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Abstract. We consider in this paper retrial queue with one server that
serves a finite number of customers, each one producing a Poisson flow
of incoming calls. In addition, after some exponentially distributed idle
time the server makes outgoing calls of two types - to the customers in
orbit and to the customers outside it. The outgoing calls of both types
follow the same exponential distribution, different from the exponential
service time distribution of the incoming calls. We derive formulas for
computing the steady state distribution of the system state as well as
formulas expressing the main performance macro characteristics in terms
of the server utilization. Numerical examples are presented.

1 Introduction

Retrial queues of type M /G/1//N in Kendall’s notation are queueing models
with 1 server which serves N customers (clients, calls) each one producing a
Poisson flow of demands. Retrial feature is characterized by the specific behav-
iour of the arriving customers that find the server busy. These customers join
a virtual waiting room, called orbit and repeat the attempt to get service after
some time. The customers in the orbit are also called retrial customers or sources
of retrial calls, while the customers that are not in the orbit or under service are
called sources of primary calls or customers in free state.

Retrial queues arise from various real life situations as well as telecommuni-
cation and network systems (Falin and Templeton 1997; Artalejo and Gómez-
Corral 2008). For example, in a call center a customer who cannot connect with
an operator tries again later (Aguir et al. 2004). Furthermore, in modeling the
mobile cellular systems, retrial feature cannot be ignored (Tran-Gia and Mand-
jes 1997; Van Do et al. 2014). The assumption of a finite number of customers
is of special interest to practice, as in real situations the number of subscribers
is finite. In particular, the described finite single server retrial queues and its
variants are useful in modeling magnetic disk memory systems (Ohmura and
Takahashi 1985), local area networks with nonpersistent CSMA/CD protocol (Li
and Yang 1995), etc. Falin and Artalejo (1998) carried out an extensive analysis
of the single server finite source retrial queue, including the busy period distrib-
ution and the waiting time process. Distribution of the number of retrials, made
by a retrial customer while being in orbit is investigated by Dragieva (2013).
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Single server finite source retrial queues with two types of breakdowns and repairs
are considered by Wang et al. (2011) and by Zhang and Wang (2013).

There also exist real situations, especially in service systems where customers
who cannot receive service immediately upon arrival register to the system and
go to other places before returning to the system after some time. On the other
hand, the server once becoming idle calls for customers. The former is reflected by
retrials while the latter can be modelled by outgoing calls. These real situations
are the motivation for us to consider finite source retrial models with two-way
communication.

Some of the first results on two-way communication retrial queues are
obtained by Falin (1979), who analyzes a single server queue in which the out-
going and the incoming calls are assumed to follow the same arbitrary service
time distribution. The priority retrial queues with available buffers for the out-
going calls, studied by Falin et al. (1993) and by Choi et al. (1995) could also be
considered as two-way communication models. Artalejo and Phung-Duc (2012)
consider single and multiple servers retrial models with two-way communica-
tion where the service times of incoming and outgoing calls follow the expo-
nential distribution with distinct parameters. The corresponding M/G/1 queue
where the service times of incoming and outgoing calls follow two distinct arbi-
trary distributions is investigated by the same authors Artalejo and Phung-Duc
(2013). Sakurai and Phung-Duc (2015) consider two-way communication retrial
queues with multiple types of outgoing calls. A two-way communication M/M/1
retrial queue with server-orbit interaction is studied by Dragieva and Phung-
Duc (2016). In the model, proposed in this paper it is assumed that after some
exponentially distributed idle time the server makes outgoing calls of two types.
The outgoing calls of type 1 are directed to the customers in orbit, while these
that are of type 2 - to the customers outside the orbit. This assumption reflects
various real-life situations, like call center of a credit card company where the
operator may call to customers for some advertisement, or to the customers who
not yet pay the money. But, at the moment some of these customers may be in
the orbit. The operator is not notified for them, so that he/she may call to a
customer outside the orbit as well as to a customer in orbit. Actually, when the
population of customers is considered infinite, the probability that the server,
calling to an arbitrary individual from this population may choose one from the
orbit, is very small. Thus, in such situations it is more appropriate to model the
system by queues with finite source. This motivated us to start investigation of
finite source retrial models with two-way communication.

The rest of the current paper is organized as follows. In Sect. 2 we describe
the model in detail. The joint distribution of the server state and the orbit size
is studied in Sect. 3.1, while Sect. 3.2 deals with the main performance macro
characteristics. Section 4 is devoted to numerical examples, Sect. 5 concludes the
paper and presents some possible topics for future research.

2 Model Description

As stated in the Introduction we consider a queueing model with one server
which serves N customers. Each of these customers produces a Poisson flow of
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incoming primary calls with mean 1/λ′. Thus, when a source is free at time
moment t (i.e. is not being served and is not waiting for service) it generates a
primary call during an interval (t, t+dt) with probability λ′dt. This means that
if at a time moment t there are n customers in free state (sources of incoming
primary calls), the arrival rate of the primary calls will be nλ′ and consequently
the probability of a primary call arrival during a time interval (t, t+dt) is equal
to nλ′dt.

If an incoming call finds the server busy upon arrival it joins the orbit of
retrial customers (calls), stays in it for an exponentially distributed time with
mean 1/μ, and retries to get service. The incoming retrial (secondary) calls, like
the incoming primary calls, are accepted if the server is idle, otherwise they enter
the orbit again.

The server, in turn, after some exponentially distributed idle time makes
outgoing calls of two types - to a customer in the orbit (an outgoing call of type 1)
or to a customer in free state (an outgoing call of type 2). The parameters of these
exponential distributions are α and α′

0, respectively. Thus, if the server is idle and
there are n incoming retrial customers in the orbit, the server connects with one
of them in an exponentially distributed time with parameter nα, and connects
with one of the customers outside the orbit in an exponentially distributed time
with parameter (N − n) α′

0.
The service times of the incoming calls and the outgoing calls of both types

are exponentially distributed with rate ν1 and ν2, respectively. When the service
is over all customers go to a free state.

We assume that the arrivals of primary incoming calls, retrial intervals of
secondary incoming calls, service times of incoming and outgoing calls, and the
time to make outgoing calls are mutually independent.

We denote the number of customers in orbit, the server state and the number
of busy servers at time t by R(t), S(t) and C(t), respectively,

S(t) =

⎧
⎨

⎩

0, when the server is idle,
1, when an incoming call is in service,
2, when an outgoing call is in service,

C(t) =
{

0, when S(t) = 0,
1, when S(t) = 1, 2.

Obviously, when the server is busy the number of customers in the orbit can’t
be equal to N , i.e. R(t) < N . As stated above after the service both incoming and
outgoing customers go to a free state. This means that when the server is idle,
there will be at least one customer in free state, i.e. again R(t) < N . Thus, the
state space of the process (S(t), R(t)) is the set {0, 1, 2} × {0, 1, 2, . . . , N − 1}.
Because of the finite state space this Markovian process is always stable.

Some particular values of the parameters in the above described model lead
to other models. Namely, in the case

• α = α′
0 = 0 we obtain the classical single server retrial queue, studied by a

number of authors, in a number of papers, some of which are presented in
the Introduction;
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• α′
0 = 0 we have a single server, finite source retrial queue with search of the

customers from orbit;
• μ = λ′ we get a single server, finite source queue with losses and two-way

communication.

Finally, if N → ∞, λ′ → 0 and α′
0 → 0 in such a way that Nλ′ → λ and

Nα′
0 → α0 our model converges to the corresponding model with infinite source,

studied by Dragieva and Phung-Duc (2016).
Further in the paper we discuss some of these particular cases.

3 Stationary System State Distributions

3.1 Joint Distribution of the Server State and Orbit Size

The system of balance equations for the stationary probabilities

πi,j = lim
t→∞ P (S(t) = i, R(t) = j) i = 0, 1, 2, j = 0, 1, . . . , N − 1

is
[(N − j) (λ′ + α′

0) + j(α + μ)] π0,j = ν1π1,j + ν2π2,j , (1)

[(N − j − 1)λ′ + ν1] π1,j = (N −j)λ′π0,j +(j+1)μπ0,j+1+(N −j)λ′π1,j−1, (2)

[(N − j − 1)λ′ + ν2] π2,j = (N −j)α′
0π0,j +(j+1)απ0,j+1+(N −j)λ′π2,j−1, (3)

with π0,N = π1,−1 = π2,−1 = 0.
Because of the finite number of equations we can solve this system using gen-

eral methods like Cramer’s rule. But here we present more convenient recursive
schemes. Firstly, they can save a number of operations, and secondly will be
useful in our future work when investigating the other descriptors of the system
functioning, like the waiting time process, busy period distribution and others.
We first express the probabilities πi,j (i = 1, 2) in terms of the probabilities
π0,j(j = 0, 1, . . . , N − 1). According to Eqs. (2) and (3), if denote

πi,j = A
(i)
j,0π0,0 + A

(i)
j,1π0,1 + . . . + A

(i)
j,j+1π0,j+1, (4)

we have

π1,0 =
Nλ′π0,0

a1,1
+

μπ0,1

a1,1
, π2,0 =

Nα′
0π0,0

a2,1
+

απ0,1

a2,1
,

π1,j =
(N − j)λ′

a1,j+1

j∑

k=0

A
(1)
j−1,kπ0,k +

(N − j)λ′

a1,j+1
π0,j +

(j + 1)μ
a1,j+1

π0,j+1,

π2,j =
(N − j)λ′

a2,j+1

j∑

k=0

A
(2)
j−1,kπ0,k +

(N − j)α′
0

a2,j+1
π0,j +

(j + 1)α
a2,j+1

π0,j+1,
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j = 1, . . . , N − 1, where

ai,j = (N − j)λ′ + νi, πi,N = 0, j = 1, . . . , N, i = 1, 2.

This gives the following recursive formulas for calculation of the coefficients A
(i)
j,k:

A
(1)
j,k =

(N − j)λ′

a1,j+1

(
A

(1)
j−1,k + δk,j

)
, (5)

A
(2)
j,k =

(N − j)
a2,j+1

(
λ′A(2)

j−1,k + δk,jα
′
0

)
, k = 0, . . . , j, (6)

A
(1)
j,j+1 =

(j + 1) μ

a1,j+1
, A

(2)
j,j+1 =

(j + 1) α

a2,j+1
, j = 0, 1, . . . , N − 1, (7)

A
(1)
−1,0 = A

(2)
−1,0 = A

(1)
N−1,N = A

(2)
N−1,N = 0.

Here δk,j is the Kronecker’s symbol, which is equal to 1 if k = j, and is equal to
0 if k �= j.

The explicit expressions, based on these recursive formulas are:

A
(1)
j,k =

(N − k) . . . (N − j) (λ′)j+1−k (a1,k + kμ)
a1,ka1,k+1a1,k+2 . . . a1,j+1

, (8)

A
(2)
j,k =

(N − k) . . . (N − j) (λ′)j−k (a2,kα′
0 + kλ′α)

a2,ka2,k+1a2,k+2 . . . a2,j+1
, (9)

for j = 0, 1, . . . , N − 1, k = 0, . . . , j, a1,0 = a2,0 = 1. The expressions for A
(i)
j,j+1

(i = 1, 2) are given by (7).
Next, in Eq. (1) we substitute πi,j according to formulas (4), ( j =0, . . . , N−2)

and obtain a relation between the probabilities π0,j :
[
ν1A

(1)
j,j+1 + A

(2)
j,j+1ν2

]
π0,j+1 =

[
(N − j) (λ′ + α′

0) + j(α + μ) −
(
ν1A

(1)
j,j + A

(2)
j,j ν2

)]
π0,j−

[(
ν1A

(1)
j,0 + A

(2)
j,0ν2

)
π0,0 + . . . +

(
ν1A

(1)
j,j−1 + A

(2)
j,j−1ν2

)
π0,j−1

]
,

j = 0, 1, . . . , N − 2, A
(1)
0,−1 = A

(2)
0,−1 = 0.

(10)

Following this scheme we can express all probabilities π0,j (j = 1, . . . , N − 1)
in terms of π0,0. Then, from (4) we can express πi,j (i = 1, 2, j = 0, 1, . . . , N −1)
also in terms of π0,0. Finally, from the normalizing condition

2∑

i=0

N−1∑

j=0

πij = 1

we can find π0,0. Thus, we can calculate the stationary system state distribution.
Further, having π0,0 found we can calculate the distribution πi,j not only

using formulas (10) and (4), but also by the recursive formulas, presented in the
next Proposition.
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Proposition 1. The stationary joint distribution πi,j of the server state and
the orbit size satisfies the following recursive formulas:

π0,j =
(N − j)λ′

j (μ + α)
(π1,j−1 + π2,j−1) , j = 1, . . . , N − 1, (11)

π1,j = (N−j)λ′

(N−j−1)λ′(μν1+αν2)+ν1ν2(α+μ) {(N − j − 1)λ′μπ2,j−1+

[ν2 (α + μ) + (N − j − 1)μ (λ′ + α′
0)] π0,j+

[(N − j − 1)λ′μ + ν2 (α + μ)] π1,j−1} ,

(12)

π2,j = (N−j)
(N−j−1)λ′(μν1+αν2)+ν1ν2(α+μ){(N − j − 1) (λ′)2 απ1,j−1+

[(N − j − 1)λ′α (λ′ + α′
0) + α′

0ν1 (α + μ)] π0,j+

λ′ [(N − j − 1)λ′α + ν1 (α + μ)] π2,j−1}.

(13)

Proof. We sum up Eqs. (1)–(3) for j = 0 and obtain formula (11) for j = 1,

(N − 1)λ′ (π1,0 + π2,0) = (μ + α) π0,1. (14)

Then we sum Eqs. (1)–(3) for j = 1,

(μ + α) π0,1 + (N − 2)λ′ (π1,0 + π2,0) =
2 (μ + α) π0,2 + (N − 1)λ′ (π1,0 + π2,0) ,

and add it to (14). Thus we get (11) for j = 2. Further, by induction it is easy to
prove relations (11) for all j = 1, . . . , N − 1. The rest of the recurrent formulas
(11)–(13) follow from the combination of (2)–(3) with (11). Namely, substituting
π0,j+1 from (11) into (2) and (3), after some transformations we get

(N−j−1)λ′α+ν1(α+μ)
μ+α π1,j =

(N − j)λ′π0,j + (N−j−1)λ′μ
μ+α π2,j + (N − j)λ′π1,j−1,

(N−j−1)λ′μ+ν2(α+μ)
μ+α π2,j =

(N − j)α′
0π0,j + (N−j−1)λ′α

μ+α π1,j + (N − j)λ′π2,j−1.

Now we substitute π2,j from the second into the first of these equations, and
π1,j from the first into the second,

(N−j−1)λ′α+ν1(α+μ)
μ+α π1,j =

(N − j)λ′π0,j + (N − j)λ′π1,j−1 + (N−j−1)λ′μ
[(N−j−1)λ′μ+ν2(α+μ)]×

[
(N − j)α′

0π0,j + (N−j−1)λ′α
μ+α π1,j + (N − j)λ′π2,j−1

]
,

(N−j−1)λ′μ+ν2(α+μ)
μ+α π2,j =

(N − j)α′
0π0,j + (N − j)λ′π2,j−1 + (N−j−1)λ′α

(N−j−1)λ′α+ν1(α+μ)×
[
(N − j)λ′π0,j + (N−j−1)λ′μ

μ+α π2,j + (N − j)λ′π1,j−1

]
.

Rearranging the terms, the last two equations give formulas (12) and (13).
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Remark 1. If in formulas (11)–(13) we fix j and take limits as N → ∞, λ′ → 0
and α′

0 → 0 in such a way that Nλ′ → λ, Nα′
0 → α0, we obtain exactly the

recurrent formulas, connecting the stationary system state probabilities for the
corresponding model with infinite source (Proposition 2 in Dragieva and Phung-
Duc (2016)). Similarly, if take α = α′

0 = 0, then formulas (11)–(12) give the
recursive formulas, obtained by Dragieva (2013) for the corresponding finite
source retrial queue without two-way communication.

Remark 2. In fact, we do not need recursions (11)–(13) for the calculation of the
system state distribution because we have the more convenient formulas (10),
(5)–(7) and (4). Exactly these formulas are used in the calculation of numerical
examples, presented in Sect. 4. Recursive formulas (11)–(13) may be useful in the
analysis of the waiting time process, analogously to the corresponding formulas
in the single server, finite source retrial queue without two-way communication
(see Dragieva 2013).

Now we turn attention to the system state distribution at the moments of a
primary incoming call arrival. In the models with finite source this distribution
differs from the corresponding distribution at any arbitrary time moment (which
is discussed in detail for example in Falin and Artalejo (1998) or in Dragieva
(2013)). Thus, if we introduce the event A(t) that at time t a primary call
arrives and denote by πi,j the stationary conditional probabilities

πi,j = lim
t→∞ P {S(t) = i, R(t) = j|A(t)} i = 0, 1, 2, j = 0, 1, . . . , N − 1,

then

πi,j =

{
(N−j)λ′π0,j

D , if i = 0,
(N−j−1)λ′πi,j

D , if i = 1, 2,
(15)

D =
2∑

i=1

N−1∑

n=0

(N − n − 1)λ
′
πi,n +

N−1∑

n=0

(N − n)λ
′
π0,n. (16)

This distribution is important in the investigation of the waiting time process.

3.2 Main Macro Characteristics of the System Performance

In the models with finite state space, if the system state distribution is obtained,
then it is not difficult to calculate any of the basic macro characteristics of
the system performance. Nevertheless, here we derive formulas, expressing these
characteristics in terms of the server utilization (or the idle server probability).

Let’s denote

Pi = lim
t→∞ P {S(t) = i} =

N−1∑

j=0

πi,j ,

Mi,p =
N−1∑

j=0

jpπi,j , p = 0, 1, . . . , i = 0, 1, 2,

Pi = Mi,0.
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Summing all Eq. (2), then (3) over j = 0, . . . , N − 1, we obtain equations for
the stationary server state distribution Pi (i = 0, 1, 2) and the first partial
moment M0,1,

ν1P1 = Nλ′P0 + (μ − λ′) M0,1, (17)

ν2P2 = Nα′
0P0 + (α − α′

0) M0,1. (18)

As stated in Sect. 2, if μ = λ′ we have no orbit and the model is modified to the
particular case of a finite source queue with losses and two-way communication.
In this case it is reasonable to take α = α′

0, but there are real situations when
we can consider α �= α′

0. For example, in a call center of some company the
operator can record all unsuccessful clients and although they give up their
request (μ = λ′) he/she can call to them for advertising, reminders, or anything
else, with specific intensity (α �= α′

0). In the case μ = λ′ and α = α′
0, from (17),

(18) and the normalizing condition

P0 + P1 + P2 = 1

we obtain formulas for the probabilities Pi (i = 0, 1, 2):

P1 =
Nλ′

ν1
P0, P2 =

Nα

ν2
P0, P0 =

ν1ν2
N (λ′ν2 + αν1) + ν1ν2

.

Further we assume that either μ �= λ′ or α �= α′
0. Equations (17), (18) and

the normalizing condition allow to express Pi (i = 1, 2) and M0,1 in terms of P0:

P1 =
(μ − λ′) ν2 (1 − P0) + N (αλ′ − α′

0μ) P0

(α − α′
0) ν1 + (μ − λ′) ν2

, (19)

P2 =
(α − α′

0) ν1 (1 − P0) − N [αλ′ − α′
0μ] P0

(α − α′
0) ν1 + (μ − λ′) ν2

, (20)

M0,1 =
ν1ν2 (1 − P0) − N (α′

0ν1 + λ′ν2) P0

(α − α′
0) ν1 + (μ − λ′) ν2

. (21)

Further, multiplying Eq. (1) by j (j = 1, . . . , N − 1), then (2) and (3) by
(j + 1) (j = 0, 1, . . . , N − 1) and summing each of these three groups equations
over j we get relations between Mi,0 = Pi, Mi,1, (i = 0, 1, 2), and M0,2,

N (λ′ + α′
0) M0,1 + (α + μ − λ′ − α′

0)M0,2 = ν1M1,1 + ν2M2,1, (22)

(ν1 + λ′) M1,1 + [ν1 − λ′(N − 1)] P1 =
Nλ′P0 + (N − 1)λ′M0,1 + (μ − λ′) M0,2,

(23)

(ν2 + λ′) M2,1 + [ν2 − λ′(N − 1)] P2 =
Nα′

0P0 + (N − 1)α′
0M0,1 + (α − α′

0) M0,2.
(24)

These equations allow to express the partial moments M0,2,M1,1 and M2,1 in
terms of M0,0 = P0. Thus, the mean orbit size also can be expressed in terms
of P0.
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Proposition 2. The mean orbit size, M1 is equal to

M1 = lim
t→∞ E [R(t)] =

2∑

i=0

N−1∑

j=1

jπi,j =

M0,1 + M1,1 + M2,1 = N − 1 + P0+
N[(α+μ)α′

0ν1+αλ′(ν2−ν1)]P0−(μ−λ′+α)ν1ν2(1−P0)

λ′[(α−α′
0)ν1+(μ−λ′)ν2] .

(25)

Proof. From Eq. (22) we express M0,2 in terms of Mi,1 (i = 0, 1, 2)

M0,2 =
ν1M1,1 + ν2M2,1 − N (λ′ + α′

0) M0,1

α + μ − λ′ − α′
0

, α + μ �= λ′ + α′
0,

and substitute it in the Eqs. (23) and (24). After some transformations this leads
to the following system for Mi,1 (i = 1, 2)

(

λ′ +
ν1(α−α′

0)
α+μ−λ′−α′

0

)

M1,1 − (μ−λ′)ν2

α+μ−λ′−α′
0
M2,1 =

Nλ′P0 − [ν1 − λ′(N − 1)] P1 +
(

−λ′ +
N(λ′α−α′

0μ)
α+μ−λ′−α′

0

)

M0,1,

− (α−α′
0)ν1

α+μ−λ′−α′
0
M1,1 +

(

λ′ +
ν2(μ−λ′)

α+μ−λ′−α′
0

)

M2,1 =

Nα′
0P0 − [ν2 − λ′(N − 1)] P2 +

[

−α′
0 +

N(α′
0μ−λ′α)

α+μ−λ′−α′
0

]

M0,1.

Summing up these two equations we get

λ′ (M1,1 + M2,1) = N (λ′ + α′
0) P0−

(λ′ + α′
0) M0,1 − {[ν1 − λ′(N − 1)] P1 + [ν2 − λ′(N − 1)] P2} .

Thus, for the mean orbit size it holds

M1 = M0,1 + M1,1 + M2,1 =
N(λ′+α′

0)P0

λ′ − α′
0

λ′ M0,1−
[ν1−λ′(N−1)]P1+[ν2−λ′(N−1)]P2

λ′ .

Substituting here Pi (i = 1, 2) and M0,1 with the expressions (19)–(21) we obtain
formula (25).

Using formulas (19)–(21) and (25) we can express the other basic performance
measures:

• The blocking probability PB that an arriving primary incoming call will be
blocked in the orbit of retrial customers,

PB =
2∑

i=1

N−1∑

n=0
πi,n =

∑2
i=1
∑N−1

n=0 (N−n−1)λ
′
πi,n

∑2
i=1
∑N−1

n=0 (N−n−1)λ′ πi,n+
∑N−1

n=0 (N−n)λ′ π0,n
=

(N−1)λ
′
(1−P0)−λ

′
(M1,1+M2,1)

Nλ′ −λ′ (1−P0+M1)
= 1 + M0,1−NP0

N−(1−P0+M1)
;
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• Mean rate of generation of primary incoming calls,

Λ = λ′ lim
t→∞ E [N − C(t) − R(t)] = λ′ [N − (P1 + P2) − M1] =

(μ − λ′ + α) ν1ν2 (1 − P0) − N [(α + μ) α′
0ν1 + αλ′ (ν2 − ν1)] P0

(α − α′
0) ν1 + (μ − λ′) ν2

;

• Mean value of the waiting time W (t), that a primary incoming call, arriving
at time moment t will spend in the orbit. Using Little’s formula for this mean
value we have:

lim
t→∞ E[W (t)] = Λ−1 lim

t→∞ E [R(t)] = M1
Λ =

(N−1+P0)[(α−α′
0)ν1+(μ−λ′)ν2]

N[(α+μ)α′
0ν1+αλ′(ν2−ν1)]P0−(μ−λ′+α)ν1ν2(1−P0)

− 1
λ′ ;

• Mean number E [RA(t)] of retrial attempts, that a primary incoming cus-
tomer, arriving at time moment t will make while being in the orbit. If the
intensity of the outgoing calls to the customers in orbit is 0 (α = 0) then the
following relation holds:

lim
t→∞ E [RA(t)] = μ lim

t→∞ E [W (t)] = μ
M1

Λ
.

In the case α > 0 if we want to calculate the mean number of retrials, we
should investigate the stationary distribution of this number, which will be one
of our future work.

Remark 3. For α = α′
0 = 0 all formulas, obtained in this Section coincide with

the formulas derived by Falin and Artalejo (1998) for the corresponding model
without two-way communication.

4 Numerical Examples

In this Section we present numerical examples, illustrating the influence of the
system parameters on the main performance macro characteristics, considered
in previous Section.

Figure 1 shows the dependence of the stationary server state distribution Pi

(i = 0, 1, 2) on the parameters λ′ (left upper corner), α′
0 (right upper corner),

ν1 (left lower corner) and N (right lower corner). We see that the behaviour of
most of the presented functions is intuitively expected:

• The proportion of time P1 that the server is busy with incoming calls ser-
vice increases with the increase of primary intensity λ′ and the mean service
time of incoming calls, 1/ν1. P1 decreases with increase of the intensity α′

0

of the outgoing calls to the customers in free state. Numerical examples, not
presented here show that P1 increases with the increase of the secondary
intensity, μ and decreases with the increase of the mean service time of out-
going calls, 1/ν2 and with the increase of the intensity of outgoing calls to
the orbit, α.
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Fig. 1. Stationary server state distribution Pi = P (S = i) (i = 0, 1, 2) versus system
parameters λ′, α′

0, ν1, N . (μ = 0.2, ν2 = 0.8)

• All presented examples show that when P1 increases, then the proportion of
time P2 that the server is busy with outgoing calls decreases and vice versa.

It is interesting that for all presented values of the system parameters the
server utilization, P1 + P2 = 1 − P0 is almost equal to 1. The increase of the
number N of all clients of the system has little impact on the server state dis-
tribution, keeping P1 greater than P2 and P0, the last one almost equal to 0.

The dependence of the rest of the macro characteristics (the first partial
moments, Mi,1, (i = 0, 1, 2) and mean orbit size, M1, blocking probability, PB,
mean waiting time, E[W ] = limt→∞ E[W (t)] and mean rate of generation of
primary incoming calls, Λ) on the system parameters follow intuitively expected
behaviour. The only exception is the primary incoming calls intensity λ′, which
influence on the system performance is hard to be intuitively explained. To show
this influence in more detail we present it in two figures - Figs. 2 and 3. On these
figures we can see that for all presented values of the system parameters the
blocking probability confirms the well known property of the finite source retrial
queues to have a point of maximum as a function of λ′ (Falin and Artalejo
1998; Almaási et al. 2005; Wang et al. 2011; Zhang and Wang 2013). The new
comes with the behaviour of the mean waiting time, E[W ] and the mean rate of
generation of primary incoming calls, Λ. We see in Fig. 2 that there exist values
of the system parameters for which, like in the other finite source retrial queues
(Falin and Artalejo 1998; Almaási et al. 2005; Wang et al. 2011; Zhang and Wang
2013), E[W ] has a point of maximum. But, on Fig. 3 we see that for the same
values of these parameters it has and a point of minimum. This property has
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Fig. 2. Basic performance macro characteristics versus primary intensity λ′. (ν1 =
0.1, ν2 = 0.8, N = 10)
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Fig. 3. Basic performance macro characteristics versus primary intensity λ′. (ν1 =
0.1, ν2 = 0.8, N = 10)

not been observed till now in the related literature. We also see on Fig. 3 that it
does not hold for all values of the system parameters. Analogously, we see that
the behaviour of Λ as a function of λ′ also depends on the values of the rest of
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the system parameters - for some of them it is a strictly increasing function, but
for some of them it has a point of maximum. The last property has not been
observed till now. For example, all numerical results, presented by Wang et al.
(2011) for the single server, finite source retrial queue with server breakdowns
and repairs show that Λ follows the intuitively expected behaviour to be strictly
increasing as a function of the primary intensity λ′.

It is interesting to note that for the values of the system parameters, presented
on Fig. 2, the partial moment M2,1 is an increasing function of λ′, but for the
values, presented on Fig. 3 it has a point of maximum.

5 Conclusion and Future Work

In this paper we derive formulas for the joint distribution of the server state and
the orbit size in a finite source retrial queue of M /M /1//N type with two-way
communication. Main performance macro characteristics are expressed in terms
of the server utilization. The influence of the system parameters on these macro
characteristics is studied on the basis of numerical examples. Formulas, obtained
in the present paper allow to extend this investigation by studying the waiting
time process, the busy period distribution and other descriptors of the system
performance like the number of successful and blocked events. We also plan to
consider the corresponding queue of type M /G/1//N.

Acknowledgements. The authors would like to thank anonymous referees for their
constructive comments which improved the presentation of the paper.
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