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Preface

Current communication systems cover a wide range of computing platforms, from
traditional fixed telephony to mobile computing, multimedia systems, peer-to-peer
Internet services, and critical embedded systems.

The research topics in embedded systems have increased and gained in importance.
Consequently, communication between and among these systems has also increased,
which has led to the emergence of new problems and challenges that need to be studied
and tackled.

The interoperation of all these systems is a crucial characteristic. Integrating, con-
necting, and coordinating communication is fundamental for software and middleware
systems.

Therefore, the Workshop on Communication in Critical Embedded Systems
(WoCCES) focuses on important innovations and recent advances in the specification,
design, construction, and use of communication in critical embedded systems. Its goal
is to bring together researchers and practitioners from industry and academia and give
them an opportunity to learn about the latest developments, deployments, technology
trends, and research results as well as initiatives related to embedded systems and their
applications in a variety of industrial environments.

This volume on “Special Issue on Communication of Critical Embedded Systems”
in the Springer Communications in Computer and Information Science series (Springer
CCIS) consists of the best papers selected from WoCCES 2013–2016, namely, the first,
second, third, and fourth edition of the Workshop of Communication in Critical
Embedded Systems.

WoCCES, which brings together researchers as well as undergraduate and graduate
students of computer science, electrical engineering, mechatronics engineering,
mechanical engineering, and related areas, is part of the most important Brazilian
conference on Computer Networks and Distributed Systems (SBRC). Annually,
WoCCES receives paper submissions that contribute to the high standard of SBRC
providing updates on hot topics for researchers and enthusiasts of embedded systems
and computer networks.

The Program Committee members are from around the world, and we have received
and accepted papers from several different countries in previous editions. WoCCES is a
special workshop that takes place in different Brazilian cities, and is also joined by
renowned researchers as invited speakers. Although the call for papers is made
available in both Brazilian Portuguese and English versions, the authors are encouraged
to submit papers mainly in English aiming at increasing the international visibility
of the event.

Previous WoCCES events comprised: the first edition (2013) in Brasília, Distrito
Federal, Brazil, on May 10; the second edition (2014) in Florianópolis, Santa Catarina
Brazil, on May 9; the third edition (2015) in Vitória, Espírito Santo, Brazil, May 22;
and the fourth edition (2016) in Salvador, Bahia, Brazil, on June 3. All WoCCES



editions were sponsored by the Brazilian Computer Society (SBC), with support from
FAPs, CAPES, and CNPq.

We received 41 submissions, from which 24 papers were accepted. Each submitted
paper was reviewed by at least three experts. The acceptance/rejection decision used
the following criteria: All papers with two positive reviews were accepted, and those
with two negative reviews were rejected. Borderline papers (with one positive and one
negative review) were analyzed carefully by the conference chairs to evaluate the
reasons given for acceptance or rejection. Our final decision on these submissions took
into account mainly the potential of each paper to foster fruitful discussions and the
future development of communication in critical embedded systems in the world,
including those at initial stages. In some cases, one more review was carried out in
order for a decision to be taken. The best papers were selected taking into consideration
the best scores obtained by the papers according to the reviewers. We selected the
12 best papers from WoCCES 2013-2016. Extended and improved versions of the best
papers were requested from the authors. The submitted papers were reviewed again by
selected Program Committee members of the conferences and, after corrections, seven
of these articles were accepted for publication in this volume of the CCIS series.

We would like to thank all the authors whose work and dedication made it possible
to put together an exciting book and for their high-quality contributions. It is our hope
that this Special Issue of the Springer CCIS volume will spark the interest of readers in
these topics and motivate researchers all across the globe to intensify and extend their
work in this field, as a solid basis for many more papers at future conferences. We are
also enormously grateful to all Program Committee members and reviewers for their
cooperation toward the success of this book.

We hope the papers will contribute to the development and evolution of this field,
achieving a more realist balance between the communication and embedded system
communities.

April 2017 Kalinka Branco
Alex Pinto

Daniel Pigatto
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Experiments with XDense: A Dense Grid Sensor
Network for Distributed Feature Extraction

João Loureiro(B), Raghuraman Rangarajan, and Eduardo Tovar

CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal
{joflo,raghu,emt}@isep.ipp.pt

Abstract. We propose XDense, a wired mesh grid sensor network archi-
tecture tailored for scenarios that benefit from thousands of sensors per
square meter. XDense has a scalable network topology and protocol, cus-
tomizable to application specifics, that enables complex feature extrac-
tion in realtime from the observed phenomena by exploiting the commu-
nication and distributed processing capabilities of such network topolo-
gies. We detail XDense’s node and network architecture, protocols, and
principles of operation. To demonstrate XDense’s potentials, we evalu-
ate it’s response time, data traffic metrics and accuracy in the context
of detecting fluid dynamic features.

1 Introduction

The advent of MEMS has enabled new applications to be developed that rely on
dense deployments of sensors. In some applications, it has enabled deployments
with very high spatial and temporal requirements. That is, resolutions as small as
few micrometers of sensor inter space and sampling rates up to kHz. Application
examples range from fluid mechanics for flow control in aircrafts [12], to artificial
skins for robotics [29] and biomedical devices [24]. For such dense deployments,
which may be of thousands of nodes in a few square meters area, sensor network
technology faces scalability issues in some key aspects as such as cost, communi-
cation time, processing time, power, and reliability. For example, collecting data
from the entire network can lead to a data explosion. Processing all this data for
feature extraction becomes costly not only in terms of communication, but also
computationally. Extraction may also be difficult to achieve in real time, hence
prohibiting its use in real time critical applications like closed-loop actuation
which leads to tight requirements.

We presented XDense as a mesh grid sensor network architecture, tailored
to address the challenges of extremely dense sensor deployments [22]. It enables
efficient extraction of complex features of the observed phenomena without the
need of collecting the data from each individual node centrally. Instead, it allows
the user to program node’s feature detection and extraction algorithms with
respect to the application’s objectives. The data is processed in the network in
a distributed fashion, and only meaningful data is delivered to the sink, thus
reducing transmissions towards it, minimizing congestion, and leading to faster
response times.
c© Springer International Publishing AG 2017
K. Branco et al. (Eds.): WoCCES 2013-2016, CCIS 702, pp. 1–22, 2017.
DOI: 10.1007/978-3-319-61403-8 1



2 J. Loureiro et al.

XDense moves away from traditional contention prone wireless and wired
sensor network that uses shared medium to communicate. It resembles more
closely Network-on-Chip (NoC) architectures. This is especially true regarding
aspects like network topology (mesh grid based on regular structures), routing
schemes, timing properties, and on the distributed processing opportunities asso-
ciated [14]. On the other hand, we believe that the key differentiating features
of our architecture are: (a) the network is not on a single chip, but built on a
larger surface that is physically attached, specific to each application scenario
(b) the node count is much greater than that of NoC applications, and (c) the
network does not deal with shared memory due to a larger coverage area (which
imposes different restrictions and opportunities).

Roadmap. We first conceptualized XDense with some preliminary simulation
results [20], and demonstrated its implementability in hardware [21]. In [22] we
provide a proof-of-concept on distributed feature extraction to detect turbu-
lence in airflow data from computational fluid dynamics (CFD). In this paper,
we expand on that proof-of-concept by adding two other simulation scenarios,
featuring different data sources and distributed processing algorithms. We first
perform feature detection on data from an image that captures a turbulent
airflow. Following, we demonstrate the benefits on the network load due to per-
forming in-network data compression, using CFD as the data source.

In the reminder of this paper we review the basics of the application require-
ments in Sect. 2, and then in Sect. 3, we describe the architecture and protocol
specifics of the proposed system. In Sect. 4 we evaluate our experiments, and
compare our work with traditional approaches for feature detection. In Sect. 5
we visit some related work from different domains that have inspired XDense.
Finally in Sect. 6 presents the conclusions.

2 Dense Sensor Networks in Fluid Dynamics

An important objective in fluid dynamics is to characterize airflows and deter-
mine its laminar and turbulent characteristics. For example, in an aircraft, a
high speed airflow over a wing can present both laminar and turbulent char-
acteristics at the same time at different points of it. Turbulence can be highly
undesirable on aircrafts since it increases drag and noise, and consequently fuel
expended [2].

Figure 1 shows an airflow phenomena over a wing surface and illustrates the
transition from laminar to turbulent flow. This transition delimits laminar flow
(which has a more homogeneous speed profile distribution) from turbulent flows
(which is composed of coherent structures, such as vortices of chaotic evolu-
tion) [27]. An increase in the turbulent region consequently increases drag on
the surface of the wing, what makes fundamental to study flow’s properties and
understand its behavior.

There are various techniques available, to allow studying flows’ properties
by extracting profile data such as speed and temperature distribution [17]. For
such profiles, large deployments of sensors may require sensors’ inter-space to
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Fig. 1. Example scenario: air flow over a wing transiting from laminar to turbulent.
We illustrate a potential deployment of XDense on the wing surface used to detect the
transition region.

be smaller than that of the spatial granularity of the observed phenomena (for
example, of 100 µm or less) and have high sampling rates (in excess of 10 kHz) [4].
Kasagi and others [12] surveyed micro flow sensors that attempt to meet such
requirements. However, despite the effort gone towards sensor development, to
the best of our knowledge, no interconnection solutions are found in the liter-
ature. Validations are usually done by individually connecting each sensor to
channels of an analogue-to-digital converter (ADC) [3].

Another approach involves an imaging setup [32] to indirectly measure the
speed distribution of an air-jet flow on free air using a camera and applying
tracers on the flow. The authors proposed imaging processing algorithms to
detect the boundary layer and turbulent structures. They extend their analysis
in [31,33], and also provide statistical validation of their results. Great results for
the boundary layer detection and quantification are also presented in [9–11] How-
ever, due to the dynamic and complex nature of the data in the above discussed
approaches, data-processing is usually done offline and is limited to laboratory
controlled conditions. This makes their use in real applications difficult.

Based on the above discussion, we state the following requirements of such
a system, as being of interest to us, in sensing such phenomena in real time:
(a) Efficient data extraction: The network infrastructure should allow efficient
extraction of complex information about the phenomena. This should be done
without the need of centralized data collection or processing. (b) Real time
behaviour: Along with efficiency, the network infrastructure should also be able
to respond in a timely manner such that actions can be taken based on the
extracted data.

3 Proposed Architecture

The selection of a good topology is a job of fitting network requirements to
available technology. A trade-off between cost and performance should always
be considered when specifying many aspects, including connection density and
length, and the number of IOs utilized for communication. Considering the
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requisites from Sect. 2, with the considerations above, we present our architec-
ture in more detail in the following subsections.

3.1 Architecture

Network: The architecture consists of a 2D mesh network of sensor nodes and
sinks, with point-to-point connections with up to four neighboring nodes, phys-
ically located in four directions (north, south, east, west). Figure 2(a) shows an
example scenario of a 5× 5 network (24 nodes and one sink) with the sink located
in the center. Any set of nodes is a potential communication link from any node
to the sink, enabling fault tolerant protocols. Multiple sinks are supported, and
any node can be configured to be a sink while deploying and setting up and the
network. Each node requires at least one sink in its address space to operate,
but multiple sinks can be deployed to increase number addressable nodes (and
network size), or to increase redundancy on data collection.

Fig. 2. (a) A 5 × 5 network with a sink in the center; (b) The node’s pinout; (c) Node’s
model architecture: a Processor, a Router (R), the net-device (ND) and the sensor (S);
(d) Net-device internals, with two queues with different priorities in the output channel
(Tx), and the input channel on the right (Rx)

Node: Figure 2(c) shows the main functional blocks of a sensor node (SN ). Each
node can be seen as a system on chip (SoC), with dedicated hardware peripherals
and a CPU. The Router (R) and the Net-Devices (ND) are responsible for
communication on the network.1 The Sensor (S ) element is the interface with
the physical world, and they are the sources of data. These peripherals are
interconnected by the software layer, or application layer, which handles the
communication protocol and the application specific algorithms.

1 Our current implementation of a node is based on the Atmel ATSAM4N8A [1]
microcontroller, which is a low power Cortex-M4-based processor, that runs at up to
100 MHz and features 512KB of Flash and 64 KB of SRAM. Peripherals include
five USARTs with DMA channel for fast serial communication, as well as an 12-bit
ADCs.
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The network is homogeneous and all nodes are capable of sensing, however
the sinks have a backhaul link, that links the network with the exterior. This
extra link can be, for example, to a wireless connection to a supervisory system,
or to a local actuator interface, for closed loop actuation. Detailed information
of each peripheral is provided in the sequence.

Net-Device: At the bottom layer in the node’s architecture (Fig. 2(c)), Net-
Devices (ND) are the node’s hardware peripherals responsible for connecting
two distinct nodes through the channel interface. Each node contains four NDs
that connects them to their four immediate neighbors in the grid. It consists of a
full-duplex serial port, with two fixed size output queues with different priorities.
It’s internal are in Fig. 2(d). Different queues are used for different protocols to
minimize interference of one over the other. No input queues are used, since
packets are processed immediately after being received.

Router: The router (R) is the interface between each ND and the Processor. It
connects n NDs to the Processor and allows individual or parallel access to any
ND. The router works on the basis of analysing the packet headers, and is able
to not only send packets from the Processors to the NDs, but also it is able to
store and forward packets between NDs independently from the Processor. This
peripheral is ideally implemented using dedicated hardware for better response
times. The packets have fixed size for the ease of processing by hardware.

Sensor: Another of the node’s peripheral are the sensors, connected to the
Processor through an analogue-to-digital interface. It is the network data input
located at each node in the network. Each node can contain one or more sensors
of any nature, according to the phenomena to be observed.

Processor: This where the user’s applications and protocols run. It interfaces
with the sensor, and implements high level communication primitives, and
application-specific protocols for data sharing and processing on sensed data.
In general, the application layer is responsible for reading from the sensor and
deciding what to do with that information, and when, how and to whom to trans-
mit its data through the net-devices. Another basic functionality is to enable the
user to program all nodes in the network through a sink by broadcasting the new
applications to this layer.

3.2 Application Scenario

Our application is designed using three operational states. Initially, all nodes
wait until they receive a network discovery packet by the sink. After that, (i)
each node collects and distributes its own sensor data within its neighborhood,
(ii) processes the collected data, and depending on computed results and event
detection algorithm policies, (iii) send its results to the closest known sink, in
order to announce its findings. These operational states are named: Network
discovery, local data-sharing, and remote data-announcement respectively, and
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Fig. 3. Operational states of the network. The different operational states are: Net-
work Discovery (NDS) or waiting for it, Local Data Sharing (LDS) and Remote Data
Announcement (RDA).

from now on referred simply as NDS, LDS and RDA. Figure 3 is a diagram of
the principles of operation. It shows each of the application operational states
depending on node’s role. The transitions represent the events that triggered the
transition from one state to another.

Algorithm 1. Network discovery

1 Function Begin()

2 if Self.IsSink = True then
3 SinksList ← Self
4 Origin ← (0, 0)
5 SerialNum+ = 1
6 Protocol ← NDS
7 Packet ← [Protocol, SerialNum,Origin]
8 SendPacket(Packet, AllDirections)

9 end
10 return

11 Function Received()

12 if Packet.Origin /∈ SinksList then
13 SinksList ← Packet.Origin
14 SendPacket(Packet, AllDirections ∩ InputPort)
15 SwitchToLDS()

16 end
17 return

Network Discovery (NDS): The Network discovery is executed once at ini-
tialization of the network by the sinks, which sends a single packet carrying the
system’s settings about sink location, baudrate, sampling rate, and the algo-
rithms used for data processing. Nodes will wait for at least until they get an
announcement from at least one sink, which is then added to the know sinks
list. Algorithm 1 describes the execution of the NDS state from the sink and
nodes side (source and destination). The [x, y] coordinate pair (Line 4) are a
relative address to the sink, that gets updated at each hop, such that it always
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reflect the position of the sink relative to the receiver of the packet. Each node
forwards the packet to the neighboring nodes, except to the node where the
packet came from. Redundant copies of the same packet can be received twice
by the same node, in which case they are discarded (after comparing the serial
number). After receiving and forwarding the packet for NDS, they switch to the
next state (LDS ).

Algorithm 2. Local Data Sharing

1 Function Begin()

2 if Self.IsSink = False then
3 Origin ← (0, 0)
4 SerialNum+ = 1
5 SensorV alue ← ReadSensor()
6 Protocol ← LDS
7 Packet ← [Protocol, SerialNum,SensorV alue,Origin]
8 SensorsV alueList ← Packet
9 SendPacket(Packet, AllDirections)

10 end
11 return

12 Function Received()

13 if IsNew(Packet) then
14 if Packet /∈ SensorsV alueList then
15 SensorsV alueList ← Packet
16 end
17 else
18 SensorsV alueList.Update(Packet)
19 end
20 if Distance(Packet.Origin) < MaxHops then
21 UpdateAddress(Packet.Origin, InputPort)
22 SendPacket(Packet, AllDirections ∩ InputPort)

23 end
24 if DetectEvents(SensorsV alueList) = True then
25 SwitchToRDA()
26 end

27 end
28 return

Local Data-Sharing (LDS): After receiving the announcement packet from
the sink, the nodes continuously sense the environment for phenomena of inter-
est. They communicate these sensed values with their neighborhood, of size
defined by parameter nhops. The neighborhood is a system defined parameter
which plays an important role in the system operation. That is, all nodes initially
send their values in all four directions, which is then stored and forwarded by
the immediate neighboring nodes up to the nhops neighbor.
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The value of nhops is selected according to the expected characteristics of the
phenomena to observe, in such a way that, each node will send and receive data
from up to N nodes around it. The greater the value of nhops, the larger is the
neighborhood N . This allows more detailed detections to be made but at the
cost of increased overhead and latency. Using nhops, the neighborhood size N is
computed as the area of the lozenge neighborhood:

N = 4 × ∑nhops

i=1 i = 2 × nhops × (nhops + 1)

Algorithm 2 describes how the LDS state is started at each node, and how
nodes deal with packets received from neighboring nodes. Basically, nodes receive
data shared by their neighbors, store/refresh its value each time, forward it to
other neighbors, and last, execute feature detection algorithms on the local data.

If after processing the data, the node detect a feature of interest, it immedi-
ately switches to the remote data-announcement (RDA) state and communicates
its detection to the sink. Packets exchanged at the LDS state are queued in the
lower priority queue P0.

Remote Data-Announcement (RDA): On switching to the RDA state, a
node forwards the packet with information detected towards the closest sink. In
turn, the sink receives announcements from different nodes, allowing it to recon-
struct the observed phenomena with increasing accuracy and coverage as more
announcements are received. Packets exchanged during this state are queued
in the higher priority queue (p1 ). Algorithm 3 detail the execution of the RDA
state by each node that have detected a feature of interest. Nodes transmit it to
the sink and switch back to LDS state.

Algorithm 3. Remote Data Announcement

1 Function Announce()

2 Destination ← SinksList[0]
3 SerialNum+ = 1
4 Protocol ← RDA
5 Packet ← [Protocol, SerialNum,Event,Destination]
6 Port ← RouteTo(Destination)
7 SendPacket(Packet, Port)
8 SwitchToLDS()
9 return

10 Function Received()

11 if Packet.Destination �= (0, 0) then
12 UpdateAddress(Packet.Destination, InputPort)
13 Port ← RouteTo(Packet.Destination)
14 SendPacket(Packet, Port)

15 end
16 return
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4 Evaluation

We want to evaluate XDense on fluid dynamic applications using different met-
rics. For that we define two sets of experiments: On the first, we are inter-
ested on verifying XDense accuracy on detecting the transition region between
laminar and turbulent air-flow, running distributed edge detection algorithms,
on different network configurations. Second, we want to identify the impact on
XDense’s performance by doing distributed data compression. We measure net-
work workload, queue size and quality of extracted data, for different network
configurations.

To perform the evaluation, we implemented our network using the Network
Simulator 3 (NS-3) that implements all the abstraction of our architecture, for
a matrix of sensor nodes with arbitrary parameters.2

Table 1 shows the system parameters that need to be configured. The SN
deployment inter-space depends on the minimum size of the observed phenom-
ena, and therefore has to be smaller than the minimum turbulent structure size
[4]. The number of sensor nodes are chosen based on the area to be covered and
we use a 101 × 101 = 10201 network with one sink in the center. The baudrate
and sensor’s sampling rate are also based on the application requirements and
for this reason we normalize our temporal results to transmission time slots. A
transmission time slot (TTS) is the time required to transmit one packet, or
simply the packet duration.

Table 1. XDense simulation parameters.

Parameter Value

Network dimension 101 × 101

Nodes 10200

Sinks 1

Neighbourhood size (nhops) 0 to 7

Baudrate 3Mbps

Packet size 16 bytes

Packet duration (TTS) 53 µs

XDense packet structure was designed for low resource utilization and for
ease of routing and processing by simple hardware. It uses 16 bytes size, which
is a common UART buffer size on microcontrollers (µC), allowing easy handling
of packets for increased reliability and decreased delays. Its structure is defined
in Table 2.

The first byte is allocated for the communication protocol (P) and defines
the routing protocol used, and hence determines how to interpret and use the
2 It is an open source module for NS-3 that includes pre and post processing tools and

simulator. The source code is available online at https://bitbucket.org/joaofl/noc.

https://bitbucket.org/joaofl/noc
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Table 2. XDense packet structure

Field Protocol xo yo xd yd Payload CS

Bytes 1 1 1 1 1 10 1

remaining content of packet’s header. Two coordinate pair are used to specify
origin (xo, yo) and destination (xd, yd) of the packet. If relative addressing scheme
is used, origin and destination coordinates are updated at each hop, to maintain
its relativity to the origin, otherwise kept fixed. Payload (PL) is used by the
application layer to transmit sensed data, and any other application protocol
required. Checksum (CS ) is utilized for error checking.

Note that our aim is to analyze the performance of XDense and not the
application performance per se (though we do present some results on its perfor-
mance). Hence, the application of feature detection and clustering should only
be considered as a demonstrator of XDense’s performance for local distributed
data processing.

4.1 Detecting the Transition Region on Image Data Source

In [31] the authors use a camera setup to indirectly measure the speed dis-
tribution of an air-jet flow on free air by applying tracers on the flow. They
apply image processing techniques to detect such bounding interfaces on cap-
tured images. These processing techniques are applied sequentially on an image
as follows: First, the image is binarized using a fixed threshold, then all the con-
tours are traced, and finally, only the contour with the greatest area is chosen,
with its indentations removed. This process is shown in Figs. 4(a) to (c). This
image processing approach for feature detection is commonly used, and consid-
ering that our feature detection goals are the same, we use this approach as a
reference to compare our results.

(a) Original image (b) Binarization and con-
tour tracing

(c) Contour smoothing

Fig. 4. Process steps for boundary computation described in [31].
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We do that as follows: first, we use the same flow image from [31] as an input
to our XDense simulation (this is, the data is superimposed in the simulation
of our sensor network grid, and is sampled by each node’s sensor). We detect
the transition region envelope, which is then compared with the envelope previ-
ously computed by processing the same snapshot, and applying the processing
steps from [31]. Comparing the two results gives us a measure of the accuracy
of our computation. We utilize an adaptation of the Sobel operator for edge
detection [30], widely used the image processing domain. Using this algorithm,
nodes performs a 2-D spatial gradient measurement on it’s neighboring data,
and so emphasizes regions of high spatial frequency that correspond to edges.

Figure 5 summarizes graphically the results of our simulation using nsize = 3.
It shows the original snapshot (Fig. 5(a)), the events detected by XDense nodes
(Fig. 5(b)), and the resulting bounding interface (Fig. 5(c)) superimposed with
the contour smoothing, done with image processing technique (original output
from Fig. 4(c)). Figures 6 and 7 show (a) the detected transition by the SNs and
(b) the calculated envelope by the sink. The images allow visual comparison that
support our numerical results, and provides the intuition for the impact on the
accuracy of the detection algorithm by varying the neighborhood size (nsize = 1
and 7).

(a) Original data (b) Envelope detection (c) Contour smoothing

Fig. 5. Processing steps of our network. (a) Is the phenomena as seem by our network,
after downsampling the full resolution image to 101 × 101 pixels. (b) is the transition
envelope detection by the SNs with nhops = 3, and (c) is the contour smoothing post
processing done by the sink in black, superimposed on 4(c).

Using this process, we evaluate the behavior of our system under varying
neighborhood size (nhops). We are interested in observing: (i) the accuracy of
our bounding interface detection; (ii) the total number of transmissions and
(iii) the total time needed to acquire this bounding interface. We then compare
it to centralized data acquisition approach.

The cumulative distribution function (CDF ) in Fig. 8 gives a measure of the
effect of dimensioning different system parameters (density, neighborhood size).
Figure 8 shows that for 2 < nhops < 4, more that 80% of the snapshot has
an error under 3%. Moreover, increasing neighborhood size does not necessarily
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(a) (b)

Fig. 6. Processing steps of our network. (a) Transition envelope detection by the SNs
with nhops = 1, and (b) is the contour smoothing post processing done by the sink in
black, superimposed on 4(c).

(a) (b)

Fig. 7. Processing steps of our network. (a) Transition envelope detection by the SNs
with nhops = 7, and (b) is the contour smoothing post processing done by the sink in
black, superimposed on 4(c).

implies in greater accuracy, but in smaller number of detections. The other way
around, the minimum neighborhood size (nhops = 1) presents noisy detections,
and an intermediate values of nhops might provide the best trade-off. This results
are enforced by the analysis of Figs. 5, 6 and 7. Small neighborhoods add great
granularity to the edge detection, but adds noise on contour smoothing. In the
other hand, larger neighborhoods may introduce errors on the edge detection,
but gives a more consistent contour smoothing.

Figure 9(a) shows the trade-off between the maximum end-to-end delay in
terms of transmission time slots (TTS), and mean square error (MSE) of the
envelope found. This gives an idea of how responsiveness varies for the differ-
ent values of nhops, and the impact on the accuracy. With nhops = 3 MSE is
minimum, with a minimum cost in time, when compared to nhops = 2 which
presents the best response time, but with higher MSE. Figure 9(b) presents the
number of transmissions, therefore providing a picture of the actual load on the
network. It shows that, with increase in neighborhood size, the number of global
transmissions (DA) goes down (although the local transmissions (DS ) increases
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Fig. 8. Cumulative density function for different values of nhops, of the error between
the reference envelope, and the detected envelope.

(a)

(b)

Fig. 9. (a) Trade-off between mean square error (MSE) and maximum end-to-end delay
(TTS) for different values of nhops, and (b) is the total number of transmissions for the
different protocols, for the same values of nhops

accordingly). This in turn affects the total transmissions time (as can be seen
back in Fig. 9(a)).

To give an idea of the responsiveness scales of our system, we compare it with
an hypothetical scenario with the same deployment, in which the sink reads all
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the nodes centrally using shared buses. Each bus would be connected to one of
the four ports of the sink, in such a way that each bus covers a quadrant of the
network. Considering perfect TDMA, all the four quadrants could be read in
parallel, in (101×101−1)/4 = 2550 TTS. This corresponds to the time required
to each node to transmit it’s data on the shared medium, as in shared buses or
in standard wireless links (at this scales). We refer to this as the scenario with
nhops = 0, omitted from some plots due to scaling issues.

Maximum end-to-end delay dropped in the order of magnitude of 10, when
distributed data processing is utilized for complex data extraction, compared to
simple centralized raw data extraction.

4.2 Distributed Data Compression from CFD Data

On our second experiment, instead of using the flow image as our data input,
we use data from Computation Fluid Dynamics (CFD). This is, we simulate a
similar scenario of an air-jet flow on free air, but using CDF data from [6], to
“feed” our simulator (instead of using data from a picture). Figure 10 shows the
CFD data representation, superimposed by the XDense network.

Fig. 10. XDense network superimposed on the CFD dataset snapshot from [6], showing
clustering for nhops = 1.

The metrics collected in the evaluation are for analyzing the performance of
XDense and help in evaluating dimensioning issues. We analyze the performance
of XDense in terms of end-to-end delay, load on the network, queue size and
quality of acquired data. Nodes operate synchronously, which means that all the
nodes initiate LDS in parallel, leading to peaks of network activity, and to a
stress condition that we study.

Extracting data from all the nodes in the network is useful for many applica-
tion scenarios and also for system design decisions. The simplest XDense setup
for this purpose is for all nodes to transmit all sensed information to the sink.
Intuitively, depending on the load an application scenario places on the XDense
network, this may not be a suitable approach. Data aggregation and compression
techniques then need to be evaluated.

In this subsection, we evaluate XDense performance in reading all data either
directly or with some form of local distributed data processing technique (like
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clustering and data aggregation). The aim is to find a balance between local data
sharing (LDS ) and aggregation and remote data announcements to the sink (in
the RDA state).

For data aggregation, we use Least Square Regression [7]. This is a simple
data fitting algorithm, suitable and used in embedded devices applications. It
demonstrates data aggregation for significant gains in performance. As discussed
before, there are many other possible approaches depending on the application
scenario, and we use these only as a place holder to demonstrate XDense. In
this experiment, we use the nearest Source-like clustering algorithm to perform
clustering [13].

We now describe both these functions briefly. For clustering, in the NDS
state, each node verifies three conditions related to its location and neighborhood
size (nhops) in order to perform leader election:

⎧
⎪⎨

⎪⎩

x mod nhops = 0
y mod nhops = 0
(x + y) mod (2 × nhops) = 0

(1)

If satisfied, the node tags itself as cluster head and a cluster is formed.
Figure 10 illustrates this for nhops = 1; the lozenge shaped areas are clusters
with leader being the node in the center. In the LDS state, each leader receives
data from its neighbors and performs data aggregation by fitting a plane (of
shape z = ax + by + c) to the data of its N neighbors. Least square regression
is used to provide the best fit for the data points, by minimizing the distances
between the points (xi, yi, zi) and the plane. In the RDA state, the calculated
data is announced to the sink with the values of a, b, c.and the curve type index.

Figure 11(a) shows the number of transmissions over transmission time slots
(TTS) for different values of nhops, which is the load on the network for that
specific data snapshot. For nhops > 0, a maximum load spike in the beginning
is caused by the LDS state (shown in Fig. 11(b)). This maximum load increases
with increase in nhops. Figure 11(b) zooms in on transmission until t = 55,
showing the drop as nodes switch from LDS to RDA. Comparing nhops = 1 and
4, this trade-off is seen between increasing LDS and decreasing number of RDA
transmissions.

A qualitative comparison of output data, for different values of nhops, can
be done by analyzing Fig. 13. For nhops = 0, all nodes transmit their readings
and this is the maximum possible resolution of the phenomena achievable with
our deployment. Intuitively, greater the nhops value, the greater is the data loss
due to errors while fitting a plane to the data-set. Figure 15 shows the balance
between total number of LDS and RDA transmissions for different values of
nhops.

We also check the impact of neighborhood cluster sizes on end-to-end delay
and accuracy of acquired data when varying nhops sizes. Figure 14 shows a quan-
titative comparison of the trade-off between error and maximum end-to-end
delay. Accuracy is measured with the mean square error (MSE) of the sum of
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(a) Duration of entire simulation

(b) Zoom in on the transmission time interval (0 to 60)

Fig. 11. Reading sensed data: number of receptions over time for different values of
nhops.

Fig. 12. Reading sensed data: maximum queue size for nhops = 1 to 4.

differences between data for scenarios, with nhops varying from 1 to 5, from the
best possible case (which is nhops = 0).

The MSE grows with increasing nhops, while maximum end-to-end delay
decreases. Looking at these results, nhops = 2 seems to be a good choice, since the
smaller turbulent structures are still distinguishable and it represents a reduc-
tion in the maximum end-to-end delay of approximately 75% of the worst case
scenario. With increasing nhops, better curve fitting algorithms could lead to a
smaller slope of the error but the trend will remain the same.
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(a) nhops = 0 (b) nhops = 1

(c) nhops = 2 (d) nhops = 4

Fig. 13. Reading sensed data: extracted data for different values of nhops.

Fig. 14. Reading sensed data: trade-off between mean square error and maximum end-
to-end delay for different values of nhops.

Fig. 15. Total number of packets transmitted in the network with nhops = 1 to 4.
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Figure 12 shows the maximum queue size on the network for the different
values of nhops, for both queues p0 and p1 (used for LDS and RDA packets
respectively). p1 queue size is greater for smaller values of nhops, since greater
the number of RDAs greater is the congestion towards the sink. However, there
is a peak for nhops = 1, showing that the introduction of the LDS state (absent
for nhops = 0), introduces congestion. Because, even with p1 having priority
over p0, our model is non-preemptive, and to serve p1, a transmission from p0
has to be completed first. The p0 queue size also increases with the increase in
neighborhood size. Additionally, while not shown, nodes in the path to the sink
suffer from increasing queues, as all packets compete for paths leading to the
sink. The closer a node is to the sink, the longer is its queue size.

We can compare our results with Pressure Belt, a master-slave, shared bus
based network proposed in [8], for monitoring pressure over an aircraft wing.3

The authors calculate the time required to read all the nodes simply as: number
of nodes × packet duration. Normalizing Pressure Belt results, and considering
one master for each quarter of all nodes, Pressure Belt would have the same
performance of nhops = 0 scenario. But, due to physical and electrical limitations,
and due to the maximum address space, their solution may not be suitable for
this density of nodes. Moreover, their solution was designed for offline processing,
acting as a simple data logger, making it inapplicable for real-time applications.

5 Related Work

For its operation, XDense relies on subsets of operating principles of distinct
systems. In this section we discuss the different aspects of each field that we
consider in our work and the systems that are close to XDense.

For example, our network architecture resembles Array processors [16] that
are widely found in literature and inside industry. Both application specific and
general propose architectures have been utilized for computing. This kind of
architecture brings advantages due to its modularity and scalability (based on
regular structures).

Although specific implementations are generally done to address specific
problems. For each kind of processor, different network topologies are utilized to
interconnect its processing elements, whereas the topology is chosen according
to the application goals.

For example, back on early 80s, grids of processors using VLSI were explored
to perform relational database operations directly in hardware [15]. Each process-
ing element is suited to compare tuples of data, but when combined can perform

3 Pressure Belt [8] consists of a strip mounted crosswise on the wing of an aircraft,
connected in one extremity to a coordinator, and has an embedded data-logger
situated inside the airplane. It runs over two parallel full-duplex RS485 shared links,
compatible with the IEEE 1451.2 Standard for a Smart Transducer Interface for
Sensors and Actuators. Up to 255 nodes can communicate at 5 Mbps with packets
of 48 bits each. By using a clock synchronization scheme, time division multiple
access (TDMA) is used to communicate with the nodes.
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complex database operations. Geometric-arithmetic Parallel Processor (GAPP)
is a parallel processor with over 10,000 processing elements [5]. It consisted of
very simple processing elements (one bit sum only) to perform matrix operations
for image processing in military applications, like tracking targets. Although the
interconnection arrangement is similar to our work, the processing elements are
passive, and are not a network of active programmable nodes as conceived for our
design. Grid networks of more complex processors have now become commer-
cially available [25] and allow complex distributed data processing algorithms to
explore the many-core computational potentials in a transparent way.

Our work has similarities to boundary estimation and tracking techniques
using collaborative sensors found in literature, and a good review of such tech-
niques can be found in [28]. Many of such techniques often construct an hierar-
chical structure, and apply data aggregation functions as the data travels up the
hierarchy. Other works (e.g. [18]), employ techniques that, similarly to us, rely
on local communication between neighbours to detect contours, however were
projected for shared medium link layers, and opportunities are limited due to
concurrency issues.

Wireless sensor networks (WSN) are suitable for large scale deployments, and
effort have gone towards minimizing communication by distributively processing
data. For example, in [23], the authors explore distributed data compression.
Although wireless sensor nodes exceed in complexity, power constraints, size,
latency and overhead, and therefore does not meet the application temporal
requirements.

Closer to our architecture, a multi modal sensor network was proposed in [19].
The authors present a sensor network with an embedded processor dedicated to
each sensor node. Node communicate using an infrared transceiver, with its
surrounding neighbors, using a single full-duplex serial. The authors presents
a scalable sensor network deployment and propose solutions for data manage-
ment, localization, data aggregation and routing. But, due to link contentions
and collisions, in other words, cost of communication, their research leans more
towards WSNs, which are not suitable for the applications we are focused on.
The concept was extended, and an alternative topologies were presented in [26].
Although the network is a wired grid, master-slave communication is utilized,
decreasing distributed processing opportunities due to shared links. The number
of slaves is also limited, which is not scalable.

6 Conclusion

Dense sensor networks, like our proposed XDense, are going to be increasingly
used in application scenarios which require realtime data. Combined with novel
feature detection techniques systems can then recreate the phenomena, present
in the application scenarios, and use this information for actuations. We evalu-
ated the XDense architecture and protocols work with performance metrics on
accuracy, timeliness and network usage and showed the tradeoffs that have to
be made among the parameters (such as, larger neighborhood leads to increased
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accuracy but also increased traffic). It is important to understand the underlying
issues that affect the performance of XDense. One issue is that of dimension-
ing XDense based on the requirements imposed by the application scenario. We
showed that dimensioning issues such as node density and neighborhood size
affect the performance of the system and depend closely on the application sce-
nario.

We use a simple and deadlock free flooding mechanism but results in an
excessive number of redundant transmissions in a scenario in which the network
activity is very high (considering that all the remaining nodes may be oper-
ating in the same state). Alternative routing protocols should be implemented
in order to decrease redundancy, and consequently, the network utilization and
total latency (addressed in parallel work [22]).

Another issue are the feature detection techniques which strongly affects
the performance. We used one base technique for evaluation and we intend to
investigate further techniques for comparative analysis. It is important to note
that the simplicity of the algorithms utilized, allow for practical construction of
such networks using currently technology, as demonstrated earlier in [21]. For
example, with COTS microcontrollers or a SoC solution could be developed for
it, to be low cost.
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Abstract. In real-time systems, when failures of any nature come to
happen, high-value assets are put at risk and in some cases even human
lives. Due to this high criticality, developing improvements to these sys-
tems in order to increase their safety becomes a topic of high impor-
tance. This research reviews handoff procedures in IPv6 networks to help
identify those with lower latency and low packet loss during the opera-
tion, aiming to increase the efficiency of general communication in these
systems. For this, some handoff techniques found in the literature are
simulated and, from the obtained results, performance comparisons are
presented following specific statistical techniques to evaluate the perfor-
mance of computational systems. Finally, a discussion on the application
of these techniques in critical embedded systems is presented, specially
unmanned vehicles.

Keywords: Handover · Handoff ·Mobile IPv6 · Safety-critical vehicles ·
Unmanned vehicles

1 Introduction

In the last few years there has been a growing interest in Unmanned Vehicles
(UV) and Unmanned Systems, leading to the co-existence of many different types
of vehicles e.g. aerial, terrestrial and aquatic vehicles. These systems should be
integrated into the airspace, on public roads or on aquatic environments following
specific laws and requirements of each scenario, mainly related to safety. Thus, it
is essential that communications carefully meet mobility and time requirements,
increasing the system overall capabilities and, consequently, allowing these vehi-
cles to be certified and integrated into their operation space.

UVs are becoming highly connected for cooperation purposes (e.g. distributed
tasks), and also to the Internet for real-time services provision (e.g. IoT and
cloud-based applications). Thus, a tendency on these areas is the use of IPv6
protocol that allows an exclusive address on the Internet and provides mobility
approaches suitable for UVs applications.
c© Springer International Publishing AG 2017
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Therefore, the study of handoff process on IPv6 is an important research
topic for applications that depend on wireless mobile networks, mainly due to
the fact that it is a critical aspect regarding connection quality that is impacted
by packet losses during handoff transition process. Thus, it is necessary to analyse
how worth the handoff process is considering network conditions (there might
exist a better network to choose to connect to) and the criticality of an ongoing
operation. Moreover, when it comes to high critical applications, handoff might
be a failure point to be considered.

The goal of this paper is to compare two handoff algorithms in IPv6 networks,
especially investigating the impact of mobility support. Our contributions extend
to embedded systems connected by IPv6 mobile networks, providing data and
comparisons that can be used by developers and researchers. We analyse aspects
such as run time in each step of the process and factors that influence the
decision-making algorithm, such as signal strength and data transmission rate.

The overall organisation of this paper is: Sect. 2 presents the state of the
art with related works that identify the gap addressed by this paper; Sect. 3
details the Internet Protocol version 6; Sect. 4 introduces a data communica-
tion architecture and emphasises the NIMBLE platform for mobility which was
proposed for safety-critical unmanned systems; Sect. 5 provides an explanation
about techniques used for results treatment; Sect. 6 demonstrates the simula-
tions experimental setup; Sect. 7 presents results and discussions; Sect. 8 con-
nects results and discussions to the UVs field; and, finally, Sect. 9 concludes the
paper.

2 Background

The advantage of wireless mesh networks is seen when self-organisation is coupled
with seamless handover to provide continuity of service to the users. Handover
(sometimes seen as handoff) is common in cellular networks, where mobile sta-
tions frequently move out of the coverage area of one cell tower and into that of
a neighbouring tower [7].

In [15], authors measured latencies of all handoff process stages. They con-
cluded that: (i) the wireless network adapter used in both the Mobile Unit (MU)
and the Access Points (APs) directly influences the handoff latency; (ii) differ-
ent MUs treat sequences of messages slightly different; and (iii) the search phase
takes about 90% of the handoff process time. However, authors did not explore
real situations even with simulated results, which might change the perception
if contextualised in some areas.

In [27], authors discussed the effects of handoff in data transmission. Simi-
larly to [15], they concluded that the network interface affects latency, and the
longest stage of the process is search. They have also noted that a MU can
keep receiving data from previously connected AP even during the search phase.
Finally, authors concluded that the behavior of handoff process depends not only
on the hardware used (network adapter), but also on data stream, e.g., if MU is
sending or receiving packets.
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In [4], authors discussed latency issues in Mobile IPv6 and its derivative
PMIPv6, highlighting the difficulty of using such handoff mechanisms in real-
time systems. To solve this problem, authors proposed a new handoff scheme for
PMIPv6 network that reduces latency and solves the loss problem.

We have identified that there is a lack of comparisons between IPv6 protocol
with and without mobility on the context of unmanned aerial vehicles (UAVs).
Thus, this paper will carry out a discussion on how handoff process impacts IPv6
networks from the point of view of unmanned aircraft systems (UAS) in general,
which includes not only the UAV, but all the supporting systems.

Next section will address important concepts review on IPv6.

3 Internet Protocol Version 6

In 1990s, the Internet Engineering Task Force (IETF) started developing the
successor to the IPv4 protocol. The motivation for that was the fact that 32-
bit IP address was beginning to be used up as more devices were connected to
the Internet with unique IP addresses. To respond for the need of a large IP
address space, a new IP protocol was developed. The Internet Protocol version
6 (IPv6) has also improved some aspects based on accumulated operational
experience with IPv4 [12]. There was considerable debate about when the IPv4
addresses would be completely allocated. Many approaches were developed since
then trying to prolong the use of IPv4 as much as possible. However, we have
been currently seeing major companies and institutions moving to IPv6, but the
transition may still take some time to be fully completed.

According to [12], the most important changes in IPv6 datagram (Fig. 1)
format are:

– Expanded addressing capabilities. IPv6 increases the size of the IP
address from 32 to 128 bits, ensuring that there will be enough IP addresses
for nowadays applications. As a comparison matter, every grain of sand on
the planet can be IP-addressable.

– A streamlined 40-byte header. The 40-byte fixed-length header allows
for faster processing of the IP datagram. A new encoding of options allows
for more flexible options processing.

– Flow labelling and priority. IPv6 has an elusive definition of a flow e.g.
audio and video transmission might likely be treated as a flow. On the con-
trary, the more traditional applications might not be treated as flows. Thus,
the designers of IPv6 foresee the eventual need to be able to differentiate
among the flows.

The following fields are defined in IPv6 [12] (see Fig. 1):

– Version. This 4-bit field identifies the IP version number.
– Traffic class. This 8-bit field is similar in spirit to the TOS in IPv4.
– Flow label. This 20-bit field is used to identify a flow of datagrams.
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Fig. 1. IPv6 datagram. This figure was adapted from [12].

– Payload length. This 16-bit value is treated as an unsigned integer giving
the number of bytes in the IPv6 datagram following the fixed-length, 40-byte
datagram header.

– Next header. This field identifies the protocol to which the contents (data
field) of this datagram will be delivered (for example, to TCP or UDP).

– Hop limit. The contents of this field are decremented by one by each router
that forwards the datagram. If the hop limit count reaches zero, the datagram
is discarded.

– Source and destination addresses. The various formats of the IPv6 128-
bit address are described in RFC 4291 [8].

– Data. This is the payload portion of the IPv6 datagram. When the datagram
reaches its destination, the payload will be removed from the IP datagram
and passed on to the protocol specified in the next header field.

3.1 Mobile IPv6

Mobile IPv6 (MIPv6) describes the protocol operations needed to keep a mobile
node connected to the Internet during its handover from one access router to
another. These operations involve movement detection, IP address configuration,
and location update (RFC 4068) [11]. Mobile IPv6 is an IETF standard that has
added the roaming capabilities of mobile nodes in IPv6 network (RFC 3775) [10].

The major benefit of this standard is that the mobile nodes (as IPv6 nodes)
change their point-of-attachment to the IPv6 Internet without changing their
IP address [6]. Moreover, MIPv6 is an update to Mobile IP (RFC 6275) [18],
designed to authenticate mobile devices using IPv6 addresses.

In traditional IP network routing, addresses represent a topology. The routing
mechanisms were made under the assumption that each network node has always
the same entry point to the Internet and that each IP address identifies the link
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to which it is connected. MIPv6 allows a mobile node to transparently maintain
connections as it moves from a network edge to another.

4 HAMSTER Architecture

The Healthy, Mobility and Security-based Data Communication Architecture
(HAMSTER) is divided into three main versions according to the most com-
mon types of unmanned vehicles (UV): aerial, ground and aquatic. Moreover,
two special platforms are defined: the first one is intended to control security
and safety aspects under all architecture versions, and the second one aims at
mobility aspects and external communications. Figure 2 presents an overview of
HAMSTER hierarchical organisation.

Fig. 2. HAMSTER versions and the specific modules for mobility (NIMBLE) and
safety and security (SPHERE).

Flying HAMSTER deals exclusively with the aerial segment. It was defined
based on specific characteristics and requirements of unmanned aerial vehicles
(UAV) and unmanned aircraft systems (UAS). Flying HAMSTER deals specifi-
cally with internal airplane communication (IAC), airplane-to-airplane commu-
nication (A2A) and airplane-to-infrastructure communication (A2I).

The main applications of UAVs are related to agricultural and environmental
monitoring, safety, military and civil defense. The aircraft is usually able to cap-
ture images for processing relevant information about a specific field, which may
contribute to improve productivity. There are several cases where they might
be applied in environmental and borders monitoring, or even applied as aerial
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sensors in networks for disaster management [20] and multiple UAV applications
[3,13,14,24,28].

Running HAMSTER deals specifically with vehicles on terrestrial seg-
ment. It was defined based on specific characteristics and requirements of
unmanned ground vehicles (UGV) and unmanned ground systems (UGS). Run-
ning HAMSTER treats internal vehicle communication (IVC), vehicle-to-vehicle
communication (V2V) and vehicle-to-infrastructure communication (V2I).

The objective of ground vehicles may vary from driver support in possi-
ble dangerous situations with the intention of preventing road accidents, to
autonomous driving with no human intervention, which could be used in urban
traffic, agriculture, industry and safety applications [29]. The sensor fusion tech-
nique is used for integration of multiple sensors such as cameras, digital com-
passes, and GPS, allowing the vehicle to become autonomous in both urban and
rural areas [25].

Swimming HAMSTER was designed for vehicles that operate on aquatic
environments. It was defined based on specific characteristics and requirements
of unmanned surface vehicles (UGV), unmanned undersea vehicles (UUV) and
unmanned water vehicles systems (UWS). Swimming HAMSTER is composed
by internal water vehicle communication (IWC), water vehicle-to-water vehi-
cle communication (W2W) and water vehicle-to-infrastructure communication
(W2I).

The aquatic vehicles have been used for various tasks, especially those related
to monitoring of oil exploration and maintenance of hydropower. The current
challenges for these vehicles go beyond autonomy, integrating other areas with
the distributed and embedded systems, such as computer networks, artificial
intelligence, software engineering, electrical, mechanical and mechatronics engi-
neering, among others. The multiple vehicles tasks are also challenging [1,30].

Every HAMSTER version has four platforms: NCI, the network criticality
index that measures a node’s criticality within a network; NP, the navigation
phases platform that aims at energy saving techniques; SPHERE, the security
and safety platform; and NIMBLE, the mobility platform [19]. Next subsection
will briefly introduce NIMBLE, the HAMSTER’s platform for mobility which is
the focus of this paper.

4.1 NIMBLE: Mobility Platform

Be it an infrastructured network or a mobile ad hoc network, mobility is an
important requirement for UVs. In the air, mobility can be even more challeng-
ing than in roads and in the ocean, but all of them have somehow a demand
for mobility. Naturally, ad hoc is the most challenging operating mode, since
it does not rely on a fixed centralised access point and nodes move at high
speeds and (sometimes) in unpredicted paths. Although seeming not so chal-
lenging, infrastructure-based communications may demand mobility approaches
as well. That way, NIMBLE was conceived with the view to encompass mobil-
ity in M2X communications on HAMSTER architecture. It stands for NatIve
MoBiLity platform for unmanned systEms.
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Communication is a crucial aspect of, and one of the biggest challenges in,
the design of multiple-vehicle systems [3,5]. In the simplest scenario, all vehicles
are directly connected to a common infrastructure, and this can act as an inter-
mediary for all communications among them. However, this strategy has several
problems. Firstly, each vehicle must be equipped with expensive and complex
hardware in order to perform the long-distance communication with the control
station or satellite. Secondly, many factors may compromise communication reli-
ability such as changing environmental conditions, the high mobility of vehicles,
different terrain topologies, or obstacles. Finally, the typical use of a ground
control station (GCS) to provide the communication infrastructure limits the
mission target locations to the GCS coverage area, since beyond that vehicles
disconnect from the network, and become unreachable.

The implementation of an ad hoc network connecting all vehicles is one of
the most feasible alternatives to infrastructure-based communication. An ad hoc
network is composed by nodes that also act as routers, forming a temporary
network with no fixed topology or centralised administration [23]. This approach
increases the mission target area, since communications among vehicles and the
GCS can be routed through other vehicles in a series of hops. Also, even if there
is no connection to a GCS, the nodes can form an ad hoc network to share
information or work in cooperation.

Ad hoc networks are classified according to their implementation, utilization,
communication and mission objectives. If the nodes that compose an ad hoc
network are mobile, the network is classified as MANET (Mobile Ad hoc NET-
work). For vehicle-specific applications, MANETs are sub-divided into UANET
(Underwater Ad hoc NETwork) for aquatic vehicles, VANET (Vehicular Ad hoc
NETwork) for terrestrial vehicles, or FANET (Flying Ad hoc NETwork) for
aerial vehicles [2,22], as illustrated by Fig. 3.

Each type of vehicular network faces different, unique challenges: for instance,
a UANET must deal with an underwater transmission medium, and VANETs
often encounter unexpected road obstacles. However, it has been recognized that
FANETs have to address more challenging issues than other ad hoc networks
[2,22], because of the following specific characteristics:

– Higher node mobility. FANET nodes typically have higher mobility than
those in other types of MANET. As a result, a FANET’s network topology can
change more frequently, which increases the overhead caused by connecting
and routing operations.

– Multiple connections. In many applications, the nodes in FANETs collect
environmental data and then retransmit it to the control station, similarly to
wireless sensor networks [21]. Therefore, FANETs have to manage multiple
communications between UAVs and monitoring stations, as well as providing
support to peer-to-peer connections among UAVs.

– Very low node density. Typical distances among nodes in FANETs are
usually longer than in MANETs and VANETs clapper2007unmanned; thus,
the communication range in FANETs must also be greater than in other
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VANETUANET

FANET

MANET

Fig. 3. Relationships between different types of mobile ad hoc networks (MANET):
underwater ad hoc networks (UANET), vehicular ad hoc networks (VANET) and flying
ad hoc networks (FANET).

networks. This imposes more demanding requirements for radio links and
other hardware elements.

– Heterogeneity. UAV systems may include heterogeneous sensors, and each
of them may require different strategies for data distribution.

– Obstacles. Due to the higher node mobility, obstacles may randomly block
links among UAVs, which must be addressed in order to provide different
temporary communication paths, avoiding the disconnection of nodes.

External communications on HAMSTER architeture are dealt by NIMBLE
platform. Figure 4 illustrates NIMBLE’s submodules: ADHOC and INFRA.

Fig. 4. NIMBLE mobility platform is composed by ADHOC and INFRA submodules
for external communications.
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M2M communications, including mostly MANET and derivative networks, are
managed by ADHOC. On the other hand, INFRA is aimed at the management
of infrastructured communications e.g. sattelites and GCS (in HAMSTER case,
identified as CAGE). These submodules also concentrate efforts on mobility
models improvements.

The separation into two different modules provides the avantage of allowing
better approaches to each external communication. For instance, while commu-
nicating with an infrastructure, INFRA submodule will most certainly need to
transmit with higher signal strength due to longer distances from the UV to the
infrastructured element. On the contrary, while communicating with other UVs,
ADHOC should use appropriate ad hoc routing protocols for better message
delivery.

This paper tests specifically NIMBLE’s INFRA handoff process focused on
avionics. Next section presents the methodology.

5 Methodology

This section presents the simulator used for experiments execution, and the
criteria and results collection methods.

5.1 OMNeT++

OMNeT++ is an extensible, modular, component-based C++ simulation library
and framework, primarily for building network simulators [17]. Due to its general
structure, it can be used for analysis and study of different problems, including:

1. Modelling wired/wireless communication networks;
2. Protocols;
3. Architecture validation and distributed systems modelling;
4. Performance evaluation of complex systems;
5. Modeling and simulation of any system in which the approach to discrete

event is appropriate, and entities can be conveniently mapped.

OMNeT++ provides a component architecture for models. Components
(modules) are programmed in C++, then assembled into larger components and
models using a high-level language (NED). Reusability of models comes for free.
OMNeT++ has extensive GUI support, and due to its modular architecture, the
simulation kernel (and models) can be embedded easily into applications [17].

In addition to OMNeT++, this project uses INET [9]. INET Framework
is an open-source model library for the OMNeT++ simulation environment. It
provides protocols, agents and other models for researchers and students working
with communication networks. INET is especially useful when designing and
validating new protocols, or exploring new or exotic scenarios.
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INET contains models for the Internet stack (TCP, UDP, IPv4, IPv6, OSPF,
BGP, etc.), wired and wireless link layer protocols (Ethernet, PPP, IEEE 802.11,
etc.), support for mobility, MANET protocols, DiffServ, MPLS with LDP and
RSVP-TE signalling, several application models, and many other protocols and
components. Several other simulation frameworks take INET as a base, and
extend it into specific directions, such as vehicular networks, overlay/peer-to-
peer networks, or LTE [9].

OMNeT++ simulator was chosen to run the simulations that will be dis-
cussed in Sect. 6. We have implemented two simulations using INET Frame-
work and OMNeT++ to compare distinct handoff processes: with and without
mobility.

Nest subsection provides details on criteria and results collection.

5.2 Criteria and Results Collection

First, we have investigated a way of making simulations as similar as possible.
For instance, the speed at which the MU would move, plus routers distance and
coverage area must be the same in both simulations, in order not to compromise
results. Criteria used for comparison between algorithms are: process time and
signal strength.

The handoff run time criterion is perhaps the most complex and that best
defines the difference between processes. For some algorithms, it is highly impor-
tant for a handoff process to be performed as fast as possible due to the fact that
the MU needs to disconnect from previous AP to start sending requests to the
next one. Packet losses may occur due to disconnected time [26]. For example, if
there is a real-time video transmission, packets will likely be lost causing issues.

The handoff process can be divided into two phases [16], as shown in Fig. 5.
For further analysis, the run time is measured for each step separately, allowing
a step by step comparison. The first phase is defined as search. The MU scans
for nearby available APs. Once found, the AP in better conditions according to
the algorithm criteria, is the one chosen by MU for connection establishment.

Search phase can be divided into two steps: scanning delay and classification
delay. Still, in scanning delay, it is possible to scan each channel separately.
In practice, the initial event of the search phase is Beacon Timeout, i.e., the
MU has received at least three Beacon packets that were considered as noise,
representing a connection lost state, which leads to a new search for APs. In the
next event, the MU disassociates from AP1 and sends an internal command to
tune the channel 0, starting a new search. The scanning delay ends in the event
when the MU radio can tune channel 0, and then start the effective search.

The next step consists on scanning each channel in order to find an AP. This
scan takes place as follows: the MU tunes to a certain channel and listens for
incoming messages from any AP in that frequence, should it be a Beacon or a
Router Advertisement. Such listening process lasts a preset time. After that, the
MU is aware whether there is any AP operating in that frequency that can be
include on the list of new AP candidate. If a channel has been scanned and no
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Fig. 5. Phases of handoff process. This figure was adapted from [16].
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message was detected, the radio warns the management layer that the time limit
is over and no AP was found. A command for channel change is also triggered.

After the minimum scanning time and the positive identification of another
device operating on the same frequency, the MU sends a Probe Request message,
asking for information about how the AP works, e.g. transmission type, trans-
mission rate. The AP then responds with a Probe Response message. Later, the
MU updates the known AP list and proceeds with the scanning process. This
process is repeated for all four possible channels. After that, it terminates the
scanning delay process. For comparison matters, search times will be measured
on each channel, apart from the initial scan phase.

The last stage of the search phase is the classification delay, in which the MU
classifies all found APs. A limitation imposed by our simulator is seen in this
phase. Although it simulates these events as concomitant processes, they are not
so in reality. Thus, the classification delay cannot be measured in details, but its
overall time is included in results and does not imply problems for our analyses.

The next phase of handoff process is called Execution Phase. Here, the MU
exchanges messages with the AP in order to associate with it. Some of these
messages are the authentication request, followed by its response, request and
association response.

The received signal strength indicator (RSSI) of an AP is one of the decisive
factors of a handoff process. When making the decision of which AP the MU
will connect to, there must be a consideration about the best signal, which can
potentially avoid new handoffs.

Changing the decision-making policy can be a tricky task, since it is not
always possible to get access to codes that implement the direct process in real-
time operating systems. In our experiments, such change is not possible due to
simulator restrictions. However, we will carry out tests that help checking the
influence of some factors in the decision-making algorithm used by OMNeT++
simulator in this paper.

To analyse this by a different perspective, a new scenario has been proposed:
the inclusion of a new AP to our simulation that addresses a scenario with no
mobility. Thus, an area covered by three different APs was created. By changing
parameters of any AP, it would be possible to discuss about which aspect was
taken into consideration for the decision making.

The aspects we aim to analyse with this research are signal strength and data
transfer rate. Basically, the positioning of all three routers forms an equilateral
triangle, as shown in Fig. 6. In each test, the parameter of one of the APs were
modified in order to decrease one of its features. Afterward, scenarios in Table 4
were proposed.

Next section presents the experimental setup for experiments.
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Fig. 6. Network scheme adopted for testing handoff decision making algorithm.

6 Experimental Setup

6.1 IPv6 with Mobility

The “IPv6 with Mobility” simulation (MIPv6Network.ned) is part of the INET
simulations package [9]. This simulation allows the analysis of handoff process
on an IPv6 network with mobility.

The MIPv6Network is composed by five basic elements: mobile unit, access
points, routers, hub and fixed host. In addition, there are two elements in charge
of configuration. Figure 7 illustrates the scenario.
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Fig. 7. Graphical representation of MIPv6Network.

The MU is composed by a WirelessHost6 module. It is the MU, which is
always connected to an AP and moves among coverage areas. The APs used
in the simulation are both equal. They provide radio for routers i.e. wireless
communication between MU and Fixed Host.

The first router module, identified as Router6, acts as Home Agent. This
router captures packets for the MU should it be connected or not. The Router
called R 1 is the Foreign Agent, i.e. it distributes the packets generated by the
MU while outside the original network, and acts receiving the tunnelled packets
destined to MU. The other Router along with the Hub represents the Internet,
providing the tunnel between Routers that provide connectivity.

6.2 IPv6 Without Mobility

We have developed the “IPv6 wihout Mobility” simulation (handoff ipv6.ned) in
order to meet the requirements we are investigating. This IPv6 network performs
experiments of handoff without mobility. As the MU moves from one network to
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another, considering there is no support for mobility, it completely loses its link
with the native address, including a subsequent IP address change.

Figure 8 illustrates the simulation. One can point out that the network is
formed by a WirelessHost6 MU that supports MIPv6, but it has such a feature
disabled. As seen in “IPv6 with Mobility” simulation, two APs are used for
wireless communication between routers. They are both independent routers
that provide distinct links. This is a way of guaranteeing that no mobility is
used in our experiments.

Fig. 8. Graphical representation of handoff ipv6 network.

In addition to the network elements, two configuration modules were used:
ChannelControl (for managing wireless communications, including distances and
possible interferences), and flatNetworkConfigurator6 (which manages addresses
issues and routing tables).

Next section will present results and discussions.

7 Results and Discussions

7.1 Run Time Results

As mentioned in “Methodology” section, the time needed for a MU to either
interpret three lost Beacons and decide to start a new search, cannot be calcu-
lated with our simulator. Thus, it will not be considered for comparison purposes,
since it does not affect the results integrity.
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Table 1 presents the measured run times of total scanning of frequency chan-
nels during handoff process in both simulations. The factor which was more
decisive on run time was the number of scans that the MU had to perform
before finding an available AP. This difference is noticeable in scenarios where
there is intersection between the signal coverage areas (Scenarios 1 and 2) than
those with no intersection (Scenarios 2 and 3). If there is no intersection, as
the MU loses the first AP signal, it initiates a search on all channels. If this
time is not enough for the MU to enter the area of another AP, it will have to
perform other complete search. Repeating these searches is a very costly process
that also compromises the efficiency of the handoff process, since each additional
search takes 1.25 s. In a scenario of high transmission rates, e.g. in a video/audio
streaming, a new search might fully compromise the service, as it would mean
1.25 s disconnected from the AP, meaning a loss of thousands of packets.

Table 1. Total scanning time for the tested scenarios.

Scenarios 1st exp. 2nd exp. 3rd exp. Scanning
repetitions

IPv6 without mobility 1 1 s 400 ms 1 s 400 ms 1 s 400 ms 1

2 1 s 400 ms 1 s 400 ms 1 s 400 ms 1

3 2 s 650 ms 2 s 650 ms 2 s 650 ms 2

4 6 s 400 ms 6 s 400 ms 6 s 400 ms 5

IPv6 without mobility 1 1 s 400 ms 1 s 400 ms 1 s 400 ms 1

62 1 s 400 ms 1 s 400 ms 1 s 400 ms 1

3 2 s 650 ms 2 s 650 ms 2 s 650 ms 2

4 6 s 400 ms 6 s 400 ms 6 s 400 ms 3

Still, in Table 1, one can point out that the velocity of a mobile node directly
impacts the handoff time on a situation in which there is no intersection of cells.
As the MU moves faster through the area without signal, it needs to perform
fewer scans and therefore connect faster to the new AP.

In the second phase of handoff process, it is performed authentication and
association of the MU with the AP. The authentication delay times are shown
in Table 2 and the association delay times are shown in Table 3.

The next handoff phase that impacts the total run time is the authentica-
tion/association process. In the case of authentication, there is a difference in
microseconds among all tested scenarios. In both scenarios, the IPv6 protocol
without mobility performed better than MIPv6 (Scenarios 2 and 3). On the other
hand, MIPv6 performed better in the other two. In association phase, MIPv6
took advantage in three scenarios, not being the best option only in the case
of travel speed and no cells intersection. This result indicates that MIPv6 can
facilitate the MU association process.

Finally, Table 4 shows the total handoff process run time in all eight tested
scenarios.
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Table 2. Authentication delay times for the tested scenarios.

Scenarios 1st exp. 2nd exp. Mean time

IPv6 without
mobility

1 2ms 375 us 943 ns 2ms 375 us 943 ns 2ms 375 us 943 ns

2 2ms 376 us 59 us 2ms 376 us 59 us 2ms 376 us 59 us

3 2ms 376 us 188 us 2ms 376 us 188 us 2ms 376 us 188 us

4 2ms 403 us 214 us 2ms 403 us 214 us 2ms 403 us 214 us

IPv6 without
mobility

1 2ms 349 us 88 us 2ms 349 us 88 us 2ms 349 us 88 us

2 2ms 403 us 226 us 2ms 403 us 226 us 2ms 403 us 226 us

3 2ms 402 us 582 us 2ms 402 us 582 us 2ms 402 us 582 us

4 2ms 402 us 609 us 2ms 402 us 609 us 2ms 402 us 609 us

Table 3. Association delay times for the tested scenarios.

Scenarios 1st exp. 2nd exp. Mean time

IPv6 without
mobility

1 1ms 523 us 971 us 1ms 523 us 971 us 1ms 523 us 971 us

2 1ms 506 us 29 us 1ms 506 us 29 us 1ms 506 us 29 us

3 1ms 497 us 94 us 1ms 497 us 94 us 1ms 497 us 94 us

4 1ms 507 us 70 us 1ms 507 us 70 us 1ms 507 us 70 us

IPv6 without
mobility

1 1ms 479 us 44 us 1ms 479 us 44 us 1ms 479 us 44 us

2 1ms 497 us 113 us 1ms 497 us 113 us 1ms 497 us 113 us

3 1ms 496 us 805 us 1ms 496 us 805 us 1ms 496 us 805 us

4 1ms 523 us 387 us 1ms 523 us 387 us 1ms 523 us 387 us

One can observe in Table 4 the predominance of scan time if compared to
authentication and association delays, which go from 300 times and reach up to
2000 times higher. It is important to point out that IPv6 without mobility per-
formed better and faster in three scenarios.

As a final remark, a few microseconds (less than 100 µs in all cases) do
not considerably affect the amount of received bits. For example, in a 2 Mbps

Table 4. Total handoff time for the tested scenarios.

Scenarios Total time

IPv6 without mobility 1 1 s 403ms 899 us 971 us

2 1 s 403ms 882 us 88 us

3 2 s 653ms 873 us 282 us

4 6 s 403ms 910 us 278 us

IPv6 without mobility 1 1 s 403ms 828 us 132 us

2 1 s 403ms 900 us 339 us

3 2 s 653ms 899 us 207 us

4 6 s 403ms 925 us 996 us
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transmission, around 2 bits per millisecond (ms) are sent — or 0.002 bits per
microsecond (µs). Differences of 100 µs result in the loss of 0.2 bit, which is
extremely small considering the amount of transmitted information.

7.2 Decision Making

In the first scenario for decision making evaluation, both APs are configured
to emit signals with the same power. However, AP1 operated with half the
AP2’s data transmission rate. At the end of scan, the handoff algorithm chose
to connect to AP1, as shown in Fig. 9.

Fig. 9. Handoff classification phase on Scenario 1.

The other analysed scenario contains two APs with the same data trans-
mission rate, however different signal strength. The algorithm has chosen to
associate with AP1, as shown in Fig. 10.

Fig. 10. Handoff classification phase on Scenario 2.

Regarding tests on Decision Making, the main conclusion is that the pre-
dominant factor in choosing an AP to connect was the signal strength received
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by MU at the scanning process. In the test performed in Scenario 1, in which
both APs operate with equal signal strength, and AP1 operates with half the
transfer rate of AP2, AP1 was chosen. This can be explained by the difficulty in
obtaining an overall symmetry of the problem: as much as the APs are equally
distributed, in the meantime while receiving the packet with information about
each AP signal strength, the MU has already moved. That leads to slight differ-
ences in results, as shown in Fig. 9. The predominance of signal quality explains
the choice for AP1, despite the low transmission rate.

The experiment in the second scenario only confirms the conclusion afore-
mentioned. When signal strength was far different, the chosen AP was always
the one that offered a higher signal quality.

It is important to clarify that tests conducted to observe decision making
were carried out in only one of the protocols mentioned in this paper, the “IPv6
with Mobility”. This choice was made due to the fact that the decision making
algorithm is linked to the simulator itself, not to the protocols. Thus, for any
handoff process in any OMNeT++ simulation, the decision making algorithm
was the same. The purpose of these tests were to get more information about
this algorithm and complement researches on handoff processes, and also to draw
conclusions that could help UAVs development and research. Such a discussion
will be presented in next section.

8 A Discussion on Safety-Critical Systems

As it could be seen in presented and discussed results, there is a small advantage
of “IPv6 without Mobility” when compared to “IPv6 with Mobility”, specifically
regarding handoff run time. Considering real-time systems, although seeming
irrelevant, such a small difference can be very important. In some applications,
such as aviation, critical embedded systems must have low failure rates, such
as a serious failure every 105 até 109 h of operation at most. Whereas delays in
communication can lead to failures, this difference becomes significant.

Taking the example of scenarios where terrestrial or aquatic vehicles operate
missions in isolated areas and UAVs are used to fly and collect/provide informa-
tion for terrestrial and aquatic networks, the flyovers cannot be performed more
than once depending on the local access conditions. In some cases, the UAV flight
range limit is very short, requiring the flight to be performed with higher speed
and only once. In this case, handoff process run time for connection among UAV
and terrestrial/aquatic vehicles could significantly impact the overall system.

Another practical example is related to smart cars and roads. On highways
with multiple APs, handoff operations happen frequently, which can lead to
inherent delays that may affect both safety and entertainment operations. Thus,
the mentioned small differences in run time can be important and should be
taken into account on these systems design, especially for real-time applications.
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9 Conclusions

This paper carried out a comparative evaluation between two IPv6 network
based handoff processes, with and without mobility. Some parameters such as
run time and decision making were taken into account for performance analysis.
In fact, the simulated results presented a slight advantage of handoff process
without mobility. As for real-time systems, such a small difference may be very
representative.

Although tests were conducted in a completely deterministic simulation and
the decision making algorithm was the same in both models, this paper presented
results that help researchers and developers to have insights on embedded sys-
tems behaviour using IPv6 protocol facing different handoff situations. These
experiments are part of the implementation of NIMBLE platform for mobility
on unmanned vehicles.

As future work we aim to perform similar experiments in real embedded sys-
tems prototypes running real-time operating systems (RTOS). These operating
systems meet the needs of such systems, and might also improve the communi-
cation performance. Moreover, new scenarios of UV applications should be taken
as examples for new experiments.
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Abstract. Energy consumption is a major concern in Wireless Sensor
Networks (WSNs) since nodes are powered by batteries. Usually, batter-
ies have low capacity and can not be replaced due to economic and/or
logistical issues. In addition, batteries are complex devices as they depend
on electrochemical reactions to generate energy. As a result, batteries
exhibit non-linear behaviour over time, which makes difficult to estimate
their lifetime. Analytical battery models are abstractions that allow esti-
mating the battery lifetime through mathematical equations, taking into
account important effects such as rate capacity and charge recovery. The
recovery effect is very important since it enables charge gains in the bat-
tery after its electrochemical stabilization. Sleep scheduling approaches
may take advantage of the recovery effect by adding sleep periods in the
node activities in order to extend the network lifetime. This work aims
to analyse the recovery effect within WSN context, particularly regard-
ing low-power nodes. To do so, we use an analytical battery model for
analysing the battery performance over time, during the node execution.

Keywords: WSN · Battery model · Recovery effect

1 Introduction

Wireless Sensor Networks (WSNs) are commonly composed of a large number
of nodes, deployed in an area of interest, with self-management capacity [1].
Their nodes are characterized to be devices with processing, communication,
and sensing capacities. Due to the reduction in manufacturing cost of the elec-
tronic components such as microcontrollers, transceivers, and sensors, WSNs are
increasingly being adopted in many important application domains, including
residential, commercial and industrial ones.

However, the nodes are usually powered by batteries and it is not feasible
to replace the batteries of a large number of nodes for two reasons: cost and
accessibility, mainly assuming that the deployments may occur in places with
difficult access or which impose health risk. Thus, one of the great challenges of
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WSNs lies in the power management of the nodes in order to save the energy
consumption of the network as a whole.

Another factor that hinders the power management in WSN is related to
the complexity of the batteries. In these components, electrochemical reactions
are responsible for ensuring the power supply to the node. However, several
factors (e.g., the discharge current intensity, operating temperature and chemical
composition) may affect the battery operation. In this sense, it is common to
observe a non-linear behaviour in these components over time.

In general, battery models aim to estimate the battery behaviour over time,
which may include the knowledge about its lifetime, voltage level or State of
Charge (SoC), for instance. Specifically, the analytical battery models are based
on mathematical equations that consider the application load profile for estimat-
ing the battery lifetime. It is important that such models adequately represent
the main effects that affect the batteries, such as the rate capacity and charge
recovery, since the battery lifetime can be different if these effects are not con-
sidered during its use. Particularly, the recovery effect allows the battery to
recompose part of its charge after reaching its internal electrochemical stabil-
ity. In this context, it is important to insert periods of low-power consumption
during the battery operation.

Sleep scheduling policies aim to switch nodes during the WSN activities to
maximize their lifetime [2,3]. The sleep scheduling is an approach that takes
advantage of the recovery effect by putting the nodes in low-power mode (or
sleep mode) to save the network power as a whole. However, many studies per-
form simulations using sleep scheduling policies without considering both rate
capacity and charge recovery effects, i.e., it is assumed that the batteries have
a linear behaviour over time. This kind of assumption can affect the results of
the simulations since batteries have much more complex behaviours, which are
difficult to model.

This paper aims to conduct a study on the recovery effect in WSN nodes
with low power characteristics. The assessments involve the use of an analytical
battery model known as Kinetic Battery Model (KiBaM), which considers both
rate capacity and charge recovery effects. These characteristics are important to
minimize the error regarding the non-linear behaviour of the battery over time,
mainly in WSN simulators. The main contributions of this work are as follows:

– Use of an analytical battery model within WSN context to assess the recovery
effect in low-power consumption nodes.

– An analysis of several relevant scenarios to the WSN context, including assess-
ments regarding recovery speed and the execution order of the tasks using
the aforementioned KiBaM model.

– Results indicating the importance of the addition of low-power consumption
periods during node activities to maximize its lifetime.

This paper is organized as follows. Section 2 presents the related work.
Section 3 presents the concepts used in this work, including the battery basics
and analytical battery models. Section 4 shows the set-up used in the simulations.
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Section 5 presents the results for different scenarios considering the recovery
effect on batteries. Section 6 concludes the paper and presents future work.

2 Related Work

There are many studies evaluating the use of battery models for application in
mobile devices. Some of them focus in the context of WSN. This section presents
an overview of the main analytical battery models in the literature, including
some papers that compare the performance of such models and their application.

Manwell and McGowan [4,5] developed a battery model, based on the app-
roach of chemical kinetics of Lead-Acid batteries, for use in time series perfor-
mance models of hybrid energy systems. Such model requires the determination
of three constants, unlike other existing models that typically require several
constants to properly model the battery behaviour. Besides, the Kinetic Battery
Model considers the rate capacity and charge recovery effects. The simulation
results were compared with the BEST model (Battery Energy Storage Test).

Rakhmatov and Vrudhula [6,7] proposed a high-level battery model to help
system designers to make battery-aware decisions. This model offers the ability
to estimate the battery lifetime under a specific discharge current. Furthermore,
it allows the trade-off between the estimation accuracy and the number of oper-
ations performed. Authors evaluate the results of the simulations based on a
low-level simulator, known as DUALFOIL, which was set for Lithium-ion bat-
teries. The results showed an average error of 3% in the predictions.

Rong and Pedram [8] presented a high-level analytical battery model to pre-
dict the remaining capacity of a Lithium-ion battery. However, this model needs
to measure the battery output voltage and its temperature in an on-line way,
which, according to the authors, can be obtained through the “smart battery”
technology. The temperature and battery cycle aging effects are also considered
in the model. Thus, it is possible to estimate the remaining capacity of the bat-
tery under different load conditions. Authors compare the results of predictions
with simulations using DUALFOIL, reaching a maximum error of 5%.

Jongerden and Haverkort [9] indicate analytical battery models as the best
type of model in the setting of performance modelling. In this context, authors
performed a study on two well-known battery models: KiBaM and diffusion
model. Some theoretical and practical comparisons were assessed in addition to
demonstrating that the KiBaM is a first order approximation of the diffusion
model. Finally, authors indicate the best battery model to use.

Chau et al. [10] examined the gain in the lifetime of Ni-MH batteries due
to recovery effect. For this, the authors conducted several experiments with
commercially available nodes (TelosB and Imote2). The paper shows that there
is a substantial gain to utilize the benefits of the recovery effect, and indicate a
threshold in which the charge recovery becomes insignificant. Based on that, it
is proposed an energy-efficient duty cycle scheme which adjusts the duration of
the transceiver sleep period according to the recovery saturation in the battery.

Rohner et al. [11] investigated the use of battery models within WSN con-
text, which means assess such models with respect to low duty cycles and short
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duration loads. The investigation includes the following models: Electrochemi-
cal (using BatteryDesignStudio), KiBaM and a Hybrid Model combining KiBaM
with an electric circuit abstraction. The parameters used in all models were based
on Lithium batteries (CR2032). The results using the electrochemical model pre-
sented high computational complexity, which increases the simulation runtime
to impractical values (≈50 days). Although KiBaM deals with the rate capacity
and recovery effects, it showed little difference regarding the battery lifetime
for the used load profiles. The hybrid model requires a series of experiments to
determine its constants, in addition to the simulation time close to 1 h for the
used load profiles. Finally, authors indicate a depth study of battery models with
regard to their sensitivity and temporal aspects within WSN context.

Daniil et al. [12] compared the performance of three battery models for
Lithium polymer batteries: Circuit-Based Model, Diffusion Model, and KiBaM.
The authors’ goal was to find the appropriate model for real-time applications.
In addition to the precision, the study assesses the execution time on a spe-
cific hardware platform. The results showed greater accuracy when using the
circuit-based model, however, it requires the use of constant RC elements to
avoid increasing the execution times of the simulations. The diffusion model and
KiBaM showed less accurate results. Nevertheless, the study indicates the use
of KiBaM since it presents lower execution times in the simulations.

Rodrigues et al. [13] proposed the analytical Temperature-Dependent Kinetic
Battery Model (T-KiBaM), which allows modelling the behaviour of batteries
under different operating temperatures. Such a model is capable of handling both
the charge and the voltage level for different battery technologies. The authors
performed several experiments with Ni-MH batteries at different operating tem-
peratures. Although performing evaluations only with constant discharge cur-
rents, the results show that the T-KiBaM model is more accurate than both the
original KiBaM model and Peukert’s Law, when considering different operating
temperatures of the battery.

Analytical battery models are preferred for two main reasons: (i) flexibility
in allowing the parameter adjustment for different battery technologies; and
(ii) computational efficiency allowing simulations with execution times on the
order of seconds or minutes. Other works apply the KiBaM to model the battery
behaviour in mobile devices, such as smartphones [14,15] or Internet-of-Things
systems [16].

This article proposes the use of the KiBaM to model the battery behaviour of
low-power nodes within WSN context. The major focus is on the recovery effect
assessment in situations commonly encountered in WSN applications, such as
with nodes with long sleep periods (sleep scheduling schemes) or nodes operating
with duty cycles, alternating periods of activity and inactivity.

3 Background

This section presents the key concepts involved in this paper. A brief explanation
of the mode of operation and characteristics of the batteries is addressed. Then,
some analytical battery models are presented.
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3.1 Battery Basics

Batteries are essential to make the concept of mobility a reality. Basically, bat-
teries are devices that contain one or more electrochemical cells capable of trans-
forming chemical energy into electrical energy. The cells are formed by two ter-
minals (electrodes): the positive (or cathode); and the negative (or anode). An
electrolyte allows the flow of ions between the battery terminals [17].

Fig. 1. Schematic of an electrochemical cell.

Generally, when discharging a battery, oxidation occurs at the anode, pro-
ducing electrons (which flow through the external circuit) and positively charged
ions (which, by diffusion, move through the electrolyte towards the cathode).
Reduction reactions occur at the cathode, generating negatively charged ions.
Figure 1 depicts the operation of a single cell battery.

There are primary and secondary batteries. Primary batteries can not be
recharged, i.e., they do not support the reverse process of transforming elec-
trical energy into chemical energy. Generally, this type of battery has a high
specific energy, low cost, and long storage periods. Secondary batteries can be
recharged by applying an electric current. Despite having higher initial cost,
secondary batteries have a long life cycle and can be used several times before
being discarded. Besides, they can withstand higher discharge currents.

There are three characteristics that define any secondary battery:

– Technology: relates the components interacting in the battery chemical reac-
tions, the most common are Lead, Nickel, and Lithium. Batteries have dif-
ferent characteristics depending on the technology, being chosen according to
the application requirements.

– Voltage: the open circuit voltage (VOC) indicates the potential difference
between the terminals of an electrochemical cell. The cut-off voltage (Vcut)
indicates when a battery is no longer capable of withstanding the applied
discharge current. This value is often used to indicate an “empty” battery.

– Capacity: normally in ampere-hours (Ah), it is the amount of available charge
when the battery is discharged at a certain discharge current. The total capac-
ity of a battery can be calculated by multiplying the discharge current applied
by the time to reach Vcut.
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Modelling the behaviour of batteries is a complex task since their character-
istics depend on many factors such as the used technology, the operating tem-
perature, the “age” of the cell etc. Thus, batteries have a non-linear behaviour.
In this context, some battery models stand out for providing realistic estimates
regarding the behaviour of the batteries over time. Some of these models are
discussed in the following section.

3.2 Battery Models

This section presents the most common analytical battery models. These models
describe the battery in an abstract way by modelling its properties through some
equations [18]. The analytical battery models are computationally flexible since
they involve the evaluation of analytical expressions [19].

Battery models help understand the battery behaviour over time according to
the application requirements, without the need to conduct experiments with real
WSN nodes. In this sense, adjustments in the node load profile can be performed
to avoid the inefficient use of the available charge, which leads to the node failure
and impairs the WSN coverage. Thus, each node maximizes its lifetime, being
able to contribute to the network for the longest period possible.

There are several types of battery models: electrochemical, circuit-based,
analytical, stochastic and hybrid. This work focuses on analytical battery models
since they perform the prediction of the behaviour of batteries using equations
that require few constants. This allows modelling different battery technologies
with reduced effort. Some analytical battery models are shown below.

Peukert’s Law is one of the simplest models for estimating the battery lifetime.
This model considers only a part of the non-linear effects, relating the battery
lifetime and the discharge rate. According to the Peukert’s Law, the battery
lifetime (L) can be approximated according to the following expression:

L =
a

Ib
, (1)

where: I is the discharge current; a and b are constants dependent on the battery
type, being obtained through experiments. However, the recovery effect is not
part of this model. Thus, the results obtained with the Peukert’s Law are con-
sidered good only for constant continuous loads, being inadequate when variable
or intermittent loads are used [18].

Diffusion Model was introduced by Rakhmatov and Vrudhula [7]. This model
describes the diffusion process of the active material in a battery. For example,
it allows to estimate the battery lifetime (L), with a good approximation, for
a given constant discharge current using the first ten terms of an infinite sum
according to the following expression:

α = 2I
√

L

⎡
⎣1 + 2

10∑
m=1

⎛
⎝e− β2m2

L − πe− β2m2

L

π − 1 +
√

1 + π L
β2m2

⎞
⎠

⎤
⎦ , (2)
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where: α is the battery capacity; β captures the non-linear behaviour of the
battery. Both parameters can be estimated through experimental data. However,
as pointed out by Jongerden and Haverkort [18], the second-order differential
equation makes it difficult to combine the model with a performance model.

Kinetic Battery Model (KiBaM) is an analytical battery model developed
by Manwell and McGowan [4,5,20] that originally aims to model the behaviour
of high-capacity Lead-Acid batteries. It uses an intuitive approach based on a
two tank analogy to describe the charge/discharge processes. Figure 2 depicts
the abstraction used in the model, including its constants.

I

ij

h1

k'

cc-1

Available ChargeBound Charge

h2

Fig. 2. Kinetic Battery Model (KiBaM) [4].

The Available Charge tank holds an electrical charge that can be immediately
used for a device draining a current I. The Bound Charge tank holds a bounded
charge that can flow towards the Available Charge tank, regulated by a valve
with a fixed conductance k′. Such constant corresponds to the rate of a chemical
diffusion/reaction process. Constant c corresponds to the total charge fraction
stored in the Available Charge tank. A battery is exhausted when its Available
Charge tank becomes empty, even if there is still charge in the Bound Charge
tank. The transfer of charge, as well as the amount of unavailable charge, is
proportional to the height difference between the two tanks, δ = (h2 − h1).
Thus, a smaller difference between these two heights provides a longer lifetime
for the battery [17]. The following system of differential equations describes the
model. ⎧

⎨
⎩

di
dt = −I + k′(h2 − h1)
dj
dt = −k′(h2 − h1),

(3)

where: i is the available charge and j is the bounded charge. The height values
are calculated as h1 = i/c and h2 = j/(1 − c), respectively. A new rate constant
k is defined as:

k =
k′

c(1 − c)
. (4)
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Replacing h1, h2 e k′ in the system of differential Eq. (3), it results on:
⎧
⎨
⎩

di
dt = −I − k(1 − c)i + kcj

dj
dt = +k(1 − c)i − kcj.

(5)

Laplace transforms are able to solve the system of differential equations [4],
which results on:

⎧
⎨
⎩

i = i0e
−kt + (y0kc−I)(1−e−kt)

k − Ic(kt−1+e−kt)
k

j = j0e
−kt + y0(1 − c)(1 − e−kt) − I(1−c)(kt−1+e−kt)

k ,
(6)

where: i0 and j0 are the amount of charge in the Available Charge and Bound
Charge tanks, respectively, at the beginning of the calculation (t = 0). In addi-
tion, y0 = i0 + j0, where y0 is the amount of charge in the battery at t = 0.

In the KiBaM model, the unavailable charge (u) is the height difference times
(1 − c) [17]. Equation (7) describes the difference between heights, denoted by
δ, which is used to compute the unavailable charge (u) [21].

δ = (h2 − h1) =
j

(1 − c)
− i

c
(7)

u = (1 − c) · δ (8)

The reasoning behind δ value is important in order to obtain the battery
nonlinear capacity variation [22]. Thus, KiBaM can model two important effects:

– Rate Capacity refers to the applied discharge current. The larger the load I,
the faster the battery discharge and, thus, the lower its lifetime. This is due to
the battery voltage level, which decays slowly during the battery discharge,
reducing the effective capacity for high discharge currents [18];

– Charge Recovery refers to the ability of a battery to partially recover its
charge during an idle period, after performing a discharge current I. This is
due to the electrochemical stabilization inside the battery pack.

The non-linear battery behaviour arises, particularly, when these two effects
act together. That is the case of WSN nodes operating in duty cycle schemes,
i.e., periods during which the radio is in normal operation (high discharge cur-
rents), and periods during which it is in low power mode or sleep mode (low
discharge currents). Figure 3 depicts an example with the behaviour over time in
both tanks. In the fast discharge curve, the computing tasks consume: 250 mA
(900 s), 100µA (900 s) and 50 mA (2700 s). In the slow discharge curve, the com-
puting tasks consume: 50 mA (900 s), 100µA (900 s) and 5 mA (2700 s). Here,
the parameters are adjusted to model a commercially available Ni-MH battery,
as described by Manwell and McGowan [4], leading to c = 0.828164, k = 0.021139
s−1 and y0 = 2700 As (≈750 mAh).
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Fig. 3. An example of KiBaM behaviour over time.

4 Assessment Set-Up

This section describes the set-up used in the analysed scenarios. The simulations
are performed in the Matlab1, a scientific software for numerical computations.
This choice is justified mainly by the following reasons: (i) easy implementation
of mathematical models, (ii) ability to conduct simulations quickly using a multi-
core computer, and (iii) ability to represent the results through custom graphics.
Thus, we present the KiBaM function, implemented to perform the simulations,
as well as the set of tasks used in the simulations. A study on the impact of
different values for the KiBaM constants is also presented.

4.1 KiBaM Implementation

This section presents the KiBaM implementation in the function format, which
is used in the assessments regarding the battery lifetime estimation on Matlab.

The KiBaM implementation can be summarized as a loop that performs func-
tion calls that drain the battery capacity, accounting for the time required to
exhaust all its charge. Thus, it becomes possible to obtain the battery estimated
lifetime in accordance with the applied discharge current and its respective exe-
cution time. Algorithm 1 shows how to implement the KiBaM function.

Lines 3 and 4 are responsible for updating the amount of charge in the Avail-
able Charge and Bound Charge tanks, respectively, according to Eq. (6). An
example of the KiBaM function call is presented in Algorithm2.

1 http://www.mathworks.com/products/matlab/.

http://www.mathworks.com/products/matlab/
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Algorithm 1. KiBaM function.
Data: c, k, i0, j0, t0, I, tI

1 y0 = i0 + j0;
2 t0 = t0 + tI ;
3 i0 = compute-i(c, k, y0, i0, j0, I, tI);
4 j0 = compute-j(c, k, y0, i0, j0, I, tI);
5 return (i0, j0, t0);

Algorithm 2. KiBaM function call.
Data: c, k, y0, I, tI

1 i0 = (c) ∗ y0;
2 j0 = (1 − c) ∗ y0;
3 t0 = 0;
4 while i0 > 0 do
5 [i0, j0, t0] = KiBaM(c, k, i0, j0, t0, I, tI);
6 end
7 print (i0, j0, t0);

The parameters that need an initial value are c, k and y0 (the initial battery
capacity), I (the discharge current) and tI (the execution time of I). Throughout
the execution, it becomes necessary to observe the amount of charge in the
Available Charge tank, which can not be less than or equal to zero. Line 4 of the
Algorithm 2 performs this verification.

4.2 Task Set

This section presents the tasks used in the assessment. In this case, a task consists
of a node state and its respective execution time. Here, the tasks have the same
power consumption of the Mica2 node, as described by Mikhaylov and Tervonen
[23]. Table 1 shows the power consumption in each of the node states as well as
its execution times, according to the simulated application.

For easy understanding, the tasks are named as follows: Tx (MCU+Tx), Rx
(MCU+Rx), Ac (MCU-Active), and NS (Node-Standby). The first task, Tx,
consumes 25.4 mA with an execution time of 4 min, representing the microcon-

Table 1. Discharge currents in a Mica2 node [23].

Short name State Discharge current (mA) Execution time (min)

Tx MCU+Tx 25.400 4

Rx MCU+Rx 15.100 10

Ac MCU-Active 8.000 6

NS Node-Standby 0.019 0–20
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troller (MCU) activity and the use of the transceiver to transmit data (Tx).
The Rx task consumes 15.1 mA with an execution time equal to 10 min, repre-
senting the MCU activity and the use of the transceiver to receive data (Rx).
The Ac task consumes 8 mA and has 6 min of execution time, representing only
the MCU activity (transceiver off). Lastly, the NS task consumes 19µA with
execution times ranging between 0–20 min, according to the simulated scenario.
This task represents the period in low-power mode (or sleep mode). Such task
set is equivalent to an environmental monitoring application.

4.3 Comparison Between Different Values of k

This section presents a study regarding the use of different battery technolo-
gies (e.g., Lead-Acid, Ni-MH, Li-ion), which implies in different values for the
KiBaM constants since the electrochemical characteristics of these technologies
are distinct. This may change the recovery effect behaviour, so that the bat-
tery technology can be chosen according to the application requirements (e.g.,
discharge current, duty cycle and battery capacity).

The constant k is a time-dependent value. Thus, its value becomes critical to
determine the time needed to transpose the charge from the Bound Charge tank
to Available Charge tank, until the equilibrium in both tanks is reached. From
the equilibrium point, it becomes unnecessary to maintain a low-power state,
since there is no significant charge recovery. In this case, the time to reach the
equilibrium point (stability) is called threshold.

In the simulations performed in this study, the values of c and y0 are set
in 0.625 and 2700 As [21], respectively. The values for the constant k are as
follows: 0.05, 0.01, 0.005, 0.001, 0.0005 and 0.0001 s−1. Besides, the following
task sequence is performed: an MCU+TX state followed by a Node-standby
state (with an 8-min execution time). This means a 33.33% duty cycle, i.e., the
period in sleep mode is twice the period in active mode. Figure 4 depicts the
simulation results with different values for the k constant.

Note that the behaviour of the discharge curves are different depending on
the value of the k constant. In this case, the larger the value of k, the faster the
charge transposition between the tanks and, thus, the shorter the time to reach
the threshold. On the other hand, the lower the k value, the slower the charge
transposition between the tanks. Consequently, the greater the time required
to reach the threshold. Besides the difference in the recovery effect, there is
a noticeable difference in battery lifetime. Table 2 shows the battery lifetime
according to the value of k.

For this application, the most appropriate k value is 0.01 s−1 since it rep-
resents the best fit for a full charge recovery, i.e., without wasting time. This
example highlights the importance of choosing the battery parameters that has
characteristics similar to those used in the batteries in the real application.
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Fig. 4. Simulation with different k values.

Table 2. Difference in battery lifetime according to the k value.

k (s−1) Battery lifetime (s) Battery lifetime (h)

0.0500 318289 88.4136

0.0100 318280 88.4111

0.0050 317738 88.2606

0.0010 317622 88.2283

0.0005 316933 88.0369

0.0001 311951 86.6531

5 Assessment Results

This section aims to present the assessment results from different scenarios,
focusing on the analysis of the charge recovery effect on batteries. Briefly, the
recovery effect speed is analysed for the simulated application, as well as the
influence of changing the sleep period order among the performed tasks. The
execution order between tasks is also analysed. Finally, a case study regarding
the frequency of switching between tasks is presented. The settings shown in
Sect. 4 are used in these simulations, including the values of the KiBaM constants
(y0, c and k).

5.1 Recovery Effect: Speed Evaluation

This section shows how to properly choose the sleep period according to the
application characteristics. In this sense, a comparison between different recovery
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times is performed. The goal is to choose an optimized sleep period for the set
of tasks used so that recovery effect occurs without wasting time after reaching
the threshold. Other details are presented below.

In this experiment, the task execution order is as follows: Tx, Rx, Ac, and NS.
The execution times of the tasks are the same as shown in Table 1. In this case,
the adopted periods for the Node-Standby task are 5, 10, 15 and 20 min. Such
periods represent duty cycles of 20%, 33.33%, 42.85% and 50%, respectively. All
simulated experiments are performed cyclically until the content in the Available
Charge tank reach the minimum level. Figure 5(a) depicts the behaviour of the
simulations when these tasks are used.
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Fig. 5. Comparison between simulations using different sleep periods.

The battery lifetimes in each situation are: 62.2375 h (NS = 5 min), 74.6383 h
(NS = 10 min), 87.0389 h (NS = 15 min), and 99.4389 h (NS = 20 min). Figure 5(b)
depicts the behaviour of the simulations with zoom. Note the behaviour of the
recovery effect in each situation. In this case, it is possible to note that a sleep
period equal to 5 min is not enough since the threshold is not reached. The
situations with greater sleep times (15 and 20 min) offer a longer battery lifetime,
however, the charge recovery is insignificant as from 10 min. Thus, if the interest
lies only in the recovery effect without wasting time, the most suitable task
combination is the one that provides a sleep time of 10 min.

5.2 Recovery Effect: Changing the Sleep Period Order

This section performs a variation of the previous simulation. In this case, the
sleep period is placed at different moments to evaluate the impact on battery
lifetime. The tasks are ordered as follows: NS-Tx-Rx-Ac, Tx-NS-Rx-Ac, Tx-Rx-
NS-Ac, and Tx-Rx-Ac-NS. The experiments are performed cyclically until the
content in the Available Charge tank reaches the minimum level. Table 3 shows
the results, including the charge recovered after a sleep period, at t ≈ 36 h.
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Table 3. Results when the sleep period is placed at different moments.

Simulation Order Battery
lifetime (s)

Battery
lifetime (h)

Charge
recovered (%)

1 NS-Tx-Rx-Ac 269297 74.8047 0.034

2 Tx-NS-Rx-Ac 269304 74.8067 0.102

3 Tx-Rx-NS-Ac 268698 74.6383 0.065

4 Tx-Rx-Ac-NS 268698 74.6383 0.035

Note that there is a little difference between the times obtained in the simu-
lations. Simulation 2, which has a sleep period after a Tx task, achieved longer
battery lifetime and higher percentage of charge recovered. This can be explained
by the simple fact that there is a greater benefit with the recovery effect after per-
forming a higher consumption task, as depicted in Fig. 6, which presents a zoom
of the simulation final period (74 h ≤ t ≤ 74.9 h). Simulations 3 and 4 reached
the same time, although they presented different values of charge recovered. It
may indicate a model inconsistency regarding this situation. The relative differ-
ence between the Simulations 2 and 3 is 0.22%, which represents 606 seconds
(10.1 min) in the battery lifetime.
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Fig. 6. Simulated experiments with different sleep period order.

5.3 Assessing Changes in Task Execution Order

This section presents a comparison between simulations with different task exe-
cution order. The objective is to evaluate the difference in battery lifetime in
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each situation. In this scenario, the sleep period is not included in the task set.
Although there is not a period in sleep mode itself, note that the recovery effect
also has its share in this scenario since the tasks present different discharge
currents. The tasks are divided as shown in Table 4.

Table 4. Results with different task order.

Simulation Order Battery lifetime (s) Battery lifetime (h)

1 Tx-Rx-Ac 179412 49.8367

2 Tx-Ac-Rx 179586 49.8850

3 Rx-Tx-Ac 179490 49.8583

4 Rx-Ac-Tx 179765 49.9347

5 Ac-Tx-Rx 179576 49.8822

6 Ac-Rx-Tx 179746 49.9294

Note that all simulations have different battery lifetimes, even if the tasks are
the same, but in a different execution order. In this case, Simulation 4 showed
longer battery lifetime, 179765 s (49.9347 h). The task with the highest discharge
current (Tx) is performed lastly in this simulation. On the other hand, Simula-
tion 1 had the shortest battery lifetime, 179412 s (49.8367 h). In this case, the
task with the highest discharge current (Tx) is performed first. The relative dif-
ference in these two cases (Simulations 1 and 4) is 0.19%, which represents 353 s
(5.88 min) in the battery lifetime. Figure 7 depicts a zoom with the last moments
of the performed simulations.

5.4 Evaluating Task Switching Frequency

This section evaluates the KiBaM behaviour with regard to the influence of the
task switching frequency in battery lifetime. The goal is to establish a frequency
range in which the simulation execution time is feasible.

In this scenario, only two tasks are used: Tx and NS. The execution times
are defined according to the duty cycle, which in this case is 50%. For example,
if the duty cycle period is 16 s, each task runs for 8 s. The simulated frequencies
are as follows: 0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, and
64 Hz. Table 5 shows the results in each situation.

Note that the battery lifetime is virtually the same within the simulated
frequencies range. The differences in battery lifetimes arise due to the simulation
step, which is different in each simulated frequency. However, the simulation
execution time increases considerably as increases the rate of task switching.
We found a linear growth in our simulations. This is due to the increase in the
number of iterations required to run the model. That is, the higher the frequency,
the lower the amount of charge drained from the battery at each iteration of the
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Fig. 7. Simulations with different task order.

Table 5. Results with different frequencies.

Frequency
(Hz)

Period (s) Tasks Battery
lifetime (s)

Battery
lifetime (h)

Execution
time (s)

0.015625 64.0 Tx-NS 212352.00 58.9867 0.004814

0.03125 32.0 Tx-NS 212352.00 58.9867 0.008408

0.0625 16.0 Tx-NS 212368.00 58.9911 0.016665

0.125 8.0 Tx-NS 212376.00 58.9933 0.029949

0.25 4.0 Tx-NS 212376.00 58.9933 0.054279

0.5 2.0 Tx-NS 212378.00 58.9939 0.108964

1 1.0 Tx-NS 212379.00 58.9942 0.223868

2 0.5 Tx-NS 212379.00 58.9942 0.406734

4 0.25 Tx-NS 212379.25 58.9942 0.812888

8 0.125 Tx-NS 212379.38 58.9943 1.657588

16 0.0625 Tx-NS 212379.50 58.9943 3.262296

32 0.03125 Tx-NS 212379.50 58.9943 6.655759

64 0.015625 Tx-NS 212379.50 58.9943 12.757468

algorithm, and therefore the greater the number of iterations required. This
makes the simulation execution time impractical from a certain frequency value
since the period of the tasks is too small.
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6 Conclusions

The energy constraint is a major challenge within WSN context since it forces
network designers to use energy-aware algorithms/protocols to avoid extra costs
by replacing batteries. In addition, batteries have intrinsic effects due to electro-
chemical reactions, which provide energy to the connected device. Two widely
studied effects are the rate capacity and charge recovery.

Since batteries are complex devices, the use of battery models assists WSN
designers to predict the network behaviour since such models are capable of
providing an estimate of the battery lifetime according to the used load profile.

In this paper, we evaluated an analytical battery model, known as KiBaM,
to assess the impact of the recovery effect on the battery of low-power WSN
nodes. It was possible to verify that the way the recovery effect is used can
influence the battery lifetime. Our results presented a difference up to 10.1 min in
battery lifetime just by changing the sleep period order. In addition, a minimum
standby time (sleep period) is required to achieve a satisfactory charge recovery,
i.e., a threshold. For the parameters used in this simulation (discharge currents,
execution times, KiBaM constants), a time between 5 and 10 min is enough to
recover the battery charge. Finally, we evaluated the frequency of task switching
and its impact on the KiBaM execution time. The results showed that higher
switching frequencies increase the simulation execution time.

As future work, it is interesting to evaluate the KiBaM through experiments
with low-power WSN nodes. In this sense, it is important to consider the battery
technology used to adjust the model parameters properly.
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Abstract. Unmanned Aerial Vehicle (UAV) is a growing research topic
due to its wide range of applications. One of its major challenges is
the development of the autopilot, responsible for keeping the aircraft in
desired flight conditions and for executing navigation tasks. A naviga-
tion task that is usually necessary is the path-following, which guaran-
tees that the aircraft follows a predefined trajectory. It is possible to find
several approaches for this function, based in geometric and control tech-
niques; however, compared only for the 2D scenario. Therefore, this paper
objective is to present new extended path-following algorithms for the
3D scenario, based in the well-known path-following algorithms Looka-
head, Non-Linear Guidance Law (NLGL), Pure Pursuit and Line-of-Sight
(PLOS) and Vector Field. The algorithms parameters are obtained with
Genetic Algorithm optimisation and a comparison between all of them is
performed in an environment with and without wind. The results from
the simulations show that Vector Field has the best performance and
PLOS has the worse one due to a high effort demanded.

Keywords: Path-following algorithms · Genetic Algorithm · Unmanned
Aerial Vehicles

1 Introduction

Unmanned Aerial Vehicles (UAVs) are machines that can fly without a human
aboard and can operate autonomously or can be remotely piloted. One important
element of an autonomous UAV is the autopilot, which is responsible for keep-
ing the aircraft in desired flight conditions and for executing navigation tasks,
like following a trajectory [4]. The path-following functionality is essential most
applications, such as environmental monitoring, roads and railways mapping,
fire detection and prevention, and search and rescue in disasters [1,18].

The literature on path-following algorithms for UAVs shows a variety of
approaches that combine geometric and control techniques, like pure pursuit
[17], Line-of-Sight (LOS) [5], non-linear control [8] and vector fields [7]. Given
the diversity of choices, it is a hard decision to choose between them. As a
c© Springer International Publishing AG 2017
K. Branco et al. (Eds.): WoCCES 2013-2016, CCIS 702, pp. 63–80, 2017.
DOI: 10.1007/978-3-319-61403-8 4
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possible solution, Sujit et al. [13,14] presented a comparison between a subset
of path-following algorithms. However, a major drawback from their study is to
consider only a two dimensional (2D) scenario.

The path-following problem in a 3D scenario is to find the commanded yaw
and pitch angles, ψd and θd, and consequently their rates, qd and rd, to guarantee
that the aircraft follows a predefined trajectory. The information that is available
for the autopilot to fulfil this task is the aircraft current position, p = [x, y, z]T

in an inertial frame, its current yaw and pitch angles, ψ and θ and the desired
trajectory. The trajectory analysed in this paper is represented by a list of way-
points, Wi and Wi+1 that define straight lines. Therefore, the problem results
in minimising the distance between the position and the trajectory line. More-
over, a good solution must be accurate and provide feasible efforts for an UAV
with physical constraints.

In this context, since UAVs applications usually benefit from its natural
three dimensional (3D) movement, it is important to analyse path-following algo-
rithms in this scenario rather than 2D scenario. Thus, this paper objective is to
present new 3D extended path-following algorithms, based in the algorithms
Lookahead [2], Non-Linear Guidance Law (NLGL) [11], Pure Pursuit and Line-
of-Sight (PLOS) [16] and Vector Field [10]. Moreover, comparisons of these new
algorithms with their best configuration parameters obtained with GA are per-
formed in a simulation environment with and without wind disturbances.

2 Kinematic Modelling

In normal conditions during a stabilised flight with a constant velocity intensity,
v, the aircraft movement can be described by its kinematic modelling [15].

ẋ = v cos (ψ) cos (θ) (1)
ẏ = v sin (ψ) cos (θ) (2)
ż = −v sin (θ) (3)
q = θ̇ (4)
r = ψ̇ (5)

However, when we consider a flight that is affected by a wind with intensity
vw and direction ψw, the aircraft velocity is directly disturbed, resulting in a
kinematic modelling represented by (6)–(10) [13].

ẋ = v cos (ψ) cos (θ) + vw cos (ψw) (6)
ẏ = v sin (ψ) cos (θ) + vw sin (ψw) (7)
ż = −v sin (θ) (8)
q = θ̇ (9)
r = ψ̇ (10)
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3 3D Path-Following Algorithms

New 3D path-following algorithms were designed with an extension of well-known
2D algorithms, Lookahead [2], Non-Linear Guidance Law (NLGL) [11], Pure
Pursuit and Line-of-Sight (PLOS) [16] and Vector Field [10]. The extension
process involves the definition of two frames in addition to the inertial frame,
a path frame and an intermediate frame. The path frame represents the frame
whose Xp axis has the desired velocity direction that would keep the aircraft in
the desired trajectory.

The inertial frame, represented by axis Xi, Yi and Zi, is an Earth-fixed tan-
gential frame in local-level and tangent to the gravity. The intermediate frame,
represented by axis X ′, Y ′ and Z ′, is the frame resulted from an α rotation in
the Zi axis of the inertial frame and the path frame, represented by axis Xp, Yp

and Zp, is the result of a β rotation in the Y ′ axis of the intermediate frame, as
illustrated in Fig. 1.

Xi

Yi

Zi

Xi

Yi

X

Y

Z , Zi

α
X

Z

Xp

Yp, Y

Zp

β

Fig. 1. Inertial, intermediate and path frames and the rotations to derive them.

With the path frame specification well established, it is useful to define the
error vector as (11), where RZ (α) is the rotation matrix from the inertial frame
to the intermediate frame defined by (12) and RY ′ (β) is the rotation matrix
from the intermediate frame to the path frame defined by (13). The angles α
and β are calculated as (14) and (15) respectively, using the waypoints Wi =
[xi, yi, zi]T and Wi+1 = [xi+1, yi+1, zi+1]T that specify a straight line trajectory
and their rotated equivalents WR

i = RZ (α)Wi = [xR
i , yR

i , zR
i ]T and WR

i+1 =
RZ (α)Wi+1 = [xR

i+1, y
R
i+1, z

R
i+1]

T .

e = RY ′ (β)RZ (α) (p − Wi) (11)

RZ (α) =

⎛
⎝

cos (α) − sin (α) 0
sin (α) cos (α) 0

0 0 1

⎞
⎠ (12)



66 G.V. Pelizer et al.

RY ′ (β) =

⎛
⎝

cos (β) 0 sin (β)
0 1 0

− sin (β) 1 cos (β)

⎞
⎠ (13)

α = arctan

(
yi+1 − yi

xi+1 − xi

)
(14)

β = arctan

⎛
⎝ zR

i − zR
i+1√(

xR
i+1 − xR

i

)2 +
(
yR

i+1 − yR
i

)2

⎞
⎠ (15)

The error vector components in the path frame, e = [ex, ey, ez]T , defines the
along-track error ex, the cross-track error ey and the vertical-track error ez, as
can be seen in Fig. 2 [2].

Xi

Yi
Zi

p

Wi

Wi+1

Xp

Yp

Zp

ex

ey

ez
e

Fig. 2. The error vector e and its respective components ex, ey and ez represented in
the path frame.

Therefore, the objectives of the new 3D path-following algorithms are to
reduce the components cross-track error ey and vertical-track error ez by com-
manding the yaw rate r and pitch rate q of the aircraft. The reduction of these
errors implies an approximation to the desired trajectory defined by a straight
line. It is also important that the aircraft arrives at the desired trajectory before
it reaches the next waypoint, otherwise the convergence of the path-following
algorithms can not be guaranteed.

Since the error vector is defined from the waypoint Wi, it is natural that
the along-track error ex increases as the aircraft gets close to the next waypoint
Wi+1 and that is why it is not considered in the algorithms. This strategy was
chosen to improve the fairness when comparing all algorithms methods with a
fixed desired point to represent the line.

Each algorithm, which are the result of the extension process, uses its own
control laws and has specific parameters, as presented in the following subsec-
tions.
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3.1 Lookahead

The Lookahead path-following algorithm uses the concept of virtual target to
guarantee that the aircraft follows a desired trajectory [2]. The virtual target is
set as a goal point to where the aircraft should be directed to. On the Looka-
head approach, the point location is at a fixed distance, called lookahead dis-
tance. With the extension process, we can define two lookahead distances, one
represented by δy in the XP axis and another one represented by δz in the X ′

axis.
The extended Lookahead algorithms starts with the control laws (16)–(17),

which guarantee the convergence of the algorithm, where δy and δz respectively
drive the position to the XP YP and XP ZP planes. Then, the angular velocities
are obtained with proportional gains kψ and kθ. Algorithm 1 summarises all the
steps of the Looakhead algorithm for the 3D path following.

ψd = α + arctan

(−ey

δy

)
(16)

θd = β + arctan

(
ez

δz

)
(17)

Algorithm 1. Lookahead algorithm.
1: function Lookahead(Wi = [xi, yi, zi]

T , Wi+1 = [xi+1, yi+1, zi+1]
T , p =

[x, y, z]T , ψ, θ, δy, δz, kψ, kθ)

2: α ← arctan
(

yi+1−yi

xi+1−xi

)

3: � W R
i =

[
xR

i , yR
i , zR

i

]T
4: W R

i ← Rz (α)Wi

5: � W R
i+1 =

[
xR

i+1, y
R
i+1, z

R
i+1

]T
6: W R

i+1 ← Rz (α)Wi+1

7: β ← arctan

(
zR

i −zR
i+1

xR
i+1−xR

i

)

8: � e = [ex, ey, ez]
T

9: e = Ry (β)Rz (α) (p − Wi)

10: ψd ← α + arctan
(−ey

δy

)

11: θd ← β + arctan
(

ez
δz

)

12: rd ← kψ (ψd − ψ)
13: qd ← kθ (θd − θ)
14: return (rd, qd)
15: end function

A preliminary analysis of the gain parameters shows that low values of δy, δz,
kψ and kθ result in trajectories with high overshoot oscillations and high values
produce responses without overshoot but with high settling time.
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3.2 Non-Linear Guidance Law

The Non-Linear Guidance Law (NLGL) also uses the concept of virtual target
by calculating the interception between the trajectory and a circle with a fixed
radius from the aircraft position. The extension process was already applied to
the NLGL algorithm, with the yaw rate and pitch rate obtained from the control
laws (18)–(19), where Lψ is the radius for the circle in the XY plane, Lθ is the
radius for the circle in the X ′Z ′ plane, ηψ is the angle that directs the aircraft
to the trajectory in the XP YP plane and ηθ is the angle that directs the aircraft
to the trajectory in the XP ZP plane [12].

rd = 2
v2

Lψ
sin (ηψ) (18)

qd = 2
v2

Lθ
sin (ηθ) (19)

The results of the extended algorithm NLGL for the 3D scenario show an
effective response to a straight line trajectory for Lψ = 20 m and Lθ = 20 m [12].
However, this algorithm version still have implementation issues, such as failing
to find the interception between the trajectory line and the circle for some cases
and having oscillatory responses due to too large angles of ηψ and ηθ. To over-
come these limitations, an improved new algorithm can be implemented, called
NLGL+.

In the NLGL+, if the algorithm does not find an interception between the
line and the circle, the radius used in that iteration specifically is the smallest
distance between the aircraft and the trajectory. Another improvement is to
establish a maximum interception angle of π/4 [3]. The complete algorithm can
be seen in Algorithm 2.

A simple experiment was performed to compare the previous extended ver-
sion of NLGL and its improved version, NLGL+. By using the same trajectory
reported in [12], with waypoints W0 = [0, 0, 0]T and W1 = [150, 150, 150]T , same
kinematic model and aircraft conditions, we executed the NLGL+ for different
values of Lψ and Lθ and calculated the RMS of the module of the error consid-
ering only the cross-track error and vertical-track error. First, Lθ was fixed in
13 m and Lψ assumed different values, as can be seen in Table 1. Then, Lψ was
fixed in 13 m and Lθ assumed different values, as can be seen in Table 2.

Table 1. RMS of the error for algorithm NLGL+ with Lθ = 13 m and different values
of Lψ.

Lψ (m) 10 11 12 13 14 15 20 25 30

Error RMS (m) 5.6487 5.2739 5.0448 4.9780 5.0491 5.1296 5.5686 6.1305 6.2215
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Algorithm 2. Improved Non-Linear Guidance Law Algorithm.
1: function NLGL(Wi = [xi, yi, zi]

T , Wi+1 = [xi+1, yi+1, zi+1]
T , p = [x, y, z]T , ψ,

θ, v, Lψ, Lθ)

2: α ← arctan
(

yi+1−yi

xi+1−xi

)

3: � Calculates intersection between circle of radius Lψ and line with points Wi

and Wi+1 in xy plane.
4: � pvt,ψ = [xvt,ψ, yvt,ψ, zvt,ψ]T

5: pvt,ψ ← Intersection xy (Lψ,Wi ,Wi+1)

6: � W R
i =

[
xR

i , yR
i , zR

i

]T
7: W R

i ← Rz (α)Wi

8: � W R
i+1 =

[
xR

i+1, y
R
i+1, z

R
i+1

]T
9: W R

i+1 ← Rz (α)Wi+1

10: � Calculates intersection between circle of radius Lθ and line with points W R
i

and W R
i+1 in xz plane.

11: � pvt,θ = [xvt,θ, yvt,θ, zvt,θ]
T

12: pvt,θ ← Intersection xz
(
Lθ,W

R
i ,W R

i+1

)

13: σψ ← arctan
(

yvt,ψ−y

xvt,ψ−x

)

14: σθ ← arctan
(

z−zvt,θ

xvt,θ−x

)

15: ηψ ← ψ − σψ

16: if ηψ > π/4 then
17: ηψ ← π/4
18: end if
19: ηθ ← θ − σθ

20: if ηθ > π/4 then
21: ηθ ← π/4
22: end if
23: rd ← 2 v2

Lψ
sin (ηψ)

24: qd ← 2 v2

Lθ
sin (ηθ)

25: return (rd, qd)
26: end function

Table 2. RMS of the error for algorithm NLGL+ with Lψ = 13 m and different values
of Lθ.

Lθ (m) 10 11 12 13 14 15 20 25 30

Error RMS (m) 4.9821 4.9750 4.9747 4.9780 4.9820 4.9874 5.0183 5.0507 5.0874

The error RMS of the previous version of extended NLGL for its best para-
meter configuration (Lψ = 20 and Lθ = 20) is 5.3734 m, while the error RMS of
the best parameter configuration (Lψ = 13 and Lθ = 12) of NLGL+ is 4.9747 m.
We were able to use smaller values for Lθ and Lψ in NLGL+ due to absence of
the geometric limitation, which, together with limited ηψ and ηθ, resulted in a
faster convergence to the straight line trajectory and smaller errors. Therefore,
since NLGL+ shows better results than its previous version, it is chosen to be
used as representative for comparison with the other methods.
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3.3 Pure Pursuit and Line-of-Sight

The Pure Pursuit and Line-of-Sight (PLOS) algorithm is composed of two strate-
gies. The first, Line-of-Sight (LOS) guidance, is responsible for decreasing the
position error with respect to the desired trajectory, while the second one, pure
pursuit, drives the aircraft to the next waypoint by adjusting the angle direction
[16].

In the extension process, both strategies are adapted, considering the cross-
track error and vertical-track error for the LOS part and the desired angles as
α and β for the pure pursuit part. The resulting control laws are defined as
(20) for the convergence in the XP YP plane and as (21) for the convergence in
the XP ZP plane, where kPP,ψ and kPP,θ are the proportional gains of the pure
pursuit strategy and kLOS,ψ and kLOS,θ are the proportional gains of the LOS
strategy. Algorithm 3 describes all calculations of the extended PLOS algorithm.

rd = kPP,ψ (ψd − ψ) + kLOS,ψ (−ey) (20)

qd = kPP,θ (θd − θ) + kLOS,θ (ez) (21)

Algorithm 3. Pure Pursuit and Line-of-Sight algorithm.
1: function PLOS(Wi = [xi, yi, zi]

T , Wi+1 = [xi+1, yi+1, zi+1]
T , p = [x, y, z]T , ψ,

θ, kPP,ψ, kLOS,ψ, kPP,θ, kLOS,θ)

2: α ← arctan
(

yi+1−yi

xi+1−xi

)

3: ψd ← α

4: � W R
i =

[
xR

i , yR
i , zR

i

]T
5: W R

i ← Rz (α)Wi

6: � W R
i+1 =

[
xR

i+1, y
R
i+1, z

R
i+1

]T
7: W R

i+1 ← Rz (α)Wi+1

8: � pR =
[
xR, yR, zR

]T
9: pR ← Rz (α)p

10: β ← arctan

(
zR

i −zR
i+1

xR
i+1−xR

i

)

11: θd ← β
12: � e = [ex, ey, ez]

T

13: e = Ry (β)Rz (α) (p − Wi)
14: rd ← kPP,ψ (ψd − ψ) + kLOS,ψ (−ey)
15: qd ← kPP,θ (θd − θ) + kLOS,θ (ez)
16: return (rd, qd)
17: end function

In the extended PLOS algorithm, one strategy can predominate over the
other, according to the relation between the pure pursuit gain and the LOS
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gain. For this reason, besides finding values that give satisfactory responses, it
is also important to find a balance between the gains.

An initial analysis of the parameters show that low values of kPP,ψ and kPP,θ

leads to oscillatory trajectories that may not converge, while high values lead to
high settling time. In the case of high values of kLOS,ψ and kLOS,θ the trajectory
has overshoot, while for low values it converges too slowly.

3.4 Vector Field

The Vector Field path-following algorithm uses the notion of vector fields that
are directed toward the desired trajectory and indicates the desired direction of
flight. The original Vector Field algorithm uses sliding mode approach to define
the trajectory desired course and demonstrate the convergence of the control law
in the presence of wind disturbances with Lyapunov stability arguments [10].

The resulting control laws from the extension process for the Vector Field
algorithm are (22) and (23), where χ∞

ψ and χ∞
θ are the maximum angles of

approach to the trajectory; εψ and εθ are the width of the transition region
around the sliding surface that reduces the chatter in the control; sψ and sθ

are positive constants that influence the rate of transition of the desired angle
from χ∞

ψ,θ to 0; χ̃ψ and χ̃θ are the desired course of the vector field defined,
respectively, by (24) for the XP YP plane and by (25) for the XP ZP plane; and
sat (x) is the saturation function defined in (26) and used to avoid adverse affects
of chattering. The parameters kψ and kθ are gains of the yaw rate and pitch rate
proportional controllers, as can be seen in Algorithm 4.

ψd = ψ − χ∞
ψ

kψ

2
π

sψv sin (ψ)
1 − (sψey)2

− κψ

kψ
sat

(
χ̃ψ

εψ

)
(22)

θd = θ − χ∞
θ

kθ

2
π

sθv sin (θ)
1 − (sθez)

2 − κθ

kθ
sat

(
χ̃θ

εθ

)
(23)

χ̃ψ = ψ −
(

−χ∞
ψ

2
π

arctan (sψey)
)

(24)

χ̃θ = θ −
(

−χ∞
θ

2
π

arctan (sθey)
)

(25)

sat (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x, if |x| ≤ 1
1, if |x| > 1 and x > 0
0, if |x| > 1 and x = 0
−1, if |x| > 1 and x < 0

(26)
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Algorithm 4. Vector Field algorithm.
1: function Vector Field(Wi = [xi, yi, zi]

T , Wi+1 = [xi+1, yi+1, zi+1]
T , p =

[x, y, z]T , ψ, θ, v, χ∞
ψ , kψ, sψ, κψ, εψ, χ∞

θ , kθ, sθ, κθ, εθ)

2: α ← arctan
(

yi+1−yi

xi+1−xi

)

3: � W R
i =

[
xR

i , yR
i , zR

i

]T
4: W R

i ← Rz (α)Wi

5: � W R
i+1 =

[
xR

i+1, y
R
i+1, z

R
i+1

]T
6: W R

i+1 ← Rz (α)Wi+1

7: β ← arctan

(
zR

i −zR
i+1

xR
i+1−xR

i

)

8: � e = [ex, ey, ez]
T

9: e = Ry (β)Rz (α) (p − Wi)
10: ψR ← ψ − α
11: θR ← θ − β
12: χ̃ψ ← ψR − (−χ∞

ψ
2
π
arctan (sψey)

)
13: χ̃θ ← θR − (−χ∞

θ
2
π
arctan (sθey)

)

14: ψd ← ψR − χ∞
ψ

kψ

2
π

sψv sin(ψ)

1−(sψey)2
− κψ

kψ
sat
(

χ̃ψ

εψ

)

15: θd ← θR − χ∞
θ

kθ

2
π

sθv sin(θ)

1−(sθez)
2 − κθ

kθ
sat
(

χ̃θ
εθ

)

16: ψd ← ψd + α
17: θd ← θd + β
18: rd ← kψ (ψd − ψ)
19: qd ← kθ (θd − θ)
20: return (rd, qd)
21: end function

The stability of the Vector Field algorithm is proved for χ∞
ψ,θ ≤ π/2 and

large values of it implies in faster convergence toward the path, so it can be
set as π/2. Another parameter that can be set is εψ,θ, which is only responsible
for reducing the control chatter, so can be set as 1. However, the other control
parameters define the shape of the sliding surface and the resulting trajectory
and should be correctly chosen to avoid overshoot with large gains and to avoid
slow convergence with small gains.

All path-following algorithms extended for the 3D scenario have parameters
that are not straightforward to determine. Therefore, it must be found values
that could result in responses without overshoot and that converges rapidly to
the desired straight line trajectory.

4 Parameters Adjustment

In order to adjust the parameters of each 3D path-following algorithm, it is
employed an optimisation procedure based on Genetic Algorithm (GA). The GA
method is chosen due to its ability to avoid multiple local optimum solutions by
searching through a wide domain and the modularity of its implementation [9].
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The GA is an iterative process that uses the concepts of mutations, crossover
and selection to find solutions for an optimisation problem. It evolves popu-
lations, which are possible solutions, by considering how fit they are in each
iteration. The fitness is predetermined by an objective function that defines the
problem itself.

In the path-following problem, we can evaluate a solution according to the
cross-track error ey and vertical-track error ez of a given trajectory, which must
be collectively minimised. It is also important to consider the effort for per-
forming the manoeuvres for an aircraft, which in the kinematic modelling are
proportional to the commanded yaw and pitch rate. Therefore, the objective
function must associate the trajectory error and the aircraft effort.

The error in each iteration of a path-following simulation can be expressed
by the norm of an vector composed by the cross-track error and vertical-track
error, as in (27). Thus, the error for a complete trajectory can be represented
by its RMS, calculated with (28).

path errori =
√

ey,i
2 + ez,i

2 (27)

eRMS =

√√√√ 1
N

i=N∑
i=1

path errori
2 (28)

Since the efforts are proportional to the pitch and yaw rates, the efforts for
a complete trajectory can be calculated as the mean of their values from each
iteration, resulting in (29) and (30).

ωq =
1
N

i=N∑
i=1

qi (29)

ωr =
1
N

i=N∑
i=1

ri (30)

The objective function can be specified as (31), where M defines a metric
that must be minimised, We is a weight for the error part, Wω is a weight for the
effort part, eRMS,max is the maximum value of eRMS , ωq,max is the maximum
value of ωq and ωr,max is the maximum value of ωr. The maximum values are
used for normalisation of each metric component to guarantee a fair balance
between different physical measurements. It was also considered to use different
weights for the error part and the effort part to add flexibility to the metric and
to reflect design requirements.

M = We

(
eRMS

eRMS,max

)
+ Wω0.5

(
ωq

ωq,max
+

ωr

ωr,max

)
(31)

Therefore, a set of parameters for each 3D extended path-following algorithm
can be obtained with GA by minimising the metric M . In this way, it is possible
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to determine the best parameters configuration for each path-following algorithm
with a same procedure.

5 Comparison Results

This section presents the results of the best parameters configuration obtained
with the GA for each 3D extended path-following algorithms. It is also shown
a comparison between all algorithms in the presence and absence of wind
disturbances. The simulation environment based on the kinematic modelling,
the algorithms and the parameters adjustment procedure were implemented in
MATLAB R©.

5.1 Optimisation Procedure

The parameters of the path-following algorithms were set with the GA, as
described in Sect. 4, for the kinematic modelling without wind presented in
(1)–(5). To represent a more realistic scenario for an aircraft with physical
constraints, the pitch and yaw rates were limited as ‖q‖ < 0.19 rad/s and
‖r‖ < 0.33 rad/s [13]. Moreover, it is assumed that the commanded pitch and
yaw rates are immediately performed by the aircraft when smaller than their
limited values, which is appropriate because an inner loop with higher frequency
in the autopilot could guarantee its execution.

The trajectory used to optimise the parameters was defined by the following
list of waypoints: W0 = [0, 0, 0]T , W1 = [0, 500, 0]T , W2 = [500, 500, 500]T , W3 =
[500, 0, 500]T and W4 = [0, 0, 0]T . The initial position of the aircraft was p =
[5, 30, 20]T with θ = 0, ψ = 0 and a constant velocity during the whole execution
of v = 15 m/s.

The GA was executed with the ga function from the Global Optimization
Toolbox to minimise the objective function defined in (31), with We = 0.7,
Wω = 0.3 and eRMS,max = 20 m, ωq,max = 0.2 rad/s and ωr,max = 0.2 rad/s.
The GA was configured with a population size of 50 individuals and a tolerance
function of 10−4. The resulting parameters for each 3D extended path-following
algorithm can be seen in Table 3.

Table 3. Best parameter configuration obtained with GA for the objective function
(31) for all 3D extended path-following algorithms.

Algorithm Parameters

Lookahead δy = 21.81 m, kψ = 33.19
δz = 66.87 m, kθ = 105.71

PLOS kPP,ψ = 125.39, kLOS,ψ = 5.49
kPP,θ = 447.43, kLOS,θ = 67.19

NLGL+ Lψ = 22.50 m, Lθ = 83.60 m

Vector Field χ∞
ψ = π/2, εψ = 1, kψ = 2.22, sψ = 0.11, κψ = 0.67

χ∞
θ = π/2, εθ = 1, kθ = 3.10, sθ = 0.04, κθ = 7.06
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Figure 3 presents the trajectories produced for each algorithm, with their
best parameters from Table 3, for the same conditions without wind used for the
parameters adjustment. The overall results show that the algorithms are effective
and behave similarly in the steady response. Moreover, it can be inferred that
PLOS directs the aircraft more quickly to the desired trajectory but its response
has oscillations that undermines its correctness.

The errors and efforts normalised and the corresponding metric for each
algorithm executing the trajectories represented in Fig. 3 can be seen in Table 4.
The best performance, according to the metric, is achieved by Vector Field,
followed by Lookahead and NLGL+. PLOS has the higher metric due to an
increased effort from the yaw and pitch rates.

The algorithms error RMS are very close to each other, which also happens
to the q effort and r effort for Lookahead, NLGL+ and Vector Field. Only PLOS

Fig. 3. Trajectories produced without wind for each 3D extended path-following
algorithm with their best parameters from Table 3.

Table 4. Error, effort and metric for each algorithm executing the trajectories repre-
sented in Fig. 3 without wind.

Algorithm Normalised
error RMS

Normalised
effort for q

Normalised
effort for r

Metric M

Lookahead 0.66 0.11 0.39 0.54

PLOS 0.65 0.93 0.42 0.66

NLGL+ 0.66 0.11 0.38 0.54

Vector Field 0.65 0.14 0.38 0.53
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response has a q effort and r effort significantly higher than the others, which
can be explained by its high proportional gains.

5.2 Simulations with Wind Disturbances

The path-following algorithms can have different performances when submitted
to disturbed environments. Thus, to effectively compare the 3D extended path-
following algorithms, a comparison with wind disturbances was also executed,
using the kinematic modelling defined in (6)–(10).

For this comparison, it was generated 500 experiments for winds with dif-
ferent intensities and directions, that changed every 1 min. Then, the trajec-
tory described by the waypoints W0 = [0, 0, 0]T , W1 = [0, 500, 0]T , W2 =
[500, 500, 500]T , W3 = [500, 0, 500]T and W4 = [0, 0, 0]T was executed by each
3D extended path-following algorithm, with the parameters from Table 3. The
initial position of the aircraft for the experiments was p = [5, 30, 20]T with θ = 0,
ψ = 0 and constant velocity of v = 15 m/s.

The average of the normalised error RMS, normalised effort for q, normalised
effort for r and metric were calculated from the trajectories resulting from the
500 experiments for each algorithm. Also, an confidence interval was determined
with a 95% confidence level to compare the trajectories [6].

Figure 4 shows the results for the normalised error RMS. It is possible to
observe that NLGL+ has the worst error, while Lookahead has an intermedi-
ate value and PLOS and Vector Field have lower errors. This result contrasts
with the ones from the simulation without wind, demonstrating the different
performance in a disturbed environment.

Lookahead PLOS NLGL+ Vector
Field

Error RMS 0.77 0.72 0.83 0.69
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Fig. 4. Average of the normalised error RMS for the 500 experiments with wind dis-
turbances to compare the 3D extended path-following algorithms.
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Lookahead PLOS NLGL+ Vector
Field

Effort q 0.1 0.93 0.09 0.15
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Fig. 5. Average of the normalised effort for q for the 500 experiments with wind dis-
turbances to compare the 3D extended path-following algorithms.

Lookahead PLOS NLGL+ Vector
Field

Effort r 0.35 0.54 0.34 0.39
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Fig. 6. Average of the normalised effort for r for the 500 experiments with wind dis-
turbances to compare the 3D extended path-following algorithms.

According to the q effort, represented in Fig. 5, the performance is similar to
Lookahead, NLGL+ and Vector Field and significantly worse for PLOS, as hap-
pened with the simulation without wind. This result was expected because the
wind has only yaw direction, influencing very little in the trajectories altitude.

Figure 6 presents the normalised effort for r. The effort is lower for Lookahead
and NLGL+, slightly higher for Vector Field and considerably higher for PLOS.
The efforts are also similar to the simulation without wind, which indicates that
the average eliminates the wind influence in the efforts.
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Lookahead PLOS NLGL+ Vector Field
Metric 0.61 0.71 0.65 0.57
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Fig. 7. Average of the metric M for the 500 experiments with wind disturbances to
compare the 3D extended path-following algorithms.

The metric, depicted in Fig. 7, shows a better performance for the Vector
Field, followed by Lookahead, NLGL+ and, with the worse performance, PLOS.
The result is consistent with the simulation without wind and evinces the Vector
Field preeminence, as also shown on comparisons in the literature for the 2D
scenario [13]. Moreover, PLOS had the worse performance for the 3D scenario,
as a consequence of its high effort.

6 Conclusions

The main purpose of this paper is to present new 3D extended path-following
algorithms, based in the algorithms Lookahead, NLGL, PLOS and Vector Field.
The extension process, which can also be applied to others path-following algo-
rithms, was detailed and a GA method was used to optimise the new algorithms
parameters.

The analysis of the new algorithms was performed as a comparison in two
different environments. The first environment was the kinematic modelling of an
UAV with constant velocity without wind disturbances, in which Vector Field
had the best performance and PLOS had the worse one.

In the second environment, winds with different intensities and directions
were replicated and applied to the execution of the 3D extended path-following
algorithms. The trajectories resulted also elucidated the superiority of Vector
Field, with the lowest error and aircraft effort. PLOS had the second lowest
error, however, its demanded effort was too high, which affected its performance
when compared to the others algorithms. Summarising, NLGL+ and Lookahead
had a similar intermediate performance with an effort proportional to Vector
Field.
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The resulting path-following algorithms can be readily used for UAVs, encom-
passing their complete movement in the 3D scenarios. Therefore, as future work,
it is possible to analyse the new path-following algorithms in a simulation that
also considers the dynamic modelling for UAVs and to evaluate their efficiency
in experimental flights.
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Abstract. The fields of precision agriculture, environmental engineer-
ing, among others, often have applications that use sensors to monitor
the environment. Examples of such applications include pest control, irri-
gation process, soil fertility mapping, monitoring of forest areas and of
urban rivers etc. Wireless sensor networks (WSNs) have been proposed
as distributed infrastructures for these applications. These networks pro-
duce a large volume of data and use low-cost sensors. However, these sen-
sors usually have low-reliability, generating anomalous data (outliers),
affecting the final quality of the monitoring. These conditions imply the
need to use methods for outlier detection and treatment, allowing the
correct operation of the network and increasing the confidence in the
monitored data. This article proposes an architecture for information
fusion focusing on low-reliability sensors. The architecture is integrated
with techniques for detection and treatment of outliers, and it was eval-
uated through two case studies. The first one involving low-cost baro-
metric pressure sensors, whose monitored data were processed by out-
lier detection techniques. The second one involves the LUCE (Lausanne
Urban Canopy Experiment) large-scale scenario, whose database is fed
by 84 sensors for monitoring weather conditions. The results show that
some of the low-level fusion methods and outliers detection techniques,
when combined and organized according to the proposed architecture,
can replace a single centralized, high-cost sensor, maintaining the confi-
dence of the monitored data.

Keywords: Information fusion · Data fusion · Outlier detection ·
WSN · Wireless sensor network

1 Introduction

A Wireless Sensor Network (WSN) consists of a network composed of low-
cost nodes, with small dimensions and with some processing and transmission
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-61403-8 5
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capacity. In this type of network, nodes are equipped with sensors capable of
monitoring scalars, and they have capabilities that go beyond of simply collect-
ing information. They have features that allow them to analyze data, remove
spurious data, detect events in the environment and perform data fusion of the
sensor data, in order to reduce the amount of transmitted data. Usually, nodes
communicate with a base station, thus data can be analyzed and eventually
stored [1]. The application fields of these networks range from industrial, domes-
tic, military, urban and rural areas [2].

WSNs are becoming widely used in automation monitoring processes of var-
ious physical phenomena. One advantages these networks is that they replace
traditional centralized monitoring applications, where there is a single sensor
monitoring the environment. This sensor, being unique, needs to be highly reli-
able, robust and expensive. The deployment of this sensor, in order to guarantee
the measurements reliability, has a high cost associated. This centralized app-
roach also entails costly maintenance because, commonly, data storage is done
in data loggers that are dedicated devices for locally storing data collected by
sensors. The high cost of maintenance is also a problem, since there is often
a requirement that this type of sensor is deployed in places of difficult access,
making it impossible to constantly replace its batteries and making difficult the
access to data loggers.

Consequently, several applications that use a WSN infrastructure, such as
environmental monitoring, are no longer exclusively investigated by the academy
and are gradually being adopted by companies, replacing traditional solutions
[3]. However, there are several challenges that need to be overcome, for example:
(i) large amount of data, (ii) energy consumption of nodes must be reduced and
(iii) there are difficulties in detecting anomalous data, and when these data are
detected, they need to classify whether they are spurious data (e.g. resulting
from sensor failures) or relevant events in the environment (e.g. forest fire).

This work focuses on problems (i) to (iii), dealing with them from the point of
view of data fusion methods [4–7]. These techniques, through the mathematical
manipulation of the monitored data set, are capable of handling large amounts of
data and can reduce the energy consumption. Besides, they are able to increase
the degree of truthfulness of the monitored network data. More specifically, this
paper proposes that these problems can be treated in a systematic way, through
an information fusion architecture that organizes data flow and the various activ-
ities required to integrate different types of data fusion techniques.

The main question that motivates this work is to know if a set of low-cost
sensors can replace the conventional use of centralized and high-cost sensors,
maintaining, or even increasing, the degree of truthfulness achieved in the mon-
itored data. In the following of this article, the relevant aspects of information
fusion are presented in Sect. 2. The proposal of an architecture for the data
fusion of WSN low-cost sensor data is presented in Sect. 3. In Sect. 4, a case
study is described, which uses low-cost barometric sensors. In Sect. 5, in order
to assess the proposed architecture in an environment with a higher number of
nodes and greater information traffic, is introduced a case study of temperature
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sensors installed in a large scale area. Finally, some final considerations and
future works are presented.

2 Background

2.1 Information Fusion

Information Fusion (or data fusion) is a largely used denomination [3], and can
be defined as the investigation of efficient methods that automatically or semi-
automatically can transform information of several sources and with different
time stamps to a consistent information. This information can be used by humans
or machines for decision making. The advantages of using a multisensor informa-
tion fusion are high availability, better spatial and temporal coverage and better
accuracy and/or precision. However, when a large number of sensors present
erroneous sensing values, the global performance of the system can be affected
[8,9].

Large WSNs based on low-cost nodes are generally used in the monitoring of
scalars. However, these low-cost sensors are not reliable individually. Thus, data
fusion methods are used to overcome this low reliability based on the fusion of
several sensor readings. This way, data fusion can be used to detect outliers [10].

The techniques for information fusion can be classified according to the
abstraction level of the sensed data [11]. In low-level data fusion, the raw sensed
data is provided as inputs and combined directly with other raw data, assuming
that the resulting data will present more accuracy than the individual inputs.
In the intermediate level, the data abstraction occurs in such a way that it is
possible to represent an object in a precise and concise way. In the high-level
data fusion or decision-making process, decision-making takes place based on
information from the low- and middle-level layers, where a priori knowledge and
specific information about decision-making can be incorporated.

Data Fusion can be also classified based on the topology of sensors [12]. In
the complementary configuration, sensors do not depend directly on each other
but act in a cooperative way to obtain a complete picture of the observed phe-
nomenon. In a redundant configuration, independent measurements of the same
property are provided at different times or by two or more sources at the same
instant in order to provide better accuracy. In the cooperative configuration,
information is provided by more than one sensor to derive information that
would not be available if only one were used. Typically, in this type of data
fusion, there is a loss of precision and reliability.

2.2 Outlier Detection Methods

This section addresses some statistical methods for outlier detection in wireless
sensor networks. The choice of these methods is justified: it does not require a
history of the previous messages and the low computational nodes consumption.
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Detection can be performed, for example, by simple inspection of the sensor oper-
ating range. Therefore, the sensed data that are outside the sensor operational
range must be discarded.

In outlier data fusion methods, the data of the sensors are compared in
order to detect possible conflicting sensors. Several data fusion algorithms can
be considered. In our architecture, we consider as an appropriate algorithm, the
one with the ability to compare the data obtained by the sensors involved in
the data fusion and, following a specific criterion, to decide whether or not to
suppress its data. However, it is not desirable to unnecessarily exclude sensor
observations when the readings are correct.

Besides, it is convenient that when an observation is discarded, somehow the
algorithm has the ability to clearly mark or show which sensor and why the data
must discarded. Due to uncertainty about the quality of the low-cost sensors,
it is desirable that the algorithm has mechanisms capable of computing sensor
quality during the data fusion process.

A widely used method for data fusion is a simple average, which is not suitable
for the vast majority of applications. The following subsections describe the
main characteristics of methods evaluated in this article. It is important to note
that there are several other techniques that could be evaluated, such as, for
example, techniques based on the Kalman filter [8]. However, these approaches
are statefull, since they require a history of the previous messages of each sensor,
and the methods studied in this paper are stateless.

A. Fault Tolerant Average - FTA
One of the methods of sensor fusion with a simple application and good results
is the Fault Tolerant Average (FTA) proposed by [13]. Basically, it divides an
ordered set of data into three parts, eliminating the edges.

The first step in this technique is to sort the set of data sent by the sensor
nodes. Taking t = N/3, where N is the size of the set, we discard the bor-
ders of the ordered sample, that is, the largest and the smallest t values. This
approach assumes that if there are outliers, they will be removed along with
those “extreme” values. The final value is the calculation of mean and standard
deviation of the remaining values.

B. Confidence-Weighted Averaging - CWA
Elmenreich [3] proposed a data fusion method setting for each sensor a value of
“confidence” inversely associated with the variance of the sensor. Variance is a
useful measure in many cases because they are additive, thus different groups
of data can be compared. The standard deviation, in turn, has the advantage of
being expressed in the same unit as the measured variable, making it easier to
compare results. Following this approach, in the best case, the variance is close
to zero, achieving a maximum confidence value. The worst-case variance can be
calculated as the variation of a random function evenly distributed between the
limits a and b, where these values are the minimum and maximum values of a
uniformly distributed random function.
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C. CWA+FTA Method
Elmenreich [3] suggested that CWA could be used in conjunction with other
methods, such as FTA proposed by [13]. Thus the method becomes fault tolerant
and considers the quality of the sensor in the data fusion. The method consists
of calculating the weighted mean including all sensors using the CWA method
and subsequently eliminating 2/3 of the sensors as specified in the FTA and
calculating the weighted average again.

D. Modified CWA with a Test of Fixed Value Locked Sensor
The method proposed in [3] to fuse information from different sensors, prioritizes
the sensors with lower variance. An exception pointed out by the author of the
algorithm is that, if the variance is zero, some treatment to avoid division by
zero is required. However, in preliminary experiments carried out in this work,
another problem was observed, since, as the proposed architecture is focused on
WSNs using low-cost sensors. It was observed in some execution scenarios that
readings of data collected by a single sensor could have equal values for a long
period of time, characterizing a faulty and locked sensor.

This sensor lock may be permanent or temporary for a short or long time.
This locked sensor, due to its low variance, makes its incorrect data contribute
to a greater weight in the calculation of the weighted average than the correct
sensors. Thus, a simple alteration of the original algorithm was necessary for
implementation.

Basically, when a sensor exhibits variations between readings below and a
specified value (and dependent on the type and specification of the sensor), its
calculated variance will be artificially increased to the maximum possible value,
thus contributing minimally to the weighted average calculation.

E. Chauvenet Method
The Chauvenet criterion is a statistical method that was developed for detection
of outliers, and can be used to Byzantine fault detection. It is based on the
hypothesis that an arbitrary measurement can be rejected if the probability of
obtaining the deviation from the mean to this value is less than the inverse of
twice the number of measurements [14].

The sample size is very important in using the method because, with a large
sample, there is little chance that one of the values influence the average signif-
icantly. A divergent value in a large sample should be very far from the average
to move to distribution. This makes the use of few data requirements.

F. Peirce Criterion
The Peirce method is a statistical technique for detecting outliers, in a sam-
ple with normal behavior. The original article dates from 1852, however, it is
widely used on current days [14]. The basic idea of the proposed method is that
the observations should be rejected when the actual deviations from the mean
obtained by keeping them, are less than the deviations obtained by its rejec-
tion, multiplied by the probability of making as many and not more, unusual
observations. Hence, the goal of his technique was to generate error probabilities
occurring in the system where all n observations are retained versus the rejected
samples.
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Thus, k observations are rejected and it checks whether the sample is closer
to normal than previous one. The Peirce Criterion provides for detection of more
than one discordant data in the sample. However, Peirce’s calculation method
is mathematically complex to use. In this way, there are tables derived from
the work of Peirce [15] that can be used To improve the performance of the
calculations.

3 Architecture for Low-Cost Sensor Data Fusion

In this paper we propose an architecture for monitoring with WSN and divides
the activities carried out into three layers: Local Fusion Layer, Low-Level Fusion
Layer, Management Layer and User Interface (Fig. 1).

Fig. 1. Proposed architecture for sensor data fusion in WSN.

The main contribution of this article is in the definition of the Low-Level Fusion
Layer, which is responsible for receiving data from the WSN, processing, and for-
warding to the Management Layer and User Interface layer [11]. Techniques com-
monly employed in the Local Fusion Layer are presented in the following.
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3.1 Local Data Fusion Layer

The purpose of this level of processing is to configure the sensors to collect data
about the environment where they are inserted, to perform some type of local
data fusion, and to forward the data for the transmission. One of the first steps
is to check with the sensor manufacturer the recommended sampling rates.

It is also necessary to check if there is any kind of adjustment to be made in
the sensor, such as micro calibration. Depending on the rate, it can be applied
locally to the data, such as the arithmetic average. Some methods in the upper
layers of the architecture may use other information in its processing, such as
variance or variance generated by the local data fusion method. For the calcu-
lation of these values, a good option is to perform the fusion between beacons1.

3.2 The Low-Level Data Fusion Layer

The low-level data fusion layer is subdivided into: calibration; timestamping;
detection of systematic and gross errors; methods of fusion and feedback (Fig. 1).

Sensor calibration is a fundamental problem in WSN [16]. It consists of the set
of establishes and corrects the difference between a measured value and the true
value. In some cases, it may consist of an additive or multiplicative correction
of the indication with a measurement uncertainty. As the true value is ignored,
the calibration tends to minimize the difference between the read value and the
true value of importance.

The calibration of each device, individually and manually, known as a micro-
calibration may be intractable when a large number of sensors is considered [16].
Therefore, self-calibration can be employed in this process. A conventional cali-
bration is the readings corrections of each sensor based on a common reference,
or be based on the reference of a sensors group [17].

In the proposed architecture, low-level data fusion can be executed online
or offline. In the case of off-line data fusion, cluster heads do not perform the
role of fusion centers, they only forward the data received towards the PAN
coordinator, where the data fusion will be carried out. Offline data fusion can
be considered for further study of the observed environment. In this case, it is
necessary to associate time stamps referring to the moment of observation of
each stored data.

Data Fusion Centers play an important role in the Low-level Data Fusion
when online data fusion occur, being paramount in WSN that also have actua-
tors, so that their results can be used immediately.

4 Experimental Assessment

The proposed architecture is tested through a case study. An environmental
monitoring application based on atmospheric pressure is used to validate the
1 Beacons are control packets periodically generated by the coordinator to synchronize

an IEEE 802.15.4 network.
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proposal. Atmospheric pressure is important for several applications like mete-
orology and environmental engineering. Usually, just one sensor (high-quality
sensor) is used, however, it is a high-cost sensor.

The chosen place to execute the experiments was near the Hercilio Luz Air-
port in Florianópolis, SC-Brazil. Figure 2 shows the external reference sensor
that was used for comparison (identified in this work as Vaisala), this reference
sensor is used by the Brazilian Air Force and is located near the end of an airport
landing strip, at 5 m high. The distance between the airport sensor (reference
sensor) and the site of the experiments is 1300 m. Moreover, aiming the com-
parison between the low-cost sensor and the reference sensor, another reference
sensor was used (identified in this work as internal reference sensor Young).

Fig. 2. Place of experiment.

The communication between experimental sensors was performed based on
an IEEE 802.15.4 wireless sensor network in star topology. Four low-cost sen-
sors were used in the experiments, which is required by data fusion techniques
discussed in previous sessions of this paper.

The fifth node was configured as a PAN coordinator, this node is responsible
for storing data. The WSN was configured in beacon mode, PAN coordinator
is responsible for synchronizing the networks through beacon sending. In order
to configure the network the periodicity of the application was BO =11, that
defines a Beacon Interval (BI) of 30 s.

Other nodes were equipped with the low-cost sensor, and the system was
implemented over the MAC layer. This way, it was not used WSN operating
systems like TinyOS or FreeRTOS.
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Nodes 1, 2, 3 and 4 use 2 1.5 V batteries for the embedded system and
sensors. Node 5 use AC/DC power and was connected to a computer using serial
communication. The collected data were stored in text file using the following
format: <timestamp, node[1 − 10], variance [1 − 10]>.

The base station computer was synchronized through NTP protocol, the
same protocol used in the airport system. The data fusion was performed later
due to experiment constraints.

4.1 Experimental Results

The first data analysis was based on internal and external reference sensor. The
main goal was to verify the proximity of internal and external reference sensors.

It was selected data regarding 24 h of readings and the average of atmospheric
pressure was calculated (Fig. 3).

Fig. 3. Reference sensors comparison.

In order to make the comparison, it was necessary to compute the difference
of altitude among two sensors (more or less 1.5 m), that is 0.1 hPa. Besides the
altitude, it was considered the precision of sensors. It is informed that sensor
readings may vary 0,3 hPa, thus the reading difference between two sensors can
not be over 0,6 hPa. It was observed that the maximum difference was 0,25
hPa. Thus, we considered that the reference sensor is validated, this validation
is based on external reference sensor (Vaisala) that is periodically calibrated,
because these readings are used for landing and take-off operations. The data
collected by sensors and the results obtained by data fusion will be compared
just with the internal reference sensor.
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Diverse analysis was performed in order to assess the data fusion techniques.
In this paper, we present an analysis of a data sample that contains an incorrect
sensor (Fig. 4).

Fig. 4. Data sample with a discordant sensor.

It is possible to note that this sensor always sends the same atmospheric
pressure reading, thus it is considered a high precision sensor (variance zero).
However, the difference observed is due to the low battery level of nodes. Figure 4
shows that values of Bosch4 sensor remain different from reference sensor 1.31
hPa, and other sensors just 0,07 hPa.

Figure 5 shows the results of data fusion techniques over these data. The
average method shows the worst performance due to the fact that all data are
considered in the data fusion method. The erroneous sensor in the sample causes
a distortion in the final result and it is not possible to detect the outlier. The
Chauvenet method detects the sensor 4 as an outlier, obtaining the same result
of the arithmetic mean. It is interesting to note that if the reference sensor
was considered in data fusion, the Chauvenet method would achieve a better
performance: the outlier would be eliminated and the average will be performed
with other sensors.

The Peirce method could also detect the sensor 4 as an outlier. The maximum
difference between reference sensor and the data fusion value was 0.03 hPa. MTF
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Fig. 5. Application of data fusion methods.

always discard the values of 2/3 of sensors, even if these values are similar, this
behavior is not noticed in Chauvenet and Peirce.

Elmenreich method (CWA) can be considered a complete method, because
it considers the sensor quality. However, the variance values must be available.
There are three ways to execute the method. The first one considers just variance
informed by sensors (CWA); the second way includes the modifications proposed
in this paper (altered CWA) and, finally, the modified CWA algorithm combined
with a fault tolerant average (CWA+FTA).

It is possible to notice that results presented in Table 1 show that Elmenre-
ich method (CWA) presents a bad performance, obtaining a 1,2 hPa from the
reference sensor. This result shows that when a sensor presents equal readings,
the variance is zero and the system presents the highest level of confidence in
the faulty sensor.

When modified CWA method is used, we consider that a sensor with constant
variance near zero, during a certain period, is considered an outlier, and its
variance is artificially raised to a maximum value. Thus, the use of faulty sensor
in the weighted average does not change the result, and an approximate value
from the reference sensor was achieved. CWA+MTF achieved values near the
reference values.

Table 2 shows the results of MTF and CWA+MTF. It is possible to notice
that readings of sensor 2 were considered by all methods and the values from
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Table 1. Elmenreich method.

Rounds Reference CWA CWA+FTA CWA modified

1 1012,29 1013,37 1012,31 1012,30

2 1012,27 1013,38 1012,28 1012,26

3 1012,24 1013,35 1012,25 1012,23

4 1012,23 1013,36 1012,20 1012,23

5 1012,22 1013,36 1012,18 1012,20

6 1012,19 1013,38 1012,17 1012,18

7 1012,18 1013,39 1012,19 1012,17

8 1012,16 1013,36 1012,18 1012,18

9 1012,17 1013,37 1012,15 1012,16

10 1012,15 1013,35 1012,12 1012,15

Table 2. MTF and CWA+MTF averages with sensor 4 as a source of outliers.

sensor 4 were discarded by CWA+MTF and MTF. However, sensor 1 even pre-
senting correct readings was discarded in 80% of data fusion tasks. When MTF
results are compared with reference sensor readings, 0,02 hPa value is showed.

5 Simulation Assessment of a Large-Area WSN

In the previous section, it was concluded that the use of low-cost sensors in a
cooperative way to perform the monitoring is equivalent in terms of results to
the use of a centralized high-cost sensor. In this section, the goal is to extend the
scenario and number of nodes to evaluate the behavior of statistical methods to
detect outliers in WSN. Based on this premise and due to the technical difficulties
to build a real large-scale WSN, a simulator was used for this study.
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Fig. 6. Sensorscope Lausanne Urban Canopy Experiment (LUCE).

5.1 Large-Area Scenario Description

The dataset used for the simulation and validation of the methods has been
obtained through the project LUCE2 (Lausanne Urban Canopy Experience).
The WSN that was structured in a campus of the Federal Polytechnic School of
Lausanne (EFPL). This network was deployed with 110 nodes distributed over
an area of 300× 400 m, characterizing a large-scale WSN [18].

2 http://lcav.epfl.ch/page-86035-en.html.

http://lcav.epfl.ch/page-86035-en.html
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The objective of this project was to monitor the meteorological changes and
various data was collected, such as temperature, relative air humidity, wind speed
among other physical magnitudes. The data collected, and made available for
public use, corresponds to the period from July 2006 to May 2007.

In this paper, just 85 nodes were used in the simulator, being one of them
assumed as the coordinator of the network (sink). The distribution of the nodes
across the campus is illustrated in Fig. 6. The data used to assess the methods
was sensed in a 24-hour period, referring to April 03, 2007; and just one physical
scalar was used: the temperature.

For the WSN simulation, the Castalia 3.0 framework was used3. Castalia is
an open source simulator based on the OMNeT++ platform4, and focused on
WSNs and BANs (Body Area Networks) simulation. The reason for its choice
was motivated by the great acceptance and use in the WSN community for its
realistic characteristics, in terms of radio models, as well as the possibility to
change algorithms and protocols [19].

5.2 Evaluated Methods

Four outlier statistical techniques were evaluated using the Castalia simulator.
These methods were selected based on their characteristics, previously high-
lighted, that best meet the sensor networks scenario. The methods evaluated
were: Chauvenet, Peirce, FTA and CWA+FTA. Parametrizing the simulations
for the evaluated methods:

– The monitoring was performed every 30 s and after obtaining 30 readings the
outlier detection method was applied;

– Each sensor node uses the outlier detection algorithm;
– After the detection process, each node sends to the coordinator the average.

In order to analyze the efficiency of the outlier detection methods, outliers
were inserted into the monitoring data. The choice of outliers values was chosen
at random.

In order to analyze the results, nine nodes with the best frequency of sub-
missions to the coordinator were selected. The chosen nodes reached 100% of
freight rate and 36 outliers were distributed between nodes.

The Fig. 7 shows the temperature readings of nodes in a fifteen minute period
together based on artificial outliers. It is possible to observe the discrepancy of
the values and the need for treatment so that these anomalous data do not
change the result, thus modifying the real value of the means.

Thus, results for the analyzed methods were described:

– Chauvenet: Chauvenet method detected 13 outliers from 36 artificial out-
liers (Table 3). As can be seen in Fig. 8, points from the temperature of 10 ◦C,
have many points farther from the normal behavior of the captured readings.

3 https://github.com/boulis/Castalia.
4 https://omnetpp.org/.

https://github.com/boulis/Castalia
https://omnetpp.org/
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Fig. 7. Sensed values with/without outliers’ detection.

– Peirce: Peirce technique shows a behavior very similar to that of Chauvenet,
13 outliers were correctly identified (Table 3). In Fig. 9, it is possible to notice
that the undiscovered outliers present results very similar to the Chauvenet
method.

– FTA Method: This method proved to be very efficient in outliers detection,
it was able to find all the inserted outliers (Table 3).
Despite being a relatively simple method it proved to be efficient for detection
and removal of outliers. Figure 10 above shows the readings resulting from the
FTA method, a problem identified is the aimless removal even of values that
are not considered anomalous by always excluding 2/3 of samples.

– CWA+FTA: The Elmenreich technique combined with FTA method
obtained results similar to the FTA method, reaching 100% efficiency in out-
liers detection (Table 3).

5.3 Comparative Analysis of Methods

The methods have generally obtained good results in the detection of large-scale
WSN outliers. However, the FTA and CWA+FTA methods detected 100% of
the outliers. On the other hand, Peirce and Chauvenet methods detected just
36.11% of the outliers. Table 3 shows the outliers detected per node.

The Table 4 presents the final averages of the readings of the nodes by ana-
lyzed method. The Table 4 shows the resulting averages. As a result, the table
shows that outliers detection techniques are necessary to provide higher accu-
racy in monitoring. In the analysis, nodes 1, 15 and 18 present high averages,
the presence of outliers, which do not correspond to the normal behavior of the
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Fig. 8. Event detection using Chauvenet method.
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Fig. 9. Event detection using Peirce method.

temperature variation in that period. In this way, it must be withdrawn in order
to not disturb the final average.

For example at node 15, six outliers were inserted into the set of readings,
which resulted in an average of 20.63 ◦C degrees. After the application of the
CWA+FTA technique, the average resulted in 9.61 ◦C degrees. Thus, an aver-
age reduction in temperature was 46.58% when compared to the average with
outliers. FTA technique presented a reduction of 46.97%, while Chauvenet and
Peirce techniques did not change the average. Thus, outliers were not removed.
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Fig. 10. Event detection using FTA method.
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Fig. 11. Result of detection with the CWA+FTA method.

After the detection and removal of the outliers with the FTA and CWA+FTA
techniques, it is possible to observe the regularization of final node average,
through a data fusion information more accurate and reliable (Fig. 11).

In summary, comparing the outliers detection capability, both the
CWA+FTA and the FTA technique achieved the same results, Table 4. Regard-
ing precision, the techniques also obtained similar results, according to Table 4.
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Table 3. Amount of outliers detected.

Total per node CWA+FTA FTA Peirce Chauvenet

Node 1 5 5 5 3 3

Node 2 1 1 1 1 1

Node 4 3 3 3 2 3

Node 10 3 3 3 3 3

Node 11 6 6 6 0 0

Node 13 4 4 4 2 1

Node 14 6 6 6 0 0

Node 15 6 6 6 0 0

Node 18 2 2 2 2 2

Total 36 36 36 13 13

Table 4. Local averages obtained by each technique, in degrees Celsius.

Simple average CWA+FTA FTA Peirce Chauvenet

Node 1 14,86 9,69 9,80 11,51 11,51

Node 2 11,39 9,95 9,94 9,89 9,89

Node 4 12,46 10,07 10,23 10,98 10,18

Node 10 12,81 10,51 10,53 10,51 10,51

Node 11 13,61 10,29 10,46 13,61 13,61

Node 13 9,24 10,30 10,30 9,81 9,56

Node 14 13,27 10,23 10,25 13,27 13,27

Node 15 20,63 9,61 9,69 20,63 20,63

Node 18 16,42 10,54 10,48 10,45 10,45

6 Conclusions

WSNs based on low-cost sensors have been replacing the traditional central-
ized systems that use a single, reliable, high-cost sensor. WSN advantages like
deployment flexibility, better area coverage and low-cost sensors are the main
reasons for its choose. However, new challenges emerge as these networks become
popular. For example, they generate a large amount of data, need to have an
adequate operation due to its limited energy budget, as well as failures and errors
caused by WSN nodes equipped with low-cost sensors. Thus the use of raw data
generated by sensor nodes has not been suitable.

Therefore, this work focuses on these problems, treating them from the point
of view of the methods of information fusion, that is, techniques that reduce the
amount of data and increase its reliability. The proposed architecture was applied
in the monitoring of environments. Low-cost sensors were calibrated based on
a reference sensor. Without this operation, the fusion methods would not reach
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the expected performance due to the constant deviation of the values observed in
the low-cost sensors. The timestamps were added, making it feasible to perform
offline the data fusion. Systematic and gross errors, such as “zero” values, were
correctly discarded before reaching the fusion methods.

Among the experimentally tested methods, Peirce and CWA+FTA were more
suitable for the fusion of the sensors. However, the arithmetic means, Chauvenet
and CWA without modifications, did not perform well in the presence of faulty
nodes.

In the simulation of a large-scale WSN, the CWA+MTF and FTA meth-
ods were the best at eliminating all outliers; while the Chauvenet and Peirce
methods did not perform satisfactorily since they did not detect much of the
outliers. Regarding accuracy, the Chauvenet and Peirce techniques obtained
poor results in their means when compared to CWA+FTA and FTA. Therefore,
the CWA+FTA and FTA techniques have achieved good results in the large-
scale simulated WSN scenarios giving good detection, accuracy and reliability in
monitoring.

As a conclusion, the WSN configuration used in conjunction with low-cost
sensors and the proposed architecture deliver as good performance as the use of
a single high-cost sensor.
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Abstract. Traditionally, P2P networks have used common computers,
but more recently, with the widespread use of mobile devices, we note
the growing trend of convergence of technologies in these devices, which
should be accompanied by P2P networks. This article specifies and imple-
ments a P2P network architecture based on mobile devices running
on the Android platform. It also developed an application for sharing
multimedia content via streaming over this P2P network. The results
obtained were very encouraging and support further investigation. Per-
formance tests have shown that connection speed and video coding rate
were determinant factors on response time and system throughput, and
CPU utilization was also moderate varying from 20 to 50% in most cases
observed.

Keywords: Android · Mobile devices · Multimedia · Peer-to-peer

1 Introduction

Peer-to-Peer (P2P) networks have been in the everyday lives of many people for
more than a decade. They arose initially with the aim of sharing content between
users without the need of a central server, as in the case of the client-server par-
adigm. P2P networks rapidly evolved towards sharing of entertainment-related
content such as music, video, games, etc., often associated with piracy, since
many users shared and still share the files stored on their disks without proper
attention to copyright issues. In order to share files, famous architectures such
as Napster, Gnutella and Kazaa appeared.

Another use of P2P networks is by exploiting idle CPU cycles of the equip-
ments connected to the network, which are then used as nodes of a virtual parallel
machine, distributed throughout the network, as in the case of the SETI@HOME
project. Additionally, P2P networks can be used to deliver multimedia services,
such as streaming audio and video, either on demand or in real time, such as in
the case of Skype and Content Distribution Networks (CDNs) such as Akamai.

c© Springer International Publishing AG 2017
K. Branco et al. (Eds.): WoCCES 2013-2016, CCIS 702, pp. 101–116, 2017.
DOI: 10.1007/978-3-319-61403-8 6
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For a long time, most of the P2P network nodes were just desktop personal
computers or notebooks. Currently, with the popularization of smartphones,
tablets and mobile devices in general, with ever increasing processing power,
more and more P2P networks are being used from mobile platforms. However,
what is observed is that these devices usually act only as clients of the network,
simply consuming resources, without sharing their stored content or providing
any kind of services to their peers.

In particular, the use of P2P networks for streaming media services has
received considerable attention from researchers in the field, as it allows the
devices to function as a distributed storage medium, contributing, seeking and
obtaining multimedia content autonomously [8]. Differently from traditional
client/server computing, the peer-to-peer paradigm allows direct collaboration
between users, without relying on centralized servers administered by third par-
ties (Rocha et al., 2004).

As for the development of mobile applications, the Android platform has been
receiving a lot of acceptance by the developer community because it is an open
source initiative available to the general public, it has extensive documentation
and it demands a relatively low upfront investment in hardware. Furthermore,
it presents a soft learning curve for the creation of applications, by using the
popular Java programming language, in addition to a very extensive user base
with great growth potential, reasons that make this platform highly attractive
to developers and users.

This article proposes and implements a peer-to-peer network architecture,
called P2PDroid, aimed at sharing multimedia content between mobile devices
interconnected by a P2P network. It also describes a prototype of this network,
implemented in devices based on the Android operating system. Moreover, It
features an application built on top of the P2PDroid architecture, called Play-
inbuddy, which automatically and transparently allows the sharing of multime-
dia content by streaming between the various nodes of the P2PDroid network.
Finally, a performance evaluation of the presented solution was done, which
demonstrated the feasibility of the architecture proposed here.

The P2PDroid architecture allows the formation of ad hoc networks in an
uncomplicated way between mobile devices close to each other, without the need
for them to be connected to an infra-structured Wi-Fi network or even to hold a
valid IP address. As possible scenarios, a P2P network with entertainment pur-
poses could be formed between nearby mobile devices on a sports arena (or in a
food court) with the intent of distributing audio and video on demand between
smartphones using the Playinbuddy app. Similar uses could be found on a indus-
trial plant or in the countryside, e.g., for the dissemination of sensor-captured
data between nearby cell phones, without the need of a possibly unreachable
central server.

In the current stage of this work, a P2PDroid network prototype was imple-
mented using the Wi-Fi Direct standard, using the UPnP protocol for multi-
media content delivery. However, this architecture is not tied to any specific
underlying protocol and can be ported to different systems.
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The remainder of this article is organized as follows: Sect. 2 describes related
work to this proposal. Section 3 briefly discusses the architecture of the Android
operating system and applications. Section 4 presents the Wi-Fi Direct standard
used in the implementation of the P2PDroid network prototype, which is detailed
in Sect. 5. Section 6 describes the PlayinBuddy application and Sect. 7 presents
a few performance evaluation results. Finally, Sect. 8 discusses conclusions and
future work.

2 Related Work

A few solutions that allow streaming of multimedia content between mobile
devices in domestic ad hoc networks are found in the market. AirServer [1]
is a proprietary solution consisting of an Airplay receiver (proprietary protocol
developed by Apple) and the application allows users to send media streams from
their iOS devices to Mac computers. As an example scenario, it allows a teacher
to broadcast a presentation from his iPad to a MacBook connected to a projector.
You can also make any game developed to the iOS operating system become
multiplayer with up to 16 simultaneous connections. AirServer is compatible
with several third-party applications such as YouTube, Vevo, and Air Media
Center and is a powerful multimedia content sharing tool for domestic networks,
provided that all devices are manufactured by Apple or compatible with its
protocols, which dramatically reduces the interoperability of this solution, and
make it too expensive for a certain user profile.

Bubble UPnP Server [3] is a multimedia content server that uses the UPnP
protocol and also provides an application for devices running Android that allows
a smartphone to be able to connect to the server and play multimedia content in
real time. It can run on any platform with Java 1.6 or higher, including multiple
versions of Windows, MacOS X and Linux. However, the installation and config-
uration of this solution is not automatic and can be somewhat cumbersome for
lay users. However, mobile devices can play only the role of multimedia content
receivers, not providers.

Another noteworthy solution is the PS3 Media Server, a UPnP media server
compatible with DLNA [4]. Written in Java, it supports all major operating
systems, with versions for Windows, Linux and MacOS X. Using this solution,
you can stream, transcode and receive multimedia content directly from the
Playstation 3 console or Xbox 360, with little or no configuration. It offers a
user-friendly and intuitive user interface, as well as support for a wide range of
media content formats.

As can be seen, the majority of solutions found tend to require proprietary
software or hardware, making them more expensive. Most of them only allow
stream transmission in only one direction (server to client), in addition to having
a central point or hub, which is at least used for initial setup purposes. On the
other hand, the P2PDroid network presented in this article has automatic and
immediate configuration and, as we shall demonstrate in the remainder of this
paper, does not require a central server and allows each device to play the role



104 M.M. Teixeira et al.

of either server or client as needed. Moreover, the P2PDroid network runs on
the Android operating system, the most popular platform for mobile devices
nowadays, endorsed by a wide range of manufacturers and appealing to several
types of users and purposes.

3 Android Platform

Android is a software platform maintained by Google and the Open Handset
Alliance [6] that has revolutionized the global mobile phone market.

The architecture of the Android operating system is divided into layers
(Fig. 1), with the Linux Kernel as the basic supporting layer, allowing an abstrac-
tion between hardware and software. It is also responsible for crucial services in
any operating system, such as memory management and process scheduling.

Fig. 1. Android architecture (Source: [2]).

The top layer, the Application layer, is composed of software such as internet
browsers, e-mail clients, maps, games and third-party applications, all written
using the Java programming language and exploiting application frameworks of
the second layer related to file access, telephony, location information, notifica-
tions, alarms, etc.

These frameworks use C/C++ libraries provided by the next layer. They
allow the developer to have access to system resources such as SQLite database,
OpenGL 3D graphics API, media libraries, a surface manager, and so on.
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Applications on Android OS, although written in Java, do not run on a
conventional Java Virtual Machine (JVM), but rather on the Dalvik virtual
machine, native to Android. Dalvik VM is a register-based virtual machine,
optimized for low memory devices and designed so that multiple instances can be
run simultaneously. The operating system is responsible for process scheduling,
thread support and memory management services. Dalvik also implements its
own class library, and it is not fully compliant with J2SE or J2ME specifications.

Unlike the conventional JVM from Oracle, Dalvik does not run Java byte-
codes, which are rather converted to .dex (Dalvik Executable) files and com-
pressed into a single .apk extension package (Android Package), which is how
Android applications are distributed. Android applications fall into four basic
blocks: Activities, Services, Content Providers and Broadcast Receivers. An
Activity is an application component that provides a screen users can inter-
act with (the GUI, so to speak). A typical Android application usually consists
of several Activities.

A Service is an application component that can perform long-running oper-
ations in the background and does not have a user interface. An application
should bind to a service using traditional interprocess communication before
any interaction between them is initiated.

Content Providers manage access to a set of structured data, encapsulating
them and providing mechanisms for data security. A content provider connects
a dataset with code running in another process. For instance, if the developer
needs to access phone contacts, it can do so through its specific Content Provider.

Finally, Broadcast Receiver is the component that responds to general system
alerts, which can be generated by Activities, Services or other modules and
captured by applications.

4 Wi-Fi Direct Communication Standard

Wi-Fi Direct (Android Developers, 2013) is a recent technology that allows you
to turn any Android device into an access point. It is a new specification created
by Wi-Fi Alliance that enables you to create ad hoc networks between Wi-Fi
devices with the same ease found in Bluetooth connections. Instead of connecting
devices to a central access point, this new protocol transforms any device that
has Wi-Fi technology into a potential access point (Fig. 2).

The Wi-Fi Direct standard was the technology chosen to implement commu-
nication between devices connected to the P2PDroid network.

4.1 Architecture

In a typical Wi-Fi scenario, customers look for and connect to available wireless
networks, which are created and announced by Access Points (AP’s). Each of
these devices has a different set of features and in Wi-Fi Direct these roles are
specified as dynamic, so a Wi-Fi Direct device can implement both the role of
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Fig. 2. Wi-Fi direct utilization scenario.

client and of an AP (or server). These roles are logical functions that can even
be executed simultaneously by the same device.

Devices implementing Wi-Fi Direct communicate by establishing P2P
Groups, which are functionally equivalent to traditional Wi-Fi networks with
pre-defined infrastructure. As shown in Fig. 3, the device that becomes the group
owner is called P2P Group Owner (P2P GO) while the device acting as a client
is known as P2P Client. The assignment of these roles, as already mentioned, is
done logically and is dynamic, which makes the architecture quite flexible, as is
desirable in a solution for P2P networks.

Fig. 3. P2P components and topology of a Wi-Fi direct network.

4.2 Wi-Fi P2P API

Programming applications using Wi-Fi Direct is done through the Wi-Fi P2P
API1 that allows devices running Android 4.0 (API level 14) or higher, with

1 https://developer.android.com/index.html.

https://developer.android.com/index.html
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appropriate hardware, to connect directly to any other device, via Wi-Fi, with-
out using an access point as an intemediary. Through this API, an application
can discover and connect to other devices that support Wi-Fi Direct and then
communicate with superior speed and over longer distances than on a Bluetooth
connection. This makes Wi-Fi Direct especially useful for applications that share
data between users, such as multiplayer games, photo sharing and multimedia
applications.

5 P2PDroid Network

As one of the contributions of this paper, this section describes the architecture
of a peer-to-peer network for mobile devices based on the Android operating
system. The P2PDroid network provides users with a basic infrastructure for
communication and sharing of resources. It was implemented using the Wi-Fi
P2P Manager API created by Google.

For an Android mobile device to connect to the P2PDroid network, all you
have to do is install a small application called P2PDroid Client, designed for
Android version 4.0 or higher. It implements the main functionalities of the
P2PDroid network and allows communication and transfer of data between dif-
ferent interconnected devices.

5.1 Architecture

The P2PDroid network defines some basic operations, essential for its operation
and inspired by the Gnutella P2P network architecture:

– Initialize(): Registers the client application with the Wi-Fi Framework and
must be called as soon as the application is started. This registration is
required for the application to be able to use the device’s Wi-Fi features,
such as being notified when Wi-Fi state changes (ON/OFF) or when receiv-
ing a connection request from another device.

– DiscoverPeers(): Starts discovering network peers. This operation is used to
initiate the discovery of peers (nodes) within the range of the device.

– RequestPeers(): When it detects a device in range (through the Discover-
Peers() operation), it asks each of them to return its own list of visible peers,
so that the requesting peer can begin to form its own view of the existing
P2P network.

– Connect(): Starts a peer-to-peer connection with a device. Sends an invitation
to connect to another device, which can accept or decline the request.

– Disconnect(): Terminates a connection to another device.

Further details about the architecture and operation of the P2PDroid net-
work can be found in [5]. They are omitted here for conciseness.
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5.2 P2PDroid Client

Using the Wi-Fi P2P API mentioned above, an application was implemented
that facilitates the discovery, connection and exchange of messages between
interconnected mobile devices. This architecture works similarly to the Blue-
tooth standard, so the devices do not need to have an IP address, but peer
discovery is limited to the range of the device involved.

In terms of hardware, Wi-Fi Direct works with the device’s Wi-Fi. This is
an advantage of this architecture when compared to similar ones because it
increases the range of peer discovery, file transfer speed and connection stability,
being more robust than its competitors (Bluetooth 3.0, for example).

The P2PDroid Client implements the basic operations defined in Sect. 5.1,
using the Wi-Fi P2P API that interacts directly with the Wi-Fi Direct standard.
At the current stage of development, the client enables automatic network peer
discovery and file sharing between nodes. Communication between nodes of the
P2PDroid network is performed using the well-known Socket API, which can
operate in conventional or secure mode, as reported in (Machado, 2013).

The P2PDroid code was implemented with extensibility in mind, so that one
can leverage its infrastructure to develop several types of applications. One of
them is described in Sect. 6.

6 Sharing Multimedia Content: PlayinBuddy

In order to illustrate the potential of the P2PDroid network, an application
for multimedia content sharing between network nodes has been specified and
implemented. It is another main contribution of this work.

This application, called PlayinBuddy, is actually a software-defined network
of mobile devices that allows streaming of audio and video files between devices
connected to the P2PDroid network. It makes possible to listen to or watch
multimedia content without having to first download it from its source node.
Multimedia content can be accessed at any time by any device without previous
configuration and the devices only need to be connected to the P2PDroid network
to receive and transmit media streams. Copyright issues were not addressed at
this point and are left as future work.

At the current stage, network peers discover and connect through the Wi-Fi
P2P API used to deploy the P2PDroid network. For the purposes of multimedia
communication itself, a Java program using UPnP [7], defined by DLNA (DLNA,
2013), was implemented through the Cling API. P2PDroid network functions
as an overlay for interconnection and exchange of control information between
network peers, and multimedia content is then streamed over the UPnP protocol,
widely used in home networks.

6.1 Architecture

In the design of the PlayinBuddy application, the following packages have been
defined:
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– com.playinbuddy.util - Encapsulates classes to solve common tasks such
as object type conversions, definition and management of application scope
variables, callback functions, etc.

– com.playinbuddy.players - Encapsulates classes needed to play required
media contents (audio and video) on the receiving devices.

– com.playinbuddy.mediaserver - Encapsulates classes needed to imple-
ment the UPnP media content client-server functions.

– com.playinbuddy.activities - Encapsulates classes that manage the appli-
cation’s user interface, in addition to calls to services.

– com.playinbuddy.objects - Encapsulates classes that represent objects
handled by the application (Device and Media Content).

– com.playinbuddy.adapters - Encapsulates classes that work as adapters
between the data and views (GridView, ListView and TabView) used.

Figure 4 illustrates a class diagram for the PlayinBuddy application.

Fig. 4. Class diagram of the PlayinBuddy application.

One of the main classes in the diagram is the MediaServer, which three
application activities (user interfaces), namely StartActivity, DevicelistActiv-
ity and ChannelActivity depend on. This, in turn, consists of an HTTP server
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(HttpServer) and a directory service (ContentDirectoryService). The ContentN-
ode class is a generalization of media items that can be found on devices and com-
poses a content tree (ContentTree) used in the directory service. The AudioFrag-
ment and VideoFragment classes make up the screen representing the media
channel (ChannelActivity), which in turn adds a tabbed display adapter (Cus-
tomTabsPagerAdapter) and another class to fill the data in grid views (Custom-
GridView) on each tab. The purpose of each class will become more evident in
Sect. 6.2 which explains the operation of the PlayinBuddy application.

6.2 Application Life Cycle

Playinbuudy can go through different stages in its life cycle, as illustrated in
Fig. 5.

Fig. 5. Operation steps of the multimedia content sharing network.

1. Start - The user starts the application on a mobile device, loads information
necessary for the operation of sharing services (device addresses, directory
service mount, etc.) and waits for user actions through its main screen (Fig. 6).

2. Device discovery - The user is informed about which devices (multime-
dia content transmitters and receivers) are available. The local device also
becomes capable of transmitting its multimedia content. A notification mes-
sage is transmitted to all UPnP devices and services so that they can be
identified. Each receiver decides whether it should respond directly (with
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UDP datagrams) to the source control point. Figure 7 illustrates the in-app
device discovery screen.

3. Multimedia content discovery - After selecting a particular device, the
user can choose from audio and video items available for playback via stream-
ing. In this step, the directory service is invoked to mount a multimedia
content tree on the local device. Figure 8 illustrates the in-app multimedia
content discovery screen.

4. Media content playback - Finally, using a player suitable to the selected
media, the user can either listen to an audio item or watch a video
item. Figure 9 illustrates the screen for playing multimedia content in the
application.

Fig. 6. PlayinBuddy application splash screen.

6.3 Distinguishing Features

Such an appication actually provides a media streaming service inside a domes-
tic network. Multimedia content can then be accessed by any device any time
without prior configuration, i.e., a device just needs to be connected to the home
network to receive and transmit media streams.

Network technology used is irrelevant. It does not matter if the mobile device
is connected via Wi-Fi, coaxial cable, telephone line, power line or Ethernet
cable. Peer-to-peer (decentralized) structure facilitates device interconnection
directly without intermediaries and everyone can act both as a Receiver or
Provider of multimedia content.

The main limitations of the proposed architecture are:
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Fig. 7. Device discovery screen.

Fig. 8. Multimedia content available for streaming.
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Fig. 9. Multimedia playback.

– Data security mechanism - UPnP protocol specification assumes all nec-
essary security will be provided by other means such as 802.11 WEP, WPA11,
NAT12, firewalls and VPNs13. This lack of security requirements specification
makes more cautious users disable the UPnP protocol on their devices.

– Network message overload - As previously seen, the discovery of new
devices or services is based on broadcast messages. Consequently, if several
UPnP devices are present on a subnet, a large part of the bandwidth will be
occupied by broadcast messages from the devices.

7 Performance Evaluation

This section reports some performance tests performed on the PlayinBuddy
network in order to determine its suitability for the transmission of multimedia
streams in a mobile environment.

7.1 Experimental Design

As a scenario, it is considered a Motorola mobile phone model Razr i XT890
running Android OS version 4.1.2, and a Samsung Galaxy Tab 2 tablet model
GT-P3110 running Android version 4.0.3, both connected to a Wi-Fi net-
work through a Nano Station M5 that allows bandwidth restriction for testing
purposes.

As factors that may influence the outcome of the experiment, we considered
Video Encoding (Factor A), Connection Speed (Factor B) and Device Type
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Table 1. Factorial planning of the experiment (23).

Factor −1 +1

Video encoding H.264 360p H.264 720p

Connection speed Up to 11Mbps Up to 300Mbps

Device type Smartphone Tablet

(Factor C). For each factor two levels were defined resulting in an experiment
23 as shown in Table 1.

As for video encoding, specifications H.264 360p and H.264 720p were chosen
to represent videos with low and high image quality, respectively. Connection
speed was defined as an 802.11b network (up to 11 Mbps) for low bandwidth
networks and as an 802.11 network (up to 300 Mbps) for high bandwidth. Finally,
as device types we picked an smartphone with lower processing capacity and
screen resolution and a tablet with higher processing power and screen resolution.

Each experiment was repeated five times and lasted 30 seconds counting
from the beginning of content playback. The Playinbuddy application was kept
running in the foreground during the whole experiment on each device.

As performance metrics, response time (R), utilization (U), throughput (X)
and error rate (E) were used. Response time was defined as the interval between
the start of requests and the fulfillment of these requests by the content provider.
Throughput rate defines the number of requests per unit of time. Utilization
represents processor usage in each device. Finally, error rate was defined as the
percentage of packets lost on the network.

Measurements were performed using the Android Debug Bridge utility
(ADB), which provides a debug shell for the Android operating system through a
USB cable connected to the device or through a TCP/IP port. It allows execution
of commands in the background, such as top and vmstat, while the Playinbuddy
app is running on the device’s main screen. Data was collected at regular five
second intervals. Android keeps performance statistics in system files stored in
the /proc directory, and performance data in /proc/stat.

7.2 Results and Discussion

This section presents and discusses the most relevant results, as well as the
influence of the different factors A, B and C, individually, on the results and
also the combination of these on the metrics evaluated, as shown in Table 2.

It is observed that connection speed (B) is the most influential factor in
response time, with a percentage of 56.05% and also accounts for an important
part of the throughput (variation of 31.39%), together with video encoding (A),
with an influence of 27.64%. Joint influence of these two factors (AB) is 26.74%
in system throughput. Video encoding has also an important influence on CPU
utilization (26.42%), which also shows some dependence on device type (10.71%),
especially when considered in conjunction with video encoding (22.73%). Device
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Table 2. Influence of factors on application performance.

Parameter Estimated average Variation

R X U E R X U E

q0 0,7625 0,8823 30,37 0,006 - - - -

qA 0,9232 1,7523 56,71 0 8,13% 27,64% 26,42% 0%

qB 2,4237 1,8672 20,02 0,1312 56,05% 31,39% 3,29% 42,67%

qC 0,0121 0,0562 36,12 0 0,001% 0,001% 10,71% 0%

qAB 1,6231 1,7234 44,72 0,1102 25,13% 26,74% 16,43% 30,02%

qAC 0,1632 0,2313 52,60 0 0,25% 0,48% 22,73% 0%

qABC 1,0454 1,2341 49,83 0,1052 10,42% 13,71% 20,4% 27,29%

Fig. 10. CPU utilization.

type (C) had little influence on the metrics evaluated when considered individu-
ally. The influence of the combination of factors A and B on all response variables
(qAB line) is also worthy mentioning. Dependency percentages obtained for error
rate (E) do not have much relevance due to the fact that the error measured was
actually very small.

A study of the effect of video encoding on network performance was also
performed (Fig. 10). It is observed that the maximum CPU utilization reached
by the workload (with H.264 720p encoding) is only 50% and stabilizes between
20 to 30%. When H.264 360p encoding is used, utilization reaches 33% and
stabilizes between 10 and 20%. Thus CPU utilization in 720p H.264 encoding
is on average 50% higher than in Hp64 encoding 360p. It is also possible to
infer that the application does not cause overhead in both encodings used. This
reinforces our findings on Table 2 where CPU utilization is 30% in average.
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Our experiments demonstrated the P2PDroid content sharing network
requires a moderate processing power from mobile devices and behaves in a
satisfactory manner even when used with high quality videos. Bandwidth levels,
however, are important for good application performance. Finally, using smart-
phones or tablets has little influence P2PDroid performance.

8 Conclusion

This work described a peer-to-peer network architecture, namely P2PDroid,
specified and implemented on mobile devices based on the Android operating sys-
tem. This network consists of an abstract specification, inspired by the Gnutella
protocol. As proof of concept, we have implemented one P2PDroid version using
the Wi-Fi P2P API, by Google, that works with Wi-Fi Direct standard for
device interconnection, available for Android 4.0+ devices. As strong points, we
highlight non-dependence on infra-structured Wi-Fi for communication between
devices, automatic discovery of nearby devices, and maximum speed higher than
Bluetooth 3.0, besides being a feasible solution for home entertainment involving
games and multimedia.

As a prototype application on top of the P2PDroid network, we developed
a multimedia resource sharing application, called PlayinBuddy, which uses the
UPnP protocol for multimedia content delivery by streaming. Using Playin-
buddy, devices can discover each other quickly and instantly and users can play
music and watch videos on their handhelds easily, without the need to actually
download media. Performance tests have shown that the PlayinBuddy applica-
tion can run on different handheld types at varying media encoding rates and
had only a 50% impact on CPU utilization of the devices involved.

As future work, we intend to implement a version of PlayinBuddy based on
the Wi-Fi Direct protocol and develop other types of applications on top of the
P2PDroid network.
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Abstract. This paper presents an architecture for robots as a service
(RaaS) in the cloud, implemented over the MQTT, an open and light-
weight protocol for message exchange based on publish/subscribe meth-
ods. The system is composed by the cloud layer, hosting the MQTT
Broker, Gateway layer, composed by the IoT gateway to interface Zig-
bee to Internet, and a local layer, composed by the robots communicating
through a Zigbee network. In order to evaluate the proposed system, met-
rics regarding the MQTT reliability and quality of service were collected
and analyzed. Finally, a robot prototype was developed and controlled
to test the case-scenario.

Keywords: IoT · MQTT · RaaS · Zigbee

1 Introduction

We have witnessed major developments in computational technologies in the
past years. Specifically, advances in processing, storing and networking tech-
nologies made small devices more powerful, enabling a new set of applications
and research fields. One example is the Internet of Things (IoT), a network
interconnecting uniquely identifiable devices or things, which can be “smart”
(capable of sensing/actuating, processing and communicating) or not, in order
to share information or perform tasks in order to achieve a common goal [1,4].
IoT is believed to be a key contributor in many areas, improving the quality of
life and aiding the world’s economy [1].

Besides its potential contributions, IoT also has brings many challenges.
When considering the technology acceptance from the general public, security
and trust as well as the lack of standardization are the main obstacles. The
lack of a standardized architecture also affects the management and the inter-
operability of heterogeneous objects. Quality of Service (QoS) to assure device’s
availability and reliability is even more challenging when considering the possible
mobility of IoT nodes, whose huge number will impact and demand adaptations

c© Springer International Publishing AG 2017
K. Branco et al. (Eds.): WoCCES 2013-2016, CCIS 702, pp. 117–130, 2017.
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in today’s Internet architecture, such as the use of IPv6 for addressing the con-
nected devices [1]. Finally, how to process all acquired data and accessing IoT
devices from anywhere is also a pivotal challenge [2].

Cloud Computing (CC) is considered a important element of IoT systems
[1] and one of the most prominent ICT technologies [2]. It provides to its users
several virtualized resources such as software or infrastructure equipment in a
tailored, reliable way at a low cost [1]. When integrated to a CC platform, the
usually resource-constrained IoT devices have at their disposal virtually unlim-
ited processing and storage capabilities. Also, heterogeneous IoT devices can be
virtualized and made available to the end-user in a homogeneous way even with-
out standard interfaces, being able to attend requests device-independently [2,3].

Robots and robotic systems have had little exposure to the general public,
since they are usually built for specific, predetermined applications in controlled
environments, are difficult to be operated or configured by lay people and are
very costly when more powerful components are needed for more sophisticated
tasks [2]. The use of Internet resources in what is called Cloud Robotics (CR)
made possible for robots to use the Cloud for resource-demanding tasks, such as
high complexity calculations or object recognition [14], simplifying their design
and manufacturing [6,9] and making way for their use in social situations and
smart environments to be explored.

Even though Cloud Robotics allowed great advances in Robotics, it still has
many issues such as interoperability between heterogeneous devices, QoS and
standardization. As with IoT devices, robots virtualization can solve interop-
erability issues and provide users with different robots or robotic systems in a
friendly homogeneous way through services, in the concept of Robot as a Service
(RaaS) [3,5] though the IoT infrastructure.

In this paper, a RaaS implementation over Message Queue Telemetry Trans-
port (MQTT) protocol is presented. In order to evaluate the proposed architec-
ture, we developed a case-scenario where the service consumer may connect to
the cloud service and control the vehicle remotely to sweep an area, as well as
request sensor data (humidity and temperature) from the ambient.

This paper is organized as follows. Section 2 presents an overview of the
MQTT protocol, such as publish/subscribe methods, as well as message exchange
and Quality of service parameters. Section 3 shows the proposed architecture and
a breakdown of its layers and components. Section 4 presents an analysis of the
MQTT protocol for the proposed scenario. Section 5 presents a real-world appli-
cation prototype to validate the proposal. Finally, Sect. 6 presents the conclusions
and future work.

2 Background Information

2.1 Publish/Subscribe Systems

Publish/Subscribe (pub/sub) systems are constituted by three components: pub-
lishers which share relevant information, subscribers which consume the infor-
mation, and a broker that mediates the information exchange [8]. Subscribers
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register their interest in a event by invoking subscribe() operation and pub-
lishers share their events by invoking publish() operation—the same node can
act as a publisher and a subscriber at distinct moments [8]. When an event is
published, the broker propagates it to all subscribers.

Pub/sub architectures implement three types of decoupling: space decoupling
(nodes generating and consuming events are not aware of each other, even if
they are in the same device), time decoupling (nodes do not necessarily need to
be active at the same time to share data) and synchronization decoupling (no
nodes are blocked or put on hold due to the event delivery system). With those
dependencies between nodes eliminated, the system becomes more scalable and
well adapted to distributed environments with asynchronous communication or
intermittent nodes [7]. There are three types of subscribing schemes in pub/sub
systems [7]:

– topic-based: event distribution is based on topics, which are identified by key-
words reflecting a hierarchical structure; it enforces interoperability because
of string keywords, but have a static scheme (the nodes have to know which
topics to publish or subscribe in advance) that limits its expressiveness.

– content-based: event distribution is based on content, which can be internal
attributes or metadata, for example; event selection is specified by a sub-
scription language that allows the combination of properties into subscription
patters; however, it has a higher runtime overhead due to its complexity.

– type-based: event distribution is based on its type (like temperature data, for
example); when subscribing to a type T , nodes express interest in all instances
of any types that conform to T .

2.2 Message Queue Telemetry Transport (MQTT) Protocol

The Message Queue Telemetry Transport (MQTT) Protocol is a lightweight
topic-based publish/subscribe protocol that provides many-to-many communi-
cation [1,10,11] whose main purpose is telemetry or remote monitoring. The pro-
tocol was designed for resource-constrained devices by providing a reliable data
stream over TCP with compact packet payload and a simple API. MQTT-based
brokers can support many thousand of concurrent device connections, making
them suitable for large networks of small devices, such as in the IoT [13].

Quality of Service. MQTT implements three different types of QoS [12]:

– ‘At most once’ (level 0): this is the simplest QoS level. The receiver does not
acknowledge any message, and the sender does not perform any retry. The
messages are delivered either once or not at all to their destination.

– ‘At least once’ (level 1): in this QoS, the message is retransmitted until the
receiver acknowledges it. The messages are guaranteed to be delivered, but
there can be duplicates.

– ‘Exactly once’ (level 2): in this QoS, there is an acknowledgment for message
reception and completion. The message are guaranteed to be delivered only
once. However, this QoS generates an increased overhead.
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The application selects the appropriate QoS for its publications and subscrip-
tions. A subscriber specifies the desired QoS when subscribing topic, as does a
publisher when sharing a message. When sending messages to multiple recipi-
ents, the broker treats each one and their desired QoS level differently [12].

Message Exchange. MQTT relies on a small set of messages to manage device
connection and the publish/subscriber scheme [12]. Figure 1 illustrates the mes-
sage exchange between publisher and subscribers. In order to illustrate the dif-
ferent QoS levels, three subscribers are inserted. Sub 0 has QoS level 0 (At most
once), Sub 1 has QoS level 1 (At least once) and Sub 2 has QoS level 2 (Exactly
once).

Client Connection. cfrom clients (publishers or subscribers) to the server is a
CONNECT Package (messages 1–4 in Fig. 1). This package can be sent only once
over a network connection, otherwise configuring a protocol violation. This mes-
sage contain a number of parameters that specify the connection behaviour, such
as the presence of a username and password, Last Will and Testament configu-
ration (a message to be sent when the client do not disconnect cleanly), and the
Keep Alive interval (time interval that represents the maximum time between
client packages). The server in turn send the CONNACK Package (messages 1.1–4.1
in Fig. 1) stating if the connection was accepted or the reason it was refused. If
no CONNAC Package is received, the client should close the network connection.

Topic Subscription. In order to subscribe to one or more topics, subscribers
must send a SUBSCRIBE Package (messages 5–7 in Fig. 1), specifying a maximum
QoS for each topic of interest. At least one topic/QoS pair must be present in
SUBSCRIBE Packet. Server sends a SUBACK Package (messages 5.1–7.1 in Fig. 1)
to subscribers after receiving and processing a SUBSCRIBE Packet. If the sub-
scription was accepted, the last topic contained message (if any) is sent to the
new subscriber.

Topic Publishing. In order to publish an application message to a topic, publish-
ers must send a PUBLISH Package (message 9 in Fig. 1), specifying if the message
is to be retained in the topic, if the package is a retry and the desired QoS.
Broker response for PUBLISH Package will depend on QoS level of both server
(publish/subscribers and nodes).

QoS = 0—No acknowledgment packages are sent.
QoS = 1—PUBACK package is sent as an acknowledgment that the message
was delivered.
QoS = 2—In order to ensure the message is delivered exactly once, sender
and receiver exchange three more packets: PUBREC (Publish received), PUBREL
(Publish release) and PUBCOMP (Publish complete).

When considering a sender/receiver pair, the one with the lowest QoS will deter-
mine which messages will be exchanged (if any) after a PUBLISH Package. The
broker is considered to have a QoS 2 when receiving and equals to the mes-
sage when delivering a PUBLISH Package. Figure 1 clearly explicits the packages
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Fig. 1. Message exchange in MQTT protocol.
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Table 1. Detailed analysis of QoS levels in MQTT message exchange exposed by Fig. 1.

Message Sender Receiver Resulting
QoS

PUBLISH

acknowledgement

Node QoS Node QoS

9 Publisher 0 Broker 2 0 None

10 Broker 0 Sub 0 0 0 None

11 Broker 0 Sub 1 1 0 None

12 Broker 0 Sub 2 2 0 None

13 Publisher 1 Broker 2 1 PUBACK (13.1)

14 Broker 1 Sub 0 0 0 None

15 Broker 1 Sub 1 1 1 PUBACK (15.1)

16 Broker 1 Sub 2 2 1 PUBACK (16.1)

17 Publisher 2 Broker 2 2 PUBREC (17.1), PUBREL
(17.1.1) and PUBCOM

(17.1.1.1)

18 Broker 2 Sub 0 0 0 None

19 Broker 2 Sub 1 1 1 PUBACK (19.1)

20 Broker 2 Sub 2 2 2 PUBREC (20.1), PUBREL
(20.1.1) and PUBCOM

(20.1.1.1)

exchanged for all different QoS combinations. Table 1 details QoS analisys for
messages exchanged in topic publishing.

Topic Unsubscription. In order to unsubscribe from topics, subscribers must
send a UNSUBSCRIBE Package (messages 22 and 23 in Fig. 1) with a list of topics
they are no longer interested in. The message must contain at least one topic.
Server will answer this request with an UNSUBACK Package to acknowledge the
unsubscription request (messages 22.1 and 23.1 in Fig. 1).

Network Connection Activity Check. MQTT has a special ‘ping’ control mecha-
nism to determine the state of the network and its composing nodes. PINGREQ
Package is sent from clients to the server and can be used to indicate (a) client
activity, (b) server activity and (c) network connectivity. Every client has the
responsibility of ensuring that the interval between Control Packets do not
exceed the Keep Alive interval set in CONNECT Package. If no other Control
Packets are being sent, the client must send a PINGREQ Packet (message 8 in
Fig. 1) in order to let the server know it is still active. The server must answer
with a PINGRESP Packet (message 8.1 in Fig. 1), which can be used by the client
to diagnose the server status and the network connectivity.

Disconnection. Clients send DISCONNECT Packet (messages 21, 24–26 in Fig. 1)
to indicate to the server a clean disconnection. After sending this packet, clients
must close the network connection and can’t send any more Control Packets to
the server.
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3 Proposed Architecture

In order to propose an implementation for robots as service in the cloud, there
are a few requirements to satisfy: reliability, security, availability and latency
compatible with the application.

The MQTT protocol standard already satisfy some of the requirements
needed, implementing QoS to guarantee reliability, natively supporting TLS/SSL
over TCP, that guarantees safety in the communication and authenticity of the
broker. Moreover, MQTT also provides authentication in the connection with
the broker allowing for a user-password pair, that makes it unavailable to unau-
thenticated users.

The architecture is implemented as shown in Fig. 2. Specific topics are used
for specific applications, meaning a privilege system can be implemented: topics
can be limited to read-only for some users, read and write for the client and the
robot, and write-only for other sensors over the network.

Fig. 2. Proposed architecture.

The architecture proposed has a few advantages and disadvantages. One of
the advantages is that it can deal with the dynamic nature of IP acquisition for
connected nodes, providing full-duplex communication even for devices behind
NATs. This means that MQTT is also more suitable than HTTP because mes-
sages are delivered as soon as they reach the broker, and no pooling is necessary
like in HTTP.

One disadvantage is that the latency is drastically increased when using a
broker to relay messages instead of direct communication, since each packet has
to travel to the broker, be processed and travel back to the final node. This may
also increase packet loss in noisy environments.

The architecture can be divided into three layers: The Cloud layer, responsi-
ble for interconnecting the devices and running the MQTT Broker, the Gateway
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layer, that creates the connection between the broker and the local network,
process the requests and wraps the commands given in the Zigbee protocol.
Finally, there is the Local layer, composed by a 802.15.4 Zigbee network to
control the robots. Figure 3 illustrates the whole layer system. There is also an
additional application layer, where Web or Desktop applications can be written
to better control and monitor the whole system.

Fig. 3. Architecture layers.

3.1 Cloud Layer

The cloud layer includes the whole server back-end. It is meant to host the
MQTT Broker and re-route the messages between nodes quickly and securely.
Among the many options of brokers available, we choose Mosquitto for being
lightweight and providing efficient communication, with low memory and CPU
use. It also supports TLS encryption natively.

In this experiment, we used a virtual machine provided by Microsoft’s Azure
team. The system is composed by a Standard DS1 v2 (1 core, 3.5 GB memory)
machine, running Ubuntu 14.04.

3.2 Gateway Layer

This layer is responsible for interconnecting both the cloud layer and local layer.
It is composed by a Raspberry Pi B+, connected to the internet via ethernet
cable. This layer is needed to protect the local layer, normally composed by
constrained devices both in memory, CPU and power, from incoming traffic and
possible overloads, or even malicious connections. And since the local layer is
constrained and has limitations, it can take several milliseconds to process a
large task, increasing the latency considerably.

However, the most important task of the gateway is translate protocols
between the TCP/IP stream and Zigbee protocol, and it also includes processing
and translating the commands received to contain less information, considering
the low-rate transmission Zigbee offers. In order to connect the device to the
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MQTT broker, we used a Python script making use of Python library Paho
MQTT, also available in many other languages like C++, Javascript and Java.

In order to serialize the commands in the MQTT messages we used JSON
encoding, since it provides readable information format, fast decode times and
useful key-pair schema. Figure 4 illustrates the whole translation process.

Notice that there is a response by the Robot when the collectData flag is
enabled. This is telling the robot to collect data from its sensors and send the
information back to the client that requested it, answering with a Zigbee packet
to the gateway, translated to another JSON object and sent over to the broker,
to finally get back to the client.

Fig. 4. Communication order.

The gateway is threaded and event driven. It respond to the following events:

– On Connect: subscribe to the robot topic when connecting to the broker.
– On Message Received: decode and parse the message received from the

remote controller, sending the command over Zigbee if matching the correct
requirements.

– On Message Received (Zigbee): parse and encode response from the wire-
less Zigbee network, sending back to the broker to be routed to connected
controller.

3.3 Local Layer

The local layer is composed by a wireless network composed by 802.15.4 XBee
1mW Series 1 Modules, controlled by Arduinos Leonardo through the XBee
library. Zigbee was chosen for the local layer because its modules are low-power,
ideal for devices limited on energy.
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In order to connect the Arduinos to the XBee module, we used a Sparkfun
XBee Shield. For the robots, we used an additional Sparkfun Motor Shield to
control the robot motors. The robot base is composed by a Tamya Motor set,
that provides tracks, wheels and a base. Figure 5 shows the parts breakdown and
the finished robot.

Fig. 5. Robot prototype.

In order to sense data, there is also a DHT11 temperature and humidity
sensor. It has a NTC thermistor capable of reading temperature ranging from 0
to 50 ◦C, ±2 ◦C, and a humidity HR20 sensor, capable of reading values between
20 and 90%, ±5%. It also has an internal circuit to serialize and send this data
to the Arduino, where it can be read with the DHT library.

Even though Arduino doesn’t support threads, there are two virtual events
programmed:

– On Message Received: parse received message and drive the motors
accordingly.

– On collectData Flag: collect sensor data and send response message.

4 MQTT Performance Analysis

In order to evaluate the proposed system, there are three basic metrics to con-
sider: latency, packet loss and jitter. Figure 6 shows how latency increases as QoS
increases. From the three, QoS = 0 shows the lowest latency and lowest jitter,
since less confirmations are needed in order to deliver the messages. For QoS = 1
and QoS = 2, the travel time is much higher because the broker has to guaran-
tee all clients received the message, making it not suitable for critical real-time
applications.
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Fig. 6. Travel time for different QoS values.

The packet loss had little impact over the experiments. Even for QoS = 0,
where messages are not guaranteed to be delivered to every client, there was no
packet loss even for message bursts, where one message was being sent every
millisecond. This reflects the reliability of the TCP/IP protocol when delivering
messages, as well as the great capacity of the MQTT broker to deal with incoming
messages. That said, QoS = 1 provides the best option in this scenario, since there
is no need for message queuing and the gateway has a wired connection, reducing
packet loss probability.

It’s important to notice that, even though the QoS = 0 results in this exper-
iment are very consistent, real-time applications could suffer because this app-
roach is not deterministic, and network lags could drastically increase the travel
time, if not break the communication link, thus reducing the quality of service.
One possible solution to this problem is hosting the MQTT broker locally, in a
controlled ambient, making it more reliable for critical applications.

5 Case-Scenario Test

In order to test the robot in the case-scenario, it had to perform a previously
selected path and perform sensor reading whenever requested throughout the
test. The path chosen can be seen on Fig. 7. The robot could successfully navigate
the path and collect the data whenever requested. The results of the sensor
measurements can be seen on Fig. 8.
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Fig. 7. Robot path.

Fig. 8. Temperature and humidity sensing following the path.

6 Conclusions and Future Work

This paper presented an infrastructure to remotely control a robot and retrieve
sensor data combining the MQTT protocol over the Internet and Zigbee 802.15.4
locally.

In order to propose an implementation for Robots as service in the cloud,
there are a few requirements to satisfy, such as reliability, security, availabil-
ity and latency compatible with the application. We adopted MQTT because it
already defines QoS parameters, supports encryption and authentication natively
and has low code footprint and low network bandwidth usage, ideal for con-
strained devices.
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Metrics related to quality of transmission were collected and analysed in
order to validate the MQTT broker in the proposed scenario. Finally, the tests
in the robot prototype shown that the system is appropriate under the specified
conditions.

As for future work, we pretend to add more diverse nodes to the system, as
well as add a more functionality, sensing and intelligence to the robots.
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