
Chapter 11
Modified Barrier Penalization Method
for Pricing American Options

Miglena N. Koleva and Radoslav L. Valkov

Abstract We propose a modified interior penalization method which is applicable
to different types of American options. Further, we develop an efficient numerical
approach for solving the resulting nonlinear parabolic partial differential problem.
Numerical experiments illustrate the performance of the method.

11.1 Introduction

The pricing of early-exercise securities is important in quantitative finance because
these are the most widely-traded type of instruments on the derivative market.
The American-style option valuation is an illustrative example of an optimal
stopping time problem which could be further formulated as a parabolic variational
inequality.

Let S stand for the underlying asset price process, following a standard geometric
Brownian motion with volatility � and drift equal to the interest rate r while t is the
time to maturity. For computational purposes one must truncate the spatial domain
S 2 Œ0; 1/ and introduce the far field boundary location Smax. We consider pricing
with the following conditions on the parabolic boundary:

V.S; 0/ D V�.S/; V.0; t/ D VL; V.Smax; t/ D VR;

where VL � 0 and VR � 0 are given constants. The American put is a classical
Stefan problem where the payoff is convex, continuous but nonsmooth.
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The option value with maturity T satisfies the parabolic variational inequality, cf.
e.g. [4]

LV.S; t/ WD Vt � 1

2
�2S2VSS � rVS C rV � 0 ? V.S; t/ � V�.S/ in .0; 1/ � Œ0;T/;

which could be written down as the following linear complementarity problem

LCP W
(
LV.S; t/ D � � 0;

V.S; t/ � V�.S/ � 0; LV.S; t/ � .V.S; t/ � V�.S// D 0:

From the complementarity condition

V � V�; � � 0; � � .V.S; t/ � V�.S// D 0

we infer for the Lagrange multiplier

� D max
�
0; � C ��1.V� � V/

�
(11.1)

for any sufficiently small (penalty) parameter � > 0. Thus, we get to solve the
following nonlinear equation, equipped with the complementarity condition and
drawing analogies with the augmented Lagrangian method:

LV.S; t/ � max
�
0; � C ��1.V� � V/

� D 0:

Superimposing infinite penalty when violating the constraint V.S; t/ � V�.S/ � 0

we may embed the LCP [1] in the family of the nonlinear equations

LV�.S; t/ � max
�
0; ��1.V� � V�/

� D 0: (11.2)

The penalty method guarantees in an asymptotic sense the fulfilment of constraints
by including in the objective function an additional penalty term. If we consider the
upper bound on the multiplier �max we may state the following approximation, see
[4]:

LV�.S; t/ � max
�
0; �max C ��1.V� � V�/

� D 0:

There are, however, some issues with this approach since the early exercise
constraint is not strictly satisfied by the solution for fixed small � while the penalty
term is nonsmooth and unbounded. The following interior approximation aims to
tackle these drawbacks with C � rK for pricing the American put, cf. [6, 11],

LV�.S; t/ � �C

V� C � � .K � S/
D 0 (11.3)
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where the general interior penalty method, applicable to any type of payoff, is

LV�.S; t/ � �C

V� C � � V� D 0: (11.4)

Zhang and Wang [14] prove convergence of the penalized solution V� to the
solution of the underlying variational inequality V . However, a major issue with this
approach is its dependence on � and some vague parameter C, resulting in overall
lower accuracy and more Newton iterations per time level.

We therefore consider modifying this interior barrier method in order to enhance
the performance [8]. Let us set up the fully-discrete LCP in order to present our
considerations in a clear and concise manner. First, by the method of lines, we define
a smooth nonuniform spatial grid and approximate the spatial derivatives by second-
order finite difference formulas. After backward Euler time discretization with step
�t we have to solve the following discrete linear complementarity problem for Un 2
R

m�1

(
.I � �tA/Un D Un�1 C �tg C �t�n

�n � 0; Un � U0; �n � �
Un � U0

� D 0;

where A 2 R
.m�1/�.m�1/ stands for the spatial discretization matrix, g 2 R

m�1 is the
boundary information (assuming Dirichlet conditions on the elliptic boundary) and
�n 2 R

m�1 is the nonnegative auxiliary (multiplier) vector which satisfies

�n D max

�
0; �n C 1

�t
.U0 � Un/

�
: (11.5)

The solution Un of the discrete LCP is the saddle point of the Lagrange functional

�.Un; �n/ D 1

2
.I � �tA/Un � Un � bn �Un � �t�n � .Un �U0/; bn WD Un�1 C �tg:

Let us now observe the following equivalence [12]

Un � U0 � 0 , � log
�
1 C ��1.Un � U0/

� � 0

and further we shall modify the Lagrange functional accordingly

�.Un; �n/ D 1

2
.I � �tA/Un � Un � bn � Un � �t�n � .� log

�
1 C ��1.Un � U0/

�
/:

From the Karush-Kuhn-Tucker conditions we get the discrete LCP:

(
.I � �tA/Un � �t�n �

Un�U0C�
D bn

�n � 0; Un � U0; �n � �
Un � U0

� D 0:
(11.6)
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As a matter of fact, if we consider the fairly rough estimate for the multiplier �n �
rK in the put case we get the discrete interior penalty method (11.4):

.I � �tA/Un � �t
rK�

Un � U0 C �
D bn:

SubstitutingU0 D max.K�S; 0/ with K�S as in Eq. (11.3) is a band-aid for the case
of put option to fix the accuracy and minimize the penalty term in the continuation
region where S > K, far away from the free boundary.

11.2 The Finite Difference Method

There are many papers using the penalty method for solving American options, see
[1, 2, 5–7, 9–11, 14]. In this section we present a simplified version of barrier penalty
method (11.6), introduced in Sect. 11.1.

We consider the penalized problem which approximates the LCP for some
sufficiently small positive parameter �

V�
t � 1

2
�2S2V�

SS � rSV�
S C rV� � g.S;V�/ D 0; .S; t/ 2 .0; Smax/ � Œ0;T/;

V�.S; 0/ D V�.S/; V�.0; t/ D VL; V�.Smax; t/ D VR

(11.7)

with the penalty term

g.S;V�/ D ��

V� C � � V� : (11.8)

For given integers m and N we define �t D T=N; tn D n�t and the nonuniform
spatial grid

! D fS0 D 0; SiC1 D Si C hi; i D 0; : : : ;m � 1; Sm D Smaxg;

where the discrete solution, computed on the mesh ! is denoted by Un
i D V�.Si; tn/.

Let us now write down the considered finite difference approximations of the first
derivative for hi D SiC1 � Si; „i D 0:5.hi C hi�1/

.ULS/
n
i D Un

iC1 � Un
i

hi
; .UOS/

n
i D Un

i � Un
i�1

hi�1

; .UVS/
n
i D hi�1ULS

n
i C hiUOS

n
i

2„i
;

where .ULS/ni ; .UOS/ni are of first order and .UVS/
n
i of second on a smooth grid. The

second derivative is further approximated as

.USS/
n
i D �

.ULS/
n
i � .UOS/

n
i

�
=„i:
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After backward Euler time discretization of (11.7), (11.8) and application of the
maximal use of central differencing with flag � WD H.�2Si � rhi/ (H stands for the
Heaviside function), see Wang and Forsyth [13], we get the following system of
nonlinear equations for n D 0; : : : ;N and i D 2; : : : ;m � 1:

LhUnC1
i � ��i

UnC1
i C � � U0

D 0;

U.0; tnC1/ D VL; U.Sm; tnC1/ D VR; U.Si; 0/ D U0.Si/ D V�.Si/; (11.9)

LhUn
i WD UnC1

i � Un
i

�t
� �2S2

i

2
.USS/

n
i � rSi

�
�.UVS/

n
i C .1 � �/.ULS/

n
i

�
C rUn

i :

Next, on the base of (11.1), (11.5) we set the simple version of �:

�i D maxf0;LhU0
i g; i D 1; : : : ;m � 1: (11.10)

Numerical experiments show that with this choice of � we attain similar precision
as with �n, computed by (11.5), but for smaller computational cost.

We find the solution UnC1 by initiating a Newton’s iteration process with initial
guess U.0/ D Un, where the Newton increment on the .k C 1/th step �.kC1/ D
U.kC1/ � U.k/ is the solution of the following tridiagonal system of linear equations

� Ai�
.kC1/
i�1 C C.k/

i �
.kC1/
i �Bi�

.kC1/
iC1

(11.11)

D Un
i C AiP

.k/
i�1 � eCiU

.k/
i C BiU

.k/
iC1 C F.k/

i ;

where A0 D Am D B0 D Bm D 0, C.k/
1 D C.k/

m D 1, F.k/
1 D VL, F.k/

m D VR and

Ai D Si�t
2„ihi�1

�
�2Si � �rhi

�
; Bi D Si�t

2„ihi

�
�2Si C �rhi�1

� C .1 � �/ rSi�t
hi

;

C.k/
i D eCi C ��i�t

.U
.k/
i C��U0

i /2
; eCi D 1 C Ai C Bi C r�t; F.k/

i D ��i�t

U
.k/
i C��U0

i

;

The iteration process is terminated when reaching the desired tolerance i.e. we set
UnC1 WD U.kC1/ when max

i
fj�.kC1/

i j=.maxf1;U.kC1/
i g/g < tol.

At each iteration k, in view of the definition of �, the coefficient matrix M.k/ D
tridiagŒ�Ai;C

.k/
i ; �Bi�, being strictly diagonally dominant and Ai;C

.k/
i ;Bi > 0 it is

an M-matrix.

Theorem 11.1 The approximate option value Un
i , obtained by the scheme (11.9),

(11.10) satisfy

Un
i � U0

i ; i D 0; : : : ;m; n D 0; : : : ;N:
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Proof We follow the same line of consideration as in [11]. Rewrite the scheme
(11.9), (11.10) in the following equivalent form

.1CAi CBi C r�t/UnC1
i �BiU

nC1
iC1 �AiU

nC1
i�1 D Un

i C ���t

UnC1
i C � � U0

: (11.12)

Let wn
i D Un

i � U0
i . Thus, from (11.12) we obtain

.1CAiCBiCr�t/wnC1
i �Biw

nC1
iC1 �Aiw

nC1
i�1 D wn

i C ���t

wnC1
i C �

��tLhU0
i : (11.13)

Define wnC1 D min
i

wnC1
i and let j be an index, such that wnC1

j D wnC1. For i D j,

from (11.13) we have

.1 C Ai C Bi C r�t/wnC1 � wn
j C Biw

nC1 C Aiw
nC1 C ���t

wnC1
j C �

� �tLhU0
j

and therefore

.1 C r�t/wnC1 � wn
j C ���t

wnC1
j C �

� �tLhU0
j :

Rearranging the above inequality, we obtain

.1 C r�t/wnC1 � ���t

wnC1 C �
C �tLhU0

j � wn
j � wn:

We use induction method on n: taking into account that w0 � 0, assume that wn � 0

and prove wnC1 � 0. Now we have

F .wnC1/ � 0; where F .w/ WD .1 C r�t/w � ���t

w C �
C �tLhU0

i :

Observe that

F .0/ D ��t.� � LhU0
i / D �t.LhU0

i � maxf0;LhU0
i g/ D

�t

�
0; if LhU0

i � 0;

LhU0
i ; if LhU0

i < 0;
i.e. F .0/ � 0:
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Further, from

F 0.w/ WD 1 C r�t C ���t

.w C �/2
� 0

and F .wnC1/ � 0 we conclude that wnC1 � 0.
For the discrete scheme (11.9), (11.10) we develop a two-grid algorithm TGA

[7].
Let us define two non-uniform spatial grids—a coarse mesh !c and a fine grid

!f

!c D fS0 D 0; SiC1 D Si C hci ; i D 1; : : : ;mc � 1; Smc D Smaxg;
! f D fS0 D 0; SiC1 D Si C h f

i ; i D 1; : : : ;mf � 1; Smf D Smaxg;

where mf � mc and the discrete solution, computed on the mesh !� is denoted by
Un

i;� D U.Si; tn/.

Algorithm 2 (TGA)
At each time level n D 0; 1; : : : we perform the two steps:

1: Set U.0/
c WD Un

c and compute UnC1
c by (11.9), (11.10) through Newton’s iterations (11.11) on

the coarse mesh !c.
2: Set U.0/

f WD I.UnC1
c /, where I.Uc/ is the interpolant of Pc on the fine grid, perform only one

Newton’s iteration (11.11) on the fine mesh !f and get UnC1
f .

11.3 Numerical Experiments

We consider an American butterfly option with the payoff

V�.S/ D maxfS � K1; 0g � 2 maxfS � Kg C maxfS � K2; 0g;

where K1, K D .K1 C K2/=2, K2 are the strikes and VL D VR D 0. The model
parameters are: K1 D 90, K2 D 100, � D 0:2, r D 0:1, � D 1:e�6. We will test the
relevance of the modified penalty method (11.9), (11.10) and the accuracy, order of
convergence and efficiency of the constructed TGA.

The linearized system (11.11) is solved by BiConjugate gradients stabilized
method using preconditioning with upper and lower triangular matrix. For stopping
criteria, we chose tolD1.e�6.
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In the computational domain for Smax D 200, we use a smooth non-uniform grid,
cf. in ’t Hout et al. [3]—uniform inside the region ŒSl; Sr� D Œ1=2K; 3=2K�, and
non-uniform outside with stretching parameter c D K=10:

Si WD 	.
i/ D
8<
:
Sl C c sinh.
i/; 
min � 
i < 0;

Sl C c
i; 0 � 
i � 
int;

Sr C c sinh.
i � 
int/; 
int � 
i < 
max:

The uniform partition of Œ
min; 
max� is defined through 
min D 
0 < � � � < 
M D

max:


min D sinh�1

��Sl
c

�
; 
int D Sr � Sl

c
; 
max D 
int C sinh�1

�
Smax � Sr

c

�
:

Example 11.1 (Early Exercise Constraint) We compare the different penalty
methods—interior penalty (11.3), exterior penalty (11.2) and modified barrier
penalty (11.8), (11.10) in maintaining the condition V� < U. On Fig. 11.1 we plot
the corresponding solutions at T D 1 and payoff, while on Fig. 11.2 we plot the
difference Un � V� for exterior penalty (11.2) and modified penalty (11.8), (11.10).
We observe that for butterfly option, only with modified barrier penalty (11.8),
the numerical solution satisfy the early exercise constraint. Thus, the statement of
Theorem 11.1 is verified.

Example 11.2 (One-Grid Computations) We perform computations only on one
mesh !, i.e. step 1 of TGA with time steps �t D h and �t D h2, h D min

i
hi.

The results are listed in Tables 11.1 and 11.2. We give the values of the solution
at strike points K1 and K at final time T, diff—the absolute value of the difference
in the solution from the coarser grid, CR—computed as log2 from the ratio of the
changes on successive grids, iter—the averaging number of iterations k at each time
level and CPU time (in seconds). We observe that the order of convergence in space
at strike points is closed to two and the computational process is more efficient for
smaller time step.

Example 11.3 (TGA) For the numerical tests, we set �t D h f , �t D .h f /2,
h f D min

i
h f
i and mf D .mc/

2=Smax, i.e. h f D .hc/2 in the case of uniform

meshes. The results are given in Tables 11.3 and 11.4. We observe that the order
of convergence on the coarse mesh, tested at strike points K1 and K is closed to four,
i.e. O.�tCjhcj4 Cjh f j2/, jhj D max

i
hi. Also, the TGA accelerate the computational

efficiency. Comparable values of the solution in Tables 11.1, 11.2, 11.3, and 11.4 are
highlighted.
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Fig. 11.2 Un � V�, Left: exterior penalty (11.2); Right: modified penalty (11.8)

Table 11.1 Values of U.K1; T/, U.K; T/ D 10 C eU.K; T/, convergence rate (CR), averaging
number of iterations (iter) and CPU time, one-grid computations, �t D h

m U.K1; T/ diff CR eU.K; T/ diff CR iter CPU

400 6:70216 5.3352e�7 10 0:05

800 6:90697 2.048e�1 5.7003e�7 3.99e�8 10 0:09

1600 7:00017 2.980e�1 9.8146e�7 4.10e�7 9:54 0:23

3200 7:05562 5.545e�2 2.426 1.1000e�6 1.20e�7 1:773 7:46 0:56

6400 7:08314 2.752e�2 1.011 1.1481e�6 4.81e�8 1:319 5:77 1:44

12;800 7:09683 1.370e�2 1.006 1.1750e�6 2.69e�8 0:839 4:39 3:85

25;600 7:10366 6.831e�3 1.004 1.1886e�6 1.35e�8 0:986 3:49 11.91

51;200 7.10706 3.401e�3 1.006 1.1944e�6 5.75e�9 1:241 2:99 47.72

102;400 7:10877 1.707e�3 0.995 1.1966e�6 2.23e�9 1:364 2:57 208:75

204;800 7.10962 8.548e�4 0.998 1.1975e�6 8.58e�10 1:378 2:27 1175.56

Table 11.2 Values of U.K1; T/, U.K; T/ D 10 C eU.K; T/, convergence rate (CR), averaging
number of iterations (iter) and CPU time, one-grid computations, �t D h2

m U.K1; T/ diff CR eU.K; T/ diff CR iter CPU

400 6:95822 1.0960e�6 7:35 0:08

800 7:07028 1.121e�1 1.1724e�6 7.63e�8 4:47 0:26

1600 7:10047 3.019e�2 1:892 1.1918e�6 1.94e�8 1:977 3:28 0:93

3200 7:10797 7.505e�3 2:008 1.1967e�6 4.97e�9 1:963 2:60 4:49

6400 7.10985 1.880e�3 1:997 1.1978e�6 1.09e�9 2:190 2:17 23.31

12;800 7:11032 4.696e�4 2:001 1.1980e�6 2.14e�10 2:350 2:03 143:96
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Table 11.3 Values of U.K1; T/, U.K; T/ D 10 C eU.K; T/, convergence rate (CR), averaging
number of iterations (iter) and CPU time, two-grid computations, �t D .h f /

mc mf U.K1; T/ diff CR eU.K; T/ diff CR iter CPU

400 800 6:90690 1.0501e�6 7:83 0:18

800 3200 7:05559 1.49e�1 1.1623e�6 1.10e�7 4:72 0:36

1600 12;800 7:09682 4.12e�2 1:855 1.1885e�6 2.85e�8 1:949 3:39 2.53

3200 51;200 7.10706 1.02e�2 2:014 1.1960e�6 7.51e�9 1:925 2:73 30.82

6400 204;800 7.10962 2.56e�3 1:994 1.1977e�6 1.65e�9 2:189 2:25 538.10

Table 11.4 Values of U.K1; T/, U.K; T/ D 10 C eU.K; T/, convergence rate (CR), averaging
number of iterations (iter) and CPU time, two-grid computations, �t D .h f /2

mc mf U.K1; T/ diff CR eU.K; T/ diff CR iter CPU

400 800 7:07020 1.1782e�6 5:77 0:38

800 3200 7.10795 3.77e�2 1.1978e�6 1.96e�8 3:74 6.94

1600 12;800 7:11032 2.37e�3 3:992 1.1985e�6 6.71e�10 4:868 2:58 203:55

11.4 Conclusions

In contrast to the interior (11.3) and exterior (11.2) penalty methods, the modified
penalty method guarantees that the solution always satisfy the early exercise
constraint, independently of the type of the option.

The two-grid algorithm attains fourth order convergence in space on the coarse
mesh. We observe very fast performance of the presented TGA, independently
of the choice of the time step size. One and the same accuracy as with one-grid
computations, can be obtained by TGA, saving computational time.
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