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Abstract Super-resolution (SR) reconstructs a high-resolution (HR) image from a
set of low-resolution (LR) pictures and restores an HR video from a group of
neighboring LR frames. Optimization tries to overcome the image acquisition
limitations, the ill-posed nature of the SR problem, to facilitate content visualization
and scene recognition. Particle swarm optimization (PSO) is a superb optimization
algorithm used for all sorts of problems despite its tendency to be stuck in local
minima. To handle ill-posedness, different PSO variants (hybrid versions) have
been proposed trying to explore factors such as the initialization of the swarm,
insertion of a constriction coefficient, mutation operators, and the use of an inertia
weight. Hybridization involves combining two (or more) techniques wisely such
that the resultant algorithm contains the good characteristics of both (or all) the
methods. Interesting hybridization techniques include many local and global search
approaches. Results for the SR reconstruction of still and video images are pre-
sented for the PSO and the HPSO algorithms.

Keywords Super-resolution � Image registration � Fusion � Image restoration �
Mosaicking � Motion estimation � Particle swarm optimization � High-resolution
imaging � High-resolution video

M.A. de Jesus � V.V. Estrela (&)
Telecommunications Department, Universidade Federal Fluminense (UFF),
Rio de Janeiro, Brazil
e-mail: vania.estrela.phd@ieee.org

M.A. de Jesus
e-mail: majesus1977br@gmail.com

O. Saotome
Instituto Tecnologico de Aeronautica (ITA), CTA-ITA-IEEA,
Sao Jose dos Campos, São Paulo 12228-900, Brazil
e-mail: osaotome@gmail.com

D. Stutz
Instituto Politecnico do Rio de Janeiro (IPRJ), UERJ, Nova Friburgo, Brazil
e-mail: stutz@iprj.uerj.br

© Springer International Publishing AG 2018
J. Hemanth and V.E. Balas (eds.), Biologically Rationalized Computing
Techniques For Image Processing Applications, Lecture Notes in Computational
Vision and Biomechanics 25, DOI 10.1007/978-3-319-61316-1_14

317



1 Introduction

Although monitoring cameras are omnipresent, people’s concern for details still
calls for better pictures, due to limited equipment costs and constraints, weather
conditions, as well as target shooting distances.

Super-resolution (SR) refers to methods to upscale, upsize, and restore pictures
or video sequences. Starting from low-resolution (LR) images, SR recovers a
high-resolution (HR) one that offers enriched visual results while eradicating
additive noise, handling the imaging detector sizes and optical sensor constraints. It
is related to image fusion, registration, and mosaicking [1–3], and [4]. Some SR
applications are described below.

(i) Freeze frame and region of interest (ROI) zoom for perception and analysis.
(ii) Resolution-enhanced automatic target recognition.
(iii) In reconnaissance, several images from the same region can help to render a

better resolution image.
(iv) To enrich the resolution and create multimodal versions of pathological areas

in medical imaging (ultrasound, CT, MRI, etc.) by merging data from several
limited resolution images.

(v) Fluorescence microscopy.
(vi) Video standard conversion, e.g., from PAL-M to HDTV signal and from 4K

to 8K.
(vii) Forensics.

SR approaches try to model the quality loss when using LR cameras and then to
solve an associated ill-posed inverse problem, which does not possess a forthright
solution. SR imaging typically involves regularization, optimization, and extensive
computations. SR works successfully when the LR images involve somewhat
different views of the same object, that is, all the object knowledge exceeds the
knowledge from a single frame. Motion estimation (ME) can help to upscale an
image and infer the correlation between frames or patches. If an object is steady and
appears identical in all frames, no additional knowledge is available. If there is
movement or fast transformations, then the target will appear distinctly in different
frames. This redundancy in LR frames assists the HR frame reconstruction.

Many factors limit the resolution of imaging systems due to the diffraction limit
or resolution constraints associated with the geometry of the optical elements (c.f.
Fig. 1). Among the geometrical restrictions resulting from image acquisition CCD
cameras, one can cite the size and the shape, and the pitch of pixels can lead to
errors. Video super-resolution (VSR) seeks to reconstruct an HR video sequence
from an LR one [5, 6]. There are two types of VSR algorithms:

(i) Multiframe complementary information (MCI) techniques use redundancy
from different frames; and

(ii) ME methods using data on moving objects such as motion vectors (MVs) or
displacement vectors (DVs). VSR performance hinges on the accuracy of the
ME framework.
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Sparse reconstruction is an emblematic ill-posed inverse problem where the
measurement error and the sparsity terms are used as two conflicting terms to be
handled simultaneously inside an objective function. This framework brings in new
challenges to the optimization task. Classical optimization and analysis techniques
may perform SR disappointingly because it is an expensive optimization problem.
This motivates the application of computational intelligence methods [4, 7, 8].

The VSR seeks an HR video that meets certain specifications. This problem can
be recast as an optimization task, which pursues the optimal result consistent with
quality requirements. For a given imaging degeneration model, optimization
techniques can be used to discover the global minimum (or maximum) using a
proper fitness function or cost functional.

This chapter examines particle swarm optimization (PSO) applied to SR imaging
and VSR schemes relying on an image degeneration model explained in Sect. 2 [7,
9]. Experimental results using evaluation metrics show that PSO methods can
improve both objective and subjective results.

2 The Image Degradation Model

Due to hardware limitations, the imaging system has imperfections and various
types of degradations as shown in Fig. 1. The Point Spread Function (PSF) models
some kinds of optical and mechanical distortions. As the image pixel results from
integration over the sensor area, the restricted sensor density causes aliasing effects,
limiting the image spatial resolution. These degradations are handled entirely or
partly with different SR techniques (Fig. 2). This work uses the subsequent
notation:

(i) Upper case bold letters X and Y symbolize lexicographically ordered vectors
for HR and LR frames;

(ii) Lower case bold letters such as x and y stand for lexicographically ordered
vectors for HR and LR image patches in that order;

Fig. 1 Imaging degradation process
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(iii) Underlined upper case bold letters show the result of a vector concatenation,
e.g.,Y is a vector concatenation of Yk, with k = 1, …, K where K stands for
the number of captured LR frames by the camera; and

(iv) Plain upper case symbols denote matrices, and simple lower case symbols
refer to scalars.

If X denotes the desired HR image (i.e., the digitally sampled image), and Yk is
the kth LR camera observation, then there are K LR frame versions of X where each
LR observation vector Yk is related to the HR image X by

Yk ¼ DkHkFkXþVk; ð1Þ

where the knowledge on motion for the kth frame is encoded in Fk, Hk reproduces
the blurring effects, Dk is the operator in charge of downsampling, and Vk repre-
sents the noise. If Y is the observed image, then rearranging these linear equations
into a large linear system yields

Y ¼ MXþV: ð2Þ

Matrices Dk, Hk, Fk, and M are extremely sparse, unknown, and have to be
estimated from the existing LR observations, which worsen the linear system
ill-conditioned nature. Thus, regularization is always advantageous and frequently
essential.

3 PSO Super-resolution

SR reconstruction has been a very active research area, and many techniques have
been suggested to handle this matter. Figure 3 depicts the SR rationale.

Before stating some PSO variants, a genetic algorithm (GA) will be stated,
because some of its reasoning appears in hybrid PSO methods.

Fig. 2 The observation model relating HR to LR images
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3.1 Genetic Algorithm (GA)

A GA [10, 11] is a soft optimization strategy to find solutions to optimization
problems. They are global search heuristics methods motivated by evolutionary
procedures such as selection, mutation, inheritance, and crossover (aka
recombination).

GAs consider a population consisting of abstract representations (or chromo-
somes) of candidate solutions (or individuals) evolves to improved solutions.
Habitually, solutions consist of binary strings having 0s and 1s, but other forms of
encodings can be used. The evolution procedure begins with a random initial
population of individuals and occurs in generations. The fitness of every single
individual in the population is computed for each generation. Individuals are
stochastically taken from the existing population using their fitness values as the
selection criterion. Then, recombination is done along with perhaps randomly
mutated individuals to produce a new population for the subsequent algorithm
iteration. The algorithm ends once the maximum number of generations or an
acceptable population fitness level is reached. If the procedure finishes because of
reaching the maximum number of generations, then a proper result may be found.

In SR imaging, GAs can deal with local resolution complications [12, 13], even
if it entails huge computational time and it lacks fine-tuning possibilities.

Fig. 3 SR rationale
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3.2 Classical Particle Swarm Optimization (CPSO)

CPSO is a simple population-based optimization scheme, which involves minimal
computational effort. It employs a search motivated by a model of social influence
and learning. Individuals emulate the success of their neighbors.

Consider a present diffuse population of size S known as a swarm. Each swarm
member is dubbed a particle, and it as a point belonging to the search space.
A particle group has a tendency to cluster at an optimized position (maximum or
minimum). Therefore, to accomplish CPSO, each particle corrects itself by com-
paring its previous similarity measure (SM) to its neighbor SMs to reach the best
result [14].

If f: ℝn!ℝ is the cost functional to be minimized, then the real number output
corresponds to the result of the optimized fitness function, for the given candidate
solution [15].

Given an unknown gradient rf of f, an optimum solution x* for which f(x*) � f
(y), for all y in the search space, is sought. Alternatively, the maximization of a
function h = −f can be performed.

At iteration k, xi 2 ℝn is the position vector of the ith particle in the search space
whose velocity is vi 2 ℝn, pbesti is the best xi for particle i, gbest is the global best
known position among all particles of the entire swarm, and w means the weight. c1
and c2 are acceleration constants whose pdfs are uniformly distributed in the
interval sandwiched between 0 and 1.

In the CPSO-based SR method, xi is the transform parameter vector that has to
be estimated, f xki

� �
is the functional or cost function to be optimized, the pbesti is the

maximum cost functional f xki
� �

for each particle, and gbest corresponds to the best
cluster.

CPSO‐based SR Algorithm

(1) Initialize the swarm randomly with initial values for variables x0i , v
0
i , pbesti,

gbest
(2) For each particle i, repeat until the whole population has been analyzed:
(3) Set initial values for variables x0i ,v

0
i ,pbesti,gbest

(4) vkþ 1
i ¼ wvki þ c1 rand ½pbesti � xki � þ c2 rand ½gbest � xki �:.

(5) wðkþ 1Þ ¼ wk þ dw.

(6) dw ¼ ðwmin�wmaxÞ
T .

(7) xðkþ 1Þ
i ¼ xki þ vkþ 1

i .
(8) If f xki

� �
[ f pbestið Þ then pbesti ¼ xki .

(9) If f xki
� �

[ f gbestð Þ then gbest ¼ xki .
(10) If it converges, then stop.
(11) If the maximum number of iterations is not reached, then go to step 2.
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The stopping criterion can be maximum number of iterations, and/or a solution
with adequate MI value. The parameters w, c1, and c2 are chosen by the developer
and adjust the performance and effectiveness of the CPSO method.

4 SR Challenges

SR uses subpixel accuracy MC to match areas in adjacent frames to merge them and
to combine details wisely, which sometimes cannot be done successfully due to
lack of novelty in the LR frames [16–18].

Generic image priors may help regularize the solution properly but are not
sufficient. Regularization becomes especially crucial when there is an insufficient
number of measurements, and/or only one LR frame is observed [5]. Recently,
example-based (EB) methods helped to regularize the SR reconstruction problem
and to break the SR limit caused by inadequate measurements [19]. EB methods
find the prior knowledge by sampling other images locally and are effective when
observations are insufficient. Some issues must be addressed: (i) the choice of the
optimal patch size given the target image; (ii) different databases with different
statistics are necessary; and (iii) how to use the EB prior more efficiently.

Projection onto convex sets (POCSs) express the SR problem as a manifold
delimited by multiple constraining convex sets whose intersection contains the
sought after image [20]. The concept of a convex set brings in flexibility and adds
in different types of constraints or priors, even nonlinear and nonparametric
restrictions. It can handle motion blur, but it may require post-processing.
The POCS can be further extended for robust, object-based SR reconstruction. The
advantage of the POCS technique easily incorporates any kinds of constraints and
priors difficult for stochastic approaches. POCS downsides are the substantial
computation, slow convergence, and the solution nonuniqueness that depends on
the initial guess, the necessity of priors on the motion parameters and system blurs,
and inability to estimate parameters at the same time.

The appropriate model formulation is the basis to obtain a suitable solution.
Computational intelligence [21] is a substitute to traditional optimization that offers
high precision, and lower time cost in demanding applications. Experimental out-
comes using the evaluation metrics defined in Sect. 5 [22] confirm improvements in
both objective and subjective results. Other ways to resolve the SR problem
comprise machine learning (ML) [23] and compressive sensing (CS) [21, 23]. Next,
some drawbacks are listed and briefly discussed.

Absence of Motion or Change adds little innovation, and the overall image
quality will resemble ordinary spatial upsizing.

Abrupt Motion Detection is problematic to track and results in low-quality
frames attributable to: (i) motion blur produced by the camera, and (ii) the use of
compression relying on delta-frames. Abrupt motion generates many alterations
among adjacent frames, thus increasing the effects of the codec quantization on the
required bit rate with a corresponding loss of details.
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Heavy Compression (aka low bit-rate compression) in several circumstances
can be intolerable for SR. There are two ways of implementing lossy video codecs:
(i) via delta-frames, and (ii) with the help of key frames only [24]. If the video has
suffered high compression by a key-frame codec, then this means that each frame
was compressed independently, and many particulars are missing. This customarily
leads to blocking artifacts, which are usual in heavily compressed JPEG images for
the reason that the object changes a great deal during motion. Hence, to accurately
replicate motion and acquire minutiae becomes unmanageable. Other frames may
cause blocking artifacts along with poor picture quality. Similarly to MC, SR uses
differences between frames, which results in gross and useless changes that mean
no improvement for the HR frame (loss of details).

Image Registration is impacted the accomplishment of high-quality SR
reconstruction where the LR frames can be seen as complementary spatial sam-
plings of the HR image to be fused. When LR observations have heavy aliasing
artifacts, the resulting HR frame will show low quality. The performance of stan-
dard image registration methods decreases proportionally to the decline in the
resolution of the observations, resulting in more registration errors. LR picture
registration and HR image estimation are fundamentally interdependent processes.
Accurate subpixel ME improves HR image estimation. Conversely, high-quality
HR image can simplify ME. Therefore, LR image registration affects the HR image
reconstruction. Still, with restricted observations, the joint estimation of registration
parameters and HR image may introduce overfitting. Stochastic approaches dealing
with the HR image estimation and image registration simultaneously are auspicious;
still, the motion models can restrict performance. Optical flow ME works when
used in more intricate scenarios. Nonetheless, the scarce measurements for local
MEs make SR algorithms vulnerable to errors. The 3-D SR problem brings in
several extra challenges.

Computational Loads are severe due to the large number of unknowns
involved in costly matrix manipulations, which obstruct real-time implementations.
The number of calculations goes up dramatically for nontranslation models, which
can be bettered by massive parallel computing. The FPGA technology can ease
real-time SR systems. For videos with random movements, favorable results stem
from parallel computing, for example GPUs and other unusual hardware
deployments.

Robustness is essential since the parameters describing the image degradation
cannot be found perfectly, and sensitivity to outliers may originate visually dis-
turbing pieces. These imprecisions cannot be regarded as being Gaussian noise,
which is the customary supposition when employing the l2-norm.

Performance Limits clarify SR camera development, assisting the investigation
of factors such as model errors, the frame quantity, and zooming factors, but an
ambitious examination of the performance bounds for all SR techniques can be
difficult. Initially, SR reconstruction is considered a hard task demanding many
interdependent constituents. Second, the most informative prior for the SR task is
unknown. Last, good metrics are still necessary. It is appropriate to extend models
with a comprehensive analysis of SR performance by adding factors such as ME,
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decimation factor, the number of frames, and prior knowledge. Although it is
cumbersome to get a consistent performance evaluation for different SR techniques,
some benchmarks and realistic datasets can simplify algorithm assessment and
understanding.

5 Image Quality Assessment (IQA) in SR

Image Quality Assessment (IQA) procedures can be classified as subjective where
human observers perform the image quality assessment and objective, which uses
objective metrics. Since ultimately all the images have to be appraised by the
human visual system (HVS), subjective evaluation is the only true metric. In reality,
however, subjective evaluation is not only problematic and costly, but it cannot be
transformed into real-time computer programs with output feedback. Consequently,
it is more feasible to use objective IQA metrics to analyze the image quality.
According to the original image accessibility (ground truth), traditional objective
IQA approaches can be [25, 26, 27]:

(i) Full-reference (FR) metrics rely on the original and distorted images;
(ii) Reduced-reference (RR) metrics require part of the original image and the

distorted image; and
(iii) No-reference (NR) metrics need only the distorted image.

The most common IQA metrics are described below.
Mean Square Error (MSE): It provides the squared error between the original

and the SR image. It will be closer to zero when the ground truth and registered
image are equal. It increases when there is a rise in dissimilarity. The MSE can be
calculated as follows:

MSE ¼
PM

i¼1

PN
j¼1 ½Iði; jÞ � I0ði; j�2

MN
; ð3Þ

where I(i, j) and I′(i, j) are the original and the SR images, M and N are corre-
spondingly the numbers of rows and columns of each image.

Peak Signal‐to‐Noise Ratio (PSNR): The PSNR is expressed in decibels
(dBs) as

PSNR ¼ 20 log10
MaxIffiffiffiffiffiffiffiffiffiffi
MSE

p ; ð4Þ

with MaxI corresponding to the maximum possible pixel value of the image. Using
a byte per pixel leads to MaxI ¼ 255. PSNR is high when the ground truth and the
SR images are similar.

Correlation Coefficient (CC): It represents how correlated (in the least squares
sense) the two data sets are. It is defined as:
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CC ¼
PM

i¼1

PN
j¼1 ½Iði; jÞ � lI �½I0ði; jÞ � lI 0 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i¼1

PN
j¼1 ½Iði; jÞ � lI �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1

PN
j¼1 ½I0ði; jÞ � lI 0 �2

q ð5Þ

where lI and lI 0 are the mean of images of I(i, j) and I′(i, j), respectively. The
maximum absolute value of CC is 1 and signifies perfect correlation.

Structural Similarity Index (SSIM): It measures the similarities between ima-
ges, and it emphasizes any image alteration as a mixture of correlation loss, the
amount of luminance misrepresentation, and contrast interferences. It is given by

SSIM ¼ 2lIlI0 þ c1ð Þ 2rII0 þ c2ð Þ
l2I0 þ l2I þ c1
� �

r2I0 þ r2I þ c2
� � ; ð6Þ

where rI and rI0 are the variances of I(i, j) and I′(i, j), and rII0 the covariance
between I(i, j) and I′(i, j). c1 and c2 are constants that prevent the denominator to be
zero. SSIM 2 [0, 1], and it approaches 1 as the images become more similar.

TheMSE along with the PSNR are widely used FR metrics because they are easy
to implement and have clear physical meanings. Still, they fail to be consistent with
the perceived visual quality in many cases. The SSIM index takes into account the
fact that the human visual system (HVS) perceives the local image structures when
computing image quality. Most FR metrics detect and match the features of the
original and distorted images to estimate the visual quality of the SR image.
These IQA methods pose challenges for SR applications since image sizes change
during the SR process.

Moreover, the original HR images are missing whenever the image SR methods
are needed in real applications, which may compromise the FR metrics. So, the
objective IQA metrics for SR images are desperately necessary.

6 Other PSO Variants

6.1 Some Types of Hybrid PSO (HPSO) Algorithms

PSO is an effective optimization technique that has been applied to an ample range
of optimization problems. Nevertheless, its performance can be improved
employing certain variants called hybrid PSOs (HPSOs) discussed in this section.
The PSO changes can be done in one of the stages below-mentioned, or they can
involve a combination of these strategies [28].

(i) Initialization: Initial conditions influence the performance of PSO. If the
initialization is inadequate, then the algorithm may search an undesirable
area, and it will lead to the wrong optimal solution. The performance of
CPSO is sensitive to the initialization of the swarms.

326 M.A. de Jesus et al.



(ii) Constriction Factor: The random weights controlling the CPSO parameters
may cause a kind of explosion as the velocities of the particles, and posi-
tional coordinates grow toward infinity. This explosion has been traditionally
restricted by an upper bound on the particle velocity, or to the step-size. Even
so, the implementation of a good constriction factor can inhibit explosion and
improve convergence to local optima.

(iii) Inertia Weight (w): It balances the exploration–exploitation trade-off. A big
value of w increases the exploration, and a small value strengthens the
exploitation. Some used a constant inertia weight; others employed a linearly
decreasing w and a third group used nonlinearly decreasing inertia weight.

(iv) Mutation Operator: It expands the performance of PSO and permits
escaping from the local minima. Different variants of PSO using the mutation
of the global best particle and the mutation of the local best particle were
suggested to prevent the PSO from stagnation in local minima.

Nature-inspired procedures, e.g., genetic algorithms (GAs) [29], simulated
annealing (SA) [30], differential evolution (DE) [31], evolutionary programming
(EP) [32], artificial immune systems (AISs) [33], ant colony optimization
(ACO) [34], can be applied to an extensive variety of global optimization problems.
These algorithms are advantageous in the optimization of intricate problems and are
typically population-based metaheuristics.

Mingling PSO with GA is quite popular as it is the case with combining PSO
and the DE algorithms. The PSO–ACO2 combination is better for solving discrete
optimization problems than PSO–ACO [35]. Algorithms such as tabu search (TS),
SA, fuzzy logic can also be employed [19, 36, 37], and [38]. As far as local search
methods go the Nelder–Mead simplex, Quadratic Programming (QP) and Interior
Point (IP) can be combined with PSO.

PSO methods can be associated with other algorithms as follows. (1) One
procedure works as a pre-optimizer for the preliminary population of the next
algorithm; (2) The entire population is divided into subpopulations, which evolve
using PSO and other algorithms; and (3) The unique operators of an algorithm are
inserted as local search improvement for the other algorithm.

HPSO methods have been applied to solve an assorted variety of problems
encompassing image processing, remote sensing, data clustering, and engineering
problems to name a few. Hence, there is still possibility of new SR applications.

GA-PSO, DE-PSO, and PSO with adaptive mutation (AMPSO) are commonly
used HPSO strategies to solve unconstrained global optimization problems.
GA-PSO combines the PSO and GA algorithms; DE-PSO is a hybrid version of DE
with PSO and AMPSO is a mixture of PSO and EP.

HPSO algorithms are still a motivating and promising field that can offer
additional comprehensions regarding the behavior and prospective benefits and
disadvantages of several metaheuristics. This chapter may motivate and help to
develop new hybrid models or to employ the existing models to new applications.
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6.2 A Hybrid PSO (HPSO) Algorithm for SR Imaging

PSO has been effectively for SR [38]. When conventional GA and PSO find
problems to determine the global optimum, HPSO approaches relying on two GA
concepts: subpopulation and crossover. They are incorporated into the CPSO
method to improve the accuracy of that conventional GA and CPSO since these
traditional procedures cannot find the global optimum when there is a huge number
of parameters to be estimated.

The particles are split into m = 1, … , M subpopulations where each one has its
personal best optimum gsub-best-m. The PSO process is applied for each subpopu-
lation. If gsub-best-m is better than gbest, then gbest is replaced by the gsub-best-m where
m is the subpopulation number.

The gsub-best-i are organized in ascending order of fitness function values. The top
two gsub-best-i are taken as parents (xi, and xj) for a crossover with i and j as their
corresponding subpopulation number. The offspring are produced for each by
arithmetic crossover, using the relationships

x0i ¼ r xi þð1� rÞxj; and ð7Þ

x0j ¼ r xj þð1� rÞxi; ð8Þ

with velocities

v0i ¼ viV ; ð9Þ

v0j ¼ vjV ; and ð10Þ

V ¼ vi þ vj
� �

= vi þ vj
�� ���� ��; ð11Þ

where r is uniformly distributed between 0 and 1. The offspring replaces the worst
particle in the same subpopulation.

HPSO‐Based SR Algorithm

(1) Initialize the swarm randomly with initial values for variables x0i , v
0
i , pbesti,

gbest
(2) For each particle i, repeat until the whole population has been analyzed:
(3) Set initial values for variables x0i ,v

0
i ,pbesti,gbest

(4) Generate M subpopulations
(5) Perform crossover
(6) If f xki

� �
[ f pbestið Þ then pbesti ¼ xki

(7) Compute gsub-best-m for each subpopulation m
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(8) If f xki
� �

[ f gbestð Þ then gbest ¼ xki
(9) If it converges, then stop.

(10) If the maximum number of iterations is not reached, then go to step 2.

6.3 PSO Drawbacks

CPSO works fast for optimizing complex multidimensional spaces with a broad
range of applications, but it falls easily into a local optimum in high-dimensional
spaces, and it converges slowly. This limitation is known as swarm stagnation (SS).
There are two puzzling areas for future progress: SS and Dynamic Environments
[5].

Prospective users can circumvent SS by certifying that particles continue
moving. Although some methods have been suggested for this, the problem is to
distinguish an optimal solution. Numerous mechanisms were proposed to restrict
particle velocities and to guarantee maximal exploration, such as (i) slower particles
that complete more fitness function evaluations while moving to the final solution,
and (ii) to introduce mechanisms to increase the likelihood to find a global opti-
mum. Hybrids using other nature-inspired paradigms addressed PSO’s inherent
challenges to reposition stagnant particles or slowing down those using
subpopulations.

Dynamic Environments imply the existence of objective function values that
diverge over time and are difficult to handle when the optimum position travels thru
the problem space in steps larger than the best candidate solution of the group can
follow naturally. CPSO cannot track the optimum because unless the goal moves to
the space of another swarm member, the swarm will continue to move to its
previous best, set at the previous goal position. Re-resetting the swarm or using the
old swarm with new best values helps mitigate complications. The major limitation
to effective optimization when using PSO in Dynamic Environments is when the
optimum position has velocity superior to the particle velocity and therefore escapes
the swarm. Dynamic problems require a balance between velocity constraint and
the need to track optima. Slow-moving optima can be pursued naturally since the
particles keep on moving about in an area related to the velocity of the particles.
Complications happen when the optimal displacements are larger than the particle
dislocations. The fundamental norm is to keep swarm diversity, which increases the
likelihood that the optimum will shift to an adequate area.
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7 Case Studies of the Use of PSO in SR

To some extent, the determination of the appropriate model is the basis for finding
the solution. Bearing in mind computational intelligence, the image or the video
sequence with the highest resolution corresponds to the optimal solution obtained
by PSO. This established optimization method is on the forefront for its imple-
mentation simplicity, higher computational accuracy, and lower time cost in
complex applications when compared to other heuristic methods. In PSO, a particle
is a potential solution vector to the problem. Nevertheless, the parameter selection
affects the performance intensely, and schemes that work well for all problems are
absent. In many cases, the PSO parameters have to be adjusted several times to
obtain adequate precision and escape the fixed parameters limitation during the
whole optimization process.

This section illustrates the use of SR in still images and video sequences using
the PSO and HPSO algorithms stated beforehand [39].

7.1 SR in Still Images

Geometrical SR restoration is possible if and only if the input LR images have been
undersampled, and hence, they contain aliasing. Since there is aliasing, the
high-frequency content of the sought reconstructed image is embedded in the LR
content of each of the observed LR images. Given an appropriate number of LR
observations, and if the set of observations differ in phase (i.e., the scene images are
shifted by subpixel quantities [1, 18, 40–42]), then the phase evidence can help to
isolate the aliased high-frequency part from the true low-frequency portion, and the
full-resolution image can be precisely recreated.

There exist both single-frame and multiframe SR alternatives. Multiframe SR
explores the subpixel shifts between multiple LR images of the target scene. It
produces a better resolution image resulting from combining data from all the LR
pictures, and the created HR images are superior scene descriptions. Single-frame
SR approaches attempt to enlarge the image without blurring effects. These pro-
cedures employ other parts of the LR images, or other distinct images, to predict
what the HR image should appear. Nowadays, SR methods work well with both
grayscale and color images.

Figures 4, 5, and 6 show results of applying PSO and HPSO to the image Lena.

7.2 SR in Video

The SR main conception is to add new information to a target frame by detecting
the subpixel displacements between this frame and its nearby ones. These subpixel
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shifts are created by the camera and/or by the objects moving in the scene. Figure 7
shows the motivation behind VSR; that is, an SR frame is generated by combining
four consecutive LR frames.

The importance of a good ME in SR naturally arises. Independently of the SR
method used, the underlying ME technique must be as accurate as possible [17, 24,
40, 41, 43, 44]. In literature, little attention has been paid to the performance of ME
techniques when used in SR problems. The notation for an entire image is gl,
representing the lth image in the LR sequence. gk denotes the image whose reso-
lution must be improved.

Let gl(x) be a pixel located at x = (x, y)T in the lth LR image, which isM � N. gl
is divided into blocks bx of size m � n such that gl(bxp) with p = 1, … , P and P is
the total number of blocks.

Fig. 4 a LR image; b PSO result; and c HPSO result

Fig. 5 PSNR curves for Lena as the number of LR images increase
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Accurate ME comprises a very important part in SR problems. Pixels with bad
and/or contradictory MEs due to occlusions and poor ME results degrade the SR
reconstruction and consequently should not be considered.

Quantitative assessments between the enhanced and the original images can be
done using the PSNR. Inaccurate MVs can be detected by applying the displaced
frame difference (DFD) between the upsampled and the compensated frames given
by

Fig. 6 SSIM evolution for Lena as the number of LR images increase

Fig. 7 In VSR processing, each HR frame is a combination of N successive LR images
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DFDðgl; dlrl;k; gkÞðxÞ ¼ gkðxÞ � glðx� dlrl;kÞ
���

��� ð12Þ

The DFD allows identifying pixels in gk that are not anticipated by the MV
estimates dlrl;k (between the LR images lth and kth) and gl. Large DFD values
indicate nonpredictable/observable pixels in gk.

After estimating the motion between frames, it is possible to project the LR
image on the sought after HR grid with the help of the MVs. An HR grid can be
defined by locating the pixel values of the present image, while the remaining HR
positions stay empty (zero MVs). A different frame having subpixel shifts with
respect to the current image has new data placed onto the HR grid. An explanation
of the SR algorithm steps follows:

(1) Align the LR image with the matching positions of the HR image.
(2) If there is subpixel motion, then new pixels from frames l ¼ k will be placed in

empty locations of the HR grid.
(3) After filling all possible places, empty HR pixel values will be interpolated to

obtain the final SR image.
(4) Use the estimated motion fields to render the HR reconstruction.
(5) Calculate the PSNR values between the original HR image I and the resulting

SR image.

Figure 8 shows three regions R1, R2, and R3 belonging to a frame of the mobile
sequence. This subsection explores the process of obtaining SR versions of these
patches. Figure 9 presents 5 LR frames of the mobile sequence. Figure 10a shows
the PSNR curves for the reconstructions done for R1, which is an area with texture

Fig. 8 Region 1 (R1) has a textured area with translational motion, Region 2 (R2) shows a
textured area with independent object motion, and Region 3 (R3) contains a flat area with
translational motion
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but also some extremely flat subregions. In this case, the PSNR values improve for
the PSO and HPSO algorithms. Regions R2 and R3 contain objects with motions.
The most remarkable conclusion on the R2 is that when the motion does not depend
from the camera motion, increasing the accuracy of the ME can introduce errors to
the global SR process. The advance achieved by the use of the DFD is perceptible
in Fig. 10b where the motion complexity is high (rotation and translation). Lastly,
R3 has a flat region with translational motion and the PSNR results are depicted in
Fig. 10c.

Fig. 9 Mobile LR sequence obtained using from frame 7 to frame 11

Fig. 10 PSNR values versus number of LR frames for the mobile sequence: a R1, b R2, and c R3
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8 Conclusions

Metaheuristic optimization algorithms like PSO have become a widespread choice
for solving complex and intricate problems such as SR reconstruction, which are
otherwise demanding to solve by traditional algorithms. This chapter attempts to
examine the PSO algorithm and some of its hybrid versions. Hybridization means
combining two (or more) methods in a sensible way such that the resultant algo-
rithm contains the positive characteristics of both (or all) the procedures. Interesting
techniques to use in hybridization include many local and global search approaches.
Results from the use of SR reconstruction for still and video images are shown for
the PSO and the HPSO algorithms.
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