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Abstract The core target of this chapter is numerical analysis and computing of
novel finite difference methods related to several different option pricing models,
including jump-diffusion, regime switching and multi-asset options. A special
attention is paid to positivity, consistency and stability of the proposed methods. The
consideration of jump processes leads to partial integro-differential equation (PIDE)
for the European option pricing problem. The problem is solved by using quadrature
formulas for the approximation of the integrals and matching the discretization of
the integral and differential part of the PIDE problem. More complicated model
under assumption that the volatility is a stochastic process derives to a PIDE
problem where the volatility is also an independent variable. Such a problem
is solved by introducing appropriate change of variables. Moreover, American
options are considered proposing various front-fixing transformations to treat a free
boundary. This free boundary challenge can be treated also by a recent rationality
parameter approach that takes into account the irrational behavior of the market.
Dealing with multidimensional problems the core difficulty is the appearance of
the cross derivative terms. Appropriate transformations allow eliminating the cross
derivative terms and reduce of the computational cost and the numerical instabilities.
After using a semidiscretization approach, the time exponential integration method
and appropriate quadrature integration formulas, the stability of the proposed
method is studied independent to the problem dimension.

10.1 Introduction

This chapter deals with numerical analysis and computing of novel finite difference
methods related to several option pricing models that correct the lack of adaptability
of the classic Black-Scholes (BS) model to the reality of the market. As the best
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model may be wasted with a disregarded analysis, we will pay attention to important
issues such as consistency and stability of the proposed methods.

Dealing with prices, the guarantee of positivity of the numerical solution is a
necessity that will be always considered here. After the 2008 financial crisis, the
multidimensional option pricing problems became more relevant for both market
industries and academia claiming for comfortable methods that be quick and reliable
at the same time.

In Sect. 10.2, we consider finite difference methods for solving partial integro-
differential equations (PIDEs) related to a wide class of Lévy processes introducing
jump processes in the changes of the underlying assets. The consideration of jump
processes motivates the appearance of the integral part of the PIDE. In Sect. 10.2.1,
we solve the problem by introducing quadrature formulas for the approximation of
the integrals and matching the discretization of the integral and differential part of
the PIDE problem. Sect. 10.2.2 assumes that the volatility is a stochastic process
deriving to a PIDE problem where the volatility is also an independent variable.

In Sect. 10.3, for dealing with American option pricing problems we follow
the front-fixing approach initiated by [40] adding the numerical analysis in the
numerical treatment of the problem and another transformation of the original PDE
problem. To our knowledge we are the first users of the front-fixing method for
regime-switching models fitting better the changing reality of the market.

Section 10.4 incorporates the rationality parameter approach recently proposed
by [30] having the relevant issue that American option pricing problems can be
approximated by solving a PDE instead of partial differential inequalities. This
approach takes into account the irrational behavior of the market.

Section 10.5 addresses the challenge of the dimensionality. Firstly, in Sect. 10.5.1
the elimination of the cross derivative terms of the multidimensional PDE by
using appropriate transformations allows the reduction of the computational cost
and the numerical instabilities. After using a semidiscretization approach, the time
exponential integration method and appropriate quadrature integration formulas, the
stability of the proposed method is studied independent to the problem dimension.

10.2 Solving PIDE Option Pricing Using Finite Difference
Schemes

The financial markets show that the underlying assets do not behave like a Brownian
motion with a drift and a constant volatility. This fact motivates the emergence of
alternative models to the pioneering Black-Scholes model [3]. Alternative models
are stochastic volatility [35], deterministic volatility [17], jump diffusion [46, 64]
and infinite activity Lévy models. Jump diffusion and Lévy models are characterized
by a partial integro-differential equation (PIDE). This PIDE involves two major
parts, namely, the differential part as in the Black-Scholes model and the non-local
integral part due to the assumption of having assets with jumps. The option pricing
under jump diffusion has been studied using the double discretization [7] and the
integral term is approximated using the trapezoidal rule.
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In this section, we propose positive stable and consistent methods to solve a
wide class of infinite activity Lévy models using Gauss-Laguerre quadrature for
approximating the integral part. Furthermore, the Bates model that incorporates both
stochastic volatility and Jump diffusion is studied.

10.2.1 Solving PIDE for a Wide Class of Infinite Activity Lévy
Processes

One of the most relevant and versatile Lévy models is the one proposed by Carr et
al. the so called CGMY [6], that belongs to the family of KoBoL models [4]. Apart
from these models, other Lévy processes such as Meixner [44, 57], Hyperbolic and
Generalized Hyperbolic (GH) are used to obtain better estimation for the stock
returns [56]. The Meixner process was introduced in 1998, it is used when the
environment is changing stochastically over the time showing a reliable valuation
for some indices such as Nikkei 225 [57].

The option pricing partial integro-differential equation (PIDE) unified model for
several Lévy measures �.y/, given by [14, Chap. 12]
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C .S; 0/ D f .S/ D .S � E/C; S 2 .0; 1/; (10.2)

C .0; �/ D 0I lim
S!1C .S; �/ D Se�q� � Ee�r� ; (10.3)

where C is the value of a contingent claim, S is the underlying asset and � D T � t
is the time to the maturity. The Lévy measures �.y/ are given in Table 10.1.
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Note that the Hyperbolic process is obtained from the GH process when ˇ D 0

and � D �1.
The KoBoL model and in particular the CGMY, see Table 10.1 with parameter

C� D CC, has been widely studied because its versatile and includes the finite and
infinite activity cases as well as the finite and infinite variation, obtained by changing
the value of Yor parameter Y < 2. A fairly complete revision of the methods used
to solve the CGMY model can be found in [9, 15, 53, 65].

In this study we focus on the numerical analysis of the unified model (10.1)–
(10.3) for the European case, by proposing a consistent, explicit and conditionally
positive and stable finite difference scheme while the integral part is approximated
using Gauss-Laguerre quadrature formula. We also include the computation of the
linear complementarity problem (LCP) for the American option case using both
the projected successive over relaxation method (PSOR) and the multigrid method
(MG). The discretization for the differential operator is done using the three-level
approximation, while the integral part is discretized as the same as in the European
case. So, the integral part of the PIDE operator for the American and European
cases is discretized using the Gauss-Laguerre quadrature. Although the three-level
method is widely used and it is argued that the approximation error is of order two,
however such method has two unsuitable properties, in fact as the method needs the
first time step that must be obtained using another method (usually by implicit Euler
method), in practice the accuracy is reduced.

Let us begin by transforming the PIDE (10.1) into a simpler one. Since the kernel
of the integral in (10.1) presents a singularity at y D 0, a useful technique is to split
the real line, for an arbitrary small parameter " > 0, into two regions ˝1 D Œ�"; "�

and ˝2 D Rn˝1, the complementary set of ˝1 in the real line. The integral on ˝1

is replaced by a suitable coefficient in the diffusion term of the differential part of
(10.1) obtained by Taylor expansion of V.Sey; �/ about S, see [9, 15, 53, 65]. This
coefficient depending on " is a convergent integral and takes the form

M�2."/ D
Z "

�"

�.y/.ey � 1/2dy D "

Z 1

�1

�."	/.e"	 � 1/2d	: (10.4)

The resulting approximating PIDE is given by
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The convergent integrals (10.4) and (10.6) are evaluated using Gauss quadrature
approximation. In order to obtain an approximation for M�2."/, the Gauss-Legendre
quadrature approximation is used, so the weighting function w.	/ D 1 such that

M�2."/ � "

MX
mD1

!m�."	m/.e"	m � 1/2; (10.7)

where 	m are the roots of the Legendre polynomial PM.	/ of degree M and !m

is calculated based on [1, Eq. (25.4.29), p. 887]. Here M is chosen to be an even
number so that zero is not a root of PM . The improper integrals �."/ and 
."/ are
approximated using the shifted Gauss-Laguerre quadrature [19, p. 226]. Note that
under change of variables � D �y � " for y < 0 and � D y � " for y > 0 then �."/

and 
."/ have the following forms
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From (10.8), (10.9) and since the weighting function is w.�/ D e��, then we have
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Here �m are the roots of the Laguerre polynomial LM.�/ of degree M and the
weighting function $m is given in [1, Eq. (25.4.45), p. 890].

Coming back to (10.5) in order to eliminate the convection and reaction terms,
using the transformation defined by

x D expŒ.r � q � 
."//��S; V.x; �/ D expŒ.r C �."//��C .S; �/; (10.11)

one gets
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with the initial and boundary conditions

V.x; 0/ D f .x/ D .x � E/C (10.13)

V.0; �/ D 0I lim
x!1V.x; �/ D e�."/� .xe
."/� � E/: (10.14)

Next, for the sake of convenience in the numerical treatment we rewrite the integral
part of (10.12) as follows

Z
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Z 1

�1
O�.y/V.xey; �/dy; (10.15)

where
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After that, in order to match the interval of the integration with the spatial domain
of the problem, we use the following substitution 	 D xey into (10.15), obtaining
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Hence the PIDE for the European option under Lévy model, takes the following
form
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Now, we are in a good situation to construct an efficient explicit numerical scheme
for the transformed problem (10.18) after choosing our numerical domain Œ0; xmax��
Œ0;T� for large enough value of xmax. For the time discretization, we take �n D nk;
n D 0; 1; : : : ;N� where k D T

N�
and the spatial variable x is discretized by xj D jh,

j D 0; 1; 2; : : : ;Nx, h D xmax
Nx

.
Since the Laguerre-Gauss quadrature will be used for approximating the integral

part of (10.18), then we have the sequence of roots f	mgMmD1 of the Laguerre
polynomial LM.	/. The suitable value for M is selected such that E < 	M < xmax.

By using explicit forward approximation for the time derivative of V and the
central difference approximation for second spatial derivative, one gets
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In order to approximate the integral part of (10.18) matching the discretization of
the integral and differential parts, taking into account that zeroes of Laguerre poly-
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nomial do not need to be nodes of the mesh, we use linear Lagrange interpolation
polynomial. For any m, 1 � m � M, let us denote by `m the last integer such that
the mesh point x`m < 	m. The approximating value Vn.	m/ is given by

Vn.	m/ D Qa`mV
n
`m

C Oa`mV
n
`mC1; (10.20)

where the interpolation coefficients are

Qa`m D .x`mC1 � 	m/

h
I Oa`m D .	m � x`m/

h
: (10.21)

Note that the linear interpolation approximation (10.20) has an error of order
O.h2/ that coincide with the associated error of the central approximation of the
spatial derivative (10.19). Hence the discretization for the integral part is given by
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Summarizing, from (10.19) to (10.22), the discretization of (10.18) with (10.13)
and (10.14) takes the form
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(10.23)
1 � j � Nx � 1; 0 � n � N� � 1; where

˛j D k

2h2
O�2x2

j ; ˇj D 1 � 2˛j; (10.24)

satisfying

V0
j D .xj � E/C; Vn

0 D 0; Vn
Nx

D e�."/�n.xmaxe

."/�n � E/: (10.25)

In what follows, we state that the solution is conditionally positive and stable. The
proof of this statement and consistency of the scheme can be found in [28].

Theorem 10.1 The numerical solution fVn
j g of the scheme (10.23)–(10.25) is

nonnegative under the condition.

k

h2
� 1

O�2x2
max

: (10.26)

Based on Von Neumann approach, the stability of the numerical scheme (10.23)
has been studied and summarized in the following theorem.
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Theorem 10.2 Under the positivity condition (10.26), the numerical scheme
(10.23) for (10.18) is conditionally stable see [29].

The objective of the first example is to exhibit the importance of the positivity
condition (10.26) for the three studied Lévy models.

Example 10.1 Here, we have an European option with E D 30, T D 0:5, r D 0:08,
q D 0, � D 0:2, xmin D 0, xmax D 90, M D 15, " D 0:5 and Nx D 128. The
parameters for Lévy models are given in Table 10.2.

Figures 10.1, 10.2, and 10.3 display the behavior of the option price C evaluated
by the proposed explicit scheme when the positivity condition (10.26) holds for
N� D 25e3 and when it is broken for N� D 1e3 represented by the solid and dot
curves respectively under several Lévy processes.

The aim of the next example is to show the variation of the error for the Variance
Gamma VG model as the stepsizes h and k change. The VG is obtained from the
CGMY model when Y D 0, the reference option values for S D f20; 30; 40; 50g are
obtained using the closed form solution given in [45].

Table 10.2 The parameters
for Lévy models used in
Example 10.1

Model Parameters

CGMY C D 0:5, G D 15, M D 25 and Y D 1:2945

Meixner A D 0:5, a D �2:5 and b D 8

GH ˛ D 4, ˇ D �3:2, ı D 0:4775 and � D 2
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Fig. 10.1 About positivity condition of the explicit scheme under CGMY process
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Fig. 10.3 The effect of positivity condition on the option price under GH process



180 R. Company et al.

Table 10.3 Errors and convergence rates for the VG model for several values of Nx

S 20 30 40 5 CPU

Nx AE ˛ AE ˛ AE ˛ AE ˛ in s

32 8.909e � 4 � 1.926e � 3 � 3.742e � 3 � 4.386e � 3 � 1:84

64 2.409e � 4 1.89 5.335e � 4 1.85 1.022e � 3 1.87 1.181e � 3 1.89 4:63

128 6.363e � 5 1.92 1.413e � 4 1.92 2.710e � 4 1.91 3.053e � 4 1.95 10:85

256 1.552e � 5 2.04 3.698e � 5 1.93 6.952e � 5 1.96 7.603e � 5 2.01 18:99

Table 10.4 Errors and convergence rates for the VG model for various values of N�

S 20 30 40 50 CPU

N� AE ˇ AE ˇ AE ˇ AE ˇ in s

1.2e3 2.161e � 4 � 4.790e � 4 � 9.243e � 4 � 1.151e � 3 � 4:06

2.4e3 1.154e � 4 0.91 2.552e � 4 0.89 4.883e � 4 0.92 6.049e � 4 0.93 7:28

4.8e3 5.883e � 5 0.97 1.304e � 4 0.94 2.519e � 4 0.95 3.072e � 4 0.98 12:65

9.6e3 2.916e � 5 1.02 6.462e � 5 0.96 1.288e � 4 0.97 1.489e � 5 1.04 20:37

Example 10.2 Consider an European option under the VG process with parameters
E D 30, T D 0:5, r D 0:1, q D 0, � D 0:25, C� D CC D 11:718, G D 15 and
M D 25, xmin D 0, xmax D 90, M D 15, " D 0:35.

Table 10.3 reveals the variation of the absolute error (AE) as h changes as well
as the spatial numerical convergence rate ˛ and the CPU time while N� D 4:5e3 for
the explicit scheme (10.23). The change of the error due to the variation of N� , its
convergence rate ˇ and the elapsed time are shown in Table 10.4 while Nx D 128.

10.2.2 Positive Finite Difference Schemes for Partial
Integro-Differential Option Pricing Bates Model

The Bates model is considered one of the effective mathematical models that has
ability to describe the behavior of real markets of options usually of complex types
for instance, currency options. In the Bates model, the Heston stochastic volatility
model [35] and the Merton jump-diffusion model [46] are combined to describe the
behavior of the underlying asset S and its variance � [2]. The PIDE for the unknown
option price U.S; �; �/ under Bates model is given by
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(10.27)
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and the density function f .�/ is given by

f .�/ D 1p
2� O��

expŒ� .ln � � �/2

2 O�2
�; (10.28)

where � is the mean of the jump and O� is the standard deviation. For the European
call option we consider the initial condition

U.S; �; 0/ D g1.S; �/ D maxfS � E; 0g; (10.29)

whereE is the strike price. We assume the boundary conditions applied to the Heston
model, see [20], but modified for � D 0 due to the additional integral term appearing
in Bates model. For the boundaries S D 0 and S ! 1 one gets

U.0; �; �/ D 0; lim
S!1

@U

@S
.S; �; �/ D 1: (10.30)

Note that this last condition means a linear behavior of the option price for large
values of S with slope 1 when no dividend payments are considered, q D 0. Based
on that fact, we replace it by the following condition, see [66, Chap. 3, p. 54]

U.S; �; �/ D e�q�S: (10.31)

For � ! 1 and � D 0, the corresponding boundary conditions are imposed as
follows

lim
�!1U.S; �; �/ D S; (10.32)
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U.'; 0; �/ expŒ� .ln ' � ln S � O�/2

2 O�2
�
d'

'
; (10.33)

where ' D S�.
The model (10.28)–(10.33) has two challenges from the numerical analysis point

of view. Firstly, the presence of a mixed spatial derivative term involves the existence
of negative coefficient terms into the numerical scheme deteriorating the quality of
the numerical solution such as spurious oscillation and slow convergence, see the
introduction of [70]. Secondly, the discretization of the improper integral part should
be adequate with the bounded numerical domain and the incorporation of the initial
and boundary conditions.

Dealing with prices, guaranty of the positivity of the solution is essential. In
this chapter we construct an explicit difference scheme that guarantees positive
solutions. We transform the PIDE (10.27) into a new PIDE without mixed spatial
derivative before the discretization, following the idea of [10], and avoiding the
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above quoted drawbacks. Furthermore, this strategy has additional computational
advantage of the reduction of the stencil scheme points, from nine [22] or seven
[54] to just five.

We begin this section by eliminating the mixed spatial derivative term of (10.28),
inspired by the reduction of second order linear partial differential equation in two
independent variables to canonical form, see [31, Chap. 3] and [10] for details. Let
us consider the following transformation

x D Q�� ln SI y D �� ln S � �I w.x; y; �/ D e.rC�/�U.S; �; �/; (10.34)

where Q� D p
1 � �2; 0 < j�j < 1, obtaining the following transformed equation
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C I.w/; (10.35)
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w.x C � Q� ln �; y C �� ln �; �/f .�/d�; (10.36)
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2
/; Qı D ��. O � �

2
/ � �.� � �/ and O D r � q � �: (10.37)

For the sake of convenience in the matching of the further discretization of the
differential and integral parts of (10.35), we consider now the substitution

	 D x C � Q� ln �: (10.38)

Hence from (10.29) and (10.36) one gets
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(10.39)
where m D �

Q� . Note that from (10.34), we have y D mx � �.
The initial and boundary conditions (10.29)–(10.33) are transformed into the

corresponding conditions using (10.34) and (10.38).

w.x; y; 0/ D maxfe x
� Q� � E; 0g; lim

x!�1w.x; y; �/ D 0; (10.40)

w.x; y; �/ � exp



x

� Q� C .r � q C �/�

�
; x ! 1; (10.41)

w.x; y; �/ � exp



x

� Q� C .r C �/�

�
; mx � y ! 1; (10.42)
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@w

@�
� � Q� O @w

@x
C .�� O � ��/

@w

@y

C �p
2� O� Q��

Z 1

�1
w.	;m	 � �; �/ exp

"
�1

O�2

�
	 � x

� Q� � �

	2
#
d	; � ! 0:

(10.43)

From [27] a suitable bound for the underlying asset variable S is available and
generally accepted. In an analogous way, considering an admissible range of the
variance �, we can identify a convenient-bounded numerical domain R D ŒS1; S2��
Œ�1; �2� in the S � � plane. Under the transformation (10.34) as it is shown in [10]
the rectangle R is transformed into the rhomboid ABCD see [28]. In light of the
transformation (10.34) we use a discretization of the numerical domain where the
space step sizes h D �x and hy D �y D jmjh are related by the slope m D �

Q� . Here
we subdivide space-time axes into uniform spaced points using

xi D a C ih; 0 � i � Nx; yj D y0 C jjmjh; i � j � Ny C i;
�i;j D mxi � yj; �n D nk; 0 � n � N� ;

(10.44)

where h D b�a
Nx

; y0 D ma � �2, Ny D �2��1jmjh and k D T
N�

. Note that any mesh point
in the computational spatial domain has the form

.xi; yj/ D .a C ih;mxi � �2 C .j � i/jmjh/:

By denoting the approximate value of w at a representative mesh point P.xi; yj; �n/

by Wn
i;j, we implement the center difference approximation for spatial partial

derivatives. On the other hand the improper integral I.w/ (10.39) is truncated into
Œa; b�, then the composite four points integration formula of open type has been
implemented using the same step size for the variable x as in the differential part.
Hence the corresponding finite difference equation for (10.35) is given by

WnC1
i;j D ˇi;jW

n
i;j C Ǫ i;jWn

iC1;j C M̨ i;jWn
i�1;j C ˛i;jW

n
i;j�1 C 
i;jW

n
i;jC1 C O�Jni;j;

(10.45)

1 � i � Nx � 1; i C 1 � j � Ny C i � 1; 0 � n � N� � 1;

where

ˇi;j D 1 � k�2

h2m2 �i;j D .1 � k
h2 Qaij/;

Ǫ i;j D k� Q�
2h

h
.2 Q���h/

2h �i;j C O
i

D k
h .

�2

2h Qaij C Qbij/
M̨ i;j D k� Q�

2h

h
.2 Q��Ch/

2h �i;j � O
i

D k
h .

�2

2h Qaij � Qbij/;
˛i;j D k

2jmjh
h�

�2 Q�2

jmjh C ��

2
� �

�
�i;j � �� O C ��

i
D k

h .
Q�2

2h Qaij � m
jmj Qbij C Qcij/;


i;j D k
2jmjh

h�
�2 Q�2

jmjh � ��

2
C �

�
�i;j C �� O � ��

i
D k

h .
Q�2

2h Qaij C m
jmj Qbij � Qcij/;

(10.46)
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O� D 5kh�

24
p

2� O� Q��
; (10.47)

and the integral part is given by

Jni;j D
Nx=5�1X

`D0

�
11gi;5`C1W

n
5`C1;5`C1Cj�i C gi;5`C2W

n
5`C2;5`C2Cj�i

Cgi;5`C3W
n
5`C3;5`C3Cj�i C 11gi;5`C4W

n
5`C4;5`C4Cj�i

�
; (10.48)

assuming that Nx has been previously chosen as a multiple of 5. The weight function
gi;` is given by

gi;` � g.xi; 	`/ D exp

"
�1

2 O�2

�
	` � xi

� Q� � �

	2
#

; 0 � ` � Nx: (10.49)

The following theorem is established in order to guarantee nonnegative numerical
solutions such that

Theorem 10.3 If stepsizes h and k satisfy

C1. h � min
n

2� Q��i

j2O��ij ;
�2 Q�2�i

2m2j˛�iCˇj ; i D 1; 2
o

C2. k � min
n
m2h2

�2�2
; 2h

3� Q�jOj ;
jmjh
3��

o
,

then the numerical solution fWn
i;jg of the scheme (10.45) is nonnegative.

The numerical scheme (10.45) is written in a matrix form in order to study its
stability, see [28]. It has been shown that under the positivity conditions, the infinite
norm of the vector solution is bounded such that

kWnk1
kW0k1

� exp ..r C � C �1/T/ :

Establishing a conditional strong uniform stable scheme.

Example 10.3 The parameters are selected as follows T D 0:5, E D 100, r D 0:05,
q D 0, � D 0:05, � D 2:0, � D 0:3, O� D 0:35, � D �0:5, � D 0:2 and � D �0:5

with a tolerance error " D 10�4.
The boundary points a and b of the spatial computational domain are obtained

from [28], while �1 D 0:1 and �2 D 1. Table 10.5 shows the variation of the RMSRE
for several values of the time step sizes, for fixed Nx D 70 and Ny D 35, with respect
to reference values computed at .Nx;Ny;N� / D .500; 146; 7000/.

The variation of error due to the change of the spatial step sizes, while N� D 500

has been presented in Table 10.6.
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Table 10.5 The RMSRE for
several values of N�

N� RMSRE Ratio CPU (s)

500 2:485 � 10�3 � 6:66

1000 1:322 � 10�3 1.88 6:94

2000 6:429 � 10�4 2.06 7:28

4000 3:296 � 10�4 1.95 7:69

8000 1:569 � 10�4 2.10 7:91

Table 10.6 The associated
RMSRE for different values
of .Nx;Ny/

.Nx;Ny/ RMSRE Ratio CPU (s)

.40; 20/ 1:526 � 10�2 � 0:32

.60; 30/ 3:459 � 10�3 4.412 1:83

.80; 40/ 9:271 � 10�4 3.371 6:95

.100; 50/ 3:589 � 10�4 2.583 19:64

.120; 60/ 8:473 � 10�5 4.236 46:72

10.3 Front-Fixing Methods for American Option Pricing
Problems

American option pricing problem leads to a free boundary value problem, that is
challenging because one has to find the solution of a PDE that satisfies auxiliary
initial conditions and boundary conditions on a fixed boundary as well as on an
unknown free boundary. This complexity is reduced by transforming the problem
into a new nonlinear PDE where the free boundary appears as a new variable of the
PDE problem.

This technique which originated in physics problems is the so called front-fixing
method based on the Landau transform [41] to fix the optimal exercise boundary
on a vertical axis. The front-fixing method has been applied successfully to a wide
range of problems arising in physics (see Crank [18]) and finance (see [11, 59, 68],
etc.) In this section the front-fixing method combined with the use of an explicit
finite difference scheme avoid the drawbacks of alternative algebraic approaches
since it avoids the use of iterative methods and underlying difficulties such as how
to initiate the algorithm, when to stop it and which is the error after the stopping.

10.3.1 Front-Fixing Methods for American Vanilla Options

First of all, classical Black-Scholes model for American call option (10.50)–(10.53)
is considered. The option price C.S; �/, where � D T � t is the time to maturity,
with constant dividend yield q is the solution of linear PDE of the second order

@c

@�
D 1

2
�2S2 @2C

@S2
C .r � q/S

@C

@S
� rC; S < Sf .�/; 0 < � � T; (10.50)
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supplied with the following initial conditions

C.S; 0/ D max.S � E; 0/; Sf .0/ D Emax

�
r

q
; 1

	
; (10.51)

and the boundary conditions

C.Sf .�/; �/ D Sf .�/ � E; lim
S!1P.S; �/ D 0: (10.52)

Since an additional unknown function Sf .�/ is included in the free boundary
formulation, one extra condition is necessary. This condition is called smooth
pasting condition and requires that the slope of the option price curve at the free
boundary coincides with the slope of payoff function. Thus, for put option it is
presented as follows

@C

@S

�
Sf .�/; �

� D 1: (10.53)

A dimensionless Landau transformation [41] is proposed as follows

x D ln
Sf .�/

S
; c.x; �/ D C.S; �/

E
; sf .�/ D Sf .�/

E
: (10.54)

The spatial variable x transfers the free boundary domain S < Sf .�/ to the
fixed, but unbounded domain .0I 1/. In new coordinates .x; �/ the problem (10.50)–
(10.53) is rewritten in the following normalized form

@c

@�
D 1

2
�2 @2c

@x2
C
�
r � q � �2

2

	
@c

@x
� rc C s0

f

sf

@c

@x
; x > 0; 0 < � � T;

(10.55)

where s0
f denotes the derivative of sf with respect to � . The new transformed equation

(10.55) is a nonlinear PDE on the domain .0; 1/ � .0;T� since sf and its derivative
are involved. The problem (10.55) is solved by explicit FDM.

Further, let us consider American call option problem with another dimensionless
transformation that allows to fix the computational domain as in [68] and to simplify
the boundary conditions like [66, p. 122],

x D ln
Sf .�/

S
; c.x; �/ D C.S; �/ � S C E

E
; sf .�/ D Sf .�/

E
: (10.56)

Using transformation (10.56) the problem (for call option) can be rewritten in
normalized form

@c

@�
D �2

2

@2c

@x2
�
 
r � q � �2

2
C s0

f

sf

!
@c

@x
� rc � qsf e

�x C r; x > 0; 0 < � � T;

(10.57)
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with new initial conditions

sf .0/ D max

�
r

q
; 1

	
; c.x; 0/ D

(
1 � e�x; r � q;

g.x/; r > q;
x � 0; (10.58)

g.x/ D max

�
1 � r

q
e�x; 0

	
: (10.59)

Analytical or closed form solution of the transformed problems (10.55) or
(10.57) does not exist. Therefore explicit and fully implicit FDMs are employed
for constructing effective and stable numerical solution.

The problem (10.57)–(10.59) can be numerically studied on the fixed domain
Œ0; xmax� � Œ0; ��. The value xmax is chosen big enough to guarantee the boundary
condition. The computational grid of M C 1 spatial points and N C 1 time levels is
chosen to be uniform with respective step sizes h and k:

h D xmax
M

; k D T

N
; (10.60)

xj D hj; j D 0; : : : ;M; �n D kn; n D 0; : : : ;N: (10.61)

The approximate value of option price at the point xj and time �n is denoted
by cnj � c.xj; �n/ and the approximate value of the free boundary is denoted by
Snf � Sf .�n/. Then a forward two-time level and centred in a space explicit scheme
is constructed for internal spatial nodes as follows

cnC1
j D an1c

n
j�1 C bcnj C an2c

n
jC1 C k

�
r � qSnf e

�xj
�

; 1 � j � M � 1; (10.62)

where

an1 D k

2h2

�
�2 C

�
r � q � �2

2

	
h

	
C SnC1

f � Snf
2hSnf

D a1 C SnC1
f � Snf
2hSnf

;

b D 1 � �2 k

h2
� rk; (10.63)

an2 D k

2h2

�
�2 �

�
r � q � �2

2

	
h

	
� SnC1

f � Snf
2hSnf

D a2 � SnC1
f � Snf
2hSnf

:

Special attention is paid to study positivity and monotonicity of the numerical
solution as well as stability and consistency of the proposed schemes. Note, that
using expressions (10.63) it is easy to obtain that the constants of the scheme a1, b
and a2 are positive for both cases: r � q and r > q under following conditions

h <
�2ˇ̌

ˇr � q � �2

2

ˇ̌
ˇ ; r ¤ q C �2

2
; k <

h2

�2 C rh2
; (10.64)
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Fig. 10.4 The function c.x; �/ calculated by the proposed fully implicit method

If r D qC �2

2
, then under the condition (10.64), coefficients a1, b and a2 are positive.

Note, that these conditions are sufficient also for stability of the proposed explicit
scheme. The details of the stability and consistency analysis can be found in [12].

Stability conditions on step sizes for explicit methods have been found. The
implicit method is unconditionally stable, that allows to reduce computational time.
But, there exist additional calculations of the inverse Jacobian matrix on each
iteration. It has been shown that for the same step sizes the explicit method is ten
times faster than the implicit one. The solution of (10.57) calculated by the proposed
fully implicit method is shown in Fig. 10.4.

10.3.2 Moving Boundary Transformation for Nonlinear
Models

For the case of American options with constant volatility various front-fixing
transformations have been studied in [12, 40, 47, 58]. In this section an efficient
front-fixing method for a nonlinear Black-Scholes equation is proposed. Under the
transformation the free boundary is replaced by a time-dependent known boundary.
In the resulting equation there is no reaction term and the convection term is
simplified in a such way that the operator splitting technique is not required.
This ensured a single numerical scheme is suitable for the entire equation. The
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connection between the transformed boundary conditions with the transformed
option price and the free boundary does not require additional information.

The proposed formulation of the nonlinear problem allows the use of a versatile
numerical treatment. In this chapter an explicit Euler and alternating direction
explicit (ADE) method [21, 49] together with implicit methods are studied.

With the previous notation, nonlinear American call option pricing models may
be formulated as the free boundary PDE problem

@C

@�
D Q�2

2
S2 @2C

@S2
C .r � q/S

@C

@S
� rC; 0 � S < Sf .�/; 0 < � � T; (10.65)

where the adjusted volatility function is given by Q�2 D Q�2 .�; S;CSS/. Two nonlinear
models with different adjusted volatility functions are considered:

• RAPM model: Q�2 D �2
0

�
1 C �

�
S @2C

@S2

� 1
3

	
,

• Barles and Soner model: Q�2 D �2
0

�
1 C �

�
er�a2S2CSS

��
,

where a D �
p


N, 
 is the risk aversion factor and N denotes the number of
options to be sold. The function � is the solution of the nonlinear singular initial
value problem

� 0.A/ D �.A/ C 1

2
p
A�.A/ � A

; A ¤ 0; �.0/ D 0: (10.66)

Taking advantages of the Landau transformation [41] with modifications in the
exponential factors like those described in [10], it is possible to remove the reaction
term and partially the convection term by using the transformation given below.

x D e.r�q/� S

Sf .�/
; V.x; �/ D er�

E
C.S; �/; sf .�/ D Sf .�/

E
: (10.67)

Using transformation (10.67) the equation (10.65) takes the form

V� D �2

2
x2Vxx C s0

f

sf
xVx; 0 � x < e.r�q/� ; 0 < � � T; (10.68)

where

�2 D �2 .�; x;Vxx/ D Q�2.�; S;CSS/:

Note that the transformation described in (10.67) transforms the original free
boundary value problem to a known moving boundary problem. In the case r > q
the computational domain increases with respect to time, otherwise it decreases.
The numerical solution of the transformed problem can be found by explicit, ADE
and implicit methods.

In Table 10.7 the results and comparisons are presented. Since the domain is
changing in time and is covered by an equidistant grid, the spatial step size hn is
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Table 10.7 Root Mean
Square Error (RMSE) with
respect to CPU-time for
different step sizes h0 and
fixed k D 0:0001, published
in [26]

h0 0:08 0:04 0:02 0:01

Explicit method

RMSE 0:04984 0:02629 0:01232 0:00464

CPU-time, s 15:810 27:566 51:476 99:434

ADE method

RMSE 0:16816 0:08172 0:02099 0:00620

CPU-time, s 15:129 27:776 53:865 104:247

Implicit method

RMSE 0:04984 0:02355 0:00958 0:00445

CPU-time, s 34:099 60:030 112:728 257:880

Newton-like method

RMSE 0:11376 0:06026 0:01389 0:00471

CPU-time, s 33:869 58:141 107:561 315:505

We acknowledge the permission of Taylor & Francis Ltd (http://
www.tandfonline.com)

varying in time. The time step is fixed at k D 0:0001 to guarantee stability of all
numerical solutions. For the implicit method the tolerance was chosen as � D 10�4.

Note that the main part of the computational time is pertained for the calculation
of �.A/. For the implicit methods it has to be calculated on each iteration of
Newton’s method. Thus, their computational costs may be noticeably reduced by
choosing another model. The details of the proposed methods can be found in [26].

10.3.3 Front-Fixing Method for Regime-Switching Model

An American put option on the asset St D S with strike price E and maturity T < 1
is considered under regime-switching model. Let Vi.S; �/ denote the option price
functions, where � D T � t denotes the time to maturity, the asset price S and
the regime ˛t D i. Then, Vi.S:�/, 1 � i � I, satisfy the following free boundary
problem:

@Vi

@�
D �2

i

2
S2 @2Vi

@S2
C riS

@Vi

@S
� riVi C

X
l¤i

qil.Vl � Vi/; S > S�
i .�/; 0 < � � T;

(10.69)

where S�
i .�/ denote optimal stopping boundaries of the option. Initial conditions are

Vi.S; 0/ D max.E � S; 0/; S�
i .0/ D E; i D 1; : : : ; I: (10.70)

In spite of the apparent complexity of the transformed problem due to the appear-
ance of new spatial variables, one for each equation, the explicit numerical scheme
constructed becomes easy to implement, computationally cheap and accurate when

http://www.tandfonline.com
http://www.tandfonline.com
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one compares with the more relevant existing methods. Implicit weighted schemes
have been developed for the sake of performance comparison.

Based on the transformation used by the authors in [11, 68] for the case of just
one equation, the following multi-variable transformation is considered

xi D ln
S

S�
i .�/

; 1 � i � I: (10.71)

Note that the new variables xi lie in the fixed positive real line. The price Vi of
i-th regime involved in i-th equation of the system and i-th free boundary are related
by the dimensionless transformation

Pi.x
i; �/ D Vi.S; �/

E
; Xi.�/ D S�

i .�/

E
; 1 � i � I: (10.72)

Then the value of option l-th regime appearing in i-th coupled equation, l ¤ i,
becomes Pl;i.xi; �/ D Vl.S;�/

E :

Since from (10.72), Vl.S;�/

E D Pl.xl; �/ and taking into account transformation
(10.71) for indexes i and l one gets that

Pl;i.x
i; �/ D Pl.x

l; �/; (10.73)

and it occurs when the variables are related by the equation

xl D xi C ln
Xi.�/

Xl.�/
; 1 � i; l � I: (10.74)

From (10.71) to (10.73) the problem (10.69) for 1 � i � I takes a new form

@Pi

@�
.xi; �/ D �2

i

2

@2Pi

@.xi/2
.xi; �/ C

�
ri � �2

i

2
C X0

i.�/

Xi.�/

	
@Pi

@xi
.xi; �/ � riPi.x

i; �/

C
X
l¤i

qil.Pl;i.x
i; �/ � Pi.x

i; �// D 0; xi > 0; 0 < � � T:

(10.75)

PDE problem (10.75) is solved by the explicit FDM. Let us denote uni;j �
Pi.xj; �n/ the approximation of Pi in i-th equation at mesh point .xi D xj; � D �n/

and Qunli;j � Pl;i.xj; �n/ be the approximation of Pl in i-th equation evaluated at the
point .xi D xj; � D �n/. The discretization of the transformed optimal stopping
boundary is denoted by Xn

i � Xi.�
n/. Then an explicit finite difference scheme can

be written in the form

unC1
i;j � uni;j

k
D �2

i

2

uni;jC1 � 2uni;j C uni;j�1

h2
C
 
ri � �2

i

2
C XnC1

i � Xn
i

kXn
i

!
uni;jC1 � uni;j�1

2h

� riu
n
i;j C

X
l¤i

qil.Qunli;j � uni;j/;

(10.76)
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where

Qunli;j � Pl;i.xj; �n/ D Pl

�
xj C ln

Xn
i

Xn
l

; �n

	
;

are obtained by linear interpolation of values unl;j at the point xj C ln Xn
i

Xn
l

known from
the previous time level n.

We have studied the stability of the proposed explicit scheme following the
von Neumann analysis approach originally applied to schemes with constant
coefficients. However, such approach can be used also for the variable coefficients
case by freezing at each level (see [61, p. 59], [24, 34]).

In order to avoid notational misunderstanding among the imaginary unit with
the regime index i used in previous section, here we denote the regime index by R.
An initial error vector for every regime g0

R, R D 1; : : : ; I, is expressed as a finite
complex Fourier series, so that at xj the solution uni;j can be rewritten as follows

unR;j D gnRe
ij� ; j D 1; : : : ;M � 1; R D 1; : : : ; I; (10.77)

where i D .�1/1=2 is the imaginary unit and � is phase angle. Then the scheme is

stable if for every regime R D 1; : : : ; I the amplification factor GR D gnC1
R
gnR

satisfies
the relation

jGRj � 1 C Kk D 1 C O.k/; (10.78)

where the positive numberK is independent of h, k and � , see [60, p. 68], [61, p. 50].
After some manipulations, one gets

jGj
ˇ̌
ˇ̌1 � i sin �

h

ˇ̌
ˇ̌ � jA.k; h; �/j C C.n/k;

where C.n/ D
ˇ̌
ˇ gnl0.n/

gn

ˇ̌
ˇ jqR;Rj is independent of � , h and k and depends only on the

index n.

jA.k; h; �/j2 D
 

1 � 2
�2k sin2 �

2

h2
� .r � q/k

!2

C sin2 �

h2

 �
r � �2

2

	2

k2 � 2k

�
r � �2

2

	
C 1

!
:
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Thus, in agreement with (10.78) the scheme is stable, if

8̂
<
:̂

�2k
�
.r � q/ � �2

h2

�
� �2 � 0;��

r � �2

2

�2 C .r � q/�2

	
k � 2r � 0:

(10.79)

Summarizing the following result can be established:

Theorem 10.4 With previous notation the scheme (10.76) is conditionally stable
under the constraint

k � min
1�R�I

0
B@ h2

�2
R C .rR � qR;R/h2

;
2rR�

rR � �2
R
2

�2

C .rR � qR;R/�2
R

1
CA : (10.80)

Stability conditions on step sizes are found and proven by numerical experiments
(see Figs. 10.5 and 10.6). Consistency of the proposed scheme is studied in [25].
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Fig. 10.5 Optimal stopping boundary for regime 1 and regime 2 (stability condition is fulfilled)
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Fig. 10.6 Optimal stopping boundary for regime 1 and regime 2 (stability condition is violated)

10.4 Rationality Parameter Approach

Recently, in [30] a new nonlinear BS model that takes into account irrational
exercise behaviour is proposed. We confirm numerically that the solution of the
irrational problem proposed in [30] for large values of rationality parameter tends
to the solution of the rational American option problem. This technique has been
successfully applied to a regime switching model described in previous subsection.

With the previous notation, let .f �/�>0 be a family of positive deterministic
intensity functions. For each � > 0, let the stochastic intensity process be given
by

��
t D f �

�
.E � St/

C � P�.t; St/
�

;

where P�.t; St/ D P�.t; StI ��.�/ and ��.�/ is the exercise strategy of the American
put given as the first jump time of a point process with intensity ��. Let ��.x/ D
1.x<0/ supy�x f

�.y/ C 1.x�0/ supy�x f
�.y/ and assume that

• ��.0C/ ! 1 as � ! 1.
• There exists a function � W .0; 1/ ! .0; 1/ such that ��.��.�/// ! 0 and

�.�/��.0�/ ! 0 as � ! 1.

Then � is a rationality parameter in the sense that for every t 2 Œ0;T� we have that
P�.t; St/ tends to PA.t; St/ when � ! 1. Moreover, if f � is increasing then f � D ��.
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We first consider the two cases proposed in [30] and we additionally propose two
alternative expressions:

f �
1 .x/ D

(
�; for x � 0;

0; for x < 0I f �
2 .x/ D �e�2x: (10.81)

We have proposed two intensity functions that are the smooth analogue of the
stepwise function (10.81):

f �
3 .x/ D 2�

1 C e��2x
; f �

4 .x/ D �

�
1 C 2

�
arctan �2x

	
: (10.82)

This irrational behaviour model of the American put option is studied and solved
numerically in the following subsection. Then we apply this approach to model of
the American option under regime-switching.

10.4.1 Irrational Behaviour Model of American Put Option

The following nonlinear Black-Scholes equation in the unbounded domain ˝ D
.0; C1/ � .0;T/ is considered (sub-index and super-index of f are skipped):

@P

@�
D �2

2
S2 @2P

@S2
C.r�q/S

@P

@S
�rPCf

�
.E � S/C � P

� �
.E � S/C � P

�
: (10.83)

when S ! 0, the standard condition for American options, P.0; �/ D E, is no
longer valid in the irrational case, as prices bellow exercise price may occur due
to irrational exercise, which is more evident when the rationality parameter tends
to zero. The typical boundary condition for European options P.0; �/ D Ee�r� is
not consistent with the equation for � ! �1, as the solution converges to the
one of the rational case of American options. Since Eq. (10.83) is nonlinear and
describes option pricing with rationality parameter, a new boundary condition has
to be established. Therefore, we propose to pass to the limit in Eq. (10.83) when
S ! 0:

@P

@�
.0; �/ D �rP.0; �/ C f .E � P.0; �// .E � P.0; �// :

The previous equation allows to adapt the option price when S D 0 according to
rationality of the holder.

We introduce the new variable

x D ln
S

E
; u.x; �/ D P.S; �/

E
:



196 R. Company et al.

Then the original problem is transformed to the following problem for x 2 R:

@u

@�
D �2

2

@2u

@x2
C
�
r � q � �2

2

	
@u

@x
� ru C f

�
E.1 � ex/C � Eu

� �
.1 � ex/C � u

�
:

(10.84)

For the transformed problem the numerical solution is constructed by the explicit
FDM.

In the previous notation, let us denote unj � u.xj; �n/, then the explicit finite
difference scheme can be written in the form

unC1
j D b1u

n
j�1 C b2u

n
j C b3u

n
jC1 C kf nj ; j D 1; : : : ;Nx � 1; (10.85)

where

b1 D�2

2

k

h2
�
�
r � q � �2

2

	
k

2h
;

b2 D1 �
�

�2 k

h2
C rk

	
;

b3 D�2

2

k

h2
C
�
r � q � �2

2

	
k

2h
:

(10.86)

Note that under conditions

h <
�2ˇ̌

ˇr � q � �2

2

ˇ̌
ˇ ; k <

h2

�2 C rh2
; k � ki; i D 1; : : : 4; (10.87)

where depending on the chosen rationality function

k1 D 1

r C �
; k2 D 1�

r C �e�2rk2
� ; k3 D 1

r C 2�
; k4 D 1

r C � C 2
�E�

;

(10.88)

the coefficients b1, b2 and b3 defined in (10.86) are positive and rationality term
kjjf njj is bounded.

In order to study the stability of the scheme we first choose the minimum index
m, such that unC1

m D jjunC1jj. Note that if m D 0 or m D Nx, then the scheme is
stable by the definition.

Suppose for the index 1 � m � Nx � 1, then taking into account that all
coefficients are positive, one gets

junC1
m j D jb1u

n
m�1 C b2u

n
m C b3u

n
mC1 C kf nmj � .1 � rk/jjunjj C kjf nmj;

The connection between .n C 1/-th and n-th level is obtained:

jjunC1jj D junC1
m j � jjunjj C kjjf njj: (10.89)
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Fig. 10.7 Numerical solution for the intensity function belonging to family f2 (10.81) for various
values of �

Therefore, under conditions (10.87), the scheme (10.85) is stable.
Assuming that u.x; �/ is continuously differentiable four times with respect to x

and twice with respect to � and following the procedure of consistency study, one
finds that the truncation error behaves

Tn
j .Qu/ D O.h2/ C O.k/:

The aim of this part of work is to study numerically the rationality parameter
approach and to prove the convergence of the solution to American option price
with growing rationality parameter �, that is presented in Fig. 10.7.

10.4.2 Rationality Parameter Approach for Regime-Switching
Model

For an intensity function f W Œ�E;E� ! Œ0; 1/ in the regime switching setting
we assume that the relation between the profitability and the stochastic exercise
intensity is f ..E � S/C � Vi.S; �// for each regime. After incorporating this term to
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the system of PDEs satisfied by the option price in describing the regime switching
model (10.69) one gets for i D 1; : : : ; I,

@Vi

@�
D�2

i

2
S2 @2Vi

@S2
C riS

@Vi

@S
� riVi C f

�
.E � S/C � Vi

� �
.E � S/C � Vi

�

C
X
l¤i

qi;l.Vl � Vi/; S > 0; 0 < � � T:

(10.90)

In order to construct an effective FDM with constant coefficients in the differen-
tial part, let us introduce the following normalized transformation

x D ln
S

E
; ui D Vi.S; �/

E
; i D 1; : : : ; I:

Then, problem (10.90) takes the following equivalent form:

@ui
@�

D �2
i

2

@2u

@x2
C
�
ri � �2

i

2

	
@ui
@x

� riui C
X
l¤i

qi;l.ul � ui/

C f
�
E.1 � ex/C � Eui

� �
.1 � ex/C � ui

�
; i D 1; : : : ; I:

(10.91)

The resulting nonlinear system of PDEs is solved by a weighted FDM, also
known as �-method. In order to avoid the need of an iterative method for the
nonlinear system, the term with rationality parameter and the coupling term are
treated explicitly. Next, the resulting linear system is solved by the Thomas
algorithm. Stability conditions for the numerical scheme are studied by using the
von Neumann approach.

Consistency of the �-scheme for the PDE system is established and the truncation
error takes the following form

Tn
j . Qui/ D .1 � 2�/k

@2ui
@�2

.xj; �nC� / C O.k2/ C O.h2/ 8i D 1; : : : ; I:

Numerical experiments illustrate the efficiency and accuracy of the proposed
method. In order to find computational convergence rate, a series of numerical
results has been provided with fixed time step and various spatial steps h. The
convergence rate 
h has been calculated by formula


h D log2

kUh=2 � Uhk
kUh=4 � Uh=2k ; (10.92)

for the proposed scheme with � D 0; 0:5; 1. The results are collected in Table 10.8
showing the expected orders for the approximation with � D 103 and various
intensity function families.
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Table 10.8 Convergence
rate in space of the proposed
� -scheme for � D 103

Regime 1 Regime 2

� 0 0:5 1 0 0:5 1

f1 2:0084 2:0003 2:0007 2:0143 2:0004 2:0015

f2 2:0083 2:0003 2:0005 2:0142 2:0007 2:0013

f3 2:0079 2:0002 2:0001 2:0156 2:0005 2:0004

Table 10.9 Convergence
rate in time of the proposed
� -scheme for � D 103

Regime 1 Regime 2

� 0 0:5 1 0 0:5 1

f1 1:0013 1:7795 1:0007 1:0013 1:8889 1:0010

f2 1:0009 1:7802 1:0007 1:0009 1:9017 1:0007

f3 1:0010 1:8543 1:0001 1:0010 1:8943 1:0000

An analogous formula can be used in order to estimate the convergence rate in
time, 
k, for a fixed space step h:


k D log2

kUk=2 � Ukk
kUk=4 � Uk=2k : (10.93)

The convergence rates 
k of the proposed method for various intensity function
families (10.81) and (10.82) are presented in Table 10.9. The numerical convergence
rate are in agreement with the theoretical study of consistency.

10.5 A Semi-Discretization Technique for Multi-Asset
Option Pricing Problems

10.5.1 Removing Transformation Techniques for Multi-Asset
Option Pricing

This section mainly covers removing the cross derivative terms in the formulation
of an option pricing problem where the exercise value depends on more than one
risky asset.

Basically the techniques for transformations aim at constructing the correspond-
ing PDE with constant coefficients and also at removing the mixed derivative terms
from the structure. Each of these transformations have some pros and cons.

The merit of transformations for removing the cross derivative terms is that
the re-constructed PDE is easy to handle numerically since it has fewer number
of terms which obviously ends in fewer mesh nodes in stencil in contrast to its
non-transformed version. Furthermore, it may avoid the oscillation and spurious
behaviors [39, 50] of the numerical solutions in the presence of mixed derivatives.
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A transformation of spatial variables based on obtaining the canonical form of the
second order PDE [31] can be used for the two correlated assets problems.

Technically speaking, it should be noticed that enforcing any types of transfor-
mations would change the initial and boundary conditions for the Black-Scholes
multi-dimensional PDE problem.

In this section, we handle the new boundary conditions in order to obtain accurate
and stable numerical solutions.

Considering a system of stochastic ordinary differential equations for an option
pricing problem with two state variables, the authors in [38] used a transformation
(with the Itô lemma and standard arbitrage arguments) that makes the instantaneous
standard deviation of each to be constant. To be more precise, they suggest that a
transformation be carried out to diagonalize a correlation matrix (tensor) in order to
remove the cross derivative terms. This corresponds to a stretching and rotation of
the coordinate system.

In the well-known stochastic volatility model (Heston model) [35], two space
variables are existed in the presence of a cross derivative term. Such models
are basically in the form of a the partial integro-differential equations (PIDEs)
while they do not endure the pitfall of not capturing features like heavy tails and
asymmetries observed in market-data log-returns densities unlike the normality of
the log returns considered originally by Black-Scholes.

In [10], the authors applied two transformations in order to remove the reaction
term and the cross derivative term from the Heston model and construct an elliptic
form of it which is defined on rhomboid domain but with fewer terms which yielded
to the construction of a stable and accurate numerical scheme.

One of the state-of-the-art techniques to remove the cross derivative terms is
the use of eigenvalue decomposition [43, 52] which is also an algebraic transfor-
mation. In this technique, the eigenvalue decomposition of the diffusion matrix is
constructed and used for deriving the multi-asset option pricing PDE without mixed
derivative terms. We recall that the diffusion matrix in a multidimensional second
order PDE is a symmetric matrix containing the coefficients of the second order
derivatives in the PDE.

The multi-asset Black-Scholes PDE is expressed as follows [23, 62]:

@V

@�
D1

2

MX
i;jD1

�ij�i�jSiSj
@2V

@Si @Sj
C

MX
iD1

.r � qi/Si
@V

@Si
� rV; (10.94)

where T, V , Si, qi, r, �i � are the maturity, the value of the option price, the i-th
asset, the constant dividend yield of i-th asset, risk-free rate, the i-th volatility, the
correlation parameter, respectively, while � D T � t and �ii D 1, �ij D �ji; i ¤ j,
and

j�ijj � 1: (10.95)
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The mixed derivative terms appearing in (10.94) show the correlation among the
prices of the assets Si.

The logarithmic transformation [8] could transform the multi-dimensional PDE
(10.94) into a PDE with constant coefficients as follows:

xi D log Si
�i

; 1 � i � M; (10.96)

with V.S; �/ D W.X; �/, where X D .x1; x2; : : : ; xM/>, and we may achieve

@W

@�
D1

2

MX
i;jD1

�ij
@2W

@xi @xj
C

MX
iD1

�
r � qi � �2

i

2

	
1

�i

@W

@xi
� rW; (10.97)

Note that for a M-dimensional Black-Scholes PDE, the number of cross deriva-
tive terms is

1

2
.M � 1/M: (10.98)

This evidently shows that by increasing the number underlying assets, the number
of mixed derivative terms gets bigger which could cause several certain issues in the
process of solving (10.94).

Apart from the appearance of instability and inaccuracy due to the presence of the
cross derivative terms mentioned above, the number of stencil nodes or matrices that
must be filled and computed in the development of the numerical schemes would be
higher and subsequently relinquish further computational burden [67].

Here the main objective is to remove the mixed derivatives so as to reduce
unsuitable instability drawbacks for the (10.94). Essentially, this may be pursued by
applying transformations. This new transformation is different from the eigenvalue
transformation and it is based on LDL> factorization.

Toward this goal, let us consider the symmetric positive semi-definite correlation
matrix [55]:

R D .�ij/1�i;j�M; (10.99)

as the diffusion matrix corresponding to the PDE (10.97). Accordingly, in this
section we present a general way by means of an easy to implement transformation
based on Gaussian elimination and pivoting strategies [37] to remove the cross
derivative terms.

Let us first recall the definition of the LDL> factorization in what follows. If
R be a symmetric positive semidefinite matrix in R

M�M . Then, there exists a unit
lower triangular matrix L and a diagonal matrix D D .dij/ in R

M�M with dii � 0,
1 � i � M, such that [33]:

R D LDL>: (10.100)
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Generally speaking, if the matrix R is only positive semidefinite, then (10.100) is
not valid, but when R is positive definite then it is unique.

Here in order to have stable computation of this factorization [36], basically
a permuted version of (10.100) on the matrix R should be performed, viz, this
permuted factorization could be written as comes next:

PRP> D LDL>; (10.101)

where P is a permutation matrix, jlijj � 1 and

d11 � d22 � � � � � dnn � 0: (10.102)

Now in order to remove the cross derivative terms in the parabolic second-order
constant-coefficient PDE (10.96), we take into account a linear transformation as
follows:

Y D CX; C D .cij/1�i;j�M; (10.103)

where C is the matrix that should be computed such that the mixed derivative terms
get vanished.

Now by applying (10.103), the PDE (10.97) reads

@U

@�
D1

2

MX
i;jD1

.ciRc>
j /

@2U

@yi @yj
C

MX
i;jD1

 
r � qj � �2

j =2

�j

!
cij

@U

@yi
� rU; (10.104)

where U.Y; �/ D W.X; �/ and ci D .ci1; ci2; � � � ; ciM/ is the ith row vector of matrix
C. Here, ci denotes the ith row of matrix L�1P:

ci D .L�1P/i: (10.105)

Using

.L�1P/R.L�1P/> D D; (10.106)

we obtain

ciRc>
j D

�
0; i ¤ j;
dii; i D j:

(10.107)

Hence, Eq. (10.104) becomes:

@U

@�
D1

2

MX
iD1

.dii/
@2U

@y2
i

C
MX
iD1

0
@ MX

jD1

.r � qj � �2
j =2/cij

�j

1
A @U

@yi
� rU: (10.108)
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Here we remark that the discussed transformation based on the permuted
Cholesky factorization has several upsides from the computational cost and stability
points of view, but it is not the only way to eliminate mixed derivative terms. In fact,
if one uses the standard diagonalization transform of

R D FDF�1; (10.109)

even when F�1 D FT is available, the transformation

C D F�1; (10.110)

also transforms Eq. (10.94) into a PDE without cross derivative terms.

Example 10.4 In this experiment, we consider the general multi-asset option
pricing problem (10.94) with M D 7 underlying assets, where the correlation matrix
R is given by

R D

0
BBBBBBBBB@

1:00 �0:65 0:25 0:2 0:25 �0:05 0:05

�0:65 1:00 0:5 0:1 0:25 0:11 �0:016

0:25 0:5 1:00 0:37 0:25 0:21 0:076

0:2 0:1 0:37 1:00 0:25 0:27 0:13

0:25 0:25 0:25 0:25 1:00 0:14 �0:04

�0:05 0:11 0:21 0:27 0:14 1:00 0:19

0:05 �0:016 0:076 0:13 �0:04 0:19 1:00

1
CCCCCCCCCA

; (10.111)

with the parameters

� D .�1; : : : ; �7/ D .0:25; 0:35; 0:20; 0:25; 0:20; 0:21; 0:27/; (10.112)

r D 0:045, T D 1 year, and

q D .q1; : : : ; q7/ D .0:05; 0:07; 0:04; 0:06; 0:04; 0:03; 0:02/: (10.113)

Applying the factorization (10.101), (10.96) and (10.103), one gets

D D diag.1:000; 0:998; 0:960; 0:907; 0:861; 0:787; 0:00786/: (10.114)
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Subsequently, the transformation matrix which is a lower triangular matrix can be
expressed as:

C D L�1P D

0
BBBBBBBBB@

1:000 0 0 0 0 0 0

0:050 0 0 0 0 1:000 0

�0:060 0 0 0 0 �0:190 1:000

�0:260 0 0 0 1:000 �0:170 0:085

�0:210 0 1:000 0 �0:170 �0:190 �0:036

�0:110 0 �0:270 1:000 �0:130 �0:190 �0:074

0:900 1:000 �0:680 0:021 �0:330 0:120 �0:017

1
CCCCCCCCCA

:

(10.115)

Now, the corresponding problem (10.94) is transformed into the following compact
notation form

@U

@�
D 1

2
.Dr/ � rU C .CQ/ � rU � rU; (10.116)

where r D
�

@
@y1

; @
@y2

; : : : ; @
@yM

�>
, U.Y; �/ D V.S; �/ and Q D .Q1;Q2; : : : ;QM/>.

The interesting point is that the original multi-asset PDE with 37 terms has now
been re-constructed into one with only 16 terms.

In the rest of this section, we discuss the cases when the diffusion matrix is
symmetric possibly indefinite. This would be practical in the general case of solving
PDEs with cross derivative terms [42]. Let us consider the equation

MX
i;jD1

aij
@2v

@xi@xj
C

MX
iD1

bi
@v

@xi
C cv D 0; (10.117)

where A D .aij/1�i;j�M is a real symmetric matrix, b D .b1; : : : ; bM/> 2 R
M and

c 2 R.
In this case, the matrix A could be indefinite. So, the factorization (10.100)

breaks [37] but we may use an alternative as discussed below which is called as
Bunch-Kaufman factorization [5]. This approach does not always provide a diagonal
factorization of A, but only a block-diagonal matrix B with 1 � 1 or 2 � 2 diagonal
blocks such that

PAP> D LBL>; (10.118)

where the permutation matrix P provides a partial pivoting strategy. Thus, one gets a
more efficient method than other diagonal pivoting strategies as complete pivoting.
In this way, only a part of mixed derivative terms are removed. However, with the
use of eigenvalues decomposition on the final 2 � 2 block, we may remove all the
mixed derivative terms and obtain a corresponding PDE without such terms.
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The next example is related to multi-asset cross currency option pricing [38,
Chap. 29] with indefinite sample correlation matrix.

Example 10.5 ([67]) Consider Eq. (10.94) for M D 3, with indefinite sample
correlation matrix

R D
0
@ 1 3

10
9
10

3
10

1 9
10

9
10

9
10

1

1
A : (10.119)

Using Bunch-Kaufman strategy, one gets the transformation matrix C and the
resulting matrix B,

C D L�1P D
0
@ 1 0 0

� 3
10

1 0

� 9
13

� 9
13

1

1
A ; B D diag .1; 91=100; �16=65/ D D:

(10.120)

Hence, the original partial differential equation is transformed into a new one
without cross derivative terms.

10.5.2 Stability and Numerical Example

Options with multi assets are based upon more than one underlying asset, unlike
the well-known standard vanilla options. In this situation, due to the curse of
dimensionality which is of exponential growth, the complexity of the problem grows
when the dimensionality increases. That is to say, the number of unknowns for
solving the corresponding PDE simultaneously grows exponentially [63].

One of the main restrictions here in the process of solving a multi-asset option
pricing problem is that the mixed derivative of the solution has to be bounded and
its presence could cause instability and further computational burdensome.

Efficient pricing of American and European options that are dependent on more
than one asset is discussed in this section. The holder of a multi-asset contract has
the right to buy a set of assets if the conditions are profitable which is known as a
basket of assets.

To formulate this problem, we may choose S D .S1; : : : ; SM/ to be the vector
consisting the asset prices, where M is the number of assets in a portfolio while
P.S; �/ is the value of the option pricing.

This class of basket options (for put) can be described by a general equation for
the contract function [48]

P.S; 0/ D
 
E �

MX
iD1

˛iSi

!C
; (10.121)
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where E is the exercise price of the complete basket and ˛i are the percentages in the
set of assets. The option price P.S; �/ is the solution of the following PDE problem

@P

@�
D 1

2

MX
iD1;jD1

�ij�i�jSiSj
@2P

@Si@Sj
C

MX
iD1

.r � qi/Si
@P

@Si
� rP C F.P/;

Si > 0; i D 1; : : : ;M; 0 < � � T;

(10.122)

where �i is the volatility of Si, �i;j is the correlation between Si and Sj, r is the risk
free rate, qi is the constant dividend yield of i-th asset and F.P/ is the rationality
parameter term.

In the formulation (10.122), we applied the penalty approach [50] in order to
handle the American options by transforming the free boundary value problem into
a nonlinear PDE. In fact, due to opportunity to exercise at any time to maturity,
American option pricing problems introduce a free exercise boundary which is more
difficult than European options.

In this work, we consider the rationality term as follows [30]:

F.P/ D � .P.S; 0/ � P.S; �//C ; (10.123)

which is a simpler version of the following general form

F.P/ D f �

0
@
 
E �

MX
iD1

˛iSi

!C
� P.S; �/

1
A �

0
@
 
E �

MX
iD1

˛iSi

!C
� P.S; �/

1
A ;

(10.124)
where f �.x/ is an intensity function and � is a rationality parameter.

It is required to state that the boundary of a M-dimensional Black-Scholes PDE
in option pricing is the solution of the .M�1/-dimensional problem while in infinity
they approach to zero. Furthermore, at each boundary Si D 0 we have

P.S1; : : : ; Si ! 1; : : : ; �/ D 0: (10.125)

There are several approaches to value this option pricing problem in the presence
of multi assets using finite difference, finite element schemes and Monte-Carlo
method [32]. The most challenging issue in dealing with such nonlinear PDEs is
to control the boundedness of the numerical solution, i.e., stability of the numerical
scheme when the size of the discretized system gets bigger by considering higher
number of assets and nodal points for discretization.

As discussed in the second section of this chapter, another problem is the
presence of the cross derivative terms which cause instability and oscillation in the
process of solving (10.122) numerically. Thus, the objective of this section is to
address a numerically stable finite difference schemes for multi-asset American/Eu-
ropean option pricing problems based on the semi-discretization technique.
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The matrix involving the second order partial derivative terms, so called the
diffusion matrix, can be diagonalized by means of its orthogonal transformation.
This technique could be applied to remove the cross derivative terms as it has been
done in [43].

But in this section, we follow the suggested LDL> factorization given previously
in the second section so as to construct a corresponding nonlinear PDE without
mixed derivative terms.

In [69] a semi-discretized method has been applied for multi-asset problem under
regime-switching. In that work the spatial step sizes are fixed, and so the size of the
matrix A in order to obtain L-stability.

To keep going, we first do a same procedure as in the second section by obtaining
the corresponding PDE with constant coefficient and then the PDE without cross
derivative terms. Thus using the dimensionless logarithmic substitution

xi D 1

�i
ln

Si
E

; i D 1; : : : ;M; V.x; �/ D P.S; �/

E
; (10.126)

where x D Œx1; : : : ; xM�>, we obtain

@V

@�
D 1

2

MX
iD1;jD1

�ij
@2V

@xi@xj
C

MX
iD1

ıi
@V

@xi
� rV C 1

E
F.EV/;

xi 2 R; i D 1; : : : ;M; 0 < � � T;

(10.127)

where ıi D r�qi� �2
i
2

�i
.

Now by applying the linear transformation discussed before based on the LDL>
factorization of the correlation matrix [13]

y D Œy1; : : : ; yM�> D Cx; U.y; �/ D V.x; �/; (10.128)

where C D �
cij
�

1�i;j�M
D L�1, we can obtain the following simplified transformed

nonlinear PDE for multi-asset option pricing problem

@U

@�
D 1

2

MX
iD1

Dii
@2U

@y2
i

C
MX
iD1

0
@ MX

jD1

ıjcij

1
A @U

@yi
� rU C 1

E
F.EU/; (10.129)

where the cross derivative terms have been removed. Under transformations
(10.126) and (10.128) the initial condition (10.121) takes the form

U.y; 0/ D
 

1 �
MX
iD1

˛ie
�ixi

!C
; (10.130)
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where

x D Œx1; : : : ; xM�> D C�1y: (10.131)

For dealing with the above time-dependent PDEs, one way is the method of lines
based on the semi-discretization with respect to spatial variables which results in
a system of (linear or nonlinear) ordinary differential equations in time with the
corresponding matrix of coefficients A.

Then semi-discretization of Eq. (10.129) is obtained by using the central
difference approximation for the spatial derivatives, resulting in the system of
(nonlinear) ordinary differential equations (ODEs) of the form

duj1;:::;jM

d�
D 1

2

MX
iD1

Dii
uj1;:::;ji�1;:::;jM � 2uj1;:::;ji;:::;jM C uj1;:::;jiC1;:::;jM

h2
i

C
MX
iD1

0
@ MX

jD1

ıicij

1
A uj1;:::;jiC1;:::;jM � uj1;:::;ji�1;:::;jM

2hi

� ruj1;:::;jM C 1

E
F.Euj1;:::;jM /;

(10.132)

which its stencil has only 2M C 1 mesh points in contrast to M2 C M C 1 mesh
points based on the recent finite difference method given in [69].

To construct conditions for finding stable solutions, we first consider that for
i D 1; : : : ;M:

hi D ˇih; (10.133)

di D Dii

ˇ2
i

; d D
MX
iD1

di; (10.134)

ci D
MX
jD1

ıjcij; (10.135)

a0 D � 1

h2

�
d C rh2

�
; (10.136)

aCi D 1

2h2

�
di C h

ˇi
ci

	
; (10.137)

a�i D 1

2h2

�
di � h

ˇi
ci

	
: (10.138)
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The nonlinear system (10.132) with the boundary and initial conditions can be
presented in the following vector form

(
du
d�

.�/ D Au.�/ C � .u.0/ � u.�//C ;

u.0/ D Œu0.0/; : : : ; uN.0/�>;
(10.139)

where uj.0/ D U.�j; 0/ D
�
1 �PM

iD1 ˛ie�ixi.�j/
�C

; wherein xi.� j/ D �
C�1�j

�
i

is

the i-th entry of C�1�j.
The entries of the matrix A are given by:

aij D

8̂
ˆ̂̂<
ˆ̂̂̂
:

a0; �i 2 ˝; j D i;

a˙1; �i 2 ˝; j D i ˙ 1;

a˙m �i 2 ˝; j D i ˙Qm�1
nD1 .Nn C 1/; 2 � m � M;

0; otherwise:

(10.140)

Note that as the chosen artificial boundary conditions do not change with � , then
their derivative with respect to � are zero which motivates the appearance of zeros
in the corresponding rows of A.

If k D T
N�

, so �n D nk, n D 0; : : : ;N� . Thus for full discretization we have [16]:

u.�nC1/ D eAku.�n/ C �

Z k

0

eAs
�
u.0/ � u.�nC1 � s/

�C
ds: (10.141)

Now, by replacing u.�nC1 �s/ by the known value u.�n/ corresponding to s D k,
we attain

Z k

0

eAs
�
u.0/ � u.�nC1 � s/

�C
ds �

�Z k

0

eAsds

	
.u.0/ � u.�n//C : (10.142)

We use the accurate Simpson’s rule

Z k

0

eAsds � k'.A; k/ (10.143)

where '.A; k/ D 1
6

�
I C 4eA

k
2 C eAk

�
:

Denoting un D u.�n/, we get the final explicit scheme

unC1 D eAkunCk�'.A; k/
�
u0 � un

�C
; �n D nk; n D 0; : : : ;N� �1: (10.144)
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This is the proposed explicit full-discretized FD method for solving multi-asset
option pricing problem which is stable under two conditions along spatial and
temporal variables.

Coefficients a�i and aCi, i D 1; : : : ;M, depend on di and ci, see (10.134) and
(10.135) respectively. If step size h is chosen as

h � min
1�i�M

di
jcij ; (10.145)

then a�i and aCi are non-negative. This is the first condition on the step size
along spatial variable which could result in the positivity of the numerical schemes
after several investigations on the structure of the schemes using bounds on matrix
exponential and Metzler matrices.

Subsequently we may prove that uni � 1, 0 � i � N, 0 � n � N� using the
induction principle. We remark that

u0
i � 1; (10.146)

and from (10.144) unC1
i is a function gi on the arguments un0; : : : ; unN , given by

unC1
i D gi.u

n
0; : : : ; unN/ D �

eAk
�
i
un C k� .'.A; k//i

�
u0 � un

�C
: (10.147)

And furthermore by the non-negativity of eAk and '.A; k/ one gets

@gi
@unj

� �
eAk
�
ij � k� .'.A; k//ij ; 0 � i; j � N: (10.148)

Finally, we attain the following bound for the temporal step size

k <
h2

d C .r C �/h2
: (10.149)

Theorem 10.5 With previous notation under conditions (10.145) and (10.149) the
numerical solution un of the scheme (10.144) is non-negative and k�k1-stable, with
kunk1 � 1 for all values of � � 0 and any time level 0 � n � N� .

In what follows, we try to investigate the robustness of the proposed approach
for solving several experiments in the presence of multi assets.

Example 10.6 The American basket call option of two assets is considered with the
following parameters [51]

�1 D 0:12; �2 D 0:14; r D 0:03; � D 0:3; q1 D 0:01; q2 D 0:01; T D 0:5; E D 100:

(10.150)
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Table 10.10 American
basket call option price
comparisons

Nodes Proposed method HOC

12 � 12 3:18982 2:86247

24 � 24 3:35338 3:27894

48 � 48 3:41344 3:35094

Table 10.11 Option price on
an equidistant grid of
n � n � n nodes

KM (with
n Ph Pl rationality)

8 11:4957 12:862 12:394

16 13:3457 13:150 13:055

32 13:3272 13:221 13:235

64 13:2470 13:239 13:241

Reference value (P) 13.245

In the following table, we include the results at S D .100; 100/ for � D 100,
various spatial step sizes h and corresponding k under the discussed conditions. The
numerical solution by high-order computational method of [51] is denoted by HOC
(Table 10.10).

Example 10.7 As a numerical example we consider the European basket call option
with no dividends and the following parameters (see [43, p. 76])

�1 D 0:3; �2 D 0:35; �4 D 0:4; r D 0:04; �ij D 0:5; ˛i D 1

3
; T D 1; E D 100:

(10.151)

The spot price is chosen to be S1 D S2 D S3 D E. The reference value Pref D
13:245 is computed by using an accurate Fast Fourier Transform technique (see
[43, Chap. 4]). Since the considered option is of European style, penalty term is not
necessary and � is chosen to be zero.

The numerical results of the proposed method Ph are presented in the following
table and compared with the sparse grid solution technique Pl on an equidistant
grid of [43] and the method of [69] denoted by KM with rationality approach [30]
(Table 10.11).

As could be seen from the numerical experiments, the theoretical bounds for
the temporal and spatial variables are quite useful and necessary in solving real-
life problems. The transformations made the process of solving this type of options
quite easier and much more efficient. After spatial semi-discretization, the problem
is fully discretized. We could handle American/European put/call options.
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