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Abstract Intelligent transportation systems (ITS) all around the world are col-
lecting and processing huge amounts of data from numerous sensors to generate a
ground truth of urban traffic. Such data has set the foundation of traffic theory,
planning and simulation to create rule-based systems but it can also be very useful
for time-series analysis to predict future traffic flow. Still, the acceptance for
data-driven forecasting is quiet low in productive systems of the public sector.
Without enough probe data from floating cars (FCD) ITS owners feel unable to
reach an accuracy like private telecommunication or car manufacturing companies.
On the other hand, investigating into FCD requires a thoughtful treatment of user
privacy and a close look on data quality which can also be very time consuming.
With this paper we prove that a modern deep learning framework is capable to
operate on city-wide sensor data and produces very good results with even simple
artificial neural networks (ANN). In order to forecast space-time traffic dynamics
we are testing a Feed Forward Neural Network (FFNN) with different geotemporal
constraints and can show where and when they have a positive but also a negative
effect on the prediction accuracy.
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Introduction

Improvements in the machine learning domain are raising the question if an ITS can
be a 100% driven by data from sensors—learning how traffic patterns evolve, which
rules to apply for switching traffic lights and how to navigate traffic streams without
causing more congestion. The idea is fascinating but also puts higher requirements
on the quality of data. Static sensors can be unavailable or report shifted values for
hours what urges the use of additional sources like floating car data (FCD) (Graser
et al. 2012). On the other hand, it has to be considered if the throughput of FCD is
really high enough on each trajectory at any given time to be a representative
sample of the real traffic. While it is not expensive to extend fleets of GPS-equipped
vehicles or to crowd source location data from smart phones (Apps, Social Media),
data privacy remains a critical issue (Jeske 2015).

The ITS of Dresden (called VAMOS) uses data from around 1000 sensors
installed along freeways and main roads (induction loops, infrared traffic eyes and
cameras). In addition FCD from around 500 taxi cabs is map matched against a
generalized routing graph and included in the calculation of travel times. Even
though the system incorporates past travel times from every network segment it
only generates an image of the current traffic situation. Tests have shown that
messages displayed on traffic signs to inform drivers on upstream traffic congestion
can get very inaccurate the more distant the sign is located from the incident (Pape
and Körner 2016). Therefore, a solid traffic forecasting algorithm that can produces
close predictions only on static sensor data would be a great win for the system.

In this paper we present a possible solution which is based on a Feed Forward
Neural Network (FFNN). We are taking a subset of 135 double induction loops
which are distributed across Dresden. To capture spatio-temporal dependencies of
the sensor network we include a spatial weight matrix into our model. In next section
we will provide an overview of related work that has been done in past years to
improve data-driven traffic forecasting and point out some limitations. After an
introduction to related work we will explain our experimental setup followed by the
“Results” Section. We evaluate our findings in the Section “Discussion and Future
Work” and conclude with an outlook on further research.

Related Work

Short-term traffic forecasting based on sensor data has seen many different
approaches in the last decades, be it for freeways or arterial road networks, with
univariate or multivariate inputs and for different time lags (Vlahogianni et al.
2014). Lippi et al. (2013) point out that it is often difficult to compare them because
of their heterogeneous setup. The applied methods are ranging from classical
parametric solutions like autoregressive statistics for time series (ARIMA) (Box,
Jenkins 1976) (Williams and Hoel 2003), k-Nearest neighbors on historic data sets
(Leonhardt and Steiner 2012), Bayesian networks (Sun et al. 2006) to
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non-parametric predictions by support vector machines (SVM) (Lippi et al. 2013)
or artificial neural networks (ANN) (Liu et al. 2006).

In recent years ANNs have become popular again due to the hype around the
term “Deep Learning”. Complex deeply nested architectures are now computable
on most modern machines. Thus, a growing research activity in using these net-
works for traffic forecasting can be noted. Because of their underlying algorithms
ANNs are very good in detecting non-linear patterns e.g. like irregular traffic
congestion. This is why they are regarded as to be superior against model-driven
approaches. Two popular types of ANNs are Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN). CNNs are designed to extract
features from the input data using kernel functions. They operate well on fuzzy data
such as images. RNNs are able to learn sequences in data, which makes them
interesting for prediction use cases.

RNNs seem like a good fit for traffic forecasting and have been used by Liu et al.
(2006) and Zeng and Zhang (2013). Because RNNs can only operate on a rather
small sequence Hochreiter and Schmidhuber (1997) created the Long Short Term
Memory (LSTM) ANN which uses internal filters (called “gates”) to reduce the
learning overhead that occurs in “simple” RNNs. So far, not many efforts have been
made to use LSTMs for traffic forecasting (Ma et al. 2015). In the work of Zhang
et al. (2017) an LSTM has been coupled with a CNN. The CNN would extract
patterns such as traffic congestion from heat maps and the LSTM would learn how
the patterns evolve.

Many studies have also proven the relevance of a spatial dimension to improve
the accuracy of the predictions. The idea is to not only look at the historic values of
the target sensor but also to incorporate data from all other sensors filtered by a
spatial weight matrix to strengthen the relation between neighbours (Kamarianakis
and Prastacos 2005; Cheng et al. 2014). However, in ANN-driven research the
spatio-temporal models are often fallen short in terms of complexity (e.g. freeway
setting, low number of sensors) compared to ARIMA-based approaches. Therefore,
we combine our experiments on FFNNs with ideas from Cheng et al. (2014).

Experimental Setup

Neural Network Architecture

For further description of the network architecture we are using the same naming
convention as in Lipton et al. (2015). We have implemented a FFNN using
Google’s Tensor Flow framework (tensorflow.org). The network consists of one
output layer o and one hidden layer h. The number of input nodes i and output
nodes k is defined by the number of sensors we consider as a valid input source
(98% availability of measurements in the training data set). The number of hidden
nodes j is set to 60 in every training session. For each layer we are using a sigmoid
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activation function l (1) to produce the value v of every neuron (2). The sigmoid
function r zð Þ is a classical nonlinear function and a good choice if we want to
detect nonlinear patterns in our data.

l ¼ r zð Þ ¼ 1
1þ e�z

ð1Þ

vj ¼ lj
X
j0

wjj0 :vj0

 !
ð2Þ

Here j0 stands for nodes that are connected with the hidden neuron j and w is the
weight of edges jj0. The root mean square error (RMSE) is our loss function L ŷk; ykð Þ
whichmodifies the network on each iteration using backpropagation (Rumelhart et al.
1985). The weights between the neurons are adjusted by stochastic gradient descent
(SGD) with a mini batch size of 20 and a learning rate of 0.01. The backpropagation
algorithm subsequently calculates the derivatives of L from output nodes k (3) to
hidden nodes j with respect to their corresponding activation function (4).

dk ¼ @L ŷk; ykð Þ
@ŷk
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j
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 !X

k

dk � wkj ð4Þ

Data Preparation

From the VAMOS data archive we have extracted three month of measurements
from all double induction loops (July to September 2015). We choose this sensor
group as it is most representative for the traffic in Dresden. The loops are installed
only on main roads and with enough distance to traffic lights to avoid noise from
waiting queues. They are detecting the speed, number of cars (occupancy), time on
sensor, length of cars and gaps between cars. All variables are minutely aggregated
and can be zero if there are no cars in one minute. Therefore, we are taking a
50 min moving average (MA) of the time series as input. As for now, we omit time
steps where the input or output vectors contain missing values. In our test case we
had to reduce the number of double induction loops to 59. Still, we got a good
spatial distribution across the city (see Fig. 1).

For our test case we have started with using only the occupancy as input value
which is later normalized to a range between 0 and 1. We generate an input matrix
and a target matrix with the following structure, where each line represents an input
vector to the neural network:

256 F. Kunde et al.



xs1;t0 � � � xsn;t0
..
. . .

. ..
.

xs1;tn � � � xsn;tn

2
64

3
75

xs1;t0þ offset � � � xsn;t0þ offset

..

. . .
. ..

.

xs1;tnþ offset � � � xsn;tnþ offset

2
64

3
75 ð5Þ

Here x stands for the smoothened and normalized occupancy value detected at a
sensor s at time step t where offset can be the occupancy value in the next 5, 10, 15,
30 and 45 min. Our strategy to define neighbours of each sensor is inspired by the
work of Cheng et al. (2013). Only sensors from where traffic can get to the target
within a given time lag are considered. We are using the Isochrone API of the Open
Source routing engine Graphhopper (graphhopper.com/api/1/docs/isochrone/)
which produces a reverse flow isochrone polygon for a given time lag for each
sensor. The intersecting sensors are the neighbours. We do not apply any further
weighting yet as our ANN should be able to learn by itself which neighbours are
having a higher impact for a future state at the target sensor. We make an exception
and take only isochrones for 5 min even for bigger prediction horizons because
10-minute isochrones can already cover great areas of Dresden and, thus, include
many sensors. Moreover, our isochrones are fixed and not dynamic as in Cheng

Fig. 1 Location of sensors selected for training
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et al. (2014). The resulting adjacency matrix has to be applied against the input
matrix.

In the end, we came up with four different input settings to analyse the effect of
including other sensors into our predictions:

• FFNNsimple: Only historic values of the target sensor to predict a future value
• FFNNNN: Only historic values from nearest neighbours excluding the target

sensor
• FFNNNN+: Only historic values from nearest neighbours including the target

sensor
• FFNNall: Historic values from all sensors

We also want to measure possible improvements by including temporal
sequences in the input matrix. Polson et al. (2016) have shown that sequential
information can also be passed to a FFNN by appending the time lags to the matrix
to mimic a RNN. We are also applying this strategy in four additional tests
(mFFNNsimple/NN/NN+/all) using a sequence of m time steps. In our case we choose a
sequence of 5 min, because it correlates with our isochrone radius.

xs1;t0 � � � xsn;t0 xs1;t1 � � � xsn;t1 � � � xsn;tm

..

. . .
. ..

. ..
. . .

. ..
. . .

. ..
.

xs1;tn � � � xsn;tn xs1;tnþ 1 � � � xsn;tnþ 1 � � � xsn;tnþm

2
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3
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..

. . .
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2
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3
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ð6Þ

Training

We train our FFNN with one month of data for July 2015 and test it against the data
sets from August and September 2015. For all eight FFNN architectures we train
each sensor with five different temporal offsets as described above. Theoretically,
around 44,600 time steps (1440 min for 31 days minus the offset) can be fed in as
input. The inputs are selected randomly from the time series.

Results

For evaluating our results, we are using the mean absolute error (MAE) as defined
in (7), which is a common measure in research:

MAE ¼ 1
N

XN
k¼1

ŷk � ykj j ð7Þ

258 F. Kunde et al.



ŷk stands for the predicted value. Table 1 shows an exemplary result for one
sensor. Many aspects seen here also apply to other sensors, e.g. lowest MAE when
including all sensor and sequence information and highest MAE when filtering the
input by the targets nearest neighbours incl. historic values of the target itself.

To fully understand the differences between given time lags, FFNN model and
sensor location we feed our results into a spatial database and visualize them in a set
of maps (see Fig. 2). In Dresden many double induction loops are installed in a
group of four—a sensor on each lane for both sides of the road. Therefore, we style
the layer with the Point Displacement feature of the open source geographic
information system QGIS (qgis.org). In general, the results of all different FFNN
setups are very good. But, we are colouring the sensor locations from green (low
MAE) to red (slightly higher MAE) in order to better spot the differences of the
trained models.

Temporal Dimension

Again, we can see that including nearest neighbours and the target produces the
highest MAEs in our tests. Like the results from Table 1 adding sequence infor-
mation to the input matrix does not have a great beneficial impact on the predic-
tions. Especially for small time lags the result of simple FFNNs are comparable to
the ones with sequences. On the other hand, temporally extended FFNNs are better
for longer prediction horizons.

Spatial Dimension

In contrast to the results of many other papers in the field of spatio-temporal traffic
forecasting, adding neighbourhood information decreased the accuracy in many
cases. It’s obvious that an ANN works best when it is fed with input values of the
whole ground truth, but we did not expect it to be worse than taking only values of
the target (FFNNsingle). Nevertheless, the FFNNNN setup seems to be a superior
choice for greater time lags (>15 min).

Table 1 MAE for different
prediction horizons for one
sensor

FFNN type t5 t10 t15 t30 t45

FFNNsingle 0.5042 0.5743 0.6679 0.9698 1.2970

FFNNNN 0.6255 0.6660 0.7248 0.9831 1.0299

FFNNNN+ 1.7177 1.7157 1.7236 1.7813 1.8928

FFNNall 0.4975 0.4933 0.5262 0.7474 1.0299

mFFNNsingle 0.4324 0.5213 0.6137 0.9360 1.2771

mFFNNNN 0.5616 0.6080 0.6667 0.9231 1.2519

mFFNNNN+ 1.6420 1.6543 1.6862 1.8126 1.9612

mFFNNall 0.3998 0.4086 0.4521 0.6405 0.8684
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Fig. 2 MAEs of all tested sensors for different prediction horizons and different FFNN
architectures
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In the map series of the FFNNsingle tests we notice groups of sensors where two
of them have a low MAE and the other two have a considerably higher error. As
there is no styling rule about which point represents which lane we have to take a
closer look. When zooming in, it can be seen that the predictions for sensors at the
inner side of the road are less accurate (see Fig. 3). The pattern also occurs at other
locations. It probably depends on the selected variable occupancy. The outer lane of
a road has probably a higher and more regular occupancy throughout the day and
night than the inner lane.

The MAE does not only vary for single groups but also across the city. For small
time lags, predictions for loops on the in- and outgoing main roads of Dresden are
more accurate than in the city centre. For longer time windows this pattern is
turning to the opposite. In other words, traffic in the centre, which is probably more
non-linear than on a main road leading to a freeway, is better predictable for FFNNs
trained on bigger temporal offsets. But, these FFNNs work less accurate on linear
traffic patterns compared to FFNNs trained on small time lags.

Discussion and Future Work

Our approach shows the best performance when we apply all available spatial and
temporal information to the neural network. This strengthens the general assump-
tion that neural networks are very good at learning spatio-temporal patterns from a
huge amount of data. As for now, we have only used a rather simple measure—the
MAE—to validate our results. In general, our MAE is very low in all our test runs.
When looking at the average traffic distribution of one sensor over one year (see
Fig. 4) we can see that it follows a quite regular trend (grey area is the standard
deviation). In the morning hours between 5 and 8 o’clock there is a strong increase
of traffic volume. Then the graph follows a valley of moderate traffic density during
the day with a less steep curve. After the evening rush hour the traffic constantly
decreases to a minimum at night. In this example, we can extract five different
rather unique temporal traffic patterns which also occur at many other sensors of our
sample with varying local maxima. Given a small temporal offset of just a few
minutes and the great smoothing of 50 min moving average we produce many

Fig. 3 MAEs of sensors on
different street lanes (same
colour scale as in Fig. 2)
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examples that are very easy to predict. The figure also shows a curve of traffic at
January 1st which is, of course, very different from the yearly average. In our future
work we will focus on how the predictive power of the model will keep up espe-
cially in these situations.

Comparing the prediction with the actual observed value on a time line helps to
understand which periods were easier to predict than others. This is done in Fig. 5
for one week of August 2015 (time 0 = Monday midnight). The solid line repre-
sents the target, the dotted lines are showing the prediction results of 3 different
FFNNs. It can be seen that our predictions come very close to the
real value, especially when the amount of traffic is increasing in the morning and
decreasing in the evening. The FFNN has only problems to predict zero values
during night time and sometimes it over- or underestimates the traffic during the
peak periods. It seems that the FFNN can either not distinguish between the two
rush hour periods or it relies on the patterns learned from the previous month. This
can be solved by adding information about daytime to the input vector.

What is also really interesting to see in Fig. 5 is the ability of the network to
learn the differences between weekends and weekdays. This can be a hint that
filtering the input by a spatial weight matrix introduces a bias that—while being
reasonable in traffic theory—might not be necessary. It would be interesting to see
how other ANN architectures behave given the same input than in our experiments.
Especially, when using RNNs the model complexity and training time will grow
exponentially. Therefore, using a sparse matrix as input can be a mandatory
compromise in order to have a scalable solution. Using FFNNs did not cause any
performance problems. The training and testing of a given FFNN setup for one
sensor only took a few minutes.

Fig. 4 Number of vehicles for one sensor on two wednesdays in 2014. The yellow line depicts
January 1st of 2014 and the blue line shows a typical Wednesday (April 16th of 2014).
Additionally, the grey rectangles visualize the standard deviation for number of vehicles in one
year (occupancy)
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This question would also be essential when installing a continuous learning
where newly detected data is included in cyclic training sessions to adapt to recent
changes in the urban traffic. It needs to be evaluated how long a trained model can
be used for prediction and how often it needs to be updated. If an ITS would react
on behalf of the predictions e.g. by displaying proper messages to drivers through
signs or smartphone apps, it could generate new traffic patterns the ANN hasn’t see
before. This could lead to false predictions and thus frustrated drivers. A regular
training from scratch could produce too much overhead when using complex
ANNs. Srivastava et al. (2014) have suggested a so called Dropout mechanism,
where an existing model is destroyed partly and rearranged in a new training
session with updated inputs.

Conclusion

In this paper we have presented the potential of deep learning on traffic sensor data.
While the usage of neural networks for short-term traffic forecasting had been used
in many different studies most often the spatial dimension is not included or
neglected because of a simplistic training scenario with a low number of sensors.
We are working on a sensor network that is distributed across an entire city.
Therefore, we can see that the accuracy of our predictions is varying by location,
prediction horizon and model selection.

So far, we can make the following statements: (i) Filtering the input by nearest
neighbours puts too much bias into the neural network. Still, such a filtering can be
relevant when testing with more complex ANNs. (ii) Including sequence infor-
mation in the FFNN input generally improves the accuracy, which is why we will
work with RNNs (LSTMs) in the future. (iii) For short-term predictions with small
offsets simple FFNNs already provide very good results. Bigger gaps between
predicted and observed values can sometimes be found for morning peaks and
during nights. (iv) FFNNs trained on short time lags produce a higher error for

Fig. 5 Predicted occupancy (dotted line) versus observed values (osolid line)
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non-linear traffic patterns than FFNNs trained on longer temporal offsets and vice
versa.

It is planned that the developed algorithms (available under: https://github.com/
MAGDa-BeuthHS/dlsd) will be tested against real-time data from the ITS of
Dresden. We also plan to apply our algorithm on historic travel times of network
links. By doing so we should be able to better capture spatio-temporal dynamics.
This also raises the question if a proper traffic and travel time prediction really
requires more FCD from individuals rather than extending the network of static
sensors. We believe that for data privacy reasons it is important to improve algo-
rithms for analysing time series data of anonymous sensor networks.
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