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Abstract. Feedback of cable lengths is commonly used in the determi-
nation of the robot pose for cable-driven parallel robots (CDPRs). As
such, accurate information on the absolute cable length is important.
However, for most CDPRs equipped with relative encoders, the absolute
cable lengths depend on the system’s initial lengths. The initial cable
length, and hence the robot’s initial pose, is typically unknown. In this
paper, a forward kinematics based method to determine (calibrate) for
the initial cable lengths and robot pose is proposed. The calibration
problem is solved as a non-linear least squares optimisation problem,
where only the relative lengths of cables over any random trajectory are
required and measured. The proposed method is generic in the sense that
it can be applied to any type of CDPR. The simulation and experimen-
tal results for various robots show that the method can effectively and
efficiently determine the initial cable lengths and pose of the cable robot.
This is useful in order to obtain more accurate cable length data to be
used for forward kinematics to determine the robot’s pose.

1 Introduction

Cable-driven Parallel Robots (CDPRs) are a class of parallel manipulators where
the rigid links are replaced by cables. The advantages of CDPRs include: high
payload to weight ratio, large operational distances, ease of reconfigurability,
ease of transportability and naturally bio-inspired. An important characteristic
of CDPRs is that the cables can only apply forces in tension (positive cable force).
This constraint results in the need of actuation redundancy for a CDPR to be
fully constrained, creating challenges in the modelling and analysis of CDPRs.

For CDPRs, the forward kinematics (FK ) problem refers to the determina-
tion of the robot pose when provided with the cable lengths and is fundamentally
important in the study of CDPRs. As a parallel manipulator, the FK problem is
challenging as there is no closed form analytical solution in general. Furthermore,
even when solving the problem numerically there may be either no valid solu-
tions or the existence of multiple solutions. For an n degrees-of-freedom (DoFs)
CDPR actuated by m cables, the FK problem requires the determination of n
unknowns (the number of DoFs) from the m equations that relate the length of
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cables and the system pose. As such, for fully constrained CDPRs (m ≥ n + 1)
there will be more equations than unknowns for the FK problem.

The two primary types of approaches to solve the FK of CDPRs are ana-
lytical or numerical techniques. Analytical techniques are difficult to apply due
to the nonlinearity and complexity of the kinematic equations, and have only
been used for simpler CDPR systems [1,2]. Numerical methods consider the FK
relationship generically and can be used for any type of CDPR. The most com-
mon numerical approach is to solve the FK as a non-linear least squares problem
[3,4]. Other numerical techniques include using neural networks [5] and interval
analysis [6].

In addition to using the forward kinematics to determine the robot pose,
FK has also been used in the calibration of kinematic parameters of CDPRs.
Calibration is used in CDPRs to correct for any kinematic or dynamic modelling
uncertainties or errors. In [7–11], the attachment locations of the cables were
calibrated using the cable length feedback and FK. Some studies also considered
dynamic parameters such as mass and cable stiffness [12,13].

Previous studies have focused on the calibration of static system parameters,
such as the cable attachment locations and cable elasticity, which do not change
significantly over time. Such parameters are slow changing and hence only need
to be calibrated infrequently. However, some parameters, such as the initial robot
pose and cable lengths, may be different each time the system is turned on. A
majority of CDPRs use motors that equipped with encoders to obtain feedback
of the cable lengths at each instance in time. While some use multi-turn absolute
encoders [3], most possess only relative encoders. As a result, the initial cable
lengths and robot pose are typically not known and is different each time.

One simple approach that has been used to know the initial cable lengths is
to place the robot in a known pose, referred to as the initial pose, before enabling
the robot. However, in some applications it may be difficult to set up the robot
consistently and accurately in this way. Another approach is to employ exter-
nal sensors such as camera tracking systems (external calibration). However, it
is normally preferred to perform internal calibration using the CDPR’s inter-
nal sensors. In [2], the initial cable lengths calibration for a 2-DoF point mass
planar CDPR actuated by 4 cables is performed. The method is based on a “jit-
ter” approach where the lengths of two cables are perturbed and the measured
lengths of the remaining two cables provide information to solve the initial pose
of the system. Although effective, the approach requires the closed-form analyt-
ical solution to the forward kinematics. As such, the method would only work
for simple systems, such as the 2-DoF CDPR [2].

Accurate knowledge of the initial lengths is important for two purposes. First,
the initial length can provide knowledge of the initial position of the robot end-
effector. Second, for CDPRs equipped with relative encoders, the initial length
must be used to compute the absolute cable lengths. This absolute cable length is
then used to determine the pose of the robot through FK. As such, inaccuracies
in the initial length would result in error in the forward kinematics, and hence
robot pose, which cannot be eliminated. In summary, the determination of the
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initial cable lengths in a generic manner for any type of CDPR without requiring
the system to begin at a known position has not been studied thus far.

In this paper, a generic method to calibrate for the initial cable lengths for a
CDPR with relative encoders using a forward kinematics approach is proposed.
Without assuming any initial robot pose, the CDPR is commanded to perform
any random motion in a way that excites all of the system’s degrees-of-freedom.
The resulting relative changes in cable lengths are captured and then used to
calibrate for the initial cable lengths and initial pose. This method assumes that
the attachment locations of the cables are known beforehand. The proposed
approach is validated both in simulation and hardware experiments for different
CDPRs to show its effectiveness and ability to be generically used on different
systems. Furthermore, the proposed algorithm is implemented in the open-source
cable-robot software CASPR [14] and the source-code is publicly available1.

2 Numerical Forward Kinematics Formulations

It was shown in [15] that the kinematics of any generalised CDPR models (n
DoF actuated by m cables), as shown in Fig. 1, could be expressed as

l = f(q) (1)

where l = [l1 · · · lm]T ∈ R
m and q = [q1 · · · qn]T ∈ R

n are the vector of cable
lengths and pose of the system, respectively.
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(b) Multilink cable-driven robot

Fig. 1. CDPR models and the cable lengths

Taking the time derivative of (1) results in the well established relationship

l̇ = L(q)q̇ (2)

where L ∈ R
m×n is the Jacobian matrix relating the pose and cable length

derivatives.

1 CASPR and the presented work can be accessed at https://www.github.com/
darwinlau/CASPR.

https://www.github.com/darwinlau/CASPR
https://www.github.com/darwinlau/CASPR
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The inverse kinematics problem, the determination of cable lengths l for a
given pose q, is a trivial problem using (1). However, the forward kinematics
(FK ) problem is much more challenging as the inverse of the kinematic relation-
ship q = f−1(l) does not have an analytical closed-form solution in general. One
common way to solve the FK problem is to formulate the optimisation problem:

q∗ = arg min
q

‖l − f(q)‖2 . (3)

In general, the problem in (3) is a non-linear least squares problem that can
be solved using techniques such as the Levenberg-Marquardt Algorithm. The
poses which result in a zero objective function value are solutions to the FK
problem since ‖l − f(q)‖2 = 0 ⇔ l = f(q). However, it is difficult to achieve
a zero objective function value in real systems due to the presence of sensor
noise. As such, in practice the solution (minimum) of (3) with a small objective
function value is taken as the solution to the FK problem since ‖l − f(q)‖2 ≈
0 ⇔ l ≈ f(q). Note again that the FK problem, from (1), has m equations and
n unknown variables. For fully constrained systems m ≥ n + 1, resulting in an
overdetermined problem.

3 Least Squares Problems for Initial Lengths

In the FK problem presented in (3), it is assumed that the absolute length of the
cables l(t) is known at all times. However, for CDPRs with relative encoders,
only the relative length of the cables lr(t) since t = 0 is known. The relationship
between the absolute and relative cable lengths at any instance in time t can be
described as

l(t) = l0 + lr(t) = f(q(t)) (4)

where l0 = l(0) is the vector of initial cable lengths of the CDPR since lr(0) = 0.
It can be observed that (4) contains n+m unknowns (q and l0) but only with m
equations. As such, there are not enough equations to uniquely determine both
the initial cable length and pose. One important property that can be taken
advantage of is that after the system is turned on, l0 is time invariant until the
system is restarted.

As such, initial length calibration and FK problem can be simultaneously
solved by considering the problem in (4) over a set of different time instances,
or samples, for a trajectory. Assuming that p different instances in time t ∈
{t1, t2, · · · , tp} are selected to solve for the initial length and FK problem, the
following non-linear system of equations can be expressed as

l0 + lr(ti) = f(q(ti)), i = 1, · · · , p (5)

The equations in (5) possess a total of m + n × p unknowns (the initial
length l0 and the poses q(t) at each time instance t ∈ {t1, t2, · · · , tp}) and
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m × p equations. The vector of unknown variables for (5) can be denoted as
x = [lT0 qT (t1) qT (t2) · · · qT (tp)]T .

In a similar manner to (3), the initial length calibration problem can be
solved through the non-linear least squares (NLLS ) optimisation problem

x∗ = {l∗0, q∗
1, · · · , q∗

p} = arg min
{l0, q1,··· , qp}

p∑

i=1

‖lr(ti) + l0 − f(qi)‖2 (6)

where qi := q(ti). Since the problem (6) is an NLLS problem, numerical methods
such as the Levenberg-Marquardt algorithm can be employed. For such problems
and approaches, the initial guess of the solution and the Jacobian value of the
NLLS objective function would significantly increase the computational time and
accuracy of the non-linear optimisation problem. Expressing (6) in the standard
form

x∗ = arg min
x

‖g(x)‖2 (7)

the non-linear vector function can be equivalently expressed from (6) as

g(x) =

⎡

⎢⎣
l0 + lr(t1) − f(q1)

...
l0 + lr(tp) − f(qp)

⎤

⎥⎦ . (8)

From (8), the problem Jacobian ∂g
∂x can be expressed analytically as

∂g
∂x

=

⎡

⎢⎢⎢⎣

Im×m −L(q1) 0m×n · · · 0m×n

Im×m 0m×n −L(q2) · · · 0m×n

...
...

...
. . .

...
Im×m 0m×n 0m×n · · · −L(qp)

⎤

⎥⎥⎥⎦ . (9)

It will be shown in the results of Sect. 4 that the use of the Jacobian matrix
(9) significantly reduces the required optimisation time to perform the initial
length calibration and also is more robust to inaccurate initial guesses of x.

In order to solve (6), a sufficient number of points p in the random motion
should be sampled such that the number of equations mp is equal to or greater
than the number of unknowns m + np, that is, mp ≥ m + np. As such, the
minimum number of trajectory points p ∈ Z that should be selected should be
p ≥ m/(m−n). As will be shown in Sect. 4, the selection of the number of sample
trajectory points p for the initial length calibration has a significant effect on the
computational speed and effectiveness. Moreover, it is important to note that the
sampled motion points of the random motion must excite the different degrees-
of-freedom such that the NLLS optimisation of (6) have sufficient measurements
to recover x.

In summary, the proposed method uses the fact that the lengths of differ-
ent cables for a trajectory must be related (kinematically consistent) due to
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the CDPR cable attachments. As such, the calibration problem is equivalent to
determining the set of initial lengths that produce kinematically consistent cable
lengths.

4 Simulation Results

The two simulation examples, performed through CASPR [14], aim to show:
(1) the ability to calibrate for uncertain initial poses; (2) the effectiveness and
efficiency for different number of samples; and (3) the short calibration time
required.

4.1 Planar Robot Example

Figure 2(a) shows the 3-DoF planar robot model actuated by 4 cables, where
q = [x y θ]T represent translations (x and y) and orientation θ of the robot,
respectively.

(a) Planar CDPR (b) CoGiRo

Fig. 2. CDPR models used in the simulation examples

To demonstrate the initial length calibration, the reference trajectory as
shown in Fig. 3(a), with initial pose q(t = 0) = [0.3 0.6 0.1]T and final
pose q(t = 4) = [0.2 0.3 0.2]T , will be used. At pose the initial pose
q(t = 0), the cable lengths can be determined using inverse kinematics as
l0 = [0.578 0.8176 0.6946 0.4099]T . Using l0 and the cable length trajec-
tory l(t) obtained from computing the inverse kinematics q(t) (Fig. 3(a)), the
relative cable lengths lr(t) (emulating the cable length feedback from relative
encoders) can be determined using (4).

Since the initial length is unknown, without loss of generality it will be
assumed for this example that l̄0 = [0.5 0.5 0.5 0.5]T . Using this, the absolute
cable lengths trajectory with the erroneous initial length l̄(t) can be determined
as l̄(t) = l̄0 + lr(t). Using l̄(t), the resulting joint space trajectory q̄(t), shown in
Fig. 3(b), was determined using the NLLS FK method from (3). As expected, it
can be clearly observed that the resulting trajectory q̄(t) is significantly different
to that of q(t), demonstrating the impact in FK feedback when the initial lengths
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Fig. 3. Joint space trajectory results q(t) for planar CDPR simulation

Fig. 4. Error profile in FK using different initial cable lengths for planar robot

and pose are unknown. Figure 4(a) shows the error value of the FK optimisation
result ē(t) =

∥∥̄l(t) − f(q̄(t))
∥∥, confirming the error observed in the trajectory

of q̄(t).
Using the calibration method presented in Sect. 3, the initial cable lengths

l∗0 is determined using only the relative cable length lr(t) as the input to
the NLLS problem (6). The relative length profile lr(t) consists of a total
of p = 401 time samples (from t = 0 s to t = 4 s at Δt = 0.01 s). With
this sample size, the problem (6) will have 1207 unknowns. To solution x∗

to calibration problem resulted in the initial cable lengths solution of l∗0 =
[0.578 0.8176 0.6946 0.4099]T , with an error norm compared with the nominal
solution l0 of ‖l0 − l∗0‖ = 4.7868×10−9. Using this solution and FK, the absolute
cable length l∗(t) = l∗0 + lr(t) produced the joint space trajectory of the cali-
bration motion q∗(t) and the resulting FK error norm e∗(t) = ‖l∗(t) − f(q∗(t))‖
shown in Figs. 3(c) and 4(b), respectively. These results show that the proposed
method is able to determine the initial cable lengths, initial robot pose and also
the calibration trajectory motion without prior knowledge of the initial state or
the calibration motion to be performed.

In the results of Figs. 3 and 4, every point on the calibration motion p =
401 was used in the calibration optimisation. However, it is also possible to
take a subset sample of lr(t) to use within the calibration. Table 1 shows the
properties of the calibration method for different sample frequency (every N of
the trajectory points are taken). The comparison results show that if not enough
samples are taken, such as p = 5 and 9 for N = 100 and 50, respectively, the
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initial cable lengths cannot be correctly determined. It can also be observed
that for larger samples the computational time is higher, although no significant
increase in accuracy is achieved. However, it is worth noting that the calibration
time of p = 401 over a 4 s motion is only 5.28 s, making this method very practical
in use within real applications.

Table 1. Initial length calibration for different sample frequencies

Sample frequency N

1 5 20 30 50 100

No. of samples (p) 401 81 21 11 9 5

Dimension of x 1207 247 67 37 31 19

Calibration time (s) 5.28 1.38 0.60 0.20 0.40 0.10

Initial length error 4.8 × 10−9 2.58 × 10−9 3.2 × 10−9 2.84 × 10−8 0.18 0.20

FK error
∑

t e
∗(t) 1.04 × 10−5 1.04 × 10−5 1.04 × 10−5 1.04 × 10−5 0.01 0.01

As discussed above, the effectiveness and efficiency of the NLLS optimisation
problem can be improved by providing an initial guess xguess and the Jacobian
matrix (9). In the above simulations, the initial cable lengths were simply always
set as a constant value of l̄0 = [0.5 0.5 0.5 0.5]T regardless of the calibration
motion. For the initial guess of the trajectory, the erroneous trajectory q̄(t)
determined from l̄0 and FK (Fig. 3(b)). This shows that no trajectory specific
information about the initial cable lengths or pose are required for the calibration
method.

4.2 Spatial Robot Example

As no assumptions on the robot type are required, the proposed approach can
be used for any CDPR. In this example, the initial length calibration of the 6-
DoF spatial cable robot CoGiRo [16] actuated by 8 cables, as shown in Fig. 2(b),
is demonstrated. The generalised coordinates of the robot can be described by
q = [x y z α β γ]T , where x, y, z are the translational DoFs and α, β, γ are
the xyz-Euler angles that represent the system orientation. The initial length
calibration for the CoGiRo robot is demonstrated for three different trajectories
beginning at different poses q0 with different initial cable lengths l0, as observed
in Fig. 5.

In a similar manner as Sect. 4.1, the calibration using the relative lengths
of the trajectories in Fig. 5 was performed. For the calibration of the CoGiRo,
a sample frequency of N = 10 was used, such that each calibration trajectory
motion has p = 41 sample points. The results for all three trajectories are sum-
marised in Table 2 and Fig. 6, and it can be observed that the calibration method
successfully determined the initial cable lengths l0 for different robots and cali-
bration trajectories.
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Fig. 5. Different joint space trajectories q(t) for CoGiRo simulations

Table 2. Result of calibration for CoGiRo robot on different trajectories

Comp. time (s) l0 error FK error
∑

t e
∗(t)

Trajectory 1 (Fig. 5(a)) 2.2 1.19 × 10−8 6.33 × 10−6

Trajectory 2 (Fig. 5(b)) 1.27 3.65 × 10−10 3.19 × 10−6

Trajectory 3 (Fig. 5(c)) 1.16 5.29 × 10−10 2.80 × 10−6
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Fig. 6. Error profile in FK using different initial cable lengths for CoGiRo simulation

5 Experimental Results

This section illustrates the proposed approach on a real CDPR, the 2-link 4-
DoF 6-cable BioMuscular Arm (BM-Arm), as shown in Fig. 7(a), actuated by
the MYO-muscle actuators [17]. The robot consists of two links, connected by
a spherical joint and a revolute joint. Hence the generalised coordinates of the
BM-Arm can be expressed as q = [α β γ θ]T , representing the xyz-Euler
angles of the spherical joint and the angle of the revolute joint, respectively.

For the BM-Arm experiment, the robot was set into force control mode with
a low constant force value in each cable in order to maintain the robot in equi-
librium or a slow moving state. The position of the robot, and hence cable
lengths, was unknown initially. The BM-Arm was then manipulated physically
in a random motion, while the relative cable lengths lr(t) were measured using a
relative encoder by the MYO-muscles. This procedure was performed for differ-
ent robot poses and different random trajectories (of approximately 30 s each).
This calibration procedure would be very similar to how the proposed method is
envisioned to be used to quickly calibrate a real CDPR every time it is turned on.
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(a) BM-Arm robot with motion capture mark-
ers

(b) Model in CASPR

Fig. 7. BM-Arm robot

To validate the calibration approach, an OptiTrack motion capture system
with four cameras was installed onto the BM-Arm to capture the orientation
(q = [α β γ]T , the xyz-Euler angles) of the link 1 (markers are shown in
Fig. 7(a)) during the manual motion (as the calibration trajectory). Table 3 shows
the comparison results of four different trajectories where the CDPR begins in
various poses.

Table 3. Comparison results between motion capture and calibration algorithm for
BM-Arm experiments (link 1 only). Value d is the norm of the differences between l0
from the motion capture system (lc0) and the calibration algorithm (l∗0)

Trajectory Motion capture Calibration d =
∥
∥lc0 − l∗0

∥
∥

1 q0 = [0.04 − 0.02 − 0.001]T q0 = [0.02 − 0.01 − 0.07]T 0.014

l0 = [0.224 0.232 0.224 0.233]T l0 = [0.229 0.241 0.216 0.228]T

2 q0 = [−0.18 0.07 − 0.40]T q0 = [−0.18 0.04 − 0.48]T 0.014

l0 = [0.240 0.288 0.162 0.220]T l0 = [0.247 0.294 0.157 0.212]T

3 q0 = [−0.19 − 0.01 0.36]T q0 = [−0.16− 0.03 0.33]T 0.008

l0 = [0.167 0.222 0.237 0.285]T l0 = [0.174 0.224 0.238 0.282]T

From the results, it can be observed that the initial length calibration method
is able to resolve for l0 even when starting pose is unknown. Although the method
is able to clearly able to solve for the initial cable lengths and pose, it should be
noted that some errors still existed. Such errors may exist due to various reasons,
including: (1) errors in the cable length feedback measurement lr(t); (2) errors
in the calibration of the motion capture system and noise due to reflections and
disturbances; and (3) wrapping and slack in the cables. Moreover, it is important
to note that adequate calibration motion in all of the CDPR’s DoFs, in order to
obtain sufficient data for the NLLS optimisation, must be performed.

The joint space trajectories for trajectory 2 in Table 3 for both the motion
capture system and FK using the calibrated initial cable lengths are shown in
Fig. 8 and shows that indeed the calibration method is capable of determining
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Fig. 8. Joint space trajectory q(t) (link 1 only) for BM-Arm hardware experiment

correct initial lengths by only using internal sensors (motor encoders) of the
CDPR system.

6 Conclusion

In this paper, a novel FK-based calibration method for the initial cable lengths
of arbitrary CDPRs is proposed. For systems with relative feedback, the initial
cable lengths is required to determine the absolute lengths to be used in the
FK analysis. The simulation and experiment examples show that the proposed
method is effective in determining the initial cable lengths and requiring only a
short random calibration motion. Furthermore, the computational time required
for the calibration is short (less than 5 s), making it practical in real-life use.
Future work will focus on the analysis on the requirements of suitable calibration
trajectories.
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