid for a ounces, if you want to find what must
be paid for c ounces, multiply b and c and divide this number by a. This is a number
of shillings, which must be expressed as a number of pounds, a number of shillings,
and a number of pence before the solution is complete.
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Smith (1958, p. 483) states that the name for the rule originated in India, though
similar rules were stated in older materials from other places. Brahmagupta, who
wrote around 630 CE, says (in translation):

In the rule of three, argument, fruit and requisition [are names of the terms]: the first and
last terms must be similar. Requisition, multiplied by the fruit, and divided by the argument
is the produce. (Colebrooke, 1817, p. 287)

The procedure was described by al-Khwārizmı̄ in his Treatise on Algebra, written
early in the ninth century in Baghdad. The brief Chapter on Transactions (which
is more or less independent of the other major chapters of the work) contains the
following statement:

Know that all transactions between people, be they sales, purchases, exchange, hire, or
any others, take place according to two modes, and according to four numbers pronounced
by the enquirer: the evaluative quantity, the rate, the price, and the evaluated quantity. : : :

[A]mong these four numbers, three are always obvious and known, and one of them is
unknown : : : You examine the three obvious numbers. Among them it is necessary that
there be two, of which each is not proportional to its associate. You multiply [them] and
divide the product by the other obvious number : : :; what you get is the unknown number
sought : : : . (Rasheed, 2009, p. 196)

The words evaluative quantity, rate, price, and evaluated quantity are translations
of Arabic words that were used to differentiate the roles of the numbers. In
modern notation, according to the translator, these numbers stand in the following
relationship:

evaluative quantity

rate
D

evaluated quantity

price
:

The chapter contains only a few, trivial examples to illustrate the application of the
rule. It seems to be a report on widely used commercial practices, rather than guide
for teaching them.

Now we jump ahead several centuries and shift focus from the East to pre-
Renaissance Italy. Here, between 1200 and 1300 CE, as the mercantile revolution
gathered momentum, communal and independent schools grew up to meet the needs
of increasing numbers of young men headed for commercial and civic careers. The
mathematics required for commerce was taught in the abbaco schools, which first
appeared in northern Italy after 1250 (Goldthwaite, 1972). Historian Jens Høyrup
has argued that the curriculum of the abbaco schools was derived from a culture of
practical mathematics based on the Hindu-Arabic system that was well established
in northern Africa, Spain, and southern France by the twelfth century (Høyrup,
2005). Presumably, this had been carried from the East by the expansion of Islamic
civilization.

Late in the twelfth century, the young Fibonacci traveled through northern Africa,
absorbing the mathematics used there and recording it in his Liber Abaci (1202).
Fibonacci’s book is often cited as a source for the emerging abbaco curriculum,
but Fibonacci clearly was not the only conduit (Høyrup, 2005). In the abbaco
schools, boys (roughly) between the ages of 10 and 13 learned how to write numbers
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with Hindu-Arabic numerals; how to perform the basic algorithms for whole-
number addition, subtraction, multiplication, and division; and how to calculate with
fractions. After this, they studied “commercial mathematics (in varying order): the
rule of three, monetary and metrological conversions, simple and composite interest
and reduction to interest per day, partnership, simple and composite discounting,
alloying, the technique of a single false position and area measurement” (Høyrup,
2014, page 120). In short, boys in the abbaco schools learned to cipher to the rule of
three—plus some.

Chapter 8 of the Liber Abaci opens with a paragraph that echoes al-Khwārizmı̄:

In all commercial transactions, four proportional numbers are always found, of which three
are known, but the remaining one is unknown. The first of the three known numbers is the
number of units sold, be they bundles, or weights, or measures. A bundle might be, for
example, a hundred hides or a hundred goatskins, or similar things: a weight might be a
cantarum, or a centum, or a libra or an uncia, or something similar. A measure might be a
metra of oil, or a sestario of corn, or a canne of cloth. The second number is the price of the
sale to which the first number refers, and it may be a quantity of denari, or of bezants, or of
tareni or some other monetary unit. The third is another quantity of the same merchandise
as in the sale, and the fourth is the unknown price [to be determined]. (Boncompagni, 1857,
page 83; free translation by JJM, aided by Sigler, 2012)

The first example in the chapter asks, “If 100 rolls cost 40 pounds, how many
rolls can I buy for 2 pounds?” (a roll is a unit of weight.) Solutions were found
by means of what Fibonacci called the “Principal Method,” which goes as follows.
Write the number of items of the first sale in the upper right of a square and in the
upper left write the price paid; in the lower left, write the price in the second sale
and to the right, leave a blank:

40 100

2 ‹

Multiply the two numbers that lie in the ascending diagonal and then divide by the
number in the upper left. The result is the price to be paid.

The simple problem in the previous paragraph illustrates the procedure, but it is
not at all representative of the kinds of problems that Fibonacci discusses. In the
third problem, for example, the price of 27 rolls is sought, given that 100 rolls sells
for 13 pounds. This is found to be 3 C 51=100 pounds, by the Principal Method.
Fibonacci goes on to express the result in the form that would be needed in an
actual transaction, as a number of pounds plus a number of soldi plus a number
of denari. There being 20 soldi in a pound and 12 denari in a soldo, the result is
3 pounds, 10 soldi, and 2 C 4=10 denari. Chapter 8 contains nearly 150 examples
illustrating the rule and, in virtually all cases, the units of measure, and the monetary
denominations require attention. Eventually, in some problems, four different units
are used in stating the problem, and much of the effort in finding a solution goes
into making the required conversions. The problems, we can assume, are typical of
those that merchants encountered in an age when different regions had their own
systems of weights and measures and their own coinage.
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During the 1300s, the abbaco curriculum acquired a stable, durable form. From
the earliest times, many abbaco masters prepared handwritten manuscripts recording
problems and solutions, as they may have been used in instruction. About 250
of these survive in libraries all over the world (van Egmond, 1981). As the new
technology for printing spread across Europe after 1450, printed textbooks in
practical mathematics began to appear. It is said that the first of these was the Treviso
Arithmetic, of 1478. (A translation of this anonymous work is in Swetz, 1987.) A
large part of this text is devoted to examples of applications of the rule of three. As in
Fibonacci’s work, there is much attention to units, unit conversions, and expressing
monetary amounts in mixed denominations.

As Renaissance culture spread north through Europe, the mathematical culture
of the abbaco schools spread with it. The Bamberger Rechenbuch by Ulrich Wagner
(1483) contains a section on the rule, though here it is called the golden rule.
Robert Recorde’s The Ground of Artes (1543), one of the earliest printed books
on arithmetic in the English language, has a chapter entitled “The golden rule, and
the backer rule with divers questions therto belongynge.” Recorde’s book does not
appear to me to be a manual for instruction, but more an exposition for a literate
audience. Only a few illustrative examples of the rule are provided, but as in the
works already mentioned, they require careful attention to the roles of the numbers
involved and to the required unit conversions.

The rule was featured in Cocker’s famous Arithmetick, which first appeared in
1677. (Several editions can be viewed complete on Google Books.) In the 48th
edition (1736), Chapter 10 is entitled The Single Rule of Three Direct. It begins
on page 87 as follows:

1. The Rule of Three (not undeservedly called the Golden Rule) is, that by which we find
out a fourth Number, in Proportion unto three given Numbers, so as this fourth Number that
is sought may bear the same Rate, Reason, or Proportion to the third (given) Number, as the
second doth to the first, from whence it is also called the Rule of Proportion.

A few paragraphs later, we read:

6. In the Rule of Three, the greatest Difficulty is to discover the Order of the 3 Terms of
the Question propounded, viz., which is the first, second and third; which that you may
understand; observe that of the Three given Numbers, two always are of one Kind, and the
other [is] of the same Kind, with the proportional Number that is sought : : :

7. : : : to find out the fourth number : : :, multiply the second Number by the third, and divide
the Product thereof by the first : : :

Following a page of explanation, there are 15 examples worked in detail, each
filling about a page. These are very much like the problems in the Liber Abaci, in that
they require discerning the roles of the quantities, converting units, and expressing
the answer in a form appropriate for trade. In the following example, C: stands for
a hundredweight, which consists of 4 quarters (qrs:), each being 28 pounds (l:) in
weight. A pound (money) (l:) is 20 shillings (s:).

Quest. 10. If 3 C: 1 qr: 14 l: of Raisins cost 9 l: 9 s: what will 6 C: 3 qrs: 14 l: cost?
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Thomas Dilworth’s Schoolmaster’s Assistant, first published in London in 1743
and surely influenced by Cocker, became one of the most popular early arithmetic
texts in the United States, with numerous North American printings between 1770
and 1820. Dilworth begins his presentation of the rule of three with the following
catechism:

Q. By what is the Single Rule of Three known?
A. By three Terms, which are always given in the Question to find a Fourth.

: : :

Q. What do you observe concerning the first and third Terms?
A. They must be of the same Name and Kind.
Q. What do you observe concerning the fourth Term?
A. It must be of the same Name and Kind with the Second.

: : :

Q. How is the fourth Term in Direct Proportion found?
A. By multiplying the second and third Terms together and dividing that Product by the

first Term.

The first problem following the instructional part reads, “If 3 Oz: of silver cost 17s:
what will 48 Oz: cost?” The answer is worked out by multiplying 48 and 17 to get
816 and then dividing by 3 to get 272. This number of shillings is then converted
to pounds and shillings by dividing by 20 (the number of shillings in a pound)
to get the final answer: 13l: and 12s. The questions and answers from Dilworth
quoted above are written out verbatim in Lincoln’s ciphering book. Here we also
read in Lincoln’s hand the statement of the problem of the 3 Oz: of silver and its
solution, as well as several other problems from Dilworth. Lincoln’s teacher must
have been using a copy of the Schoolmaster’s Assistant. (Much more information
about Lincoln’s mathematics education, and his ciphering book in particular, can be
found in Ellerton and Clements, 2014.)

In the late nineteenth century, schoolbooks began incorporating modern algebraic
notation; see White (1870), for example. Rather than a cipher with four numbers,
students would write an equation between two ratios, e.g., 12=30 D 42=x: In a 1921
manual for teachers (Klapper, 1921), we read:

A proportion is merely one method of writing a simple equation, and with the use of the
letter x allowed, the equation form is likely to replace that of proportion. : : : For example,
consider this problem: If a shrub 4 ft. high casts a shadow 6 ft. long at a time that a tree
casts one 54 ft. long, how high is the tree? Here we may write a proportion in the form

6 ft: W 4 ft: D 54 ft: W .‹/;

not attempting to explain it, but applying only an arbitrary rule. This is the old plan. Or we
may put the work into equation form,

x

54
D

4

6
;

and deduce the rule for dividing the product of the means by the given extreme : : : (page
183)
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No less than before, students need to discern the roles of the various numbers in
order to place them in the appropriate graphical schema. Operationally, the method
remains as it has been all along. The connection to algebra clarifies some points that
would not have been evident from the rule for the manipulation of numbers. For
example, various cancelations that are justified by the algebraic content can be used
to simplify the calculation.

We have seen the use of the word “proportion” in the historical sources. The
quotes from Cocker (and other remarks made by Cocker in the chapter we looked
at) give the impression that he regarded proportion as a more theoretical topic
that provided the justification for the rule of three. By the time of Cocker, Euclid
was widely studied and written about by English scholars, and the connections
to practical mathematics were probably recognized. The language in the teachers’
manual suggests that the author understood the phrase “a proportion” to refer a
problem of the type that the rule of three was meant to dispatch and that he expected
students to deal with such problems by well-practiced but poorly grasped routines.

Looking back, we see that the rule of three has been a robust schema that for
hundreds of years has been a stable part of the school mathematics experience. There
have been changes in appearance, including more prominent reference to proportion
and attempts to link the notation to algebra. Yet even today, if one searches the web
for problems on ratio and proportion, much of what one finds reflects the ancient
patterns with modern adaptations. The following comes from the Khan Academy
web site: “Pamela drove her car 99 kilometers and used 9 liters of fuel. She wants
to know how many kilometers (k) she can drive with 12 liters of fuel.”

In the Common Core Standards for Mathematics, the rule of three is not
mentioned, nor are the manipulations associated with it. In grade 6, students
represent and reason about ratios and collections of equivalent ratios, and in grade
7 they learn to recognize proportional relationships between varying quantities and
to represent them with an equation of the form y D k x, where k is a constant. The
standards shift away from setting up and solving proportions, i.e., equations of the
form A

B D C
x with A, B, and C constants, and focus on proportional relationships,

i.e., the relationships between variables x and y that are expressed by y D k x. It is
not my intention to describe the vision of the new standards here, but I would like to
draw attention to the fact that some observers of teachers have noted that the rule of
three schema seems to have a powerful hold on the thinking of many, to the extent of
creating the suspicion that it hinders the understanding of proportional relationships
in the manner suggested by the standards; see (Stanley, 2014).

5.3 Euclidean Ratio and Proportion

A completely different tradition concerning proportion springs from Greek mathe-
matics. This is described in Book V of Euclid’s Elements. The terms A and B in the
Euclidean ratio of A to B are not numbers but things, classically called “magnitudes.”
Lengths, areas, weights, and temporal durations are kinds of magnitudes. When
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forming a Euclidean ratio, the magnitudes must be of the same kind; otherwise,
the sort of direct comparison required to make a ratio is not possible. According to
Plato, understanding this was basic knowledge; those who believed that a line might
measure a surface, or a surface a volume, exhibited an ignorance “more worthy of a
stupid beast like the hog than of a human being” (Laws, 819d, A. E. Taylor, trans.).

The ancient Greek concept of number was fundamentally different from ours.
In Greek mathematics, number—ἀριθμός (arithmos)—referred to a multitude com-
posed of units. This idea encompassed the counting numbers 2; 3; 4; : : : but none of
the other things that today we call number. On the other hand, the ancient Greeks
understood there to be nonnumerical quantities of many kinds: line segments, areas,
volumes, weights, etc. The generic term for these was μεγέθη (megethe), typically
translated as magnitudes. These were not numbers and were not associated with
numbers, but nonetheless one could operate upon magnitudes of a given kind by
doing some (but not all) of the things we do with numbers. For example, given
two different magnitudes of the same kind, one could determine which is larger by
direct juxtaposition, or one could add them together by manipulations specific to
the kind: in the case of lengths, by placing them end to end in a straight line; for
polygonal areas, by cutting along lines and joining along edges; and for volumes of
a liquid, by putting them in a single container. Most importantly (for us), given two
magnitudes of the same kind, one could form a ratio—λόγος (logos)—between
them. Magnitudes forming equivalent ratios were said to be in proportion—
ἀνάλογον (analogon). Because Greek ratios are not formed from numbers, but
from magnitudes, the meaning of ratio and proportion in ancient Greek thought
was different from present-day schoolbook notions, but it is nonetheless relevant to
the modern curriculum in some unexpected ways, especially in measurement and in
understanding quantity concepts.

Euclid’s Elements was influential in European mathematics from the late Middle
Ages. Translations into the vernacular languages of Europe were made in the
sixteenth century, and in the seventeenth century, the study of Euclid was basic to a
scientific education. During the seventeenth century, some English mathematicians
strove to blend the Euclidean framework with the more modern number concepts
that were then emerging. John Wallis (1685, page 79) described the idea of a
Euclidean ratio as follows (with italics as in the original):

[The] whole definition of λόγος (Ratio, Rate, or Proportion) . . . [is] that Relation of two
Homogeneous Magnitudes (or Magnitudes of the same kind,) how the one stands related to
the other, as to the (Quotient, or) Quantuplicity: That is, How many times, (or How much of
a time, or times,) one of them contains the other. The English word How-many-fold, doth in
part answer it, . . . but because beside these which are properly called Multiple or Many-fold,
(such as the Double, Treble, &c. which are denominated by whole Numbers,) there be many
others to be denominated by Fractions, (proper or improper,) or Surds, or otherwise; . . . to
which would answer (in English,) How-much-fold, (if we had such a word) . . .

Ratio in the sense described here is not a relationship between numbers but is
the means by which we pass from magnitudes of a nonnumerical kind to numbers.
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Wallis was explicit on this point: “When a comparison in terms of ratio is made,
the resultant ratio often (namely with the exception of the ‘numerical genus’ itself)
leaves the genus of quantities compared, and passes into the numerical genus,
whatever the genus of quantities compared may have been” (Wallis, 1968). This, of
course, is not something that Euclid said; it is a new spin on Euclid, made possible
by the new conception of number. The closest analog we have in modern thought to
the Euclidean ratio of A to B is the measure of A by B. Indeed, Otto Hölder referred
to Euclid in proposing an axiomatization for measurement in his fundamental paper
of 1901 (Hölder, 1901). We shall return to Hölder’s work in Sect. 5.5.

One of the most important applications of ratio in the Elements occurs at the
beginning of Book VI, where Euclid shows that the ratio of the areas of two triangles
with the same altitude is equal to the ratio of their bases. Although Euclidean
ratios are relationships between magnitudes of the same kind, Euclid can compare
a ratio between things of one kind to a ratio between things of another. The famous
criterion for sameness of ratio is given in Definition 5 of Book V and is recognized
as a precursor of the modern definition of real number. (We will say more about
Definition 5 in §5, below.) As we have already mentioned, the term that Euclid
used to describe equal ratios is ἀνάλογον, which is translated into English as “in
proportion.” The term is introduced in Definition 6: “Magnitudes which have the
same ratio are said to be in proportion.” That is to say, when the ratio of A to B is
the same as the ratio of C to D, we say that the magnitudes form a proportion. (As
we can see in the first quote from Wallis, the word “proportion” has in addition been
used to refer to ratios.)

There is a powerful tradition related to Euclid’s definitions. If one looks for “ratio
and proportion” on the Internet, one finds numerous statements along the lines of
the following:

The ratio of two quantities of the same kind is the quotient of their measures. . . . An equality
of two ratios is called a proportion. (1977, p. 38)

The influence of the Euclidean paradigm is evident, but the use of measurement
to pass to numbers before taking ratios is a modern twist and a very peculiar—if
not incoherent—one if viewed from a Euclidean perspective. Measurement itself is
the formation of a ratio between nonnumerical inputs. Therefore, we cannot explain
what a ratio is by reference to measurement. To do so would be circular. An orthodox
modern Euclidean would explain the meaning of “in proportion” in the following
way: “If the measure of A by B is the same as the measure of C by D, we say that
the four quantities are in proportion.” To repeat, the quantities A, B, C, and D are not
themselves numbers, and no one of them is naturally associated with any number. It
is only the measure of A by B and the measure of C by D that can be thought of as
numbers.

At this point, some of the statements made in this section may seem obscure. We
will elaborate and clarify in the following sections.
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5.4 Mathematicians on School Math

In recent years, many mathematicians have commented on the meaning of ratio in
school mathematics. They seldom mention the Euclidean conception or take it seri-
ously. The following passages are from texts or papers by mathematicians. Because
I am quoting out of context, these snippets may not communicate accurately the
intent of the author. Therefore I make no attributions. Regardless of the author’s
intent, these passages contain ideas about ratio that I think we can recognize and
identify in many discussions of school math.

Ratios are essentially just fractions, and understanding and working with ratios and
proportions really just involves understanding and working with multiplication, division,
and fractions. . . . To say that two quantities are in a ratio A to B means that for every A units
of the first quantity there are B units of the second quantity.

By definition, given two . . . [numbers] A and B, where B 6D 0 and both refer to the same
unit (i.e., they are points on the same number line), the ratio of A to B, sometimes denoted
by AWB, is the . . . [number] A=B.

We say that the ratio between two quantities is A W B if there is a unit so that the first
quantity measures A units and the second measures B units. . . . Two ratios are equivalent if
one is obtained from the other by multiplying or dividing all the measurements by the same
nonzero number. . . . A proportion is a statement that two ratios are equal.

In one way or another, the authors of these passages all say that we form a ratio
out of a pair of numbers or that a ratio is nothing but a pair of numbers. Notice that
in all three statements, A and B stand for numbers. The things themselves—what
I have been calling the magnitudes—are mentioned but never named. If we take
these statements seriously, the term “ratio” is not essential part of mathematical
vocabulary, but rather it is a word used to signal that the numbers that are involved
originate as the measures of two things whose relationship is of concern. The
words quoted above are suggestive of the notion that the vocabulary of mathematics
includes words for numbers, for sets of numbers, for arrays of numbers, for
relationships between numbers, and for operations on numbers but does not include
words that refer to things in the world.

The sciences other than mathematics take a different view. The quantities
of physics are not labeled numbers but magnitudes much as conceptualized by
Euclid. The basic magnitudes are length, mass, and time, and other magnitudes
are composites of the basic magnitudes, e.g., velocity is length/time, acceleration
is velocity/time, force is mass � acceleration, energy is length � force, and power is
energy/time. If a unit is chosen for each basic magnitude, then each instance of
each magnitude has an associated number. But in physics, it is more productive
to reason with the magnitudes than with the numbers assigned to them through a
choice of unit. This is the position advocated in many physics textbooks. Physicist
Sanjoy Mahajan explains as follows; see Mahajan (2010, page 4). The inclusion
of units, such as feet or feet per second in a problem about a falling body, he
says, “creates a significant problem. Because [if we are given that] the height
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is h feet, the variable h does not contain the units of height: h is therefore
dimensionless.” If the other variables in the given problem are also numerical, then
they are also dimensionless, and likewise any combination of them is dimensionless.
Consequently, no combination is favored. However, the kinds of the given quantities
can guide us—and indeed they will guide us—if we use variables to stand directly
for magnitudes. We should not pose the problem of a falling body by asking for
“the number v of feet per second that the body is moving after falling h feet, given
the acceleration a in feet per s2.” Instead, we should understand each variable to
stand for a quantity with a kind (or “dimension”), and we should recognize that we
may only combine and compare magnitudes in a manner that is consistent with their
kinds. We benefit thereby, because the physical meaning is built in to the terms with
which we reason. If we ask, “What is the velocity v after falling a distance h, given
the acceleration a,” then evidently, the only magnitude we can compound from h
and a that has the same genus as v is the square root of h � a, and so we can expect
v to be proportional to the square root of h � a. We double the velocity by increasing
the height by a factor of 4. Readers of Newton’s Principia will find it filled with
passages where the reasoning is of this kind but far more sophisticated. Newton’s
arguments about complex proportional relationships typically do not mention units
or numbers. He uses units and numbers only when presenting experimental data.

5.5 Euclidean Magnitudes and Measurement

Above, we quoted Wallis saying that when we take the ratio of two magnitudes
(which need not be numbers) we create a number. Two centuries after Wallis, Hölder
provided a systematic elaboration of this idea. In this section, I will give a simplified
account of what Hölder said. This is based on a set of basic ideas about magnitudes
that are implicit in Book V of the Elements, together with some modern ideas about
number.

From the presentation in Book V, we can infer that Euclid assumed several
things about the members of each specific kind of magnitude. Hölder carefully
disentangled these assumptions and called them the axioms for measurement. We
can express them as follows:

(1) Compare. Given two objects of one kind, either they are equivalent (as members
of their kind), or if they are not equivalent, then one is larger than the other.
Moreover, if A is larger than B and B is larger than C, then A is larger than C.

(2) Add and subtract. Given two objects of a kind, we can add them to make a larger
thing of the same kind. For example, we can put things with length end to end,
or we can bind two masses together, etc. (We are not adding numbers! We are
operating directly on things, much as first-graders do in some curricula before
they ever learn to make measurements and represent the sizes of things with
numbers; see the contribution of H. Bass to the present volume.) A smaller



106 J.J. Madden

magnitude may be removed from a larger one of the same kind. Moreover,
addition and subtraction of magnitudes have the following properties:

(a) Addition is not sensitive to the order in which the parts are joined or
assembled (i.e., it is associative and commutative).

(b) Subtraction is the inverse of addition; that is to say, if we add B to A and
then subtract it, then we get back to A. And if we subtract B from A and
then add it back, we get back to A.

(c) Adding the same magnitude to two others preserves their order. In other
words, if A is less than B, then A C C is less than B C C. The same is
true of subtraction; if A is less than B, then A � C is less than B � C. If
A is equivalent to B and the same magnitude is added to—or subtracted
from—both, then the resulting magnitudes are equivalent.

(3) Duplicate and form integer multiples. We can make copies of a magnitude—as
many as we like. We may add two, three, or any number of duplicates of a given
magnitude to itself and thus double, or triple, or form any multiple we please of
the given magnitude.

Remark Let us stop for a moment to note some important consequences of the first
three items. If A is a magnitude and we add together m copies of A, we call the result
mA. The properties of addition imply that if A < B (respectively, A D B, A > B),
then mA < mB (respectively, mA D mB, mA > mB) for all m. By assumption (1), for
any A and B, exactly one of the conditions A < B, A D B, A > B holds. Therefore,
if mA < mB (respectively, mA D mB, mA > mB) for any particular m, then A < B
(respectively, A D B, A > B).

Infinitesimal magnitudes had no role in the Euclidean theory of ratio. On this
point, Euclid was explicit. Definition 4 states, “Magnitudes are said to have a ratio
to one another which can, when multiplied, exceed one another.” Accordingly, we
add the Archimedean axiom to the list of properties that the magnitudes of a given
kind must possess:

(4) Given a lesser and a greater magnitude, some multiple of the lesser exceeds the
greater.

If we take conditions (1)–(4) together, they form a system of axioms. As we
have said, they were first isolated by Hölder in (1901). Today, mathematicians will
recognize them as an informal statement of the axioms for the positive part of an
Archimedean totally ordered group. Math educators, on the other hand, will see
here a collection of ideas that are closely related to the sequence of developmental
benchmarks that children attain in mastering measurement. By age 5, children are
able to identify measurable attributes, such as length and weight, to compare things
with respect to length or weight and to use representations to make comparisons
between objects that cannot be compared directly. After this, they acquire the ability
to put several things in order with respect to a measurable attribute that they all share
and to build up varying lengths by laying units end to end (or varying weights by
combining weights in an appropriate way). Following this, the ability to compare
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and add are elaborated and refined, while the idea of using a number of identical
units to represent an arbitrary length (or weight) develops (Sarama & Clements,
2009, pp. 289–292). The Common Core proposes standards for measurement in
grades K-5 that reflect these stages. In grades K-2, children work with materials that
directly mirror the abstract attributes of magnitudes that we listed.

At this point, we can continue the exposition in two ways. One way will be
agreeable to mathematicians. It is brief and it states the mathematical content with
great efficiency, but it is likely to be meaningless to many readers. The other way
will be accessible to patient readers who have a modest mathematical background. It
reveals historical connections and elaborates notions in the present-day curriculum
concerning measurement, ratio, and proportion in interesting ways. We will go
quickly through the first way and go carefully through the second.

For mathematicians, the heart of the matter is Hölder’s theorem, which says the
following. Suppose G is an Archimedean totally ordered group. (We will write G in
additive notation.) Let 0 < B 2 G. For each 0 < A 2 G, define the real number
ŒAWB � by the following rule:

ŒAWB � WD sup
n n

m

ˇ
ˇ
ˇ mA � nB I m; n 2 N n f0g

o
2 R;

where sup means supremum, i.e., least upper bound. Evidently ŒB W B � D 1. It can
be shown that for all A; C 2 G>0, the following are true:

(i) A � C ) ŒAWB � � ŒC WB �;
(ii) ŒA C C WB � D ŒAWB � C ŒC WB �.

Furthermore, A 7! ŒA W B � has a unique extension to an injective order-preserving
group homomorphism from G to the additive real numbers. (Interestingly, Hölder’s
theorem does not require the hypothesis that G be commutative—the commutative
property for G is implied by the other hypotheses; for background and a complete
proof, the reader may consult (Bigard et al., 1977, pp. 48–50); see also Madden
(2008) for elaborations relevant to measurement.) Notice that if mA D nB for some
positive integers m; n, then ŒA W B � D n=m. If there are no positive integers m; n
such that mA D nB, then ŒA W B � is an irrational number. We never assumed that
a magnitude could be divided into equal parts—that is to say, we did not assume
G to be divisible. If G is divisible, then ŒA W B � is simply the supremum of the set
of positive rational numbers q such that qB � A. In view of this, ŒA W B � may
reasonably be called “the ratio of A to B” or “the measure of A by B,” because it
has the properties that we expect of these things. In particular, to recall the words of
Wallis, ŒAWB � answers How-much-fold of B there is in A.

Now, let us examine the same material from a less technical vantage point.
For concreteness, we will concentrate on lengths. Recall that we can (in principle)
compare any two lengths by putting them side by side, lining them up at one end,
and observing which goes further. If your pencil and mine line up at both ends,
then as lengths they are the same. (Of course, the two pencils are different physical
objects, but when we are concerned with them as lengths, this difference makes no
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difference; a philosopher might say that lengths are “equivalence classes” of objects
of experience.) We can add any two lengths by putting them end to end. We can form
multiples by duplicating and adding repeatedly. We can do all this with no need to
measure or to assign numbers to the lengths, and these operations are well-behaved
in the sense that the assumptions above are true of them. It is precisely because we
can do these things, and because the outcomes are so governed, that we can form
and compare ratios. How so? This will take some space to explain.

Suppose A and B are lengths. If we form a multiple of A and a multiple of B,
then we can compare those multiples. Either they will be the same (with respect to
length) or one will be larger than the other. Further, we need not stop with a single
pair of multiples. We may consider all pairs, mA and nB, where m and n are allowed
to range over all whole numbers. As we shall see, when we reason about the ratio of
A to B, we must consider all such pairs of multiples.

Imagine all possible number pairs arrayed as a grid in the first quadrant of the
coordinate plane, where .m; n/ is the point lying m steps to the right of the origin
and n steps above it. For each pair .m; n/, just one of the following is true: mA < nB
or mA D nB or mA > nB. Let us decorate the grid points according to which of
the options we find. If mA < nB, we draw an open circle at .m; n/. If mA D nB, we
draw a red dot at .m; n/. If mA > nB, we draw a black dot at .m; n/. Note that we use
a square grid—the horizontal steps are the same size as the vertical ones. Our grid
is being used to record and label the number pairs only. We do not use the multiples
of A and B in laying out the grid. We refer to the magnitudes only in deciding how
to decorate the points with circles or dots.

The picture below shows the result of following this rule when A is the side of
a square and B is its diagonal. The point .2; 1/ in the grid is black, because two As
placed end-to-end exceed one B. Similarly, the point .3; 2/ is black, because three As
exceed two Bs. We have drawn a light gray line through the origin in such a manner
that it separates the black dots from the open circles. The point at .7; 5/ is above
the line because 7A < 5B (though the circle around it happens to touch the line).
There are no red dots in this picture, nor will there be any if the picture is extended,
because we can never find a multiple of A that is equal to a multiple of B.
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According to Euclid, the classification of the number pairs .m; n/, which is
illustrated in the grid diagram, tells us all there is to know about the ratio of A
to B. That is, if we know for which .m; n/ it is true that mA < nB, and we know for
which .m; n/ it is true that mA D nB, and we know for which .m; n/ it is true that
mA > nB, then we know everything about the ratio of A to B. All this is recorded
in the diagram of dots and circles, since every .m; n/ eventually gets marked with
a circle or a red dot or a black one as the diagram is extended. Euclid says that if
A and B are magnitudes of the same kind and C and D are magnitudes of the same
kind as one another (but possibly of a different kind than A and B), then the ratio of
A to B is the same as the ratio of C to D if and only if the diagram for A and B is
the same as the diagram of C and D. This explains the meaning of the famous (and
famously obscure) Definition 5 of Book V:

Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth,
when, if any equimultiples whatever are taken of the first and third, and any equimultiples
whatever of the second and fourth, the former equimultiples alike exceed, are alike equal
to, or alike fall short of, the latter equimultiples respectively taken in corresponding order.

Returning to our exposition of Hölder’s ideas, we will use diagrams in place of
the formal reasoning he employed. We will show that every ratio of magnitudes has
a real number associated with it in a canonical way. We begin by listing some things
that follow from conditions (1)–(4) concerning the diagram for a pair of magnitudes
A; B. These are all things that Euclid would have understood, though of course he
did not use dot diagrams.

First, if we draw a line through the origin and a point .m; n/, then all the grid
points on that line will be decorated in the same way—if one is circled, then they all
are; if one is colored black (respectively, red), then they all are. This follows from
the remarks after (3).

Second, in any diagram, there will be some circles and some black dots. This
follows from (4), since given any m, there will be some n such that mA > nB. Thus,
every column will have some circles. Symmetrically, given any n, there will be some
m such that nB < mA. Thus, every row will have some black dots.

Third, if a line through the origin passes through a black grid point, then all the
grid points below this line are black. Similarly, if a line through the origin passes
through a circled grid point, then all the grid points above this line are circled. To
see this, suppose .m; n/ is black and ` is the line through .0; 0/ and .m; n/. Suppose
.m0; n0/ lies below `. Then .m n0; n n0/ lies on `, and .m0 n; n0 n/ lies below .m n0; n n0/

on the same vertical line, so it’s black. Since .m0; n0/ and .m0 n; n0 n/ lie on the same
line through the origin, the former is also black. The claim about circled points is
seen by a similar argument.

Fourth, if a line through the origin passes through a red grid point, then all the
grid points below that line are black and all the grid points above that line are circled.
This can be seen by the same reasoning used in the previous observation.

Let us consider what happens if mA D nB for some .m; n/. In this case, the
line through .0; 0/ and .m; n/ marks the boundary between the black points and the
circled points. Of course, all the grid points that lie on this line are red. According to
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Euclid’s Definition 5, the ratio of the numerical quantity n to the numerical quantity
m is the same as the ratio of A to B. The reason for this is that the diagram for A
and B is the same as the diagram for n and m since both diagrams have a red dot
at .m; n/. In this case, we associate the rational number n=m with the ratio of A
to B. This takes care of the ratios that, as Wallis said, are “denominated by whole
Numbers : : : [or] by Fractions, (proper or improper).”

Now, let us consider what happens if mA 6D nB for all .m; n/. In this case, we need
a different approach. With each grid point .m; n/, we can associate the fractional
number n=m. We may color the points on the fraction line in conformity with the
decorations on the grid: color n=m black if the grid point .m; n/ is black and color
n=m gray if the grid point .m; n/ is circled. Since mA 6D nB for all .m; n/, no points
will be red. The first observation above shows that there is no ambiguity in the way
we assign colorings. Condition (1) assures that every grid point is decorated, and
therefore every positive fraction will be either black or gray. The second observation
shows that some positive fractions will be colored black and some will be gray.
Finally, the third observation shows that if n=m is colored black, then every positive
fraction less than n=m will also be black, while if n=m is colored gray, then every
positive fraction greater than n=m will also be gray. In particular every black number
is less than every gray number. Hence, the decorated fraction line will appear as in
the picture below. Here, we have marked the fractions corresponding to the grid
points closest to the line we drew in the previous diagram.
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The last step appeals to the modern definition of the real number system. A
partition of the (positive) rational numbers into two sets with the properties of the
black and gray sets above is called a Dedekind cut. To be precise, a Dedekind cut
is a coloring of the rational numbers by two colors—black and gray, say—in such
a manner that every rational number is colored, some rational numbers are black
and some are gray and every black number is less than every gray number. The real
number system has the property that for any Dedekind cut, there is a unique real
number that is greater than or equal to each rational number colored black and less
than or equal to each rational number colored gray. This is the number we associate
with the ratio of A to B.

This has been rather long-winded, and essentially it has brought us to the
definition of the function A 7! ŒA W B � that we made above in a single line.
On the other hand, the ideas and imagery that have entered this discussion might
conceivably be incorporated in actual curriculum materials. For example, imagine a
lab experiment where we attempt to measure the weight of a 10d common nail using
a (lighter) 6d common nail as a unit. We might set up a balance and place various
numbers of 10d nails in one pan and then add 6d nails to the other pan until the
balance tips. We could record the data on a chart like what we made above, coloring
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the point .m; n/ black if m 10d nails weigh more than n 6d nails. Specifically,
beginning with a square grid of open circles in rows and columns labeled 1 through
20 (say), we could start by placing a 10d nail in one pan and then adding 6d nails to
the other pan until the balance tips. Then we blacken the circles in the first column,
up to the last one before the tipping point. Next, add a 10d nail to the first pan,
and then add 6d nails to the other pan until tipping, and blacken dots in the second
column by the same rule as the first. After moving through several columns, draw a
line separating the black dots from the open ones. The slope is a good approximation
of the measure of a 10d nail by a 6d one. The more columns we mark before making
the line, the better the approximation, and since when there are m 10d nails in a pan,
we are in essence measuring one 10d nail by mth parts of a 6d nail.

5.6 Conclusions

As we survey ideas related to ratio and proportion, a couple of things stand out. The
first has to do with the meaning of the symbols that are used in reasoning about
quantities. Even in the simplest of situations, such as the problem with the rolls,
there is a problem in the world (How much should I receive for 2 pounds?), and
there are symbols that we use to represent the problem and that we manipulate to
find the answer. In several different contexts, we raised the question of whether the
symbols refer to numbers or to objects in the world (or possibly to abstractions
intermediate between the things we experience and the objects of the orthodox
modern mathematical universe). In some respects, this does not seem to matter.
The question might be dismissed as a philosophical concern with no implications
for teaching, since it really makes no difference what the symbols mean in a
metaphysical sense, but only what students do with them. But this assumes that
the question makes no difference to the learners themselves. It very well might! The
symbols that we use are present in our experience alongside everything else that we
experience. That is, we are aware of the symbols themselves and are instinctively
interested in how they work. When a child draws a picture, the picture itself becomes
part of the world, and the child will speak about the picture, explain its parts, and
develop and modify its meaning by talking about it (Woleck, 2001). In a manner
that is not entirely different, learners are concerned about how meanings work
in the symbol systems they use: “What refers to what? How do I recognize the
connections? Why do I say or write this or that, and what does the result mean?” A
good account of the meanings of things is not a philosophical indulgence but a solid
support for student learning.

Laying out what the terms in a domain of knowledge refer to is a basic
task of artificial intelligence. In order to develop a system for recording, filing,
and systematically searching and retrieving medical information, for example,
information engineers need a representation of the kinds of things that might be
mentioned in a medical record and the kinds of relationships each might have to
every other thing. A patient has a name, a date of birth, a weight, a pancreas, a
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prescription for eyeglasses, and innumerable other things. These things fall into
classes and are related (or not) in ways dictated by the classes. Some things may
change, some not. The weight may cause concern for the pancreas, but not for
the eyeglasses. To sort these things out, the engineer will create what is called an
ontology: a set of specifications about what there is in this knowledge domain, what
the terminology refers to, and what properties and relations the objects may have to
one another. The word “ontology” also has philosophical connections, but here we
understand an ontology simply as a very explicit, practical specification of what a
domain of discourse is about.

Our historical review of ratio and proportion has demonstrated that there are
several competing ontologies for proportional reasoning. Up till now, no one has
attempted to make the different competing ontologies fully explicit or to compare
how the different alternatives might work out in a curriculum. The first step,
clearly, should be to find an appropriate framework for sketching out the ontological
alternatives. How to do this and how to put the final results to use are topics for future
research.

The second thing that stands out is the intimate connection between measurement
and proportional reasoning. It is interesting that in the Common Core Standards,
the measurement and data domain spans kindergarten through grade 5, whence
in sixth grade this domain vanishes and the ratio and proportional relationships
domain appears. Reasoning with rates and proportions, I suggest, is more dependent
upon the ability to understand the measurement process than widely acknowledged.
The history of ratio and proportion bears this out. Of course, the ability to take
measurements, calculate rates, put measure numbers into formulae, and “cancel
units” at the appropriate times is important. But we need to attend to more than
the mechanics. What is the explanation for a cancelation such as the following?

10;000��feet �
0:3048 m

1��foot
D 3048 m

Perhaps you think that the words are just decorations to remind us that the
10;000 refers to feet, and the 0:3048 refers to meters. Or perhaps you prefer to
think of the words as symbols for magnitudes that are here being multiplied by
numbers. In either case, why is it that this cancelation procedure, which we have
validated previously for numbers, can be carried over to this nonnumerical context?
I cannot provide a complete rigorous answer that could be grasped in any seventh-
grade classroom. I challenge readers to propose one. Most interesting proportional
relationships involve heterogeneous quantities and a rate that relates the amount of
one quantity in given units to the amount of the other, in other units. How do we
change units—convert the driver’s miles per hour to the runner’s minutes per mile?
We need a deep grasp of measurement in order to do this. It seems to me that the
opportunity to produce a curriculum that ties measurement more closely to ratio and
proportion is wide open and that the work to be done is great but has great potential.

I would like to close with some remarks of a broader nature. What teachers know
and the knowledge that they value depends upon the knowledge and the values
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that are distributed throughout the systems that support teachers and teaching. The
authors of textbooks; the people who train, observe, and evaluate math teachers; the
people who develop and promote school policies; the people who compile standards;
and the people who design and evaluate tests—all of them use special forms of
mathematical knowledge and have their own mathematical priorities. At the system
level, as opposed to the level of the individual teacher, “mathematical knowledge for
teaching” becomes a matrix of meanings, understandings, habits of mind, and values
that circulate among individuals in different roles in the organizations, agencies,
and institutions that impact teaching. At this level, “mathematical knowledge for
teaching” is more of a cultural entity than the set of understandings and abilities
that we might find, or fail to find, in an individual. Culture is an emergent social
phenomenon, not what is in someone’s head.

Until the end of the twentieth century, the most powerful influencers of this
culture were probably the traditions within the teaching community, the textbook
writers and publishers, the professional organizations for teachers, and the university
programs that prepared teachers. Textbooks, as concrete records of practice, were
surely very influential. In the past several decades, new forces have come on
the scene: the various systems of standards (created by the NCTM, the states
themselves, and now the producers of the Common Core), the massive high-stake
testing programs resulting from federal legislation, and increased use of test data
in teacher evaluation. Within the last few years, there has been an explosion in the
availability of curriculum materials on the Internet.

The scholarly discipline of mathematics has always been about creating and
describing efficient, coherent systems of ideas. The same mindset ought to be
applicable to school mathematics. It should be possible to lay out the content of
school mathematics in good mathematical style, with rigorous definitions, clear
logic, and appropriate, unambiguous symbolism. Roger Howe’s essays on topics
in school mathematics are examples of this. Historically, however, mathematicians
have not been the chief architects of school mathematics—it has had no chief
architects. It has developed like the ancient cities that Descartes contemplated in
the Discourse on Method, which “from being at first only villages, have become, in
course of time, large towns” and which, as a consequence, are “usually but ill-laid
out compared with the regularly constructed towns which a professional architect
has freely planned on an open plain.” He added that “it is not customary to pull
down all the houses of a town with the single design of rebuilding them differently,
and thereby rendering the streets more handsome : : :,” and similarly, it would be
“preposterous for a private individual to think of reforming a state by fundamentally
changing it throughout, and overturning it in order to set it up amended : : : [or to
contemplate a] similar project for reforming the body of the Sciences, or the order
of teaching them established in the Schools : : :.”

The culture of the curriculum, as sustained by the institutions described above,
is traditional and syncretic. For whatever reasons and by whatever mechanisms, this
culture preserves patterns of expression and habits of thought, meeting pressure for
change by absorbing and transforming what is newly thrust upon it, forcing new
things into the spaces between old structures, or on top of them, or within them.
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It mixes and juxtaposes ideas, in much the same way popular culture samples and
remixes styles, cuisines, icons, and beliefs. Knowledge for teaching as it is at the
present time, rather than as we might wish it to be, resembles what knowledge for
healing was 150 years ago: a mixture of folkways, craft wisdom, and science, shaped
as much by social influence as by reason. To change it one would need to change
the institutional conditions around teaching, . . . but all this is something to take up
at another time. My main thesis here is that the knowledge for teaching that we
have at present—no matter what anyone might envision as a replacement—is the
result of cultural process spanning centuries. In many cases, the intellectual sources
have been reasonable and coherent, though this is not always evident in the resulting
hodgepodge. If we wish to replace what we presently have with something better,
the first step should be to understand truly what we have.

I would like to end on an inspirational note that Dick Stanley mentioned to me.
Descartes may have been quite right that it would be preposterous for an individual
to undertake the rebuilding of a city. But the preposterous and the impossible are two
different things. At the behest of Napoleon III, between 1853 and 1870, Georges-
Eugène Haussmann led a massive renovation of Paris, tearing down vast tracts of
ancient buildings and laying out the majestic city we know today. Though he was
forced from his position as Prefect of the Seine in 1870 by political opponents, the
project continued, reaching completion in 1927 with the opening of the Boulevard
Haussmann. Might we, in the present century, achieve something analogous for the
mathematics curriculum?
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Chapter 6
How Future Teachers Reasoned with Variable
Parts and Strip Diagrams to Develop Equations
for Proportional Relationships and Lines

Sybilla Beckmann and Torrey K. Kulow

Abstract Findings are presented from an analysis of how six future middle-grade
teachers reasoned with strip diagrams and a variable parts perspective on propor-
tional relationships to develop and explain equations in two variables. One equation
was for two quantities varying together and one was for a line through the origin
in a coordinate plane. Both equations involved a constant of proportionality that
was not a whole number. The future teachers’ arguments were mathematically valid
and relied on reasoning quantitatively about strip diagrams. The arguments also
treated variables as quantities but rarely described the variables as numbers of units.
Some arguments combined an interpretation of fractions as multiples (or iterates) of
unit fractions with an interpretation of multiplication as a whole number of equal
groups. In contrast, most arguments involving a fractional multiplier interpreted
multiplication as “of.” All the points of tension that the future teachers encountered
while developing their equations concerned referent units for quantities. The points
of tension were resolved by focusing on referent units or on equality. Based on the
data, extensions to current theories on reasoning quantitatively and with variables
are proposed.

6.1 Background

Students use equations to model situations throughout their schooling, but it is only
in the middle-school grades (grades 6, 7, 8) that they begin to use equations in
two variables to model situations of quantities varying together. One especially
important class of examples is proportional relationships, in which quantities vary
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together in a fixed ratio and therefore have a fixed multiplicative relationship. Two
quantities that vary together in a proportional relationship can be modeled by a
graph that is a line through the origin in a coordinate plane and by an equation
of the form y D mx, where m is a constant of proportionality and x and y are
variables.

In this introduction, we first discuss how we see the study of proportional
relationships as part of a bigger landscape of mathematical ideas and prac-
tices. We then discuss central definitions and framing ideas that we use in our
courses for future teachers. Among these, one particular approach to proportional
relationships—variable parts—has only recently been recognized in mathematics
education research (Beckmann & Izsák, 2015). Using the variable parts perspective
to generate and explain equations in two variables is the focus of the study we report
on in this chapter.

6.1.1 Equations for Proportional Relationships as Part
of a Multiplicative Conceptual Field

The domain of ratio and proportional relationships is known to be essential yet one
of the most challenging to learn (e.g., Kilpatrick, Swafford, & Findell, 2001; Lamon,
2007). The National Mathematics Advisory Panel (2008) noted that the interrelated
topics of fractions, decimals, percent, ratios, and proportional relationships provide
a critical foundation for algebra (p. 18). The National Research Council (2012) listed
“Scale, proportion, and quantity” as a crosscutting concept for science (p. 3) and
stated that ratio relationships are key to forming mathematical models that interpret
scientific data (p. 90). Yet, the National Center on Education and the Economy
(2013) identified weak conceptual understanding of middle-school mathematics—
especially arithmetic, ratios and proportions, and simple equations—as the most
important obstacle to readiness for community college, where most vocational and
technical education takes place and where many students begin 4-year college
degrees.

We view proportional relationships, lines in the plane through the origin, and
their equations as part of a multiplicative conceptual field (Vergnaud, 1983, 1988,
1994)—a web of interrelated ideas that also include whole-number multiplication
and division, fractions, ratio, and rate. With such a view, we want students to
connect and build on multiplicative ideas as their education progresses. For example,
reasoning to develop equations in two variables for proportional relationships and
lines could build on reasoning for solving missing-value proportion problems,
which in turn could build on reasoning about multiplication and division with
quantities. Consonant with this view, current recommendations include that students
in kindergarten through grade 8 should develop their conceptual understanding
for solving ratio, rate, and proportion problems before being exposed to cross
multiplication as a procedure to use to solve such problems (Siegler et al., 2010)
and that students in grade 6 should use ratio and rate reasoning to solve problems,
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for example, by reasoning with strip (tape) diagrams and double number lines
(Common Core State Standards Initiative [CCSS], 2010).

More generally, the CCSS (2010) describe the kinds of mathematical reasoning
students should engage in and what kinds of mathematical arguments students
should develop. The CCSS Standard for Mathematical Practice 2, “Reason ab-
stractly and quantitatively” (p. 6), describes mathematically proficient students as
able to make sense of quantities and their relationships. The CCSS Standard for
Mathematical Practice 3, “Construct viable arguments and critique the reasoning
of others” (p. 6), describes mathematically proficient students as able to use
stated assumptions, definitions, and previously established results in constructing
arguments. Given the current recommendations and expectations for middle-grade
students, their teachers also need opportunities to reason quantitatively and construct
viable arguments that connect and explain ideas in the multiplicative conceptual
field.

How then might middle-grade students and their teachers reason about ideas in
the multiplicative conceptual field to develop equations in two variables for pro-
portional relationships, including cases of lines through the origin? Such reasoning
will draw on ideas about multiplication, division, fractions, variables, and equations,
among others. Large bodies of research in mathematics education have investigated
students’ and, to a lesser extent, teachers’ reasoning about these topics. We will not
survey that research here, but in the following discussion, we provide the references
upon which we draw directly.

6.1.2 Reasoning with Quantities

The CCSS Standard for Mathematical Practice 2, “Reason abstractly and quanti-
tatively” (CCSS, 2010, p. 6), describes quantitative reasoning as creating coherent
representations and attending to the meaning of quantities, not just how to compute
them, among other attributes. In discussing the high school standards, the CCSS
describe quantities as “numbers with units, which involves measurement” (p. 58),
which is consistent with some other authors (e.g., Schwartz, 1988).

We take a slightly different view of quantity, close to Thompson’s (1994), by
not requiring any measurement unit to be specified or in mind. So we consider a
person to be treating an entity as a quantity if they state or imply that the entity
has a quality that is or could be described as some number of units. But we also
consider measurement units themselves to be quantities. So if a person treats an
entity as a unit with which to describe another entity numerically, for example, by
taking a fraction of it or considering some number of copies of it, we consider a
person to be treating both entities as quantities. For example, if a person describes
and accurately explains one strip as 2/5 of another strip, then we consider the person
to be treating the two strips as quantities. If the person treats x and y as standing for
those strips and describes y as 2/5 of x, we consider the person to be treating x and
y as quantities.
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With our view of quantity, for a person to be treating a letter such as x as a
quantity, they need not be viewing x as standing for some number (an unknown
number or a number from a specified set). We believe this view of quantity is
consistent with the definition of physical quantity given by the National Institute
of Standards and Technology (NIST, n.d.). For example, NIST uses hW to stand
for the physical quantity “height of the Washington Monument,” but the numerical
value of hW depends on a choice of unit. When expressed in meters, its numerical
value is 169; when expressed in feet, its numerical value is 555.

6.1.3 Reasoning with Variables

Providing an adequate definition of “variable” is known to be difficult (Schoenfeld
& Arcavi, 1988), but a variable is often understood as representing “an unknown
number, or, depending on the purpose at hand, any number in a specified set” (CCSS,
2010, p. 44, Standard 6.EE.6). Mathematics education researchers have found that
students conceive of variables in a variety of ways (for a recent summary, see
Lucariello, Tine, & Ganley, 2014). Among them is the well-known (mis)conception
of treating a variable as a shorthand label for an object or unit, for example, treating
S as shorthand for students rather than as a number of students (see McNeil et
al., 2010). This (mis)conception has been described as one source of errors in
writing equations in two variables. For example, many college science students
wrote the eq. 6S D P when given the information that there were six times as many
students as professors at a university (Clement, 1982; Clement, Lochhead, & Monk,
1981).

Although some interpretations of variables as labels do lead to statements that
are mathematically incorrect, we think this topic needs further examination. In
particular, we claim it is possible to treat a variable as a label but in such a way
that it also functions as a quantity, as we described above. We think that such
uses of variables are not misconceptions and in fact may be a productive part of
quantitative reasoning. Later in this chapter, we present examples showing how
future teachers treated variables in that way and developed correct equations based
on sound quantitative reasoning.

6.1.4 Interpreting Fractions

The CCSS (2010) define fractions in the grade 3 standard 3.NF.1 as follows, which
we will refer to as “the CCSS definition of fraction”:

Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned
into b equal parts; understand the fraction a/b as the quantity formed by a parts of size 1/b.
(p. 24)
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In grade 4 standards 4.NF.3 and 4.NF.4, the CCSS ask students to understand
fractions as sums or multiples of unit fractions (fractions with numerator 1). We
therefore view the two-part CCSS fraction definition as describing fractions as
iterates, sums, or multiples of unit fractions.

In our courses for future teachers, we use the CCSS definition of fraction but
with an elaboration to draw attention to the fraction’s referent whole. For example,
we might describe 8/3 as the quantity formed by 8 parts, each of size 1/3 of the unit
amount. There is some ambiguity in the language. Does it mean 8 parts, each of
size (1/3 of the unit amount), or does it mean 8 parts, each of size 1/3, of the unit
amount? One might think of the latter expression as highlighting that 8/3 stands for
some number of units and the former expression as elaborating what exactly that
number is. We want our future teachers to be able to think of 8/3 in both of those
ways.

We note that there are other ways to define or think about fractions (for a
summary, see Lamon, 2007). For example, one can define the fraction A/B with
division, by thinking of it as the quantity in one share when A units are distributed
equally among B shares. One might also think of the fraction A/B not as an
expression for a single number but as a pair of numbers, i.e., the ratio A to B. When
students use language such as “A out of B,” it could be that they have a kind of ratio
idea in mind.

6.1.5 Interpreting Multiplication

In our courses for future middle-grade teachers, we use a quantitative “equal groups”
definition for multiplication that is consistent with the grade 3 CCSS Standard
3.OA.1 about whole-number multiplication (CCSS, 2010, p. 23). In a situation
involving quantities, we say that

M • N D P

if M is a number of equal groups, N is a number of units in one whole group (or
each group), and P is the number of units in M groups in the situation. We call M
the multiplier, N the multiplicand, and P the product (e.g., Greer, 1992). We define
division as multiplication with an unknown multiplier or multiplicand.

Our quantitative equal groups definition applies not only to whole numbers but
also to (nonnegative) fractions and decimals (e.g., Beckmann, 2014). We think it is
important to have such a definition in our courses for future teachers so that (1) we
can make the case that multiplication is a coherent operation across different kinds
of numbers and (2) we have a tool for determining whether a problem is solved by
multiplication.

We note that it is possible to use an equal groups interpretation of multiplication
without explicitly invoking the equal groups definition of multiplication. For
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example, a person might reason that 22/3 • A D B because it takes 22/3 copies of
A to make B, but they might not describe 22/3 as a number of groups or they might
not describe A as the number of units in one group and B as the number of units in
22/3 groups.

Another way to think about multiplication when the multiplier is a fraction is as
“of” (e.g., Boulet, 1998). For example, we might think of 1/2 • 1/3 as “1/2 of 1/3.”
Some authors treat an “of” interpretation (or sense) of multiplication as distinct
from an equal groups interpretation (e.g., Greer, 1992, distinguished equal groups
situations from part/whole situations, which are worded with “of”), and students
and teachers may see them as separate as well. We consider an “of” interpretation
of multiplication to follow from an equal groups interpretation because a shorthand
way to describe M • N is “M groups of N,” which we interpret as “M of N” when
M is a fraction.

We acknowledge that it is possible to use the word “of” for multiplication in a
mechanical, unthinking way, for example, by automatically inferring multiplication
from the word “of,” regardless of context. We do not agree with such a use
of keywords in mathematics. For this reason it might seem better to avoid an
“of” interpretation of multiplication altogether. However, as we will show, future
middle-grade teachers were able to make sound use of an “of” interpretation of
multiplication and use it to develop equations by reasoning about relationships
between quantities.

6.1.6 The Variable Parts Perspective for Reasoning About
Proportional Relationships

As Beckmann and Izsák (2015) discussed, the quantitative equal groups definition
of multiplication can unify multiplication, division, and proportional and inversely
proportional relationships. Furthermore, the definition leads to two ways of viewing
proportional relationships: a multiple batches perspective, which has been widely
studied, and a variable parts perspective, which had been largely overlooked in
mathematics education research. Although the variable parts perspective is new in
mathematics education research, it is implicit in some East Asian curricula (e.g.,
Fujii & Iitaka, 2012) and fits with the model method used in Singapore (e.g., Kaur,
2015; Ng & Lee, 2009).

Beckmann and Izsák (2014, 2015) have argued that a variable parts perspective
may be especially valuable for developing equations for proportional relationships.
We illustrate with the following fertilizer scenario:

Fertilizer scenario: A type of fertilizer is made by mixing nitrogen and phosphate in an
8-to-3 ratio. Suppose you will use N kilograms of nitrogen and P kilograms of phosphate,
where N and P are unspecified numbers of kilograms, which could vary.

From a variable parts perspective, we view the N kg of nitrogen as 8 parts
and the P kg phosphate as 3 parts, where all the parts are the same size as
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Fig. 6.1 Using the variable parts perspective to derive two equations relating N and P for the
fertilizer scenario. (a) How much in one part method. (b) How many total amount method

each other, as indicated in the strip diagrams in Fig. 6.1. To develop equations
relating N and P, we can reason about multiplication and division with a strip
diagram in several different ways (Beckmann, Izsák, & Ölmez, 2015). With the
“how much in one part” method (see Fig. 6.1a), we can first find that each part
contains P/3 kilograms. There are 8 parts of nitrogen; therefore, according to the
equal groups definition of multiplication, 8 • P/3 D N. With the “how many total
amounts” method (see Fig. 6.1b), we can treat the phosphate as 1 group of P
kilograms. Because 3-part phosphate strip fits into the 8-part nitrogen strip 8/3
times, the nitrogen is 8/3 groups. Therefore, according to the equal groups definition
of multiplication, 8/3 • P D N. The strip diagram visually illustrates the constant
relative magnitudes of the two quantities and makes the constant of proportionality,
8/3, visually explicit.
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6.1.7 The Variable Parts Perspective for Reasoning About
Lines in a Coordinate Plane

Beckmann and Izsák (2014, 2015) have argued that a variable parts perspective may
be especially valuable for situations involving geometric similarity, such as lines and
their slope. For example, Fig. 6.2 shows two screenshots from a Geogebra sketch
(see http://ggbm.at/UutLbwxl) that illustrates how we can view the points on the

Fig. 6.2 A variable parts perspective on points on a line. (a) Original position of Geogebra figure.
(b) Modified position of Geogebra figure

http://ggbm.at/UutLbwxl
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line through the origin and (5, 2) in terms of a variable parts perspective. The x- and
y-coordinates of a point on the line are in the fixed 5-to-2 ratio. As a point (x, y)
moves along the line, the 5 parts that make x and the 2 parts that make y all remain
the same size as each other, but that size changes depending on the location of the
point (which can be moved by moving the slider in the Geogebra sketch). The same
reasoning as above, for the fertilizer scenario, applies for developing an equation for
the line.

6.1.8 Research Questions

Given that the variable parts perspective has been proposed as potentially valuable
for reasoning about proportional relationships, a first question is whether it is even
a viable approach and, if so, what the reasoning looks like. We can ask this question
for students as well as for teachers. In this report we consider the viability of
a variable parts perspective for future middle-grade teachers. Can future middle-
grade teachers learn to reason quantitatively with a variable parts perspective to
generate equations in two variables? What are the characteristics and qualities of
this reasoning? What ideas do the future teachers choose to use? What is hard or
tricky? We report here on a small-scale investigation into these questions, as part of
a larger, ongoing project.

In the rest of this chapter, we address the following research questions about
six future middle-grade teachers who took courses that emphasized reasoning about
multiplication and division with quantities and developed the variable parts (and
multiple batches) perspectives on proportional relationships:

Research Question 1 What ideas, concepts, and ways of reasoning did the future
teachers use as they reasoned from the variable parts perspective to develop and
explain an equation the form constant • variable D variable for a proportional
relationship?

Research Question 2 What ideas, concepts, and ways of reasoning did the future
teachers use as they reasoned from the variable parts perspective to develop and
explain an equation for a line through the origin in a coordinate plane?

Research Question 3 What points of tension did future teachers experience as they
reasoned from a variable parts perspective to develop equations in two variables?

By ideas and concepts, we mean things such as the interpretation of multi-
plication as “of” or that fractions can tell us how much of something there is.
We are interested not only in whether future teachers can produce and explain
correct equations but also in what ideas and concepts they use to do so and how
they assemble those ideas and concepts. It is only through a detailed, fine-grained
understanding of reasoning that we can hope to design learning experiences that tap
into ways of thinking that are available and productive.
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6.2 Methods

Data for this report comes from an ongoing study of future teachers’ reasoning about
multiplication and division, fractions, and proportional relationships. As part of the
broader study, the project team selected six individuals from a class of 22 future
middle-grade mathematics teachers who took arithmetic content course offered in
Fall 2014. These six individuals were selected to be mathematically diverse based
on their performance on a fractions survey (Bradshaw, Izsák, Templin, & Jacobson,
2014). They were each interviewed two times during the arithmetic course in the Fall
2014 semester and four times during Spring 2015 while taking an algebra content
course. Another project team member conducted all of the interviews.

Beckmann taught the arithmetic and the algebra course and used a textbook in
both courses (Beckmann, 2014). Throughout both courses, Beckmann emphasized
reasoning with the CCSS definition of fraction and the equal groups definition of
multiplication (discussed above). In the arithmetic course, when the equal groups
definition was extended from whole numbers to fractions, the class discussed the
connection to the “of” interpretation of multiplication. The algebra course developed
both the variable parts and multiple batches perspectives for solving proportion
problems and for reasoning about proportional relationships. The algebra course
included instruction in using a variable parts perspective to develop equations
in two variables, including lines in a coordinate plane. Both courses emphasized
developing mathematically valid arguments and explanations for solution methods,
procedures, and equations.

The data for this study came from the fifth set of interviews, which was conducted
at the end of February 2015. The data included a video recording and transcript of
the interview with each participant and a scanned copy of each participant’s written
work on the tasks given during the interview.

For this report, we selected the two tasks from the fifth interview to analyze
for each of the six participants. One task asked participants to use a variable parts
perspective to develop an equation in two variables for a proportional relationship
(see Fig. 6.3); we refer to this task as the “fertilizer task.” The other task asked

Fig. 6.3 Task 2A from Interview 5
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Task 3A: Please see the geogebra sketch. Can you use features of the drawing to
express a relationship between x and y that holds for points (x,y) on the line?

Fig. 6.4 Task 3A from Interview 5

participants to develop an equation for a line using features of the given diagram
(see Fig. 6.4); we refer to this task as the “line task.” The line task was presented
together with a dynamic Geogebra sketch shown on an iPad (see Fig. 6.2 and http://
ggbm.at/UutLbwxl). These two tasks were similar to tasks on an in-class test given
about a 2 weeks earlier in the algebra course.

We analyzed the participants’ initial responses to the tasks, before follow-up
questions. Our thinking is that these initial responses are likely to use ideas and
ways of reasoning that the participants felt most comfortable with and confident in.

To analyze the participants’ responses, we first wrote “cognitive memos” summa-
rizing and describing how each participant reasoned about each task. To find themes,
we further condensed each cognitive memo by making a list describing the ideas,
concepts, and ways of reasoning the participant used as they worked on the task.
When making each list, we considered the participant’s use of key class tools related
to reasoning with variable parts: the CCSS definition of fraction, the equal groups
definition of multiplication, and strip diagrams. We also considered the viability of
the participant’s argument. We discussed these cognitive memos and lists until we
agreed upon a set of themes: main ideas, concepts, and ways of reasoning that we
found across multiple participants.

To describe the ideas, concepts, and ways of reasoning that we identified, we
found we needed a criterion for when a person is treating an entity as a quantity.
This led us to develop the discussion about quantity we presented above. Based on
that discussion, we take as evidence that a person is treating an entity as a quantity
if they do any of the following: describe the entity as some number of another entity
(thus using the other entity as a unit); use the entity to describe another entity as
some number of the entity (thus using the entity as a unit); use any of the words
size, amount, or quantity to describe or discuss the entity; and describe the entity as
equal to some number of another entity.

http://ggbm.at/UutLbwxl
http://ggbm.at/UutLbwxl
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To determine the points of tension that the future teachers experienced as they
explained their equations, we examined the future teachers’ arguments and consid-
ered them as sequences of assertions. Because the arguments were constructed in
the moment, they involved false starts and questions about what to do next. By a
“point of tension,” we mean either a spot in the sequence where the future teacher
considers competing ideas or a spot where the future teacher’s argument takes a turn
in direction.

6.3 Results and Discusson

This section discusses the results of our analysis of the ideas, concepts, and ways
of reasoning that the future teachers used when developing an equation for a
proportional relationship and for a line. We first present our analysis of the future
teachers’ reasoning about the fertilizer task (Fig. 6.3). We then present our analysis
of the future teachers’ reasoning about the line task (Fig. 6.4). Finally, we discuss
some issues that cut across the two tasks.

6.3.1 How Future Teachers Developed and Explained
an Equation for a Proportional Relationship Using
the Variable Parts Perspective

In response to the fertilizer task (Fig. 6.3), all six of the future teachers developed an
equation of the form (fraction) • P D N and five of the six explained their equation
by reasoning about quantities before the interviewer posed follow-up questions. (We
do not consider clarifying questions to follow-up questions.) In this section, we first
present the written work and verbal explanations given by three future teachers.
Next, we discuss the ideas, concepts, and ways of reasoning used by all five of
the future teachers who explained their equation before they were asked follow-up
questions. Finally, we discuss points of tension that the future teachers encountered
as they developed and explained their equations.

6.3.1.1 Diana, Kelly, and Jeff’s Reasoning

We present the responses of Diana, Kelly, and Jeff to the fertilizer task—up to the
point of follow-up questions—because these responses show a range of reasoning
and provide examples of all of the themes we highlight in the next section. These
responses also illustrate all the points of tension we found in the future teachers’
arguments.
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Throughout this chapter, when we present transcript excerpts from an interview, a
future teacher’s words are in italics and notes on their gestures or inscriptions are in
brackets. We use ellipses to denote deletions from the excerpt, including interviewer
comments or questions.

Diana’s Reasoning

When working on the fertilizer task, Diana first draws the following:

While producing this strip diagram, Diana explains:

So I guess first I’d start off with just drawing out the parts, so if it’s 8, it’s 8 parts to 3 parts
of nitrogen and phosphate, and then this [draws a bracket with “N” above the nitrogen strip]
is some number of N. Or some yeah, N kilograms while this [draws a bracket with “P” below
the phosphate strip] is P kilograms.

Diana continues to explain:

I’m looking for a fraction times P equals N, we’re looking at something of P [points to
phosphate strip] is equal to N [points to nitrogen strip], so we’re relating them. So if you’re,
the equation is calling for N [points to nitrogen strip] in terms of P [points to phosphate
strip]. So since P is going to be our whole [circles P in the equation (fraction) • P D N in
the problem statement] or yeah reference whole or unit whole, then our whole is out of 3
parts [points to 3-part phosphate strip]. So since they’re all the same size, since this has 1,
2, 3, 4, 5 [points to parts of the nitrogen strip] the, since this [points to the entire nitrogen
strip] has 8 parts, it would be 8 out of 3 [writes 8/3] or nitrogen would be 8/3 of phosphate
or times phosphate would equal nitrogen [completes writing 8/3 • P D N].

In her initial written work and verbal explanation, Diana draws and annotates a
strip diagram to show the 8 parts nitrogen and the 3 parts phosphate. In doing this,
she uses the strip diagram as an initial means for orienting or organizing her thinking
and work. Diana also uses her strip diagram to develop an equation through a logical
argument. She reasons that because the equation is calling for N in terms of P, P will
serve as the reference whole or unit whole, so the 3 parts of the phosphate strip make
that reference whole. She then infers that the 8 parts comprising the nitrogen strip
are 8/3 of the phosphate strip. Thus, she develops her logical argument by reasoning
about her strip diagram.
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Diana’s argument relies on interpreting multiplication as “of.” She derives her
equation by first translating the multiplication dot in “(fraction) • P D N” to “of.”
She indicates this when stating, I’m looking for a fraction times P equals N, we’re
looking at something of P is equal to N. This “of” language leads her to determine
that P is the reference whole for the fractional multiplier she is looking for (So since
P is going to be our or yeah reference whole or unit whole). Once she has established
the reference whole, she quickly reasons that the nitrogen is 8/3 of that whole and
therefore that the multiplier is 8/3.

Throughout her argument, Diana treats the nitrogen and phosphate strips and all
their parts as quantities. She explicitly refers to the phosphate strip as 3 parts, P
kilograms, and a reference whole or unit whole. She explicitly refers to the nitrogen
strip as 8 parts and N kilograms. She also states that the parts are all the same size
and that nitrogen would be 8/3 of phosphate. Diana’s argument also relies on treating
the letters N and P as quantities. For example, she says, we’re looking at something
of P is equal to N, and P is going to be our whole or yeah reference whole or unit
whole while circling the letter P in the equation “(fraction) • P D N” in the problem
statement. Although she refers to N and P in terms of kilograms while producing
her strip diagram (Or some yeah, N kilograms while this is P kilograms), she does
not refer to kilograms again as she develops her equation. Thus, Diana’s argument
primarily relies on treating N and P as quantities based on a number of parts as
opposed to a number of kilograms.

Jeff’s Reasoning

Jeff starts the fertilizer task by writing the following:

After writing this, Jeff explains:

So I’m seeing the relationship eight parts [points to the entire N-strip] to three parts [points
to the entire P-strip] : : : Eight parts for nitrogen, or eight kilograms of nitrogen, for three
kilograms of phosphate. So now I, I wrote the equation, but I’m thinking that if this is my
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equation [i.e., 8/3 • P D N], each part should be P and not the whole thing. But I think I’m
correct in this thinking : : : I’m debating whether the whole thing should be P [i.e., entire
P-strip] or each part should be P, but I’m pretty sure the whole thing should be P : : : I’m
thinking that, in seeing the eight to three ratio, I’m thinking each part should be P and then
multiplied by eight thirds, but that doesn’t make sense which is why I’m pretty confident that
this [i.e., the entire P-strip] does.

Jeff then continues to add to his written work:

While doing this, Jeff explains:

Because another way of, for me to write it [i.e., the equation] would be two and two thirds
times P [writes “22/3 • P”], which in essence would be, this would be one P [points to entire
P-strip] if I added another right here, one two three [adds 3 more parts to the P-strip], this in
turn would be two P [writes bracket labeled “2P” under the 6 parts of the 2P-strip] and then
these last two would be two thirds P [adds 2 more parts with a bracket under them labeled
“2/3P”], which would give you the total N.

In his initial written work and verbal explanation, Jeff draws and annotates a strip
diagram to show the 8 parts nitrogen and the 3 parts phosphate. In doing this, he
uses the strip diagrams as a means for orienting or organizing his thinking and work.
Jeff also uses his strip diagram to verify his equation through a logical argument.
Initially he is confused about whether the referent unit for P in his equation (“8/3 •
P D N”) is the entire phosphate strip or one part of the phosphate strip (I’m debating
whether the whole thing should be P or each part should be P). He decides that
it would not make sense for each part to be P because it would not make sense to
multiply each part by 8/3 (each part should be P and then multiplied by eight thirds,
but that doesn’t make sense). He determines that the entire strip should be P because
the total N, which is made of 8 parts, is 22/3 copies of the 3-part phosphate strip.
This means that 22/3 • P would give you the total N which is consistent with his
original equation 8/3 • P D N. Thus Jeff develops a logical argument by reasoning
about his strip diagram.
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Jeff’s argument relies on an equal groups interpretation of multiplication, which
is facilitated by interpreting the multiplier 8/3 as the mixed number 22/3. In
explaining 22/3 • P, he considers copies of P: if I added another right here, one two
three [adds 3 more parts to the P-strip], this in turn would be two P [writes bracket
labeled “2P” under the 6 parts of the P-strip] and then these last two would be two
thirds P [adds 2 more parts to the P-strip with a bracket under them labeled 2/3P]
which would give you the total N. Thus Jeff considers groups of P: one P, two P, and
2/3 P. In a later follow-up question when he is asked if it is easier for him to think
about the situation from a mixed number point of view as opposed to an improper
fraction point of view, he responds, It clarifies it for me. I can see the, I can see the
whole two parts, if that makes sense, and then the additional two thirds. Thus the
mixed number 22/3 seems to help Jeff see the relationship between the amount of
nitrogen and phosphate in the equation 8/3 • P D N.

Throughout his argument, Jeff treats the nitrogen and phosphate strips and all
their parts as quantities. He explicitly refers to the phosphate strip as three parts and
three kilograms and uses the quantity of 3 parts for P to describe 6 parts as “2P,”
2 parts as “2/3P,” and 8 parts as “22/3P.” He explicitly refers to the nitrogen strip
as “eight parts” and “eight kilograms.” Jeff’s argument also relies on treating the
letters N and P as quantities. For example, he says, I’m debating whether the whole
thing should be P [i.e., entire P-strip] or each part should be P and this in turn
would be two P, and then these last two would be two thirds P which would give you
the total N. Although he refers to N and P in terms of kilograms while producing
his strip diagram and initial equation (Eight parts for nitrogen, or eight kilograms
of nitrogen, for three kilograms of phosphate), he does not refer to kilograms again
as he explains why the equation appropriately represents the situation. Thus, Jeff’s
argument primarily relies on treating N and P as quantities based on a number of
parts as opposed to a number of kilograms.

Kelly’s Reasoning

Kelly starts the fertilizer task by drawing the following:

While writing this, Kelly explains:

This is going to be my nitrogen, or N is what I’ll use. It’s 8 parts. And this is my phosphate,
P, 3 parts. And these parts are the same size. All of them are. Well they’re supposed to be.
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And I’m trying to make the equation fraction times P equals N. So I have to figure out what
my fraction’s going to be to make this equation true [writes “?/? • P D N” on the paper].
That’s supposed to be a fraction [points to “?/?”] : : : So the way I first think of this [points
to “?/? • P D N”] is what of phosphate is going to equal nitrogen? So : : : [writes “3/8” and
“8/3 • P D N”] I’m just thinking : : : Whether I need 3/8 of P equals N or 8/3 of P equals N.
And I think it’s going to be 8/3 [points to “8/3” in “8/3 • P D N”] of phosphate [colors over
the “•” in “8/3 • P D N”] is equal to nitrogen. Because if you only have 3 parts [points to
each part in the phosphate strip] of size 1, 1/8 of phosphate, then you’re only going to have
3/8 [points to the first three parts of the nitrogen strip] of the nitrogen, but we want to have
all of N, and not just a part of it. So I need 8/3 [points to “8/3” in “8/3 • P D N”] of P [points
to the entire phosphate strip], right? Each of P [points to each part of the phosphate strip] is
size 1/3, and I need 8 of these 8/3 to be equal to N [points to “N” in “8/3 • P D N”], because
there are 8 parts in N. So, like this is 1/3 [points to the first part of the phosphate strip], 1/3

[points to the second part of the phosphate strip], 1/3 [points to the last part of the phosphate
strip]. I would need 8 of these 1/3 parts of P to be equal to N.

Prior to being asked follow-up questions, Kelly’s written work is as follows:

In her initial written work and verbal explanation, Kelly draws and annotates
a strip diagram to show the 8 parts nitrogen and the 3 parts phosphate. She uses
the strip diagram together with her equation ?/? • P D N to orient and organize her
thinking and work. Kelly also uses the strip diagram together with her equation
?/? • P D N to develop her final equation 8/3 • P D N through a logical argument.
When deciding whether the equation is “3/8 • P D N” or “8/3 • P D N,” she uses
the strip diagram to reason that she wants all of N, not just 3/8 of the nitrogen strip
(if you only have 3 parts of size 1, 1/8 of phosphate, then you’re only going to have
3/8 of the nitrogen, but we want to have all of N and not just a part of it). She then
concludes that the equation is “8/3 • P D N,” since I need 8/3 of P, right? Each of P
is size 1/3, and I need 8 of these 1/3 to be equal to N. Thus, she develops her logical
argument by reasoning about her strip diagram.

Kelly’s argument relies on interpreting multiplication as “of.” She derives her
equation by first translating the multiplication dot in “(fraction) • P D N” to “of”
in stating, So the way I first think of this is what of phosphate is going to equal
nitrogen. She then uses this “of” language to interpret the equation “8/3 • P D N”
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as 8/3 of P equals N. She even colors over the multiplication dot as she makes this
interpretation. However, Kelly’s “of” interpretation of multiplication does not seem
completely solid because when she considers the possibility 3/8 of P equals N she
rejects it based on interpreting 3/8 as 3 parts of size 1, 1/8 of phosphate. In doing
so, she is not considering the 3/8 as taking a portion of the phosphate because she
points to the 3 parts that make up the entire phosphate strip. When she refers to the
3/8 as 3 parts of size 1/8, the referent should be nitrogen, not phosphate.

Kelly’s argument also relies on interpreting the equal sign as indicating, in a
sense, that the stuff on the left side of the equation is equal to the same amount
of stuff on the right side of the equation. Throughout her explanation, she uses the
language of “[some amount] of P equals N. Kelly reasons that the equation is not
“3/8 • P D N” because you’re only going to have 3/8 of the nitrogen, but we want to
have all of N, and not just a part of it. Instead, she explains, I need 8/3 of P because
I would need 8 of these 1/3 parts of P to be equal to N. Kelly’s argument also relies
on the CCSS definition of fractions. Kelly uses this definition when interpreting 8/3
as 8 of these 1/3 parts of P.

Throughout her argument, Kelly treats the nitrogen and phosphate strips and all
their parts as quantities. She explicitly refers to the phosphate strip as 3 parts and
the nitrogen strip as 8 parts. She additionally states that these parts all the same
size and refers to the size of one part as 1/3 and 1/3 parts of P. Kelly’s argument also
relies on treating the letters N and P as quantities. For example, she says, I would
need 8 of these 1/3 parts of P to be equal to N. Kelly does not refer to the N and P
or the strips in terms of kilograms at any point during her argument. Thus, Kelly’s
argument relies on treating N and P and the strips as quantities based on a number
of parts as opposed to a number of kilograms.

6.3.1.2 Ideas, Concepts, and Ways of Reasoning the Future Teachers Used
as they Developed an Equation for the Fertilizer Task

From our analysis of the future teachers’ reasoning as they worked on the fertilizer
task (Fig. 6.3), we found several themes in the ideas, concepts, and ways of
reasoning they used. These future teachers (1) used strip diagrams as an organizing
and thinking tool for developing equations; (2) developed mathematically valid
arguments based on reasoning about quantities; (3) used strips and letters to
represent quantities, although not necessarily numbers of kilograms; and (4) mostly
used an “of” interpretation of multiplication. We discuss each of these themes below.

Strip Diagrams as Organizing and Thinking Tools for Developing Equations

Before writing or discussing equations, all six of the future teachers drew and
annotated a strip diagram consisting of 8 parts for the nitrogen and 3 parts for the
phosphate. Thus, the future teachers initially used the strip diagrams as organizers
and as a means for representing and relating the quantities of nitrogen and phosphate
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provided in the fertilizer task. We claim that the strip diagrams served more than
just an organizing function for the future teachers because five of the six future
teachers (Alice, Claire, Diana, Jeff, and Kelly) made extensive references to their
strip diagrams, in gestures and words, while developing their equations. These five
future teachers repeatedly connected specific components of their strip diagrams
with specific components of their equations as they reasoned to develop their
equations.

Linda was the only future teacher who did not discuss her strip diagram while
developing her equations. Immediately after drawing her strip diagram, she wrote
and stated two equations, 8/3 • P D N (“eight-thirds of P equals N”) and 3/8 • N D P
(“three eighths times N equals P”), but did not explain how she had formulated them.
Linda later shared her reasoning about the equation 8/3 • P D N when the interviewer
asked her follow-up questions about how she interpreted the meaning of equal sign
in her equation and how she interpreted the equation in terms of the definition of
multiplication used in class. Since Linda did not explain her initial reasoning about
the fertilizer task during the interview, we do not include an analysis of her work in
the remainder of this section.

Mathematically Valid Arguments Based on Reasoning about Quantities

All five of the future teachers who explained the equation 8/3 • P D N without
prompting provided arguments that were mathematically valid, logical, and com-
plete. Four of the five future teachers considered alternative avenues before arriving
at such an argument, which shows that the derivation of such an equation was not
necessarily easy or automatic for them.

None of the future teachers based their arguments on mnemonics or other devices
that are not logic-based. For example, one could make the following argument:

N is to P as 8 is to 3, so N/P D 8/3. By multiplying both sides by P, we have N D 8/3 • P.

This argument relies on turning an analogy into an equation and then using algebra
to derive an equivalent equation. While such an argument might be acceptable in
some circumstances, this type of argument does not rely on reasoning quantitatively
about the strips, their parts, or the letters N and P. None of the five future teachers
provided an argument like this one; they all formulated their arguments by reasoning
about relationships between quantities.

Strips and Letters Represent Quantities, Although Not Necessarily Numbers
of Kilograms

All five of the future teachers treated their nitrogen strip, their phosphate strip,
and the parts of those strips as quantities and engaged in quantitative reasoning as
they developed or explained their equations. All of the future teachers related their
nitrogen and phosphate strips to each other and described that relationship between
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the quantities in terms of numbers of parts or numbers of entire strips. Four of the
five future teachers (all but Jeff) explicitly referred to the size of parts or strips at
some points during their explanations.

All five of the future teachers also treated the letters N and P as quantities. They
related N and P to their respective 8-part nitrogen strip and 3-part phosphate strip,
which they treated as quantities. They also used language relating N and P to each
other or to the parts of a strip diagram. Two of the future teachers (Alice and Diana)
referred explicitly to P as either a unit amount or a reference whole and three (Alice,
Jeff, and Kelly) referred to “the total N” or indicated they saw N as all of the
nitrogen.

Although all five of the future teachers treated the nitrogen and phosphate strips
and the letters N and P as quantities, Claire was the only person to describe strips
and letters in terms of kilograms throughout her explanation. She always referred
to the letters N and P as “N kilograms” and “P kilograms.” Her explanation also
focused on the size of each part. None of the other future teachers used kilograms
while they were developing and explaining their equations, although Diana and Jeff
did refer to kilograms at the start of the fertilizer task.

The “of” Interpretation of Multiplication

Although the fertilizer task explicitly asked the future teachers to “attend to the
definition of multiplication used in Beckmann’s class” (the equal groups definition),
none of the five future teachers referred to this definition as they initially produced
and explained their equations. This was not because the future teachers did not
remember the class definition. Later, when the interviewer asked them to interpret
their equations using that definition, all of the future teachers were able to do so.

Instead of using the class (equal groups) definition of multiplication to explain
their equations, all but Jeff interpreted multiplication as “of,” and Claire used
a combination of an “of” interpretation and an equal groups interpretation of
multiplication. Therefore, it seems the future teachers were initially inclined to
reason using an “of” meaning of multiplication as opposed to using the equal groups
definition of multiplication.

We claim that the future teachers in this study used an “of” sense of multiplication
as a thinking tool, not as a mechanical crutch to avoid thinking. Their interpretation
of multiplication as “of” helped them translate the relationships they saw in their
strip diagrams into equations. Alice, Claire, and Diana consistently used the “of”
interpretation to connect a fractional multiplier to its referent whole.

Jeff was the only one of the five future teachers who did not explain his equation
using an “of” sense of multiplication. Instead, he used an equal groups interpretation
of multiplication with the multiplier 22/3. To do so, he used the idea that the
multiplier indicates how much or how many of the multiplicand it takes to make
the product. Specifically, he interpreted the mixed number multiplier 22/3—but not
the improper fraction 8/3—as how many Ps it takes to make the same amount as N.
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6.3.1.3 Points of Tension and their Resolution: Referent Unit and Equality

Out of the six future teachers, Linda was the only one to produce the equation
8/3 • P D N immediately after drawing a strip diagram. The other five explained
their reasoning as they developed their equation. As they did so, the five future
teachers encountered various points of tension. All these points of tension, or their
resolution, involved some aspect of referent unit. Two of the points of tension were
resolved by focusing on equality.

Alice and Claire encountered the same point of tension. They both started their
arguments by selecting the nitrogen as the referent unit and, as a result, described
the phosphate as 3/8 of the nitrogen. They then changed direction by taking the
phosphate as referent.

A second point of tension, experienced by Kelly, occurred when she debated
between competing ideas. She wondered whether the multiplier for her equation
should be “3/8” or “8/3.” She explained, I’m just thinking : : : Whether I need 3/8 of
P equals N, or 8/3 of P equals N. To resolve this point of tension, Kelly focused on
identifying which multiplier would give her all of N and equal to N. She explained,
because if you only have 3 parts of size 1, 1/8 of phosphate, then you’re only going
to have 3/8 of the nitrogen, but we want to have all of N, and not just a part of it. So
I need 8/3 of P, right? Each of P is size 1/3, and I need 8 of these 1/3 to be equal to
N. Thus, she determined that the multiplier should be 8/3.

A third point of tension, experienced by Jeff, occurred as he tried to verify his
equation by interpreting it using his strip diagram. When interpreting his equation
using his strip diagram, Jeff’s point of tension came in deciding whether the “P” in
his equation referred to each part of his 3-part phosphate strip or the entire phosphate
strip. This point of tension seemed tied to the way in which Jeff viewed quantities
described in terms of ratios since he explained, in seeing the 8 to 3 ratio [gestures to
the 8-part strip and the 3-part strip], I’m thinking each part should be P. To resolve
the tension, Jeff selected the entire phosphate strip to be P, rewrote the multiplier as
a mixed number, and then showed how 2 Ps and another 2/3 P would give you the
total N. Thus, he determined that the entire phosphate strip should be the referent
unit for his equation.

All of the above points of tension involved some aspect of referent unit, and
two of three focused on equality. When Alice and Claire took the nitrogen as the
referent unit, they were perhaps not anticipating that the desired equation of the form
(fraction) • P D N implies that P will be the referent unit for the fractional multiplier.
When Kelly debated between 3/8 of P and 8/3 of P, she seemed not to be attending to
the referent unit P. In fact her language 3 parts of size 1, 1/8 of phosphate used the
incorrect referent for 1/8. She referred to the 3 parts that are inside the phosphate
strip, which might be why she said of phosphate. But to describe those parts as
having size 1/8, the referent for the 1/8 should be nitrogen, not phosphate. Instead
of resolving her point of tension by focusing on what the referent unit signified,
she resolved it by focusing on equality with all of N. When Jeff resolved his debate
between each part being P or the whole strip being P, he used the entire phosphate
strip as a referent for the mixed number 22/3.
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6.3.2 How Future Teachers Developed and Explained
an Equation for a Line in a Plane Using the Variable
Parts Perspective

In response to the line task (see Fig. 6.4), all six of the future teachers produced
and explained the equation 2/5 x D y or y D 2/5 x before they were asked follow-
up questions. Several of the future teachers also produced and explained other
equations, including 5/2 y D x, x D 5/2 y, and y D 2(1/5x). Perhaps because the
line task was the last planned task of the interview, the future teachers’ explanations
were not as elaborate as their explanations on the fertilizer task (only one of the
future teachers started the task before 50 min into the interview and two started
it after an hour). In this section, we first present the written work and verbal
explanations given by three future teachers. Next, we discuss the ideas, concepts,
and ways of reasoning used by all six future teachers before they were asked follow-
up questions.

Unlike the fertilizer task, we found that the future teachers did not encounter
points of tension as they developed and explained their equations. Thus we do not
include a section on this for the line task.

6.3.2.1 Alice, Kelly, Claire, and Diana’s Reasoning

We present the responses of Alice, Kelly, Claire, and Diana to the line task—
up to the point of follow-up questions—because these responses show a range of
reasoning and provide examples of all of the themes we highlight in the next section.

Alice’s Reasoning

Alice starts the line task by briefly moving the slider on the Geogebra sketch and
indicating (by nodding) that she is familiar with this kind of Geogebra sketch from
class. Alice then writes the equation “2/5 • x D y” while explaining:

So y, where like two fifths of x equals y : : : Because you have two parts here, and five here,
and they’re the same size, so two fifths of x would be two of those [points to first two parts
of the x-strip], because you have five total, would equal the same size as y.

In her written work and verbal explanation for the line task, Alice provides a
correct equation and a viable argument for her equation. Her explanation relies on
reasoning about the strips and letters as quantities because she refers to the strips
as 2 parts and 5 parts, connects them to the letters X and Y, and refers to sizes of
the parts and the Y strip. She interprets multiplication as “of” when translating the
statement two fifths of x equals y into the equation “2/5 • x D y.” Her explanation
relies on interpreting the “2/5” as two parts, although she does not explicitly describe
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the parts as having a size of 1/5 even though she states that the two parts and 5 parts
are the same size (two parts here, and five here, and they’re the same size). Alice
did not discuss a connection between the strips and points on the line.

Kelly’s Reasoning

Kelly starts the line task by moving the slider on the Geogebra sketch and indicating
(by nodding) that she is familiar with this kind of Geogebra sketch from class. Kelly
then explains:

Well each of these parts [points to parts of the x-strip and the y-strip] is going to be the same
size, there are 2 of them in Y [points to the y-strip] and there are 5 of them in X [points to the
x-strip], and we’ll just say for this that X is 1 total group [draws a bracket under the x-strip
and labels it “1 group”]. Which means if there’s 2 parts – so each of these is 1/5 [writes “1/5”
in a part of the x-strip], and that’s the same with the Y parts [writes “1/5” in a part of the
y-strip], but there’s 2 of them [draws a bracket to the left of the entire y-strip]. So this is 2/5

of group [writes “2/5 of group” to the left of the bracket by the y-strip] because there are 2
parts [points to both parts of the y-strip] of size 1/5 of the total 5/5 [points to each part of the
x-strip]. So 2/5 X equals Y [writes “2/5x D y”]?

Prior to being asked follow-up questions, Kelly’s written work is as follows:

In her written work and verbal explanation, Kelly develops a correct equation,
2/5x D y, and provides a viable argument for it. Her explanation relies on reasoning
about the strips and letters as quantities because she refers to the numbers and sizes
of the strips’ parts, notes that the parts are the same size, and connects the strips to
the letters X and Y. She uses the class (equal groups) definition of multiplication to
formulate her equation when stating we’ll just say for this that X is 1 total group
and then describing the y-strip as 2/5 of group. She also interprets the fraction “2/5”
using the CCSS definition of fraction when making statements such as there are 2
parts of size 1/5 of the total 5/5. Kelly did not discuss a connection between the strips
and points on the line.
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Claire’s Reasoning

When Claire is given the dynamic Geogebra sketch, she nods to indicate she has
seen one like this. She moves the slider on the Geogebra sketch briefly and then
explains:

So like I interpret this with a variable parts perspective since they’re two parts versus 4, 5
parts which are each the same size. So Y has 2 parts, and X has 5 parts. And they’re each
the same size. So that means 1 of 2 parts well, let’s see I’ll start with X, okay. So that means
1 of 5 parts of X is 1/5 X. And : : : Y has 2 parts so since 1 of 5 parts of X is 1/5 of X, each
of these 2 parts of Y is going to be 1/5 of X. So that means Y has 2 parts, each size 1/5 X.
So that means Y equals 2 times 1/5 X [writes “y D 2(1/5x)” and “y D 2/5x”]. Or Y equals
2/5 X. I mean it’s the same as saying 2 times 1/5 X, or 1/5 X plus 1/5 X. Because Y has those
2 parts they’re each 1/5 of X, since X has 5 parts, each part 1/5 X. So whichever numbers
we put in for example X and Y is 5, 2 in one coordinate. So if we put 5 in for X, 2/5 times X
which is 2/5 times 5, is 10 over 5, which means that when X equals 5, Y equals 2.

In her written work and verbal explanation for the line task, Claire develops two
correct equations, y D 2(1/5 x) and y D 2/5 x, and provides a viable argument for
them.

Her explanation relies on reasoning about the strips and letters as quantities
because she refers to X and Y in terms of the strips and their numbers of parts
and notes that the parts are the same size. In her argument, Claire uses both an “of”
interpretation and an equal groups interpretation of multiplication. She uses an “of”
interpretation of multiplication when she refers to 1/5 of X, which she writes as 1/5
x. She uses an equal groups view of multiplication when explaining how y is made
of 2 parts. She explains, so that means Y has 2 parts, each size 1/5 X . So that means
Y equals 2 times 1/5 X,” and writes this as “y D 2(1/5 x).” She does not refer to the
fractions 1/5 or 2/5 separately from x in her explanation. Her wording (e.g., Y has
those 2 parts they’re each 1/5 of X, since X has 5 parts, each part 1/5 X) seems like
a blend of the CCSS definition of fraction with an equal groups interpretation of
multiplication.

Although Claire does not describe it this way, we can interpret her use of the
equation y D 2(1/5 x) to obtain the equation y D 2/5 x as an application of the
associative property of multiplication.

Claire indicates that her equations hold generally for points on the line with the
brief mention whichever numbers we put in although she only illustrates this with a
single point (5,2).

Diana’s Reasoning

When Diana is given the dynamic Geogebra sketch, she nods slightly to indicate
this is similar to something they have seen in class. The interviewer explains she
can move the slider to see the blue parts and red parts expanding or contracting and
that we want her to have this in mind. She briefly moves the slider on the Geogebra
sketch.
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Diana then makes the following drawing:

While making this drawing, she explains:

Oh so for relating X and Y, if we were to rotate Y horizontally [draws curved arrow indicating
rotating the y-strip 90ı clockwise] you would get that 2 parts, that there’s 2 parts of Y for
5 parts X [draws a 2 part y-strip and 5 part x-strip parallel to each other]. So essentially Y
is 2 parts [shades the two parts of the y-strip and the first two parts of the x-strip] of the
X 5 parts. So 2/5 of X. So you can say Y is equal to 2 parts [points to the first two parts
of the x-strip] out of 5 parts [points to the entire x-strip] times X [writes “y D 2/5 *x”]. So
for slope you could say for every time it goes up 2 [points to the “2” in “y D 2/5 * x” then
each part of the y-strip shown in the printout of the Geogebra sketch], it goes over 5. And
no matter the size, or it works for all points X and Y just because the number of parts will
never change [points to the two parts in the y-strip she drew and some parts in the x-strip
she drew] even though the size will, the proportions will stay the same. So it will always be,
Y would always be 2/5 of X.

In her written work and verbal explanation for the line task, Diana develops
the equation y D 2/5 * x and provides a viable argument for it. She starts her
explanation by rotating the y-strip to make it parallel to the x-strip, so that the strips
are oriented in the way that strip diagrams are typically drawn. Her explanation
relies on reasoning about the strips and letters as quantities because she refers to the
strips and X and Y as numbers of parts and describes Y as 2/5 of X.

When stating, So essentially Y is 2 parts of the X 5 parts. So 2/5 of X. So you
can say Y is equal to 2 parts out of 5 parts times X, Diana uses both an “out
of” interpretation of the fraction 2/5 and an “of” interpretation of multiplication to
formulate the equation “y D 2/5 * x.” There is no indication that she is using the
CCSS definition of fraction to interpret 2/5, although it is possible she is thinking of
the fraction that way.

In her explanation for the line task, Diana implicitly connects the strip diagram
to the line when discussing slope, which she interprets in terms of the parts of the
strips. When stating, And no matter the size, or it works for all points X and Y
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just because the number of parts will never change even though the size will, the
proportions will stay the same, Diana explains that the equation works for all points
and that, since the numbers of parts stay the same while the parts can change in size,
Y will always be 2/5 of X.

6.3.2.2 Ideas, Concepts, and Ways of Reasoning the Future Teachers Used
as they Developed an Equation for the Line Task

From our analysis of the future teachers’ reasoning as they worked on the line
task (Fig. 6.4), we found several themes in the ideas, concepts, and ways of
reasoning they used. These future teachers (1) used strip diagrams as an organizing
and thinking tool for developing equations; (2) developed mathematically valid
arguments based on reasoning about quantities; (3) used strips and letters to
represent quantities, although not necessarily quantities that vary; and (4) used “of”
and equal groups interpretations of multiplication. We discuss each of these themes
below.

Strip Diagrams as Organizing and Thinking Tools for Developing Equations

All the future teachers used strip diagrams to develop and explain their equations.
Unlike the fertilizer task, the line task provided a static image of a strip diagram
in the task statement (Fig. 6.4) as well as a dynamic strip diagram in a Geogebra
sketch shown on an iPad. While working on the line task, each participant had the
opportunity to manipulate the dynamic strip diagram in the Geogebra sketch. All
parts in the initial strip diagram provided in the Geogebra sketch were 1 unit long
(as shown in Fig. 6.2a), and each participant could change the size of all of the parts
by moving a slider in the bottom of the sketch. Figure 6.2b shows an example of the
Geogebra sketch when the size of each part is larger than 1 unit. The future teachers
spent little time manipulating the dynamic sketch, and most indicated that they were
familiar with this kind of sketch from class.

Two of the future teachers, Diana and Linda, discussed moving the two strips to
make them parallel. Diana made a new drawing showing the strips parallel to one
another while Linda verbally described flipping the y-strip over so that it would be
parallel to the x-strip. In doing this, Diana and Linda oriented the strips in the way
that was consistent with how the strip diagrams are usually drawn.

None of the future teachers explicitly discussed the connection between the strips
and the points on the line. This might be because they simply took this connection
for granted or were used to focusing on strips to explain equations. Diana did discuss
the slope of the line in terms of the strips; however she did not make an explicit
reference to a plotted point.

Two of the future teachers, Jeff and Linda, were asked about the connection
between the strips and a point on the line in a follow-up question. Jeff explained
that they were talking in another class about the relationship between the distances
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on the axes and the values of coordinates. Linda said that she was not thinking
about this connection while she was developing her equations but that it would be
reasonable and that she would draw a rectangle.

Mathematically Valid Arguments Based on Reasoning About Quantities

All the future teachers provided viable arguments explaining how at least one
of their equations represented the relationship between the x-strip and y-strip.
Although Jeff’s explanation of his equation 2/5 x D y lacked detail, he gave an
adequate explanation for the equation 5/2 y D x, using a method like Claire’s.

Strips and Letters Represent Quantities, Although Not Necessarily Quantities
that Vary

In their explanations, all the future teachers used words and gestures relating the
strips, their parts, and the letters x and y to each other and treated these entities as
quantities. However, we cannot tell from their arguments whether they viewed x and
y as numbers. For example, it is possible that they viewed x and y as quantities but
not as x units and y units.

Only Claire and Diana discussed that their equations hold generally, giving some
sense that x and y could vary, and only Diana explained that the parts could change
in size but that the numbers of parts stay the same, so that y will always be 2/5 of x.
It is possible that the future teachers took for granted that x and y would vary, given
that the Geogebra sketch shows this, and therefore didn’t say anything about it. In
any case, most of them did not highlight the idea of variation.

The “Of” and Equal Groups Interpretations of Multiplication

The future teachers’ use of multiplication was more varied on the line task than
it was on the fertilizer task. Alice and Diana used only the “of” interpretation
of multiplication, Jeff and Kelly used only the equal groups interpretation of
multiplication, and Claire and Linda used a combination of both the “of” and equal
groups interpretations of multiplication.

Of the future teachers using an equal groups interpretation of multiplication,
Kelly was the only one who gave an argument using a fractional multiplier. When
Claire, Jeff, and Linda used an equal groups interpretation of multiplication, they did
so with a whole-number multiplier. For example, to explain his equation 5/2 y D x,
Jeff essentially explained the eq. 5•(1/2 y) D x and implicitly used the associative
property of multiplication. Jeff’s wording is not as clear and explicit as Claire’s, but
he implies that x is made of 5 of the 1/2 y parts:

So five halves Y [points to 5/2 in 5/2 y D x], each one of these is a half [points to the 2 parts
in the y-bar]. Multiply it five times will give you X [gestures across the entire 5-part x-bar].
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6.3.3 Further Discussion of the Future Teachers’ Reasoning
on the Two Tasks

Looking at the future teachers’ responses across both tasks, we find the diversity
of their arguments notable. They used only a small collection of mathematical
ideas (e.g., the CCSS definition of fraction, equal groups, and “of” interpretations
of multiplication, strips and letters representing quantities), yet the ways in which
they used these ideas to formulate arguments varied. They all started with the same
strip diagrams and ended with the same equations (more or less), yet they varied
in how they strung together ideas from the collection of ideas commonly used in
class. In seeing this variation, we wonder whether it might reflect differences in
the future teachers’ ecologies of mathematical ideas. This is a topic for further
study.

Given that developing algebraic equations is difficult, we find it noteworthy that
all six of our future teachers developed and explained correct equations on both
tasks. We expect future middle-grade teachers to have no trouble producing correct
equations for lines. But in our experience, although they know that lines have certain
kinds of equations, they do not know why that is so before our instruction. (We note
that our line task assumes consequences of geometric similarity, which was not
discussed in our algebra course.)

On the fertilizer task, none of our future teachers produced an incorrect equation
with a “reversal error” (Clement, Lochhead, & Monk, 1981) by arguing as follows:

The ratio of nitrogen to phosphate is 8 to 3 so 8N D 3P. Dividing both sides by 8, we have
N D 8/3 P.

After reading the statement of the fertilizer task, Linda wrote the notation “8 N:
3P” at the top of her page, which is similar to the reversal error equation, but after
drawing a strip diagram, she immediately wrote correct equations and she explained
them in follow-up questions.

We also did not see a “testing values” argument for the equation 8/3 • P D N
on the fertilizer task. In the past, we have seen some students debate between two
constants of proportionality, just as Kelly debated between 8/3 and 3/8. Other future
teachers resolved their debate by plugging in values (e.g., plugging in 3 for P and 8
for N). This method of plugging in values can help determine which coefficient is
plausible, but it doesn’t prove that the equation holds in general, for all coordinated
values of the variables.

In contrast with a “testing values” argument, the arguments Kelly and others
produced explain why the equation 8/3 • P D N holds in general. However, other than
Claire, we do not know if the future teachers saw that P and N in the equation 8/3 •
P D N could stand for numbers of kilograms that vary together. Their explanations
were in terms of numbers of parts. From an expert point of view, an explanation
derived from the parts of the strip diagram is general—it does not matter whether
we view the nitrogen and phosphate in terms of numbers of parts or in terms of
kilograms, the amount of nitrogen is 8/3 of the amount of phosphate. Said another
way, the number of groups of phosphate it takes to make the same amount as the
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nitrogen is 8/3, whether we view the quantities in terms of parts or in terms of
kilograms. But we do not know if the future teachers thought about their equations
that way. Future research should investigate this issue.

Across the two tasks, the future teachers used a mixture of CCSS fraction
language and “out of” language for fractions. Some arguments used a blend of the
CCSS definition of fraction and the equal groups definition of multiplication. For
example, on the line task Claire and Jeff did not describe the fraction 2/5 separately
from multiplication. When writing and describing her equation y D 2(1/5x), Claire
explained, Y equals 2 times 1/5 X and Y has those 2 parts they’re each 1/5 of X, since
X has 5 parts, each part 1/5 X. Claire also used similar reasoning on the fertilizer
task. This way of reasoning allowed for using a whole-number multiplier instead of
a fractional multiplier. In fact, across the two tasks, almost all of the arguments that
used a fractional multiplier used an “of” interpretation of multiplication. There were
only two exceptions: Jeff used an equal groups interpretation with the multiplier
22/3 on the fertilizer task and Kelly used an equal groups interpretation with the
multiplier 2/5 on the line task.

From an expert perspective, the following three ideas may seem to be closely
related: (1) the equal groups definition of multiplication, (2) an “of” interpretation
of multiplication, and (3) the idea that a multiplier tells us how many or how much of
the multiplicand it takes to make the product amount. All three ideas were useful for
the future teachers in this study. The data we examined for this study are not enough
to determine whether our future teachers saw these ideas as connected and whether
they could move fluidly from one to another. In any case, these connections may
not be evident for future teachers, and we think that instruction should aim to help
future teachers make such connections. We note that the connection between the
equal groups definition and the “of” interpretation of multiplication is facilitated by
putting the multiplier first and the multiplicand second in the equal groups definition
of multiplication. (The order of the multiplier and the multiplicand is simply a
convention, which is different in different countries.)

6.4 Conclusion

This chapter explored the viability of using strip diagrams and a variable parts
perspective to generate equations in two variables for proportional relationships
and for lines. We studied six future middle-grade teachers who were in our courses
and were selected for diversity in their reasoning about fractions. We found that
these participants reasoned successfully with a variable parts perspective and strip
diagrams to develop and explain equations in two variables for (1) quantities
varying together in a proportional relationship and (2) a line through the origin
in a coordinate plane. Their reasoning relied on relating strip diagrams to letters
(variables) and treating strips and letters as quantities. Their arguments were
mathematically viable.
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Our study was limited both in numbers of participants that we studied (only
six), in the tasks we investigated (only two), and the fact that the course instructor
is also the first author of this report. The purpose of the study was not to make
general claims about all students or all future middle-grade teachers but rather
to look in detail into the nature of the reasoning that our participants used.
This reasoning was surely shaped by the experiences the future teachers had in
their courses; however we cannot claim that other future teachers in other such
courses would reason this way. Further research is needed to examine the viability
and utility of a variable parts perspective more generally, for both teachers and
students.

Despite its limitations, our study adds to a body of work that points to the utility
of reasoning with strip (tape) diagrams (e.g., Beckmann, 2004; Englard, 2010; Kaur,
2015; Murata, 2008; Ng & Lee, 2009). Given that elementary school students are
able to use strip diagrams to solve algebra word problems (e.g., start unknown
problems) without letter-symbolic algebra (Ng & Lee, 2009), studies investigating
how middle-grade students might reason with the combination of strip diagrams and
algebraic equations should be worthwhile. In particular, students who have learned
from curricula that use strip diagrams may be in an especially good position to learn
to develop equations from a variable parts perspective.
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Chapter 7
Giving Reason and Giving Purpose

Yvonne Lai, Mary Alice Carlson, and Ruth M. Heaton

Abstract Skillful teaching involves seeing mathematics in ways that are coherent
and making decisions during planning and teaching. In particular, teaching requires
making decisions about what connections to make, when to make them, and how
students might make them. We posit that it is important for teachers and teacher
educators to understand the pedagogical work of making connections, as this
pedagogical work positions students to access ideas later in the curriculum. We
analyzed the teaching and planning sessions of a first grade teacher to examine the
question: What are the characteristics of planning that make it possible for students
to connect mathematics in ways that are productive in the short and long term?
We frame this work in terms of connections that “give reason” (Duckworth, The
having of wonderful ideas and other essays on teaching and learning. New York:
Teachers College Press, 1996) and “give purpose” – making sense of mathematical
representations and arguments and increasing students’ access to content and
practices valued by the discipline. We provide a concrete decomposition of the
pedagogical work of planning for connections that give reason and give purpose.
To illustrate the components we identify, we use the example of a first grade lesson
whose goal was to help students transition from counting one by one when adding or
subtracting to using the base ten system more intentionally. We close by describing
possible future work in two arenas: designing opportunities to learn teaching that
makes connections well and identifying learning opportunities made possible by
such teaching.
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7.1 Giving Reason and Giving Purpose

Mrs. Reynolds was preparing a lesson for her first grade mathematics class. It was
late February, and her students have made a lot of progress since September when
many counted one by one to add numbers. To find that 4 C 5 equals 9, students
wrote “1, 2, 3, 4” and counted on five more as they wrote, “5, 6, 7, 8, 9.” Now the
children were using more efficient strategies. They were “doubling”: finding 4 C 4
(doubling) then adding 1 to obtain 9. On larger sums, a few students were using
“easy tens.” To find 7 C 5 equals 12, students noticed that 5 could be decomposed
into 3 and 2, that 3 and 7 are 10, and that adding the remaining 2 gives a sum of
12. Students represented easy tens with “breaking down” (Fig. 7.1c) and “big hops”
(Fig. 7.1d). However, some students were still using counting on, shown with “little
hops” (Fig. 7.1a); and some relied on using ten frames (Fig. 7.1b). These strategies
are less efficient.

Mrs. Reynolds decided that the lesson would begin with a “number talk” (Parrish,
2010): an activity where students talk through mental strategies for finding sums.
Later, students would record their own solution to two story problems. Consider the
lesson details Mrs. Reynolds needed to address as she planned the sums to assign
for the number talk and story problems, which strategies to emphasize, how to use

Fig. 7.1 (a) Little hops on the number line. (b) Ten frames. (c) Breaking down. (d) Big hops on
the number line
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student work to guide all students toward the main point of the day’s lesson, and how
today’s lesson might impact students’ understanding of mathematics encountered in
later grades.

The way teachers address the details like the ones listed above makes or breaks
a lesson’s coherence. In the case of Mrs. Reynolds, on the one hand, the number
talk could be used to see what strategies students are likely to use and encourage the
strategies most productive for students to practice. The story problems could then
reinforce these strategies. On the other hand, if the sums in the number talks and
story problems have no potential to build on each other or if the efficient strategies
are not much more efficient than counting on, or cannot easily be applied, there is
little reason for students to practice them. Mrs. Reynolds also had to consider the
mathematics happening. How do the different strategies help children access ideas
later in the curriculum? Connecting ideas to build across time, using student work,
is challenging.

This chapter examines the way a teacher addressed these details in one particular
lesson, how planning shaped the lesson, and what the lesson highlights about
teaching more generally. We identify useful characteristics of connections, and then
we examine the question:

What are characteristics of planning that make it possible for students to connect mathe-
matics in ways that are productive in the short- and long-term?

We identify components of such lesson planning. We begin the chapter by
describing our research setting, a Math Studio, and explain why the Math Studio
project was a particularly fitting site for investigation into a teacher’s planning
practices. After describing the lesson, we comment on the nature of the connections
the teacher made. Finally, we discuss the components of planning for connections.

7.2 Math Studio

This study focuses on Mrs. Reynolds and her first grade students. Mrs. Reynolds
and Miss Curtis were two teachers in a mid-sized school district in the Midwestern
United States whose classrooms were the site of a 2011–2012 professional de-
velopment project called Math Studio.1 Math Studio is a variant of Lesson Study
(Lewis, 2002). Teachers, along with school and district leaders, come together to
observe mathematics lessons and to discuss the teaching in planning and debriefing
sessions. A facilitator (in this study, the third author) works with the teachers so
instructional decisions are visible to the observers. In our study, the live facilitation
was particularly important during the teaching. Short conferences between the

1The original design and implementation of Math Studio is led by Linda Foreman of the Teachers
Development Group, West Linn, OR.
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facilitator and the studio teachers, which took place during lessons and which
observers could hear, helped capture the real-time decisions of Mrs. Reynolds and
Miss Curtis, as well as their pedagogical reasoning.

Math Studio design includes an emphasis on enhancing teachers’ mathematical
knowledge for teaching (Ball, Thames, & Phelps, 2008) and increasing students’
metacognitive development by attending carefully to their own mathematical ideas
in relation to others’ ideas (Franke, Carpenter, Levi, & Fennema, 2001). Its
design also intentionally makes the subtle but critical nuances of teaching and
teacher decision-making and pedagogical reasoning visible. The observers hear
what classroom teachers anticipate about students’ engagement with mathematics
content and see how and why teaching decisions are carried out. Math Studio is
public in the sense that there are observers in the classroom, but the public nature
is more than just live observation. In Math Studio, teachers communicate their
thoughts to a wide audience. Teachers and coaches from multiple grade levels,
including university level, share their responses to planning and debriefing. These
conversations are public in the sense that they respond explicitly to perspectives
beyond those of the grade taught. The teachers’ reasoning and the purpose for their
instructional decisions are meant to be accessible to those in K-12 and beyond.

7.3 Lesson

We now return to Mrs. Reynolds’ lesson.2 We describe the number talk and the story
problem. Mrs. Reynolds’ purposes were to increase students’ inclination toward
an understanding of the big jump on the number line strategies, especially when
working with easy tens. When it comes to making connections, three aspects of her
approach are noteworthy. First, Mrs. Reynolds used the number talk to foreshadow
the next part of the lesson and orient students toward using specific strategies.
Second, Mrs. Reynolds’ approach connects arithmetic and place value – the second
of Howe’s (2011) “Three Pillars of First Grade Mathematics.” In the lesson, Mrs.
Reynolds’ students work on problems that involve higher addition facts (addition
facts whose sum is within 20). The emphasis of students’ work is not on memorizing
these facts “but understanding how to produce them, and their connection to place
value notation” (Howe, 2011, p. 4). Finally, Mrs. Reynolds made extensive and
intentional use of the number line throughout the lesson, an approach that is, in
our experience, uncommon. Moreover, carefully planned teaching moves, including
appropriately sequenced questions, are needed to help students move productively
between number line and symbolic representations of addition and subtraction
expressions (Clements & Sarama, 2009). Recommendations for helping elementary

2The narrative has been edited for grammar and coherence. It skips over some short exchanges
between Mrs. Reynolds and her students, so it is easier to keep track of how the lesson progresses.
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students with arithmetic emphasize extensive use of the number line (e.g., Gersten
et al., 2009), in part because of its critical role in understanding non-integer numbers
(Siegler et al., 2010).

7.3.1 Using a Number Talk to Orient and Foreshadow

The students were seated in a semicircle in front of a small whiteboard. Math Studio
observers were seated around the edges of the classroom, with the Math Studio
facilitator standing nearby. To open the lesson, Mrs. Reynolds assigned the string of
sums below.

5 C 5 C 8 D

3 C 4 C 6 D

4 C 5 C 6 C 5 D

Writing them on the board, one at a time, she asked the children how they found
each sum. For the first, a student answered, “I was thinking 5 and 5 make 10.” Mrs.
Reynolds asked the student to show this on the board. The student walked to the
front of the room and faced the class. He connected the two 5s with a vee and said,
“I knew there were 8 left so that makes 18.”

Cody raised his hand. He erased the vee, extended lines from the 8, wrote 4 and
4, and said, “I combined the 4 with the 5,” as he circled the two pairs of 4 and 5.
“And then I added the 9 and the 9 together. And I know that 9 plus 9 equals 18
because 8 plus 8 equals 16, so 2 more would be 18.” After another student asked for
and obtained clarification on Cody’s strategy, Mrs. Reynolds moved the class to the
second sum.

Bradley offered the following explanation. “I think it’s 13. Because when you
combine these [points to 4 and 6] you get 10 and then you get 13.”

Peyton raised her hand next. She drew one ten frame and then a second ten
frame. Mrs. Reynolds addressed the class, “As she’s solving it, watch how she
solves it. See if you see a connection between how she and Bradley solved it.”
Mrs. Reynolds watched the students. Turning back to Peyton, she asked, “Why did
you make another ten frame, Peyton?”

Peyton explained, “When I make my ten frames, I know that that’s a whole 10
and then I added 3 more. And then I said, 10, 11, 12, 13.”

Mrs. Reynolds asked, “How did you know – and listen carefully here – to fill the
first ten frame all the way?”

Peyton looked at her work. She began, “Because it’s, it’s : : : ,” and then circled
the 4 and 6.

Mrs. Reynolds responded, “So you saw a full 10?”
Peyton nodded, “Yeah. And then I saw a 3.”
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Finally, for the third sum, Karen said, “I think that it’s 20 because 6 and 4 equals
10 and 5 and 5 is 10, and I know two 10s make 20.”

Autumn raised her hand. She said, “I combined the 4 and 5 to make 9 and 6 and
5 to make 11. And then if you don’t have 10 over here and you have one more than
10 over here, then you can give one away, and then you have 9 and 11, and then you
have 20.”

Mrs. Reynolds asked other students to retell Autumn’s solution. When Caleb
repeated Autumn’s first sentence but not the second, Mrs. Reynolds prompted, “And
then there was something else. What was Autumn telling us?” She helped Caleb
recreate Autumn’s solution and then reiterated to the class the logic of creating two
10s from 9 and 11.

7.3.2 Using Story Problems to Represent Strategies
on a Number Line

After the number talk, students returned to their seats. Mrs. Reynolds asked the
students to work on the following problems at their desks, individually, and to
demonstrate their thinking as clearly as possible:

I baked 7 cookies. The next day I baked 5 more. How many cookies did I make?
I went to a party. I was holding 15 balloons. Then 8 of them popped. How many balloons

are left?

As the Math Studio community anticipated during the planning session the day
before, for the first problem, the students produced solutions typified by the four
shown in Fig. 7.1a–d. Now Mrs. Reynolds faced the question of how to use these
solutions to orient students toward the goal of showing big hops on the number
line. Mrs. Reynolds, Miss Curtis, and the Math Studio facilitator conferred. They
discussed the strengths and limitations of showing the following solutions:

• Ten frames (Fig. 7.1b) and then big hops on the number line (Fig. 7.1d)
• Ten frames (Fig. 7.1b) and then breaking down (Fig. 7.1c)
• Little hops on the number line (Fig. 7.1a) and then big hops on the number line

(Fig. 7.1d)
• Breaking down (Fig. 7.1c) and then big hops on the number line (Fig. 7.1d)

Ultimately, Mrs. Reynolds opened the discussion by asking Katie to explain her
breaking down solution. She then constructed a big hop on the number line solution
and at the same time interpreted the solution in terms of little hops. Figure 7.2 shows
the board as the first grade class saw it, after the discussion. We now describe how
Mrs. Reynolds orchestrated the three solutions, in parallel. This narrative continues
just after Katie presented her work.

Mrs. Reynolds asked the class, “Let’s take a look at using Katie’s strategy and
how we could do that on a number line. What number do we want to start with?
Peyton?”
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Fig. 7.2 Katie’s solution and
Mrs. Reynolds’ use of big
hops and little hops on the
number line, as they appeared
to the class after a discussion

Fig. 7.3 Katie’s solution and
Mrs. Reynolds’ introduction
to the big hop on the number
line solution

Peyton supplied the starting number 7.
Mrs. Reynolds repeated, “Seven. And I know that 7 cookies is what I started

with the first day. So I’m going to put that up here. First graders, what happened
that next day when I made cookies?” The board displayed the number line as shown
in Fig. 7.3.

The first graders chorused, “You made 5 more.” Mrs. Reynolds then demon-
strated how to continue mapping Katie’s solution onto the number line (Figs. 7.4
and 7.5).

Mrs. Reynolds: But Katie didn’t just add 5 cookies. What did Katie do? She broke
it down. Could we break numbers down on the number line, too?
So if Katie took her 5 and she broke it down to make an easy
10, I could make my first hop [draws an arc from 7 to 10 on the
number line] how many?
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Fig. 7.4 Mrs. Reynolds’
work, continued

Fig. 7.5 Mrs. Reynolds’
work, continued

Students: Three.
Mrs. Reynolds: I can break down the 5 with a 3. And that goes to 10. Let’s check

that. [Mrs. Reynolds references a number line on bottom of the
board.] I start at 10 and I do one hop, two hops, and three hops.

Mrs. Reynolds: But did I just make 3 cookies?
Students: No.
Mrs. Reynolds: How many more cookies did I make?
Student: Two more because I know that 2 plus 3 equals 5.
Mrs. Reynolds: Two more. So I do another hop of 2. [Mrs. Reynolds draws an arc

and labels it “2.”] So how many cookies did I make?



7 Giving Reason and Giving Purpose 157

The board now appeared to the first graders as in Fig. 7.1.
Mrs. Reynolds used the arcs to confirm that the total number of cookies is 12 and

that the total number of hops is equal to 5. She selected another student, Thomas,
to explain his breaking down solution. She then asked the students to work with a
partner to represent Thomas’s strategy using big hops on the number line. While
the students worked, Mrs. Reynolds planned the subtraction problem discussion
with the third author. Students had produced breaking down solutions with doubling
(splitting the 8 into 4 and 4), little hop on the number line solutions, and ten-frame
solutions. They discussed sharing:

• Breaking down and then asking students to draw analogous big hops on the
number line

• Little hops on the number line and then asking students to draw analogous big
hops on the number line

After reviewing the big hops representation of Thomas’s solution, Mrs. Reynolds
turned to the subtraction problem. After Mandy shared a little hops strategy, Mrs.
Reynolds asked the class how to represent this with big hops. One student suggested
breaking down the 8 into 5 and 3. After two students described the big hops, Mrs.
Reynolds depicted the big hops in parallel with little hops as she had with the
addition problem, showing a big hop from 15 to 10 and then from 10 to 7.

Finally, to end the lesson, she asked the students to find 8 C 6 using a big hops
strategy on the number line. One student, who had previously used ten frames
even when asked to use other strategies, used big hops for this last problem.
After circulating the class, the facilitator and Mrs. Reynolds agreed to go over the
students’ solutions during the debriefing to determine what to do in the next lesson.

7.3.3 Observations About the Lesson

From the numbers selected to comments she made within each part of the lesson
and the solutions she highlighted, Mrs. Reynolds consistently moved the students
toward using big hops on the number line. She also intentionally emphasized the
importance of tens and the number line. When the first student used the fact that
5 C 5 D 10 in the number talks, Mrs. Reynolds made a point of asking the student
to show this visually to the rest of the students. When Cody used a doubling strategy,
Mrs. Reynolds did not comment on it, but she highlighted Peyton’s use of ten frames
and asked students to pay particular attention to the parallels between Bradley’s and
Peyton’s solutions. In the final number talk, Mrs. Reynolds again emphasized the
use of tens as well as the importance of being able to recreate each other’s solutions.
Mrs. Reynolds’ emphases during the number talk directly supported the instruction
of the story problem, where many students used easy tens. As students shared
solutions to the story problem, Mrs. Reynolds deftly moved from one representation
to the next, using the breaking down representation as a basis for the big hops on the
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number line and using the little hops to make sense of both the breaking down and
the big hops. Throughout this lesson, Mrs. Reynolds connected mathematical ideas
while moving toward a larger goal.

Mrs. Reynolds’ instructional decisions emphasized important concepts while
helping her students develop procedural skills. These decisions may be unusual
in US mathematics classrooms. US children have been documented to continue to
rely on using known additive relationships such as doubles to find unknown sums
rather than using tens and therefore missing opportunities to build a foundation
for understanding place value (Clements & Sarama, 2009; Fuson & Kwon, 1992;
Murata, 2004). Selecting 5 and 7 for the story problem steered students away from
using known double facts to find an unknown total. The expressions Mrs. Reynolds
selected for the number talk implicitly suggested the use of the associative and
commutative properties to make tens. Peyton’s use of ten frames emphasized the
total as “ten and some more.” When Bradley worked with the first sum, he showed
some understanding that the order of numbers added does not matter.3 Throughout
this lesson, the way that Mrs. Reynolds set up connections oriented students toward
larger goals and significant mathematical ideas.

In the next section, we address why the connections in the lesson are noteworthy.
We highlight two essential characteristics to use in considering connections more
generally. Based on the analysis of Math Studio Data, we then describe components
of planning that make it more likely that students make connections that serve the
short and long term. Then, to help the reader understand where our decomposition
(Grossman et al., 2009) comes from, we precede it with a description of the data
collected from Math Studio, how we worked with the data, and the role of the three
authors. Finally, we illustrate the components using the planning for the introductory
episode as an example.

7.4 Giving Reason and Giving Purpose

We highlight two characteristics of connections in teaching, which we term “giving
reason” and “giving purpose.” We illustrate that teaching can accomplish these
simultaneously, using the connections between Peyton’s and Bradley’s solutions
and between Katie’s solution and the big and little hops solutions. The phrase
“giving reason” is from Duckworth (1996), who used it to describe a stance of
reading students’ work with the aim of understanding the reasoning the students
may have used.

We use “giving reason” to refer to connections that help students make sense of
mathematical representations and arguments. These connections show that one can
reason through solutions different from one’s own and understand why the solution
can be analogous to one’s own. Bradley’s and Peyton’s solutions both combined

3Howe and Epp (2008) named this the “Any-Which-Way Rule.”
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numbers to make ten, but Peyton represented her thinking using a ten frame.
Ms. Reynolds’ questioning helped her students see the parallels between Peyton’s
and Bradley’s solutions. Both focused on adding 4 and 6 first, resulting in one 10
to which the students added 3. By reinforcing to students that filling a ten frame
is a way to represent known facts about 10, students who rely on the concreteness
of a ten frame may begin to move toward more abstract representations and do
so knowing that the mathematics still holds. Similarly, Mrs. Reynolds talked the
students through why Katie’s breaking down solution was equivalent to the big hops
solution and used little hops as a basis for why the representations are equivalent.
The connections from concrete to abstract may help students move toward more
efficient representations on firm footing.

We use “giving purpose” to describe connections that increase students’ access
to content and practices valued by the discipline of mathematics. The connections
in Mrs. Reynolds’ teaching were selected with the lesson purpose in mind: to move
the students toward using efficient strategies with more abstract representations. In
the case of this lesson, the efficient strategy and abstract representation emphasized
were easy tens and big hops on the number line. This purpose aligns with rec-
ommendations for school mathematics standards (National Governors’ Association
Center for Best Practices & Council of Chief State School Officers [NGACBP &
CCSSO], 2010), and it supports learning mathematics in grade school and beyond.
Viewing the sums between 10 and 20 as “ten and some more” emphasizes place
value and plays a critical role in understanding algorithms for multi-digit addition.
Finally, decomposing and representing big hops to ten on the number line introduced
a strategy that students continue to use throughout elementary school, particularly
when adding and subtracting multi-digit numbers, as well as a representation they
would use in high school and beyond. Beyond the potential to help students under-
stand content encountered in the future, the connections in Mrs. Reynolds’ teaching
also modeled mathematical habits of mind (Cuoco, Goldenberg, & Mark, 1996)
including describing solutions completely and precisely and constructing viable
arguments. These are practices that are common across mathematics. Moreover,
insofar as coherence is an intrinsic part of mathematics, teaching mathematics must
include supporting students in experiencing mathematics as coherent.

The characteristics of connections that we refer to as “giving reason” and
“giving purpose” are not new. They are often treated separately in teacher education
literature (though there are exceptions, such as the Everyday Mathematics materials
from the University of Chicago). For instance, there is some consensus among
educators that learners benefit from connecting related ideas and representations
and that teaching should create opportunities for learners to identify and explain
connections (e.g., Carpenter et al., 1999; Stein, Grover, & Henningsen, 1996;
Stein, Smith, Engle, & Hughes, 2008). These connections, which “give reason,”
are compelling because they show that even reasoning done in a relatively short
time span, such as a number talk discussion, is worth attending to. In the literature,
on one hand, connections that “give reason” often take place at the level of a
particular idea, task, or representation. Implications of the particular situation for
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mathematics more generally, especially connections to later content, are often
not addressed. On the other hand, connections that “give purpose” emphasize
similarities across mathematics. Consider treatments of elementary mathematics
from an advanced standpoint (e.g., Klein, 1908; Moise, 1963; Usiskin, Peressini,
Marchisotto, & Stanley, 2003). By building from number and operation on integers
to arithmetic on complex numbers and then quaternions, Klein (1908) underscored
structural commonality in number systems encountered in elementary, secondary,
and disciplinary mathematics. However, connections that give purpose may not
motivate the scope and sequence of a particular unit of mathematics, even if it
does motivate the goals of the unit. For instance, knowing that quaternions are not
commutative might illustrate that commutativity is not to be taken for granted, but
it does not give insight into how to show that fraction multiplication commutes.

What makes the connections special in Mrs. Reynolds’ teaching is that they
simultaneously give reason to the children and have the potential to give purpose
to the mathematics. In the remainder of this chapter, we examine the role of lesson
planning in making these connections possible. We describe the data that we used,
the Math Studio planning session for the lesson discussed above, and essential
features of the planning.

7.5 Data and Analysis

Data for this study include five videotaped planning, teaching, and debriefing
sessions, as well as associated lesson plans and student work. Through data
from the Math Studio project, we observed how Mrs. Reynolds and Miss Curtis
planned and taught five lessons, reflected about teaching and learning, and weighed
major decisions while teaching. To respond to the question of interest (“What are
characteristics of planning that make it possible for students to connect mathematics
in ways that are productive in the short and long term?”), we iteratively selected and
analyzed video segments. Each segment consisted of instruction or planning that
addressed a particular mathematical or pedagogical task within the lesson. Instruc-
tional segments were segments of videos of the lessons. Planning segments came
from two sources: the planning session itself and the in-the-moment conferences
between the Math Studio teacher and the facilitator. These conferences represent
a kind of planning done within instruction, during which the teacher decides what
should be done next, based on what students know and the lesson’s goals.

For each instructional segment, we asked: What ideas were connected and
how? We then examined planning segments, asking: Were the connections made
intentional? What were the intentions, and how did they shape the way in which the
connections were made? Through this process, we selected instructional segments
from our larger data set for closer analysis. We reexamined this set of segments,
asking: What pedagogical problem does the teacher attend to? We then analyzed the
planning segments for decision points that shaped the problem solving. Finally, we
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reviewed the debriefing sessions for consistency. If our conclusions about how
planning had shaped the lesson were contradicted by comments in the debriefing,
then we revised our conclusions.

The first and second authors led the analysis. The organizers and facilitators
of the Math Studio project studied here were the second and third authors. It is
often productive for the research team analyzing mathematics teaching to have
complementary backgrounds (Thames, 2009). The first author is a mathematician
by training. The second and third authors have taught elementary school and
are educators by training. Together, the three authors have taught elementary
mathematics, led professional development of elementary teachers, and conducted
mathematics education research and mathematics research. The analysis was in-
formed by their experiences in teaching and mathematics.

7.6 Planning

We highlight three segments from the planning session. In the first, the teachers
discuss students’ readiness for the lesson goal of using more efficient strategies. In
the second, the teachers plan the story problems. In the third, they discuss overall
considerations for the lesson. Prior to the planning session, the teachers had emailed
the second author to express an interest in planning story problems. The main
facilitator for this planning session was the third author.

7.6.1 Appraising Students’ Past and Current
Mathematical Work

In the library, 18 educators from Mrs. Reynolds’ and Miss Curtis’s school district
were seated. They included teachers, who taught different grade levels from K-12,
and coaches (mathematics teaching specialists who worked directly with teachers
to improve instruction). The educators were arranged around Mrs. Reynolds, Miss
Curtis, the second and third authors, and the two math coaches who worked with
Mrs. Reynolds and Miss Curtis.

Addition and subtraction within 20 is a critical area in first grade mathematics,
so students’ and teachers’ work in a school year involves developing increasingly
sophisticated and efficient strategies for combining numbers. Developing fluency
with numbers within 20 is important as a foundation for arithmetic with larger
numbers. Mrs. Reynolds wanted more students to use more efficient strategies. In
recent lessons, there were hints that students may be ready to move away from
counting on strategies.

“Readiness” became an important topic for the planning session. Prompted
to describe how she knew that students were ready for more efficient strategies,
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Mrs. Reynolds described looking not only at what representations students used but
also how students used those representations. She observed that students no longer
filled in multiple ten frames one box at a time, without identifying each frame as a”
ten,” as they had earlier in the year. They now recognized when a sum consisted of a
“whole ten” and “some extras.” The students’ comfort with decomposing numbers
into tens and ones indicated an opportunity to make a connection to the number line.
For example, suppose students used ten frames to work on 7 C 5. The observation
that “I have a whole ten and some extras” can be used to model working with a
number line, pointing out that 3 more than 7 is 10 and two more will make 12.
The teachers identified using “big hops” to 10 as appropriate territory for advancing
students’ mathematical work. The coaches concurred with this choice and noted that
using 10 as a “landmark number” now could help students be ready to use 100 as a
landmark number in third grade.

The Math Studio facilitator commented that some students could be uncom-
fortable with the more sophisticated strategies if they are “daunted by the idea
of trying something new.” She suggested that when students struggle with more
efficient strategies, “it may be helpful for them to see the connection between a
way they know and are comfortable with and a new way” (Math Studio Planning
Session, February 21, 2012, p. 5). Mrs. Reynolds and Miss Curtis discussed ways
that they had themselves pointed out similarities between strategies – but had not
given students the responsibility to make connections. Following a brief pause, the
facilitator moved the discussion to planning story problems.

7.6.2 Planning the Sum Featured in the Story Problem

Mrs. Reynolds and Miss Curtis expressed concern that their students did not
understand all types of addition and subtraction problems. They considered the
possibility of working on addition and subtraction problem types that challenged
the students, such as compare problems (e.g., I have 2 nephews and 5 nieces. How
many more nieces than nephews do I have?). Miss Curtis suggested focusing on
either strategies or problem types, but not both. Although they did not explicitly
state agreement on Miss Curtis’s point, both teachers primarily discussed strategies
from this moment onward.

The teachers discussed number combinations most likely to elicit the decompo-
sition of addends to reach a “whole ten” and “some extras” and the number line
representation. Mrs. Reynolds suggested avoiding “doubles plus one” and “doubles
minus one”; in her experience, students “would only see those strategies” with sums
such as 7 C 6 or 8 C 7, whereas students were more likely to use easy tens with
sums such as 8 C 5. The teachers then considered what they could do if students did
not readily select to use the number line.
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7.6.3 Responding to Anticipated Student Work

Mrs. Reynolds said, “We hope that the students do use the number line. But if they
don’t, we can take a student’s breaking down solution and ask, ‘How could you do
this on a number line?’ We could pose this question to pull students to the number
line.”

Once Mrs. Reynolds articulated that connections to the number line could be
made even if the number line did not arise from student work, the facilitator focused
on making the connections possible.

Facilitator: This seems like a good opportunity. The idea of easy ten and moving
toward an open number line might work together with the idea of big
hops. So when you’re comparing strategies, you can be intentional
about moving toward an open number line.4

Implicit in the facilitator’s suggestion that the teachers “be intentional” was the
idea that much of the work involved in creating opportunities for comparisons
between strategies and movement to the number line would have to be done
during the lesson. In other words, the teachers would be particularly attentive
for opportunities to relate student strategies to one another and opportunities to
represent strategies as “big jumps” on the number line.

7.6.4 Observations About Planning and Its Impact
on Instruction

We note that the planning discussions are implicitly framed by two questions: How
are students progressing relative to what they have learned and what they will
encounter? What is the significance of students’ and teachers’ actions relative to
the connections they make available? The answers to these questions shape the
lesson. Mrs. Reynolds noticed that her students had begun recognizing when a sum
consisted of a “whole ten” and “some extras.” However, they were still using ten
frames. Both teachers also realized that they had not given students as much respon-
sibility for connecting representations as they might have. Articulating students’

4Open number lines do not contain any predetermined markers. Instead, numbers and markers are
added to create records of students’ mental computation strategies. For example, 23 C 17 could
be recorded as follows.
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past and current mathematical work and assessing their “readiness” to move forward
created a foundation upon which Mrs. Reynolds could make instructional decisions
for the lesson. We interpret this realization as having impacted the lesson in several
instances, including when Mrs. Reynolds asked Peyton to explain the connection
between her strategy and tens and when she asked students to participate in an
explanation of why the little hops, big hops, and breaking down solutions were
equivalent.

Furthermore, in our analysis across all planning segments, the work of planning
opportunities to make connections has three components, which are exemplified
by the segments described above. First, the teachers identified goals for the class
based on their knowledge of the students and curriculum. Then, the teachers set
the goal of moving students toward easy tens and solutions with big hops on a
number line. Finally, the teachers designed questions to elicit number line strategies,
anticipated student thinking for different sums, and prepared for how to respond if
students did not use the number line. This discussion played an important role in
identifying opportunities to make mathematical connections. In fact, many students
did not use the number line, and those that did may have counted one by one (see
Fig. 7.1a–d). In all three components, the teachers’ discussion responded to the two
framing questions. The planning was key to the instruction’s success, particularly
the attention to how students may or may not connect ideas and what the connections
might look like. We now describe the three components in more detail.

7.7 Decomposition of Planning for Connections
that Give Reason and Give Purpose

7.7.1 Components

We identify the components as (1) identifying current and new mathematical ideas
and evaluating them, (2) choosing a new mathematical idea to focus on, and (3)
designing work that elicits current ideas, new ideas, and the connections between
them. Each component requires substantial mathematical knowledge for teaching
(Ball et al., 2008).

7.7.2 Identifying Current and New Mathematical Ideas
and Evaluating Them

This first component brings together teachers’ knowledge of the mathematics
content and their students. It requires teachers to draw on their knowledge of
the ways students initially encounter a mathematical idea as well as the ways
those ideas have developed over time. Mrs. Reynolds and Miss Curtis identified
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current and new mathematical ideas when they articulated counting on strategies
for addition that some students relied on and the newer, more efficient strategies
that other students were beginning to use. What is important to notice is that
Mrs. Reynolds and Miss Curtis identified strategies in the context of their own
students’ mathematical development. By drawing on general understanding of
students’ mathematical development to interpret the thinking of a specific group of
students, Mrs. Reynolds and Miss Curtis were able to evaluate students’ readiness
for particular strategies and anticipate opportunities for connecting. In this way,
Mrs. Reynolds and Miss Curtis considered ways to give purpose to the students’
mathematical work. The less efficient strategies that some students were likely to
use could set up opportunities for meaningful connections to new strategies and
help students develop a more integrated understanding of the mathematical ideas
at hand. Evaluating new strategies as potentially worthwhile for students involved
considering the strengths and limitations of those strategies generally, as well as the
potential for students to meaningfully use those strategies.

7.7.3 Choosing a New Mathematical Idea to Focus on

Choosing a new mathematical idea to focus on integrates teachers’ knowledge
of content, students, and curriculum. Having sketched the potential terrain of the
lesson, Mrs. Reynolds and Miss Curtis then could decide which paths to make most
visible to students. They stepped back and considered how addition strategies would
develop over time. Some strategies, such as using ten frames, would eventually be
less powerful as students worked with larger numbers. Other ideas, such as the
open number line, would continue to be developed over time within the context
of performing and visualizing mental computations. Still other ideas, such as place
value and placing emphasis on the base ten structure of numbers, were foundational
to work with number and operations. Moreover, these latter strategies engaged
students in mathematical practices such as looking for and making use of structure
(NGACBP & CCSSO, 2010), worthwhile endeavors for students regardless of the
specific content at hand. In this way, carefully choosing a mathematical idea to focus
on gave purpose to the mathematics within the lesson. The work that the students did
on that day increased their access to ideas they would need well beyond elementary
school.

Part of choosing a new mathematical idea to focus on is to recognize when
competing agendas arise. For instance, when discussing subtraction problems, Miss
Curtis advised that their lessons focus either on subtraction problem types or
strategies, but not both. At this point, they might have chosen to change the focus of
the lesson, which would likely have had implications for the rest of the lesson. They
chose to focus on strategies, which influenced the types of problems they designed.
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7.7.4 Designing Work that Elicits Current Ideas, New Ideas,
and the Connections Between Them

The third component of planning for connections that give reason and give purpose
involves design work that integrates the prior two. In this component, teachers
develop plans that elicit students’ current ideas, encourage them to explore new
ideas, and create opportunities for making substantive connections between them.
In the case of Mrs. Reynolds and Miss Curtis, this work involved planning both
prior to and during teaching. Prior to the lesson, Mrs. Reynolds and Miss Curtis
designed a sequence of sums for the number talk and selected numbers for the story
problems that encouraged students to make tens. During the lesson, through her
conversation with the Math Studio facilitator, we saw that Mrs. Reynolds’ and Miss
Curtis’s story problems elicited both less efficient and more efficient strategies. Mrs.
Reynolds then planned while teaching to make use of the strategies that actually
emerged. It should be noted that this kind of design work did not require students
to use the number line strategy, which Mrs. Reynolds and Miss Curtis had hoped
to see. Instead, the design gave students reasons to choose the strategy themselves.
Mrs. Reynolds and Miss Curtis could have designed a lesson wherein the teacher
demonstrated decomposing numbers to make a ten and then require students to
use the same strategy. Such an approach is deceptively straightforward and may
seem to accomplish the goals at hand. However, it falls short of giving reason and
giving purpose because the teacher, not the students, does the work of connecting.
Mrs. Reynolds and Miss Curtis designed a lesson that facilitated students making
connections between and among strategies.

7.7.5 Interaction Among Components and Knowledge Used

The three components interact: identifying influences choosing; designing can
generate new potential goals and also influence identifying and choosing. When
the goal for the lesson is stable, more attention can turn to interactions between
designing how to elicit current ideas, connections to the new goal, and the new goal
itself. Thus, the components shape each other over time. How one lesson is designed
influences the choices available for the next lesson, and lessons in the past and future
constrain the current lesson: what is possible to identify and select comes from the
connections and new images previously elicited, and what has been connected and
elicited was influenced by prior choosing and identifying.

Table 7.1 illustrates the work of “setting up” or planning based on the narrative
presented earlier in this chapter based on our data. The questions support teachers
in reflecting on and planning for how students might respond, what strategies
they might use, what to monitor students’ work for, how to select students to
present ideas, and connecting ideas to deepen understanding (Stein, Engle, Smith,
& Hughes, 2008).
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Table 7.1 Decomposition of the work of setting up opportunities for connecting

Tasks of setting up
Setting up prior to and while
teaching

Questions to support teacher
reflection and planning

Identifying current and new
mathematical ideas

Current ideas: less efficient
strategies for adding (e.g.,
counting on using ten
frames and number lines,
doubling strategies)
New ideas: representing
numbers on an open number
line; breaking numbers
down and making easy tens

What current understandings
do students hold?
What may be new and
worthwhile for students to
move toward in upcoming
lessons?

Choosing a new, focal
mathematical idea

Transition from less efficient
to more efficient addition
and subtraction strategies
Using “big jumps” on the
number line

What is mathematically
worthwhile about the named
new ideas?
What ideas would the
curriculum support, and
what ideas would support
using the curriculum in
future units?
What would help students
make mathematical progress
in the longer term?

Designing Work
that Facilitates
Connecting

Eliciting public,
individual
representations of
current ideas

Designing problems on
which students are unlikely
to use doubling
Designing problems for
which breaking down with
easy tens would use jumps
of distance more than one
Asking students to “show a
strategy,” not only to find an
answer

What representations do
students find available?
What representations help
students grasp connections
to new ideas?
How might challenges in the
task be leveraged to give
reason or purpose to the
connection?
Which representations will
be the focus of discourse
about current ideas?

Eliciting public
connections
between current
and new ideas

Mapping shared strategies to
the open number line and to
easy tens throughout the
lesson
Selecting strategies that use
easy tens to share in whole
class discussion
Showing “big” and “little”
jumps on the number line
result in the same sum or
difference

How do current ideas
connect to new ideas?
What current and new ideas
do students use in their
mathematical work?
Which new ideas do
students make connections
to?

(continued)
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Table 7.1 (continued)

Tasks of setting up
Setting up prior to and while
teaching

Questions to support teacher
reflection and planning

Eliciting public,
individual
representations of
the new idea

Asking a student to show
their strategy to the class,
and asking the other
students to articulate the key
points of the presenting
student’s explanation
Asking students to
individually show a
breaking down strategy on
an open number line for a
new problem

What are the opportunities
for students to represent new
ideas?
Are those opportunities
accessible to students?
How can student thinking
about new ideas be made
visible to the teacher?

7.8 Cultivating Teaching that Gives Reason and Gives
Purpose

We became convinced that no amount of theory can affect children in schools except as it
becomes a fundamental part of a teacher’s thinking.

– Duckworth, The Having of Wonderful Ideas, 3rd ed., p. 86

Teaching mathematics means coordinating the demands of responding to chil-
dren and conveying mathematics with integrity. Scholars have named these dual
demands as “twin imperatives of responsibility and responsiveness” (Ball, 1993,
p. 374) and “being authentic (that is, meaningful and important) to the immedi-
ate participants and authentic in its reflection of a wider mathematical culture”
(Lampert, 1992, p. 310). We pair giving reason with giving purpose to situate these
demands in the work of making connections.

Our work builds on firsthand accounts of the complexities of teaching (e.g.
Heaton, 2000; Lampert, 2001) and calls to “build knowledge of and for teaching
practice” (Ball, Sleep, Boerst, & Bass, 2009, p. 459). By examining the planning,
teaching, and debriefing of actual lessons and by taking advantage of the insights
afforded by the Math Studio structure, we offer a decomposition of practice that
takes seriously the affordances and challenges that arise when designing and en-
acting lessons that give reason and purpose. Facilitating mathematical connections
meets Ball et al.’s criteria for “high-leverage practices for beginning teaching of
mathematics” (p. 461) that is generalizable, useful, and teachable. If children are
going to come to see mathematics as an integrated, coherent set of ideas, then
teachers need to facilitate connections that give reason and give purpose, regardless
of the grade being taught, content under discussion, curricula being used, or
instructional style of the teacher. Our “Tasks of Setting Up” and “Design Work that
Facilitates Connecting” are an effort to make the pedagogical work of connecting
“teachable.” We capture critical decision points teachers may face and describe the
practice of connecting around those decision points so that it can be integrated into
preservice teacher education courses and professional development opportunities.
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We suggest future work in two arenas: designing opportunities to learn teaching
that gives reason and purpose through the pedagogical work of connecting and
identifying learning opportunities made possible by such teaching. Participants of
the Math Studio project leveraged 2 h planning sessions per Math Studio lesson
in the presence of a large community and external expertise – time and effort that
is likely impossible to carry out every day, no matter the benefits. Moreover, the
learning that Math Studio offered its participants accumulated over a long period
of time and potentially as “unconscious competence” rather than explicit teachable
knowledge. However, if the decomposition laid out here does capture consequential
decision points, it provides scaffolding for deliberate individual and community
practice as well as in teacher education and professional development. Designing
opportunities to learn teaching would also entail designing opportunities to learn
when and how to embrace decision points.

We see significant learning opportunities for students and teachers in this
intentional teaching. In our theory, giving reason and giving purpose are qualities
of teaching that position students to experience mathematics as meaningful and
important. Examining this theory would involve studying how students themselves
make connections across ideas and use connections to reason through ideas and
how the ways that teaching gave reason and gave purpose may or may not
have shaped student activity. These studies would be informed at least in part
by analyses of elementary school mathematics (e.g., Howe, 2011; Howe & Epp,
2008), which discuss the structure of the mathematics across the elementary grades
and how elementary mathematics can foreshadow more advanced mathematics.
Understanding the learning of teachers would also involve studying what learning
opportunities are afforded to teachers through planning for lessons that give reason
and give purpose. Through planning, teachers may come to connect mathematics
and student thinking in new ways which they can bring with them into their teaching
for that lesson as well as subsequent lessons and to communities to which they
belong.

The design of teaching the work of teaching might involve collaboration among
teachers, teacher educators, and mathematicians. The connections that we are
saying are important in K-12 teaching might not show up in any context but K-12
mathematics. Since the warrants for connections are mathematical and the context
for connection is teaching and learning, connections may be a promising boundary
object for mathematicians and teacher educators to learn to work across disciplines.

Acknowledgments The authors are grateful to the teachers, Mrs. Reynolds and Miss Curtis,
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Chapter 8
Who Are the Experts?

John Ewing

Abstract K-12 mathematics education has undergone many changes over the past
decades, sometimes driven forward by mathematicians, sometimes by mathematics
educators. Those two groups have often disagreed, but we are now in a more
cooperative period in which experts on both sides seem to agree more and argue
less. But in reaching this rapprochement, we have left out another group of experts
who offer valuable perspectives and fresh ideas—the K-12 mathematics teachers
themselves. In doing so, we not only miss the opportunity to draw on different
expertise but also inadvertently demean the teaching profession itself.

There is nothing so stupid as an educated man,
if you get him off the thing he was educated in.

Will Rogers

Education has many experts.
At a fundraising event not long ago, the event chair got up to welcome everyone.

In his opening remarks, he critiqued his fifth grader’s mathematics class. He was
earnest, urbane, and a successful businessman, but he has no experience in teaching
(or mathematics). Nonetheless, he gave a short précis on his theory of skills versus
understanding for mathematics instruction.

When I advertised recently for an executive position in a program for teachers,
typical résumés looked something like this: at most 2 years of teaching, usually in
Teach for America, followed by a position coaching teachers, moving on to head an
organization that promotes some particular education policy. In their cover letters,
candidates described themselves as “education experts.”

Then there are the economists. Economists of every ilk are newly focused on
education, analyzing massive data-sets, employing powerful mathematical models,
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and citing arcane statistics.1 They are especially enamored with value-added
models, which purport to linearly order teachers according to their ability to increase
student achievement. They draw extravagant inferences about causality, making
claims about effects on students decades in the future.2 They create institutes
of education research and publish technical studies that titillate reporters, who
uncritically describe them as “education experts”—in spite of the fact that most
have never actually studied education or taught in K-12 classrooms.3

Who gets counted as expert makes a difference. Experts have credibility; they
have authority; they have respect. Many of the recent problems in education have
arisen because everyone counts him or herself as expert4 and, of course, when

1Perhaps the most famous and frequently cited economist is Eric Hanushek at the Hoover Institute.
Here is a typical paper from Hanushek (Hanushek, 2011):

“Most analyses of teacher quality end without any assessment of the economic value
of altered teacher quality. This paper begins with an overview of what is known about
the relationship between teacher quality and student achievement. Alternative valuation
methods are based on the impact of increased achievement on individual earnings and on
the impact of low teacher effectiveness on economic growth through aggregate achievement.
A teacher one standard deviation above the mean effectiveness annually generates marginal
gains of over $400,000 in present value of student future earnings with a class size of 20
and proportionately higher with larger class sizes. Replacing the bottom 5–8% of teachers
with average teachers could move the U.S. near the top of international math and science
rankings with a present value of $100 trillion.”

2The most notable recent such paper was by three Harvard economists: Chetty, Friedman, and
Rockoff (2014). An excerpt from the abstract is illustrative:

“Using school district and tax records for more than one million children, we find that
students assigned to high-[Value Added] teachers are more likely to attend college, earn
higher salaries, and are less likely to have children as teenagers. Replacing a teacher whose
VA is in the bottom 5% with an average teacher would increase the present value of students’
lifetime income by approximately $250,000 per classroom.”

3For example, the distinguished Hoover Institution at Stanford University publishes research that is
frequently cited. The Hoover Institution currently lists eight distinguished fellows with “expertise
in education” (http://www.hoover.org/fellows?expertise=638). Half of those eight are economists;
two others are political scientists.
4Much of the popular reaction to the Common Core State Standards illustrate this point. In dozens
of postings, parents complain about the new mathematics standards, often unaware of what the
standards actually say. Frequently, they cite their credentials as engineer or business executive,
giving them expert status. (“Her husband, who is a pipe designer for petroleum products at an
engineering firm, once had to watch a YouTube video before he could help their fifth-grade son
with his division homework.”) This was described by Motoko Rich in a New York Times article
on June 29, 2014, “Math Under the Common Core has even Parents Stumbling.” Similarly, on
July 29, 2012, the New York Times published a prominent essay “Is Algebra Necessary?” by
Andrew Hacker (http://www.nytimes.com/2012/07/29/opinion/sunday/is-algebra-necessary.html).
The author is a professor political science who other than twice teaching an experimental course
in mathematical literacy has no credentials in mathematics education whatsoever. The article drew
national attention.

http://www.hoover.org/fellows?expertise=638
http://www.nytimes.com/2012/07/29/opinion/sunday/is-algebra-necessary.html
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everyone is expert, no one is. This is a general problem in education, and the causes
are complex and varied. Today I am thinking specifically about mathematics and the
groups that lay claim to expertise in mathematics education.

I realize the word “expert” is not precisely defined. It comes from the Latin,
experitus. In its original English meaning, the noun meant “a person wise through
experience.” But through its use in legal proceedings, “expert” also now refers to
someone whose authority derives from some special acquired knowledge.

Whatever the precise definition, two groups are clearly counted among the
experts—mathematicians and mathematics educators.

Mathematicians, at least some of them, have always been counted as experts
in teaching and learning their own discipline. We have many examples of mathe-
maticians who have become experts in education, including of course the honoree
of this conference, Roger Howe. This is not a new phenomenon; its roots go back
to antiquity. Examples include mathematicians like George Pólya and Ralph Boas,
and before them Hans Freudenthal and Felix Klein, and before that Weierstrass and
Cauchy, and so on.5 Not new and not surprising. Is there any field in which its
practitioners don’t think about transmitting their knowledge to the next generation?
Isn’t this what culture is about?

The contentious issue is not whether some mathematicians are experts but rather
to what extent mathematical expertise is necessary for educational expertise. Pólya
gave one answer when he was advising prospective mathematics teachers:

No amount of courses in teaching methods will enable you to explain understandably a
point that you do not understand yourself. Know your subject.6

This simple maxim has been contorted into ridiculous propositions—for exam-
ple, that expertise in mathematics is sufficient for expertise in education. I guess
there are people who believe this, but surely Pólya was not among them. Also, while
Pólya believed mathematical knowledge was necessary, he knew you can’t learn just
any mathematics in order to be an expert teacher; you need to master particular
mathematics, in the same way that you need to master particular mathematics
if you are going to do research in a specific field. Whatever the relationship
of mathematical and educational expertise, some mathematicians must surely be
counted as experts.

In the past two centuries, mathematics educators have also risen to expert status.
Mathematics educators focus on the aspects of education that are particular to
mathematics. Beginning in the early nineteenth century with Colburn’s system7

5The International Commission on Mathematical Instruction (ICMI) was established at the
Fourth International Congress of Mathematicians in 1908. The original aim was to support
the “widespread interest among mathematicians in school education” (http://www.mathunion.
org/icmi/icmi/a-historical-sketch-of-icmi/). The eminent mathematician Felix Klein was its first
president; Hans Freudenthal was the eighth.
6Pólya (1958)
7Coburn (1821) (An 1884 reprint can be found at https://archive.org/details/intellectualari00
colbgoog).

http://www.mathunion.org/icmi/icmi/a-historical-sketch-of-icmi/
http://www.mathunion.org/icmi/icmi/a-historical-sketch-of-icmi/
https://archive.org/details/intellectualari00colbgoog
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of “discovery learning” (perhaps the first “New Math”), mathematics educators
proposed new methods for instruction and debated education’s goals. For decades,
educators emphasized utility8; for a time they promoted the idea of “transference9”
(that learning mathematics teaches one how to think), then moved on to concentrate
only on “meaningful” mathematics, and so on. Mathematics educators played a
prominent role in the debates about the place of mathematics in school education.10

This was especially true during the late nineteenth century and the first few decades
of the twentieth, when both the MAA and NCTM were founded.11 Later, their
influence grew during and after the New Math, Back-to-Basics, and NCTM Reform.

But experts can disagree, and disagreements can be ugly. The Math Wars12 had
many complicated causes, but one was simple: Mathematicians and mathematics
educators each made claims to superior expertise.

Mathematics educators pointed out the mathematicians were amateurs in K-12
education and had no evidence for their pronouncements because they didn’t do
education research.13 In return, mathematicians pointed out the educators sometimes
made incorrect or misleading mathematical statements.14 In any case, education
research wasn’t the same as mathematics research. The research was frequently
inconsistent or inconclusive; problems in education tended to be “divergent” (in
the sense of E. F. Schumacher15) with two studies sometimes leading to opposite
recommendations. Both sides traded accusations, sometimes about substance and
more often about form.

Of course, neither group was entirely right nor entirely wrong. Mathematicians
sometimes proposed nutty ideas that were wholly inappropriate for K-12 students.16

Mathematics educators sometimes made statements that spawned nutty movements,
with various groups insisting that children rediscover all mathematics or dismissing
fractions because calculators made them irrelevant.17 And while we can’t blame

8Grouws (1992).
9Willoughby (1967).
10Ibid. p 7.
11Ibid. p 11.
12For a perceptive view of the “Math Wars,” see the two articles by Allyn Jackson: Jackson (1997a)
and Jackson (1997b).
13An illustration of this point of view can be found in Mathews (1996).
14An illustration of this point of view can be found in Andrews (2001).
15Schumacher (1978).
16Tom Lehrer: http://curvebank.calstatela.edu/newmath/newmath.htm.
17In his 1997 State of the Union address, President Clinton proposed a voluntary national
mathematics test to be given to students in the eighth grade. The Department of Education formed
a Mathematics Committee in order to gauge the feasibility of such a test, and the Committee
held hearings at various locations around the country. Individuals and groups were invited to
testify at those hearings, including representatives from both the mathematics and the mathematics
education communities. The ideas mentioned here were presented at those hearings—along with
many others. The dramatic divergence of views about mathematics education was sobering. The
test was eventually abandoned. See Bass (1998).

http://curvebank.calstatela.edu/newmath/newmath.htm
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either side for Wu’s School Mathematics,18 we can blame both for fiddling, like
Nero, while others created dreadful textbooks, mediocre standards, confused curric-
ula, and insane assessments—much of it mathematically flawed and pedagogically
barren. Like all wars, the Math Wars had collateral damage.

In recent years, there has been a truce as both mathematicians and mathematics
educators accepted the other’s expert status.19 That’s good for everyone and
certainly good for education.

But in arranging the truce, and acknowledging their mutual expertise, mathe-
maticians and mathematics educators have excluded a third group of experts—the
practicing teachers.

This has become painfully evident to me in the past several years as I’ve worked
with many accomplished teachers.20 Workshops and conferences on K-12 mathe-
matics education often contain no teachers at all.21 Keynote talks are uniformly from
distinguished university professors or a CEO of some large company. Discussions
about curriculum and policy take place without any input from those who are
responsible for implementation. Presentations make sweeping generalizations about
teachers, without any check on reality. And when teachers are present, they tend to
be invited as audience participants or token panelists.

This is not a mere oversight, and the exclusion of classroom teachers from expert
status has been conscious and systematic.

When mathematicians talk about teachers, they often focus on elementary school
teachers, who are generalists, in spite of the fact that by any reasonable measure the
elementary grades represent less than half of K-12 mathematics. Mathematicians
make categorical statements about all teachers. They refer to the teachers’ content
knowledge deficit, their poor training, and their desperate need for professional
development, as though teachers were some monolithic collection, all with identical
flaws.22 If similar remarks were made about an ethnic or religious group, they would
be condemned as shameful stereotyping.

18Wu (2014) Also see Wu’s “Mathematical Education of Teachers, Part I: What is Textbook
School Mathematics?” Posted on February 20, 2015 on the AMS Blog (http://blogs.ams.org/
matheducation/2015/02/20/mathematical-education-of-teachers-part-i-what-is-textbook-school-
mathematics/)
19Ball, Ferrini-Mundy, Kilpatrick, Milgram, Schmid, and Schaar et al. (2005)
20Math for America is a program that offers 4-year fellowships to outstanding math and science
teachers, who come together in a scholarly community to work on both content and pedagogy. In
2016, the program in New York City has approximately 1000 teachers; another 900 are in a similar
program in the rest of New York State, with another 300 in other cities.
21For example, US News holds an annual conference on STEM education (http://
usnewsstemsolutions.com/). In 2015 the conference had more than 50 speakers—CEOs from major
corporations, university deans, heads of nonprofits, and a single classroom teacher. It also included
many panels, and of all the panelists there was a single teacher among them. This is typical of
major national education conferences.
22Wu (2011) A perceptive and engaging article that makes many valid points but containing a
number of unsubstantiated generalizations about teachers. For example:

http://blogs.ams.org/matheducation/2015/02/20/mathematical-education-of-teachers-part-i-what-is-textbook-school-mathematics/
http://blogs.ams.org/matheducation/2015/02/20/mathematical-education-of-teachers-part-i-what-is-textbook-school-mathematics/
http://blogs.ams.org/matheducation/2015/02/20/mathematical-education-of-teachers-part-i-what-is-textbook-school-mathematics/
http://usnewsstemsolutions.com/
http://usnewsstemsolutions.com/
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Mathematics educators argue that teachers have a narrow view of education.23

What would a teacher know about teacher training? What would a teacher know
about professional development? What would a teacher know about teacher evalua-
tion? Teachers are trained; teachers are developed; teachers are repaired.

There are some reasons for these attitudes. Mathematicians are status conscious
(like everyone else), and they value mathematical knowledge above all else. Even
the most accomplished teachers are unlikely to be doing mathematical research.
Moreover, we have spent the past three decades proclaiming a crisis in education,
math and science in particular, and for much of that time, the blame has fallen on
teachers.24 After several decades of incessant teacher bashing, the status of teachers
is at a low ebb. The public views teachers as anything but expert—mathematicians
echo the public attitude.

The situation for mathematics educators is more complicated. First, if you are in
the business of training new teachers, you get to see teachers in the making—not
a pretty sight. Almost every teacher struggles for a time before mastering the craft.
Brand new teachers are hardly expert at anything.

But there is another reason, more subtle than the first and indirectly a con-
sequence of the Math Wars. Increasingly, mathematics educators have sought
validation through the evidence of “research”—and frequently research that is
considered “scientific,” using large collections of data. This is supposed to make

“At the moment, most of our teachers do not know the materials of the three grades above
and below what they teach, because our education system has not seen to it that they do.”
(p 381)

23Teacher educators sometimes intentionally downplay the expertise of practicing teachers. For
example, the following passage appears in Thames and Bal (2013):

“Another impediment to progress is the inclination to persist with outdated and refuted
ideas about teacher quality, especially with respect to content knowledge : : : . The focus
tends to be on teacher quality, particularly when it comes to teachers’ inadequate content
knowledge. However, the issue is not teacher quality, but teaching quality.” (p 34)

24Here is a small sample of major reports, all of which are unabashedly critical of US education
and US teachers:

A Nation at Risk. 1983. Report from the National Commission on Excellence in Education. http://
www2.ed.gov/pubs/NatAtRisk/index.html

Rising Above the Gathering Storm. 2007. Report from Committee on Science, Engineering, and
Public Policy; National Academy of Sciences and National Academy of Engineering. http://
www.nap.edu/catalog/11463/rising-above-the-gathering-storm-energizing-and-employing-
america-for

Rising Above the Gathering Storm, Revisited: Approaching Category 5. 2010. Report from Mem-
bers of the “Rising Above the Gathering Storm” Committee; National Academy of Sciences;
National Academy of Engineering; Institute of Medicine. http://www.nap.edu/catalog/12999/
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education respectable like medicine. Randomized controlled trials are the gold
standard. Elaborate statistical analyses become standard tools. As a consequence,
education research often focuses on test scores (“student achievement”). This is
why research is now so often carried out by economists, rather than by philosophers
like Dewey or psychologists like Piaget. Teachers’ thoughtful discourse about
teaching, based on experience, of the sort done in Finland and other high-performing
countries, is not counted for much in America today. In the era of “evidence-based
research,” teachers don’t earn much respect.

I do not dispute for a moment that mathematicians, at least some, are experts in
mathematics education. I do not dispute that mathematics educators, at least some,
are experts as well. Their combined expertise is essential to K-12 education.

But classroom teachers, at least some, are experts too! They have a different kind
of expertise that derives from experience. The most expert have a special grasp of
content that comes from the day-to-day struggle to unpack what they know in a
variety of ways, for different students or sometimes for a single student who fails to
understand. The most expert possess a deep, complex understanding of education’s
goals, not as the number who are counted proficient but as the number who are
curious, creative, and intellectually passionate. The most expert understand their
students and student thinking in ways that neither mathematicians nor mathematics
educators are able to do.25

25The assertion of this paragraph—that practicing teachers have expertise that both overlaps
and compliments that of mathematicians and mathematics educators—is regularly challenged by
(some) mathematicians and educators. This itself illustrates the teacher’s dilemma: When they are
not viewed as experts, they are marginalized in policy making, both education and professional.
This makes it hard to find examples of teachers’ expert influence on policy. Nonetheless, the
participation of teachers in discussions about major recent initiatives to expand computer science,
extend the introduction of algebra in earlier grades, and build coherent curricula based on the
Common Core amply illustrate their actual and potential expertise.

One recent example stands out. In a recent op-ed (“Wrong Way to Teach Mathematics” Feb
27, 2016) in the New York Times, the political scientist Andrew Hacker wrote to denounce the
usual mathematics requirements for high school graduation (http://www.nytimes.com/2016/02/28/
opinion/sunday/the-wrong-way-to-teach-math.html). He urged eliminating almost all mathemat-
ics requirements and eliminating a common curriculum. He promoted a light-weight quantitative
literacy, criticizing more standard (high school) courses in statistics. Hacker elaborated on these
ideas in his book, The Math Myth and Other STEM Delusions, 2016, New York: The New Press.
While these ideas have been debated in many venues, the mathematics and mathematics education
community has been relatively ineffective in addressing them. Many prominent educators and
writers have sympathized with Hacker, dismissing the reactions of the mathematics community as
self-interested. Teachers themselves have addressed the issues most effectively, both the details and
the tenor of his proposals. For example, see the blog posts of two highly accomplished mathematics
teachers:

Patrick Honner at http://www.mathforamerica.org/news/when-it-comes-math-teaching-let%E2
%80%99s-listen-math-teachers

Amy Hogan at http://alittlestats.blogspot.com/2016/05/the-wrong-way-to-target-math-part-iii.
html

http://www.nytimes.com/2016/02/28/opinion/sunday/the-wrong-way-to-teach-math.html
http://www.nytimes.com/2016/02/28/opinion/sunday/the-wrong-way-to-teach-math.html
http://www.mathforamerica.org/news/when-it-comes-math-teaching-let%E2%80%99s-listen-math-teachers
http://www.mathforamerica.org/news/when-it-comes-math-teaching-let%E2%80%99s-listen-math-teachers
http://alittlestats.blogspot.com/2016/05/the-wrong-way-to-target-math-part-iii.html
http://alittlestats.blogspot.com/2016/05/the-wrong-way-to-target-math-part-iii.html
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These are experts through experience, and they can be valuable colleagues—not
junior colleagues to be mentored, developed, or repaired but colleagues from whom
we can learn. They are every bit as expert as that event chair who never taught, or
the Teach for America Corps member who taught for a single year, or the economist
who works on data rather than ideas.

Who gets counted as expert has consequences. By reinforcing the public’s low
respect for teachers, we further diminish the prestige of the teaching profession.
Is it any wonder that fewer and fewer talented young people show an interest
in becoming teachers? And prominent public discussions about education policy,
such as the one taking place about the Common Core, shape public opinion in
profound ways. Teachers have played virtually no role26 in the recent Common Core
discussions except as pathetic pawns who are not up to the task of implementing the
higher, more challenging standards.27 Is it any wonder that many teachers haven’t
embraced the Common Core? It is amazing that, despite the way the standards have
been used to bash teachers, some have stepped up to do the job—the hard job—of
actually implementing a coherent curriculum in a system that makes it very difficult
to build coherence.

Not all teachers are experts, just like not all mathematicians are. But mathe-
maticians and mathematics educators should recognize and respect those who are
because they can be valuable partners and because public respect will follow from
theirs. This is the surest way to make teaching attractive, to improve the profession,
and ultimately to make more teachers who are experts.

26The development process for the Common Core State Standards is described in detail at
http://www.corestandards.org/about-the-standards/development-process/. This describes teacher
involvement as follows:

“Teachers played a critical role in development
The Common Core State Standards drafting process relied on teachers and standards

experts from across the country. Teachers were involved in the development process in four
ways:

1. They served on the Work Groups and Feedback Groups for the ELA and math standards.
2. The National Education Association (NEA), American Federation of Teachers (AFT),

National Council of Teachers of Mathematics (NCTM), and National Council of
Teachers of English (NCTE), among other organizations were instrumental in bringing
together teachers to provide specific, constructive feedback on the standards

3. Teachers were members of teams states convened to provide regular feedback on drafts
of the standards.

4. Teachers provided input on the Common Core State Standards during the two public
comment periods.”

For mathematics, the Work Group consisted of 51 individuals: exactly 2 of them were practicing
teachers. The Feedback Group consisted of 22 individuals: exactly 1 of them was a practicing
teacher.
27Wingert, Pat. 2014. “When Teachers Need Help in Math.” Atlantic, October 2 http://www.
theatlantic.com/education/archive/2014/10/when-teachers-need-help-in-math/381022/

http://www.corestandards.org/about-the-standards/development-process/
http://www.theatlantic.com/education/archive/2014/10/when-teachers-need-help-in-math/381022/
http://www.theatlantic.com/education/archive/2014/10/when-teachers-need-help-in-math/381022/
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Part III
Identifying and Structuring Core Ideas and
Practices in K-12 Mathematics Curriculum



Chapter 9
Building on Howe’s Three Pillars
in Kindergarten to Grade 6 Classrooms

Karen C. Fuson

Abstract Howe (2014, Three pillars of first grade mathematics, and beyond. In:
Li Y. & Lappan G. (eds), Mathematics curriculum in school education, Springer,
Dordrecht, pp 183–207) identified three pillars of first grade mathematics and
beyond that described central mathematical and sense-making aspects of major
Common Core State Standards Math (National Governors Association Center for
Best Practices, Council of Chief State School Officers. 2010) domains. This chapter
builds on each pillar by sharing visual models that have been powerful in helping
students learn the aspects identified by Howe. Visual models are central core ideas
and practices in the CCSS–M and deserve attention and discussion. The research-
based examples discussed here are simple math drawings that students can make
and use in their own ways in problem solving and explaining of thinking. Such
drawings support the math talk discussions that are at the heart of the CCSS–M
and of the mathematical practices. They enable (Howe’s, 2014, Three pillars of
first grade mathematics, and beyond. In: Li Y. & Lappan G. (eds), Mathematics
curriculum in school education, Springer, Dordrecht, pp 183–207) three pillars to
come to life in the classroom. Teachers and students can come to appreciate all
of these pillars: Pillar I, the power of robust understanding of the operations of
addition and subtraction including situations that give meaning to the operations and
levels of single-digit addition and subtraction; Pillar II, an approach to arithmetic
computation that intertwines place value with the addition/subtraction facts; and
Pillar III, making connections between counting number and measurement number.

Howe (2014) identified three pillars of first grade mathematics and beyond that
describe central mathematical and sense-making aspects of major Common Core
State Standards Math (National Governors Association Center for Best Practices,
Council of Chief State School Officers, 2010) domains. The Howe paper circulated
before it was posted on the website in 2010, and it was influential in the design
of the Common Core State Standards Math. This chapter builds on each pillar by
sharing visual models that have been powerful in helping students learn the aspects
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identified by Howe. I draw on 35 years of research in classrooms to discuss strengths
and limitations of various visual models. This research has shown me the power of
research-based math drawings that students make. This research was carried out in
independent research studies and in funded research as part of the Children’s Math
Worlds Project that led to the publication of these models in the K to grade 6 math
program Math Expressions. The research studies and experience with classrooms
using the Math Expressions programs have provided extensive teacher data about
the effectiveness of these visual models. Visual models are central core ideas and
practices in the CCSS–M and deserve attention and discussion. But which visual
models should we be using and why? We need discussion of this issue for various
math domains. This chapter is a contribution to such discussion.

9.1 Pillar I: A Robust Understanding of the Operations
of Addition and Subtraction

9.1.1 Situations that Give Meaning to the Operations

The major real-world situations that give meaning to addition/subtraction and to
multiplication/division have been the focus of much research (e.g., see National
Research Council, 2001, 2009). Problem classifications of these situations drawn
from research are given in the Common Core State Standards on pages 88 and
89 (National Governors Association Center for Best Practices, Council of Chief
State School Officers, 2010). I spent many years trying different diagrams students
could use especially with larger numbers, fractions, and decimals (Fuson, 1988;
Fuson, Carroll, & Landis, 1996; Fuson & Smith, 2016; Fuson & Willis, 1989; Willis
& Fuson, 1988). Students can make their own drawings. But specially designed
diagrams provide a common visual language to support discussion, and they provide
consistency across kinds of numbers.

The final set of research-based diagrams that were successful in hundreds of
classrooms is shown in Fig. 9.1. Students must learn meanings of equations, so
equations were chosen as the visual support for the simplest kind of problems add
to/take from. These situations show action over time, so it is natural for students
to write each step of an equation as a step in the problem situation over time.
Put together/take apart diagrams with the total on the top and two legs for the
addends were found to help students understand these situation actions. Comparison
bars show the two compared quantities in an additive comparison situation, and
the difference quantity created by information about the situation is shown as an
oval that makes the smaller quantity as long as the bigger quantity. The equal
groups multiplication/division situations use the put together/take apart drawing
repeatedly, and the multiplicative comparison situations draw the repeated quantity
bar repeatedly. The array/area situations begin by drawing all of the objects or
squares but quickly get abbreviated to a drawn rectangle in which the factors are
along the sides and the product is inside. This model also reflects the traditional
long division format.



9 Building on Howe’s Three Pillars in Kindergarten to Grade 6 Classrooms 187

A
dd

 T
o

T
ak

e 
Fr

om
Pu

t T
og

et
he

r/
T

ak
e 

A
pa

rt
A

dd
iti

ve
C

om
pa

ri
so

n

St
ar

t +
 C

ha
ng

e 
= 

R
es

ul
t

St
ar

t–
C

ha
ng

e 
= 

R
es

ul
t

To
ta

l

A
dd

en
d

(P
ar

tn
er

)
A

dd
en

d
(P

ar
tn

er
)

T 
= 

A
 +

 A
= 

   
 (i

de
nt

ic
al

)
i

B
ig

Sm
al

l
D

iff
er

en
ce

Sm
al

l +
 D

iff
er

en
ce

 =
 B

ig
B

ig
 –

D
iff

er
en

ce
 =

 S
m

al
l

B
ig

 –
Sm

al
l =

 D
iff

er
en

ce
= 

   
 (s

am
e 

nu
m

be
r)

n

E
qu

al
 G

ro
up

s
A

rr
ay

A
re

a
M

ul
tip

lic
at

iv
e

C
om

pa
ri

so
n

Pr
od

uc
t

G
G

G
G

M
x M

x
G

 =
 P

= 
P

G
G

G
G

+
+

+

M
 ti

m
es

Pr
od

uc
t

Fa
ct

or

Fa
ct

or
Fa

ct
or

Fa
ct

or
Pr

od
uc

t

Pr
od

uc
t

Fa
ct

or

Fa
ct

or

(ta
bl

e)

B
ig

Sm
al

l
5

5
5

5

B
ig

 =
 3

 x
 S

m
al

l

Sm
al

l =
   

   
x 

B
ig

1 3

B
ig

 ÷
 3

 =
 S

m
al

l

= 
   

 (s
am

e 
nu

m
be

r)
n

(L
on

g 
D

iv
is

io
n 

Fo
rm

at
)

F 
x 

F 
= 

P
P 

÷ 
F 

= 
F

= 
   

 (i
de

nt
ic

al
)

i

(b
ec

om
es

)

(b
ec

om
es

)

R
ec

ta
ng

ul
ar

 E
ve

ry
th

in
g 

T
im

es
 E

ve
ry

th
in

g

K
G

r1
K

G
r3

G
r3

G
r4

Th
e 

6 
Si

tu
at

io
ns

F
ig

.9
.1

C
C

SS
ad

di
ti

on
(t

op
ro

w
)

an
d

m
ul

ti
pl

ic
at

io
n

(b
ot

to
m

ro
w

)
w

or
d

pr
ob

le
m

si
tu

at
io

ns
an

d
M

at
h

E
xp

re
ss

io
ns

di
ag

ra
m

s



188 K.C. Fuson

Fig. 9.2 Labeled math drawings for an unknown start problem

Each type of situation has three quantities, and each quantity can be the unknown.
Some unknowns are more difficult than other unknowns. These differences create
the learning path of difficulty across addition/subtraction situations that extend from
kindergarten to grade 2. The key to solving word problems is understanding the
situation and then making a labeled drawing if needed. Students’ equations often
show the situation rather than the solution. They then think about their drawing
or equation to solve the problem. A difficult take from:start unknown problem is
shown in Fig. 9.2. At the top left, the equation shows the situation, and the student
then draws quantities to show the adding of 5 and 7 to make 12. Students often
represent and solve in different ways. Two other approaches are shown in Fig. 9.2.
Older students can use the same diagrams to support varied approaches for problems
with multi-digit numbers and fractions.

For more information about the learning path of difficulty of the problem types
and how to support students through this learning path, see the Teaching Progression
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on Math Expressions and Operations and Algebraic Thinking (OA) in the CCSS:
Part 1 Problem Situations and Problem Solving at http://www.karenfusonmath.com.

9.1.2 Levels in Adding and Subtracting Single-Digit Numbers

Students worldwide go through three levels of conceptualizing and carrying out
adding and subtracting (e.g., Fuson, 1986, 1992; Fuson & Fuson, 1992; Fuson &
Willis, 1988). At level 1 they can only think of one number at a time. So adding
is a three-step adding-to process in which they focus on the first addend, then
on the addend added to the first addend, and then on the total of both addends.
Subtracting is the reverse taking-from process that begins with the total, takes one
addend from that total, and then focuses on the remaining other addend. At level
2, students can conceptually embed both addends within the total so that they can
begin the counting of the total with the counting of the second addend: to add, they
count on from the first addend to find the total, keeping track of how many are
counted on and saying the last counted word as the total. To subtract, they count
on from the first addend to find the unknown second addend, keeping track of and
stopping as they say the total, and then seeing how many they counted on. At level 3,
students can decompose and recompose addends within the total. So, for example,
they can carry out the general method for single-digit adding and subtracting in
which one addend is decomposed to make a ten with the other addend: for example,
8 C 6 D 8 C (2 C 4) D (8 C 2) C 4 D 10 C 4 D 14. Methods from all three levels
are in the CCSS–M, level 1 at kindergarten and levels 2 and 3 at grade 1.

Howe (2014) discussed in his Pillar II the importance of decomposing a number
into two addends in different ways. In the CCSS–M, such decompositions are a
kindergarten standard:

K.OA.A.3. Decompose numbers less than or equal to 10 into pairs in more than
one way, e.g., by using objects or drawings, and record each decomposition by a
drawing or equation (e.g., 5 D 2 C 3 and 5 D 4 C 1).

Notice that the equations to record these decompositions have the total alone on
the left and the addends are added on the right side. This reflects the taking apart
action in the situation and is helpful in overcoming the prevalent view by older
students that an equation must have two numbers on the left and one number on the
right. It is helpful for kindergarten and grade 1 children to see equations of this form
that show the meaning of the situation.

In my own research, I have found that decomposing numbers into two addends
helps children move to the level 2 methods of single-digit adding and subtracting
that require the addends to be embedded within the total: counting on to find a total
or to find an unknown addend. Such level 2 embedding of the addends within the
total also allows children to solve the more difficult problem subtypes like add to
or take from change unknown and start unknown problems (Fuson & Smith, 2016).
Students can represent change unknown situations by a situation equation such as

http://www.karenfusonmath.com
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8 C? D 14 or 14 �? D 8 and can solve them by level 2 counting on from 8 to 14
to find the unknown addend. Start unknown problems such as the problem in Fig.
9.2 also require an understanding of where totals and addends are in equations or
diagrams and how to relate these three quantities to find the unknown.

Visual supports for decomposing that I have found to be effective in kindergarten
are shown in Table 9.1. Students count out things to make a given number and
partition these in various ways with a break-apart stick. Later, as in the tasks in
Table 9.1, the partitioning is shown in drawings on paper by a break-apart stick
and by shading. Students write the two addends that are created. These addends
are called partners because this word was found to help students relate these two
numbers. In grade 1 (see Fig. 9.3), students move on to using these visual supports
to decompose larger numbers and to relate decompositions that reverse the order of
the addends (using the commutative principle). The decompositions also become

Table 9.1 Percentage correct on partner (addend) tasks for kindergarten children

Unit % Task
3 90 1. Write the partners.

4 92 2. Draw a line to show the partners. Write the partners.

4 92 3. Draw tiny tumblers on the math mountain.

4 85 4. Write the partner equation.

5 88 5. Shade to show all the five partners in order. Write the five partners.

5 83 6. Draw tiny tumblers on the math mountain and write the partner.

Note. These tasks fall centrally within the following CCSS: K.OA.3
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Fig. 9.3 Grade 1 partner switches

mostly numerical for first graders, as these small numbers take on quantitative
meanings from extensive work in kindergarten. Such decompositions appear again
in grade 4 as CCSS–M standard 4.NF.B.3b. This work helps students understand
that unit fractions obey the same principles as whole numbers, reduces the common
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Fig. 9.4 Decomposing fractions into addends/partners

error of adding tops and bottoms when adding fractions (because students see that
only the top numbers are added and that the unit fraction number does not change),
and generalizes decomposing a number into addends (see Fig. 9.4).

Decomposing a number into addends is the second step in doing the general level
3 make-a-ten method: 8 C 6 D 8 C (2 C 4) D (8 C 2) C 4 D 10 C 4 D 14. In the
first step (8 C?), one must know the number that makes ten with the first addend.
In the second step, one decomposes the second addend into the number added to
ten and the rest of the second addend: 8 C (2 C?), where 2 C? D 6. In the third
step, one must know 10 C 4, a total made with ten. All three prerequisites for the
make-a-ten method are kindergarten CCSS–M:
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K.OA.A.4. For any number from 1 to 9, find the number that makes 10 when added
to the given number, e.g., by using objects or drawings, and record the answer
with a drawing or equation.

K.OA.A.3. Decompose numbers less than or equal to 10 into pairs in more than
one way, e.g., by using objects or drawings, and record each decomposition by a
drawing or equation (e.g., 5 D 2 C 3 and 5 D 4 C 1).

K.NBT.A.1. Compose and decompose numbers from 11 to 19 into ten ones
and some further ones, e.g., by using objects or drawings, and record each
composition or decomposition by a drawing or equation (e.g., 18 D 10 C 8);
understand that these numbers are composed of ten ones and one, two, three,
four, five, six, seven, eight, or nine ones.

This method and these prerequisites are emphasized in East Asian countries but
have not been emphasized in this country, especially the second step of decomposing
a number discussed by Howe (2014). As kindergarteners have time to learn these
prerequisites, understanding and carrying out the make-a-ten method will become
easier.

However, this method is more difficult in English than in East Asian languages
based on Chinese that say 14 as ten four. Saying a number between ten and twenty
as a ten and some ones helps with all three steps in the make-a-ten method. In
contrast, an English word such as fourteen has a reversal in the ten and the ones that
complicates the relationship with the written numeral 14. Ten is not said clearly
(how many adults know that teen means ten?). And the number of ones is not
said clearly in eleven, twelve, thirteen, and fifteen. For these reasons, the level 2
counting on methods may be enough for CCSS–M OA problem solving in grades 1
and 2. But make-a-ten methods can be helpful in CCSS–M NBT multi-digit adding
and subtracting, as is discussed in the next section. For more information about
the learning path of three levels of adding/subtracting and how to support students
through this learning path, see the Teaching Progression on Math Expressions and
Operations and Algebraic Thinking (OA) in the CCSS: Part 2 The K, 1, 2 Learning
Paths for OA C and – (at http://www.karenfusonmath.com).

9.2 Pillar II. An Approach to Arithmetic Computation
that Intertwines Place Value
with the Addition/Subtraction Facts

Howe’s (2014) Pillar II involves two major conceptions:

(a) Understanding that a two-digit number is made of some tens and some ones.
(b) In adding or subtracting, you work separately with the tens and the ones, except

when regrouping is needed.

Both of these concepts extend to larger numbers with more places. Howe pointed
out that it would be useful to have a term for the numbers created by a decomposition

http://www.karenfusonmath.com
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into place value numbers, for example, in 243 D 200 C 40 C 3. He suggested that
such numbers be termed single-place numbers; the 200, 40, and 3 would be called
single-place numbers. This is a helpful observation and might make it easier for
students to conceptualize and discuss such parts. But I suggest instead the term
place value parts for such numbers because they are parts and they explicitly name
place values. Howe’s two concepts above form the basis for general methods of
adding and subtracting for any number of places. Students need to be able to add and
subtract the single-digit addends discussed in Pillar I. And they need to understand
how to think about and have a written method to record grouping when adding and
ungrouping when subtracting. For two-digit numbers, students will group ten ones
to make one ten whenever their total for the place value parts in a given place is ten
or more. In general, they will group ten of one kind of place value parts to make
one of the place value parts in the next-left column. And they will ungroup one of
one kind of place value parts to make ten of the place value parts in the next-right
column.

I did research for many years to ascertain what visual supports would
help students understand these two vital conceptions that underlie multi-digit
adding/subtracting and what general written methods were easy for students to
understand and explain and relate to visual supports (Fuson, 1998, 2003; Fuson &
Li, 2009; Fuson & Smith, 1997; Fuson, Smith, & Lo Cicero, 1997; Fuson et al.,
1997). Students need to see and understand the quantities that make the place value
parts for any number. Secret-code cards that can be layered to show place value
parts and math drawings that students can make to show the quantities for each place
value are both very helpful to students. The fronts and the backs of the secret-code
cards are shown in Fig. 9.5. Unlayered, the cards show the place value parts (400
and 80 and 6). When layered on top of each other, the cards show the usual single-
digit form of our base-ten numerals (486). But the little numbers on the top left of
each card remind students of the place values for each part and of the zeroes that are
hiding under the other digits. These cards are called secret-code cards because they
show the secret code of our numbers, and students love the term. The quantities
named by the place value parts are shown on the back of the cards: 4 hundreds,
8 tens, and 6 ones. Students learn how to draw these quantities by drawing on
columns of ten dots to make a ten-stick and making a box around ten such columns
of ten dots (or ten such ten-sticks) to make a hundred-box. Soon students make
quick-hundred and quick-ten drawings that are just a hundred-box and a ten-stick,

Fig. 9.5 Secret-code cards for 486
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but they understand the quantities involved. Secret-code cards can be used on a
millions frame to show the groups of three numbers in millions, thousands, and
ones. Secret-code cards can also be extended in the opposite direction to show
decimal place value parts.

These visual models support working separately with the place value parts, as
described in Pillar IIb and in the CCSS–M. The CCSS–M critical areas for each
grade at which new multi-digit computation is introduced specify that students
are to “develop, discuss, and use efficient, accurate, and generalizable methods”
for that computation. They further specify that students are to understand that
adding and subtracting involve adding or subtracting place value parts, composing
or decomposing these parts as needed. Importantly, the CCSS–M also specify that
students use concrete models or drawings, relate strategies based on place value to a
written method, and explain why the methods work. For example, in grade 2, NBT
standards 7 and 9 state:

2.NBT.B.7. Add and subtract within 1000, using concrete models or drawings and
strategies based on place value, properties of operations, and/or the relationship
between addition and subtraction; relate the strategy to a written method. Un-
derstand that in adding or subtracting three-digit numbers, one adds or subtracts
hundreds and hundreds, tens and tens, and ones and ones; and sometimes it is
necessary to compose or decompose tens or hundreds.

2.NBT.B.9. Explain why addition and subtraction strategies work, using place value
and the properties of operations.3 [3Explanations may be supported by drawings
or objects.]

There are different ways to write generalizable methods that meet the above
specifications. There is no such thing as “a standard algorithm” in spite of the
widespread use of this term. Many different methods have been used historically
in this country and in other countries, often several at the same time. The National
Research Council report adding it up made this point and showed and discussed
many methods (National Research Council, 2001). Fuson and Beckmann (2012)
followed the lead of the NBT Progression document (the Common Core Writing
Team, 7 April 2011) and summarized that the standard algorithm for an operation
implements the following mathematical approach with minor variations in how the
algorithm is written:

• Decomposing numbers into base-ten units and then carrying out single-digit
computations with those units using the place values to direct the place value
of the resulting number

• Using the one-to-ten uniformity of the base-ten structure of the number system
to generalize to large whole numbers and to decimals
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Fuson and Beckmann then identified variations in written methods for recording
the standard algorithm for each operation, showed visual models that supported
understanding of the written methods, and discussed criteria for evaluating which
variations might be used productively in classrooms. A similar discussion for
teachers of advantages and disadvantages of various written methods for addition
and subtraction is given in National Council of Teachers of Mathematics (NCTM)
(2011). Fuson and Li (2009) identified and analyzed a number of variations of
written methods for multi-digit addition and subtraction found in textbooks in
China, Japan, and Korea.

These analyses converge on one method of addition and one method of sub-
traction that are superior to others. The addition method is shown in Fig. 9.6,
where drawings and a student explanation are shown for each step in adding using
place value parts. Questions by other students follow at the bottom. This classroom
example implements the CCSS–M and Pillar II. Notice, as you read, the example
of how the drawings can support listeners’ understanding of the explanation and of
the questions by other students and can clarify both aspects of multi-digit adding
identified above.

This method, often called New Groups Below, has several conceptual and
procedural advantages compared to the current common method in which the
new groups (the little 1 s) are written above the columns. It supports place value
understanding by:

• Making it easier to see the teen sums for the ones (16 ones) and for the tens
(14 tens), rather than separating these teen sums in the space above and below
the problem so that it is difficult to see the 16 or the 14.

• Allowing students to write the teen numbers in the usual order as 1 then 6 (or 1
then 4) instead of writing the 6 and then “carrying” or grouping the 1 above.

• Making it easier to see where to write the new 1 ten or 1 hundred in the next
left place instead of above the left-most place (a well-documented error that
arises more with problems of 3 or more digits and is easier to make when one is
separating the teen number below and above the problem).

• Making it easier to carry out the single-digit additions because you add the two
larger numbers you see and then increase that total by 1, which is waiting below.
When the 1 is written above the column, students who add the two numbers in the
original problem often forget to add the 1 on the top. Many teachers emphasize
that they should add the 1 to the top number, remember that number and ignore
the number they just used, and add the mental number to the other number they
see. This is more difficult than adding the two numbers you see and then adding 1.

Notice in Fig. 9.6 how the drawings use five groups to support the level 3 make-
a-ten methods. When adding 9 ones and 7 ones, you can see that the 9 needs one
more to make ten; this one ten can be written below in the tens column waiting for
it to be added. The 7 has been decomposed into 1 to make ten and 6 left, so the 6
ones can be written below as the total number of ones. Similarly for the tens, 8 tens
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Fig. 9.6 Three-digit addition using New Groups Below with student drawings, explaining, and
questioning. The explainer stands to the side and points with a pointer to parts of the math drawing
or to parts of the problem as they are mentioned. Pointing is a crucial part of the explanation.
Reprinted with permission from Focus in Grade 2: Teaching with Curriculum Focal Points,
copyright 2011, by the National Council of Teachers of Mathematics. All rights reserved

can be seen to need 2 more to make ten tens; this new one hundred can be written
below the hundreds column. The 5 tens are decomposed into 2 to make ten with 8
tens and 3 tens left; the 3 can be added to the 1 ten waiting below and then the 4 tens
written below the tens column. With experience, the make-a-ten method can be done
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mentally in this multi-digit adding context and then perhaps in other contexts. Such
five-group visual models are used widely in East Asian classrooms. They can be
used from the first day of kindergarten displayed on a poster with numerals to help
children build understanding of single-digit numbers. These five groups are used on
the backs of the secret-code cards shown in Fig. 9.5 to help children see how many
hundreds, tens, and ones more easily.

Two written methods for subtracting after decomposing into place value parts
are shown in Fig. 9.7. The better method is shown first. Before you subtract a given
kind of place value part (a given column), you need to check if you can subtract the
bottom number from the top number: Is the top number greater than or equal to the
bottom number? If not, you need to get more of those units in the top number by
ungrouping one unit from the left to make ten more of the units in the target column.
All of these “checking and ungrouping if needed” steps can be done first, either from
the left or from the right. Then all of the subtracting can be completed either from
the left or from the right. These subtractions can actually be completed in any order,
but going in one direction systematically creates fewer errors. This taking care of all
needed ungrouping first is shown in Fig. 9.7 as method A with math drawings for a
three-digit example and then without drawings for a six-digit number at the bottom
to show how the method generalizes. Students can stop making drawings as soon as
they understand and can explain the steps.

Ungroupings from the left and from the right are shown for the six-digit example.
You can see how these ungroupings differ by looking at the ungroupings in the
second and fifth columns. In ungrouping from the left, the 6 hundred thousands
give 10 ten thousands to the 2 ten thousands, making 12 ten thousands and leaving
5 hundred thousands. Then the 3 thousands need more thousands (to subtract the
6 thousands), so the 12 ten thousands give 10 thousands to the right making 13
thousands and leaving 11 ten thousands. In ungrouping from the right, you ungroup
moving to the left, and when you get to the ten thousands place, you have taken 1 ten
thousands to give 10 thousands to the 3 thousands to make 13 thousands. The steps
of ungrouping involve the same quantities, but they are done in different orders as
shown by the ungrouped numbers above the problem.

Separating the two major kinds of steps involved in multi-digit subtracting as in
this method is conceptually clear and makes it easier to understand that you are not
changing the total value of the top number when you ungroup. You are just moving
units around to different columns. Many students prefer to move from left to right,
as they do in reading, and productive mathematical discussions can take place as
students explain why they can go in either direction and still get the same answer.

The method B variation in Fig. 9.7 involves following the same steps but
alternating between ungrouping and subtracting. Alternating steps is more difficult
for students, and this method sets up the common subtraction error of subtracting the
top from bottom number when it is smaller (e.g., for 94–36, get 62). Even when you
know you should check and ungroup if needed, alternating steps prompts errors. For
example, in the three-digit number in step 2, you have just subtracted 6 ones from
13 ones to get 7 ones. You look at the next column and see 1 and 5, and 4 pops
into your head (if you are only in second grade). You write 4 and move left. In the
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Fig. 9.7 Multi-digit subtraction methods

six-digit problem, the three errors that can be created by alternating ungrouping and
subtracting in method B are in red. Although this alternating method can be used
for numbers of any size, it is not as easy or conceptually clear as method A. For
two-digit numbers, the alternating method B and non-alternating method A are the
same because there is no iteration of the steps.

For more information about how to support students through the learning path of
understanding place value parts and making drawings to show them and use them
in explaining multi-digit addition and subtraction, see the Teaching Progression on
Math Expressions and Number and Operations in Base Ten (NBT) in the CCSS:
Part 2 Place Value and Multi-digit Addition and Subtraction in K to G4 (at http://
www.karenfusonmath.com).

http://www.karenfusonmath.com
http://www.karenfusonmath.com
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9.3 Pillar III. Making Connections Between Counting
Number and Measurement Number

9.3.1 Limitations of Length for Showing Place Value
and Addition and Subtraction

Physical and Practical Issues Howe (2014) suggested that students use trains of
100-rods, 10-rods, and 1-cubes to show place value. Length does show how the place
value parts get big quickly. But length is not practical for use in a classroom. Length
is too long for students to use to show or add or subtract even two-digit numbers.
Base-ten blocks have ten-sticks 10 cm long and 1-cubes 1 cm long. Length trains of
ten-sticks and 1-cubes do not fit across most student desks, and most rooms do not
have enough tables on which all students can work. Base-ten blocks use a 10 cm by
10 cm square for hundreds rather than length; this is more practical. But the blocks
present other difficulties. They are expensive, leave no record of the steps in using
them, cannot be used for homework, are difficult to show the whole class, and are
cumbersome to relate to written methods. The drawings shown in Figs. 9.6 and 9.7
have none of these disadvantages.

Drawings that just use length are also problematic. The CCSS–M 2.MD.B.5 and
CCSS–M 2.MD.B.6 specify that students should relate addition and subtraction
to length by solving word problems involving lengths and by representing whole
numbers and whole number sums and differences within 100 as lengths from 0 on
a number-line diagram. However, to get 100 units across a page even horizontally,
each unit is about 1.6 mm long. This is small. Consequently, a number-line diagram
to 100 is too short to see numbers clearly and is too complex for students to draw
even semi-accurately. So, students can work with a few examples already drawn
on a page to see that their count models do extend to length models. They can
use meter sticks marked into centimeters and decimeters in demonstrations for the
whole class of these lengths related to their place value parts. But the tools for
adding and subtracting that can actually be used by each student are drawings of
hundreds, tens, and ones related to written methods as shown in Figs. 9.6 and 9.7.

Length Models Constrain the Addition and Subtraction Methods Students Can
Easily Use Length models do not support Pillar II or general CCSS–M methods
that compose separate place value parts because they keep one multi-digit number
together and add to or take from that number. Such methods require advanced
sequence counting skills as students add on or take from hundreds or tens or ones
from a whole two-digit or three-digit number. I tried these methods in classrooms
for several years, but I found that it was difficult for less-advanced or non-native
English speakers to learn these sequence counting skills. These methods can be done
using drawn place value parts as in Figs. 9.6 and 9.7 instead of length models. They
still require the same sequence counting skills, but they do not require learning to
use a different visual model. Further problems with these length model methods are
discussed in Fuson and Beckmann (2012) and NCTM (2011). Among other issues,
they are not generalizable to larger numbers.
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9.3.2 Counting Number and Measurement Number Do Relate
Well to Show Multi-digit Multiplication and Division

Count models of drawn place value parts as used for addition and subtraction lead
into the array models (count models using things as units) and area models (measure
models using units of measure) commonly used to visualize multiplication and
division. For example, the known factors are the numbers of rows and of columns in
an array or the lengths of the sides, and the product is the number of total things in
the array or the number of unit squares in the area model. I have found with many
classrooms that students can make such array or area drawings for small numbers
on a dry-erase Math Board that shows 100 by 50 dots, each 4 mm apart. Students
can draw around the dots to make arrays, or they can draw on the lengths between
the dots to show area. Such drawings (e.g., for 24 � 37) show all of the drawn place
value parts accurately to scale. Then students can move to drawing sketches and
relate them to a written method. Eventually students drop the sketches and just do a
written method.

There are written variations for multiplication and division that record the place
value parts in somewhat different ways. Advantages and disadvantages of many of
these are discussed in Fuson and Beckmann (2012). Approaches that I have found to
be understandable by many students are shown in Fig. 9.8. The area model is shown
on the left. For multiplication, students know and draw the lengths of the two sides,
separating the place value units tens and ones. They draw line segments inside the
rectangle to make subareas for the products of the place value parts and fill in the
products for each subarea.

The expanded notation method shown in the top middle for multiplication is a
common approach. But there are tricky parts of this method, so students in one
classroom added the blue steps to help all of them see what was happening in each
step and avoid their errors, and the multiplying was written for the largest place
value unit product (the tens � the tens) first so that the other products could be
aligned underneath. The blue steps can drop out when they are not needed. This
fuller method is helpful to many students initially.

But I found in many classrooms that some students had difficulty with this
method: they could not see what to multiply by what. The area model was clearer
about what to multiply by what, so they would draw a little rectangle, record the
products inside the subareas, and add them up on the right as shown in the place
value sections method.

The one-row method shown on the top right is a common embedded method that
alternates multiplying and adding and that writes the added-in value for the tens �

ones step in the wrong place: 60 � 3 is 180, but the 1 hundred is written above the
tens column (above the 4 and the 6). Better methods are discussed in Fuson and
Beckmann (2012).

The rectangle sections method, on the bottom left for division, helps students
relate multiplication to division as they see how the same area model can be used
for both. Students first draw a length 40 for the tens part of the unknown factor
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Area Model Place Value
Sections

Expanded Notation 1-Row

43 = 40 + 3 1
2

2 4 0 0 × 67 = 60 + 7 4 3
1 8 0 60 × 40 = 2 4 0 0 x   6 7
2 8 0 60 × 3 = 1 8 0 3 0 1

+      2 1 7 × 40 = 2 8 0 2 5 8

2 8 8 1 7 × 3 = 2 1 2 8 8 1
2 8 8 1

Rectangle Sections Expanded Notation Digit by Digit
3

4 0 4 3 
67    2 8 8 1 67    2 8 8 1

- 2 6 8 0 - 2 6 8
2 0 1 2 0 1

- 2 0 1 - 2 0 1

40 +  3

60

+
7

2400

280 21

180

40 +  3

67 2 8 8 1
- 2 6 8 0

2 0 1
2 0 1

2 0 1 0

= 43 43

) )

1

1

Fig. 9.8 Drawings and written variations of standard algorithms for multiplication and division

and multiply 67 by that number 40. They subtract the resulting 2680 from the total
product to find the area of the subarea for the ones unit, getting 201. They draw the
ones length 3, multiply 3 � 67, and subtract that from the area of the ones subarea.
This problem has no remainder, but many problems do have a remainder. The other
methods in the bottom row of Fig. 9.8 show the same steps of finding the tens and
then the ones values of the unknown factor. These methods can be related to the area
model so that students understand what they are doing, and students can discuss how
all three methods relate to each other.

To return to the issue of length models with which this section began, alternating
square and long shapes shows place values more easily than do just length models.
The hundred square discussed earlier is the new larger square unit, ten of which
can be composed in a tall column to make a thousand. Ten of these tall columns
can be composed to make the new large square unit of ten thousand. Ten of these
ten thousand units can be composed in a tall column to make a hundred thousand.
Finally, ten of these hundred thousand long shapes can be composed to make a
huge million square. The units for these models can be count numbers (dots) or
measure numbers (tiny unit squares). Making such a display in the hallway has
been a productive activity for many classrooms.

For more information about the learning path of multi-digit multiplica-
tion/division and how to support students through this learning path, see the
Teaching Progression on Math Expressions and Number and Operations in Base
Ten (NBT) in the CCSS: Part 3 Place Value and Multi-digit Multiplication and
Division in G3 to G6 (at http://www.karenfusonmath.com).

http://www.karenfusonmath.com
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Fig. 9.9 Relationships between counting number, cardinal number, and measure number

9.3.3 Numbers on the Number Ray Tell Distances
from the Endpoint/Origin

Howe’s (2014) final major point concerning counting number and measurement
number is the understanding that the numbers on the number ray tell distances
from the endpoint/origin. This is a crucial understanding that provides a sound
basis for placing whole numbers and fractions on the number-line diagram. Some
people refer to whole numbers and fractions on the number line as points on the
number line. Thinking only about points does not provide meanings for adding
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Fig. 9.10 Seeing length units
on a ruler by drawing
successive lengths

and subtracting. How can you add one point and another point and get a third
point? This is only possible if the points are actually endpoints of distances from
zero created by length units. The CCSS–M 3.NF.A.2a and CCSS–M 3.NF.A.b
use this relationship between interval/distance/length units and the endpoint of the
interval/distance/length from zero to describe representing fractions on a number-
line diagram.

Seeing the length/distance units on a number line is difficult because our brains
are wired to see things not lengths. In Fig. 9.9, counting numbers are shown at the
top, each within a square to make it easy to count them. Below that is a number
line where the numbers represent the number of length units from 0. Notice how
your eye is drawn by the numbers below the line and the little vertical marks for the
ends of each unit. It is difficult to see the unit lengths on the line that lie between
the numbers. In the middle are shown the relationships between count and cardinal
meanings of number described in K.CC.B.4b: the last counted word tells how many
things there are. Below that are shown the similar relationships between count and
measure meanings of number: the last counted word tells how many unit lengths
there are. Because of the visual difficulty and the off-by-one errors induced by
number lines, the National Research Council reports (2001, 2009) conclude that
number lines are not appropriate for PK, K, or grade 1 children. Visual count models
like the number path shown at the top of Fig. 9.9 are appropriate. The CCSS–M is
consistent with these recommendations, first introducing number lines at grade 2.

Rulers and bar graph scales have the same structure as a number line. Figure
9.10 shows a ruler. Notice how the eye is drawn by the points marked by the short
vertical segments and by the numbers below these. We have to work hard to help
students see and use the distances/lengths in rulers, bar graph scales, and number
lines. One way is shown in Fig. 9.10. Students can draw one length unit and write
a 1 after it, then very close below they draw two length units with a 2 after it, then
three length units followed by a 3, etc. They then can think of a ruler as all of these
lengths pushed together to make a single line with all of these lengths on it; the
number of lengths so far is written at the endpoint of each of the lengths. They also
can make little vertical segments as they measure lengths initially and then count
those lengths to emphasize that they are measuring length units.

In Fig. 9.11, we can see three other ways to see the lengths on fraction number
lines. First, at the top, a fraction bar in which one can see lengths is drawn above
a number line in which the eye is drawn to points instead of lengths. The lengths
in the fraction bar help one see the lengths in the number line. At the bottom, the
number of unit fractions (seven) is shaded in the number bar and encircled in the
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Fig. 9.11 Seeing the unit fraction lengths by shading or encircling

number line. This helps the viewer see the lengths. Students can also be asked to
slide their finger along each length as they count the seven unit fraction lengths.

Making unit fraction drawings in these two steps also helps students make sense
of unit fractions. Usually students just see the second step with some of the unit
fractions shaded or otherwise marked. But then they do not see the total number of
unit fractions, here four in one whole. They just see the two parts of the fraction
embedded inside the whole. If only the second whole had been shown, students
would see three parts shaded and one part not shaded in that second whole. Many
students then say that the fraction is 1/3 because they see the parts 1 and 3 but not
the total four parts. But in the top drawing in which four unit fractions are made in
one whole, students can see the four unit fractions. So the right-hand bottom half
of the drawing shows three parts shaded of the total four parts, so ¾. Here, to see
that the bottom shows 7/4 and not 7/8, the top unit fractions could each have been
labeled ¼.

Without consistent support to see the lengths in number lines, students make
errors when drawing or labeling number lines for whole numbers or fractions. They
may count the points beginning with the first point as 1 instead of as 0 and get one
too few unit lengths. If they have a number line with the starting and end marks
already made, they may make as many new marks as unit fractions, resulting in one
too many unit lengths.

Number lines are an important mathematical tool, and students must come to
understand the relationships between the distance/length units and the endpoints
of these units that are labeled on the number line. For more information about the
learning path of fraction conceptions and computation and how to support students
through this learning path, see the Teaching Progression on Math Expressions
and Number and Operations—Fractions (NF) in the CCSS–M (at http://www.
karenfusonmath.com).

http://www.karenfusonmath.com
http://www.karenfusonmath.com
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9.4 Visual Models Are Central Core Ideas and Practices
in the CCSS–M and Deserve Attention and Discussion

We close by summarizing the importance of visual models for building under-
standing and explaining in classrooms. As the research-based examples here have
shown, models can be simple math drawings that students can make and use in their
own ways in problem solving and explaining of thinking. They support the math
talk discussions that are at the heart of the CCSS–M. The CCSS–M specify eight
mathematical practices that are to be implemented with the standards. These eight
can be formed into four pairs (practices 1 and 6, practices 7 and 8, practices 4 and 5,
practices 2 and 3) and given names to support their use in the classroom. A teacher
can ask every day: “Did I support students to focus on math sense-making about
math structure using math drawings (visual models) to support math explaining?
And can I do this better tomorrow?” These mathematical practices, and the visual
models that support their implementation, can help Howe’s (2014) three pillars
come to life in the classroom. Teachers and students can come to appreciate
the power of robust understanding of the operations of addition and subtraction
including situations that give meaning to the operations and levels of single-digit
addition and subtraction (Pillar I), an approach to arithmetic computation that
intertwines place value with the addition/subtraction facts (Pillar II), and making
connections between counting number and measurement number (Pillar III). These
are crucial aspects of CCSS–M OA, NBT, and NF standards.
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Chapter 10
Is the Real Number Line Something to Be Built
or Occupied?

Hyman Bass

Abstract Number and operations form the backbone of the school mathematics
curriculum. A high school graduate should comfortably and capably meet an
expression like, “Let f(x) be a function of a real variable x,” implying that the
student has a robust sense of the real number continuum. This understanding
is a central objective of the school mathematics curriculum, taken as a whole.
Yet there are reasons to doubt whether typical US high school graduates fully
achieve this understanding. Why? And what can be done about this? I argue that
there are obstacles already at the very foundations of number in the first grade.
The construction narrative of the number line, characteristic of the prevailing
curriculum, starts with cardinal counting and whole numbers and then builds the
real number line through successive enlargements of the number systems studied.
An alternative proposed by V. Davydov, the occupation narrative, begins with pre-
numerical ideas of quantity and measurement, from which the geometric (number)
line, as the environment of linear measure, can be made present from the beginning
and wherein new numbers progressively take up residence. I will compare these two
approaches, including their cognitive premises, and suggest some advantages of the
occupation narrative.

10.1 Two Story Lines of the Number Line

: : : we assumed that the students’ creation of a detailed and thorough conception of a real
number, underlying which is the concept of quantity, is the purpose of this entire subject,
from grade 1 to 10 : : : the teacher, relying on the knowledge previously acquired by the
children, introduces number as a : : : representation of a general relationship of quantities,
where one of the quantities is taken as a measure and is computing the other.

- Vasily Davydov (1990)
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The device beyond praise that visualises magnitudes, and at the same time the nat-
ural numbers articulating them, is the number line, where initially only the natural
numbers are individualised and named. In the didactics of secondary instruction the
number line has been accepted, though it is often still imperfectly and inexpertly exploited

- Hans Freudenthal (1983)

Teaching is not only teaching in the moment. It must build on what students
bring from their past. And it must prepare them for what is to come in their future.
This paper examines the early foundation of number in the school curriculum
and how this foundation can best support the development of an ultimate robust
understanding of the continuous real number line. At play in this discussion is a
fundamental mathematical duality:

The discrete-continuous duality

Discrete Continuous
Discrete counting Continuous measurement
Whole numbers/integers Real numbers
Cardinal/ordinal world: “the number queue” Measurement world: the number line
. . .   •      •      •      •      •      •      •      •      •  . . . . . . ––––|––––|––––|––––|––––|––––|––––|–– . . .

The current number curriculum is a multi-year progression, which I call the
construction narrative, from the left side of this picture to the right, with the number
line growing as new numbers are successively filled in. The right side also makes an
early curricular appearance, in the context of measurement, but without this being
integral to the development of number. I will contrast this construction narrative
with an alternative, based on ideas of V. Davydov, the occupation narrative, which
begins with pre-numerical notions of quantity and (continuous) measurement. In
this approach, the geometric (number) line can be made present from the beginning,
as an environment in which numbers progressively take up residence and are named.

10.2 The Construction Narrative

The construction narrative begins with whole numbers and counting and progres-
sively introduces new number systems. In all but one case (from rational to real
numbers), the new system is created to enable solutions to equations formulated,
but not solvable, in the previous system. In each extension, it is tacitly presumed,
but not generally proved, that the arithmetic operations extend and that basic rules
of arithmetic (commutativity, associativity, etc.) continue to hold.
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The construction narrative of the real number line Cognitive premise: Children’s early sense

of small cardinals and large differences
Number systems Models Conceptual frame

Whole numbers (Finite) sets; disjoint union Cardinal/ordinal
Fractions (� 0) Part-whole images

Solve: a • x D b
Part-whole ratio measure; whole
as unit

Integers* Diverse, including the number queue
Solve: a C x D b

Mirror reflection through 0 on the
number line

Rational numbers Formal combination of fractions �0
and negative numbers

Mirror reflection of fractions �0

Irrational numbers Miscellaneous natural examples:p
2; � , e

Incommensurability with 1

Real numbers “Everything else.” Infinite decimals.
A significant conceptual gap

All points on the (continuous)
number line

Complex numbers “The complex plane”
Solve: x2 C 1 D 0

(*) The curricular order of “integers” and “fractions (� 0)” is sometimes reversed

10.2.1 Affordances of the Construction Narrative

This line of development fits with Leopold Kronecker’s famous declaration “God
made the integers, all else is the work of man.” Moreover, the cognitive premise is
well founded in research (e.g., NRC (2009), or Butterworth, (2015)):

It is now widely acknowledged that the typical human brain is endowed by evolution
with a mechanism for representing and discriminating numbers : : : when I talk about
numbers I do not mean just our familiar symbols – counting words and ‘Arabic’ nu-
merals, I include any representation of the number of items in a collection, more formally
the cardinality of the set, including unnamed mental representations. Evidence comes from
a variety of sources.

Brian Butterworth (2015)

10.2.2 Difficulties with the Construction Narrative

10.2.2.1 The Whole Number/Fraction Divide

Whole numbers are conceived as cardinalities of (discrete) sets, while fractions are
conceived as relative measures of two (continuous) quantities, and so they seem
to be different a species of numbers. The whole number 7 is thought of as a
noun, whereas, when thinking of 3/4, it is hard to resist adding the word “of.” A
fraction is conceptually an operator on quantities, not a conceptually freestanding
mathematical object, since, unlike cardinality, the unit of measure is unspecified
and not implicit. This difference makes it difficult to arrange for these two number
populations, and their interactions harmoniously cohabit the same (real) number
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universe. Of course, cardinality is appropriately viewed as a special (discrete)
regime of measurement, but this perspective is not initially needed and so not made
explicit.

Whole numbers ––––> Fractions

A whole number is, conceptually, a
mathematical object.“7”

A fraction is, conceptually, a mathematical
operator. “3/4 of : : : ”

A whole number is the (discrete) measure
(cardinality) of a set

A fraction is the relative measure of two
quantities

Addition/subtraction corresponds to
composition/decomposition (set union)

Addition/subtraction corresponds to
composition/decomposition of quantities

Multiplication corresponds to repeated
addition (or whole number rescaling) or to
Cartesian arrays

Multiplication corresponds to composition of
operators or to rectangular area (in which case
the product is a different species of quantity)

Whole numbers are denoted with base-10
positional notation

Fractions are denoted with the fraction bar
notation

Computational algorithms are anchored in this
notation

Computational algorithms are anchored in this
notation

Whole numbers are born in the
cardinal/ordinal world

Fractions are born in the worlds of (possibly
continuous) measure (The cardinal world is
one of these, though it is not typically seen
this way)

10.2.2.2 The Continuum Gap

The passages from rational numbers to irrationals and then to real numbers are
fragmentary and pretty much clouded in mystery in the school curriculum. The
student knows little more than “some numbers are irrational.” To build the real
numbers with analytic rigor would exceed the resources of the school curriculum,
but as a result students are left with a weakly developed concept image of real
numbers. How would a high school student explain the meaning of

p
2 C � orp

2 • �? Or 2 , “the product of   copies of 2?” Our base-10 algorithms act first on
the rightmost digits and so could not be applied to infinite decimal expansions.

10.3 The Occupation Narrative: Cognitive Premise

Here I report on ideas mainly due to Vasily Davydov (1975). The approach is
founded on a complementary cognitive premise:

Children’s understanding of measurement has its roots in the preschool years. Preschool

children know that continuous attributes such as mass, length, and weight exist, although
they can not quantify or measure them accurately. Even 3-year-olds know that if they have
some clay and then are given more clay, they have more than they did before. Preschoolers



10 Is the Real Number Line Something to Be Built or Occupied? 213

cannot reliably make judgments about which of two amounts of clay is more; they use
perceptual cues such as which is longer. At age 4-5 years, however, most children can
learn to overcome perceptual cues and make progress in reasoning about and measuring
quantities. Measurement is defined as assigning a number to a continuous quantity.

- Doug Clements and Michelle Stephan (2001)

Davydov’s approach:

• Young children have a primordial sense of quantity, an attribute of physical
objects (not only cardinalities): length, area, volume, weight, etc., without
numerical associations.

• And of addition (composing and decomposing quantities of the same species),
they can make rough comparisons of size (“Which is more?”), which Davydov
has them express symbolically, as “B > T” and then infer that “B D T C C” for
the “quantity difference” C. Venenciano and Dougherty (2014) describe this as
“concurrent representation used to model change from a statement of inequality
to a statement of equality.”

Using two unequal areas of paper, the papers can be stacked such that the area
of the larger piece that is not covered by the smaller piece can be cut off. The
piece that is removed is defined as the difference. Similarly, beginning with
the unequal areas of paper, by taping the precise amount of area to the smaller
area to create a combined area equal to the larger area, defines the difference.

Given quantity B > quantity T: If B – C D T and B D T C C, then B D T
by C.

The last statement is read “Quantity B is equal to quantity T by the difference,
quantity C.”

• Davydov develops in children such algebraic relations, involving “pre-
numerical” quantities and hence involving no numerical calculation.

• This practice functions as a precursor of algebraic thinking.
• It imparts the correct sense of the meaning of the “D” sign that the (eventually nu-

merical) value of the two sides is the same. This meaning is sometimes distorted
when equations are used primarily in the context of numerical computation: “the
right side is the computation of the left side.”

• Davydov develops these ideas in first grade, prior to the introduction of whole
numbers, in a measurement context. Whole numbers appear only late in the first
term of first grade.
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10.4 Occupation Narrative: Quantity, Unit, Measure,
and Number

A quantity has no intrinsically attached number. Rather, given two quantities, A and
U, then, taking U as a “unit,” the number we attach to A is “How much (or many)
of U is needed to constitute A?” Thus, a number is a ratio of two quantities.

To understand a numerical quantity, it is necessary to specify, or know, the unit.
And, for a given species of quantity, different units may be chosen: feet, inches,
meters – for length; quarts, pints, and liters – for liquid volume; etc. To numerically
simplify a sum of two numerical quantities, they must be of the same species and
expressed with the same unit. (“Can’t add apples and oranges”) That is why, in place
of value algorithms for addition, we vertically align the digits with the same place
value, i.e., with the same base-10 units. That is why, in adding fractions, we seek
common denominators (“unit fractions”).

In principle, numerical quantities manifest the full continuum of (positive) real
numbers. Whole numbers arise, in every measure regime, when a quantity is
composed exactly of a set of copies of the unit. This is how to comprehend whole
numbers in the general measure context, not simply cardinal counting. (In the
cardinal world, the default unit is the one element set, and each set is composed
of a set of copies of this unit.)

Of course, cardinal can be viewed as a (discrete) measurement context. However,
since it is natural to choose the one-element set as unit, there is no a priori
need to even introduce the concept of unit. Thus, in the cardinal introduction of
whole number, the very concepts of unit and of measure relative to a unit do not
immediately rise to conscious consideration. Later, when introducing multiplication
and place value, other sets are taken to function as units, but, again, this typically
is not explicitly linked conceptually to the domain of continuous measure. This is
related to the “whole number/fraction divide” discussed above.

This notion of number as a ratio of quantities may seem somewhat sophisticated
and not appropriate for very young children. Davydov argues the contrary, as
demonstrated by the following activity design, to solve what he calls the “funda-
mental problem of measure”: given a quantity A, reproduce A in a different place
and time.

Here is how he enacts this with children (see Moxhay 2008).

1. A strip of tape, A, is on a table. In the next room is a roll of tape.
2. Task: Cut off a piece of that roll of tape exactly the length of A. But you are not

allowed to move A.
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3. Different approaches:

• Make a guess, from a remembered image. This is very inexact.
• If given a spool of string, cut off a piece of string the length of A. This is exact

but needs a mediating equivalent quantity, the string.)
• Suppose you are given a stick of wood, longer than A. Mark it at the length of

A, and use this to measure off the tape.
• Suppose you have a piece of wood shorter than A, then you can count off

lengths of the piece to measure A. In this case, the child actually constructs
the idea of measurement and engages the concept of unit.

This activity design, which leads the learner to the concepts of measure and
of unit, creates what Harel (2003) calls intellectual necessity and exemplifies a
didactical situation, in the sense of Brousseau (1997). If we imagine this experiment
with cardinal instead of linear measure, several conceptual and cognitive steps
would be missing, and the first approach would suffice.

10.5 Some History
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Vasily Davydov (1930–1988) was a Vygotskian psychologist and educator in the
Soviet Union. With colleagues, in the 1960s, he developed a curriculum starting with
quantity (of real objects) and measure. Adaptations of the Davydov early grades
curriculum have been implemented in the USA, with some claims of success. See,
for example, Dougherty and Slovin (2004); Schmittau (2005); and Moxhay (2008).
Many of these ideas are present in the NCTM and Common Core State Standards
Initiatives, in the context of measurement, but not integrated with the development
of number.

In Bass (1998), I speculated about the possibility of an early introduction of
the continuous number line in the school curriculum without, then, being aware of
Davydov’s work.

10.6 Coordinatizing the Geometric Line (“Descartes
in Dimension One”)

Length is a one-dimensional quantity and may be applied to one-dimensional
attributes of objects in general. We typically measure length with a measuring stick
or a tape measure. The latter is more adaptable if, for example, we want to measure a
hat size or the circumference of a tree trunk. The essential feature of the tape is that
it is flexible but inelastic (it doesn’t stretch). Notice that no unit of measurement
has yet been specified. On the other hand, the tape is two-dimensional, not one-
dimensional. From the point of view of linear quantity, a better metaphorical model
might be a string, eventually indefinitely long, that we can take to be a heuristic
model of the geometric line. On this “line,” two points have a well-defined distance
represented by the length of string (mathematically, the interval) between them. This
“geometric line” is the environment of linear quantity and measure.

The geometric line is coordinatized with numbers by choice of an ordered pair
of points that we call 0 and 1. Then we take the interval [0, 1] as the unit of linear
measure. Moreover, the direction from 0 to 1 is taken as the positive orientation of
the line, the direction of numerical increase. Note that the line has an intrinsic “linear
structure” arising from “betweenness”: Given three points, one will lie between the
other two. This does not yet specify which one is largest. There are two possible
“linear orders” on the geometric line. In choosing the ordered pair (0, 1), we specify
not only the unit of measure, [0, 1], but also the order (orientation) of the line by
declaring that 1 is greater than 0, so 0 to 1 is the positive direction on the line. Our
general convention is to depict the line horizontally and to take (left –> right) as the
positive direction.

A whole number N is then placed on the line by concatenating, to the right, N
copies of the unit, starting at 0 and placing N at the final right endpoint. Note that
this placement is essentially measure theoretically, not based on cardinal. Children
are sometimes confused by counting hash marks, where the copies of the unit meet,
instead of counting intervals. Fractions are similarly placed on the line using a
subunit, [0, 1/d], where d is the denominator of the fraction.
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This, in fact, foreshadows the general geometric concept of number on the
(coordinatized) number line: A point, a, on the number line represents the number
that is the measure of the oriented interval from 0 to a. (This will be the negative of
a if 0 lies between a and 1.) In fact, one may reasonably think of the oriented interval
[0, a] as a one-dimensional vector. From this point of view, adding a to a general
number, x, can be geometrically viewed as translation of the line by the vector [0,
a], a given distance in a given direction.

10.7 Conclusion: What Is Achieved by This Occupation
Narrative of the Number Line?

• As mentioned earlier, Davydov’s early introduction of pre-numerical quantities
provides an introduction to algebraic notation and relations and to a robust sense
of the meaning of the “D” sign.

• The whole number/fraction divide is bridged: The part-whole introduction of
fractions is inherently a measurement approach, the whole being the unit of
measure. Though cardinal counting is also a measurement context, that point
of view is not emphasized, because there is a natural default choice of unit (the
one-element set), and so the very concept of unit, and its possible variability,
need not enter conscious reflection or discussion. Here it is proposed that one
emphasizes the appearance of whole numbers in every measurement context. In
fact, placement of whole numbers on the number line already requires appeal to
(continuous) linear measure.

• The main point is that the geometric line, anchored in the context of linear
measure, is present almost from the beginning. The progressive enlargements of
the number world simply supplies numerical names to more and more of the
(already present) points on the line.

• While a few irrational numbers can be identified and located on the number
line, it can be pointed out that many (even most) numbers are irrational and that
even though we have not named them, they are there as points on the geometric
number line and leaving no “holes.”

• The number line makes it possible, from the beginning, to geometrically interpret
the operations of adding, or multiplying by, a real number. (See I and Dougherty
(2015) for a measurement treatment of multiplication.)
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Chapter 11
What Content Knowledge Should We Expect
in Mathematics Education?

Richard Askey

Abstract Two content topics will be described. One deals with geometric mea-
surement: length, area, and volume. These are important topics and they have not
been learned very well. In particular, what types of relations can one consider when
dealing with these three aspects of geometric measurement? The second topic is
fractions, and different views of what students should be expected to learn. A third
topic will be briefly discussed. This is a new book which has many mathematical
topics which arose in secondary classes, with comments on the content both as
it relates to student learning and sometimes how the mathematics fits into what
had previously been studied in earlier grades and also how the ideas fit into later
material. The aim of the work was to set up a framework on mathematical content
knowledge for teaching mathematics in secondary school. The authors asked for
comments from readers, so some will be given.

11.1 Introduction

Roger Howe has not only done very important work in mathematics, but he has taken
on the task of trying to do important work in mathematics education at two ends,
early elementary school and college level. This is rare and even rarer to succeed at
both levels. His elementary school level work includes the following (Howe, 2012):
Three Pillars of First Grade Mathematics. This illustrates very important aspects
of whole numbers and addition and subtraction. Here is a comment following this
article:

I have been an elementary math coach for 10 years and an elementary teacher for 29 years
before that. We are always working on these concepts, but I have never read such an
excellent, explicit article that pushes all the important understandings for the primary
students.
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At the college level, Barker and Howe wrote Barker & Howe (2007), which can
be used as a text for a college course in geometry. Parts of this book can influence
what teachers should know in detail about geometry, and some other parts contain
material secondary level mathematics teachers should be familiar with.

11.2 Concepts and Skills

One of the recommendations from the National Mathematics Advisory Panel (2008,
p. xix) is:

To prepare students for Algebra, the curriculum must simultaneously develop conceptual
understanding, computational fluency, and problem solving skills. Debates regarding the
relative importance of these aspects of mathematical knowledge are misguided. These
capabilities are mutually supportive, each facilitating learning of the others.

Here is another recommendation (National Mathematics Advisory Panel, 2008,
p. xxi):

The mathematics preparation of elementary and middle school teachers must be strength-
ened as one means for improving teachers’ effectiveness in the classroom. This includes
preservice teacher education, early career support, and professional development pro-
grams. A critical component of this recommendation is that teachers be given ample
opportunities to learn mathematics for teaching. That is, teachers must know in detail
and from a more advanced perspective the mathematical content they are responsible for
teaching and the connections of that content to other important mathematics, both prior to
and beyond the level they are assigned to teach.

Let me add a little to the last. In addition to mathematical knowledge for teachers,
there are others who need more mathematical knowledge. Mathematics support
people, both those in schools and in many other places, need deeper knowledge
and a more comprehensive view of the curriculum, how it developed in earlier
grade bands, and where it is going in later years. Mathematics educators have an
important role to play in the preservice education of teachers, in their research, and
in knowing more about the topics Lee Shulman mentioned teachers need to know
(Shulman, 1986). One of these is knowledge of curriculum. With respect to this
topic, let me just mention one example which is common to many textbooks on
algebra and geometry.

Definition Two nonvertical lines are parallel if and only if their slopes are equal.
Two nonvertical lines are perpendicular if and only if the product of their slopes
is � 1.

All of the groups mentioned above should know the difference between a theorem
and a definition. Since parallel and perpendicular have geometric definitions, this
should be a theorem, not a definition. Some people from the groups listed above
should have written publishers and requested an appropriate change. As someone
who has done this in person at displays at meetings and in letters to publishers,
this seems to be something which surprises people. Some staff agree that a change
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should be made, but some defend what was written. Finally, with the Common Core
(CCSSO and NGA, G-GPE.5), this is now listed as a theorem, as it should have been
all along. The lead author of the geometry book containing the above Definition has
a Ph.D. in mathematics from a major US university and clearly should know the
difference between a definition and a theorem, so the problem is not just content
knowledge, but expectations and taste. I am not mentioning which book this is since
many books have this error.

This paper will point out some more examples where both conceptual under-
standing and computational skills are far too weak.

11.3 Geometric Measurements

In the book Accessible Mathematics (Leinwand, 2009, p. 92), Steven Leinwand
wrote the following:

For this reason, effective instruction balances a focus on conceptual understanding (such
as the meaning of area and perimeter and how they are related) with a focus on procedural
skill (such as how to find the area and perimeter of plane figures).

This is a book written for elementary and middle school teachers. Let us
first address the issue of area and perimeter, a common topic in primary school.
A problem devised by Deborah Ball and used later by Liping Ma needs to be
mentioned about teacher knowledge concerning a possible connection between area
and perimeter. The story is told that a student comes to class very excited. She has
figured out a new property that the teacher has never told the class. She said that she
has discovered that as the perimeter of a rectangle increases, the area also increases,
and illustrates this with two examples, a square of side 4 cm and a rectangle with
sides 4 cm and 8 cm. The question for teachers is: How do you respond?

If you have not read Ma’s description of the results when this question was asked
of some teachers in the USA and in China, let me strongly suggest you read Chap.
4 in Ma (2010). There were 23 US teachers, 12 of them had 1-year experience of
teaching, and the other 11 averaged 11 years of teaching. Two of these teachers
accepted the student’s claim, three investigated the claim, and one was able to
show that the claim was false. The rest said they would look it up, often because
they did not remember formulas for the perimeter and/or the area of a rectangle.
Ma interviewed 72 Chinese elementary school teachers. About the same percent
accepted the claim. The rest worked on the problem, and about 70% of them were
able to show that the student’s claim was false. One gave a very cogent answer
(Ma, 2010, p. 97):

The area of a rectangle is determined by two things, its perimeter and its shape. The problem
of the student was that she only saw the first one. Theoretically, with the same perimeter, let’s
say 20 cm, we can have infinite numbers of rectangles as long as the sum of their lengths
and widths is 10 cm. For example, we can have 5 C 5 D 10, 3 C 7 D 10, 0.5 C 9.5 D 10
even 0.01 C 9.99 D 10, etc., etc. Each pair of addends can be the two sides of a rectangle.
As we can imagine, the area of these rectangles will fall into a big range. The square with
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sides of 5 cm will have the biggest area, 25 square cm, while the one with a length of 9.99
and a width of 0.01 will have almost no area. Because in all the pairs of numbers with the
same sum, the closer the two numbers are, the bigger the product they will produce.

A number of years ago, I read a manuscript of a book which had the following
problem:

Find rectangles whose area is equal to its perimeter.

To show that this problem made no sense, I suggested considering a rectangle
with sides 3 and 6. The numbers one gets for perimeter and area are both 18.
Consider the unit length to be 1 foot to begin with, and then change to yards. The
dimensions of the rectangle are now 1 yard and 2 yards so that the perimeter is
6 and the area is 2. Then change to inches and one gets 2(36 C 72) D 216 for
the perimeter and 36 � 72 D 2592 for the area. So, are the perimeter and area
the same or is one larger? One now sees that none of these is true; one cannot
compare lengths with areas since their units of measurement are different. I omitted
feet and square feet which suggests that these cannot be compared. However, one
can compare the square of length with area, and for rectangles this is a problem
which can be given and solved in late primary school or middle school. It is closely
related to the claim made by the Chinese teacher of the square having the largest
area among all rectangles with the same perimeter. The usual way this isoperimetric
(same perimeter) problem is used in the USA is when the area of a rectangle has
only been discussed when the side lengths are positive integers. Then, for many
specific examples, there are only finitely many cases to consider and these can be
treated by computation.

There are a number of different ways to treat the general case. One is to take a
rectangle with sides a > b and use it to construct much, but not all, of the square
with side (a C b)/2 by removing a smaller rectangle with sides (a � b)/2 and b and
placing it on top of the remaining rectangle. A small square of side (a � b)/2 is
missing, so the area has decreased by this much. What has been done here is to give
a geometric proof of the identity:

..a C b/ =2/2 � ab D ..a � b/ =2/2:

Since the right-hand side is positive when a ¤ b, we have shown that
((a C b)/2)2 � ab. Divide by (2(a C b))2 the square of the perimeter for the
original rectangle and the square to get

ab=.2 .a C b//2 � 1=16:

This shows that the area A of the original rectangle divided by the square of the
perimeter P satisfies

A=P2 � 1=16 (11.1)

and equality holds only when the rectangle is a square.
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This is a direct relationship between area and perimeter for a rectangle but clearly
not what was being asked for. I think it is too much to expect many teachers to go
this far, but the description Ma quoted from a Chinese teacher is something we
could hope for. We are very far from this now. I would like math specialists and
high school math teachers to know all of this. In a new book (Wu, 2016, p. 197),
Wu includes the isoperimetric inequality (11.1) for rectangles as a problem. This is
the first of two books he has written for middle school teachers.

Teachers in elementary and middle schools need to know some things about
lengths and areas of figures that are not necessarily rectilinear. There is a difference
between lengths and areas in a plane, which is important but almost completely
ignored in school mathematics. When dealing with area, one can find, intuitively,
both upper and lower approximations to the area, and, for standard figures showing
up in school mathematics, these can be refined to get good approximations to the
area of the figures. For arc length in the plane, if one connects successive points on
a curve, one gets a lower approximation to the length of the curve, and for smooth
curves, this is what will be used later in calculus to motivate the formula for the
arc length of a curve. However, an upper bound on the arc length, even for a circle,
requires work and is not appropriate for school mathematics.

How much of this do you think Leinwand had in mind, and how much do you
think most readers of his book would know? The following will give some idea.
Near the start of Chap. 9 in Leinwand (2009), there is the following:

What is the formula for the volume of a sphere? Really, do you know it? Have you forgotten
it? Do you ever use it? Do you even care? : : : But now return to our middle school and high
school classes where memorizing and regurgitating the formula V D (4/3)�r3 is a perfect
way to sort students out on the basis of memorization criteria that have little relation to
understanding and actually using the formula.

Here is what he seems to think understanding this formula is:

: : : knowing how much 4/3 is, what � is equal to, what the r represents, and what that little
elevated 3 means – that is how to use the formula once it is presented.

He could at least have mentioned why the exponent is 3, since volumes of similar
figures change as the cube of the factor of dilation. He could also have mentioned the
fact that the constant   is the same constant which appears in the formulas for the
area and circumference of a circle. Mathematics has many miracles, some minor and
some major, and these should be celebrated. The area of a circle is a constant times
r2 and the circumference is a constant times r. The fact that these constants differ
only by a factor of 2 is a miracle which can be motivated relatively easily. The fact
that the same constants in the volume of a sphere and its surface area are also rational
numbers times the same constant for a circle is a bit deeper. It is possible to define a
four-dimensional sphere, and here the relevant constant is a rational multiple of �2.
I do not expect most mathematics educators to know this last part, but the two- and
three-dimensional results are miracles and should be appreciated by people doing
mathematics education. The factor of 1/3 is also interesting; it comes from a cone
which, in school mathematics, can be motivated from a pyramid, but that is too far
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of a stretch to mention in a book like the one Leinwand wrote. However, it should
be much more relevant in a high school class than to suggest that one needs to ask
students “how much 4/3 is.”

Let us return to the problem of perimeter and area of rectangles. Here is another
way to treat this problem at an older age. It is often useful to revisit a problem after
new ideas have been introduced. The following is an example of this. If the sides of
a rectangle have lengths a and b, then the area is ab and the perimeter is 2(a C b).
Let us simplify the last to a C b and form a function as follows:

f .x/ D x2 C .a C b/ x C ab D .x C a/ .x C b/ :

Setting this equal to 0 gives a quadratic equation with real roots. We know a
necessary and sufficient condition for this, which for this equation gives

.a C b/2–4ab � 0 and equal to 0 if and only if a D b:

Recall that the inequality we just proved is the one obtained before when
considering the isoperimetric inequality for rectangles. One aspect of this argument
is an example of an important fact, the connections between the coefficients in a
quadratic polynomial and the zeros of this polynomial. This connection also holds
for polynomials of higher degrees. This suggests the question: Is there is a similar
theorem in three dimensions? It is much more likely that an algebraic method
would generalize easily than that a cutting and pasting argument like the one in
two dimensions would. The argument below contains aspects which all high school
teachers would benefit from, and some middle school teachers would also.

The natural analogue of a rectangle is a rectangular prism, or a box to give it a
shorter name. If the edge lengths are a, b, c, then the volume is abc, the surface area
is 2(ab C ac C bc), and the sum of the edge lengths is 4(a C b C c). Again, we will
form a function using the simplified products; that is, the coefficients 2 and 4 will
be dropped. Set

g.x/ D .x C a/ .x C b/ .x C c/ D x3 C .a C b C c/ x2 C .ab C ac C bc/x C abc:

The zeros of this function are real, and the last time we had that we used the
criteria for a quadratic equation to have real zeros. We can do the same thing by
reducing the cubic to a quadratic by a method which gives real roots to the quadratic.
Fortunately there is a result like this in calculus. A real-valued differentiable
function which has two zeros has a zero of the derivative which lies between the
two zeros of the function. This is Rolle’s theorem. Next,

g0.x/ D 3x2 C 2 .a C b C c/ x C .ab C ac C bc/ :

This function has real zeros if and only if 4(a C b C c)2–4 � 3(ab C ac C bc) � 0.
As before, this inequality can be rewritten as

2 .ab C ac C bc/ =16.a C b C c/2 � 1=24: (11.2)
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The left-hand side is the surface area of the box divided by the square of the
sum of the edge lengths, and the constant on the other side is the same ratio for all
cubes, so in particular for the cube which has the same sum of the edge lengths.
Also, there is equality only if the given box is a cube. Thus for a box with fixed
sum of the edge lengths, the largest surface area this box could have is when it is a
cube. There should two more theorems of this type. If the sum of the edge lengths
is given, the largest volume a box can have is when it is a cube, and if the surface
area of the box is given, the largest the volume can be is when the box is a cube.

We would like to use a similar proof, but to do that, we need an operator which
reduces the degree of a polynomial by one and does not remove the coefficient abc.
Here are two ways this can be done. One is to reverse the coefficients in g(x) by
setting h(x) D x3g(1/x). The other way is to make g(x) homogeneous by introducing
a new variable y:

h .x; y/ D x3 C .a C b C c/ x2y C .ab C ac C bc/ xy2 C abcy3:

Then take a derivative with respect to y. I will leave this problem now, so that
the reader can have some fun with it. The basic idea used here is implicit in the
work of Newton (1972) and explicit in a paper by Maclaurin (1729). Some of the
connections with isoperimetric inequalities were stated by Hardy, Littlewood, and
Polya (1952, p. 36), as are readable treatments of the inequalities of Newton and
Maclaurin. The full story works in n-dimensions. The three-dimensional theorems
are interesting for another reason. All that is needed to prove them is Rolle’s theorem
and a little algebra. When Rolle’s theorem is done in calculus, it is just used as a
step to getting the mean value theorem, which is then used in various ways. It is nice
to have an application of Rolle’s theorem which students can appreciate for its own
sake. A paper (Askey et al., 2015) on the three-variable inequalities has appeared in
Mathematics Teacher.

11.4 Fractions

Leinwand’s book deals mostly with suggestions for teaching. His Instructional Shift
8 is:

Minimize what is no longer important, and teach what is important when it is appropriate
to do so.

Here is what he wrote about fractions (Leinwand, 2009, p. 56):

Sevenths and ninths. When was the last time you encountered a seventh or a ninth in
everyday life? Because nearly all encounters with fractions are limited to ruler fractions
such as 1/2, 1/4, 1/8, and 1/16, thirds and sixths, and fifths and tenths, one has to question
the need to find a common denominator for fifths and elevenths. Only in a textbook in a
math class do we impose the lunacy of 3/13 C 4/7!
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For someone like me who read the original NCTM Standards back in the early
1990s, this might bring back memories of a longer paragraph which includes
not only small denominators but the following (National Council of Teachers of
Mathematics, 1989, p. 96):

This is not to suggest, however, that valuable instruction time should be devoted
to exercises like 17/24 C 5/18 or 5 3/4 � 4 1/4, which are much harder to visualize
and unlikely to occur in real-life situations.

As bad as the NCTM paragraph is, what Leinwand wrote is worse. What
conceptual understanding could one have of fractions if one cannot find a common
denominator for fifths and elevenths? Is it really significantly harder to add
3/13 C 4/7 than to add 3/4 C 4/5? One is (3 � 7 C 13 � 4)/(13 � 7) and the other
is (3 � 5 C 4 � 4)/(4 � 5). The first is then (21 C 52)/91 D 73/91 and the second is
(15 C 16)/20 D 31/20. All of the numerical computations can be done mentally. If
one wants to go one step further and write both as an integer and a fraction between
0 and 1, the second has an extra step, which adds a bit to the complexity so the
two computations have about the same complexity. At least the NCTM example of
addition had denominators which had some common factors, so finding the least
common divisor adds to the complexity. Fortunately, the Common Core does not
suggest that least common denominators be used when starting to add fractions with
different denominators. One reason for not mentioning least common denominators
when starting to add fractions with different denominators is that doing that means
having to introduce two new ideas at the same time. It is usually much harder to
learn two new things at the same time than to learn them separately.

One referee of this paper suggested dropping the section on fractions. Let me add
a bit to help explain why I think it is necessary to focus on this topic. First, here are
some results on an eighth grade TIMSS fraction problem from 2011.

Which shows a correct method for finding 1/3–1/4?

A. (1 – 1)/(4 – 3)
B. 1/(4 – 3)
C. (3 – 4)/(3 � 4)
D. (4 – 3)/(3 � 4)

Here are a few of the results on this question. The numbers are percents:

Correct A B C D

Average 37.1 25.4 26.0 9.4 37.1
Korea 86.0 2.7 6.9 4.2 86.0
USA 29.1 32.5 26.1 10.7 29.1
Finland 16.1 42.3 29.5 8.7 16.1

You can read more results at http://tinyurl.com/z118a7u or (Askey, 2015) and
links provided there.

http://tinyurl.com/z118a7u


11 What Content Knowledge Should We Expect in Mathematics Education? 227

I hope most readers are as concerned about this as I am. After the first few NAEP
results, there were articles written about how poorly our students did on fractions.
One is on the web and it contains other references. See Post (1981). One item was
1/2 C 1/3 and 33% of the students got it right. Unfortunately the alternate possible
responses were not included, and I have been unable to find them on the NAEP
website. There are other results mentioned in this paper, and the highest score was
74% of 8th grade students correctly picking the answer to 4/12 C 3/12.

There are some other fraction problems given in TIMSS which set up a quandary
both with the question about 1/3–1/4 and among the results there. Here are two
questions and a few results. These are from TIMSS 1995 and were given to students
in grades 7 and 8.

K9 3=4 C 8=3 C 11=8 D

A 22/15 B 43/24 C 91/24 D 115/24

The eighth grade international average was 49% correct. The international
average was 35% for answer A. For the USA it was 42% for A and 45% for D.
Notice that both A and B have answers which are smaller than 2, and the sum is
clearly larger than 2 since the second fraction is 2 2/3. 11/8 D 1 3/8 > 1 3/9 D 1
1/3, so the sum of the second and third fractions is larger than 4, but 91/24 < 4 since
24*4 D 96. Those picking A clearly did not realize this type of argument, but it is
likely that some of the others did since the percent of students picking B or C was
small.

Here is another problem which involves subtraction.

L17 What is the value of 2/3–1/4–1/12?

A 1/6 B 1/3 C 3/8 D 5/12 E 1/2

For both the USA and internationally, the most common answer was the correct
one, B: 39% USA and 42% internationally. The second most popular response was
D, with 25% USA and 26% internationally. My guess as to why this was the second
most popular answer is the denominator. Contrast this problem with the 1/3–1/4
one. It is much harder to do the calculations in an exam setting, and there were five
possible answers rather than 4 so one might expect a larger percent of students to
be able to answer the 1/3–1/4 problem correctly. Yet 39% of the students did the
more complicated calculation correctly, while only 29% gave the correct answer for
1/3–1/4. When I wrote the comments on the 2011 TIMSS question which was linked
earlier, I knew that two of the wrong answers were picked because their forms were
somewhat like what one would do for a whole number subtraction problem. I wrote
that the other incorrect answer might have some reason for picking it, but did not
mention what I now think is a reason, and this reason also helps explain why all three
wrong answers might be picked. There is a relatively new book (Kahneman, 2011)
by Daniel Kahneman, Thinking, Fast and Slow. Kahneman argues that humans have
two levels of thinking, which he calls System 1 and System 2. The first is what is
used initially, and if it comes up with an answer which seems reasonable, that is
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usually as far as the thinking goes. If not, the second system is used. The first might
come up with any of the four answers. The two with answers equivalent to 0 and
1 can be explained by analogy with whole numbers. The other two could occur in
the following ways. Suppose a student knows that there is a formula for how to find
the difference between two fractions and it is a somewhat messy formula. These
two answers are somewhat messy so a student who is unsure what to do might pick
one of these two answers at random. If 10% did this and got a negative number, I
would expect that about 10% would have gotten the correct answer with no more
sure knowledge, so the 29% correct could be replaced by about 19% who knew
enough to do the calculation correctly via a rapid system in their brain. Here I am
assuming that the problem of 1/3–1/4 seems so simple that few students will have
to think hard about how to come up with an answer that requires the slower part of
the brain. That would not be the case for 2/3–1/4–1/12. There is a way to do this
rapidly, 1/4 C 1/12 D 3/12 C 1/12 D 4/12 D 1/3, and 2/3–1/3 D 1/3, but few of our
students will do this. For the 1995 problems, the popular incorrect answer for the
addition problem clearly comes in a way similar to what Kahneman describes, and I
suspect that the most common mistake for the subtraction problem came in a similar
way for some students, but most will have had to do some thinking about how the
subtraction is actually done. Of course, just some thinking might not be enough for
students to do the calculation correctly.

11.5 Mathematical Understanding for Secondary Teaching

There is a recent book with the title of this section (Heid et al., 2015). This is
part of a long-term project of mathematics educators at the Pennsylvania State
University and the University of Georgia. Their goal was to start to map out
for secondary mathematics what has been done for primary school mathematics
under the name of Mathematical Understanding for Secondary Teaching, or as they
summarize, MUST. This book (Heid et al., 2015) contains 43 situations which
arose in school classes and comments on the mathematics involved or, in some
cases, that could have been involved in the lesson or as important background
information for teachers and supervisors. These examples and general knowledge
were used to develop the MUST framework. There are three general categories:
Mathematical Proficiency, Mathematical Activity, and Mathematical Context of
Teaching. The first has five parts carried over from Adding It Up (National
Research Council, 2001), Conceptual Understanding, Procedural Fluency, Strategic
Competence, Adaptive Reasoning, and Productive Disposition, and a sixth has been
added, Historical and Cultural Knowledge. The first chapter, written by Jeremy
Kilpatrick, ends with:

Just as we have sought the input of many mathematicians, mathematics teachers, and
teacher educators during construction of this framework, we welcome comments on our
final product from those in the field.

There are many comments which could be given, but here only one situation will
be discussed. This is Chap. 41, Situation 35, Calculation of Sine.
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The prompt is: After completing a discussion on special right triangles (30ı-
60ı-90ı and 45ı-45ı-90ı), the teacher showed students how to calculate the sine
of various angles using a calculator. A student then asked: “How could I calculate
sin(32ı) if I do not have a calculator.”

Various methods are described: the definition of sine for a right triangle with the
use of a protractor and ruler or with dynamical geometry software, a secant line
using 30ı and 45ı, a tangent line from 30ı, and a Taylor polynomial of degree 7
of sin(x) about 0. There is a very important problem where this question arose and
was solved in a different way by Ptolemy. Greek trigonometry dealt with chords
in circles rather than triangles because this was the setting for uses in astronomy.
Tables needed to be computed, and two things were available: chords associated
with angles of 36ı as well as the angles mentioned previously and how to find the
lengths of a chord of half the length of a given chord in terms of the length of the
given chord. Ptolemy’s theorem could be stated and a little information given about
how he used it to get good approximations for that early time. In the course of
outlining this, it would be clear that Ptolemy’s theorem was used as we would now
use the easier addition formulas for sine and cosine. Teachers and some students
would then see two important aspects of the history of mathematics. Very good work
was done long ago, and when learning about it, one can often see how problems led
to development of new mathematical results. One can also frequently see how it is
now easier to do what had been done because of later work. Twenty years ago I
did not know Ptolemy’s theorem nor how useful it could be as a source of different
proofs which use material high school teachers should know well, but based on
experience in a course on proofs at the post calculus level, few good college students
knew this material. Here is an illustration of how to complicate what should be a
very simple proof.

From (Wikipedia, 2017), the proof of Ptolemy’s theorem is easily reduced to
proving the following trigonometric identity:

sin .a C b/ sin .b C c/ D sin.a/ sin.c/ C sin.b/ sin .a C b C c/ :

This is followed with: “Now by using the sum formulae, sin(x C y) D sin(x) cos(y) C

cos(x) sin(y) and cos(x C y) D cos(x) cos(y) – sin(x) sin(y), it is trivial to show that
both sides are equal to” [and then a complicated expression which is the sum of four
terms each of which is the product of four factors is given]. Look it up to see if you
think this is trivial. However, if one uses a simple corollary of the cosine formula,
cos(x – y) – cos(x C y) D 2 sin(x) sin(y), one easily sees that both sides are equal to
[cos(a � c) � cos(a C 2b C c)]/2. When teaching this proof of Ptolemy’s theorem,
it was started in class and given as a homework problem to complete. A simple
proof of the addition formulas had been given, but nothing had been said about how
the product formulas followed from the full addition formulas. All of the students
had taken the full calculus sequence and this included moderately complicated
integrals, so they will have had problems where the product formulas would have
been natural tools to use. A few had been able to work out a proof directly using the
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addition formulas, but none of them did it as slickly as the writer of the Wikipedia
article did, and I do not consider that argument as trivial. It is tedious and ugly.
None of them used the product formula to give a very nice proof.

I was very pleased that a sense of history was added to the MUST framework but
a bit disappointed that no one thought of or knew enough to add Ptolemy’s work as
a good example of how history could be used to illustrate some important points.

11.6 Conclusions

I wish this could have been a more positive paper. The report (National Mathematics
Advisory Panel, 2008) from the National Mathematics Panel Advisory group was
very good, but it has basically been ignored almost since it was published. The
final version of the Common Core Mathematics Standards (CCSS-M, 2010) is much
better than I thought it would be, and parts of it could make a big difference if a few
other things happen. One is adequate professional development. By and large that
has not happened. Textbooks need to be improved. As Wu has remarked, it will
take a lot of work to replace TSM [textbook school mathematics] by something
much closer to mathematics. See (Wu 2017) for this and a much broader treatment
of needed content knowledge than has been given here. The goal of the present
paper is to illustrate to some extent the depth of the problems. The problems go
well beyond content knowledge for teachers, it exists at all levels. Roger Howe has
spent a lot of time and energy on whole numbers, and this has been appreciated.
As school mathematics becomes more abstract, which it does with fractions, the
problems become harder. Wu has spent a lot of time and energy on fractions, and
the revised treatment of fractions in the Common Core is very similar to what he
has been writing for about 15 years. However, the comments in Section 3 from
Leinwand’s book show that much more education needs to be done in the general
mathematics education community. There is a review of Leinwand and Mathematics
(2009) in the Spring 2015 issue of the NCSM Newsletter. The review includes the
following:

The concluding chapters focus on accountability and provide a variety of practical
expectations that rely on commitment from all levels to effect change. The book includes
a lesson plan template, a crib sheet for raising mathematics achievement for all, and
a research-based vision of teaching and learning with 12 interrelated characteristics of
effective instruction in mathematics. This has become part of the introduction in my methods
course for beginning middle level and high school mathematics teachers.

There were no comments on the statements: question the need to find a common
denominator for fifths and elevenths or the lunacy of 3/13 C 4/7. One wonders
why such bad advice is almost never called out in the mathematics education
literature. Leinwand’s book (Howe) was published in 2009, and the first draft of
these standards below high school was only released in late 2009, so Leinwand’s
book reflects his views before the Common Core Standards were available. One
hopes it is somewhat different now.
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Chapter 12
Approaching Euclidean Geometry Through
Transformations

Zalman Usiskin

Abstract Almost 50 years ago, Arthur Coxford and I developed a high school
geometry course in which geometric transformations were fundamental to the
mathematical development. Properties of reflections and size changes (dilations)
were taken as postulates and used to deduce properties of symmetric figures,
the traditional theorems of triangle congruence and similarity, and develop the
relationships among the various types of isometries. In Continuous Symmetry: From
Euclid to Klein, Roger Howe and William Barker also approach Euclidean geometry
through transformations. The similarities and differences in these approaches are
examined in this paper.

Mathematics and mathematics education are quite different fields. Even the most
casual look at the journals in our fields can attest to this fact. We come closest
to each other when we are speaking about curriculum and instruction, that is,
about the scope, sequence, timing, presentation, and audience for mathematics. But
even then there are significant differences. As one goes down the grades, greater
and greater attention needs to be given to the student and the pedagogy rather
than to the mathematics itself. The challenge for all of us is to be true to the
mathematics and to mathematical truth, but we cannot expect materials written
for all or virtually all students to have the same amount of rigor and detail that is
necessary in materials written for serious students of mathematics, and we strive to
make materials accessible, exciting, and worthwhile for students so as to maximize
their interest in learning our subject.

Most mathematicians and most mathematics educators do not venture into
each other’s fields, but mathematicians have long assisted mathematics education
without leaving the stark side.1 We are here because Roger has been one of those

1Earlier in the conference, Sybilla Beckmann had humorously spoken of mathematicians’ work in
mathematics education as going over to the “dark side.”
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mathematicians who have ventured into mathematics education. My wife is a
managing editor in mathematics at Pearson and knows Roger because he has been
involved with their elementary program enVision Mathematics as a subject-matter
expert. In my remarks today I wish to speak about a major mathematical effort of
Roger’s that no one has yet mentioned that I consider to be a wonderful contribution
he has made to mathematics education as a mathematician, and it connects his work
with mine in a way quite interesting to me and I hope interesting to you as well. It
is his work in college-level geometry.

Roger and I both received our doctorates in 1969. His doctorate was in mathemat-
ics and mine in mathematics education, but there was something in common with
our dissertations. Both had to do with groups – his with nilpotent groups and mine
with transformation groups. My remarks today traverse about four decades and are
about a more specific idea, namely, our common interest in approaching geometry
through transformations – mine as expressed in my textbook writing (Coxford &
Usiskin, 1971; Coxford, Hirschhorn, & Usiskin, 1991; Usiskin et al., 1997; Benson
et al., 2009) and Roger’s as expressed in his work with William Barker in their
book Continuous Symmetry: From Euclid to Klein (2007) and in a revision of
Chap. 1 available online on the AMS website. Even though Roger’s work is not
directly in mathematics education, it is valuable to mathematics teaching at all levels
because it provides a mathematical grounding for approaching Euclidean geometry
via transformations that is sorely needed in today’s environment.

Allow me to relate how I fell into this curricular area. I had the opportunity to
do my bachelor’s work in mathematics at the University of Illinois, the home of
the first of the new math projects, UICSM. And because I had always wanted to
be a mathematics teacher, my undergraduate work included mathematics education
courses on the side in which UICSM was discussed, and I learned that it is possible
to approach the same school mathematics in qualitatively different ways. I went to
Harvard for my master’s degree because I wanted to learn about SMSG, the biggest
of the new math projects, from Ed Moise, who had written the SMSG Geometry text.
I studied more geometry there with his college text Elementary Geometry from an
Advanced Standpoint.2 I loved the content, but I thought it was rather unimportant
in anyone’s mathematics education. I argued publicly then that, while a little bit of
geometry needed to be known by all students, the one-year geometry course should
be abolished from the high school curriculum. My argument was quite simple: In
college as a mathematics major, there was little use for most of the geometry I
learned in high school. The area and volume formulas I used in calculus could
be learned before high school. Abstract algebra, real analysis, complex variables,
etc., did not use any of that geometry. My favorite one-liner was: “There are few
functions whose graph is a triangle.”

2I took two courses with Moise’s book as the text, one taught by Moise himself and the other taught
by Thomas A. Lehrer, who at the time was writing material for the television program That Was
The Week That Was (TW)3. The only reference Tom made to his other life in this course was to
mention, when non-Euclidean geometry first became the subject of discussion, that “regardless of
what you might have heard, there is no evidence that Lobachevsky ever plagiarized.”

http://dx.doi.org/10.1007/978-3-319-61434-2_1
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But the next couple of years, when I taught full time in a high school, I found that
it was only in geometry that I was teaching mathematics! In algebra I was spending
almost all classroom time on algorithms – given this equation, here is what you can
do to solve it; given this expression, here is how you might simplify it; and given
this word problem, here is a trick to translate the information into mathematics. But
in geometry I was teaching the essence of mathematical reasoning, how to get from
some given information to a desired conclusion, how to show that the truth of one
statement follows from others, and where results fit into a mathematical system.

When, as a first-year doctoral student at the University of Michigan, my advisor
Joe Payne suggested looking into the idea of approaching geometry through
transformations, I immediately responded. I learned that it was Art Coxford, then a
young professor in mathematics education, who had wanted to try this approach,
and, after only a couple of meetings, we decided to write a full course using
transformations. If we could develop a postulational system, here was a way to
approach geometry that would enable the teaching of deduction and proof, that
would give students mathematics that would be useful in their later study of linear
and abstract algebra, and that would elegantly deal with the all-important concepts
of congruence and similarity. We arranged that we would each teach a geometry
class the next school year at the University High School.

Here is a quote from Roger’s book.

We have tried to write a book that honors the Greek tradition of synthetic geometry and at
the same time takes Felix Klein’s Erlanger Programm seriously. (p. ix)

This is just like what Art Coxford and I tried to do – to honor our tradition of a
single-year synthetic geometry course in high school that would follow the Erlanger
Programm.

What does it mean to “follow the Erlanger Programm”? To me the key is found
in general definitions of congruence and similarity that apply to any kinds of figures
and involve transformations: Two figures ’ and “ are congruent if and only if there
is a distance-preserving transformation that maps ’ onto “.3

α β

Two figures ’ and “ are similar if and only if there is a distance-multiplying
transformation that maps ’ onto “.

3The figures ’ and “ here have purposely been chosen not to have any angles or segments to show
the generality of the definitions of congruence and similarity.
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α

β

“Following tradition” means having a development of the theorems of Euclidean
geometry from postulates and careful definitions. Barker and Howe base their
postulational development largely on that of Moise (1963). Moise himself combined
the work of David Hilbert at the turn of the twentieth century (Hilbert, 1902) with
that of George David Birkhoff in the 1930s (Birkhoff, 1932).

The result, for Barker and Howe, is the following structure of postulates (Table
12.1). The real numbers and their properties are assumed. There are incidence and
plane separation postulates; the ruler and protractor postulates come basically from
Birkhoff4; SAS congruence comes from Hilbert; and we know we need Playfair’s
parallel postulate or an equivalent somewhere.

It is notable here that the SAS congruence proposition is a postulate, whereas it
was a theorem for Euclid. Euclid had tacitly assumed that figures could be moved
without changing their measures. This tacit assumption is significant; it means that
the lengths of segments and measures of angles are consistent throughout the plane.
By assuming SAS congruence, this consistency is made explicit.

The postulate set Art Coxford and I used is almost identical to that of Barker and
Howe (Table 12.2). After all, I was a student of Moise. But we did not use SAS
congruence. Instead, we introduced reflections and assumed that every reflection
was a transformation that preserved distance, collinearity, betweenness, and angle
measure. This is obviously quite a powerful postulate, but it is easier to understand
than SAS congruence, and it serves the same purpose.

We made this choice for mathematical and pedagogical reasons. Pedagogically,
one of the attributes of transformations that attracted Art Coxford to the approach
was that students could get their hands into the geometry – they could draw images
of figures. Our course would contain much that is hands-on. Mathematically, as
soon as we had students drawing, they were drawing images of images, and so
they were finding images under composites of reflections. We defined rotations and
translations as composites of reflections, so our reflection postulate enabled us to
conclude immediately that rotations and translations preserve distance and angle
measure. Then we could define congruence for any figures in terms of reflections
and composites of reflections.

4Birkhoff’s postulate set is notable for including the SAS similarity proposition rather than SAS
congruence as a postulate. A few years after publishing his postulate set, Birkhoff used this set for
a high school geometry text he wrote with Ralph Beatley (Birkhoff & Beatley, 1941).
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Table 12.1 Postulates for Euclidean geometry (Barker & Howe, p. 120 and Revision 2.0)

0. We assume the existence of the complete ordered field R of real numbers
1. (Incidence) (a) The plane contains at least three non-collinear points
(b) Given two points, there is exactly one line containing them.
2. (Ruler) There is a 1–1 mapping from the points of a line onto R and a distance function
applicable to any pair of points on that line satisfying the rest of these axioms. (The length of a
segment is defined as the distance between its endpoints.)
3. (Plane separation) For any line L, the points not on L consist of a union of two disjoint
nonempty convex sets H1 and H2 (half planes) such that every segment joining a point of H1 to
a point of H2 intersects L.
4. (Protractor)

(a) Every angle has a measure between 0 and 180.
(b) If ray AB is on line L, then for every number r with 0 < r < 180, there exists a unique ray

AC in each half plane of L such that m∠CAB D r.

(c) (Angle addition) If ray AD is in the interior of ∠BAC, then
m∠BAC D m∠BAD C m∠DAC.

(d) If two angles form a linear pair, then they are supplementary.
5. (SAS congruence) If there is a correspondence between two triangles such that two sides and
the included angle of the first triangle are congruent to the corresponding parts of the second
triangle (i.e., have the same lengths and angle measures), then the triangles are congruent.
6. Parallel postulate (Playfair) For any line L and point P not on L, there exists a unique line L’
parallel to L containing P.

Table 12.2 Some postulates for Euclidean geometry (from Coxford and Usiskin, pp. 599–601)

0–4 and 6. (Essentially as in Barker and Howe)
5. (Reflection) (replacing SAS congruence)

(a) Given a reflecting line, every point has exactly one reflection image.
(b) Reflections preserve collinearity.
(c) Reflections preserve betweenness.
(d) Reflections preserve distance.
(e) Reflections preserve angle measure.

7. (Orientation) A convex polygon A1A2 : : : An is either clockwise oriented or counterclockwise
oriented but not both. Reflections switch orientation.
8. (Size change) Every size transformation preserves collinearity, betweenness, and distance.
Under a size transformation of magnitude k, the distance between any two images is k times the
distance between their preimages.

We used the language and notation of function composition and called the result
of following one transformation by another the composite, because we wanted to
take advantage of this language in the introduction of functions, which at that
time in the United States was standard fare in the course following geometry. We
felt that introducing the standard T(P) function notation for the image of P under
the transformation T made it much easier for students to understand f (x) notation
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Fig. 12.1 An isosceles
triangle

Fig. 12.2 An isosceles
triangle with its symmetry
line and two medians

for functions of real numbers when that was introduced.5 A dissertation of Andy
Kort (1971) involving students who had studied from our text verified our informal
finding.

An aspect of approaching geometry through transformations that is seldom
mentioned is that they lead students to view figures as a whole rather than as
assemblages of sides and angles. Consider an isosceles triangle (Fig. 12.1).

Why do we think the base angles of this triangle are congruent? I don’t think it
is because we split the triangle into two right triangles and use SAS to prove the
base angles are corresponding parts of congruent triangles. I think we view the base
angles as congruent because we see the symmetry of the triangle. In fact, every
geometry text that I have ever seen pictures the isosceles triangle like the one in
Fig. 12.1, with a horizontal base so that the line of symmetry is vertical, in essence
recognizing that it is the symmetry of the figure that we want to have as a picture
in our head. The traditional proof only establishes what we already know due to
the symmetry. So another reason for starting with reflections was to use properties
of reflections to prove that certain figures are reflection-symmetric, and from that
symmetry comes all sorts of properties.

For instance, we can immediately deduce that two medians of the isosceles
triangle are the same length, because they are reflection images of each other
over the isosceles triangle’s symmetry line; so are two of the angle bisectors and
two of the altitudes (Fig. 12.2). And these pairs of segments all intersect on the
reflecting line because a point on the reflecting line coincides with its reflection
image over that line. And from this we can quickly extend the idea to demonstrate
the symmetry and get properties of other reflection-symmetric figures, including
equilateral triangles, isosceles trapezoids, kites, and rhombuses.

5An advantage of using T(P) before f(x) is that “T(P)” is a natural abbreviation for a particular
image of a particular point P under a particular transformation T. The substitution of r for T when
T is a reflection, and R for T when T is a rotation has no counterpart with the first functions students
encounter. For instance, we have never seen q substituted for f when f is a quadratic function, or c
substituted for f when f is a cubic function. Later, of course, students do have names such as “sin”
and “log” for those functions, but these do not typically occur in a student’s early experience.
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Perhaps the trickiest aspect of dealing with transformations in a rigorous or
quasi-rigorous manner has to do with directionality. This manifests itself in the
concepts of orientation and of directed angle. We want to talk about reflections
switching orientation, but a figure does not have an orientation a priori. We can
say we go around a triangle in the plane in a clockwise direction, but if we look
at the plane from the bottom rather than the top, it will be counterclockwise. Here,
in developing the mathematics, I was afraid of the technicalities. This is why we
punted by introducing a postulate that a polygon, named by its vertices in order, has
either clockwise or counterclockwise orientation and its reflection image has the
other orientation.

Barker and Howe treat this elegantly by working in the concept of parity. They
define (p. 194) an isometry to be orientation-preserving if it is the product of an
even number of reflections and orientation-reversing if it is the product of an odd
number of reflections. This requires prior knowledge that no isometry can be both
the product of an odd and an even number of reflections. Discussing the algebra of
transformations and the classification of isometries is something we left to the last
chapter in our book, where we studied groups of transformations. Barker and Howe
use the algebra of transformations to handle this idea in a very nice way.

We did not discuss directed angles. We hand-waved clockwise and counterclock-
wise rotations. With respect to what are usually today called dilations but what
we called size transformations, we introduced a postulate because it is reasonably
difficult to prove that a dilation of magnitude k multiplies all distances by k. Barker
and Howe treat this in detail.

Art Coxford and I titled our book Geometry – A Transformation Approach
(Coxford & Usiskin, 1971). We did not title it “Geometry – The Transformation
Approach” because there are so many ways to use transformations to develop
geometry in a mathematical way just as there are so many ways to avoid their
use. Sequence matters. Notation matters. The level of rigor matters. Applications
matter. The most elegant proofs possible of some theorems may be in “The Book,”
as Erdos described it (Schechter, 1998), but there is no section of “God’s book” for
the learning of a mathematical concept. That depends too much on one’s experience
and on the quality of the exposition of the concept.

In the Common Core, 4 of the 10 middle school geometry standards and 10 of the
43 high school geometry standards involve transformations, material that is foreign
to many if not most of today’s mathematics teachers. In the past year, I completed
a study of textbooks published in the United States since 1960 regarding their
treatment of geometric transformations (see Usiskin, 2014). My analysis indicates
that even in those school geometry texts that give some attention to transformations,
the treatment is often confused and incoherent and unrelated to the rest of the
topics in the geometry course. And, sadly, the Common Core standards do not
take advantage of the knowledge about transformations that students are expected
to amass in their study of geometry.

As an example of not taking advantage, here is the first of three Common Core
standards dealing with building new functions from existing functions.
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Standard F-BF.3
Identify the effect on the graph of replacing f(x) by f(x) C k, k f(x), f(kx), and
f(x C k) for specific values of k (both positive and negative); find the value of
k given in the graphs. Experiment with cases and illustrate an explanation of
the effects on the graph using technology. Include recognizing even and odd
functions from their graphs and algebraic expressions for them.

Even if students have only been introduced to reflections, rotations, and trans-
lations, as in the eighth grade standards – even if they have not yet studied those
transformations again as dictated in the high school geometry standards – they could
use the language to see that replacing f(x) by f(x) C k results in the graph of the
function being translated k units up; replacing f(x) by f(x C k) results in the graph
of the function being translated k units to the right; a function is even if its graph
is symmetric to the y-axis; a function is odd if its graph is point-symmetric to the
origin.

But perhaps this would be expecting too much of the Common Core writers.
Witness this quote:

We have been surprised and pleased at how far this idea can be taken. (Barker and Howe,
p. ix)

Art Coxford and I were likewise surprised. From the start, we knew of the
connections with matrices and linear algebra and with groups and abstract algebra.
And we knew we could treat congruence and similarity within geometry quite
nicely. Through the volumes of Yaglom (1962, 1968) in the New Mathematical
Library of the Mathematical Association of America, we learned of nontrivial
geometry propositions with elegant proofs using transformations. Slightly after
our book appeared, Escher drawings became known and popular, adding the word
“tessellation” to our vocabulary. But more immediately applicable to high school
mathematics were some applications to algebra and trigonometry that surprised us.

Our text is, in fact, the first of a projected two-volume work. The second volume will
go beyond traditional Euclidean geometry by introducing coordinates, discussing different
geometries – affine and non-Euclidean (hyperbolic and spherical/elliptical) – in a projective
setting, and ending with an interpretation of Einstein’s Special Theory of Relativity as an
analog in higher dimensions of hyperbolic plane geometry. (Barker and Howe, p. x)

I don’t know if this text has been completed.6 I do know that I am looking
forward to seeing it, because I am certain it will be a significant contribution to
the mathematics for those mathematics educators who are interested in the theory
behind school mathematics. In particular, the introduction of coordinates overlaps
with what is today standard high school mathematics.

6At the symposium, Roger responded that the second volume is in progress.
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A transformation background provides many opportunities for the application of
geometrical concepts and language in the algebra and pre-calculus experiences of
students.

Here are some of the most important applications.

Group 1: Using geometric symmetry

1. From their synthetic definitions, proving that all ellipses and all hyperbolas have
two perpendicular symmetry lines (and thus are both reflection- and rotation-
symmetric).

2. Proving that the graphs of all odd functions are point-symmetric to the origin; all
even functions are reflection-symmetric to the y-axis.

Group 2: The Graph Translation Theorem and its consequences
Graph Translation Theorem: In a relation described by a sentence in x and y,

the following two processes yield the same graph:
1. Replacing x by x � h and y by y � k;
2. Applying the translation T(x, y) D (x C h, y C k) to the graph of the original

relation, the graphs are congruent in the strict geometric sense. [Proof: Let the
graph of the original relation be the set of points R D f(x,y): f(x, y) D 0g and let
x0 D x C h and y0 D y C k. We wish to describe the set of points R0 D f(x0,y0):
f(x, y) D 0g. Notice how the dummy variables differ from the variables in the
equation. Since x D x0�h and y D y0� k, by substitution, R0 D f(x0,y0): f(x0� h,
y0�k) D 0g. That is, the description of R0 is found by replacing x and y in the
original relation by x0�h and y0�k, respectively. Since we traditionally use x and
y both for the variables in the preimage and the image, the description of R0 is
found by replacing x by x�h and y by y�k.]

There are many corollaries to this theorem.

Corollary 1 From the Pythagorean theorem, an equation for the circle with center
at (0,0) and radius r is x2 C y2 D r2, so an equation for the circle with center at (h,k)
and radius r is (x � h)2 C (y � k)2 D r2 (similar for other graphs).

Corollary 2 Point slope: Since the line through (0,0) with slope m has equation
y D mx, parallel lines have the same slope, and a line is parallel to its translation
image, the translation that maps (0,0) to (x1, y1) shows that the line through (x1, y1)
with slope m has equation y � y1 D m(x � x1).

Corollary 3 Phase shift: The graph of y D sin (x � b) is the translation image of
the graph of y D sin x under the horizontal translation T(x, y) D (x C b, y). As a
special case, since cos x D sin (x C �/2), the graphs of the cosine and sine functions
are translation images of each other and therefore congruent.

Corollary 4 The graphs of y D bx and y D abx, a > 0, are congruent. [Proof: Let
d D logb a. Then, bd D a, so y D abx D bdbx D bxCd, so the graph of y D abx is
the image of y D bx under the translation T(x,y) D (x � d,y), and the graphs are
congruent.]
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A continuing theme throughout elementary mathematics is the existence of
analogies between addition and multiplication. The multiplicative analogue of the
Graph Translation Theorem is the Graph Scale-Change Theorem.

Group 3: The Graph Scale-Change Theorem and its consequences
Graph Scale-Change Theorem: In a relation described by a sentence in x and y,

the following two processes yield the same graph:
1. Replacing x by x/a and y by y/b;
2. Applying the scale-change transformation S(x,y) D (ax, by) to the graph of the

original relation; and if a D b, then the two graphs are similar in the strict
geometric sense. [The proof is the multiplicative analogue to the proof of the
Graph Translation Theorem.]

Corollary 1 The graph of y D Asin x has amplitude A; the graph of y D sin (Bx)
has period 2�/B.

Corollary 2 The graphs of y D x2 and y D ax2 are similar; thus, all parabolas are
similar. [Proof: Apply the dilation with center (0,0) and magnitude 1/a to the graph
of y D x2. The image has equation ay D (ax)2, equivalent to y D ax2. More generally,
define a parabola synthetically as the set of points that are equidistant from a given
point (the focus) and a given line (the directrix). Let P and Q be any two parabolas
in a plane. Then there exists a similarity transformation S that maps the focus and
directrix of P onto the focus and directrix of Q, with the magnitude of S being the
ratio of the distances between the foci and directrices of the two parabolas. Since
each parabola is determined by its focus and directrix, the parabolas are similar.]

Corollary 3 More generally, two conics are similar if and only if they have the
same eccentricity. [Proof: Define a conic section as the set of points whose distance
from a given point F (a focus) is k (its eccentricity) times its distance from a given
line d (its directrix). Then, since a similarity transformation applied to the conic
preserves k, then by the same argument as for the parabola, two conics with the
same k can be mapped onto each other by a similarity transformation, so they are
similar.]

Corollary 4 The graphs of y D bx and y D cx (bc ¤ 0, b ¤ 1, c ¤ 1) are similar;
that is, the graphs of all exponential functions are similar.

Group 4: Elegant proofs using rotations

1. The product of slopes of non-horizontal/non-vertical perpendicular lines is �1.
[Proof: We use the fact that the composite of two reflections over intersecting
lines is a rotation whose center is the intersection of the lines and whose
magnitude is twice the measure of the angle between the lines measured from
the first reflecting line to the second. Thus the composite of reflections over
the x-axis and the line y D x is a counterclockwise rotation of 90ı, and so the
image of (x, y) under this rotation is (�y, x). Let a line L contain the origin
and the points P D (x1, y1) and Q D (x2, y2) with x2 ¤ x1. The slope of L is
(y2 � y1)/(x2 � x1), and under a rotation of 90ı, the images P0 D (�y1,x1) and



12 Approaching Euclidean Geometry Through Transformations 243

Q0 D (�y2,x2), so the rotation image L0 of L has slope (x2 � x1)/(�y2 C y1), and
the products of the slopes of L and L0 is �1. Since translating a line does not
affect its slope, we have shown that the product of slopes of two oblique lines
is �1 whether or not they contain the origin. Another way to think about this is
that a 90ı counterclockwise rotation switches coordinates and changes the first
coordinate to its opposite. (A 90ı clockwise rotation likewise switches coordinate
but changes the second coordinate to its opposite.) In the slope formula, these
switches interchange numerator and denominator and multiply one of them by
�1. The product of the slopes is then �1.]

2. Formulas for cos(� C ˚) and sin(� C ˚). [Proof: Define cos x and sin x as
the first and second coordinates of Rx (1,0), the rotation of magnitude x. Then
Rx (0,1) D (�sin x, cos x). By the Matrix Basis Theorem, a 2�2 matrix for R�,

is

�
cos � sin �

� sin � cos �

�
. Multiply the matrices for R� and R˚ to obtain the matrix

for R�C˚ , and notice that the elements of this matrix give (twice each!) the sum
formulas for cos(� C ˚) and sin(� C ˚).]

I expect Barker and Howe to look at the applications of transformations on
the coordinate plane differently than I have. There are so many ways to look at
the same mathematics. While it is natural that mathematicians and mathematics
educators would see things differently, it is always nice to have people with different
backgrounds look at the same subject. We enrich each other by our discussions of
how to approach mathematics as long as we do not become so enamored with our
favorite approach that we cannot tolerate any other.

Thanks to Roger for his many contributions to mathematics and mathematics
education, thanks to the organizers for inviting me, and thanks to you for listening.
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Chapter 13
Curricular Coherence in Mathematics

Al Cuoco and William McCallum

Abstract Building on the work of Schmidt et al., we propose a definition of
curricular coherence for K–12 mathematics that encompasses both the arrangement
of topics, which we call coherence of content, and the habits of mind the curriculum
fosters in students, which we call coherence of practice. We give examples to
illustrate each.

13.1 Introduction

Coherence: the quality or state of cohering: such as

(a) systematic or logical connection or consistency
(b) integration of diverse elements, relationships, or values

—Merriam-Webster.com. Accessed March 4, 2017.

What does it mean for a curriculum to be coherent? Schmidt, Wang, and McKnight
(2005) offer a definition of coherence applied to mathematics content standards
in terms of the logical progression of and deep structures in the discipline (see
pp. 527–529 for a discussion of other notions of curricular coherence). Our goal
in this paper is to elaborate this definition in two directions. First, we distinguish
between standards and curriculum and flesh out the definition of content coherence
for curriculum. Second, we pursue the idea of “integration of values” to propose a
second aspect of curricular coherence: a coherence of practice that guides the way
students do mathematics, following a consistent set of principles.
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There are many definitions of curriculum and many qualifiers for different types
of curriculum (intended, enacted, achieved, hidden). In this paper, we are inter-
ested in definitions that emphasize the temporal, sequential nature of curriculum,
curriculum as a sequence of learning experiences rather than curriculum as a set
of knowledge and skills. Standards set expectations for the knowledge and skills;
curriculum is how we help students meet those expectations.

While standards might remain fixed—a mountain we aim to help our students
climb—different curricula designed to achieve those standards might make different
choices about how to accommodate variation in the abilities and preparation of
students. Some curricula might allow students to move at different rates or work in
different ways, while others might insist that all students share the same experience.
Verbal wars have raged about such decisions, but whatever the choices made, they
are choices about curriculum, not standards; they are how you get there, not where
you are heading.

For example, consider the fact 9C6 D 15. The Common Core State Standards in
Mathematics (CCSSM) (National Governors Association Center for Best Practices
and Council of Chief State School Officers, 2010) set the expectation that students
know this fact from memory. How are students to achieve this goal? One might
adopt a traditional method and have student chant the math facts in chorus, repeating
day after day, until they are fixed in memory. One might adopt a progressive
method which has students experimenting with cubes or rods, putting them together
and counting, slowly acquiring the addition facts through repeated exposure to
experiences that illustrate them. Or one might adopt an extensible method. If you
understand 9 C 6 D 15 as a result of making a ten, as in 9 C 6 D 9 C .1 C 5/ D

.9 C 1/ C 5 D 10 C 5 D 15, then not only do you have 9 C 6 D 15, but you have
also opened the door to 9 C 7 D 16, 9 C 8 D 17, 9 C 16 D 25, 29 C 6 D 35, and
so on. No matter which path is taken, adherents of different methods can embrace
the standard itself. Indeed, having common standards allows one to make scientific
comparisons of different methods.

While standards by themselves are nothing without a viable way of achieving
them, standards can help or hinder the writing of coherent curriculum. In that regard,
CCSSM made some important shifts from previous state standards, which were
often simple bulleted lists of performance objectives, all of equal importance. This
made it easy to write assessments; just write ten questions for each standard.

But you wouldn’t describe the journey up a mountainside in steps of equal size.
If you were thinking about how to get your students up the mountain, you would
make sense of things: identify key landmarks and stretches of trail to single out—a
long path through the woods, a steep climb up a ridge.

By the same token, mathematics has its landscape. CCSSM pays attention to this
landscape by laying out pathways, or progressions, that span across grade levels
and between topics, so that a third grade teacher understands why she is teaching a
particular topic, because it will help students with some other topic in the next grade
and build on what they already know. The standards were built around coherent
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progressions, developed in collaboration with teachers, education researchers, and
mathematicians. As a result, they are coherent in the sense of Schmidt and Houang
(2012).

For this reason, we will base the discussion in this paper on CCSSM. However,
the same points could be made with respect to any coherent set of standards.

13.2 Coherence of Content

By the content of a curriculum, we mean the collection of mathematical concepts
and skills it aims to teach. That content can be arranged coherently or not. Schmidt
et al. (2005) define a coherent arrangement as one that is:

articulated over time as a sequence of topics and performances that are logical and reflect,
where appropriate, the sequential or hierarchical nature of the disciplinary content from
which the subject matter derives. That is, what and how students are taught should reflect
not only the topics that fall within a certain academic discipline, but also the key ideas that
determine how knowledge is organized and generated within that discipline. This implies
that to be coherent, a set of content standards must evolve from particulars (e.g., the meaning
and operations of whole numbers, including simple math facts and routine computational
procedures associated with whole numbers and fractions) to deeper structures inherent in
the discipline. These deeper structures then serve as a means for connecting the particulars
(such as an understanding of the rational number system and its properties).

This definition suggests three specific ways in which a coherent arrangement of
topics might be achieved: through logical sequencing, through evolution from par-
ticulars to deep structures, and through using deep structures to make connections.

13.2.1 Logical Sequencing

The first property of a coherent curriculum is that it makes clear the logical sequence
of mathematical concepts.

Consider, for example, the concepts of similarity and congruence. It is quite
common in school curricula for similarity to be introduced before congruence.
This comes out of an informal notion of similarity as meaning “same shape” and
congruence as meaning “same shape and same size.” However, the fact that the
informal phrase for similarity is a part of the informal phrase for congruence is
deceptive about the mathematical precedence of the concepts. For what does it mean
for two shapes to be the same shape (that is to be similar)? It means that you can
scale one of them so that the resulting shape is both the same size and the same
shape as the other (that is congruent). Thus, the concept of similarity depends on
the concept of congruence, not the other way around. This suggests that the latter
should be introduced first.
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This is not to say you can never teach topics out of order; after all, it is a common
narrative device to start a story at the end and then go back to the beginning, and it
is reasonable to suppose that a corresponding pedagogical device might be useful in
certain situations. But the curriculum should be designed so that the learner is made
aware of the prolepsis.

Making clear the logical dependence of mathematical concepts does not mean
that the entire curriculum should be built up from axiomatic foundations. It is
a common criticism of the New Math, deserved or not, that it tried to do this.
Wu (1996) has proposed the weaker notion of local axiomatics as an organizing
principle:

before the proof of a theorem, make clear what statements are assumed to be true and
proceed to show how to use them in the proof. This shows students how to demonstrate the
truth of a statement on the basis of explicit hypotheses. A reasonable mathematics education
should aim for at least this much.

For example, in geometry, CCSSM recommends defining congruence and similarity
in terms of rigid transformations and dilations and taking for granted their basic
properties (that rigid transformations preserve distance, angle, and parallelism and
that dilations preserve all these except distance). From this basis, one can prove the
basic criteria for congruence and similarity of triangles and get quickly to interesting
theorems, rather than making the long march from the Euclidean axioms.

Although the examples we give here are from secondary school, the principle
applies at elementary grades as well. Logical sequence is established by reasoning
and proof, and these should be present at all grade levels, in grade-appropriate forms.
(See Ball and Bass (2003) for a discussion of reasoning and proof in a third grade
classroom.)

13.2.2 Evolution from Particulars to Deep Structures

The principle of logical sequencing can determine the ordering of a set of topics.
Since time is one-dimensional, and curriculum occurs over time, some principle for
ordering is necessary. However, mathematics is not a linearly ordered set of topics;
it is better viewed as a network. A deep structure is, roughly speaking, a node in
that network with many connections. Of course, this is not a precise definition;
the organization of the subject into a network is to a certain extent a matter of
judgment and preference, although some connections are dictated by the principle
of logical sequencing. However, this will serve for a start in describing the principle
of evolution from particulars to deep structures.

We focus on two ways in which the process of evolution occurs: extension and
encapsulation. Extension is a process by which a particular principle is repeatedly
applied to ever-broader systems, thus revealing its nature as a deep structure.
Encapsulation is a process by which a related array of concepts and skills becomes
encapsulated into a single compound concept or skill.
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Extension is exemplified in the way that arithmetic with whole numbers is ex-
tended to fractions, integers, and rational numbers through a program of preserving
the properties of operations. The fact that .�3/ � .�5/ is 15 is a definition, rather
than a theorem—it has to be that way if we want arithmetic with integers to obey
the distributive property. The properties of operations start from observation of
particular instances and evolve into powerful deeper structures undergirding the
number system.

In a similar way, the meaning of rational exponents is determined by a desire to
extend the properties of exponents for whole number expressions.

Encapsulating processes and viewing them as single objects is a theme that
runs throughout the history of mathematics—the methods of one generation often
become the objects of study for the next. A coherent curriculum acknowledges this
phenomenon by introducing certain ideas as methods and then gradually providing
experiences that allow students to encapsulate these methods and work with them
as elements of a new system.

An example is the development of fractions. CCSSM in Grade 3 has a standard:

Understand a fraction 1=b as the quantity formed by 1 part when a whole is partitioned into
b equal parts; understand a fraction a=b as the quantity formed by a parts of size 1=b.

Later students are expected to place fractions on the number line and reason about
equivalent fractions using this representation. A fraction as a number on the number
line encapsulates many prior ideas and activities: dividing a physical object into
halves or thirds; recognizing a geometric figure as a fraction of a larger figure
representing the whole; moving from area representations to linear measurement
representations; understanding the number line as marked off in unit lengths;
subdividing those lengths into n equal parts and thinking of those parts as a new
sort of unit, an nth, and measuring out distances in those new units; and correlating
all these activities to the numerator and the denominator of the fraction.

This is a powerful encapsulation and therefore one that needs to be approached
gradually, from concrete models (e.g., sharing brownies) to area models (subdivid-
ing geometric figures) to tape diagrams (which are transitional between area models
and linear models) to number lines as abstractions of tape diagrams.

Encapsulation builds coherence by tying what where previously disparate ideas
and actions into a tightly connected structured bundle which becomes viewed as an
object in its own right.

An important type of encapsulation is the evolution of representations. In
advanced mathematics, a representation is a mapping from an abstract algebraic
system to one that is more concrete, in a way that preserves operations and makes
them more amenable to calculation. This is similar to representations in school
mathematics: they are often a way of making a concept more concrete, and they
should preserve structure or information. For example, the representation of whole
numbers in base ten makes it possible to grasp both the magnitude and the details
about them in a very compact form and makes it possible to perform operations
on them. (For an account of the extent and power of this encapsulation, see Howe
& Epp, 2008.) The representation of rational numbers on the number line makes
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Fig. 13.1 Evolution of representations for proportional relationships

it possible to relate operations on them to concatenation or scaling of lengths. The
representation of geometric figures and transformations using coordinates makes it
possible to prove theorems by algebraic calculations.

Mature representations in school mathematics are a form of encapsulation and
should be developed through a sequence of representations that, over time, reveal
the structural features of the representation and the ways in which they preserve
information about the object being represented. In early grades, students might
start with pictorial representations; but even then the picture should be more than
a picture, it should carry information about the situation. Over time, such pictures
evolve into more abstract diagrammatic representations. Figure 13.1 shows such an
evolution for representations of proportional relationships in middle school.

13.2.3 Using Deep Structures to Make Connections

A difficult question in designing a curriculum is to decide which topics go together.
The logical and evolutionary considerations described above help, in that they
provide guidance on the ordering of topics. But that still leaves many decisions to
be made. Our goal in this final section about coherence of content is to show some
examples of how deep structures can guide these decisions.

CCSSM in sixth grade has the following standard about percents in the Ratio and
Proportional Reasoning domain:

6.RP.A.3c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means
30/100 times the quantity); solve problems involving finding the whole, given a part and the
percent.
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One approach to implementing this standard in a curriculum would be to have a
section on percents that covers everything in this standard. But there is another
possibility which attends the difference between the two parts of this sentence before
and after the semicolon. The first part introduces the concept of percent. The second
half involves solving problems that are tantamount to solving the equation px D q,
where p and q are constants. This is related to a standard in the Expressions and
Equations domain:

6.EE.B.7. Solve real-world and mathematical problems by writing and solving equations of
the form x C p D q and px D q for cases in which p, q and x are all non-negative rational
numbers.

Thus, another possibility might be to split this standard into two places in the
curriculum, with the introduction to percents occurring as a type of rate, in the
section where ratios and rates are studied, and percent problems occurring in the
section where solving equations is studied. If percents are regarded as a deep
structure, one might choose the first arrangement; if rates and equations are regarded
as deep structures, then one might choose the second.

Another example of using a deep structure to make connections is the profound
connection between geometry and algebra. In this case, the deep structure is the use
of coordinates to represent geometric objects. For example, it is common in algebra
classes to use quadratic functions to show that, among all rectangles of a given
perimeter, the square maximizes area. Here, one uses algebra to model the area as a
function of a side length, transforms the algebra to reveal the maximum value of the
function, and then translates back to the geometric context. In this approach, algebra
informs geometry.

Another method shows how geometry can inform algebra; it reasons directly
about area. Imagine a 12 by 16 rectangle. Experiments with geometry software
suggest that a square of side 14 maximizes area for this perimeter. If this is so,
it should be possible to dissect the rectangle and fit the pieces into the square
with something left over. One such dissection is shown in Fig. 13.2. Trying several
other rectangles of perimeter 56, a regularity emerges. Expressing this regularity in

Fig. 13.2 Dissecting a
12 � 16 rectangle into a
14 � 14 square
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precise language leads to an algebraic identity that captures the dissection. Using an
a � b rectangle, one has

�
a C b

2

�2

�

�
a � b

2

�2

D ab (13.1)

This identity, inspired by geometric reasoning, can, of course, be verified in an
algebra course. But its roots in geometry give it some extra meaning. And, it can
be used to show how far off the rectangle is from the square.

There’s another connection: Eq. 13.1 can be used to establish a strong algebraic-
geometric mean inequality:

a C b

2
�

p
ab; with equality , a D b (13.2)

Rather than separating the parts of this connection into two chapters or lessons, a
coherent curriculum could use one story to develop both the necessary algebra and
geometry, making it explicit that the main point is the connectivity of the ideas.

13.3 Coherence of Practice

We value coherence of content because we believe a coherently arranged curriculum
makes it possible for a student to see the subject as a whole, to understand the
logical connections and deep structures, and to use that understanding for more
efficient problem-solving and better retention of knowledge and procedures. But
making it possible does not make it probable. Therefore, we propose another
aspect of coherence, coherence of practice. The way students do mathematics, their
mathematical practice, may have an effect on their ability to take advantage of a
coherent curriculum. CCSSM, influenced by the work of Cuoco, Goldenberg, and
Mark (1996) and Harel (1998), attempts to describe the characteristic features of the
practice of mathematics in the eight Standards for Mathematical Practice. Although
these are often referred to as “the practices,” they are better viewed as eight angles on
a single complex construct, mathematical practice. We propose that certain aspects
of that construct can promote a coherent understanding of mathematics. Here we
focus on two aspects, using structure and abstraction.

13.3.1 Using Structure

Standard for Mathematical Practice no. 7 (MP7) in CCSSM is “Look for and make
use of structure.” In a sense, all of mathematics is about finding, building, and
using structure. So a description of the many faces of how structure is central to
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mathematics would fill volumes. Here we discuss three faces of structure: structure
in mathematical objects (expressions and geometric figures), mathematical systems,
and systems for notation.

Structure in arithmetic and algebraic expressions reveals what might be called
“hidden meaning.” For example, writing x2 � 6x � 7 as .x � 3/2 � 16 reveals that,
for real values of x, the expression assumes values greater than or equal to �16 (and
it assumes that value only when x D 3). Writing it as .x � 7/.x C 1/ highlights the
values of x that make the expression 0.

Treating pieces of expressions as a single “chunk” can simplify calculations;
seeing that

4x2 � 8x C 3

can be written as

.2x/2 � 4.2x/ C 3

helps one obtain the factorization from the (easier) factorization of

z2 � 4z C 3:

This example can be generalized to encompass all polynomial expressions, provid-
ing students with a general purpose tool that can be used to transform a general
polynomial into one with leading coefficient 1. It amounts to a change of variable in
order to hide complexity, a practice that is useful all over mathematics.

Hidden meaning in geometric figures often involves the creation of auxiliary lines
not originally part of a given figure. Two classic examples are the construction of a
line through a vertex of a triangle parallel to the opposite side as a way to see that
the angle measures of a triangle add to 180ı and the introduction of a symmetry line
in an isosceles triangle to see that the base angles are congruent. Another kind of
hidden structure makes use of the invariance of area when it is calculated in more
than one way—finding the length of the altitude to the hypotenuse of a right triangle,
given the lengths of its legs, for example.

On a larger scale than individual expressions or figures, students throughout
their K–12 career study systems that have underlying structural similarities. In
elementary and middle school, students study properties of integers; they perform
arithmetic with integers and rational numbers and their properties as a system,
including the properties of operations on them. The same program takes place in
elementary algebra, this time with polynomials in one variable (usually with rational
coefficients). Using the same vocabulary and pointing out the structural similarities
between Z and QŒx� can bring coherence between two main algebraic structures in
school mathematics.

A final example of using structure, or not, is in the view that students form
of the base ten notational system. The compactness and regularity of this system
make it useful for efficient computation and estimation. But in that compactness,
there is also the danger of superficial, and therefore fragile, grasp of procedures.
The Number and Operations in Base Ten domain in CCSSM lays out a progression
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designed to help students learn to see the decimal expansion of a rational number as,
in advanced language, a linear combination of powers of 10 with coefficients taken
from integers between 0 and 9 helps. Similarly, viewing a polynomial in x as a linear
combination of powers of x can lead to an understanding of polynomial algebra as
a system in its own right. Writing 3x2 � 7x C 5 “in base .x � 2/” as

3.x � 2/2 C 5.x � 2/ C 3

reveals another kind of hidden meaning in the expression.
Emphasis on structure is a distinguishing feature of how topics and methods are

developed in a coherent curriculum. The following quote from Conference Board
of the Mathematical Sciences (2012) concerns high school mathematics but applies
more generally to the whole of K–12 mathematics:

“the mathematics of high school” does not mean simply the syllabus of high school
mathematics, the list of topics in a typical high school text. Rather it is the structure of
mathematical ideas from which that syllabus is derived.

13.3.2 Abstraction

A theme that runs throughout a coherent curriculum is a cross-grade emphasis that
helps students develop and use the many faces of abstraction. One of the most
important uses of abstraction is captured in the CCSSM Standard for Mathematical
Practice no. 8 (MP8), “Look for and express regularity in repeated reasoning.” It
asks students to abstract a process from several instances of that process in a way
that doesn’t refer to the inputs to any particular instance. Describing that process
in precise algebraic language allows one to create general algorithms, equations,
expressions, and functions. This practice can bring coherence to many seemingly
different areas of the curriculum that often cause students difficulty.

The description of MP8 in National Governors Association Center for Best Prac-
tices and Council of Chief State School Officers (2010) gives the following example:

By paying attention to the calculation of slope as they repeatedly check whether points are
on the line through .1; 2/ with slope 3, middle school students might abstract the equation
y�2

x�1
D 3.

Helping students develop the habit of testing several numerical points to see if they
are on the line and then looking for and expressing the “rhythm” in their calculations
gives them a way to find the equation of a line between two points without leaning
on formulas (e.g., “point slope form”), and, more importantly, it gives them a
general purpose tool for finding Cartesian equations of geometric objects, given
some defining geometric conditions.

As another example, consider the task of building an equation. Teachers know
that building is much harder for students than checking. The same practice of
abstracting from numerical examples is useful here, too. For example, consider the
stylized story problem:
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Emilio drives from Tucson to Phoenix at an an average speed of 60MPH and returns at an
average speed of 50MPH. If the total time on the road is 4.4 hours, how far is Tucson from
Phoenix?

The practice of abstracting regularity from repeated actions can be used to build an
equation whose solution is the answer to the problem: One takes several guesses
(for the distance) and checks them, focusing on the steps that are common to each
of the checks. The goal isn’t to stumble on (or approximate) an answer by “guess
and check”; the goal is to come up with a general “guess checker” expressed as an
algebraic equation:

guess

60
C

guess

50
D 4:4

These two examples seem quite different, but coherence comes from the fact that
exactly the same mathematical practice is used to find an algebraic equation whose
solution solves the problem.

13.4 How Do We Achieve Curricular Coherence?

It is fitting to conclude a paper in honor of Roger Howe with a call to action
to the community of mathematician educators, to use Hyman Bass’s term (Bass,
1977). Hung-Hsi Wu has written eloquently about that strange subject called
Textbook School Mathematics: an arcane collection of tricks, topics, and mindless
mnemonics (Wu, 2015). There are many reasons for its existence, some having
nothing to do with curriculum. But mathematicians can bring fresh air to this
subject. They can communicate a sense of what the subject itself is all about, a sense
of excitement and power and a coherent view that makes it make sense. We call on
mathematicians to find opportunities for partnership with educators and teachers and
ways in which they can contribute to building a curriculum that is mathematically
coherent, works in the classroom, and inspires the teaching profession to do its best
and to help build a discerning professional community that owns the curriculum and
can use it skillfully in the classroom and that has a sense of the craft and knowledge
not held by a guild of experts but shared broadly in the profession.
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Supporting and Engaging Mathematicians
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Chapter 14
Attracting and Supporting Mathematicians
for the Mathematical Education of Teachers

Amy Cohen

Abstract Education is a complex process involving teachers and learners within
surrounding institutional and social environments over which neither group has
extensive control. However, complexity is not an excuse for despair or inactivity.
We will not make progress unless each of us contributes what we can and does
so without waiting for someone else to make some other part of the problem
go away first. Mathematicians choose to work on the mathematical education of
teachers for many reasons. While money, promotion, and reputation are important
to some mathematicians at some times in their careers, this paper concentrates
on other rewards and other forms of support. In particular, there is an attractive
intellectual challenge involved in finding accessible and engaging ways to help
teachers understand the mathematics itself. While much of the recommended
intellectual and pedagogical support is relevant to all who teach, it is particularly
relevant for mathematicians working with teachers who have been worn down by a
litany of disrespect for K-12 education.

14.1 Formative Experiences of the Author

The author was an undergraduate at Harvard in the early 1960s and a graduate
student at the University of California at Berkeley during the late 1960s. As a math
major, the primary attractions and satisfactions of mathematics arose from solving
problems and constructing efficient and sufficient justifications for those solutions.
As a graduate student (supported variously by research assistantships, fellowships,
and teaching assistantships), I learned that social and communication skills were
important for most (admittedly, not for all) successful career paths in mathematics.

My most important preparation for teaching came in 1970, just as I was
completing my PhD, during training to become a Math Specialist in Project SEED
(Davis, 1960; Heaton & Lewis, 2011; Phillips & Ebrahimi, 1993; Wilson, 2003).
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answer to a question need not be “wrong.” The student may have heard a question
other than the one the teacher just asked. The teacher may have asked a different
question than the one intended. The student may finally be answering a question
asked 5 min ago after pondering over it in the meantime and getting the nerve to
speak up. The student may indeed have made an error. The teacher needs to be agile
enough to turn the student’s comment into a productive occasion for teaching and a
safe opportunity for learning.

Indeed, working mathematicians know that many plausible attacks on a problem
turn out to be wrong without proving that the researcher is irredeemably stupid.
John Tate once said something like the following to my honors calculus class: “I
spend 50% of my time working hard and not getting anywhere; but maybe 10% of
my time making some progress; and 40% of my time wondering how I can be so
unproductive 90% of the time.”1 John Tate, a very distinguished mathematician,
was making the point that even smart people struggle and make mistakes and
waste time worrying about it. Learning, just like research, can involve struggle
(Mizer, Howe, & Blosser, 1990; National Research Council, 2001). Professional
mathematicians early in their education and career probably associated with people
who were also mathematically talented and engaged. We sometimes forget that not
all bright people like math enough to learn it – and not all decent human beings
turn out to be mathematicians. Some intellectual humility is essential when working
with students who may become teachers and with teachers who are trying to deepen
their mathematical understanding.

In the late 1960s, the Berkeley School District was trying to overcome the effects
of residential segregation by busing kids from various neighborhoods to integrated
school buildings. Project SEED, based on work of Robert Davis and others in
the Madison Project, engaged kids in guided mathematical discovery on topics
that none had seen before – so no one would have an “advantage” (Davis, 1960;
Phillips & Ebrahimi, 1993; Wilson, 2003). My work in two mixed second and
third grade classrooms (supervised by certified teachers) was the most challenging
teaching I have ever done! When it went well, it was very satisfying. When it didn’t,
I encountered many of the issues we still discuss, e.g., engagement, motivation,
precision of language, and apparent preferences (by many children as well as by
their parents) for rote learning over independent thinking.

My greatest failure came in trying to retain the participation of Eddie. He had
been the brightest kid in either class, also the most cooperative and the most eager
to offer ideas and suggest reasons. One day, he hit another kid and was immediately
suspended. On his return to class, he never misbehaved again, but he never spoke
up again either. We later learned that Eddie needed to be home with his preschool
sibling while his single mother went to Mississippi to care for her dying mother.
Eddie knew that if he hit a kid, he’d be suspended and could be at home. The
family fell into the hands of Youth and Family Services. This is tough stuff for a
new PhD to handle, especially one who grew up in a neighborhood with “intact”
families who had lots of resources and knew how to use them. In my 44 years in

1This quotation is based on my memory of a comment made in a calculus course in AY1960–1961

We learned that a teacher must listen to what the students are saying! An unexpected



14 Attracting and Supporting Mathematicians for the Mathematical. . . 261

university math departments since my time in Project SEED, I have had to learn
much from experience. I am still trying to make up for my inability to reengage
Eddie in learning math.

Between graduate school and promotion to full professor, I concentrated on
navigating among the sometimes conflicting demands of research and teaching.
Since that promotion,

I have served in an unusually large variety of educational roles at Rutgers:

• Director of the undergraduate program in mathematics
• Dean of a unit serving adults returning to college to start or complete BA or BS

degrees
• Member of a team of colleagues introducing active learning activities into a

number of undergraduate math courses at both freshman and junior levels
• Co-PI on a VIGRE (Vertical Integration in Graduate Research and Education)

grant addressing (among other things) professional communication skills of
graduate students and postdocs

• Most recently, PI on two Math Science Partnership (MSP) grants

– One from NSF to work with mid-career math teachers in grades 6–9
– One from the Department of Education for generalist teachers in grades 3–6

• Coordinator of my department’s Math Outreach to Teachers program
• Organizer of Math Teacher Circles (Taton, 2015)

14.2 Major Lessons Learned in Math Science Partnerships

Since most of my experience in working with mid-career teachers has come from
the two MSP grants mentioned above, it would help the reader to know how
these were organized. The bulk of the continuing mathematical education was
presented in 2-week summer institutes carrying graduate credit. The bulk of the
professional development addressing mathematical pedagogy was presented during
the school year. A typical day in a summer institute began with reports from
two groups of teachers, each presenting and discussing several approaches to an
assigned workshop problem from the previous day. There followed exposition and
exploration of the new day’s topic, a classroom-connections session, and a wrap-
up period for teachers to work on their presentations and/or their “homework” for
the next day. During the workshop period, teachers worked in groups on a set
of mathematically rich problems with coaching from the instructional staff. The
goal was to present engaging problems closely aligned with material the teachers
actually taught, made slightly challenging in order to require the input of the full
group but not so challenging as to be daunting. The coaches suggested questions
the group could discuss and sometimes hints of scaffolding – but never just showed
the teachers “what to do next.” Teachers were generally amazed that they naturally
found different approaches to a problem and that they learned as much from trying
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to understand their colleagues’ approaches as they did from trying to motivate
and justify their own approaches. It was often hard to bring teachers back from
engagement in the workshop to discuss classroom connections explicitly. On the
other hand, teachers often discussed their classroom experiences spontaneously
during workshop sessions.

It is intellectually challenging for senior mathematicians to design workshop
problems that are accessible and engaging for teachers and then to coach group
work on these problems in ways that lead to mathematically honest learning. But
good mathematicians appreciate a good challenge. We may not always realize
what needs motivation or explanation. Indeed, we may not know how the terms
“motivation” and “explanation” are understood. Teachers in K-8 often think of
motivation as a way to obtain compliance “in the moment.” Mathematics educators
at institutions of higher education (IHEs) often think of motivation as a way
to encourage commitment to a longer-term project like “preparing for further
education and employment.” When mathematicians describe their motivation for
formulating a definition or theorem in some particular way, they often talk about
making choices to facilitate understanding or proof (Vatuk, 2011). Teachers may
see an “explanation” as a clear listing of steps to be followed; mathematicians
may see “explanation” as a synonym for “proof” or “justification.” Mathematicians
can benefit from working with colleagues from mathematics education to obtain
guidance on what is accessible, what is engaging, and what is intelligible to various
audiences. Attention to what is engaging and accessible is valuable for teaching
post-secondary students as well as for working with teachers.

University mathematicians are often accustomed to giving uninterrupted lectures
lasting 50–80 min. The teachers in my MSP projects become impatient if a piece of
exposition lasts longer than 15–20 min. They then want to explore the idea actively
alone or with a partner before returning to listening. This gives the teachers a way
to engage actively with the idea, to test their understanding, to ask questions, and
to articulate concerns. This also gives the instructional team a chance to circulate,
listen to discussions, and provide nearly instant feedback to the lead mathematician
on what might need clarification or extension.

Mathematicians quickly adapted to this style once they understood the dynamic
involved and provided “exploratory exercises” to break up their presentations. The
participating teachers were amazed that their daily feedback forms could elicit
prompt accommodations to their suggestions. Mathematicians tend to see abstrac-
tion and generalization as making it possible for learners with varying interests
to apply general results in many different fields. Teachers, like many learners in
mathematics-intensive fields, do not see the applicability without explicit guidance
for making the connections. Teachers are very happy to see workshop problem sets
that address the mathematics that they and their students find problematic.

It is possible (and essential) to offer courses in which mathematicians and math
teachers interact as mutually respectful professionals and learn from each other.
This work can be joyful and satisfying – just as it can sometimes be a struggle
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for all concerned. It takes time to build a coherent cohort of teachers, faculty, and
graduate students – but the effort can pay off in activities like Math Teacher Circles
(MTCs) that sustain the connection, bring in new participants, and don’t cost as
much to run as more intensive projects like Math and Science Partnerships, (Taton,
2015). IHE (short for institution of higher education) participants in MTCs benefit
by gaining ideas to improve courses, develop new courses, and modify classroom
practice. Teacher participants found that they modified their classroom practice –
in particular by eliciting more open answers to the question “why?” Universities
and mathematics departments benefit from opportunities to publicize how research-
active faculty members also engage in valued service to STEM education.

Finding funds and institutional support for outreach to teachers is hard. Federal
grants may not be available to sustain proven initiatives. Corporate and private
foundations may not solicit proposals for these activities. “Political issues” are
inappropriate for this paper.

14.3 Attracting Mathematicians to the Mathematical
Education of Teachers

Here are the primary reasons given by colleagues in the mathematical education
of teachers when asked what attracted them to begin or continue with this work.
(At the risk of being tedious, I will spell out the phrase “mathematical education
of teachers” to avoid confusion with publications with titles commonly abbreviated
MET I or II.)

1. Meeting the intellectual challenge of constructing engaging and accessible
problems from which teachers could acquire mathematical ideas that were
correct and teachable in their classrooms.

2. Concern about what and how mathematics was being taught to their children
or grandchildren in school. Concern that some teachers felt pressured to value
speed, tricks that may be generally useful but not always valid, and rote
memory over mathematical reasoning. Many mathematicians associate the word
“rote” when used to modify “learning” or “teaching” as indicating an undue
preference for memorization through repetition over development of understand-
ing. Nonetheless, mathematicians realize that learners need to develop both
automaticity and understanding in order to use mathematics in employment and
in civic life.

3. Desire to learn more about working with teachers in order to make career plans
for what types of jobs to seek after completing a PhD, a postdoc, or a short-term
nontenure-track appointment.

4. Desire to learn more about methods of eliciting “active learning” in order to
modify their own teaching practices.
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5. Desire to learn more about teachers and teaching at K-8 or K-12 levels in order to
design new courses for prospective teachers, enhance existing courses, and teach
them.

Based on this admittedly small sample of views of senior faculty, junior faculty,
and graduate students at a major public university, here are some suggestions about
how to recruit mathematicians to participate in the mathematical educations of
teachers.

Necessarily, one must either discover a pre-existing interest in the mathematical
education of teachers or find ways to generate such interest. Discussion of issues
of teaching and learning should be an acceptable form of conversation in a math
department – this includes hallways and seminar rooms as well as private offices
with the doors closed. I do not suggest that discussion of education should replace
discussion about research, but it should not be taken as somehow unprofessional.
The opinion leaders of a department can contribute to this atmosphere by encourag-
ing discussion of courses, textbooks, teaching methods, and so on – even if they do
not themselves focus primarily on the mathematical education of teachers.

TA training programs usually offer a basic introduction to teaching for graduate
students. In departments where TAs are primarily assigned to lead discussion
sessions, TA training may not cover all the issues of teaching at colleges and
universities. For example, TA training may not discuss courses for prospective
teachers. Furthermore, the connotation of “training” suggests that the trainees
should simply do what they are told without necessarily understanding of the
reasons for various policies and practices. Not all junior faculty members have had
even rudimentary preparation for the full range of an academic teaching career and
the special concerns of working with prospective teachers and mid-career teachers.
Department leaders can urge inclusion of speakers on mathematics education at
all levels in department colloquia and/or encourage a regular seminar on teaching
mathematics.

Once one knows who is interested in improving the mathematical education of
teachers, one needs to find out what their particular interests and skills are and
what the opportunities are on campus and off campus. National, regional, and local
meetings of the AMS and the MAA include sessions on K-12 education, under-
graduate education of future teachers, and the continuing mathematical education
of certified teachers in the public sector and teachers not needing certification in the
private sector. There are specialty conferences and organizations focused on these
topics as well. Explicit invitations to colleagues to engage in the improvement of
teaching, whether at K-12 or at post-secondary level, should be made privately.
Whoever makes such invitations should offer a small menu of reasonable and
concrete suggestions of how to become active and should promise collegial support.
One suggestion I once heard, namely, that someone interested in the mathematical
education of teachers must change professions from mathematics to mathematics
education research, seems to me quite unreasonable.

My colleagues were pleased to be asked to take part in my grant projects. They
were surprised to benefit from discussion of mathematical materials and methods
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with other members of their instructional teams. They later recognized the irony
of this surprise since they were accustomed to benefit from discussing ideas and
methods with their research colleagues

Interest in teaching well is not incompatible with interest in research – but one
cannot pursue both with full devotion at the same time throughout a career. Flex-
ibility during careers is important. So are leadership and mentorship to encourage
the right people to take an interest in the mathematical education of teachers at the
right times in their professional lives. Faculty might prefer to teach a small class for
future teachers than to teach a large lecture on calculus.

Don’t demand unanimous consent in a department or faculty. Leon Henkin,
formerly professor and chair of the department of mathematics at UC Berkeley,
told me that change in academia is best accomplished by a “small cadre swimming
in a sea of indifference.”2 He said that asking everyone to agree is a recipe for
organized opposition. John Kelley, another Berkeley mathematics professor, said
that one person trying to change a department was like a prisoner trying to escape
from a steel cell by scratching with his fingernails. Both Henkin and Kelley did
make changes; they worked assiduously with quiet tact.

Like many of us at this conference, I have always liked the security of a well-
solved problem. We have not yet solved the problems of preservice, early-career, and
mid-career mathematical education of teachers. These problems are not amenable to
a single doctrinaire approach. Given a choice between “either/or” and “both/and,” I
recommend the latter.

Separating content and pedagogy is not, I believe, a productive path. The
articulation of the mathematical practices in the Common Core and related work
on “mathematical habits of mind” present challenges to those of us who teach in
IHEs – as well as those who teach in K-12 (Cuoco, Goldenberg, & Mark, 1996;
National Governors Association Center for Best Practices & Council of Chief State
School Officers, 2010). Teachers must use these practices and habits explicitly so
that students will appreciate their value and internalize them in order to benefit from
them. As Jim Lewis has suggested, find ways to use the pedagogy courses to enhance
mathematical understanding, and use math classes to model a variety of effective
teaching methods. If possible, schedule a math course and a math pedagogy course
in a pair of consecutive class periods so that they can be co-taught in a mutually
supportive fashion ((Jim) Lewis, 2015; Heaton & Lewis, 2011).

Recognize the importance of good mathematical communication with students
and the public, as well as with colleagues. Our profession will not prosper if many
of us take the view that our natural audience contains only those who already know
what we want to say. A VIGRE postdoc had gotten that impression in his graduate-
student years. He said with frank surprise “You mean that people are supposed to
understand a seminar talk?”3 If we cannot make our own results intelligible and
interesting even to ourselves, how can we expect the public to continue to fund our

2Recalled from a discussion at UC Berkeley in the 1970s
3Recalled from a seminar discussion at Rutgers in the early 2000s
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search for results – and how can we expect the future students in our classes to
make their teaching intelligible and engaging? Once upon a time, it was enough to
teach those who could learn virtually without our help. Now the demand for STEM
workforce at all levels means that we also need to educate also those who will only
learn with our help.

14.4 Supporting Mathematicians in Work with Teachers

This section is long, because I believe it is important. Discussion of financial support
for this work is discussed in the following section. Experienced mentors can provide
important personal support. This section presents topics which can be very helpful.

14.4.1 General Remarks

Effective teaching requires agility in the classroom to provide multiple represen-
tations of the mathematics, multiple forms of motivation for the content, multiple
strategies in problem-solving, multiple connections to realistic grade-appropriate
“real-world” applications, and multiple ways of recognizing and addressing gaps in
learning and understanding. It is an art to help students gain insight about how to
select from these multiplicities.

Teachers also need to know the mathematics taught in earlier and following
grades. They cannot be sure at what level they will be assigned to teach. They
need to know what their students are bringing into their classes from earlier work.
They need to know what they are preparing their students to do in the next grade.
This kind of understanding of mathematics for teaching is hard to disentangle from
the mathematical pedagogy by which teachers engage their students in the work of
studying, learning, and applying the mathematics that is both grade-appropriate and
developmentally appropriate for their students.

As mathematical preparation has become a prerequisite for many employment
paths, mathematics teachers are increasingly asked to ensure that each student learns
as much mathematics as possible in order to broaden options for “college and
career.” As women have won access to new employment opportunities, teaching
is no longer their only option or even their best option. For these reasons,
mathematicians working with teachers need to nurture mathematical talent and
growth at whatever level they find it. A sensitive combination of tact and honesty is
called for in cases in which individuals will not engage in learning broadly enough
or deeply enough to become successful teachers.

The K-12 sector in the USA addresses a large and heterogeneous population
of students with widely varying degrees of access to educational opportunities
at home. Some have highly educated families who provide extensive advice and
set high educational goals. Others come from families which may not speak
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English at home, have very limited formal education, or have limited vocational
aspirations. Teachers have had widely varying educational backgrounds in math and
mathematical pedagogy.

Mathematicians interested in working with teachers should choose settings
compatible with their preferences. Some may want to work with programs for the
gifted and talented. Others may want to work in the schools their children attend. Yet
others may feel called to work in districts with great challenges. In most settings,
teachers usually want to learn material and methods that are directly relevant to
their own teaching. “Elementary mathematics from an advanced point of view” may
not be appreciated by teachers unless the instruction and discussion make explicit
connections between that advanced point of view and classroom realities.

14.4.2 The Common Core State Standards in Mathematics
(CCSS-M) (National Governors Association Center for
Best Practices & Council of Chief State School Officers,
2010) and Related Documents

The CCSS-M articulate aspirations for what school children should be able to do
and to understand. The proficiency standards in the CCSS-M mark benchmarks
along learning trajectories for strands of content. Some readers infer incorrectly that
instruction toward any particular proficiency for Grade N should only be provided
only in Grade N. It is important to distinguish aspirational goals from curriculum
development and assessment instruments (Partnership for Assessment of Readiness
for College and Career (PARCC); Smarter Balanced Assessment Consortium)

The impetus for the CCSS-M document came from organizations of state
governors and of state superintendents of schools (National Governors Association
Center for Best Practices & Council of Chief State School Officers, 2010). These
organizations mentioned several serious concerns including (1) that math curricula
in the K-12 sector had become “a mile wide and an inch deep” (Li, 2007, and
references therein) and (2) that children whose parents moved from place to
place often saw some topics twice and others not at all. The CCSS-M phrase its
standards not just in terms of computational fluency but also in terms of proficiency
in explaining and justifying. Mathematicians working with preservice teachers
and in-service teachers may need to wean undergraduate students and certified
teachers alike from overreliance on rote memory and mnemonic tricks. For many
mathematicians, the terms “rote teaching” and “rote learning” suggest overreliance
on memorization based on frequent repetition with little or no explicit attention to
understanding.

Mathematicians often learned school mathematics more quickly and much earlier
than many other children. As a result, they may have inaccurate ideas about what is
taught and how. The CCSS-M provide a good way for mathematicians to find out
approximately what topics are taught when. Much has changed in the last three or
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four decades! It is not helpful to say anything that sounds like “As you have known
since 3rd grade” to teachers who didn’t learn it in 3rd grade, don’t teach it in 3rd
grade, and may have learned it by rote and without lasting results. Similarly, mathe-
maticians’ memories of HS or undergraduate courses that prepared them for college
or doctoral work are not reliable evidence of what all HS teachers really know.

The standards of mathematical practice describe ways of thinking and working
that facilitate the learning and application of mathematics both in school and in
later life. Contrary to the views of some mathematicians and some professional
development providers, the standards of practice cannot be sensibly separated
from mathematical work. If teachers do not understand and employ these practices
themselves, it is unlikely that children will appreciate their value and employ them
for their own benefit. These practices are best understood by seeing examples
of them in action. Thus, it is important that mathematicians use these practices
and point them out explicitly so that teachers can “teach as they were taught.”
The primary mathematical practice is to make the math make sense. Since the
concepts of “mathematical structure” and “repeated patterns of reasoning” often
seem difficult for teachers to acquire, faculty should make a special effort to point
out examples when they occur naturally

Mathematicians should also gain some familiarity with essays on “mathematical
habits of mind” (Cuoco et al., 1996). One can have amusing discussions about
whether a “mathematical practice” follows from a “habit of mind” or vice versa.

Educational psychologists tell us that it is easier to remember and apply
information if it is familiar, makes sense, connects to other known information, and
comes with a convincing basis for belief. The National Research Council report
Adding It Up (National Research Council, 2001, page 115 et seq.) provides an
extended discussion of strands of mathematical proficiency – no one of which alone
suffices for learning and applying mathematics. These strands are (in alphabetical
order) adaptive reasoning, conceptual understanding, procedural fluency, productive
disposition, and strategic competence. Research indicates that capacity to learn and
to apply math is enhanced if lessons alternate between a focus on concepts and
practice with procedures (Rittle-Johnson & Koedinger, 2009).

14.4.3 Benefits of Broadly Based and Supportive Teams
Especially for Summer Institutes

Focus groups conducted by the external evaluators of my MSPs revealed that the
teachers were very grateful to be treated as professionals who had something to offer
to the math faculty and others on their instructional teams. Teachers have become
anxious and defensive as a result of a litany of criticism from many directions.
Teachers reported that the friendly and collegial respect we offered distinguished our
program from some others they had attended and helped to alleviate their anxiety.

Ideally, the team should be composed of mathematicians, mathematics teacher
educators, mathematics education researchers with a strong background in
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mathematical content as well as pedagogy, professional development facilitators,
and teachers who can serve as “peer mentors.” The overlapping experience and
expertise of such a team provides benefits when the team plans its instructional
activities, participates in those activities, and debriefs afterward. Varying points of
view, sensitivities, and insights support all team members.

Faculty who participated in MSPs at Rutgers reported on anonymous surveys
that they have enjoyed informal conversation with participating teachers and with all
teammates. They say that they have been able to learn more about K-12 education in
NJ and to learn more about teaching in general. They were particularly struck by the
value of constructive feedback in each of the daily debriefing sessions. They were
also struck by their early discomfort at being observed daily by other members of
their instructional teams. This last comment generates empathy into K-12 teachers’
discomfort with frequent observations by district staff who often evaluate without
offering supportive feedback.

14.4.4 Cognitive and Linguistic Issues
in Communicating Math

Professional mathematicians and mathematics graduate students often find it dif-
ficult to communicate easily and effectively in groups of nonmathematicians. We
can work more productively with teachers at various career stages (pre-certification,
early-career, mid-career) if we become more aware of the so-called didactic
obstacles that may impede communication.

Mistakes, misconceptions, and confusions can arise in many ways. Research in
mathematics education can be enlightening about such sources of error. Subsections
below mention some examples worthy of attention. For deeper discussion, see
Alcock (2014) and Tall (2013).

Solomon Friedberg’s book (Friedberg, 2001) is an excellent source of examples
to spur conversation and understanding about teaching content as well as teaching
learners. There are many other books on related subjects, but few by well-regarded
mathematicians who have both served as department chair and been actively
engaged in enhancing the teaching of mathematics by early-career mathematicians.
The June/July 2015 issue of the Notices of the American Mathematical Society
includes additional stimulating material on this subject (Bass, 2015; Denschler,
Hauk, & Speer, 2015).

14.4.4.1 Quantifier Errors and Omissions

Children can be very imaginative, but also very literal-minded. Even adults tend to
assume that statements are universal unless there is an explicit restriction to some
domain of discourse. A child who is told by one teacher that “we cannot subtract 7
from 3” quite reasonably loses confidence in teachers’ authority when a later teacher
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tells them that we can do just that. Many future high school teachers are accustomed
to the convention that unquantified statements are universal. This leads to confusion.
For example, the statement “matrix multiplication is not commutative” does not
mean that a matrix product AxB is never equal to BxA. Precision is important, but
too much precision can be tedious. It is an art to learn how much to say and when
to say it.

14.4.4.2 Tendencies to Overgeneralize or Oversimplify

In many elementary classes and in entry-level university courses, we provide
evidence in support of general statements rather than proofs. This may be develop-
mentally appropriate, but teachers need to increase their mathematical sophistication
during their education and career.

Multiplication of fractions is “easier” than the addition of fractions. Why should
we not “just add the tops and add the bottoms?” Some of my colleagues wonder
who would ever do that. I have had a certain amount of mischievous fun with them
by asking what percentage they would enter on the cover of a two-part exam if the
student scored 30/40 on the first part and 40/60 on the second part. Their usual quick
answer is “70% since the student earned (30 C 40) points out of (40 C 60).”

After students have done many drill exercises on the distributive law, it is not
surprising that they mistake the meaning of parentheses in function notation as an
instance of the distributive law. They then believe in a “law of universal additivity”
for functions, namely,

f .r C s/ is always equal to f .r/ C f .s/:

Calculator syntax often allows the omission of a final parenthesis. This may
explain the following otherwise inexplicable computation:

ŒF .x C h/ –F.x/� = Œ .x C h/ –.x/� D Œ F. x C h–F .x� = Œh� D h=h D 1

that I have seen not only in precalculus courses but also at AP calculus readings. The
law of unintended consequences applies even to the doctrine of calculator benefits.

14.4.4.3 Misleading Diagrams: One Example Only

Some classroom materials use an analogy with pan balances to explain the steps
in solving simple linear equations. To save vertical space, the diagram may show a
seesaw with a one-pound weight and two crates on one side of the fulcrum and three
one-pound weights and one crate on the other side. The directions may make two
assumptions: first that each crate contains an object of the same unknown weight,
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say W pounds, and second that the seesaw is initially balanced. This situation is
represented by the equation 1 C 2 W D 3 C W. Students draw the result of removing
a one-pound weight from each side of the beam and a crate from each side. Then
they subtract 1 and W from each side of the equation. Their picture is supposed to
support the conclusion W D 2.

Does this make sense? Students are unlikely to believe that each crate has
zero weight. Further, students who have played on a seesaw know that a lighter
child farther from the fulcrum can balance a larger adult nearer the fulcrum on
the other side. Distance from the fulcrum matters in the real world, but didn’t
matter in the materials described. The Next Generation Science Standards (NGSS
Lead States, 2013) call on K-12 students to reason from careful observation of
the physical world. If they do so, they will object to unrealistic modeling. Math
teachers and mathematicians need to become aware of both science standards and
math standards.

14.4.4.4 Technical Terms that Are Suggested by, but Not Coextensive
with, Ordinary Usage

The notion of continuous function is closely related to the notion of a continuous
motion. Some texts try to make formal definitions more accessible by saying “a
function is continuous if its graph can be drawn without picking up one’s pencil”
or that “a function is continuous if its graph has no holes or gaps.” The functions
defined by f (x) D 1/x and g(x) D

p
(x2–4) have graphs with big gaps but are

continuous, in the sense of continuous on their domains.
Other so-called didactic obstacles arise. Works by David Tall (2013) and by Lara

Alcock, for example, in (2014), provide a more extensive and deeper discussion than
I have room for here.

14.4.5 The Variety of National Systems of Education

Mathematicians coming to the USA from other countries may find our system
confusing. The USA sends a very large percentage of 18-year-olds to institutions of
higher education. Elsewhere, a smaller portion of teenagers who graduate from high
school go on to higher education. In some systems (e.g., in the UK), “college” may
come between secondary education and university work, and first year university
students are expected to have mastered calculus. In some systems, a School of
Mathematics is responsible for only two tasks – producing publishable mathematics
and producing publishing mathematicians. Colleagues who come from such systems
may well be surprised to have future doctors, engineers, and economists in their
undergraduate courses – to say nothing of future teachers.
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14.4.6 Connecting Instructors of “Math for Teachers”
with the Rest of a Math Department

Some departments rarely assign senior faculty to courses for future teachers
(both K-8 and 9–12), relying instead on “mathematics educators” nontenure-track
instructional staff. This “division of labor” makes it harder for regular faculty to
appreciate the needs of prospective teachers, early-career teachers, and mid-career
teachers. Fostering communication between those who teach math majors and those
who teach teachers can lessen unconscious bias against teaching. I have heard
occasional statements of the form “Students X and Y say they want to teach math
in HS. They are too good for that. Let’s redirect them to a doctoral program in
math.” It is ironic when these statements sometimes come from mathematicians
who complain about the weakness of American education.

14.4.7 “Elegant Exposition” Versus “Effective Exposition”
for Teaching Mathematics

The following, from Gian-Carlo Rota (1997, pp. 14–15), describes the lectures of
Alonzo Church at Princeton University in the 1950s:

His lectures are best described as polished diamonds. ... He would give as few examples as
he could get away with. ... Not more than [four or five] examples were given in the entire
[point-set topology] course. ... His proofs [as opposed to older proofs] were perfect but not
enlightening. He did not want to admit ... that his proofs would be best appreciated if he
gave the class some inkling of what they were intended to improve upon. : : : Anyone who
wanted to understand had to figure out later ‘what he really meant’ : : : . His conversation
[with colleagues] was in stark contrast to his lectures. He would give out plenty of relevant
and enlightening examples, and freely reveal the hidden motivation of the material.

This description presents a style still employed by some mathematicians – but
not a style suitable for future teachers or mid-career teachers.

The following from Mark Kac (1992, pp. 7–18) indicates that current conflicts
between “instructional rigor” and “student engagement” are not new.

To me and many of my colleagues, mathematics is not just an austere, logical structure
of forbidding purity, but also a vital, vibrant instrument for understanding the world ... .
Complete axiomatization, someone has rightly said, is an obituary of an idea. ... There are
worse things than being wrong – being dull and pedantic are surely among them.

Both quotations can stimulate vigorous discussions of teaching at all levels.

14.5 Rewarding Mathematicians for Work with Teachers

For a careful and extensive discussion of tangible and intangible “rewards,” see the
recommendations in the AMS report, Toward Excellence (Ewing, 1999). I have been
very lucky with my department chairs, my deans, my provosts, and my university
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presidents. By and large, they have respected me and my work and have provided
bits of funding to expand its reach. Indeed, they greet me pleasantly on campus. I
wish more members of our professions enjoyed similar encouragement from broad-
minded administrators. Here I will only recount some of the rhetorical questions I
find myself asking in conversations about this topic.

How do we balance the educational role of an institution of higher education
(IHE) with the research role? Can our profession value not only review papers and
expository talks on relatively new research results but also value the scholarship
of teaching and learning at K-12, undergraduate, and graduate levels? Why do
we sometimes claim we can’t give promotion credit for textbooks because of the
royalties when we have no difficulty giving promotion credit for NSF summer
support, competitive fellowships, and prizes? Why do we sometimes lump course
development with service rather than with teaching? How can we best recognize the
scholarly work of papers in mathematics education, expository papers, and review
articles in annual reports, CVs, and the like? Some universities separate them out;
some do not; others exclude them altogether.

Is money the only measure of our worth as mathematicians and as human beings?
Why do we talk about “teaching load” but not about “research load?” Why do
we reward research production with less teaching but sometimes sneer at senior
colleagues who are reducing research production to attend to a wider variety of pro-
fessorial duties: governance, teaching, course development, mentoring, editing, etc.?

Why do universities permit, and even support, travel by mathematicians during
the academic year to give talks and attend conferences and thereby raise the
research reputation of the university, but much less commonly encourage travel
for conferences on education? Why is it okay to give the impression that research
reputation is more important to a university than teaching quality?

14.6 Conclusions

Many wise people have discussed the topic of enhancing the effectiveness of
education in mathematics. There is growing agreement. However, I doubt there
will ever be total agreement. What progress we have made has been based, at
least recently, on a willingness to observe the educational process carefully, to look
for robust evidence where it may be possible to find it, and to compare fervent
belief, common knowledge, and common sense with results of careful observation,
trustworthy evidence, and careful reasoning. Roger Howe has contributed to this
effort by listening, by reading, by questioning, and by contributing to reports on
education as well as textbooks and mathematical research. I wish that we all could
have more of the serenity, insight, and elegance that characterize his work.
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Chapter 15
The Contributions of Mathematics Faculty
to K-12 Education: A Department Chair’s
Perspective

Solomon Friedberg

Abstract Post-secondary mathematics faculty members have an important role
to play in the preparation of future mathematics teachers at all levels and in
the support and professional development of in-service mathematics teachers.
This work can be demanding and time-consuming and constitute a significant
professional contribution. Some departments now recognize, support and reward
this work, while others do not. This article offers a view of this landscape from the
perspective of a department chair and provides some suggestions for conversations
that could take place within the department, for conversations of practitioners with
their chairs, and for conversations across the broader university. In particular, if this
work is to be properly valued by departments and institutions, it must be evaluated
in a thorough and sustained way.

15.1 Introduction

Mathematics departments in colleges and universities have many responsibilities in
the broad realms of teaching, scholarship, and service. These responsibilities include
subject matter delivery at a time when mathematics is of increasing importance
in many disciplines and for many jobs, the development of new mathematical
knowledge and its use to address complex problems, and service both within
a given institution and in the wider realm of the mathematical sciences. These
three categories are not mutually exclusive. For example, in 2013, more than 120
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mathematics institutes worldwide participated in the UNESCO initiative entitled
Mathematics of Planet Earth, an initiative that provided opportunities for each
of teaching, scholarship, and professional service and one that illustrates the
importance of mathematics for the wider world.

The goal of this article is to place the work of mathematicians who are involved
in K-12 mathematics education in the context of a mathematics department. Many
reading this article will immediately identify such efforts as vital to the future
economic interest of the United States (or indeed, any other country). These
readers will recognize the unique and critical role that well-informed university
mathematicians play in precollegiate mathematics, as well as the commitment
in time, thought, and energy that such a role requires. However, it would be
optimistic indeed to believe that every university mathematician sees work with
K-12 education as among the responsibilities of a math department, let alone a
worthy departmental priority. In Sect. 15.2, we note the broad range of tasks that
are part of a university mathematics department’s mission, placing the topic of
mathematics education in context of the wider departmental agenda. We also discuss
how other tasks that fall to departmental faculty are evaluated. Then in Sect. 15.3,
we discuss mathematicians’ involvement in math education from an institutional
perspective, pointing out the way that a university’s Administration might view such
efforts. Finally, in Sect. 15.4, we turn explicitly to evaluation. If substantial work on
K-12 math education does belong in a mathematics department and is genuinely
important, then it follows that it should be recognized and rewarded as such.
We explain consequences of this assertion and in particular suggest that viewing
the work of mathematicians in the domain of K-12 math education as important
and worthy of recognition goes hand in hand with finding ways to systematically
evaluate it. We argue that the standard methods used to evaluate research miss a
substantial amount of meritorious work and suggest a specific metric for such an
evaluation. In each section, we provide indications of conversations that we believe
are needed if the work of mathematics faculty on K-12 mathematics education is to
be accepted, supported, and valued.

This article is complemented by an article concerning the support of education
and outreach in a math department by Jerry Dwyer and Lawrence Schovanec (2017,
this volume). Prof. Dwyer is a mathematician sited in a math department where his
primary efforts are in math education and K-12 outreach, and Provost Schovanec is
a mathematician who has served for many years as a university administrator. By
contrast, the author of this paper is primarily a research mathematician but one who
engages in some outreach and policy work in math education as well and who has
also recently completed a period of 9 years as department chair. Though we arrive
at the topic with different perspectives, the two articles paint a coherent picture, and
the chapter by Dwyer and Schovanec may be of use in furthering the conversations
suggested here.
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15.2 The Work of Mathematics Departments: An Internal
Perspective

In this section, we survey the primary goals of mathematics departments,1 as this
will put the work of mathematicians concerned with math education in context.
Of course, the primary goals of a math department vary from one institution to
the next and moreover may be understood and formulated differently by different
faculty within a given department. But the description we give here applies to
most research-oriented doctoral-granting departments. With the obvious deletions,
it applies to many teaching-oriented departments as well.

For a research department, a key goal is for individual faculty to carry out
important scholarship. Faculty are judged on whether or not they publish papers
in top journals, speak at prestigious conferences, receive external research support
through a competitive grants process, and receive other professional recognition
such as editorships, fellowships, or awards (Tucker, 1993). For work in the broader
mathematical sciences, the influence on cognate areas is also of importance.
Ultimately, the goal is to develop mathematical ideas that change a field.

Teaching is a secondary or primary responsibility depending on the department.
Teaching includes service teaching, the undergraduate program for majors, the
supervision of undergraduate research projects, teaching in the graduate program,
and the supervision of doctoral students. The assessment of the teaching of
undergraduate classes typically relies heavily on student evaluations, though these
are not always directly correlated with increased student learning (Carrell and West,
2010). At the graduate level, success is measured by the influence of one’s doctoral
students, in the long run by having doctoral students who go on to successful
academic careers and in the short term by students who get postdoctoral positions
at strong research institutions or other good jobs. The teaching of future teachers
may be both one component of service teaching (e.g., classes for future elementary
teachers) and one component of the teaching of majors (classes taken by future
secondary school math teachers). However, it is only a part of each of these
categories, and often2 a small part.

Service is the final category in most evaluations of faculty performance. This in-
cludes departmental and university service on the one hand and external professional
service on the other. Departmental service related to teaching is common (e.g., the

1We use this term to include all departments of mathematical sciences in the broad sense. Minor
modifications may be required in discussing different institutional configurations such as separate
departments of pure and applied mathematics, or of mathematics and statistics, but the broad
picture is the same.
2As an example, 843 teaching credentials—in all subjects—were awarded by the entire University
of California system (with nine undergraduate campuses) in 2013–2014 (Purdue and Suckow,
2015, Table G), while the total undergraduate headcount in this system in Fall 2013 was 188,088
(UC System Infocenter website). Of course, the size of programs to prepare future teachers varies
considerably from institution to institution, and in some it is a good bit larger.

http://dx.doi.org/UC System Infocenter
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supervision of large courses, the advising of majors, the mentoring of graduate (or
undergraduate) teaching assistants), while university service is an aspect of shared
governance. In contrast to these types of service, most external service by math
faculty members is related to scholarship: refereeing a paper, editing a journal,
organizing a conference, serving on a grants committee. Work with in-service
teachers is another example of external professional service but differs from the
prior examples in that it does not advance scholarship in mathematics in the short
run. In most universities, service is generally not evaluated through a separate formal
process.

In this context, work in the domain of K-12 mathematics education is often
a relatively small part of a mathematics department’s mission. After all, the
department is charged with educating the next generation of mathematically literate
citizens, the next generation of disciplinary specialists who use mathematics in an
essential way, be they economists, physicists, or engineers, and the next generation
of mathematicians. The department is the primary place where new mathematics
is discovered, where it is applied to solve problems. And the department must
run itself, contribute to the wider institution in governance, and be part of the
international professional community of mathematicians.

The statement that K-12 math education should be part of a math department’s
responsibilities is supported by two kinds of arguments. First, there is national
need: the nation will not get the job of K-12 math education done without the
input of professional mathematicians. Thus, our collective future depends upon this.
Second, these efforts are good for the math department itself. Indeed, such efforts
can offer a new way for math faculty to contribute to the university’s mission, earn
professional recognition, and generate grants. Moreover, offering math classes for
future teachers can provide increased student credit hours and a pathway to jobs
for undergraduate math majors. This work may even have a positive effect upon
the doctoral program, making doctoral students more employable by giving them
additional teaching experiences and allowing them to demonstrate to prospective
employers that they are able to teach a wider variety of classes.

If work with math education is to be included within the list of responsibilities
of a math department, then it would be helpful for departments to make explicit
that involvement with K-12 math education is part of the department’s mission. For
example, this involvement could be explicitly included in the department’s mission
statement. At the author’s institution, the department’s mission statement states:

The mission of the Department of Mathematics at Boston College is the creation of new
knowledge and ideas of mathematics through research, and excellence in the effective
transmission of mathematics new and old: to our students at appropriate levels, to math-
ematicians and scientists world-wide, and to the general public. We give our students the
mathematical tools and vision needed for their success in future endeavors, while supporting
the university’s commitment to a well-rounded education. We are a strong source of
mathematical perspective to the university, the profession, and the community. We provide
our expertise and experience to our students, to the university, and to our profession through
mentoring and advising, committee duties, editing, reviewing, and research collaboration.
We act as a resource for those concerned with mathematics education at all levels, as well
as for government and industry.
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Arriving at a departmental agreement that work in K-12 math education belongs
in the math department, or changing a mission statement to reflect this agreement,
may well require conversations within the department. Here, individuals who are
not themselves interested in mathematics education but see it as useful to the
department and to society may be key. Since such work is increasingly common, and
distinguished mathematics researchers including members of the National Academy
of Sciences such as our honoree Prof. Roger Howe engage in it and speak about it
articulately, there is external support for this. Though such conversations may well
expose a range of opinions within the department, including some less favorable,
ultimately they are necessary for such work to thrive.

15.3 The Work of Mathematics Departments: An External
Perspective

The math department has multiple roles from the perspective of the university’s
Administration as well. It is the primary location for teaching, scholarship, and
service related to mathematics and the repository of resources devoted to advancing
teaching and research in mathematics. In this context, the work of mathematicians
in education has some significant negative aspects:

• It does not support the primary research mission of the math department, which
is the development and application of new mathematics.

• It does not contribute to the rating or visibility of the department’s doctoral
program.

• It does not contribute to the department’s support of students in areas such as
physics or economics that use math heavily.

• It does not contribute to interdisciplinary scholarship involving math and science,
such as work on bioinformatics or cryptography.

• It contributes to only one limited aspect of the department’s undergraduate
mission, which may be very broad.

It may also not be helpful politically in terms of relations with cognate
departments, such as those within a common division of physical sciences. Indeed,
scientists interested in working alongside a serious math department may not believe
that K-12 education should be a priority for a math department. Naturally, this
differs from institution to institution.

Besides this, there are broader organizational questions. It is generally not best
practice to fund the same effort in two different institutional units. Many universities
already have faculty in teacher education who are in charge specifically of K-12
education. Why should the university put resources into this area in two different
departments? And why is math special?
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Mathematicians who support work in K-12 in math departments will need to
seriously consider these arguments and be prepared to answer them.3 Moreover,
the issue of rewards for mathematicians working in math education is tied to these
questions and their answers. Indeed, one expects rewards to reflect the university’s
priorities for the math department.

The formulation of coherent answers to these questions is probably not needed
for readers of this volume. A short list is as follows:

• The involvement of mathematicians is valuable for, even critical to, K-12 educa-
tion. Indeed, without this work, our nation is likely to continue to significantly
lag top achieving counties in K-12 math achievement in the future.

• This work helps address the nation’s critical shortage of students prepared to
study STEM. Training enough STEM graduates is expected to be a key factor in
the nation’s long-term economic health.

• Increasing the supply of well-qualified math teachers can address one factor in
the nation’s troubling socioeconomic inequality. Indeed, with a shortfall of such
teachers, it is our poorest citizens who are most likely to have under-prepared
teachers.

• As the controversies over the Common Core make clear, citizens care about math
in the context of education. Work in math education contributes to the community
in a demonstrable way. It also increases the university’s visibility.

• While it is hard to explain abstract theorems and technical advances to a general
audience, work in math education is easier. These efforts will be understood and
appreciated by alumni.

The ways that these pros and cons are weighed will vary greatly from institution
to institution.

Just as Sect. 15.2 proposed an internal discussion resulting in a formal recogni-
tion of involvement in K-12 math education as a departmental responsibility, in this
section, we propose an external discussion of this matter within the university set-
ting. Our thesis is simple: Mathematicians have a unique and valuable perspective
on K-12 math education. Their involvement is critical to the country’s long-
term economic and societal health. Consequently, this involvement should receive
institutional support. This thesis is best argued not by an individual practitioner,
but by the department. Ideally, mathematicians working in math education and their
department chairs will together be articulate about why the work of mathematicians
in math education matters and about why it is necessary for mathematicians to be the
ones to do this. They must actively engage in conversations outside the department,
seeking to convince others both within and outside the university. In interacting with
their colleagues in science, it is helpful to emphasize the potential impact of their
work on the STEM pipeline.

3Even if they work with administrators who already view the preparation of K-12 math teachers as
an appreciable part of a math department’s mission, such considerations may arise in competing
for scarce university resources.
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There is an important additional aspect to making such arguments. At a competi-
tive institution, resources follow successes. If mathematicians working in education
wish to receive resources, they must then document at every turn that their work has
made a difference. To be sure, some of the impact will only be clear years later, but
this is true for other departmental efforts as well. Math educators must follow best
practices in documenting the effectiveness and impact of their efforts.

15.4 Evaluating Mathematicians’ Work in Math Education

In the first two sections, we have discussed the work of mathematicians in K-12
education in a rather undifferentiated way. Let us now look more closely. As readers
of this volume are well aware, mathematicians do many different things concerning
K-12 math education. These include work with preservice teachers, such as helping
future elementary teachers in learning the pedagogical content knowledge they will
need (Ma, 2010) and mentoring math majors as they carry out their student teaching;
work with in-service teachers such as helping them to deepen their background
in algebra, geometry, or statistics or supporting them to develop “mathematical
habits of mind”; work with talented K-12 math students through devices such
as math circles or summer programs; work on standard documents such as the
Common Core State Standards for Mathematics; work on curriculum and on the
implementation of a curriculum; and work on math education policy such as service
on a statewide advisory committee or public advocacy of specific policy decisions.
See McCallum (2003) for several specific examples, which illustrate the range of
work that is possible, and Friedberg (2014) and Briars and Friedberg (2015) for
examples of the public advocacy of math policy decisions that reflect the vantage of
a university mathematician.

Each of these activities could be the focus of a substantial project, one that
requires a great commitment of time and energy. Moreover, such efforts may take
the form of a multi-year project. An example is the design of a systematic program
to develop and support strong math teachers, the solicitation of external funding
for such a program, and, upon receipt of funding, its implementation. To be sure,
such work may also lead to research on some topic in math education or to advising
doctoral students in carrying out research on some topic in math education, but that
is often not the primary goal of such an effort. In a systematic program to develop
and support strong math teachers, for example, the primary goal is visibly not such
research.

Which of these activities are the most meritorious? Publications are valued in
academia but may not be the primary goal of truly worthwhile projects. Also, even
highly recognized scholarship in math education might well be outside a math
department’s mission, and surely every mathematician wishing to contribute to math
education does not need to become a math education researcher. Moreover, it is
possible to spend a great deal of time on many of the tasks mentioned above without
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generating publications. Simply applying the approach for mathematics itself of
considering papers in top journals as a critical indicator of success misses a great
deal of important and potentially valuable work.

In view of this, it is important that mathematics faculty members working in
K-12 education discuss with their department chairs the range and demands of
tasks in math education. And if this work is to be truly valued, they must then seek
recognition for those tasks. However, the pact in academia is clear: if you seek
recognition, then you must agree to be evaluated by clearly defined criteria.

Accordingly, we make the following suggestion: Mathematicians working in
K-12 mathematics education should be evaluated concerning the quality of this
work. The metric for achievement should be overall impact, the same metric we
use in evaluating scholarship in mathematics itself.

To be clear, it is not common to evaluate service, and the bulk of work in math
departments in the area of math education falls into this category. However, failing
to carry out such evaluation ultimately denigrates these contributions. Accordingly,
we should not let the challenges of carrying out such an evaluation stand in the way
of adopting this as the metric.

The author does not wish to minimize the challenge of measuring overall impact.
Gathering evidence that work with teachers has made a difference to their classroom
students is not easy and may be costly. It also requires familiarity with research
protocols in education. Multi-year projects, such as ones directed at building a
community of highly trained math teachers in a given geographical area, may take a
long time to bear fruit but may be very effective in the long run. Innovations that are
worthy of dissemination are potentially very valuable, but once again it may take
a period of time to reach this stage and then to carry out effective dissemination.
But these are common issues to assessing any project involving a complicated
system.4 Moreover, measuring external support is certainly realistic, and letters from
peers could be solicited. A combination of data, grants, and external letters from
peers would be a natural beginning to documenting impact. When mathematicians
working in education are able to demonstrate that their work is effective on a large
scale, they will have a strong case for rewards and support.

15.5 Conclusions

Mathematicians carry out a great deal of work related to K-12 math education.
The mathematical expertise that they bring to this work is critical, and indeed this
work is important for the country. However, most of this work is not traditional
scholarship. To move forward, mathematicians carrying out such work should argue

4Recent discussions of metrics for evaluating the impact of scholarship in mathematics suggest that
even the evaluation of mathematics is not entirely straightforward; see, for example, the section on
metrics in Andrews (2012).
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for three changes. First, at the departmental level, work as mathematicians in K-12
math education should be recognized as belonging to the math department and
included in the department’s mission statement. Second, at the university level, the
math department should argue that this work belongs in a mathematics department
and deserves the commitment of institutional resources. Finally, if this work is to
be perceived as truly valuable, it must be subject to evaluation. The mathematics
profession and wider university should broadly agree upon overall impact as the
metric for evaluating such work. It should then reward excellence accordingly.

References

Andrews, G. (2012). Drowning in the data deluge. Notices of the American Mathematical Society,
59(7), 933–941.

Briars, D., & Friedberg, S. (2015). Conversations about K-12 mathematics education. Video series,
NCTM and the Hunt Institute. Available at: www.nctm.org.

Carrell, S. E., & West, J. E. (2010). Does professor quality matter? Evidence from random
assignment of students to professors. Journal of Political Economy, 118(3), 409–432.

Dwyer, J., & Schovanec, L. (2017). Supporting education and outreach in a research mathematics
department. In Y. Li, W. James Lewis, & J. Madden (Eds.), Mathematics Matters in Education.
Cham, Switzerland: Springer.

Friedberg, S. (2014, September 15–16). Common core math is not fuzzy. USA Today. Available
on-line at: http://www.usatoday.com/story/opinion/2014/09/15/common-core-math-education-
standards-fluency-column/15693531/

Ma, L. (2010). Knowing and teaching elementary mathematics: Teachers’ understanding of
fundamental mathematics in China and the United States (studies in mathematical thinking
and learning series) (Anniversary ed.). New York/London: Routledge.

McCallum, W. G. (2003). Promoting work on education in mathematics departments. Notices of
the American Mathematical Society, 50(9), 1093–1098.

Purdue, R. L., & Suckow, M. A. (2015). Teacher supply in California, A report to the legislature,
annual report, 2013–2014. California Commission on Teacher Credentialing, Professional
Services Division, Sacramento, CA.

Tucker, A. (1993). Chairing the academic department: Leadership among peers (American
Council on Education/Macmillan series on higher education) (3rd ed.). Phoenix, AZ: Oryx
Press.

UC quick facts at a glance. UC System Infocenter. http://universityofcalifornia.edu/infocenter/uc-
quick-facts-glance. Web. Accessed 18 Apr 2016.

http://www.nctm.org
http://www.usatoday.com/story/opinion/2014/09/15/common-core-math-education-standards-fluency-column/15693531/
http://universityofcalifornia.edu/infocenter/uc-quick-facts-glance


Chapter 16
Supporting Education and Outreach
in a Research Mathematics Department

Jerry Dwyer and Lawrence Schovanec

Abstract Research mathematics departments promote scholarly activities primar-
ily focused on traditional mathematical research. These departments also have a role
to play in advancing high-quality teaching, student mentoring, K-12 outreach, and
the mathematical education of preservice teachers. A significant number of faculty
pursue these activities and enjoy varying levels of support. This chapter describes
the benefits that accrue to a department that supports these activities while also
recognizing the challenges that are often presented. The authors offer the perspective
of an established outreach mathematician and that of a senior administrator who
has actively supported outreach from his time as a mathematics department chair
through his role as a college dean, provost, and now a university president. They
argue that support can be provided at several levels from within the department and
across the university, with a specific emphasis on setting clear guidelines for tenure
and promotion based on nontraditional scholarly output in the areas of education
and outreach.

16.1 Introduction

There is a significant cadre of faculty in research mathematics departments around
the nation who devote considerable time to issues of mathematics education and
outreach. The support of those departments for this type of work varies across the
spectrum from enthusiasm to apathy to opposition. In this chapter, we describe
the typical roles played by those faculty and how these roles may be supported
by national organizations and universities and in particular within the departments
themselves. In the course of addressing these issues, suggestions for supporting and
enhancing education and outreach are provided.
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16.2 Background

Articles reflecting on these roles have appeared in the Notices of the Ameri-
can Mathematical Society. The first, describing early experiences of an outreach
mathematician and the chairperson who advocated for such a role, appeared in
2001 (Conway, 2001; Dwyer, 2001), and an update appeared in 2013 (Dwyer
and Schovanec, 2013). The first author (Dwyer) of this chapter is the outreach
mathematician involved in the earlier articles. The second author (Schovanec) was
the chair of the Department of Mathematics and Statistics (M&S) at Texas Tech
University (TTU) at the time that Dwyer was hired in 2003. Schovanec now serves
as the President of TTU, having previously served as dean of the College of Arts &
Sciences and as Provost of TTU. In each of his administrative roles, he has promoted
outreach, engagement, and the associated reward structures within the department,
the college, and the university.

In addition to the above, there are several aspects of the interface of mathematics
and education that have been discussed in other articles in the Notices of the
American Mathematical Society over the past 15 years. A good example is the article
by McCallum (McCallum, 2003), which describes several of the issues related to
the role of mathematicians working on educational issues in research mathematics
departments.

Some of the earlier articles focused on a specialist dedicated to outreach as a
primary role. The reflections offered in this chapter will apply to a broader group
of faculty and encompass any work undertaken by mathematicians in education.
They may also be applied to faculty who continue to pursue traditional research but
may devote a limited portion of their time to mathematics education and outreach
issues. It also includes faculty whose focus is primarily in the area of traditional
mathematics education research while working in a mathematics department. This
chapter primarily addresses the issues of mathematicians engaging in activities out-
side of traditional research in mathematics or working on education issues and how
contributions in these areas are recognized and credited for the purposes of tenure
(if applicable) and promotion within a traditional research mathematics department.
The focus of the chapter is on faculty in research mathematics departments. It
is acknowledged that there are many faculty in departments primarily devoted to
teaching and those who may not be tenure track who are engaged in these activities,
whose contributions need to be supported. There are also many mathematicians
working on educational projects in other capacities, and their value is recognized
for the expertise they bring to the field. These include mathematicians working in
educational testing companies, on state boards of education, or as dedicated clinical
teaching faculty not seeking tenure in a research mathematics department.

This article is complemented by another article concerning the support of
education and outreach in a mathematics department by Solomon Friedberg (2017).
Professor Friedberg is primarily a research mathematician, but one who engages in
outreach and policy work in math education as well and who is also completing
a period of 9 years as department chair. His perspectives as a current chair
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complement those of the outreach mathematician and senior administrator offered
here. He argues that work as mathematicians in K-12 math education should be
recognized as belonging to the mathematics department and should be included
in the department’s mission statement. He also suggests that the mathematics
department should argue at the university level for a commitment of institutional
resources to support these activities. The outreach work should also be subject to
evaluation, with overall impact as the metric for evaluating such work.

There is an interesting historical perspective related to these matters and a rich
history of over a century of research mathematicians in the United States and
elsewhere interacting positively with K-12 teachers. Most recent advances have
been in areas such as the development of the recommendations of the panel on
the Mathematical Education of Teachers (MET). That document draws heavily
on the advice of research mathematicians who are also engaged in mathematics
education. New mathematics standards, such as the Common Core, have also been
developed with significant input from research mathematicians. In this volume,
dedicated to Roger Howe, it is fitting to acknowledge his numerous contributions
to the discussion of what is appropriate mathematics in the K-12 realm and how the
understanding of such mathematics must inform the preparation of mathematics
teachers at all levels from kindergarten to 12th grade. It is also important to note
that many of the observations and suggestions in this chapter have resulted from
the discussions and presentations at the workshop in March 2015 at Texas A&M
University in honor of Professor Howe’s 70th birthday.

16.3 Education and Outreach Roles and Recognition

Education and outreach faculty in research mathematics departments pursue a wide
range of activities. These include traditional mathematics education researchers,
while others are predominantly engaged in teacher education or outreach to the K-12
community. Typical activities include visiting K-12 school, organizing math clubs
and summer programs, developing teacher workshops, and developing and teaching
courses for preservice teachers. In a broader context, the roles of mentoring, super-
vising undergraduate research, educational grant writing, and scholarship focused
on improving undergraduate teaching such as curriculum development and textbook
writing may be adopted. Such faculty usually interact extensively with colleagues
outside the department and serve as liaisons across college and departmental
boundaries, promoting collaboration on multidisciplinary projects that may involve
funded support and joint publications. This latter realm of activity brings a new
set of challenges. Indeed, a major issue facing faculty in a nontraditional academic
role is that of publication. There are a limited number of appropriate outlets for
disseminating research, and there are reservations from colleagues in traditional
research areas about the quality of scholarship that results from outreach activities
and the relevance of this type of work to the mission of the department.
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There are many benefits of having faculty dedicated at various levels to edu-
cational research and engagement work. This is an aspect of departmental work
that is easier to explain to alumni and parents and offers potential for financial
contributions from that donor base. This type of activity also resonates with
foundations that support community engagement and outreach. It is an area of work
that addresses the need for more STEM graduates that is commonly highlighted in
the national press. It also offers the potential to attract new graduate students that
might not have otherwise pursued a career in mathematics had their option been
restricted to the traditional research areas of study. Mathematics education is also a
vibrant area in many other countries and offers new opportunities for engagement at
an international level.

It is important to stress here that the authors strongly believe that there is a
definite role for mathematicians in educational work. In particular, mathematicians
can provide mathematical knowledge and perspective that may not be available
to those with a more pedagogical focus. Conveying a sense of what it is to do
mathematics brings enthusiasm to the classroom that has the potential to motivate
and foster a deeper conceptual understanding among future teachers and other
students. This can be achieved in a way that may not happen with instructors
who don’t have the same level of mathematical background. We believe that the
mathematical knowledge of teachers is important and that mathematics faculty
can foster that deeper conceptual understanding among teachers in a unique way.
Similarly, mathematicians can develop master teachers in ways that aren’t always
possible for educators who don’t have the same mathematical background.

The mathematician working on educational issues is often viewed by colleagues
as having an expertise in the area of undergraduate teaching. In that context,
there is an opportunity to support the teaching mission of the department by
initiating activities and discussions that support personal development of teaching
proficiency, innovation in the classroom, and generally broader discussions of the
importance of teaching excellence. This expertise is critical in addressing new
models of instruction and efforts to incorporate more active and engaged teaching
strategies. Several research studies show that active and engaged learning leads to
greater conceptual understanding (Epstein, 2013). There is a major advantage to
the department if such teaching can be adopted and if such an approach can lead
to greater student success and decreased failure rates that continue to challenge
many departments. This issue is also of concern to upper administration, as the high
failure rates in lower-level STEM courses influence retention and graduation rates
and potentially tuition revenues. Departmental seminars may help to educate the
faculty on teaching issues and also encourage them to reflect on their own teaching.
They may be motivated to consider the extent to which their teaching contributes
to genuine learning among their students. Increased reflection on teaching can also
lead to the development of topics in the realm of the scholarship of teaching and
learning. This is also discussed later in the context of the development of different
models of scholarship in general. Particular opportunities may exist to mentor junior
faculty on teaching. At Texas Tech University, the authors have developed a series



16 Supporting Education and Outreach in a Research Mathematics Department 291

of seminars where issues in teaching at all levels are discussed. As a result, several
faculty have reported that they have begun to reflect more on their teaching and have
incorporated strategies that wouldn’t otherwise have been apparent to them.

The development of educational and outreach projects often depends on grant
funding. This is both a challenge and an opportunity. University administration
typically supports the grant writing process by identifying this effort with scholarly
activity. Indeed, there may be acknowledgment that a successful grant proposal
is similar to that of a peer-reviewed publication. But in addition to the scholarly
implications of this work, there is also a clear financial benefit to the department as
well as increased visibility across campus and beyond the university. Conversely, the
university needs to provide logistical support for grant writing in all disciplines, as
many faculty are inexperienced in this area. The need and emphasis on funding do
have a positive payoff in the possibility of attaining larger grants and the visibility
and recognition that they bring.

The authors have encountered some negative feedback from faculty. This
includes criticism that outreach or educational work does not contribute to the
traditional mission of either the undergraduate or graduate program of the depart-
ment. Another criticism is the possibility of a duplication of effort since faculty in
traditional departments of education are already active in these areas. Both of these
criticisms are addressed in this chapter.

16.4 Alternative Scholarship

It is useful here to describe a broader context of scholarship in general. These
distinctions in scholarship have been defined and described by Boyer in (1990).
Boyer argues for a consideration of scholarship beyond the narrower confines of
traditional research, which often treats the only valid work as that of discovering
new knowledge and disseminating it. A traditional research mathematician is trained
in this mode, engaged in the development of “knowledge of knowledge for it’s own
sake” or expanding the knowledge base of a discipline of specialty. Boyer’s model
broadens the definition of scholarship to include work such as that of disseminating
existing knowledge in new ways or in ways that are accessible to wider audiences or
in connecting older knowledge in some new way. This definition allows recognition
for alternative scholarship or creative activity that has long been recognized in
some disciplines. For example, in music, the scholarly work may be a performance,
which is certainly not a written work with literature reviews and appropriate
methodologies. We can also mention the “Scholarship of Teaching and Learning,”
an area of increasing familiarity to mathematicians in which contributions meet the
standard expectations of scholarship, including public dissemination and rigorous
review.

Mathematics departments have a role to play in advancing this notion of
scholarship by creating awareness among the faculty of this approach and how such
work is valid. It is important that the faculty understand that this is not trivial work
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and is not seen as an easy option compared to traditional mathematics research. It
is also important to clarify that this alternative scholarship is more than service. It
is not sufficient to perform outreach activities and write about them. The activity
must be planned with a research agenda, developed in a methodical manner and the
results analyzed and described in a manner that allows replication by the research
community. This type of scholarship has much in common of course with traditional
research in education and in the social sciences.

An example of this type of scholarship may be informative. A mathematician
could organize a summer program for a group of middle school students from
underrepresented groups. The program is developed with specific objectives in
mind. The participants are surveyed before and after the program, and the changes
in content knowledge and attitude are analyzed. This should result in a scholarly
publication that includes a description of the program and an analysis of the extent to
which the objectives are achieved. The research methodology may lack some rigor,
and the article may not have set the theoretical context for a traditional educational
journal. However, the article will be of great interest to fellow practitioners and has
a place in a practitioner journal or as a technical paper in a popular magazine.

Departments also need to recognize educational and outreach work that isn’t
accompanied by publication. This can be a valuable part of a regular faculty
member’s service role. It may also be of greater importance to faculty who are
not tenure stream and who could be supported by course release time or increased
salary where appropriate.

16.5 Training in Educational Research

Most mathematicians have not been trained in rigorous educational research
methodology. As a result, they struggle to set the context in terms of literature
models or to implement appropriate methodologies. The usual approach is to
perform some educational work, but never prepare it for publication in order to
receive scholarly credit. Another approach is to collaborate with educational faculty
in order to produce papers based on the outreach work.

It may be productive for interested mathematicians to consider taking the time
to formally learn the methods and standards of educational research. This gives the
faculty member the option of independently designing research studies and writing
about them in a scholarly manner. However, this option may be too time-consuming
for faculty who wish to remain active in traditional mathematics research and who
only wish to devote a limited amount of time to outreach and education.

To address this issue, departments in the STEM disciplines may consider
assisting in the development of educational expertise by hosting a series of seminars
and workshops designed to disseminate research expertise in the area. A number of
departments could combine to jointly host these workshops so that a critical mass of
mathematics education and science education faculty could join together to benefit
from the presentations. These workshops would need facilitators from education
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colleges who could share their knowledge. Such joint workshops then have the
added benefit of increasing interaction between education colleges and colleges of
arts and sciences, with the potential for new collaborations.

16.6 Mathematics Teacher Education

One area where mathematicians may find increased reward is that of the mathemati-
cal education of teachers. The K-12 education system faces numerous challenges
many of which are beyond the control of university faculty. However, we are
the educators of preservice teachers, and for 3–6 h per week, we have their
undivided attention in our classrooms. We can make an impact by teaching well
and facilitating deep conceptual understanding that these teachers can take into their
own classrooms in future years. There are opportunities for interested and qualified
mathematics faculty to teach preservice teachers and to inspire and educate those
who teach future generations.

Recent national meetings and feedback from practitioners suggest that there is
some change in the landscape of mathematics teacher education. There is merit
in a different approach to teaching preservice courses, with greater emphasis on
partnerships between education and STEM faculty. An example is the impact
described by Sultan and Artzt (2005) when a mathematician and mathematics
educator co-teach a class for preservice teachers. These kinds of collaborations
are areas where the outreach mathematician is in an ideal position to contribute
positively to the new landscape.

Teacher education also provides opportunities to connect with supportive na-
tional organizations that are committed to research and development on learning and
how programs can support teacher educators. These include the National Council
for Teachers of Mathematics (NCTM) and the Association of Mathematics Teacher
Educators (AMTE) who host national and regional meetings on an annual basis.
These organizations also offer avenues and collaborators that assist mathematicians
in learning the type of research approach needed to examine educational issues and
to assess the impact of various outreach and K-12 classroom intervention programs.
Teacher-faculty interaction in guided workshops or in events such as Math Teacher’s
Circles also offers the opportunity for faculty to understand the perspective of K-12
teachers and to see how teachers often bring to the table a surprisingly diverse and
high level of mathematical knowledge and problem-solving experience.

16.7 Teacher Professional Development

College faculty can find great reward also in working with practicing teachers
through professional development workshops. These programs can involve a deep
analysis of the mathematics that is taught at the K-12 level. Faculty are often
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surprised at the level of this depth and how PhD mathematicians can respect and
complement the work of their K-12 colleagues. This collaborative approach also
helps in the development of the community of mathematics teachers. The college
faculty realize that they share much in common with their K-12 colleagues and can
offer each other a mutually supportive environment.

The outreach or educational specialist is also in a strong position to seek external
funding for programs related to the professional development of K-12 teachers.
These programs are often the focus of grant funding opportunities. Beyond the more
traditional sources for mathematics research and education, such as the NSF and
DOE, educational initiatives are often specially addressed by state-funded programs
and foundations. An example is the funding from the Greater Texas Foundation
to support the Middle School Math and Science (MS)2: Understanding by Design
master’s degree program. This program is an example of a revenue source for the
development of masters’ courses for in-service teachers. These courses are popular
and offer excellent opportunities to develop deeper analysis of the K-12 mathematics
subject matter. They also provide an example of a way that outreach mathematicians
can contribute positively to the revenue stream of the mathematics department.
A final point on revenue streams may draw upon the potential of working with K-12
school districts to provide financing for some programs. There is a critical shortage
of highly qualified math and science teachers, and mathematics departments may
be able to work with school districts to find creative ways of funding new
teacher training and professional development programs. The mathematician who
is interested in educational issues is in a key position to lead such innovations.

16.8 Case Study of Successes and Challenges

This case study describes a particular model of a mathematician dedicated to out-
reach and describes some programs that have proven successful and can be offered
as possible starting points for faculty who want to begin some educational outreach
work. These include presentations in K-12 classrooms, after school math clubs,
and summer programs for K-12 students. These programs provide opportunities to
develop positive relationships with K-12 teachers and to gain classroom experience
that gives credibility when we teach preservice teachers or offer professional
development workshops for in-service teachers. It is the authors’ experience that
it is essential to develop these projects as genuine collaborations rather than any
form of study or remediation exercises. Small projects of this nature are often
funded by foundations collaborating with the Mathematical Association of America
(MAA) and may be less competitive for funding than the large federally funded
programs. As such, they have the potential to provide experience in managing
funded educational projects. A related point refers to the building of collaborative
teams across disciplines, which is often an important facet of outreach work.
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Successful teams are formed in an atmosphere of mutual respect and a recognition
that different cultures exist in colleges of education compared to that in mathematics
or other STEM departments.

At Texas Tech University, the hiring of an outreach mathematician provided the
catalyst and leadership for a number of campus-wide initiatives and collaborations.
Over the last several years, significant external funding has dramatically affected
STEM education and outreach projects at TTU. A major development in support of
the scholarship of outreach at TTU occurred in 2012 when the university adopted
a revised tenure and promotion policy that recognized outreach and community
engagement as part of a faculty member’s contributions in potentially each of the
areas of teaching, research, or service. The College of Arts & Sciences followed suit,
and most recently the mathematics department at TTU has adopted such a clause in
its promotion and tenure documents. Dwyer has been featured as an “Integrated
Scholar” (Smith, 2011, http://www.depts.ttu.edu/provost/scholars/jerrydwyer.php),
a distinction that TTU has enlisted to recognize contributions to teaching, research,
and service, where outreach is recognized as a component of all three areas. In
2006, TTU was one of the 76 universities and the first in Texas to be included
in the “community engagement” classification of the Carnegie Foundation for
the Advancement of Teaching and regularly recognized in the President’s Higher
Education Community Service Honor Roll. In 2015, TTU was again selected by the
foundation for its 2015 Community Engagement Classification. This distinction is
partially based on data reflective of TTU’s strategic priority to expand community
engagement and evidence of extensive faculty-led community collaborations.

The impact of outreach and engagement on various constituencies is described in
two reports based on studies funded by an NSF grant awarded for the integration of
outreach activities at TTU. The first report (Dwyer, Miorelli, & Moskal, 2015a)
presents the results of surveys administered to incoming freshmen that describe
the impact of their participation as K-12 students in TTU outreach programs.
The results show a moderate impact on their decision to pursue a STEM degree.
A corresponding survey to graduating seniors shows that their retention in a STEM
discipline was also moderately impacted by their participation in K-12 outreach
either as a facilitator or as a participant. Indeed, the effect was seen to be similar
to that of participation in an REU (undergraduate research) experience, which has
long been held as a positive influence on student retention in the STEM disciplines.

The second report (Dwyer, Miorelli, & Moskal, 2015b) describes the self-
reporting by faculty of their participation in outreach activities and their perception
of the merit associated by the institution to those activities. The results show a
greater awareness of outreach and a higher level of faculty morale among newer
faculty.

The authors have clearly seen the advantages of having faculty dedicated to
education and outreach with various levels of commitment ranging from that of
a specialist outreach mathematician to that of faculty who may make as little as one
presentation per year to high school students. They have seen new opportunities,
rewards, and frustrations related to outreach mathematics. However, a number of
challenges remain as TTU continues to advance toward a campus-wide recognition

http://www.depts.ttu.edu/provost/scholars/jerrydwyer.php
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of the role of outreach, engagement, and interdisciplinary educational projects. The
nature and level of these challenges may vary from institution to institution. Some
colleges remain on the periphery of these developments, and for some departments,
there is still a singular focus on traditional research scholarship as the route
toward tenure and promotion. Junior faculty may be discouraged from pursuing
educational or outreach-related scholarship prior to obtaining tenure. In Dwyer’s
case, the department required about 8 years before finally achieving near-unanimous
appreciation and recognition of his contributions and of the role of outreach and
engagement.

These issues are more pronounced at many other institutions that have faculty
dedicated to education and outreach. In many cases, these faculty were hired
in nontenure track roles or pursued outreach activities only after the traditional
requirements for tenure and promotion were met. Some tenure track colleagues at
peer institutions have faced negative tenure votes and lengthy appeals before their
work was recognized. Others have gained tenure but failed to find consistent support
or successful collaborators.

16.9 Developing Support Structures

Many challenges still confront mathematicians who choose to work on educational
issues, and those challenges must be addressed at a number of levels. Some of
these strategies have already been mentioned in previous paragraphs. In addition,
at a national level, the American Mathematical Society (AMS) could offer renewed
support through the committee on education and perhaps through recognition of
educational outreach as a separate subject classification within the AMS listing
of topics. On a related note, the challenging issue of publication opportunities
could be ameliorated through the creation of a new journal dedicated to outreach
mathematics. The AMS or MAA could play a role in developing and promoting such
a journal. Perhaps, the time has also arrived for outreach mathematicians/educators
to join together to create a Special Interest Group or SIGMAA.

It is clear that outreach and engagement is recognized in several important
ways at a national level, for instance, the WK Kellogg Foundation Community
Engagement Scholarship Awards or the C. Peter Magrath Community Engagement
Scholarship Award. The importance of this type of recognition is often evident
at the university level through the institutional effort devoted to these types of
recognition, as well as explicit mention in the university strategic plan. What is
always not so transparent is the local significance of this activity at the departmental
or college level. For one who aspires to work in the area of outreach, understanding
the landscape for support of outreach is worth investigating when deciding where to
pursue a career.

The major challenge often occurs within the department, where support is needed
to pursue projects and ultimately in terms of votes for tenure and promotion. The
typical reward system may not recognize that an outreach mathematician should be
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tenured and promoted based on the quality of his or her alternative scholarship as
is the case in a traditional track of pure mathematical or educational research. The
first step for a mathematics department should be an amendment to the reward and
promotion structure to take into account the nontraditional role of an educational or
outreach mathematician. This will also be achieved through a focused hiring letter
that addresses the role of the scholarship of outreach and engagement. In terms of
the overall mission of the mathematics department, the work of mathematicians
in mathematics education should be explicitly stated in the mission statement
or strategic plan of the department. Finally, a younger faculty member should
find the support of a senior faculty member who can act as an advocate for the
cause of outreach. A respected traditional researcher can be a powerful influence
within the department even if that researcher is not personally involved in outreach
or educational matters. The senior faculty advocate can also gauge and provide
feedback on local attitudes in a way that a newer or more junior faculty member
might not be able to accomplish.

In this volume dedicated to Roger Howe, it is again appropriate to mention the
role that a senior and distinguished mathematician from outside the department can
play in advocating for recognition for this work. It is the authors’ experience that
many of their faculty colleagues are convinced that mathematics education work is
important when a distinguished mathematician such as Professor Howe advocates
for this work. Other senior research mathematicians could adopt a similar role where
their influence extends to the national level.

The education of faculty colleagues on these issues is critical. The chair
has a very important role to play in educating faculty and in recruiting faculty
for outreach and math education roles related to either K-12 or undergraduate
learning issues. This includes recruiting faculty to teach math content courses for
preservice teachers. It is not as difficult as some may suspect. First, we note that
the mathematics of elementary and secondary school is deep and complex and
rewarding for some mathematicians who choose to explore it in depth. A series
of seminars in this area can be most helpful, especially by inviting K-12 teachers
to attend these seminars and bring their perspective to the university faculty. These
teachers can address issues of language and diversity and cognitive development
that are not always known to mathematics faculty. This understanding should lead
to a greater empathy with teachers and a greater appreciation of faculty colleagues
who choose to work in these areas.

The education or outreach researcher also has a role to play in cultivating
relationships within the department in a respectful manner. He or she has to
recognize that some faculty aren’t particularly interested in math education issues
and shouldn’t attempt to push a particular agenda on the department. It is the
authors’ experience that a positive and collaborative approach yields the greatest
level of support.

General feedback from successful programs on all of these integration efforts is
that the process must be gradual and change doesn’t happen overnight. There is a
long-standing tradition in most departments of what are appropriate roles and it will
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take time to alter this. This issue was captured nicely in a quotation from the March
2015 workshop: it was stated that it was “the work of a generation.”

Beyond the department level, various types of support should be introduced at the
college and campus levels. The benefits of breaking down the siloes of traditional
research factions can be promoted at the college and campus levels. Tenure and
promotion guidelines at the college and institutional levels would certainly be of
benefit. A specialized review process should be considered where the tenure or
promotion vote could include colleagues in STEM education roles in other depart-
ments. These votes or recommendations need not replace the departmental vote but
could be considered by the dean or provost in making final decisions. Campus-
wide awards and small grants for outreach and engagement activities should be
introduced to draw attention to such engagement and increase the visibility of
the winners, many of whom remain unknown outside of their own departments.
Solid levels of support from the upper administration should also be conveyed and
implemented at the local level through effective support and promotion from the
department chair. These levels of support should also be extended to faculty who
are not tenure stream and who choose to pursue math education and/or outreach
roles. Long-term contracts and course releases are examples of such possible
administrative support. With such support it can be hoped that a greater number
of mathematics faculty will pursue educational and outreach activities and reap
the rewards that are becoming apparent in those departments that have successfully
embraced this emerging role.

The challenges facing outreach and education-oriented mathematicians and the
support structures to address those challenges have been described. There is,
however, at least one area where the outreach mathematicians can support their
own cause. This is in the area of assessment and evaluation. This aspect is also
discussed as a major recommendation in the complementary article by Friedberg
(2017). There is a critical need to document and quantify the impact of mathematics
outreach and education activities. This leads to the question of how we might
assess the impact of various projects. Assessment of this sort is not well developed,
and it is often difficult to attach numbers to impact factors. Possible measures
could include the number of new STEM degrees awarded, improved success rates
in critical courses, the number of new teachers produced, the number of dollars
generated, the number of newspaper and popular press articles written, as well
as more formal research studies. An example of such a study could be one that
measures the learning impacts of faculty intervention efforts at the K-12 level.
However, it is recognized that measuring such metrics will be time-consuming and
may require course release time or other support in order to facilitate the work.
It could even be argued that the assessment of outreach itself may be a valuable
contribution in its own right for a faculty member who has an interest in that area. If
positive outcomes can be shown to accrue, then it is easier to advocate for this role
with the upper administration of the university. It is also easier to convince faculty
colleagues, university administrators, and funding agencies that the outreach work
has significant merit in any department.
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16.10 Conclusions

The previous paragraphs have described the roles of an outreach/educational
researcher in a traditional research mathematics department. The benefits and
challenges have been addressed, and several suggestions have been offered that
might lead to greater recognition of these roles. The authors have often referenced
their own particular department in illustrating specific examples that illustrate the
benefits of embracing such a role. It should be acknowledged that these experiences
are not unique to their institution. But as a result of their personal engagement
in these endeavors, they have become strong advocates for the adoption of these
roles in other departments. It is their hope that the reflections presented here
will encourage others to consider the hiring of mathematicians wishing to pursue
educational activities. Furthermore, it is hoped that the suggestions offered would
be useful at several levels in preparing guidelines to navigate through the various
obstacles that may present themselves along these relatively new pathways.
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