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Abstract. In this work, we consider an asymmetric two-user random
access wireless network with interacting nodes, time-varying links and
multipacket reception capabilities. The users are equipped with infinite
capacity buffers where they store arriving packets that will be trans-
mitted to a destination node. Moreover, each user employs a general
transmission control protocol under which, it adapts its transmission
probability based both on the state of the other user, and on the channel
state information according to a Gilbert-Elliot model. We study a two-
dimensional discrete time Markov chain, investigate its stability condi-
tion, and show that its steady state performance is expressed in terms of
a solution of a Riemann-Hilbert boundary value problem. Moreover, for
the symmetrical system, we provide closed form expressions for the aver-
age delay at each user node. Numerical results are obtained and show
insights in the system performance.

Keywords: Boundary value problem · Random access · Multipacket
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1 Introduction

Random access has re-gained attention recently because of the need for massive
uncoordinated access in large networks which will be common in the fifth gen-
eration of mobile networks (5G) era [1,4,28] (not an exhaustive list). Thus, the
study of random access in large networks is of major importance [4]. However,
there are still many unanswered fundamental questions regarding the perfor-
mance of random access even in small networks [14,18].

When the traffic in a network is bursty, a meaningful performance measure is
the stable throughput region i.e. the stability region, which gives the set of arrival
rates such that there exist transmission probabilities under which the system is
stable [24,32,34]. Characterizing the stability region in random access networks
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is a well known difficult problem because of the interaction of the queues. The
stability region is a throughput metric with bounded delay guarantees, but in
most of the works appeared in the past, stability and delay were studied in isola-
tion. The stability region of a two-user random access network with traditional
collision channel has been studied in [32,34,35]. A more detailed treatment of
stable throughput for various cases can be found in [22]. In [21], the stability
region of a cognitive radio system of two source-destination pairs in the presence
of imperfect sensing was studied. For a three-user random access network with
collision channel model the stability region was obtained in [34], while for the
case of more than three users the exact stability region is not known yet except
for some derived bounds given in [24].

Although stable throughput region in random access systems has been stud-
ied for several cases, the delay performance is so far overlooked in the research.
5G was proposed aiming to enhance the networking capabilities of mobile users
[1,28]. Differentiated from 4G, benefits offered by 5G will be much more than
the increased maximum throughput [1]. Thus, the rapid growth on supporting
real-time applications requires delay-based guarantees. However, the character-
ization of delay even in small networks with random access is rather difficult,
even for the traditional collision model [26]. Although the traditional collision
channel model is suitable for wire-line communications, it is not an appropriate
model for probabilistic reception in wireless multiple access scenarios. Moreover,
most of the related works are based on the strong assumption of the absolute
symmetry of the network; e.g., [15,27,33]. More importantly they did not take
into account the impact of time-varying links, e.g., [27,33], as well as the ability
of a node to adapt its transmission probability based on the knowledge of the
status of neighbor nodes, which in turn, leads to self-aware networks. Note that
this feature is very common in cognitive radios [5,6,21,25].

Contribution. In this work, we study an asymmetric two-user random access
wireless network where the user’s transmission probability is adapted based both
on the status of the other user, and on the channel state. We model the state of
the wireless channels as a Gilbert-Elliot model that changes between a “good”
and a “bad” state. Our motivation stems from the fact that the channel con-
ditions may vary, and thus, the success probability of a packet transmission
is affected. Moreover, we take account advances in multiuser detection, which
allow the receiver to employ multipacket reception (MPR) capabilities, and to
correctly receive at most one user packet, even if many users transmit (i.e., the
“capture” effect).

We analyze a system of two queues, we investigate the stable throughput,
and the queueing delay. Finally, we evaluate numerically the derived analytical
results. Our system is modeled as a two-dimensional discrete time Markov chain,
and we show that its steady-state performance is expressed in terms of the solu-
tion of a Riemann-Hilbert problem [19]. For related works on queueing systems
using the theory of boundary value problems see e.g. [2,3,8–13,16,17,26,31,36].
To the best of our knowledge there is no other work in the related literature in
which exact expressions for the stability conditions of a random access system
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where a user adapts its transmission probability based on its “knowledge” about
both the status of the other, and of the channel state. In such a case, we take
into account the wireless interference as well as the complex interdependence
among users’ nodes due to the shared medium. Clearly, such a protocol leads
to substantial performance gains, since each user exploits the idle slots of the
other. More importantly, besides its applicability, our work is also theoretically
oriented, since we provide, for the first time, an exact detailed analysis of an
asymmetric adapted random access wireless system with MPR capabilities, and
obtain the generating function of the stationary joint queue length distribution
with the aid of the theory of boundary value problems.

The rest of the paper is organized as follows. In Sect. 2 we describe the
model in detail, and derive the fundamental functional equation. In Sect. 3 we
obtain some important results for the following analysis, and investigate the
stability conditions. Section 4 is devoted to the formulation and solution of two
boundary value problems, the solution of which provides the generating function
of the joint queue length distribution of user nodes. In Sect. 5 we obtain explicit
expressions for the average delay at each user for the symmetrical system. Finally,
in Sect. 6 we obtain useful numerical examples that show insights in the system
performance.

2 Model Description and the Functional Equation

We consider an asymmetric random access system consisting of N = 2 users com-
municating with a common receiver. Each user has an infinite capacity buffer, in
which stores arriving and backlogged packets. Packets have equal length and the
time is divided into slots corresponding to the transmission time of a packet. At
the beginning of each slot, there is an opportunity for the user node k, k = 1, 2,
to transmit a packet to the receiver.

The channel of a particular link is independent between users, and varies
between slots according to a Gilbert-Elliott model, where it can be in one of two
states at any given time slot: the good state, denoted by “G” and the bad state,
denoted by “B”. The channel state is assumed to be fixed during a slot duration
and varies in an independent and identically distributed (i.i.d.) manner between
slots 1. The long term proportion of time in which user k’s channel is in state i

is denoted by s
(k)
i , i ∈ {B,G}, k ∈ {1, 2}; and can be obtained either through

channel measurements or through a physical model of the channels.
Users have perfect channel knowledge and adjust their transmission proba-

bilities (transmission control) according to the channel state. Due to the interfer-
ence among the stations we consider the following opportunistic policy: If both
stations are non empty, station k, k = 1, 2, transmits a packet according to a
Bernoulli stream with probability qik independently, q̄ik is the probability that
1 This model can capture the case where the wireless channel has strong interference

by another external network or when the channel is in deep fading. In both cases
we can assume that the channel is in the bad state. It is outside of the scope of this
version of the paper to consider detailed physical layer considerations.
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station k does not make a transmission in a slot, given that his channel is in
state i ∈ {B,G}. If station 1 (resp. 2) is the only non-empty, it changes its trans-
mission probability to q∗

ik independently2, q̄∗
ik = 1 − q∗

ik is the probability that
station k does not make a transmission in the given slot. Note that in our case,
a node is aware of the state of the other node. This is a common assumption in
the literature related to cognitive wireless networks [5,6,22,25].

The success of a transmission depends on the underlying channel model.
The MPR channel model used in this paper is a generalized form of the packet
erasure model. In particular we focus on a subclass of MPR model, the “capture”
channels [7,23,37]. In such a case, at most one packet can be successfully received
at the destination if more than one nodes transmit. A common assumption in
wireless networks is that a packet can be decoded correctly by the receiver if
the received SINR (Signal-to-Interference-plus-Noise-Ratio) exceeds a certain
threshold. The set of transmitting nodes in a given timeslot is denoted by T . Let
fik/T the probability that a packet transmitted from node k with channel state
i is successfully decoded at the destination, i.e., fik/T = Pr(γik/T > θ), where
γik/T denotes the SINR of the signal transmitted from node i with channel state
k at the receiver given the channel states of the transmitters and the threshold
for the successful decoding θ, which depends on the modulation scheme, target
bit error rate and the number of bits in the packet. Without loss of generality
we assume that when the channel state is “bad” and transmission fails with
probability 1,3 i.e., fB,k/T = 0, k = 1, 2. Furthermore, let f̃i,k/{i,k} be the success
probability of node k when it is the only non empty (f̃B,k/{B,k} = 0, k = 1, 2).
We consider the following success probabilities for nodes 1 and 2

f̃G,1/{G,1} > fG,1/{G,1} > fG,1/{G,1;B,2} > fG,1/{G,1;G,2},
f̃G,2/{G,2} > fG,2/{G,2} > fG,2/{B,1;G,2} > fG,2/{G,1;G,2}.

Note that the success probability when a packet is transmitted in the presence of
interference cannot exceed the success probability when it is transmitted alone.
Let also denote by f0/{G,1;G,2} = 1 − fG,1/{G,1;G,2} − fG,2/{G,1;G,2}, f0/{G,k} =
1 − fG,k/{G,k}, f̃0/{G,k} = 1 − f̃G,k/{G,k}, the probabilities that no packets will
be successfully transmitted.

In case of unsuccessful transmissions the packets have to be re-transmitted
in a later slot. We assume that the receiver gives an instantaneous (error-free)
feedback of all the packets that were successful in a slot at the end of the slot to
all the nodes. The nodes remove the successfully transmitted packets from their
buffers while unsuccessful packets are retained.

Let {Ak,n}n∈N be a sequence of i.i.d. random variables where Ak,n represents
the number of packets which arrive at buffer k in the interval (n, n + 1], with
E(Ak,n) = ̂λk < ∞. Denote by D(x, y) = limn→∞ E(xA1,nyA2,n), |x| ≤ 1,
2 We consider the general case for q∗

ik, this can handle cases where the node can-
not transmit with probability one even if it is transmitting alone. Such a scenario
may occur when the nodes are subject to energy limitations. The study of energy
harvesting in random access networks has been considered in [5,20,29,30].

3 We assume this mostly for simplicity, however, our work can be extended for the
case that the success probability is not zero when the channel is in the bad state.
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|y| ≤ 1, the generating function of the stationary joint distribution of the number
of arriving packets in any slot. In this work we assume that the arrival processes
at both user nodes are independent and geometrically distributed, i.e.,

D(x, y) = [(1 + ̂λ1(1 − x))(1 + ̂λ2(1 − y))]−1.

Denote by Nk,n the number of packets at user node k at the beginning of the
n-th slot. Then, Yn = (N1,n, N2,n) is a discrete time Markov chain with state
space E = {(i, j) : i, j = 0, 1, 2, . . .}. The users’ queues evolve as

Nk,n+1 = [Nk,n − Dk,n]+ + Ak,n, k = 1, 2, (1)

where Dk,n is the number of departures from user k queue at time slot n. Let
H(x, y) be the generating function of the joint stationary queue process, viz.

H(x, y) = limn→∞ E(xN1,nyN2,n), |x| ≤ 1, |y| ≤ 1.

Then, by exploiting (1) (see Appendix A), we obtain after lengthy calculations,

R(x, y)H(x, y) = A(x, y)H(x, 0) + B(x, y)H(0, y) + C(x, y)H(0, 0), (2)

where,

R(x, y) = D−1(x, y) + s
(1)
G qG1q̂12(1 − 1

x ) + s
(2)
G qG2q̂21(1 − 1

y ),

A(x, y) = s
(2)
G qG2q̂21(1 − 1

y ) + d1,2(1 − 1
x ),

B(x, y) = s
(1)
G qG1q̂12(1 − 1

x ) + d2,1(1 − 1
y ),

C(x, y) = d2,1( 1
y − 1) + d1,2( 1

x − 1),

and,

q̂km = (s(m)
G q̄Gm + s

(m)
B q̄Bm)fG,k/G,k + s

(m)
B qBmfG,k/{G,k;B,m}

+s
(m)
G qGmfG,k/{G,k;G,m}, k,m ∈ {1, 2}, k �= m,

dk,m = s
(k)
G qGk q̂km − s

(k)
G q∗

Gkf̃G,k/G,k, k,m ∈ {1, 2}, k �= m.

Some interesting relations can be obtained directly from the functional Eq. (2).
Taking y = 1, dividing by x − 1 and taking x → 1 in (2), and vice versa, yield
the following “conservation of flow” relations:

̂λ1 = s
(1)
G qG1q̂12(1 − H(0, 1)) − d1,2(H(1, 0) − H(0, 0)),

̂λ2 = s
(2)
G qG2q̂21(1 − H(1, 0)) − d2,1(H(0, 1) − H(0, 0)).

(3)

Using (3), we distinguish the analysis in two cases, which differ both from the
modeling and the technical point of view:

1. For qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

= 1, Eq. (3) yields

H(0, 0) = 1 −
(

̂λ1

s
(1)
G q∗

G1f̃G,1/G,1
+ ̂λ2

s
(2)
G q∗

G2f̃G,2/G,2

)

= 1 − ρ.
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2. For qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

�= 1, Eq. (3) yields

H(1, 0) = d2,1̂λ1+s
(1)
G qG1q̂12(s

(2)
G q∗

G2f̃G2/{G2}−̂λ2)+d2,1s
(1)
G q∗

G1f̃G,1/{G,1}H(0,0)

s
(1)
G qG1q̂12s

(2)
G qG2q̂21−d1,2d2,1

,

H(0, 1) = d1,2̂λ2+s
(2)
G qG2q̂21(s

(1)
G q∗

G1f̃G1/{G1}−̂λ1)+d1,2s
(2)
G q∗

G2f̃G,2/{G,2}H(0,0)

s
(1)
G qG1q̂12s

(2)
G qG2q̂21−d1,2d2,1

.
(4)

3 Preparatory Analysis

We now focus on the derivation of some preparatory results in view of the res-
olution of the functional Eq. (2). We first investigate the stability criteria, and
then, we focus on the analysis of the kernel equation R(x, y) = 0.

3.1 Stability Region

Based on the concept of stochastic dominant systems [32,34], we derive the
stability region, i.e., the set of vectors (̂λ1, ̂λ2), for which our system is stable.

Lemma 1. The stability region R for a fixed transmission probability vector
q := [qG1, qG2, q

∗
G1, q

∗
G2] is given by

1. In case qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

�= 1, R = R1 ∪ R2 where,

R1 = {(̂λ1, ̂λ2) : ̂λ1 < s
(1)
G q∗

G1f̃G,1/{G,1} + d1,2
̂λ2

s
(2)
G qG2q̂21

, ̂λ2 < s
(2)
G qG2q̂21},

R2 = {(̂λ1, ̂λ2) : ̂λ2 < s
(2)
G q∗

G2f̃G,2/{G,2} + d2,1
̂λ1

s
(1)
G qG1q̂12

, ̂λ1 < s
(1)
G qG1q̂12}.

2. In case qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

= 1, R = {(̂λ1, ̂λ2) : ρ < 1}.

Proof: In order to determine the stability region, we apply the stochastic domi-
nance technique developed in [32,34], which consists of considering hypothetical
auxiliary systems that closely parallel the operation of the original system but
dominate it in a well defined manner. Under this approach, we consider the R1,
and R2 dominant systems. In the Rk dominant system, whenever the queue of
user node k, k = 1, 2 empties, it continues to transmit “dummy” packets.

The dominant system has the following properties [32]: (i) the queue lengths
in the dominant system are no shorter than the queues in the original system.
Thus, if the queues in the dominant system are stable, then, the queues in the
original system are stable as well, (ii) the two systems coincide at saturation, that
is, if the queue of user 1 never empties (that is, if it is saturated or unstable), then
the dominant system, and the original system are indistinguishable; and thus, the
instability of the dominant system implies the instability of the original system.
Clearly, (i) and (ii) imply that the stability condition of the dominant system
is a necessary and sufficient for the stability of the original system and hence,
the stable throughput regions of both systems coincide for fixed transmission
probabilities.
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Thus, in R1, user node 1 never empties, and its service rate depends on
whether user node 2 is empty or not. On the other hand, user node 2 “sees” a
constant service rate. Therefore, in the R1 dominant system, ̂λ2 < s

(2)
G qG2q̂21.

Moreover, the stability condition for the user node 1 is given by,

̂λ1 < s
(1)
G q∗

G1f̃G,1/{G,1}

(

1 − ̂λ2

s
(2)
G qG2q̂21

)

+ s
(1)
G qG1q̂12

̂λ2

s
(2)
G qG2q̂21

.

Thus, the sufficient condition for the ergodicity of the R1 dominant system is,

̂λ1 < s
(1)
G q∗

G1f̃G,1/{G,1} + d1,2̂λ2

s
(2)
G qG2q̂21

, and ̂λ2 < s
(2)
G qG2q̂21. (5)

Similarly, the sufficient ergodicity condition of the R2 system is given by,

̂λ1 < s
(1)
G qG1q̂12, and ̂λ2 < s

(2)
G q∗

G2f̃G,2/{G,2} + d2,1̂λ1

s
(1)
G qG1q̂12

. (6)

Combining the sufficient conditions for both the dominant systems (i.e., (5), (6))
yields the sufficiency part of the lemma. The necessary part of the lemma follows
by an “indistinguishability” argument similar to the one used in [32]. �	

Remark: R is a convex polyhedron when qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

≥ 1. When
equality holds, the region is a triangle and coincides with the case of time-
sharing. Convexity is an important property since it corresponds to the case
when parallel concurrent transmissions are preferable to time-sharing.

3.2 Analysis of the Kernel

We now provide some detailed properties of the kernel R(x, y), which are impor-
tant for the formulation and solution of the boundary value problems. Clearly,

R(x, y) = a(x)y2 + b(x)y + c(x) = â(y)x2 +̂b(y)x + ĉ(y),

where, a(x) = ̂λ2x(̂λ1(x − 1) − 1), c(x) = −s
(2)
G qG2q̂21x, b(x) = x(̂λ + ̂λ1

̂λ2 +
s
(1)
G qG1q̂12 + s

(2)
G qG2q̂21) − s

(1)
G qG1q̂12 − ̂λ1(1 + ̂λ2)x2, â(y) = ̂λ1y(̂λ2(y − 1) − 1),

ĉ(y) = −s
(1)
G qG1q̂12y, ̂b(y) = y(̂λ+ ̂λ1

̂λ2 + s
(1)
G qG1q̂12 + s

(2)
G qG2q̂21)− s

(2)
G qG2q̂21 −

̂λ2(1 + ̂λ1)y2. The roots of R(x, y) = 0 are X±(y) = −̂b(y)±
√

Dy(y)

2â(y) , Y±(x) =
−b(x)±

√
Dx(x)

2a(x) , where Dy(y) = ̂b(y)2 − 4â(y)ĉ(y), Dx(x) = b(x)2 − 4a(x)c(x).

Lemma 2. For |y| = 1, y �= 1, the kernel equation R(x, y) = 0 has exactly
one root x = X0(y) such that |X0(y)| < 1. For ̂λ1 < s

(1)
G qG1q̂12, X0(1) = 1.

Similarly, we can prove that R(x, y) = 0 has exactly one root y = Y0(x), such
that |Y0(x)| ≤ 1, for |x| = 1.
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Proof: It is easily seen that R(x, y) = xy−Ψ(x,y)
xyD(x,y) , where Ψ(x, y) = D(x, y)[xy −

y(x − 1)s(1)G qG1q̂12 − x(y − 1)s(2)G qG2q̂21], where for |x| ≤ 1, |y| ≤ 1, Ψ(x, y) is a
generating function of a proper probability distribution. Now, for |y| = 1, y �= 1
and |x| = 1 it is clear that |Ψ(x, y)| < 1 = |xy|. Thus, from Rouché’s theorem,
xy − Ψ(x, y) has exactly one zero inside the unit circle. Therefore, R(x, y) = 0
has exactly one root x = X0(y), such that |x| < 1. For y = 1, R(x, 1) = 0 implies

(x − 1)[̂λ1 − s
(1)
G qG1q̂12

x ] = 0. Therefore, for y = 1, and since ̂λ1 < s
(1)
G qG1q̂12, the

only root of R(x, 1) = 0 for |x| ≤ 1, is x = 1. �	
Lemma 3. The algebraic function Y (x), defined by R(x, Y (x)) = 0, has four
real branch points 0 < x1 < x2 ≤ 1 < x3 < x4 < 1+̂λ1

̂λ1
. Moreover, Dx(x) < 0,

x ∈ (x1, x2)∪(x3, x4) and Dx(x) > 0, x ∈ (−∞, x1)∪(x2, x3)∪(x4,∞). Similarly,
X(y), defined by R(X(y), y) = 0, has four real branch points 0 ≤ y1 < y2 ≤ 1 <

y3 < y4 < 1+̂λ2
̂λ2

, and Dx(y) < 0, y ∈ (y1, y2) ∪ (y3, y4) < and Dx(y) > 0,
y ∈ (−∞, y1) ∪ (y2, y3) ∪ (y4,∞).

Proof: The proof is based on simple algebraic arguments; see also [13]. �	

Consider now the cut planes: ˜̃Cx = Cx − ([x1, x2] ∪ [x3, x4]), ˜̃Cy = Cy −
([y1, y2] ∪ [y3, y4]), where Cx, Cy the complex planes of x, y, respectively. In
˜̃Cx (resp. ˜̃Cy), let Y0(x) (resp. X0(y)) be the zero of R(x, Y (x)) = 0 (resp.
R(X(y), y) = 0) with the smallest modulus.

Lemma 4. 1. For y ∈ [y1, y2], the algebraic function X(y) lies on a closed
contour M, which is symmetric with respect to the real line and defined by

|x|2 = m(Re(x)), m(δ) = s
(1)
G qG1q̂12

̂λ1(1+̂λ2−̂λ2ζ(δ))
, |x|2 ≤ s

(1)
G qG1q̂12

̂λ1(1+̂λ2−̂λ2y2)
,

where, k(δ) := ̂λ + ̂λ1
̂λ2 + s

(1)
G qG1q̂12 + s

(2)
G qG2q̂21 − 2̂λ1(1 + ̂λ2)δ and, ζ(δ) =

k(δ)−
√

k2(δ)−4s
(2)
G qG2q̂21̂λ2(1+̂λ1(1−2δ))

2̂λ2(1+̂λ1(1−2δ))
.

Set β0 :=
√

s
(1)
G qG1q̂12

̂λ1(1+̂λ2−̂λ2y2)
, β1 := −

√

s
(1)
G qG1q̂12

̂λ1(1+̂λ2−̂λ2y1)
the extreme right and left

point of M, respectively.
2. For x ∈ [x1, x2], the algebraic function Y (x) lies on a closed contour L, which

is symmetric with respect to the real line and defined by

|y|2 = v(Re(y)), v(δ) = s
(2)
G qG2q̂21

̂λ2(1+̂λ1−̂λ1θ(δ))
, |y|2 ≤ s

(2)
G qG2q̂21

̂λ2(1+̂λ1−̂λ1x2)
,

where l(δ) := ̂λ + ̂λ1
̂λ2 + s

(1)
G qG1q̂12 + s

(2)
G qG2q̂21 − 2̂λ2(1 + ̂λ1)δ, and θ(δ) =

l(δ)−
√

l2(δ)−4s
(1)
G qG1q̂12̂λ1(1+̂λ2(1−2δ))

2̂λ1(1+̂λ2(1−2δ))
.

Set η0 :=
√

s
(2)
G qG2q̂21

̂λ2(1+̂λ1−̂λ1x2)
, η1 := −

√

s
(2)
G qG2q̂21

̂λ2(1+̂λ1−̂λ1x1)
the extreme right and left

point of L, respectively.
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Proof: We only focus on the first part. For y ∈ [y1, y2], Dy(y) < 0, so X±(y) are

complex conjugates. Thus, |X(y)|2 = s
(1)
G qG1q̂12

̂λ1(1+̂λ2−̂λ2y)
= g(y). It also follows that

Re(X(y)) = y(̂λ+̂λ1̂λ2+s
(1)
G qG1q̂12+s

(2)
G qG2q̂21)−s

(2)
G qG2q̂21−̂λ2(1+̂λ1)y

2

2̂λ1y(1+̂λ2−̂λ2y)
. (7)

Clearly, g(y) is an increasing function for y ∈ [0, 1] and thus, |X(y)|2 ≤ g(y2) =
β0. Using simple algebraic considerations we can prove that, X0(y1) = β1 is
the extreme left point of M. Finally, ζ(δ) is derived by solving (7) for y with
δ = Re(X(y)), and taking the solution such that y ∈ [0, 1]. �	

4 The Boundary Value Problems

In the following, we distinguish the analysis in two cases, which differ from both
the modeling and the technical point of view.

4.1 A Dirichlet Boundary Value Problem

Assume that qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

= 1. Then, A(x, y) = s
(2)
G qG2q̂21

d2,1
B(x, y).

Therefore, for y ∈ Dy = {y ∈ Cy : |y| ≤ 1, |X0(y)| ≤ 1},

s
(2)
G qG2q̂21H(X0(y), 0) + d2,1H(0, y) + s

(2)
G qG2q̂21C(X0(y),y)

A(X0(y),y)
(1 − ρ) = 0. (8)

For y ∈ Dy − [y1, y2] both H(X0(y), 0), H(0, y) are analytic and the right-hand
side in (8) can be analytically continued up to the slit [y1, y2], or equivalently,
for x ∈ M

s
(2)
G qG2q̂21H(x, 0) + d2,1H(0, Y0(x)) + s

(2)
G qG2q̂21C(x,Y0(x))

A(x,Y0(x))
(1 − ρ) = 0. (9)

Then, by multiplying both sides of (9) by the imaginary complex number i, and
noticing that H(0, Y0(x)) is real for x ∈ M, since Y0(x) ∈ [y1, y2], we have

Re (iH(x, 0)) = Re
(

−iC(x,Y0(x))
A(x,Y0(x))

)

(1 − ρ), x ∈ M. (10)

To proceed, we have to check for possible poles of H(x, 0) in Sx := GM ∩ D̄c
x,

where GU be the interior domain bounded by U , and Dx = {x : |x| < 1},
D̄x = {x : |x| ≤ 1}, D̄c

x = {x : |x| > 1}. These poles, if exist, they coincide
with the zeros of A(x, Y0(x)) in Sx (see Appendix B). In order to solve (10) we
must firstly conformally transform the problem from M to the unit circle C.
Let the conformal mapping z = γ(x) : GM → GC , and its inverse given by
x = γ0(z) : GC → GM. Then, we have the following problem: Find a function
T̃ (z) = H(0)(γ0(z)) regular for z ∈ GC , and continuous for z ∈ C ∪GC such that,
Re(iG̃(z)) = w(γ0(z)), z ∈ C.

In the following, we need a representation of M in polar coordinates, i.e.,
M = {x : x = ρ(φ) exp(iφ), φ ∈ [0, 2π]}. In the following we summarize the basic
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steps; see [8]. Since 0 ∈ GM, for each x ∈ M, a relation between its absolute
value and its real part is given by |x|2 = m(Re(x)) (see Lemma 4). Given the
angle φ of some point on M, the real part of this point, say δ(φ), is the solution
of δ − cos(φ)

√

m(δ), φ ∈ [0, 2π]. Since M is a smooth, egg-shaped contour,
the solution is unique. Clearly, ρ(φ) = δ(φ)

cos(φ) , and the parametrization of M in
polar coordinates is fully specified. Then, the mapping from z ∈ GC to x ∈ GM,
where z = eiφ and x = ρ(ψ(φ))eiψ(φ), satisfying γ0(0) = 0 and γ0(z) = γ0(z̄) is
uniquely determined by (see [8]),

γ0(z) = z exp[ 1
2π

∫ 2π

0
log{ρ(ψ(ω))} eiω+z

eiω−z dω], |z| < 1,

ψ(φ) = φ − ∫ 2π

0
log{ρ(ψ(ω))} cot(ω−φ

2 )dω, 0 ≤ φ ≤ 2π,
(11)

i.e., the angular deformation ψ(.) is uniquely determined as the solution of
Theodorsen integral equation with ψ(φ) = 2π − ψ(2π − φ). If H(x, 0) has no
poles in Sx, the solution of the problem defined in (10) is,

H(x, 0) = − 1−ρ
2π

∫

|t|=1
f(t) t+γ(x)

t−γ(x)
dt
t + S, x ∈ M, (12)

where f(t) = Re
(

−iC(γ0(t),Y0(γ0(t)))
A(γ0(t),Y0(γ0(t)))

)

. S is a constant to be defined by setting
x = 0 ∈ GM in (12), and using the fact that H(0, 0) = 1 − ρ, γ(0) = 0 (In
case H(x, 0) has a pole, i.e. x = x̄, we have still a Dirichlet problem for the
function (x − x̄)H(x, 0); see Appendix B). Following the discussion above, S =
(1 − ρ)(1 + 1

2π

∫

|t|=1
f(t)dt

t ). Setting t = eiφ, γ0(eiφ) = ρ(ψ(φ))eiψ(φ), we arrive
after some algebra in,

f(eiφ) = d1,2s
(2)
G q∗

G2f̃G,1/{G,1} sin(ψ(φ))(1−Y0(γ0(e
iφ))−1)

ρ(ψ(φ)){[s(2)
G qG2q̂21(1−Y −1

0 (γ0(eiφ)))+d1,2(1− cos(ψ(φ))
ρ(ψ(φ)) )]2+(d1,2

sin(ψ(φ))
ρ(ψ(φ)) )2} ,

which is an odd function of φ. Thus, S = 1 − ρ. Substituting back in (12):

H(x, 0) = (1 − ρ){1 + 2γ(x)i
π

∫ π

0
f(eiφ) sin(φ)dφ

1−2γ(x) cos(φ)−γ(x)2 }, x ∈ GM. (13)

Similarly, we can determine H(0, y) by solving another Dirichlet boundary value
problem on the contour L. Then, using (2) we uniquely obtain H(x, y).

4.2 A Homogeneous Riemann-Hilbert Boundary Value Problem

In case qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

�= 1, consider the following transformation:

G(x) := H(x, 0) + s
(1)
G q∗

G1f̃G,1/{G,1}d2,1H(0,0)

d1,2d2,1−s
(1)
G qG1q̂12s

(2)
G qG2q̂21

,

L(y) := H(0, y) + s
(2)
G q∗

G2f̃G,2/{G,2}d1,2H(0,0)

d1,2d2,1−s
(1)
G qG1q̂12s

(2)
G qG2q̂21

.

Then, for y ∈ Dy,

A(X0(y), y)G(X0(y)) = −B(X0(y), y)L(y). (14)
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For y ∈ Dy − [y1, y2] both G(X0(y)), L(y) are analytic and the right-hand side
in (14) can be analytically continued up to the slit [y1, y2], or equivalently,

A(x, Y0(x))G(x) = −B(x, Y0(x))L(Y0(x)), x ∈ M. (15)

Clearly, G(x) is holomorphic in Dx, and continuous in D̄x. However, G(x) might
have poles in Sx = GM ∩ D̄c

x. These poles (if exist) coincide with the zeros of
A(x, Y0(x)) in Sx; see Appendix B. For y ∈ [y1, y2], let X0(y) = x ∈ M, and
realize that Y0(X0(y)) = y (note that B(x, Y0(x)) �= 0, x ∈ M). Taking into
account the poles of G(x), and noticing that L(Y0(x)) is real for x ∈ M,

Re[iU(x)G̃(x)] = 0, x ∈ M,

U(x) = A(x,Y0(x))
(x−x̄)rB(x,Y0(x))

, G̃(x) = (x − x̄)rG(x),
(16)

where r = 0, 1, whether x̄ is zero or not of A(x, Y0(x)) in Sx (see Appendix B).
Thus, G̃(x) is regular for x ∈ GM, continuous for x ∈ M ∪ GM, and U(x) is a
non-vanishing function on M. As usual, we must firstly conformally transform
the problem (16) from M to the unit circle C. Let the conformal mapping z =
γ(x) : GM → GC , and its inverse given by x = γ0(z) : GC → GM.

Then, the Riemann-Hilbert problem formulated in (16) is reduced to the
following: Find a function F (z) := H̃(γ0(z)), regular in GC , continuous in GC ∪C
such that, Re[iU(γ0(z))F (z)] = 0, z ∈ C.

To proceed with the solution of the boundary value problem we have to
determine its index χ = −1

π [arg{U(x)}]x∈M, where [arg{U(x)}]x∈M, denotes
the variation of the argument of the function U(x) as x moves along M in the
positive direction, provided that U(x) �= 0, x ∈ M. Following [16] we have,

Lemma 5. 1. If ̂λ2 < s
(2)
G qG2q̂21, then χ = 0 is equivalent to

dA(x,Y0(x))
dx |x=1 < 0 ⇔ ̂λ1 < s

(1)
G q∗

G1f̃G,1/{G,1} + d1,2
̂λ2

s
(2)
G qG2q̂21

,

dB(X0(y),y)
dy |y=1 < 0 ⇔ ̂λ2 < s

(2)
G q∗

G2f̃G,2/{G,2} + d2,1
̂λ1

s
(1)
G qG1q̂12

.

2. If ̂λ2 ≥ s
(2)
G qG2q̂21, χ = 0 is equivalent to dB(X0(y),y)

dy |y=1 < 0 ⇔ ̂λ2 <

s
(2)
G q∗

G2f̃G,2/{G,2} + d2,1
̂λ1

s
(1)
G qG1q̂12

.

Thus, under stability conditions (see Lemma 1), the problem defined in (16) has
a unique solution for x ∈ GM given by,

H(x, 0) = K(x − x̄)re[
1

2iπ

∫

|t|=1
log{J(t)}dt

t−γ(x) ] − s
(1)
G q∗

G1f̃G,1/{G,1}d2,1H(0,0)

d1,2d2,1−s
(1)
G qG1q̂12s

(2)
G qG2q̂21

, (17)

where K is a constant, J(t) = U1(t)
U1(t)

, U1(t) = U(γ0(t)). Setting x = 0 in (17) we
derive a relation among K, H(0, 0). Now set x = 1 ∈ GM in (17), and use the
first in (4) to obtain K, H(0, 0). Substituting back in (17) we finally obtain,
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H(x, 0) =
̂λ1d2,1+s

(1)
G qG1q̂12(s

(2)
G q∗

G2f̃G2/{G2}−̂λ2)

(s
(1)
G qG1q̂12s

(2)
G qG2q̂21−d1,2d2,1)(x̄−1)r

((x̄ − x)r

× exp[γ(x)−γ(1)
2πi

∫

|t|=1
log{J(t)}

(t−γ(x))(t−γ(1))dt]

+ q∗
G1f̃G1/{G1}d2,1x̄r

qG1q̂12s
(2)
G q∗

G2f̃G2/{G2}
exp[−γ(1)

2πi

∫

|t|=1
log{J(t)}
t(t−γ(1))dt]

)

, x ∈ GM.

(18)

Similarly, we can determine H(0, y) by solving another Riemann-Hilbert bound-
ary value problem on the closed contour L. Then, using the fundamental func-
tional Eq. (2) we uniquely obtain H(x, y).

Performance Metrics: In the following we derive formulas for the expected num-
ber of packets, and the average delay at each user node in steady state, say Mi

and Di, i = 1, 2, respectively. Denote by H1(x, y), H2(x, y) the derivatives of
H(x, y) with respect to x and y, respectively. Then, Mi = Hi(1, 1), and using
Little’s law Di = Hi(1, 1)/̂λi, i = 1, 2. Using (2), (3) after simple calculations
we have

M1 =
̂λ1+d1,2H1(1,0)

s
(1)
G qG1q̂12

, M2 =
̂λ2+d2,1H2(0,1)

s
(2)
G qG2q̂21

. (19)

We only focus on M1, D1 (similarly we can obtain M2, D2). Note that H1(1, 0)
can be obtained using (18) or (13) depending on the value of qG1q̂12

q∗
G1f̃G,1/G,1

+
qG2q̂21

q∗
G2f̃G,2/G,2

. For qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

�= 1, and using (18) we obtain,

H1(1, 0) =
̂λ1d2,1+s

(1)
G qG1q̂12(s

(2)
G q∗

G2f̃G1/{G1}−̂λ2)

s
(1)
G qG1q̂12s

(2)
G qG2q̂21−d1,2d2,1

{γ′(1)
2πi

∫

|t|=1
log{J(t)}
(t−γ(1))2 dt

+ r
1−x̄1{r=1}}.

(20)

Substituting in (19) we obtain M1, and dividing with ̂λ1, the average delay D1.
Note that the calculation of (11) requires the evaluation of integrals (11), and
γ(1), γ′(1). For an efficient numerical procedure see [8], Section 4.1.

5 Explicit Expressions for the Symmetrical Model

In this section we consider the symmetrical model and obtain exact expres-
sions for the average delay without computing the generating function of the
stationary joint relay queue length distribution. As a symmetrical, we mean
the model where q∗

Gk = q∗
G, qik = qi, i ∈ {B,G}, λk = λ, fi,k/{i,k} = fi/{i},

fG,k/{G,k;G,m} = fG/{G;G}, fG,k/{G,k;B,m} = fG/{G;B}, f̃G,k/{G,k} = f̃G, s
(k)
i =

si, i ∈ {G,B}, k = 1, 2. Then, q̂12 = q̂21 = q̂ and d1,2 = d2,1 = d.
Due to the symmetry of the model, H1(1, 1) = H2(1, 1), H1(1, 0) = H2(0, 1).

Note that Mj = Hj(1, 1), j = 1, 2. Thus, using (2) we obtain,

M1 =
̂λ+dH1(1,0)

sGqGq̂−̂λ , (21)

where sGqGq̂ > ̂λ, due to the stability condition. Set x = y in (2), differentiate
it with respect to x at x = 1, and use the first in (3) to obtain,
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M1 + M2 = 2M1 = 2̂λ−̂λ2+2H1(1,0)(sGqGq̂+d)

sGqGq̂−̂λ . (22)

Using (21), (22), and applying Little’s law we finally derive,

M1 = M2 =
̂λ[2sGqGq̂+̂λd]

2sGq∗
Gf̃G(sGqGq̂−̂λ) , D1 = D2 = 2sGqGq̂+̂λd

2sGq∗
Gf̃G(sGqGq̂−̂λ) . (23)

6 Numerical Results

Example 1: The symmetrical model. In this example, we focus on the symmet-
rical model and investigate the effect of transmission control on the average
delay. We assume that f̃G = 0.9, fG/{G} = 0.8, fG/{G,B} = 0.7, fG/{G,G} = 0.6,
qB = 0.5. In Figs. 1 and 2 we also assume that q∗

G = 0.9. Recall that q∗
G is the

transmission probability of a station when the other is empty.
In Fig. 1 (left) we observe that the average delay increases for increasing val-

ues of ̂λ by letting qG = 0.7. More importantly, we can identify the advantage
of transmission control regarding delay. Note that when the channel remains in
the good state for longer period (i.e., sG = 0.9), the users adapt their transmis-
sion probability qG to 0.7, and thus, significant performance gains are achieved.
Similar observations can be deduced from Fig. 1 (right), where we can see that
the average delay decreases, as we increase qG. That decrease becomes more
apparent when the channel remains for longer period in the good state.

Figure 2 (left) shows the average delay as a function of (̂λ, qG). We can see
how sensitive is the average delay when ̂λ increases, and especially, when the
portion of time where the channel is in good state decreases. Similarly, when
sG decreases (see Fig. 2 (right)), the average delay increases rapidly, especially
when qG takes small values (this maybe happened when users falsely detect that
the channel is in the bad state). Finally in Fig. 3 (left) we observe that when
the channel is in good state for longer period (e.g., sG = 1), the average delay
decreases, even when q∗

G takes small values, a fact that justifies the importance
of transmission control, from the delay point of view.
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Fig. 1. Effect of transmission control on the average delay for qG = 0.7 (left), and for
̂λ = 0.1 (right).
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Fig. 2. Effect of transmission control on the average delay.
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Fig. 3. Effect of transmission control (sG, q∗
G) on the average delay for qG = 0.7 (left),

and effect of channel state on the stability region (right). (Color figure online)

Example 2: Stability region for the general model. In this example we focus on
the general model, and specifically on the case qG1q̂12

q∗
G1f̃G,1/G,1

+ qG2q̂21
q∗

G2f̃G,2/G,2
�= 1. Our

aim is to investigate the effect of channel state on the stability region. We assume
that s

(1)
G = 0.9, qG1 = 0.6, qG2 = 0.7, qB1 = 0.3, qB2 = 0.4, q∗

G1 = 0.9 = q∗
G2,

and f̃G,k/{G,k} = 0.9, fG,k/{G,k} = 0.8, fG,1/{G,1;B,2} = fG,2/{G,2;B,1} = 0.7,
fG,k/{G,1;G,2} = 0.6, k = 1, 2.

In Fig. 3 (right) we observe the impact of channel state of user 2 on the
stability region. In particular, when we decrease s

(2)
G from 0.8 to 0.4, the stability

region (i.e., the set of arrival vectors (̂λ1, ̂λ2) for which both queues are stable)
apparently decreases. Note, that the adequate arrival rate referring to queue 2 is
greatly reduced due the change of s

(2)
G . This is expected, since when s

(2)
G = 0.4,

the channel remains in the bad state for longer period and user 2 becomes
reluctant to transmit. Thus, in order to ensure stability the ̂λ2 must be reduced.

7 Summary

In this work, we considered the problem of characterizing stability and delay
behavior of an asymmetric adaptive two-user random access wireless network
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with MPR capabilities. Each user node use its knowledge about both the channel
state (characterized according to the Gilbert-Elliot model), and the status of the
other node, and accordingly adjusts its transmission probability. Stability con-
ditions were investigated based on the concept of stochastic dominant systems.
The generating function of the stationary joint queue length distribution was
derived in terms of the solution of a Riemann-Hilbert boundary value problem.
For the symmetrical system we also derived explicit expressions for the average
queueing delay at each user node without solving a boundary value problem.
Extensive numerical results shown insights into the system performance.

A Appendix

Regarding the derivation of (2), the queue evolution in (1) implies,

E(xN1,n+1yN2,n+1) = D(x, y) (P (N1,n = N2,n = 0)
+E(xN1,n1{N1,n>0,N2,n=0})[1 + s

(1)
G q∗

G1f̃G,1/{G,1}( 1
x − 1)]

+E(yN2,n1{N1,n=0,N2,n>0})[1 + s
(2)
G q∗

G2f̃G,2/{G,2}( 1
y − 1)

+E(xN1,nyN2,n1{N1,n>0,N2,n>0})[s
(1)
G qG1(s

(2)
G q̄G2 + s

(2)
B q̄B2)

×(1 + fG,1/{G,1}( 1
x − 1)) + s

(2)
G qG2(s

(1)
G q̄G1 + s

(1)
B q̄B1)(1 + fG,2/{G,2}( 1

y − 1))]

+s
(1)
G qG1s

(2)
G qG2(1 + fG,1/{G,1;G,2}( 1

x − 1) + fG,2/{G,1;G,2}( 1
y − 1))

+s
(1)
G qG1s

(2)
B qB2(1 + fG,1/{G,1;B,2}( 1

x − 1)) + s
(1)
B qB1s

(2)
G qG2

×(1 + fG,2/{B,1;G,2}( 1
y − 1)) + (s(1)G q̄G1 + s

(1)
B q̄B1)(s

(2)
G q̄G2 + s

(2)
B q̄B2)

+s
(1)
B qB1s

(2)
B qB2 + s

(2)
B qB2(s

(1)
G q̄G1 + s

(1)
B qB1) + s

(1)
B q̄B1(s

(2)
G q̄G2 + s

(2)
B q̄B2)

)

,

where 1{A} denotes the indicator function of the event A. Note that

H(x, 0) − H(0, 0) = limn→∞ E(xN1,n1{N1,n>0,N2,n=0}),
H(0, y) − H(0, 0) = limn→∞ E(yN2,n1{N1,n=0,N2,n>0}),

H(x, y) − H(x, 0) − H(0, y) + H(0, 0)=limn→∞E(xN1,nyN2,n1{N1,n>0,N2,n>0}).

B Appendix

In the following, we proceed with the study of the location of the intersection
points of R(x, y) = 0, A(x, y) = 0 (resp. B(x, y)). These points (if exist) are
potential singularities for the functions H(x, 0), H(0, y), and thus, their investi-
gation is crucial regarding the analytic continuation of H(x, 0), H(0, y) outside
the unit disk. We only focus on the intersection points of R(x, y) = 0, A(x, y) = 0.

For x ∈ ˜̃Cx and R(x, y) = 0, y = Y±(x), the resultant in y of the two poly-
nomials R(x, y) and A(x, y) is Resy(R,A;x) = x(x − 1)s(2)G qG2q̂21Z(x), where

Z(x) = −̂λ1(s
(2)
G qG2q̂21 + (1 + ̂λ1)d1,2)x2 + x[(̂λ + ̂λ1

̂λ2)d1,2

+(s(2)G qG2q̂21 + d1,2)s
(1)
G q∗

G1f̃G1/{G1}] − s
(1)
G q∗

G1f̃G1/{G1}d1,2.
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Note also that Z(0) > 0 since d1,2 < 0, and Z(1) > 0, due to the stabil-

ity conditions (see Lemma 1). If q∗
G1 ≤ min{1,

s
(2)
G qG2q̂21+(1+̂λ2)s

(1)
G qG1q̂12

(1+̂λ2)s
(1)
G f̃G1/{G1}

}, then

limx→∞ Z(x) = −∞, and Z(x) = 0 has two roots of opposite sign, say x∗ < 0 <

1 < x∗. If s
(2)
G qG2q̂21+(1+̂λ2)s

(1)
G qG1q̂12

(1+̂λ2)s
(1)
G f̃G1/{G1}

< α∗
1 ≤ 1, then limx→∞ Z(x) = +∞, and

Z(x) = 0 has two positive roots, say 1 < x̃∗ < x3 < x4 < x̃∗ (due to the stability
conditions). In the former case we have to check if x∗ ∈ Sx, while in the latter
case if x̃∗ ∈ Sx. These zeros, if they lie in Sx such that |Y0(x)| ≤ 1, are poles of

A(x, y). Denote from hereon x̄ = x∗, if α∗
1 ≤ min{1,

s
(2)
G qG2q̂21+(1+̂λ2)s

(1)
G qG1q̂12

(1+̂λ2)s
(1)
G f̃G1/{G1}

},

and x̄ = x̃∗, if s
(2)
G qG2q̂21+(1+̂λ2)s

(1)
G qG1q̂12

(1+̂λ2)s
(1)
G f̃G1/{G1}

< α∗
1 ≤ 1.
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