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Abstract. Cable-Driven Parallel Robots (CDPRs) contain numerous
advantages over conventional manipulators mainly due to their large
workspace. Reconfigurable Cable-Driven Parallel Robots (RCDPRs) can
increase the workspace of classical CDPRs by modifying the geomet-
ric architecture based on the task feasibility. This paper introduces a
novel concept of RCDPR, which is a Mobile CDPR (MCDPR) mounted
on multiple mobile bases allowing the system to autonomously reconfig-
ure the CDPR. A MCDPR composed of two mobile bases and a planar
CDPR with four cables and a point mass is studied as an illustrative
example. As the mobile bases containing the exit points of the CDPR
are not fixed to the ground, the static and dynamic equilibrium of the
mobile bases and the moving-platform of the MCDPR are firstly studied.
Then, a real time Tentensions onto the mobilesion Distribution Algo-
rithm (TDA) that computes feasible and continuous cable tension dis-
tribution while guaranteeing the static stability of mobile bases and the
equilibrium of the moving-platform of a n = 2 Degree of Freedom (DoF)
CDPR driven by n+2 cables is presented.

Keywords: Cable-Driven Parallel Robot · Mobile robot · Reconfigura-
bility · Tension Distribution Algorithm · Equilibrium

1 Introduction

A Cable-Driven Parallel Robot (CDPR) is a type of parallel robot whose moving-
platform is connected to the base with cables. The lightweight properties of
the CDPR makes them suitable for multiple applications such as constructions
[1,10], industrial operations [3], rehabilitation [11] and haptic devices [4].
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A general CDPR has a fixed cable layout, i.e. fixed exit points and cable con-
figuration. This fixed geometric structure may limit the workspace size of the
manipulator due to cable collisions and some extrernal wrenches that cannot be
accepted due to the robot configuration. As there can be several configurations
for the robot to perform the prescribed task, an optimized cable layout is required
for each task considering an appropriate criterion. Cable robots with movable
exit and/or anchor points are known as Reconfigurable Cable-Driven Parallel
Robots (RCDPRs). By appropriately modifying the geometric architecture, the
robot performance can be improved e.g. lower cable tensions, larger workspace
and higher stiffness. The recent work on RCDPR [2,3,9,12,15] proposed differ-
ent design strategies and algorithms to compute optimized cable layout for the
required task, while minimizing appropriate criteria such as the robot energy
consumption, the robot workspace size and the robot stiffness. However, for
most existing RCDPRs, the reconfigurability is performed either discrete and
manually or continuously, but with bulky reconfigurable systems.

This paper deals with the concept of Mobile Cable-Driven Parallel Robots
(MCDPRs). The idea for introducing MCDPRs is to overcome the manual and
discrete reconfigurability of RCDPRs such that an autonomous reconfiguration
can be achieved. A MCDPR is composed of a classical CDPR with m cables
and a n degree-of-freedom (DoF) moving-platform mounted on p mobile bases.
Mobile bases are four-wheeled planar robots with two-DoF translational motions
and one-DoF rotational motion. A concept idea of a MCDPR is illustrated in
Fig. 1 with m = 8, n = 6 and p = 4. The goal of such system is to provide
a low cost and versatile robotic solution for logistics using a combination of
mobile bases and CDPR. This system addresses an industrial need for fast pick
and place operations while being easy to install, keeping existing infrastructures
and covering large areas. The exit points for the cable robot is associated with
the position of its respective mobile bases. Each mobile base can navigate in
the environment thus allowing the system to alter the geometry of the CDPR.
Contrary to classical CDPR, equilibrium for both the moving-platform and the
mobile bases should be considered while analyzing the behaviour of the MCDPR.

A Planar Mobile Cable-Driven Parallel Robot with four cables (m = 4), a
point mass (n = 2) and two mobile bases (p = 2), shown in Fig. 2, is considered
throughout this paper as an illustrative example. This paper is organized as fol-
lows. Section 2 presents the static equilibrium conditions for mobile bases using
the free body diagram method. Section 3 introduces a modified real time Tension
Distribution Algorithm (TDA), which takes into account the dynamic equilib-
rium of the moving-platform and the static equilibrium of the mobile bases.
Section 4 presents the comparison between the existing and modified TDA on
the equilibrium of the MCDPR under study. Finally, conclusions are drawn and
future work is presented in Sect. 5.

2 Static Equilibrium of Mobile Bases

This section aims at analyzing the static equilibrium of the mobile bases of
MCDPRs. As both the mobile bases should be in equilibrium during the motion
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Fig. 1. Concept idea for Mobile Cable-Driven Parallel Robot (MCDPR) with eight
cables (m = 8), a six degree-of-freedom moving-platform (n = 6) and four mobile
bases (p = 4)

of the end-effector, we need to compute the reaction forces generated between
the ground and the wheels of the mobile bases. Figure 2 illustrates the free body
diagram for the jth mobile base. uij denotes the unit vector of the ith cable
attached to the jth mobile base, i, j = 1, 2. uij is defined from the point mass P
of the MCDPR to the exit point Aij . Using classical equilibrium conditions for
the jth mobile base pj , we can write:

∑
f = 0 ⇒ mjg + f1j + f2j + fr1j + fr2j = 0 (1)

All the vectors in Eq. (1) are associated with the superscript x and y for respec-
tive horizontal and vertical axes. Gravity vector is denoted as g = [0 − g]T

where g = 9.8 m.s−2, f1j = [fx
1j fy

1j ]
T and f2j = [fx

2j fy
2j ]

T are the reaction forces
due to cable tensions onto the mobile base pj , C1j and C2j are the front and
rear wheels contact points having ground reaction forces fr1j = [fx

r1j fy
r1j ]

T and
fr2j = [fx

r2j fy
r2j ]

T , respectively. In this paper, wheels are assumed to be simple
support points and the friction between those points and the ground is supposed
to be high enough to prevent the mobile bases from sliding. The moment at a
point O about z-axis for the mobile base to be in equilibrium is expressed as:

Mz
O = 0 ⇒ gT

j E
Tmjg+ aT1jE

T f1j + aT2jE
T f2j + cT1jE

T fr1j + cT2jE
T fr2j = 0 (2)

with

E =
[

0 −1
1 0

]
(3)
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Fig. 2. Point mass Mobile Cable-Driven Parallel Robot with p = 2, n = 2 and m = 4
(Color figure online)

a1j = [ax
1j ay

1j ]
T and a2j = [ax

2j ay
2j ]

T denote the Cartesian coordinate vectors
of the exit points A1j and A2j , c1j = [cx1j cy1j ]

T and c2j = [cx2j cy2j ]
T denote the

Cartesian coordinate vectors of the contact points C1j and C2j . gj = [gxj gyj ]T

is the Cartesian coordinate vector for the center of gravity Gj of the mobile
base pj . The previous mentioned vector are all expressed in the base frame FB.
Solving simultaneously Eqs. (1) and (2), the vertical components of the ground
reaction forces take the form:

fy
r1j =

mjg(cx2j − gxj ) + fy
1j(a

x
1j − cx2j) + fy

2j(a
x
2j − cx2j) − fx

1j ay
1j − fx

2j ay
2j

cx2j − cx1j
(4)

fy
r2j = mjg − fy

1j − fy
2j − fy

r1j (5)
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Equations (4) and (5) illustrate the effect of increasing the external forces (cable
tensions) onto the mobile base. Indeed, the external forces exerted onto the
mobile base may push the latter towards frontal tipping. It is apparent that
the higher the cable tensions, the higher the vertical ground reaction force fy

r1j
and the lower the ground reaction force fy

r2j . There exists a combination of cable
tensions such that fy

r2j = 0. At this instant, the rear wheel of the jth mobile base
will lose contact with the ground at point C2j , while generating a moment MC1j

about z-axis at point C1j :

Mz
C1j = (gj − c1j)TETmjg + (a1j − c1j)TET f1j + (a2j − c1j)TET f2j (6)

Similarly for the rear tipping fy
r1j = 0, the jth mobile base will lose the contact

with the ground at C1j and will generate a moment Mc2j about z-axis at point
C2j :

Mz
C2j = (gj − c2j)TETmjg + (a1j − c2j)TET f1j + (a2j − c2j)TET f2j (7)

As a consequence, for the first mobile base p1 to be always stable, the moments
generated by the external forces should be counter clockwise at point C11 while
it should be clockwise at point C21. Therefore, the stability conditions for mobile
base p1 can be expressed as:

Mz
C11 ≥ 0 (8)

Mz
C21 ≤ 0 (9)

Similarly, the stability constraint conditions for the second mobile base p2 are
expressed as:

Mz
C12 ≤ 0 (10)

Mz
C22 ≥ 0 (11)

where Mz
C12 and Mz

C22 are the moments of the mobile base p2 about z-axis at
the contact points C12 and C22, respectively.

3 Real-Time Tension Distribution Algorithm

In this section an existing Tension Distribution Algorithm (TDA) defined for
classical CDPRs is adopted to Mobile Cable-driven Parallel Robots (MCDPRs).
The existing algorithm, known as barycenter/centroid algorithm is presented in
[7,8]. Due to its geometric nature, the algorithm is efficient and appropriate for
real time applications [5]. First, the classical Feasible Cable Tension Domain
(FCTD) is defined for CDPRs based on the cable tension limits. Then, the
stability (static equilibrium) conditions for the mobile bases are considered in
order to define a modified FCTD for MCDPRs. Finally, a new TDA aiming at
obtaining the centroid/barycenter of the modified FCTD is presented.
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3.1 FCTD Based on Cable Tension Limits

The dynamic equilibrium equation of a point mass platform is expressed as:

Wtp + we = 0 =⇒ tp = −W+we (12)

where W = [u11 u21 u12 u22] is n×m wrench matrix mapping the cable tension
space defined in Rm onto the available wrench space defined in R(m−n). we

denotes the external wrench exerted onto the moving-platform. W+ is the Moore
Penrose pseudo inverse of the wrench matrix W. tp = [tp11 tp21 tp12 tp22]T is a
particular solution (Minimum Norm Solution) of Eq. (12). Having redundancy
r = m − n = 2, a homogeneous solution tn can be added to the particular
solution tp such that:

t = tp + tn =⇒ t = −W+we + Nλ (13)

where N is the m×(m−n) null space of the wrench matrix W and λ = [λ1 λ2]T is
a (m−n) dimensional arbitrary vector that moves the particular solution into the
feasible range of cable tensions. Note that the cable tension tij associated with
the ith cable mounted onto the jth mobile base should be bounded between a
minimum tension t and a maximum tension t depending on the motor capacity
and the transmission system at hand. According to [5,7], there exists a 2-D
affine space Σ defined by the solution of Eq. (12) and another m-dimensional
hypercube Ω defined by the feasible cable tensions:

Σ = {t | Wt = we} (14)

Ω = {t | t ≤ t ≤ t} (15)

The intersection between these two spaces amounts to a 2-D convex polygon
also known as feasible polygon. Such a polygon exists if and only if the tension
distribution admits a solution at least that satisfies the cable tension limits as
well as the equilibrium of the moving-platform defined by Eq. (12). Therefore,
the feasible polygon is defined in the λ-space by the following linear inequalities:

t − tp ≤ Nλ ≤ t − tp (16)

The terms of the m × (m − n) null space matrix N are defined as follows:

N =

⎡

⎢⎢⎣

n11

n21

n12

n22

⎤

⎥⎥⎦ (17)

where each component nij of the null space N in Eq. (17) is a (1×2) row vector.
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3.2 FCTD Based on the Stability of the Mobile Bases

This section aims at defining the FCTD while considering the cable tension
limits and the stability conditions of the mobile bases. In order to consider the
stability of the mobile bases, Eqs. (8–11) must be expressed into the λ-space.
The stability constraint at point C11 from Eq. (8) can be expressed as:

0 ≤ (g1 − c11)TETm1g + (a11 − c11)TET f11 + (a21 − c11)TET f21 (18)

fij is the force applied by the ith cable attached onto the jth mobile base. As
fij is opposite to uij (see Fig. 2), from Eq. (13) fij can be expressed as:

fij = −[tpij + nijλ] uij (19)

Substituting Eq. (19) in Eq. (18) yields:

(c11−g1)
TETm1g ≤ (c11−a11)

TET [tp11+n11λ]u11+(c11−a21)
TET [tp21+n21λ]u21 (20)

MC11 ≤ (c11 − a11)TET [n11λ]u11 + (c11 − a21)TET [n21λ]u21 (21)

Term [nijλ]uij is the mapping of homogeneous solution tnij for the ith cable
carried by the jth mobile base into the Cartesian space. MC11 represents the
lower bound for the constraint (8) in the λ-space:

MC11 = (c11 − g1)TETm1g + (a11 − c11)TET tp11 + (a21 − c11)TET tp21 (22)

Simplifying Eq. (21) yields:

MC11 ≤ [
(c11 − a11)TETu11 (c11 − a21)TETu21

] [
n11

n21

] [
λ1

λ2

]
(23)

Equation (23) can be written as:

MC11 ≤ nC11λ (24)

where nC11 is a 1 × 2 row vector. Similarly the stability constraint at point C21

from Eq. (9) can be expressed as:

nC21λ ≤ MC21 (25)

where:

MC21 = (c21 − g1)TETm1g + (a11 − c21)TET tp11 + (a21 − c21)TET tp21 (26)

nC21 =
[
(c21 − a11)TETu11 (c21 − a21)TETu21

] [
n11

n21

]
(27)

Equations (24) and (25) define the stability constraints of the mobile base p1 in
the λ- space for the static equilibrium about frontal and rear wheels. Similarly,
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the above procedure can be repeated to compute the stability constraints in the
λ-space for mobile base p2. Constraint Eqs. (10) and (11) for point C12 and C22

can be expressed in the λ-space as:

nC12λ ≤ MC12 (28)

MC22 ≤ nC22λ (29)

Considering the stability constraints related to each contact point (Eqs. (24),
(25), (28) and (29)) with the cable tension limit constraints (Eq. (16)), the com-
plete system of constraints to calculate the feasible tensions for MCDPR can be
expressed as: [

t − tp
M

]
≤

[
N
Nc

] [
λ1

λ2

]
≤

[
t − tp
M

]
(30)

where:

Nc =

⎡

⎢⎢⎣

nC11

nC21

nC12

nC22

⎤

⎥⎥⎦ , M =

⎡

⎢⎢⎣

MC11

−∞
−∞

MC22

⎤

⎥⎥⎦ , M =

⎡

⎢⎢⎣

∞
MC21

MC12

∞

⎤

⎥⎥⎦ , (31)

The terms −∞ and ∞ are added for the sake of algorithm [5] as the latter
requires bounds from both ends. The upper part of Eq. (30) defines the tension
limit constraints while the lower part represents the stability constraints for both
mobile bases.

3.3 Tracing FCTD into the λ-space

The inequality constraints from Eq. (30) are used to compute the feasible tension
distribution among the cables using the algorithm in [5] for tracing the feasible
polygon PI . Each constraint defines a line in the λ-space where the coefficients
of λ define the slope of the corresponding lines. The intersections between these
lines form a feasible polygon. The algorithm aims to find the feasible combination
for λ1 and λ2 (if it exists), that satisfies all the inequality constraints. The
algorithm can start with the intersection point vij between any two lines Li and
Lj where each intersection point v corresponds to a specific value for λ. After
reaching the intersection point vij , the algorithm leaves the current line Lj and
follows the next line Li in order to find the next intersection point vki between
lines Lk and Li.

The feasible polygon PI is associated with the feasible index set I, which
contains the row indices in Eq. (30). At each intersection point, the feasible index
set is unchanged or modified by adding the corresponding row index of Eq. (30).
It means that for each intersection point, the number of rows from Eq. (30)
satisfied at current intersection point should be greater than or equal to the
number of rows satisfied at previous visited points. Accordingly, the algorithm
makes sure to converge toward the solution. The algorithm keeps track of the
intersection points and updates the first vertex vf of the feasible polygon, which
depends on the update of feasible index set I. If the feasible index set is updated
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Fig. 4. Feasible Polygon considering both tension limit and stability constraints

at intersection point v, the first vertex of the polygon is updated as vf = v.
Let’s consider that the algorithm has reached a point vki by first following line
Lj , then following Li intersecting with line Lk. The feasible index set Iki at vki

should be such that Iij ⊆ Iki. If index k is not available in Iij , then Iki = Iij ∪ k
as the row k is now satisfied. At each update of the feasible index set I, a new
feasible polygon is achieved and the first vertex vf of the polygon is replaced by
the current intersection point. This procedure is repeated until a feasible polygon
(if it exists) is found, which is determined by visiting vf more than once. After
computing the feasible polygon, its centroid, namely the solution furthest away
from all the constraints is calculated. The λ coordinates of the centroid is used
to calculate the feasible tension distribution using Eq. (13).

For the given end-effector position in static equilibrium (see Fig. 2), the fea-
sible polygon PI1 based only on the cable tension limits is illustrated in Fig. 3
while the feasible polygon PI2 based on the cable tension limits and the stability
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of the mobile bases is illustrated in Fig. 4. It can be observed that PI2 is smaller
than PI1 and, as a consequence, their centroids are different.

4 Case Study

The stability of the mobile bases is defined by the position of their Zero Moment
Point (ZMP). This index is commonly used to determine the dynamic stability
of the humanoid and wheeled robots [6,13,14]. It is the point where the moment
of contact forces is reduced to the pivoting moment of friction forces about an
axis normal to the ground. Here the ZMP amounts to the point where the sum
of the moments due to frontal and rear ground reaction forces is null. Once the
feasible cable tensions are computed using the constraints of the modified TDA,
the ZMP dj of the mobile base pj is expressed by the equation:

Mz
dj = M̃z

O − fy
rj dj (32)

where fy
rj is the sum of all the vertical ground reaction forces computed using

Eqs. (4) and (5), Mdj is the moment generated at ZMP for the jth mobile base
such that Mz

dj = 0. M̃O is the moment due to external forces, i.e., weight and
cable tensions, except the ground reaction forces at O given by the Eq. (2). As
a result from Eq. (32), ZMP dj will take the form:

dj =
M̃z

O

fy
rj

=
gT
j E

Tmjg + aT1jE
T f1j + aT2jE

T f2j
fy
rj

(33)

For the mobile base pj to be in static equilibrium, ZMP dj must lie within the
contact points of the wheels, namely,

cx21 ≤ d1 ≤ cx11 (34)

cx12 ≤ d2 ≤ cx22 (35)
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Fig. 5. (a) Evolution of ZMP for mobile base p1 (b) Cable tension profile (Color figure
online)
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Modified Algorithm for MCDPRs is validated through simulation on a rec-
tangular test trajectory (green path in Fig. 2) where each corner of the rectangle
is a zero velocity point. A 8 kg point mass is used. Total trajectory time is 10 s
having 3 s for 1–2 and 3–4 paths while 2 s for 2–3 and 4–1 paths. The size of each
mobile base is 0.75 m × 0.64 m × 0.7 m. The distance between the two mobile
bases is 5 m with exit points A2j located at the height of 3 m. The evolution of
ZMP for mobile base p1 is illustrated in Fig. 5a. ZMP must lie between 0 and 0.75,
which corresponds to the normalized distance between the two contact points of
the wheels, for the first mobile base to be stable. By considering only cable tension
limit constraints in the TDA, the first mobile base will tip over the front wheels
along the path 3–4 as ZMP goes out of the limit (blue in Fig. 5a). While considering
both cable tension limits and stability constraints, the MCDPR will complete the
required trajectory with the ZMP satisfying Eqs. (34) and (35). Figure 5b depicts
positive cable tensions computed using modified FCTD for MCDPRs.

A video showing the evolution of the feasible polygon as a function of time
considering only tension limit constraints and both tension limits and stability
constraints can be downloaded at1. This video also shows the location the mobile
base ZMP as well as some tipping configurations of the mobile cable-driven
parallel robot under study.

5 Conclusion

This paper has introduced a new concept of Mobile Cable-Driven Parallel Robots
(MCDPR). The idea is to autonomously navigate and reconfigure the geometric
architecture of CDPR without any human interaction. A new real time Tension
Distribution algorithm is introduced for MCDPRs that takes into account the
stability of the mobile bases during the computation of feasible cable tensions.
The proposed algorithm ensures the stability of the mobile bases while guar-
anteeing a feasible cable tension distribution. Future work will deal with the
extension of the algorithm to a 6-DoF MCDPR by taking into account frontal
as well as sagittal tipping of the mobile bases and experimental validation thanks
to a MCDPR prototype under construction in the framework of the European
ECHORD++ “FASTKIT” project.

Acknowledgements. This research work is part of the European Project
ECHORD++ “FASTKIT” dealing with the development of collaborative and mobile
cable-driven parallel robots for logistics.
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