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Abstract. Energy consumption is a major concern in Wireless Sensor
Networks (WSNs) since nodes are powered by batteries. Usually, batter-
ies have low capacity and can not be replaced due to economic and/or
logistical issues. In addition, batteries are complex devices as they depend
on electrochemical reactions to generate energy. As a result, batteries
exhibit non-linear behaviour over time, which makes difficult to estimate
their lifetime. Analytical battery models are abstractions that allow esti-
mating the battery lifetime through mathematical equations, taking into
account important effects such as rate capacity and charge recovery. The
recovery effect is very important since it enables charge gains in the bat-
tery after its electrochemical stabilization. Sleep scheduling approaches
may take advantage of the recovery effect by adding sleep periods in the
node activities in order to extend the network lifetime. This work aims
to analyse the recovery effect within WSN context, particularly regard-
ing low-power nodes. To do so, we use an analytical battery model for
analysing the battery performance over time, during the node execution.

Keywords: WSN · Battery model · Recovery effect

1 Introduction

Wireless Sensor Networks (WSNs) are commonly composed of a large number
of nodes, deployed in an area of interest, with self-management capacity [1].
Their nodes are characterized to be devices with processing, communication,
and sensing capacities. Due to the reduction in manufacturing cost of the elec-
tronic components such as microcontrollers, transceivers, and sensors, WSNs are
increasingly being adopted in many important application domains, including
residential, commercial and industrial ones.

However, the nodes are usually powered by batteries and it is not feasible
to replace the batteries of a large number of nodes for two reasons: cost and
accessibility, mainly assuming that the deployments may occur in places with
difficult access or which impose health risk. Thus, one of the great challenges of
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WSNs lies in the power management of the nodes in order to save the energy
consumption of the network as a whole.

Another factor that hinders the power management in WSN is related to
the complexity of the batteries. In these components, electrochemical reactions
are responsible for ensuring the power supply to the node. However, several
factors (e.g., the discharge current intensity, operating temperature and chemical
composition) may affect the battery operation. In this sense, it is common to
observe a non-linear behaviour in these components over time.

In general, battery models aim to estimate the battery behaviour over time,
which may include the knowledge about its lifetime, voltage level or State of
Charge (SoC), for instance. Specifically, the analytical battery models are based
on mathematical equations that consider the application load profile for estimat-
ing the battery lifetime. It is important that such models adequately represent
the main effects that affect the batteries, such as the rate capacity and charge
recovery, since the battery lifetime can be different if these effects are not con-
sidered during its use. Particularly, the recovery effect allows the battery to
recompose part of its charge after reaching its internal electrochemical stabil-
ity. In this context, it is important to insert periods of low-power consumption
during the battery operation.

Sleep scheduling policies aim to switch nodes during the WSN activities to
maximize their lifetime [2,3]. The sleep scheduling is an approach that takes
advantage of the recovery effect by putting the nodes in low-power mode (or
sleep mode) to save the network power as a whole. However, many studies per-
form simulations using sleep scheduling policies without considering both rate
capacity and charge recovery effects, i.e., it is assumed that the batteries have
a linear behaviour over time. This kind of assumption can affect the results of
the simulations since batteries have much more complex behaviours, which are
difficult to model.

This paper aims to conduct a study on the recovery effect in WSN nodes
with low power characteristics. The assessments involve the use of an analytical
battery model known as Kinetic Battery Model (KiBaM), which considers both
rate capacity and charge recovery effects. These characteristics are important to
minimize the error regarding the non-linear behaviour of the battery over time,
mainly in WSN simulators. The main contributions of this work are as follows:

– Use of an analytical battery model within WSN context to assess the recovery
effect in low-power consumption nodes.

– An analysis of several relevant scenarios to the WSN context, including assess-
ments regarding recovery speed and the execution order of the tasks using
the aforementioned KiBaM model.

– Results indicating the importance of the addition of low-power consumption
periods during node activities to maximize its lifetime.

This paper is organized as follows. Section 2 presents the related work.
Section 3 presents the concepts used in this work, including the battery basics
and analytical battery models. Section 4 shows the set-up used in the simulations.
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Section 5 presents the results for different scenarios considering the recovery
effect on batteries. Section 6 concludes the paper and presents future work.

2 Related Work

There are many studies evaluating the use of battery models for application in
mobile devices. Some of them focus in the context of WSN. This section presents
an overview of the main analytical battery models in the literature, including
some papers that compare the performance of such models and their application.

Manwell and McGowan [4,5] developed a battery model, based on the app-
roach of chemical kinetics of Lead-Acid batteries, for use in time series perfor-
mance models of hybrid energy systems. Such model requires the determination
of three constants, unlike other existing models that typically require several
constants to properly model the battery behaviour. Besides, the Kinetic Battery
Model considers the rate capacity and charge recovery effects. The simulation
results were compared with the BEST model (Battery Energy Storage Test).

Rakhmatov and Vrudhula [6,7] proposed a high-level battery model to help
system designers to make battery-aware decisions. This model offers the ability
to estimate the battery lifetime under a specific discharge current. Furthermore,
it allows the trade-off between the estimation accuracy and the number of oper-
ations performed. Authors evaluate the results of the simulations based on a
low-level simulator, known as DUALFOIL, which was set for Lithium-ion bat-
teries. The results showed an average error of 3% in the predictions.

Rong and Pedram [8] presented a high-level analytical battery model to pre-
dict the remaining capacity of a Lithium-ion battery. However, this model needs
to measure the battery output voltage and its temperature in an on-line way,
which, according to the authors, can be obtained through the “smart battery”
technology. The temperature and battery cycle aging effects are also considered
in the model. Thus, it is possible to estimate the remaining capacity of the bat-
tery under different load conditions. Authors compare the results of predictions
with simulations using DUALFOIL, reaching a maximum error of 5%.

Jongerden and Haverkort [9] indicate analytical battery models as the best
type of model in the setting of performance modelling. In this context, authors
performed a study on two well-known battery models: KiBaM and diffusion
model. Some theoretical and practical comparisons were assessed in addition to
demonstrating that the KiBaM is a first order approximation of the diffusion
model. Finally, authors indicate the best battery model to use.

Chau et al. [10] examined the gain in the lifetime of Ni-MH batteries due
to recovery effect. For this, the authors conducted several experiments with
commercially available nodes (TelosB and Imote2). The paper shows that there
is a substantial gain to utilize the benefits of the recovery effect, and indicate a
threshold in which the charge recovery becomes insignificant. Based on that, it
is proposed an energy-efficient duty cycle scheme which adjusts the duration of
the transceiver sleep period according to the recovery saturation in the battery.

Rohner et al. [11] investigated the use of battery models within WSN con-
text, which means assess such models with respect to low duty cycles and short
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duration loads. The investigation includes the following models: Electrochemi-
cal (using BatteryDesignStudio), KiBaM and a Hybrid Model combining KiBaM
with an electric circuit abstraction. The parameters used in all models were based
on Lithium batteries (CR2032). The results using the electrochemical model pre-
sented high computational complexity, which increases the simulation runtime
to impractical values (≈50 days). Although KiBaM deals with the rate capacity
and recovery effects, it showed little difference regarding the battery lifetime
for the used load profiles. The hybrid model requires a series of experiments to
determine its constants, in addition to the simulation time close to 1 h for the
used load profiles. Finally, authors indicate a depth study of battery models with
regard to their sensitivity and temporal aspects within WSN context.

Daniil et al. [12] compared the performance of three battery models for
Lithium polymer batteries: Circuit-Based Model, Diffusion Model, and KiBaM.
The authors’ goal was to find the appropriate model for real-time applications.
In addition to the precision, the study assesses the execution time on a spe-
cific hardware platform. The results showed greater accuracy when using the
circuit-based model, however, it requires the use of constant RC elements to
avoid increasing the execution times of the simulations. The diffusion model and
KiBaM showed less accurate results. Nevertheless, the study indicates the use
of KiBaM since it presents lower execution times in the simulations.

Rodrigues et al. [13] proposed the analytical Temperature-Dependent Kinetic
Battery Model (T-KiBaM), which allows modelling the behaviour of batteries
under different operating temperatures. Such a model is capable of handling both
the charge and the voltage level for different battery technologies. The authors
performed several experiments with Ni-MH batteries at different operating tem-
peratures. Although performing evaluations only with constant discharge cur-
rents, the results show that the T-KiBaM model is more accurate than both the
original KiBaM model and Peukert’s Law, when considering different operating
temperatures of the battery.

Analytical battery models are preferred for two main reasons: (i) flexibility
in allowing the parameter adjustment for different battery technologies; and
(ii) computational efficiency allowing simulations with execution times on the
order of seconds or minutes. Other works apply the KiBaM to model the battery
behaviour in mobile devices, such as smartphones [14,15] or Internet-of-Things
systems [16].

This article proposes the use of the KiBaM to model the battery behaviour of
low-power nodes within WSN context. The major focus is on the recovery effect
assessment in situations commonly encountered in WSN applications, such as
with nodes with long sleep periods (sleep scheduling schemes) or nodes operating
with duty cycles, alternating periods of activity and inactivity.

3 Background

This section presents the key concepts involved in this paper. A brief explanation
of the mode of operation and characteristics of the batteries is addressed. Then,
some analytical battery models are presented.
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3.1 Battery Basics

Batteries are essential to make the concept of mobility a reality. Basically, bat-
teries are devices that contain one or more electrochemical cells capable of trans-
forming chemical energy into electrical energy. The cells are formed by two ter-
minals (electrodes): the positive (or cathode); and the negative (or anode). An
electrolyte allows the flow of ions between the battery terminals [17].

Fig. 1. Schematic of an electrochemical cell.

Generally, when discharging a battery, oxidation occurs at the anode, pro-
ducing electrons (which flow through the external circuit) and positively charged
ions (which, by diffusion, move through the electrolyte towards the cathode).
Reduction reactions occur at the cathode, generating negatively charged ions.
Figure 1 depicts the operation of a single cell battery.

There are primary and secondary batteries. Primary batteries can not be
recharged, i.e., they do not support the reverse process of transforming elec-
trical energy into chemical energy. Generally, this type of battery has a high
specific energy, low cost, and long storage periods. Secondary batteries can be
recharged by applying an electric current. Despite having higher initial cost,
secondary batteries have a long life cycle and can be used several times before
being discarded. Besides, they can withstand higher discharge currents.

There are three characteristics that define any secondary battery:

– Technology: relates the components interacting in the battery chemical reac-
tions, the most common are Lead, Nickel, and Lithium. Batteries have dif-
ferent characteristics depending on the technology, being chosen according to
the application requirements.

– Voltage: the open circuit voltage (VOC) indicates the potential difference
between the terminals of an electrochemical cell. The cut-off voltage (Vcut)
indicates when a battery is no longer capable of withstanding the applied
discharge current. This value is often used to indicate an “empty” battery.

– Capacity: normally in ampere-hours (Ah), it is the amount of available charge
when the battery is discharged at a certain discharge current. The total capac-
ity of a battery can be calculated by multiplying the discharge current applied
by the time to reach Vcut.
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Modelling the behaviour of batteries is a complex task since their character-
istics depend on many factors such as the used technology, the operating tem-
perature, the “age” of the cell etc. Thus, batteries have a non-linear behaviour.
In this context, some battery models stand out for providing realistic estimates
regarding the behaviour of the batteries over time. Some of these models are
discussed in the following section.

3.2 Battery Models

This section presents the most common analytical battery models. These models
describe the battery in an abstract way by modelling its properties through some
equations [18]. The analytical battery models are computationally flexible since
they involve the evaluation of analytical expressions [19].

Battery models help understand the battery behaviour over time according to
the application requirements, without the need to conduct experiments with real
WSN nodes. In this sense, adjustments in the node load profile can be performed
to avoid the inefficient use of the available charge, which leads to the node failure
and impairs the WSN coverage. Thus, each node maximizes its lifetime, being
able to contribute to the network for the longest period possible.

There are several types of battery models: electrochemical, circuit-based,
analytical, stochastic and hybrid. This work focuses on analytical battery models
since they perform the prediction of the behaviour of batteries using equations
that require few constants. This allows modelling different battery technologies
with reduced effort. Some analytical battery models are shown below.

Peukert’s Law is one of the simplest models for estimating the battery lifetime.
This model considers only a part of the non-linear effects, relating the battery
lifetime and the discharge rate. According to the Peukert’s Law, the battery
lifetime (L) can be approximated according to the following expression:

L =
a

Ib
, (1)

where: I is the discharge current; a and b are constants dependent on the battery
type, being obtained through experiments. However, the recovery effect is not
part of this model. Thus, the results obtained with the Peukert’s Law are con-
sidered good only for constant continuous loads, being inadequate when variable
or intermittent loads are used [18].

Diffusion Model was introduced by Rakhmatov and Vrudhula [7]. This model
describes the diffusion process of the active material in a battery. For example,
it allows to estimate the battery lifetime (L), with a good approximation, for
a given constant discharge current using the first ten terms of an infinite sum
according to the following expression:

α = 2I
√

L

⎡
⎣1 + 2

10∑
m=1

⎛
⎝e− β2m2

L − πe− β2m2

L

π − 1 +
√

1 + π L
β2m2

⎞
⎠

⎤
⎦ , (2)
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where: α is the battery capacity; β captures the non-linear behaviour of the
battery. Both parameters can be estimated through experimental data. However,
as pointed out by Jongerden and Haverkort [18], the second-order differential
equation makes it difficult to combine the model with a performance model.

Kinetic Battery Model (KiBaM) is an analytical battery model developed
by Manwell and McGowan [4,5,20] that originally aims to model the behaviour
of high-capacity Lead-Acid batteries. It uses an intuitive approach based on a
two tank analogy to describe the charge/discharge processes. Figure 2 depicts
the abstraction used in the model, including its constants.

I

ij

h1

k'

cc-1

Available ChargeBound Charge

h2

Fig. 2. Kinetic Battery Model (KiBaM) [4].

The Available Charge tank holds an electrical charge that can be immediately
used for a device draining a current I. The Bound Charge tank holds a bounded
charge that can flow towards the Available Charge tank, regulated by a valve
with a fixed conductance k′. Such constant corresponds to the rate of a chemical
diffusion/reaction process. Constant c corresponds to the total charge fraction
stored in the Available Charge tank. A battery is exhausted when its Available
Charge tank becomes empty, even if there is still charge in the Bound Charge
tank. The transfer of charge, as well as the amount of unavailable charge, is
proportional to the height difference between the two tanks, δ = (h2 − h1).
Thus, a smaller difference between these two heights provides a longer lifetime
for the battery [17]. The following system of differential equations describes the
model. ⎧

⎨
⎩

di
dt = −I + k′(h2 − h1)
dj
dt = −k′(h2 − h1),

(3)

where: i is the available charge and j is the bounded charge. The height values
are calculated as h1 = i/c and h2 = j/(1 − c), respectively. A new rate constant
k is defined as:

k =
k′

c(1 − c)
. (4)
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Replacing h1, h2 e k′ in the system of differential Eq. (3), it results on:
⎧
⎨
⎩

di
dt = −I − k(1 − c)i + kcj

dj
dt = +k(1 − c)i − kcj.

(5)

Laplace transforms are able to solve the system of differential equations [4],
which results on:

⎧
⎨
⎩

i = i0e
−kt + (y0kc−I)(1−e−kt)

k − Ic(kt−1+e−kt)
k

j = j0e
−kt + y0(1 − c)(1 − e−kt) − I(1−c)(kt−1+e−kt)

k ,
(6)

where: i0 and j0 are the amount of charge in the Available Charge and Bound
Charge tanks, respectively, at the beginning of the calculation (t = 0). In addi-
tion, y0 = i0 + j0, where y0 is the amount of charge in the battery at t = 0.

In the KiBaM model, the unavailable charge (u) is the height difference times
(1 − c) [17]. Equation (7) describes the difference between heights, denoted by
δ, which is used to compute the unavailable charge (u) [21].

δ = (h2 − h1) =
j

(1 − c)
− i

c
(7)

u = (1 − c) · δ (8)

The reasoning behind δ value is important in order to obtain the battery
nonlinear capacity variation [22]. Thus, KiBaM can model two important effects:

– Rate Capacity refers to the applied discharge current. The larger the load I,
the faster the battery discharge and, thus, the lower its lifetime. This is due to
the battery voltage level, which decays slowly during the battery discharge,
reducing the effective capacity for high discharge currents [18];

– Charge Recovery refers to the ability of a battery to partially recover its
charge during an idle period, after performing a discharge current I. This is
due to the electrochemical stabilization inside the battery pack.

The non-linear battery behaviour arises, particularly, when these two effects
act together. That is the case of WSN nodes operating in duty cycle schemes,
i.e., periods during which the radio is in normal operation (high discharge cur-
rents), and periods during which it is in low power mode or sleep mode (low
discharge currents). Figure 3 depicts an example with the behaviour over time in
both tanks. In the fast discharge curve, the computing tasks consume: 250 mA
(900 s), 100µA (900 s) and 50 mA (2700 s). In the slow discharge curve, the com-
puting tasks consume: 50 mA (900 s), 100µA (900 s) and 5 mA (2700 s). Here,
the parameters are adjusted to model a commercially available Ni-MH battery,
as described by Manwell and McGowan [4], leading to c = 0.828164, k = 0.021139
s−1 and y0 = 2700 As (≈750 mAh).
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Fig. 3. An example of KiBaM behaviour over time.

4 Assessment Set-Up

This section describes the set-up used in the analysed scenarios. The simulations
are performed in the Matlab1, a scientific software for numerical computations.
This choice is justified mainly by the following reasons: (i) easy implementation
of mathematical models, (ii) ability to conduct simulations quickly using a multi-
core computer, and (iii) ability to represent the results through custom graphics.
Thus, we present the KiBaM function, implemented to perform the simulations,
as well as the set of tasks used in the simulations. A study on the impact of
different values for the KiBaM constants is also presented.

4.1 KiBaM Implementation

This section presents the KiBaM implementation in the function format, which
is used in the assessments regarding the battery lifetime estimation on Matlab.

The KiBaM implementation can be summarized as a loop that performs func-
tion calls that drain the battery capacity, accounting for the time required to
exhaust all its charge. Thus, it becomes possible to obtain the battery estimated
lifetime in accordance with the applied discharge current and its respective exe-
cution time. Algorithm 1 shows how to implement the KiBaM function.

Lines 3 and 4 are responsible for updating the amount of charge in the Avail-
able Charge and Bound Charge tanks, respectively, according to Eq. (6). An
example of the KiBaM function call is presented in Algorithm2.

1 http://www.mathworks.com/products/matlab/.

http://www.mathworks.com/products/matlab/
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Algorithm 1. KiBaM function.
Data: c, k, i0, j0, t0, I, tI

1 y0 = i0 + j0;
2 t0 = t0 + tI ;
3 i0 = compute-i(c, k, y0, i0, j0, I, tI);
4 j0 = compute-j(c, k, y0, i0, j0, I, tI);
5 return (i0, j0, t0);

Algorithm 2. KiBaM function call.
Data: c, k, y0, I, tI

1 i0 = (c) ∗ y0;
2 j0 = (1 − c) ∗ y0;
3 t0 = 0;
4 while i0 > 0 do
5 [i0, j0, t0] = KiBaM(c, k, i0, j0, t0, I, tI);
6 end
7 print (i0, j0, t0);

The parameters that need an initial value are c, k and y0 (the initial battery
capacity), I (the discharge current) and tI (the execution time of I). Throughout
the execution, it becomes necessary to observe the amount of charge in the
Available Charge tank, which can not be less than or equal to zero. Line 4 of the
Algorithm 2 performs this verification.

4.2 Task Set

This section presents the tasks used in the assessment. In this case, a task consists
of a node state and its respective execution time. Here, the tasks have the same
power consumption of the Mica2 node, as described by Mikhaylov and Tervonen
[23]. Table 1 shows the power consumption in each of the node states as well as
its execution times, according to the simulated application.

For easy understanding, the tasks are named as follows: Tx (MCU+Tx), Rx
(MCU+Rx), Ac (MCU-Active), and NS (Node-Standby). The first task, Tx,
consumes 25.4 mA with an execution time of 4 min, representing the microcon-

Table 1. Discharge currents in a Mica2 node [23].

Short name State Discharge current (mA) Execution time (min)

Tx MCU+Tx 25.400 4

Rx MCU+Rx 15.100 10

Ac MCU-Active 8.000 6

NS Node-Standby 0.019 0–20



Recovery Effect in Low-Power Nodes of Wireless Sensor Networks 55

troller (MCU) activity and the use of the transceiver to transmit data (Tx).
The Rx task consumes 15.1 mA with an execution time equal to 10 min, repre-
senting the MCU activity and the use of the transceiver to receive data (Rx).
The Ac task consumes 8 mA and has 6 min of execution time, representing only
the MCU activity (transceiver off). Lastly, the NS task consumes 19µA with
execution times ranging between 0–20 min, according to the simulated scenario.
This task represents the period in low-power mode (or sleep mode). Such task
set is equivalent to an environmental monitoring application.

4.3 Comparison Between Different Values of k

This section presents a study regarding the use of different battery technolo-
gies (e.g., Lead-Acid, Ni-MH, Li-ion), which implies in different values for the
KiBaM constants since the electrochemical characteristics of these technologies
are distinct. This may change the recovery effect behaviour, so that the bat-
tery technology can be chosen according to the application requirements (e.g.,
discharge current, duty cycle and battery capacity).

The constant k is a time-dependent value. Thus, its value becomes critical to
determine the time needed to transpose the charge from the Bound Charge tank
to Available Charge tank, until the equilibrium in both tanks is reached. From
the equilibrium point, it becomes unnecessary to maintain a low-power state,
since there is no significant charge recovery. In this case, the time to reach the
equilibrium point (stability) is called threshold.

In the simulations performed in this study, the values of c and y0 are set
in 0.625 and 2700 As [21], respectively. The values for the constant k are as
follows: 0.05, 0.01, 0.005, 0.001, 0.0005 and 0.0001 s−1. Besides, the following
task sequence is performed: an MCU+TX state followed by a Node-standby
state (with an 8-min execution time). This means a 33.33% duty cycle, i.e., the
period in sleep mode is twice the period in active mode. Figure 4 depicts the
simulation results with different values for the k constant.

Note that the behaviour of the discharge curves are different depending on
the value of the k constant. In this case, the larger the value of k, the faster the
charge transposition between the tanks and, thus, the shorter the time to reach
the threshold. On the other hand, the lower the k value, the slower the charge
transposition between the tanks. Consequently, the greater the time required
to reach the threshold. Besides the difference in the recovery effect, there is
a noticeable difference in battery lifetime. Table 2 shows the battery lifetime
according to the value of k.

For this application, the most appropriate k value is 0.01 s−1 since it rep-
resents the best fit for a full charge recovery, i.e., without wasting time. This
example highlights the importance of choosing the battery parameters that has
characteristics similar to those used in the batteries in the real application.
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Fig. 4. Simulation with different k values.

Table 2. Difference in battery lifetime according to the k value.

k (s−1) Battery lifetime (s) Battery lifetime (h)

0.0500 318289 88.4136

0.0100 318280 88.4111

0.0050 317738 88.2606

0.0010 317622 88.2283

0.0005 316933 88.0369

0.0001 311951 86.6531

5 Assessment Results

This section aims to present the assessment results from different scenarios,
focusing on the analysis of the charge recovery effect on batteries. Briefly, the
recovery effect speed is analysed for the simulated application, as well as the
influence of changing the sleep period order among the performed tasks. The
execution order between tasks is also analysed. Finally, a case study regarding
the frequency of switching between tasks is presented. The settings shown in
Sect. 4 are used in these simulations, including the values of the KiBaM constants
(y0, c and k).

5.1 Recovery Effect: Speed Evaluation

This section shows how to properly choose the sleep period according to the
application characteristics. In this sense, a comparison between different recovery
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times is performed. The goal is to choose an optimized sleep period for the set
of tasks used so that recovery effect occurs without wasting time after reaching
the threshold. Other details are presented below.

In this experiment, the task execution order is as follows: Tx, Rx, Ac, and NS.
The execution times of the tasks are the same as shown in Table 1. In this case,
the adopted periods for the Node-Standby task are 5, 10, 15 and 20 min. Such
periods represent duty cycles of 20%, 33.33%, 42.85% and 50%, respectively. All
simulated experiments are performed cyclically until the content in the Available
Charge tank reach the minimum level. Figure 5(a) depicts the behaviour of the
simulations when these tasks are used.
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Fig. 5. Comparison between simulations using different sleep periods.

The battery lifetimes in each situation are: 62.2375 h (NS = 5 min), 74.6383 h
(NS = 10 min), 87.0389 h (NS = 15 min), and 99.4389 h (NS = 20 min). Figure 5(b)
depicts the behaviour of the simulations with zoom. Note the behaviour of the
recovery effect in each situation. In this case, it is possible to note that a sleep
period equal to 5 min is not enough since the threshold is not reached. The
situations with greater sleep times (15 and 20 min) offer a longer battery lifetime,
however, the charge recovery is insignificant as from 10 min. Thus, if the interest
lies only in the recovery effect without wasting time, the most suitable task
combination is the one that provides a sleep time of 10 min.

5.2 Recovery Effect: Changing the Sleep Period Order

This section performs a variation of the previous simulation. In this case, the
sleep period is placed at different moments to evaluate the impact on battery
lifetime. The tasks are ordered as follows: NS-Tx-Rx-Ac, Tx-NS-Rx-Ac, Tx-Rx-
NS-Ac, and Tx-Rx-Ac-NS. The experiments are performed cyclically until the
content in the Available Charge tank reaches the minimum level. Table 3 shows
the results, including the charge recovered after a sleep period, at t ≈ 36 h.
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Table 3. Results when the sleep period is placed at different moments.

Simulation Order Battery
lifetime (s)

Battery
lifetime (h)

Charge
recovered (%)

1 NS-Tx-Rx-Ac 269297 74.8047 0.034

2 Tx-NS-Rx-Ac 269304 74.8067 0.102

3 Tx-Rx-NS-Ac 268698 74.6383 0.065

4 Tx-Rx-Ac-NS 268698 74.6383 0.035

Note that there is a little difference between the times obtained in the simu-
lations. Simulation 2, which has a sleep period after a Tx task, achieved longer
battery lifetime and higher percentage of charge recovered. This can be explained
by the simple fact that there is a greater benefit with the recovery effect after per-
forming a higher consumption task, as depicted in Fig. 6, which presents a zoom
of the simulation final period (74 h ≤ t ≤ 74.9 h). Simulations 3 and 4 reached
the same time, although they presented different values of charge recovered. It
may indicate a model inconsistency regarding this situation. The relative differ-
ence between the Simulations 2 and 3 is 0.22%, which represents 606 seconds
(10.1 min) in the battery lifetime.
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Fig. 6. Simulated experiments with different sleep period order.

5.3 Assessing Changes in Task Execution Order

This section presents a comparison between simulations with different task exe-
cution order. The objective is to evaluate the difference in battery lifetime in
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each situation. In this scenario, the sleep period is not included in the task set.
Although there is not a period in sleep mode itself, note that the recovery effect
also has its share in this scenario since the tasks present different discharge
currents. The tasks are divided as shown in Table 4.

Table 4. Results with different task order.

Simulation Order Battery lifetime (s) Battery lifetime (h)

1 Tx-Rx-Ac 179412 49.8367

2 Tx-Ac-Rx 179586 49.8850

3 Rx-Tx-Ac 179490 49.8583

4 Rx-Ac-Tx 179765 49.9347

5 Ac-Tx-Rx 179576 49.8822

6 Ac-Rx-Tx 179746 49.9294

Note that all simulations have different battery lifetimes, even if the tasks are
the same, but in a different execution order. In this case, Simulation 4 showed
longer battery lifetime, 179765 s (49.9347 h). The task with the highest discharge
current (Tx) is performed lastly in this simulation. On the other hand, Simula-
tion 1 had the shortest battery lifetime, 179412 s (49.8367 h). In this case, the
task with the highest discharge current (Tx) is performed first. The relative dif-
ference in these two cases (Simulations 1 and 4) is 0.19%, which represents 353 s
(5.88 min) in the battery lifetime. Figure 7 depicts a zoom with the last moments
of the performed simulations.

5.4 Evaluating Task Switching Frequency

This section evaluates the KiBaM behaviour with regard to the influence of the
task switching frequency in battery lifetime. The goal is to establish a frequency
range in which the simulation execution time is feasible.

In this scenario, only two tasks are used: Tx and NS. The execution times
are defined according to the duty cycle, which in this case is 50%. For example,
if the duty cycle period is 16 s, each task runs for 8 s. The simulated frequencies
are as follows: 0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, and
64 Hz. Table 5 shows the results in each situation.

Note that the battery lifetime is virtually the same within the simulated
frequencies range. The differences in battery lifetimes arise due to the simulation
step, which is different in each simulated frequency. However, the simulation
execution time increases considerably as increases the rate of task switching.
We found a linear growth in our simulations. This is due to the increase in the
number of iterations required to run the model. That is, the higher the frequency,
the lower the amount of charge drained from the battery at each iteration of the
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Fig. 7. Simulations with different task order.

Table 5. Results with different frequencies.

Frequency
(Hz)

Period (s) Tasks Battery
lifetime (s)

Battery
lifetime (h)

Execution
time (s)

0.015625 64.0 Tx-NS 212352.00 58.9867 0.004814

0.03125 32.0 Tx-NS 212352.00 58.9867 0.008408

0.0625 16.0 Tx-NS 212368.00 58.9911 0.016665

0.125 8.0 Tx-NS 212376.00 58.9933 0.029949

0.25 4.0 Tx-NS 212376.00 58.9933 0.054279

0.5 2.0 Tx-NS 212378.00 58.9939 0.108964

1 1.0 Tx-NS 212379.00 58.9942 0.223868

2 0.5 Tx-NS 212379.00 58.9942 0.406734

4 0.25 Tx-NS 212379.25 58.9942 0.812888

8 0.125 Tx-NS 212379.38 58.9943 1.657588

16 0.0625 Tx-NS 212379.50 58.9943 3.262296

32 0.03125 Tx-NS 212379.50 58.9943 6.655759

64 0.015625 Tx-NS 212379.50 58.9943 12.757468

algorithm, and therefore the greater the number of iterations required. This
makes the simulation execution time impractical from a certain frequency value
since the period of the tasks is too small.
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6 Conclusions

The energy constraint is a major challenge within WSN context since it forces
network designers to use energy-aware algorithms/protocols to avoid extra costs
by replacing batteries. In addition, batteries have intrinsic effects due to electro-
chemical reactions, which provide energy to the connected device. Two widely
studied effects are the rate capacity and charge recovery.

Since batteries are complex devices, the use of battery models assists WSN
designers to predict the network behaviour since such models are capable of
providing an estimate of the battery lifetime according to the used load profile.

In this paper, we evaluated an analytical battery model, known as KiBaM,
to assess the impact of the recovery effect on the battery of low-power WSN
nodes. It was possible to verify that the way the recovery effect is used can
influence the battery lifetime. Our results presented a difference up to 10.1 min in
battery lifetime just by changing the sleep period order. In addition, a minimum
standby time (sleep period) is required to achieve a satisfactory charge recovery,
i.e., a threshold. For the parameters used in this simulation (discharge currents,
execution times, KiBaM constants), a time between 5 and 10 min is enough to
recover the battery charge. Finally, we evaluated the frequency of task switching
and its impact on the KiBaM execution time. The results showed that higher
switching frequencies increase the simulation execution time.

As future work, it is interesting to evaluate the KiBaM through experiments
with low-power WSN nodes. In this sense, it is important to consider the battery
technology used to adjust the model parameters properly.
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Tendências em Matemática Aplicada e Computacional 12(1), 43–54 (2011)

20. Manwell, J.F., McGowan, J.G., Baring-Gould, E., Stein, W., Leotta, A.: Evaluation
of battery models for wind/hybrid power systems simulation. In: 5th European
Wind Energy Association Conference, pp. 1182–1187 (1994)

21. Jongerden, M.R., Haverkort, B.R.: Which battery to use? In: 24th UK Performance
Engineering Workshop, pp. 76–88 (2008)

22. Gandolfo, D., Brandão, A., Patiño, D., Molina, M.: Dynamic model of lithium
polymer battery - load resistor method for electric parameters identification. J.
Energy Inst. 88(4), 470–479 (2015)

23. Mikhaylov, K., Tervonen, J.: Experimental evaluation of alkaline batteries’s capac-
ity for low power consuming applications. In: Proceedings of 7th IEEE Interna-
tional Conference on Advanced Information Networking and Applications (AINA
2012), Fukuoka, Japan, pp. 331–337, 26–29 March 2012

http://doc.utwente.nl/75079/
http://doc.utwente.nl/75079/

	Recovery Effect in Low-Power Nodes of Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 Background
	3.1 Battery Basics
	3.2 Battery Models

	4 Assessment Set-Up
	4.1 KiBaM Implementation
	4.2 Task Set
	4.3 Comparison Between Different Values of k

	5 Assessment Results
	5.1 Recovery Effect: Speed Evaluation
	5.2 Recovery Effect: Changing the Sleep Period Order
	5.3 Assessing Changes in Task Execution Order
	5.4 Evaluating Task Switching Frequency

	6 Conclusions
	References


