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Preface

Starting from the entire Universe and proceeding all the way down to the atomic
scale, physical quantities often take on different values when observed along
different directions. Directional dependence (anisotropy) of data is thus paramount
to numerous scientific disciplines such as chemistry, material science, astrophysics,
neuroscience, and medical imaging. In each of these disciplines, a wide array of
works employs tensors and other mathematical constructs to represent anisotropy.
The focus of this book is on the modeling, processing, and visualization of
anisotropy, regardless of the context in which it emerges. As such, it differs
substantially from conventional reference works, which tend to be centered on a
particular application.

This multidisciplinary book is the sixth in a series that aims to foster scientific
exchange between communities that employ tensors and other higher-order rep-
resentations of directionally dependent data. A significant portion of the chapters
were co-authored by the participants of the workshop titled “Multidisciplinary
Approaches to Multivalued Data: Modeling, Visualization, Analysis,” which was
held in Dagstuhl, Germany, in April 2016. However, the book does not gather the
proceedings of the workshop; some contributions deviate from the presentations at
the workshop, and we have invited several completely new chapters within the scope
of the workshop.

The first four chapters of the book make up Part I, which focuses on characteriz-
ing the features of and visualizing tensor fields. In turn, Part II includes a collection
of chapters on the processing of this data. Here, diffusion anisotropy continues to be
a topic of interest. More fundamental aspects of the topic are addressed in Part III,
while some important applications are presented in Part IV. Part V, which is the
final part, highlights nascent approaches inspired by machine learning.

Visualization and analysis provide the necessary basis for understanding and
exploring data, which is especially true and challenging when it comes to anisotropic
or higher-order entities. Part I of this book presents different strategies for the
structural analysis of tensor data, which serve as basis for condensed multiscale
visualization. The methods range from topological analysis, to statistical moments,
to the analysis of the gradient of tensors in materials. Chapter 1 starts with
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vi Preface

theoretical considerations regarding the stability of topological structures with
respect to perturbations in the tensor field. The result is a hierarchy of features
that supports multiscale analysis. Chapter 2 provides a more applied perspective on
tensor topology and its interpretations in the context of solid mechanics simulations.
A different approach to structure is followed in Chap. 3, which uses moment
invariants as descriptors of the tensor field. These descriptors are used to detect
patterns in a data set independent of its orientation and scale. The last chapter of
Part I investigates the gradients of (symmetric) second-order tensor fields, which are
tensors of third order. Here, special emphasis is put on stress gradients in structural
mechanics, for which glyph-based visualization is proposed.

Various imaging methods represent important sources of anisotropic data and
produce voxelized data or unstructured point clouds. The analysis and processing of
such data are the topic of Part II of this book. The first step in analyzing discrete data
is the choice of an appropriate interpolation schema, which is the topic of Chap. 5.
It provides a survey of interpolation schemes, including a detailed analysis of their
respective properties. Chapter 6 proposes a general framework for fundamental
morphological operations, such as dilation and erosion for matrix fields. The next
two chapters deal with the analysis of point clouds: Chap. 7 proposes a robust
extraction of geometrical shapes like curves and surfaces from point clouds, even
in noisy scenarios, and introduces an advanced tensor voting technique for blood
vessel analysis. Chapter 8, which is the last chapter, uses a feature classification
approach to extract and reconstruct the point-sampled geometry of topographic data
captured using airborne LiDAR technology.

Measuring structural anisotropy within locally oriented media is a challenging
problem with enormous implications for assessing the state of neural tissues.
Magnetic resonance techniques provide a powerful though indirect means of nonin-
vasively measuring such anisotropy by characterizing the orientational preference
of water diffusion. In Chap. 9 of Part III, the authors illustrate how anisotropic
information can be obtained via diffusion MR. Various anisotropy metrics obtained
through state-of-the-art signal-based and multicompartmental models are reviewed
and compared. The rather large voxels afforded by typical MR imaging studies
complicate the determination of local (microscopic) anisotropy when there is
significant heterogeneity within the voxel. In a subsequent chapter, the notion
of microscopic anisotropy and recent developments concerning its measurement
via traditional as well as novel MR pulse sequences are reviewed. In Chap. 11,
estimation of the single-diffusion tensor model in each voxel is revisited from a
Bayesian perspective by incorporating heteroscedastic noise (i.e., the variance does
not have to be constant but can also change throughout the samples). In the last
chapter, intra-voxel heterogeneity is modeled by means of a multicompartmental
model for diffusion MRI, employing a combination of tensor-valued non-central
Wishart distributions.

Diffusion MRI fiber tractography remains the only available technique for
mapping the brain’s structural connectivity in vivo. The diverse contributions
in Part IV demonstrate that it also remains a vital and active research topic.
Chapter 13 introduces a novel method for obtaining a geometric representation of
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tract boundaries from streamline-based tractography via a curve similarity metric,
while Chap. 14 contributes to the validation of two widely used software packages
for fiber tractography by investigating their test-retest reliability. Chapter 15, which
is the final chapter, presents a pipeline for automated fiber bundle segmentation and
quantification, which is specifically targeted toward the assessment of brain maturity
in preterm neonates.

In recent years, the broad use of deep learning approaches has significantly
enhanced the state of the art in neighboring fields, such as computer vision.
However, there has been relatively little work on adapting such techniques to tensor
fields or other mathematical representations of anisotropy. Accordingly, Part V of
our book includes two contributions addressing this timely field of research. The first
explores the feasibility of using a convolutional neural network (CNN) to map strain
tensors to an associated scalar value, while the second uses CNNs to reconstruct
fiber orientation distribution functions from diffusion MRI, which continues to work
well even when the number of measurements provided as input is reduced.

We wish to thank the board and staff at Schloss Dagstuhl for their time and
effort in facilitating the workshop, which fostered scientific exchange and ultimately
led to the creation of this book. Special thanks go to the editors of the Springer
Mathematics and Visualization book series for their valued consideration and
support. The book would of course never have been possible without the high-
quality manuscripts submitted by the authors. Last but not least, we are indebted
to all reviewers, whose incisive comments greatly improved many of the chapters.

We certainly hope that this book will be a valuable resource for those who work
on multidirectional data and inspirational in the development of new models as well
as analysis and visualization techniques, thus advancing the state of the art in studies
involving anisotropy.

Bonn, Germany Thomas Schultz
Linköping, Sweden Evren Özarslan
Norrköping, Sweden Ingrid Hotz
March 2017
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Part I
Features and Visualization



Robustness for 2D Symmetric Tensor
Field Topology

Bei Wang and Ingrid Hotz

Abstract Topological feature analysis is a powerful instrument to understand the
essential structure of a dataset. For such an instrument to be useful in applications,
however, it is important to provide some importance measure for the extracted
features that copes with the high feature density and discriminates spurious from
important structures. Although such measures have been developed for scalar and
vector fields, similar concepts are scarce, if not nonexistent, for tensor fields. In
particular, the notion of robustness has been proven to successfully quantify the
stability of topological features in scalar and vector fields. Intuitively, robustness
measures the minimum amount of perturbation to the field that is necessary to cancel
its critical points.

This chapter provides a mathematical foundation for the construction of a feature
hierarchy for 2D symmetric tensor field topology by extending the concept of
robustness, which paves new ways for feature tracking and feature simplification
of tensor field data. One essential ingredient is the choice of an appropriate metric
to measure the perturbation of tensor fields. Such a metric must be well-aligned
with the concept of robustness while still providing some meaningful physical
interpretation. A second important ingredient is the index of a degenerate point
of tensor fields, which is revisited and reformulated rigorously in the language of
degree theory.

1 Introduction

As a linear approximation of physical phenomena, tensors play an important role in
numerous engineering, physics, and medical applications. Examples include various
descriptors of stress at a point in a continuous medium under load or the diffusion
characteristics of water molecules in fibrous media. Tensors provide a powerful and
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4 B. Wang and I. Hotz

simple language to describe anisotropic phenomena for which scalars and vectors
are not sufficient, but the analysis of tensor fields is a complex and challenging task.
Therefore, visualization becomes a crucial capability to support the understanding
of tensor fields. See [18] for a survey on the analysis and visualization of second-
order tensors.

In this chapter, we are especially interested in a structural characterization of
symmetric second-order tensor fields using topological methods, which can form
the basis of advanced analysis and visualization methods. Roughly speaking, tensor
field topology segments the tensor field into regions of equivalent tensor line
behavior. Conceptually, it is closely related to the vector field topology. Degenerate
points in tensor fields take the role of critical points in vector fields, and tensor lines
correspond to streamlines. However, despite these parallels, there are also many
differences.

First, whereas critical points in vector fields behave as sources and sinks and
separatrices can be interpreted as material boundaries of flows, the topological
features of tensor fields often do not have a direct physical meaning. Degenerate
points are points of high symmetry with isotropic behavior and thus might be
considered as being especially boring. However, they play an important role from a
structural point of view, as they are points where the eigenvector field is not uniquely
specified and thus not necessarily continuous.

Second, there are also major structural differences in comparison to vector fields,
because eigenvector fields have no specified orientation. In the 2D case, they exhibit
a rotational symmetry with a rotational angle of � . As such, they are a special case
of N-symmetric direction fields [17], which are important for many applications
in geometry processing and texture design. For example, the eigenvector fields of
the curvature tensor have been used for the purpose of quadrangular re-meshing,
where degenerate points are mesh vertices with distinct valency [1, 16]. A related
application is the synthesis of textures, for example, by defining the stroke directions
as an eigenvector field of some tensor field, where degenerated points account for
points with non-trivial texture characteristics [3, 30]. For both applications, it is
essential to have control over the number of degenerate points. Furthermore, in
tensor field analysis, it can also be beneficial to have control over not only the
degenerated points but also their cancellation for feature-preserving interpolation
and smoothing [15, 24].

While tensor field topology has attracted the most attention in geometric
applications, it was introduced along with the vector field topology in visualization
applications by Delmarcelle [9] and Tricoche [26]. Since the introduction of
tensor field topology, theoretical and application-driven advancement has been slow
for several reasons (in contrast to vector field topology): the lack of theory for
3D tensor fields, the complexity of the resulting topological structures, and the
challenge of a direct interpretation of such structures in the application domain.
However, there has been some recent, encouraging effort by Zhang et al. [31]
concerning a theory for 3D tensor fields and the application of stress tensor field
analysis. To further develop tensor field topology as a useful analysis tool, we are
convinced that a major requirement is to find a mathematically rigorous way to cope
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with the high density of the extracted topological features, even in the setting of 2D
tensor fields, where a large number of structures originate from extended isotropic
regions and are very sensitive to small changes in the data.

The most important requirement in applications is a stable topological skeleton
representing the core structure of the data. For all the above-mentioned applications,
tensor field topology can provide a means for the controlled manipulation and
simplification of data. In this work, we introduce a measure for the stability of
degenerate points with respect to small perturbations of the field. The measure is
based on the notion of robustness and well group theory, which has already been
successfully applied to vector fields. We extend this concept to 2D symmetric
second-order tensor fields to lay the foundation for a discriminative analysis of
essential and spurious features.

The work presented in this chapter paves the way for a complete framework of
tensor field simplification based on robustness. We generalize the theory of robust-
ness to the space of analytical tensor fields. In particular, we discuss the appropriate
metrics for measuring the perturbations of tensor fields, but a few challenges remain.
First, we need to develop efficient and stable algorithms to generate a hierarchical
scheme among degenerate points. Second, the actual simplification of the tensor
field using the hierarchical representation and cancellation of degenerate points is
technically non-trivial. In this chapter, we focus on the first part by providing the
necessary foundation for the following steps.

Our main contributions are threefold: First, we interpret the notion of tensor
index under the setting of degree theory; Second, we define tensor field perturbations
and make precise connections between such perturbations with the perturbations of
bidirectional vector fields; Third, we generalize the notion of robustness to the study
of tensor field topology.

This chapter is structured as follows: After reviewing relevant work in Sect. 2,
we provide a brief description of well group theory and robustness for vector fields
in Sect. 3. Then in Sect. 4, we reformulate some technical background in tensor
field topology in a way that is compatible with robustness, by introducing the
bidirectional vector field and an anisotropy vector field. The anisotropy vector field
then provides the basis for Sect. 5 in which the notion of robustness is extended to
the tensor field setting.

2 Related Work

Tensor Field Topology Previous research has examined the extraction, simplifica-
tion, and visualization of the topology of symmetric second order tensor fields on
which this work builds. The introduction of topological methods to the structural
analysis of tensor fields goes back to Delmarcelle [9]. In correspondence to
vector field topology, Delmarcelle has defined a topological skeleton, consisting
of degenerate points and separatrices, which are tensor lines connecting the degen-
erate points. Delmarcelle has mainly been concerned with the characterization of
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degenerate points in two-dimensional fields. Therefore he also provided a definition
for the index of a critical point. Tricoche et al. [27] built on these ideas by developing
algorithms to apply the concept of topological skeleton to real data. A central
question of their work is the simplification of the tensor field topology and tracking it
over time. They succeeded in simplifying the field, but the algorithm contains many
parameters and is very complex. A robust extraction and classification algorithm for
degenerate points has been presented by Hotz et al. [15]. Their method is based
on edge labeling using an eigenvector-based interpolation. This work has been
extended by Auer et al. [2] to cope with the challenge of discontinuities of tensor
fields on triangulated surfaces. While the characteristics of the tensor field topology
for two-dimensional fields are similar to the vector field topology, it is in general
not possible to define a global vector field with the same topological structure. It
is possible, however, to define a vector field whose critical points are located in
the same positions as the degenerate points of the tensor field by duplicating their
indexes. This idea has been used by Zhang et al. [30] for constructing a simplified
tensor field for texture generation. Our method follows a similar line of thought
but goes a step further by defining an isometric mapping of the tensor field to a
vector field.

Robustness for Vector Fields In terms of vector field topology, topological
methods have been employed extensively to extract features such as critical points
and separatrices for vector field visualization [19] and simplification [8]. Motivated
by hierarchical simplification of vector fields, the topological notion of robustness
has been used to rank the critical points by measures of their stability. Robustness is
closely related to the notion of persistence [10]. Introduced via the algebraic concept
of well diagram and well group theory [7, 11, 12], it quantifies the stability of critical
points with respect to the minimum amount of perturbation in the fields required
to remove them. Robustness has been shown to be very useful for the analysis
and visualization of 2D and 3D vector fields [23, 28]. In particular, it is the core
concept behind simplifying a 2D vector field with a hierarchical scheme that is
independent of the topological skeleton [22]; and it leads to the first ever 3D vector
field simplification, based on critical point cancellation [20]. Measures of robustness
also lead to a fresh interpretation of critical point tracking [21]: Stable critical points
can be tracked more easily and more accurately in the time-varying setting.

In this paper, we extend the notion of robustness to the study of tensor field
topology. We would like to rely on such a notion to develop novel, scalable, and
mathematically rigorous ways to understand tensor field data, especially questions
pertaining to their structural stability. We believe that robustness holds the key to
increase the interpretability of tensor field data, and may lead to a new line of
research that spans feature extraction, feature tracking, and feature simplification
of tensor fields.



Robustness for 2D Symmetric Tensor Field Topology 7

3 Preliminaries on Robustness for Vector Fields

In this section, we briefly review the relevant technical background of robustness
for 2D vector field such as critical points, degrees, indices, well groups and well
diagrams. These concepts are important for developing and understanding the
extensions of robustness for the tensor field.

Critical Point and Sublevel Set Let f W R2 ! R
2 be a continuous vector field. A

critical point of f is a zero of the field, i.e., f .x/ D 0. Define f0 W R2 ! R as the
vector magnitude of f , f0.x/ D jj f .x/jj2, for all x 2 R

2. Let Fr denote the sublevel
set of f0, Fr D f�1

0 .�1; r�, that is, all points in the domain with a magnitude up to
r. In particular, F0 D f�1.0/ is the set of critical points. A value r > 0 is a regular
value of f0 if Fr is a 2-manifold, and for all sufficiently small � > 0, f�1

0 Œr� �; rC ��
retracts to f�1

0 .r/; otherwise it is a critical value. We assume that f0 has a finite
number of critical values and f contains a finite number of isolated critical points.
Figure 1 gives an example of a 2D vector field f with four critical points (Fig. 1 left)
and the regions in the domain enclosed by colored contour lines of f0 (Fig. 1 middle)
illustrate sublevel sets of f0 at critical values.

Degree and Index Suppose x is an isolated critical point of f . For a 2D vector field,
the degree of x equals its index, which in turn corresponds to the winding number of
a simple closed curve on the plane around x. Formally, fix the local coordinates near
x and pick a closed disk D that encloses x in its interior and contains no other critical
points. Then the index of x (w.r.t. f ), If .x/, or equivalently the (local) degree of f at
x, denoted as deg. f jx/, is the degree of the mapping u W @D ! S

1 that associates
@D (the boundary of D) to the circle, given by u.z/ D f .z/=j f .z/j (u is sometimes
referred to as the Gauss map). It is shown that isolated first-order critical points have
an index of ˙1: a saddle has an index of �1 and non-saddles have an index of C1.
In Fig. 1 right, x2; x4 are saddles of index �1 whereas x1 and x3 have indexC1.

x1

x2

x3

x4

β1

β2

β3

γ1

γ2

ω1

x2x1 x3

−1+1 +1
x4

β1 β3β2

γ2γ1

ω1

r2

r1

r3

x1 x2 x3 x4
+1 −1 +1 −1

0

+1

0

Fig. 1 Figure recreated from [28] showing the merge tree for a continuous 2D vector field
example. From left to right: vector fields f , relations among components of Fr (for r � 0), and
the augmented merge tree. f contains four critical points, a red sink x1, a green source x3 , and two
blue saddles x2 and x4. We use ˇ, � , !, etc., to represent components of the sublevel sets
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Let C � Fr be a path-connected component of Fr. Consider fx1; x2; : : : ; xng to be
the set of critical points in C. Then the degree of f restricted to @C is the sum of the
degrees of f at the xi, deg. f j@C/ D Pn

iD1 deg. f jxi/. For notational convenience,
when f is fixed, we abuse the notation by defining the degree of C as deg.C/ WD
deg. f j@C/. For example, in Fig. 1 middle, component ˇ1 (representing a sublevel
set of f0) is of degree 0 as it contains critical points x1 and x2 with opposite degrees.

Poincaré-Hopf Theorem for Vector Fields We review the Poincaré-Hopf theorem
in the setting of a 2D vector field. A particularly useful corollary for 2D vector field
simplification is that if a region C � R

2 has degree zero, it is possible to replace the
vector field inside C with a vector field free of critical points.

Theorem 1 (Poincaré-Hopf theorem) LetM be a smooth compact 2-manifold. Let
f be a vector field on M with finitely many isolated critical points. For M with
boundary, f points in the outward normal direction along the boundary. Then the
sum of the indices of the critical points is equal to the Euler characteristic of the
manifold:

P
i If .xi/ D �.M/.

Well Group Given a mapping f W X ! Y and a subspace A � Y, the well
group theory [7, 11, 12] studies the robustness of the homology of the pre-image
of A, f�1.A/ with respect to perturbations of the mapping f . Roughly speaking, the
homology of a topological space measures its topological features, where the rank
of the 0-, 1- and 2-dimensional homology groups corresponds to the number of
connected components, tunnels, and voids, respectively. Here we review the well
group theory in the setting of a 2D vector field f W R2 ! R

2 where A D 0, and
correspondingly study the stable property of the critical points ( f�1.0/) of f [7].

Let f ; h W R2 ! R
2 be two continuous 2D vector fields. Define the distance

between the two mappings as d. f ; h/ D supx2R2 jj f .x/ � h.x/jj2: We say a
continuous mapping h is an r-perturbation of f , if d. f ; h/ � r. In other words,
for each point x 2 R

2, the point h.x/ lies within a disk of radius r centered at f .x/.
See Fig. 2.

If h is an r-perturbation of f , then h�1.0/ is a subspace of Fr, that is, we have
an inclusion h�1.0/ � Fr. The connected components of h�1.0/ generate a vector
space that is the 0-dimensional homology group of h�1.0/, denoted as H.h�1.0//.
Similarly, we have the 0-dimensional homology group of Fr, denoted as H.Fr/. The
subspace relation h�1.0/ � Fr induces a linear map jh W H.h�1.0// ! H.Fr/

Fig. 2 Geometric
interpretation of an
r-perturbation of a vector
field at a point x in the
domain r

f(x)

h(x)
x
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between the two vector spaces. The well group, U.r/, as first studied in [12], is
the subgroup of H.Fr/ whose elements belong to the image of each jh for all r-
perturbation h of f . That is,

U.r/ D
\

h

im jh: (1)

Assuming a finite number of critical points, the rank ofU.0/ is the number of critical
points of f . For values r < s, Fr � Fs inducing a linear map fsr W H.Fr/ ! H.Fs/
between the two homology groups. It can be shown that U.s/ � fsr.U.r//, for r � s.
Therefore the rank of the well group decreases monotonically as r increases. The
following lemma suggests an algorithm to compute the rank of the well groups.

Lemma 1 (Lemma 3, [7]) If r is a regular value of f0, then the rank of the well
group U.r/ is the number of connected components C � Fr such that deg.C/ ¤ 0.
Well Diagram A point r belongs to the well diagram of f0, Dgm. f0/, with
multiplicity k if the rank of the well group drops by k at r [7]. For reasons of
stability, the point 0 is counted with infinite multiplicity. The point 1 is counted
with multiplicity k if for all sufficiently large values of r, the rank of U.r/ is k. The
well diagram contains a multi-set of points (infinitely many points at 0 and a finite
number of nonzero points) on the extended real line, NR D R [ f˙1g, where each
point in Dgm. f0/ is either a 0, a positive real number, or1.

We therefore consider each point in the well diagram as a measure of how
resistant a homology class of f�1.0/ is against perturbations of the mapping f [12].
Recall that f0 has finitely many critical values that can be indexed consecutively as
frigi (where 0 D r0 < r1 < r2 < � � � < rl), U.ri/ � F.ri/ WD H.Fri/ are the
corresponding well groups. We define the mapping f j0 W F.0/! F.rj/. A homology
class ˛ in the well group U.0/ dies at rj if fi0.˛/ is a nonzero class in U.ri/; and
either f j0.˛/ D 0, or f j0.˛/ … U.rj/, for each i < j. The robustness of a class ˛ in
U.0/ is the value at which the class dies [12].

As shown in the example of Fig. 1 right, each critical point of f generates a class
in U.0/, denoted as ˛1, ˛2, ˛3, and ˛4 (corresponding to critical points x1 to x4,
respectively). At r1, two classes ˛1 and ˛2 die, and therefore they have a robustness
of r1. Similarly, ˛3 and ˛4 die at r3, with a corresponding robustness of r3. In terms
of the well diagram, the well group U.r1/ drops in rank by two because there is an
r1-perturbation of f such that there are only two zeros. Therefore two points are in
the well diagram at r1. Similarly, two points are in the well diagram at r3 because
the well group drops its rank by two.

Robustness of Critical Points In the setting of 2D vector fields, the robustness
of a critical point xi can be described by the robustness of the class ˛i in U.0/
that it generates1. Therefore in our example (Fig. 1), points x1; x2; x3, and x4 have
robustness r1; r1; r3 and r3 respectively.

1We rely on this definition to describe the robustness of a critical point xi, even though the critical
point is only a particularly chosen generator of the class ˛i in U.0/.
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To compute the robustness of critical points in f , we construct an augmented
merge tree of f0 that tracks the (connected) components of Fr together with their
degree information as they appear and merge by increasing r from 0. A leaf node
represents the creation of a component at a local minima of f0 and an internal
node represents the merging of components. See [6, 28] for algorithmic details. The
robustness of a critical point is the height of its lowest degree zero ancestor in the
merge tree. To illustrate the construction, we show a 2D example recreated from [28]
in Fig. 1. By definition, the critical points x1 and x2 have robustness r1, whereas x3
and x4 have robustness r3. Such a topological notion quantifies the stability of a
critical point with respect to perturbations of the vector fields. Intuitively, if a critical
point x has robustness r, then it can be canceled with a .rC ı/-perturbation, but not
with any .r � ı/-perturbation, for ı > 0 arbitrarily small.

Given the above machineries, the properties associated with robustness for
critical points are direct consequences of Lemma 2 and Lemma 3. Their original
proof sketches can be found in the supplementary material of [28]. These proofs,
which are similar to the proof of Lemma 1, are revisited in Sect. 5.3 for completeness
(in the setting of a specific type of vector field).

Lemma 2 (Nonzero Degree Component for Vector Field Perturbation, Corol-
lary 1.2 in [28] supplement) Let r be a regular value of f0 and C a connected
component of Fr such that deg.C/ ¤ 0. Then for any ı-perturbation h of f , where
ı < r, the sum of the degrees of the critical points in h�1.0/\ C is deg.C/.

Lemma 3 (Zero Degree Component for Vector Field Perturbation, Corollary
1.1 in [28] supplement) Let r be a regular value of f0 and C a connected
component of Fr such that deg.C/ D 0. Then, there exists an r-perturbation h of
f such that h has no critical points in C, h�1.0/ \ C D ;. In addition, h equals f
except possibly within the interior of C.

In the example of Fig. 1 right, x1 has a robustness of r1, Lemma 3 implies that
there exists an .r1 C ı/-perturbation (for an arbitrarily small ı > 0) that can cancel
x1 by locally modifying the connected component C � Fr1Cı containing it.

4 Tensor Fields and Bidirectional Anisotropy Vector Fields

For the remainder of this paper, we consider 2D symmetric second-order tensor
fields. In this section, we establish the necessary foundations for introducing a
robustness measure for the degenerate points of tensor fields. We introduce the
notion of bidirectional anisotropy vectors, which serves two purposes. First, we
use it to define the notion of perturbations of tensor fields for our setting (Sect. 4.2).
Second, this notion will be central for the definition of the tensor index under the
setting of degree theory (Sect. 5.1).

We start by summarizing some basic concepts of tensor field topology in
Sect. 4.1. For a complete introduction, we refer the reader to the work by Del-
marcelle [9] or Trichoche [25]. Then we introduce the notion of bidirectional
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anisotropy vector fields in Sect. 4.2 and discuss its relation with respect to the space
of deviators. Finally, we establish an isometry from the space of deviators to the
anisotropy vector field in Sect. 4.3.

4.1 Background in Tensor Field Topology

The topology of a 2D symmetric second-order tensor field is defined as the topology
of one of the two eigenvector fields [9]. The degenerate points constitute the basic
ingredient of the tensor field topology and play a role similar to that for the critical
points (zeros) for vector fields.

2D Symmetric Second-Order Tensor Fields In our setting, a tensor T is a linear
operator that associates any vector v to another vector u D Tv, where v and u
are vectors in the Euclidean vector space R

2. In this work, we restrict ourselves to
symmetric tensors. A tensor field T assigns to each position x D .x1; x2/ 2 R

2 a
symmetric tensor T.x/ D T. Let T denote the space of 2D symmetric second-order
tensors over R2. In matrix form, with respect to a given basis of R2, a tensor field T
is defined as

T W R2 ! T ;T.x/ D T D
�
t11 t12
t12 t22

�

: (2)

The tensor T at x is fully specified by two orthogonal eigenvectors vi at x and its
two associated real eigenvalues �i, defined by the eigenvector equation Tvi D �ivi
(for i 2 f1; 2g) with vi 2 R

2 and vi ¤ 0. By imposing an ordering of �1 � �2, the
normalized eigenvectors e1 (resp. e2) associated with �1 (resp. �2) are referred to as
the major (resp. minor) eigenvectors.

Degenerate Points At points x where the eigenvalues of T.x/ are different �1 ¤
�2, the eigenspace of �i (for i 2 f1; 2g) is the union of the zero vector and the
set of all eigenvectors corresponding to eigenvalue �i, which is a one-dimensional
subspace of R2. Such points are considered non-degenerate points of the tensor field
T. At these points, the tensor can then be expressed as

T D �1e1 ˝ e1 C �2e2 ˝ e2 (3)

where ˝ denotes the tensor product of the normalized eigenvectors ei. For point
x0 2 R

2 where �1.x0/ D �2.x0/ D �, its associated tensor is proportional to the unit
tensor and the corresponding eigenspace is the entire vector space R

2. Its matrix
representation is independent from the frame of reference, given as

T.x0/ D
�
� 0

0 �

�

:
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The points x0 are called degenerate points. In the following sections, we assume that
these points are isolated points in R

2, which is usually the case. While the degenerate
points are isotropic points exhibiting a high symmetry, they are structurally the most
important features for the eigenvector fields.

Real Projective Line Before we proceed, we need the notion of real projective
line and the homeomorphism between the real projective line and the circle. The
real projective line, denoted as RP1 (or P1 for short), can be thought of as the set of
lines through the origin of R2, formally P

1 WD .R2 n f0g/= �, for the equivalence
relation x � y iff x D cy for some nonzero c 2 R. We sketch the proof below for P1

being homeomorphic to a circle S
1, via P

1 ' .S1= �/ ' S
1.

The quotient topology of a real projective line can be described by the mapping
� W R2 n f0g ! P

1 that sends a point x 2 R
2 n f0g to its equivalent class Œx�. �

is surjective and has the property that �.x/ D �. y/ iff x � y. Restricting such a
mapping to S

1, we obtain a mapping �jS1 W S1 ! P
1 that identifies the two antipodal

points. We now consider S1 as fz 2 C j jjzjj D 1g. Then we have �jS1 .z/ D Œz�. It is
easy to show that �jS1 defines a homeomorphism between P

1 and S
1= � (where �

describes the equivalence of z � �z) since �jS1 has the property that U � .S1= �/
is open (w.r.t. quotient topology on S

1= �) iff .�jS1 /�1.U/ is open in R
2 n f0g.

Now consider the mapping 	 W S
1 ! S

1 defined as 	.z/ D z2. 	 is a
continuous surjective function such that 	.z/ D 	.�z/. Following the universal
property (of quotient topology2), there exists a unique continuous homeomorphism

 W .S1= �/! S

1 by having 	 descending to the quotient. Therefore .S1= �/ ' S
1.

Eigenvector Fields In the following section, we describe the construction of an
eigenvector field associated with the tensor field T. As described before, a real 2D
symmetric tensor T at x has two (not necessarily distinct) real eigenvalues �1 � �2
with associated eigenvectors v1 and v2. It is important to note that neither norm nor
orientation is defined for the eigenvectors via the eigenvector equation, that is, if vi
is an eigenvector, then so is cvi for any nonzero c 2 R. The normalized eigenvectors
are denoted as ei (for i 2 f1; 2g), where ei 2 S

1. This point of view is reflected
through the interpretation of an eigenvector as elements of the real projective line.
Thus we define the two eigenvector fields as the mapping  i W R2 ! P

1 (for i 2
f1; 2g), referred to as the major and minor eigenvector fields, respectively:

 i W R2 ! P
1; x 7!

�
Œei� if �1 ¤ �2
Œe0� for degenerate points, if �1 D �2 (4)

Œe0� is an arbitrarily chosen element of P
1. Note that the eigenvector field is not

continuous in degenerate points, and in general it is not possible to define Œe0� such

2The quotient space X= � together with the quotient map q W X ! .X= �/ is characterized by
the following universal property: If g W X ! Z is a continuous map such that a � b implies
g.a/ D g.b/ for all a and b in X, then there exists a unique continuous map f W .X= �/ ! Z such
that g D f ı q. We say that g descends to the quotient.
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that it becomes continuous. From now on, we restrict our attention to the major
eigenvector field, referred to as the eigenvector field of T, denoted as  WD  1,
as the minor eigenvectors are always orthogonal and do not provide additional
information in the 2D case.

The eigenvector fields and the degenerate points constitute the basic ingredients
of the topological structure of a tensor field, and they build the basics for the bi-
directional anisotropy vector fields that will be defined in Sect. 4.2.

4.2 Space of Bidirectional Anisotropy Vectors

In this section, we define the space of bidirectional anisotropy vectors equipped with
a distance measure that is based on the L2 norm of vectors. A comparison with the
commonly used distance measure for tensors using the Frobenius norm shows that
this space is topologically equivalent to the space of deviators D . The bidirectional
anisotropy vectors constitute a step toward the definition of an anisotropy vector
field later used in the study of robustness.

Bidirectional Anisotropy Vectors We define bidirectional anisotropy vectors as
bidirectional vectors ! whose direction is defined by the equivalence class of
the major eigenvector Œe1� and a norm given by the tensor anisotropy A (e.g.,
A D j�1 � �2j). Formally, we consider these vectors as elements of P

1 	 R�0.
Degenerate points, that is, points with zero anisotropy and an undefined major
eigenvector, are represented as the zero vectors.

Let T be the space of 2D symmetric tensors over R2. For each tensor T 2 T ,
we define the bidirectional anisotropy vector by the following mapping (Fig. 3):

˝ W T ! P
1 	 R�0

T 7! ˝.T/ D ! D
�
.Œe1�;A/ if �1 ¤ �2
.Œe0�; 0/ for degenerate points, if �1 D �2 (5)

The space P
1 	 R�0 can also be interpreted as .R2= �/, for the equivalence relation

x � y iff x D �y. In this setting, ! is equal to the equivalence class ŒAe1� D fv;�vg
consisting of the two vectors v D Ae1 2 R

2 and �v D �Ae1 2 R
2 with e1 2 Œe1�.

Distance Measure We now define a distance measure between two bidirectional
vectors ! D fv;�vg and !0 D fv0;�v0g with vector representatives v and v0,
respectively. See Fig. 4 for an illustration:

d.!0; !/ D min.kv � v0k2; kv C v0k2/: (6)

Theorem 2 The distance measure defined in Eq. (6) is a metric on the space of
bidirectional vectors.
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x

y

t11

t22

t
12

T

t11 =-t22

D(T)

= ([e1],A)

([e2 ],A)

(T )

Fig. 3 Mapping of a tensor T to the bidirectional anisotropy vector defined by its anisotropy
A and the eigenvector Œe1�. The space on the right represents the vector space spanned by the
three independent components of the tensor. The gray plane on the left highlights the subspace of
traceless tensors

d( , ')

'

Fig. 4 The distance between two bidirectional vectors ! and !0 defined as the minimal distance
between the members of their equivalence classes

Proof The expression in Eq. (6) is obviously independent of the arbitrarily chosen
representatives v and v0. It is also obviously symmetric and non-negative. Therefore
we have: d.!; !0/ D 0 , min.kv � v0k2; kv C v0k2/ D 0 , v D v0 or v D
�v0 , ! D !0. Furthermore the triangle inequality is satisfied (see Appendix 6
for derivations). Thus Eq. (6) defines a metric on the space of bidirectional vector
fields.
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Space of Deviators The space of bidirectional anisotropy vectors is closely related
to the space of deviatoric tensors D . A deviator D is the traceless or anisotropic part
of a tensor T:

D D T � tr.T/

2
I; (7)

where I represents the unit tensor. The space of 2D symmetric deviatoric tensors D
is a subspace of the set of 2D symmetric tensors T (see Fig. 3). The eigenvectors of
D coincide with the eigenvectors of T. Thus the deviator field has the same topology
as the original tensor field. Its eigenvalues are ı1 D �ı2 D 1

2
.�1 � �2/. The most

commonly used norm in T is the Frobenius norm. For the deviator, the Frobenius
norm is kDkF D 1

2
j�1 � �2j, which corresponds to an anisotropy measure (shear

stress) that is typically used for failure analysis in mechanical engineering and will
be used as the anisotropy measure A below, that is, let A D j�1 � �2j. Based on the
Frobenius norm, degenerate points are the points x0 at which kD.x0/kF D 0. The
Frobenius norm therefore induces a metric on D , that is, for D;D0 2 D :

dF.D;D
0/ D kD � D0kF: (8)

Deviator and Bidirectional Vectors If we restrict the mapping ˝j defined in
Eq. (5) to the space of deviatoric tensors D , the resulting mapping ˝jD is one-
to-one. The inverse mapping is then defined by

.˝jD/�1 W P1 	 R�0 ! D

! D ŒAe� 7! D D
p
A

2
e˝ e �

p
A

2
e? ˝ e?: (9)

Here e? represents a normalized vector orthogonal to e. It can be seen immediately
that this expression is independent of the sign of the representative vector e and thus
is well-defined. For ! D Œ0e0�, Eq. (9) results in a zero tensor that is independent of
the chosen vector e0.

Theorem 3 For the above defined metric Eq. (6) on the space of bidirectional
anisotropy vectors and the Frobenius metric Eq. (8) on the space of deviators,
we have

˝.D0/ 2 Br.˝.D//) D0 2 Br0.D/ (10)

with r0 D p5r. For the opposite direction, we have

D0 2 Br0.D/) ˝.D0/ 2 Br.˝.D//: (11)

Thus the mapping defined in Eq. (5) is continuous, and the space of tensor deviators
and the bidirectional anisotropy vectors are topologically equivalent.
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Proof Let D and D0 be two symmetric, traceless 2D tensors with major eigenval-
ues . 1p

2
�; �1p

2
�/ and . 1p

2
�; �1p

2
�/, respectively, as well as their corresponding

eigenvectors Œei� and Œ fi�, for i D 1; 2. Their norms are given by kDk2F D �2 and
kD0k2F D �2. The corresponding bidirectional anisotropy vectors are defined as
! D ˝.D/ D ŒAe1� with A D � and !0 D ˝.D0/ D ŒA0f1� with A0 D �.

In order to compare the Frobenius distance between deviators and the distance
between bidirectional anisotropy vectors, we first bring them into similar forms.
Therefore we decompose the distance into two parts (see Appendix 6 for a
derivation).

d2F.D;D
0/ D kD �D0k2F D kDk2F C kD0k2F � 2.D W D0/

D .� � �/2 C 4�� sin2 ˛ (12)

where D W D0 is the inner product of the tensors and ˛ is the angle between the
major eigenvectors. One can interpret this decomposition as having a shape-related
part .� � �/2 and a direction-related part 4�� sin2 ˛. A similar decomposition has
been proposed by Zhang et al. [29] for the comparison of normalized tensors.

The distance defined between the bidirectional anisotropy vectors (Eq. (6)) is
based on the L2 distance between vectors. Therefore we will now express the L2
distance between two vectors with length A and A0 accordingly (see Appendix 6 for
a derivation):

d2.!; !0/ D .A � A0/2 C 4A A0 sin2.˛=2/

D .� � �/2 C 4�� sin2.˛=2/: (13)

As in Eq. (12), we can interpret Eq. (13) as having a shape-related part and a
distance-related part. The shape-related parts in Eqs. (12) and (13) are identical;
however, the direction-related parts differ with respect to the angles.

Now let ˝.D0/ 2 Br.˝.D// be a bidirectional vector in the r-ball of ˝.D/ for
some value r 2 R>0, which means

d2.˝.D/;˝.D0// D .� � �/2 C 4�� sin2.˛=2/ � r2:

It follows that .� � �/2 � r2 and 4�� sin2.˛=2/ � r2. From this we can derive
an upper limit for the Frobenius distance of the two tensors D0 and D. Combining
the relation sin˛ D 2 sin.˛=2/ cos.˛=2/ and the fact that ˛ 2 Œ0; �=2�, we have
sin ˛ � 2 sin.˛=2/. It follows for the deviators:

d2F.D;D
0/ D .� � �/2

„����ƒ‚����…
�r2

C 4�� sin2 ˛
„�������ƒ‚�������…

�4��.4 sin2.˛=2//�4r2
� 5r2) D0 2 Bp

5r.D/:

The opposite direction is trivially satisfied, since sin2.˛=2/ � sin2 ˛ for all ˛ 2
Œ0; �=2�, and d2.˝.D/;˝.D0// � d2F.D;D

0/.
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Bidirectional Anisotropy Vector Field In accordance with the tensor field, we
now define a bidirectional anisotropy vector field.

A bidirectional anisotropy vector field ! assigns to each position x D .x1; x2/ 2
R
2 a bidirectional anisotropy vector!. The map˝ can be used to convert the tensor

field T into a bidirectional anisotropy vector field !.x/ D ˝.T.x// D .˝ ı T/.x/.
If the tensor field is continuous, then the bidirectional anisotropy vector field is also
continuous, as it is a concatenation of two continuous mappings.

4.3 The Anisotropy Vector Field

In the following section, we define an anisotropy vector field Q! as a mapping from
R
2 to S

1 	 R�0. An element in S
1 	 R�0 can be understood as a vector in R

2

represented in polar coordinates. Such a vector field Q! serves two purposes. First,
we use it to specify the perturbation of a tensor field. Second, we use it to define the
tensor index following the degree theory.

To define anisotropy vectors, we first define a mapping Q̋ from the space of
tensors T to S

1 	 R�0 by lifting the first part of the mapping ˝ from P
1 to its

covering space S
1 using the mapping 
 W P1 ! S

1 defined in Sect. 4.1. According
to Eq. (5), we define

Q̋ W T ! S
1 	 R�0

T 7! Q̋ .T/ D Q! D ..
 	 Id/ ı˝/ D Ae21: (14)

Here e1 2 C is an eigenvector representative of Œe1� considered as a complex number.
It can be easily seen that Ae21 D A.�e1/2 is independent of the choice of the
representative.

Theorem 4 The above defined mapping (Eq. (14)) restricted to the space of
deviators Q̋ jD is an isometry with respect to the L2-norm in R

2 and the Frobenius
norm in D2.

Proof The proof follows directly from Eqs. (12) and (13). Let D and D0 be two
symmetric, traceless 2D tensors defined as above. We have

d2. Q̋ .D/; Q̋ .D0// D .� � �0/2 C 4�� sin2..2˛/=2/ D d2F.D;D
0/;

since squaring a complex number doubles the angle.
We would like to point out that thus defined vectors are less appropriate

for geometric representations of the tensor and their directions are not directly
correlated to the principal directions of the tensor. The explicit direction depends
on the frame of reference chosen for the representation of the complex numbers
(see also Sect. 4.4).
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Fig. 5 The concatenation of the mapping defined by the tensor field and the homomorphism 


between P and S defined in Sect. 4.1 is a continuous mapping from R
2 to R

2. It defines a vector
field on R

2

Anisotropy Vector Field With these definitions, we can define the anisotropy
vector field Q!, which serves as the basis for the application of the concept of
robustness to tensor fields. Q! assigns to each position x 2 R

2 a vector Q!. Thereby the
map Q̋ is used to convert the tensor field T into a vector field Q!.x/ D Q̋ .T.x// D
. Q̋ ı T/.x/. If the tensor field is continuous, then the anisotropy vector field is also
continuous as a concatenation of two continuous mappings (see Fig. 5).

Q! W R2 ! S
1 	 R�0.' R

2/; Q!.x/ D ..
 	 Id/ ı!/.x/ (15)

Therefore Id W R! R is the identity map.

4.4 Notes on the Topology of the Anisotropy Vector Field

When looking at the vector field derived from the tensor field in Sect. 4.3, an obvious
question is how its vector field topology relates to the tensor topology of the original
tensor field. From the construction of the anisotropy vector field, it is clear that its
critical points, zeros of the vector field, coincide with the degenerate points of the
tensor field.

These points, however, constitute only a part of the topology. The second
essential part is the connecting separatrices. For the vector case, these are the
integral lines of the vector field. For tensor fields, the separatrices are tensor lines,
which follow one eigenvector field. The structure in the vicinity of the critical points
is characterized by its index (compare to Sect. 5.1). In our setting, the index of the
tensor field degenerate points and the index of the anisotropy vector field are related
by the degree two mapping 
 defined in 4.1. Thus a wedge point in the tensor field
(tensor index C1=2) is mapped to sources/sinks (vector index C1) and trisectors
(tenors index �1=2) are mapped to saddle points (vector index �1). In general a
degenerate point of tensor index i is mapped to a critical point of index 2i (Fig. 6).
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Tensor field degenerate points with half integer indices

index -0.5 index 0.5 index 1.5

Corresponding anisotropy vector field critical points with integer indices

index -1.0 index 1 index 3.0

Fig. 6 Change of the structure of the field when mapping the tensor field to the anisotropic vector
field. Examples for isolated degenerate points

This mapping gives rise to a very distinct structure in which different critical points
will be connected. Integral lines in the vector field do not coincide with the integral
lines for the tensor field.

What is important, however, for our discussion is that the stability of the critical
points and the degenerated points in terms of robustness is the same.

5 Robustness for Tensor Fields

Similar to vector field topology, one of the major challenges in tensor field topology
is the complexity of the topological structure. A large part of the topological
structure originates from extended isotropic regions and such a structure is very
sensitive to small changes in the data. Therefore we would like to have a stable
topological skeleton representing the core structure of the data. Previous attempts
to simplify the tensor field topology have relied on heuristics that lack a clean
mathematical framework. Motivated by the notion of robustness based on the well
group theory for the vector fields, we extend such a concept to 2D symmetric
second-order tensor fields. In this section, we connect the indexes of degenerate
points with the degree theory in Sect. 5.1, define tensor field perturbation in
Sect. 5.2, and generalize robustness to tensor field topology in Sect. 5.3. Our main
contributions are threefold: We interpret the notion of tensor index under the setting
of degree theory; we define tensor field perturbations and make precise connections
between such perturbations with the perturbations of bidirectional anisotropy vector
fields; and we generalize the notion of robustness to tensor field topology.
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Trisector Wedge

Fig. 7 Basic structure of eigenvector fields in the vicinity of degenerate points. It can easily be
seen that it is not possible to orient the tensor lines in a continuous way
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Fig. 8 The mapping � D 
 ı  defines a continuous mapping from R
2 to S

1, which corresponds
to lifting the mapping 
 from P

1 to the covering space S
1

5.1 Indexes of Degenerate Points and Degree Theory

Index of Degenerate Points Similar to the zeros of vector fields, we also consider
the notion of index for these degenerate points. Delmarcelle [9] defines the index of
a degenerate point x 2 R

2 as the number of “half-windings” an eigenvector performs
when moved along a simple closed curve (i.e., a Jordan curve) enclosing the
degenerate point. For linear fields, the structure of the eigenvector fields surrounding
the degenerate points follows two characteristic patterns depending on their indexes
(see Fig. 7).

Connection to Degree Theory The above definition of an index by Delmarcelle
follows a geometric point of view considering the number of “half-windings” of
the eigenvectors. There is also, however, a close connection between the index of
a degenerate point and the degree of a mapping as defined in algebraic topology.
Since the degree plays an important role in the theory of robustness, we revisit the
concept in Sect. 3 and provide here a formulation in terms of degree theory. The line
of thought is similar to that of Trichoche ([25], page 55).

Consider a tensor field T defined on an orientable surface M (here M D R
2),

and suppose all degenerate points are isolated and finite in number. We would like
to associate (via the theory of Hopf [14]) an index with each x of M. We built a
continuous mapping � by lifting the eigenvector field  to its covering space S

1

(see Fig. 8). That is, � D 
 ı  , where  W R2 ! P
1 and 
 W P1 ! S

1, that is,
�.x/ D Œe1�2, where Œe1� is a generator.
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For the definition of the index of a degenerate point x, we consider the boundary
of a region C enclosing x, that is, the curve @C with no other degenerate points in its
interior. We define the index of x, IT.x/ to be 1

2
deg.�j@C/.

Poincaré-Hopf Theorem for Tensor Fields Delmarcelle has provided a tensor
field equivalence of the Poincaré-Hopf theorem ([9], page 163).

Theorem 5 (Theorem 15, [9]) The tensor index of a 2D orientable surface M

relative to a tangent tensor field T with a finite number of degenerate points on
M is equal to the Euler characteristic ofM. That is, IT.M/ DPi IT.xi/ D �.M/.

According to Hopf’s result [14], whenever the continuous field of directions
tangent to M is not zero at more than finitely many points xi, we always have the
above theorem [5].

5.2 r-Perturbation of Anisotropy Vector Field

Suppose we have two anisotropy vector fields f and h, derived from tensor fields T
and T0, respectively, that is, f D Q! and h D Q!0. We define the distance between the
two as

d. f ; h/ D sup
x2R2
jj f .x/� h.x/jj2:

We say a continuous mapping h is an r-perturbation of f , if d. f ; h/ � r. In other
words, for each point x 2 R

2, the point h.x/ lies within a disk of radius r centered at
f .x/. See Fig. 2 for a geometric interpretation of an r-perturbation of the anisotropy
vector field at a point x in the domain.

5.3 Robustness of Degenerate Points

Converting a tensor field T to its corresponding anisotropy vector field f greatly
simplifies the extension of robustness from the vector field to the setting of the
tensor field. First, the degenerate points of T correspond to the critical points of
f ; therefore f has no critical points in a path-connected region C � R

2 iff T has
no degenerate points in C. Second, the index of a degenerate point in T is half the
degree of its corresponding critical point in f . Third, the r-perturbation of f relates
to the perturbation of T via its projection D in a quantifiable way; an r-perturbation
in f corresponds to an r-perturbation in D.

We have conjectured that the robustness of degenerate points x for tensor fields T
would resemble the robustness of its corresponding critical point f for the anisotropy
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vector fields. Recall that, by definition, f is an anisotropy vector field, f W R2 ! R
2,

f0 D jj f jj2 W R2 ! R, Fr D f�1
0 .�1; r�. Let h be another anisotropy vector field

h W R2 ! R
2. We would prove the following lemmas, whose proofs are identical

to the proofs used for results in [28] (Corollary 1.1 and Corollary 1.2 in the
supplemental material) with respect to vector field perturbation. We include the
proofs here for completeness.

Lemma 4 (Nonzero Degree Component for Tensor Field Perturbation) Let r
be a regular value of f0 and C a connected component of Fr such that deg.C/ ¤ 0.
Then for any ı-perturbation h of f , where ı < r, the sum of the degrees of the critical
points in h�1.0/\ C is deg.C/.

Proof Before we illustrate the details of the proof, we need to provide a rigorous
definition of the degree of a mapping.

Let C � Fr be a path-connected component of Fr. Function f restricted to C,
denoted f jC W .C; @C/! .Br; @Br/, maps C to the closed ball Br of radius r centered
at the origin, where @ is the boundary operator. f jC induces a homomorphism on the
homology level, f�jC W H.C; @C/! H.Br; @Br/. Let�C and�Br be the generators of
H.C; @C/ and H.Br; @Br/, respectively. The degree of C (more precisely the degree
of f jC), deg.C/ D deg. f jC/, is the unique integer such that f�jC.�C/ D deg.C/ ��Br .
Furthermore we have the function restricted to the boundary, that is, f j@C W @C! S

1.
It was shown that deg. f jC/ D deg. f j@C/ ([7], Lemma 1).

Consider the following diagram for any ı-perturbation h of f , where ı < r:

H.C; @C/
i��! H.C;C � h�1.0//

# f�jC # h�j0
H.Br; @Br/

j��! H.Br;Br � f0g/: (16)

i� and j� are homomorphisms induced by space-level inclusions i W .C; @C/ !
.C;C � h�1.0// and j W .Br; @Br/! .Br;Br � f0g/. j� is also an isomorphism. The
vertical maps f�jC and h�j0 are induced by f and h with restrictions, respectively.
Therefore the diagram commutes.

Suppose r is a regular value and deg.C/ ¤ 0. Then by commutativity, the sum of
degrees of the critical points in h�1.0/\ C is deg.C/.

Lemma 5 (Zero Degree Component for Tensor Field Perturbation) Let r be
a regular value of f0 and C a connected component of Fr such that deg.C/ D 0.
Then there exists an r-perturbation h of f such that h has no degenerate points in C,
h�1.0/\ C D ;. In addition, h equals f except possibly within the interior of C.

Proof The proof follows the commutative diagram above (Eq. (16)) for any r-
perturbation h of f . Suppose r is a regular value. Then well groups U.r � ı/ and
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U.r C ı/ are isomorphic for all sufficiently small ı > 0. Suppose deg.C/ D
deg. f jC/ D deg. f j@C/ D 0. Then following the Hopf Extension Theorem ([13],
page 145), if the function f j@C W @C ! S

1 has degree zero, then f can be extended
to a globally defined map g W C ! S

1 such that g equals f when both are restricted
to @C. Now we define a perturbation h W R2 ! R

2 such that h D 0:5 � f C 0:5 � g. h is
the midpoint on a straight line homotopy between f and g. By definition d.h; f / � r,
so h is an r-perturbation of f . In addition, h�1.0/\ C is empty.

Remark One important aspect of well group theory is that the well group is defined
to be the intersection of the images of jh for all r-perturbation h of f (Eq. (1)). Given
f as an anisotropy vector field, we introduce an r-perturbation h of f . We would
need to make sure that any such h is itself a valid anisotropy vector field. That is, for
any r-perturbation h of f , there exists a corresponding tensor field T from which an
anisotropy vector field h can be derived. This is true based on derivations in Sect. 4.

6 Discussion

There are a few challenges in extending our framework to a 3D symmetric tensor
field. The notion of deviator can be generalized to 3D, but the notion of anisotropy
vector field does not generalize to 3D. The lack of such a notion poses a challenge
in studying robustness for 3D symmetric tensor field topology via transformation of
the data to the anisotropy vector field. We suspect a possible solution is to define
perturbations with respect to the bidirectional anisotropy vector field derived from
eigenvector fields.

An important contribution of this paper is the conversion from a tensor field T
to its corresponding anisotropy vector field f . There is a one-to-one correspondence
between the degenerate points of T and the critical points of f . However, as shown
in Fig. 6, the topology of T and that of f obviously do not agree. Understanding their
differences and the consequences will be an interesting direction.

The main motivation of extending robustness to a 2D symmetric tensor field
is that it would lead to simplification schemes for tensor field data. In general,
topology-based simplification techniques pair the topological features for simpli-
fication via the computation of topological skeleton, which can be numerically
unstable. In contrast, the proposed robustness-based method is independent of the
topological skeleton and, thus, is insensitive to numerical error.
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Appendix A: Notations

Symbol Description

T Space of 2D symmetric second-order tensors

D � T Space of 2D symmetric second-order deviators

RP
1 or P1 Real projective line

T, D Tensors

T;D W R2 ! T Tensor fields

vi Eigenvectors

ei Normalized (unit) eigenvectors

�i, �i Eigenvalues

A (e.g. D j�1 � �2j) Anisotropy measure

Œei� 2 P
1 Equivalence class of unit eigenvectors

 i W R2 ! P
1, i D 1; 2, Major (i D 1) and minor (i D 2) eigenvector fields (direction

fields, no magnitude)

 D  1 W R2 ! P
1 (Major) eigenvector field

! Bidirectional anisotropy vector

˝ W T ! P
1 � R�0 Mapping that assigns a bidirectional anisotropy vector to the

tensor

! W R2 ! P
1 � R�0 Bidirectional anisotropy vector field (direction fields with

magnitude, not a traditional vector field)
Q̋ W T ! R

2 Mapping that assigns an anisotropy vector to a tensor

Q! W R2 ! R
2 Anisotropy vector field (traditional vector field)

Q!.x/ 2 R
2 Anisotropy vector


 W .P1 ' .S1= �// ! S
1 Degree 2 mapping

� D 
 ı  W R2 ! S
1 Mapping used for defining the index of degenerate points

Appendix B: Triangle Inequality for the Distance Measure
Between Bidirectional Anisotropy Vectors (Eq. (6))

Let!, !0 and !00 be bidirectional anisotropy vectors as defined in Eq. (5) with vector
representatives v, w, and u respectively. Recall the distance measure is defined as
d.!; !0/ D min.kv � wk2; kv C wk2/. Therefore we have (Fig. 9):

d.!; !0/C d.!0; !00/
D min. kv � wk2; kv C wk2/Cmin.kw � uk2; kwC uk2/
� min. kv � wk2 C kw � uk2; kv � wk2 C kwC uk2;

kv C wk2 C kw � uk2; kv C wk2 C kwC uk2 /
D min. kv � wk2 C kw � uk2; kv � wk2 C kw � .�u/k2;

kv � .�w/k2 C k.�w/ � .�u/k2; kv � .�w/k2 � k.�w/ � uk2 /
� min. kv � uk2; kv � .�u/k2; kv � .�u/k2; kv � uk2 /
D min. kv � uk2; kv C uk2 /
D d.!; !00/



Robustness for 2D Symmetric Tensor Field Topology 25

e1
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f2

cos

sin

v1

v2

||v1||-||v2||

geometric mean

(||v1||.||v2||)1/2

 sin   /2

/2

Fig. 9 Left: eigenvectors of D and D0 and angle ˛ by definition. Right: geometric interpretation of
the vector distance decomposed in radial and directional parts

Appendix C: Derivations for Eqs. (12) and (13)

The inner product of two symmetric tensors T and T 0 is defined as T W T 0 DPij tijt
0
ij.

It can be expressed in terms of eigenvectors and eigenvalues
P

ks �k�s.ek � fs/2 (see
e.g., [4]). Here � denotes the standard scalar product of vectors. For 2D deviatoric
tensors D and D0 with eigenvalues . 1p

2
�; �1p

2
�/ and . 1p

2
�; �1p

2
�/, respectively, and

their corresponding eigenvectors ei and fi (for i D 1; 2), this yields

.D W D0/ D 1

2
��

�
.e1 � f1/2 � .e1 � f2/2 � .e2 � f1/2 C .e2 � f2/2

�

D �� �cos2 ˛ � sin2 ˛
�

d2F.D;D
0/ D kD �D0k2F D kDk2 C kD0k2 � 2.D W D0/

D kDk2 C kD0k2 � 2�� �cos2 ˛ � sin2 ˛
�

D �2 C �2 � 2�� �1 � 2 sin2 ˛
�

D .� � �/2 � 4�� sin2 ˛

A similar construction for 2D vectors v1 and v2 using the trigonometric equality
1 � cos.2ˇ/ D 2 sin2.ˇ/ gives:

d2.v1; v2/ D kv1k2 C kv2k2 � 2.v1 Pv2/
D .kv1k C kv2k/2 � 2kv1k kv2k � 2.v1 � v2/
D .kv1k C kv2k/2 � 2kv1k kv2k .1 � 2 cos˛/

D .kv1k C kv2k/2 � 4kv1k kv2k sin2.˛=2/
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Applying 2D Tensor Field Topology to Solid
Mechanics Simulations

Yue Zhang, Xiaofei Gao, and Eugene Zhang

Abstract There has been much work in the topological analysis of symmetric
tensor fields, both in 2D and 3D. However, there has been relatively little work
in the physical interpretations of the topological analysis, such as why wedges and
trisectors appear in stress and strain tensors. In this chapter, we explore the physical
meanings of degenerate points and describe some results made during our initial
investigation.

1 Introduction

The analysis of symmetric tensor fields has seen much advance in the last two
decades. Topology-based tensor field analysis has found applications in not only
scientific visualization, but also computer graphics [20] and geometry processing
[1, 20].

Delmarcelle and Hesselink [6] study the singularities in a 2D symmetric tensor
field, which they term degenerate points, i.e., points in the domain where the tensor
field has two identical eigenvalues (i.e., degeneracy). Delmarcelle and Hesselink
point out that there are two types of degenerate points, wedges and trisectors, which
they classify using a descriptor that they introduce.

Both wedges and trisectors represent directional discontinuities in the tensor
field. However, why are there only two types of fundamental degenerate points
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in a 2D tensor field and why they appear in some locations? To the best of our
knowledge, these questions are well understood only for the curvature tensor, which
describes the bending of surfaces. For example, wedges tend to appear at the tips
of protrusions in the surface, while trisectors tend to appear at the joints of the
surface [2].

While the above interpretation of the degenerate points is well understood in
shape modeling, it is not clear how to adapt this interpretation to the stress tensor
and strain tensor in solid mechanics. The curvature tensor naturally relates to the
distribution of the Gaussian curvature of surfaces considered and of the degenerate
points in the tensor field. In solid and fluid mechanics, the study of tensor field
topology is relatively under-utilized.

In this book chapter, we describe our ongoing effort and some initial results
in applying 2D symmetric tensor field topology to the stress tensor fields. Our
approach includes the generation of simulation scenarios with controlled shapes,
material properties, external forces, and boundary conditions. The occurrence
of the degenerate points becomes a function of the physical properties of the
shapes studied. In addition, we present an enhanced topological description for
2D symmetric tensor fields, based on the concepts of isotropy index and deviator
variability index.

Section 2 reviews past research in symmetric tensor field visualization. In Sect. 3
we review relevant mathematical background about tensor fields. In Sect. 4 we
describe our approach. We present our enhanced topological descriptors for 2D
symmetric tensor fields in Sect. 5 before concluding in Sect. 6.

2 Previous Work

There has been much work on the topic of 2D and 3D tensor fields for medical
imaging, scientific visualization, and geometry modeling. We refer the readers to the
recent survey by Kratz et al. [10]. Here we only refer to the research most relevant
to this chapter.

Most of the earlier research on symmetric tensor field analysis and visualization
focused on the diffusion tensor, a semi-positive-definite tensor extracted from brain
imaging. The main focus is two-folds. First, fibers following the eigenvectors of
the diffusion tensor are computed. Second, appropriate glyphs are designed to
help the user understand the diffusion tensor. This has led to various measures
for the anisotropy in the diffusion tensor, such as the relative anisotropy and
the fractional anisotropy [3]. Unfortunately these measures do not distinguish
between the linear and planar types of tensors. Westin et al. [18] overcome this
by modeling the anisotropy using three coefficients that measure the linearity,
planarity, and sphericalness of a tensor, respectively. The aforementioned measures
are designed for semi-positive-definite tensors, such as the diffusion tensor. We refer
interested readers to the book [5] and the survey by Zhang et al. [22] on research
related to this area.
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At the same time, there have been a number of approaches to visualize 2D
and 3D symmetric tensor fields. Delmarcelle and Hesselink [6] introduce the
notion of hyperstreamlines for the visualization of 2D and 3D symmetric tensor
fields. Zheng and Pang [24] visualize hyperstreamlines by adapting the well-known
Line Integral Convolution (LIC) method of Cabral and Leedom [4] to symmetric
tensor fields which they term HyperLIC [24]. Zheng and Pang also deform an
object to demonstrate the deformation tensor [23]. These visualization techniques
have been later used for geomechanics data sets [13]. Hotz et al. [9] use an
physically-driven approach to produce LIC like visualization. One of the fundamen-
tal differences between the diffusion tensor and the other symmetric tensors from
mechanics (stress, strain, symmetric part of the velocity gradient tensor) is that the
former is semi-positive-definite (no negative eigenvalues) while the latter can have
both semi-positive and negative eigenvalues. Schultz and Kindlmann [15] extend
ellipsoidal glyphs that are traditionally used for semi-positive-definite tensors to
superquadric glyphs which can be used for general symmetric tensors.

Delmarcelle and Hesselink [6, 7] introduce the topology of 2D symmetric
tensor fields as well as conduct some preliminary studies on 3D symmetric tensors
in the context of flow analysis. Hesselink et al. later extend this work to 3D
symmetric tensor fields [8] and study the degeneracies in such fields. Zheng and
Pang [25] point out that triple degeneracy, i.e., a tensor with three equal eigenvalues,
cannot be extracted in a numerically stable fashion. They further show that double
degeneracies, i.e., only two equal eigenvalues, form lines in the domain. In this work
and subsequent research [27], they provide a number of degenerate curve extraction
methods based on the analysis of the discriminant function of the tensor field.
Furthermore, Zheng et al. [26] point out that near degenerate curves the tensor field
exhibits 2D degenerate patterns and define separating surfaces which are extensions
of separatrices from 2D symmetric tensor field topology. Tricoche et al. [16] convert
the problem of extracting degenerate curves in a 3D tensor field to that of finding
the ridge and valley lines of an invariant of the tensor field, thus leading to a more
robust extraction algorithm. Tricoche and Scheuermann [17] introduce a topological
simplification operation which removes two degenerate points with opposite tensor
indexes from the field. Zhang et al. [20] propose an algorithm to perform this pair
cancellation operation by converting the tensor field to a vector field and reusing
similar operations in vector field topological simplification [21].

Finally, a number of researchers have investigated the visualization and analysis
of data in solid and fluid mechanics using non-topological approaches, such as the
stress classification using Mohr’s diagram [11], stress streamlets [19], and machine
learning [12].
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3 Background on Tensors and Tensor Fields

In this section we review the most relevant background on 2D symmetric tensors
and tensor fields.

3.1 Tensors

A K-dimensional (symmetric) tensor T has K real-valued eigenvalues: �1 � �2 �
: : : � �K . When all the eigenvalues are non-negative, the tensor is referred
to as semi-positive-definite. The largest and smallest eigenvalues are referred to
as the major eigenvalue and minor eigenvalue, respectively. When K D 3,
the middle eigenvalue is referred to as the medium eigenvalue. An eigenvector
belonging to the major eigenvalue is referred to as a major eigenvector. Medium
and minor eigenvectors can be defined similarly. Eigenvectors belonging to different
eigenvalues are mutually perpendicular.

The trace of a tensor T D .Tij/ is trace.T/ D PK
iD1 �i. T can be uniquely

decomposed as DC A where D D trace.T/
K I (I is the K-dimensional identity matrix)

and A D T � D. The deviator A is a traceless tensor, i.e., trace.A/ D 0. Note
that T and A have the same set of eigenvectors. Consequently, the anisotropy in a
tensor field can be defined in terms of its deviator tensor field. Another nice property
of the set of traceless tensors is that it is closed under matrix addition and scalar
multiplication, making it a linear subspace of the set of tensors.

The magnitude of a tensor T is jjTjj D
qP

1�i;j�K T2ij D
qPK

i �
2
i , while

the determinant is jTj D QK
iD1 �i. For a traceless tensors T, when K D 2 we

have jjTjj2 D �2jTj. This observation infers a simplification in tensor invariant
calculations when only the traceless portions of the tensors are investigated, and it
becomes advantageous to decompose the tensor into the trace and deviator parts.

A tensor is degenerate when there are repeating eigenvalues. In this case,
there exists at least one eigenvalue whose corresponding eigenvectors form a
higher-dimensional space than a line. When K D 2 a degenerate tensor must
be a multiple of the identity matrix. In 2D, the aforementioned trace-deviator
decomposition can turn any tensor into the sum of a degenerate tensor (isotropic)
and a non-degenerate tensor (anisotropic). For example, when the tensor is the
curvature tensor of two-dimensional manifolds embedded in 3D, the isotropic-
deviator decomposition amounts to

K D U0
�
1 0

0 2

�

U (1)
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where 1 � 2 are the principal curvatures and the columns of U are the
corresponding principal curvature directions. Rewriting the above equation we have

�
1 0

0 2

�

D
q
21 C 22p
2

�

sin 


�
1 0

0 1

�

C cos


�
1 0

0 �1
��

(2)

where 21 C 22 D jjKjj2 is the total curvature and 
 D arctan. 1C2
1�2 / measures the

relative strength between the isotropic and anisotropic components in the curvature
tensor. Figure 1 shows the canonical shapes corresponding to various representative

 values and how 
 can be used as a classification of surface geometry on the bunny
surface.

If all the eigenvalues of a tensor T are positive, the tensor is positive-definite.
Examples of semi-positive-definite tensors include the diffusion tensor from medi-
cal imaging and the metric tensor from differential geometry. Tensors that are not
semi-positive-definite include the curvature tensor from differential geometry and
the stress and strain tensors from solid and fluid mechanics.

Fig. 1 Surface classification scheme based on the shape index 
 2 Œ�=2; �=2� is color mapped
to the [BLUE,RED] arc in HSV color space: Left top: continuous mapping. Bottom: binned
classification. The legend (right) shows surfaces patches which are locally similar to points with
given values. This figure is a courtesy of [14], ©2012 IEEE
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3.2 Tensor Fields

We now review tensor fields, which are tensor-valued functions over some domain
˝ � R

K . A tensor field can be thought of as K eigenvector fields, corresponding
to the K eigenvalues. A hyperstreamline with respect to an eigenvector field ei. p/
is a 3D curve that is tangent to ei everywhere along its path. Two hyperstreamlines
belonging to two different eigenvalues can only intersect at the right angle, since
eigenvectors belonging to different eigenvalues must be mutually perpendicular.

Hyperstreamlines are usually curves. However, they can occasionally consist of
only one point, where there are more than one choice of lines that correspond to
the eigenvector field. This is precisely where the tensor field is degenerate. A point
p0 2 ˝ is a degenerate point if T. p0/ is degenerate. The topology of a tensor field
consists of its degenerate points.

In 2D, the set of degenerate points of a tensor field are isolated points under
numerically stable configurations, when the topology does not change given
sufficiently small perturbation in the tensor field. An isolated degenerate point can
be measured by its tensor index [20], defined in terms of the winding number of
one of the eigenvector fields on a loop surrounding the degenerate point. The most
fundamental types of degenerate points are wedges and trisectors, with a tensor
index of 1

2
and � 1

2
, respectively. Let LTp0 . p/ be the local linearization of T. p/ at a

degenerate point p0 D
�
x0
y0

�

, i.e.,

LTp0 . p/ D
�
a11.x � x0/C b11. y � y0/ a12.x � x0/C b12. y � y0/
a12.x � x0/C b12. y � y0/ a22.x � x0/C b22. y � y0/

�

(3)

Then ı D
ˇ
ˇ
ˇ
ˇ

� a11�a22
2

a12
b11�b22

2
b12

�ˇ
ˇ
ˇ
ˇ is invariant under the change of basis. Moreover, p0

is a wedge when ı > 0 and a trisector when ı < 0. When ı D 0, p0 is a higher-
order degenerate point. A major separatrix is a hyperstreamline emanating from
a degenerate point following the major eigenvector field. A minor separatrix is
defined similarly. The directions in which a separatrix can occur at a degenerate
point p0 can be computed as follows.

Let v D .x; y/ be a unit vector. Let LTp0 . p/ be the local linearization at p0. A
major separatrix can leave p0 in the direction of v if v is parallel to e1. p0; ˛v/ for
some ˛ > 0. Here, e1. p0; ˛v/ is a major eigenvector of LTp0 . p0 C ˛v/. Note that
the LTp0 . p/ is a linear tensor field. Consequently, LTp0 . p0C˛v/ D ˛LTp0 . p0Cv/,
and it is sufficient to choose ˛ D 1. Similarly, a minor separatrix can leave
p0 in the direction of v if v is parallel to e2. p0; ˛v/, a minor eigenvector of
LTp0 . p0C ˛v/. Finding either major separatrix or minor separatrix directions leads
to a cubic polynomial with either one or three solutions under stable conditions. It is
known that around a trisector there must be three solutions, corresponding to three



Applying 2D Tensor Field Topology to Solid Mechanics Simulations 35

Fig. 2 A wedge (left) and a trisector (right)

separatrices that divide the neighborhood of p0 into three sectors, thus the namesake.
Around a wedge there can be either one sector or three sectors.

The total tensor index of a continuously tensor field over a two-dimensional man-
ifold is equal to the Euler characteristic of the underlying manifold. Consequently,
it is not possible to remove one degenerate point. Instead, a pair of degenerate
points with opposing tensor indexes (a wedge and trisector pair) must be removed
simultaneously [20]. Figure 2 shows a wedge pattern (left) and a trisector pattern
(right), respectively.

4 Our Approach

The classification in Eq. (2) is applicable to tensor fields other than the curvature
tensor. In this book chapter, we apply it to the stress and strain tensors from 2D
solid mechanics simulations.

Our research is inspired by the following question: in the stress tensor, what
tensor properties decide the location and type of a degenerate point? To explore
this question, we develop a number of simulation scenarios, using a commercial
software tool for continuum mechanics. Currently, we are focusing on 2D scenarios.
Furthermore, we implement a visualization system which takes as input a 2D
symmetric tensor field and computes a number of derived quantities from the tensor
field, such as the components of the tensors as well as their traces, determinants,
magnitudes, eigenvalues, and eigenvectors. The eigenvectors (either major, or
minor, or both) are displayed using texture-based methods [20] while the scalar
quantities are displayed using colors. For our initial geometry, we choose a relative
simple case, i.e., a square shape with uniform linear elastic material property. After
deforming this shape, we obtain nontrivial stress tensors over the domain. In our
visualization, the textures and colors can be displayed on the mesh before and
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Fig. 3 The visualization of the stress tensor from a simulation in which the left edge is fixed, and
the top and bottom edges are pulled to expand the shape. No boundary condition is applied to the
right edge. The colors show the trace based on the rainbow map: red (high), yellow (medium high),
green (zero), cyan (medium low), and blue (low). The textures show the major eigenvectors. In the
left, the object is undeformed, while in the right it is deformed

Fig. 4 Visualization of three deformed shapes from the same initial shape by varying the boundary
conditions. Even though different amplitudes and locations of the boundary conditions lead to
different topology, a possible pattern of when the trisectors (shown here for this family of scenarios)
seems to exist

after the deformation. Figure 3 shows one example of our visualization applied to a
simulated scenario before and after the deformation. Figure 4 shows different tensor
field topology for three such simulation scenarios with the same initial domain and
homogeneous material properties but different boundary conditions and external
force configurations.

Our study of these data sets has led to a new tensor classification approach as
well as some observations.
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5 Tensor Classification

Equation (2) is applicable to not only the curvature tensor in geometry processing,
but also the stress and strain tensors in solid and fluid mechanics. In this case,
degenerate tensors correspond to points where the stress is isostropic, with either
a positive trace (pressure) or a negative trace (pressure). Degenerate points in
the stress tensor are therefore where isotropic stress occurs, i.e., only hydrostatic
pressure and no shear.

This straightforward application of 2D symmetric tensor field topology to stress
tensors has two shortcomings. First, pure shear locations, where no hydrostatic
pressure exists, are not included as important features in tensor field topology.
Second, the type of the degenerate points (wedge or trisector) is not considered.
To address this, we introduce an enhanced version of the tensor field topology.

As mentioned earlier, there is not a curvature tensor quantity in stress tensor
fields and this hinders developing topology over these fields. To divide the material
region into meaningful topological domains, we explore various measurement
criteria. Here, we consider the following two quantities: we consider the following
two quantities: isotropy index 
, and deviator variation index ı. The isotropy
index 
 is the same as the shape index in Eq. (2). Next, we describe the deviator
variation index.

Given a symmetric tensor field T.x; y/ defined on a domain D � R
2, the deviator

of T.x; y/ introduces a map � W D ! F where F D f
�
a b
b �a

�

ka; b 2 R
2g is the set

of 2D traceless, symmetric tensors. We define the anisotropic variation index at a
point .x0; y0/ 2 D as:

ı.x0; y0/ D lim
A.� /!0

A.�.� //

A.� /
(4)

where � is a region enclosing .x0; y0/, �.� / is the image of � under the map �, and
A.K/ is the signed area of K, which in this case refers to � and �.� /, respectively.
This quantity measures the spatial variability of the deviatoric stress tensor, which
also shows spatial variability in the (major or minor) eigenvector fields around
.x0; y0/. Note that ı.x0; y0/ can be negative, indicating � and �.� / are oppositely
oriented.

Assuming T.x; y/ is sufficiently differentiable, it can be shown that

ı.x0; y0/ D j
 
1
2
. @T11
@x .x0; y0/ � @T22

@x .x0; y0//
@T12
@x .x0; y0/

1
2
. @T11
@y .x0; y0/ � @T22

@y .x0; y0//
@T12
@y .x0; y0/

!

j (5)

Notice that ı is exactly the same quantity that Delmarcelle and Hesselink [6]
used to classify a degenerate point in a 2D symmetric tensor field. In their analysis,
the sign of the deviator variation index is used to classify a degenerate point (positive
for wedges and negative for trisectors). We wish to point out that the absolute
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Fig. 5 Three simulation scenarios visualized using the deviator variability index. As expected,
the deviator variability index is positive for wedges (e.g., (left)) and negative for trisectors (e.g.,
(middle)). However, the absolute value of the deviator variability index is a useful tool to measure
the importance of degenerate points (middle: the two trisectors near the right edge have a higher
index value than those of the three trisectors near the left edge, indicating great variability in the
eigenvectors around the degenerate points). Moreover, even in the absence of degenerate points
(right), the spatial variation of the deviator variability index is also a characterization of the tensor
field itself

value of the deviator variation index is also important as it measures how spatially
varying the eigenvector fields are around the point of interest, which can be either a
degenerate point or a regular point.

Figure 5 demonstrates this with three examples. This leads to the following
characterization of a 2D stress tensor field, based on the magnitude, the isotropy
index, and the deviator variability index.

In addition to the enhanced description of tensor fields, we also propose to add the
set of zero isotropy index points and the set of zero deviator variability index points
to 2D tensor field features. For convenience, we refer to a zero isotropy index point
as a pure shear point and a zero deviator variability index point as a transition point.
Note that the latter is somewhat a misuse of the term transition point, which refers
to a structurally unstable degenerate point. Not all points that have a zero deviator
variability index is a degenerate point. However, for convenience we will overload
the term in the remainder of this book chapter. The sets of pure shear points and
transition points are both curves under structurally stable conditions. Together, they
divide the domain into four types of regions, which we refer to as (1) expansion
wedge region, (2) expansion trisector region, (3) compression wedge region, and
(4) compression trisector region. Again, note that we use wedge and trisector in the
names of these regions for convenience, instead of terms such as positive deviator
variability index and negative deviator variability index. The names do not suggest
that there must be any degenerate point in any of these regions (Fig. 6).

Figure 7 shows the partitions of the domain by the set of pure shear points (left)
and the transition points (right) of a simulation.

It is interesting that when we set up the boundary conditions for our simulations,
the expected number, location, and type of degenerate points have often deviated
from the actual outcome. This highlights the need to understand the physical
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Fig. 6 The tensor magnitude (left), isotropy index (middle), and deviator variability index (right)
of a simulated scenario. Note that the three descriptors together provide more insight into the
tensor field

Fig. 7 The sign functions of the isotropy index (left) and the deviator variability index (right) of
a simulated scenario. The boundaries between red and blue regions in both figures correspond to
pure shear points (left) and zero deviator variability points (right), respectively. These two sets of
points form curves, which, collectively divide the domain in four types of regions

interpretations of degenerate points, such as why they appear in certain locations.
In addition, the knowledge can help domain scientists control the number, type, and
location of degenerate points when setting up the simulation.

6 Conclusion

The notion of tensor field topology originated from fluid and solid mechanics [6].
Yet, after years of research in tensor field topology, its uses in engineering
application are still rather limited. One of the main difficulties is the lack of
physical interpretation of tensor field topology in these applications. Inspired by
this, we have started the exploration of the physical interpretations of tensor field
topology in terms of stress tensors. Our approach includes the generation of a large
number of simulation scenarios with controlled shapes and material properties and
external force as well as topological analysis of the resulting stress tensor fields.
As a first step of this exploration, we enhanced existing 2D symmetric tensor
fields by including the set of pure shear points and the set of transition points,
which divide the domain into four types of regions. At part of this, we point
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out the geometric meaning of the deviator variability index, which was limited to
classifying degenerate points.

For future work, we plan to adapt our analysis to 2D asymmetric tensor fields
and 3D symmetric tensor fields.
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Moment Invariants for Multi-Dimensional Data

Roxana Bujack and Hans Hagen

Abstract Moment invariants have long been successfully used for pattern matching
in scalar fields. By their means, features can be detected in a data set independent
of their exact orientation, position, and scale. Their recent extension to vector
fields was the first step towards rotation invariant pattern detection in multi-
dimensional data.

In this paper, we propose an algorithm that extends the normalization approach
to tensor fields of arbitrary rank in two and three dimensions.

1 Introduction

Tensor fields play an important role in the study of many physical phenomena.
Earthquakes, volcanoes, diffusion, or deformation can all be described using tensor
fields. Higher derivatives of scalar and vector fields also form tensors. In contrast
to their lower rank counterparts, tools for the analysis of higher rank tensor fields
are not as well developed. In particular, the visualization of three-dimensional
tensor fields can suffer from a clutter. Any given visualization element may occlude
elements behind it. The question of what is included or omitted in a visualization
is very important and can potentially impact the scientific understanding. Pattern
detection can help to address this problem by reducing the areas that are drawn to
the locations of features that are of importance to the analyst. In this paper, we
suggest an algorithm for rotation invariant pattern detection for tensor fields of
arbitrary rank.

Rotation invariance is a critical requirement of pattern detection to minimize the
set of unique patterns required in a search. Moment invariants allow one to achieve
rotation invariance without the need for point to point correlations.

Moments are the projections of a function with respect to a function space basis.
We can think of them as the coordinates that represent the pattern. They can then
be used to construct moment invariants - values that do not change under certain
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transformations. In this paper, we concentrate on orthogonal transformation and
isotropic scaling.

There are two main approaches to the construction of moment invariants:
normalization and the definition of a generator [17]. For normalization, a standard
position is defined by demanding certain moments to assume fixed values and
all functions are transformed to match it. Then the remaining moments form a
complete and independent set of moment invariants. The generator approach relies
on defining an explicit rule on how to combine the moments in a way that suppresses
the alignment information, usually by multiplication and addition.

The main disadvantage of the normalization approach is that it is unstable if the
moment chosen for normalization should become zero. On the other hand, the main
disadvantage of the generator approach is the difficulty in finding and proving the
existence of an independent moment. Depending on the application, one method
may be more effective than the other.

Both approaches have been applied to generate moment invariants for scalar
fields and recently also to vector fields. To the authors’ best knowledge, to date,
moment invariants for matrix fields or higher rank tensor fields have only been
presented using a generator approach [25].

In this paper, we present an algorithm that constructs moment invariants using
normalization for two- and three-dimensional tensor fields of arbitrary rank. For
scalar fields, the zeroth and first order moments are usually used for the normaliza-
tion with respect to translation and scaling. This is why the standard position with
respect to orientation is generally chosen to be the Jordan normal form of the second
order moments, which is related to the principal axes of the covariance matrix. For
vector fields, Bujack et al. [5] use the Schur form of the first order moments. This
is also of second rank. For higher rank tensor fields, the first order moments are
already of a rank higher than two. Hence, matrix algebra approaches can no longer
be applied.

Our solution to this problem is to use tensor contractions that produce first
rank tensors from higher rank moment tensors. These first rank tensors behave like
vectors and can easily assume a standard position. A similar approach has been used
in [10] to generate a normalizer for 2D affine transformations and in [9, 27] for 3D
scalar functions. We extend this idea to generate rotation invariants for tensor valued
functions.

The main contributions of this paper are as follows:

• We propose a methodology to apply tensor algebra to the normalization of
moments of tensor fields of any order o 2 N, including scalar, vector, and matrix
fields.

• By producing a complete and independent set of moment invariants, this method
can provide a solution for tensor fields where the generator approach fails [25].

• The flexibility inherent in this method also improves on state the art normaliza-
tion approaches for vector and scalar data by finding solutions where the current
techniques fail due to vanishing moments.

• To our knowledge, this is the first time that moment invariants have been
computed for a tensor field of second order.
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2 Related Work

The first moment invariants were introduced to the image processing society by
Hu [21]. The development of moment tensors by Dirilten and Newman [11]
extended moment invariants to three-dimensional data. Pinjo, Cyganski, and
Orr [27] calculated 3D orientation estimation from moment contraction to first
order moments.

Please note that invariants can be constructed not only from moments, but,
for example, from derivatives, too [12, 13]. The fundamental theorem of moment
invariants [28] guarantees that every algebraic invariant has a moment invariant
counterpart.

In his seminal work [14], Flusser presented a calculation rule to generate a
complete and independent set for 2D scalar functions. Later, he proved that it further
solves the inverse problem in [15].

For three-dimensional functions, the task is much more challenging. One
research path goes in the direction of the spherical harmonics. They are an
irreducible representation of the rotation group and therefore an adequate basis
for the generation of moment invariants. Lo and Don [26], Burel and Henocq [6],
Kazhdan et al. [22], Canterakis [8], and Suk et al. [33], use them to construct
moment invariants for three-dimensional scalar functions.

A second research path makes use of the tensor contraction method, as described
by Dirilten and Newman [11]. While all tensor contractions to zeroth rank are
rotationally invariant, it can be difficult to find a complete and independent set. Suk
and Flusser propose to calculate all possible zeroth rank contractions from moment
tensors up to a given order and then skip the linearly dependent ones in [32]. Higher
order dependencies still remain.

Schlemmer et al. [30, 31] generalized the notion of moment invariants to vector
fields. Later Bujack et al. [3] provided a normalization method that is flexible with
respect to the choice of the normalizer. It leads to a complete set of independent
moment invariants for 2D flow fields that is applicable to any pattern. Their
extension to three-dimensional vector fields uses the transformation properties of
the second rank tensors and their eigenvectors to define a standard position [5]. This
method requires the second rank tensor to not vanish.

Langbein and Hagen [25] treat tensor fields of higher rank. They show that the
tensor contraction method can be generalized to arbitrary tensor fields. However,
their suggested method to reduce the redundancy of the generator approach uses
exact calculation. Its application in a discrete setting (i.e., programmatically) has
not yet been practically applied. In this paper, we introduce a normalization method
for tensor fields which automatically results in an independent and complete set.
We demonstrate its utility by applying it to pattern detection in analytic as well as
simulation data.
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Table 1 State of the art of moment invariants constructed from normalization

Dim. Data type Authors Complete Independent Flexible

2D Scalar Flusser et al. [17] X X –

2D Vector Bujack et al. [3] X X X
2D Tensor – – – –

3D Scalar Cyganski et al. [9] X X –

3D Vector Bujack et al. [5] X X –

3D Tensor – – – –

Table 2 State of the art of moment invariants constructed using the generator approach

Dim. Data type Authors Complete Independent Flexible

2D Scalar Flusser et al. [14] X X –

2D Vector Schlemmer et al. [29] – – –

2D Tensor Langbein et al. [25] ? (X) –

3D Scalar Flusser et al. [32] ? – ?

3D Vector Langbein et al. [25] ? (X) –

3D Tensor Langbein et al. [25] ? (X) –

The brackets indicate that independence is given only theoretically and the question mark that this
property is unknown

The state of the art of moment invariants with respect to the each of the two
approaches, the different data types and dimensions are summarized in Tables 1
and 2. The attributes have the following meaning:

• Complete: The set is complete if any arbitrary moment invariant can be con-
structed from it.

• Independent: The set is independent if none of its elements can be constructed
from its other elements.

• Flexible: The set is flexible w.r.t. vanishing moments if it exists for any pattern,
meaning it does not rely on any specific moment cp0;q0 to be non-zero.

3 Theory

We will start by reviewing the theoretical underpinnings of our algorithm so that
readers from both the visualization world and the mathematical world start from
common ground. We also show how to generate tensors that transform like vectors
under rotations and reflections.

3.1 Tensors and Transformations

Tensors are a natural representation of physical quantities that follow specific rules
under transformations of the coordinate system. They can be represented as arrays of
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numbers relative to a fiducial basis. The rank of a tensor corresponds to the number
of indices that we need to identify the different numbers in the array. Scalars are
tensors of rank zero, vectors are tensors of rank one, and matrices are tensors of
rank two. The interested reader can find exemplary introductions to tensor analysis,
in addition to the definitions and lemmata we review in this work in [1] or in [18].
We will make use of the Einstein notation where the summation symbol is dropped
in products over the same index. The summation is performed from 1 to d, in
which the latter is the underlying dimension. Please note that the theory is valid
for arbitrary d 2 N. Later, in our experiments, we will work with two- and three-
dimensional fields.

Definition 1 A multidimensional array Ti1:::in
j1:::jm

that, under an active transformation
by the invertible matrix Ai

j 2 R
d�d, behaves as:

T 0i1:::in
j1:::jm D j det.A�1/jwAi1

k1
: : :Ain

kn
.A�1/l1j1 : : : .A

�1/lmjmT
k1:::kn
l1:::lm

; (1)

is called a (relative, axial) tensor of covariant rank m, contravariant rank n, and
weight w. An (absolute) tensor has weight zero.

Remark 1 An active transformation, x0 D Ax, transforms the field, but not the
frame. Thus the coordinate system remains unchanged and a tensor field T W Rd !
R
dn�dm is transformed via T 0.x0/ D T.x/. One can, for example, rotate an object

actively. This is in contrast to a passive rotation in which the coordinate system is
rotated rather than the object itself.

Example 1 A vector v 2 R
d is an absolute, contravariant, first rank tensor, because

it behaves via v0i D Pd
jD1 Ai

jv
j under active transformations. In Einstein notation,

this is written as v0i D Ai
jv

j.
A matrix M 2 R

d�d is a tensor of contravariant rank one and covariant rank
1, because it behaves via M0 D AMA�1 under active transformations. In Einstein
notation, this is written as M0i

j D Ai
k.A

�1/ljMk
l .

Remark 2 For orthogonal transformations A 2 R
d�d, i.e. rotations and reflections,

the distinction of the indices into covariant and contravariant ones from Definition 1
is not necessary because they satisfy AT D A�1. Further, the weight can be ignored,
because they satisfy j detAj D j det.A�1/j D 1.

Lemma 1 Let T and QT be two relative tensors of covariant rank m, contravariant
rank n, and weight w and Qm; Qn; Qw respectively. Then the product T ˝ QT (also called
outer product or tensor product):

.T ˝ QT/i1:::inQi1:::QiQn
j1:::jmQj1:::Qj Qm WD Ti1:::in

j1:::jm
QTQi1:::QiQn
Qj1:::Qj Qm (2)

is a relative tensor of covariant rank mC Qm, contravariant rank nC Qn, and weight
wC Qw.
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Lemma 2 Let T be a relative tensor of covariant rank m, contravariant rank n, and
weight w. Then the contraction

P
.ik; jl/

T of a covariant index ik and a contravariant
index jl

.
X

.ik; jl/

T/
i1:::ik�1 ikC1:::in
j1:::jl�1jlC1:::jm

WD T
i1:::ik�1�ikC1:::in
j1:::jl�1�jlC1:::jm (3)

is a relative tensor of covariant rank m� 1, contravariant rank n� 1, and weight w.
Remark 3 Please note that

P
.ik; jl/

is the symbol for the contraction of the two
indices ik and jl as used in [25]. It is different from the sum

P
ik ; jl

over these indices.
In particular, the contracted indices are no longer indices of the contracted tensor.

Example 2 The product of a matrix M 2 R
d�d and a vector v 2 R

d is a tensor
product ˝ followed by a contraction

P
.2;1/ of the second covariant with the first

contravariant index

.
X

.2;1/

.M ˝ v//i D .
X

.2;1/

.Mi
jv

k//i D Mi
jv

j: (4)

Also, the trace of a matrix M can be written as the contraction by Mi
i .

3.2 Moment Tensors

Dirilten and Newman suggest the use of moment tensors for the construction of
moment invariants with respect to orthogonal transforms in [11]. They construct the
moment tensors by arranging the moments of each order in a way such that they
obey the tensor transformation property (1).

Definition 2 For a scalar function f W Rd ! R with compact support, the moment
tensor oM of order o 2 N takes the shape

oMk1:::ko D
Z

Rd
xk1 : : : xko f .x/ ddx; (5)

with l 2 f1; : : : ; og; kl 2 f1; : : : ; dg, and xkl representing the kl-th component of
x 2 R

d.
This arrangement of the moments of the same order into arrays simplifies the

calculation of their behavior under linear transformations, which is very helpful for
the construction of moment invariants. Cyganski et al. [10] use moment tensors to
determine the orientation of scalar functions and to normalize with respect to linear
transformations. In [9], they present the following important theorem.

Theorem 1 The moment tensor of order o of a scalar function is a contravariant
tensor of rank o and weight �1.
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Langbein et al. [25] have generalized the definition of the moment tensor to
tensor valued functions.

Definition 3 For a tensor field T W R
d ! R

dn�dm with compact support, the
moment tensor oM of order o 2 N takes the shape

oM D
Z

Rd
x˝o ˝ T.x/ ddx; (6)

where x˝o denotes the o-th tensor power of the vector x.
The analogy between Definitions 2 and 3 can be seen more easily if we write

Definition 3 using the indices

oMi1:::ink1:::ko
j1:::jm

D
Z

Rd
xk1 : : : xkoTi1:::in

j1:::jm
.x/ ddx; (7)

with l 2 f1; : : : ; og; kl 2 f1; : : : ; dg, and xkl representing the kl-th component of
x 2 R

d.
The following theorem is the main theoretical contribution of this paper. It allows

the construction of moment invariants for tensor fields analogously to the ones for
scalar fields.

Theorem 2 The moment tensor of order o of a tensor field of covariant rank m,
contravariant rank n and weight w is a tensor of covariant rank m, contravariant
rank nC o and weight w � 1.
Proof The vector x is an absolute, contravariant, first rank tensor. Application of
Lemma 1 shows that x˝o ˝ T.x/ is a tensor of covariant rank m, contravariant rank
nC o and weight w.

The decrease of the weight by one comes from the integral, because under a
change of the integration variable x0 D Ax, the infinitesimal element is multiplied
by the functional determinant ddx0 D j detAj ddx.

The following Corollary is the property used by Langbein and Hagen [25] to
construct moment invariants. They generate the invariants from moment tensor
contractions to scalars.

Corollary 1 The rank zero contractions of any product of the moment tensors are
moment invariants with respect to rotation and reflection.

Proof It follows from Lemma 1 that any combination of moment tensor factors in
a tensor product is a tensor. Contraction of this product to zeroth rank is a tensor
because of Lemma 2. According to Definition 1, this zeroth rank tensor satisfies
0M0 D 0M because rotations and reflections satisfy j detAj D 1.

Analogously to the previous corollary, we construct tensors of first and second
rank from contractions and products of moment tensors.

Corollary 2 The rank one contractions of any product of the moment tensors
behave like vectors under rotation and reflection.
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Proof Lemmata 1 and 2 guarantee that the first order contractions are tensors.
According to Definition 1, it satisfies

1M0i D Ai
j
1Mj; (8)

because rotations and reflections satisfy j detAj D 1. This corresponds to the
classical matrix vector product 1M0 D A1M.

Corollary 3 The rank two contractions of any product of the moment tensors
behave like matrices under rotation and reflection.

Proof Lemmata 1 and 2 guarantee that the rank one contractions are tensors.
According to Definition 1, it satisfies

2M0i1i2 D Ai1
j1
Ai2
j2
2Mj1j2 ; (9)

because rotations and reflections satisfy j detAj D 1. Because they also satisfy
AT D A�1. This coincides with the matrix product 2M0 D A2MA�1.

4 Algorithm and Complexity

In the two-dimensional case, a rotation has one degree of freedom. That means a
standard position can be defined using one vector, for example, by demanding this
vector to align with the positive real axis.

In the three-dimensional case, we need two vectors to normalize w.r.t. a rotation.
As a standard position, we choose the first one to align with the positive x-axis
and the second one to lie in the upper half of the x-y-plane, which corresponds
to a positive y-coordinate,compare Fig. 1. For the remainder of the paper, we will
describe the three-dimensional situation keeping in mind that the second vector will
not be needed in 2D.

Fig. 1 Illustration os the 3D normalization wrt. rotation. The three vectors represent different
normalizer candidates, i.e. first order moment tensor contractions. To maximize robustness, we use
the vector with the highest magnitude (red) and align it with the positive x-axis. Since, the green
vector has the highest magnitude orthogonal to the red one, it is used for the second step and rotated
into the x-y-plane
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Theoretically, it does not matter which first rank contractions we choose as long
as they are the same for the normalization of the pattern and the field. In the case
of a scalar field, for example, we could use either the first order moment tensor
1M or a contraction of the third order moment tensor

P
.1;2/

3M to normalize with
respect to rotation. However, for the stability of the algorithm, it is important that the
tensors chosen for the normalization are not close to zero nor are linearly dependent.
In our scalar field example, let us assume that the pattern of interest has no linear
component and 1M D 0. It is impossible to rotate the zero vector onto the x-axis,
which is why it is better to use the contraction

P
.1;2/

3M ¤ 0 for the normalization
instead. Even if the tensor is not exactly zero, but numerically small, using it impairs
the robustness. Its orientation may change significantly if the field gets disturbed by
only small noise, which would lead to a different standard position.

In practice, the moments are calculated up to a maximal given order o, which
results in tensors fTg up to rank oC nC m. To maximize robustness, we construct
all possible combinations of tensor products f QTg not exceeding a given upper rank of

o0 > o from the tensors fTg. Then, we calculate all first rank contractions f1 QTg from
this set of products f QTg. We allow the user to set the orders o and o0. We choose the
vector with maximal magnitude v1 WD argmax

v2f1 QTg kvk for the first normalization
step. For the second step, we use the vector that is as orthogonal as possible to the

first vector v2 WD argmaxv 2 f1 QTgkv1 	 vk.
Using only the first rank contractions has one important potential issue. If all

odd ranked moment tensors are zero, we cannot construct any non-zero first rank
contraction because the contraction always decreases the rank by two. To solve this

problem, we make use of Corollary 3 and also generate all second rank tensors f2 QTg
from the products f QTg. These behave like matrices and so, if they have eigenvectors,
these are also possible vectors that could be used to assume the standard position.
We restrict ourselves to the symmetric parts of the second rank tensors in order to
guarantee the existence of real valued eigenvectors.

The stability of an eigenvector is determined by how distinguishable its cor-
responding eigenvalue is from the remaining eigenvalues. For example, a small
perturbation of the matrix diag.1; �;��/ with small � could change the order of
the two smaller eigenvalues. That changes the corresponding eigenvectors and the
result of the normalization. On the other hand, the eigenvector that belongs to 1 is
far more robust. Therefore, we weigh the vector with the minimal distance of its
eigenvalue to the others. Let vi be the eigenvectors that belong to the eigenvalues �i
of the symmetric part of a second order contraction f2 QTg. Then, we add the vectors

Qvi D vi.minj¤i j�i � �jj/ to the set of first order contractions f1 QTg. This increases
the chances of finding a robust standard position. In our example, we would add
.1 � �; 0; 0/T ; .0; 2�; 0/T ; and .0; 0; 2�/T .

Please note that in contrast to real vectors, eigenvectors do not have a direction.
For any eigenvector v, �v is also an eigenvector. We therefore must keep track of
two standard positions if an eigenvector is chosen as a normalizer. We do this by
storing a second set of normalized moment tensors for the pattern.
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Algorithm 1: Moment normalization for tensor fields.
1: Calculate the moment tensors fTg of the pattern up to order o, (5).
2: From the tensors fTg, calculate all possible products fQTg up to order o0, (2).

3: From the products fQTg, calculate all possible contractions to first f1 QTg and second rank

f2 QTg, (3).

4: Compute all eigenvectors fvg of the symmetric part of the second rank contractions f2 QTg.
5: Weigh the eigenvectors vi 2 fvg by the difference of the corresponding eigenvalues

Qvi WD vi.minj¤i j�i � �jj/ and add the result to the set f1 QTg.
6: Chose v1 as the contraction or eigenvector with the biggest norm, i.e.
v1 WD argmax

v2f
1

QTg
kvk.

7: Chose v2 as the contraction or eigenvector with the highest component orthogonal to v1,

i.e. v2 WD argmax v 2 f1 QTgkv1 � vk.
8: R1 is the rotation matrix around the axis v1 C .1; 0; 0/T by the angle ˛1 D � .
9: R2 is the rotation matrix around v1 by the angle ˛2 D � atan2..R1v2/3; .R1v2/2/.

10: Rotate the moment tensors by R D R2R1 using the transformation rule (1).

In summary, the consecutive steps for the construction of a complete and
independent set of moment invariants for tensor fields of arbitrary rank can be
found in Algorithm 1. It selects the most robust rank one tensors and determines
the rotation that puts them into the standard position as illustrated in Fig. 1.

In the two-dimensional case, the rotation matrix R is simply the one by the
angle ˛1 D � atan2.v21; v

1
1/ and the second step is not necessary. The upper indices

indicate the vector component.
Please note that the normalization step is only performed on the moments using

Eq. (1), and not on the field or the pattern themselves. The algorithm does not require
any interpolation or sampling.

For the actual pattern detection, we perform the normalization on the pattern,
normalize the moments of the field using the same contractions, and determine the
similarity using the reciprocal of the Euclidean distance between the moments of
the pattern and the field at each position. This process is described in more detail
in [4].

In 2D, arbitrary reflections can be generated from the concatenation of a rotation
and a reflection at the x-axis. It can be seen from (1) that it leaves the magnitude
of each moment Ti1:::in

j1:::jm
unchanged but causes a sign change in a component of

the tensor if the corresponding indices have an odd number of appearances of
twos, which corresponds to the y-direction. This means that we can multiply each
component with .�1/

P
ikD2 1C

P
jlD2 1. If the user wants to normalize with respect to

reflections, we proceed as described above for rotations and then simply apply the
sign change. For invariance with respect to all orthogonal transformations, we use
the maximal similarity of both.

In 3D, the normalization with respect to reflections works analogously. We can
combine a rotation with a reflection at the x-y-plane, which leads to a sign change
if the number of threes in the indices, corresponding to the z-direction, is odd. Thus
we can multiply each component with .�1/

P
ikD3 1C

P
jlD3 1 and proceed as in the

2D case.
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In the remainder of this section, we will briefly discuss the complexity of
Algorithm 1. The main computational effort goes into the computation of the
moments, because we have to evaluate an integral numerically. Assume, we have
a d-dimensional tensor field of rank R with N points and want to find a pattern
with M points using moments up to order O. Then, we need to compute a total ofPO

oD1 dRCo moments at each of the N points, each of which requires the evaluation
of M points for the integration, which leaves us with NM

PO
oD1 dRCo operations.

Please note that this step is inherent in all moment-based algorithms. Therefore, they
all have a comparable runtime. It can be performed in a preprocessing step, because
the moments of the field do not depend on the pattern. Also, the moments do not
depend on each other, which enables a straight forward a parallel computation.

The steps 2 to 9 in Algorithm 1 need to be performed on the moments of the
pattern only, which makes them independent from the size of the dataset and the
size of the pattern. The number of operations depends on the order O up to which
the moments are computed and O0 up to which, we compute the products , which can
be considered small compared to the dataset size. For example, we used O;O0 � 5
in our result section.

Each contraction requires d operations for each of the dr�2 remaining entries
of the tensor. For a tensor of rank r, there are r.r � 1/ possible contractions.
The computation of all contractions to first or second order of a tensor of rank R,
takes therefore less than

PR
rD1 dr�1r.r � 1/ operations. This process can be accel-

erated by removing identical contractions that appear because the order in which
indices are contracted does not change the result, for example

P
.1;2/

P
.3;4/ T DP

.1;4/

P
.2;3/. We also accelerate this process by only considering non-zero moment

tensors for the products and the contractions.
Once, we have determined v1 and v2, we can specifically compute only these two

products and contractions that are necessary to produce them for each point in the
field. The complexity of it depends on the specific v1 and v2.

For the orientation into standard position, Eq. (1) needs to be applied
to all moment tensors in the field and once to the pattern, which takes
.N C 1/.

PO
oD1 dRCo/2 operations. Finally, the comparison of the normalized

moments of the pattern to the ones of the field requires another N.
PO

oD1 dRCo/2

operations.
The computation of the pattern detection tasks in our result section took less than

a minute on a laptop.

5 Results

In this section, we apply our algorithm to some use cases to visually demonstrate its
effectiveness. We first briefly show how our algorithm improves the normalization of
3D scalar and vector fields by adding more flexibility to the choice of the normalizer
thus allowing us to avoid vanishing moments. Then we present results of our method
applied to tensor fields in 2D and 3D. We use the first and second derivatives of an
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analytic scalar field so that the reader can compare the results. Please note that we
do not advocate to use higher rank methods to the derivative in cases, where you
could as well apply the lower rank algorithm to the original function. The algorithm
is meant for pattern detection tasks in tensor fields, like from diffusion or stress
measurements, where lower rank data is not available to describe the phenomenon.
We do this here only as an illustrative example.

5.1 3D Scalar

The normalization of 3D scalar functions in previous approaches has been per-
formed using the second rank moment tensor ˙ D 2M. The standard position of
this symmetric matrix was given by its eigenbasis. That means the rotation that
diagonalizes ˙ was used as the normalizer. This method is equivalent to aligning
the principal axes of the function with the coordinate axes. It fails if ˙ does not
have three distinguishable eigenvalues. All vectors suggested by Cygansky et al. [9]
for normalization rely on the second rank moment tensor, too. As a result, it will not
work for patterns without a quadratic component.

Our algorithm is able to compensate for a vanishing˙ by using the contractions
of higher rank tensors. To illustrate this, we first consider an analytic use case.
Figure 3 shows a cut view of fields that have been generated from different linear
combinations of polynomials from first to third degree in x and y. We then generate
a scalar field such that, at each position .i; j; 0/T 2 R

3; i; j 2 f1; 2; 3g, we center a
polynomial given by the formula .x�1/iC0:5. y� j/ j and modulated with the radial
Gaussian exp.�4.x� i/2 � 4. y� j/2/, superimposing the resulting nine functions.

In order to create a pattern for our search, we choose a small section in the
lower right corner, rotated and reflected it randomly. This pattern, drawn from one
of the nine possibilities, has a linear and a cubic component but no quadratic. A
volume rendering of the rotated pattern can be seen in Fig. 2. The missing quadratic
part causes currently available methods to fail to find a normalizer. Algorithm 1,
on the other hand, chooses the first rank tensor v1 D f1Mg and the contraction
of the first two indices in the third rank tensor v2 D fP.1;2/

2Mg and assumes
the corresponding standard position. Applying this normalizer, the search results
applied to the polynomials of Fig. 3 are visualized in the same figure by applying
a brightness transfer function (shown to the right of the figure). The brighter the
polynomial visualization, the closer it is to the actual search pattern. Algorithm
1 successfully detects the occurrence of the target polynomial in the field. Other
less similar structures in the field are indicated with decreasing similarity values.
We calculated the moments up to third order, i.e. third rank, and normalized with
respect to rotation, reflection, and scaling. Please note that the analytic field was
chosen such that it does not depend on z in order to simplify the visualization. Also,
the algorithm was performed on the complete 3D data and the cutting plane is shown
for visualization purposes only. The missing z component is not a simpler special
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Fig. 2 Volume rendering of the pattern used in Fig. 3

case, but actually more challenging as the algorithm has fewer possible vectors from
which to choose.

Please note that the suggested algorithm will coincide with its predecessors if
the chosen pattern has a big enough quadratic part. In this case, it is therefore as
robust as the former approach. If the pattern lacks this part, the former algorithm
will produce an unreliable output, because it will try to determine the orientation of
the eigenvectors of a matrix that is numerically zero.

5.2 3D Vector

We now move to the 3D vector case. So far, the normalization of vector field
moments makes use of the first order moment tensor ˙ D 1M which again has
second rank as in the scalar case. But in contrast to the latter, this matrix is not
symmetric for vector fields. Bujack et al. [5] use the Schur form as standard position.
The normalizer is the rotation that transforms ˙ into an upper triangular matrix.
Analogous to the scalar case, this method fails if ˙ is zero. The algorithm in this
paper is capable of overcoming this issue because of its flexibility. It can use any
first rank contraction and is not bound to a tensor of a specific rank.
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Fig. 3 Color coding of the z D 0 plane of the analytic scalar field. The similarity to the pattern
from Fig. 2 is encoded using the transfer function on the right. The higher the similarity, the brighter
the underlying field

We use the gradient of the scalar field from the preceding section as an example
3D vector field and calculate the moments up to third order, i.e. fourth rank. The
randomly rotated and reflected pattern has a constant and a quadratic part. Its linear
component now vanishes. Therefore, the second rank moment tensor˙ is zero and
the method described in [5] does not yield any result. Algorithm 1 on the other
hand retrieves one vector from the first rank tensor of the zeroth order moments
v1 D 0M and one from contracting the first and the last index of the third rank
tensor of the second order moments v2 DP.1;3/

2M. Figure 4 shows streamtubes of
the randomly rotated and reflected target pattern and Fig. 5 is a visualization of the
similarity within the field. The specific similarity values differ from the ones of the
scalar field, but the relative order remains the same.

5.3 2D Tensor

For the tensor case, we constructed an analytic pattern shown in Fig. 6 and a
corresponding analytic matrix field in Fig. 7, in which we placed the exact copy of
the pattern and a squeezed one. Neither occurrence was aligned with the pattern, but
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Fig. 4 Stream tubes of the pattern used in Fig. 5. Red implies moving forward and blue backward
in time

the algorithm correctly detected its copy with the highest similarity and the distorted
version with lower similarity.

The visualization of the pattern matching Fig. 7 is done analogously to [4]. We
draw circles around the local similarity maxima. The color of the circles encodes
the similarity and the diameter represents the integration area for the moment
calculation that resulted in the maximum. For comparison, we lay the result of
our algorithm on top of a tensor LIC [35] image of the field. This technique is
based on the classical line integral convolution (LIC) for vector fields [7]. For
symmetric matrix fields, the two LIC images that correspond to the directions of
the eigenvectors are calculated and then either one of them or a combined image
that interweaves both can be shown. More information about tensor visualization
can be found in [24].

To demonstrate the applicability of the algorithm in real world applications, we
applied our algorithm to the strain tensor field of the fluid dynamics simulation of
the von Kármán vortex street from [2]. The strain tensor is the symmetric part of the
Jacobian. It describes the separation of neighboring particles [20].



58 R. Bujack and H. Hagen

Fig. 5 Cut through the gradient of the analytic scalar field from Fig. 3 at the z D 0 plane is
visualized with LIC and color encoding the velocity of the vector field. The similarity is encoded
using the transfer function on the right. The higher the similarity, the brighter is the underlying
field

Fig. 6 Tensor LIC of the pattern used in Fig. 7. The color map encodes the Frobenius norm of the
matrix

Figures 8, 9, 10, 11 show two pattern detection results visualized with tensor
LIC [35]. Differently sized patterns were cut out from the field, randomly rotated,
and searched for. We use moment tensors up to third order, i.e. fourth rank. The
highest similarity peak corresponds to the location where the pattern was selected
from. The repeating matches nicely show the repetitive structure of the vortex street.
In Fig. 9, we normalized with respect to rotation, reflection, and scaling. Without
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Fig. 7 Output of Algorithm 1 for the pattern from Fig. 6 in a matrix field. The color in the LIC
corresponds to the Frobenius norm of the matrix, the color of the circles to the similarity

Fig. 8 Tensor LIC of the pattern used in Fig. 9. The color map encodes the Frobenius norm of the
strain tensor

Fig. 9 Output of Algorithm 1 for the pattern from Fig. 8 in the strain tensor field of the von Kármán
vortex street laid over the tensor LIC of the major eigenvector. The color in the LIC corresponds to
the Frobenius norm of the strain tensor, the color of the circles to the similarity
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Fig. 10 Tensor LIC of the pattern used in Fig. 11. The color map encodes the Frobenius norm of
the strain tensor

Fig. 11 Output of Algorithm 1 for the pattern from Fig. 10 in the strain tensor field of the
von Kármán vortex street laid over the tensor LIC of both eigenvectors. The color in the LIC
corresponds to the Frobenius norm of the strain tensor, the color of the circles to the similarity

the reflection enabled, there are no matches on the lower half of the vortex street.
In Fig. 11, we normalized with respect to rotation and scaling. If reflection was
enabled, additional matches would appear between each two circles.

5.4 3D Tensor

Similar to the 3D vector case, we apply Algorithm 1 to the Hessian, i.e. matrix of
the second derivatives, of the scalar field from Fig. 3 to consider the 3D tensor case.
We use superquadric tensor glyphs [23] and illuminated tensor lines [19, 34, 36] in
directions of all three eigenvectors to visualize the randomly rotated and reflected
pattern in Fig. 12. Figure 13 shows the output of the algorithm. We used moments up
to second order, i.e. fourth rank, and normalized with respect to rotation, reflection,
and scaling. Again, the position moment that was used to create the target pattern is
clearly identified as the strongest match and the locations with lower resemblance
follow. The visualization of the similarity is done using tensor LIC [35] color coded
with the Frobenius norm of the Laplacian.
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Fig. 12 Superquadric tensor glyphs and illuminated tensor lines of the pattern

6 Discussion

In this paper, we have elucidated the properties of the moment tensors of tensor
fields of arbitrary dimension and rank in Theorem 2. We have applied this theoretical
result to develop an algorithm for the generation of rotation invariants for two- and
three-dimensional tensor fields using moment normalization and demonstrated its
applicability to analytical data and simulation use cases. To our knowledge this is the
first time that moment invariants have been practically applied to detect patterns
in matrix fields. Further, we have shown how the algorithm improves existing
algorithms for 3D scalar fields and 3D vector fields.

We would like to emphasize that the work on this topic is far from finished.
The existing algorithms, both the normalization and the generator approach, still
have some shortcomings. For the generator approach, the question of redundancy
has not been completely solved yet and both approaches struggle to find symmetric
patterns. For patterns that are not completely rotationally symmetric but show a
certain rotational symmetry, all contractions to zeroth, first, and second rank may be
zero and hence both the generator and the normalization approach fail. In 2D this
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Fig. 13 Cut through the Laplacian of the analytic field from Fig. 3 at the z D 0 plane is visualized
with tensor LIC. The color bar left encodes the Frobenius norm. The similarity is encoded using
the transfer function on the right. The higher the similarity, the brighter is the underlying field

issue has been treated for scalar fields by Flusser and Suk [16], who generated bases
specifically for this problem. For vector fields, Bujack et al. [3] solve the problem
using a set of multiple standard positions if a rotationally symmetric moment is
chosen for the normalization. It needs to be investigated in future work how or if
either of these solutions can be generalized to contraction based methods.
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Visualizing Gradients of Stress Tensor Fields

Valentin Zobel, Markus Stommel, and Gerik Scheuermann

Abstract In some applications, it is necessary to look into gradients of (symmetric)
second order tensor fields. These tensors are of third order. In three-dimensional
space, we have 18 independent coefficients at each position, so the visualization
of these fields provides a challenge. A particular case are stress gradients in
structural mechanics. There are specific situations where the stress gradient is
required together with the stress to study material behavior. Since the visualization
community lacks methods to show these fields, we look at some preliminary ideas
to design appropriate glyphs. We motivate our glyph designs by typical depictions
of stress in engineering textbooks.

1 Introduction

The prediction of failure is a crucial question in engineering. To predict failure,
usually a structure simulation is performed, which computes the stresses inside
the material under a predefined load condition. In a next step, a failure criterion
is used to evaluate the resulting stress tensor. Such yield criteria, like the widely-
used von Mises stress or the Tsai-Hill criterion, are usually functions depending
on the Cauchy stress tensor. The Cauchy stress tensor, in the following only called
stress tensor, is an indefinite, symmetric tensor of second order which defines the
complete state of stress at a single point. However, there is some evidence that not
only the stress at a single point is decisive for failure, but also the stress values in
the vicinity, i. e. the gradient of the stress tensor. For example, the stress gradient is
used to analyze the effect of stress concentrations caused by notches. The so-called
notch effect plays an important role for fatigue of materials, see for example [11]
or [12]. In this case, the material is analyzed under a simple load condition, i. e. a
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unidirectional stretching, such that the stress can be reduced to a scalar quantity.
Then the derivative in direction perpendicular to the notch surface is considered.

This makes it promising to consider the gradient of the stress tensor for failure
prediction also in other situations. But for many technical materials there is no
obvious or sufficiently proven way to reduce the stress tensor to a scalar value
that describes the material stressing adequate. Thus a thorough understanding of
the whole stress gradient is desirable to examine the effects of the stress gradient
on material failure. We propose some first visualizations to analyze the whole
gradient of the stress tensor. The gradient of a three-dimensional stress tensor
consists of 18 independent components, given by the partial derivatives of the 6
components of the symmetric stress tensor. Together with the stress tensor itself
there are 24 components at each position which have to be visualized. This makes
the visualization of these data very challenging.

In this chapter, we propose glyphs that allow to analyze the stress tensor and
its gradient at discrete points. Based on widely used depictions of the stress vector
in engineering textbooks, we suggest a glyph that completely visualizes the stress
tensor and the gradient. Due to the complexity of this glyph we discuss ways to
reduce the shown information in a systematic fashion, which allows for simpler
visualizations. For example, if we are interested in the overall change of the tensor
in certain directions, we can reduce directional derivatives, which are symmetric
second order tensors, to scalar quantities. Similarly, we can focus on the normal
stress in certain directions while neglecting the direction of differentiation. Such
visualizations allow to highlight different properties of the full gradient of the tensor
consecutively.

2 Related Work

There seems to be very few work on the visualization of tensor gradients. Kriz et
al. [10] consider gradients of the Cauchy stress tensor. They visualize the gradient
at a single point by showing a collection of stress ellipsoids. The principal axes of
a stress ellipsoid are defined by the eigenvectors of the stress tensor, their radii are
given by the absolute values of the corresponding eigenvalues. One stress ellipsoid
is used to represent the stress at the considered position itself, additional ellipsoids
show the stress in nearby positions in the direction of the coordinate axes. The
user can guess the gradient by comparing these glyphs. Kindlmann et al. analyze
the gradient of diffusion tensors in [7] by examining gradients of scalar quantities
derived from the tensor. The gradient of a tensor field is characterized by the
gradients of three tensor invariants, as well as three spatial gradients of rotation.
The gradients of rotation measure the rotational part of the gradient with respect to
infinitesimal rotations of the tensor around its eigenvectors. Thus the 18 components
of the gradient of a symmetric tensor are decomposed into 6 gradients of scalar
quantities. For the visualization the magnitudes of these gradients are shown by
grayscale images.
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We state some other publications focusing on the visualization of stress tensor
fields. For an overview on visualization methods for indefinite tensor fields we refer
the reader to a state of the art report [8] and the references therein. In [9] the tensor
lines of a stress tensor field, i. e. the field lines of the eigenvector fields, are used to
improve the rib structure of components. Ribs are often used to improve the stability
and rigidity of components, but the proper placement of ribs is an open question.
The tensor lines are considered as major load paths, ribs constructed along tensor
lines successfully improved the stability. An approach to improve the stability for
components from fiber reinforced polymers is presented in [14]. Fiber orientations
are rated according to their ability for supporting the load. Jeremic et al. consider
stress tensor fields in a geomechanical context in [5]. In [2] they are used for implant
planning in orthopedics.

Since this work uses glyphs to visualize gradients of stress tensor fields, we
provide some references to publications on tensor glyphs for second order tensors.
A comparison of different types of glyphs is given in [3]. Additionally a glyph
focusing on the visualization of the shear stresses is provided. Superquadrics for
positive definite tensor fields are introduced in [6], an extension to indefinite tensors
is proposed in [13]. The state of the art report [1] gives general design guidelines
for glyphs as well as strategies for glyph placement.

3 Theoretical Background

In this section we quickly recap some basics on three-dimensional tensor fields and
state the gradient of a tensor field. We also discuss the Cauchy stress tensor and
give an interpretation in terms of stress vectors, which serve as a basis for common
depictions of the stress tensor in engineering textbooks. Such depictions are the
starting point for the visualizations presented in Sect. 4.

3.1 Tensor Fields

In this chapter we are concerned with three-dimensional tensor fields of second
order and their gradients, which are tensors of third order. In general, a (covariant)
tensor of order r is a map

T W R
3 	 � � � 	 R

3 ! R ;

which takes r copies of R3 to a real number. Alternatively, a tensor can also be given
by its components with respect to a (usually orthonormal) basis fe1; e2; e3g of R3.
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The components are given by

Ti1:::ir WD T.ei1 ; : : : ; eir/ ; 1 � i1; : : : ; ir � 3 :

Consequently, a second order tensor can also be considered as a matrix T 2 R
3;3. A

second order tensor T is called symmetric if T.v;w/ D T.w; v/ for all v;w 2 R
3,

thus we consider symmetric tensors also as symmetric matrices denoted by Sym.3/.
A three-dimensional tensor field T of order r defined on a subset U � R

3 is a
map assigning each p 2 U a three-dimensional tensor of order r. A second order
tensor field is called symmetric if this condition holds pointwise, this yields a map

T W U ! Sym.3/ :

The stress tensor fields considered in this chapter are symmetric tensor fields. We
assume the tensor field to be differentiable, which is equivalent to the condition that
the components of the tensor

p 7! Tij. p/ ; 1 � i; j � 3 ;

form differentiable maps.

3.2 Gradients of Tensor Fields

The set of three-dimensional tensors of order r is isomorphic to R
3r , thus the

definition of the derivative applies also for tensor fields. We consider the gradient
rT. p/ of a second order tensor field T at a point p 2 U as a linear map

rT. p/ W R
3 ! R

3;3 ;

v 7! .v1@1 C v2@2 C v3@3/ T. p/ ;
(1)

where @i denotes the partial derivative in direction of the basis vector ei. Thus
ŒrT. p/�v is the directional derivative of T in direction v, which we also denote
by rvT. p/. In this way, differentiation adds an additional argument to the second
order tensor T, so rT. p/ is a third order tensor with components

ŒrT. p/�ijk D @kTij. p/ ;

i. e. the components of rT. p/ are the partial derivatives of the components of T. p/.
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3.3 Stress Tensor

A load condition causes stresses inside a material and the complete state of stress
is given by the Cauchy stress tensor, which defines an indefinite, symmetric tensor
field

� D
0

@
�x �xy �xz

�xy �y �yz
�xz �yz �z

1

A :

The components � and � are called the normal and shear stresses, respectively. The
stress tensor is often interpreted in terms of the stress vector, which serves also
as a starting point for our visualizations. For a given normal vector n the stress
vector �n describes the forces acting on a plane perpendicular to n. The projection
of the stress vector �n on the normal n is called the normal stress, the projection
on the plane perpendicular to n is called the shear stress. Due to the symmetry of �
there is a orthonormal basis of eigenvectors n1; n2; n3, which are called the principal
directions. The corresponding eigenvalues �1; �2; �3 are called principal stresses.
The shear stresses vanish on the planes perpendicular to the eigenvectors n1; n2; n3,
there are only normal stresses. Positive eigenvalues indicate tensile stresses, negative
eigenvalues indicate compressive stresses.

Stress vectors are often used to depict the stress tensor. Given an orthonormal
coordinate system e1; e2; e3, the stress tensor � is completely described by the three
stress vectors �e1; �e2; �e3. The three planes perpendicular to e1; e2; e3 define the
sides of a cube, which is shown together with the three stress vectors, see Fig. 1 left.

Fig. 1 Widely-used illustration of the stress tensor. The arrows depict stress vectors, that is the
force acting on the planes given by the sides of the cube. For the right image the cube is oriented
according to the principal stress directions, thus there is only normal stress and the stress vectors
are perpendicular to the sides of the cube. An outward pointing arrow represents tension, an inward
pointing arrow represents compression
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If the eigenvectors of � are used as coordinate system, the three stress vectors are
perpendicular to the sides of the cube, see Fig. 1 right. Note that such an illustration
is not unique if there are equal eigenvalues. Similar illustrations of the stress tensor
are used in many textbooks of solid mechanics, see for example [4].

4 Glyphs for Gradients of Stress Tensor Fields

Our goal is to visualize the stress tensor � and its gradient r� at single points
of a stress tensor field. From such visualizations we want to gain a thorough
understanding of the tensor field at points of high load. The information of the stress
tensor and its gradient is given by the linearization L of the stress tensor field at a
point p, which is given by

L W R
3 ! Sym.3/ ;

v 7! �. p/Crv�. p/ ;
(2)

i. e. L.v/ is the first order Taylor approximation of � around p. We will usually omit
p in the following formulas, since the point p is secondary for the glyphs suggested
in the remainder of this section. As mentioned before, we focus on the stress vector
in our visualizations. Based on the linearization L we define a map

t W S
2 	 S

2 ! R
3 ;

.v; n/ 7! �nC �rv�n ;
(3)

where � > 0 and S
2 � R

3 denotes the unit sphere. For a given direction of
differentiation v 2 S

2 and a normal vector n 2 S
2, t.v; n/ is the (linearized) change

of the stress vector �n for a displacement by � in direction v. The parameter � serves
as a scaling of the gradient, it controls the size of the (linearized) neighborhood taken
into consideration. A meaningful choice depends on the dimensions of the data. The
stress tensor � and its gradient r� are still completely characterized by the graph
of t which is given by

˚
.v; n; t.v; n// 2 R

3 	 R
3 	 R

3 j n 2 S
2; v 2 S

2
	
:

The glyphs presented in the following can be considered as visualizations of (parts
of) the graph of t. Of course, the graph of t contains redundant information, thus it
is not necessary to visualize the whole graph in order to visualize � and r� . The
map t is linear with respect to n and affine linear with respect to v, moreover � is
symmetric. Thus it is possible to show portions of the graph of t without losing
information. But we will also propose glyphs which do not show the complete
information of � and r� , with the benefit of easier understandable visualizations.
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4.1 Visualizing Gradients of Stress Vectors

The glyphs presented in this section extend the depiction of the stress vectors shown
in Fig. 1 with information on the gradient of the stress vectors. Our first glyph uses
additional arrows which give information on the partial derivatives of the stress
vectors. A variant of this glyph shows all stress vectors that occur in a linearized
neighborhood.

4.1.1 Partial Derivatives of Stress Vectors

At first we depict the basis vectors similarly to Fig. 1. We choose a basis of
eigenvectors n1; n2; n3 and show a cube with sides defined by the planes normal to
n1; n2; n3. The respective stress vectors �n1; �n2; �n3 are shown as gray tubes. Since
we use a basis of eigenvectors they are perpendicular to the sides of the cube. Now,
the variations of the stress vectors in the coordinate directions e1; e2; e3 are depicted
as arrows in red, green or blue, respectively. These arrows are the partial derivatives
of the stress vector �@i�nj for i; j D 1; : : : ; 3, while the � adjusts the displacement as
in Eq. (3). An example is shown in Fig. 2. Note that the coordinate system e1; e2; e3
for the directional derivatives might be different to the coordinate system defined
by the eigenvectors n1; n2; n3. The coordinate system e1; e2; e3 is usually a global
coordinate system which is consistent with the application and intuitive for the user.
For example, the tensile bars considered in the next section are aligned parallel to
the coordinate axes and the stress direction is parallel to e3.

The proposed visualization of the stress vectors and its partial derivatives
contains the subset

f.v; n; t.v; n// j n D n1; n2; n3; v D 0; e1; e2; e3g

Fig. 2 The colored arrows depict directional derivatives of the stress vectors. The red, green, blue
arrows correspond to a displacement in direction of e1; e2; e3, respectively
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of the graph of t. Since t is linear with respect to n and affine linear with respect to
v, this subset describes t completely. Equivalently, a stress tensor � is completely
defined by the three stress vectors �n1; �n2; �n3 and the gradient r� is completely
defined by the partial derivatives of the stress vectors @i�nj for i; j D 1; : : : ; 3.
Consequently, all information of � and r� is included in this visualization. An
obvious drawback of this method is that it needs a thorough examination to read all
the information. Especially the direction of differentiation, which is encoded in the
colors red, green and blue, might not be immediately apparent for many users. This
makes it comprehensible to reduce the presented information and, in return, obtain
a visualization that is easier to understand.

4.1.2 Envelope of Stress Vectors under Linear Approximation

As a first simplification of the glyph proposed in the previous section we replace
the partial derivatives of the stress vectors, which are shown as red, green and blue
arrows. Instead of showing single arrows for the partial derivatives of the stress
vectors we show the envelope of all directional derivatives of the stress vectors, i. e.
�rv�n for all v 2 S

2. In this way we show all stress vectors that occur in a linearized
neighborhood of radius �. An example is shown in Fig. 3. For a fixed normal vector
n, the envelope of all directional derivatives is the image of the unit sphere S2 under
the linear transformation

�r�n W R
3 ! R

3

v 7! �rv�n :

Thus the envelopes form ellipsoids, while the principal axes are defined by the
eigenvectors of �r�n and their radii are given by the absolute values of the

Fig. 3 The ellipsoids depict the envelopes of the stress vectors within a linearized neighborhood,
i.e. the ellipsoid marks the end points of all stress vectors occurring in this neighborhood
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corresponding eigenvalues. The depicted information can be summarized as

˚
.n; t.v; n// j n D n1; n2; n3; v 2 S

2
	
:

Note that we lose information on the preimage of v here, but compared to the
visualization in Sect. 4.1.1 we show the image of all v 2 S

2 rather than only the
image of the three basis vectors. So, if one is interested in the change of the stress
vectors in all directions, but the particular direction is not important at first, then this
visualization might be simpler to read than the visualization in the previous section.

4.2 Reducing Directional Derivatives of Stress Vectors
to Scalar Quantities

In the previous section we have visualized the gradient of the stress tensor
completely, but the resulting visualizations might be difficult to read. Now we want
to reduce the shown information by focussing on special properties of the gradient.
The basic idea is to consider a fixed direction of differentiation v 2 S

2 and measure
the change of the stress vectors for all normal directions n 2 S

2. Or, conversely,
for a normal direction n 2 S

2 we measure the overall change for all directions of
differentiation v 2 S

2.
To realize this we reduce rv�n to a scalar quantity, first. An obvious choice

is to use the magnitude, i. e. the euclidean norm krv�nk. Another possibility is
using only the directional derivative of the normal stress of rv�n which is given
by rvn>�n D n>rv�n. In the next step we compute the average, the maximum
or the minimum of these scalar quantities for variable n or v, while v or n is fixed,
respectively. This yields functions S2 ! R depending on v or n, which are easier to
visualize than the complete gradient.

4.2.1 Magnitude of Directional Derivatives of Stress Vectors

At first we consider the magnitude of the directional derivatives of the stress vector.
Computing the average/minimum/maximum of krv�nk for all n or v might seem
expensive, but by using some mathematical conversions these quantities can be
computed efficiently. Note that we have for any matrix A 2 R

3;3

Z

S2

x>Ax dx D 4�

3
trA : (4)
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Thus, if we use the L2-norm for averaging krv�nk over n 2 S
2 we obtain

sZ

S2

krv�nk2 dn D
sZ

S2

nT.rv�/T.rv�/n dn

D
r
4�

3

q
tr
�
.rv�/>.rv�/

� D
r
4�

3
krv�kF ;

where krv�kF denotes the Frobenius norm of rv� 2 R
3;3, i. e. the Frobenius norm

of the directional derivative of � in direction v. Similarly, for the average over v 2
S
2 we have

sZ

S2

krv�nk2 dv D
r
4�

3
kr�nkF ;

while r�n is the gradient of the stress vector �n. In this way we can compute the
average by computing the Frobenius norm of a matrix, rather than computing the
integral.

The extrema of krv�nk for all n 2 S
2 or all v 2 S

2 can be computed from the
following consequence of the Courant-Fischer theorem. For any symmetric matrix
A we have

max
x2S2

x>Ax D �max.A/ ; min
x2S2

x>Ax D �min.A/ ; (5)

while �min.A/ and �max.A/ denote the smallest and the largest eigenvalue of A,
respectively. Now, the maximum of krv�nk for all n 2 S

2 is given by

max
n2S2
krv�nk D

r
max
n2S2

nT.rv�/>.rv�/n D
q
�max

�
.rv�/>.rv�/

�
;

and the minimum is given by

min
n2S2
krv�nk D

q
�min

�
.rv�/>.rv�/

�
:

In a similar way we obtain for the extrema of krv�nk with respect to v, which are
given by

max
v2S2
krv�nk D

q
�max

�
.r�n/>.r�n/� ;

min
v2S2
krv�nk D

q
�min

�
.r�n/>.r�n/� :
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Note that for any matrix A the largest singular value is
p
�max.A>A/, and the

smallest singular value is
p
�min.A>A/, so the extrema of krv�nk over n or v are

given by the largest and smallest singular values of rv� and r�n, respectively.
Since rv� is symmetric, the largest and smallest singular values of rv� are also
largest and smallest absolute eigenvalues of rv� , respectively.

To sum up, for a fixed direction of differentiation v 2 S
2 we can compute

the average/minimal/maximal change of the stress vectors for all n 2 S
2 from

the Frobenius norm or the singular values of rv� . And for a fixed normal vector
n 2 S

2 we can compute the average/minimum/maximum over all directions of
differentiation v 2 S

2 from the Frobenius norm or the singular values of r�n.
As an example we consider the average of krv�nk for all normal vectors n 2

S
2, i. e. we want to visualize

p
4�=3krv�kF for each direction v. The values of

krv�kF can be computed for each v by a quadratic form which is defined by a
matrix Q. If we denote the partial derivatives of � by @1�; @2�; @3� we have

krv�kF D kv1@1� C v2@2� C v3@3�kF
D �tr �.v1@1� C v2@2� C v3@3�/T.v1@1� C v2@2� C v3@3�/

�� 1
2

D �v21 tr.@1�2/C v22 tr.@2�2/C v23 tr.@3�2/

C2v1v2 tr.@1�@2�/C 2v1v3 tr.@1�@3�/C 2v2v3 tr.@2�@3�//
1
2

D
0

@vT

0

@
tr.@1�2/ tr.@1�@2�/ tr.@1�@3�/

tr.@1�@2�/ tr.@2�2/ tr.@2�@3�/
tr.@1�@3�/ tr.@2�@3�/ tr.@3�2/

1

A v

1

A

1
2

DW �vTQv� 12 :

The matrix Q is symmetric and positive semidefinite, this allows for a simple
visualization of Q by an ellipsoid. We use the eigenvectors v1; v2; v3 of Q as the
principal axes and the square roots of the eigenvalues as the corresponding radii. If
we scale Q by 4��2=3, then the radii are equal to

p
4�=3k�rvi�kF for i D 1; 2; 3.

This is the average variation of all stress vectors �n for a displacement by � in
direction vi, measured by krvi�nk as described above. The information shown by
such an ellipsoid can be summarized as

( 

v;

r
4�

3
k�rv�kF

!

j v 2 S
2

)

:

The resulting ellipsoid is shown in Fig. 4 in purple, it shows the same gradient as
in the previous Figs. 2 and 3. Additionally the stress tensor is shown as an ellipsoid
in yellow, while an exponential mapping has been applied on the stress tensor in
order to obtain positive eigenvalues. Of course we are losing a lot of information by
showing the gradient in this way. However, the overall change of the stress vectors in
a certain direction can be seen much easier than from the visualization in Sect. 4.1.1.
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Fig. 4 The purple ellipsoid visualizes how much the stress tensor changes in certain directions.
This is measured by the Frobenius norm of the directional derivative, which is equivalent to an
averaged change of all stress vectors. The yellow ellipsoid shows the stress tensor itself

4.2.2 Directional Derivatives of Normal Stress

Now we derive the average/minimum/maximum of the directional derivative of the
normal stress n>rv�n for all n while v is fixed or for all v while n is fixed. If we
integrate n>rv�n for all n 2 S

2 to compute the average, then we obtain by Eq. (4)

Z

S2

n>rv�n dn D 4�

3
tr .rv�/ :

An average with respect to v makes no sense here, since n>rv�n is linear in v, thus
the integral would be zero. Using Eq. (5) the extrema of n>rv�n for n 2 S

2 are
given by

max
n2S2

n>rv�n D �max.rv�/ ; min
n2S2

n>rv�n D �min.rv�/ :

For the extrema with respect to v 2 S
2 we obtain

max
v2S2

n>rv�n D kn>r�nk ; min
v2S2

n>rv�n D �kn>r�nk :

due to the linearity of n>rv�n in v. Note that n>r�n D r.n>�n/ 2 R
3 is the

gradient of the normal stress with respect to n.
As an example we consider n>�rv�n for fixed n and consider the minimum

and the maximum change of the normal stress in all directions v 2 S
2, i. e. the

minimal or maximal normal stress in a linearized neighbourhood of radius �. If we
add this minimum or maximum to the actual normal stress n>�n we obtain the
minimal/maximal normal stress of t.v; n/ in a linearized neighborhood, which is



Visualizing Gradients of Stress Tensor Fields 77

Fig. 5 The left image shows a Reynolds glyph, the distance from the origin depicts normal stress
in this direction. Turquoise corresponds to positive values, pink corresponds to negative values.
The right image shows the envelope of all Reynolds glyphs in a linearized neighborhood

given by

max
v2S2

n>t.v; n/ D n>�nCmax
v2S2

n>�rv�n D n>�nC �kn>r�nk ;

and for the minimum

min
v2S2

n>t.v; n/ D n>�n � �kn>r�nk :

We visualize the computed extrema for each n by a surface, while the distance of
the surface from the origin is given by the respective extrema. If the normal stress
n>�n is positive we show the maximum in turquoise, if it is negative we show the
minimum in pink. Consequently, the visualized information is given by

��

n;max
v2S2
jn>t.v; n/j

� ˇ
ˇ
ˇ n 2 S

2




:

Note that the surface with distance n>�n from the origin forms a Reynolds glyph,
i. e. the glyph is obtained by scaling all normal vectors n by the normal stress of �
with respect to n, see for example [3]. Thus the shown surface can be considered
as the envelope of all Reynold glyphs in a linearized neighborhood of radius �, an
example is shown in Fig. 5.

5 Application to Tensile Bars

As a simple practical example we consider simulated stress tensor fields for two
different tensile bars. Tensile bars are used to check the behavior of a material under
load. Here we consider two tensile bars with differently curved notches, which result
in different stressing conditions. The stress becomes maximal at the notch and the
load was adjusted in order to obtain similar stress tensors at this point. For the
stronger curved notch a lower nominal tensile load is necessary to obtain a similar



78 V. Zobel et al.

Fig. 6 Geometry of the two tensile bars, one with a less curved notch on the left and one with a
stronger curved notch on the right. The green dot indicates the point where we analyze the gradient

Fig. 7 Variation of the stress vectors for a displacement in the coordinate directions. The upper
image corresponds to the less curved tensile bar, the lower image to the stronger curved tensile bar

stress tensor. The simulations have been performed with the commercial software
package ABAQUS.

The geometry of the tensile bars is shown in Fig. 6, the green dots at the center
of the notches indicate the points where we want to analyze the gradients. In Fig. 7
we show the stress vectors and their gradients as described in Sect. 4.1.1, the upper
image belongs to the tensile bar with less curved notch, the lower image to the tensile
bar with stronger curved notch. The gray tubes show that there is almost only tension
in e3-direction, this is the direction in which the bar is stretched. As intended, the
stress is very similar for both tensile bars. The red arrows indicate the variation of
the stress vectors for a displacement in e1-direction, i. e. to the middle of the tensile
bar. Here we can see for both tensile bars that the normal stress in e3 direction is
decreasing, while some additional normal stress in e1-direction arises. This effect is
more distinct with the stronger curved notch. Thus, while we obtain a similar stress
for a lower load in case of the stronger curved notch, the stress decreases also much
faster, suggesting a smaller region of high stress. When moving in e3-direction we
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Fig. 8 Envelope of the stress vectors in a linearized neighborhood. The upper image corresponds
to the less curved tensile bar, the lower image to the stronger curved tensile bar

Fig. 9 The purple ellipsoid shows the overall change of the stress tensor in all spatial directions,
the yellow ellipsoid visualizes the stress tensor. The left image corresponds to the less curved tensile
bar, the right image to the stronger curved tensile bar

obtain additional shear stresses for both tensile bars, as indicated by the blue arrows.
This indicates a variation of the principal stress directions, which is caused by the
curvature of the notches, consequently this effect is also stronger for the tensile bar
with the stronger curved notch.

Figure 8 shows the envelopes of the stress vectors introduced in Sect. 4.1.2. Of
course, this visualization does not reveal any new information, but it is easy to see
which stress vectors occur in a linearized neighborhood, and that the variation for
the second tensile bar is much stronger. Note that the considered point is on the
boundary of the tensile bar, thus the linearized neighbourhood exceeds the actual
data. Consequently, the ellipsoids show the envelope of the stress vectors for a linear
extrapolation of the data.

In Fig. 9 the Frobenius norm of the directional derivative is visualized by an
ellipsoid, alongside with an ellipsoid visualizing the stress tensor as suggested in
Sect. 4.2. With this visualization it is easy to see that the stress tensor changes
rapidly in x direction, while there is almost no change in y-direction. Again, it is
easy to see that the stress tensor changes much faster for the tensile bar with the
stronger curved notch.
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Fig. 10 From left to right, the images show the Reynolds glyph for the less curved tensile bar and
its envelope, and the Reynolds glyph for the stronger curved tensile bar and its envelope

The Reynolds glyph and the envelope of the Reynolds glyph for a linearized
neighborhood is shown in Fig. 10. These glyphs offer a overview over the absolute
variation of the normal stresses, which is, of course, also much bigger for the tensile
bar with stronger curved notch.

6 Conclusion and Future Work

In this chapter we have proposed several first ideas for the visualization of the
gradient of the stress tensor. The basic idea was the visualization of the stress
vectors and their variation in a linearized neighborhood. We proposed a glyph
showing the complete information contained in the stress tensor and its gradient,
which is based on commonly used depictions in engineering textbooks. Due to
the complexity of this information, we proposed several simplifications based on
mathematical considerations. We selected two of them and visualize them using
glyphs. To make the proposed visualizations comprehensible, we used two tensile
bars as simple examples.

Our proposed visualization showing the stress vectors and its partial derivatives
contains all information on the stress tensor and the stress gradient. But it might need
some familiarization for the user to interpret the shown information. Since the stress
tensor and its gradient consist of 24 independent components, this might be similar
for any glyph which tries to visualize the complete information of these tensors.
Thus it seems less promising to focus on glyphs that provide all the information
at the same time, instead we want to focus on interaction in the future. This
includes comfortable ways to select the normal direction as well as the direction
of differentiation. Together with the proposed simplifications of the gradient the
user should be able to investigate different properties of the gradient in an interactive
way. With such a tool we hope to come closer to our overarching objective: We want
to find out which information of the stress gradient is relevant for our application,
that is, how must the stress change such that it influences the stability limit of a
technical component.
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Geometries and Interpolations for Symmetric
Positive Definite Matrices

Aasa Feragen and Andrea Fuster

Abstract In this survey we review classical and recently proposed Riemannian
metrics and interpolation schemes on the space of symmetric positive definite (SPD)
matrices. We perform simulations that illustrate the problem of tensor fattening not
only in the usually avoided Frobenius metric, but also in other classical metrics on
SPD matrices such as the Wasserstein metric, the affine invariant/Fisher Rao metric,
and the log Euclidean metric. For comparison, we perform the same simulations on
several recently proposed frameworks for SPD matrices that decompose tensors into
shape and orientation. In light of the simulation results, we discuss the mathematical
and qualitative properties of these new metrics in comparison with the classical
ones. Finally, we explore the nonlinear variation of properties such as shape
and scale throughout principal geodesics in different metrics, which affects the
visualization of scale and shape variation in tensorial data. With the paper, we will
release a software package with Matlab scripts for computing the interpolations and
statistics used for the experiments in the paper (Code is available at https://sites.
google.com/site/aasaferagen/home/software.)

1 Introduction

The space of symmetric positive definite (SPD) matrices, denoted SymC.n/, is
defined as

SymC.n/ D ˚T 2 R
n�njTij D Tji 8 i; j D 1; : : : ; n; xTTx > 0 8 x 2 R

n n 0	 ;
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where the first property enforces symmetry and the second property enforces
positive definiteness. An equivalent definition of positive definiteness is that all
eigenvalues of T are strictly positive.

SPD matrices play an important role in many data science applications. They
coincide with covariance matrices of multivariate normal distributions, and therefore
appear both in information geometry [2] and through covariance descriptors in
computer vision [36]. They also represent second order tensors which e.g. model
diffusion in diffusion tensor imaging (DTI) [4]. These applications have led to a
rich theory of statistics and geometry in spaces of SPD matrices, which has interest
both from a practical and theoretical point of view. Throughout the paper, we will
use the terms “SPD matrix” and “tensor” interchangingly.

In this paper we survey classical and modern geometries defined on the space
SymC.3/ of SPD 3 	 3 matrices. All of these geometries can be extended to
SymC.n/, most of them directly, but for some this is technically more challenging.
We perform simulations that illustrate the properties of the different approaches,
in particular concerning the preservation of information in tensor interpolation
and statistics. Finally, we discuss properties of the different metrics regarding the
visualization of statistical properties of datasets in SymC.3/, in the context of recent
work in visualization [40].

2 The Positive Definite Cone and the Frobenius Metric

It is easy to see that the space SymC.3/ is a convex subset of the Euclidean space
R
3�3 of 3	 3 matrices. Let T1;T2 2 SymC.3/ and t 2 Œ0; 1�; now T1C t.T2 � T1/ 2

SymC.3/ because it is clearly still symmetric, and

xT.T1 C t.T2 � T1//x D .1 � t/
„�ƒ‚�…

�0
xTT1x„ƒ‚…
>0

C t„ƒ‚…
�0

xTT2x„ƒ‚…
>0

> 0 for all x 2 R
3 n 0;

where the inequality holds because only one of the factors .1 � t/ and t can be
0. More precisely, the elements of SymC.3/ constitute the convex positive definite
cone in R

3�3, which is the interior of the more frequently used positive semidefinite
cone defined by xTTx � 0.

Since SymC.3/ is convex, we can perform linear interpolation between elements
of SymC.3/ while remaining within the set. These straight lines are geodesics on
SymC.3/ with respect to the so-called Frobenius metric on SymC.3/, which is just
the inherited Euclidean metric from R

3�3. In particular, distances with respect to the
Frobenius metric are given by the ambient space Euclidean distances:

dF.T1;T2/ D kT1 � T2k2 D
v
u
u
t

3X

iD1

3X

jD1
..T1/i;j � .T2/i;j/2:
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The Frobenius geodesic �FW Œ0; 1� ! SymC.3/ from T1 to T2 is trivially
computed through Euclidean coordinate-wise interpolation:

�F.t/ D T1 C t.T2 � T1/:

While the Frobenius metric is simple and efficient to work with, it comes with
a significant cost when used for statistics on SymC.3/. Frobenius interpolation
between tensors in SymC.3/ leads to a significant swelling effect, illustrated in
Fig. 1. Here, two tensors are interpolated which have identical, ellipsoidal shape
but which have 85ı difference in orientation. We observe that the tensors in the
middle of the geodesic are much rounder than the endpoint tensors. The swelling
effect is problematic for a number of applications in DTI. For example, when
tensor interpolation is used for upsampling, the swelling effect leads to smoothing
in the upsampled tensor field. The problem becomes more serious when statistics in
SymC.3/ are used e.g. for voxel-based morphometry. The mean of two tensors is the
midpoint of the geodesic connecting them, which carries less shape information than
the original two tensors. The mean of multiple tensors will typically exhibit even
stronger smoothing of information, leading to reduced predictive or discriminative
power.

Fig. 1 Samples from a geodesic interpolation between two identical line-like tensors at an angle
of 85ı in the Frobenius metric. Note that the samples at the middle of the geodesic are very disc-
like, thus exhibiting a very different shape from the two endpoints, and thus containing very little
orientation information. This is called the swelling effect
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Fig. 2 Values of the tensor determinant along the geodesic illustrated in Fig. 1. The non-constant
behavior of the determinant is what, in the literature, is referred to as the swelling effect of the
Frobenius metric

The swelling effect is defined analytically as an increase in the determinant of
the elements in SymC.3/ as one interpolates two identically shaped but differently
oriented ellipsoidal tensors. Figure 2 shows a plot of the determinant of each tensor
depicted along the geodesic in Fig. 1. As seen from the plot, the determinant is non-
constant, and this is directly related to the tensor swelling throughout the geodesic
connecting the two identically shaped, but differently oriented tensors in Fig. 1.

In this paper, we will first survey classical Riemannian metrics on SymC.3/ and
illustrate that while most of these avoid the swelling effect, they still exhibit a strong
and unwanted fattening effect, as is also remarked in [23]. Next, we proceed to
reviewing and exploring some more recently proposed metrics and interpolation
schemes that aim to avoid the fattening effect by decoupling tensor shape from
tensor orientation. While these have modelling advantages, they do come at a price:
losing the statistics that come with a well-defined and computationally efficient
geometric framework.

2.1 Acknowledgement

This paper was largely motivated by discussions of whether nonlinear geometries on
SymC.3/might improve statistics and visualization for populations of tensors at the
Dagstuhl seminar "Multidisciplinary Approaches to Multivalued Data: Modeling,
Visualization, Analysis" (16142). We return to remark on this question in Sect. 5.5.
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3 Classical Riemannian Metrics on SymC.3/

Riemannian metrics and other interpolation schemes for SPD matrices became an
active area of research with the advent of diffusion tensor imaging (DTI), starting
a quest for metrics that avoid the swelling effect while being computationally
efficient. We start out by surveying the classics: The Wasserstein metric, the
affine-invariant metric known in other contexts as the Fisher-Rao metric, and the
Log-Euclidean metric.

3.1 The Wasserstein Metric

The Wasserstein metric, also known as the earth mover’s distance, defines a general
distance metric between arbitrary probability distributions on general metric spaces,
which intuitively measures the amount of mass needed to transport one distribution
into the other. Given a metric space .X; d/ which is also a Radon space [3], and
given p � 1, denote by Pp.X/ the set of probability measures � on X such that

Z

X
dp.x; x0/d�.x/ <1:

The pth Wasserstein distance between two probability measures �; � 2 Pp.X/ is
given by

Wp.�; �/ D
�

inf
�2� .�;�/

Z

X�X
dp.x; y/d�.x; y/

� 1
p

; .x; y/ 2 X 	 X;

where � .�; �/ is the set of measures on X 	 X whose marginals are � and �,
respectively. We shall focus on the case p D 2 for multivariate normal distributions
N .0; ˙/ centered at the origin in the metric space X D R

3 [32]. Any such
multivariate normal distribution is described entirely by its covariance matrix ˙ ,
and the set of such covariance matrices ˙ is exactly the space of SPD matrices
SymC.3/. For general metric spaces and distributions, the Wasserstein distance is
difficult to compute, but for centered normal distributions in R

n, it has an analytical
expression. We therefore obtain a Riemannian metric on SymC.3/ by representing
any SPD matrix T 2 SymC.3/ as a multivariate normal distribution with zero
mean and covariance ˙ D T. This defines the Riemannian Wasserstein metric
on SymC.3/ as a pull-back from the corresponding metric on the space of normal
distributions.

Given this Riemannian metric, we can compute geodesics and geodesic dis-
tances, where the geodesic distance dW.T1;T2/ between tensors T1;T2 2 SymC.3/
is the length of the (shortest) geodesic �W W Œ0; 1� ! SymC.3/ joining T1 and
T2. In the space of normal distributions, both geodesics and geodesic distances
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have analytical solutions [32]. The Wasserstein geodesic for centered normal
distributions �W W Œ0; 1�! SymC.3/ connecting T1;T2 2 SymC.3/ is given by

�W.t/ D
�

.1 � t/I C tT
1
2

2 .T
1
2

2 T1T
1
2

2 /
� 1
2 T

1
2

2

�

T1

�

.1 � t/I C tT
1
2

2 .T
1
2

2 T1T
1
2

2 /
� 1
2 T

1
2

2

�

;

and the geodesic distance from T1 to T2 is given by

dW.T1;T2/ D W2.N .0;T1/;N .0;T2// D tr.T1/C tr.T2/ � 2tr

q

T
1
2

2 T1T
1
2

2 :

Note that for tensors, powers such as T
� 1
2

i are easily computed through their
eigendecomposition. As with any Riemannian metric, this defines a symmetric
distance which satisfies the triangle inequality and is nonzero between distinct
tensors. In the more general case of normal distributions with positive semidefinite
covariance matrices, the Wasserstein distance induces a stratified space geometry,
which is analyzed in detail in [32].

The Wasserstein distance has a nice intuitive interpretation, it is well-understood
mathematically, and it is immensely popular. However, looking at Figs. 3 and 4,
we observe that in practice, when interpolating two thin ellipsoidal tensors with
identical shape but different orientation, the tensors go through significant swelling.

Fig. 3 We observe a swelling of the tensor as we move throughout the geodesic between equally
shaped, ellipsoidal tensors
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Fig. 4 The tensor determinant increases as we move through the geodesic in Fig. 3

3.2 The Affine-Invariant Metric

The classical affine-invariant metric [7, 14] was introduced to avoid the swelling
effect on SymC.3/. It is a Riemannian metric, and the geodesic between tensors
T1;T2 2 SymC.3/ is given analytically by

�AI.t/ D T
1
2

1 exp

�

t log.T
� 1
2

1 T2T
� 1
2

1 /

�

T
1
2

1 ; t 2 Œ0; 1�;

and the geodesic distance from T1 to T2 is

dAI.T1;T2/ D klog

�

T
� 1
2

1 T2T
� 1
2

1

�

kF:

The affine-invariant metric is a special case of the Fisher-Rao metric [2] on
probability distributions, restricted to zero-mean multivariate Gaussian distributions
with covariance in SymC.3/, as in the previous section.

In Fig. 5 we see an example of an affine invariant geodesic on the same
example as above, and in Fig. 6 we track the determinant of the interpolated tensors
throughout the geodesic. We see that there is no swelling effect, in the sense that
the determinant remains constant throughout the geodesic. However, there is a
noticeable fattening effect leading to rounder tensors in the middle of the geodesic
than at the endpoints.
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Fig. 5 Samples from a geodesic interpolation between two identical line-like tensors at an angle
of 85ı in the affine-invariant metric. The samples at the middle of the geodesic are less disc-like
than in the Frobenius metric. Note, however, that they still have different (fatter) shape than the
endpoint tensors

It is clear from the above equations that the affine-invariant metric is relatively
computationally expensive, as it relies on a number of evaluations of matrix
exponentials, logs, square roots and inverses, and for this reason, the more tractable
Log-Euclidean metric was proposed in 2006 [4].

3.3 The Log-Euclidean Metric

The Log-Euclidean metric on SymC.3/ [4] utilizes the observation that the matrix
exponential defines the one-to-one mapping expWSym.n/ ! SymC.3/ from the
vector space of symmetric 3 	 3 matrices into the manifold SymC.3/ of SPD 3 	 3
matrices, whose inverse is the matrix logarithm (which is well defined on SymC.3/).
This means that the differential structure of Sym.n/ Š R

.n2Cn/=2 can be pulled back
to SymC.3/ via the matrix logarithm, whereŠ denotes the natural isometry between
the coordinates in R

.n2Cn/=2 and the upper triangular entries of a symmetric matrix.
Equivalently, the logarithm provides a nonlinear transformation of SymC.3/ into
the Euclidean space R

.n2Cn/=2, where analysis can take place. In this way, the Log-
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Fig. 6 The tensor determinant is constant along the affine invariant geodesic illustrated in Fig. 5.
The affine-invariant metric thus avoids the swelling effect has a fattening effect throughout the
geodesic

Euclidean metric defines a Euclidean structure on SymC.3/. In this geometry, the
distance between two tensors T1 and T2 is given by

dLE.T1;T2/ D k log.T1/ � log.T2/kF:

More importantly, the geodesic between T1 and T2 under the Log-Euclidean metric
is given by the straight line between log.T1/ and log.T2/. However, this straight
line resides in R

.n2Cn/=2, not in SymC.3/. It can be pulled back to SymC.3/ using
the matrix exponential, giving rise to the following analytical expression for the
geodesic �LEW Œ0; 1�! SymC.3/:

�LE.t/ D exp

�

t log.T1/C .1 � t/ log.T2/

�

; t 2 Œ0; 1�:

The Log-Euclidean distances and geodesics thus avoid many of the involved
matrix power computations needed in the affine-invariant framework, although they
still require matrix exponentials and logarithms. Moreover, empirically, the Log-
Euclidean geodesics are often found to be extremely similar to the affine invariant
ones. This is illustrated in our geodesic interpolation example, shown in Fig. 7.
As we can see in Fig. 8, the Log-Euclidean geodesic keeps the tensor determinant
constant when interpolating identically shaped tensors, and it therefore does not
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Fig. 7 Samples from a geodesic interpolation between two identical line-like tensors at an angle
of 85ı in the Log-Euclidean metric

Fig. 8 The tensor determinant is constant along the Log-Euclidean geodesic illustrated in Fig. 7.
It therefore also avoids the swelling effect, but exhibits a fattening effect as seen in Fig. 7
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exhibit the swelling effect—but we see in Fig. 7 that it does, just like the affine-
invariant metric, still lead to a fattening effect in the tensors at the middle of the
geodesic. Note also the qualitative similarity between the affine-invariant geodesics
in Fig. 5 and the Log-Euclidean geodesics in Fig. 7.

4 Avoiding the Swelling, But Not the Fattening, Effect

Figures 5 and 7 illustrate that while the affine-invariant and Log-Euclidean metrics
do keep the tensor determinant fixed and therefore avoid the previously defined
swelling effect, they do not preserve tensor shape when interpolating between
identically shaped, but differently oriented tensors. Let us quantify this effect further
by considering four different shape indices: The fractional anisotropy (FA) of a
tensor T is given by [6]

FA D
s
.�1 � �2/2 C .�2 � �3/2 C .�3 � �1/2

2.�21 C �22 C �23/
;

where �1 � �2 � �3 are the eigenvalues of T. In the same notation, the three Westin
tensor shape indices [38] are given by

cl D �1 � �2
�1

; cp D �2 � �3
�1

; cs D �3

�1
;

and quantify the tensor’s resemblance to a line, a plane or a sphere, respectively.
For the same two endpoint tensors used previously, we plot the four different shape
measures throughout the geodesic for the affine invariant and Log-Euclidean metrics
in Fig. 9.

Fig. 9 We quantitatively confirm the fattening effect in the affine invariant and Log-Euclidean
metrics: The shape is variable and the tensors become fatter towards the middle of the geodesic.
(a) Affine-invariant. (b) Log-Euclidean
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The plots in Fig. 9 clearly confirm the fattening effect: The tensors are less line-
like and more plane- and sphere-like towards the middle of the geodesic, despite the
fact that the endpoint tensors have identical ellipsoidal shape. To avoid this effect,
several approaches have appeared that aim to decouple tensor shape and tensor
rotation.

5 Decoupling Shape and Rotation

The eigenvalue decomposition of an SPD matrix

T D Q�Q�1 (1)

into a rotation matrix Q 2 SO.3/ given by column-wise eigenvectors and a diagonal
matrix � containing the eigenvalues, provides a natural way of splitting T into its
shape- and orientation properties. This presents an attractive opportunity to avoid the
fattening effect, and it is also useful for interpretation. An abundance of approaches
to decouple shape and rotation have appeared [9, 16, 18, 23, 24, 30, 37], seemingly
independent of each other, and we shall review some of the most important ones
below, in order of increasing complexity.

5.1 The Shape-and-Orientation Rotation Metric

In the shape-and-orientation metric [37] the tensor T D Q�Q�1 is considered to
reside on the Riemannian product manifold SO.3/ 	 R

3C, where SO.3/ is given
the angular geodesic metric and R

3C is given the bi-invariant metric. A geodesic �
between two SPD matrices T1 and T2 in this metric is a product geodesic � D �r	�s,
where �r is a geodesic between Q1 and Q2 in SO.3/, and �s is a geodesic between
�1 and �2, where T1 D Q1�1Q�1

1 and T2 D Q2�2Q�1
2 as in (1).

Such geodesics are given analytically by the formulas

�r.t/ D Q1exp.t � logSO.3/.Q
�1
1 Q2//;

�s.t/ D �1exp.t � log.��1
1 �2//;

where logSO.3/ denotes the log map on SO.3/, and the corresponding geodesic
� W Œ0; 1�! SymC.3/ from T1 to T2 is given by

� .t/ D �r.t/ � �s.t/ � �r.t/�1:

An example of a shape-and-orientation geodesic is shown in Figs. 10 and 11, and
the determinant and shape indices are shown in Figs. 12 and 13. The corresponding
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Fig. 10 Samples from a geodesic interpolation between two identical line-like tensors at an angle
of 85ı in the shape-and-orientation metric

geodesic distance between two tensors T1 and T2 is given by

d2SAO ..Q1;�1/; .Q2;�2// D d2SO.3/.Q1;Q2/C d2
R
3
C

.�1;�2/

where

dSO.3/.Q1;Q2/ D 1p
2
k logSO.3/.Q2Q

T
1 /kF; d

R
3
C

.�1;�2/ D k log.�2�
�1
1 /kF:

As we see from the simulations in Figs. 10 and 11, where we compute the
geodesic between identically shaped but differently oriented tensors, the tensor
shape is kept constant throughout the deformation—as intended. This is confirmed
by the constant determinant and shape indices shown in Figs. 12 and 13. Moreover,
the construction is fast and apparently easy to work with as all the formulas are
analytical, and the metric is intuitive and preserves tensor shape properties well.
However, the construction ignores a fundamental problem: There exist multiple
decompositions Ti D Qi�iQ�1

i of the endpoint tensors Ti, i D 1; 2, and different
choices of Qi and�i generate different interpolations� W Œ0; 1�! SymC.3/. We see
this effect very clearly in the example geodesic in Figs. 10 and 11, where the path
chosen turns 95ı and is—while locally a geodesic—not the shortest path between
the two tensors (the shortest path turns 85ı).
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Fig. 11 The same geodesic interpolation as in Fig. 10, from a different viewpoint. It is clear that
the interpolation is not the shortest possible 85ı interpolation, but a longer 95ı interpolation

The underlying problem is that while any point on SO.3/ 	 R
3C does, indeed,

correspond to a tensor, the map FW SO.3/ 	 R
3C ! SymC.3/ defined by F.Q; �/ D

Q�Q�1 is not injective, because the eigenvalue decomposition is not unique. The
map F is the map that takes an eigenvalue decomposition to its corresponding tensor.

There are several ways in which the eigenvalue decomposition of a tensor, as in
Eq. (1), is not unique. First, given any eigenvector ei of a tensor T, its antipode
�ei is also an eigenvector. The orientation part Q of the tensor decomposition
consists of eigenvectors of T, but not all combinations of eigenvectors lead to a
matrix Q 2 SO.3/. In particular, multiplying an eigenvector by �1 gives another
eigenvector, but flips the sign of Q, and only those eigenvector matrices that give
det.Q/ D 1 actually reside in SO.3/. Moreover, even those eigenvector sets that do
define a Q 2 SO.3/, are not unique. This is what happens in Figs. 10 and 11. Another
source of non-uniqueness is the order of the eigenvalues and eigenvectors in the
decomposition. This issue is usually avoided in practice by requiring �1 � �2 � �3
in � D diag.�1; �2; �3/. However, this is also problematic, in particular when two
eigenvalues approach each other. The problem with multiple representations of the
same tensor becomes particularly complicated when the endpoint tensors have two
or more identical eigenvalues [18]. To avoid the resulting technical complications,
our experiments and code will assume that endpoint tensors have three distinct
eigenvalues.
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Fig. 12 The tensor determinant is constant along the shape-and-orientation geodesic illustrated in
Fig. 10

Fig. 13 The FA and Westin shape descriptors are also constant along the shape-and-orientation
geodesic illustrated in Fig. 10
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5.2 Scaling-Rotation Curves

While the shape-and-orientation metric as defined in [37] is a very simple way of
defining a metric using eigenvalue decompositions, it is not the first appearance
of the manifold SO.3/ 	 R

3C in an attempt to generate a geometric framework for
SymC.3/. In a series of papers [18, 23, 30], A. Schwartzman and collaborators
define scaling-rotation curves and a corresponding geometry, as follows.

A scaling-rotation curve [30] between T1;T2 2 SymC.3/ is a geodesic in SO.3/	
R
3C between representatives .Q1;�1/ and .Q2;�2/ of T1 and T2, where the metrics

on SO.3/ and R
3C are the same bi-invariant metrics as in Sect. 5.1. Scaling-rotation

curves suffer from the same non-uniqueness problems as the shape-and-orientation
metric from Sect. 5.1. A more recent series of papers [18, 23] attempt to handle this
by factoring out multiple representations of the same tensor as follows. Given the
mapping

FW SO.3/	 R
3C ! SymC.3/; .Q; �/ 7! Q�Q�1; (2)

one can define an equivalence relation� on SO.3/	R3C by setting .Q; �/ � .Q0�0/
whenever F.Q; �/ D F.Q0�0/. This gives rise to a quotient space

.SO.3/ 	 R
3C/= �D .SO.3/ 	 R

3C/=F; (3)

whose elements are equivalence classes, denoted .Q; �/ D f.Q0; �0/ 2 SO.3/ 	
R
3C W F.Q; �/ D F.Q0; �0/g D F�1.Q�Q�1/. In the quotient space, each tensor is

represented exactly once.
The quotient space .SO.3/ 	 R

3C/=F can be identified with SymC.3/, since the
map F descends to a 1� 1mapping NFW .SO.3/	R3C/=F! SymC.3/. This quotient
space is not a smooth manifold, but it is a stratified space, meaning that it is a
union of smooth manifolds which are adjacent to each other in a “well-behaved”
way (see [28] for details on stratified spaces). The strata, or manifold components,
are given by elements of SymC.3/ with a fixed number of eigenvalue degeneracies,
meaning the top stratum consists of tensors with three distinct eigenvalues, the next
stratum consists of elements with two identical eigenvalues, etc.

Groisser et al. [18] note that tensors in SymC.3/, represented as equivalence
classes F�1.T/ D .Q; �/ in SO.3/ 	 R

3C, can be interpolated by minimal scaling-
rotation curves between equivalence classes .Q; �/; .Q0; �0/. This gives rise to the
scaling-rotation distance

dSR.T1;T2/

D dSO.3/�R
3
C

�
.Q1;�1/; .Q2;�2/

�

D minfdSO.3/�R
3
C

..Q1;�1/; .Q2;�2// jT1 D Q1�1Q�1
1 ;T2 D Q2�2Q�1

2 g:
(4)
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Fig. 14 For sufficiently spherical tensors, the scaling-rotation distance does not satisfy the triangle
inequality. The left- and rightmost tensors have identical slightly ellipsoidal shape, but are rotated
at an angle of 90ı. The tensor in the middle is spherical

5.2.1 The Scaling-Rotation Distance is Not a Metric

As remarked in [18, 23], the scaling-rotation distance is not a metric (see Fig. 14),
and in particular it is not the quotient (distance) metric on .SO.3/ 	 R

3C/=F. The
quotient metric [8, p. 65] defined on a quotient

X= �D fNxjx 2 X; Nx D Ny if x � yg

is given by

Nd.Nx; Ny/ D inf

(
n�1X

iD1
d.Nzi; NziC1/jz1; : : : ; zn 2 X; z1 2 Nx; zn 2 Ny

)

:

Here, the equivalence classes Nx; Ny are viewed as subsets of X and d.Nx; Ny/ D
inffd.x; y/jx 2 Nx; y 2 Ny/ is the set distance between subsets of X. Meanwhile, the
scaling-rotation distance is a special case of

Qd.Nx; Ny/ D inffd.x; y/jx 2 Nx; y 2 Nyg:

The quotient metric is the minimal total cost of hopping from Nx to Ny with stopovers
at a finite set of equivalence classes Nzi, while the scaling-rotation distance does not
allow stopovers. The lack of stopovers causes the scaling-rotation distance to not
satisfy the triangle inequality, which is why it does not satisfy the criteria for being
a metric.

This is easy to see via an example. Consider the two tensors

T1 D
0

@
1C � 0 0
0 1 0

0 0 1

1

A ; T2 D
0

@
1 0 0

0 1C � 0
0 0 1

1

A ;
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which have identical shape and have orthogonal principal directions. The scaling-
rotation distance between these two tensors is independent of �, because the shape
component is 0 and the rotation component is fixed, given by a 90ı rotation, as long
as � > 0.

However, lim�!0 d.Ti; I/ D 0, for the identity matrix I. These geodesics consist
of a very small shape change with no rotational component. This means that for
sufficiently small �, we have d.T1; I/ C d.I;T2/ < d.T1;T2/—which violates the
triangle inequality.

Nevertheless, the scaling-rotation distance does define “minimal” interpolations
that solve some of the problems of the shape-and-orientation metric from [30, 37].
The quotient metric on .SO.3/ 	 R

3C/=F remains unexplored to the best of our
knowledge. This is likely due to the computational complexity and non-Riemannian
structure of the space.

5.3 Linear Invariant Tensor Interpolation

Based on a set of tensor invariants proposed by Ennis et al. [11], Kindlmann et
al. [24] proposed the geodesic loxodromes framework in order to avoid fattening
when interpolating tensors. A tensor invariant is a scalar which depends only on the
shape of the tensor—or mathematically speaking, on its eigenvalues. A classical
example is the fractional anisotropy (FA). A geodesic loxodrome between two
tensors T1 and T2 is the shortest path from T1 to T2 for which certain tensor shape
parameters (either K1-K3 or R1-R3, as reviewed below) are linearly interpolated.
In the original geodesic loxodromes framework, the interpolations were found by
optimization, which is inexact and sometimes computationally expensive.

Gahm et al. [16] utilize the following combination of R- and K-invariants
from [24], which allows an analytical reconstruction of the eigenvalues along the
interpolated path1:

K1.T/ D tr.T/I R2.T/ D FA.T/ D
r
3

2

k QTkF
kTkF I R3.T/ D 3

p
6 det

 QT
k QTkF

!

;

(5)

where kTkF is the Frobenius norm of T, and

QT D T � tr.T/

3
I3 (6)

is the anisotropic part of T, the so-called deviatoric tensor. Note that R2 is the tensor
FA used previously, while K1 measures tensor scale. Now, the path through SPD

1Note that there are some typos in the definitions of R2 and R3 in [16].
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matrices in SymC.3/ with eigenvalues �1; �2; �3 given by

�i.t/ D 1

3
.K1.t//C 2K1R2.t/

3
p
3 � 2.R2.t//2

cos

�
arccos.R3.t//C Pi

3

�

; (7)

where Pi D 0;�2�; 2� for i D 1; 2; 3, results in a linear interpolation

K1.t/ D .1 � t/K1.T1/C tK1.T2/;
R2.t/ D .1 � t/R2.T1/C tR2.T2/;
R3.t/ D .1 � t/R3.T1/C tR3.T2/;

(8)

in the corresponding three tensor invariants. This tells us how to interpolate the
shape of the tensors while linearly, and in particular, monotonically, interpolating
the corresponding tensor invariants.

However, we do not yet know how to interpolate the orientation of the tensors.
In [16] this is handled by using the orientation component of a Frobenius geodesic.
Let �F.t/ be the tensor at time t in the Frobenius geodesic �FW Œ0; 1� ! SymC.3/
from T1 to T2, and let

Q.t/ Q�.t/Q.t/�1 D �F.t/ (9)

be an eigenvalue decomposition of the time t tensor �F.t/. Let the diagonal matrix

�.t/ D
0

@
�1.t/ 0 0

0 �2.t/ 0

0 0 �3.t/

1

A ; (10)

consist of the eigenvalues obtained in Eq. (7). This gives the so-called linear invari-
ant tensor (LIT) interpolation �LIT W Œ0; 1�! SymC.3/ from T1 to T2, defined as

�LIT.t/ D Q.t/�.t/Q.t/�1: (11)

That is, the orientation component of the interpolation from T1 to T2 coincides
with that of a Frobenius interpolation from T1 to T2, and the shape interpolation
component is the one which linearly interpolates K1, R2 and R3, given in Eq. (7).

We see that, at least in our running example, the fattening effect is resolved using
the LIT interpolation. Tensor invariant interpolation methods have the advantage
that shape is interpolated monotonically, and even linearly, with respect to the pre-
specified shape invariants. For the combination of invariants used in �LIT [16], there
is an analytical solution, making the interpolation scheme computationally feasible.
These are attractive properties.

On the negative side, the particular choice of angular interpolation is not ideal
when the difference in orientation is large—this is clear from Fig. 15. This could
be resolved by choosing the angular component differently, e.g. from one of the
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Fig. 15 The LIT interpolation between the same two thin, ellipsoidal tensors as before. We see
that the determinant and shape of the tensor is unchanged throughout the geodesic, but we also see
that the orientation is not interpolated at a constant rate. To see the reason for this effect, we refer
back to the Frobenius interpolation in Fig. 1, where the tensor orientation also does not change at
a constant rate. (a) The LIT interpolation. (b) Tensor determinant. (c) Shape descriptors

alternative tensor metrics. Moreover, to the best of our knowledge, the interpolations
do not correspond to geodesics in a given geometric space. This makes it unclear
to what extent the derived interpolations can be used in a geometric statistics
framework to obtain Fréchet means, principal components, regression etc.

5.4 Further Simulations

In the above, we have used as a running example an interpolation between two
identically shaped ellipsoidal tensors at an 85ı angle of each other. Figures 16
and 17 illustrate additional simulations, illustrating how the different metrics and
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Fig. 16 Interpolation between four tensors located at the corners of the square-like arrangement
of tensors, where the corner tensors all have three distinct eigenvalues but different shapes and
orientations. (a) Frobenius. (b) Wasserstein. (c) Affine-invariant. (d) Log-Euclidean. (e) Shape-
and rotation. (f) Linear invariant tensor interpolation

interpolation schemes handle interpolation between tensors of different shape and
less extreme orientation differences.

In Figs. 16 and 17, all four tensors located at the corners of the square-like
arrangement of tensors have three distinct eigenvalues to give optimal conditions
for the shape-and-orientation metric. Two of the tensors are thin and ellipsoidal;
in Fig. 16 one of them is rotated 85ı. The two remaining tensors have the same
orientation as the first, but different shape: one is a bit fatter, and one is almost
spherical. In Fig. 17 the experiment is repeated with a 30ı rotation instead of 85ı.

Note that for the square geodesic interpolations the optimal interpolation would
have been made as a weighted Fréchet mean; however, this strategy does not apply to
the linear invariant tensor interpolation. Therefore, all interpolations were made by
first interpolating pairs of corners to obtain two “opposite side” interpolations and
then interpolating the elements of the sides to obtain the remainder of the square.
The choice of which corners to interpolate first will influence the result, and this
becomes particularly apparent in the shape-and-rotation and linear tensor invariant
interpolations.
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Fig. 17 Interpolation between four tensors located at the corners of the square-like arrangement
of tensors, where the corner tensors all have three distinct eigenvalues but different shapes and
orientations. Two tensors are thin and ellipsoidal; one of them is rotated 30ı. The two remaining
tensors have the same orientation as the first, but different shape: One is less thin and one is almost
spherical. (a) Frobenius. (b) Wasserstein. (c) Affine-invariant (d) Log-Euclidean. (e) Shape-and
rotation (f) Linear invariant tensor interpolation

Code for the experiment will be made available online at https://sites.google.
com/site/aasaferagen/home/software.

Note the difference between the first and second columns of the interpolation
results for the shape-and-orientation metric in Fig. 16e: The inconsistencies with
respect to choice of representation of tensors results in consecutive pairwise
interpolations being radically different geodesics in SymC.3/, some of them not
being shortest paths. This corresponds to our remarks in Sect. 5.1.

Note the abrupt change in orientation in the leftmost column of Fig. 16f. This
is an effect of the choice of rotation component in the linear invariant interpolation,
which is the rotation found in the corresponding Frobenius geodesic. The connection
is visually evident by comparing to the Frobenius geodesic in Fig. 16a.

https://sites.google.com/site/aasaferagen/home/software
https://sites.google.com/site/aasaferagen/home/software
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5.5 Tensor Statistics and Tensor Decomposition
for Visualization Purposes

This paper was largely motivated by a discussion of visualization of tensor
populations at the Dagstuhl seminar “Multidisciplinary Approaches to Multivalued
Data: Modeling, Visualization, Analysis” (16142). In a recent paper, Zhang et
al. [40] visualize tensor population variation by separately visualizing variation in
scale, shape and orientation.

This leads to the question of how scale, shape and orientation can be decomposed
in different geometric frameworks. In this section we present simulations that aim
to make clear that the choice of metric on SymC.3/ affects data variation both
quantitatively in the notion of variance, and in the extent to which it is possible to
decompose the variation into scale, shape and orientation without misrepresenting
the metric. We do so by visualizing the first component of Fletcher principal
geodesic analysis [13] on four different simulated tensor populations, shown in
Fig. 18, for four of the above discussed metrics.

Each dataset consists of 20 tensors. The tensors in dataset 1 have identical
shape and rotation, but variable scale (defined as the Frobenius norm of the tensor
matrix); the tensors in dataset 2 have identical shape and scale but variable rotation;
the tensors in dataset 3 have identical shape but the scale and rotation of the
corresponding tensors in datasets 1 and 2, respectively. Dataset 4 has variable shape,
scale and orientation.

Figure 19 shows sampled tensors along the first geodesic principal component for
the Frobenius, affine-invariant, Log-Euclidean and shape-and-rotation metrics. The
middle sample for each dataset and metric is the Fréchet mean. The first conclusions
to be made from Fig. 19 is that the Riemannian metric frameworks are rather
different, and that neither of the first three metrics capture the dataset variability very

Fig. 18 Four simulated datasets. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4
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Fig. 19 First geodesic principal components in four Riemannian metrics, for the four simulated
datasets

well except for the case where orientation is kept constant. In particular, while every
tensor in the datasets 1–3 has identical shape, the geodesic principal components of
these datasets for the first three Riemannian metrics indicate shape variation. In
dataset 4, however, there is shape variation in the dataset, but the tensors sampled
along the geodesic principal component do not exhibit much shape variation. The
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tendency holds for all of the first three metrics. This indicates that the Riemannian
metrics do not capture tensor shape very well in the presence of high orientation
variation. This is not surprising.

The shape-and-rotation metric is better at capturing the shape variation (or lack of
it), as expected. However, we already know that due to its multiple representation of
single tensors, it will overestimate variance and we know the results to be incorrect.

Note that while the shape and scale of the tensors in datasets 1 and 3 are identical,
the variation of the shape and scale along the first geodesic principal component
is quite different both between the metrics and the datasets. This indicates that
one should think carefully about how to separate scale, orientation and shape
for visualization of variance when using a geometric framework. For instance,
factoring out orientation before applying the geodesic principal component analysis
as in dataset 1 changes the captured shape variance dramatically. This might be
surprising.

6 Discussion and Conclusion

6.1 Further Related Work

Tensor interpolation and geometric frameworks for analysis of tensors has been
an active field of research for a number of years, and in the above we have only
touched upon some of the most classical and most recent approaches to tensor
interpolation. As an extension of the geometric framework, several approaches have
appeared that utilize divergences [10, 31]. Divergences are not generally symmetric
and therefore do not lead to a geodesic space in an obvious way. They can, however,
be closely linked to Riemannian metrics, as in the case of the KL divergence, which
infinitesimally coincides with the Fisher-Rao metric [2]. In the context of machine
learning, kernel methods have also been proposed for SPD matrices [22]; however,
these have been shown to just consist of Gaussian kernels on Euclidean features
extracted from the SPD matrices [12]. Aside from tensors, approaches that try to
separate rotation from other properties have also appeared [9, 25].

Several surveys and comparisons exist for geometries and interpolations for
SymC.3/. Moakher et al. [26] compare the affine-invariant metric to the closely
related Kullback-Leibler divergence in both geometric properties and in the context
of statistics and visualization. Both Peeters et al. [27] and Zhou et al. [41]
compare different distance/similarity measures for DTI, including several simple
measures along with the affine-invariant and Log-Euclidean metrics representing the
Riemannian approaches; the latter has a focus on regularization. What our survey
has to offer in comparison is an extensive discussion of nonlinear geometries on
SymC.3/, a comparison with non-geometric approaches such as LIT [16], a thor-
ough mathematical discussion of the current status of approaches that decompose
shape and orientation—and a mathematical explanation why this is not trivial.
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Moreover, we offer publically available software2 online to enable any reader to
start working with geometries on SymC.3/.

6.2 Geometry Versus Shape Preservation

We have investigated a number of different geometric frameworks for tensor com-
putation: The Frobenius, Wasserstein, affine-invariant and log-Euclidean metrics
are all Riemannian metrics on SymC.3/. However, they all exhibit the fattening
effect, which can lead to unwanted smoothing effects when used for tensor
interpolation or statistics. The shape-and-orientation metric is also a Riemannian
metric. However, it comes with multiple representations of the same tensor, which
leads to inconsistencies and unreliable statistics in practice, as illustrated by our
experiments. This can be handled by factoring out the multiple representations in a
quotient space. This quotient space is still a geodesic metric space, but it is no longer
a Riemannian manifold—it has singularities and is a stratified space [18, 28]. The
geodesics in this space could be used for interpolation, but a remaining problem for
a practical investigation of its usefulness is to obtain an algorithm for computing the
quotient metric geodesics. We expect this to be computationally demanding.

We have also reviewed frameworks that let go of geometry and simply ask
for tensor interpolations that preserve shape well. These interpolations would very
likely be good at preserving signal, but do not give the geometric framework of
a geodesic metric space. In particular, this means that we do not have access to
statistical approaches such as Fréchet means, hypothesis tests, geodesic principal
component analysis or regression, as we have with the more geometric approaches.
This also makes interpolation of multiple tensors less well-defined, as we have
already observed in Figs. 16 and 17.

6.3 Why Are Second Order Tensors Still Interesting?

Second order tensors were key objects in DTI, but with the advent of HARDI
imaging [34], they are often considered “too simple” to warrant further study. We
argue the opposite. If you want to build geometries or tools that can handle the
challenges of higher order tensors in diffusion-weighted imaging, these tools have
better also perform well on second order tensors in DTI. Some of the most natural
choices of metrics on the distributions returned by fODF model estimators such as
constrained spherical deconvolution [33] or Q-ball [35], are the Wasserstein and
Fisher-Rao metrics [17], as these are defined and theoretically well understood for

2Upon publication, software will be available at https://sites.google.com/site/aasaferagen/home/
software.

https://sites.google.com/site/aasaferagen/home/software
https://sites.google.com/site/aasaferagen/home/software
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general probability distributions. However, as we have seen in this survey, these
metrics have unwanted smoothing effects when used for interpolation or statistics
on second order tensors, and should not be expected to behave better on higher order
tensors [9].

Another route to comparison of higher-order tensors comes through representa-
tions of higher order tensors based on second order tensors. Such representations
are given by multi-compartment models [1, 21] as well as through Finsler geometry,
where any higher order ODF can be represented through a Finsler norm, and
any Finsler norm can be represented as an orientation-dependent second order
tensor [5, 15]. In both of these representations, a well-chosen metric for second order
tensors may be extended to higher order tensors by integrating over orientation. This
is an interesting direction for future work.

Finally, second order tensors have other applications. They are used in the
recent tensor confinement formalism [39], where the second order tensor is used
to represent constraints on the diffusion process. Moreover, second order tensors
are in 1-1 correspondence with covariance matrices, and any metric on second
order tensors therefore also defines a metric on centered multivariate normal
distributions. Statistics on probability distributions have many possible applications,
from population statistics on uncertain tractography results represented as Gaussian
Processes [20, 29] via evolutionary algorithms for optimization [19], to information
geometry [2].

The quest for a descriptive geometric framework for SymC.3/ therefore contin-
ues.
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Towards Processing Fields of General
Real-Valued Square Matrices

Bernhard Burgeth and Andreas Kleefeld

Abstract In this paper, a general framework is presented that allows for the
fundamental morphological operations such as dilation and erosion for real-valued
square matrix fields. Hence, it is also possible to process any field consisting of
a subgroup of general matrices with examples like the general linear, symmetric,
skew-symmetric, Hermitian, and orthonormal group. Therefore, from the theoretical
point of view it is possible to process any field with entries consisting of the
aforementioned groups. Extended examples illustrated the different conversion
processes and the definition of corresponding pseudo-suprema and pseudo-infima.
Furthermore, some possible applications are illustrated.

1 Introduction

In the phrase “image processing for tensor fields” the notion tensor fields in general
refers to fields of symmetric (even positive definite) matrices with real entries.
This work is devoted to the development of morphological image processing tools
for general 3D matrix fields, however, with a certain emphasis on real orthogonal
matrices with determinant one. As a general 3D matrix field we denote any mapping

f W ˝ 7�! MR(n)

from a two- or three-dimensional image domain ˝ into the set MR(n) of n 	 n-
real matrices M. We will refer to them as MR(n)-valued images, or even shorter, as
MR(n)-fields. A similar terminology is used when we are dealing with the vector
spaces SYM.n/, the space of symmetric n 	 n-real matrices, SKEW.n/, the space of
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skew-symmetric n	n-real matrices, and H(n), the space of Hermitian n	n-complex
matrices. And it will be these Hermitian matrices that will play a key role in all that
follows. We will also be interested in subsets of matrices of MR(n) that do not form
a vector space, for instance, Gl(n), the set of n	 n real matrices with non-vanishing
determinant, det.G/ ¤ 0, forming a group with respect to matrix multiplication.
Or SO(3), the set of rotations, a group with respect to matrix multiplication. In the
sequel, we will restrict our attention to the cases n D 3 for the sake of potential
applications and for explanatory purposes to n D 2.

SYM.3/-fields are still playing an important role, for example, in DT-MRI, a
technique in medical imaging capable to capture the nerve fiber structure in human
tissue, see for instance [28, 46], and [41]. Three-dimensional symmetric tensor fields
find wide spread applications in areas of civil engineering such as solid and fluid
mechanics as well (see [1, 34, 36] and the literature cited therein). And symmetric
matrices make an appearance in image processing itself through the structure tensor
concept as early as in [32] and [33]; see also, for example, [4, 6] and the references
therein. Even for the processing of color images symmetric matrices seem to be
useful, [5, 29, 44]. The processing, the analysis, and the visualization of such fields
have been at the center of countless research efforts as the references in the literature
such as [35] and [28] indicate.

Due to the orthonormal diagonalizability of symmetric matrices, SYM.3/-fields
have a rich functional-algebraic calculus. Since MR(n) does not posses such a rich
algebraic structure it is not immediately clear how to establish image processing
methods for this very general type of data.

The key idea is complexification, that is, embedding MR(n) into H(n) in a one-to-
one manner. In this way, we will be able to take advantage of the elementary fact that
each Hermitian matrix is unitary similar to a diagonal matrix with real entries. In
other words, H(n) is just as convenient as a space as SYM.3/ is, and many techniques
developed for SYM.3/ will carry over directly to H(n). Since subsets of MR(n) are
mapped to subsets of H(n) such an embedding opens up paths for the treatment of
such subsets otherwise not accessible to image processing techniques.

Three types of operations on data types are the cornerstones of a typical image
processing algorithm: linear combination (addition and multiplication with a scalar),
multiplication, and finding the sup/inf of a set of data points. For multivariate data
very often neither all of these operations are defined nor a substitute is close at
hand. It is the aim of this work to provide suitable notions of linear combination,
multiplication, and sup/inf for data types that do not lend themselves to these
operations: matrix-valued images or matrix fields where the range are real n 	 n-
matrices (no notion of sup/inf), or orthogonal matrices (no notion of sup/inf or
linear combination). The above problem has been solved to some extent for real
symmetric matrices, since they have a rather rich algebraic analytic structure.
The latter approach will serve us as a guide line to achieve similar results in the
aforementioned cases of MR.n/ and SO.n/.

Since even a 2 	 2-Hermitian matrix has 4 degrees of freedom our possibilities
for a visualization of such matrix fields are very limited, at best. The same holds
true for the aforementioned classes of matrices. Therefore, we will focus more on
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the theoretical aspects providing a proof-of-concept rather than the evaluation of
experiments. The visualization of multivariate data is a very active research area in
its own right (see for example [19, 40, 42]).

Non-linear continuum mechanics employs a multitude of notions of tensors. In
elasticity theory for materials the displacement field for particles is fundamental;
the Jacobian of this mapping is then, for the sake of simplification, transformed
into the symmetric strain tensor. An equally important quantity in kinematics is the
deformation gradient, again the Jacobian of a deformation mapping, and we obtain
the non-symmetric stress tensor. In general for modeling and numerical reasons,
it is split via polar decomposition into a symmetric and orthogonal matrix (see
[36, 43]). From these symmetric matrices mainly scalar quantities are derived to
predict material behavior or potential failure in numerical simulations. In order
to take advantage of the information captured in the associated field of special
orthogonal matrices one has to find sustainable means to process these types of
data (possibly via image processing techniques). This chapter is a first step into that
direction.

Another field, where the framework of square, non-symmetric matrices might be
useful is the processing of image data stemming from different imaging modalities.
One might expect that this information and the dependencies between the channels
can be translated into the language of (square) matrices. Then these matrix
fields may be transformed and analyzed, provided sufficiently powerful processing
techniques are at our disposal.

Of even more speculative nature (and as such subject to future research): for the
processing of social-economic data (e.g. living conditions, spreading of diseases,
etc.) or mathematical biology (e.g. chemotaxis) [25] it might be possible and useful
to cast this information into matrix form, and again we are confronted with the task
of “handling” matrix fields.

Hence, it appears useful to the authors to struggle for a unified approach to
calculus tools for fields of square matrices. This will enable us to design advanced
techniques (possible related to image processing) to filter and analyze these fields
and the information therein.

This work has the following structure: In Sect. 2, the basics for the R-vector
space of Hermitian matrices is explained. The next section gives the basic calculus
for fields of Hermitian matrices. Section 4 deals with an isomorphism between
MR.n/ and H.n/ that is constructed to process fields in this space and in various
subgroups of MR.n/. Section 5 introduces the reader to the approximation of the
pseudo supremum and infimum as well as averaging. While in Sects. 6 and 7 two
applications are discussed in detail. Concluding remarks and an outlook are given
in the final Sect. 8.
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2 The R-Vector Space of Hermitian Matrices

A Hermitian matrix H is a complex square matrix which equals its own conjugate
transpose:

H D H
> DW H�

The real part, <.H/, of an Hermitian Matrix H is symmetric, <.H/ 2 SYM.n/,
while the imaginary part, =.H/ is skew-symmetric, =.H/ 2 SKEW.n/. Clearly, one
has H D <.H/C i=.H/. Any Hermitian matrix H can be diagonalized by means of
a suitable unitary matrix and, furthermore, all the eigenvalues are real:

H D UDU� :

U is unitary, that is, U�U D UU� D I, and D D diag.d1; : : : ; dn/ is a diagonal
matrix with real entries in decreasing order, d1 � : : : � dn. H is called positive
semi-definite if all of its eigenvalues are positive: d1 � : : : � dn � 0. This is
equivalent to the positivity of the quadratic form x�Hx � 0, where x is a complex
vector, x 2 C

n. If the inequalities are strict, then the matrix is called positive definite.
A matrix H is negative (semi-)definite if�H is positive (semi-)definite. If the matrix
H is none of the above, then the Hermitian matrix is called indefinite. This gives rise
to a partial order “�” on the set of Hermitian matrices:

A � B if and only if A � B is positive semi-definite.

In the case of real symmetric matrices this order is often referred to as Loewner
order (see [3]). Note that the Hermitian matrices equipped with the Loewner order
do not form a lattice, since the upper bounds of a set fH1;H2; : : : ;Hng with n � 2
is in general not totally ordered, hence supremum as the least upper bound may
not exist. The same holds for the infimum. However, the Loewner order allows for
a so-called pseudo-supremum as the upper bound with the smallest trace; likewise
for a pseudo-infimum, see the definitions in the next section. It is worth noting that
the definiteness of a Hermitian matrix is solely determined by the definiteness of its
real part, since x�=.H/x D 0 for any x 2 C

n, as for all skew-symmetric matrices.
As a consequence, the order between two Hermitian matrices is given by the order
of their symmetric real parts. As it is pointed out in [13], and in more detail in
[12, 15], a rich functional algebraic calculus can be set up for symmetric matrices
(see [24]). This allows to establish numerous filtering and analysis methods for
such fields of symmetric matrices in a rather straightforward way from their scalar
counterparts [16]. Hermitian matrices as immediate generalizations of symmetric
matrices possess an equally rich and easily manageable calculus.

Processing a matrix field amounts to applying an operator A to the field. This
operation might be a simple concatenation with a (scalar) function f , exploiting the
unitary diagonalizability of a Hermitian matrix H, or it might be an application of
a function of several variables, a matrix valued differential operator, or even a step
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in a numerical algorithm, such as a time step in an explicit scheme to solve partial
differential equations. This requires that a certain amount of operations of a matrix
calculus is at our disposal. In order to make this work as self-contained as possible
we present some very basic notions from calculus for fields of Hermitian matrices
in the next section.

3 Rudimentary Calculus for Fields of Hermitian Matrices

In this section, we provide briefly the basic definitions for the formulation of a very
basic calculus for Hermitian matrix fields.

3.1 Basic Functions for Hermitian Matrices

In this subsection, we explain what a function of a Hermitian matrix is, a reasonable
product of two Hermitian matrices, and what fruitful notions of supremum and
infimum of two Hermitian matrices are. In part, this is a generalization of some
of the material in [12] and [14] to Hermitian matrices.

1. Functions of Hermitian matrices. The standard definition of a function f on
H(n) is given by [26]:

f .H/ WD U � diag. f .d1/; : : : ; f .dn// � U� (1)

provided H D Udiag.�1; : : : ; �n/U� is the spectral decomposition of the
Hermitian matrix H and �1; : : : ; �n lie in the domain of definition of f .

2. Symmetrized product of Hermitian matrices. The product of two Hermitian
matrices A;B 2 H(n) is not Hermitian unless the matrices commute. However,
it is vital to our interests to have a symmetrized matrix product at our disposal.
There are numerous options to define a symmetrized matrix product, however,
we concentrate on a specific one known from algebra called Jordan product:

A 
J B D 1

2
.ABC BA/ for A;B 2 H(n) :

For commuting A and B we have A 
J B D A � B. This product is commutative
and distributive but not associative. It is one half of the anti-commutator of A
and B, but due to its additive structure no determinant product rule holds. Most
important, it does not preserve the positive semi-definiteness of its arguments as
the following simple example shows:

�
2 0

0 0

�


J
�
1 i
�i 1

�

D 1

2

��
2 2i
0 0

�

C
�
2 0

�2i 0

��

D
�
2 i
�i 0

�

; det

�
2 i
�i 0

�

D �1 :
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3. Pseudo-supremum/infimum of two Hermitian matrices. Inspired by the
equations 2max.a; b/ D a C b C ja � bj and 2min.a; b/ D a C b � ja � bj
valid for a; b 2 R, we set in the case of Hermitian matrices H1 and H2

psup.H1;H2/ WD 1

2
.H1 C H2 C jH1 �H2j/ (2)

and

pinf.H1;H2/ WD 1

2
.H1 C H2 � jH1 � H2j/ (3)

to be the pseudo-supremum and the pseudo-infimum ofH1 andH2. Here jH1�H2j
is understood as the absolute value of H1�H2 in the sense of the above extension
of the absolute value function to Hermitian matrices (refer to (1)).

As previously pointed out, a certain justification for the use of the notation psup
respectively pinf is provided by the following

Proposition 1 If H1;H2 2 H(n), then sup.H1;H2/ is the least upper bound for both
H1 and H2 in the sense that the smallest eigenvalue of both sup.H1;H2/ � H1 and
sup.H1;H2/ � H2 is zero. A corresponding statement holds true for inf.H1;H2/ as
the greatest lower bound of H1 and H2.

Proof We can assume that H1 and H2 are not comparable in the Loewner order.
Then H1 �H2 is indefinite, hence for its smallest eigenvalue d3 < 0 holds. We have

sup.H1;H2/� H2 D 1=2.H1 C H2 C jH1 � H2j/� H2

D 1=2.H1 �H2 C jH1 � H2j/
D 1=2.U diag.d1; d2; d3/U� C U diag.jd1j; jd2j; jd3j/U�/

D 1=2.U diag.d1 C jd1j; d2 C jd2j; d3 C jd3j/U�/

D 1=2.U diag.d1 C jd1j; d2 C jd2j; 0/U�/ :

A corresponding reasoning with H1 and H2 � H1 completes the proof concerning
the supremum. The proof of the part for the infimum is analog or can be deduced
from the fact that inf.H1;H2/ D � sup.�H1;�H2/. The extensions of elements of
scalar-valued calculus to the matrix-valued setting is given in Table 1. With these
basic algebraic-analytic operations at our disposal it is now possible, in principle, to
design image processing algorithms for fields of Hermitian matrices.
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Table 1 Extensions of elements of scalar-valued calculus (middle) to the matrix-valued setting
(right)

Setting Scalar valued Matrix-valued
Function

f W
(

R �! R

x 7! f .x/
F W

(
H.n/ �! H.n/

H 7! Udiag. f .�1/; : : : ; f .�n//U�

Product a 	 b A 
 B D 1
2
.AB C BA/

Supremum sup.a; b/ psup.A;B/ D 1
2
.A C B C jA � Bj/

Infimum inf.a; b/ pinf.A;B/ D 1
2
.A C B � jA � Bj/

3.2 Examples for Basic Hermitian Matrix Calculus

The following examples may illustrate the above definitions.

Example 1 As a first important example of a function application, we consider the
absolute value jHj of an Hermitian matrix H with n D 3: it is the positive semi-
definite Hermitian matrix obtained by applying the absolute value function to the
real eigenvalues of H; that is

jHj D U � diag.jd1j; jd2j; jd3j/ � U�

With this at our disposal, we calculate the absolute value and the (pseudo-)infimum
and (pseudo-)supremum of the two Hermitian matrices

A D
0

@
3 1C i i

1 � i 1 0

�i 0 1

1

A ; B D
0

@
1 3 � i 4

3C i �2 �6C i
4 �6 � i 5

1

A :

For A and B, we obtain the three eigenvalues Œ0; 1; 4� and Œ�7:9622; 2:7363; 9:2259�,
respectively. Hence, jAj D A and jBj is given by

jBj D
0

@
4:4884 �2:4459� 0:2239i 0:4625C 0:7794i

�2:4459C 0:2239i 6:6745 �0:3041C 0:5703i
0:4625� 0:7794i �0:3041� 0:5703i 8:7613

1

A :
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The (pseudo-)supremum and (pseudo-)infimum of the two Hermitian matrices are
given by

psup.A;B/ D
0

@
3:6489 0:0738C 0:6282i 1:9852C 1:1527i

0:0738� 0:6282i 2:5353 �2:9214C 0:9196i
1:9852� 1:1527i �2:9214� 0:9196i 7:1099

1

A ;

pinf.A;B/ D
0

@
0:3511 3:9262� 0:6282i 2:0148� 0:1527i

3:9262C 0:6282i �3:5353 �3:0786C 0:0804i
2:0148C 0:1527i �3:0786� 0:0804i �1:1099

1

A ;

respectively.
However, we will not process fields of Hermitian matrices for their own sake.

Instead, various classesK of matrices with real entries are going to be embedded into
H(n) with suitable n D 2; 3; : : : and processed in this “detour space” before being
projected back. The classes K considered in this work are MR(n), and its subsets
Gl(n), O(n), and SO(n). In the next section, we describe the mapping that embeds
sets of real n 	 n-matrices into H(n). We define the mapping on the largest set of
real n	 n-matrices, the set K D MR(n) itself, which amounts to the aforementioned
complexification.

4 An Isomorphism Between MR(n) and H(n)

Despite its simplicity the following construction is decisive for all that follows.
Exploiting the decomposition of M 2 MR(n) into a symmetric and a skew-
symmetric part, M D S C A, we define a mapping � W MR(n) ! H(n) simply
by

� W M 7�! SC iA D 1

2
.M CM>/C i

2
.M �M>/ : (4)

This mapping is linear and invertible

��1 W H 7�! 1

2
.H C H>/� i

2
.H � H>/ (5)

for any H 2 H(3).

Example 2 The so called Pauli matrices

��
1 0

0 1

�

;

�
0 1

1 0

�

;

�
0 �i
i 0

�

;

�
1 0

0 �1
�
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form a basis of H(2). The corresponding basis of MR(2) via ��1 reads, in that order:

��
1 0

0 1

�

;

�
0 1

1 0

�

;

�
0 �1
1 0

�

;

�
1 0

0 �1
�


:

The Pauli matrices are playing an important role in mathematical physics, especially
in quantum mechanics, but they are of interest in the theory of Lie groups,
quaternions, and Clifford algebras as well (see [2, 18]).

It is slightly more tedious to find the basis of MR(3) corresponding to the Gell-
Mann matrices (see [2]) the analog to the Pauli matrices, as a basis for H(3).
However, we utilize H(n) and the maps �;��1 to tackle image processing tasks
for fields of matrices from MR(n) by adhering to the following strategy: instead of
addressing a problem in MR(n) with its relatively poor functional-algebraic structure
we transfer the problem to H(n), take advantage of the rich calculus there when
applying an operation, say A , and finally transform the (pre-) solution back to
MR(n). In other words, we take advantage of the subsequent commuting diagram
(6) (displayed with a slight abuse of notation):

H(n) H(n)

M (n) M (n)
1

−1

− (6)

The operation A is formulated in the language of the matrix-calculus of Table 1. It
is the concatenated operation � ı A ı ��1 that processes matrices from MR(n),
or, even more interestingly, from subsets (classes) K of MR(n), such as K 2
fGl(n);O(n);SO(n)g. Note that�.QMQ>/ D Q�.M/Q> for any orthogonal matrix
Q, and likewise for ��1. Hence, � ı A ı ��1 is rotational invariant whenever A
is.

Remark 1 The classes K we are considering in this section are stable under matrix
multiplication. In view of the reasoning above it is close at hand to define a
multiplication �K for Hermitian matrices induced by a class K as follows: For two
Hermitian matrices H1;H2 we define

H1�KH2 WD �
�
��1.H1/ � ��1.H2/

�
:

These type of products are distributive but not commutative. But what is worse, in
general, H�KH ¤ H2. Hence, we refrain from considering these products.

Now, we turn to a rather specific class of matrices, the group O(n) of orthogonal
matrices, which forms a subset of measure zero in MR.n/.
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4.1 Embedding SO(n) in H(n)

As an example, we consider the group SO(n), the subgroup of orthonormal
n 	 n-matrices with determinant ˙1. Clearly, the mapping � provides a one-to-
one correspondence between the sets SO(n) and � (SO(n)), hence a reasonable
processing strategy is as follows: First we embed the subset SO(n) of MR(n) into
H(n) by means of � . Then the (image-)processing is performed (that is, applying
A ) exploiting the rich algebraic structure of H(n), followed by the canonical
mapping ��1 back to MR(n) as indicated in diagram (6). However, if we set
QA WD ��1 ıA ı� and consider R 2 SO(n) then it might very well be that QA .R/ …

K. Hence, we need to find the k � kF-best approximation QR 2 K to QA .R/, that is

k QA .R/ � QRk2F �! min ; (7)

where k � kF stands for the Frobenius norm for matrices. Due to the invariance
properties of the Frobenius norm k � kF this establishes a rotational invariant
projection PrK from MR(n) back to K, see diagram (8).

H(n) H(n)

M (n) M (n) K
∪
K

−1 PrK

−1

(8)

In the literature minimization problems such as (7) are referred to as Procrustes
problems (see [22, 23]). In a slightly more general case K D O.n/ we have the so-
called orthogonal Procrustes problem of finding the orthogonal matrix QR closest to
the given matrix QA .R/ . Fortunately, a solution is the orthogonal factor in the polar
decomposition of QA .R/. The polar decomposition as we need it in this context states
that every real square invertible matrix A can be uniquely written as

A D O � P

with positive definite P D p
A>A and orthogonal O D AP�1 (refer to [26]).

Therefore, we are in the position to give an explicit closed form of this solution
for invertible QA .R/:

QR D PrO.n/. QA .R// D QA .R/
� QA .R/> QA .R/

��1=2

This indeed establishes a projection PrO.n/ from MR(n) back to O(n). Furthermore,
it follows that QR D PrO.n/. QA .R// 2 SO(n) if det. QA .R// > 0 .
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Remark 2 It is not too daring to assume that other sets of matrices, that are inter-
esting subsets of MR(n) and might possess some suitable group and/or topological
structure can be embedded into H(n) without major difficulties. However, to find
an efficient back-projection by formula or algorithm is a severe hindrance to the
application of the above mentioned processing principle. This topic is the subject of
ongoing research.

4.2 Embedding Gl(n) in H(n)

Gl(n) is a proper subset of MR(n), Gl(n) � MR(n), and it can very well be that
��1.H/ … Gl(n). But this poses no problem from the numerical point of view:
Gl(n) is topologically dense in MR(n) and the set MR(n) n Gl(n) of non-invertible
matrices has zero (Lebesgue-)measure in MR(n) since MR(n) n Gl(n) D fM 2
MR(n) j det.M/ D 0g together with the analytic properties of the determinant. This
means that the probability of obtaining numerically a non-invertible matrix after
applying ��1 to the processed Hermitian matrix is zero. Hence, in the case of
K D Gl.3/, a back-projection is numerically in principle not necessary. However,
the zero-probability-event has to be taken into account algorithmically (for example,
by means of a very small stochastic perturbation of the processed data).

5 Approximate psup, pinf and Averaging

The appearance of a projection PrK in general makes any operation, be that
averaging, taking the supremum/infimum, or a step in a numerical scheme, an
approximate operation. But this is the price one has to pay for relying on the very
efficient linear mappings� and��1. It would not come as a surprise if in the case of
a specific class of matrices a more sophisticated, non-linear mapping would make
a final back-projection obsolete. Therefore, for instance, taking the p-supremum
psupO.n/.M1;M2/ of two matrices M1;M2 2 O.n/ amounts to calculate

psupO.n/.M1;M2/ D PrO.n/

�
��1�psupH(n).�.M1/; �.M2//

��
:

Here, we used the notation psupK with K D O.n/ to indicate that the supremum is an
element of the set K due to the applied back projection PrK . The notion pinfK will be
used likewise. For the sake of brevity, we will use exchangeably psup D psupH(n)

respectively pinf D pinfH(n). Before we turn to further generalizations and concrete
examples, let us state some properties of the psup- and pinf-operations.
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Proposition 2 Let A;B 2 K with K 2 fH(n);MR(n);Gl(n)g. Then the following
equalities hold:

1. psupK.tA; tB/ D tpsupK.A;B/ if t � 0;
2. pinfK.tA; tB/ D tpinfK.A;B/ if t � 0;
3. psupK.A; tA/ D

�
A if 0 � t � 1I
tA if t > 1I

4. pinfK.A; tA/ D
�
tA if 0 � t � 1I
A if t > 1I

5. pinfK.A;B/C psupK.A;B/ D AC B .

Proof This follows directly from the corresponding properties of psupH(n) respec-
tively pinfH(n) and the linearity of � and ��1. Note that an analog statement for
K D O(n);SO(n) would not make sense. However, we may remark that

PrO(n).tA/ D PrO(n).A/ for every t 2 R; and A 2 MR(n) :

Computationally very useful is the fact that the p-supremum and the p-infimum are
related in the expected way

pinfK.A;B/ D �psupK.�A;�B/ :

This idea of an approximate operation extends naturally to more elaborate opera-
tions that might even depend on several matrix arguments. We will demonstrate this
by calculating an approximate p-supremum of more than two orthogonal or simply
invertible matrices. To this end we propose an algorithm to obtain an approximate
p-supremum/p-infimum of finitely many Hermitian matrices.

5.1 The p-Supremum/p-Infimum of Finitely Many Hermitian
Matrices

The Loewner order is only a partial order (see [27]) and hence

psup.H1; psup.H2;H3// ¤ psup.H2; psup.H3;H1// ¤ psup.H3; psup.H2;H1//

or with the appropriate definition of A _ B WD psup.A;B/ yields

.H1 _ .H2 _H3// ¤ .H2 _ .H3 _H1// ¤ .H3 _ .H2 _ H1// :

Finding even an approximation for .H1 _ H2 _ H3/ is not an easy task (see [11]
for a possible approach). The method in [11] and [13] relies on finding the smallest
hyperball enclosing a cloud of points in a relatively high-dimensional space R

d,
which entails approximations as well in addition to high computational costs.
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Therefore, we propose another iterative procedure to find an approximate supremum
of a finite number of Hermitian matrices H1;H2; : : : ;Hm of the same size. The
“approximate supremum” will not be in general a least upper bound, but an upper
bound with a trace as small as possible. The details for the iterative step are as
follows.

Iteration

Let us denote by Am WD 1
m

Pm
jD1Hi the arithmetic mean of the set of matrices

fH1; : : : ;Hmg �H(n), and by In the n 	 n-unit matrix.

1. Due to its spectral properties the matrix Am�t �In D 1
m

Pm
jD1Hi�t �In will become

an upper bound of fH1; : : : ;Hmg for sufficiently small, potentially negative t 2 R.
Now, we seek the largest t 2 R of this kind.

2. To this end we calculate for any i D 1; : : : ;m the solutions of the equation

det.Am � Hi � tIn/ D 0 ;

that is, the eigenvalues ti;j of Am � Hi with i D 1; : : : ;m and, counting them
according to their multiplicity, j D 1; : : : ; n .

3. Arranging the eigenvalues ti;1; : : : ; ti;n in descending order for fixed i one can
assume minjD1;:::;n.ti;j/ D ti;n. Next we set

i.1/ WD argmin
iD1;:::;m

.t1;n; t2;n; : : : ; ti;n; : : : ; tm;n/;

store the associated matrix Hi.1/ , and form the “first generation subset”

fH.1/
1 ; : : : ;H

.1/
m�1g WD fH1; : : : ;Hmg n fHi.1/g

with m� 1 elements. Roughly speaking, Hi.1/ is an outlier in the sense that is the
first matrix to fail being dominated by Am � Hi � tIn when t increases from �1
to1.

4. Now, we apply the above reckoning to the set fH.1/
1 ; : : : ;H

.1/
m�1g,

a. single out an outlier H.2/
i ,

b. and reduce the set fH.1/
1 ; : : : ;H

.1/
m�1g to the second generation set given by

fH.2/
1 ; : : : ;H

.2/
m�2g � fH1; : : : ;Hmg with only m � 2 elements.

5. The steps 1 to 3 are repeated until one arrives at a two-element subset given by
fH.m�2/

1 ;H.m�2/
2 g and a sequence of outliers Hi.1/ ;Hi.2/ ; : : : ;Hi.m�2/ : Combining

those results in the sequence Hi.1/ ;Hi.2/ ; : : : ;Hi.m�2/ ;H.m�2/
1 ;H.m�2/

2 ; gives rise to
the following construction of an approximate supremum bpsup of fH1; : : : ;Hmg.
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6. The approximate supremum bpsup is defined by

bpsup.H1; : : : ;Hm/ WD Hi.1/ _
�
Hi.2/ _ : : : _

�
Hi.m�2/ _ .H.m�2/

1 _ H.m�2/
2 /

�
: : :
�
:

For the sake of simplicity the notion psup.H1; : : : ;Hn/ is used throughout this
section instead of bpsup.H1; : : : ;Hn/ while always being aware of the approximate
character of the later.

Remark 3 The choice of the arithmetic mean for Am as the matrix to be translated by
�t �In is motivated by its simple computability and its appearance in the formulas (2)
and (3) for the p-supremum/p-infimum of two Hermitian matrices.

Remark 4 An analog construction is feasible for an approximate pinf.H1; : : : ;Hm/

or by setting pinf.H1; : : : ;Hm/ WD �psup.�H1; : : : ;�Hm/ (in abbreviated nota-
tion).

Example 3 Let us consider the Hermitian matrices H1 D
0

@
3 1C i i

1 � i 1 0

�i 0 1

1

A, the

matrix H2 D
0

@
1 3 � i 4

3C i �2 �6C i
4 �6 � i 5

1

A, H3 D
0

@
3 2 � i 4C i

2C i �1 2 i
4 � i �2 i 6

1

A. The above

procedure yields

psup.H1;H2;H3/

D
0

@
4:8127 1:1557C 0:0228 i 2:8865C 0:9776 i

1:1557� 0:0228 i 2:7750 �1:7909C 1:5305 i
2:8865� 0:9776 i �1:7909� 1:5305 i 9:0033

1

A ;

and

pinf.H1;H2;H3/

D
0

@
�0:2850 3:6102� 0:7254 i 2:1422C 0:1922 i

3:6102C 0:7254 i �4:4186 �2:4794C 0:3596 i
2:1422� 0:1922 i �2:4794� 0:3596 i �1:1939

1

A :

An elementary calculation gives for the eigenvalues

�i.psup.H1;H2;H3/ �Hk/
�� 0 and �i.Hk � pinf.H1;H2;H3//

�� 0

for i; k D 1 : : : 3 within a 4-digit numerical accuracy. This indicates that the
calculated quantities are optimal trace upper respectively lower bounds of H1, H2,
and H3.
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Since even a 2 	 2-Hermitian matrix has 4 degrees of freedom our possibilities
for a visualization of such matrix fields are very limited, at best. The same holds
true for the aforementioned classes of matrices. Therefore, we will focus more on
the theoretical aspects providing a proof-of-concept rather than the evaluation of
experiments. Clearly, the visualization of multivariate data is a very active research
field in its own right. As future work, we will investigate whether glyphs might be
appropriate for the visualization (see for example [19, 40, 42]).

6 Application 1: Elementary Image Processing for Invertible
Real Matrices

In this section, we prepare the conceptual basis for elementary image processing
for fields of MR(n) matrices. For the sake of simplicity, we restrict ourselves to real
2 	 2-matrices, the extension to higher dimensions is straightforward.

6.1 p-Supremum and p-Infimum in Gl(2)

For the sake of simplicity, we restrict our attention to matrices Ai 2 Gl(2) .i D
1; 2; 3/, which we are going to visualize as a pair of their column vectors each.
Even more, since a multiplication is available in Gl(2) and the mapping � is
linear, we focus solely on the calculation of psup.A1;A2/, psup.A1;A2;A3/ and the
corresponding p-infima. We begin with an example where our intuition suggests and
Proposition 2 provides a certain answer.

Example 4 Let A1 D
�
1 �1
1 2

�

and A2 D 2 � A1 D
�
2 �2
2 4

�

: We obtain

pinf.A1;A2/ D
�
1 �1
1 2

�

and psup.A1;A2/ D 2 � A1 D
�
2 �2
2 4

�

as expected.

In the sequel, the matrices are visualized by means of their associated column
vectors viewed as a pair of coordinate axes or dyads.

In this example, the two 2 	 2-matrices have one column in common, that is, the
corresponding coordinate systems share one axis.

Example 5 Let A1 D
�
1 1

�1 2
�

and A2 D
�
1 3

�1 �2
�

then

pinf.A1;A2/ D
�
1 � 1=6 p6 2C 1=3 p6
�1 �5=6 p6

�

;

psup.A1;A2/ D
�
1C 1=6 p6 2 � 1=3 p6
�1 5=6

p
6

�

:
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A1 A2 pinf(A1, A2) psup(A1, A2)

Fig. 1 The matrices A1, A2, psup.A1;A2/, and pinf.A1;A2/ depicted as dyads of their correspond-
ing column vectors. A certain similarity between A1 and psup.A1;A2/ on the one hand side, and A2
and pinf.A1;A2/ on the other is noticeable

In Fig. 1 these matrices are displayed as dyads of their column vectors. The column
vectors of the matrices are colored in red (1st column) and in blue (2nd column),
and the matrices differ only in the latter one. We expect that the first column of both
pinf- and psup-matrix are, if not identical, at least very similar. As one can see, this
can be observed in Fig. 1.

In the next example, we report on the results with two randomly chosen invertible
matrices.

Example 6 For the randomly chosen matrices

A1 D
�
1:15732069 �0:289221478
3:47018765 �1:07445407

�

and A2 D
�

3:36404711 �2:75914955
�0:257407447 �4:21393882

�

a short calculation gives

pinf.A1;A2/ D
�
0:341012885 �1:66329185
1:39645198 �4:864966040

�

;

psup.A1;A2/ D
�
4:18035492 �1:38507918
1:81632823 �0:423426855

�

:

They are depicted in Fig. 2 employing the same coloring as before. We note that
the last column of the matrices (accidently) have the same (negative) sign pattern.
As one might expect the negativity of these components is transferred to the second
columns of the corresponding pinf- and psup-matrices.

Next, an example where we decompose a matrix A into its positive AC and
negative part A� concludes this section.

Example 7 Let A D A1 from the previous example,

A D
�
1:15732069 �0:289221478
3:47018765 �1:07445407

�

;
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A1 A2 pinf(A1, A2) psup(A1, A2)

Fig. 2 Dyads representing the column vectors of randomly chosen matrices A1, A2, psup.A1;A2/,
and pinf.A1;A2/. The psup.A1;A2/ seems to favor the “positive” column vectors of A1, A2, while
pinf.A1;A2/ tends more towards the “negative” column vectors of A1, A2

AA + A−

Fig. 3 Matrices A, AC, and A� depicted as dyads of their corresponding column vectors

then one obtains

AC WD psup.A; 0/ D
�
1:93888944 �0:146827133
1:76168695 0:805899265

�

;

and

A� WD �pinf.A; 0/ D
�
0:781568745 0:142394345

�1:7085007 1:88035334

�

:

Note that indeed A D AC � A� holds, as expected. In AC the column vector of A
with positive components is dominant. In A� the column vector of A with negative
components is emphasized (note the minus sign in the definition of A�) (Fig. 3).
This is in agreement with the findings of the previous examples, refer to Figs. 1
and 2.
We end this section with an example of p-infimum and p-supremum of two matrices
from Gl.3/.
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Example 8 With the vectors a D .1; 2; 3/T, b D .2; 1;�1/T, and c D .0; 3; 1/T,
we construct the two matrices A1 D Œa;b; c� and A2 D Œ�1a; 2b;�2c� which are
in Gl(3), since det.A1/ D 18 and det.A2/ D 72. We obtain the p-supremum and
p-infimum of A1 and A2 as

psup.A1;A2/ D
0

@
1:843872858 1:827596576 0:328372983

1:359688108 4:814268107 �0:6572189155
2:422633919 �1:187442382 3:188837471

1

A ;

pinf.A1;A2/ D
0

@
�1:843872858 4:172403458 �0:328372869
�1:359688142 �1:814268107 �2:342781089
�2:422634033 �1:812557613 �4:188837471

1

A ;

and no back projection is necessary. The matrices are depicted in Fig. 4 as triads
spanned by each of their column vectors. The example does not lend itself to

A1

A2

psup(A1, A2)

pinf(A1, A2)

Fig. 4 Matrices A1, A2, psup.A1;A2/, and pinf.A1;A2/ depicted as triads of their corresponding
column vectors. In order to account for perspective distortions, the thickness of the arrows mirrors
their length as well
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an immediate geometric interpretation. However, A1 C A2 D psup.A1;A2/ C
pinf.A1;A2/ still holds.

The next section deals with a subset of Gl(n) that is not a vector space but
a multiplicative group and as such offers some topological intricacies: O(n)
respectively SO(n).

7 Application 2 : Elementary Image Processing
for Orthogonal Matrices

Now, we turn to a rather specific class of matrices, the group O(n) of orthogonal
matrices, and among those we focus on the (sub-)group SO(n) of special orthogonal
matrices, which form subsets of measure zero in MR(n). Therefore, a back-
projection onto O(n) respectively SO(n) will be in order. The group SO(3) is by
far the most important one for applications. Therefore, we restrict ourselves to
this case and deal with other instances of O(n) and SO(n) where n D 2 and
n > 3 only in passing, although the processing principle carries over to the higher
dimensional setting. Averaging and inf-/sup-operations lie in one form or the other
at the heart of most numerical algorithms not only for image processing. In the
design of algorithms for SO(n) even linear averaging poses a difficulty since SO(n)
is a multiplicative group but not a vector space.

7.1 A Glance at SO(3) and the Cayley Transform

SO(3) is the group of rotations of the three dimensional space R
3 and as such an

integral part of mathematics and its applications in engineering, computer science,
and physics. A typical element of SO(3) is the matrix

R.u; v;w; 	/ WD
0

@
u2 .1 � c/C c uv .1 � c/� ws uw .1 � c/C vs
uv .1 � c/C ws v2 .1 � c/C c vw .1 � c/� us
uw .1 � c/� vs vw .1 � c/C us w2 .1 � c/C c

1

A :

with c D cos .	/ and s D sin .	/. Here, 	 stands for the angle of rotation, .u; v;w/>
denotes an unit vector determining the oriented axis of rotation. Observing

R.u; v;w; 	/ D R.�u;�v;�w;�	/

we can characterize/parametrize SO(3) as follows:

SO(3) D fR.u; v;w; 	/ j .u; v;w/> 2 S2C; 	 2 Œ��; �/g;
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where the “hemisphere” S2C may be given by the disjoint union

S2C WD f.x; y; z/> 2 S2 j z > 0g [ f.x; y; 0/> 2 S2 j y > 0g [ f.1; 0; 0/>g :

The Cayley transform

cay.z/ D 1 � z

1C z

with z 2 C n f�1g is a special Moebius transform well-known from the theory
of conformal mappings and hyperbolic geometry (see, for example, [39]). It is its
own inverse and its domain of definition can be extended to diagonalizable matrices
A whose spectrum SPEC(A) do not contain �1. Now, both (special) orthogonal and
skew-symmetric matrices are normal and hence diagonalizable overC (see [20, 47]).
It is not difficult to see that cay is a one-to-one mapping between the set SKEW.n/ D
fM 2 MR(n) jM> D �Mg of skew-symmetric matrices and almost all of SO(n):

cay W fM 2 SO(n) j � 1 … SPEC.n/g �! SKEW.n/ :

Precisely, it is given by

cay.M/ D .I �M/ .I CM/�1 ;

where I denotes the identity and assuming �1 is not an eigenvalue of M. Especially
for n D 3 we have

SKEW.3/ D
8
<

:

0

@
0 x �y
�x 0 z
y �z 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x; y; z 2 R

9
=

;

and an elementary but tedious calculation gives

cay.R.u; v;w; 	// D sin.	/

1C cos 	
�
0

@
0 w �v
�w 0 u
v �u 0

1

A DW tan

�
	

2

�

N.u; v;w/ ; (9)

with 	 2 .��; �/. This mirrors the well-known connection between the Lie group
SO(n) and the corresponding Lie algebra SKEW.n/ for n D 3, although usually
established by means of the exponential map (see [2]). To the best of our knowledge,
the Caley transform has been employed in image processing to code an SO(3) field
as a color image for the first time in [31]. There, this color image has been subjected
to mathematical morphological techniques for color images as in [8–10] and has
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been pursued in [30, 44, 45]. Now, we observe that the mapping

.SKEW.3/; k � kF/ ! .R3; k � k2/
0

@
0 z �y
�z 0 x
y �x 0

1

A 7�! p
2 �
0

@
x
y
z

1

A

is an isometry and hence kN.x; y; z/kF D
p
2k.x; y; z/k2 . In view of these facts,

it becomes apparent how to extract from a given skew-symmetric matrix N.x; y; z/
both axis vector and angle of rotation: First normalize

N.Qx; Qy; Qz/ D
p
2

kN.x; y; z/kF
� N.x; y; z/

such that in addition .Qx; Qy; Qz/ 2 S2C, if needed might be, by introducing 1 D
.�1/.�1/ to ensure Qz > 0.

Then, we have

N.x; y; z/ D kN.x; y; z/kFp
2

N.Qx; Qy; Qz/ :

Considering (9) we conclude that


 D ˙2 arctan

�kN.x; y; z/kFp
2

�

with the sign ˙ depending on sign.z/ .
This gives rise to an invertible mapping

 W SKEW.3/ �!
8
<

:

 �

0

@
0 Qz �Qy
�Qz 0 Qx
Qy �Qx 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

 2 .��; �/ ; .Qx; Qy; Qz/ 2 S2C

9
=

;

D
8
<

:

0

@
0 z �y
�z 0 x
y �x 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

.x; y; z/ D 
 � .Qx; Qy; Qz/ ;

.
; .Qx; Qy; Qz// 2 .��; �/ 	 S2C

9
=

;
:

However, one readily establishes a one-to-one geometric equivalence .��; �/ 	
S2C � B3.0I�/, where B3.0I�/ denotes the open ball in R

3 with center 0 and radius
r D � . B3.0I�/ is a convex and balanced set (B balanced if and only if v 2 B ,
�v 2 B), and so is 

�
SKEW.3/

�
. Within this set linear averaging and interpolation

is feasible. For the sake of brevity, we introduce the notion of a modified Cayley
transform CAY D cay ı  with inverse CAY�1 D �1 ı cay�1 D �1 ı cay.



136 B. Burgeth and A. Kleefeld

Remark 5 It is worth mentioning that the reasoning above can be extended to higher
dimensions without major difficulties. At this point the advantage of the Cayley
transform over the exponential/logarithmic connection starts to show: the later can
be numerically challenging for n  3, [38], while the former one requires an
inversion only and it is its own inverse.
In the next section, we will employ the (modified) Cayley transform in the design
of averaging processes for SO(3).

7.2 Linear Averaging in SO(3)

The problem of averaging rotations has received some attention in the literature, see,
for instance, [17, 21]. There specific algebraic properties of SO(3) are exploited,
and the technique are geared to the application at hand. A more general approach is
considered in [7]. Here, we proceed along a different path.

Averaging via H(3) Regardless of the algebraic structure of SO(3) the mapping
� provides an embedding into the real vector space H(3) where linear averaging is
feasible. Let AH.3/ denote an averaging operation in H(3), for instance, the convex
combination AH.3/.H1; : : : ;Hk/ D Pk

�D1 t�H� with t� � 0 for � D 1; : : : ; k andP
� t� D 1. Then, in view of diagram (8), we can define an operator for elements

A1; : : : ;Ak 2 SO(3) by

ASO.3/.A1; : : : ;Ak/ D PrSO.3/
�
��1 �AH.3/.�.A1; : : : ; �.Ak//

��
(10)

D PrSO.3/

 

��1
 

kX

�D1
t��.A�/;

!!

:

However, � is R-linear and as such commutes with any averaging operator. Hence,

ASO.3/.A1; : : : ;Ak/ D PrSO.3/

 
kX

�D1
t�A�

!

which exactly boils down to the approach proposed by Moakher [37] for SO(3).
It provides a rather efficient and theoretically justifiable way to average linearly in
the multiplicative Lie group SO(3). An example will demonstrate the effect of the
method.

Example 9 Let A1 D R..1; 2; 3/I�=7/ and A2 D R..3; 1;�2/I 6�=7/. We consider
the convex combination ASO.3/.A1;A2/ D .1 � �/A1 C �A2 with averaging based
on H(3) like it is done in Moakher’s approach [37]. The sequence of images below
depicts the intermediate states of the interpolation when � varies from 0 to 1 in steps
of 0.125. The visualization with gyros indicates axis and angle of rotation for each
of the interpolation matrices. The interpolation does not seem to be as uniform as
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one might expect. The transition from the angle 1=7� to 6=7� is rather abrupt and
the last three steps of the interpolation do result in already quite similar, although
non identical, matrices.

Averaging via Cayley Transform Nevertheless, we propose an alternative linear
averaging that takes advantage of the Cayley transform. In the previous section the
mapping CAY with

CAY.R.u; v;w; 	// D 	 �
0

@
0 w �v
�w 0 u
v �u 0

1

A

has been introduced. Let ASkews.3/ denote an averaging operation in SKEW.3/, that
is, ASKEW.3/.S1; : : : ; Sk/ DPk

�D1 t�S� . We set

A c
SO.3/ .R1; : : : ;Rk/ D CAY�1 �ASKEW.3/

�
CAY.R1/; : : : ;CAY.Rk/

��
: (11)

Here, the superscript c in A c
SO.3/ indicates the dependence of the averaging on the

Cayley transform rather than on the embedding into H(3) as in (10). We demonstrate
the feasibility of the approach (see formula (11)) in the next

Example 10 Let A1 D R..1; 2; 3/I�=7/ and A2 D R..3; 1;�2/I 6�=7/, we consider
a convex combination CSO.3/.A1;A2/ D .1 � �/A1 C �A2, but now employing the
Cayley transform based approach in the averaging operator CSO.3/ . The sequence
of images below again illustrates the intermediate states of the Cayley-interpolation
when � varies from 0 to 1 in steps of 0.125 as shown in Fig. 6. Note that the halo
around the arrow is the possible angle and the dark-blue area is the actual given
angle. The interpolation seems to be slightly more uniform as the H(3)-based one
from the previous example, see Fig. 5. The transition from the angle 1=7� to 6=7�
resembles more a linear interpolation (Fig. 6). However, the changes in the axes are
slightly more sudden than in the previous case of Fig. 5.

7.3 p-Supremum and p-Infimum in SO(3)

Now, we assume the operator A in the diagrams (6) and (8) represent, with a
slight abuse of notation, the operations psup and pinf and proceed in principle as
before. The subsequent two examples illustrate the results of the proposed method
of calculating the pseudo-infimum pinf and pseudo-supremum psup of two rotations
in R3 represented by two rotation matrices. In the first case, the two rotations have
the same axis but different rotation angles.

Example 11 Let A1 D R..1; 2; 3/I 2=3�/ and A2 D R..1; 2; 3/I 1=6�/. Sur-
prisingly, we obtain the matrices pinf.A1;A2/ D R..1; 2; 3/I 2=3�/ D A1 and
psup.A1;A2/ D R..1; 2; 3/I 1=6�/ D A2. All four rotations share the same axis, and
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0.75 0.875 1

0.375 0.5 0.625

0 0.125 0.25

Fig. 5 Interpolation via embedding into H(3). Intermediate steps in the linear interpolation
of the matrices A1 and A2 visualized as gyros for the interpolation parameter values � 2
f0; 1=8; : : : ; 7=8; 1g

both psup.A1;A2/ and pinf.A1;A2/ coincide with one of the Ai, but in reversed order
with respect to the angle of rotation. The “larger rotation” belongs to the smaller
rotation angle, somewhat contrary to our intuition. The matrices are visualized in
the following Fig. 7 as gyros as before.

Remark 6 The “reversed-angle phenomenon” might appear less mysterious if one
considers the identity matrix I and the fact that pinf.R; I/ D R and psup.R; I/ D I,
reasonably making the identity the “largest” rotation matrix, although its rotation
angle is zero. Nevertheless, in view of SO(2) � fR..0; 0; 1/I
/ 2 SO(3) j
 2
Œ��; �/g we can already conclude from this experiment that morphology on the
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0.75 0.875 1

0.375 0.5 0.625

0 0.125 0.25

Fig. 6 Interpolation via Cayley transform. Intermediate steps in the linear interpolation of
the matrices A1 and A2 visualized as gyros for the interpolation parameter values � 2
f0; 1=8; : : : ; 7=8; 1g

group of rotations SO(2) boils down to morphology for 
-valued data, that is, gray-
scale morphology (although with a reversed total order). This is in agreement with
our expectations and the approach in [37].

Now, we turn to the most interesting case: the two rotations differ in the axis as
well in the angle of rotation.

Example 12 For the matrices A1 D R..1; 2; 3/I 2=3�/ and A2 D R..�2; 4; 2/I
3=4�/ the algorithm gives the pseudo-infimum

pinf.A1;A2/ D R..�0:3525355818; 0:8140679142; 0:461532333/I 0:751273688�/
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R1

psup(R1, R2)

pinf(R1, R2)

R2

Fig. 7 The matrices A1 and A2 represent rotations around the same axis unit vector
1=

p
14.1; 2; 3/> but with 2=3� and 1=6� . The visualization with gyros indicates axis and angle

of rotation for each of the matrices. As expected the axis unit vector of the rotations psup.R1;R2/
and pinf.R1;R2/ coincides with the one of A1 and A2. Surprisingly however, the rotation is the
larger, the smaller the angle of rotation is

and

psup.A1;A2/ D R..0:090789087; 0:657327318; 0:7481163935/I 0:26731243�/ :

All the matrices are depicted below in Fig. 8. Neither pinf.A1;A2/ nor psup.A1;A2/
coincides with any of A1 or A2. However, A1 seems to be similar to psup.A1;A2/
while A2 is closer to pinf.A1;A2/ and again we observe the reversed order
phenomenon concerning the angle.

Our last example is concerned with pinf, psup of three matrices employing the
approximate algorithm in Sect. 5.1.

Example 13 Given are the matrices A1 D R..0:5; 0;
p
3=2/I 1=3�/,

A2 D R..
p
3=3;

p
3=3;

p
3=3/I 1=3�/, and A3 D R..0:5; 0;

p
3=2/I 1=4�/. Then

the algorithm in Sect. 5.1 yields

pinf.A1;A2;A3/ D R..0:56960815; 0:30525209; 0:76313021/I 0:38336817�/

and

psup.A1;A2;A3/ D R..0:56960815; 0:30525209; 0:76313021/I 0:249374892�/ :

The corresponding gyros are displayed in Fig. 9. Clearly, we have pinf.A1;A2;A3/,
psup.A1;A2;A3/ … fA1;A2;A3g, as expected. The axes vectors of rotations for pinf
and psup are the same. The angles of rotations differ slightly from those of A1,
and A3 on the one hand side, and on the other side from A2. Again we observe the
“reversed angle phenomenon”.
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R1

psup(R1, R2)

pinf(R1, R2)

R2

Fig. 8 The matrices A1 and A2 represent rotations around the axis unit vectors 1=
p
14.1; 2; 3/>,

and 1=
p
24.�2; 4; 2/> and rotation angles 2=3� , and 3=4�

pinf(A1,A2,A3) psup(A1,A2,A3)

A1 A2 A3

Fig. 9 Approximations of pinf.A1;A2;A3/ and psup.A1;A2;A3/ of three rotation matrices A1;A2,
and A3 calculated with the iterative procedure described in Sect. 5.1

8 Concluding Remarks and Outlook

This work is more of theoretical nature as it tries to pave the way towards image
processing of rather general matrix fields. The real matrices of such fields that (or
that not yet) appear in applications posses specific properties: they are just square,
or invertible, symmetric or skew-symmetric, orthogonal, special orthogonal or other
attributes that determine their algebraic, geometric or topological class properties.
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Symmetry of matrices warrants a rather rich functional calculus which in turn allows
for notions of linear combination, functions of, and operators for, symmetric matri-
ces, and, last but not least, reasonable notions of order, infimum, and supremum.
These terms are the building blocks of any numerical algorithm tackling image
processing tasks. The properties of the other classes of matrices just mentioned do
not lend themselves to a sufficient functional calculus. This shortcoming severely
hampers any attempt to develop said key notions. The method of complexification
circumvents this difficulty. A linear and invertible transformation, easy to calculate,
is used to map the class of real square matrices onto the set H(n) of Hermitian
matrices. Via this mapping the other classes of matrices are embedded into H(n)
and their images form subsets of H(n) with certain topological properties. H(n) has
an amenable functional calculus just as SYM.n/, and in this way the aforementioned
key notions can be established, at least in an approximate form. However, in general
this requires a back projection onto the embedded set, because these are not stable
under the necessary operations. In the case of orthogonal matrices the matrix polar
decomposition provides a solution.

Our current research includes the exploitation of the proposed general method-
ology to develop higher order tools for the processing of the above matrix fields, as
well as to open up new classes of matrices for processing and analysis.

Acknowledgements The authors would like to thank the two anonymous referees for their useful
comments and valuable insights that helped to improve this work.
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Towards Grey Scale-Based Tensor Voting
for Blood Vessel Analysis

Daniel Jörgens and Rodrigo Moreno

Abstract Tensor Voting is a technique that uses perceptual rules to group points
in a set of input data. Its main advantage lies in its ability to robustly extract
geometrical shapes like curves and surfaces from point clouds even in noisy
scenarios. Following the original formulation this is achieved by exploiting the
relative positioning of those points with respect to each other. Having this in mind, it
is not a straight forward task to apply original tensor voting to greyscale images. Due
to the underlying voxel grid, digital images have all data measurements at regularly
sampled positions. For that reason, the pure spatial position of data points relative to
each other does not provide useful information unless one considers the measured
intensity value in addition to that.

To account for that, previous approaches of employing tensor voting to scalar
images have followed mainly two ideas. One is to define a subset of voxels that are
likely to resemble a desired structure like curves or surfaces in the original image in
a preprocessing step and to use only those points for initialisation in tensor voting.
In other methods, the encoding step is modified e.g. by using estimations of local
orientations for initialisation.

In contrast to these approaches, another idea is to embed all information given
as input, that is position in combination with intensity value, into a 4D space and
perform classic tensor voting on that. In doing so, it is neither necessary to rely
on a preprocessing step for estimating local orientation features nor is it needed to
employ assumptions within the encoding step as all data points are initialised with
unit ball tensors. Alternatively, the intensity dimension could be partially included
by considering it in the weighting function of tensor voting while still employing
3D tensors for the voting. Considering the advantage of a shorter computation time
for the latter approach, it is of interest to investigate the differences between these
two approaches.

Although different methods have employed an ND implementation of tensor
voting before, the actual interpretation of its output, that is the estimation of a
local hyper surface at each point, depends on the actual application at hand. As
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we are especially interested in the analysis of blood vessels in CT angiography
data, we study the feasibility of detecting tubular structures and the estimation of
their orientation totally within the proposed framework and also compare the two
mentioned approaches with a special focus on these aspects.

In this chapter we first provide the formulation of both approaches followed by
the application-specific interpretations of the shape of 4D output tensors. Based on
that, we compare the information inferred by both methods from both synthetic and
medical image data focusing on the application of blood vessel analysis.

1 Introduction

Tensor voting (TV) has been widely used in different tasks of computer vision and
especially analysis of images. Its robustness to outliers makes it a valuable tool
in applications where noise is an issue. Traditionally, it has been applied to point
cloud data in two- or three-dimensional space with spatial locality [21]. Based on
rules modeling human perceptual principles the (only) feature of such measured data
points—namely their position in R

3—is exploited during the voting step in order to
estimate the spatial relationship among points in a local neighbourhood.

Since its invention tensor voting has been applied in various applications such
as motion estimation [5, 9, 28, 36], inpainting/image repairing [10, 31], image
registration [37], segmentation [16, 20, 24, 27, 33, 36], (sharp) feature extraction
[11, 29], centreline extraction [4, 14, 22], curvature estimation [17, 35], clustering
[13, 18] as well as manifold learning [23]. Regardless of the specific application,
the majority of these approaches interprets tensor voting as a tool for inference
of geometrical structures in 3D. Usually, this demands for a reformulation of the
particular problem at hand in terms of the original formulation which usually
includes a reformulation of the input data to an equivalent point cloud.

In case of extracting structures from image data in a medical context (e.g. for
segmentation), a common strategy towards applying tensor voting is to employ
another method to extract structure candidates from the input intensity data (e.g.
edge detection [7], centreline extraction [14] or direction sensitive filtering [32])
providing input positions and possibly initial estimates of orientation at those points.
This information is then refined in a subsequent tensor voting step in order to reject
outliers as well as to close gaps [27, 30]. In this case, the outcome of tensor voting
is heavily relying on the performance of the preprocessing method which further
needs to be tuned separately. In this way, the grey scale values of the image are
not available within the core of tensor voting which is the cause of two main
shortcomings. First, errors from the preprocessing might be propagated instead
of eliminated by tensor voting. Second, the intensity information is completely
disregarded by tensor voting. We argue that it might be of advantage to use the raw
data as the input of tensor voting in order to achieve data communication during the
voting step in a more complete way.
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Different approaches that directly include the intensity information into the
method have been published. In [19], all pixel positions are considered as input
to tensor voting. Initialisation is done as in the first sparse voting stage with ball
tensors (isotropic, unoriented structure estimates) which are scaled by the particular
intensity value in the original image at each point. By this strategy, bright structures
are given a higher importance in the first voting step. The authors also provide
suggestions to transform the intensities prior to voting in order to make the data
conform with the assumption of providing the structure of interest at the brightest
grey values. A problem that we foresee with including grey value information in
this way is the fact that the relation between high intensity and probability to
belong to the structure of interest is usually not proportional. Under the assumption
of noise with zero mean, intensity values of voxels in homogeneous regions are
scattered both above and below the mean. Unfortunately, the approach by Loss et
al. in [19] creates a bias by giving more importance to voxels with intensities above
the mean. To achieve the correct behaviour when aiming at extracting structures of
similar intensity (homogeneous regions), we propose to regard the relative intensity
difference instead of the absolute value. By this, variation of intensities in either
direction of the mean are treated equally.

A general strategy to employ tensor voting for image structure estimation is
presented in [26]. Initialisation prior to the first voting step is done by deriving stick
tensor estimates at all image positions from the image gradient (basically, magnitude
and direction are used). Similarly to the previously mentioned approach by Loss et
al. [19], no thresholding is applied such that the whole image data is considered as
input to tensor voting. Nevertheless, intensity information is only regarded in the
initialisation step to arrive at orientation estimates and only spatial information is
included in the core of the TV algorithm which might lead to undesired structure
propagation into unstructured regions.

Considering intensity differences for characterising structure properties with
tensor voting is not new. For example, the method in [11] performs tensor voting
in 4D for grey value images and 6D for colour ones, by including the intensity
as additional dimensions in the voting space. Their ultimate analysis of the tensor
voting results extracts any features in the particular N-dimensional space that can
be classified as a homogeneous region, a sharp edge or as a corner whereby these
terms are understood as such in terms of either spatial or “colorimetrical” properties.
That means, the authors do not aim at distinguishing between a geometrical corner
structure of homogeneous colour and a geometrical flat surface exhibiting a corner
pattern in terms of colour. Instead, in our application—which is medical images
containing blood vessels—we are interested in the geometrical structure of blood
vessels which we assume to be of tubular shape. For that reason it is important to
investigate the orientation of the resulting voting tensors in order to analyse only the
spatial-geometrical structure it describes. In that way we extend the interpretation
of 4D tensors in [11] for our purposes.
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The main application in this paper is the analysis of blood vessels in 3D CT
angiography (CTA) images. The segmentation of this kind of vessels is an important
step for visualisation and, finally, diagnosis and quantification of vascular patholo-
gies [15]. Proposing effective methods for solving this problem is challenging due to
the high level of noise and low resolution of the images with respect to the diameter
of the vessels. Thus, despite the efforts made in the last two decades [15], this
research field is still very active. Our work is especially making use of the concept
of “height ridges” which was employed for tubular object segmentation [1]. Instead
of extracting ridge points by analysing the Hessian [1, 6], we make use of tensor
voting to detect tubular structures in the data. Similar to the medialness used in [8],
a specific saliency map derived from the resulting tensors indicates the probability
for a specific point of being located at the centre of a tubular structure. Further, the
tube orientation is encoded in the same tensor as well which makes the algorithm
suitable for tracking purposes. Local analysis of orientations in a neighbourhood of
a point could be the basis for detecting branches as well as stenoses.

The goal in this chapter is to formulate the problem of extracting tubular
structures of homogeneous intensity values from grey value images within the
framework of tensor voting. Thereby, we formulate the problem in a way such
that the method (TV) regards all input information (i.e. position in space +
intensity value) simultaneously in the voting step. Geometrically, this strategy can
be interpreted as finding curves in an artificial four-dimensional space in which
the original image data represents a three-dimensional surface. As we are only
interested in the spatial structure we have to regard the tensor orientation in the
final analysis of the tensor features, which gives the opportunity to (a) detect tubular
structures and (b) estimate their orientation at the same time. Finally, we compare
the 4D results with those obtained from a simplified 3D-version of the algorithm
which only includes the intensity information in the weighting function in the voting
step. By relating its formulation to the 4D approach, we aim at giving it well-
founded justification, in particular it can be thought of as an approximation of the
full 4D approach which exploits the smaller computational efforts needed for the
lower dimensional version of tensor voting.

In general, the idea of using tensors for analysing blood vessels is not novel (e.g.
in [2, 3]) and in that context it has been proposed to augment the image dimensions
with a fourth dimension originating from the image which was employed for tensor
computation. However, to the best of our knowledge, this is the first attempt to use
tensor voting directly on grey scale data in this specific application.

This chapter is structured as follows. First, we give the interpretation of a 4D ten-
sor in terms of shape and orientation in a space of 3D spatial dimensions augmented
with a 4th intensity dimension. Second, we briefly state the essential formulations
of the employed 4D tensor voting approach from which we subsequently derive
the modifications for the 3D simplification. Finally, we test both formulations with
respect to their ability to detect tubular structures in different noise scenarios for
synthetic intensity profiles and ultimately apply the detection algorithm in real data.
Further, we indicate the performance for orientation estimation at the detected tube
positions.
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2 Adapting Tensor Voting to Grey Scale Image Processing

Traditionally, tensor voting has been proposed for point clouds. As mentioned in
[21], acceptable input sites consist of a point which might be augmented with
additional initial estimates of local structure. By looking in detail into how these
input data are used, it becomes clear that the local structure estimates serve as
predefined initialisations in the TV algorithm and are not regarded as actual input
features. The only information the tensor voting algorithm treats as actual input is
the location of the input sites. Observing that this information has three degrees
of freedom (spatial position), one can conclude that the actual features regarded
by tensor voting are the spatial relationships between the input points. While their
spatial position does not change during the voting, the initial structure estimates are
re-estimated and updated after each pass of tensor voting.

Based on that view of the original tensor voting formulation, we argument that
all information which should be completely regarded in all stages of the voting
algorithm should be encoded in the input space. That means in particular, that
additional features would be regarded as extra dimensions as in [11]. In doing so,
it is ensured that all information is actually consistently regarded in the algorithm
throughout several TV passes and the perception-based rules of the voting step are
applied to all input information. The input point cloud in the original tensor voting
formulation derived for an input image I can be represented as

˝3
I D f.x; y; z/ 2 R

3 j g.I/.x; y; z/ D 1g;

where g is an indicator function that returns 1 for points where a specific feature was
detected. Instead, we want to use an input point cloud that considers the intensity:

˝4
I D f.x; y; z; t/ 2 R

4 j I.x; y; z/ D tg:

As already mentioned, the main advantage of this formulation is that it does not
depend on the function g.

In this chapter we propose to employ tensor voting on this four-dimensional data
derived from the 3D input in order to analyse contained structures. Our specific
goal here is to apply it in a medical context which implies both the existence of
noisy conditions and the goal of detecting vessels (i.e. tubular structures). In the
following, we present the prerequisites of our method.

2.1 Interpretation of Tensor Shape and Orientation

The basis for detecting a certain structure in tensor voting applications is the
interpretation of the shape of the resulting tensors. Based on its eigendecomposition,
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the maps s1; : : : sn, defined as

si D
(
�i��iC1

�1
; if i < n

�n
�1
; if i D n

; (1)

where �i denotes the i-th largest eigenvalue of a particular tensor T in an
n-dimensional voting space, indicate the saliency of structure of corresponding
dimension at the specific point of investigation, whereby the dimensionality depends
on the chosen mode of structure encoding. In case, the tensors encode the tangent
space of a structure, si denotes the saliency of an i-dimensional structure, whereas
in case of normal space encoding, si corresponds to a structure of dimension .n� i/.
Normally, when the dimensionality of the desired structure is known, it suffices to
investigate the particular saliency maps in order to determine the appearance of a
structure of the respective dimensionality at a point. This strategy works in case
all dimensions of the voting space are representing the same entity (e.g. a spatial
direction).

In our setting, we still want to detect structures of a certain dimensionality, but
only in spatial terms. Therefore, the orientation of a voting tensor has an influence
on the spatial dimensionality of the encoded feature. For the following descriptions,
assume an orthonormal basis of R4 is given by fOex; Oey; Oez; OeIg, where Oex, Oey and Oez
denote three spatial axes and OeI describes the intensity axis. Further, let T 2 PSD.4/
be the resulting tensor after tensor voting at a particular point, where PSD.n/ is the
set of positive semi-definite n	n matrices overR, and Oe1; : : : ; Oe4 are its eigenvectors
ordered by the descending magnitude of the corresponding eigenvalues. Then, the
angle of the f -dimensional subspace spanned by fOe1; : : : ; Oef g with respect to OeI ,
denoted by 	. f /I , is given as

	
. f /
I D acos

�ˇ
ˇ
ˇ< Op. f /I ; OeI >

ˇ
ˇ
ˇ
�
; (2)

where Op. f /I is the normalised projection of OeI onto the subspace defined by

p. f /I D
fX

iD1
< OeI; Oei > Oei :

Assuming that the tensors in tensor voting encode the normal space of a structure
at a point, we analyse the corresponding tangent space to arrive at an interpretation
of the spatial feature it actually encodes. Let fOe1; : : : ; Oef g span the f -dimensional

normal space of a certain structure at a certain point. In case 	. f /I is small, OeI is
closely aligned to that normal space (i.e. it is contained) and the corresponding
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Table 1 Interpretation of a tensor’s shape and orientation in 4D space (3D spatial + 1D
intensity)

Angle 	. f /I 1D normal space 2D normal space 3D normal space 4D normal space

Small Homogeneous
volume

Homogeneous
surface

Homogeneous
curve

Inhomogeneous
volume

Large Inhomogeneous
surface

Inhomogeneous
curve

Inhomogeneous
volume

–

Here, the ‘fD normal space’ is spanned by the first f eigenvectors of a tensor. A large saliency sf
indicates its importance for the overall tensor shape

.4 � f /-dimensional tangent space can be interpreted as being ‘purely spatial’,1 so
the interpretations from classical tensor voting apply for that tangent space (and
therefore for the underlying structure). As opposed to that, in the case of a large 	. f /I
(i.e. close to 90ı), OeI is perpendicular to the normal space meaning that the latter
can be seen as ‘purely spatial’ and therefore its interpretation in the classical terms
is valid.

Additionally to the spatial interpretation, OeI lying in the normal or tangent
space provides information about the distribution of intensity values in a local
neighbourhood of a point. In those terms, 	. f /I � 0ı represents homogeneous

intensities (i.e. similar range) whereas 	. f /I � 90ı indicates inhomogeneously
distributed values.

Ultimately, the 4D normal space captures spatial and intensity differences that
appear to be on the same scale and can thus be interpreted as encoding a volume of
inhomogeneous intensities regardless of the angle which is always equal to zero in
that case.

Table 1 summarises the explained interpretations and Fig. 1 provides further
schematic examples.

2.2 Voting Formulation

The coupling of spatial dimensions x, y, z and intensity I has implications on
the definition of angles and distances in the Euclidean sense. In order to steer
the weight of distance in direction of OeI and in spatial terms independently,2 the
weighting of distance and curvature is done separately for those dimensions. In
particular, the projection of the distance vector v4 in 4D onto the three-dimensional
spatial subspace is used to determine the weight from the traditional weighting

1By the term ‘purely spatial’ we refer to the fact that the respective subspace is particularly a
subspace of the space spanned by fOex; Oey; Oezg.
2It is not totally independent due to normalisation and rotation in the constructed 4D space. Instead
we refer to independence in terms of their influence on the weighting function d in tensor voting.
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Fig. 1 Example schematically showing the concept of the intensity-augmented voting space in
2D (one spatial dimension + intensity dimension). The approach relies on the assumptions that
the target regions to be extracted have a more or less homogeneous intensity range. First row:
Four cases of ball voting from the outer positions to the middle location are shown where the
middle point exhibits different intensity values in each case. The range of weights in intensity
direction that are significantly larger than zero (determined by parameter �I in the weighting
function (cf. Sect. 2.2)) is depicted by the dashed line. For example, in the fourth case, voting
weights vanish due to large intensity differences and no votes are cast. Note, that the weighting of
votes is not shown in this visualisation. Second row: Decomposition of the resulting tensor after
voting at the particular middle points into first order tensors (sticks) which are ordered by their
magnitude. For the third case, the first stick is perpendicular to the I-dimension indicating larger
intensity inhomogeneities

function dorig, whereas the intensity difference�I determines an additional weight.
Following the proposed weighting in [25], this ultimately results in the formulation
of the weighting function of the generic voting step as

Od4.v4I �space; bspace; �I ; bI/ D dorig.v3I �space; bspace/ � e�
�
�I
�I

�2�bI 	2I ; (3)

where v4 D .�x; �y; �z; �I/T, v3 D .�x; �y; �z/T and I denotes the curvature
of the osculating circle within the plane spanned by the voting direction v4 and the
intensity axis OeI . The weighting for the sparse voting step, denoted Od BV

4 , is similarly
modified, but omitting the curvature term.

For the implementation of the four-dimensional voting algorithm, we choose the
method proposed by Mordohai et al. [23] while replacing the employed weightings
with our particular weighting functions. Even though the proposed strategy performs
tensor voting in 4D, the data are obviously not dense in all dimensions. As the
original input data assigns exactly one intensity value to each voxel, the transformed
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point cloud in 4D is actually a 3D surface. Therefore, the computation is performed
in 3D while employing 4D tensors.

Considering the fact during all steps of voting in the experiments only the input
sites are participating one might call the operations sparse. However, as opposed to
the intensity dimension in which only a single input site per spatial position exists,
the spatial 3D subspace is sampled regularly and in that sense, one can consider
voting as dense in those dimensions.

2.3 Simplified Approach in 3D

In order to reduce the computational effort, it is worthwhile investigating if a
3D implementation maintaining the basic idea for grey scale images (i.e. to be
sufficiently close to the 4D formulation) can still provide the same information
in terms of the outcome which we are interested in (i.e. the detection of tubular
structures).

Since the basic source of computational overhead stems from the additional
dimension of the voting space (i.e. intensity), we omit it for the 3D formulation.
Regarding the fact that the actual algorithm is carried out on a 3D surface and only
the voting is done in 4D, we could omit the 4th tensor dimension and employ 3D
TV with a modified weighting function instead. We choose the latter in relation to
Eq. (3) as

Od3.v3;�II �space; bspace; �I/ D dorig.v3I �space; bspace/ � e�
�
�I
�I

�2

; (4)

where v3 is defined as in Sect. 2.2. As the curvature w.r.t. OeI does not make sense
here any more, we omit that term. This amounts in the same weighting function as
in Eq. (3) with bI D 0.

Regarding distance both in terms of spatial relation and intensity difference
in the weighting function is closely related to the idea of bilateral filtering [34].
Making use of the weighting in Eq. (4) basically means to weigh those votes more
which originate from positions that exhibit a similar intensity value. Thereby, spatial
structure at each point is mainly inferred by considering similar points in the
local neighbourhood which makes it assumingly possible to detect the structure of
homogeneous intensity regions. The interpretation of tensor shape and orientation
is the same as in the traditional applications as now only spatial dimensions (which
are interchangeable) are involved in representation of structure.

As in case of the 4D approach, we employ the voting algorithms proposed in [23].
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2.4 Differences Between 4D and 3D Approach

As both formulations employ the same weighting function including the intensity
information in addition to the spatial location, the main differences can be found
in the tensor representation of local structure. While in the 3D case all regarded
dimensions have a spatial meaning and thereby tensor interpretation as in classical
tensor voting applies, in our 4D formulation the mentioned coupling of spatial
dimensions with intensity has implications on distances and angles defined in the
resulting space.

Regarding the first voting step (i.e. ball voting), which—following [23]—is given
by

BV.v4/ D Od BV
4 .v4/

�

I � v4vT4
jjv4jj2

�

; (5)

voting is induced only by isotropic tensors and the step does not depend on an
angle in terms of a rotation. Nevertheless, the deformation of such an isotropic
tensor in Eq. (5) tangentially to the voting direction v4 involves normalisation, which
inherently includes the computation of a norm and thereby distance is involved. This
introduces an implicit weighting for the spatial dimensions depending on the angle
between spatial and intensity dimensions. In case of no intensity difference, the
distance would be dominated by the spatial dimensions only. On the other hand, a
large intensity difference would dominate the length of v4 instead, and thereby give
a different weighting to the entries of BV related to the spatial dimensions. The same
spatial neighbourhood with different intensity differences could exhibit a different
spatial structure that would be derived from the voting tensors.

Similarly, the subsequent generic voting steps, which additionally include an
angle and rotation steps, are affected by the intensity dimension.

3 Tube Detection and Orientation Estimation

In our current application in the context of this chapter we aim at detecting regions
of homogeneous intensity. As such we expect the intensity value in the noise-free
case to be approximately constant in a local neighbourhood. The first assumption
we employ here is that different regions are well separated in terms of different
grey scale values and do therefore not (or just very little3) interfere. The second
assumption is that noise is expected to be symmetrically distributed around a zero
mean, such that the influence over a sufficiently large number of voters results in

3In our terms this means either, that the number of voxels belonging to a different structure but
having a similar intensity (and therefore a high voting weight) is low, or the intensity difference is
sufficiently large, such that their influence is lowered by a low voting weight.
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a growing of the voting tensor in intensity dimension but maintains the spatial
structure (and we can interpret the features directly by their projection due to an
intensity angle 	I close to 90ı). The experiments have shown that the symmetry
actually also applies to the tubular structures for which points on the centreline can
exhibit inhomogeneous intensity distributions in the noise-free case as well due to
the particular intensity profile if the latter is not totally flat.

In many TV applications, feature detection for a specific dimensionality is
usually performed by investigating the corresponding saliency map in terms of
maxima detection. Unfortunately, finding maxima as proposed in [21] can yield
many false positives in noisy images. Instead, we classify the overall shape of a
tensor by only looking at the maximal saliency at a point. This has empirically
given promising results in terms of detecting the central points of tubular structures
in our experiments.

For the purpose of detecting a tubular structure, we search for a tensor to have
the curve feature as its dominant structure (i.e. curve saliency is the largest among
the saliency maps). According to the interpretations in Table 1, we can derive the
set of candidate points as either

c3 D fx 2 ˝3
I j arg max

i
.si.x// D 3 ^

ˇ
ˇ
ˇ	
.3/
I .x/

ˇ
ˇ
ˇ < ˛thresholdg (6)

for homogeneous intensity interpretation or

c2 D fx 2 ˝3
I j arg max

i
.si.x// D 2 ^

ˇ
ˇ
ˇ	
.2/
I .x/� 90ı

ˇ
ˇ
ˇ < ˛thresholdg (7)

for inhomogeneous intensity interpretation of the output tensors. In both cases si
denotes the i-th saliency map, 	.i/I the angle of the corresponding i-dimensional
normal space w.r.t. the intensity axis OeI and ˝3

I is the set of voxels at which the
input image is defined (i.e. g is the identity in that case).

For points in c3 the three-dimensional feature is dominant. In that situation,
the normal space is three-dimensional and contains OeI (for a reasonable ˛threshold).
Therefore, the tangent space is ‘purely spatial’ and we can retrieve an estimate for
the tube orientation by the projection of the 4D tangent onto the three-dimensional
spatial subspace.

In case of points in c2, curve structures are represented by the 2D feature
exhibiting a large angle 	.2/I of its two-dimensional normal space w.r.t. the intensity
dimension, i.e. its dimensions are ‘purely spatial’. Here, we project the two spanning
eigenvectors Oe1 and Oe2 onto the spatial dimensions and compute the estimate of the
orientation of the tube structure as the normal of those projections in R

3.
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4 Experimental Results

The proposed 4D approach offers basically six different parameters that influence
its behaviour. First, the scaling of the input data plays of course an important role,
as it defines angles and distances in the created 4D space which are crucial for the
perceptual rules enforced in the voting algorithm. In order to be able to choose the
parameters consistently for our experiments on real data, the intensity range of the
input data was scaled to the interval Œ0; 255�. Further, a parameterwI was used for an
additional weighting of the intensity dimension. Although it gives the opportunity
to steer the behaviour of the algorithms, it was set to 0.8 throughout our experiments
in order to fix its influence. However, the effect of wI on the results of both voting
approaches remains to be investigated in later studies.

Other parameters are the inherent tensor voting parameters for weighting dis-
tance and curvature in the decay function. As mentioned earlier, we do not regard
the influence of the curvature in intensity direction at this point and set bI D 0 for all
experiments. As in our current focus (blood vessels, i.e. tubes exhibiting relatively
low curvature on the scale we look at them) curvature is not of central importance,
we further keep the spatial curvature weight bspace D 20 fixed in the following
investigations. Thus, the main parameters of the method are �space and �I .

Finally, the value of ˛threshold employed for the detection of the tube candidates
obviously influences the performance of the detectors c2 and c3. However, in com-
bination with the detection approaches introduced in Sect. 3 the choice of ˛threshold
is restricted.4 Empirically, we have chosen ˛threshold D 5ı for our experiments in this
chapter.

In all our experiments we employ two stages of tensor voting. First all input sites
are encoded as isotropic tensors and the corresponding initial voting step is referred
to as ball voting. The subsequent voting step computes votes for each basic tensor5

and is referred to as generic voting [23].

4.1 4D Tensor Voting

4.1.1 Relationship Between Intensity Weight �I and Noise Level

In order to investigate the validity of our interpretation of the 4D tensors given
in Table 1, we analyse the transition of the tensors’ shape in synthetic data of
homogeneous intensity under influence of different levels of additive Gaussian
noise. In this scenario, the effect of the noise level on the estimation of a
homogeneous intensity volume structure can be separately analysed. In particular,

4It has to be chosen reasonably small such that the mentioned projections make sense.
5Ti D Pi

jD1 eje
T
j is the i-th basic tensor of T where ej are the (ordered) eigenvectors of T.
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Fig. 2 Effect of noise on tensor voting results in homogeneous intensity regions. Depicted are the
average saliencies of the tensors in a 7 � 7 � 7 neighbourhood of constant intensity with additive
Gaussian noise of standard deviation �noise D 5 (first row) and �noise D 10 (second row) after two
4D voting passes (ball voting, generic voting)

we can see for which settings the interpretation of homogeneous (first row) and
inhomogeneous (second row) intensities is applicable.

Figure 2 shows the transition of the different saliency maps si with a varying
intensity weight �I for specific, constant spatial scale �space. The saliency curves
are computed as the average saliency of the tensors within a 7 	 7 	 7 neighbour-
hood. The results for small intensity weights correspond to the interpretations for
“homogeneous intensities” in the first row of Table 1, larger ones agree with the
interpretations given in the table’s second row. Especially for �space D 2 a transition
from a dominant one-dimensional shape via a four-dimensional to finally a three-
dimensional shape can be observed. Further, the graphs’ shapes appear to be scaled
along �I with growing �space. This suggests that the expected tensor shape might be
predicted based on the ratio of �I and �space. The comparison between the results
on different noise levels indicates that this transition appears for a smaller range of
intensity weights in case of higher noise levels.
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Fig. 3 Synthetic tube data with Gaussian intensity profile (�tube D 4) and additive Gaussian noise
of different standard deviations (�noise). First row: Exemplary slices in the middle of the volume.
Note, that the tube is not oriented perpendicular to the shown slice. Second row: Intensity profiles
perpendicular to tube direction (interpolated using nearest neighbours)

4.1.2 Estimation of Vessel Centre Candidates

In order to quantify the performance of the proposed approaches we apply them to
synthetic test data. The latter contains a tube exhibiting a Gaussian intensity profile
(�tube D 4) perpendicular to its centreline. Additive Gaussian noise of different
standard deviations is imposed. The test data is visualised in Fig. 3.

As mentioned earlier we aim at detecting tubular structures as curve features (in
the sense of spatial curves, i.e. curves in 3D). For that reason, we have to choose
the spatial scale of tensor voting (�space) larger than the actual tube width in order
to arrive at the expected feature at the tube centre. Since the tube’s intensity profile
is not a step function, the actual width depends on what intensity range (given by
�I) we consider as tube interior. In order not to invalidate this assumption for some
choices of �I we choose �space D 4 in our further experiments.

Figure 4 shows the resulting saliency maps of tensors along a line across the
tube’s centre perpendicular to its orientation. Applying the interpretations of Table 1
according to our findings from Sect. 4.1.1, we see that the particular curve saliency
(s3 in case of �I D 1, s2 otherwise) is the dominating saliency at the tube centres
which is the basic requirement for the tube detectors in Eqs. (6) and (7) to work.

In order to compare the results of the proposed tube detectors, c3 and c2, we
investigate them in terms of their specificity in classifying a point as lying close to
the tube centre. For that purpose, we define the interior of the vessel as the area
of radius two voxel lengths around the centreline. Detected points in c2 and c3 are
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Fig. 4 Saliency profiles si perpendicular to tube direction after two passes of 4D tensor voting
(ball voting, generic voting) with varying intensity scale �I and fixed spatial scale �space D 4 on
tube data with Gaussian intensity profile (�tube D 4). Distance to tube centre is indicated on the
horizontal axis
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Table 2 Results of tube detection for Gaussian intensity profile (�tube D 4) after two passes of 4D
tensor voting (ball voting, generic voting, �space D 4)

�noise D 0 �noise D 5 �noise D 10

Detector �I inliers spec �	 inliers spec �	 inliers spec �	

c3 0.5 124 0.19 3.68 136 0.72 14.48 113 0.75 18.45

1 218 0.52 3.00 149 0.89 9.93 101 0.92 12.73

1.5 248 0.53 3.71 143 0.89 9.61 98 0.94 11.14

2 200 0.71 3.38 79 0.94 9.08 62 0.96 10.85

3 4 1.00 0.71 6 1.00 10.83 6 0.86 10.15

4 0 – – 0 – – 1 1.00 16.24

5 0 – – 0 – – 0 – –

10 0 – – 0 – – 0 – –

c2 0.5 0 – – 0 – – 0 – –

1 0 – – 0 – – 0 – –

1.5 0 – – 0 – – 0 – –

2 4 1.00 0.82 0 – – 0 – –

3 62 1.00 1.84 8 1.00 3.35 2 1.00 5.25

4 141 0.72 2.66 50 0.98 4.63 25 0.84 6.62

5 177 0.62 3.09 123 0.9 5.44 84 0.93 7.06

10 231 1.00 3.06 220 0.99 4.41 156 1.00 5.79

Points are classified based on detectors c3 (hom. intensity, Eq. (6)) and c2 (inhom. intensity, Eq. (7))
with ˛threshold D 5ı. Detected points exhibiting a distance to the tube centre of less then 2 voxel
lengths are treated as inliers. The ratio between inliers and tube candidates is denoted spec, the
mean angular error between the estimated tube orientation for inliers and ground truth is �	 (in
degrees)

called tube candidates of which those lying within the defined range are defined
to be inliers. Based on that, the specificity (spec) is computed as the ratio between
number of inliers and number of tube candidates.

Table 2 shows the results of both detectors (˛threshold D 5ı) for different intensity
weights in the common setting. Based on the number of inliers in all noise cases
it can be concluded that the “homogeneous intensity” detector c3 is applicable up
to �I D 2 whereas c3 is sensitive for �I > 3 and there is no overlap where both
detectors are sensitive to tube structures in our test case. This transition at �I � 3

corresponds with the point in Fig. 2 where the dominant saliency switches from s1
to s4. As expected the number of inliers decreases with higher noise levels. Still
the computed specificity is high which shows that the tube candidates are usually
concentrated around the tube centre. The low specificity in case of �noise D 0 in
many cases is remarkable. Visual inspection showed, that for c3 results, outliers are
still concentrated around the centre and considering a larger radius would yield a
high specificity as well. Opposed to that, in case of c2, the low values stem from
detection artefacts on the outer border of the tube structure which shows, that for
those specific intensity weights (�I D 4=5) in combination with the chosen tube
profile, c2 is not the right detector in the noise-free case.
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For analysing the performance of the approaches in estimating the orientation of
detected tube structures, we report the mean angle difference between estimated
orientations for inliers and the known tube orientation in the synthetic data
experiments (cf. column �	 in Table 2). As expected, the estimates are more
accurate on lower noise levels. At the same time, inliers detected by c2 (i.e. larger
�I) exhibit better accuracy then those of c3. This might be due to the fact that a
low value of �I is restricting the range of intensity values that are assigned a high
weighting in the voting step. Thus, choosing a small intensity weight results in less
received votes contributing to the estimation of the spatial orientation and therefore
the influence of noise is larger. For all investigated noise levels �I D 10 for detector
c3 is providing the best performance in terms of the investigated parameters.

To confirm the characteristic behaviours found in the previous synthetic data
experiments we apply the algorithm to CT angiography data [12]. Figure 5 shows
one exemplary slice of the investigated sub volume of data set 00. Intensity profiles
of exemplary vessels exhibiting different characteristics in terms of contrast and
size in the presented slice are depicted. Compared to the Gaussian profiles in the

−10 0 10
0

100

200

distance to center

in
te

ns
ity

vessel A ( )

−10 0 10
0

100

200

distance to center

vessel B ( )

−10 0 10
0

100

200

distance to center

vessel C ( )

Fig. 5 CTA data set 00 from [12]. One exemplary slice of the investigated sub volume of the
chosen data set is shown. The actual intensity profiles (analysed along the blue lines within the
shown slice using nearest neighbour interpolation) for three vessels with different characteristics
are plotted below. Note, that the profiles are shown after rescaling (cf. beginning of Sect. 4)
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Fig. 6 Classification of salient structures in exemplary slice of CT data set after two passes of
4D tensor voting (ball voting, generic voting) with scale �space D 4. In the i-th row only those
voxels of the input data for which si is the largest saliency map are shown. In case of �I D 1 tube
candidates can be detected as 3D structures, whereas for �I D 5 and �I D 10 tube candidates are
found as 2D structures (cf. Table 1). The circles mark the tube candidates belonging to the three
vessels highlighted in Fig. 5. Note, that we use a different colormap in this figure in order to obtain
better contrast in dark regions

synthetic data, two (vessels A and C) show a slightly larger, though comparable,
difference between background and vessel centre intensity as well as a slightly
steeper slope on the borders. Opposed to that, vessel B has clearly less contrast
and a smaller width. Visual comparison suggests most similarity with the synthetic
profile for the medium noise level of �noise D 5.

The results of structure classification after two passes of 4D tensor voting on the
presented data set are shown in Fig. 6 for the same exemplary slice as in Fig. 5. The
i-th column is depicting only those voxels from the original image data that exhibit
the saliency map si as the maximal saliency. A similar classification behaviour
in relation to the intensity weight �I as seen in the previous experiments can be
observed. For �I D 1, the background (i.e. volume structure) is detected by a
dominant 1D tensor shape, for �I D 5, it is visible in the 4D map and for �I D 10,
the larger intensity inhomogeneities (mainly large gradients at structure borders)
are captured in the 3D feature map. It can be seen that spatial curve candidates are
detected as expected by the 3D (for �I D 1) respectively 2D (for �I D 5=10) feature
maps. However, especially for �I D 5, comparison of the holes in the 4D map with
the 2D and 3D feature maps indicate that vessels with a low contrast are captured in
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the three-dimensional saliency map instead of the 2D one. That means that for those
vessels the regarded intensity range determined by the intensity weight is too large
to obtain a maximal curve saliency at their centres. This suggest potential to obtain
better tube detection in this case by either combining both features or by employing
a more advanced detection algorithm.

Focusing on the three vessels marked in Fig. 5, it can be seen that while vessels
A and B show curve structure candidates (in terms of Table 1) close to their centres
for all tested values of �I in Fig. 6, vessel C does not clearly exhibit the expected
structure estimate at its centre. This is likely to be due to its larger width such that
the spatial scale of �space is not sufficient to detect the vessel as a curve structure
especially for larger �I .

Visual inspection of the orientation estimation results at detected tube candidates
reveals that the estimates exhibit consistent orientations (cf. Fig. 7b). This supports

Fig. 7 Estimated orientations for detected tube candidates in CTA data (�space D 4, �I D 5). The
visualisations on the right show results in 17 subsequent slices of the area indicated on the left.
(a) slice 8 of 17 of CTA input data (b) estimated orientations for tube candidates after 4D tensor
voting (detected by c2) (c) estimated orientations for tube candidates after 3D tensor voting
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Fig. 8 Saliency curves along the path of a vessel in vicinity of a branching. On the right, 14 slices
from data set 00 are shown from a region containing the branching of two pairs of vessels, whereby
the blue dots mark the manually defined centreline points (one per slice). On the left, for each of
those points the saliencies si of the particular tensor at such a point are plotted (�space D 4, �I D 5).
Focussing on the detection of curve structures in the given setting, a drop of s2 can be observed for
slices 3–6 (A) and 9, 12 (B) which could be related to the presence of a branching vessel joining
the current path. A slight increase of s1 for those slices could indicate the more flat structure of a
branching compared to a single vessel. Regard the different localisations of the two bifurcations in
the graph of s2 (among 4 (A) and 2 (B) slices, respectively). These could possibly be explained by
the different angles of the bifurcations and the orientations of the vessels with respect to the image
plane. Note that the distance between subsequent labels of the horizontal axis corresponds to the
path length along the vessel

the conclusions from synthetic experiments that tube orientations at the detected
candidates are reasonably accurate.

For the purpose of analysing blood vessels, the method is not only required to
detect the centre of regular, tube-like structures, but also needs to handle situations
which deviate from the assumptions introduced in Sect. 3. A possible approach in
such cases could be to analyse how the tensor shape changes when following a path
close to the centreline of a vessel. In Fig. 8 the evolution of the different saliency
curves along a vessel exhibiting two branching situations is shown. Comparing
these curves with the image slices in that region (on the right in Fig. 8), one can
observe a lowered curve saliency, i.e. s2, in slices 3–6 as well as in slices 9 and 12
corresponding with the appearance of a branching in the particular slices. Further,
the slightly increased surface saliency, s1, indicates the presence of a more flat
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structure in those slices which could be the plane which is locally defined by
the direction of the involved vessel branches. Based on those observations, the
combination of s1 and s2 shows potential for being the basis of a branching detector
usable for vessel tracking.

4.2 Comparison of 4D and 3D Tensor Voting Approaches

We compare the 4D approach with the simplified 3D formulation in terms of their
particular results in the presented experiments. As can be seen from Fig. 9, the
influence of parameter �I is not as essential as in the 4D approach. In all shown
settings the 3D saliency (indicating the volume structure) is significantly larger than
the other saliencies maps. In particular for �space D 4 the curves are more or less
saturated for �I � 5.

Similar stability of the 3D tensor voting results with respect to the intensity
weight can be observed for the saliency profiles on the synthetic tube data set
(Fig. 10). Focusing on the tube centre candidates which we detect as curves (i.e.
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Gaussian noise of standard deviation �noise D 5 (first row) and �noise D 10 (second row) after two
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Fig. 10 Saliency profiles si perpendicular to tube direction after two passes of 3D tensor voting
(ball voting, generic voting) with varying intensity scale �I and fixed spatial scale �space D 4 on
tube data with Gaussian intensity profile (�tube D 4). Distance to tube centre is indicated on the
horizontal axis
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Table 3 Results of tube detection for Gaussian intensity profile (�tube D 4) after two passes of 3D
tensor voting (ball voting, generic voting, �space D 4)

Noise-free �noise D 5 �noise D 10

�I inliers spec �	 inliers spec �	 inliers spec �	

0:5 85 0.12 6.28 188 0.42 18:51 180 0.29 20:51

1:0 262 0.53 4.45 208 0.79 12:10 162 0.51 14:94

1:5 312 0.80 3.98 220 0.95 9:81 167 0.64 12:67

2:0 335 0.88 3.67 226 0.98 8:65 168 0.74 10:71

3:0 335 0.93 2.94 250 1.00 6:85 176 0.89 8:14

4:0 334 0.99 2.61 254 1.00 5:90 187 0.94 7:01

5:0 323 1.00 2.52 253 1.00 5:02 194 0.98 6:42

10:0 273 1.00 2.66 241 1.00 3:60 202 1.00 4:78

Points at which s2 (i.e. curve saliency) is largest among the saliency maps are classified as tube
candidates. Detected points exhibiting a distance to the tube centre of less then 2 voxel lengths are
treated as inliers. The ratio between inliers and tube candidates is denoted spec, the mean angular
error between the estimated tube orientation for inliers and ground truth is �	 (in degrees)

dominant 2D tensor shape) the 2D saliency is the maximal saliency map close to
the tube centre in all investigated settings. Compared to the results after 4D tensor
voting, the peaks of s2 at the centre are more distinct (i.e. larger than 0.5) than those
of the corresponding saliencies in Fig. 4. Generally, the shown saliency curves tend
to be smoother with larger intensity weight which is due to the larger number of
votes due to a larger acceptable intensity range (cf. explanation in Sect. 4.1.2).

Table 3 shows the quantitative results of tube candidate detection and orientation
estimation for two passes of 3D tensor voting. Note that results for only one detector
are available as we base our detection in the 3D case on finding voxels that exhibit a
dominant 2D shape. Generally, the number of detected tube candidates is larger for
smaller noise levels. While specificity is increasing for all noise levels the number
of inliers seems to exhibit a peak. In the noise-free case, this appears to be the
case for �I 2 Œ2; 4� and in case of �noise D 5 for �I 2 Œ3; 5�, i.e. slightly shifted.
From our experiments this behaviour cannot be observed for �noise D 10 in the
tested settings. Nevertheless, this might still be observed for experiments with a
more dense sampling of the intensity weights for �I > 5.

The accuracy of estimating the tube orientation is (especially in the noise
cases) best for �I D 10. Compared to the results of 4D tensor voting, the 3D
approach seems to provide slightly better performance in terms of number of inliers
and accuracy of the orientation estimation. Nevertheless, both approaches show a
satisfying accuracy in estimating the tube’s orientation.

In agreement with the synthetic experiments, the classification results for the
3D approach on the real data set (cf. Fig. 11) show an increasing noise robustness
with larger �I . However, the 2D feature map contains less vessel regions for
�I D 10 compared to the smaller intensity weights, i.e. there is a trade-off between
robustness and sensitivity along with that parameter. This corresponds to the results
from Table 3 which suggested a maximum of detected inliers to appear for �I < 10.
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Fig. 11 Classification of salient structures in exemplary slice of CT data set after two passes of
3D tensor voting (ball voting, generic voting) with scale �space D 4. In the i-th row only those
voxels of the input data for which si is the largest saliency map are shown. Tubular structures can
be detected as salient 2D structures. The circles mark the three vessels highlighted in Fig. 5. Note,
that we use a different colormap than in Fig. 5 to obtain better contrast in dark regions

Compared to the 4D voting results, the classification seems to be sensitive to a larger
number of vessels than the 4D approach considering only the 2D feature map as
suggested by Table 1. Comparing the 3D feature map in Fig. 11 and the 4D feature
map in Fig. 6 for �I D 5, they seem to provide similar information, which indicates
the potential to obtain better tube detection results if considering both 2D and 3D
information for tube detection in 4D or applying a more sophisticated detection
algorithm. Another observation from comparing the 3D and 4D feature maps of
both approaches is that the 4D detections often seem to be more concentrated around
vessel centres. Concerning the orientation estimation shown in Fig. 7c, the estimates
show a satisfying consistency similarly to the 4D results.

5 Discussion

In this paper we have proposed a direct way to include intensity information from
grey value images in a tensor voting formulation with the aim to extract tubular
structures from image volumes. In contrast to previous approaches that focussed
on adjusting the input data of tensor voting regarding information from the image
intensities, our formulations incorporate intensity information in the core of the
voting step and by that regard it as an additional feature within the method. With
the intention to stay close to the original formulation of tensor voting we propose a
4D tensor voting approach which includes intensity information in both the tensor
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representation as well as the weighting function of the voting step while at the
same time suggests a straightforward simplification to a 3D voting formulation. Our
experiments show that both algorithms have the ability to detect tubular structures
and directly estimate their orientation based on the assumption to find them as
spatial curve structures after tensor voting.

Generally, both approaches (3D and 4D) show a similar performance in terms
of detection of tube structures and their orientation estimation. Nevertheless, the 3D
approach seems to be more robust towards noise effects in terms of both comparison
criteria (given the simple detection approach of just finding the dominant tensor
shape). In case of the 3D approach, an increased robustness along with increasing
intensity weight could be observed which we explain with a larger number of
received votes per voxel for larger �I . Accordingly, the different noise robustness
of the 4D approach might be induced by the additional weighting of the spatial
dimensions due the additional intensity dimension in the four-dimensional voting
space (cf. Sect. 2.4). This effect is more apparent in case the intensity differences
are significantly larger than the corresponding spatial distances. Therefore imposing
noise on a region of homogeneous intensities is directly inducing (increasing) this
weighting effect even without any influence of the intensity weight �I in the actual
weighting function. The influence of this effect can be adjusted by the scaling of the
input data (and therefore scaling of the relative intensity differences) by parameter
wI which will be subject of future investigations.

Nevertheless, the 4D approach showed—based on the simple detection
algorithm—a slightly higher concentration of detections around the tube centres
which might be of advantage when aiming at extracting only the centreline of a
tubular structure. Still, it has to be analysed further if this selectiveness is due to
a higher sensitivity to noise in the vicinity of the centre or if the tensor structures
in four dimensions are better suited to detect the centre only. In this context, also
the role of parameter ˛threshold employed in both detectors (c2 and c3) in terms of
its influence on the detection results might be of interest for further investigation.
Possibly, by including the angle 	. f /I in the interpretation of the 4D tensors in a
more sophisticated manner (instead of considering only those close to 0ı and 90ı)
one could exploit encoded information more efficiently.

Another possible advantage of the 4D approach could be the opportunity to
bridge gaps in tube structures caused by abrupt change of intensity in direction
of the centreline. Aiming at the detection of stenoses in blood vessels that might
cause this effect, a subsequent dense voting step6 could close gaps of a certain size.
Then, by analysing the saliencies along the intensity axis such bridged gaps could
be found at spatial positions which exhibit multiple saliency maxima. This would
include both detection and handling of such abnormalities in the data within the
tensor voting framework.

6dense especially along intensity axis
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It must be noted that the presented results partly rely on the quality of the
employed tube detectors which are of simple type. Future work will focus on
exploiting more information provided by the voting results for the structure
detection. Considering that the 4D tensors inherently contain more information
than those in the 3D formulation,7 more advanced strategies for detecting tubular
structures based on 4D tensors could potentially lead to better results in terms of
centre detection and noise robustness in general. The fact that the combined 2D and
3D feature maps of the 4D voting results shown in Fig. 6 for �I D 5 already seem
to offer more information for the detection, further supports that hypothesis. An
approach relying on saliency curves (cf. Fig. 8) seems promising in an algorithm for
both centreline detection as well as handling of bifurcations. A thorough analysis of
the methods at stenoses is part of our current research.

An important property of methods for vessel detection is the opportunity for
multi scale analysis. Often, Hessian-based approaches require several passes with
a different scale parameter in order to be sensitive to vessels of different sizes. In
general, the two presented approaches show the potential to be sensitive to tubular
structures on several scales during one execution of the algorithm. As mentioned
in Sect. 4.1.2, the minimum requirement for a vessel to be detected is the spatial
scale �space to be chosen larger than the actual vessel width. The resulting tensor
shapes (cf. Figs. 6 and 11) show that for one pass of the algorithm on a specific
scale vessels of several sizes exhibit distinct tensor shapes. However, especially
the choice of the spatial curvature weight bspace as well as the intensity scale �I
are likely to affect the algorithms’ ability to extract vessels of different size. This
interplay between those parameters as well as the usefulness of regarding curvature
in intensity direction steered by parameter bI in the weighting function, will be
subject to future investigations. In that context, also the detection of end points of
the smallest vessels in the tree is of interest.

In view of the tensor voting adaption proposed in [26], the proposed weighting
function in Eq. (4) could be a reasonable extension to that algorithm in order to make
the core of it aware of the underlying image structure as well. By that, its weakness
of tensor propagation from structured to unstructured regions could possibly be
approached.

6 Conclusion

Based on the experiments presented in this chapter, the comparison of the 3D and
4D approaches suggests to favour the 3D approach over the 4D formulation for
the purpose of tube detection. Besides the slightly better results in our investigated
settings the shorter computation depicts a strong argument for that choice. However,

7Even though the 3D approach regards intensity in the voting process, the tensor representation
does only provide information about spatial structure.
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considering a tracking approach exploiting the sparse nature of blood vessel
structures could render the computational effort for both approaches reasonable.
In spite of that, the 4D tensor voting approach could be a reasonable alternative in
order to take advantage of a potential extension for detection and handling of shape
abnormalities.
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LiDAR Point Clouds
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Abstract Point classification is necessary for detection and extraction of geometric
feature (folds, creases, junctions, surfaces), and subsequent 3D reconstruction of
point-sampled geometry of topographic data captured using airborne LiDAR tech-
nology. Geometry-based point classification (line-, surface-, point-type features) is
determined using shape of the local neighborhood, given by the local geometric
descriptor (LGD) at every point in the point cloud. Covariance matrix of local
neighborhoods is the conventionally used LGD in the LiDAR community. However,
it is known that covariance analysis has drawbacks in detection of sharp features,
which are a subset of the line-type features. Here, we compare the performance
of new variants of existing LGDs, such as weighted covariance matrix, and that
based on tensor voting concept, in geometric classification with that of covariance
matrix. We propose a multi-scale probabilistic saliency map based on eigenvalues of
the LGDs for computing the classification. Usually the state-of-the-art performance
analyses of LGDs in the classification outcomes are done downstream after feature
extraction. We propose that the comparisons may be done upstream at the clas-
sification stage itself, which can be achieved by expressing these LGDs as positive
semidefinite second-order tensors. We perform qualitative comparisons of the tensor
fields based on shape and orientation of the tensors, and the classification outcomes
using visualizations. We visualize LGDs using superquadric tensor glyphs and point
rendering, using our proposed saliency map as colormap. Our detailed comparative
analysis shows that the new variant of LGDs based on tensor voting classify line-
type features, especially sharp features, better than covariance-based LGDs. Our
proposed LGD based on tensor voting performs better than the covariance matrix,
for our goal of detecting sharp features, e.g. gabled roofs in buildings.
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1 Introduction

Geometric feature detection is a key operation in the processing of three-
dimensional (3D) point clouds, which includes surface reconstruction, surface
matching, shape detection, registration of point clouds, and finding deformations
in time-varying point sampled geometry. The definition of feature is however
application-specific, which makes the process of feature extraction subjective.
Features are generally defined as entities which help the user to gain meaningful
insight from the data. In some cases, features may be a subset of either raw
or derived data, which persist through multiple scales, time-steps, and/or other
attributes, which give multiple series of the same dataset.

We focus on geometry-based point or geometric classification, which is the first
step in detection and classification of features, such as folds, creases, junctions, and
planar surfaces. In point clouds, the features are determined using local geometric
descriptors (LGDs). Such a descriptor at a point is a variable which describes the
shape of local neighborhood of any point [4]. The shape of the local neighborhood
as a key criterion for point classification, which gives the geometric classes,1

namely line-, surface-, and (critical/degenerate) point-type features. The outcomes
of point classification imply that the point will belong to a feature, namely, the line-,
surface-, or point-type feature, respectively. The choice of LGD plays a crucial role
in influencing the point classification outcomes. We refer to geometry-based point
classification as “classification,” hereafter.

The 3D point-sampled geometric datasets generally encountered in graphics
and modeling communities and LiDAR (Light Detection and Ranging) datasets
are essentially 2.5-dimensional data. Specifically, in the case of airborne LiDAR
data, the point cloud is a height map of two-dimensional planar geometry (latitude-
longitude coordinate system). Airborne LiDAR point clouds include geometry of
arbitrary topology from multiple objects in environmental scans, owing to which
several methods in point-sampled geometry cannot be directly extended to LiDAR
point clouds. The resolution of the scans are different. In airborne LiDAR points,
the resolution is lower, compared to other point-sampled geometry obtained from
indoor or other controlled settings.

Covariance analysis of local neighborhood of LiDAR point clouds is used
conventionally for geometry-based point classification, which gives satisfactory
results [2, 10]. Classification using covariance matrix is followed by a processing
step, such as minimum spanning tree [6, 10, 23] to find sparse set of points which
reveals the features. Multi-scale extension of the covariance-based methods has
improved the identification of various visually significant features [10, 23]. How-
ever, pruning of an already sparse sets of points leaves these methods ineffective
in detecting sharp features. At the same time, the computer vision community

1Here, we use geometric classes and feature classes interchangeably.
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have proposed the use of weighted covariance matrix and tensor voting2 for unique
signatures for local surface description [28] and perceptual organization for feature
extraction [22, 30].

To bridge the gap between these communities, we propose improving classifi-
cation outcomes in LiDAR point clouds, specifically of line-type features which
include sharp features, by using variants of weighted covariance matrix and voting
tensor as LGDs. Our goal is to compare the performance of the aforementioned
LGDs in extracting sharp features, such as gabled roofs in buildings.

Motivating Problem In the LiDAR community, 3D point clouds are beneficial
as they do not have as many occlusion problems or shadow casts found in aerial
imagery. In practice, fusion of the two types of datasets gives good results for object-
based classification (buildings, road, natural ground, and vegetation). Building
detection is a key outcome, which is followed by outline delineation and 3D
reconstruction of the detected buildings. The outlines of building, which are derived
using aerial imagery, are known to be more accurate and of better quality in
comparison to those from point clouds [25]. In practice, building outlines are derived
using a fusion of imagery and 3D data. Improving 3D building reconstruction
implies improving either the fusion of datasets from hybrid sources, or the geometry
extraction of building outlines exclusively from LiDAR point clouds; both of which
have been identified as open research problems [25]. For the latter, we propose
extraction of line-type features and assembling them to extract outlines. In this
paper, we address the improvement of line-type feature extraction by proposing a
probabilistic method for identifying points which belong to the line-type features.
In the scope of this paper, we perform only the geometry-based point classification,
along with preliminary results of line-type feature extraction.

Here, we compare the performance of different variants of LGDs based on the
weighted covariance matrix and tensor voting, for geometry-based classification.
The latter takes into account continuity and proximity principles. Tensor voting
methods are known to behave consistently across a variety of datasets, including
de-noised LiDAR point clouds. Additionally, we propose application of anisotropic
diffusion after applying tensor voting, for enhancing line-type features, as well
as giving classification outcomes similar to that of covariance matrix. Owing to
the inherent uncertainty in classification, we propose a probabilistic approach for
computing saliency map that gives the classification. We additionally use a multi-
scale method to compute our novel probabilistic saliency map, where the radius of
the local neighborhood is the scale [10, 22, 23]. Since we did not find any existing
literature on methods of comparing classification outcomes of two different LGDs,
for performance analysis, we perform comparisons by aligning the reference frames
of the LGDs. We perform qualitative comparative analysis using visualization. For
visualizing the classification outcomes, we take the following approach of: (a)

2Here, we disambiguate tensor voting as the algorithm, and voting tensor as the second-order
tensor, which is the outcome of the algorithm.
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Fig. 1 Superquadric tensor glyphs for visually comparing LGDs: (Top) C, CLRF , V, and VLRF�AD ,
using a geometric class-based colormap. The LGDs computed at scale, r D rmin for smooth-feature
(6,177 points). The bottom row shows zoomed out portions of the corner and roof, where glyphs
represent (left) C and (right) VLRF�AD. Note that, in comparison to C, VLRF�AD shows the line-
type features using more cylindrical glyphs with red color, indicating higher saliency in line-type
features. Thus, our novel saliency map determines the geometric classification

representing LGDs as second-order tensors and using state-of-the-art superquadric
tensor glyph visualization [12, 26], and (b) using our novel multi-scale saliency
map to guide the colormap for visualization. We propose the use of juxtaposed
views and classification matrix visualization, for composite visualizations for
comparative analysis of classification outcomes of different LGDs. Our work is
unique in comparing point classification outcomes. Existing methods for surface
reconstruction and surface fitting use classification as one of the preliminary steps,
without any in-depth analysis, which limits the scope of usage of geometry for
classification.

Using our proposed methods and additional quantitative analysis, we have shown
how different LGDs perform in line-type feature detection (Fig. 13). We observe
that more points are detected as line-type features, when using tensor voting in
comparison to conventional covariance analysis. The larger number of points allows
better extraction of sharp (line-type) features.4 Our contributions are:

1. multi-scale probabilistic geometric classification of airborne LiDAR point clouds
using a novel saliency map;

3In Figs. 1, 4, and 7–10, color coding correspond to a geometric class or the combination of classes
a point belongs to, which is determined by using the saliency maps. We use the colorblind safe
color palette options from ColorBrewer2.0 http://colorbrewer2.org/.
4We have demonstrated results on fan-disk and smooth-feature datasets, apart from airborne
LiDAR datasets, purely for more comprehensible comparative analysis of LGDs for classification.

http://colorbrewer2.org/
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Fig. 2 Summary of the different LGDs we compute and how we compute them. The dotted lines
indicate the pairwise comparisons of LGDs done in this paper

2. novel approaches for visual comparison of performance of LGDs (Figs. 1
and 2) in classification, such as: (a) expressing LGDs as positive semidefinite
second-order tensors, and consequently, using superquadric tensor glyphs for
visualization; and (b) visualizing the classification matrix;

3. comparative analysis of variants of two existing LGDs for point classification,
computed using weighted covariance matrix and tensor voting, respectively.

Notations We refer to a point in a point cloud, P , as x 2 P , and the local
neighborhood of x, for a given radius r, is N.x/ D fx; y 2 P W ky � xk < rg.
Covariance matrix, voting tensor and weighted covariance matrix are annotated as
C, V , and Cw. Our proposed modifications to the LGDs are indicated as superscripts,
e.g. LRF and AD refer to the alignment of the local reference frame (LRF)
and anisotropic diffusion, respectively. Thus, CLRF and VLRF are the LRF-aligned
weighted covariance matrix and voting tensor, respectively. VLRF�AD is the tensorial
outcome of applying anisotropic diffusion on VLRF . We use shorthand notations
for our proposed LGDs, CLRF and VLRF�AD, as TT and TN , to highlight the tensor
representation of the LGDs and their relationship to the tangent and normal spaces
of the point, respectively.

2 Related Work

We describe relevant work on LGDs, its tensor representations, and the tensor field
visualization techniques. We have briefly looked at relevant work on the use of
LGDs for the classification in computational geometry and LiDAR communities.

LGDs for Point Clouds Gumhold et al. [6] have proposed feature classification
and extraction using correlation matrix and neighborhood graph. The correlation
matrix is the total least squares problem for surface fitting, which has been proposed
by Hoppe et al. [8]. In [6], tensor voting scheme was explicitly avoided for
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feature detection and extraction, in order to avoid volume discretization. However,
more recent research [22] has shown that tensor voting can be applied directly
on point clouds without volume discretization. Gelfand et al. [4] have made a
distinction between high- and low-dimensional LGDs. High-dimensional or richer
LGDs (spin images, shape contexts, their proposed integral volume descriptors)
are generally used for object recognition and shape retrieval. The low-dimensional
LGDs (curvature-related descriptors) are easier to compute, store and use – hence
is used with voting schemes or iterative alignment methods for shape matching
and point cloud registration. LGDs considered for the point classification are
generally low-dimensional ones. Integration based LGDs are recommended for
feature classification in [4], however point classification in LiDAR point clouds is
conventionally done using differentiation-based low-dimensional descriptors.

Tensor Representation of LGD Knutsson [13] has used tensor definition for
structure tensor, which is based on differentiation of functions and is used as LGD
for 3D space. Knutsson et al. [14] have enumerated LGDs for images, some of which
can be extended to 3D point clouds.

Point/Feature Classification In the LiDAR community, geometric classification is
often called “structural classification.” Point classification and feature classification
are often interchangeably used in literature. Several methods for feature classifica-
tion of point clouds exist in literature [22, 31]. Attributes from feature/structural
classification (e.g. linearity, anisotropy, etc.) are extensively used for semantic or
object-based classification in LiDAR point clouds [2, 16, 17], which use covariance
analysis. Kim et al. [11] have used 3D tensor voting for wall and roof segmentation
and classification in LiDAR point clouds. They have generated surface meshes from
the point clouds, where tensor voting is used for fitting a planar surface in local
neighborhoods and segmenting the surface mesh [19]. The mesh segmentation is
similar to [19, 30]. While our proposed LGD using tensor voting can be used for
orientation just as in [11], our goal is to extract line-type features, which can be
further used for segmentation.

Covariance analysis of local neighborhoods based on centroid is a robust method
for normal estimation [15], but not necessarily for finding the shape of the neigh-
borhoods. Two neighboring points with approximately similar local neighborhoods
with the same centroid will have the same LGD, which makes the LGD fail specif-
ically for the classification of sharp features. Moreover, all neighbors in the local
neighborhood are considered equal in the covariance matrix, which is not the case.
The rationale is that its nearer neighbors have more “influence” in reconstructing the
surface at the point than its distant neighbors. Thus, a weighted covariance matrix
computed with respect to a point is a more accurate “signature” of a point compared
to the conventionally used covariance matrix. Kobbelt and Botsch [15] have
discussed that for consistent orientation of normals estimated using covariance anal-
ysis, propagation along a minimum spanning tree will be needed. Similarly, Tombari
et al. [28] have made the argument of lack of repeatability of sign of LRF when using
the covariance matrix, and have proposed a weighted covariance matrix based on
the point itself instead of the centroid, for surface matching. They have proposed an
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LGD for surface matching, based on signatures of histograms, where local reference
frame can be made unique, repeatable, and an invariant for a point. For classification
of sharp features, moving least squares method [1, 3] or Gauss map clustering [31]
have been used effectively, which are not centroid-based methods. Local tensor-
based techniques are a tradeoff between computational complexity and accuracy in
feature detection; e.g. use of tensor voting [22, 30] for feature classification.

Multi-Scale Classification Pauly et al. [23] have proposed the use of multi-
scale surface variation, estimated using covariance matrix of local neighborhood.
There, surface variation at a user-defined scale gives feature weights, which on
appropriate thresholding gives features. Keller et al. [10] have used a similar multi-
scale approach, for LiDAR point clouds, in determining feature weights from
covariance matrix of local neighborhoods. However, the difference between the
methods in [23] and [10] is that a single adaptive scale and averages across multiple
scales have been used, respectively. Algorithms for finding optimal neighborhood
size or scale has been of interest to the LiDAR community [2, 5, 17, 33].

Tensor Voting Guy and Medioni [7] have proposed tensor voting scheme to detect
and classify the feature points in structured point cloud. The voting scheme uses
the proximity and continuity principles of Gestalt psychology to propagate the
votes. Each point is encoded as tensor based on given input data information,
and nonlinear tensor voting has been performed using local neighbors to update
the tensor information at each point in 3D data. Saliency maps, computed from
eigen analysis of the second-order tensor obtained after vote aggregation, give the
likelihood of each point belonging to different feature classes, i.e., ball-, stick-, or
plate-tensor.

Park et al. [22] have used tensor voting and surface variation to classify and detect
line features in point clouds, where the surface variation function is computed using
a multi-scale method. Our proposed tensor, obtained after anisotropic diffusion upon
tensor voting, VLRF�AD, is different from that from tensor voting, V , in [22] as
the classification in the latter does not confirm to the conventional method [10],
as point-type features in the former are equivalent to line-type features in the
latter, as per the classification given in the latter; while ours matches with the
conventional method. Park et al. compute an optimal scale from multiple scales
for further analysis, whereas we propose an aggregated multi-scale saliency map.
In our case, the anisotropic diffusion after tensor voting enhances line-type feature
detection as well as modifies the classification outcomes of the new tensor to match
with that of the covariance matrix. Our approach based on anisotropic diffusion is
inspired from [30], where anisotropic diffusion is performed after tensor voting for
feature classification and extraction in polygonal mesh data, and subsequent mesh
segmentation.

Tensor Field Visualization We use superquadric tensor glyphs [12, 26] for
comparing different (positive-semidefinite) second-order tensor fields of the LGDs.
These glyphs are designed using mirror symmetry, symmetry, continuity, and
disambiguity as guiding principles. Thus, by design, these glyphs show the shape
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and orientation of a positive-semidefinite second-order tensor more effectively than
other conventionally used glyphs. Zhang et al. [34] have recently proposed the use
of tender glyphs for simultaneously comparing two different tensor fields.

3 Local Geometric Descriptors

Conventionally used covariance-based methods have limitations in capturing line-
type features [31]. They often detect points on the sharp features contrarily as weak
line-type features (Fig. 1). However, the use of an LGD which enhances the sharp
features can improve the classification. Hence, we propose two different LGDs,
which are variants of the weighted covariance matrix, Cw, and tensor voting, V .
We further exploit the tensor representation of the LGDs for its analysis.

In our work, Cw is an improvement over C for two reasons. First, Cw at the point
gives a unique LGD, thus giving a “signature” of the point itself. Additionally, in
the case of the classification using Cw. the normal estimation is not done using the
centroid. Second, the contribution of all neighbors in the computation of C.x/ are
equal, i.e., a distant neighbor will “influence” the shape of the local neighborhood
as much as a neighbor in closer proximity. Contrarily, these contributions are
inversely proportional to the distance between the neighbor and the point, x. Hence,
a weighted covariance matrix, such as Cw, is ideal as an LGD. Here, we study how
the changes proposed by Tombari et al. [28] influence the geometric classification.
Similarly, tensor voting can also be considered as an improvement over C. Tensor
voting approach follows the Gestalt principles of proximity and continuity, which
makes the resultant tensor viable as an LGD.

Comparing the performance of LGDs can be done in two ways, namely, compar-
ing the relative performance of each LGD against the ground truth and comparing
the outcomes of the LGDs, taking two at a time. For the latter, the classification
outcomes for two LGDs, say Cw and V , are comparable if the comparisons can be
done using a common invariant, e.g. local reference frame (Fig. 3). Additionally,
one must be aware that there are cases where the outcomes of the classification of
the two LGDs are different and hence, not comparable, e.g. C (or Cw) and V (Fig. 1).
However, certain modifications to the LGDs can resolve these differences and
facilitate the comparisons subsequent to modifications, e.g., anisotropic diffusion
after tensor voting makes its classification outcomes comparable to those of C
(Fig. 1).

Local Geometric Descriptors LGDs at a point, in P , encodes the geometry of
the local neighborhood of the point. LGDs are important, as the local geometric
analysis leads to the global description for the entire point cloud. Here, we focus on
two LGDs, computed using the conventionally used covariance matrix and tensor
voting, respectively. Here, we discuss the construction of these variants of the LGDs.
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Fig. 3 A schematic showing modifications to LGDs, C and V, to compare their point classification
outcomes effectively. For points/samples (circle) on a curve (in R

2), the LRF and shape of local
neighborhood obtained from the spectral decomposition of the LGD are shown (solid lines and
ellipse for those of C; and dashed lines and ellipse for those of V). (a) C and V at a point; (b) The
LRF of C has been aligned to that of V; (c) Anisotropic diffusion has been applied to V, which
gives VLRF�AD. Similar to C, this is applicable to Cw as well

Weighted Covariance Matrix The covariance matrix [8], also called correlation
matrix [6], is computed as C.x/ DPy2N.x/. y � Nx/. y � Nx/T , where Nx is the centroid
of the local neighborhood N.x/. We refer to it as the “tangent covariance matrix,”
as it is constructed using tangent vectors. C is conventionally used as an LGD in
the LiDAR community [2, 5, 17, 33]. However, in computer vision applications,
weighted covariance matrix is used for surface description and local sign disam-
biguation [28]. Since we are performing surface description as opposed to surface
fitting in LiDAR point clouds, we propose the use of weighted covariance matrix,
Cw (Eq. 1) for the same. The weights have the property of inverse proportionality
to distance between the concerned point and its neighbor. Local reference frames
(LRF) are invariants that define the local neighborhood of a point uniquely. The
eigenvectors of the LGD are conventionally used as basis vectors of the LRF. Cw
gives repeatable LRFs, as opposed to C. Repeatable LRFs give non-repeatability
of sign of principal directions across multiple objects in the scene [28], which are
applicable in the case of LiDAR point clouds.

Voting Tensor In tensor voting [19], there is a notion of a receiver and a voter, where
the voter casts a vote to the receiver. A vote, defined in the form of a tensor, contains
information of the neighbor in the local neighborhood. A predefined voting field is
used to aggregate the votes as a tensor, and to provide a saliency map for each feature
type. Saliency values of the resultant tensor, which is the sum total of all information
collected at the receiver, are scalar values derived from the spectral decomposition
of the tensor. The saliency values, “pointness,” “curveness,” and “surfaceness”,
correspond to feature (or structural) classes, namely, ball- (point), stick- (line), and
plate- (surface) tensors, respectively. Thus, these classes correspond to the feature
classes in point sampled geometry. In tensor voting, we initialize the tensor V.x/
as a ball tensor, for unoriented points (i.e. points without predetermined normal
information) [22], as is our case (Eq. 1). In Eq. (1), Id is a d-dimensional identity
matrix, and scale parameter � . We use the radius of the neighborhood, r as the scale
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parameter, thus, � D r. While � influences the vote propagation range, the Gaussian
function, �y, is the attenuation factor for the size of the vote collected from y at x.
Here, we can see that V.x/ is a weighted covariance matrix just as Cw.x/, with the
difference that they are constructed from normals and tangents, respectively. For
y 2 N.x/, t. y/ D . y � x/ and z. y/ D kt. y/k2

r ,

Cw.x/ D
X

y2N.x/
wyt. y/t. y/

T I V.x/ D
X

y2N.x/
�y:

�

Id � t. y/t. y/T

t. y/T t. y/

�

(1)

where wy D 1 � z. y/
P

y2N.x/ 1 � z. y/
I and �y D exp

�

� kt. y/k
2
2

�2

�

:

Alignment of Local Reference Frame for Local Geometric Descriptors An LRF
is an invariant of the LGD of a point, and a common LRF for two LGDs implies that
the orientations of the local neighborhoods defined by the LGDs are the same, at the
point. Thus, comparison of LRF-aligned LGDs reduces to qualitative comparison of
the shapes of these local neighborhoods at each point. Hence, we propose variants of
Cw and V , whose LRFs are aligned, to facilitate their comparisons. Our construction
of these proposed LGDs are:

1. Modification to V , by normalizing the weights for Id in Eq. (1). Given � D r, we
get �y D exp.�z. y/2/. Thus, we replace �y (Eq. 1) with �0

y (Eq. 2) to give an
LRF-aligned voting tensor, denoted as VLRF.x/.

VLRF.x/ D
X

y2N.x/
�0
y:

�

Id � t. y/t. y/T

t. y/T t. y/

�

, where �0
y D

�y
P

y2N.x/
�y

(2)

2. Modification to Cw, by normalizing the tangent vector t. y/ and modifying the
weights in the computation of Cw from wy in Eq. (1) to w0

y. This change in weight
(Eq. 3) is permissible as w0y has the same property that the weights wy and
�y (Eq. 1) have, i.e., they are monotonous functions of dimensionless distance
quantity z. y/, and are inversely proportional to the distance of the neighbor to
the point, i.e. kt. y/k. Thus, we get the LRF-aligned tangent covariance matrix,
CLRF.x/, as follows:

CLRF.x/ D
X

y2N.x/
w0
yt. y/t. y/

T , where w0
y D

�y

t. y/T t. y/ � P
y2N.x/

�y
: (3)

However, by aligning LRFs for the LGDs this way, the weights for weighted
covariance matrix, CLRF, are not convex, unlike the weights proposed in [28]. Since
convexity is not recommended as a requirement in [28], we disregard it for the sake
of alignment of LRFs. Even though Eqs. (2) and (3) lead to different computations
of the LGDs, they effectively perform rotations of the eigenvectors, as schematically
shown in Fig. 3. Hence, we refer to these modifications as LRF “alignment”.
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Anisotropic Diffusion on Normal Voting Tensor While tensor voting is good
for perceptual grouping using its saliency maps, the point classification through its
tensor V or its variant (VLRF) is not similar to that of the covariance matrix (C) or its
variants (Cw or CLRF), as shown in Fig. 1. Hence, we perform anisotropic diffusion
after aggregating votes in the tensor, so that the resulting tensor VLRF�AD will give
similar classification outcomes as C. We explain the rationale behind differences
and the resolution using anisotropic diffusion in Sect. 6.

Wang et al. have used VLRF�AD as the diffusion tensor in the heat diffusion
equation [30], for polygonal mesh segmentation. The rationale is that anisotropically
controlling diffusion velocities in the diffusion tensor, would lead to slower diffusion
across sharp edges and faster diffusion along sharp edges. Thus, anisotropic
diffusion has been proven to enhance line-type features in a surface mesh. Along
these lines, we propose applying anisotropic diffusion after tensor voting, so that
the resultant tensor can be used as the LGD of the point cloud to classify line-type
features more accurately than the tangent covariance matrix. We perform anisotropic
diffusion by modifying the eigenvalues of the diffusion tensor as an exponential term
and addition of a diffusion parameter, ı, which controls diffusion velocities.

Anisotropic diffusion is applied to VLRF by modifying its eigenvalues .�LRFV /i (for
i D 0; 1; 2) using an exponential function, f ..�LRFV /i/ D exp.�.�LRFV /i=ı/. However,
the use of an exponential function reverses the order of eigenvalues:

.�LRFV /0 � .�LRFV /1 � .�LRFV /2; gives

f ..�LRF�AD
V /0/ � f ..�LRF�AD

V /1/ � f ..�LRF�AD
V /2:

Thus, for anisotropically diffused LRF-aligned voting tensor VLRF�AD, with indices
i D{0; 1; 2} corresponding to the descending order of eigenvalues, we get:

.�LRF�AD
V /i D exp.�.�LRFV /2�i=ı/I and .eLRF�AD

V /i D .eLRFV /2�i (4)

Finally, VLRF�AD.x/ D
2X

iD0
.�LRF�AD

V /i � .eLRF�AD
V /i.e

LRF�AD
V /Ti (5)

Impact of Proposed Modifications Here, we mathematically analyze the modifi-
cations caused by the alignment of LRFs of Cw and V and anisotropic diffusion of V ,
shown schematically in Fig. 3. Let us first compare the eigenvalues and eigenvectors
fromCLRF.x/, and VLRF.x/. Suppose the set of eigenvectors for CLRF.x/ and VLRF.x/
are given by .eLRFC /i and .eLRFV /i, respectively, for i D 0; 1; 2. Similarly, let the set of
eigenvalues be .�LRFC /i and .�LRFV /i, respectively.

VLRF.x/ D Id � CLRF.x/, from Eqs. (2) and (3): (6)

.�LRFV /i D 1 � .�LRFC /.2�i/; and hence, .eLRFV /i D .eLRFC /.2�i/, for i D 0; 1; 2: (7)

This implies that the ordering of the eigenvalues are reversed in VLRF.x/ compared
to those of CLRF.x/, thus reversing the order of their eigenvectors (i.e. major
eigenvalue of VLRF corresponds to minor eigenvalue of CLRF , and so on). This
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Fig. 4 (a) Comparing LGDs for fan-disk (10,921 points), using our proposed saliency map. (Left)
is the tangent covariance matrix C and (right) is our proposed anisotropically diffused voting tensor
VLRF�AD (i.e., TN ). (b) Comparison of saliency maps computed for our proposed voting tensor
VLRF�AD , using likelihood values in shape classes [line,point,surface], given in (left) Eq. (8), and
(right) Eq. (9), for Region-1 in Vaihingen (179,997 points)

explains the difference in the classification outcomes between the descriptors in
Fig. 1. However, it is desirable that the ordering of the eigenvalues be the same,
so that the eigenvectors at a point can be the same, thus giving the same LRF and
similar classification outcomes from both descriptors. A similar transformation is
used in [21] to change tangential orientations to normal ones for structure estimation
in images.

Thus, from Eqs. (4) and (6), we conclude that .eLRF�AD
V /i D .eLRFC /i. This shows

that the LRFs of VLRF�AD and CLRF match (i.e. their major eigenvectors correspond
to each other, and similarly, their middle and minor ones). This also implies that the
ordering of their eigenvalues also match, thus giving similar classification outcomes
for both the LGDs, i.e. variants of the covariance matrix and the anisotropically
diffused voting tensor (Figs. 1 and 4a).

Positive Semidefinite Second-Order Tensor Representation We did not find
any metrics in current literature for comparing LGDs and their classification
outcomes. We propose expressing these LGDs as a specific mathematical quantity,
for validating applications of mathematical operations such as, comparisons and
replacements. We have found that second-order tensors are the most natural choice
of quantity, owing to the inherent construction of the LGDs as tensor products. Local
neighborhood can be described using various variables or approaches, such as spin
images, covariance analysis, tensor voting, curvature, etc. Here, we revisit the use of
tensors in representing LGDs used for structural analysis in image processing and
computer vision [14], to apply the same for point-sampled geometry. While some
LGDs are explicitly defined as tensors (e.g. in tensor voting [20] and curvature ten-
sor [27, 29]), the others are described using matrix representation (covariance
matrix [8, 10]). Nevertheless, in many such cases, the LGD is constructed using
an outer product or tensor product of vectors, T.x/ D xxT , where x 2 R

d is either
the tangent or the normal at the point. From Eqs. (1), (2), (3), and (5), we see that all
LGDs discussed in this paper are indeed positive semidefinite second-order tensors.
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By design, the tensor fields of LGDs correspond to the tangent or the normal spaces
to the manifold defined by the point cloud, respectively, at the concerned point [24].
The tangent and normal spaces form disjoint sets themselves. Here, the covariance
matrix and its variants (C;Cw;C

LRF) correspond to the tangent space; and the tensor
and its variants from tensor voting (V;VLRF;VLRF�AD), to the normal space. Hence,
hereafter, we use the shorthand notations for CLRF and VLRF�AD are TT and TN ,
respectively.

4 Multi-Scale Probabilistic Point Classification

For probabilistic point classification, we propose an appropriate saliency map of the
feature classes at each point, which is aggregated from LGDs across multiple scales.

Multi-Scale Approach The advantage of using multi-scale approaches in com-
parison to single scale is that they do not rely on a single scale for procuring
the geometric information. The distributed approach improves the richness of the
geometric information. Determining the shape of the local neighborhood has high
degree of uncertainty, especially in multi-object boundaries in LiDAR/computer
vision datasets. When using single scale, obtained optimally or adaptively, the
error margin becomes high for such boundary cases. Additionally, multi-scale
approach determines persistence from various scales, as opposed to adaptive scale,
which depends on a scale where the persistence is high. Thus, multi-scale methods
capture persistence of features better. However, the number of scales and bounds
of the scales become crucial for the success of the multi-scale method. Currently,
these values are user-determined, which is a limitation. Multi-scale approaches also
fail for cases where there is a large difference in sampling density in the dataset, as
the covariance analysis fails in the case of sparse local neighborhoods. This can be
alleviated by using k-nearest neighborhoods instead of spherical neighborhood [15].
One of the the drawbacks of using adaptive scales or optimal scales is that they
become computationally intensive for large point clouds. More operations are
required, in the former, for computing adaptive scales for each point, and in the
latter, for optimizing a single scale for all points.

Despite their drawbacks, multi-scale approaches have worked favorably for
point classification in certain applications, as preserving the persistence of features
across several scales gives a better measure of the feature strength or saliency
map [10, 22, 23]. Keller et al. [10] have proposed probabilistic point classification
for LiDAR datasets, where eigenvalues of the covariance matrix is used to determine
neighborhood shape and feature strengths at each scale, and finally, the likelihood of
the point belonging to the three feature classes are averaged across scales. For each
scale, r (i.e., radius of local neighborhood), given that �0.x; r/ � �1.x; r/ � �2.x; r/,
which are eigenvalues of C.x/, three subsets corresponding to the classes are
defined to bin all the points in the point cloud, using a user-defined threshold, �:
Pl.r/ D fx 2 Pj�1.x; r/=�0.x; r/ < �g; Ps.r/ D fx 2 Pj�2.x; r/=�0.x; r/ < �g;
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and Pp.r/ D fx 2 Pj�2.x; r/=�0.x; r/ � �g. Here, by design, Pl.r/ � Ps.r/. The
likelihood of a point belonging to (line, surface, point) feature classes, fLl;Ls;Lpg,
are computed using a multi-scale approach. While Keller et al. have not used the
likelihoods explicitly for classifying the points, they have used these values to
compute feature strengths, which is further used for generating feature graphs, and
refining the classification. Given Nr scales uniformly sampled in [rmin, rmax],

Ll;s;p.x/ D 1

Nr
�
NrX

iD1

�l;s;p.x; ri/; where 
s.x; r/ D
(
1; if �2.x; r/ � ��0.x; r/
0; otherwise

;


l.x; r/ D
(
1; if �1.x; r/ < ��0.x; r/

0; otherwise
; and 
p.x; r/ D

(
1; if �2.x; r/ < ��0.x; r/

0; otherwise

(8)

The averaging operation of the likelihoods across scales, can be seen as a union of
Nr mutually exclusive events of the point belonging to the given class for Nr scales,
where the events have equal probability, i.e. 1=Nr. However, Ll;s;p.x/, as computed in
Eq. (8), causes higher incidence of points having “mixed” likelihoods, specifically
across line- and surface-type features (visualized as points belonging to “line &
surface” class in Fig. 4b). This is due to the subset relationship, Pl.r/ � Ps.r/
and binarization of the scale-wise contribution of each class towards multi-scale
aggregation (Eq. 8). The former leads to the probabilities not adding up to one.
The latter causes ambiguities in classification of points that lie in boundaries of
two different objects or point clusters e.g. a point lying on a line but in the
close proximity of a junction. Additionally, the high dependency of the algorithm
on a user-defined parameter � leads to erroneous classification. To alleviate the
ambiguity, we propose a probabilistic multi-scale saliency map.

Multi-Scale Saliency Map for Probabilistic Point Classification Saliency map
of an attribute set is a set of values which maps a value for specific attributes, based
on the relative “saliency” or “differentiating quality” of the attribute with respect
to the others in the set. For instance, in tensor voting, eigenvalues of the resultant
tensor have been used conventionally as saliency map of its eigenvectors [7].
In LiDAR point clouds, saliency maps are derived from confidence index of 1-,
2- and 3-dimensional features (i.e. line, surface, and point, respectively) [2]. We
propose to use likelihoods of a point belonging to the feature classes as the saliency
map of classification of the point. These likelihoods, which explicitly imply the
classification outcomes, are derived from the spectral decomposition of LGD, thus,
preserving the properties of the LGD. Thus, our classification is a probabilistic or
fuzzy one.

We use the likelihood with which a tensor can belong to each of the three shape
classes [12, 32] found in 3D point clouds. Given that �0.x/ � �1.x/ � �2.x/,
cl;s;p.x; r/, we compute the likelihood of the point x belonging to line, surface, or
point class, at a given scale r, fcl; cs; cpg.x; r/. At each scale, we ensure the sum
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of likelihoods for a point, .cl C cs C cp/, is unity. For multi-scale computation, we
average the likelihoods of a point belonging to a given class across Nr scales, i.e.

Ll;s;p.x/ D 1

Nr
�
NrX

iD1

cl;s;p.x; ri/I where cl.x; r/ D �0.x; r/� �1.x; r/
�0.x; r/C �1.x; r/C �2.x; r/ I

cs.x; r/ D 2 � .�1.x; r/ � �2.x; r//
�0.x; r/C �1.x; r/C �2.x; r/ I and cp.x; r/ D 3 � �2.x; r/

�0.x; r/C �1.x; r/C �2.x; r/ :

(9)

Since multiple scales can be viewed as a union of mutually exclusive events
with equal probability, we can justify averaging of saliency maps across scales for
computing the final saliency map. Our proposed saliency map disambiguates
classification of points to one of the three classes (Fig. 4b).

A Note on Scale Parameters Scale parameters are used for computation of both the
tensor V (Eq. 1), using tensor voting, as well as saliency maps (Eq. 9). However,
the parameters are used differently. In the former, during the voting process, as the
scale increases, more tokens (or votes) can influence the given point due to increase
in size of kernels, and smooth out the noisy data and weak features. Similarly, when
the scale is reduced, more details are preserved, which undesirably makes tensor
voting more sensitive to noise. In multi-scale classification, scale is used to measure
the persistence of the features, thus ensuring a robust feature extraction method. The
scale can also be viewed as the regulator for smoothness [23].

5 Comparison of Local Geometry Descriptors

We use tensor field visualization for qualitative comparison of LGDs and their
classification outcomes. For comparative visualizations, we use both juxtaposed
views and classification matrix visualization. In juxtaposed views, we use point
rendering as well as tensor glyph visualization, using a geometric class-based
colormap. In both renderings, our proposed saliency map is used to demonstrate
the shape and orientation of the LGD and its classification outcomes. Our work is
unique in the application of superquadric tensor glyphs for visualizing LGDs in 3D
LiDAR point clouds.

5.1 Juxtaposed Views

The visualization tasks we propose for qualitatively comparing the two second-
order tensor fields TT and TN are to compare the tensor properties (i.e. shape and
orientation) at each point in P , and to compare the classification outcomes at each
point. Juxtaposed views [9] of corresponding visualization of the fields for each of
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the tasks is an effective design pattern as long as we implicitly establish the same
orientation and affine transformations for visualizations corresponding to both the
fields in a single view. Juxtaposed view is easy to implement and effectively conveys
the information on comparing the fields. We use juxtaposed views of LiDAR point
clouds using both tensor glyph visualization and point rendering (Figs. 1 and 4,
respectively).

Tensor Glyph Visualization We use superquadric tensor glyphs to compare the
tensor properties of the LGDs in a single scale. The glyphs are colored using
our proposed saliency map. Both saliency map and shape of glyphs encode the
information on the likelihood of a point falling into the three feature classes,
for instance, red color and cylindrical shape of glyphs indicate line-type features
(Fig. 1). Thus, the saliency value and the shape of the local neighborhood are both
encoded in the glyph visualization of the tensor field.

In addition to single scale analysis, we visualize glyphs of a multi-scale
aggregated tensor representation of the LGD, or simply multi-scale aggregated
LGD. However, we have used this tensor purely for representation, as we have not
explored the multi-scale aggregation of LGDs in detail. The aggregated LGD is
generated by averaging the unit vectors of eigenvectors and normalized eigenvalues
(as the saliency values, cl; cs; cp) values. By construction, the saliency map of the
multi-scale aggregated LGDs is the multi-scale saliency map (Eq. 9).

Choice of Colormaps Visualization of saliency maps is done by mapping the
data to the RGB color model and using the colormap to render the points. A
trivial mapping of the parameterized values fcl.x/; cs.x/; cp.x/g to (red, blue, green)
channels, respectively, enables us to visualize the differences in the classification
outcomes, computed from different LGDs. This is applicable for both point
and glyph rendering. However, this channel-based colormap results in a color
palette with red and green hues, which is not favorable for protanopic vision [18].
To resolve this, we use the likelihoods (Eq. 8) or saliency values (Eq. 9) of a point
to determine the class(es) (i.e., line, surface, and point-type features) the point is
highly likely to belong to. Both Eqs. (8) and (9) constrain the classes to be either
line-, surface-, or point-type features. In the likelihood based model, the points could
belong to two classes simultaneously, which specifically occurs in the case of line-
and surface-type feature classes. Hence, overall, we use a geometric class-based
color palette, for “line”, “surface”, “point”, and “line & surface” classes (Fig. 1).

Geometry-Based Point Classification Algorithm

1. octree construction and outlier removal in P (as given in [10]);
2. computation of LGD for each point x 2 P (C.x/, TT.x/, or TN.x/) (Eqs. 1, 3

or 5) or its variants;
3. probabilistic point classification by spectral decomposition of LGD for each

point, and computation of saliency map for each scale, r (Eq. 9);
4. multi-scale point classification by averaging saliency maps across scales (Eqs. 8

or 9)
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5. visualization of feature classification using (a) juxtaposed views of point or glyph
rendering using saliency map, or (b) classification matrix of a specific feature
class.

5.2 Classification Matrix Visualization

We use a superimposed visualization of a classification matrix of a feature class
of two different LGDs. The classification matrix stores four sets of points which
have been labeled as the concerned feature class, by both the LGDs, or exclusively
by each of the LGDs, or by neither. The matrix rows pertain to the sets of points
classified by the first descriptor, and the columns are those by the second one.
Numerically, the classification matrix gives the size of these sets in its cells, and
here, we extend its use to visualizing the points belonging to each cell. We color
each of the four sets using different colors. We show the classification matrix
visualizations for line class in Figs. 5 and 6, to compare between C and TN , as well
as, between TT and TN , respectively.

Fig. 5 Classification matrix visualization of line-type features between two LGDs, C and TN . The
color mapping shows which LGD caused a point to be labelled as a line-type feature. LTN is the set
of points identified as line-type by TN and LC by C. The y-axis in the plot shows the percentage of
points identified as line-type, given by the sizes of the sets themselves or set intersections
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Fig. 6 Classification matrix visualization of line-type features between TT and TN . Color mapping
is similar to that in Fig. 5. LTN is the set of points identified as line-type by TN and LTT by TT

6 Experiments and Results

We compare LGDs (C, TT , and TN) and their classification outcomes to demonstrate
that choice of an appropriate LGD can improve line-type point classification
(Fig. 2). Comparing TT and TN shows the performance of two different LGDs
in classification, with a fixed LRF. Finally, comparing C and TN displays the
improvement of the outcomes in the classification when using the latter, over the
former. C is the state-of-the-art LGD used for airborne LiDAR point clouds.

We have used datasets (Table 1) of airborne LiDAR point cloudsa, and point
set geometry (for bridge)b to showcase the results of our chosen LGDs and
their classification outcomes. There are no datasets existent with ground truth
for geometry-based point classification. Hence, we have used simple manifold
datasetsc to showcase for preliminary results, only because the geometry in these
datasets is more predictable (i.e. visually verifiable) than the LiDAR datasets. Visual
comparative study of behavior and classification outcomes of various LGDs can be
better done on these datasets, even in the absence of ground truth for classification.

Experiments Apart from qualitative comparisons in juxtaposed views of point ren-
dering (Fig. 7) and glyph visualizations (Fig. 8), we have quantified points classified
as line-type features using classification matrices (Figs. 5 and 6). We have also
studied the influence of scale in LGD computation using tensor glyph visualization
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Fig. 7 Point rendering of the classification outcomes of LGDs for Regions 1–5 (left to right)
of Vaihingen benchmark datasets (airborne LiDAR point clouds). Here, images are juxtaposed
column-wise, for comparison

(Fig. 8b), and influence of diffusion velocity in computation of VLRF�AD (Fig. 9).
The default value of diffusion parameter ı is 0.16, for computing V , VLRF, VLRF�AD,
as has been used in [30]. Dataset-specific parameters are given in Table 1. For
point classification using algorithm by Keller et al. [10], we have used threshold
parameter, � D 0:5. For multi-scale approach, the radii of local neighborhood, used
as scales, are measured with respect to a normalized bounding box of the dataset.
The normalization of the bounding box gives a canonical view volume, which is a
cube of size 2 units and centered at (0,0,0), in R

3.

Overall Performance of TN in Point Classification We observe that TN captures
sharp features such as edges on smooth-feature, arches and railings in the bridge,
stadium field, etc. better than the covariance matrix (Figs. 5 and 7). However,
TN does not detect point-type features as well as TT (and C). The computational
complexity of TN is similar to that of C and TT . The better performance of TN
in line-feature detection can be explained by the tensor voting approach. V is
generated in the normal space which encodes local surface geometry better. V (or
VLRF) detects surface-type features well, as V is constructed in the normal space,
which captures local surface geometry better. {Note that all classification outcomes
considered in this work use the definition as provided in the case of the covariance



Local Geometric Descriptors for Multi-Scale Probabilistic Point Classification. . . 195

Fig. 8 Superquadric tensor glyph visualization of LGDs of P, for tensor representation at one of
the scales. The solid and dashed boxes highlight the sharp features (e.g., gabled roof, edges, etc.),
and undefined geometry (e.g. foliage), respectively. (a) C,TT, and TN for Region-3 and fan-disk at
r D rmin. (b) Region-1: C computed at rmin; rmax and multi-scale aggregate

matrix, C.} Upon anisotropic diffusion, these surface-type features are classified as
line-type features. Thus, owing to the “persistence” of line-type features in VLRF ,
the feature detection is more accurate in VLRF�AD, compared to that to C (or Cw or
CLRF). However, a noticeable shortcoming of TN is in detection of degenerate points
(junctions/corners), which is not as effective as that by TT or Cw. Since the point-
type features are not preserved during anisotropic diffusion, they tend to be detected
as weak line-type features, e.g. the corners (Fig. 1) and foliage (Fig. 8).

The plot comparing TN with C (Fig. 5) shows that TN detects more points as line-
type features than C. TN detects a significant percentage of points detected as line-
type features exclusively; and a larger percentage of the points detected as line-type
by C, is detected by TN as well. A very small percentage of points are detected as
line-type by C exclusively. Except in smooth-feature, TN detects as many line-type
features exclusively, as are detected by both TN and C. Similar results are observed
in the plot comparing TN with TT (Fig. 6), except that TT detects fewer line-type
features exclusively, compared to C.
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Fig. 9 (Top) Visualization of multi-scale aggregate of local maxima of the saliency map for line-
type (red) and point-type (blue) features. The likelihood of a point to be local maxima of line-type
saliency is used as saturation of red, and similarly, that of point-type saliency, as saturation of blue.
(Bottom) Effects of change in diffusion parameter ı when computing TN for Region-1. Default
value for all other experiments is ı D 0:16 [30]. Boxes show sharp features, such as gabled roof.
(a) Multi-scale aggregate of local maxima of line- (red) and point- (blue) type features overlaid on
LiDAR intensity map of Region 3, computed using C (left) and TN (right). (b) Increasing value of
diffusion value, at 0.08, 0.12, 0.16, and 0.20 (from left to right)

Why Does VLRF�AD Detect Line-Type Features Better? The classification out-
comes using V (or VLRF) are different from that of C (or Cw or CLRF) (Fig. 1).
However, they have certain patterns of correspondences, such as surface-type in
former are line-type in latter. These patterns are visible from both tensor shapes
and saliency maps (Figs. 1 and 8) and are better understood using the LRF-aligned
descriptors. They are attributed to the reversing of ordering of eigenvalues observed
when the LRFs of CLRF and VLRF align, i.e. (.�LRFV /i D 1�.�LRFC /.2�i/ for i D 0; 1; 2
given in Eq. (6)). Thus, a disc-shaped neighborhood (for surface-type features) in V
[.�LRFV /0  .�LRFV /1 � .�LRFV /2] is equivalent to cylindrical-shaped neighborhood
(for line-type features) in C [.�LRFC /0 � .�LRFC /1  .�LRFC /2]. Similarly, point- and
surface-type features in C are captured as point-type features in V . Additionally, the
classification outcomes of V “persist” through anisotropic diffusion in our proposed
LGD, VLRF�AD.

TT (and hence, C) and TN have similar computational complexity as, TT C TN D
Id (used in the definition of ball-tensor). The complexity of tensor voting is given as
O.dNl logN/ for N points in P 2 R

d [20]. Space requirements for all second-order
LGDs are O.Nd2/. The point-rendering using saliency maps is less computationally
expensive than the glyph-based visualization. Hence, we use point-rendering to
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analyze the dataset globally, and glyphs for local regions-of-interest. The latter is
specifically useful in finding misclassifications in a local region.

Juxtaposed Views Juxtaposed views of the tensor glyph visualizations show the
combined differences in tensor shapes and the saliency maps, across the instances;
e.g., the line-type features on sharp edges in gabled roof and fan-disk (Fig. 8a)
clearly are more cylindrical in TN compared to that of TT and C. While comparingC
and TN , we need to consider the orientation of the glyphs, in addition to the color and
size, since they are not LRF-aligned. However, for comparison of LRF-aligned CLRF

and VLRF � ad, we can ignore comparisons of glyph orientation. Glyph rendering
across different scales as well as using multi-scale aggregate (by averaging unit
eigenvectors and normalized eigenvalues across scales) do not show any perceivable
differences in LiDAR datasets (Fig. 8b). Additionally, glyph rendering and saliency
maps help the user to decide some of the user-defined parameters. Our method
requires several user-defined parameters, namely, range of scale, number of scales,
and diffusion parameter, similar to [10, 30].

Multi-Scale Probabilistic Feature Classification Multi-scale aggregation of
saliency maps, by averaging, has shown more accurate classification of surface-
and line-type features, as the scale-wise differences are implicitly taken into
consideration. As can be seen in the plot (Fig. 10), the number of points classified
in each feature class does not change considerably across scales, for different LGDs
(C, TT , TN), We chose the fan-disk dataset here as it has considerable distribution
of points across the feature classes. We also observe that the surface-type features

Fig. 10 (Left) The plot shows the variation in percentage of points detected in each feature class
using each descriptor, in each scale, for fan-disk. From left-to-right, three columns represent rmin,
ravg, rmax, in that order; for each LGD. Columns 1–3 correspond to C, 4–6 to TT , and 7–9 to
TN . With minor variations in classification across scales for each LGD, TN detects more line-
type features (red) comparatively. (Right) Point rendering of buildings (blue), foliage (green),
road (white) of a region of interest of LiDAR point cloud of Region-4 of Vaihingen dataset, and
preliminary results of line features (red) extracted using feature graph in [10]. Note that sharp
features in gabled roofs can be observed in LGD TN , unlike in C
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which are misclassified as line-type features, get correctly classified in higher
scales (Fig. 8b). In the case of LiDAR point clouds, multi-scale aggregation of local
maxima of the saliency maps for line- and point-type features from TN do not give
useful information (Fig. 9), as is expected in tensor voting.

Anisotropic Diffusion The change in diffusion parameter influences the outcomes
of line-type feature classification in TN , e.g. gabled roofs in the Vaihingen dataset
highlighted as the line-type features (black boxes in Fig. 9). At lower values of
diffusion velocity parameter, ı, points are over-expressed as line-type features, and
increase of ı causes most of those features to increasingly be classified as point-type.
Outcomes at higher values of ı appear to be similar to those of TT .

Weighted Covariance Analysis TT (or Cw) captures sharp and point-type features
better than C in two different instances (Figs. 1, 7, and 8). Firstly, TT detects sharp
features as strong point-type ones; whereas C captures them as weak line-type
features, e.g. edges in fan-disk dataset (Fig. 8). Capturing sharp features as point-
type features by TT (or Cw) need not be considered inaccurate as these points can be
treated as degenerate points owing to being intersection points of multiple planes.
Secondly, the points in the foliage of trees in Vaihingen dataset (Fig. 8) are captured
as point-type features, owing to random orientation of normals, by TT (or Cw),
whereas both C and TN detect them as a mixture of line- and point-type features.
Foliage is considered as a crowd of multiple objects, where TT (or Cw) resolves the
shape of local neighborhood at the point as spherical. However, the use of centroid
in C gives inaccurate result in resolving the same, due to the random distribution of
the points in the neighborhood. These two observations for TT (or Cw) are attributed
to both modifications; the point-based analysis (as opposed to the centroid-based)
of the local neighborhood as well as weighted contributions of neighbors (i.e. using
weights inversely proportional to the distances of neighbor to the point).

7 Conclusions

Here, we have studied LGDs of a point cloud for LiDAR datasets, for geometry-
based point classification. We have compared two LGDs with the conventionally
used covariance matrix, namely, an anisotropically diffused voting tensor, TN ,
and a weighted covariance matrix, TT . TN performs better extraction of line-type
features in point clouds than the conventionally used C; e.g. the gabled roofs in the
Vaihingen dataset are detected (Fig. 10). TT , enhances point-type features, however
we reserve its in-depth study as future work. For comparing the classification
outcomes accurately, we have introduced variants of these LGDs by aligning their
LRFs. Expressing the LGDs as positive semidefinite tensors has enabled us to use
tensor field techniques on the LGDs, e.g. visualization for qualitative comparison.
We have introduced a probabilistic multi-scale saliency map based on its LGDs
for geometric classification. We have used superquadric tensor glyphs for visually
representing the LGDs of a point cloud. The visualizations have enabled us to
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compare and qualitatively analyze the behavior of these LGDs, e.g. shape and
orientation.

Our proposed methods have a limitation of user-defined parameters for multi-
scale computation and diffusion parameter, as its predecessors [10, 30]. While these
parameters give the user the control to bring out the best outcomes upon visual
inspection, it would help the user to have a default setting, which can be automated.
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Part III
Diffusion Modeling and Microstructure



Diffusion MRI Anisotropy: Modeling, Analysis
and Interpretation

Rutger H.J. Fick, Marco Pizzolato, DemianWassermann, and Rachid Deriche

Abstract The micro-architecture of brain tissue obstructs the movement of diffus-
ing water molecules, causing tissue-dependent, often anisotropic diffusion profiles.
In diffusion MRI (dMRI), the relation between brain tissue structure and diffu-
sion anisotropy is studied using oriented diffusion gradients, resulting in tissue-
and orientation-dependent diffusion-weighted images (DWIs). Over time, various
methods have been proposed that summarize these DWIs, that can be measured
at different orientations, gradient strengths and diffusion times into one “diffusion
anisotropy” measure. This book chapter is dedicated to understanding the similari-
ties and differences between the diffusion anisotropy metrics that different methods
estimate. We first discuss the physical interpretation of diffusion anisotropy in terms
of the diffusion properties around nervous tissue. We then explain how DWIs are
influenced by diffusion anisotropy and the parameters of the dMRI acquisition itself.
We then go through the state-of-the-art of signal-based and multi-compartment-
based dMRI methods that estimate diffusion anisotropy-related methods, focusing
on their limitations and applications. We finally discuss confounding factors in the
estimation of diffusion anisotropy and current challenges.

1 Introduction

In brain imaging, diffusion anisotropy is a manifestation of tissues obstructing the
otherwise free diffusion of water molecules. Brain tissues with different structural
make-ups, e.g. healthy or diseased, influence the diffusion differently [15, 51].
Relating the observed diffusion with the underlying tissue structure has been one of
diffusion MRI’s (dMRI’s) main challenges. This challenge can be seen as a variant
of the work Can One Hear The Shape of a Drum by Kac [40]. Basser et al. [14]
were the first to determine the voxel-wise orientational dependence of diffusion
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in biological tissue by fitting a tensor to the signals of non-collinearly oriented
diffusion gradients [63]. For the first time, this representation made it possible to
describe both the tissue orientation and the “coherence” of the underlying tissue by
means of rotationally-invariant indices such as the Fractional Anisotropy (FA) [12].
Since then, a plethora of dMRI models have been proposed to more accurately relate
tissue properties to the measured signal by using less or different assumptions on the
tissue configuration or increasing the requirements of the signal acquisition [see e.g.
4, 8, 9, 16, 42, 43, 55, 68, 72].

This chapter is meant as a review of current methods that either directly
estimate diffusion anisotropy measures or anisotropy-related tissue properties. We
restrict ourselves to diffusion anisotropy as a property of the overall diffusion
signal (such as FA); anisotropy as a property of the dispersion of diffusion micro-
environments; and anisotropy as a property of the micro-environment itself. In the
latter two cases, we view a micro-environment as the diffusion profile of a single
axon and its immediate surroundings. Using this definition, the signal measured
from a bundle of axons can be seen as an ensemble of micro-environments,
each having their own orientation and signal contribution to the overall signal.
As an example of a method that estimates this micro-environment dispersion, we
include the Neurite Orientation Dispersion and Density Imaging (NODDI) [73].
To describe anisotropy as a property of one micro-environment, we include the
Spherical Mean Technique [42]. Finally, as diffusion anisotropy is a consequence
of diffusion restriction and hindrance, we will put special emphasis on the influence
and modeling of the diffusion time. This angle of approach is timely, as STimulated
Echo Acquisition Mode (STEAM) pulse sequences have recently allowed the in
vivo exploration of long diffusion times [25, 32], verifying the existence of time-
dependent diffusion even at low b-values [32].

The structure of this chapter is as follows: In Sect. 2, we first provide a physical
interpretation on what diffusion anisotropy is. In Sect. 3 we clarify the mechanics
of a standard Pulsed Gradient Spin Echo (PGSE) sequence and how the measured
signal is influenced by the tissue. In Sect. 4, we describe the most relevant techniques
that have been proposed to estimate and interpret diffusion anisotropy. We describe
the differences between different signal-based anisotropy measures and relate
them to axon dispersion-related metrics. We then discuss the time-dependence of
anisotropy measures in Sect. 5. In this last section, we also go into the diffusion-
time-dependence of diffusion restriction in the extra-axonal space [17, 52]. Finally,
we discuss challenges and confounding issues that these methods face in Sect. 6.

2 Diffusion Anisotropy: The Phenomenon

The characteristics of diffusion anisotropy in the brain depend on how the diffusion
process is restricted or hindered by the boundaries of the nervous tissue. To get
an idea of this relationship, we first discuss the general concept of individual
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spin movement and the Ensemble Average Propagator (EAP) in the presence of
restricting boundaries in Sect. 2.1. We then discuss to a greater extent the variety
and complexity of the nervous tissue in Sect. 2.2.

2.1 Diffusion and the Ensemble Average Propagator

In a fluid, water particles follow random paths according to Brownian motion [28].
When we consider an ensemble of these particles in a volume, we can describe their
average probability density P.rI �/ that a particle will undergo a displacement r 2
R
3 during diffusion time � 2 R

C. This quantity is often referred to as the diffusion
propagator or the ensemble average propagator (EAP) [44]. In a free solution, the
EAP can be described by a Gaussian distribution as

P.rI �/ D 1p
4�D�

e� krk2
4D� (1)

where D is the diffusion coefficient. Equation (1) shows that the likelihood that
particles travel further increases when either D or � increases. While keeping D
constant, this concept can be made clear using isocontours such that P.rI �/ D c
with c > 0. Figure 1 shows the same isocontour for diffusion times �1 < �2 <

�3 in four schematic representations of different tissue types. As can be seen
by the growth of the isocontours, using longer � increases the likelihood that
particles travel further. The shape of the isocontour depends on the structure of
the surrounding tissue. From left to right, in free water, where Eq. (1) is a good
approximation, particles are unrestricted and travel furthest with isotropic, Gaussian
probability. Next, at a coarse diffusion scale, gray matter tissue can often be seen
as generally unorganized and hinders diffusion equally in all directions. For this
reason, these tissues also produce isotropic contours, but smaller than those in free
water. In axon bundles, here illustrated as gray lines, axons are mostly aligned with
the bundle axis. Particle movement is restricted perpendicular to this direction and is
relatively free along it, causing anisotropic isocontours [46, 50, 64]. Finally, in areas
where two bundles cross there is a mix between the isocontours of each bundle.

Note that we intentionally drew the isocontours for �1 more isotropic than those
of �3 in the right two white matter tissues. For shorter � , particles have not had
much time to interact with surrounding tissue, resulting in a similar probability that
a particle travels in any direction. The isocontours for very short � will therefore
always be isotropic. For longer � , particles have had more time to interact with the
tissue, either traveling far along a relatively unrestricted direction, or staying close
to its origin along a restricted direction, resulting in more anisotropic profiles [62].
When the tissue can be seen as axially symmetric (i.e. in a single bundle), this
means that the perpendicular diffusivity D? becomes �-dependent and decreases
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as � increases [22]. Different tissue types will induce different �-dependence of the
EAP [53, 54].

2.2 Microstructure of the Brain: The Complicated Reality

Images such as those in Fig. 1 are useful to illustrate general properties of different
brain tissues. However, it is important to realize that these are extreme simplifica-
tions. Strictly speaking, the terms gray and white matter are only valid in the context
of gross anatomy. Gray matter is only distinguished from white matter, in that gray
matter contains numerous cell bodies and relatively few myelinated axons, while
white matter is composed chiefly of long-range myelinated axon tracts and contains
relatively very few cell bodies. The brain also contains glial cells of various kinds
who support the functioning of neurons.

In white matter bundles, while axons are often near-tubular, their diameter,
amount of myelination and the space between them varies significantly. Water
particles diffusing in different parts of this tissue, e.g. the intra- or extra-axonal
space, are restricted in ways that are characteristic of that tissue type. However,
the diffusion process can only be probed over large ensembles of tissues. This
is illustrated by the fact that axon diameters in humans range between 0.2 and
2�m [1, 49], while the imaging resolution of diffusion MRI is around a millimeter.
Appropriately dealing with the heterogeneity of the tissue and its complex influence
on water diffusion is one of the big challenges of diffusion MRI. In the next section,
we will go into more detail on how diffusion MRI can be used to measure a signal
that is related to the EAP.

Free Water Gray Matter Coherent Bundle Crossing Bundles

τ1τ2
τ3

Fig. 1 Schematic representations of different tissue types with their corresponding P.r; �/
isocontours for different diffusion times �1 < �2 < �3. In the “Free Water” image the blue curves
just indicate the presence of water, while the grey lines in the right three images represent tissue
boundaries. Longer � lets particles travel further, indicated by the smaller blue isocontour for �1
to the largest red isocontour for �3. The shape of the isocontour depends on the structure of the
surrounding tissue. Image inspired by Alexander [3]
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3 Measurements of Diffusion with Diffusion-Weighted MRI

The estimation of diffusion anisotropy can be thought, in first approximation, as the
assessment of the amount of preference that the diffusion process has for a specific
spatial direction, compared to the others, in terms of diffusivity. Therefore, this
assessment requires sensing the diffusion signal along multiple spatial directions,
regardless of the representation adopted to describe the signal itself. In MRI, this is
typically done by acquiring a collection of images of the target object, e.g. the brain.
Each image is acquired when the experimental conditions within the magnet’s bore
determine a specific diffusion-weighting along the selected spatial direction: this is
a Diffusion-Weighted Image (DWI). The diffusion-weighting is globally encoded
by the b-value [46], measured in s=mm2, a quantity that is the reciprocal of the
diffusivity, D (mm2=s). The intensity of the diffusion-weighting, i.e. the b-value, is
determined by the acquisition setup.

The most common type of acquisition is the Pulsed Gradient Spin-Echo sequence
(PGSE) [60], where a DWI is obtained by applying two diffusion gradients with
intensity G D kGk (T=m) and duration ı (s) to the tissue, separated by the
separation time � (s). We illustrate this sequence in Fig. 2. The resulting signal
is ‘weighted’, along the applied gradient direction, with b-value [60]

b D �2G2ı2
�

� � ı
3

�

(2)

δ

Δ

δ

TE/2 TE/2

90°

G

echo

RF

diffusion
gradient

signal
FID

time

time

time

180°

G

Fig. 2 Schematic illustration of the pulsed gradient spin echo sequence (PGSE). The sequence is
represented as the time evolution, i.e. occurrence and duration, of radio-frequency pulses (RF) in
the first line, diffusion gradient pulses in the second line, and measured signal in the third line. The
illustration reports the 90ı and 180ı RF pulses separated by half the echo-time TE, two diffusion
gradient pulses of strength G and duration ı, separated by a time�, the free induction decay (FID)
and echo of the measured signal
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where � is, when measuring water diffusion, the nuclear gyromagnetic ratio of the
water proton 1H. The measurement of the diffusion signal is directly related to the
concept of attenuation. Indeed, in the presence of diffusion, the signal intensities
S.b/ of the voxels of a DWI are lower than the corresponding intensities when
the image is acquired without diffusion-weighting S0 D S.0/. Along the selected
gradient direction, the quantity E.b/ D S.b/=S0 expresses, for each voxel, the
attenuation of the diffusion-weighted signal. In the absence of restrictions to the
diffusion process, the attenuation is [60]

E.b/ D S.b/

S0
D e�bD; (3)

which expresses an exponential attenuation profile, as is illustrated in Fig. 3a.
In the case of the PGSE sequence, this attenuation phenomenon can be inter-

preted as the result of a differential mechanism. The sequence, shown in Fig. 2,
starts with a 90ı radio-frequency pulse after which it is possible to measure a signal,
namely Free Induction Decay (FID), that is related to the macroscopic spins’ net
magnetization. After a time TE/2, with TE being the echo-time, a second 180ı
radio-frequency pulse has the effect of generating an echo of the signal whose peak
is at time TE, corresponding to the end of the sequence [34]. The first diffusion
gradient pulse is applied between the two radio-frequency pulses. Here, we assume

Fig. 3 The effect of b-value, q-value and diffusion time on the signal attenuation when diffusion
is unrestricted or restricted by the presence of a barrier (a cylinder). The graphs report the signal
attenuations along a direction parallel to the restriction (a,b)—represented by two black barriers in
the schematic image—and along the perpendicular direction (c,d), where the diffusion process is
restricted. The attenuations are reported as function of the b-value (a,c) with diffusion time �2, and
q-value (b,d) for increasing diffusion times �1 < �2 < �3. Dots indicate the attenuation measured
at b D 1000 s=mm2. Note that if we were to plot the single cylinder signal attenuation in d in
log-scale we would find diffraction patterns [19], but in practice these are never visible because
nervous tissues contain distributions of axon diameters, whose diffraction patterns average out to
a smooth line
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the narrow gradient pulse condition ı � �, which implies that spins are static
during the application of the gradient pulses [63]. Under this assumption, after the
first gradient pulse, a spin located at position r1 is subject to a phase accumulation

1 D �ıG � r1. After a time � from the start of the first gradient pulse, and after
the 180ı radio-frequency pulse, a second gradient pulse of equal magnitude and
duration to the first is applied. If the spin has moved to a position r2 the phase
accumulation during the second pulse is 
2 D �ıG � r2. However, the 180ı radio-
frequency pulse has the effect of changing the sign of the second gradient pulse.
Therefore, at the end of the sequence, i.e. at the echo-time TE, the spin has acquired
a net phase shift


 D 
2 � 
1 D �ıG � .r2 � r1/ D �ıG � r (4)

which is null in the case the spin remained static, i.e. r D r2 � r1 D 0.
The signal attenuation takes into account an ensemble of spins and can be related

to the ensemble average propagator (EAP), P.r; �/, via a Fourier relationship under
the q-space formalism [18, 63]

E.q; �/ D
Z

R3

P.r; �/e j2�q	rdr (5)

where q is the wave vector and � is diffusion time, which for the PGSE sequence
are expressed as

q D �ıG
2�

and � D � � ı=3: (6)

These quantities influence differently the diffusion-weighting, i.e. the b-value.
Indeed, the wave frequency q D kqk is expressed in mm�1 and is the reciprocal
of the spin displacement r D krk expressed in mm. As such, by increasing the
measured spatial frequency q, we can obtain a higher resolution of its inverse Fourier
transform, the diffusion propagatorP.r; �/ described by r. In addition, the diffusion
time � expresses the time interval during which spins are allowed to diffuse before
measurement. A longer diffusion time allows the spins to move a longer distance
causing, in the absence of restrictions to the diffusion process, a larger net phase
shift, i.e. a stronger attenuation of the signal. Therefore, expressing the diffusion-
weighting in terms of q and � can provide useful insights on the signal nature. In
the absence of restrictions to the diffusion process, Eq. (5) has a closed form. This
is obtained by substituting q and � of Eq. (6) into the formulation of the b-value
expressed in Eq. (2), such that b D 4�2q2� and Eq. (3) becomes

E.q; �/ D e�4�2q2�D (7)
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which expresses a Gaussian attenuation profile as function of q. However, Eqs. (3)
and (7) are valid when the diffusion process can be considered unrestricted, e.g.
when the movement of spins is not obstructed by the presence of a barrier. In the case
of restricted diffusion, for instance when the signal is measured along a direction
perpendicular to a barrier, these equations are no longer valid.

Unrestricted and restricted scenarios are depicted by the schematic representation
in the left side of Fig. 3, where the diffusion process occurs between two parallel
barriers, i.e. the restriction, and where two arrows represent the measurement
directions parallel and perpendicular to the restriction. The figure also illustrates the
signal attenuation in the case of parallel, unrestricted diffusion (Fig. 3a,b), and in the
case of perpendicular, restricted diffusion (Fig. 3c,d). The unrestricted attenuations
are obtained with Eqs. (3) and (7), whereas the restricted ones are simulated as the
diffusion signal attenuation generated within an ensemble of cylinders along the
direction perpendicular to the cylinders’ axes [19]. Moreover, the curves in Fig. 3a
and c are reported as function of the b-value with diffusion time �2, whereas the
curves in Fig. 3b and d are functions of the q-value and are reported for increasing
diffusion times �1 < �2 < �3. In the graphs, points of each curve, corresponding to
b D 1000 s=mm2, are highlighted with a dot.

Along the unrestricted direction (Fig. 3a,b) the attenuation values, indicated by
dots, are lower than the corresponding ones along the restricted direction (Fig. 3c,d).
Indeed, when diffusion is restricted by the presence of the barrier, the spins are
subject to a smaller net displacement and the signal attenuates less.

The choice of q and � to obtain a certain diffusion-weighting, i.e. a specific
b-value, assumes different relevance in terms of signal attenuation depending on
whether diffusion is restricted or not. In the absence of restrictions (Fig. 3a,b), an
increase of q-value or diffusion time always attenuates the signal, and points with
different q and � , but with same b-value, render the same amount of attenuation
(Fig. 3b). However, when diffusion is restricted (Fig. 3c,d), an increase of the
diffusion time � implies letting the spins diffuse a longer distance with the
consequence of experiencing more restriction. In this case, the Gaussian attenuation
expressed by Eq. (7) is not longer valid. Indeed, different combinations of q and �
render different non-Gaussian profiles of signal attenuation, and points with same
b-value—the dots of Fig. 3d—correspond to different attenuations.

The estimation of diffusion anisotropy, based on the diffusion signal attenuation
along different gradient directions, depends on the chosen experimental parameters,
especially q and � . Indeed, different sets of parameters lead to different signal
attenuations—depending on the underlying diffusion process—and consequently
to different measurements of anisotropy. Ideally, a complete characterization of
anisotropy would require the measurement of the diffusion signal attenuation for
many gradient directions, q-values, and diffusion times � . However, the optimal
sampling is still under debate. In practice, with reference to diffusion anisotropy, the
choice of how to sample the diffusion signal depends on the application and on the
chosen signal representation. For instance, in DTI it is common practice to measure
only one sample, i.e. one b-value, per gradient direction [47] as illustrated in Fig. 4.
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Fig. 4 Schematic for different types of acquisition schemes. DTI schemes are typically acquired
at a low gradient strength, typically b < 1000s=mm2, for a minimum of 6 gradient directions.
HARDI typically uses higher gradient strengths, typically b > 2000s=mm2 with over 40 gradient
directions. Multi-shell uses DTI and HARDI shells for a given diffusion time, and finally q� -
acquisitions are basically multi-shell acquisitions for a range of diffusion times

However, with High Angular Resolution Diffusion Imaging (HARDI) the number
of directions—typically above 40—and the b-value is considerably increased
to obtain a signal representation with a higher angular resolution [69]. Other
signal representations require signal acquisition at different diffusion-weightings.
A common choice, namely multi-shell, consists in acquiring different q-shells while
fixing the diffusion time. Each shell represents a collection of samples in the three-
dimensional space with the same q-value. These samples can be imagined as lying
on a sphere, as shown in Fig. 4, and it is convenient to distribute them uniformly
on the spherical surface to obtain an optimal spatial coverage. This concept can be
expanded among shells such that all of the acquired samples lie on different non-
collinear directions [20]. The multi-shell concept can be extended to �-shells, called
a q�-acquisition [30], since nowadays there exist signal representations that exploit
different values for both q and � . In this case, a complete q-shell scheme—with
samples distributed along different gradient directions and with different diffusion-
weightings—is acquired for each desired diffusion time.

4 The Inter-Model Variability of Diffusion Anisotropy

We now return to the metric that is most commonly used as a marker for changes
in tissue microstructure: diffusion anisotropy. Simply meaning “deviation from
diffusion isotropy”, different interpretations of diffusion anisotropy have been
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proposed using different acquisition requirements and mathematical underpin-
nings [12, 42, 55, 68]. Out of these, the clinical applications of Fractional Anisotropy
(FA) [12] of the Diffusion Tensor Imaging (DTI) model [14] has been most widely
explored. Changes in FA have been related to brain diseases such as ischemia,
multiple sclerosis, trauma, brain tumors and many more [see e.g. reviews by 7, 59].
For this reason, FA is seen as a “potential biomarker” for these disease patterns,
where biomarker is a portmanteau of “biological marker” [61]. However, the fact
that FA is sensitive to all these processes also means that it is specific to none of
them.

Diffusion anisotropy measures, as a rule of thumb, always have the following
three properties:

• They are rotationally invariant, i.e., insensitive to rotations.
• They are normalized, with zero being the lowest measure for diffusion anisotropy

and one being the highest.
• They somehow describe “deviation from diffusion isotropy”.

The last point is intentionally left open to interpretation, which is exactly
the point we are making in this section. To illustrate this, we discuss seven
different anisotropy measures; Fraction Anisotropy (FA) [12], Relative Anisotropy
(RA), Kurtosis Fractional Anisotropy (KFA), Generalized Fraction Anisotropy
(GFA) [68]; Propagator Anisotropy (PA) [55]; Orientation Dispersion Index
(ODI) [73]; and microscopic Fractional Anisotropy (�FA) [42]. All of these except
ODI and �FA are signal-based metrics for diffusion anisotropy. We added these
two to illustrate that the concept of diffusion anisotropy transcends signal-based
metrics.

We start this section by first detailing the data of the Human Connectome
Project [58] that we use to illustrate different diffusion anisotropy measures in
Sect. 4.1. We then describe the inter-model variability of the mathematical definition
and estimation of signal-based diffusion anisotropy in Sect. 4.2. We then detail
anisotropy as a property of axon dispersion of micro-environments (ODI) in
Sect. 4.3, and as a property of one micro-environment (�FA) in Sect. 4.4. The
anisotropy measures of all presented techniques are qualitatively and quantitative
compared in Figs. 5, 6 and 7.

4.1 Data Set Description and Adopted Notation

We use the MGH Adult Diffusion Data of the Human Connectome Project to
illustrate different measures of diffusion anisotropy [5, 33, 45, 58]. This data set
was acquired at particularly high b-values {0, 1000, 3000, 5000, 10000} s=mm2

with {40, 64, 64, 128, 256} directions, respectively. The diffusion time and pulse
separation time in this data are ı=� D 12:9=21:8ms with 1:5 	 1:5 	 1:5mm3

resolution and TE=TR D 57=8800ms.
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GFAQ-ball GFAMAPMRI 1-ODINODDI

FADTI PADTI PAMAPMRI μFASMT

Fig. 5 Visualization of various normalized measures describing diffusion anisotropy, where the
corresponding model is given in the subscript. In the top row, we show Fractional Anisotropy
(FA) and Propagator Anisotropy (PA) of Diffusion Tensor Imaging (DTI), PA by Mean Apparent
Propagator (MAP)-MRI and micro-FA by Spherical Mean Technique (SMT). In the bottom row,
we show Generalized Fractional Anisotropy (GFA) by Q-ball Imaging and by MAP-MRI and
finally one minus the Orientation Dispersion Index (ODI) by Neurite Orientation Dispersion and
Density Imaging (NODDI). The complement of ODI is shown for overall coherence, since high
ODI normally indicates low anisotropy

Fig. 6 Box-plots of anisotropy measures in estimated in different regions of interest, indicated as
the different colors in the coronal brain slice in the right corner. We illustrate anisotropy in free
water (CSF), a single bundle (Corpus Callosum) and a crossing area (Centrum Semiovale). It can be
seen that the same metric for different techniques, or different metrics for the same technique can
result in different estimates of anisotropy. Note that the estimates of �FA (the most-right metric
per group in pink) in the crossing and single bundles are so consistent that the boxplots appear
almost flat
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Fig. 7 Orientation Distribution Functions (ODFs) for DTI, Q-ball, MAPMRI, the Watson distri-
butions of NODDI and Fiber Orientation Distributions (FODs) of SMT in an area where it is known
there are crossing bundles. Each method has its corresponding anisotropy measure as background
texture. It can be seen that DTI finds an average orientation, where Q-Ball, MAPMRI and SMT
find crossing structures. The FODs, being the result of a deconvolution, show sharper peaks, and
more consistent crossings than the ODF techniques. It is important to realize that while NODDI
separates the signal contributions of intra- and extra-axonal diffusion, its dispersion index jointly
describes the spread of both of these compartments, and produces very similar ODFs as DTI
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4.2 Diffusion Anisotropy as a Signal Property

In this section, we discuss five different anisotropy measures known as Fraction
Anisotropy (FA) [12], Relative Anisotropy (RA), Kurtosis Fractional Anisotropy
(KFA) [39], Generalized Fraction Anisotropy (GFA) [68] and Propagator
Anisotropy (PA) [55].

Signal-based models directly estimate the EAP P.rj�/ from the measured signal
attenuation E.q; �/, using the Fourier relationship in Eq. (5). Notice that P.rj�/ is a
conditional probability density for diffusion time � , as the Fourier transform is only
over the q; r space. We will interchangeably use real displacement vector r D ru
with its distance and direction r 2 R

C;u 2 S
2 and q-space vector q D qg with its

q-space distance and gradient orientation q 2 R
C; g 2 S

2. The following anisotropy
measures are then defined as some difference or ratio between the isotropic and
anisotropic parts of P.rj�/.
Relative and Fractional Anisotropy Starting with one of the oldest measures
for diffusion anisotropy, Relative Anisotropy (RA) and Fractional Anisotropy
(FA) [12] are specific for the DTI model [14]. DTI solves the Fourier transform
by generalizing the Stejskal-Tanner equation for unbounded media [63] to three
dimensions:

E.b/ D exp.�bgTDg/ or E.q; �/ D exp.�4�2q2�gTDg/ (8)

with D a 3 	 3 symmetric positive-definite diffusion tensor. Notice that Eq. (8) is
Gaussian over q and exponential over � , which will be important in studying time-
dependence in Sect. 5. FA describes fraction of the “magnitude” of D that we can
ascribe to anisotropic diffusion in terms of its eigenvalues f�1; �2; �3g, whereas RA
divides the magnitude of the anisotropic part by that of the isotropic part as

FA D std.�/

rms.�/
D
r
1

2

p
.�1 � �2/2 C .�2 � �3/2 C .�3 � �1/2

q
�21 C �22 C �23

(9)

RA D std.�/

mean.�/
D 3

p
.�1 � �2/2 C .�2 � �3/2 C .�3 � �1/2

�1 C �2 C �3 : (10)

Both measures are zero when the medium is isotropic, but only FA is normalized
between zero and one, which likely led to the prevalence of FA over RA in the
community. The interpretation of FA has known limitations as DTI cannot represent
crossing tissue configurations, but finds some average, Gaussian approximation that
best fits the overall signal [14]. We illustrate this by estimating DTI’s Orienta-
tion Distribution Function ODF.uj�/, representing the probability density that a
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diffusing particle will travel along direction u by marginalizing r as

ODF.uj�/ D
Z 1

0

P.ruj�/r2dr (11)

where r2 is the Jacobian of the radial integration to ensure that the integral of the
ODF is unity [2, 66]. Notice that Eq. (11) is general, and can be used for any method
that estimates P.ruj�/. For instance, Eq. (11) can be given analytically for DTI as

ODFDTI.u/ D 1

4�jDj 12 .uTD�1u/ 32
: (12)

We show DTI’s ODFs in a crossing area in Fig. 7, where it can be seen that round
profiles with low FA are found where other methods detect crossings.

Kurtosis Fractional Anisotropy In Diffusion Kurtosis Imaging (DKI) [39] the
non-Gaussian aspects of the signal attenuation are represented using the Taylor
expansion. Using a summation instead a matrix product like in Eq. (8), DKI
describes the signal attenuation as

E.b/ D exp.�b
3X

i;j

gigjDij C b2

6
D
2

3X

i;j;k;l

gigjgkglWijkl C O.b3// (13)

where D is the mean diffusivity with Diffusion Tensor D and non-Gaussian Kurtosis
Tensor W. In complete analogy to FA, the Kurtosis Fractional anisotropy is defined
as

KFA D std.W/
rms.W/

: (14)

KFA therefore represents the anisotropy of the non-Gaussian aspects of the signal.
DKI-based metrics have been shown to be more sensitive to pathology that DTI-
based ones [21] and variations of its definition in terms of directional variation have
been explored [35].

Generalized Fractional Anisotropy GFA [68] was proposed for High Angular
Resolution Diffusion Imaging (HARDI) techniques [69], that use the Funk-Radon
Transform (FRT) to estimate ODFs capable of describing multiple axon direc-
tions [70]. It is noteworthy that the only difference between DTI and HARDI is
that in HARDI more gradients g are measured at a higher b-values to gain a better
angular resolution of the ODF, see Fig. 4. This means that still no radial information
is known of P.ruj�/, and Gaussian decay over r is assumed to estimate the ODF in
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Eq. (11). For any ODF, the GFA is given as

GFA D std.ODF/

rms.ODF/
D
s

n
Pn

iD1.ODF.ui/ � hODF.u/i/2
.n � 1/Pn

iD1ODF.ui/2
(15)

where ODF.u/ is the value of the ODF in direction u, n is the number of evaluated
ODF directions and hODF.u/i is the mean ODF intensity. We show Q-ball Imaging
ODFs [2, 26, 68] in the top-right of Fig. 7, where now crossing structures can be
seen. Though, it must be said that FRT has been applied to a variety of HARDI
methodologies, a selection of which is summarized in Tristan-Vega et al. [67].
Moreover, notice that GFA intensities in the crossing and single bundles areas are
more similar than seen with DTI’s FA in the top-left, but the overall intensities of
GFA and FA are different. We illustrate this by comparing estimated anisotropy
intensities in different ROIs, for different measures and techniques in Fig. 6. It can
be seen that the same metric for different techniques, or different metrics for the
same technique can result in different estimates of anisotropy.

Propagator Anisotropy PA was proposed for the multi-shell, Mean Apparent
Propagator (MAP)-MRI technique [55]. MAP-MRI can be seen as a generalization
of DTI, and allows for the estimation of three-dimensionalP.ruj�/, where now both
restricted (non-Gaussian) diffusion over r and crossing axons can be represented.
MAP-MRI is not unique in this respect, as a plethora of multi-shell techniques
have been proposed for this purpose [See e.g. 10, 27, 37, 56], but MAP-MRI’s
formulation allows for easy estimation of a large variety of q-space properties using
efficient regularization [31]. PA is defined as a measure of dissimilarity between
the reconstructed P.rj�/ and its closest isotropic approximation Piso.rj�/. First, the
inner product between two EAPs is defined as

hP.rj�/Piso.rj�/i D
Z

R3

P.rj�/Piso.rj�/dr: (16)

The similarity between two propagators is measured as an angular measure of
covariance in analogy with the vector product [11]:

cos 	PA D
s

hP.rj�/Piso.rj�/i
hP.rj�/P.rj�/ihPiso.rj�/Piso.rj�/i : (17)

PA is then defined using the angular dissimilarity measure sin 	PA D
q
1 � cos 	2PA

and scaling function �.t; �/ as

PA D �.sin 	PA; 0:4/ with �.t; �/ D t3�

1 � 3t� C 3t2� : (18)
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where we note that scaling parameter � D 0:4 was chosen by Özarslan et al. [55]
to yield “the desired level of contrast in real images”. PA can be estimated for any
method that reconstructs P.rj�/. For instance, for DTI it is given as

cos 	2PA-DTI D
8u30uxuyuz

.u2x C u20/.u
2
y C u20/.u

2
z C u20/

(19)

where the displacement is given as a function of DTI’s eigenvalues asfux; uy; uzg Dp
2�f�1; �2; �3g [13], and u0 is DTI’s nearest isotropic propagator [55]. We show

PAMAPMRI and PADTI in Figs. 5 and 6, where this measure indeed seems to show
good contrast between isotropic, crossing and single bundle tissues.

4.3 Anisotropy as Orientation Dispersion
of Micro-Environments

As the only multi-compartment model that we consider in this chapter, the neurite
orientation dispersion and density imaging (NODDI) model [73] parameterizes
diffusion anisotropy as the dispersion of the diffusion signal of individual axon
segments around a central bundle axis. In NODDI, axons as are represented as
sticks—cylinders with zero radius and parallel diffusivity �k—and are dispersed
according to a Watson distribution W.;�/, where  is the concentration parameter
that is inversely related to axon dispersion, and � 2 S

2 is the bundle direction.
NODDI also separates the signal contribution of the Cerebrospinal Fluid (CSF) as
an isotropic Gaussian with diffusivity Diso (i.e. a Ball) and the hindered extra-axonal
compartment—the diffusion directly around the axons—as an axially symmetric
Tensor (i.e. a Zeppelin) with parallel and perpendicular diffusivity �ext

k and �ext
? . The

overall signal representation is then

ENODDI
Watson D fCSF

Ball
‚������…„������ƒ
Eiso.DCSF/

„������������ƒ‚������������…
CSF

C
Watson
‚���…„���ƒ
W.;�/ �S2

2

6
6
4 fh

Zeppelin
‚����������…„����������ƒ
Eh.�

ext
?
; �ext

k
/

„������������ƒ‚������������…
Hindered Extra-Axonal

C fr

Stick
‚�…„�ƒ
Er.�k/

„����ƒ‚����…
Intra-Axonal

3

7
7
5 (20)

where the volume fractions of the CSF, hindered and intra-axonal compartment sum
up to unity as fCSF C fh C fr D 1, and �S2 represents the spherical convolution
that distributes the per-axon diffusion signal (both the stick and the hindered
compartment) according to the Watson distribution [41]. In practice, NODDI fixes
all diffusivities of the different model components and focuses on the estimation
of ;� and the volume fractions, leading to biases when the preset diffusivities
don’t reflect the true diffusivities. On the other hand, not fixing any diffusivities
and simultaneously fitting all parameters leads to multi-modality in the parameters
space—different tissue representations can produce the same diffusion signal [38].
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NODDI reparameterizes the concentration parameter  into the normalized
Orientation Dispersion Index (ODI)

ODI D 2

�
arctan.1=/ (21)

where ODI D 0 now means no dispersion, i.e. parallel axons and therefore high
diffusion anisotropy, and ODI D 1 represents completely dispersed (isotropic)
diffusion. We fitted the NODDI model using the NODDI toolbox1 and illustrate the
complement of ODI in Figs. 5 and 6. It can be seen that the contrast of previously
discussed signal-based anisotropy measures and ODI is quite similar. Figure 7 also
shows the ODFs of the estimated Watson distributed, which resemble the DTI ODFs
in many cases.

4.4 Anisotropy as a Property of Micro-Environments

Similarly as NODDI, the Spherical Mean Technique (SMT) [42] also represents
the diffusion signal as a distribution of individual axon segments with a spherical
Fiber Orientation Distribution FOD.n/. However, unlike NODDI, SMT does not
do any separately model the hindered and CSF compartments, nor does it assume
any parameterization of the FOD, and only assumes that the FOD is a probability
density such that

R
S2

FOD.n/ D 1 and the individual axon segment is represented
by an axially symmetric tensor with perpendicular and parallel diffusivity �? and
�k. It then follows that, for a given b-value, the spherical integral � of the overall
diffusion signal Eb.n/ and that of the individual axon segment Kb.n/ must be equal
such that

�E.b/ D
Z

S2

Eb.n/dn D
Z

S2

.FOD �S2 Kb/.n/dn D
Z

S2

Kb.n/dn D �K.b; �?; �k/:
(22)

It is possible to solve this equation for �? and �k using constrained least squares
such that 0 < �? < �k < �free with �free the free water diffusivity. Once �k; �?
are known, the per-axon fractional anisotropy (�FA) is calculated as in Eq. (9), with
�1 D �k and �2 D �3 D �?. As we show in Figs. 5 and 6, the estimation of
�FA in the SMT framework is now independent of axon dispersion or crossing
tissue configurations, that are very noticeable in for instance FA and ODI. However,
SMT cannot distinguish between axon bundles, meaning that when two bundles
with different diffusivities exist within one voxel the method can only estimate the
average of the two. Lastly, the per-voxel FOD can now be obtained using standard

1http://www.nitrc.org/projects/noddi_toolbox

http://www.nitrc.org/projects/noddi_toolbox
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techniques such as Constrained Spherical Deconvolution [65], allowing for the
recovery of very sharp orientation profiles as shown in Fig. 7.

5 Sensitivity to Diffusion Time

Recent work has put focus on the diffusion time dependence of the diffusion
coefficient [32]. When this effect has an orientational dependence, it also directly
affects the estimation of diffusion anisotropy. To illustrate this, we use Camino [24]
to simulate the diffusion signal in two substrates consisting of parallel axons—
modelled as cylinders—with gamma distributed radii. We show cross-sections of
these substrates in Fig. 8. We simulate a multi-shell acquisition with two shells using
b-values f1000; 3000g s=mm2 with 30 and 60 gradient directions, respectively, and
one b0 image without diffusion weighting. We set pulse length ı D 1ms and vary
pulse separation� from 1 to 40 ms, while scaling the gradient strength to keep the b-
values constant. While here we set ı constant to simplify the example, varying ı also
influences the diffusion signal and its impact should not be ignored in practice [6].

We show the progress of FA, GFA and PA on the right of Fig. 8 for both
distributions. It can be seen that all metrics describe the signal becoming more
anisotropic as diffusion time increases, even though different metrics report different
levels of anisotropy. In all cases, distribution 1, having more densely packed, smaller
axons, produces a more anisotropic signal.

Fitting just DTI to the b D 1000 s=mm2 data, we show the progress of the
diffusivities parallel (Dk) and perpendicular (D?) to the cylinder axis on the left
side of Fig. 9. It can be seen that time-dependence of diffusion anisotropy is caused
by the time-dependence of D?; lowering as diffusion time increases, indicating that
diffusion is becoming more restricted. Dk remains constant and is equal for the two
distributions, indicating free parallel diffusion in this simple substrate. It should be

Fig. 8 left: Cross-sections of Camino cylinder substrates with gamma-distributed radii. Distri-
bution 1 has smaller radii and less extra-cellular space than distribution 2. right: Diffusion time
dependence of anisotropy measures from the two left distributions. The estimated anisotropy
increases as longer diffusion times are used, until a plateau is reached
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Fig. 9 The perpendicular and
parallel diffusion coefficients
over diffusion time for the
distributions in Fig. 8

noted that Fieremans et al. [32] actually found Dk to be more time-dependent than
D? in vivo, indicating that parallel diffusion is not completely free in real tissues.

5.1 Anisotropy Due to Axon Packing

It is known that in myelinated axons, nerve conduction velocity is directly propor-
tional to axon diameter [71]. Furthermore, histology studies how that realistic axon
diameters are distributed between [0.2–2]�m [1]. In this section, we continue to
underline the importance of diffusion time dependence by discussing how it can
be used to infer information on the axon diameter distribution and axon packing.
The first model to exploit diffusion time dependence in this way was the composite
hindered and restricted model of diffusion (CHARMED) model [8]. CHARMED
models axons as impermeable, parallel cylinders with fixed diameter distribution,
meaning only the intra-axonal volume fraction was estimated, but not the axon
diameter distribution itself. CHARMED was later extended as AxCaliber [9] to
actually estimate the gamma distribution of axon diameters. To do this, AxCaliber
requires measurements exactly perpendicular to the axon direction, for different
gradient strengths and diffusion times, and fits an intra-axonal and an extra-axonal
tissue compartment

E.q?; �/ D �rEr.q?; � j˛; ˇ/C .1 � �r/Eh.q?; �/ (23)

where �r is the restricted water volume fraction, Er.q?; � j˛; ˇ/ is the perpendicular
diffusion signal of cylinders [19] with Gamma distribution parameters ˛; ˇ and
Eh.q?; � jDh/ is a Gaussian with diffusivity Dh as in Eq. (7). However, there are
two reasons why this model has significant limitations:

• When modeling the time-dependence of the intra-axonal signal for physically
feasible ranges, the signal is basically already restricted for the shortest diffusion
times, see Fig. 10.
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Fig. 10 The perpendicular intra-axonal and extra-axonal signal attenuation for distribution 1 of
Fig. 8 for different diffusion times. It can be seen that the intra-axonal signal only shows sensitivity
to diffusion time between 1 and 5 ms, which is barely possible to achieve in practice. On the other
hand, the extra-axonal signal shows a lot of contrast over this dimension

• The non-negligible axon dispersion present in any bundle prevents the assump-
tion that only the perpendicular direction is measured [48, 57].

This means that most signal variation over � actually originates from restriction
in the extra-axonal space. This behavior has recently been characterized in terms
of structural disorder of the axon packing [17, 52]. In fact, this diffusion time
dependence of the extra-axonal space has recently been implemented into the
AxCaliber framework to improve axon diameter estimation [25]. In this work, Eh

in Eq. (23) was replaced with

Eh.q; �/ D e�4�2�kqk2gTDhg (24)

where Dh is made axon-packing dependent as

Dh D
0

@
Dh;k 0 0

0 Dh;1 C A ln.�=ı/C3=2
�

0

0 0 Dh;1 C A ln.�=ı/C3=2
�

1

A (25)

where Dh;1 is the bulk diffusion constant and A is a characteristic coefficient
that scales approximately as the square of the correlation length, which in turn is
proportional to the outer axonal diameter (which includes the myelin sheath) [17].
However, this augmentation does not correct for the dispersion, nor the already
restricted intra-axonal diffusion at short diffusion times.

Further evidence of structural disorder was recently found in vivo by investigat-
ing stimulated echo diffusion tensor imaging for diffusion times up to 600 ms [32].
Remarkably, both parallel and perpendicular directions show non-Gaussian diffu-
sion for diffusion times between 45 and 600 ms. This result comes after a long
time of disagreement on whether or not there was time-dependence present in the
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nervous tissue. Hopefully, this finding will cast new insights on the interpretation
of DTI studies using clinical diffusion times � > 20ms. With this in mind, it is
highly likely that new scalar indices will soon be proposed to describe the amount
of structural disorder as a new type of tissue biomarker.

6 Discussion

In this chapter, we made a specific effort to review a diffusion anisotropy related
measures, coming from either signal-based dMRI models that estimate the EAP
from the signal as a whole, or models that use a multi-compartment approach to
estimate axon packing or axon dispersion. We started by describing the relation
between the tissue and the diffusion propagator in Sect. 2 and illustrated this relation
schematically in Fig. 1. We then explained the details of the PGSE protocol in
Sect. 3, where we provided the sequence explicitly in Fig. 2 and illustrated different
acquisition schemes (DTI, HARDI, multi-shell and q�) in Fig. 4. We also clarified
the effect of diffusion restriction on the observed diffusion signal attenuation in the
case of cylinders in Fig. 3.

We then reviewed an extensive, but probably still not an exhaustive list of diffu-
sion anisotropy measures in Sect. 4. We first provided the mathematical description
of signal-based anisotropy measures such as the DTI-based FA and RA [12]; DKI-
based KFA [39]; Q-ball-based GFA [68] and MAP-MRI-based PA [55]. We also
described the NODDI-based ODI [73] in Sect. 4.3 and SMT-based �FA [42] in
Sect. 4.4. We illustrated these metrics together qualitatively in Fig. 5; quantitatively
in CSF, crossing and single bundle areas in Fig. 6; and illustrating the ODFs of
these methods in Fig. 7. These comparisons were meant to illustrate the similarities
in contrasts that different definitions of diffusion anisotropy provide, although their
mathematical underpinnings may be different.

On Signal-Based Anisotropy Within the group of signal-based models, many
studies have related changes in FA to a variety of pathologies, see e.g. the review
by Assaf and Pasternak [7]. Also characterizing the non-Gaussian parts of the
data, DKI-based anisotropy measures have shown to be more sensitive than DTI-
based ones[21]. However, the literature shows that the more complex the estimation
method and required acquisition scheme becomes, the fewer validation studies there
are. For example, only a few studies have shown the potential of using GFA [23] or
PA [29], while large-scale comparisons like those for FA are missing.

Moreover, the typical criterium for being a biomarker is that the measure of
interest should provide a statistically significant difference between healthy and
diseased populations. However, care should be taken in prematurely calling a non-
specific marker such as diffusion anisotropy a biomarker. As an illustration, in the
particular case of Parkinson’s disease, after many studies had claimed that FA could
be used as a diagnostic biomarker, a systematic review of these studies actually
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showed that on its own, it cannot [36]. It is likely that the non-specificity of diffusion
anisotropy will continue to confound its interpretation as a biomarker for pathology.

OnMulti-Compartment-Based Anisotropy To overcome this lack of specificity,
multi-compartment approaches strive to separate the signal contributions of different
tissue compartments using biophysical models. However, it is important to realize
that these models still describe diffusion anisotropy in some reparameterized way.
For example, while NODDI is a multi-compartment model that separates the signal
contributions of CSD, intra- and extra-axonal compartments, it can only describe
one axon bundle using a Watson distribution with a single ODI, which is a function
of the concentration parameter . Illustrating the Watson ODFs together with the
signal-based ODFs in Fig. 7, we indeed find its similarity to others, in particular
DTI. Of course, ODI has a different interpretation than FA, but it is important to see
how they are related. Furthermore, �FA describes the per-axon micro-environment
and is theoretically insensitive to crossing or dispersed axon configurations.

OnDiffusion Time-Dependence Then, in Sect. 5 we analyze the time-dependence
of diffusion anisotropy and its origin. We illustrate in Fig. 8 that anisotropy
(in a simulated ensemble of cylinders) is a function of diffusion time—longer
diffusion time results in more perpendicular restriction, which translates to a higher
anisotropy. However, this experiment was still limited by its simplicity, as with this
setup we cannot replicate long-distance diffusion time dependence illustrated in vivo
by Fieremans et al. [32].

Then, in Sect. 5.1 we go into some detail on the origin of the time-dependence,
which is the extra-axonal space. We first show in Fig. 10 that the intra-axonal
signal is already restricted before 5 ms, whereas the typical minimum diffusion
time in PGSE experiments is around 10 ms. This means that, as was initially
shown by Novikov et al. [52], diffusing particles in the extra-axonal space, which
were previously assumed to be Gaussian, are in fact still subject to some level of
restriction due to axon packing. The differences in diffusion anisotropy over time
shown in Fig. 8 must, therefore, be a result of the restriction in the extra-axonal
space.

7 Conclusion

In this chapter, we have reviewed the inter-model variability of diffusion anisotropy
estimation, both signal- and multi-compartment-based, as well as illustrated its
sensitivity to especially short diffusion times. It is clear that there are many ways
of defining diffusion anisotropy, depending on the chosen signal representation and
acquisition scheme. Depending on the complexity of the devised metric, contrast
differences can be observed both qualitative and quantitatively for different tissue
types. Nonetheless, also great similarities can be appreciated between the different
metrics.
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Measuring Microscopic Anisotropy
with Diffusion Magnetic Resonance: From
Material Science to Biomedical Imaging

Andrada Ianuş, Noam Shemesh, Daniel C. Alexander, and Ivana Drobnjak

Abstract Diffusion magnetic resonance provides a non-invasive probe of material
structure at the micro-scale in porous media including emulsions, rocks, catalysts
and biological tissue. The quantification of microscopic anisotropy aims to reflect
the size and shape of individual pores, separating the effect of their orientation
distribution in the imaging voxel, which is of great importance in many applications.

The single diffusion encoding (SDE) sequence, which consists of a pair of
diffusion gradients applied before and after the refocusing pulse in a spin-echo
preparation, is the standard pulse sequence for acquiring diffusion MRI data. SDE
sequences, which have one gradient orientation per measurement, have been used
in various studies to estimate microscopic anisotropy, mainly assuming that the
underlying substrate consists of identical pores. In order to discriminate between
more complex systems, which may include pores of various sizes and shapes, more
sophisticated techniques which use diffusion gradients with varying orientation
within one measurement, such as double diffusion encoding, isotropic encoding or
q-space trajectory imaging, have been proposed in the literature. In addition to the
these techniques which aim to estimate microscopic anisotropy, a different approach
to characterize pore shape directly is to take the inverse Fourier transform of the
reciprocal pore shape function which can be measured with diffusion gradients that
are highly asymmetric.

This work provides a review of various diffusion magnetic resonance techniques
which have been proposed in the literature to measure the microscopic shape of
pores, both in material science as well as in biomedical imaging.
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1 Introduction

A non-invasive measurement of pore size and shape is of great interest both in
material science, as well as in biomedical applications. Microscopic anisotropy
(�A) aims to characterize the elongation of individual pores, independently of their
organization at the macroscopic level, and its quantification has many different
applications. For example, in material science, �A can be used to distinguish
between different phases of liquid crystals [4, 8] or to investigate the structure of
biological porous media such as starch, cellulose, yeast cells, etc. [9, 11, 60]. More
recent developments in biomedical imaging have highlighted the importance of �A
as a potential biomarker for white matter tracts integrity [36, 38] as well as for
mapping differences in tumour microstructure [58, 59].

Diffusion magnetic resonance (dMR) is a modality of choice for assessing pore
morphology at the microscopic scale, non-invasively. The diffusion weighted signal
is sensitive to the displacement of probe molecules within the substrate, and can be
used to extract information regarding the porous structure, such as �A.

The standard pulse sequences for acquiring dMR data is the single diffusion
encoding (SDE) sequence [57], which applies a pair of magnetic field gradients
to sensitise the signal to the molecular displacement in the direction of the gradient.
When the pores are coherently aligned, the diffusion measurements at macroscopic
scale reflect the microscopic properties of individual pores. However, this is not
the case in other situations when the presence of different pore orientations has a
significant effect on the measured signal. One way to eliminate the influence of
orientation distribution is to calculate the powder average of the signal, i.e. the
average over measurements with different gradient directions uniformly distributed
on a sphere. Assuming the material consists of identical pores which differ only in
orientation, microscopic anisotropy can be estimated from powder averaged signal
acquired at several diffusion weightings [9, 23, 60]. However, when this assumption
is not valid, SDE measurements fail to distinguish substrates featuring microscopic
anisotropy and/or a distribution of pore sizes [21, 60]. To overcome this limitation,
different techniques which use sequences with varying gradient orientation within
one measurement have been proposed in the literature.

One approach is to use double diffusion encoding (DDE) sequences [11, 39],
which concatenate two independent pairs of diffusion gradients, separated by a
mixing time. Thus measurements which vary the angle between the two gradients
probe the correlation of molecular displacements in different directions and provide
sensitivity to microscopic anisotropy even in heterogeneous substrates with a
distribution of pore sizes [48]. Various approaches have been proposed to estimate
�A in macroscopically isotropic substrates [6, 11, 48], however if the substrates
are not macroscopically isotropic, the values depend on the particular choice
of gradient directions. To overcome this issue, recent studies have introduced
rotationally invariant acquisitions which allow for a consistent estimation of �A
in macroscopically anisotropic materials [22, 37].
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Another approach that has been recently proposed for quantifying �A is to
combine measurements which provide isotropic and linear encoding at several
diffusion weightings [32]. These concepts have been generalized in the q-space
trajectory imaging approach [61, 62] in order to disentangle variations in size from
variations in shape and orientation of the underlying structures.

This work aims to discuss the mathematical concepts behind the various
approaches for estimating microscopic anisotropy, the advantages and limitations
of the different techniques, as well as possible directions for future research. The
chapter is organized in two parts: in the first part we discuss approaches which
assume that diffusion in the microscopic pores can be approximated by a diffusion
tensor, while in the second part we discuss the techniques which explicitly assume
that the pores exhibit restricted diffusion and model spin displacements instead.

2 Microscopic Anisotropy in the Gaussian Regime

The first part presents various techniques that have been proposed in the diffusion
MRI literature to estimate microscopic anisotropy, assuming that diffusion in
individual pores can be described by a diffusion tensor. In this case, the pore
size and shape is reflected by the diffusivity values, i.e. the eigenvalues of the
diffusion tensor, and the effect of the boundaries is not explicitly modelled. We
present different approaches, with their benefits and limitations, in the order of
their acquisition complexity, from methods which use single diffusion encoding,
to double diffusion encoding and generalized gradient waveforms.

2.1 Single Diffusion Encoding

This section presents various approaches which aim to estimate microscopic
anisotropy from diffusion measurements which were acquired using standard SDE
sequences. One common assumption of these techniques is that the underlying
substrate consists of identical pores which vary only in orientation.

The SDE sequence, illustrated in Fig. 1a, consists of a pair of magnetic field gra-
dients which sensitise the signal to the displacement of the probe molecules in one
dimension defined by the direction of the applied gradient. When molecules diffuse
in an unbounded, isotropic environment, i.e. free diffusion, their displacements have
a Gaussian distribution with zero mean and a time dependent variance 2Dt where D
is the diffusion coefficient and t is the time. In this case the signal attenuation from
a dMR measurement is given by:

E.b/ D exp.�bD/; (1)
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Fig. 1 Schematic representation of (a) SDE diffusion sequence, (b) microdomain with Dk > D?

(prolate tensor) and (c) microdomain with Dk < D? (oblate tensor)

where b is the diffusion weighting factor, which for an SDE sequence has the
following expression [57]:

b D .�Gı/2.� � ı=3/; (2)

where � is the gyromagnetic ratio of the nuclear spin and G, ı and� are the gradient
strength, duration and separation, respectively.

When diffusion is no longer isotropic and has a preferential direction, the
measured signal depends on the direction of the measurement. A common way of
modelling anisotropic microdomains is to assume they are cylindrically symmetric
and exhibit Gaussian diffusion with diffusivity Dk in the direction parallel to the
cylinder axis and D? in the transverse plane, as illustrated in Fig. 1b, c for the cases
Dk > D? and Dk < D?, respectively. In this case the apparent diffusion coefficient
along the direction of the diffusion gradient Og depends on the angle 	 between this
direction and the main axis of the microdomain [9]:

D	 D Dk cos2 	 C D? sin2 	: (3)

Thus, the signal attenuation is:

EOg.b/ D exp.�bD	 / D exp
��b.Dk cos2 	 C D? sin2 	/

�

D exp.�bD?/ exp
��b cos2 	.Dk � D?/

�
: (4)

The signal measured along the gradient direction Og for a macroscopic sample
with many microdomains which vary only in orientation can be obtained by
integrating Eq. (4) over the orientation distribution [60]:

NEOg.b/ D exp.�bD?/
Z �

0

POg.	/ exp
��b cos2 	.Dk � D?/

�
d	; (5)

where POg.	/ is the probability distribution of 	 .
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For a powder average, i.e. when the microdomains are isotropically orientated,
the probability distributionPOg.	/ D 1=2 sin 	 and no longer depends on the gradient
direction.

NE.b/ D exp.�bD?/
Z �

0

exp
��b cos2 	.Dk � D?/

� 1

2
sin 	d	: (6)

This approach has been used to study the structure of different materials. For
instance, water diffusion in each microdomain of a matrix of long polymer chains
can be approximated as one dimensional (Dk > 0, D? D 0), while the diffusion
within lamellar structures can be approximated as two dimensional (Dk D 0, D? >
0). Based on the different signal attenuation in the two cases, [9] has shown that the
endosperm tissue from wheat grains can be described as an ensemble of randomly
oriented thin capillaries, while diffusion in the Lamellar Phase of Aerosol OT/Water
system is two dimensional [8].

Although quantifying the shape of microdomains using the powder averaged
signal has been studied for decades in material science, only recently, a similar
idea has been used for biomedical imaging, where the tissue structure in many
cases is not macroscopically isotropic. A recent study has shown that measuring
the SDE signal along many gradient directions which are isotropically oriented
on a sphere and taking their average (i.e. mean spherical signal) is equivalent to
the powder average [23]. The mean spherical signal has been derived in [2] and
reads as:

NE.b/ D exp.�bD?/
p
�erf

�p
b.Dk �D?/

�

2
p
b.Dk � D?/

; (7)

where erf is the error function.
Equation (7) has only two unknowns, which can be estimated when the mean

spherical signal is measured with at least two different b values. Furthermore,
constraining Dk > D?, which is more biologically plausible, improves the stability
of the fitting. After estimating Dk and D?, the microscopic fractional anisotropy
(�FA), which is a normalized quantity with respect to the size of the diffusion tensor
of individual microdomains, is defined as [3, 52]:

�FA D
v
u
u
t3

2

.Dk � ND/2 C 2.D? � ND/2
D2k C 2D2?

; (8)

where ND D .Dk C 2D?/=3 is the mean diffusivity of the microdomain. This
approach is known as the spherical mean technique (SMT) and aims to estimate the
per-axon diffusivity in the brain using SDE measurements [23]. The main advantage
of this approach is that it can be applied retrospectively to already acquired data sets
which has at least two different diffusion weighting shells.
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Probability Distribution of Diffusion Coefficients

The main limitation of these approaches is the assumption that all microdomains are
identical. The effect of this assumption can be better understood in an alternative
approach of computing the signal attenuation. The average signal computed from a
probability distribution of orientations POg.	/ in (5) can be reinterpreted as the signal
given by a probability distribution of diffusion coefficients POg.D/:

POg.D/ D
Z �

0

POg.	/ı.D �D	 /d	; (9)

where ı.D � D	 / is the Dirac delta function. Then, the signal attenuation can be
written as the Laplace transform of POg.D/

NEOg.b/ D
Z 1

0

POg.D/ exp.�bD/dD: (10)

Although in a macroscopically anisotropic system POg.D/ depends on the gradient
direction, when the signal is averaged over isotropically oriented gradient directions
(powder average), P.D/ is independent on orientation. Given the measured data, the
probability distribution P.D/ can be calculated using an inverse Laplace transform,
however, it is commonly recognized that such an inversion of experimental data is
very sensitive to noise and depends on the choice of algorithm [60].

Analysing this approach from the perspective of P.D/ highlights the main
issue of estimating microscopic anisotropy based on SDE measurements, namely
that the same probability distribution can be obtained from an infinite number of
microdomain ensambles. For instance, this situation is presented in Fig. 2, which

Fig. 2 Two very different substrates with either (a) randomly oriented identical microdomains
(Dk D 2 	 10�9 m2/2, D? D 10�9m2/2) or (b) with a distribution of diffusion coefficients (e.g.
produced by a distribution of pore sizes in the Gaussian regime or a mixture of molecular weights
such mono-, oligo- or polymers), can yield the same P.D/ depicted in (c)
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illustrates the probability distribution obtained from either an ensemble of randomly
oriented anisotropic microdomains or an ensemble of microdomains with a range of
diffusion coefficients, which can be the result of a distribution of pore sizes in the
Gaussian regime or a mixture of molecular weights. Moreover, various distributions
P.D/ can yield identical signal attenuation curves [60].

Nevertheless, if there is prior information regarding which situation is more
plausible, SDE measurements could be used to quantify microscopic anisotropy,
which is also the case when explicitly accounting for restricted diffusion inside
the pores [21]. If there is no prior information regarding the microstructure
of the material, one possible solution is to combine different modalities which
provide complementary information. For instance, to differentiate the lamellar
structures of lyotropic liquid crystals, [4] have combined SDE diffusion data
with MR measurements of 2H spectra. Another possibility is to go beyond sin-
gle diffusion encoding and use diffusion sequences which vary the gradient
orientation within one measurement, which will be discussed in the following
sections.

2.2 Double Diffusion Encoding

One way to disentangle microscopic anisotropy from a distribution of diffusivities
is to sensitize the signal to diffusion in different directions in one measurement.
This can be achieved using double diffusion encoding (DDE) [12], and in general
multiple diffusion encoding (MDE) [39], by concatenating gradient pulses which
have different orientations. The DDE sequence is schematically illustrated in
Fig. 3a.

Aiming to estimate the parallel and perpendicular diffusivities Dk and D? in the
Gaussian regime for a substrate with randomly oriented microdomains, the work
of Callaghan [7] shows that DDE sequences with parallel and orthogonal gradients
yield different attenuation curves when the microdomains are anisotropic (Dk ¤
D?). Example signal attenuation curves for microdomains with Dk > D? and vice
versa are illustrated in Fig. 3c.

Following the derivations in Eqs. (4)–(6), the average signal for a DDE sequence
with parallel gradients along the (arbitrarily chosen) z direction is:

NEzz.b1; b2/ D
Z �

0

exp
��.b1 C b2/.Dk cos2 	 C D? sin2 	/

� 1

2
sin 	d	; (11)

where b1 and b2 are the diffusion weighting produced by the first and second
gradient pair, respectively. When the gradients have the same orientation, only
the polar angle 	 appears in the exponential of Eq. (11). When the gradients have
different orientations, the signal also depends on the azimuth angle 
. Thus, for
a choice of coordinates as illustrated in Fig. 3b, the diffusion signal from a DDE
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Fig. 3 Schematic representation of (a) double diffusion encoding (DDE) sequence and (b)
anisotropic microdomain featuring Gaussian diffusion with DDE encoding along z and x direction.
(c) Example attenuation curves for DDE sequences with parallel and perpendicular gradients when
Dk > D? or Dk < D?. The larger diffusion coefficient has a value of 2	10�9 m2=s and the smaller
one 2 	 10�10 m2/s

sequence with orthogonal gradients along the z and x axis is given by:

NEzx.b1; b2/ D 1

2�

Z 2�

0

Z �

0

expŒ � b1.Dk cos2 	 C D? sin2 	/

�b2.Dk sin2 	 cos2 
CD? sin2 
 C D? cos2 	 cos2 
/�
1

2
sin 	d	d
:

(12)

The difference in attenuation curves for parallel and perpendicular gradients
has been experimentally measured in a polydomain lyotropic liquid crystal system
(the lamellar phase of Aerosol OT-water) [7], microcapillary phantoms [27] as
well as biological systems, such as fixed monkey gray matter [27] and pig spinal
cord [28].

A generalization of this approach is the diffusion-diffusion correlation spec-
troscopy (DDCOSY) experiment [6], which consist of DDE sequences with parallel
and perpendicular gradients that vary the gradient strengths G1 and G2 indepen-
dently. The aim of this experiment is to estimate the anisotropy of the system from
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a 2D Laplace transform:

E.b1; b2/ D exp.�b1D1 � b2D2/: (13)

The expressions of D1 and D2 for substrates consisting of randomly oriented
microdomains are provided in Eqs. (11) and (12) for sequences with parallel and
perpendicular gradients, respectively. For measurements with parallel gradients,
the 2D diffusion spectrum computed from the inverse Laplace transform has only
diagonal elements and provides similar information as a 1D experiment. When the
gradients are orthogonal, the off diagonal peaks reflect the microscopic anisotropy
of the system. Although many studies focused on DDE sequences, and their contrast
is quite well understood by now, they are not the only measurements which can be
used to estimate �A.

2.3 Isotropic Diffusion Encoding and q-Space Trajectories

Aiming to disentangle between the effects of orientation dispersion and a distri-
bution of diffusivities, Lasič et al. have proposed to combine measurements with
isotropic and directional diffusion encoding [32].

Isotropic Encoding and the Trace of Diffusion Tensor

The idea of isotropic diffusion encoding is not new and has been introduced earlier
by Mori et al. to image the trace of the diffusion tensor in one acquisition [40].
For a substrate characterized by a diffusion tensor D, the signal measured with a
generalized gradient which may vary in amplitude and orientation, can be written as:

E D exp .�b W D/ ; (14)

where b W D denotes a generalized tensor product defined as:

b W D D
X

i

X

j

bijDij; with i; j 2 fx; y; zg: (15)

In the above equation D is the diffusion tensor and b is the diffusion encoding tensor

b D
Z TE

0

q.t/qT .t/dt; (16)

where q.t/ D R t
0
G.t0/dt0 is the time integral of the effective gradient waveform. The

standard b-value is the trace of b.
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Isotropic diffusion encoding is achieved when the off-diagonal elements of b
are zero (i.e.

R TE
0

qi.t/qj.t/dt D 0 for i ¤ j) and the diagonal elements are equal

(i.e.
R TE
0

q2i .t/dt D
R TE
0

q2j .t/dt > 0 for any i; j). For example, one simple sequence
which satisfies this condition consists of three consecutive equal gradient pairs along
orthogonal axis. Many different gradient waveforms satisfy this condition which
can be solved in Cartesian coordinates, e.g. [40], as well as in spherical coordinates
[16]. Isotropic encoding has been initially proposed for measuring the trace of the
diffusion tensor (Tr.D/ D P

Dii D 3 ND, where ND is the mean diffusivity) in one
single scan [40]. More recent work has shown the benefits of such encoding for
estimating microscopic anisotropy [32].

A Probability Distribution Perspective

As presented in Sect. 2.1, assuming Gaussian diffusion in each microdomain, the
diffusion signal can be written in terms of the probability distribution P.D/ as

NE D
Z 1

0

P.D/ exp.�bD/dD; (17)

and can be expanded in terms of its cumulants:

ln. NE/ D �b�1 C b2

2
�2 C : : : (18)

The first cumulant �1 is given by the mean diffusivity �1 D ND D
R1
0

DP.D/dD
and the second cumulant �2 D

R1
0
.D � ND/2P.D/dD corresponds to the vari-

ance of P.D/. As illustrated in Fig. 2, in an ensemble of pores, the probability
P.D/ describing the powder average signal, depends both on the distribution of
mean diffusivities within the ensemble as well as on the anisotropy of individual
microdomains. Thus, the second cumulant �pa

2 of the distribution measured from
a powder averaged signal reflects both these properties. By using a gradient which
provides isotropic encoding, the signal depends only on the distribution of mean
diffusivities in the ensemble which is reflected by the second cumulant �iso

2 . Thus,
by comparing the variances �pa

2 and �iso
2 measured with directional and isotropic

encoding [32, 55], the effect of size distribution and microscopic anisotropy can be
separated. In analogy to the fractional anisotropy, Lasič et al. define the microscopic
fractional anisotropy as:

�FA D
r
3

2

�

1C 2

5

1

� Q�2
�

; (19)
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where

� Q�2 D �
pa
2 � �iso

2

ND2 (20)

is the scaled difference in variance between powder averaged and isotropically
encoded measurements. This approach has been used to show differences in
microscopic anisotropy in various samples such as liquid crystals, yeast cells,
or pureed asparagus [32], as well as in biomedical applications to investigate
microscopic anisotropy in the brain and brain tumours [58]. As shown in [58] �FA
provides valuable information to distinguish between different tumour types, e.g.
glioblastoma and meningioma, which have very different microstructures, yet on a
standard FA map look very similar.

Although �FA measured with directional and isotropic diffusion encoding
disentangles the effects of pore elongation and size distribution, it is not sensitive
enough to distinguish between pores with prolate or oblate shapes. To differentiate
the two cases, Eriksson et al. [17] have proposed to extend the measurement
space and vary both the trace of the diffusion encoding tensor (b-value), as well
as its anisotropy, covering the parameter space between directional and isotropic
encoding. This approach has been applied to distinguish between various phases
(lamellar, cubic and reverse hexagonal) of the AOT/water liquid crystals which have
different microstructural morphologies. Almeida Martins and Topgaard have used
a similar set of measurements to recover the microstructural characteristics in a
multi-compartment liquid crystal / yeast cell phantom [13]. The two dimensional
data acquired by varying the linear and the isotropic components of the diffusion
encoding tensor can be analysed using numerical techniques similar to a 2D Inverse
Laplace Transform as well as by fitting a multi-compartment model. The peaks
in the resulting 2D spectra represent the different compartments, with diagonal
peaks reflecting isotropic diffusion with various diffusivities and off-diagonal
peaks representing anisotropic components. In phantom and ex-vivo studies the
acquired data set can span a wide parameter range, as time-constraints are not
as crucial. However, for biomedical imaging, translating such approaches to in-
vivo and/or clinical application is very challenging due to hardware and time
limitations.

Building on the previous concepts, Westin et al. have proposed the q-space
trajectory imaging (QTI) technique to estimate microscopic anisotropy which is
feasible for clinical applications. QTI is a mathematical framework which combines
an acquisition consisting of diffusion encoding tensors with various shapes and a
data model consisting of a distribution of diffusion tensors to represent the substrate
[62]. The acquisition consists of measurements with different b-values and different
shapes of the b tensors yielding linear, prolate, spherical and planar encoding.
Furthermore, several orientations for each encoding tensor have been used in order
to obtain a rotationally invariant acquisition, which is important for brain imaging
applications. From the perspective of the data model, using a distribution of tensors
allows to separate the isotropic variance arising due to a distribution of sizes and the
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anisotropic variance caused by microscopic anisotropy. A recent study [58] showed
a very good correlation between diffusion-derived metrics and histology in two
types of brain tumours, namely meningioma and glioblastoma. Thus, microscopic
anisotropy correlated very well with cell eccentricity and the isotropic heterogeneity
with cell density. Moreover, the two metrics show significant differences between
the two tumour types and help understand the differences observed in the total
variance.

3 Restricted Diffusion

The techniques presented above assume that diffusion within each microdomain is
Gaussian, however in many systems diffusion is restricted within the pore bound-
aries. Thus, the measured signal is influenced by the size, shape and orientation
of the pores, as well as by the timing parameters of the diffusion acquisition, not
only the b-value (or the generalized b tensor). This section starts by describing
the theoretical aspects of restricted diffusion for SDE and DDE sequences, then it
presents various applications of DDE techniques as well as model-based approaches
for estimating �A. We further compare the estimates of �A from two different
methods, one based on DDE sequences and one on isotropic sequences, and we
test the effect of assuming Gaussian diffusion when the underlying substrate is
restricted. In the last part of this section, we discuss the recently proposed techniques
to recover pore shape from diffusion MRI measurements acquired with various
sequences.

3.1 Restricted Signal Model for SDE Sequences

For a particle which moves from point r0 to r1 during the diffusion time �,
an ideal SDE sequence with short gradient duration induces a net phase shift
�
.r1 � r0/ D �ıG � .r1 � r0/ and contributes with exp.i�
/ to the measured
signal. Thus, the diffusion attenuation is computed as the ensemble average of signal
contributions:

hexp.i�
/i D hexp.i�ıG � .r1 � r0//i : (21)

Its value can be computed according to [56]:

E.G; �/ D
“

�.r0/P.r0jr1;�/ exp.i�ıG � .r1 � r0//dr0dr1; (22)

where �.r0/ is the initial distribution of particles and P.r0jr1;�/ is the diffusion
propagator which represents the probability that a particle moves from position r0
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to r1 in the time interval �. Many times Eq. (22) is written in terms of the wave
vector q D �ıG, which yields a Fourier relationship between the diffusion signal
and the average propagator.

3.2 DDE Sequences

Signal Model

Equation (22) can be easily extended for multiple gradient pulses [39, 43]. For
DDE sequences with short gradient pulses and the same gradient separation �, the
diffusion signal written in terms of q has the following form:

E.q1;q2;�; �m/ D
Z Z Z Z

dr0�.r0/e�iq1 	r0 	 dr1P.r0jr1;�/eiq1	r1

	 dr2P.r1jr2; �m/eiq2	r2 	 dr3P.r2jr3;�/e�iq2 	r3 (23)

where ri indicates the position during the application of the gradient pulses and
P.rjr0;T/ is the diffusion propagator which indicates the probability of a particle to
move from position r to r0 during time interval T.

A well known experiment for measuring diffusion correlation in different
directions is angular DDE [11, 25, 39, 42, 46] which varies just one parameter,
namely the angle between the two gradient orientations. In this case, the gradient
amplitude, duration and diffusion time are the same for the two pulses. At long
�m the difference between parallel and perpendicular gradient orientation increases
with pore eccentricity, and thus is sensitive to microscopic anisotropy. To better
understand this fact we can further analyse Eq. (23) for long diffusion and mixing
times.

In the long time limit P.rjr0;1/ D �.r0/, and defining the reciprocal pore space
function as Q�.q/ D R dr�.r/ exp.�iq � r/, Eq. (23) becomes:

E.q1;q2/ D j Q�.q1/j2j Q�.q2/j2 (24)

which gives the DDE signal for one pore. When we consider an ensemble of pores,
the total signal is given by summing the individual contributions:

Etot.q1;q2/ D
X

n

j Q�n.q1/j2j Q�n.q2/j2 (25)

In the case of randomly oriented pores, the signal does not depend on the absolute
orientation of qi, but may vary with the angle between q1 and q2 [39]. For spherical
pores Q�n.q/ depends only on the magnitude of q, thus Etot.q1;q2/ does not depend
on the angle between the gradients. In contrast, for ellipsoids, Q�n.q/ depends on
the relative orientation of q to the main axis. After averaging over all possible pore
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orientation, the signal Etot.q1;q2/ still depends on the relative angle between q1
and q2, as the product j Q�n.q1/j2j Q�n.q1/j2 is taken before the summation. The effect
appears in the fourth order expansion of the signal in q and is described in detail for
various geometries in [42, 44].

Mitra showed theoretically that DDE sequences with varying angle between the
two gradients provide sensitivity to pore elongation at long mixing times [39], a fact
that was first experimentally verified in different types of yeast cells [11]. Özarslan
presents a comprehensive analysis which uses a Taylor expansion of the DDE signal
in idealized experimental conditions (narrow gradient pulses, long diffusion time
and long or vanishing mixing times) in closed pores [42] for simple geometries
of spheres, ellipsoids and capped cylinders. For arbitrary sequence parameters, the
DDE signal can be calculated using other approaches to compute the restricted
diffusion signal, such as Gaussian Phase Distribution [21, 41], Multiple Correlation
Function (MCF) formalism [18, 42, 45], a semi-analytical Matrix Method approach
[5, 15, 20] or numerical Monte Carlo simulations. To better understand the contrast
in DDE sequences, numerical simulations have been used to analyse the dependence
of DDE signal on sequence parameters and substrate properties such as pore size and
eccentricity [26]. For instance, Fig. 4 plots the angular DDE signal for substrates
consisting of randomly oriented finite cylinders of different size and eccentricities
when the DDE sequences have short mixing time (a) or long mixing time (b). In
the short mixing time regime the angular modulation of the signal exhibits a bell
shaped curve and strongly depends on the size of the compartment, while in the
long mixing time there is an angular signal modulation only for substrates which
consist of anisotropic pores.

Fig. 4 Angular dependence of the DDE signal on the angle  between the gradient directions for
substrates consisting of randomly oriented finite cylinders with different radii (R) and eccentricities
(L=2R, where L is the length). In (a) the mixing time of the DDE sequence is short (�m D ı D
1ms), while in (b) the mixing time is long (�m D � D 100ms). The signal was generated using the
matrix formalism described in [15], and the rest of the sequence parameters are G D 500mT/m,
ı D 1ms, � D 100ms, and the gradient orientations are varied in the x-y plane
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Estimating �A with Angular DDE

All these theoretical developments lead to a number of studies which aim to
recover microscopic anisotropy using angular DDE experiments in various appli-
cations. Shemesh et al. investigated experimentally the angular dependence of
the DDE signal in various phantoms consisting of isotropic pores (yeast cells)
as well as randomly oriented anisotropic pores (e.g. water-filled microcapillaries)
[46, 48, 49] and estimated the pore diameter and length by fitting the theo-
retical expressions of the DDE signal derived in [42] to the measured data.
Information regarding the restriction length scale can also be obtained from the
diffusion-diffraction patterns which are preserved in DDE measurements even
in the presence of a size distribution [10, 47]. In [46], the authors perform
DDE experiments to investigate the presence of microscopic anisotropy in grey
and white matter of the pig spinal cord, ex-vivo. The data, which reflects the
tissue structure in the transverse plan perpendicular to the main fibre orien-
tation, shows that grey matter also exhibits microscopic anisotropy, while in
this particular plane the white matter structure is less anisotropic. The angular
DDE technique has been applied for imaging the rat brain ex-vivo and in-vivo
in [51]. Even though the DDE signal measured in the x-y plane depends on
the macroscopic fibre orientation, the study presents a data analysis scheme
which maps the effect of macroscopic anisotropy as a residual phase in the
angular dependence of the signal and uses this to estimate a corrected apparent
eccentricity.

Rotationally Invariant Metrics of �A

Although some effects of macroscopic anisotropy can be corrected in angular DDE
experiments [51], acquiring measurements as described above provides information
regarding pore size and eccentricity only in the plane spanned by the gradient
vectors. Thus, this is not directly a suitable technique to capture the full structure
of macroscopically anisotropic substrates. To address this issue, Lawrenz et al. [37]
use a fourth order Taylor expansion of the signal in q to provide a tensor form
of the DDE signal in the presence of macroscopic anisotropy. Furthermore, they
use the tensor elements to derive a rotationally invariant metric of microscopic
anisotropy (IMA) and its normalized counterpart (MA) based on the difference
between DDE measurements with parallel and perpendicular gradients, which
require a minimum of 15 combinations of the two gradient directions. In recent
studies, Lawrenz et al. have used DDE sequences on a clinical scanner to investigate
microscopic anisotropy in the human brain, in-vivo [35, 36]. In [35] they analyse
both angular DDE measurements acquired in the three orthogonal planes as well
as a rotationally invariant DDE acquisition. A later study [36] compares the
effect of using different number of gradient directions in the rotationally invariant
acquisition, showing that a protocol with an increased number of direction yields
a smaller variance of the estimated MA. Both studies show that microscopic
anisotropy values are more uniform across white matter compared to the standard
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fractional anisotropy FA which is influenced by the orientation distribution of the
fibres.

Jespersen et al. [22] further extends the DDE acquisition to a rotationally
invariant 5-design scheme that can be applied to the cumulant expansion of
the signal, which is more accurate than the Taylor expansion assumed in the
previous work. The acquisition protocol consists of 12 measurements with parallel
gradients pointing towards the vertices of a dodecahedron and 60 measurements
with perpendicular gradients, 5 for each orientation. Using the difference between
DDE measurements, they derive a rotationally invariant eccentricity metric (�)
and its normalized counterpart, fractional eccentricity (FE), which is the same
as the macroscopic fractional anisotropy FA in the case of coherently oriented
pores:

� D 1

q4

�

log

�P
Sk
12

�

� log

�P
S?
60

��

; (26)

where Sk is the signal for the DDE sequence with parallel gradients, S? is the signal
for the DDE sequence with perpendicular gradients, q D �Gı is the wavenumber, �
the gyromagnetic ratio, G the gradient strength, ı the pulse duration and � depends
on pore size and eccentricity. For spherical pores � D 0. Fractional eccentricity
normalizes � with respect to size:

FE D
r

�

� C 3�2ADC2=5
(27)

which varies between 0 (spherical pores) and 1 (elongated pores), where � is the
diffusion time and ADC is the apparent diffusion coefficient which reflects the
length scale of the substrate. The eccentricity metric � derived in [22] and the IMA

index from [37] are related by � D 2
15
IMA.

The QTI framework discussed in Sect. 2.3 estimates as well a number of
rotational invariant features (e.g bulk and sheer) from the covariance of the tensor
distribution, under the assumption of Gaussian diffusion in each microdomain. Such
invariants are then used to derive more familiar metrics, like �FA.

3.3 Double Oscillating Diffusion Encoding

The DDE theory presented in Sect. 3.1 provides the diffusion signal for ideal
DDE sequences, in the limit of short pulses and long diffusion and mixing
times. However, such sequences can rarely be achieved in practice, and do not
necessarily provide the highest sensitivity to microscopic anisotropy [19]. Ianus
et al. has shown that double oscillating diffusion encoding (DODE) sequences,
which replace each pair of gradients in a DDE sequence with oscillating gradient
waveforms, can improve the sensitivity of the measurements to pore diameter.
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Thus when estimating pore size and eccentricity, a protocol which has both
DODE and DDE sequences provides the optimal measurements. Moreover, the
time dependence of �FA can be probed by varying the frequency of DODE
measurements, in order to analyse the microstructural properties at different lengths
scales.

3.4 Comparison of Two �A Metrics

In order to compare two �A metrics, for instance FE and �FA, we require diffusion
sequences that are as similar as possible in terms of gradient waveform. This can
be achieved by using DODE sequences and adapting the DODE protocol for each
approach ensuring that the sequences have the same gradient waveform and vary
only in direction.

To estimate FE we use the 5-design protocol presented in Sect. 3.2 and we adapt
the definition of FE for DODE sequences:

FE D
v
u
u
t

�

� C 3
5

�
ı
3N

�2 � Tr.D/
3

�2 ; (28)

where � is defined in Eq. (26), D is the effective diffusion tensor computed from the
parallel measurements and ı=3N is the effective diffusion time, with ı the gradient
duration and N the number of periods.

To compute �FA, we use the expression in Eq. (19). Thus, We fit Eq. (18) to
the isotropically encoded measurements and to the powder averaged data with two
different assumptions:

• We enforce the same mean diffusivity when fitting the isotropic encoded and the
powder averaged data, as assumed in [32].

• We fit the cumulant expansion separately to the two data sets and we obtain two
different values of mean diffusivity and variance.

Simulation parameters: the DODE sequences have three periods N D 3, a
gradient duration ıDODE D 60ms, mixing time �m D 20ms and gradient strength
GDODE that we modify depending on the substrates we investigate. For estimating
FE we use the 5-design scheme explained in Sect. 3.2. For estimating �FA we
use 16 different gradient strengths between 0 and GDODE, and for each gradient
strength we have 15 isotropically oriented directions to compute the directional
average and 15 repeats for the isotropic encoding, to match the acquisition
described in [32]. For the sequences providing isotropic encoding, the gradient
duration in each direction is ıDODE=2N D 10ms. The two acquisition protocols
have the same gradient waveform and maximum b-value and are illustrated in
Fig. 5a.
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Fig. 5 (a) Schematic representation of diffusion sequences used to compute fractional eccentricity
(left) and microscopic fractional anisotropy (right); (b) Restricted diffusion: dependence of FE
and �FA on pore elongation for substrates which consist of randomly oriented pores. �FA is
calculated in two different ways: data from directional and isotropic encoding is fitted using the
same mean diffusivity and different variances, as in [32] (middle) and the data sets from directional
and isotropic encoding are fitted separately (right). Gold standard FE values computed from an
ideal DDE protocol are shown as well (dashed line). The maximum gradient strength is 300mT/m
corresponding to b D 25;780 s/mm2 (c) Gaussian diffusion: dependence of FE and �FA on the
ratio between parallel and perpendicular diffusivities for substrates which consist of randomly
oriented domains. �FA is calculate in two different ways as explained above. The ground truth
micro-domain FA is plotted as well (dashed line). In this case, the maximum gradient strength is
100mT/m, corresponding to b D 2865 s/mm2

We investigate two different types of diffusion substrates and adapt the maximum
gradient strength accordingly:

• Randomly oriented anisotropic pores, which exhibit restricted diffusion. The
maximum gradient strength for this simulation is GDODE D 300mT/m, which
yields a b-value of 25;780 s/mm2.

• Randomly oriented anisotropic domains which exhibit Gaussian diffusion with
different parallel and perpendicular diffusivities. The maximum gradient strength
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is GDODE D 100mT/m, which yields a b-value of 2865 s/mm2. This is similar to
the simulations in [32, 58].

Figure 5b illustrates the dependence of FE and �FA on pore elongation for a
substrate of anisotropic pores exhibiting restricted diffusion. In this case, the FE and
�FA value computed assuming the same mean diffusivity for isotropic encoding and
the directional average overestimates the microscopic anisotropy of pores with low
eccentricity. Relaxing this assumption improves the values of�FA, nevertheless, it is
not monotonically increasing with pore eccentricity. In case of restricted diffusion,
the fractional eccentricity computed from DODE measurements is closer to the
gold standard values. Figure 5c illustrates the dependence of FE and �FA on the
ratio between parallel and perpendicular diffusivities in randomly oriented domains
which exhibit Gaussian diffusion. In this case �FA is slightly closer to the ground
truth FA values of the microdomains compared to FE. Moreover, the assumption that
the mean diffusivity is the same for the directional average and isotropic encoding
holds. This situation is representative of the simulations from [32, 58]. The extended
models described in Sect. 2.3 which have a distribution of tensors, might be able to
better represent restricted diffusion, by mapping it as an isotropic variance of the
tensors, nevertheless, this needs to be investigated.

3.5 Model-Based Estimation of Pore Size and Shape

A different approach to estimate pore size and eccentricity is to develop a math-
ematical model which relates the substrate parameters to the acquired signal and
to fit the data in order to estimate the parameters of interest. A recent simulation
study showed that estimates of pore size and eccentricity can be simultaneously
recovered from diffusion measurements using a model-based approach [21]. The
technique uses a geometric model of finite cylinders with either one radius or
gamma distributed radii to represent pores of various sizes and elongations. The
two different models are fitted to synthetic SDE and DDE data generated using
Monte Carlo simulations with geometric meshes consisting of cuboids with various
size distributions and eccentricities, as illustrated in Fig. 6a, b. When the substrates
consist of identical pores which differ only in orientation, then both SDE and DDE
measurements provide similarly accurate estimates of pore size and eccentricity, and
the simple model with one radius can be used to accurately recover microstructure
parameters. However, when the substrates consist of elongated pores with a
distribution of sizes, then DDE measurements yield more accurate values, and the
size distribution needs to be explicitly accounted for in the tissue model in order to
obtain accurate parameter estimates, as illustrated in Fig. 6c, d. A similar model-
based approach can also be extended to account for orientation distribution in
macroscopically anisotropic substrates [21]. These results are consistent with the
previous studies discussed in Sect. 2.1 which assumed an ensemble of identical
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microdomains with Gaussian diffusion to estimate �FA from the parallel and
perpendicular diffusivity values.

3.6 Direct Estimation of the Pore Shape Function

A very different approach to measure pore shape from diffusion data is to recover
the pore shape function discussed in the beginning of this section. According to
Eq. (22), the SDE signal in the long diffusion time limit is:

E D
Z

�.r0/eiq	r0dr0
Z

�.r1/e�iq	r1dr1 D j Q�.q/j2; (29)

where the reciprocal pore space function Q�.q/ D R dr�.r/ exp.�iq �r/ is the Fourier
transform of the spin density in the pore space �.r/. For SDE measurements, the
signal depends only on the magnitude j Q�.q/j, therefore the pore space function
cannot be recovered from an inverse Fourier transform since the phase information
is lost [34]. In SDE measurements this is a direct consequence of the anti-symmetry
of the diffusion gradient (i.e. G1 D �G2).

To be able to recover the pore space function �.r/, Laun et al. proposed a
different diffusion acquisition which consists of a weak and long gradient pulse
followed by a strong and narrow one, which satisfy the echo condition G1 � ı1 D
G2 � ı2 D q [34]. In this case the phase accumulated during the first gradient
depends on the pore centre of mass 
1 D

R
G1.t/ � r.t/dt D G1 � rcm, and the

signal becomes:

E D eiq	rcm
Z

dr1�.r1/e�iq	r1 D eiq	rcm Q�.q/: (30)

Thus, the phase information of Q�.q/ is preserved and the pore space function
can be directly evaluated by inverse Fourier transform. Long-narrow gradient
combinations are not the only ones which can be used for this purpose. Shemesh
et al. showed that DDE sequences with equal gradient strengths q1 D q2, zero
mixing time �m D 0 and long diffusion time, can also be used to measure the pore
space function [50]. In this case the measured signal is:

EDDE D
Z

�.r0/e�iq	r0dr0
Z

�.r1/e2iq	r1dr1
Z

�.r2/e�iq	r2dr2

D Q�.q/2 Q��.2q/; (31)

and it has a different dependence on the reciprocal pore space function compared to
the SDE measurements which depend only on the magnitude. This also implies that
the signal can cross the zero axis and take negative values, which has been shown in
[43, 47, 50]. By dividing the signal measured from a DDE sequence and the signal
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from an SDE sequence with the same q, one obtains:

EDDE

ESDE
D Q�.q/

2 Q��.2q/
j Q�.q/j2 : (32)

For point symmetric pores, e.g. ellipsoids, Q�.q/ is real, and the pore func-
tion can be estimated by taking the inverse Fourier transform of the quotient
in Eq. (32), which has been experimentally used for estimating the pore space
function in microcapillaries [50]. In the general case of non-symmetric pores,
the phase of Q�.q/ can be iteratively reconstructed as described by Kuder et al.
[29] and the performance of various gradient waveforms to estimate the pore
function has been analysed in [33]. The reconstruction of the pore space function
for identical, triangular pores has been experimentally validated in a polarized
Helium phantom [31], while the effect of a distribution of shapes is considered
in [30].

4 Summary

This chapter presents the mathematical background and possible applications of
various techniques used in diffusion NMR and MRI to estimate the microscopic
anisotropy of pores in the underlying substrates. The different approaches can
be classified in terms of the diffusion sequences used for acquisition as well
as in terms of the signal model which describes the diffusion process in the
material.

In Sect. 2 we present techniques which assume that diffusion in each pore of an
ensemble is in the Gaussian regime and the signal model is accurately described
by a diffusion tensor. Thus, the ensemble signal is given by a distribution of
diffusion tensors, which can vary in orientation and/or size depending on the
assumption of each method. In Sect. 3, we consider the diffusion to be restricted
within the pore boundaries and thus microscopic anisotropy is directly influenced
by geometrical properties of the pore such as diameter and length. Thus, the
diffusion signal is written in terms of the spin displacements in the substrate,
instead of a distribution of diffusivities. In this case, as the spin displacements
are time dependent, the measured signal also depends on the timings of the
diffusion sequence and not only the b-value (b tensor). Besides the choice of signal
model to represent the diffusion process in the underlying substrate, the choice of
acquisition sequences has a great impact on the accuracy and applicability of various
techniques.

If there is prior knowledge that the substrates consist of identical microdomains,
then SDE measurements with at least two different b-values can be used to estimate
microscopic anisotropy. The main advantage of such an approach, especially for
clinical imaging applications, is the fact that it does not require custom acquisition
protocols and can be used retrospectively to analyse various datasets [23]. The
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drawback of this assumption is that the presence of a size distribution and/or
multiple compartments with various diffusivities will get interpreted as increased
microscopic anisotropy. To overcome this issue when mapping neurite density in
the brain, Kaden et al. proposed to extend the original spherical mean technique
to a two-compartment tissue model, with the intracellular compartment described
by a “stick” model (diffusion tensor with D? = 0) and hindered diffusion in the
extracellular space [24], instead of identical microdomains as in [23]. Although,
this assumptions is appropriate for brain imaging in the range of diffusion times and
b-values used in the clinic, such as model might not applicable in case of pathology,
such as tumours.

Using diffusion encoding sequences which vary the gradient direction within
one measurement can disentangle the effects of a size distribution from microscopic
anisotropy. The DDE sequence proposed by Mitra [39] can probe the correlation of
diffusion in different directions, when the orientations of the two gradient pairs are
non-collinear. Moreover, in the long diffusion and mixing time limit, the amplitude
modulation of the DDE signal as the angle between the two gradients is varied
reflects the presence of microscopic anisotropy. Such angular DDE experiments
have been performed in phantoms [11, 46, 48], ex-vivo and in-vivo biological
tissue [51] as well as in humans in-vivo [35] to characterize the microscopic
anisotropy. Rotationally invariant extensions for the DDE acquisition have also been
proposed for accurate estimation of �FA in macroscopically anisotropic substrates
[22, 37]. In these techniques �FA is calculated based on the signal difference
between measurements with parallel and perpendicular gradients. As taking the
difference of two noisy measurements has a negative impact on the signal-to-
noise ratio (SNR), the estimated �FA can be a very noisy measure depending on
the quality of the original data. Alternatively, a signal model which accounts for
anisotropic compartments can be fitted to the measured data in order to estimate
�FA without computing a signal difference [21]. Moreover, the acquisition protocol
can be significantly shortened by optimising the gradient waveform of the diffusion
sequence. Such an approach has been beneficial for estimating pore diameter in
cylindrical restriction [1, 14, 53, 54] and can be simply adapted to models which
include microscopic anisotropy.

A different technique for estimating microscopic anisotropy proposed by Lasic
et al. [32] combines measurements with isotropic and directional encoding acquired
at several b-values. The variance of the probability distribution of diffusivities
calculated from the powder average of the directional measurements reflects both
the size distribution and the microscopic anisotropy of the microdomains, while the
variance calculated from isotropic measurements reflects only the size distribution
in the substrate. Thus, the difference in variance obtained from the two sets of
measurements reflects the microscopic anisotropy. This approach disentangles the
effects of �FA and size distribution, however, it cannot differentiate between an
ensemble of oblate or prolate microdomains. Thus, more recent studies [13, 17]
have extended the acquisition to a range of b tensors which span the intermediary
values between linear and isotropic encoding. Westin et al. have adapted a sim-
ilar acquisition for clinical practice and proposed a mathematical framework to
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estimate microscopic anisotropy and other invariant metrics from a signal model
which consists of a distribution of tensors [62]. All these techniques assume
that diffusion in each microdomain is Gaussian and the estimated parameters do
not depend on the timings of the sequence. Thus, if the data is acquired with
different q-space trajectories, the estimated parameters might be different even if
the b tensors are the same. This effect should be considered when comparing the
results from different acquisitions. Moreover, the simulations in Sect. 3.4 show
that �A might be overestimated if diffusion is highly restricted in isotropic pores.
One drawback of these techniques is the fact that they require custom-made
diffusion sequences, which can be very difficult to implement in a standard clinical
set-up.

A distinct approach to estimate pore shape from diffusion MR data, is to use an
acquisition with gradients that are not anti-symmetric and to compute the inverse
Fourier transform of the reciprocal pore space function. Some measurements like
long-narrow pulses yield directly the reciprocal pore space function, while for
a variety of other gradient waveforms, including DDE sequences, an iterative
estimation of the phase is necessary, as explained in Sect. 3.6.

Estimating microscopic anisotropy, and in general pore shape, from diffusion
MRI data is an active research field with a plethora of applications. There have been
many recent developments both from the data acquisition perspective as well as
from the modelling side in order to obtain more robust and meaningful estimates of
microstructural features.
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58. Szczepankiewicz, F., Lasič, S., van Westen, D., Sundgren, P.C., Englund, E., Westin, C.F.,
Ståhlberg, F., Lätt, J., Topgaard, D., Nilsson, M.: Quantification of microscopic diffusion
anisotropy disentangles effects of orientation dispersion from microstructure: applications in
healthy volunteers and in brain tumors. NeuroImage 104, 241–52 (2015)

59. Szczepankiewicz, F., van Westen, D., Englund, E., Westin, C.F., Ståhlberg, F.: Lätt, J.,
Sundgren, P.C., Nilsson, M.: The link between diffusion MRI and tumor heterogeneity:
mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE).
NeuroImage (2016). Early view

60. Topgaard, D., Söderman, O.: Self-diffusion in two- and three-dimensional powders of
anisotropic domains: an NMR study of the diffusion of water in cellulose and starch. J. Phys.
Chem. 106, 11887–11892 (2002)

61. Westin, C.F., Szczepankiewicz, F., Pasternak, O., Özarslan, E., Topgaard, D., Knutsson, H.,
Nilsson, M.: Measurement tensors in diffusion MRI: generalizing the concept of diffusion
encoding. In: Proceedings of MICCAI, Boston, pp. 209–216. Springer, Berlin (2014)

62. Westin, C.F., Knutsson, H., Pasternak, O., Szczepankiewicz, F., Özarslan, E., van Westen, D.,
Mattisson, C., Bogren, M., O’Donnell, L.J., Kubicki, M., Topgaard, D., Nilsson, M.: Q-space
trajectory imaging for multidimensional diffusion MRI of the human brain. NeuroImage 135,
345–362 (2016)



Bayesian Heteroscedastic Regression
for Diffusion Tensor Imaging

Bertil Wegmann, Anders Eklund, and Mattias Villani

Abstract We propose a single-diffusion tensor model with heteroscedastic noise
and a Bayesian approach via a highly efficient Markov Chain Monte Carlo (MCMC)
algorithm for inference. The model is very flexible since both the noise-free signal
and the noise variance are functions of diffusion covariates, and the relevant
covariates in the noise are automatically selected by Bayesian variable selection.
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(MD). Using data from the Human Connectome Project, our results show that
the noise is clearly heteroscedastic, especially the posterior variance for MD is
substantially underestimated by the homoscedastic model, and inferences from the
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1 Introduction

Diffusion weighted imaging is a popular modality for studying structural brain
connectivity, as it can non-invasively measure how easily water can diffuse along
different directions; see [17] for a collection of very accessible papers in diffusion
MRI. While recent work (e.g. [32]) is focused on improving and extending the
rather simple diffusion tensor model, diffusion tensor imaging (DTI) is still the
most common choice for studies looking at differences between healthy controls
and subjects with some disease [9, 21, 24]; the TBSS approach (tract-based spatial
statistics) [26] for voxel-wise inference of fractional anisotropy (FA) has since
2006 received more than 2800 citations, with about 500 citations in 2015. A
drawback of the TBSS approach is that it ignores the uncertainty of the FA for
each subject, which is in contrast to functional magnetic resonance imaging (fMRI)
where heteroscedastic group analyses are common [5, 8]. For both fMRI and DTI,
the assumption of homoscedasticity (constant variance over samples) at the single
subject level has been overlooked, although weighted least squares is rather common
for DTI [4].

There are several reasons why diffusion data can be heteroscedastic. One of the
most obvious reasons is that the signal to noise ratio (SNR) is in general lower
with a higher b-value, and multi-shell diffusion data are therefore heteroscedastic.
For single-shell diffusion data, heteroscedasticity can be introduced by taking
the logarithm of the measurements before fitting a tensor [4]. Head motion is
another potential source of heteroscedasticity in diffusion data. The analysis in [11]
shows that motion spikes can give rise to heteroscedasticity in fMRI data, even
after correcting for head motion and using motion covariates (and their temporal
derivative) to capture residual motion effects. Another source of unequal noise
variances is model misspecification, e.g. deviations from mono-exponential decay
in the MR signal. The commonly used Gaussian approximation to the underlying
Rician distributed signal in diffusion MR may also give rise to heteroscedastic data.
This explanation is supported by the comparison between a Gaussian and Rician
DTI model in [31], where covariates in the variance are much more frequent in the
Gaussian model than in the Rician model.

We therefore propose a Bayesian heteroscedastic regression approach, and a
highly efficient Markov Chain Monte Carlo (MCMC) algorithm, to estimate a
single-diffusion tensor model. Our model is very flexible as it can include any
covariate to model the noise variance, and it automatically selects the relevant
covariates by Bayesian variable selection. While the common weighted least squares
approach uses the signal intensity as weights, our algorithm instead estimates
optimal weights from the data. The Bayesian approach also has the obvious
advantage of capturing the full uncertainty of the parameters through the posterior
distribution. The subject and voxel specific uncertainty of the FA can thereby easily
be propagated to the group analysis.

Compared to the early work by Behrens et al. [6], our regression approach is
more general, as it can include covariates for both the mean and the variance, and
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uses a logarithmic link function instead of taking the logarithm of the measurements.
Instead of using a maximum a posteriori approach [1], which only provides a point
estimate of the posterior, our MCMC approach gives the full posterior distribution
of the diffusion tensor. We use the single tensor model in this chapter, but our
methodology applies to any diffusion model that can be expressed as regression
model with a link function. One such model is the regression model for q-space
trajectory imaging used in [32] to estimate a diffusion tensor and a fourth order
covariance matrix in every voxel.

It is crucial to have a very efficient MCMC algorithm for diffusion tensor imaging
since the algorithm needs to be iterated some 1000–10,000 times for each of several
thousand voxels. Our proposed MCMC algorithm generates an effective number of
posterior draws per minute which often is tens or hundreds times larger than for
commonly used algorithms in DTI, see [31] for a comparison, with the additional
benefit of performing variable selection in the same run.

Using data from the Human Connectome Project [13], our results show that the
commonly used ordinary and weighted least squares methods greatly underestimate
FA and MD, and are therefore not adequate for estimating the single-diffusion
tensor. The main reason for this is that these methods take the logarithm of
the measurements, instead of using the logarithmic link function dictated by the
theoretical single-diffusion tensor model. Our results also clearly show that DTI
noise is heteroscedastic, and inferences under the homoscedastic special case of
our heteroscedastic DTI model are on average similar, although the variance for
especially MD is substantially underestimated by the homoscedastic DTI model.
This reflects well-known results that homoscedastic models give unbiased estimates,
but underestimate standard errors when the data are heteroscedastic. The variability
in the posterior distributions of FA and MD is in our case small, which is partly due
to our use of DWI data with many gradient directions for the different b-values.

2 The Heteroscedastic Diffusion Tensor Model

We first present the homoscedastic DTI model for the single-diffusion tensor in
Sect. 2.1, extend this model to our heteroscedastic DTI model for the noise variance
in Sect. 2.2 and then present our prior distributions in Sect. 2.3.

2.1 The Homoscedastic DTI Model

The DTI model assumes that the noise-free signal �i for measurement i is of the
form

�i D �0 exp
��bigTi Dgi

�
; (1)
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where �0 is the signal in absence of any diffusion, bi is the b-value and
gi D .gix; giy; giz/T is the gradient vector for the ith measurement, and

D D
0

@
dxx dxy dxz
dxy dyy dyz
dxz dyz dzz

1

A

is the diffusion tensor. The signal is theoretically observed in Rician noise [15],
but is approximated by a Gaussian distribution in most applications. The models
proposed here can be estimated with Rician noise (see [31]), but we will use
Gaussian noise here for two main reasons. First, the analysis of heteroscedasticity
in DTI noise is more transparent when the Gaussian distribution is used since it is
explicitly parametrized by a mean and variance. Second, we can directly compare to
the estimation methods traditionally used for the DTI model (see Sect. 3.1), which
assume Gaussian noise, or are known to be optimal under such an assumption.

The diffusion tensor model in Eq. (1) with homoscedastic Gaussian noise can be
written as a generalized linear regression model with a logarithmic link function,
according to

yijxi � N.�i; �
2/

ln�i D ˇ0 C xTi ˇ; (2)

for i D 1; : : : ; n; where ˇ0 D ln�0,

ˇ D �dxx; dyy; dzz; dxy; dyz; dxz
�
;T

and

xTi D �
�
big

2
ix; bg

2
iy; big

2
iz; 2bigixgiy; 2bigiygiz; 2bigixgiz

�
: (3)

However, since the tensor D is required to be positive definite, the parameter
space of ˇ in Eq. (2) is restricted. One can impose the positive definiteness
restriction explicitly by a reparametrization of the model parameters. We will here
use the log-Cholesky representation of the diffusion tensor [18]

D.!/ D �T�;

where

� D
0

@
e!1 !4 !6
0 e!2 !5
0 0 e!3

1

A ;
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and ! D .!1; : : : ; !6/ 2 R
6 are the unrestricted parameters. In this parametrization

D.!/ D
0

@
e2!1 !4e!1 !6e!1

!4e!1 !24 C e2!2 !4!6 C !5e!2
!6e!1 !4!6 C !5e!2 !26 C !25 C e2!3

1

A ;

so that the vector of regression coefficients ˇ.!/ in Eq. (2) is given by

ˇ.!/ D .e2!1 ; !24 C e2!2 ; !26 C !25 C e2!3 ; !4e
!1 ; !4!6 C !5e!2 ; !6e!1/: (4)

We demonstrate empirically in Sect. 5.2 that the log-Cholesky parametrization
has the additional advantage of making the likelihood function more regular and
Gaussian compared to the unrestricted parametrization.

2.2 The Heteroscedastic DTI Model

The model in Eq. (2) implicitly assumes that the noise variance �2 is constant over
all observations. The following heteroscedastic DTI model drops this assumption,
and lets the noise variance be driven by a set of explanatory variables, according to

yijxi; zi � N
�
�i; �

2
i

�

ln�i D ˇ0 C xTi ˇ;

ln �2i D �0 C zTi �; (5)

for i D 1; : : : ; n; where ˇ0, ˇ and x are defined as in the homoscedastic model in
Eq. (2) and z may include all of the covariates in x and other covariates which may
be useful for modeling the heteroscedasticity. The variable selection presented in
Sect. 2.3 will automatically select the relevant covariates in z.

2.3 Prior Distribution and Variable Selection

2.3.1 Priors on the Regression Coefficients

We analyze both the homoscedastic and heteroscedastic DTI models using a
Bayesian approach, which formulates a prior distribution for all model parameters
and then updates this prior distribution with observed data. We choose non-
informative priors for both models, such that the amount of prior information does
not affect comparison between the models. We assume the priors for the intercepts
ˇ0 � N.mˇ; c/ and �0 � N.m� ; c/, independently of the priors for the regression
coefficients ! � N.0; cI/ and � � N.0; cI/, where c D 100 to induce non-
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informative priors and I is the identity matrix. Note that the prior expected value of
0 for � implies that the heteroscedastic DTI model is centered on the homoscedastic
case a priori. The models for � and �2 in Eqs. (2) and (5) become ˇ0 D ln�i and
�0 D ln �2i when b D 0. Therefore, we set the prior expected values, mˇ and m� ;
for ˇ0 and �0 in each voxel i by taking the logarithm of the mean and variance of yi
when b D 0; respectively.

2.3.2 Variable Selection Priors

Our MCMC algorithm can perform Bayesian variable selection among both sets of
covariates (i.e. x and z). In the empirical results, however, we only apply variable
selection to z for two reasons. First, in our example, we only include the tensor
covariates (Eq. (3)) in x, and excluding covariates with variable selection does
not make much sense there. Second, in the log-Cholesky parametrization, variable
selection amounts to zero-restrictions on the !, which have no clear interpretation.
We nevertheless present our algorithm for the case where we allow for variable
selection in both x and z, since other applications of our model may involve
additional covariates in x (e.g. head motion covariates) where variable selection can
be very useful.

The intercepts in ln� and ln �2 are always assumed to be included in the model.
We focus here on an unrestricted ˇ in the equation for � (exactly the same general
algorithm is used for variable selection in the noise variance �2). Define the vector
with binary indicators I D fI1; : : : Ipg such that Ij D 0 means that the jth element in
ˇ is zero and that the corresponding covariate drops out of the model. Let Ic denote
the complement of I. Let ˇI denote the subset of regression coefficients selected
by I. To allow for variable selection we take the prior ˇ � N.0; c†/ on the model
with all covariates, and condition on the zeros dictated by I:

ˇI jI � N

0; c.†I;I �†I;Ic†�1

Ic;Ic†
T
Ic;I/

�
;

and ˇIc jI is identically zero. In our special case here with † D I, this conditional
prior simplifies to ˇI jI � N

�
0; cIjIj

�
. To complete the variable selection prior

we let the elements of I to be a priori independent and Bernoulli distributed, i.e
Pr.Ii D 1/ D � , and � is allowed to be different for the covariates in � and �2.
Other priors on I are just as easily handled, and one can easily also use a prior on
� and estimate it from the data.

3 Inference Methods

Common least squares estimation methods in DTI are presented in Sect. 3.1 and
our Bayesian approach with a highly efficient Markov Chain Monte Carlo (MCMC)
algorithm for the heteroscedastic DTI model in Eq. (5) is outlined in Sect. 3.2.
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3.1 Traditional Estimation Methods

One of the most common estimation method for the homoscedastic DTI model is to
use Ordinary Least Squares (OLS) fitting on the log responses [3], ln yi,

Ǒ
OLS D

�
XTX

��1
XT ln y;

where y D .yi/niD1, X D .xTi /
n
iD1. However, since OLS is only technically correct

under the assumption of log normally distributed homoscedastic multiplicative
errors, the use of OLS for DTI is likely to be suboptimal. It is possible to improve
on OLS by using Weighted Least Squares (WLS), according to [4]

Ǒ
WLS D

�
XTWX

��1
XTW ln y;

where W D Diag
�
y21; : : : ; y

2
n

�
is the weight matrix; see [18] for a motivation

for using the squared signals y2i as weights. While OLS and WLS are convenient
closed form estimators with great practical appeal, it is actually straight-forward to
correctly estimate the homoscedastic DTI model by using the iteratively reweighted
least squares (IRLS) algorithm (see for example [27]) typically used to estimate
generalized linear models.

We have so far assumed that the tensor parameters are unrestricted, in which case
the implied estimated tensor from OLS, WLS and IRLS are not guaranteed to be
positive definite. Imposing the positive definiteness restriction by parametrizing ˇ
using the log-Cholesky representation makes the OLS, WLS and IRLS optimization
problem for the unrestricted parameters ! non-linear, and the solutions are no
longer available in closed form. Using Nonlinear Least Squares (NLS), Koay [18]
develops more general methods that also provide the uncertainty of any derived
quantity [19, 20]. It is, however, not clear how to extend these least squares methods
to the heteroscedastic case. We therefore turn to a Bayesian approach via MCMC.

3.2 Bayesian Inference Using MCMC Sampling with Variable
Selection

The aim of a Bayesian analysis is the joint posterior distribution of all model
parameters

p.ˇ; � jy;X;Z/ / p.yjˇ; �;X;Z/p.ˇ; �/;

where y D .yi/niD1, X D .xi/niD1, Z D .zi/niD1, p.yjˇ; �;X;Z/ is the likelihood
function for the DWI measurements in the n-dimensional vector y, and p.ˇ; �/
is the prior. If the log-Cholesky parametrization is used, ˇ is replaced by !. The
joint posterior p.ˇ; � jy;X;Z/ is intractable and we instead simulate from the joint
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posterior using an efficient MCMC algorithm given below. The simulated draws
from the posterior p.ˇ; � jy;X;Z/ can be used to easily compute the posterior
distribution of the tensor D and any derived measure such as fractional anisotropy
(FA), or even the joint posterior distribution of any number of derived measures. The
posterior distribution for D provides a very natural way to quantify the uncertainty,
and draws from it can be used as input to tractography algorithms [7].

We use a Metropolis-within-Gibbs algorithm to simulate from the joint posterior
distribution. Our posterior sampling algorithm is based on a general framework
presented in [28] and [29], which we here extend to the log-Cholesky paramet-
rization. We will outline the major steps in the algorithm here, and refer the reader
to a more detailed description in [29] and in [31], where we apply the same
framework to the Rician model for fMRI and DTI. Our proposed Metropolis-within-
Gibbs algorithm samples iteratively from the following pair of full conditional
posteriors:

1. p
�
ˇ; Iˇj�; I� ; y;X;Z

�
,

2. p
�
�; I� jˇ; Iˇ; y;X;Z

�
.

Note that we sample ˇ and Iˇ jointly given the other parameters. The full
conditional posteriors p.ˇ; Iˇj�/ and p.�; I� j�/ are highly non-standard distributions,
but can be efficiently sampled using Metropolis-Hastings (MH) updates. The
sampling of the pair .�; I� / is analogous to the sampling of .ˇ; Iˇ/, so we will only
describe the update of .ˇ; Iˇ/. The conditional posterior of ˇ is simply denoted by
p.ˇjI; y;X/ in the remainder of this section. The MH proposal distribution is of the
form

J.ˇp; Ipjˇc; Ic/ D J1.ˇpjIp; ˇc/J2.Ipjˇc; Ic/; (6)

where .ˇc; Ic/ denotes the current and .ˇp; Ip/ the proposed posterior draw.
Following [28] and [29], we choose J2 to be a simple proposal of I where a subset
of the indicators is randomly selected and a change of the selected indicators is
proposed, one variable at a time. The proposal of ˇ, the J1 distribution, is a tailored
multivariate-t distribution with � degrees of freedom:

ˇpjIp; ˇc � t�

"

Ǒ;�
�
@2 log p.ˇjI; y;X/

@̌ @̌ T

��1 ˇˇ
ˇ
ˇ
ˇD Ǒ

#

;

where log p.ˇjI; y;X/ denotes the (conditional) posterior density, Ǒ is the terminal
point of a small number of Newton iterations to climb towards the mode of the

full conditional p.ˇpjIp; �/, and �
�
@2 log p.ˇjI;y;X/

@ˇ@ˇT

��1 ˇˇ
ˇ
ˇ
ˇD Ǒ

is the negative inverse

Hessian of the full conditional posterior evaluated at ˇ D Ǒ. There are a number
of different aspects of these Newton-based proposals. First, the number of Newton
iterations can be kept very small (one or two steps is often enough), since each
iteration always starts at ˇc, which is typically not far from the mode. Second,
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Ǒ is often not exactly the mode, but the posterior draws from the algorithm will
nevertheless converge to the target posterior. Third, the update .ˇc; Ic/ ! .ˇp; Ip/
is accepted with probability

min

�

1;
p.yjˇp; Ip;X/p.ˇpjIp/p.Ip/=J1.ˇpjIp; ˇc/J2.Ipjˇc; Ic/
p.yjˇc; Ic;X/p.ˇcjIc/p.Ic/=J1.ˇcjIc; ˇp/J2.Icjˇp; Ip/

�

;

where the factor J1.ˇcjIc; ˇp/ is again computed by Newton iterations, this time
starting from the proposed point ˇp. Fourth, to implement the Newton iterations we

need to be able to compute the gradient @ log p.yjI;ˇ;X/
@ˇ

and the Hessian @2 log p.ˇjI;y;X/
@ˇ@ˇT

efficiently. Villani et al. [29] derive the gradient and the Hessian for a general
posterior of the form

p.ˇjI; y;X/ /
nY

iD1
p. yij
i; xi/p.ˇ/; (7)

where k.
i/ D x0
iˇ is a smooth link function, and xi is a covariate vector for the

ith observation; the full conditional posteriors for ˇ and � in the heteroscedastic
DTI model with log links are clearly of this form. The gradient of the likelihood in
Eq. (7) can be expressed as

@ ln p.yjI; ˇ;X/
@̌

D XTg; (8)

where g D .g1; : : : ; gn/T , and

gi D @ ln p. yij
i; xi/
@
i


k0.
i/

��1
:

The Hessian of the likelihood is

@2 ln p.yjI; ˇ;X/
@̌ @̌ 0 D XT .A1 C A2/X; (9)

where A1 D Diag.a1i/, A2 D Diag.a2i/,

a1i D @2 ln p. yij
i; xi/
@
2i


k0.
i/

��2
;

and

a2i D �@ ln p. yij
i; xi/
@
i

k00Œk0.
i/�1�k0.
i/�2:
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It is very important to note that the posterior gradient and the Hessian only require
derivatives for the scalar parameters of the log-likelihood, i.e. @ ln p. yij
i; xi/=@
i
and @2 ln p. yij
i; xi/=@
2i , which are straightforward for the heteroscedastic DTI
model, see [29]. When the log-Cholesky parametrization is used, the mapping from
! to ˇ is nonlinear, and the gradient in Eq. (8) is modified to

@ ln p.yjI; !;X/
@!

D
�

X
@̌ .!/

@!

�T

g;

where

@̌ .!/

@!
D

0

B
B
B
B
B
B
B
@

2e2!1 0 0 0 0 0

0 2e2!2 0 2!4 0 0

0 0 2e2!3 0 2!5 2!6
!4e!1 0 0 e!1 0 0

0 !5e!2 0 !6 e!2 !4

!6e!1 0 0 0 0 e!1

1

C
C
C
C
C
C
C
A

:

The Hessian in Eq. (9) is modified in the same fashion.
In summary, our proposed MCMC algorithm consists of a two-block Metropolis-

Hastings within Gibbs sampler, where each step updates a set of regression
coefficients simultaneously with their binary variable selection indicators. The
multivariate student-t proposal is tailored to the full conditional posterior at each
step, using a generalized Newton method to approximate the conditional posterior
mode and curvature (Hessian). The gradient and the Hessian for the Newton steps
can be computed very efficiently in compact matrix form. Only a very small number
of Newton steps is needed, since each iteration starts at the previously accepted
parameter draw which is typically an excellent starting value.

4 Data

We use the freely available MGH adult diffusion dataset from the Human Connec-
tome Project (HCP) [13, 23]1 to test our algorithms. The dataset comprises DWI
data collected with several different b-values, and the downloaded data have already
been corrected for gradient nonlinearities, subject motion and eddy currents [2, 14].
The DWI data were collected using a spin-echo EPI sequence and a 64-channel
array coil, yielding volumes of 140	140	96 voxels with an isotropic voxel size of
1.5 mm. The data collection was divided into 5 runs, giving data with four different
b-values: 1000, 3000, 5000, and 10,000 s/mm2. However, we do not use the data
collected with a b-value of 10,000 s/mm2 in any analysis, because it is unusual in

1http://www.humanconnectome.org/documentation/MGH-diffusion/.

http://www.humanconnectome.org/documentation/MGH-diffusion/
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DTI analysis. The number of gradient directions was 64 for b = 1000 s/mm2 and
b = 3000 s/mm2, and 128 for b = 5000 s/mm2.

Prior to any statistical analysis, the function FAST in FSL was used to generate
a mask of white brain matter, gray brain matter and cerebrospinal fluid (CSF). In
general, voxels in CSF do not have a mono-exponential signal decay, which is
assumed by the DTI models with a log-link function. Therefore, we find it often
very problematic to estimate the parameters in CSF voxels for the log-link models
NLS and the homoscedastic and heteroscedastic DTI models. In addition, it is not
of interest to estimate the diffusion parameters in CSF. Thus, we avoid running the
analysis on voxels in CSF.

Data used in the preparation of this work were obtained from the Human
Connectome Project (HCP) database (https://ida.loni.usc.edu/login.jsp). The HCP
project (Principal Investigators: Bruce Rosen, M.D., Ph.D., Martinos Center at
Massachusetts General Hospital; Arthur W. Toga, Ph.D., University of Southern
California, Van J. Weeden, MD, Martinos Center at Massachusetts General Hos-
pital) is supported by the National Institute of Dental and Craniofacial Research
(NIDCR), the National Institute of Mental Health (NIMH) and the National Institute
of Neurological Disorders and Stroke (NINDS). HCP is the result of efforts
of co-investigators from the University of Southern California, Martinos Center
for Biomedical Imaging at Massachusetts General Hospital (MGH), Washington
University, and the University of Minnesota.

5 Results

The differences in estimation results between our heteroscedastic DTI model and
the other models are discussed in Sect. 5.1 and the more Gaussian posterior from
the log-Cholesky parametrization is illustrated in Sect. 5.2.

5.1 The Effect of Allowing for Heteroscedasticity and
Comparison to Traditional Estimation Methods

We first compare our heteroscedastic DTI model in Eq. (5) to the homoscedastic
counterpart in Eq. (2), using the whole dataset with all b-values up to b =
5000 s/mm2. Figure 1 shows that our MCMC algorithm exhibits excellent conver-
gence with high acceptance probabilities for � and �2. Figure 2 shows posterior
inclusion probabilities for the explanatory variables z in the noise variance in
Eq. (5). In many voxels the inclusion probabilities for the covariates corresponding
to
�
dxx; dyy; dzz

�
are close or equal to 1; while the inclusion probabilities for the

remaining covariates in z are mostly very close to zero. This clearly shows that

https://ida.loni.usc.edu/login.jsp


268 B. Wegmann et al.

Fig. 1 Acceptance probabilities for � and �2 in our MCMC of the heteroscedastic and
homoscedastic DTI models

diffusion covariates affect the noise variance, and results can be distorted by not
allowing for a heteroscedastic noise variance.

We compare the estimated single-diffusion tensors across voxels for the het-
eroscedastic DTI model in Eq. (5) to the homoscedastic counterpart in Eq. (2), and
the traditional estimation methods OLS, WLS and NLS in Sect. 3.1 with respect to
the DTI scalar measures mean diffusivity (MD) and fractional anisotropy (FA). FA
and MD are both functions of the eigenvalues �1 � �2 � �3 of the single-diffusion
tensor:

MD D �1 C �2 C �3
3

; FA D
r
3

2

qP3
iD1.�i �MD/2
qP3

iD1 �2i
:

Using the whole dataset with all b-values up to 5000 s/mm2, Fig. 3 shows the
estimated values of FA, for OLS, WLS and NLS and the posterior mean from the
heteroscedastic and homoscedastic DTI models. The differences in FA between the
heteroscedastic and homoscedastic DTI models and NLS are small, but compared to
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Fig. 3 Posterior mean estimates of FA for the heteroscedastic and homoscedastic DTI models
and point estimates for OLS, WLS and NLS, using the whole dataset with all b-values up to b =
5000 s/mm2

WLS and OLS the estimated values differ considerably, especially in white matter
regions with high FA values. This suggests that it is not adequate to use simple OLS
and WLS methods on the logarithm of the signal. Figure 4 shows the ratios of the
estimated FA between the heteroscedastic DTI model and the other models.
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Fig. 4 The ratio between the posterior means of FA for the heteroscedastic DTI model to the
homoscedastic counterpart and to the point estimates for OLS, WLS and NLS, using the whole
dataset with all b-values up to b = 5000 s/mm2. The colorbars are shown for the mid 95% values
and the minimum and maximum values are marked out at the bottom and top of the colorbars,
respectively

Figure 5 shows that there are some small differences in MD among the three
models with log link, but even larger differences between the models with and
without log link. Figure 6 shows the ratios of the estimated MD between the
heteroscedastic DTI model and the other models.

The small differences in FA and MD between our heteroscedastic DTI model to
NLS are mainly due to our more general approach where the relevant explanatory
variables in the noise variance are automatically selected by Bayesian variable selec-
tion. However, our Bayesian approach is also able to quantify the full uncertainty
in FA and MD from the estimated posterior distribution compared to NLS, which
further explains the differences between the models.

Figures 7 and 8 also show ratios of estimated values of FA and MD as in Figs. 4
and 6, but only for the subset of the dataset with b-values up to b = 3000 s/mm2. The
differences between the models are smaller for this subset of the data, and when
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Fig. 5 Posterior mean estimates of MD for the heteroscedastic and homoscedastic DTI models
and point estimates for OLS, WLS and NLS, using the whole dataset with all b-values up to b =
5000 s/mm2. The colorbars are shown for the mid 95% values and the minimum and maximum
values are marked out at the bottom and top of the colorbars, respectively

comparing the estimates for an even smaller subset with b-value b = 1000 s/mm2,
the differences between the models are negligible (not shown here).

Figure 9 shows the posterior standard deviations of FA and MD for the het-
eroscedastic and homoscedastic DTI models, and the ratio of the standard deviations
between the models. The standard deviations are small for both models. However,
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Fig. 6 The ratio between the posterior means of MD for the heteroscedastic DTI model to the
homoscedastic counterpart and to the point estimates for OLS, WLS and NLS, using the whole
dataset with all b-values up to b = 5000 s/mm2. The colorbars are shown for the mid 95% values
and the minimum and maximum values are marked out at the bottom and top of the colorbars,
respectively

the standard deviations for the heteroscedastic DTI model vary more across voxels
than for the homoscedastic counterpart, especially for MD. In addition, there is a
substantial amount of voxels where the standard deviations of MD are much higher
for the heteroscedastic DTI model compared to the homoscedastic DTI model. This
reflects well-known results that standard errors for homoscedastic models are known
to be too small for data with heteroscedastic noise variance. The standard deviations
for the part of the dataset with b-values up to b = 3000 s/mm2 are similar to the ones
in Fig. 9 for the whole dataset, but the standard deviations for the even smaller subset
of data with b-value b = 1000 s/mm2 are substantially larger, and the differences in
standard deviations between the models are substantially lower (not shown here).

The small standard deviations in Fig. 9 are partly due to using a large amount of
DWI data, with a large number of gradient directions for the different b-values. We
examine further how the standard deviations increase for a subset of the dataset with
b-values up to b = 3000 s/mm2. The subset consists of the first 32 gradient directions
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Fig. 7 The ratio between the posterior means of FA for the heteroscedastic DTI model to the
homoscedastic counterpart and to the point estimates for OLS, WLS and NLS, using the part of the
dataset with all b-values up to b = 3000 s/mm2. The colorbars are shown for the mid 95% values
and the minimum and maximum values are marked out at the bottom and top of the colorbars,
respectively

for each of the datasets with b-value b = 1000 s/mm2 and b = 3000 s/mm2. We find
our selection of data subset acceptable as a representative 50% part of the data,
as the selected gradient directions for each subset are rather uniformly distributed
across the unit sphere, see Fig. 10 for an illustration. In Fig. 11 the posterior standard
deviations for the heteroscedastic DTI model are shown for the data subset and
the whole dataset with b-values up to b = 3000 s/mm2. In general, the standard
deviations for the data subset are substantially larger than the ones for the whole
dataset, especially for FA in regions close to CSF. The corresponding standard
deviations for an even smaller subset with the first 16 gradient directions are in
general even higher (not shown here), but in some voxels the estimation of the
single-diffusion tensor become unstable due to the low number of measurements.
Hence, with less DTI data the DTI scalar measures become less precise for the
heteroscedastic DTI model.
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Fig. 8 The ratio between the posterior means of MD for the heteroscedastic DTI model to the
homoscedastic counterpart and to the point estimates for OLS, WLS and NLS, using the part of the
dataset with all b-values up to b = 3000 s/mm2. The colorbars are shown for the mid 95% values
and the minimum and maximum values are marked out at the bottom and top of the colorbars,
respectively

5.2 Properties of the Log-Cholesky Parametrization

The log-Cholesky parametrization has the clear advantage of guaranteeing a positive
definite tensor. Nevertheless, using least squares methods OLS, WLS or NLS to
estimate the tensor, there are at most 22 out of 6751 voxels in the shown slice that do
not meet the criteria of a positive definite tensor. The new parameters,!, from using
the log-Cholesky parametrization appear very non-linearly in the DTI regression,
however, and one may suspect that this will cause the posterior density to be more
non-Gaussian and problematic for optimization and sampling. We have found that
the opposite is true; the posterior distribution is closer to Gaussian in !-space than
it is in ˇ-space in the original parametrization. To illustrate this we have selected a
voxel where the original parametrization is particularly far from Gaussian, and the
log posterior distribution is plotted both in ˇ-space (Fig. 12) and !-space (Fig. 13).
It is clear that the log-Cholesky parametrization gives a more Gaussian posterior.
Figure 14 shows that this result holds for a large majority of the voxels.
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Fig. 9 Posterior standard deviations for the heteroscedastic and homoscedastic DTI models of the
DTI scalar measures FA and MD, using the whole dataset with all b-values up to b = 5000 s/mm2.
The colorbars are shown for the mid 95% values and the minimum and maximum values are
marked out at the bottom and top of the colorbars, respectively

6 Discussion

We propose a Bayesian heteroscedastic regression approach for estimating single-
diffusion tensors, and apply it to data from the Human Connectome Project.
Compared to traditional homoscedastic DTI models such as OLS, WLS and
NLS, our approach is more general as it makes it possible to include arbitrary
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Fig. 10 Diffusion directions for a 50% part (left) and for all diffusion directions (right) of the
dataset with all b-values up to b = 3000 s/mm2

Fig. 11 Posterior standard deviations for the heteroscedastic DTI model of FA and MD, using the
data subset and the whole dataset with b-values up to b = 3000 s/mm2. The colorbars are shown
for the mid 95% values and the minimum and maximum values are marked out at the bottom and
top of the colorbars, respectively
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Fig. 12 Investigating the Gaussianity of the posterior distribution in the homoscedastic DTI model
in the original parametrization. The solid blue line is a slice of the log posterior for a given
parameter with the other parameters kept fixed at the posterior mode. The dotted red line is the
log density of the normal approximation, conditional on the other parameters being at the mode

covariates for the mean as well as for the variance. We are therefore able to
model a heteroscedastic noise variance, and show that our approach replicates well-
known results that homoscedastic models underestimate standard errors but are
still unbiased when data are heteroscedastic. Another difference is that we use a
logarithmic link function, instead of first calculating the logarithm of the signal
intensity. We show that using the logarithm of the signal and estimating the single-
diffusion tensor by ordinary or weighted least squares greatly underestimates the
DTI scalar measures FA and MD. This raises some concerns regarding the use of
OLS or WLS for estimating the diffusion tensor.

Similar to the work in [19, 20], our algorithm can provide the uncertainty of any
derived quantity, such as FA and MD. We obtain the full posterior distribution of FA
and MD, as well as the joint distribution of FA and MD or any other DTI measure.
As expected, our results show that using a subset of the diffusion gradients leads
to a higher variance of FA. By saving the full posterior of the FA in each voxel,
a Bayesian group analysis can automatically down-weight subjects with a higher
uncertainty.

A drawback of our approach is the computational complexity. In a representative
voxel, it took 3.4 s to run 1000 MCMC iterations for the homoscedastic model, and
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Fig. 13 Investigating the Gaussianity of the posterior distribution in the homoscedastic DTI model
in the log-Cholesky parametrization. The solid blue line is a slice of the log posterior for a given
parameter with the other parameters kept fixed at the posterior mode. The dotted red line is the log
density of the normal approximation, conditional on the other parameters being at the mode

5.6 s for the heteroscedastic model. For a typical DTI dataset with 20,000 brain
voxels, this gives a total processing time of 18.9 h for the homoscedastic model, and
31.1 h for the heteroscedastic model. To run OLS, WLS and NLS for 20,000 brain
voxels takes 6, 72, and 112 s, respectively. For this reason, we have only analyzed a
single subject, as a group analysis with 20 subjects would be rather time consuming.
Fast variational inference can in principle be used instead of MCMC, but variable
selection is then no longer straightforward. As each voxel is analyzed independently,
it is in theory straightforward to run MCMC on the voxels in parallel, using a CPU
or a GPU [10, 16].

To only perform motion correction of diffusion weighted volumes is not suf-
ficient, as the interpolation operation will mix voxels with low and high signal
intensity (especially at the border between white matter and gray matter), and a
motion correlated signal will therefore still be present. Although not investigated
in this work, estimated head motion parameters, or their temporal derivative, can
also be included as covariates for the variance, to for example automatically down-
weight volumes corresponding to motion spikes [11] (any volume with a high
variance will automatically be down-weighted in our framework). Such an approach



280 B. Wegmann et al.

Fig. 14 Comparing the Gaussianity of the posterior in the original and log-Cholesky parametriza-
tions for all voxels. The figure plots the log ratio of the Euclidean distance between the log posterior
and its normal approximation in Figs. 12 and 13 over all parameters. A value larger than zero
means that the log-Cholesky parametrization produces a more normal posterior than the original
parametrization in that particular voxel

would be rather different compared to the common scrubbing approach used for
both fMRI and DTI [12, 22, 25], where an arbitrary motion threshold is used to
remove or censor volumes with too much head motion. It is also possible to include
other covariates that may be important for the variance, e.g. recordings of breathing
and pulse [30].

Through the use of variable selection, a large number of covariates can be used
for the mean as well as the variance, even if the number of diffusion volumes is
rather low. This becomes more important for higher order diffusion models, where
a large number of parameters need to be estimated in every voxel. For example,
a fourth order covariance matrix in each voxel [32] requires estimation of 21
additional parameters. Our algorithm can therefore also be applied to higher order
diffusion models.
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Multi-Fiber Reconstruction Using Probabilistic
Mixture Models for Diffusion MRI
Examinations of the Brain

Snehlata Shakya, Nazre Batool, Evren Özarslan, and Hans Knutsson

Abstract In the field of MRI brain image analysis, Diffusion tensor imaging (DTI)
provides a description of the diffusion of water through tissue and makes it possible
to trace fiber connectivity in the brain, yielding a map of how the brain is wired. DTI
employs a second order diffusion tensor model based on the assumption of Gaussian
diffusion. The Gaussian assumption, however, limits the use ofDTI in solving
intra-voxel fiber heterogeneity as the diffusion can be non-Gaussian in several
biological tissues including human brain. Several approaches to modeling the non-
Gaussian diffusion and intra-voxel fiber heterogeneity reconstruction have been
proposed in the last decades. Among such approaches are the multi-compartmental
probabilistic mixture models. These models include the discrete or continuous
mixtures of probability distributions such as Gaussian, Wishart or von Mises-Fisher
distributions. Given the diffusion weighted MRI data, the problem of resolving
multiple fibers within a single voxel boils down to estimating the parameters of
such models.

In this chapter, we focus on such multi-compartmental probabilistic mixture
models. First we present a review including mathematical formulations of the
most commonly applied mixture models. Then, we present a novel method based
on the mixture of non-central Wishart distributions. A mixture model of central
Wishart distributions has already been proposed earlier to resolve intra-voxel
heterogeneity. However, we show with detailed experiments that our proposed
model outperforms the previously proposed probabilistic models specifically for
the challenging scenario when the separation angles between crossing fibers (two
or three) are small. We compare our results with the recently proposed probabilistic
models of mixture of central Wishart distributions and mixture of hyper-spherical
von Mises-Fisher distributions. We validate our approach with several simulations
including fiber orientations in two and three directions and with real data. Resistivity
to noise is also demonstrated by increasing levels of Rician noise in simulated data.
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The experiments demonstrate the superior performance of our proposed model over
the prior probabilistic mixture models.

1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive technique to evaluate the
anatomical structures of various organs. There is a loss in MR signal due to thermal
random motion of water molecules in the presence of magnetic field gradients.
Diffusion weighted magnetic resonance imaging (DW-MRI) is based on measuring
the random Brownian motion of water molecules within a voxel of tissue. By
producing quantitative data of water molecule motion that naturally occurs in brain
tissues as part of the physical diffusion process, DW-MRI has also been used to map
the fiber orientation in the brain’s white matter tracts.

Diffusion tensor imaging (DTI) was introduced by Basser et al. [3] in 1994;
basic principles and applications of DTI have been reported earlier [16, 26, 29, 30].
Regarding brain anatomy, diffusion appears mostly isotropic in gray matter and
cerebrospinal fluid where signal is independent of the direction in which the
gradients are applied. It becomes anisotropic in white matter where brain water
diffuses freely along axonal fiber direction. A second order diffusion tensor is
used in DTI to represent anisotropic diffusion that is based on the assumption
of Gaussian-distributed diffusion. Displacement probability characterized by an
oriented Gaussian probability distribution function, provides a relatively simple
way of quantifying diffusional anisotropy as well as predicting the local fiber
direction within the tissue. However, the major drawback of DTI is that it can
reveal a single fiber orientation in each voxel and fails in voxels with orientation
heterogeneity. Several image acquisition strategies and reconstruction methods
have been developed and modified to overcome the limitation of DTI [43]. The
q-space imaging (QSI), also referred to as diffusion spectrum imaging (DSI),
utilizes the Fourier relation between the diffusion signal and the average particle
displacement probability density function [42]. High angular resolution diffusion
imaging (HARDI) is an approach that utilizes measurements along many directions
[38]. HARDI allows the computation of water molecule displacement probabilities
over the sphere thus incorporating the diffusion in several directions. The proba-
bility distribution given as spherical function is often referred as the orientation
distribution function (ODF) and several probabilistic models have been proposed to
compute ODF’s. Tuch et al. [40] proposed q-ball imaging method that attempts
to transform limited number of multidirectional signals into an ODF. Recently
Scherrer et al. [35] have presented a diffusion compartmental model, Distribution
of Anisotropic Microstructural Environments in Diffusion-Compartment Imaging
(DIAMOND) to characterize the brain tissues. In Sect. 2.2, we will review how
the mixtures of von Mises-Fisher distributions are used to construct ODF for the
purpose of estimating intra-voxel multi-fiber structure.
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Probabilistic Multi-Compartmental Models Multi-compartment models have
been proposed as alternative diffusion models for the intrinsic voxel-wise diffusion
heterogeneity due to fibers oriented in several directions or crossing fibers. In a
multi-compartmental model, diffusion in a number of pre-specified compartments
is explicitly modeled as a mixture (discrete/continuous) of basis functions to
approximate the MR signal attenuation where the compartments represent groups
of cells/fibers inducing similar diffusion properties. Specifically, in a probabilistic
multi-compartmental model, the underlying basis functions consist of modular
probability distributions. Each voxel is associated with underlying probability
distribution(s) defined on the space of diffusion tensors (the manifold of 3 	 3
positive-definite matrices). Under this probabilistic multi-compartmental model,
the problem of extracting the intra-voxel multi-fiber structure then boils down to
estimating the mixture of probabilistic distributions for tensors that best explains
the observed diffusion-weighted images.

In this chapter, we review mixture models proposed to date for multi-fiber
reconstruction such as mixture of Gaussian distributions [39] (Sect. 2.1), mixture of
central Wishart distributions (MoCW) by Jian et al. [13, 14] (Sect. 2.3) and mixture
of von Mises-Fisher distributions by Kumar et al. [4, 18, 19, 28] (Sect. 2.2). Overall,
these methods work well with large separation angles between two or three crossing
fibers but have limitations (i.e. the angular error in reconstruction is significantly
large) when the separation angles are small. We address this specific problem and
present our work on the mixture of non-central Wishart distribution (MoNCW)
which is shown to perform better in case of smaller separation angles. The moti-
vation to use MoNCW is the increased flexibility in terms of mathematical structure
imposed on the underlying probability distribution. Our detailed experiments and
analysis presented in Sect. 3 show that despite the simple change in the centrality
assumption of Wishart distributions, the proposed method performs much better as
compared to the previous methods [13, 14, 18, 19] when separation angles between
fibers are small for many simulations.

2 Theory

Let G and g be the magnitude and direction of the diffusion sensitizing gradient G,
and b be the ‘b-value’ or diffusion weighting given as b D .�ıG/2t, where � is gyro-
magnetic ratio, ı is the diffusion gradient duration and t is the effective diffusion
time. Traditionally, DTI assumes a displacement probability characterized by an
oriented Gaussian probability distribution function which yields to the following
well-known Stejskal-Tanner signal decay formula (assuming ı � t/:

S.q/ D S0 exp.�bgTDg/; (1)

where S0 is the signal in the absence of any diffusion weighting gradient, D is the
apparent diffusion tensor and q D 1

2�
�ıG is the coordinate vector in q-space which
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describes the direction and strength of diffusion gradient. Traditionally, diffusional
anisotropy in brain white matter is characterized by estimating the diffusion tensor
D by fitting the tensor to the diffusion data via Eq. (1) using linear regression.
However, this model can detect a single fiber orientation from the apparent D
only. In probabilistic framework, an underlying density, f .D/, is defined on the
space of diffusion tensors for each voxel and the indirectly observed D via DTI
measurements is considered to be an instance of the underlying f .D/. In this
probabilistic framework, Eq. (1) can be rewritten as:

S.q/ D S0

Z

Symd
C

f .D/ exp.�bgTDg/dD; (2)

where SymdC is the manifold of symmetric positive definite matrices.

2.1 Mixture of Gaussian Distributions

A multiple compartment model has been proposed earlier based on a discrete mix-
ture of Gaussian distributions where diffusion within each compartment/region of a
voxel is assumed to be Gaussian [10, 39]. Then the diffusion signal from multiple
diffusion compartments is given as a finite mixture of Gaussian distributions as
follows:

S.q/=S0 D
X

j

wj exp.�bgTDjg/: (3)

Here wj’s are the apparent volume fractions of the voxel with diffusion tensors
Dj’s. Eigenvalues of the individual tensors Dj were specified a priori according to
the physiological constraints of diffusion in fibers. An optimization scheme based
on gradient descent was then used to solve for the eigenvectors and volume fractions
wj that gave the lowest error between the predicted and observed diffusion signals.
This discrete mixture model, however, had the model selection limitation where
the number of mixture components had to be set arbitrarily. To mitigate that, Leow
et al. [22] employed the tensor distribution model introduced by Jian et al. [14, 15]
to estimate the tensor distribution function (TDF) that best explained the observed
diffusion-weighted data. Given multiple observations of q, the TDF was calculated
by solving the following equation for the optimal P�.D/:

P�.D/ D arg min
P

X

j


Sobs.q j/ � Scal.q j/

�2
;

where
Z

P.D/dD D 1 and P.D/ � 0: (4)

Scal.q/ D
Z

Symd
C

P.D/ exp.�bgTDg/dD (5)
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The constraints on the TDF were imposed using exponential mapping and the
TDF was estimated using the methods of Lagrange multipliers and gradient descent.

2.2 Mixture of Von Mises-Fisher Distributions

As mentioned earlier, multi-direction diffusion is represented as a multivariate
spherical function ODF. One approach to specifying ODF has been the mixture
models using von Mises-Fisher distributions. These models are claimed to have
several advantages over other spherical distributions [28]. The von Mises-Fisher
(vMF) distribution is the analog of the Gaussian distribution on a sphere and is
parameterized by a principal (mean) direction � and a concentration parameter
. The concentration parameter  quantifies how tightly the function is distributed
around the mean direction �. For example, a set of vectors which are more or less
in the same direction would have a vMF distribution which would be unimodal and
symmetric around that mean direction. For  D 0 the distribution is uniform over
the sphere. The vMF distribution over a hypersphere in space Sp�1 in the random
variable x is given as:

Mp.xj�; / D
�

2

�p=2�1 1

2�� . p=2/Ip=2�1./
exp .�Tx/; (6)

where jxj D 1, j�j D 1 and Ik denotes the modified Bessel function of the first kind
and order k. For p D 3 the distribution can be written as follows:

M3.xj�; / D 

4� sinh./
exp .�Tx/: (7)

The vMF distribution is inherently unimodal. To allow multiple peaks over sphere
depicting diffusion in multiple directions, McGraw et al. [28] proposed a discrete
mixture of vMF distributions to specify the ODF as follows:

P.xj�; / D
X

j

wjM3.xj�j; j/;

with
X

j

wj D 1 and wj � 0; (8)

where .wj;�j; j/ constituted the model parameters and were estimated using the
Expectation-Maximization algorithm. One detail regarding the vMF distributions
is that the Gaussian models do not extend to the sphere in a straightforward way
because of the problem of ‘warping’ of 3D angles modulo � and 2� whereas the
ODF is antipodally symmetric. Hence, they proposed to use the antipodal pairs of
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�1 D ��2 and assumed the total number of mixture vMF distributions to be four a
priori.

To alleviate the problem of fixing the number of components a priori in the
discrete mixture models, Kumar et al. [18, 19] proposed to use a continuous mixture
of vMF distribution functions as follows:

f .x/ D
Z

Sp�1

D.�/K.x;�/d�: (9)

where D.�/ denotes the continuous mixing density parametrized by the angle
� in the spherical domain Sp�1 and K.x;�/ are the mixture components, vMF
distributions in this case. Following McGraw et al. [28], they proposed to achieve
antipodal symmetry by pairing each vMF distribution with principal direction �
with its antipodal counterpart ��. Thus each direction � was assigned a modified
vMF distribution, QM3.xj�; / which was an average of the two vMF distributions
with principal directions � and ��. QM3 has the following expression:

QM3.˙xj�; / D 

4� sinh./
cosh .�Tx/: (10)

Interestingly, they proposed to use vMF as the mixing density for the vMF mixing
distributions as well; doing so results in a closed form expression for the diffusion
weighted MR signal. However, a unimodal single vMF as mixing density would
yield a single mode as the convolution of two unimodal functions (D.�/;K.�/) yields
a unimodal function. Hence, to allow for multi-modal (corresponding to multi-
fibers) spherical distribution function, a discrete mixture of vMF densities was used
as the mixing density.

D.�/ D
MX

iD1
wi QM3.˙�j�0

i; 
0
i /; (11)

where .�0
i; 

0
i / are the parameters for the vMF component distributions over the

space of �. For simplicity, 0
i ’s were all set to be equal to 1. By substituting the

values of D.�/ and QM3.˙xj�; / in Eq. (9), their model for the MR signal is given
as:

S.q/
S0
D

MX

iD1
wi



4� sinh.1/ sinh./

�
sinh.k�i � qk/
k�i � qk C sinh.k�i C qk/

k�i C qk
�

;

(12)
where M is the number of directions which determines the resolution of spherical
discretization and �i’s are the mean directions selected for M directions. The
�i’s are pre-defined using some sampling scheme of the unit sphere,  is the
constant concentration and wi’s are the unknown weights to be estimated. For
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sparse and positive weights, the iterative algorithm of Non-Negative Least Squares
(NNLS) [21] was used for estimation.

From von Mises-Fisher to Hyperspherical von Mises-Fisher Models One
approach to enforce antipodal symmetry in mixture models has been the use of
Knutsson mapping [4, 18]. Knutsson [17] proposed a mapping which leads to
direction independent magnitude in the higher-dimensional mapped space. Thus,
it is useful for handling data which depend only on axes and not directions. In
the context of DTI continuous mixture models, this mapping alleviated the need
to pair antipodal bases into one but at the expense of increased complexity of
problem definition in a higher dimensional space. Given a vector lying in S2 with
3D spherical parameters .r; 	; 
/, the Knutsson mapping �.�/ maps the vector to S4
by the following 5D parametrization:

� W .r; 	; 
/! .p1;p2;p3;p4;p5/ ; p1 D sin2 	 cos 2
; p2 D sin2 	 sin 2
;

p3 D sin2 	 sin 
; p4 D sin2 	 cos
; p5 D
p
3.cos2 	 � 1

3
/: (13)

Bhalerao and Westin [4] proposed a discrete mixture of Hyper-spherical vMF
distributions based on Knutsson mapping. Their M-modal mixture model is given
as:

P.xjw; �/ D
X

j

wjM5.xj�j; j/;

with
X

j

wj D 1 and � D .�j; j/; (14)

where the Hyper-spherical vMF distributions, M5.xj�j; j/, are as defined in Eq. (6).
The Expectation Maximization algorithm was used for Maximum Likelihood (ML)
parameter estimation. However, their model required a pre-determined value of
number of mixtures, M. Given an ML fit to the samples, the model selection
criterion, Akaike information criterion (AIC), was used to select M. Furthermore,
the values AIC(1) and AIC(2) were compared to select between single or multi-fiber
regions within the voxel.

Based on their earlier work [19] on the continuous mixture of vMF distributions
Kumar et al. extended their work [18] by replacing continuous mixture of vMF
by continuous mixture of Hyper-spherical vMF (MoHvMF) based on Knutsson’s
higher dimensional mapping described above. Thus, by using new parametrization
in Eq. (13) and by replacing QM3.˙xj�; / with QM5.˙xj�; / in Eqs. (9), (11), they
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arrived at the following closed-form MRI signal model:

S.q/
S0
D

NX

iD1
wi

p
2

3
2 =.3
p
�I 3

2
.1/I 3

2
.//

. cosh./ � sinh.//
"

cosh.k�i C qk/
k�i C qk2 � sinh.k�i C qk/

k�i C qk3
#

: (15)

Kumar et al. [19] compared their results with those of Jian et al. [13, 14] (described
in next Section) and showed superior performance in terms of fiber separation in the
presence of noise. In Sect. 3 we will show that our model is able to produce better
results than the MoHvMF model.

2.3 Mixture of Central Wishart Distributions (MoCW)

The family of Wishart probability distributions are defined over symmetric, non-
negative definite matrix-valued random variables (or random matrices). A random
matrix with central Wishart distribution having parameters p and† can be seen as a
sum of outer products of p independent multivariate normal random vectors having
zero mean (‘centrality’) and covariance matrix†.

Definition 1 Let Xp�n D ŒX1;X2; � � � ;Xp�
T be a p 	 n matrix where each row is

independently drawn from an n-variate Gaussian distribution, Xi � N.0; †/. Then
Z D XTX is a random n 	 n symmetric matrix having central Wishart distribution,
Wn. p; †/, with probability density defined as:

f .Z/ D
ˇ
ˇZ
ˇ
ˇ
p�n�1

2 exp Œ� 1
2
trace.†�1Z/�

ˇ
ˇ†
ˇ
ˇ
p
2 2

np
2 �n.

p
2
/

; (16)

where �n is the multivariate gamma function given as:

�n. p/ D
Z

Symd
C

exp .�trace.Z//
ˇ
ˇZ
ˇ
ˇp�.nC1/=2

dZ:

The parameter † 2 SymdC is known as scale matrix, n corresponds to the space
SymdC of diffusion tensors and p is the degree of freedom and has to be p � n. If
this condition does not hold, the resulting Wishart distribution is called a singular
Wishart distribution due to † being a singular matrix. And if n D 1, the one
dimensional Wishart distribution is a chi-square distribution with p degrees of
freedom and the scale parameter† � 0. �
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Jian et al. [13, 14] proposed to model the underlying distribution of diffusion
tensors through the parametric probability family of ‘central’ Wishart distributions,
Wn. p; †/, for a single fiber case and then a mixture of central Wishart distributions
for compartmental or multi-fiber case. The Laplace transform of central Wishart
distribution is [23]:

Z

exp .�trace.‚u//�p;†du D
ˇ
ˇIn C‚†

ˇ
ˇ�p

(17)

where .‚C†�1/ 2 SymdC, �p;† is the generalized gamma distribution and �p=2;2† D
Wn. p; †/. By utilizing this definition of Laplace transform of Wishart distribution
and noting B D bggT , the Eq. (2) can be written as:

S.q/=S0 D
ˇ
ˇIn C B†

ˇ
ˇ�p D .1C trace.B†//�p D .1C bgT†g/�p: (18)

By using the expected value of Wishart distribution ( OD D p†) in the above
expression, we reach at the following expression:

S.q/=S0 D .1C bgT ODg=p/�p: (19)

This is referred to as the Rigaut-type asymptotic fractal expression [34]. The
value of p depends on the dimension of space and the signal should have the
asymptotic behavior in three-dimensional space as S.q/ � q�4 [36]. Therefore, the
value of p is chosen to be 2 as b / q2. This model can be used to estimate the single
fiber orientation in a voxel but cannot resolve intra-voxel heterogeneity based on
the existence of several fibers. Hence, Jian et al. [14] proposed a mixture of central
Wishart distributions (MoCW) as a probabilistic multi-compartmental model:

S.q/=S0 D
NX

iD1
wi.1C trace.B†i//

�p; (20)

where N is the number of mixture components, wi are the mixture weights and
. pi; †i/ are assumed to be the parameters of Wishart basis densities in the mixture.
If pi’s and †i’s are fixed, the above system of linear equations can be solved
to determine wi. The assumption of fixed . pi; †i/, in addition to the parametric
Wishart probability models, adds further constraints to the ill-posed problem of the
estimation of underlying probability distribution. By applying these constraints, the
problem reduces to the estimation of wi’s only.
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2.4 Proposed Model of Mixture of Non-central Wishart
Distributions (MoNCW)

The two mixture models based on Gaussian and central Wishart distribution have
the similarity of fixing eigenvalues for the diffusion tensor. But the mixture model
based on Wishart distribution performs better as diffusion is not constrained to
be Gaussian. In this work, we propose to use a mixture of ‘non’-central Wishart
distribution as the parametric underlying distribution for diffusion tensors D �
Wn. p; †;�/ where an additional non-centrality parameter, � 2 SymdC is also
introduced. The approach is similar to that used in central Wishart distribution
model but the non-centrality makes the current model more general.

Definition 2 Let Xp�n D ŒX1;X2; � � � ;Xp�
T be a p 	 n matrix where each row

is independently drawn from an n-variate Gaussian distribution, Xi � N.�i; †/.
Define a matrix Mp�n which is derived from the population means �i as, Mp�n D
Œ�1; �2; � � � ; �p�

T . Then the random n 	 n symmetric matrix defined by Z D XTX
has the non-central Wishart distribution, Wn. p; †;�/ with the expected value
E.Z/ D p†C�. �
The interested reader is referred to [11, 24, 25, 33] for detailed description of non-
central Wishart distribution including density function. When � D 0, the above
reduces to the central Wishart distribution Wn. p; †/. Laplace transform of non-
central Wishart distribution is given as follows [27]:

Z

exp .�trace.‚u//�p;†;�duD
ˇ
ˇInC‚†

ˇ
ˇ�p

exp
h
�trace.‚.InC‚†/�1�/

i
; (21)

where p � 0 is the shape parameter and � 2 SymdC is the non-centrality parameter.

This expression has an additional factor, exp
h
�trace.‚.In C‚†/�1�/

i
, due to the

non-centrality parameter in comparison to central Wishart distribution. Hence our
assumption of non-centrality changes the signal equation for multi-compartmental
model in Eq. (20) to:

S.q/
S0
D

NX

iD1
wi Œ1C trace.B†i/�

�p exp
h
�trace.B fIn C B†ig�1 �i/

i
: (22)

The next section details the estimation of the model parameters.

2.4.1 Estimation of Model Parameters

It has been shown earlier [9, 32, 37] that p should belong to Gindikin ensemble
ƒ D f j

2
; j D 1; 2; � � � ; .n � 2/g [ Œ n�1

2
;1/. Following Jian et al., we fix all pi D 2

and the eigen values of Di D p†i C �i to .�1; �2; �3/ D .1:5; 0:4; 0:4/�m2/ms
which are commonly observed in the white matter [39]. This follows from the
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assumption that fiber tracts are cylindrical, thus enforcing two eigenvalues (out of
three) to be equal for each individual tensor. Furthermore, each tensor is associated
by one (principal) unit direction (defined on the unit sphere), which corresponds to
the third eigenvalue. Principal directions of† are chosen to be N unit vectors evenly
distributed on unit sphere and the values for the weight factors, wi, are estimated for
N directions.

In case of MoNCW, we have one additional unknown parameter namely, �, to
be estimated. In a more rigorous estimation approach (e.g. see Sections 9.3 and
9.4 of [24]) both non-centrality and scale parameters would be estimated from the
observed samples, Zi � Wn. p; †;�/, where Z D D in our case. However, based on
the signal decay model in Eq. (1), we are able to observe D indirectly only through
signal measurements S.q/. Therefore, in the absence of direct observations of the
random matrix D, we resort to selecting the non-centrality parameters to be factors
of Di, i.e.�i D ˛Di with 0 � ˛ < 1. If ˛ D 0, the model turns into central Wishart
distribution and if ˛ D 1, the scale matrix † vanishes. This selection ensures that,
once the matrices Di are assumed (as mentioned earlier), the principal directions of
†i are the same as those of Di via the relation †i D .Di ��i/=p.

To select an appropriate value of ˛, an ad-hoc approach was adopted where the
value of ˛ was varied from 0 to 0:99 for a variety of fiber orientations and separation
angles. However, for the sake of clarity, we omit the display of results for all fiber
orientations and include results for two crossing fibers with separation angles of
60ı and 50ı only in Fig. 1. As can be observed in Fig. 1, the error in the estimated
angle decreases when ˛ > 0:5 and is minimum when ˛ is close to 1. Hence, ˛ was
selected to be 0:99 for this study. It should be noted that using ˛ D 0:99 yields
†i D 0:01Di=p D 0:005Di for pi D 2. This new estimate of † has much smaller
eigenvalues, on a factor of 1=100, as compared to MoCW model and yields much
less angular errors as compared to MoCW and MoHvMF models.

Finally, Eq. (22) leads to a linear system of equations Aw D s, where
s D S.q/=S0 is the normalized signal vector. A is the matrix with elements Aji

Fig. 1 Angular error in degrees with changing the value of constant ˛ when separation angle
between two crossing fibers is (left) 60ı and (right) 50ı
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given as,

Aji D

1C trace.Bj†i/

��p
exp

h
�trace

n
Bj .In C Bj†i/

�1�i

oi
; (23)

Here j D 1; 2; : : : ;K are the DTI measurements and the vector w D f.wi/I i D
1; 2; : : : ;Ng is the vector of unknown parameters to be estimated and N � K to
avoid the under-determined system. The matrix A needs to be calculated once as
it depends on the sampling scheme only. We employ the non-negative least square
method (NNLS) [21] to estimate w.

2.5 Visualization of Estimation Results with Displacement
Probabilities

Fiber orientations in voxels are usually visualized by the displacement probabilities
calculated in the direction of the displacement vector r as follows:

P.r/ D
Z

R3

Z

Symd
C

f .D/ exp.�qTDqt/dD exp.�iq � r/dq (24)

�
NX

iD1

wi
q
.4�t/3

ˇ
ˇ ODi

ˇ
ˇ

exp.�rT OD�1
i r=4t/; (25)

where ODi D p†i C �i are the expected values of non-central Wishart distribution.
The displacement probability profiles are computed as real valued function on the
sphere and represented in terms of spherical harmonics series where the spherical
harmonics coefficients are used for visualization. We use 8th order spherical
harmonics expansion for visualization. The finite order of spherical harmonics and
noise lead to several local maxima which are usually removed by applying some
technique. However, we decided not to remove these local maxima which appear as
small spikes at the center of displayed fibers in our results.

3 Results

In this section, we present results of our experiments on the reconstruction of intra-
voxel crossing fibers with and without noise. We present results from simulated
and real data and compare our results with both the MoCW and MoHvMF mixture
models. The MATLABTM open library [1, 2] was used to simulate data for crossing
fibers where adaptive kernels were used to approximate the accurate continuous
DW-MRI signal. The total number of measurements .K/ and mixture components
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Fig. 2 Display of azimuthal angles 
 and polar angles 	 for two crossing fibers

.N/ were set to be 81 and 321 respectively for all simulations. The simulated DTI
data were computed for the b-value of 1500 s/mm2. A built-in MATLABTM function
lsqnonneg was used to compute mixture weights in Eq. (22). We used the results
of MoHvMF model from the work reported in [19] for comparison and produced
results for MoCW and MoNCW models using MATLABTM software.

Experiments on Fiber Separation First, we present results on the estimation and
visualization of displacement probability distributions using Eq. (25) for two or
three crossing fibers without noise. The estimation accuracy is calculated in terms of
the errors in the polar angle, 	 , and the azimuthal angle, 
, of the crossing fibers. For
clarity, Fig. 2 includes a three dimensional display of two crossing fibers showing
	 and 
. One fiber is oriented at the azimuthal angle 
1 D 0ı and the other at

2 D 90ı. The polar angle 	 is 90ı for both fibers. The smaller spikes near the origin
represent truncation error in the spherical harmonics reconstruction we mentioned
before. The angular error is calculated as follows:

Error D
PL

iD1
ˇ
ˇ
ˇ


Original
i � 
Estimated

i

ˇ
ˇ
ˇ

L
;

where L is the number of fibers in a voxel.
Figure 3 includes plots of mean angular errors in azimuthal angle 
 with

increasing separation angles for two and three crossing fibers. We also calculated
angular errors for the same experimental setups using MoCW modeling. It can be
observed in the plots that the proposed MoNCW model offers significant reduction
in angular error (except for 30ı and 40ı) especially at small separation angles. For
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Fig. 3 Mean of angular errors in degrees with increasing separation angles between (left) two
crossing fibers and (right) three crossing fibers

Table 1 Comparison of
angular errors in .
; 	/ for
the two mixture models,
MoCW and MoNCW

j
1 � 
2j MoCW MoNCW

10ı .5:00ı; 10:0ı/ .5:00ı; 10:0ı/

20ı .6:00ı; 7:50ı/ .5:70ı; 11:7ı/

30ı .13:0ı; 6:00ı/ .13:0ı; 6:00ı/

40ı .21:0ı; 7:00ı/ .17:0ı; 7:00ı/

60ı .28:0ı; 6:00ı/ .13:0ı; 3:00ı/

70ı .23:0ı; 7:00ı/ .9:00ı; 2:00ı/

80ı .15:0ı; 4:00ı/ .7:00ı; 2:00ı/

these cases it becomes more challenging to separate two crossing fibers. For a more
difficult setup, we also conducted simulation for the two crossing fibers residing not
in the xy� plane i.e. having different polar angles .	1; 	2/ D .40ı; 60ı/. Table 1
details the angular errors in .
; 	/ in this case with increasing separation angle
.
1 � 
2/. The error is significantly low with MoNCW model for some instances.

Experiments with Noise Next, we conducted experiments in the presence of noise.
We imposed different levels of Rician-distributed noise on the synthetic MR signal
data for two and three crossing fibers with different separation angles. Rician-
distributed noise is added to signal as follows:

S D
p
.SC � � randn.1//2C .� � randn.1//2;

where randn is a built-in MATLABTM function which generates normally dis-
tributed random numbers. The experiments on noise sensitivity analysis were set
up with increasing levels of Rician-distributed noise having standard deviations in
the range .� D 0:01 � 0:09/.

First, we generated 100 simulation samples with the noise of � D 0:08 with
fibers orientation as .
1; 
2/ D .10ı; 90ı/. Polar angle was set to be 90ı for all
simulations. Figure 4 shows estimated probability displacement profiles for the 100
simulations with the two models of MoCW and MoNCW. It can be observed that
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Fig. 4 Resistance to noise with large separation angle (80ı) between two crossing fibers, � D
0:08 (left) MoCW model and (right) MoNCW model

Fig. 5 Resistance to noise with small separation angle (50ı) between two crossing fibers, � D
0:06 (left) MoCW model and (right) MoNCW model

both models are stable in the presence of noise when the separation angle between
the two fibers is large j
1 � 
2j D 80ı. Next, we performed similar simulations
with a smaller separation angle of j
1 � 
2j D 50ı where fibers are oriented at
.
1; 
2/ D .10ı; 60ı/ and the noise level is set to be � D 0:06. From the results
shown in Fig. 5, it can be observed that the MoCW model is not able to distinguish
the two crossing fibers, even in the presence of small amount of noise in the data.
On the other hand, the proposed model is well able to separate the two fibers. We
also performed simulations for three crossing fibers. The orientation of fibers was
set to be .
1; 
2; 
3/ D .10ı; 60ı; 120ı/ and the noise level was � D 0:04. The
100 samples reconstructed with MoCW and MoNCW are shown in Fig. 6. It can
be observed from the figure that the MoNCW model performs much better than the
MoCW model in many instances in separating the three crossing fibers as well.

Figure 7 includes plots of mean and standard deviation of the azimuthal angular
errors with small and large separation angles in case of two crossing fibers. The
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Fig. 6 Resistance to noise in case of three crossing fibers (.
1; 
2; 
3/ D .10ı; 60ı; 120ı/), � D
0:04 (left) MoCW model and (right) MoNCW model

Fig. 7 Mean and standard deviation of angular error in azimuthal angles 
 when separation angle
is (left) 50ı and (right) 80ı

improvement in the estimation of azimuthal angle 
 using MoNCW model is
significant. We also plotted the mean and standard deviation for azimuthal angles for
three crossing fibers. These are displayed in Fig. 8 with orientations .
1; 
2; 
3/ D
.10ı; 30ı; 60ı/ and .
1; 
2; 
3/ D .10ı; 60ı; 120ı/. The reduction in error is large
at some instances with the proposed model when fibers are closely oriented. This
reduction, however, is not significant when fibers are sufficiently apart. Table 2
shows the mean and standard deviation values of angular errors from original fiber
orientation and computed fiber orientation with increasing Rician-distributed noise.
The errors are presented for 1, 2 and 3-fibers in a voxel using two models, MoCW
and MoNCW. It is observed that the error in case of 1 fiber (orientation is at 0ı)
is slightly higher than that for MoCW model but the overall error is not significant
(<2ı) with MoNCW. In case of two fibers with separation angle 70ı, the mean
and standard deviation is always <5ı with MoNCW model, while the mean with
MoCW model is always >6ı. It is also observed that for three fibers (oriented as
.
1; 
2; 
3/ D .10ı; 40ı; 80ı/), the error is lower with MoNCW model.
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Fig. 8 Mean and standard deviation of angular error in azimuthal angles 
 when fibers are
orientated at (left) .
1; 
2; 
3/ D .10ı; 30ı; 60ı/ and (right) .
1; 
2; 
3/ D .10ı; 60ı; 120ı/

Table 2 Mean and standard deviation values of angular errors in degrees with increasing noise
levels, �

MoCW

� 0 0:01 0:03 0:05 0:07 0:09

SNR inf 19:1 14:3 12:1 10:6 9:52

1 fiber 0:1 0:2˙ 0:1 0:3˙ 0:2 0:4˙ 0:3 0:6˙ 0:5 0:8˙ 0:9

2 fibers 8:7 9:1˙ 1:3 8:2˙ 2:7 7:8˙ 3:5 6:7˙ 4:0 6:4˙ 4:7

6:8 6:1˙ 1:4 6:5˙ 2:5 6:8˙ 2:8 6:7˙ 3:2 6:6˙ 4:2

3 fibers 22:6 22:6˙ 0:0 22:4˙ 1:4 21:7˙ 3:2 19:7˙ 5:6 18:2˙ 7:3

2:60 2:60˙ 0:0 4:2˙ 4:1 5:9˙ 5:5 7:1˙ 6:4 10:5˙ 8:4

25:0 25:0˙ 0:2 26:0˙ 3:6 25:3˙ 6:4 23:1˙ 8:7 19:6˙ 9:9

MoNCW

� 0 0:01 0:03 0:05 0:07 0:09

SNR inf 19:1 14:3 12:1 10:6 9:52

1 fiber 0:5 0:6˙ 0:1 0:6˙ 0:2 0:7˙ 0:6 1:0˙ 0:8 1:4˙ 1:0

2 fibers 2:5 2:5˙ 0:0 2:5˙ 0:9 3:2˙ 2:3 3:0˙ 2:8 3:6˙ 2:9

3:5 3:7˙ 0:7 3:6˙ 1:5 3:5˙ 1:7 4:0˙ 2:9 4:4˙ 3:3

3 fibers 12:6 13:4˙ 1:6 13:0˙ 2:3 12:0˙ 4:8 12:2˙ 5:9 11:4˙ 7:2

7:7 14:3˙ 8:6 15:1˙ 8:5 15:1˙ 8:9 15:3˙ 9:0 19:3˙ 13:3

13:7 11:9˙ 4:1 9:1˙ 4:5 9:2˙ 5:2 10:1˙ 10:2 14:2˙ 17:3

MoHvMF

SNR inf 10:1 7:4 6:5 4:8 3:6

1 fiber 0:43 4:15 4:96 7:63 9:94 13:58

2 fibers 6:06 7:56 8:63 10:21 12:87 13:75

3 fibers 14:81 15:49 15:47 17:25 17:85 18:28

Finally, we compared our results with the MoHvMF model [19] as well and the
comparison is shown in the lower rows of Table 2. This comparison could not be
very detailed as we did not have the mean and standard deviations of errors for the
MoHvMF model. But it was possible to compare results in the absence of noise
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and also for the single fiber case. The error is comparatively lower with MoNCW
model when no noise is added to data for single fiber case. In the presence of noise,
the error is never higher than 2ı for MoNCW while it is significantly high with
MoHvMF model. The results of the two models, MoNCW and MoHvMF, could be
compared for two crossing fibers with the separation angle of 70ı as well due to the
availability of MoHvMF results. The results are more stable with MoNCW model
in the presence of noise.

Experiments on Simulated Tensor Field Next we applied the MoNCW model to
a tensor field simulation with two crossing fiber bundles. The original tensor field
and the probability surfaces from MoCW and MoNCW are shown in Figs. 9 and 10
respectively. It can be noticed from the original tensor field that the crossing fibers
have large separation angles. As described in earlier sections, the two models do not

Fig. 9 Original tensor filed of two crossing fiber bundles

Fig. 10 Probability maps of tensor field of two crossing fiber bundles with MoCW model (left)
and MoNCW model (right)
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show much difference in angular errors when separation angle is large. Therefore,
we do not notice significant difference in the visualizations of the outcomes of the
two models.

Comparison with Other Methods Recently Daducci et al. [5] published a quan-
titative comparison of 20 reconstruction algorithms for intra-voxel fiber recovery.
They proposed to assess the accuracy of fiber reconstruction quantitatively by
introducing two measures: angular accuracy and correct assessment of number of
fibers within a voxel. The angular accuracy is defined as follows [5]:

N	 D 180

�
arccos.jdtrue � destimatedj/

where the vectors dtrue and destimated are true and estimated fiber orientations,
respectively, and .�/ represents the dot product. We compared the performance of
our proposed model with the 20 algorithms reported [5]. We generated a dataset
consisting of 910 voxels with two fibers in each voxel crossing at separation angles
in the range .0ı � 90ı/. The SNR was set to be 30dB and 10 repetitions were
conducted for each crossing fiber angle. We used two different methods namely
Gaussian mixture model [5] and adaptive kernels [2] to simulate the dataset. The
polar angles for two fibers were kept fixed at 90ı. The number of measurements
in the data, .K/, and the number of mixture components in MoNCW, .N/, were
set to be 60 and 300, respectively. The dataset was computed for the b-value
of 3000 s/mm2. Figure 11 (top left) includes the angular accuracy plots for 20
algorithms (color coding shown at right) in terms of N	 with SNR D 30 and is
reproduced from [5, 6]. The angular accuracy for the proposed MoNCW model
is given on the bottom left of Fig. 11. It can be observed from the plot that
our model performs equivalent to the state-of-the-art for the dataset generated
using the adaptive kernels [2]. However, when it comes to the dataset generated
using the Gaussian mixture model and which was also used to evaluate the 20
algorithms [5, 6], the MoNCW model shows mixed performance when compared
to other models. It performs better than the reported DTI and CSD algorithms for
the complete range of separation angles, while in the separation angle ranges of
.0ı � 25ı/ and .45ı � 90ı/, it performs better than several algorithms. However,
in the separation angle range of .25ı � 45ı/, DSI-based algorithms exhibit better
performance than our algorithm. Overall, the angular error for the MoNCW model
is quite less, (5ı � 7ı), when using adaptive kernels to simulate the dataset and is
in the mid range (20ı � 50ı) when using Gaussian mixture model to simulate the
dataset. It should be noted that the data acquisition parameters (b-value and number
of measurements) are quite different for all 20 algorithms. The error behaviour
might be different if these parameters are changed. Also if the adaptive kernels have
been used to simulate the signal, one might expect a different error behaviour for 20
algorithms.

Experiments on Real Data Next, we conducted experiments on four different
sets of real data. First, we used the rat optic chiasm DW-MRI data set to validate
our model. This experiment was performed to test the performance of diffusion
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Fig. 11 Angular accuracy in the fiber orientation: comparison of 20 algorithms [5] (top left),
MoNCW model (bottom left) and color coding for various algorithms (right)

orientation transform (DOT) [31]. The dataset was downloaded from [2]. The
images were acquired for 46 directions with a b-value of 1250 s/mm2 and one single
image was acquired at b � 0 s/mm2. The other experimental parameters, TE, TR,
�, ı and bandwidth were set as 25 ms, 1.17 s, 17.5 ms, 1.5 ms. The reference image
and the displacement probabilities are shown in Fig. 12. Our model is able to detect
the orientations of optic nerves and their crossings at the center region although the
directions of crossing fibers are not always coherent.

Second, we used a two-shell healthy human brain DWI-MRI dataset from the
MyConnectome project [20]. The dataset was obtained using a multiband EPI
sequence on a Siemens Skyra 3T scanner. Diffusion weighted images were acquired
with two b-values of 1000 and 2000 s/mm2 along 64 gradient directions with 4
volumes without diffusion weighting. The matrix size was 128	 128 with 78 slices
and the resolution was 1:74	1:74	1:7mm3 and the values of TR, TE and multiband
factor were equal to 5000 ms, 108 ms and 3 respectively. We chose the 42nd slice
for analyzing brain’s white matter tract and used FSL software [12] to calculate
the fractional anisotropy images. Figure 13 shows the displacement probabilities
computed for corpus callosum splenium (left) and corpus callosum genu (right)
of human brain. The calculated probability maps using the proposed MoNCW
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Fig. 12 (a) Probability maps for rat optic chiasm overlaid on the reference image, (b)–(e) the
zoomed in versions of regions of interest in (a) with the same boundary colors

Fig. 13 (a) FA map of a human brain MRI slice with corpus callosum splenium enclosed in a box,
(c) with genu enclosed in a box, (b) and (d) probability maps for the enclosed regions in (a) and
(c) overlaid on FA maps respectively
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model are overlaid on the fractional anisotropy images. These images show that
the proposed model is able to extract the orientations of the anisotropic fibers in real
data as well. We can also observe that the reconstruction results are more coherent
for human brain images as compared to the rat chiasm image given in Fig. 12.

Next, we conducted experiments on three-shell real human brain data. The
dataset was acquired from a healthy subject on a customized Siemens 3T ‘Con-
nectome Skyra’ MR scanner. The interested reader is referred to [41] for details of
the dataset such as b-values and scanning parameters. The voxel size was 1.25 mm
and the matrix size was 145 	 174 with 145 slices. We chose the 60th slice for our
experiments. Figure 14 includes reconstructed fiber orientations for this particular
slice. Figure 14a shows the fractional anisotropy (FA) map of the whole slice where
the region of interest enclosed in red box contains the corpus callosum splenium.
Figure 14b shows the reconstructed fiber orientations corresponding to the region
where major white matter tracts oriented in different directions can be observed.
For better visualizion, the FA map of a smaller region of ‘kissing fibers’ is shown in
Fig. 14c and the corresponding reconstructions with MoNCW and MoCW models
are shown in Fig. 14d and e, respectively. The highlighted regions show crossing

Fig. 14 (a) FA map of a human brain MRI slice with corpus callosum splenium enclosed in a
box, (b) probability maps overlaid on FA maps for the region of interest in (a), (c) FA map for
a smaller region in the corpus callosum, (d)–(e) probability maps for the region of interest in
(c) reconstructed with MoNCW and MoCW respectively, (f) FA map for another smaller region,
(g)–(h) probability maps for the region of interest in (f) reconstructed with MoNCW and MoCW
respectively
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fibers and it can be observed that the MoNCW model is able to capture the presence
of two fibers at severals voxels with accurate fiber dispersions in those voxels.
Another smaller region with crossing fibers is highlighted enclosed in a blue box in
Fig. 14f. The corresponding probability maps for the selected region reconstructed
with MoNCW and MoCW models are shown in Fig. 14g and h, respectively. It can
be observed that the proposed model is better able to identify the presence and
orientation of crossing fibers.

Finally, we conducted experiments on four-shell dataset [7, 8]. The dataset
was collected via the customized Siemens 3T Connectom scanner (MAGNETOM
Skyra Siemens Healthcare) from healthy adults. Diffusion scans were obtained at
four different b-values of 1000, 3000, 5000 and 10,000 s/mm2 and the number of
diffusion directions were 64, 64, 128 and two sets of 128 for the four aforementioned
b-values, respectively. The interested reader is referred to [7, 8] for details of the
dataset. We chose the 50th slice for our experiments. Since the value of K was
D 552 for the dataset, we chose the value of N to be 569 to avoid under determined
system. Figure 15a and e are the FA maps of the whole slice with regions of corpus
callosum genu and splenium enclosed in red and magenta boxes. The reconstructed

Fig. 15 (a) FA map of a human brain MRI slice with corpus callosum genu enclosed in a box,
(b) probability map for the region of interest in (a) overlaid on the FA maps, (c) probability maps
overlaid on FA map for the region of interest in (d), (d) the FA map for a smaller region of interest,
(e) FA map of a human brain MRI slice with corpus callosum splenium enclosed in a box, (f) the
FA map for a smaller region of interest and (g) the reconstructed probability maps for the regions
of interest shown in (f)
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probability map corresponding to the region of corpus callosum genu is shown in
Fig. 15b. The bundles of straight, bending and crossing fibers are visible. Figure 15d
and f include smaller sections of the slice with the corresponding reconstructed fiber
tracts in Fig. 15c and g. The changing orientation and intersections of the fiber tracts
is clearly visible.

4 Conclusion

In this work, we presented a new probabilistic model, namely, the mixture of
non-central Wishart distributions to model intra-voxel fiber heterogeneity of white
matter of brain. The proposed model is general in the sense that the center of
the distribution need not to be at zero. We proposed a way to estimate the newly
introduced non-centrality model parameters �. Our experiments on the simulated
and real data including a rat optic chiasm and healthy human brain show that the
proposed model is promising specially in distinguishing crossing fibers with smaller
separation angles and in the presence of noise when compared to the previous
models of mixture of central Wishart distribution and hyper-spherical von Mises-
Fisher distributions.

Acknowledgements This research is a part of the project “Seeing Organ Function” funded by
“The Knut and Alice Wallenberg Foundation”. EÖ acknowledges support by Linköping University
Center for Industrial Information Technology (CENIIT). We would also like to thank Russell
Poldrack and his colleagues for sharing diffusion MRI data from the project MyConnectome. The
HCP Data were provided (in part) by the Human Connectome Project, WU-Minn Consortium
(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the
16 NIH institutes and centers that support the NIH Blueprint for Neuroscience Research; and
by the McDonnell Center for Systems Neuroscience at Washington University. The MGH data
were provided (in part) by the Human Connectome Project, MGH-USC Consortium (Principal
Investigators: Bruce R. Rosen, Arthur W. Toga and Van Wedeen; U01MH093765), funded by the
NIH Blueprint Initiative for Neuroscience Research grant; the National Institutes of Health grant
P41EB015896; and the Instrumentation Grants S10RR023043, 1S10RR023401, 1S10RR019307.

References

1. Barmpoutis, A.: Adaptive Kernels for multi-fiber reconstruction. Inf. Proces. Med. Imaging 21,
338–349 (2009)

2. Barmpoutis, A.: Tutorial on Diffusion Tensor MRI using Matlab. Electronic edn. University of
Florida, Gainesville (2010)

3. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging.
Biophys. J. 66, 259–267 (1994)

4. Bhalerao, A., Westin, C.F.: Hyperspherical von Mises-Fisher mixture (HvMF) modelling of
high angular resolution diffusion MRI. Med. Image Comput. Comput. Assist. Interv. 10(Pt 1),
236–243 (2007)



Multi-Fiber Reconstruction Using Probabilistic Mixture Models for Diffusion. . . 307

5. Daducci, A., Canales-Rodriguez, E.J., Descoteaux, M., Garyfallidis, E., Gur, Y., Lin, Y.-C.,
Mani, M., Merlet, S., Paquette, M., Ramirez-Manzanares, A., Reisert, M., Rodrigues, P.,
Sepehrband, F., Caruyer, E., Choupan, J., Deriche, R., Jacob, M., Menegaz, G., Prckovska,
V., Rivera, M., Wiaux, Y., Thiran, J.-P.: Quantitative comparison of reconstruction methods
for Intra-Voxel fiber recovery from diffusion MRI. IEEE Trans. Med. Imaging 33(2), 384–399
(2014)

6. EPFL, Switzerland: ISBI 2012 – HARDI reconstruction workshop [Online] Available: http://
hardi.epfl.ch/static/events/2012_ISBI/download.html (2012)

7. Fan, Q., Nummenmaa, A., Witzel, T., Zanzonico, R., Keil, B., Cauley, S., Polimeni, J.R.,
Tisdall, D., Van Dijk, K.R., Buckner, R.L., Wedeen, V.J., Rosen, B.R., Wald, L.L.: Investigating
the capability to resolve complex white matter structures with high b-value diffusion magnetic
resonance imaging on the MGH-USC Connectom scanner. Brain Connect. 4(9), 718–726
(2014)

8. Fan, Q., Witzel, T., Nummenmaa, A., Van Dijk, K.R., Van Horn, J.D., Drews, M.K.,
Somerville, L.H., Sheridan, M.A., Santillana, R.M., Snyder, J., Hedden, T., Shaw, E.E.,
Hollinshead, M.O., Renvall, V., Zanzonico, R., Keil, B., Cauley, S., Polimeni, J.R., Tisdall,
D., Buckner, R.L., Wedeen, V.J., Wald, L.L., Toga, A.W., Rosen, B.R.: MGH-USC Human
Connectome Project datasets with ultra-high b-value diffusion MRI. Neuroimage 124(Pt B),
1108–1114 (2016)

9. Gindikin, S.G.: Invariant generalized functions in homogeneous domains. Funct. Anal. Appl.
9, 50–52 (1975)

10. Inglis, B.A., Bossart, E.L., Buckley, D.L., Wirth, E.D., Mareci, T.H.: Visualization of neural
tissue water compartments using biexponential diffusion tensor MRI. Magn. Reson. Med. 45,
580 (2001)

11. James, A.T.: The non-central Wishart distribution. R. Soc. Lond. Ser. A Math. and Phys. Sci.
229(1178), 364–366 (1955)

12. Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. Neuroim-
age 62(2), 782–790 (2011)

13. Jian, B., Vemuri, B.C.: Multi-fiber reconstruction from diffusion MRI using mixture of
Wisharts and sparse deconvolution. Int. Conf. Inf. Process. Med. Imaging 20, 384–395 (2007)

14. Jian, B., Vemuri, B.C., Özarslan, E., Carney, P.R., Mareci, T.H.: A novel tensor distribution
model for the diffusion-weighted MR signal. NeuroImage 37, 164–176 (2007)

15. Jian, B., Vemuri, B.C., Özarslan, E.: A mixture of Wisharts (MOW) model for multi-fiber
reconstruction. In: Visualization and Processing of Tensor Fields, vol. 9, pp. 39–55. Springer,
Berlin (2012)

16. Jones, D.K., Leemans, A.: Diffusion tensor imaging. Methods Mol. Biol. 11, 127–144 (2011)
17. Knutsson, H.: Producing a continuous and distance preserving 5-D vector representation of 3-

D orientation. In: Proceedings of IEEE Computer Society Workshop on Computer Architecture
for Pattern Analysis and Image Database Management, vol. 175, p. 182 (1985)

18. Kumar, R., Barmpoutis, A., Vemuri, B.C., Carney, P.R., Mareci, T.H.: Multi-fiber recon-
struction from DW-MRI using a continuous mixture of von Mises-Fisher distributions. In:
Mathematical Methods in Biomedical Image Analysis (MMBIA), pp. 1–8 (2008)

19. Kumar, R., Vemuri, B.C., Wang, F., Syeda-Mahmood, T., Carney, P.R., Mareci, T.H.: Multi-
fiber reconstruction from DW- MRI using a continuous mixture of hyperspherical von Mises-
Fisher distributions. Inf. Proces. Med. Imaging 5636, 139–150 (2009)

20. Laumann, T.O., Gordon, E.M., Adeyemo, B., Snyder, A.Z., Joo, S.J., Chen, M.Y., Gilmore,
A.W., McDermott, K.B., Nelson, S.M., Dosenbach, N.U., Schlaggar, B.L., Mumford, J.A.,
Poldrack, R.A., Petersen, S.E.: Functional system and areal organization of a highly sampled
individual human brain. Neuron 87, 657–670 (2015)

21. Lawson, C.L., Hanson, R.J.: Solving Least-Squares Problems, Chapter 23, p. 161. Upper
Saddle River, NJ, Prentice Hall (1974)

22. Leow, A.D., Zhu, S., Zhan, L., McMahon, K., de Zubicaray, G.I., Meredith, M., Thompson,
P.M.: The tensor distribution function. Magn. Reson. Med. 61(1), 205–214 (2009)

http://hardi.epfl.ch/static/events/2012_ISBI/download.html
http://hardi.epfl.ch/static/events/2012_ISBI/download.html


308 S. Shakya et al.

23. Letac, G., Massam, H.: Quadratic and inverse regressions for Wishart distributions. Ann. Stat.
26(2), 573–595 (1998)

24. Letac, G., Massam, H.: A tutorial on noncentral Wishart distributions. Laboratory of Statistics
and Probability, Toulouse, France (2004)

25. Li, K., Zhi, G.: The noncentral Wishart distribution and related distributions. Commun. Stat.
Theory Methods 32(1), 33–45 (2003)

26. Luypaert, R., Boujraf, S., Sourbron, S., Osteaux, M.: Diffusion and perfusion MRI: basic
physics. Eur. J. Radiol. 38, 19–27 (2001)

27. Mayerhofer, E.: On the existence of non-central Wishart distributions. J. Multivar. Anal. 114,
448–456 (2013)

28. McGraw, T., Vemuri, B.C., Yezierski, B., Mareci, T.: Von Mises-Fisher mixture model of the
diffusion ODF. In: Proceedings of IEEE ISBI, pp. 65–68 (2006)

29. Mori, S., Barker, P.B.: Diffusion magnetic resonance imaging: its principle and applications.
Anat. Rec. 257, 102–109 (1999)

30. Mori, S., Zhang, J.: Principles of diffusion tensor imaging and its applications to basic
neuroscience research. Neuron 51, 527–539 (2006)

31. Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of
complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage
31(3), 1086–1103 (2006)

32. Peddada, S.D., Richards, D.S.: Proof of a conjecture of M. L. Eaton on the characteristic
function of the Wishart distribution. Ann. Probab. 19, 868–874 (1991)

33. Pham-Gia, T., Thanh, D., Phong, D.: Trace of the Wishart matrix and applications. Open J.
Stat. 5, 173–190 (2015)

34. Rigaut, J.P.: An empirical formulation relating boundary lengths to resolution in specimens
showing “non-ideally fractal” dimensions. J. Microsc. 133, 41–54 (1984)

35. Scherrer, B., Schwartzman, A., Taquet, M., Sahin, M., Prabhu, S.P., Warfield, S.K.: Character-
izing brain tissue by assessment of the distribution of anisotropic microstructural environments
in diffusion-compartment imaging (DIAMOND). Magn. Reson. Med. 76, 963–977 (2016)

36. Sen, P.N., Hürlimann, M.D., de Sweit, T.M.: Debye-Porod law of diffraction for diffusion in
porous media. Phys. Rev. B 51(1), 601–604 (1995)

37. Shanbhag, D.: The Davidson-Kendall Problem and related results on the structure of the
Wishart distribution. Aust. J. Stat. 30(A), 272–280 (1988)

38. Tuch, D.S., Weisskoff, R.M., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion
imaging of the human brain. In: 7th ISMRM, p. 321 (1999)

39. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular
resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson.
Med. 48, 577–582 (2002)

40. Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex neural
architecture. Neuron 40, 885–895 (2003)

41. Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E.J., Bucholz, R., Chang,
A., Chen, L., Corbetta, M., Curtiss, S.W., Penna, S.D., Feinberg, D., Glasser, M.F., Harel,
N., Heath, A.C., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., Oostenveld, R.,
Petersen, S.E., Prior, F., Schlaggar, B.L., Smith, S.M., Snyder, A.Z., Xu, J., Yacoub, E., WU-
Minn, H.C.P., Consortium: The human connectome project: a data acquisition perspective.
NeuroImage 62, 2222–2231 (2012)

42. Wedeen, V.J., Reese, T.G., Tuch, D.S., Weigell, M.R., Dou, J.G., Weiskoff, R.M., Chessler,
D.: Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion
MRI. In: 8th ISMRM, p. 82 (2000)

43. Westin, C.F., Szczepankiewicz, F., Pasternak, O., Özarslan, E., Topgaard, D., Knutsson, H.,
Nilsson, M.: Measurement tensors in diffusion MRI: generalizing the concept of diffusion
encoding. Med. Image Comput. Assist. Interv. 17(03), 209–216 (2014)



Part IV
Tractography



Edge Detection in Diffusion Weighted MRI
Using a Tangent Curve Similarity Metric

Zi’Ang Ding, Xavier Tricoche, and Yaniv Gur

Abstract We present a technique to automatically characterize the geometry
of important anatomical structures in diffusion weighted MRI (DWI) data. Our
approach is based on the interpretation of diffusion data as a superimposition of
multiple line fields that each form a continuum of space filling curves. Using a
dense tractography computation, our method quantifies the spatial variations of
the geometry of these curves and use the resulting measure to characterize salient
structures as edges. Anatomically, these structures have a boundary-like nature
and yield a clear picture of major fiber bundles. In particular, the application of
our algorithm to high angular resolution imaging (HARDI) data yields a precise
geometric description of subtle anatomical configurations associated with the local
presence of multiple fiber orientations. We evaluate our technique and study its
robustness to noise in the context of a phantom dataset and present results obtained
with two diffusion weighted brain images.

1 Introduction

Diffusion weighted imaging (DWI) is a medical imaging technique that measures
the anisotropic Brownian motion of water molecules in fibrous tissues and enables
their in-vivo investigation. The modeling of the measured multidirectional diffusion
information through a second-order tensor, known as diffusion tensor MRI (or DTI),
is an important tool for the analysis of the brain’s white matter structure [2, 3, 22]
and the heart’s myocardium [18, 19, 36, 41]. Yet, the gaussian diffusion model used
in DTI is unable to adequately model complex diffusion patterns that are common
in the white matter such as crossing, fanning, or bent fibers. In such cases, an
alternative imaging modality known as high angular resolution diffusion imaging
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(HARDI) proves superior. In HARDI, the measured information is amenable to an
orientation distribution function (ODF) that may be described by a higher-order
tensor [16, 20, 33] or a band-limited expansion of spherical harmonics [14, 37, 38],
which allows one to identify several co-existing significant diffusion directions
within a voxel.

Irrespective of the considered diffusion model, the interpretation of the resulting
images requires the challenging analysis of a high-dimensional data space. The two
main approaches used to facilitate this task are tractography and scalar measures. In
tractography one integrates along the dominant diffusion direction(s) to approximate
fiber tracts and derive a white matter connectivity map. Both fiber tracts geometry
and corresponding connectivity map, in turn, can be used to identify major fiber
bundles, which has various clinical applications [39]. The second approach exploits
scalar measures derived from the diffusion data, such as fractional anisotropy (FA),
or Generalized FA (GFA), for segmentation and analysis [24, 25, 34].

In recent years significant advances in the structural analysis of diffusion tensor
fields have been achieved through the extraction of so-called ridge and valley
(jointly, crease) manifolds from tensor invariants [23, 25]. While crease manifolds
have proven successful at characterizing major white matter structures in DTI, no
similar investigation was carried out in the context of HARDI problems. Following
a different approach, methods considering the end positions of fiber traces in a dense
tractogram have been shown to characterize interesting anatomical structures in DTI
datasets of the brain’s white matter and the heart’s myocardium [15, 17].

The approach presented in this paper builds upon a new model of the boundaries
of anatomical structures in diffusion weighted MRI as edges of a continuous
mapping between spatial locations and the geometric signature of the fiber traces
that run through them. By adapting to this geometry-valued setting edge detection
techniques devised for scalar images, our method is able to properly characterize
subtle anatomical structures in both DTI and HARDI.

Our work advances the state of the art in three significant ways. First, our edge
strength measurement is fundamentally nonlocal while prior methods that consider
scalar invariants [23, 25] focus on local properties. Second, in contrast to methods
that focus on the end points of fiber traces [15, 17], we do not rely on any particular
model of curve separation to measure fiber distances and derive a spatial gradient.
Third, unlike fiber clustering methods [5, 6, 32], we are not interested in forming
bundles from a discrete set of fibers though we are able to explicitly characterize the
geometric structures that form the boundaries of fiber bundles.

The main contributions of this paper are

• A novel model that defines structure boundaries as edges of a fiber-valued
mapping;

• A tractography-based edge detection method that extracts structures from diffu-
sion weighted MRI;

• A simple conceptual framework applicable both to DTI and HARDI data, that
performs well in regions with challenging fiber structures.
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The rest of this paper is organized as follows. Section 2 summarizes related
work. The details of our edge detection method are provided in Sect. 3 while Sect. 4
presents a number of visualization approaches derived from the measured edge
strength to improve the understanding of the anatomical structure information from
the DWI signals; Sect. 5 documents the results of our edge detection method on
several DWI datasets; and Sect. 6 presents our conclusions and discusses future
work.

2 Related Work

We briefly review in the following relevant prior work in DTI and HARDI
visualization and analysis.

2.1 Tractography in DTI and HARDI

Tractography is a technique that estimates the trajectories of neural tracts from
diffusion weighted MRI data. It provides an effective way to model and analyze
the fiber tracts in the white matter, and has further been used to study the structure
and connectivity of the human brain [21, 26]. Both in the visualization and medical
imaging communities, many methods have been proposed based on the streamline
algorithm to perform the tractography in DTI. Assuming the major eigenvector
is parallel to the local fiber orientation in each voxel, it is possible to integrate a
pathway using numerical integration methods include Euler’s method or Runge-
Kutta method [4, 8, 31]. Later, several methods using the local diffusion tensor
to deflect the incoming direction instead of the major eigenvector are introduced
to solve the problem when tracking trough regions of planar anisotropy [27, 47].
Also, streamtubes and streamsurfaces were used to visualize diffusion weighted
MRI data [48]. Moreover a MLS-based regularization technique was used to allow
tracking to cross noisy regions and gaps [51].

Tracking fibers in higher order tensor (HOT) was first proposed Hlawitschka and
Scheuermann as HOT-lines [16]. Schultz and Seidel [33] and Jiao et al. [20] later
improved these kind of techniques by introducing tensor decomposition methods to
find the local orientations in each step during the integration.

2.2 Diffusion Weighted MRI Analysis

In the medical imaging community, a number of clustering methods which group
fiber tracts into anatomical meaningful bundles were used to analyze and investigate
information from diffusion weighted MRI. O’Donnell et al. [32] presented a fiber
grouping approach that delineates fiber tracts that can be further analyzed for
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clinical research purposes. Brun et al. [6] proposed a fiber clustering method to
create a weighted undirected graph by comparing fiber tracts pairwise, and perform
segmentation in high dimensional space. Also, the same author used laplacian
eigenmaps to create a mapping from DTI fiber tracts to a low dimensional Euclidean
space, thereby enabling a color coding of fiber tracts that enhances the perception of
fiber bundles and connectivity in the human brain [5]. Liang et al. [28] introduced a
technique to group fiber tracts into bundles using Nonegative Matrix Factorization
(NMF) of the frequency-tract matrix. Mai et al. [30] proposed a method to segment
fiber tracts based on a shape similarity measure. To that end they introduced a new
technique called Warped Longest Common Subsequence (WLCS), which was used
to speed up the segmentation process. Instead of explicitly delineating anatomical
structures such as boundaries between fiber bundles, all these fiber clustering
methods are interested in organizing a discrete set of fibers into bundles.

In the scientific visualization community, researchers have applied ridge and
edge detection methods which were originally developed by computer vision
community to the analysis of diffusion weighted MRI data. Kindlmann et al. [23, 25]
applied crease surfaces of FA to characterize important anatomical structures in
the brain. Extension of this work to ridge lines of FA as models of core lines
in fiber bundles was discussed in Tricoche et al. [40]. By defining gradients of
shape invariants and rotation tangents [24], Schultz and Seidel successfully extended
image processing techniques such as edge detection to diffusion tensor images [34].
However, all these methods focus on local properties and are not able to reveal
structures in sub-voxel level.

Also Schultz et al. considered tensor topology [10, 49] in the context of DTI [35]
but found the results to lack a clear interpretation. Instead they proposed an
alternative topological definition for DTI [35].

In a recent study, a generalized framework for creating super-resolution track-
weighed imaging (TWI) was introduced [7]. The intensity of an individual pixel on
the resulting image could be determined by a specific property, such as the fractional
anisotropy (FA), of the tensorlines which traverse this pixel or the spatial coordinates
of those tensorlines.

Most germane to the ideas developed in this paper are recent works applying to
tensor field and DTI visualization a technique previously used in flow visualization.
Specifically, Hlawitschka et al. [17] and Hlawatsch et al. [15] proposed to use
the rate of separation of neighboring fiber tracts as a measure of coherence in
DTI volumes. The resulting scalar quantity was able to show certain anatomical
structures in human brain and in dog heart.

3 Method

We aim to extract the boundaries of individual fiber bundles as edges of a fiber trace-
valued image that we derive from the DWI dataset via dense tractography. First, we
wish to motivate some of the choices made in the design of our method by briefly
discussing edge detection.
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3.1 Edges as Ridges

Edges are fundamental image descriptors in image processing and computer vision
and many different techniques have been devised for their extraction [29]. A
commonly used approach in that context characterizes edges in a 2-step process: it
first computes at each pixel an edge strength measure from which the edge geometry
can then be obtained as curves (or surfaces in 3D) along which that edge strength is
locally largest.

While edge strength can be measured in scalar images in a variety of ways, we
only consider here the simplest possible definition, namely gradient magnitude.
Leaving aside for the time being the question of how to robustly compute this
gradient, we can see that identifying edges in fiber-valued images necessitates
a metric to measure distances, that is dissimilarities between neighboring fibers,
which in turn requires the choice of a fiber encoding that lends itself to meaningful
distance measures. Once a suitable edge strength has been computed across the
dataset, the geometry of the edges can be extracted as ridges of the corresponding
field [11].

3.2 Fiber-Valued Image Computation

To create a fiber-valued volume, we first compute a dense, full brain tractogram.
The 2nd-order Runge-Kutta method [4] is used to integrate tangent curves along the
major eigenvector of the diffusion tensor in DTI datasets. To increase the robustness
of our integration, a moving least-squares regularization procedure first proposed
by Zhukov and Barr [51, 53] is applied to the tensor field along the integration
path. This procedure has the double benefit of increasing the robustness of the
integration to the noise inherently present in the data and also to partially mitigate
the limitations of the tensor model in regions exhibiting fiber crossing. Indeed,
similar to the tensorline method [47], the MLS regularization effectively uses the
shape of the previously computed filtered tensor value along the curve to constrain
the range of directions that the next integration step may take.

Once the integration has been performed, each voxel is assigned an array of
3D positions that describe the geometry of the computed fiber. For the need of
subsequent processing, however, a different fiber encoding is needed.

3.3 Feature Encoding

With about a hundred vertices per fiber trace on average, the information associated
with each voxel is expressed in a fairly high-dimensional data space. In that
space, the straightforward Eulerean metric is both costly to compute and ineffective
as dissimilarity measure. Furthermore, the numerical criteria used to control the
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progression of the integration (e.g., a lower bound on fractional anisotropy as stop
criterion), produce fibers with a varying number of vertices.

To avoid these issues, we map the raw geometric information produced by the
fiber tracking step to a low-dimensional representation comprised of the first and
second moments of each fiber description [6]. The corresponding set of coefficients
f is given in Eq. (1).

f D .mx;my;mz; hxx; hxy; hxz; hyy; hyz; hzz/
|; (1)

where m D .mx;my;mz/
| is the mean vector of the vertices in 3D space, and

the terms h	;	 are the independent coefficients of the (symmetric) square root of
their covariance matrix H. As a result, each fiber trace is represented by only 9
coefficients that are invariant under flipped fiber orientation. In all datasets we have
tested in Sect. 5, this simplification is good enough to capture the geometry of fiber
traces. For applications which the first and the second order moment is not enough
to distinguish the geometric difference between neighboring fiber traces, any higher
order moment could be employed to provide more dimensions in the feature space.

3.4 Edge Strength in Vector-Valued Images

The previous steps of the algorithm yield a volume dataset that associates each data
point with a 9D feature vector. To detect edges in this vector-valued image, we need
to evaluate its gradient. Our solution consists in computing a linear least squares
fit over the 26 neighbors of each voxel. Let fp denote the feature vector associated
with the voxel at position p, the desired linear fit at p is the solution of the following
expression:

Ap D min
8A2�9�3

X

q2N1.p/

jjA .q� p/� �fq � fp
� jj2: (2)

Here N1 designates the 1-neighborhood of p, which is comprised of its 26 direct
neighbors.

While the corresponding solution Ap could be used directly as approximation of
the gradient rfp, we adopt in this work a more robust approach. Following prior
work on tensor-based feature detection in color images [45], we frame our gradient
estimation problem as the construction of a structure tensor on a multichannel
volume with 9 parameters. Here, our structure tensor G is given by

G D

0

B
B
B
@

f|x fx f|x fy f|x fz

f|y fx f|y fy f|y fz

f|z fx f|z fy f|z fz

1

C
C
C
A
; (3)
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where the partial derivatives fx, fy, and fz at p are obtained directly from Ap as its
1st, 2nd, and 3rd columns. The bar N: indicates the convolution with a Gaussian filter
for increased robustness.

Finally, the edge strength s can be measured by a scalar invariant of the structure
tensor. Specifically, in our approach, we measure the edge strength as the major
eigenvalue of the structure tensor.

s D �max .G/ (4)

3.5 Extension to HARDI

The DT-MRI model has been shown to fail in regions containing multiple distinct
orientations [1, 12, 42]. The HARDI model presented by Tuch et al. [43, 44] extends
the single-tensor model to multi-tensor models or ODFs which can capture multiple
independent fiber orientations in each voxel, thereby allowing one to track fibers
across regions of complex crossing white-matter structures.

In this work, we define the nth higher order tensor which represents the estimated
fiber-ODF from DWI signals as follows.

D D
RX

rD1
v1r ˝ v2r ˝ � � � ˝ vnr ; (5)

where v are vectors and R D rank.D/. Further, following prior work we assume that
the tensors are supersymmetric, i.e., v1r D v2r D � � � D vnr . Unlike the DTI case, the
rank of the estimated higher order tensor is unknown. Assuming we are interested
in a low-rank approximation of the original higher order tensor, for a given rank
k < R, D can be decomposed into k rank-1 tensors.

D �
kX

rD1
wr
�
v1r ˝ v2r ˝ � � � ˝ vnr

�
; (6)

where kvrk D 1, and vr represent the possible fiber orientations at the location
whereD is estimated. The number k is determined through a simple heuristic method
described in [33].

Here we extend our edge detection approach discussed in the DTI Sect. 3.4
to HARDI model and improve the edge detection results by accounting for the
presence of multiple orientations in voxels.

For tractography we follow the deterministic higher-order tensor tracking algo-
rithm presented by Hlawitschka and Scheuermann [16] and Schultz and Seidel [33].
More specifically, at each step of the fiber integration, the rank � k decomposition
approach is employed to extract the possible fiber orientations from the higher-order



318 Z. Ding et al.

Fig. 1 Case in which neighbor voxels have different number of fibers

tensor. Then an evaluation scheme is applied to find the best orientation, defined as
the one forming the smallest angle with the last integration step.

Similar to fiber tracking in DT-MRI, we perform a MLS-based regularization
to filter the higher order tensor at each integration step, namely we compute the
weighted average of the higher order tensor value within the filter kernel which in
this case is defined by the local diffusion ODF.

Unlike DTI, the result of our fiber tracking method on HARDI, for a particular
voxel p, could contain M fibers F0p , F1p , . . . , FM�1

p corresponding to distinct local
orientations o0p, o

1
p, . . . , oM�1

p . Figure 1 illustrates the case in which a different
number of fibers is found in voxel pi;j and its neighborhood in 2D.

Since multiple local line fields may coexist, we measure the overall edge strength
at a particular voxel p as the sum of individual edge strengths corresponding to fibers
Fm
p and their respective local orientation omp . For each possible local orientation ompi;j

at voxel pi;j we first construct a local linear fit of feature vectors associated with
matching fiber orientations in its neighborhood. Practically, in each surrounding
voxel, the fiber with closest orientation to opi;j is included in the least squares fit.

As illustrated in Fig. 1, fiber F0pi�1;j , F
0
piC1;j

, F1pi;j�1 , and F0pi;jC1
are selected by

fiber F0pi;j while fiber F1pi�1;j , F
0
piC1;j

, F0pi;j�1 , and F1pi;jC1
are selected by fiber F1pi;j .

Note that fiber F0pi�1;j is selected by both F0pi;j and F1pi;j , but fiber F2pi;jC1
is never
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selected. Applying the above procedure, different fiber functions fmp are estimated
from different local fields of space filling curves, then the general derivatives are
computed as the mean of derivatives obtained from each fmp . As in the DTI case, the
structure tensor is employed for a robust estimate of the general derivatives.

G D
M�1X

mD0

0

B
B
B
@

fmx
| fmx fmx

| fmy fmx
| fmz

fmy
| fmx fmy

| fmy fmy
| fmz

fmz
| fmx fmz

| fmy fmz
| fmz

1

C
C
C
A

(7)

Similar to edge detection in DT-MRI, the edge strength is measured by the major
eigenvalue of the structure tensor G in Eq. (4).

4 Visualization

The per voxel edge strength measured by our approach yields a scalar field by
applying the measurement to the entire domain of a dataset. Classical scalar field
visualization methods, such as isosurfaces and volume rendering are applicable
on the edge strength field. However the visualization technique introduced by
Hlawitschka et al. [17] which augments the edge strength by overlaying an
anisotropy-scaled RGB color map provides the information to identify typical
anatomical structures in DWI datasets, the high density of edges detected by our
approach could potentially cause visual clutter, especially in the brain dataset.
Therefore, in this paper, we split the result visualization into two steps:

1. Characterization of edges’ geometry by performing ridge extraction on a user
defined sweeping plane or region of interest. The extracted ridge lines/ridge
surfaces can further be filtered by the edge strength and ridge strength.

2. Visualizing the ridge lines/ridge surfaces by superimposing an anisotropy-scaled
RGB color map which shows the local orientation and fractional anisotropy (FA)
to provide the context information of the sweeping plane or the region of interest.

Furthermore, we propose to enhance the visualization result by rendering fiber
trajectories with ridge lines/ridge surfaces characterized from our edge strength
result (cf. Fig. 8). Hence, the ridge lines/ridge surfaces emphasize the boundary
of different anatomical structures while fiber trajectories convey the shape and
connectivity of neural tracts.
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5 Results and Discussions

Both synthetic and real data were considered to test the presented edge detection
approach. First, we focused on a publicly available phantom data to validate our
method against a known ground truth and investigate its robustness to various noise
levels (Sect. 5.1). Then we studied two human brain datasets (Sects. 5.2 and 5.3).

5.1 Phantom Data

We tested our approach on the phantom data used in the HARDI reconstruction
challenge 2013 [9]. The dataset with a b � value of 1200 s/mm2 and 32 directions
was used to test our method on DTI, and the dataset with a b�value of 3000 s/mm2

and 64 directions was studied to test our method on HARDI. For both DTI and
HARDI, two different signal-to-noise-ratio (SNR), 10 and 30, were tested to validate
our approach against noise. The original spatial resolution of the phantom is 50 	
50	 50with isotropic voxel size as 1.0 mm and we measured the edge strength on a
discrete domain with spatial resolution 400	 400	 400 in both studies on DTI and
HARDI.

Figure 2 shows the edge strength computed from our method both on DTI and
HARDI as well as the ground truth. In single orientation regions, both DTI and
HARDI can reconstruct the correct orientation, and our approach can successfully
detect edges in those regions. In regions which contain crossing fiber tracts from
different fiber bundles, DTI leads to incorrect fiber traces. In contrast, the tensor

Fig. 2 A comparison of the ground truth and the results obtained by applying our edge detection
approach on the phantom dataset with different SNRs. Both red and blue cycles highlight the
regions where different fiber bundles intersect with each other. It is clear that the edge detection
results using DTI fail in those regions. On the other hand, the edge detection results using HARDI
delineate meaningful boundaries of fiber bundles similar to the ground truth
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decomposition method used in HARDI properly reconstructs the multi-orientation
in those regions. Our results in crossing fiber regions shown in Fig. 2 confirm that
the DTI results are not close to the ground truth while the HARDI results are
comparable to it.

A comparison of our method to the end-position tractography method [15] on
DTI is proposed in Fig. 3. Although both methods were implemented with the
MLS-based fiber tracking technique [52], the inconsistency of local orientations
introduced by DTI model in crossing regions causes incorrect end positions of
individual fiber traces. Therefore, using these end positions results a discontinuous

Fig. 3 A detailed comparison of the end-position method and the presented method on phantom
dataset. First row visualizes the side-by-side comparison of the edge strength computed from these
two methods. Second row shows the ridge surfaces characterized from the edge strength fields.
Differences between these two methods are highlighted by red arrows
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edge strength measurement in FSR. On the other hand, the fiber function estimated
by entire fiber traces generates a smooth and consistent result in our approach. The
first column shows the edge strength measured by end-position method and our
approach on one slice of the YZ plane in the phantom dataset. In single orientation
regions, the edge strength measured by our approach is smoother and less influenced
by the inconsistency of local orientations caused by noise than the end-position
method. The second column shows the characterized ridge surfaces using the same
ridge extraction method [13] on edge strength measurement fields generated by
end-position method and our approach. Comparing these two ridge surfaces, a
significant number of disconnected components and cracks exist in the result of
the end-position method.

Finally, the renderings in Fig. 4 show the extracted ridge surfaces from the edge
strength on HARDI with SNR = 30 and the boundaries from the ground truth.
A unique color was assigned to each fiber bundle, therefore, the correspondence
between the characterized ridge surfaces from our edge strength measurement and
the actual boundaries of different fiber bundles is clearly shown in these renderings.

5.2 IIT2 Human Brain DTI Template

The first in vivo human brain used to test our approach is the public IIT2 human
brain DTI template [50]. The original spatial resolution is 181 	 217 	 181 with
isotropic voxel size as 1 mm and the edge strength was measured on a discrete
domain with spatial resolution 724 	 868 	 724 which is 4 times larger in each
dimension. The relevant fiber tracking parameters are: step-size = 0.1 mm and
maximum fiber length = 30.0 mm. The stopping criteria in fiber tracking are set
as the maximum angle between steps = 45ı and the FA value threshold for white
matter = 0:15.

Ridge surfaces rendered as Fig. 5a and b are extracted from the edge strength
measured by our edge detection approach in the brainstem (the posterior part of
the brain). Complex fiber traces with distinct directions pass through this region.
Similar to (f) which is taken from Fig. 5 in Kindlmann et al. [25], boundaries of
different fiber traces including the middle cerebellar peduncle (mcp), corticospinal
tract(cst), transverse pontine fibers (tpf), medial lemniscus (ml), superior cerebellar
peduncle (scp), and inferior cerebellar peduncle (icp) are identified and visualized
with the difference that our results exhibit more comprehensive and clear bound-
aries. In addition, two images (d) and (e) visualize the characterized ridge lines
corresponding to the cutting plane i and ii in (c).

The yellow cycle in Fig. 6a indicates another interesting region where the white
matter lateral to the posterior horn of the lateral ventricle consists of three layers
of tracts: the most lateral layer is the superior longitudinal fasciulus (slf) with a
superior-inferior orientation; the most medial layer is the callosal projection to the
temporal lobe (tapetum); and the posterior region of the corona radiata (pcr) can be
found between them with an anterior-posterior orientation [46]. Boundaries between
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Fig. 4 Ridge surfaces characterized from the edge strength measured on HARDI with SNR=30.
(a) and (c) boundaries of different fiber bundles from the ground truth. (b) and (d) extracted ridge
surfaces by our approach

these three layers are successfully detected by our approach as shown in Fig. 6b.
Figure 6c shows the ridge surfaces extracted from our edge strength measurement.
A visualization which overlays the anisotropy-based RGB color map with ridge
surfaces is shown in Fig. 6d. This result confirms that the detected edges do represent
the actual boundaries between different white matter layers.

Figure 7a highlightes 9 anatomical structures on a anisotropy-based RGB color
map of a coronal plane. Figure 7b and c visualize edge strength measured with
2 times and 4 times as large as the original spatial resolution in each dimension
respectively. It takes about 5 s to measure the edge strength of Fig. 7b and 13 s of
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Fig. 5 Edge detection result in the brainstem by our approach. mcp: middle cerebellar peduncle;
cst: corticospinal tract; tpf: transverse pontine fibers; ml: medial lemniscus; scp: superior cerebellar
peduncle; icp: inferior cerebellar peduncle.

Fig. 7c on a machine with an Intel i7 quad-core CPU and a Nvidia Quadro M3000M
graphics card. In general, the edge strength measured with a higher resolution
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Fig. 6 Edge detection results in an interesting region where the white matter lateral to the posterior
horn of the lateral ventricle consists of three layers of tracts. cc: corpus callosum; cg: cingulum; pcr:
posterior region of corona radiata; slf: superior longitudinal fasciculus. (a) Fractional anisotropy
(FA) of the brain white matter visualized on a transverse section. The circle indicates the considered
anatomical region. (b) Edge strength measured by our method on the same section. (c) Ridge
surfaces of the edge strength characterize the complex geometry of crossing fibers in the area of
interest. (d) Same as (c) with FA overlaid and color-coded by the orientation of the main diffusion
direction
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Fig. 7 (a) Coronal anisotropy-based RGB color map; (b) edge strength measured with 2 times as
large as the original spatial resolution in each dimension; (c) edge strength measured with 4 times
as large as the original spatial resolution in each dimension. cc: corpus callosum; cg: cingulum;
st: corticospinal tract; mcp: middle cerebellar peduncle; fx: fornix; ifo: inferior fronto-occipital
fasciculus; plic: posterior limb of internal capsule; scr: superior region of internal capsule; slf:
superior longitudinal fasciculus

exhibits sharper edges and contains less discontinuity than the one measured with
a lower resolution. However, both results are able to capture the boundaries of
anatomical structures highlighted in Fig. 7a.

5.3 Human Brain with DTI and HARDI

The second in vivo human brain dataset used to test our approach consists of 270
diffusion weighted images with three different b�values, 1000 s/mm2, 2000 s/mm2,
and 3000 s/mm2, as well as 18 baseline scans with b�value D 0. Multiple b�value
allows us to test our method on DTI and HARDI separately and compare the results.
We use the diffusion weighted images with b � value D 1000 s/mm2 to estimate a
DTI dataset, and use the ones with b � value D 3000 s/mm2 to estimate a HARDI
dataset.

In this experiment, a small region of interest was selected where the lateral
transcallosal fibers (tf) runs through the corpus callosum (cc) and intersects with
the internal capsule (ic). The DTI model yields invalid orientation information in
the fiber crossing region while HARDI successfully reconstructs the transcallosal
fibers. Our edge detection approach on HARDI could extract edges that correctly
represent the anatomical structures in this region. A side-by-side comparison of
our edge detection results on DTI and HARDI is shown in Fig. 8. Figure 8 also
highlights the anatomical structures that could be found by our approach both
on DTI and HARDI with corresponding fiber traces. As can be seen, both DTI
and HARDI allowed our method capture boundaries of corpus callosum (red) and
cingulum (green), while it was only in the HARDI case that our method succeeded in
reconstructing the boundaries of transcallosal fibers (purple). Similarly, the crossing
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Fig. 8 A comparison of the ridge surfaces extracted from the edge detection results by our
approach on DTI and HARDI

of internal capsule and superior longitudinal fasciculus (blue) was not properly
characterized in DTI data, which led to the partial extraction of the boundaries of the
internal capsule (blue) in this case. In contrast, edge extraction in the HARDI case
produces correct boundaries between internal capsule and superior longitudinal
fasciculus.

6 Conclusion and Future Work

In many applications of diffusion weighted imaging (DWI) analysis, extracting the
boundaries of anatomical structures from the scanned DWI signals is a crucial step.
In this paper, we have presented an tractography-based edge detection technique
for DWI that takes the entire geometry of fiber traces into consideration to identify
the contour of distinct fiber populations. An evaluation against ground truth in a
phantom dataset has proved that the edges characterized by our method coincide
with the boundaries of individual fiber bundles and thereby reveal major anatomical
structures. In addition, experiments performed on real data have shown that subtle
anatomical structures, in particular those associated with fiber crossings, can be
identified by our method in noisy datasets.

Limitations of our approach and open questions remain as avenues for future
work. First, the super-sampling of the original dataset combined with an on-the-
fly regularization procedure at each step of fiber integration make our technique
computationally expensive. Although a GPU implementation was used to accelerate
the necessary computations, a strategy consisting in reusing fiber traces among
neighboring voxels could dramatically reduce the computational time by exploiting
redundancy. Second, standard tensor invariant information like fractional anisotropy
(FA) aggregated along individual fiber traces could also be used to measure edge
strength in the context of Diffusion Tensor Imaging. Finally, the basic approach



328 Z. Ding et al.

presented in this paper is not limited to the visualization of DWI data, and we would
like to apply it to tensor field visualization problems in other application domains.
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Repeated Tractography of a Single Subject: How
High Is the Variance?

Xuan Gu, Anders Eklund, and Hans Knutsson

Abstract We have investigated the test-retest reliability of diffusion tractography,
using 32 diffusion datasets from a single healthy subject. Preprocessing was carried
out using functions in FSL (FMRIB Software Library), and tractography was carried
out using FSL and Dipy. The tractography was performed in diffusion space, using
two seed masks (corticospinal and cingulum gyrus tracts) created from the JHU
White-Matter Tractography atlas. The tractography results were then warped into
MNI standard space by a linear transformation. The reproducibility of tract metrics
was examined using the standard deviation, the coefficient of variation (CV) and the
Dice similarity coefficient (DSC), which all indicated a high reproducibility. Our
results show that the multi-fiber model in FSL is able to reveal more connections
between brain areas, compared to the single fiber model, and that distortion
correction increases the reproducibility.

1 Introduction

In the past few years, a number of algorithms for reconstruction of fiber tracts from
diffusion-weighted images have been proposed, collectively known as tractography
[10]. Tractography is an important neuroimaging tool which can be used for
studying brain connectivity and aiding brain surgery [8, 11, 22, 27]. The fundamental
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Fig. 1 A mid-axial slice of
the corticospinal tract, for a
subject with an Astrocytoma
tumor in the right primary
somatosensory area. A
threshold of 0.2% was used to
remove less likely tracts.
While tractography can aid
planning of tumor surgery, it
is important to know the
uncertainty of the nice images

goal of brain tumor surgery is to resect the maximum amount of tumoral tissue,
while removing as little healthy tissue as possible. Figure 1 shows an example where
the estimated corticospinal tracts for a patient were very close to an Astrocytoma
tumor in the right primary somatosensory area [31]. The corticospinal tract is one
of the major nerve fiber tracts, and should be preserved as much as possible during
brain surgery. Therefore, it is important to fully evaluate the reproducibility of
diffusion tractography results, so that the surgical approaches can be designed to
avoid damaging important tracts. Although tractography provides very nice images
[4], there has been some concerns regarding the reproducibility of the results, and
these concerns are especially important for clinical applications. Reconstruction of
fiber tracts can, for example, differ depending on the software package being used,
the specific algorithm, and different parameter settings.

However, only a few attempts have been made so far to quantitatively investigate
the reproducibility of different methods and softwares for tractography. Heiervang
et al. [19] conducted studies to characterize the reproducibility and variability of
diffusion tractography using datasets from eight subjects scanned three times. The
mean tract fractional anisotropy (FA) and the mean diffusivity (MD) along the tracts
showed a very low coefficient of variation, both below 2% for inter-session and 3–
5% for inter-subject. They also found that the number of diffusion directions (60 and
12) has a limited effect on the inter-session coefficient of variation (CV). Datasets
with more diffusion directions, however, produced greater tract volume. Tensaouti et
al. [35] reported a maximum value of 56% of tract volume agreement for diffusion
data collected in 32 directions. They drew a similar conclusion as [19] that more
directions allows to detect more tracts until a certain level between 15–32 directions.
Vollmar et al. [39] investigated the intra-site and inter-site reproducibility and
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reported a very low (1.6%) CV for the mean tract FA within the tracts, and 6.2–8.4%
CV of the tract volume. It is also claimed that nonlinear registration between
scans can be used to eliminate different distortions and improve reproducibility.
Vaessen et al. [38] evaluated the reproducibility of brain network connectivity by
diffusion tractography, and reported low values (3.8%) for the CV of the network
measures. Danielian et al. [14] assessed intra-human-rater and inter-human-rater
reproducibility by measurements of tract FA, MD, axial diffusivity, transverse
diffusivity and tract volume using intraclass correlation coefficient (ICC), CV and
kappa () statistic. They reported an ICC greater than 0.77 and a  greater than
0.76 for inter-human-rater and an ICC greater than 0.92 and a  greater than 0.9 for
intra-human-rater. Tensaouti et al. [36] evaluated the reproducibility of tractography
in terms of data acquisitions and tractography algorithms. Similarly to [19, 35],
Tensaouti et al. reported an increase in reproducibility in tractography according to
the number of directions used during the scans.

For reproducibility of tractography in brachial plexus and kidney, evaluations
were carried out by Tagliafico et al. [34], Cutajar et al. [13]. Apart from studies that
assess the longitudinal reproducibility of fiber tractography, results regarding the
accuracy of fiber tractography can be found in [12, 16, 18, 29, 33].

The aim of this study was therefore to analyze the reproducibility of tractography
for diffusion data repeatedly collected from a single healthy subject. This makes it
possible to investigate how the whole workflow (data collection, preprocessing and
tractography) affects the final results, instead of only focusing on the tractography
itself. We here present results for the popular diffusion tractography softwares
FSL [24] and Dipy [17] which use a probabilistic and a deterministic tractography
algorithm, respectively. For the quantitative analysis of the results, we focused on
the CV and the Dice similarity coefficient (DSC) which indicate how high the
reproducibility is. Testing other software packages is planned for future work.

The remainder of the paper is organized as follows. In Sect. 3, the evaluated
tractography software packages and image process workflow is presented in detail.
The results of the evaluations are shown in Sect. 4, and the results are discussed in
Sect. 5.

2 Data

Diffusion datasets were acquired from the MyConnectome [26] study (myconnec-
tome.org), where MR imaging was performed on a fixed schedule during an entire
year on a single healthy individual. In this study, we chose the 16 scan sessions (out
of the total 106) containing diffusion data, obtained using a multiband EPI sequence
on a Siemens Skyra 3T scanner. Each session consists of two scans, giving a total of
32 diffusion datasets, with L!R phase encoding and the other with R!L phase
encoding (these two scans can be combined to correct for distortions). The following
scanning parameters were used: bD 1000/2000 s �mm�2 (30 gradient directions per
b-factor and 4 volumes without diffusion weighting), 1.74 	 1.74 	 1.7 mm voxels,
72 slices, 128 	 128 matrix, TR = 5000 ms, TE = 108 ms, multiband factor 3.
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3 Methods

3.1 FSL

Preprocessing and tractography was carried out using tools in FSL [24]. Suscepti-
bility distortions were corrected for using the function topup [3], while the function
eddy [2] was used to correct for head motion and eddy-current induced distortions.

The ball and stick model [6] is in the function bedpostx used to model the
diffusion in each voxel, with one isotropic part (ball) and N non-isotropic parts
(sticks), according to

Si
S0
D .1 �

NX

jD1
fj/exp.�bid/C

NX

jD1
fjexp.�bidrTi RjART

j ri/; (1)

where Si is the diffusion-weighted signal for measurement i, S0 is the signal with
no diffusion gradient applied, fj is the fraction of signal contributed by diffusion
along fiber direction j, bi and ri are the b-value and the gradient direction for
measurement i, d is the diffusivity, RART is the anisotropic diffusion tensor along
the fiber direction .	j; 
j/ where
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Each stick is thus represented by two angles, using a spherical coordinate system.
The first term represents the diffusion of free water, and the second term represents
the diffusion along the different fiber orientations. The joint posterior distribution
of the parameters of interest is derived using Bayesian inference. Specifically,
Markov Chain Monte Carlo (MCMC) simulation is used in bedpostx to generate
draws from the complicated posterior distribution. In the case of multiple fiber
orientations, automatic relevance determination (ARD) is used to in each voxel
determine the optimal number of fibers. The GPU version of bedpostx [20] was
used in our case, to reduce the processing time from 15 h to 40 min per analysis.
Each dataset was analyzed 4 times (maximum of 1, 2, 3 or 4 crossing fibers in each
voxel), resulting in a total of 128 analyses for the 32 datasets.

The function fslmaths was used to create two seed masks in MNI space (for
corticospinal and cingulum gyrus tracts), using the JHU White-Matter Tractography
atlas [21]. The transformation between standard space and diffusion space was
achieved in three separate steps. First, the anatomical volume was linearly registered
to MNI space using the function flirt [23]. Second, the diffusion data was linearly
registered to the anatomical volume. Third, the two transformations were combined,
to transform the seed masks from MNI space to diffusion space.
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The probabilistic tractography was performed using the function probtrackx2
[6] in diffusion space. The bedpostx function results in draws from the posterior
distribution of the ball and stick model, which are then used by probtrackx2 to
achieve probabilistic fiber tracking. A total of 5000 streamlines were initiated from
each seed voxel, and constructed by randomly selecting one draw from the ball
and stick model in each voxel, and following the main fiber orientation given by
that draw. Each streamline was stopped after 2000 steps with a step length of
0.5 mm, or terminated if the curvature exceeded 80ı. A volume containing the output
connectivity distribution from the seed mask was finally computed, where each
entry denotes the number of streamlines that passed through that voxel. The results
of probtrackx2 were transformed to MNI standard space by linear transformation,
inverting the previously calculated linear transformation. The results were finally
normalized by the total number of streamlines from the seed mask. By removing
the less likely tracts, using a threshold, it becomes easier to see the most important
connections from the seed mask to the rest of the brain.

3.2 Dipy

To further extend this study, we performed deterministic tractography on the same
datasets using Dipy [17]. The deterministic tractography was performed on the
distortion-corrected datasets from FSL. To get directions from the diffusion dataset,
we fitted each voxel to a Constant Solid Angle Model [1] using the function
CsaOdfModel. This model will represent the orientation distribution function (ODF)
in each voxel. The ODF is the distribution of water diffusion as a function of
direction. The peaks of an ODF can be obtained by the function peaks_ from_model,
and they can be good estimates for the orientations of the streamlines passing
through voxels. The same corticospinal and cingulum gyrus tracts were used as
seed masks. One seed per voxel (in the center) was used for the tractography.

4 Results

4.1 FSL

Figures 2 and 3 show one axial slice and one sagittal slice of the tractography results
for the corticospinal and cingulum gyrus tracts, for all 32 datasets. The tractography
results were thresholded at a connectivity value of 0.2%. The background image
is the MNI template brain. The corticospinal and cingulum gyrus seed masks,
as shown in Fig. 4, were created with fslmaths, by thresholding the JHU White-
Matter Tractography atlas [28]. Due to noise and scan artifacts, none of the datasets
give identical tractography results. Nevertheless, there is clearly a high degree
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0.002 0.013 0.0241 0.0351

Fig. 2 Tractography results for 32 diffusion datasets (in MNI space), for a maximum of 2 fibers
per voxel, when using seed masks for the corticospinal tract. A threshold of 0.2% was used to
remove less likely tracts. The results represent the proportion of times a streamline passed through
a voxel
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0.06570.04450.02320.002

Fig. 3 Tractography results for 32 diffusion datasets (in MNI space), for a maximum of 2 fibers
per voxel, when using seed masks for the cingulum gyrus tract. A threshold of 0.2% was used to
remove less likely tracts. The results represent the proportion of times a streamline passed through
a voxel
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Fig. 4 The corticospinal and cingulum gyrus tracts used as seed masks. From each voxel in the
seed mask, 5000 streamlines were generated, using probabilistic fiber tracking, to obtain a volume
were each voxel represents the number of times a streamline passed through that voxel

2.09591.43420.77250.1108

Fig. 5 CV (in MNI space) of the tractography results, for a maximum of 2 fibers per voxel, when
using a seed mask for the corticospinal tract. The threshold (in %) is, from left to right, 0.01, 0.05,
0.1, 0.5

of similarity between the tractography maps from the different datasets. In the
following results, we try to measure the degree of similarity using different metrics.

The reproducibility of the tractography was first examined using the CV, which
is defined as the ratio of the standard deviation � divided by the mean �:

CV D �

�
: (2)

The CV is a standardized measure of dispersion of a probability distribution [9]. It
gives an intuitive estimate of the measurement repeatability, expressed as a relative
percentage (regardless of the absolute measurement value). The standard deviation
� and mean � can be calculated from the 32 tractography results. Figure 5 shows
the CV of the tractography results for various thresholds when using a seed mask
for the corticospinal tract. By removing the voxels below the threshold, it is possible
to focus on the tracts with a lower CV.



Repeated Tractography of a Single Subject: How High Is the Variance? 339

0.02360.01610.00850.001

0.001 0.0106 0.0202 0.0298

Fig. 6 Averaged tractography results over the 32 datasets (in MNI space), for a maximum of 1,
2, 3 or 4 fibers per voxel (left to right), when using seed masks for the corticospinal and cingulum
gyrus tracts. A threshold of 0.1% was used to remove less likely tracts. Using a maximum of 2
fibers per voxel leads to including more voxels in the tracts, compared to using a maximum of 1
fiber per voxel

Figure 6 shows the average tractography results over the 32 datasets, when
changing the maximum number of crossing fibers x in the bedpostx function. It
has previously been reported that some 70% of the white matter voxels contain
at least two crossing fibers [25]. Our results show that the multi-fiber model is in
general able to reveal more connections between the brain areas, compared to the
single fiber model, for both corticospinal and cingulum gyrus tracts. The ability
to detect connections varies when different maximum number of crossing fibers
is used. Nevertheless, the same cores of the tracts were found by all settings. The
standard deviation, for the voxels that survived an initial threshold, was calculated
over all 32 datasets and is shown in Fig. 7.

Figure 8 shows the tract volume of the tractography results, for different settings
of the maximum number of crossing fibers. The tract volume was estimated as
the total number of voxels that survived thresholding. The average tract volume
of corticospinal tracts over the 32 datasets are 3527, 4648, 4210 and 4208 for a
maximum of 1, 2, 3 and 4 crossing fibers. The average tract volume of cingulum
gyrus tracts over the 32 datasets are 1892, 3153, 2548 and 2583 for a maximum of
1, 2, 3 and 4 crossing fibers.

To better understand the results in Fig. 8, we plotted the average tract volume over
the 32 datasets before and after thresholding for different settings of the maximum
number of crossing fibers, see Fig. 9. For both before and after thresholding,
tractography results obtained using a single fiber model (x D 1 in the FSL function
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Fig. 7 Standard deviation of tractography results over the 32 datasets (in MNI space), for a
maximum of 1, 2, 3 or 4 fibers per voxel (left to right), when using seed masks for the corticospinal
and cingulum gyrus tracts. A threshold of 0.1% was used to remove less likely tracts
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Fig. 8 Tract volume of the tractography results, for a maximum of 1, 2, 3 or 4 fibers per voxel.
The top figure shows the results for the corticospinal tract, and the bottom figure shows the results
for the cingulum gyrus tract. A threshold of 0.5% was used to remove less likely tracts. Using a
maximum of 2 fibers per voxel reveals most brain connections, while using a maximum of 1 fiber
leads to the fewest connections
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Fig. 9 Tract volume of the tractography results, for a maximum of 1, 2, 3 or 4 fibers per voxel.
The top figure shows the results before thresholding, and the bottom figure shows the results after
thresholding

bedpostx) are expected to represent a smaller tract, i.e. there are fewer connections.
This is due to the fact that a multi-fiber model (x D 2; 3; 4 in the FSL function
bedpostx) results in a greater variability of fiber orientations and tend to disperse the
streamlines to more voxels. This prediction clearly holds for the results in Figs. 8
and 9, for both the corticospinal and the cingulum gyrus tracts. However, after
thresholding, the tract volume for the 3 fibers per voxel case was decreased a little
compared with a maximum of 2 fibers. The reason is that when a larger number
of crossing fibers are fitted, the tractography results tend to be more dispersive, i.e.
the connectivity value in the voxels will be smaller. Therefore, a larger amount of
voxels will be removed after the thresholding, which causes a smaller tract volume.
It is interesting to note that increasing the number of maximum fibers from 3 to 4,
does not change the tract volume further. This is because very few voxels in the
datasets support 4 crossing fibers, see Figs. 10 and 11.

Figure 10 shows an example of the multi-fiber ball and stick model fitting for
one of the 32 datasets. The fraction of signal contributed by diffusion along fiber
direction fi [output of FSL function bedpostx, see Eq. (1)] was thresholded at 0.05
[6] and the surviving voxels were able to detect more than i crossing fibers. For
the chosen dataset, 40% of voxels with FA > 0:1 were able to detect at least two
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Fig. 10 Multi-fiber ball and stick model fitting. An axial slice showing where more than 1 (left),
2 (middle), and 3 (right) crossing fibers in each voxel were supported by the dataset. The fiber
fractions f2, f3 and f4 were thresholded at 0.05
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Fig. 11 Percentage of voxels supporting 1, 2, 3 and 4 crossing fibers, corticospinal tract in blue
and cingulum gyrus tract in yellow. A threshold of 0.5% was used to remove less likely tracts

crossing fibers which is a little higher than the previous reported 33% in [6], where
a different data acquisition scheme was used. For only 4.76% of voxels with FA
> 0:1, more than two fibers was supported by the model, and for only 0.05% of
voxels with FA > 0:1 more than three fibers was supported.

Figure 11 shows the percentage of voxels supporting 1, 2, 3 and 4 crossing fibers
in corticospinal (blue) and cingulum gyrus (yellow) tracts for the same chosen
dataset as in Fig. 10. For both the corticospinal and the cingulum gyrus (yellow)
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tracts, around 20%, 70% and 10% of the voxels supported 1, 2 and 3 crossing
fibers, respectively. The number of voxels supporting more than 3 crossing fibers
is negligible. In [6] it was reported that no single voxel was able to support more
than 2 crossing fibers when 60 directions was used for data acquisition, and no
single voxel was able to support more than 1 crossing fibers when 12 directions
was used. Tuch et al. [37] reported that it is possible to detect 3 crossing fibers
in the corticospinal tract in high b-value data. In our study, the data acquisition
scheme using two shells and 30 directions for each shell made it possible to detect
3 crossing fibers in 12.1 and 5.5% of the voxels in the corticospinal and cingulum
gyrus tracts, respectively, as shown in Fig. 11. It is reasonable to infer that data
acquisition schemes using either more shells, or more directions, or higher b-value
allows more crossing fibers to be supported by the data.

Figure 12 shows the probability density of the CV when the maximum number
of crossing fibers varies from 1 to 4. The CV is the precision of a measure, i.e.
a smaller CV is equivalent to a higher reproducibility of the fiber tracts. The
probability density was estimated using the MATLAB (Version 2016b) function
ksdensity with 100 bins. For the corticospinal case, the total number of voxels after

Fig. 12 Probability density of CV for the tractography results, for a maximum of 1, 2, 3 or 4 fibers
per voxel. The top figure shows the results for the corticospinal tract, and the bottom figure shows
the results for the cingulum gyrus tract. A threshold of 0.001% was used to remove less likely
tracts
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thresholding is 48010, 172799, 143935, and 146322 for a maximum of 1, 2, 3 and
4 fibers, respectively. The corresponding number of voxels for 0 < CV < 1 is
15556, 112227, 76359, and 77328. The mean of the CV over all voxels is 1.32,
0.99, 1.15, and 1.16, for a maximum of 1–4 fibers. The choice of a maximum of
2 fibers per voxel gives the highest reproducibility, at the cost of revealing fewer
connections between brain areas, compared with a maximum of 3 or 4 fibers per
voxel. The single-fiber model leads to the highest variation. Figure 12 shows the
probability density of the CV with and without distortion correction, when the
maximum number of crossing fibers is set to 3. Correcting for susceptibility effects,
eddy currents and head motion clearly increases the reproducibility (Fig. 13).

We derived mean and CV for tract FA, MD and volume (Table 1) across the
32 datasets for the corticospinal and cingulum gyrus tracts when a maximum of
1, 2, 3 and 4 fibers per voxel was applied. A threshold of 0.5% was used to
remove less likely tracts. Tract FA and MD are defined as the average FA and MD
values within a tract. The tract volume is the total number of voxels that survived
thresholding. FA and MD of whole brain were obtained using the FSL function dtifit
to fit a diffusion tensor model in each voxel. FA and MD results were then linearly

Fig. 13 Probability density of CV for the tractography results with and without distortion
correction, for a maximum of 3 fibers per voxel. The top figure shows the results for the
corticospinal tract, and the bottom figure shows the results for the cingulum gyrus tract. A threshold
of 0.001% was used to remove less likely tracts
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Table 1 Results for tracts analysis of mean tract FA, MD and tract volume

Maximum number Mean across CV across (%)

Measure Tract of crossing fibers datasets datasets

FA Corticospinal 1 0.58 1.03

2 0.55 1.12

3 0.57 1.04

4 0.58 1.06

Cingulum 1 0.50 4.29

2 0.47 3.96

3 0.49 3.86

4 0.48 4.78

(�10�4)

MD Corticospinal 1 5.48 1.40

2 5.61 2.17

3 5.52 1.78

4 5.51 1.97

Cingulum 1 5.86 2.01

2 5.87 2.42

3 5.82 1.89

4 5.86 2.53

Tract volume Corticospinal 1 3522 3.74

2 4648 2.50

3 4210 3.06

4 4208 3.05

Cingulum 1 1892 5.36

2 3153 6.87

3 2548 5.74

4 2583 5.20

A threshold of 0.5% was used. Tract volume is defined as the number of voxels of the tract

registered to MNI space using the function flirt [23]. Mean tract FA across datasets
ranged from 0.55 to 0.58 and 0.47 to 0.50 for the corticospinal and cingulum gyrus
tracts, respectively. Measures of mean tract FA, MD and tract volume produced very
low CVs, for both corticospinal (below 3.06%) and cingulum gyrus (below 6.87%)
tracts. CVs for mean tract FA of cingulum gyrus across datasets (3.86–4.78%) are
largely consistent with previous reported results (3.18–4.32%) [19]. Results for the
corticospinal tract show a higher degree of reproducibility than the cingulum gyrus
tract. It is consistent with previous research [19, 39] that larger tracts can produce a
lower CV since they are less sensitive to the uncertainty of tractography, artifacts of
scanning and noise.
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The agreement of two tracts was quantified using the DSC [15], which quantifies
the degree of overlap using a number between 0 (no overlap) to 1 (complete
overlap):

DSC D 2nab
na C nb

; (3)

where nab is the number of voxels common to both volumes, and na and nb are
the number of voxels in volume a and volume b. The average tracts over the 32
datasets was used as the benchmark, and the DSC was then calculated between
each tractography result and the average one. The results are shown in Fig. 14.
With a threshold of 0.5%, the mean of the DSC for the corticospinal tract over
the 32 datasets is 0.82, 0.85, 0.84 and 0.84 for a maximum of 1, 2, 3 and 4 fibers
per voxel, respectively. Bauer et al. [5] repeated deterministic tractography for the
corticospinal tract and reported that a DSC above 0.8 can be achieved. This is largely
consistent with our results. The mean of the DSC for the cingulum gyrus tract over
the 32 datasets is 0.76, 0.78, 0.77 and 0.81 for a maximum of 1, 2, 3 and 4 fibers
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Fig. 14 DSCs for the tractography results, for a maximum of 1, 2, 3 or 4 fibers per voxel. The top
figure shows the results for the corticospinal tract, and the bottom figure shows the results for the
cingulum gyrus tract. A threshold of 0.5% was used to remove less likely tracts
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per voxel, respectively. This is very close to the previous reported 0.8 in [7]. The
DSC for the cingulum gyrus tract shows a larger variance than for the corticospinal
tract. The standard deviation of the DSC for the corticospinal tract is 0.035, 0.0278,
0.03 and 0.0295 for a maximum of 1, 2, 3 and 4 fibers per voxel, respectively.
The standard deviation of the DSC for the cingulum gyrus tract is 0.053, 0.031,
0.036 and 0.0532 for a maximum of 1, 2, 3 and 4 fibers per voxel, respectively.
Our results thereby suggest that the reproducibility of fiber tracts depends on the
seed mask used. Such an effect is natural, because different parts of the brain may
suffer differently from distortions and head motion. The size of the seed mask is
also a factor that has an influence on the degree of reproducibility. For the DSC, the
setting of the maximum of fibers per voxel did not produce a significant difference.
It it hard to tell which setting provided the highest reproducibility, but in general
the multi-fiber model achieved a better performance. Figure 15 shows the DSC with
and without distortion correction, for a maximum of 3 crossing fibers per voxel.
Together with Fig. 13, we again draw the conclusion that distortion correction leads
to a higher reproducibility.

From Figs. 6, 8 and 14 we can see that the tractography for the different datasets
resulted in very similar fiber pathways, and does not reveal more information when
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Fig. 15 DSCs for the tractography results with and without distortion correction, for a maximum
of 3 fibers per voxel. The top figure shows the results for the corticospinal tract, and the bottom
figure shows the results for the cingulum gyrus tract. A threshold of 0.1% was used to remove less
likely tracts



348 X. Gu et al.

the maximum number of fibers is set to 4. It can be concluded that a maximum
of 3 fibers per voxel may be sufficient to reveal connections between brain areas,
considering the longer computation time when a larger number of maximum fibers
is used.

The Bayesian estimation of diffusion parameters implemented in bedposts takes
approximately 15 h to complete for one diffusion dataset. Using a graphics card, the
GPU version of bedpostx takes 10–60 min depending on the computer hardware, the
chosen maximum number of fibers and the size of the datasets. The processing time
for Bayesian estimation of the multi-fiber models are 10, 18, 27 and 40 min (for a
maximum number of 1, 2, 3 and 4 fibers), using the graphics card NVIDIA Tesla
K40c and the CPU Intel i7-5820K 3.30 GHz. The processing times for probabilistic
tractography of the multi-fiber models are 68 min, 114 min, 112 min and 115 min,
respectively.

4.2 Dipy

Figures 16 and 17 show one axial slice and one sagittal slice of the deterministic
tractography results from Dipy, for the corticospinal and cingulum gyrus tracts for
all 32 datasets. The background image is the MNI brain template. As in Figs. 2
and 3, they also show a high degree of reproducibility for the tractography results
from the different datasets. In the following results, we try to measure the degree of
similarity using different metrics.

Figure 18 shows the DSCs for the deterministic tractography results from Dipy.
The tractography result of the first dataset was chosen as the benchmark, and the
DSC was then calculated between each tractography result and the benchmark.
Please note that the DSCs for the results from FSL and Dipy were calculated
based on different benchmarks. Therefore the DSCs cannot be compared directly.
The mean DSC for the corticospinal and cingulum gyrus tracts over the latter 31
datasets is 0.669 and 0.590, respectively. Compared with the results in Fig. 14
we can see that the deterministic tractography results from Dipy show a lower
degree of reproducibility than the probabilistic tractography results from FSL.
Although the deterministic tractography algorithm is very efficient, it can be
sensitive to the estimated principal directions since the streamline in each voxel
only follows the principal direction. The deterministic tractography algorithm fails
to resolve complex fiber structure when fibers are crossing, which is one of the
major limitations of the deterministic tractography algorithm. The uncertainties in
the underlying fiber directions makes the tractography less reproducible than its
probabilistic counterpart.
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1     65.3333 129.667 194

Fig. 16 Deterministic tractography results for 32 diffusion datasets (in MNI space), when using
seed masks for the corticospinal tract. The results represent the number of streamlines that passed
through a voxel
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Fig. 17 Deterministic tractography results for 32 diffusion datasets (in MNI space), when using
seed masks for the cingulum gyrus tract. The results represent the number of streamlines that
passed through a voxel
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Fig. 18 DSCs for the tractography results using Dipy. The first tractography map was used as the
benchmark, and the DSC was then calculated between each tractography map and the benchmark.
The top figure shows the results for the corticospinal tract, and the bottom figure shows the results
for the cingulum gyrus tract

5 Discussion and Conclusion

In this study, we have presumed that the brain nerve tracts do not change sig-
nificantly during the scan interval (1 year). There are previous studies [30, 41]
demonstrating changes of certain white matter tracts due to aging. However, it is
unlikely to recognize significant age-related changes over the course of 1 year for a
healthy subject.

We have investigated the test–retest reliability of diffusion tractography, using 32
diffusion datasets from a single healthy volunteer. A visual comparison of the results
shows that the cores of the corticospinal and cingulum gyrus tracts are common over
the 32 datasets, for both FSL and Dipy. We have reported inter-dataset overlaps
of DSC = 0.6–0.9 for the probabilistic tractography results from FSL, and DSC
= 0.58–0.71 for the deterministic tractography results from Dipy. The DSC values
roughly fit with the range reported as 0.67–0.9 in [7]. We also observed that the
DSC differs between the corticospinal and cingulum tracts. This is because the size
of the tracts can be a factor influencing the degree of reproducibility. Also, different
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parts of the brain may experience different distortions and head motion. The results
indicate that distortions and head motion can be an important uncertainty source.
It was observed that the reproducibility increases if distortion correction is used,
for both the corticospinal and cingulum gyrus tracts. The results suggest that the
ball and stick model representing multiple fiber orientations can reconstruct more
connections, at the cost of a longer processing time. It is also demonstrated that
the tractography results do not differ much when the maximum number of crossing
fibers is larger than 3 in the FSL function bedpostx, but a higher number of crossing
fibers may be optimal for DWI data collected with a higher number of gradient
directions and shells.

Based on the presented results we conclude that the tractography results obtained
with different software packages, and different parameter settings, show a rather
high reproducibility. It is important to note that the reproducibility of tractography
by no means can be interpreted as the accuracy of tractography. Nonexisting fiber
pathways can, in theory, be reconstructed with a high reproducibility. Future work
will be focused on evaluating the reproducibility of other tractography softwares,
such as TORTOISE [32] and DSI-Studio [40].
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Abstract Very preterm infants, <32 weeks gestation, are at high risk for brain
injury. Cognitive deficits are often diagnosed at a later stage, since there are
no available predictive biomarkers in the neonatal period. The maturation of
specific white matter (WM) brain structures is considered a promising early-stage
biomarker. With Diffusion Tensor Imaging (DTI) tractography, an in vivo and non-
invasive evaluation of these anatomical structures is possible.

We developed an automatic tractography segmentation pipeline, which allows
for maturation assessment of the different segmented WM structures. Our segmen-
tation pipeline is atlas-based, specifically designed for premature neonates at term
equivalent age. In order to better make use of global information from tractography,
all processing is done in the fiber domain. Segmented fiber bundles are further auto-
matically quantified with respect to volume and anisotropy. Of the 24 automatically
segmented neonatal tractographies, only three contained more than 30% mislabeled
fibers. Results show no dependency to WM pathology. By automatically segmenting
WM, we reduced the user-dependency and bias characteristic of manual methods.
This study assesses the structure of the neonatal brain based on an automatic WM
segmentation in the fiber domain method using DTI tractography data.
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1 Introduction

Each year, over half a million babies in Europe are born prematurely. Very preterm
infants, <32 weeks gestation, are at high risk for cognitive deficits without major
motor deficits [33]. Therapy can be effective, especially when started at early
postnatal age, which is a stage characterized by high brain plasticity. However, many
patients are diagnosed at a later and more rigid neurdevelopmental stage. In order to
offer patients the best possible chances of rehabilitation, early postnatal predictive
biomarkers are necessary [9, 13, 16, 38].

Deviations in the development of white matter structures are considered promis-
ing early-stage biomarkers. Cognitive development is related to the maturation
of the brain networks, the WM structures. These structures can be in vivo and
non-invasively reconstructed by Diffusion Tensor Imaging (DTI) tractography
[2, 22, 23]. Diffusion of water molecules in the brain is restricted by the underlying
anatomical structure, becoming anisotropic for voxels containing WM. Even in
newborns, despite their lower brain maturation, tractography can be used to
reconstruct WM structures. Analysis of the WM structures can be used to show
abnormalities in diffusion tensor parameters and in fibers being associated with
maturational problems [3, 12, 14, 29, 30, 32].

In order to assess maturation of specific WM anatomical structures, i.e., bundles,
these structures need to be first identified among the complete fiber dataset. This
is made possible by a segmentation process that classifies the fibers into different
bundles. Although segmentation can be done manually [14, 30, 39], it requires
extensive knowledge about complex WM fiber anatomy, introduces user bias, and
can become too time consuming for practical use. Furthermore, some structures
have challenging shapes that are difficult to segment manually.

Automatic segmentation methods have been developed for adult tractography
[6, 11, 17, 26, 27, 40], however, they need to be redesigned to account for the under-
developed stage of the neonatal brain, since neonatal tractography results in a lower
number of fibers, displays smaller and broken fibers that cannot be ignored, misses
anatomical structures yet to develop, and has a higher sensitivity to partial volume
effects due to their smaller brain size [24, 29, 45].

Improvement of the tractography algorithm can be used to mitigate some of
the previous referred problems. Nevertheless, such improvements involves making
assumptions that will generate other issues. Some DTI atlas-based methods use
voxel level scalar-data [1, 8, 31], which is mainly based on local information. On
the other hand, fiber-wise methods employ global information, which can allow for
a better overview of the WM anatomical structures, and eventual abnormalities on
these structures [6, 15, 18, 20, 25, 26, 42, 46].

In addition, with the eventual goal of modeling and analyzing WM fibers, it is
advantageous to process the fibers themselves, instead of DTI scalar-data. There-
fore, we developed an automatic tractography segmentation pipeline tailored for
neonatal brains, which allows for subsequent maturation assessment. Segmentation
is atlas-based, specifically designed for premature neonates at term equivalent age
(TEA).
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Our automatic tractography segmentation pipeline neonate data is based on 3D
distances between fibers like in O’Donnell et al. [26], and it is specifically tailored
for dealing with the neonatal tractography characteristics.

2 Material and Methods

2.1 Subjects

Máxima Medical Center (MMC) provided clinical data for this study. In total,
30 patients with an MRI-scan were included. All MRIs were conducted as part
of routine clinical practice. According to Dutch Law on Medical Research with
Humans (WMO) a waiver for ethical assessment was provided by the local Medical
Ethical Committee of MMC, considering that anonymous data collection was
performed. The preterm neonates (n = 13, of whom 11 born at a gestational age less
than 32 weeks) were all scanned at term equivalent age. Full-term neonates were
scanned (n-17) in the second week postnatally. For each patient the relevant clinical
information was available.

For preterm infants, the MRI injury was scored according to Woodward
et al. [44]. The Woodward scoring system takes into account deviations or
abnormalities in WM, subarachnoidal space, basal ganglia, and determines the
presence of cysts ventricular dilation, and hemorrhage as described in Kooij [14]
and van Pul et al. [30]. The scores were classified in normal (Woodward score for
WM of 5–6), mild (Woodward score for WM of 7–9), moderate (Woodward score
for WM of 10–12), and severe (Woodward score for WM of 13–15) pathology.
For full-term newborns suspected from hypoxic-ischemic encephalopathy the
Shankaran method [34] was used, and pathology was defined again to the groups
normal (Shankaran score normal), mild (Shankaran score 1A), moderate (Shankaran
score 1B) and severe (Shankaran score 2).

2.2 Data Acquisition

The data was acquired on a Philips Achieva 3.0 T MRI-scanner. The DTI-sequence
was performed with b-values 0 and 800 s/mm2 in 32 directions using a single-shot-
EPI sequence, with TE=TR D 48=7745ms using a SENSE factor 2, in less than
5 min scan time. The dataset consists of 50 adjacent slices, each slice with 128 	
128 voxels, each voxel corresponds to a size of 1:44 	 1:41 	 2mm. Correction of
movement artifacts and eddy current distortions in the DWI images was performed
with the Philips software from the scanner workstation. The DTI sequence was part
of the regular MRI series also including T1 and T2 series.
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2.3 Tractography

2.3.1 Masking

Previous to tractography, a skull-stripping method is applied in order to reduce the
number of spurious fibers. For the neonatal DTI data, best results are found for a
hybrid method which combines a threshold clipping approach with morphological
operators.1 The skull-stripping mask is created by processing of the b0 image from
DTI. An empirical investigation of the optimal parameters for neonatal datasets is
conducted. Optimal parameters do not result in holes in the mask, and contain no
non-brain regions, like facial and neck area and regions outside the skull.

First, a histogram of the b0 image is computed, for which values above a lower
and upper threshold are set to 0. Best results for our dataset are found for upper and
lower thresholds of 85% and 99:9% of the intensity value distribution. This mask is
then further processed by application of morphological operators. First, satellites
are removed. We apply a connected component analysis for 26-connectivity.
Components below 100 voxels are considered satellites and deleted. Second, holes
are filled by using a smart closing operator. A smart closing operator is defined
similar to a normal closing operator, i.e., dilation followed with erosion, having in
addition the property of conserving the initial mask outside contour. It does so by
comparing the after-closing mask with a complementary image of the before-closing
mask [37]. The structural element comprises a 3-D 6-connectivity.

Third, the image is smoothed by a 3-D Gaussian kernel. For the tested dataset,
best results were empirically found for a standard deviation, � , of 10 voxels, which
is smaller than typically used in adults because of the smaller brain size of neonatal
patients. The smoothed result is again converted into a mask by assigning the value
true to voxels higher than 0:5; this can be seen as a second erosion procedure. After
smoothing, the mask gets its satellites removed and holes filled once more. The
mask is then applied to the multiple DW images.

2.3.2 Tractography

Tractography is performed with a deterministic streamline based full brain seeding
algorithm [36], implemented in the software developed at the Biomedical Image
Analysis Group from the University of Eindhoven, vIST/e.2 The tracking parameters
used are specific for the patient type of neonates at term age, as suggested by van
Pul et al. [29, 30]: minimum fiber length of 20mm, Cl [43] for minimum anisotropy
index of 0.12, maximum fiber angle of 10ı and minimum seed distance of 0.5
voxels. The results of the tractography are tractograms, i.e., full brain fiber tracts,
which are in the order of thousands of fiber tracts.

1http://vistalab.stanford.edu/.
2http://sourceforge.net/projects/viste/.

http://vistalab.stanford.edu/
http://sourceforge.net/projects/viste/
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2.4 Atlas Creation

The preterm neonatal atlas is built from the tractograms of three preterm neonates
without pathology imaged with DTI at TEA from a previous study (Kooij [14],
van Pul [30], permission granted). These datasets were acquired using the same
type of scanner and protocol as the data of this current study. The atlas represents
the common fiber patterns among healthy neonatal DTI tractography results. The
tractograms from two of the patients are aligned with the third patient by affine
registration of the linear anisotropy, Cl maps, with the software package SPM8.3

After registration, all fibers from the three patients are clustered by applying an
Affinity Propagation Method [5] to facilitate the manual atlas labeling, and distance
metric described in Sect. 2.5.1. The parameters of the clustering are set to maximize
cluster correctness. A cluster is correct if it contains fibers that belong just to one
bundle, i.e., anatomical structure, however, it does not necessarily need to contain all
fibers from that bundle. A bundle can contain a combination of two or more clusters.

All clusters were visually inspected by three experts (two neonatologists and
an MR physicist with >10 year experience with DTI ) and labeled according to
anatomical structure based on the WM atlases by Mori et al. [23] and Wakana
et al. [39]. In this way all fibers were divided into the following bundle labels:
CC (corpus callosum), CR (corona radiata, left and right), SS (sagittal stratum, left
and right), CG (cingulum), FX (fornix), MCP (middle cerebellar peduncle), cheeks,
artifacts, and other. An image of the atlas is presented in Fig. 1.

2.5 Data Processing

The processing pipeline of the DTI data to segment has the following steps: Trac-
tography; Clustered-based sampling; Registration; Labeling; and Propagation—as
schematically represented in Fig. 2. The tractography set is first sampled using a

Fig. 1 Atlas of preterm
neonates imaged at
TEA—lateral view. Label of
segmented structure is
depicted by a color-key, at
right side of the image

3http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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Fig. 2 Schematic representation of the processing pipeline. Columns depict the processing step
and the two lines depict if the fibers are on subject coordinates space or atlas coordinates space

clustering algorithm, selecting the cluster fiber representatives. This first step is
applied to both atlas and subject tractography sets. After, the subject sampled fiber
set is registered to the atlas sampled fiber set, passing from the subject space to the
atlas space. Still in the atlas space, the subject sampled fiber set is labeled. The final
step of propagation is in the subject space, labeling the complete subject fiber set.
Each of these steps will now be explained further. The tractography step corresponds
to the method described already in Sect. 2.3.2.

2.5.1 Cluster Based Sampling

Sampling of the fibers is applied in order to add robustness and reduce computa-
tional costs in subsequent processing steps. Fibers from the same anatomical bundle
can have different lengths and the amount of fibers can differ across bundles. Due
to this, sampling cannot be performed randomly across structures, since we need all
important bundles represented in the downsampled set. Our sampling method starts
by computing similarities, i.e., within similarities, for each pair of fibers within the
subject. Next, these similarities are used for clustering by Affinity Propagation [5],
consequently finding the cluster fiber representatives. The sampled dataset is then
downsampled to these cluster fiber representatives. A scheme of this data flow is
depicted in Fig. 3.

We developed a distance measure adapted for neonatal data which is based
on the Hausdorff distance. Distances in fibers are usually based on point-wise
spatial distance between the reconstructed fibers points. We encountered problems
with the common distance measures used for adult tractograms, e.g., average
mean distance [21], due to the presence of broken reconstructed fibers in neonatal
tractography. This is mainly due to the presence of low anisotropy areas. Adaptation
of the tracking algorithm can mitigate the issue of broken fibers, but not without
introducing assumptions, and, therefore, other issues. Ignoring short fibers, as it
is commonly done for adult brains, would discard a large part of the tractogram.
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Fig. 3 Sampling data flow. Within similarities are stored in a matrix which the cluster algorithm
makes use of

dCH(fi, fk) dCH(fk, fi) dCHS and dAH

Fig. 4 Illustration of classic Hausdorff distance and our proposed adaptation. First row shows
parallel fibers of different lengths that belong to the same bundle. Second row crossing fibers
that belong to different bundles. First two columns shows dCH from red to blue fiber and vice
versa. Last column shows in green the dCHS giving similar distance for parallel and crossing fiber
configurations. dAH is shown in orange with larger distance for crossing fibers than for parallel

Therefore, it is not desirable to penalize the distance between fibers due to the
fiber length. On the other hand, we want to penalize crossing or diverging fibers.
Most measures proposed for the adult brain [6, 15, 19, 21], e.g., average mean or
Hausdorff do not fulfill our requirements. Some measures [6, 15, 19] avoid finding
point to point correspondence which dominates the computational costs by mapping
fiber-curve parametrizations. These measures penalize short fibers, diverging or
crossing fibers equally and, therefore, these different cases cannot be discerned.
Wassermann et al. [42] have a different approach where the fibers are represented
implicitly. Wassermann et al. [42] distance measures looks mainly at the overlapping
area, so fibers that are diverging and have a small overlap have the same distance
than fibers with a full overlap but different lengths.

We developed a simple adaptation of the classic Hausdorff distance (see Fig. 4).
The classic Hausdorff distance, dCH.fi; fk/, is the maximum distance of the point-
wise minimum distances between the fibers fi and fk. In other words, it is the greatest
of all the distances between each point in one fiber to its closest point in the other
fiber.
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This distance can be defined as:

dCH.fi; fk/ D maxpr2fi.minpl2fk jjpr � pljj/ (1)

where pr and pl stand for coordinate point belonging to the fibers fi and fk
respectively notice that dCH.fi; fk/ ¤ dCH.fk; fi/. In order to make the distance
symmetric the maximum is taken as shown:

dCHS.fi; fk/ D max.dCH.fi; fk/; dCH.fk; fi// (2)

Our adapted distance measure simply takes the minimum instead:

dAH.fi; fk/ D min.dCH.fi; fk/; dCH.fk; fi// (3)

The behaviour of dAH is similar to the Hausdorff distance when fibers have
similar length. On the other hand, using this adapted measure, crossing or diverging
fibers of different lengths will have a relatively large distance to parallel or
overlapping fibers of different lengths (see Fig. 4). This facilitates the inclusion of
broken parallel fibers in the corresponding bundle, and at the same time discarding
crossing or diverging fibers. Despite not being a metric and also less robust than
other measures proposed in literature, we still decide to use dAF since it suits our
requirements.

In the next step, for the clustering we use the Affinity Propagation algorithm
(AP) [5, 17]. Besides the subject fiber set, also the atlas fiber set is downsampled to
improve the registration process. An image of the downsampled atlas is shown in
Fig. 5 for the anatomical significant labels.

Fig. 5 Downsampled Atlas. Same color code as in Fig 1
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Fig. 6 Correctness study for
cluster preference parameter
(x-axis). Y-axis depicts
correctness and number of
clusters, left and right
respectively
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Affinity Propagation was chosen from the studied clustering methods as it allows
producing clusters containing reconstructed fibers from not more than one WM
anatomic structure [17]. For this clustering technique, the number of clusters is not
a predefined value, but depends on previously chosen preference values. Data points
with a high preference are more likely to be chosen by the clustering algorithm as
a cluster center, than data points with a low preference. Because there is no a priori
knowledge about which fibers are more appropriate to become cluster centers and
constitute the down-sampled dataset, preference is made equal for all fibers. In order
to optimize the preference value, i.e., produce cluster containing fibers from no more
than one anatomical structure of interest, a correctness test is conducted (Fig. 6),
for the atlas fibers, for which the ground truth of the anatomic labels is known. A
balance was found between cluster correctness and the number of clusters, resulting
in a choice for the preference value of �200, as it produces slightly more than 200
clusters with a correctness of 95%. After clustering, the cluster fiber representatives
form the downsampled tractogram. For comparison of the subject tractogram with
the atlas, also a downsampled atlas tractogram was made, shown in Fig. 5 with the
anatomical labels.

2.5.2 Registration

Registration involves applying a transformation model to the subject fiber points,
in order to correct for head position inside the scanner and variation of head size
and shape between subjects and the atlas. Our transformation model is based on an
affine transformation [20, 26, 46]. The optimal affine transformation is found in the
fiber domain, i.e., fiber-wise, based on 3D fiber distances minimization.
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In order to accelerate convergence, a first initialization is achieved by aligning
the center of mass of the downsampled subject’s tractogram and the center of mass
of the atlas. After the initialization, the used registration algorithm is based on the
work from O’Donnell et al. [26] with adult tractograms. O’Donnell also developed
a Hausdorff inspired distance via a probability density distribution. This probability
density function describes how probable it is for that subject fiber to have close-by
neighbor atlas fibers. The equation is as follows:

ı.fi; fk/ D e�
�
d.fi;fk /
�

�2

Z
(4)

where � is defined as a radius of interest where distances outside this radius will
have similarities close to 0. Z is a normalization constant, and therefore will not
influence the optimization procedure. Similarities of the subject fiber to all the
atlas fibers are then combined in one similarity probability density function [26].
In order to maximize this similarity probability its entropy is minimized [35], using
a cost function. Last iteration cost-function value can be further used for quantitative
evaluation of segmentation results. The optimization algorithm applied is a direction
set method named COBYLA, which stands for Constrained Optimization by Linear
Approximation [28]. For our neonatal data, the best results are empirically found
for the value of � equal to 3mm. This is smaller than in adults due to the smaller
size of the neonatal brain.

In our application of the O’Donnell algorithm, best registration results are
obtained while optimizing iteratively between four distinct deformation-types:
translation, rotation, scaling and shearing. For each of these deformation types, a
transformation is probed in a domain of three degrees of freedom (DoF), i.e., one
for each spatial coordinate. Due to the difficulty of registering the cluster center
fibers corresponding to the CG (cingulum) anatomy, translation and rotation are
performed once more.

2.5.3 Labeling

After registration, computation of similarity between every registered cluster fiber
representative and every cluster atlas fiber representative is calculated. The adapted
Hausdorff distance presented in Sect. 2.5.1 is used again for the similarity metric.
Each cluster center registered fiber receives the label of the atlas cluster center fiber
towards which it has the smallest distance.

2.5.4 Label Propagation

The label of the cluster fiber representative is propagated to all the fibers that
belong to the cluster it is representing. It is therefore possible to return to the
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full tractography dataset, without any deformation performed to the fibers. Volume
and averaged values of anisotropies can be calculated per segmented structure
automatically using vIST/e.4 Averaged anisotropy values correspond to a weighted
average of the anisotropy of all voxels in that segmented structure: the anisotropy
value of a voxel is included as many times as the number of fibers passing through it.

3 Evaluation

Of 30 available neonatal datasets, six contained large MRI artifacts which highly
disrupted the DTI anatomical structure information and failed in the first step of the
pipeline. For the remaining 24 datasets, the complete pipeline could be executed.
The processed data was from 13 term borns and 11 preterms at term equivalent
age, of whom eight patients were classified as having no abnormalities, seven had
mild abnormalities, eight moderate abnormalities and one with severe pathology.
On average, the processing took 2–8 h to produce an automatically labeled data.
This time varies with the number of fibers in the subject tractograms which is in the
order of thousands. The main computational costs are related to the calculation of
the within similarities measurement for the cluster-based sampling which has not
been optimized.

A qualitative evaluation of the segmented tractography was performed by two
MRI experts. For each segmented structure, the number of incorrectly labeled fibers
is evaluated, based on visual inspection. The ratio between incorrectly labeled fibers
and the total number of fibers per segmented structure is further referred to as the
percentage error. For minor structures, FX, CG, MCP, IFO, segmentation errors are
considered less severe than segmentation errors at major structures in the neonatal
brain: the CRs and CC. The segmentation performance is divided in four classes:

4 Good: All segmented structures have less than 10% of error;
3 Sufficient: Major structures until 10% of error, but minor structures until 50% of

error;
2 Moderate: Major structures with error between 10% and 30%, minor structures

until 50% of error;
1 Bad: All the structures, major and minor, with more than 30% of error.

Of the 24 analyzed datasets, the segmentation results were scored in these four
performance classes: three were classified as Bad segmentation, four as Moderate
segmentation, seven as Sufficient segmentation, and ten as Good segmentation.
An example of a segmentation for each segmentation class, is shown in Fig. 7.
The main structures in neonatal datasets (corpus callosum and corona radiate) are
easily recognized in the patient with classification Good. For the Moderate and Bad
examples, the automatic fiber clustering and segmentation contains visible errors.

4http://sourceforge.net/projects/viste/.

http://sourceforge.net/projects/viste/
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Fig. 7 Tractography segmentation examples for each quality class, posterior view. From left to
right and top to bottom: Good segmentation performance example; Sufficient segmentation per-
formance example, Moderate segmentation performance example; Bad segmentation performance
example; the color of the structure and its anatomical label are displayed in the legend

Table 1 Distribution of segmentation performance classes and pathology scores

Segmentation

Pathology 1-Bad 2-Moderate 3-Sufficient 4-Good

No 1 2 3 2 8

Mild 1 2 1 3 7

Moderate 1 0 3 4 8

Severe 0 0 0 1 1

Total 3 4 7 10 24

As shown in Table 1, there is no correlation between segmentation performance
and presence of pathology. We can observe that patients in whom segmentation
perform badly (score 1), the pathology was not severe. Patients with no abnormal-
ities and mild abnormalities are distributed among all four classes of segmentation
performance. Patients with no abnormalities are in greater number in the class
Sufficient, and patients with mild abnormalities in the class Good. Patients with
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Fig. 8 Segmentation results for patients with severe WM abnormalities, posterior views. From
left to right: (a) patient with CC agenesis with no further WM pathology, classified with Good
segmentation performance; (b) patient with large WM abnormalities (signal intensity) and widened
ventricles classified with Good segmentation performance; (c) patient with severe WM signal
abnormalities classified with Bad segmentation performance, anterior part of the CC is segmented
as FX

moderate abnormalities are also in greater number in the class Good. The patient
with severe abnormality also had segmentation performance classified as Good.

Figure 8 presents the segmentation results for three patients with severe WM
pathology. The first patient had no corpus callosum (CC), this is called CC-agenesis.
The segmentation pipeline still processed well the tractogram and no CC was
segmented for this patient but all the other structures could be observed. An
arrow was inserted in the typical CC region in the image Fig. 8, for ease of
interpretation. This patient had large areas of diffuse white matter signal intensity
abnormalities but could still be segmented with our pipeline and was classified as
having a Good segmentation performance. The third patient, also with white matter
signal abnormalities, shows poor segmentation performance and the segmentation
performance was scored as Bad, since the CC (a main structure) is clearly showing
mislabeled fibers. For this last patient the frontal part of the CC, in yellow, is also
erroneously labeled as FX, in green (also pointed out by an arrow).

Looking in more detail to the registration process, it shows that the cost-function
value (CF value) obtained at the end of the registration process has a lower average
value in the group with Good performance. A plot of the distribution of last cost-
function value per segmentation performance class is presented in Fig. 9. The last
cost value gives an indication of the quality of the registration, the lower the value
the better the registration was matched.

Patients with a last CF-value bigger than 35 were individually assessed; this
corresponded to three patients. These three patients had no severe white matter
pathology: one had even no abnormalities, the other two had mild abnormalities
due to residuals from a hemorrhage. Therefore, it can be observed that the deviation
from a normal brain was not the reason for the lower quality results.
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Fig. 9 Distribution of last CF value per segmentation performance class

For the complete analyzed dataset, only 30% of the patient tractography results
contained spurious fibers, i.e., fibers that did not belong to any anatomical structure
and only arise due to scanning or processing errors. Without skull-stripping, all
tractography results contained spurious fibers. Existence of spurious fibers is almost
evenly present for all the four performance classes, so segmentation performance is
not dependent on this step.

4 Discussion

We have implemented an automatic pipeline that segments Diffusion Tensor Images
of neonates automatically into images displaying the main WM structures in the
neonatal brain. The method is automatic, without user interaction, and tailored for
the evaluation of the neonatal brain. Main pipeline embedded methods and their
relation to the segmentation results are here discussed: (1) the tensor fitting and
tractography algorithm, (2) the tractography neonatal TEA atlas, (3) the skull-
stripping method, (4) the cluster-based sampling method, and (5) the fiber-wise
registration and correspondent fiber similarity metrics.

1. The tractography algorithm used is a simple FACT based method [36]. Subjects
with poor segmentation performance often show partial volume effects in the
clustering results (e.g., crossing over of fibers from one structure to another).
Partial volume effects have not been addressed by our pipeline. Crossing over
of fibers from different structures occurred usually between the CC and FX, or
between CC and CG. For some patients a partial volume effect is also observed
between CC and the CR. Improvement of tensor fitting accuracy is constrained by
practical reasons in neonatal clinical practice. The DTI protocol on many clinical
scanners is still limited to a maximum of 32 diffusion directions. If additional
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packages are purchased scanning in more directions become possible, however,
that requires longer scan time, making it not easy to apply in the neonatal popula-
tion in a routine clinical setting. Improvement of the tractography algorithm itself
can be used to mitigate but not solve some of the previous referred problems.
Nevertheless, such improvements also involves making assumptions that might
not suit our other constraints of our problem. An interesting direction would be
to explore approaches like the one presented by Durrleman et al. [4] or Wang et
al. [41] where segments of fibers are considered rather than the full length fibers.
This will, however, increase the complexity of the pipeline given the considerable
different nature of the proposed approaches.

2. Regarding the used atlas, it is built based on three datasets of neonates. Though,
we consider these datasets as quite representative of neonatal TEA DTI data,
using more data sets for the atlas construction might improve the accuracy of the
results. In addition, it is important to note that although the atlas contains classes
of spurious fibers, i.e., fibers that did not belong to any anatomical structure,
these can only arise due to scanning or processing errors. Future atlas versions
should consider removal of spurious fibers categorization and address them in the
segmentation pipeline only with a good skull-stripping method or other outlier
detection.

3. The applied skull-stripping reduces spurious fibers to 70%, therefore, reducing
calculation of similarities for fibers without anatomical interest. However, there
is empirical parameter tuning needed that should be addressed in the future.

4. The cluster-based sampling is still quite a computationally costly, as the cluster
method in itself computes similarity metrics. Still, performing registration and
label attribution using as input a sampled set was found to improve the accuracy
of these pipeline steps, in contrast with using the complete tractogram for
representing the atlas and the patient fibers. Computational costs were not the
focus of this chapter, and we believe that computation costs can still be further
reduced by using sparse distance matrices calculations, e.g., space subdivisions
strategies like octrees.

5. For all factors probed to investigate what is affecting segmentation performance,
only the registration accuracy seemed to matter. In particular a peculiar curved
shape of the CC often lead to an excessive shrinking of the fibers in the
registration step. Excessive shrinking might be caused due to an ineffective
tuning of the registration constraint parameters, and/or due to the fact this kind
of CC shape is not represented in the atlas, and/or even due to an inadequate
similarity measure for the registration between atlas and subject fibers. Possible
ways to tackle this can include applying a different deformation model which
allows for local transformation, like elastic and fluid deformations—with the
need of then defining optimal constraints for these models. Another direction
would be to tune the similarity metric being used for registration specifically for
dealing with neonatal data, like the one being used for the cluster-based sampling.
It would be interesting to investigate other registration approaches in this context,
for example, the registration approach proposed by Garyfallidis et al. [7].
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As an end note, it is also important to refer that FX segmentation results still do not
allow for an accurate investigation of this structure anisotropy. There are still too
many erroneous fibers present. Guevara et al. [10] and O’Donnell et al. [25] also
found for their methods that the association type fibers, FX and CG for the used
atlas labels, were the ones more difficult to segment.

5 Conclusions

Our study shows that is feasible to automatically segment WM structures in the
neonatal brain, by using an atlas-based and fiber-wise processing of DTI data. We
observe that our fiber-wise method, i.e., making use of global information, allows
for the radiologist and neonatologist to have a better overview of the patient’s WM
anatomical structure and eventual abnormalities. An automatic segmentation also
means less user-dependency and a less time-consuming analysis, thus allowing
to study WM maturation in an easier and more objective way. Segmentation
performance showed not to be influenced by presence of WM pathology in subjects,
even when anatomical structures were missing due to severe WM deviations.
Indicating that is a good segmentation approach to be used when pathology is
present.

In order to improve further registration quality, we believe that future work
should aim to increase atlas variability but probably even more important to probe
similarity metrics between fibers that are less computational expensive but still
adequate for neonatal tractography. In addition, it might be of interest to extend the
atlas for representing all gestational ages, for allowing study of full-term neonates
at risk of neurodevelopmental disorders.
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A Deep Learning Approach to Identifying
Shock Locations in Turbulent Combustion
Tensor Fields

Mathew Monfort, Timothy Luciani, Jonathan Komperda, Brian Ziebart,
Farzad Mashayek, and G. Elisabeta Marai

Abstract We introduce a deep learning approach for the identification of shock
locations in large scale tensor field datasets. Such datasets are typically generated
by turbulent combustion simulations. In this proof of concept approach, we use
deep learning to learn mappings from strain tensors to Schlieren images which
serve as labels. The use of neural networks allows for the Schlieren values to be
approximated more efficiently than calculating the values from the density gradient.
In addition, we show that this approach can be used to predict the Schlieren values
for both two-dimensional and three-dimensional tensor fields, potentially allowing
for anomaly detection in tensor flows. Results on two shock example datasets show
that this approach can assist in the extraction of features from reacting flow tensor
fields.

1 Introduction

The design of efficient combustion systems requires an in-depth understanding of
the underlying physics that occur within combustion chambers. The challenge is
significantly escalated for supersonic combustion due to the presence of shocks
and other waves. Considering that turbulent flows are inherently three-dimensional
and shocks occur over very thin regions of the order of one mean free path, the
presence of shocks introduces additional complexities to a flow that is characterized
by a multitude of scales in time and space. Computational methods typically use
artificial diffusion to smear the shocks such that they can be captured on a grid
that is more coarse than the thickness of the shock [3]. Despite this approximation,
the simulation of supersonic turbulent combustion is not only computationally
demanding but also able to produce large quantities of data.
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As discussed in detail in our previous work [35], an important aspect of
turbulence modeling and model validation involves analysis of the subgrid scale
stress tensor or the stress tensor. Unfortunately, the scale of these datasets is
very large; it is necessary to capture all the scales of turbulence, combustion,
as well as the discontinuities. For example, Reynolds Averaged Navier-Stokes
(RANS) simulations of the scramjet engine have used in excess of 33 million
cells [15, 16, 46]. Meanwhile, Large eddy simulation (LES) of a simplified scramjet
engine model have required upwards of 6 million cells [6], and preliminary LES
simulations of a full scramjet at low Reynolds numbers have used 14 million
cells [8]. It is expected that high-fidelity LES simulations of the full scramjet
geometry at high Reynolds numbers will exceed 100 million cells. These datasets
cannot be output frequently for visualization because of the computational cost
of writing the files. When one considers that the computational cost of such a
simulation can easily exceed 17,000 core-hours, it becomes necessary to limit disk-
intensive operations to preserve core-hours [28].

Feature extraction can be a useful approach to reducing the size of the dataset
to visualize. In this approach, a small subset of points are identified as features of
interest and output for visualization. While multiple filtering techniques exist for
flow shock feature extraction, some of these methods incorrectly identify regions of
turbulence as shocks, and conversely some turbulence models incorrectly identify
shocks as turbulence [17]. Most importantly, filtering techniques generally do not
have the ability to identify abnormalities in the flow in the absence of expert
knowledge input. As a result, it is necessary to investigate more flexible approaches
to analyzing discontinuities in the flow that may correspond to shockwaves,
including approaches which can identify normal shock behavior and abnormalities.
Such anomaly detection tasks tend to require a statistical approach.

In this work we investigate the potential and limitations of deep learning [5,
29]—a machine learning technique based on learning representations of the data—
with respect to shock feature extraction from strain tensor values. Deep learning
has been successfully used in a variety of applications, including image analysis
and speech recognition, and, beyond feature extraction, has the potential to capture
abnormalities in the data. Here we take an exploratory first step in this direction by
investigating the feasibility of using deep learning to retrieve shock locations. Future
work will investigate the ability of deep learning with respect to anomaly detection.

2 Background and Related Work

2.1 Stress and Strain Tensors

A tensor is an extension of the concept of a scalar and a vector to higher orders.
Scalars and vectors are 0-th and 1-st order tensors, respectively. In general, a k-th
order tensor can be represented by a k-dimensional array, e.g. a second order tensor
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is a two-dimensional array (a matrix). For example, while a stress vector is the
force acting on a given unit surface, a stress tensor is defined as the components of
stress vectors acting on each coordinate surface; thus stress can be described by a
symmetric 2-nd order tensor.

The velocity stress and strain tensor fields are manifested in the transport of
fluid momentum, which is a vector quantity governed by the following conservation
equation:
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where the Cartesian index notation is employed in which the index i D 1; 2; 3

represents spatial directions along the x; y, and z Cartesian coordinates, respectively;
and the repeated index j implies summation over the coordinates. t is time, � is the
fluid density, u � Œu1; u2; u3� is the Eulerian fluid velocity, p is the pressure, and �
is the stress tensor defined as:
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where � is the dynamic viscosity coefficient (a fluid-dependent parameter) and S is
the velocity strain tensor defined as:
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As indicated by the definitions above, both the stress and strain tensor are two-
dimensional, symmetric, positively-defined arrays. Density, along with the three
velocity components and total energy, are the primary variables calculated in the
code. All other information, including the stress tensor and velocity strain tensor,
are secondary variables calculated from these primary variables.

2.2 Shock Feature Extraction

Most feature extraction techniques fall into one of three basic categories. The most
widespread method uses feature attributes such as mass, centroid, volume, texture,
or moment of inertia [10, 50–52]. A number of filtering techniques specifically for
detecting and visualizing shocks waves have been developed, including using shock
surface alignment to the pressure gradient vector [32], and using the density gradient
in the direction of the velocity [33, 44]. A second approach to feature extraction uses
isosurfacing in higher dimensions [24]. A third class of approaches uses various
machine learning techniques to aid in feature tracking. Tzeng and Ma [58] utilize
neural networks to learn which transfer functions are most appropriate in tracking
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the features of interest. Ozer et al. [43] use a clustering algorithm to group features
based on similarity measures. In our previous work [35], we introduced a large scale
K-Means clustering approach to define and track regions of interest. Our approach
is similar to these last category approaches in that we also utilize machine learning.

The approach we use to generate labels for the tensor data is based on the
Schlieren filter [34]. The density-gradient of combustion datasets relates indirectly
to the stress tensor through the conservation equation [34]. Such density-gradient
descriptors can be used to generate flow visualizations in the style of Schlieren
images [19], and have been shown to accurately reflect shock boundaries [34].

The use of the Schlieren computation is intended as an exploratory first step
in investigating the ability of deep learning to identify shockwaves and other
features in CFD datasets. While the computation of the Schlieren itself is not costly
enough to justify a learning alternative, more accurate shock prediction methods
are significantly more costly and difficult to pose numerically. The ultimate goal of
the future work would be to employ a deep learning approach to directly pinpoint
and differentiate different phenomena at a lower computational cost than the many
sensors currently available in literature.

2.3 Deep Learning

In 1943 McCulloch and Pitts [38] introduced a set of simplified computational
models of biological networks. These ideas were soon extended to include models
of how these networks might learn including Hebbian learning [20], multilayer
perceptrons [42] and eventually backpropagation [49]. However, the extensive
computational complexity of training large networks [40] prohibitively limited their
usefulness.

Deep architectures yield a greater expressive power than shallow networks since
functions that can be compactly represented by an architecture of depth k, would
require an exponential number of computational elements to be represented by
an architecture with a depth of k � 1 [5]. This breadth for depth trade-off allows
deep architectures to represent a wide family of functions with reduced complexity
and improved generalization. Each succeeding layer of the network combines the
features of the previous layer forming a higher level abstraction of the features in
the preceding layer. This increasing level of abstraction from layer to layer allows
deep networks to produce strong generalizations for highly varying functions. The
difficulty lies in efficiently training the large number of parameters needed to form
the network [40].

Convolutional networks are specific types of deep architectures inspired by
the structure of the visual cortex [29, 36] which do not suffer from the typical
convergence issues of other deep architectures [5]. The defining characteristic of
convolutional networks is the use of local receptive fields with shared parameters.
These fields are used to scan input features with a two dimensional structure and
form feature maps that capture low-level (e.g., edges and corners) representations
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of the input. This process is then repeated in each succeeding layer allowing
for the formation of progressively higher-level abstractions. This two-dimensional
representational power of convolutional networks has allowed them to dominate the
field of computer vision [27, 55].

Volumetric convolutional networks [37, 39, 47] are an extension of convolutional
surface-based architectures to input features with three dimensional structure. They
have successfully been applied to the area of object recognition [37] and MRI
segmentation [39]. The ability of these architectures to take advantage of three
dimensional structure directly translates to the problem of inferring Schlieren
features in combustible fluids.

2.4 Application Domain Background

Supersonic combustors, such as scramjet engines, are prime examples of flows
where turbulence and combustion interact with shock waves [15, 46, 48]. However,
the concurrent presence of shock waves and turbulence in the simulation of
supersonic turbulent flow presents additional challenges compared to subsonic
flows; the numerical methods designed to treat these properties must predict the
presence and capture these features accurately [17]. The inability to accurately
predict these features contributes to the many unresolved fundamental issues that
surround supersonic combustors, such as the scramjet. Flames in the presence
of shocks are known to become distorted, generate vorticity, and break up or
stretch [25, 26]. Additionally, when turbulence is seen in the presence of a shock,
there is an amplification of velocity fluctuations [8]. The inability to accurately
predict these behaviors affects the remainder of the solution domain, thereby causing
a failure to compare well against experiment.

While numerical simulations can provide an acceptable prediction of turbulence
behavior, either through the use of large eddy simulation or direct numerical
simulation, there is still a significant challenge in the simulation of flows involving
flow discontinuities, such as shocks. Methods for numerically modeling supersonic
turbulent combustion[4, 23] rely on the accurate prediction of the shock location.
Current methods for shock capturing may rely on an artificial viscosity to dissipate
the shock, to smear it across many solution points so that it may be captured [1–3].
However, incorrectly predicting the location of the shock may have unintended
side effects, such as adding the artificial viscosity in the incorrect regions, thereby
dissipating other regions of the flow. Research has been performed in developing
sensors to accurately predict the shock location [3, 14, 17]. However, some of these
methods incorrectly identify regions of turbulence as shocks, and conversely some
turbulence models incorrectly identify shocks as turbulence [17]. As a result, it is
necessary to investigate more flexible approaches to analyzing discontinuities in the
flow that may correspond to shockwaves, including approaches which can identify
normal shock behavior and abnormalities.
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3 Methods

To study the applicability of deep learning to the feature identification problem,
we trained convolutional neural networks to learn a mapping from strain tensors
to Schlieren values [34] for each time-step in a turbulent flow. To accomplish this
we form a regression network similar to an auto-encoder [9, 21] where instead
of learning to replicate the strain tensors used as input, we learn to construct
the associated Schlieren values for each time step. The strain tensor is calculated
with Eq. (3) above [34]. Additionally, the Schlieren value for each pixel is derived
with the following equation:

Schlieren.x; y; z/ D ˇe� kjr�j

jr�jmax ; (4)

where x, y, and z are the position coordinates, ˇ and k are rendering parameters set
to 0.8 and 20 respectively, and �p is the gradient of the density field.

We will examine this approach on two datasets, a three-dimensional Sod dataset
and a two-dimensional blast dataset. The differing spatial dimensions of both of
these domains requires the formation of two different network architectures. In
this section we will describe the methods used to construct and train both of these
networks.

3.1 Data Processing

3.1.1 Three-Dimensional Sod Dataset

The three-dimensional Sod problem is one form of a shock tube problem, which
is frequently considered a benchmark test for shock capturing methods. It is also
commonly used for testing compressibility terms in numerical codes due to its
inclusion of spatial pressure variation [31]. The initial condition contains a driver
and driven gas separated by a diaphragm in the center. When the diaphragm breaks,
at time zero, a discontinuity forms and travels to the end of the tube. The final
solution, which is available as an analytical solution, consists of rarefaction, contact,
and shock waves [57].

For each time-step (of a total of 1,775 steps in our experiments) we discretize
the position coordinates of the Sod dataset into a 804	 4	 4 volume and for each
position calculate the strain tensor S and the Schlieren using Eqs. (3) and (4).

We then represent each of the six unique values of the strain tensor as a different
channel of a three dimensional image (6	 804	 4	 4) and the Schlieren value as
a single channel image (1	 804	 4	 4). Representing the data in this form allows
for us to use computer vision techniques such as volumetric convolutional networks
to learn a mapping from the strain tensors to the Schlieren values.
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With the data in this format we place every tenth time-step into a test set (177
total) and randomly separate the 90% remaining time-steps into a training set (1416
total) and 10% into an evaluation set (182 total) that is used to determine when the
network training has converged.

3.1.2 Two-Dimensional Blast Dataset

The second problem considered is a two-dimensional explosion. The initial con-
dition consists of a high-density, high-pressure region located inside of a circle in
the center of the geometry and low-density, low-pressure in the remainder of the
computational domain. The two regions are joined by a discontinuity, which travels
outwards in time, forming shock, contact, and rarefaction waves. Comparison along
the radial directions gives virtually identical results due to the problem’s symmetry,
and the resolution of discontinuities that travel in all directions is the same as that in
the one-dimensional Sod problem [57]. The solution of this problem requires high
resolution throughout the domain due to the sharp discontinuities traveling in all
spatial directions.

For each time-step of a total of 158 steps we discretize the position coordinates
into a 70	 70 surface and for each position calculate the strain tensor S using Eq. (3)
and the Schlieren value with Eq. (4).

We then represent each of the six unique values of the strain tensor as a different
channel of an image (6	 70	 70) and the Schlieren value as a single channel image
(1	 70	 70). As with the three-dimensional dataset we place every tenth time-step
into a test set (15 total) and randomly separate the 90% remaining time-steps into
a training set (133 total) and 10% into an evaluation set (ten total) that is used to
determine when the network training has converged.

3.2 Network Architecture

For both the three-dimensional and the two-dimensional dataset we constructed
an eight-layer all convolutional network [53] that is divided into two parts; a
feature extractor that learns a function for condensing the input features into a
low-dimensional feature vector, and an image constructor that learns a function
that transforms the low-dimensional feature vector calculated in the previous part
into a schlieren image. We construct the network in this way in order to improve
generalization by forcing the network to learn a sparse feature representation with
useful (general) features of the strain tensors. The ultimate structure is chosen by
tuning the hyper-parameters on the evaluation set [7]. The main difference between
the two networks is the use of volumetric convolutions for the three-dimensional
dataset and regular convolutions for the two-dimensional dataset.
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The feature extractor for both networks consist of four strided volumetric
convolutional layers that reduce the input strain tensors into a 64 neuron feature
vector. Strided convolutions incorporate regularization into the convolutional layers
while improving the efficiency in network performance [54] when compared
to standard max-pooling based sub-sampling. The image extractor consists of
an inverse mapping, sometimes referred to as deconvolutional layers [41], with
matching strides and kernel sizes as the feature extractor. The key difference is that
the image extractor outputs a single channel image compared to the six channel
input of the feature extractor. Figure 1 details the structure of both of the networks
with a feature extractor reducing the input strain tensors to a low dimensional vector
of 64 features and the image extractor building the Schlieren from the feature vector.
Additionally, we use Exponentiated Linear Units (ELU) [11] as our activation
function for both networks which leads to improved efficiency and performance
while addressing the vanishing gradient problem in training deep networks.

Fig. 1 Networks for three-dimensional Sod dataset (left) and the two-dimensional Blast dataset
(right). Each network comprises two parts; a feature extractor that learns a function for condensing
the input features into a low-dimensional feature vector, and an image constructor that learns a
function that transforms the low-dimensional feature vector calculated in the previous part into a
Schlieren image
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3.3 Optimization

We train our network parameters to minimize the mean squared error between the
predicted Schlieren values and the ground truth values and optimize the weights
with an adaptive learning rate calculated using the adadelta optimization function
[59]. To avoid large gradient updates that may be caused from learning regression
values, we incorporate gradient clipping [45] to constrain the gradient norm to lie
within a specific threshold (i.e., Œ0; 1�).

In order to improve the efficiency of our training routine we use spatial batch
normalization [22] to normalize the feature maps generated after each convolutional
layer. This ensures that the input distribution for each layer is consistent (zero mean
and unit variance) which greatly improves learning performance.

Convergence of the network training is determined using a five-step average
windowed delta loss on the evaluation set. When the average delta loss (mean
squared error) on the evaluation set is positive, meaning the network is not
improving its ability to construct the Schlieren, learning is stopped. This ensures
that we do not over-train on the training set and preserve the network’s ability to
generalize.

3.4 Regularization

When training a system on a limited amount of data (or an unbalanced dataset)
there is a risk of over-training on the training set and losing the ability to generalize
to new instances. For this reason we incorporate spatial dropout [56] after each of
the convolutional layers in the network. During training this randomly drops entire
feature maps in forward propagation (by setting all values to 0). This forces the
network to learn a sparsified representation of the feature vector (condensed low-
dimensional feature representation) leading to improved generalization.

4 Results

We evaluate our approach on two datasets, a three-dimensional Sod dataset and a
two-dimensional Blast dataset as described in Sect. 3.1. In this section we describe
our results in training the networks and examine the features the networks learned.

It is important to note that while calculating the Schlieren for the three-
dimensional Sod dataset via Eq. (4) takes an average of 550 ms per time step on an
Intel Xeon E5-2697 2.6 GHz processor, our trained network generates the Schlieren
in less than 107 ms on the same CPU processor (respectively less than 1 ms on
a GeForce GTX 1080 GPU) running the Torch framework [12], an open source
machine learning library and scientific computing framework that provides a range



384 M. Monfort et al.

of algorithms for deep machine learning. Torch uses the scripting language LuaJIT
and an underlying C implementation. This increase in efficiency becomes extremely
significant as datasets grow to include hundreds of thousands of time-steps. In total
the three-dimensional network trained for about 35 s on the Sod dataset and the two-
dimensional network trained for about 6 s on the Blast dataset before convergence.
Nevertheless, the main strength of the deep learning approach lies in its potential
for anomaly detection, which the Schlieren filter cannot do.

4.1 Training

Figure 2 shows the prediction (mean-squared) error on the training, evaluation,
and test set for both datasets after each training epoch. We can clearly see that
the networks perform very well on the training sets and converge quickly on the
evaluation sets. The test error matches closely with the evaluation error indicating
that the evaluation error is a strong representation of the network’s ability to
generalize to the test set. In fact we were able to achieve an average mean-squared
error of 0.14 on the three-dimensional Sod test set and 0.12 on the two-dimensional
Blast test set. These results suggest that an adequately trained network has the ability
to detect anomalies in the tensor field by comparing the predictive error of the
network to the true Schlieren values for each time step. A large error would signal a
possible deviation from the regular tensor flow indicating anomalous behavior.

4.2 Learned Network Features

In this section we show examples of the features that the two-dimensional network
learns for the Blast dataset. We restrict this section to the two-dimensional dataset

Fig. 2 The average error of the network generated Schlieren for both the three-dimensional Sod
dataset (left) and the two-dimensional Blast dataset (right) after each training epoch. The Y axis
represents the mean squared error of the Schlieren value and it is plotted in log-scale for clarity.
A standard Schlieren carries units of density gradient (kg/m4), however the flow simulation code
uses a normalized function and as such in this case the Schlieren is unitless
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Fig. 3 The six channels of
the strain tensor used as input
for step 120 followed by the
ground truth Schlieren
(bottom left) and the
Schlieren generated by the
network (bottom right)

for the sake of visual clarity as viewing images of the low resolution volumetric
features of the Sod dataset in two dimensions is not very informative. However, the
conclusions from the two-dimensional dataset match those of the three-dimensional
dataset in that the network learns strong feature representations of the input strain
tensors allowing for accurate constructions of the associated three-dimensional
Schlieren images.

As an example from the test set, Fig. 3 displays the six channel strain tensor
(calculated via Eq. (3)) used as input into the network for time step 120 followed
by the true Schlieren image (calculated via Eq. (4) and the Schlieren image
generated by the network. We can see that the output of the network (bottom
right) matches closely with the calculated Schlieren (bottom left) with a clear
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Fig. 4 Feature maps in the first layer of the feature extractor

Fig. 5 Feature maps in the second layer of the feature extractor

separation between high and low-density regions. The fact that we can develop such
a close approximation of the desired Schlieren for a time step in the test set is very
impressive. Deep networks tend to require large amounts of data to generate strong
results indicating that increasing the size of our training set will further improve our
predictions.

Figures 4 and 5 show examples of feature maps in the first two layers of the
feature extractor for time step 120 from the test set (we restrict our view to the
first two layers due to the low resolution of feature maps in deeper layers). We
observe that the network has learned the informative features of each unique strain
tensor and combined them to form feature maps with the necessary information
for constructing the Schlieren image. The specialization of these feature maps
allows for the network to learn a general representation of the input data which
is very important for accurately predicting the Schlieren values in unseen time
steps. Additionally, these feature maps serve as a set of dictionary references with
increasing abstraction (by layer) that allow the network to properly condense the
input tensors into a general low-dimensional feature vector as shown in Fig. 1.



A Deep Learning Approach to Identifying Shock Locations in Turbulent. . . 387

4.3 Output Visualization

The output of the network produces a reconstructed volume for every tenth time-
step of both datasets (test cases), where each point corresponds to the floating-point
Schlieren value at that location in the discretized grid. In our experiments, we
evaluated 177 and 15 output Schlieren volumes for the three-dimensional and two-
dimensional datasets, respectively.

To analyze the results, we visualize each volume as a two-dimensional pseudo-
color image that encodes the Schlieren value between two diverging colors—red
and black. Similar to grayscale photos, pseudocolor images map intensity to a color
scale that ranges from the minimum and maximum value of a data sample [13].

We create three pseudocolor images for each reconstructed Schlieren volume to
compare it against the input data and its ground truth. Figure 6 shows the analysis
of the output corresponding to the three time-steps of the Blast dataset. Note how
the distinct dark areas in the reconstructed images (right) match those of the ground
truth (left). These areas signify the occurrence of large density gradients across data
samples that correlate with potential shock locations. Figure 7 shows the similar
ground truth and reconstruction for the three-dimensional dataset. In this figure,
note the three distinct shock zones.

The noise in the Schlieren generated from the network in Fig. 6 is a symptom of
the low amount of training data in this particular dataset. We trained on data from a
single combustion run for both the three-dimensional and two-dimensional settings.
Expanding the training data will likely improve results, as is the case in most deep
learning applications. This paper is meant as a proof of concept that deep learning is
a feasible tool for generating the Schlieren from strain tensors and had potential for
identifying anomalies in the combustion fields. Additional image processing may
create a clearer Schlieren, as would an increase in the amount of training data.

5 Discussion and Conclusion

As previously discussed, the goal of this project was to examine the potential
of using deep learning on tensor field data generated by turbulent combustion
simulations. First, we were interested in finding out whether a supervised approach
can detect structures in the data, and whether these structures correlate with
the regions of interest. Second, we wanted to examine whether this problem is
computationally feasible. The answer to both questions is affirmative.

In summary, we found that the deep learning approach can effectively capture
and construct shock features. The results indicate that deep networks have the
ability to identify anomalies in the tensor flow. Furthermore, the efficiency of the
machine learning algorithm exceeds that of calculating the Schlieren via Eq. (4).
With a greater than 5	 improvement on time complexity for the three-dimensional
Sod dataset. The efficiency of the machine learning algorithm leads to a 500	
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Fig. 6 The network comparison between the network ground truth (left) and the final reconstruc-
tion (right) for the 1st, 50th, and 150th time-step of the two-dimensional Blast dataset. The dark
areas seen in the images indicate large density gradients corresponding to potential shock regions

improvement when running on the GPU, while optimized CPU to GPU throughput-
computing transfers lead to only a 2.5	 improvement on average [30]. A small
deviation in the predicted values shows that deep learning has the potential to be an
effective tool for efficiently generating visualizations of large tensor fields.

It is important to note that this work is exploratory and is meant to be a proof
of concept for the use of deep networks in visualizing large tensor fields. While the
results are strong, we trained and tested the networks on the same time sequences
(with separate training and testing time steps). Predicting time steps in sequences
that were not previously trained on may be a more difficult task, However, the results



A Deep Learning Approach to Identifying Shock Locations in Turbulent. . . 389

Fig. 7 The network comparison between the network ground truth (top) and the final reconstruc-
tion (bottom) for the 100th time-step of the three-dimensional Sod dataset. The dark narrow bands
seen in the two images indicate large density gradients, and correspond to potential shock regions.
Note the three distinct shock zones in the images

in this chapter were generated with a very limited dataset, 1775 and 158 time-steps
for the Sod and Blast datasets respectively, and deep networks usually require very
large amounts of data to be effectively trained [55]. This implies that while the
predictive performance may drop with separate training and testing sequences, it
may also improve with the inclusion of more data. Additionally, the datasets used
in this chapter are sequential in nature lending to the notion that the results may
improve with deep architectures that can take advantage of sequential features in
their predictions such as recurrent neural networks [18]. Further exploration of this
area is needed in order to form a decisive conclusion.

In conclusion, we have introduced a supervised machine learning approach
for the segmentation of shocks in large scale tensor field datasets generated by
computational turbulent combustion simulations. The approach employs a deep
learning architecture based on volumetric convolutional networks. Our evaluation
on two rich combustion datasets shows this approach can assist in the visual analysis
of the combustion tensor field and that it is more effective than direct filtering
calculations. Most importantly, the approach has potential for the detection of
anomalies in the data.
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Reconstruction of Diffusion Anisotropies Using
3D Deep Convolutional Neural Networks
in Diffusion Imaging

Simon Koppers, Matthias Friedrichs, and Dorit Merhof

Abstract The reconstruction of neural pathways is a challenging problem in case
of crossing or kissing neuronal fibers. High angular resolution diffusion imaging
models are required to identify multiple fiber orientations in a voxel. Disadvantage
of those models is that they require a multitude of acquired gradient directions,
otherwise these models become inaccurate. We present a new approach to derive the
fiber orientation distribution function using a Deep Convolutional Neural Network,
which remains stable, even if less gradient directions are acquired. In addition,
the Convolutional Neural Network is able to improve the signal in a voxel by
extracting useful information of surrounding neighboring voxels. Subsequently, the
functionality of the network is evaluated using 100 different brain datasets from the
Human Connectome Project.

1 Introduction

Diffusion-weighted MRI is able to provide subject specific information about the
course and location of white matter tracts in the human brain. In cases of kissing
or crossing fibers, which occur in 60–90% of human white matter [5], high angular
resolution diffusion imaging (HARDI) is needed to better represent such complex
structures. For this purpose many different gradient directions are typically acquired,
which linearly increases the acquisition time, resulting in an acquisition time of
several minutes up to hours. However, for clinical application it is necessary to
reduce the number of required gradient directions to keep the acquisition time in a
feasible range. As a downside, this reduction will result in a blurred reconstruction,
if standard reconstruction applications are applied.

While Neural Networks have been known for decades, Deep Neural Networks
have gained interest recently in the field of Diffusion Imaging [4, 6, 7]. It was shown
that Deep Learning is able to stabilize state-of-the-art approaches, if only a few
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gradient directions are acquired. Nevertheless, none of these approaches is so far
able to directly reconstruct the whole fiber orientation distribution function (fODF).
Furthermore, the Diffusion Signal was so far reconstructed in a voxel-wise manner,
excluding additional neighboring information.

In this work, a novel way to reconstruct a non-quantized fODF by including
neighboring information is presented. For this purpose, we decompose the spherical
fODF utilizing well-known Spherical Harmonics (SH), which are able to represent
spherical signals in a general and complete way. The resulting SH coefficients
are fitted utilizing a Neural Network regression approach. In addition, previously
excluded neighboring information are included using Deep Convolutional Neural
Networks (CNN), which are able to extract local neighboring information.

2 Methods

In order to represent an fODF, a model-free and non-sparse representation of a
spherical signal is required. For this purpose, SH are utilized to represent the
spherical signal, which are fitted utilizing a Deep Regression CNN. In the first part
of this section, the material, which is used in this work, is described. The second
part describes the utilized CNN.

2.1 Training Data and Labels

In order to evaluate the performance of our algorithm, a subset of 100 uncorrelated
healthy brain scans from the Human Connectome Project is utilized. All scans are
acquired with a 3T Siemens Connectome Skyra MRI scanner, a resolution of 1:25	
1:25	1:25mm2 and 288 diffusion gradients, comprising 18 diffusion gradients with
b D 0 s

mm2 and 3 shells comprising 90 diffusion gradients each, at b D 1000 s
mm2 ,

b D 2000 s
mm2 , b D 3000 s

mm2 , respectively. Because of its high resolution (145 	
174	145with 288 gradients directions each), the data is further reduced by selecting
5000 non-isotropic voxel neighborhoods (3	 3	 3) from each subject, resulting in
500,000 unique sets. In addition, only the third shell (b D 3000 s

mm2 ) is utilized.
The CNN is trained on 80 uncorrelated scans (400,000 samples), while validation

is performed on the remaining 20 subjects (100,000 samples). To show the impact
of a reduced number of gradients, three additional datasets are generated. For this
purpose, the diffusion signal is equidistantly resampled for 15, 30 and 45 gradient
directions utilizing the well-known SH.

2.1.1 Neighborhood

Due to the fact that additional information can be gained utilizing the signals’ neigh-
borhood [2], three different neighborhoods are compared. The first neighborhood



Reconstruction of Diffusion Anisotropies Using 3D Deep Convolutional Neural. . . 395

Fig. 1 3D voxel
neighborhood, which is
represented as a hierarchy of
three types of neighborhoods
(green; green + blue;
green + blue + red)

consists out of six additional signals, which are marked in green in Fig. 1.
The second neighborhood adds the blue-marked voxels to the first neighborhood
resulting in 18 additional voxels. The biggest neighborhood includes 26 additional
signals, which is represented by the surrounding cube (see Fig. 1).

2.1.2 Gold Standard

In order to generate a valid label for training and comparison, the well-known and
state-of-the-art constrained spherical deconvolution [11, 12] (CSD) is utilized. The
idea of CSD is that the diffusion signal can be decomposed, if its underlying single-
fiber response function is known. Based on this response function, the diffusion
signal can be deconvoluted in order to generate the fODF.

The CSD is applied on the raw signal as well as on its resampled versions
containing 45, 30 and 15 gradient directions, respectively. To be comparable and
stable for each set of gradient directions, the reconstruction order is set to 4 to be
stable. Its output is a sampled fODF, which is described utilizing SH of order 8,
resulting in 45 coefficients, which are used as label for training.

Since CSD is unable to directly define the resulting fiber direction, the Ball-and-
Stick [10] (BS) model is utilized to calculate a relative ground truth fiber direction.
It is a well-known model and one of the most accurate approaches to identify the
correct fiber direction [8], if the correct number of fibers is known.
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2.2 Deep Regression Convolutional Neural Network

Assuming the fODF to be sufficiently represented by SH coefficients, a regression
approach is required to fit these coefficients, which is based on Deep Learning.
In this work a Deep Regression CNN is utilized to fit the SH coefficients. CNNs
are a special case of neural networks, in which the weights between neurons are
combined in a matrix. This matrix can be interpreted as a convolutional kernel,
which can be applied to 1D, 2D and also higher dimensional signals. In this work,
additional information about the fODF are gained by combining 3D neighboring
signals, which is why a 3D CNN is utilized.

In addition, each neural network contains an activation function. We choose the
Rectified Linear Unit (ReLU), because of its good convergence behavior, with

Y D max.0; x/; (1)

which is applied after each convolutional layer, with x as input and Y as output
signal.

A combination of these two layers is further called a functional unit (FU), which
is further specified by its convolutional kernel size, the number of kernels and its
number of input channels. Due to the fact that every kernel leads to a new dataset,
the number of input channels of the actual layer needs to be equivalent to the number
of kernels of the previous layer. Furthermore, zero-padding with size p may be
considered during convolution.

In most CNNs, several layers are stacked together, followed by a fully-connected
layer that maps different features to the output. In the end, a cost function calculates
a loss, which is utilized to train the network. For our CNN, a standard least square
loss function is utilized, which is in general a good loss function for a regression
problem. Training is performed using a stochastic gradient descend algorithm with
error backpropagation.

2.3 The Net

The neural network is composed out of four FUs, while the last FU is fully
connected to the output. The whole network is presented in Fig. 2. In order to be
invariant to different gradient directions, the input and output signal are represented
utilizing SH. Due to this fact, the number of input channels in the first layer
and the number of kernels in the last layer are defined by the number of expected
coefficients.

For this CNN, the input signal is represented using an SH order of 4, resulting in
15 input coefficients, in order to be more robust to noise. The output represents the
fODF utilizing the SH coefficients corresponding to an order of 8.
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Kernelsize = (2x2x2) 
Channels   = 15 
Kernels      = 1024 
Padding     = 1

Kernelsize = (2x2x2) 
Channels   = 256 
Kernels      = 512 
Padding     = 0

Kernelsize = (2x2x2) 
Channels   = 512 
Kernels      = 128 
Padding     = 0

Fully Connected
Channels   = 128 
Kernels      = 45       

Kernelsize = (2x2x2) 
Channels   = 1024 
Kernels      = 256 
Padding     = 0

Fig. 2 The 3D CNN, which is utilized to reconstruct the fODF based on a diffusion signal and its
neighborhood

3 Experimental Results

The CNN is implemented in Python based on the TensorFlow framework [1], while
the CSD is implemented in Python using Dipy [3].

Training is performed using stochastic gradient descend with a learning rate of
� D 0:01 and a batchsize of 100.

In order to validate the performance of the CNN, two different error quantities are
evaluated. On the one hand, the surface deviation of the fODF is calculated, which
is an important quantity for probabilistic tractography approaches and diffusion
characteristics. It is evaluated using the normalized mean square error [6] with

NMSE D kStrue � Sreck22
kStruek22

; (2)
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which is common error metric for comparing surfaces. Strue defines the original
signal vector for each gradient direction, while Srec is the reconstructed signal vector.

Furthermore, the angular accuracy is evaluated, which is particularly impor-
tant for generating a deterministic tractography. In order to evaluate the angular
accuracy, 250 single-fiber validation voxels, 250 validation voxels with two fibers
and 250 three fiber validation voxels are manually selected, based on their relative
ground truth fODF, while BS defines the relative ground truth fiber direction.

The mean angular error (MAE) is calculated based on

MAE D 1

k

kX

i

˛i; (3)

where k defines the number of fibers in a voxel and ˛i the angular error of fiber i.

3.1 fODF Reconstruction

In order to evaluate the reconstruction quality, each fODF is relatively compared to
its gold standard fODF based on 90 gradient directions. The resulting qualities for
the CSD and the CNN are presented in Table 1, which contains the resulting NMSE.
In addition, it should be noted that the CNN is completely retrained for each gradient
and neighborhood scenario.

The smallest error, about 1.65%, occurs for a reconstruction based on 45 gradient
directions utilizing the CSD, while the highest NMSE, about 32.81%, is also
observed for the CSD, when only 15 gradient directions are used for reconstruction.
In any other case, the CSD gets outperformed by the CNN. Taking the neighborhood
into account, it can be seen that there is a tendency that a neighborhood results in a
lower NMSE, if less gradient directions are available. The lowest NMSE is achieved
utilizing 18 neighbor voxels (green + blue).

In addition to the NMSE, Fig. 3 presents a randomly chosen region out of an
axial slice. It contains the fODF for each voxel, with a big fiber bundle running
from the upper left to the right. Moreover, there is a crossing of two fiber bundles

Table 1 Impact of signal neighborhood on the surface deviation based on 15, 30 and 45 diffusion
gradients with CNN as well as CSD

fODF deviation [%]

Method Neighborhood 15 gradients 30 gradients 45 gradients

DL

Green + blue + red 13:19 9:72 6:64

Green + blue 13:12 9:21 6:24

Green 14:46 10:24 6:96

None 18:89 10:53 5:89

CSD – 32:81 11:21 1:65
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Fig. 3 Mapping of the gold standard fODF in the human brain with a marked region of interest

within the box region. This region of interest is further evaluated in Fig. 4 for 15
and 90 gradient directions utilizing the CSD and the CNN for reconstruction. For
evaluation purposes, no neighborhood is included for a fair comparison. Figure 4b
shows that the CNN is not able to identify weak fiber directions, which constitute
only a small fraction to the remaining signal.

On the other hand, the fODF reconstructed by CSD gets worse as the number
of gradient directions is reduced to 15. Due to this reduction of gradient directions,
CSD is, in most cases, not able to identify fiber crossing, while the CNN is still able
to identify crossings.

Furthermore, the fiber directions seem to diverge, which would lead to an
increased angular error, if the number of gradient directions is reduced.



400 S. Koppers et al.

Fig. 4 Reconstruction of fODF in the human brain for various methods. Reconstruction is
based on 15 and 90 equidistant diffusion gradients. (a) Reconstruction based on CSD and 90
acquired gradient directions (gold standard). (b) Reconstruction based on CNN and 90 acquired
gradient directions. (c) Reconstruction based on CSD and 15 acquired gradient directions. (d)
Reconstruction based on CNN and 15 acquired gradient directions

3.2 Angular Accuracy

In order to evaluate the angular accuracy, each fODF is further processed using a
local maximum finder to define a specific fiber direction. The resulting mean angular
errors (MAE) of the regular CSD in comparison to the CNN with different neigh-
borhoods and 15, 30 and 45 diffusion gradients are provided in Tables 4, 3 and 2.

Each table includes the mean angular error for the single-fiber, two-fiber and
three-fiber case. For 45 gradient directions (see Table 2) the smallest error is
achieved utilizing CSD for single-fiber cases and three-fiber cases, while the CNN
is slightly better for two-fiber cases. Considering Table 3 both algorithms achieve
nearly the same results. If only 15 gradient directions are available, the CNN
achieves the smallest angular error in each case, whereas the error of the CSD
reconstruction is significantly increased.
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Table 2 Impact of signal
neighborhood on angular
accuracy for 45 acquired
diffusion gradients utilizing
the CNN in comparison to
CSD

Angular error [ı]

Method Neighborhood 1 Fiber 2 Fibers 3 Fibers

DL

Green + blue + red 1:86 3:18 12:64

Green + blue 1:84 3:07 12:54

Green 1:79 2:95 12:89

None 1:73 2:76 12:31

CSD None 1:65 3:02 6:06

The angular error represents the mean angular error for 1-Fiber,
2-Fiber and 3-Fiber voxels

Table 3 Impact of signal
neighborhood on angular
accuracy for 30 acquired
diffusion gradients utilizing
the CNN in comparison to
CSD

Angular error [ı]

Method Neighborhood 1 Fiber 2 Fibers 3 Fibers

DL

Green + blue + red 1:98 4:87 16:20

Green + blue 1:96 4:68 15:99

Green 2:08 5:11 15:26

None 1:91 5:76 15:74

CSD None 1:90 5:59 14:47

The angular error represents the mean angular error for 1-Fiber,
2-Fiber and 3-Fiber voxels

Table 4 Impact of signal
neighborhood on angular
accuracy for 15 acquired
diffusion gradients utilizing
the CNN in comparison to
CSD

Angular error [ı]

Method Neighborhood 1 Fiber 2 Fibers 3 Fibers

DL

Green + blue + red 2:86 7:10 16:58

Green + blue 2:87 6:80 16:01

Green 2:91 7:49 17:43

None 3:43 10:87 18:06

CSD None 3:63 14:55 21:88

The angular error represents the mean angular error for 1-Fiber,
2-Fiber and 3-Fiber voxels

In addition, taking the neighborhood into account, the same tendency as before
can be observed. The angular error decreases for 15 and 30 gradient directions if
a neighborhood is used to reconstruct the fODF, while it increases for 45 gradient
directions. Once again, the 18-neighborhood (green + blue) achieves the best result.

4 Discussion

Considering the surface deviation, Tables 1, Figs. 3 and 4 show that the CNN results
in a higher NMSE for 45 gradient directions than the CSD, while it achieves a
lower NMSE for 30 and 15 gradient directions. In addition, the performance of the
CNN stays stable in comparison to the performance of the CSD, which decreases
and nearly doubles the resulting NMSE in comparison to the CNN. Furthermore,
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this objective result is verified in Fig. 4d, which is visually very similar to the CSD
label with 90 gradient directions in Fig. 4a. Moreover, Fig. 4c shows that the CSD
approach is not able to correctly reconstruct crossings for 15 gradient directions.

Additionally, the performance of the CNN improves if neighboring voxels are
included. Comparing the different neighborhoods shows that the second neighbor-
hood (green + blue) achieves the best NMSE for 15 and 30 gradient directions, while
any neighborhood results in a decreasing performance if 45 gradient directions
are available. This coincides with the previously stated hypothesis, that additional
information can be gained from neighboring voxels if only few measured gradient
directions are available. In addition, it should be noted that the biggest neighborhood
including the red voxels (see Fig. 1) decreases the performance in comparison to the
second neighborhood (green + blue). This deterioration may be due to the fact that
the distance between the main voxel and the included neighboring voxels increases,
which results in a decreased correlation between the corresponding signals. In those
cases, the CNN is not able to train the corresponding weights to zero, which results
in a decreased performance because of included weighted noise. The same effect
can be seen for more than 45 gradient directions.

The resulting mean angular error, presented in Tables 2, 3 and 4, shows an effect
similar to the surface deviation. While the angular error for the first and second fiber
is on the same level for the CNN as well as for the CSD, the CNN is not able to
identify the third fiber even for 45 gradient directions, resulting in a high angular
error. The same effect can be seen in Fig. 4b, which shows that the CNN is mostly
unable to identify fibers with a small fraction compared to the remaining fibers in
the voxel, even for 90 gradient directions. Nevertheless, the CNN outperforms the
CSD for 30 and 15 gradient directions. Here, the CNN stays relatively stable, while
the CSD becomes unstable, which may be due to the fact that it is only able to
reconstruct the main fiber in a voxel.

As before for the surface deviation, the impact of neighboring signals is even
more visible. The second neighborhood (green + blue) results in a lower angular
error. Again, the gap between the CSD and the CNN increases as the number of
gradients decreases. In addition, the performance of the biggest neighborhood still
doesn’t result in an improvement.

The fact, that the CNN is in most cases not able to identify the correct third fiber
direction can be explained as follows:

• First, the chosen SH order may be too low, which would result in an fODF
blur, while fibers with small inter-fiber angles can’t be distinguished. On the
other hand, an increasing SH order would result in a bigger output vector, which
increases the complexity of the 3D CNN. Because of this, the 3D CNN may not
be able to achieve a better performance than the empirically chosen 3D CNN.

• Secondly, the CNN is trained utilizing 80 different subjects for training. This
results in a high variance, which results in a good generalization of the CNN,
making it insensitive against head orientations and different diffusivities. How-
ever, this positive effect could turn into a disadvantage, because as the general-
ization of the CNN increases, it may get less sensitive to subtle changes of the
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diffusion signal. To face this issue, [9] showed that a synthetically generated
dataset can be utilized for training in order to generate a unique CNN for a
specific subject. This would result in a net, which is not blurred due to high
variance.

• The last point is that the chosen label is based on the CSD applied on real human
data. A disadvantage of this method is that noise, which is inevitably contained in
each acquisition, leads to a noisy label. This noise would especially affect weak
signals, which mostly occur for signals of the second or third fiber. Again, a syn-
thetic dataset could be utilized for training, in order to obtain a noise free label.

Since not all MRI scanners provide the possibility to measure high b-values, the
CNN is also evaluated using the same dataset and a b-value of b D 1000 s

mm2 .
Utilizing this new dataset, the performance of the CNN as well as for the CSD
decreases dramatically, making it unsuitable for clinical purpose. This may be, due
to the reduced contrast of the diffusion signal within a voxel at a lower b-value.

5 Conclusion

The results of this work show that the proposed 3D CNN approach is able to
reconstruct a quantization-free fODF and outperforms the CSD approach, if less
than 45 gradient directions are available. In addition, we show that the CNN can
be further improved by including additional information from neighboring voxels.
The best performance is reached by including the 18-neighborhood (green + blue in
Fig. 1). For 15 gradient directions, this neighborhood improves the surface deviation
from 18.89% to 13.12%, while the angular error improves from 3:43ı to 2:87ı for
a single fiber case, from 10:87ı to 6:80ı for a two fiber case and from 18:06ı to
16:01ı in case of three crossing fibers in a voxel. On the other hand, we showed
that including a neighborhood may lead to a decreased performance, if 45 and more
gradient directions are available. In this case, the acquired signals contain enough
information to reconstruct the fODF, while neighboring signals only add noise.
Considering the applicability in a clinical scenario, it has to be taken into account
that the trained CNN cannot be applied to data acquired with another scanner or
scanner protocol, e.g. with different b-value.

In future work, we will investigate the behavior across different scanner types
and acquisition protocols. Moreover, we will investigate a multi-shell approach,
containing multiple b-values, in order to collect more information about the correct
fODF from each voxel. In addition, we will investigate the impact of noise on the
reconstruction.

Acknowledgements This work was supported by the International Research Training Group
(IRTG 2150) of the German Research Foundation (DFG).

Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal
Investigators: David Van Essen and Kamil Ugurbil; 1U54 MH091657) funded by the 16 NIH
Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the
McDonnell Center for Systems Neuroscience at Washington University.



404 S. Koppers et al.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems
(2015). http://tensorflow.org/. Software available from tensorflow.org

2. Alexander, D.C., Zikic, D., Zhang, J., Zhang, H., Criminisi, A.: Image Quality Transfer
via Random Forest Regression: Applications in Diffusion MRI, pp. 225–232. Springer
International Publishing, Cham (2014)

3. Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M.,
Nimmo-Smith, I.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform.
8(8), 1–8 (2014)

4. Golkov, V., Dosovitskiy, A., Sämann, P., Sperl, J., Sprenger, T., Czisch, M., Menzel, M.,
Gómez, P., Haase, A., Brox, T., Cremers, D.: q-Space deep learning for twelve-fold shorter and
model-free diffusion MRI scans. In: MICCAI, pp. 37–44. Springer International Publishing,
Cham (2015)

5. Jeurissen, B., Leemans, A., Tournier, J.D., Jones, D.K., Sijbers, J.: Investigating the prevalence
of complex fiber configurations in white matter tissue with diffusion magnetic resonance
imaging. Hum. Brain. Mapp. 34(11), 2747–2766 (2013)

6. Koppers, S., Haarburger, C., Merhof, D.: Diffusion MRI signal augmentation - from single
shell to multi shell with deep learning. In: MICCAI Workshop on Computational Diffusion
MRI. Springer International Publishing, Cham (2016)

7. Koppers, S., Merhof, D.: Direct estimation of fiber orientations using deep learning in
diffusion imaging. In: MICCAI Workshop on Machine Learning in Medical Imaging. Springer
International Publishing, Cham (2016)

8. Koppers, S., Merhof, D.: Qualitative Comparison of Reconstruction Algorithms for Diffusion
Imaging, chap. 4, pp. 51–67. Der Andere Verlag, Uelvesbüll (2016)

9. Schultz, T.: Learning a reliable estimate of the number of fiber directions in diffusion MRI.
In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2012: 15th International Conference, Nice,
October 1–5, 2012, Proceedings, Part III, pp. 493–500. Springer, Berlin, Heidelberg (2012)

10. Schultz, T., Westin, C.F., Kindlmann, G.: Multi-diffusion-tensor fitting via spherical decon-
volution: a unifying framework. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A.
(eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010: 13th
International Conference, Beijing, September 20–24, 2010, Proceedings, Part I, pp. 674–681.
Springer, Berlin, Heidelberg (2010)

11. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation dis-
tribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution.
NeuroImage 35(4), 1459–1472 (2007). doi:10.1016/j.neuroimage.2007.02.016

12. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber
orientation density function from diffusion-weighted MRI data using spherical deconvolution.
NeuroImage 23(3), 1176–1185 (2004). doi:10.1016/j.neuroimage.2004.07.037

http://tensorflow.org/


Index

acquisition scheme, 210
active transformation, 47
Affine-invariant metric, 91
anisotropic diffusion, 185
anisotropy vector field, 17
atlas-based, 355, 356, 370
axon dispersion, 218
axon packing, 222

ball voting, 156
basis, 46
Bayesian, 257, 263, 276
Bayesian variable selection, 257, 262
bidirectional anisotropy vectors, 13
bilateral filtering, 153
biomarker, 212
blood vessel, 164
Brownian motion, 205

Cayley transform, 133
Central Wishart distribution, 283, 285,

290–293, 306
centreline, 169
CNN, 394
coefficient of variation, 331, 332
combustion, 375, 387
completeness, 46
computation, 375, 387
contraction, 44, 47
contravariant, 47
covariance matrix, 183
covariant, 47
CPU, 383, 388

critical points, 4, 7
Crossing fibers, 283, 285, 293–298, 300, 302,

304–306
CT angiography, 148, 161
curve structure, 163

Deep Convolutional Neural Networks, 394
deep learning, 375, 378, 387
degenerate points, 4, 11
degree of a function, 7
deviator variability index, 30, 38, 40
Dice similarity coefficient, 333
diffusion, 257, 259, 278
diffusion anisotropy, 203, 210
diffusion tensor, 311
diffusion tensor imaging, 258, 259, 283–286,

289, 294, 295, 355–357
diffusion time, 210, 220
diffusion tractography. See tractography
diffusion-weighted MRI, 203, 210, 230, 258,

393
Dipy, 331, 335, 348
double diffusion encoding, 235
DTI. See diffusion tensor imaging
DW-MRI. See diffusion-weighted MRI

edge detection, 314
eigendecomposition, 150
eigenvalue, 150
eigenvector field, 12
Einstein notation, 47
Ensemble Average Propagator, 205
exponential transform, 134

© Springer International Publishing AG 2017
T. Schultz et al. (eds.), Modeling, Analysis, and Visualization of Anisotropy,
Mathematics and Visualization, DOI 10.1007/978-3-319-61358-1

405



406 Index

failure criterion, 65
feature detection, 43
fiber orientation distribution function, 394
flexibility, 46
flow field, 55
fluid dynamics, 55
fluid flow simulation, 55
fODF, 394
Four-shell, 305
Fourier Transform, 209
Fractional Anisotropy, 204, 215, 257, 264,

302–305
Frobenius metric, 86
FSL, 331, 334

Gaussian, 258, 260, 275
Gaussian attenuation, 210
general matrix field, 115
generalized fractional anisotropy, 216
generator approach, 44, 46
generic voting, 156
GPU, 383, 388
gradient of tensor field, 68

HARDI, 312
Hermitian matrix, 118
heteroscedastic, 257–259, 261, 267
Higher-Order Tensor, 317
Human Connectome Project, 257, 259

image processing, 115
independence, 46
index of degenerate points, 20
isotropic encoding, 237
isotropy index, 30, 37, 38

kurtosis fractional anisotropy, 216

Lagrange multipliers, 287
Laplace transform, 291, 292
Linear invariant tensor interpolation, 102
local structure, 154
Log-Euclidean metric, 92

machine learning, 376, 387
matrix field, 56, 60
MCMC, 257, 263, 279
mean diffusivity, 257, 268

microscopic anisotropy, 230
Mixture models, 283–289, 292, 294, 296, 301
Mixture of central Wishart distributions, 285,

290, 291, 293–300, 304, 305
Mixture of Hyper-spherical vMF distributions,

283, 289, 290, 293–295, 299, 300,
306

Mixture of non-central Wishart distributions,
283, 285, 292–302, 304–306

moment, 43
moment invariant, 43, 49, 52
moment order, 48
moment tensor, 48, 49
Multi-compartment model, 283–286, 291, 292
multi-scale approach, 187

narrow gradient pulse, 209
neonates, 355–357
neural network, 377, 380
neurodevelopment, 355, 356, 370
NNLS, 289, 294
NODDI, 204, 218
noise level, 156
Non-centrality parameter, 292, 293, 306
normal space, 150, 151, 155
normalization, 44, 46, 50, 52

order, 48
orientation dispersion index, 219
orientation distribution function, 215
orientation estimation, 167
orthogonal matrix, 115

pattern detection, 52, 54–56, 60
PGSE, 204
Poincare-Hopf Theorem, 8
point classification, 175

Airborne LiDAR point clouds, 176
local geometric descriptors, 176

point cloud, 149
pore shape, 249
positive-semidefinite tensor. See symmetric

positive definite matrix
product, 47
projective line, 12
propagator anisotropy, 217
pseudo-infimum, 117
pseudo-supremum, 117

q-space, 209



Index 407

rank, 47
reflection, 52
Relative Anisotropy, 215
reproducibility, 331, 332
RF-pulse, 207
Rician-distributed noise, 283, 296, 298
robustness, 5, 8, 21, 52
rotation, 52
rotation invariance, 43
Runge-Kutta, 315

saliency, 155, 162
scalar field, 54
schlieren, 375, 378, 380, 387
segmentation, 355, 370
Shape-and-rotation curves, 100
Shape-and-rotation metric, 96
single diffusion encoding, 231
single-diffusion tensor, 257, 268, 276
skew-symmetric matrix, 116
sparse voting, 152
Spherical harmonics, 294, 295
spherical mean technique, 204, 219
strain tensor, 30, 31, 33, 35, 37, 375, 376, 380
stress tensor, 30, 31, 33, 35, 37, 38, 69, 376
stress vector, 69
structure classification, 162
superquadric tensor glyphs, 189
symmetric matrix, 116
symmetric positive definite matrix, 85, 186
symmetric tensor fields, 29–31, 39, 186

tangent space, 150, 151
tensor, 34–39, 44, 47, 86, 375, 376, 384
tensor contraction, 47
tensor field, 43, 56, 60
tensor field topology, 11

tensor glyphs, 70
tensor product, 47
tensor rank, 47
tensor shape, 167
tensor transformation, 47
tensor voting, 146, 147, 149, 183

4D tensor voting, 156, 162, 168, 169
3D tensor voting, 167

tensor weight, 47
test-retest reliability, 331
third order tensor, 67
Three-shell, 304
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