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Abstract. A cable-driven parallel manipulator has been chosen to suspend and
navigate instruments over a phenotyping research facility at the University of
Nebraska. This paper addresses the static analysis and dimensional optimization
of this system. Analysis of the system was performed with catenary simplifi-
cation to create force equilibrium equations and define a mathematical model.
The model incorporates flexibility due to catenary sag of the cables. Cable axial
stiffness was not included because stiffness is dominated by catenary flexibility
for the expected cable tensions. The model was used to optimize system
dimensions, and a twelfth-scale system was constructed to verify the model as
well as enable dynamic and control system experimentation during full-scale
system construction. Miniature end-effectors were used to obtain end-effector
orientation and cable tension measurements which were comparable to model
predictions. The mathematical model was thereby shown to be accurate for the
purpose of system static analysis.

Keywords: Parallel machines � Robot kinematics � Modeling � Manipulator
motion-planning

1 Introduction

1.1 Motivation

Agricultural productivity is dependent on the development of crops which can meet
certain requirements such as resilience in the face of environmental or pest stressors, or a
level of productivity (yield) despite restrictions in nutrients or water. Breeding such crops
is an iterative process where the result of crossing the genes of sets of plants causes
measureable changes in successive generations. These changes are determined by mea-
suring the plants phenotypes – observable characteristics. Phenotyping in a greenhouse
can now be done rapidly using automated equipment. Greenhouse plants, however, are
different fromplants grown in afield environment. Light conditions are different. Soils are
less uniform. And wind does not encourage the growth of support structure within the
plants. Assuring that measurements in a greenhouse are trustworthy predictions of field
performance is the holy grail of phenotyping. To this end, a field rapid phenotyping
system is being developed at the University of Nebraska-Lincoln’s Agricultural Research
and Development Center. The system described in this paper is designed to position
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instruments precisely over research plots in order to rapidly and repeatedly make phe-
notypic measurements of sets of plant varieties and experimental treatments.

1.2 Cable-Driven Parallel Robots

A cable-driven parallel robot (CDPR) is a robotic manipulator designed to control the
position and/or orientation of its end-effector within the system’s workspace by use of
actuated cables. CDPRs provide several benefits over traditional rigid-leg serial and
rigid-leg parallel manipulators in the study of crop phenotyping. CDPRs offer minimal
interference with the crops compared to rigid-support systems. Traditional serial or
parallel manipulators interfere with plant growth because they are composed of large
supports and machinery which reflect and obstruct light and air flow. In addition,
CDPRs are generally lighter and therefore capable of greater accelerations while
maintaining high energy efficiency compared to rigid-linkage robots [1]. However,
CDPRs have several design challenges. Cables can only perform while in tension,
which puts limitations on end-effector position and greatly influences positional
accuracy and system vibrations [2, 3].

CDPRs can be broken into three basic categories based on the number of cables and
the mobility of the system: fully constrained, under constrained, and over constrained.
A fully constrained parallel robot requires at least one more cable than the degrees of
freedom of the end effector. In the case of three-dimensional translational motion, as is the
focus of this paper, a fully constrained system requires four cables for full control of
position. The number of cables can be reduced if a constant external force, such as gravity,
is applied to the end-effector. This force acts as an additional cable on the end-effector,
reducing the number of physical cables needed to fully constrain the system [1].

This paper focuses on the suspended four-cable parallel robot. In these systems, the
end-effector is supported by four cables with gravity delivering a downward force on
the end-effector, behaving as a fifth cable. The four-cable configuration is beneficial
over three-cable systems as the same system footprint has an expanded available
workspace and the cable load is reduced by distributing the load to an additional cable.
However, using four cables creates a redundancy in the support system and complicates
the system modeling and control as no unique cable configuration exists for an arbitrary
location in the workspace [1].

Further modeling and design considerations come from the scale of the CDPR. In
many CDPRs, cables can be assumed to have negligible mass, greatly simplifying
system modeling and control. However, in the case of large-scale systems, cable weight
can induce catenary sag in the cables which strongly influences positional accuracy as
well as system dynamics and vibration.

Significant work has been accomplished in the area of CDPRs, including kinematic
design [1, 2, 15, 16] and dynamic analysis [3–7]. Additionally, a large amount of
research has been conducted in the area of cable mechanics [6, 8–10]. However, limited
research exists in the field of large-scale suspended CPDRs where cable sag can play a
major role in system dynamics and control. One of the few examples of research into
the area of cable sag in cable-driven manipulators is the FAST telescope, a newly
constructed five hundred meter CDPR in China [11].
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1.3 Objective

Substantial research has been performed by the FAST project on vibrations and sta-
bilization of large scale CDPRs. However, the high speed requirements of the phe-
notyping system and the proportionally lower weight end-effector and cables results in
significantly different system requirements and dynamics for a phenotyping system
with four cables. The objective of this research is to develop a CDPR design and
control scheme that can autonomously and rapidly move between crop plots. This
system must be functional during harsh weather conditions, pass through the crop
canopy with minimal crop interference, and provide stability for the phenotyping
sensors mounted on the end-effector. The purpose of this paper is to present a static
model of the system as a first step to aid future system design optimization and
dynamic modeling of a CDPR for crop phenotyping. In addition, a scaled-down system
is built to gather experimental results and confirm the validity of the theoretical models
developed.

This paper focuses on computing the inverse kinematics and verifying these results
experimentally. The solution begins with an analysis of a single cable to obtain the
cable profile and tension. This solution then determines the force equilibrium equations
for the four-cable system supporting a point-mass end-effector. The resulting force
vectors are then applied to the end-effector model using the moment equilibrium
equations to determine the orientation of the end-effector. In order to simplify calcu-
lations, cables are assumed to be inextensible due to low tension values predicted in the
cables compared to their elastic modulus and the predicted dominance of cable sag on
cable flexibility [9].

Until construction of the full-scale system is complete, drive and control systems
tests are performed using a scaled system. Vibrations and stability of the scaled system
are not thoroughly investigated due to scaling incompatibilities between the test plat-
form and the full-scale system. Because of the difficulties associated with scaling cable
properties, the dynamic experimentation is assumed to not scale to the full-scale sys-
tem. As such, controls tests and system properties including system stiffness and
vibration predictions are not discussed in this paper.

2 Simulation

2.1 Geometric Analysis

In flexible cables with significant mass, the weight of the cable provides varying
vertical load along the length of the cable which generates a curve as defined by (1) and
is illustrated by Fig. 1 [12].

y ¼ A � cosh x
A

� �
ð1Þ
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Where A is the relationship between the constant horizontal tension seen in the
cable (Th) and the linear weight of the cable (w) (Fig. 2).

A ¼ Th
w

ð2Þ

Cable length (S) can then be calculated based on the arc length formula, integrating
from cable end points, (x1,y1) and (x2,y2).

S ¼ Zx2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

dx ¼ A � sinh x2
A

� �
� A � sinh x1

A

� �
ð3Þ

The cable angle at any point along the cable (W) can also be solved geometrically
as,

tan Wð Þ ¼ dy
dx

¼ sinh
x
A

� �
ð4Þ

Provided that a cable can only experience axial load, at any point along the cable,
tension (T) must be tangent to the cable curvature. Furthermore, the only horizontal
forces acting on the cable are located at the end points of the cable. Therefore, Th is
constant along the length of the cable. Cable tension can then be determined for any
point along the cable,

T ¼ Th sec Wð Þ ð5Þ

Fig. 1. Conceptual model of phenotyping system.
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Solving (4) for W, and substituting into (5),

T ¼ Th � cosh x
A

� �
¼ A � w � cosh x

A

� �
ð6Þ

For any given point in the field, the horizontal and vertical distances between the
end-effector and the cable anchor point, h and v respectively, are known.

h ¼ x2 � x1 ð7Þ

v ¼ y2 � y1 ¼ A � cosh x1 þ h
A

� �
� A � cosh x1

A

� �
ð8Þ

Reducing the system of equations produces three equations with four unknowns, A,
S, T1, and x1.

v ¼ A � cosh x1 þ h
A

� �
� A � cosh x1

A

� �
ð9Þ

S ¼ A � sinh x1 þ h
A

� �
� A � sinh x1

A

� �
ð10Þ

T1 ¼ A � w � cosh x1
A

� �
ð11Þ

2.2 Inverse Kinematics

Solving the inverse kinematics for CDPRs involves solving static equilibrium equa-
tions of the system. In the four-cable CDPR with a point-mass end-effector, there are

Fig. 2. Catenary curve profile
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three translational degrees of freedom. The system is therefore defined by the equations
for static equilibrium,

X
F ¼ 0 ¼

X4

i¼1
Ti � Ri
� ��W ð12Þ

Where Ti is the tension value of the ith cable, Ri is the unit vector in the direction of
force Ti, and W is the weight vector of the end-effector.

As indicated in the previous section, each cable is defined by a system of three
equations that, given the current known geometric variables, depend on four
unknowns. In the three-cable CDPR, adding the equations for three cables to the three
static equilibrium equations produces a balanced system of equations that can be
solved. Except in special circumstances, numerical methods must be used to solve the
system as no explicit solution exists for this system of equations.

In the four-cable CDPR, there is one more unknown value than equilibrium
equations available. The use of four cables in a three degree of freedom CDPR results
in a redundant cable which generally suggests no unique solution exists for any given
point in the system workspace. To solve this system of equations, a constrained
optimization condition must be included with the problem. In this study, it was chosen
to optimize the distribution of load on the cables by increasing the load on the lowest
tension cable until the ratio between the highest and lowest tension is minimized. To
achieve this, the model initially selects the position in the workspace to be considered.
The length of the cable anchored the furthest away from the end-effector is then set to a
predefined value greater than the straight-line distance between the anchor point and
the end-effector. With one cable fully defined, the system of equations and unknowns
are balanced, and can be solved iteratively. By increasing the tension on the prescribed
cable, its tension gradually approaches that of the next lowest cable tension, more
evenly distributing load between the cables until the system is considered optimized,
and the resulting tensions, cable lengths, and cable profile are recorded.

2.3 Orientation Prediction

Thus far, the system end-effector has been assumed to be a point-mass. However, a
potentially important parameter of CDPR design is the predicted orientation of the
end-effector in different regions of the workspace. In the phenotyping system,
end-effector orientation impacts the use of sensors intended to be downward facing as
well as the range of motion of the end-effector gimbal.

Orientation is predicted by utilizing the force equilibrium results, applying them to
a rigid body end-effector, and solving moment equilibrium equations,

X
M ¼ 0 ¼

X4

i¼1
Ri � Fi ð13Þ
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where Fi is the force vector generated by the tension in the ith cable and Ri is the
position vector from the center-of-mass of the end-effector to the attachment point of
the ith cable. Ri is obtained by taking the position vector of the cable attachment point
according to the end-effector frame of reference, R�

i , and passing it through three
rotation matrixes representing the rotation about the system x, y, and z axis.

R½ �x¼
1 0 0
0 cos að Þ � sin að Þ
0 sin að Þ cos að Þ

2
4

3
5 ð14Þ

R½ �y¼
cos bð Þ 0 sin bð Þ

0 1 0
� sin bð Þ 0 cos bð Þ

2
4

3
5 ð15Þ

R½ �z¼
cos cð Þ � sin cð Þ 0

0 sin cð Þ cos cð Þ
0 0 1

2
4

3
5 ð16Þ

Ri ¼ R½ �z00 � R½ �y0 � R½ �x �R�
i ð17Þ

The three moment equilibrium equations can be solved numerically for the three
angles. With an orientation of the end-effector predicted, the force equilibrium1 and
moment equilibrium equations can be iteratively solved until the orientation prediction
converges.

3 Theoretical Results

3.1 Simulator Outputs

The outputs of this model can be used to predict tension along the cables, cable lengths,
cable profiles, and end-effector orientation. To accelerate simulation, it is assumed that
system behavior is symmetrical across the geometric symmetry planes of the system.
Thus, the same tension values are predicted in each quadrant of the field, but are
associated with the mirrored cables.

Based on this assumption, cable tensions are solved across one quadrant of the
workspace, and the behavior of the system in each other quadrant are then extrapolated.
Figure 3a displays tension for a single cable as a function of end-effector position in the
field at a fixed height.2 Figure 3b illustrates the amount that the end-effector is pre-
dicted to tilt as a function of end-effector position in the field at a fixed height.

1 After the first iteration of solving the force and moment equilibrium equations is performed, the
end-effector is changed from a point-mass to a rigid body, oriented based on the prediction created by
the results of the first iteration of moment equations.

2 Data given for 68 kg end-effector, 3 m above ground.
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3.2 Dimensional Optimization

Modeling CDPRs requires knowledge of seven system parameters (Fig. 4):

• Field width, WF

• Field depth, DF

• End-effector mass, M
• Cable density, q
• Width between cable feed points, WP

• Depth between cable feed points, DP

• Height of cable feed points, H

Field dimensions and end-effector operational height were predetermined by the design
of the phenotyping facility and are presented in Table 1. During system design, it was
chosen to use a custom Kevlar cable with a fiber optic core for sensor data transmis-
sion. Use of the selected cable defines the cable density and adds an additional con-
straint by limiting tension in the cables.

Fig. 3. (a) Theoretical cable tension. (b) Theoretical end-effector tilt

Fig. 4. System parameters of a four-cable CDPR system
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The primary objective of this analysis is to determine the most appropriate location
for the poles supporting the cable system and to determine the maximum required
height for the cable-feed pulleys. The end-effector design is currently incomplete;
therefore, studies investigating multiple end-effector weights are analyzed alongside of
pole layout and height.

To optimize pole location and height as well as end-effector weight, three mea-
surements must be analyzed:

• Maximum cable tension in consideration of cable strength
• Tension distribution in consideration of system stabilization
• End-effector orientation in consideration of end-effector reorientation capabilities

Many simulations were generated with different permutations of pole height, pole
distancing, and end-effector mass. Selected results from these simulations are presented
in Figs. 5 and 6. Figure 5 shows the influence of all three variables on the predicted
maximum tensions for the system within the operational workspace.

The even distribution of load between cables has a substantial impact on cable
control and system vibrations [2]. The distribution of load between the cables can be
parameterized by the variable g as follows:

gxyz ¼
Tmax x; y; zð Þ
Tmin x; y; zð Þ ð18Þ

Table 1. System parameters

Defined parameters Variable parameters

Field width 67 m End-effector mass 45–90 kg
Field depth 60 m Pole width 75–100 m
Maximum end-effector height 10 m Pole height 15–26 m
Cable density 10 g/m
Pole aspect ratio 10:9
Maximum tension 1500 N

Fig. 5. Theoretical maximum tension in field
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Where Tmax and Tmin are the highest and lowest cable tensions, respectively, for the
given orientation. gmax is then the highest predicted gxyz in the workspace for the given
system configuration. Load distribution, and therefore cable performance, is expected
to improve as gmax approaches one. Figure 6b shows the impact of pole location and
height on gmax.

3

As the end-effector moves radially from the center of the workspace, the uneven
distribution of load on the cables causes the vertical axis of the end-effector to tilt
towards the center of the field, away from the vertical axis of the workspace (Fig. 3b).
This behavior can be parameterized by measuring the angle between the vertical axis of
the end-effector and the vertical axis of the workspace. For a gimbaled end-effector,
which is what is being used in this project, the maximum predicted angle is required to
determine the required range of motion of the gimbal. In an end-effector without a
gimbal, extreme angles can limit the use of sensors and equipment that are required to
maintain a certain orientation. Figure 6a shows the impact of pole location and height
on the end-effector inclination angle.4

According to preliminary designs, the end-effector with the maximum weighted
sensor package will be between 45 and 68 kg. Based on the data presented in Figs. 5
and 6, the minimal system configuration that will safely support a 68 kg end-effector
utilizes 19.8 m (65 ft) poles. A pole shorter than this would require placement too close
to the workspace and cable performance would likely cause the system to be

Fig. 6. (a) Theoretical end-effector tilt (b) Theoretical tension distribution

3 End-effector weight was found to have no impact on gmax.
4 End-effector weight was found to have no impact on end-effector inclination angle.
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uncontrollable. Taller poles reduce the load on the cables, which allow the poles to be
placed further from the workspace, improving cable performance and reducing
end-effector tilt. However, this introduces further design challenges. Moving the poles
outwards expands the space requirements of the system by adding a large perimeter of
empty space between the workspace and poles. Also, taller poles are more expensive
and require larger footings for support.

With 19.8 m poles selected, the maximum allowable width between poles for the
specified end-effector weight and cable strength is 99 m (325 ft). Positioning the poles
this far from the workspace increases system footprint by 53% and generates an 18%
increase in maximum tension compared to a system with similar poles placed 80 m
apart. However, it also reduces g and end-effector inclination by 54% and 49%
respectively, enhancing system performance. Positioning the poles any further out,
however, increases cable tension, reducing the safety factor for the cables. The final
recommended configuration for this system is outlined in Table 2.

4 Experimental System

4.1 Design

A twelfth-scale model of the field phenotyping system was designed to confirm the
simulator results and to test control system design, system dynamics, and end-effector
stabilization hardware and controls. Scaling factors are calculated using the Bucking-
ham Pi theory following the procedures used by Yao, et al. [2]. Dimensional Param-
eters are listed in Table 3 (Fig. 7).

An appropriate cable was not utilized in the twelfth-scale system due to the chal-
lenges of scaling cable properties of density, construction, and stiffness. Dyneema
fishing line with a diameter of 1 mm was instead used. Due to this change, cable sag
and stiffness are not similar between the twelfth-scale and full-scale systems. Thus,

Table 2. Optimized system dimensions

Parameter Optimized dimension

Pole distance 99 � 89 m (325 � 293 ft)
Pole height 19.8 m (65 ft)
End-effector mass limit 68 kg (150 lb)

Table 3. Scaled system parameters

Parameter Similarity scale Full size dimension Model dimension

Field width 1:12 67 m 5.60 m
Field depth 1:12 60.35 m 5.03 m
Pole height 1:12 25.91 m 2.16 m
Cable density 1:55* 10.8 g/m 0.197 g/m
End-effector weight 1:144 77 kg 0.535 kg
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full-scale system dynamics cannot be predicated on twelfth-scale experimentation. As a
result, the twelfth-scale system is used in studying general CDPR behavior in the
testing of stabilization and control systems. While these tests may be briefly mentioned,
their results are not discussed in this paper.

The twelfth-scale system was designed to test, not only the determined optimal
configuration, but an array of system configurations. As such, poles used to support the
cable system were designed as collapsible tripods to allow for easy alteration to pole
layouts and system scales. Cable-feed pulleys with adjustable height were mounted on
the poles to experiment with multiple cable systems heights. Attached to the poles were
custom winches to actuate cable feed. Each winch wirelessly communicated with the
system navigational controller to drive the system with motor-mounted-encoder feed-
back to track cable length and approximate end-effector position.

An end-effector mounted with an inertial measurement unit (IMU) was created to
measure end-effector orientation when navigated through the workspace. It was also
used to observe the response to impulse disturbances on the end-effector as well as the
impact of end-effector acceleration during travel on system vibration. Additionally, a
gimballed end-effector equipped with load cells at the cable connection points was used
to perform experiments to measure cable tensions during travel as well as to confirm
tension predictions from the simulator.

4.2 Experimental Static Results

One task of the twelfth-scale system was to determine the accuracy of the mathematical
model. Two primary criteria for confirming the validity of the simulator results were
cable tension and end-effector orientation. Two tests were performed to determine the
accuracy of the theoretical predictions. One test involved navigating the load-cell

Fig. 7. Twelfth-scale system
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end-effector through a series of points (Fig. 8a).5 At each point, load cell readings were
taken and were compared to theoretical values predicted by the simulator, as displayed
in Fig. 9.6 The second test involved navigating the IMU end-effector through a series of
points (Fig. 8b) to measure end-effector orientation, which in turn was compared to
simulator results, as displayed in Fig. 10. Due to the symmetry of the system, all tests
are performed in one quadrant of the workspace, and the results are assumed to mirror
across the symmetry planes.

Results from the first test show that the simulator predicted cable tensions to within
an error of 0.7 N with a standard deviation of 0.5 N for an end-effector of weight
18.35 N. Results from the second test were then shown to predicted end-effector tilt to
within 2.0° with a standard deviation of 1.3°. These results indicate that the designed
simulator accurately predicts cable performance for the purpose of static analysis.

Fig. 8. (a) Tension experiment tested locations (b) Orientation experiment tested locations

Fig. 9. Theoretical vs. experimental values of the cable tension. The bars indicate the theoretical
values and the circles are the means of the measured values from the 12th-scale model. Error bars
are one standard deviation of the mean.

5 For tension testing, points are located at heights of 0.25 m (lowest feasible elevation for given
end-effector) and 1.14 m (maximum safe operating height for given weight).

6 Rather than using a 0.535 kg end-effector for the tension tests, a 1.9 kg end-effector was used. This
was done to increase cable tensions to a level more appropriate for the utilized load cells.
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Based on these experiments, agreement between the simulator and physical model
is adequate to justify the use of the simulator results in predicting the static behavior of
the full-scale phenotyping system.

5 Conclusions

This paper addressed the rationale for use of a cable-driven parallel robot (CDPR)
system for control of an outdoor phenotyping site. It addressed the derivation and
solution of the inverse kinematics and used this model to optimize system dimensions.
These simulations were compared against experimental results of a twelfth-scale sys-
tem to determine the accuracy of the calculations. This research can be extended to aid
in modeling of the dynamic system to predict system vibrations and to determine
stabilization requirements during system control. This research can readily be adapted
for other four-cable CDPR systems to predict static properties.
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