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Foreword

The traditional view of computational finance is based on making rather simplistic
assumptions about markets and then, using hedging arguments, deriving risk-neutral
pricing equations. From a computational point of view, this leads to the numerical
solution of linear partial integro-differential equations (PIDEs) for low-dimensional
problems, and Monte Carlo techniques for high-dimensional applications.

However, once realistic market effects are modelled, the standard paradigm is
no longer applicable. In fact, perhaps the most general way to think about finance
problems is as a form of optimal stochastic control. In the context of option pricing,
the objective is to design a hedging strategy (the control) which results in the
smallest profit and loss (P&L) risk. Right from the start, we are assuming that the
hedge may not be perfect, which is one of the essential complete market assumptions
which form the basis of the Black-Scholes analysis. Given the framework of optimal
control, it is straightforward to consider liquidity effects and valuation adjustments,
such as debt value adjustment (DVA) and credit value adjustment (CVA). This
modelling approach naturally gives rise to nonlinear PIDEs, often of the Hamilton-
Jacobi-Bellman (HJB) type. In the low-dimensional case, these nonlinear PDEs can
be attacked directly. For higher-dimensional problems, methods based on backward
stochastic differential equations (BSDEs) look promising.

Of course, these ideas also have relevance to problems in wealth management.
With the trend towards replacing defined benefit pension plans with defined
contribution (DC) plans, there is a need for automated asset allocation techniques.
Since most DC plan participants have strict constraints on allowable strategies (e.g.
no leverage), it goes without saying that any asset allocation algorithm must be able
to handle realistic constraints. These optimal asset allocation problems also give rise
to nonlinear HJB PIDEs.

Many problems in the insurance industry result in massive computational issues.
For example, determining the distribution of the P&L for a large book of variable
annuities involves simulation of the asset prices in the objective measure while at
the same time assuming an imperfect hedge. Determining the hedging parameters
is usually done using a Monte Carlo (MC) technique. The standard approach for
solving this problem involves a nested MC simulation, which may require weeks
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vi Foreword

of computational time using current algorithms and hardware. In addition, since
retail clients rarely exercise their optionality in optimal fashion, machine/statistical
learning techniques are the method of choice for analysing customer behaviour.

Consequently, the future of computational finance is bright. We face challenges
associated with the development of numerical algorithms for solution of nonlinear
PIDEs, possibly using BSDE approaches. However, in order to produce timely
results, it will be necessary to exploit the latest hardware advances (e.g. GPUs)
and programming environments. This will all have to be coupled with data science
methods.

This book focuses on these new techniques, with specific chapters devoted to
many of the issues listed above. Students, academics and practitioners will find
much of interest here, with a glimpse of the future of computational finance.

Waterloo, ON, Canada Peter A. Forsyth
January 2017



Preface

This book originated from the Marie Curie European research network STRIKE
Novel Methods in Computational Finance, which was coordinated by the
University of Wuppertal and continued from 2013 to 2016. This initial network
was based on the beneficiary partners (11 universities) and the associated partners
(3 universities, 6 SMEs and 1 bank) from 11 European countries.

In recent years, the computational complexity of mathematical models employed
in financial mathematics has witnessed tremendous growth. Advanced numerical
techniques are indispensable to most present-day applications in the financial
industry.

The motivation for this European training network STRIKE was the need for a
network of highly educated European scientists in the field of financial mathematics
and computational science, so as to exchange and discuss current insights and ideas
and to lay the groundwork for future long-term collaborations. Here, the challenge
lays in the necessity of combining transferable techniques and skills such as
mathematical analysis, sophisticated numerical methods and stochastic simulation
methods with a deep qualitative and quantitative understanding of mathematical
models arising from financial markets.

In STRIKE, the aim was to achieve a better understanding of complex (mostly
nonlinear) financial models and to develop effective and robust numerical schemes
for solving linear and nonlinear problems arising from the mathematical theory of
pricing financial derivatives and related financial products. This aim was accom-
plished by means of financial modelling, mathematical analysis and numerical
simulations, optimal control techniques and validation of models.

Special attention was devoted to a uniform methodology for both testing the
latest achievements and simultaneously educating young researchers: Most of the
mathematical codes emerging from the STRIKE projects are linked into a new
computational finance toolbox (CFT, cf. Chap. 30), which is provided in MATLAB
and PYTHON in an open access licence.

Generalized nonlinear option pricing models are capable of capturing several
important phenomena like transaction costs, investor’s risk from unprotected port-
folios, investor’s expected utility maximization, illiquid markets, large traders’
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viii Preface

feedback influence, etc. Such generalizations can be mathematically stated in the
form of a nonlinear generalization of the Black-Scholes (BS) equation, in which the
local volatility is a function of the option price and its derivatives. In STRIKE,
we investigated a wide range of financial derivatives described by a nonlinear
BS equation (see the survey Chap. 1). In this regard, an important aspect was
the development of high-order compact finite difference methods (FDMs) and
transformation techniques for numerically solving nonlinear BS equations.

One of our principal goals in STRIKE was to provide training in advanced
methods and techniques in scientific computing with applications to complex
financial models. As such, STRIKE provided intensive courses in large-scale
financial computing in the many-core graphical processing units (GPUs) cluster
used for Monte Carlo simulations, finite difference and fast Fourier numerical
methods.

In the context of our research training programme, we covered the complete
development cycle for novel financial derivative products starting from setting up
stochastic differential equations (SDEs) for underlying assets, and modelling new
product prices, to the calibration of model parameters with respect to financial
market data by means of a hedge test, scenario studies, inverse problem techniques,
etc. This typical development cycle is reflected in the structure of this book.
Accordingly, we grouped the chapters into the 8 topics: modelling, analysis,
transformation methods and special discretizations, numerical methods in finance,
compact FDMs and splitting schemes, scientific computing, high-performance
computing and software.

With an eye to the future, we established an ECMI Special Interest Group on
Computational Finance, providing a network and basis for further fruitful collabo-
rations. Additionally, we founded a conference series, the International Conference
on Computational Finance (ICCF); see www.iccf.eu. The first conference took
place in December 2015 in Greenwich, London, and will be followed by a second
instalment in Lisbon in September 2017 and a third conference in A Coruña in July
2019.

The editors wish to thank their colleagues from the STRIKE network for their
past cooperation and their valued contributions in the chapters of this handbook:
Daniel Sevčovič of Bratislava, Lucas Jódar Sánchez of Valencia, Lyuben Vulkov of
Ruse, Maria do Rosario Lourenço Grossinho of Lisbon, Ljudmila Bordag of Zittau,
Ansgar Jüngel of Vienna, Kees Oosterlee of Delft, Choi-Hong Lai of Greenwich,
Alfio Borzì of Würzburg, Karel in ’t Hout of Antwerp, Olivier Pironneau of Paris,
Bertram Düring of Sussex, Carlos Vázquez Cendón of A Coruña, Jörg Kienitz of
Quaternion and Jacques Du Toit of NAG.

Let us close the preface with a citation from a STRIKE PhD fellow:

The highlights of the STRIKE network are several. STRIKE is a serious boost to 17 young
people – 12 ESRs and 5 ERs – in their professional development in computational finance.
These researchers work extensively together with their supervisors and professionals from
the associated partners in order to get results of high importance to industry (novel models,
novel numerical algorithms and theoretical results).

www.iccf.eu


Preface ix

Further, last but not least important, STRIKE strengthens seriously the interaction and
transfer of knowledge of methods and algorithms between all parties involved in the
consortium. This is going to produce very good results in the long term as collaboration
and team work is a recipe for success.
STRIKE is a big boost in their professional career of ESRs and ERs who are in the focus of
the project.
STRIKE may provide financial assistance in the several remaining months through mobi-
lization of all resources in order to support the researchers in completing their tasks, in
completing some courses (or industry experience) which are essential for a professional in
computational finance and further in finding a position in the academy or industry.

Acknowledgement The authors were partially supported by the European Union in the FP7-
PEOPLE-2012-ITN Program under Grant Agreement Number 304617 (FP7 Marie Curie Action,
Project Multi-ITN STRIKE Novel Methods in Computational Finance).

http://www.itn-strike.eu/

Wuppertal, Germany Matthias Ehrhardt
January 2017 Michael Günther

E. Jan W. ter Maten

http://www.itn-strike.eu/
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Chapter 1
Nonlinear Parabolic Equations Arising
in Mathematical Finance

Daniel Ševčovič

Abstract This survey chapter is focused on qualitative and numerical analyses of
fully nonlinear partial differential equations of parabolic type arising in financial
mathematics. The main purpose is to review various non-linear extensions of the
classical Black-Scholes theory for pricing financial instruments, as well as models of
stochastic dynamic portfolio optimization leading to the Hamilton-Jacobi-Bellman
(HJB) equation. After suitable transformations, both problems can be represented by
solutions to nonlinear parabolic equations. Qualitative analysis will be focused on
issues concerning the existence and uniqueness of solutions. In the numerical part
we discuss a stable finite-volume and finite difference schemes for solving fully
nonlinear parabolic equations.

1.1 Nonlinear Generalization of the Black-Scholes Equation
for Pricing Financial Instruments

According to the classical theory developed by Black, Scholes and Merton the
value V.S; t/ of an option in the idealized financial market can be computed from a
solution to the well-known Black-Scholes (BS) linear parabolic equation:

@tV C 1

2
�2S2@2SV C .r � q/S@SV � rV D 0; t 2 Œ0;T/; S > 0; (1.1)

derived by Black and Scholes and, independently by Merton (cf. [29, 38]). Here
� > 0 is the volatility of the underlying asset driven by the geometric Brownian
motion, r > 0 is the risk-free interest rate of zero-coupon bond and q � 0 is the
dividend rate. Similarly, as in the case of the HJB equation the solution is subject to
the terminal condition V.S;T/ D NV.S/ at t D T.

The linear Black-Scholes equation with constant volatility � has been derived
under several restrictive assumptions like e.g., frictionless, liquid and complete

D. Ševčovič (�)
Department of Applied Mathematics and Statistics, Comenius University, 842 48 Bratislava,
Slovakia
e-mail: sevcovic@fmph.uniba.sk

© Springer International Publishing AG 2017
M. Ehrhardt et al. (eds.), Novel Methods in Computational Finance,
Mathematics in Industry 25, DOI 10.1007/978-3-319-61282-9_1

3

mailto:sevcovic@fmph.uniba.sk


4 D. Ševčovič

markets, etc. We also recall that the linear Black-Scholes equation provides a
solution corresponding to a perfectly replicated hedging portfolio which need not
be a desirable property. In the last decades some of these assumptions have been
relaxed in order to model, for instance, the presence of transaction costs (see
e.g. Leland [18, 29] and Avellaneda and Paras [5]), feedback and illiquid market
effects due to large traders choosing given stock-trading strategies (Schönbucher
and Willmott [40], Frey and Patie [16], Frey and Stremme [15], imperfect replication
and investor’s preferences (Barles and Soner [8]), risk from the unprotected portfolio
(Jandačka and Ševčovič [22]). Another nonlinear model in which transaction costs
are described by a decreasing function of the number of shares has been derived by
Amster et al. [2]. In all aforementioned generalizations of the linear BS equation
(1.1) the constant volatility � is replaced by a nonlinear function:

� D �.S@2SV/ (1.2)

depending on the second derivative @2SV of the option price itself.
One of the first nonlinear models taking into account transaction costs is the

Leland model for pricing the call and put options. This model was further extended
by Hoggard et al. [18] for general type of derivatives. In this model the variance �2

is given by

�.S@2SV/2 D �20
�
1 � Le sgn

�
S@2SV

�� D
(
�2.1 � Le/; if @2SV > 0;

�2.1C Le/; if @2SV < 0;
(1.3)

where Le D
q

2
�

C0
�

p
�t

is the so-called Leland number, �0 is a constant historical
volatility, C0 > 0 is a constant transaction costs per unit dollar of transaction in
the underlying asset market and �t is the time-lag between consecutive portfolio
adjustments. The nonlinear model with the volatility function given as in (1.3)
can be also viewed as a jumping volatility model investigated by Avellaneda and
Paras [5].

The important contribution in this direction has been presented in the work by
Amster et al. [2], where the transaction costs are assumed to be a non-increasing
linear function of the form C.�/ D C0 � ��, (C0; � > 0), depending on the volume
of trading stock � � 0 needed to hedge the replicating portfolio. A disadvantage of
such a transaction costs function is the fact that it may attain negative values when
the amount of transactions exceeds the critical value � D C0=�. In the model studied
by Amster et al. [2] (see also Averbuj [4], Mariani et al. [33]) the volatility function
has the following form:

�.S@2SV/2 D �20
�
1 � Le sgn

�
S@2SV

�C �S@2SV
�
: (1.4)
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In the recent paper [39] Ševčovič and Žitnanská investigated a model for pricing
option under variable transaction costs.

�.S@2SV/2 D �20

 

1 �
r
2

�
QC.�Sj@2SVjp�t/

sgn.S@2SV/

�
p
�t

!

(1.5)

where QC is the mean value modification of the transaction cost function C D C.�/
defined as follows: QC.�/ D R1

0
C.�x/x e�x2=2dx. As an example one can consider

the piecewise linear transaction cost function of the form:

C.�/ D
8
<

:

C0; if 0 � � � ��;
C0 � �.� � ��/; if �� � � � �C;
C0; if � � �C:

(1.6)

Bakstein and Howison [7] investigated a parametrized model for liquidity effects
arising from the asset trading. In their model � is a quadratic function of the term
H D S@2SV:

�.S@2SV/2 D�20
 

1C N�2.1 � ˛/2 C 2�S@2SV C �2.1 � ˛/2 �S@2SV
�2

C 2

r
2

�
N� sgn

�
S@2SV

�C 2

r
2

�
�.1 � ˛/2 N� ˇˇS@2SV

ˇ
ˇ
!

:

(1.7)

The parameter � corresponds to a market depth measure, i.e. it scales the slope of the
average transaction price. Next, the parameter N� models the relative bid-ask spreads
and it is related to the Leland number through relation 2 N�p2=� D Le. Finally, ˛
transforms the average transaction price into the next quoted price, 0 � ˛ � 1.

The risk adjusted pricing methodology (RAPM) model takes into account the
risk from the unprotected portfolio was proposed by Kratka [28]. It was generalized
and analyzed by Jandačka and Ševčovič [22]. In this model the volatility function
has the form:

�.S@2SV/2 D �20

�
1C 	

�
S@2SV

� 1
3

�
; (1.8)

where �0 > 0 is the constant historical volatility of the asset price return and
	 D 3.C2

0R=2�/
1
3 , where C0; R � 0 are non-negative constants representing the

transaction cost measure and the risk premium measure, respectively.
If transaction costs are taken into account perfect replication of the contingent

claim is no longer possible and further restrictions are needed in the model. By
assuming that investor’s preferences are characterized by an exponential utility
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function Barles and Soner (cf. [8]) derived a nonlinear Black-Scholes equation with
the volatility � given by

�.S@2SV; S; t/2 D �20
�
1C 
.a2er.T�t/S2@2SV/

�
(1.9)

where 
 is a solution to the ODE:


 0.x/ D 
.x/C 1

2
p

x
.x/ � x
; 
.0/ D 0;

and a > 0 is a given constant representing risk aversion. Notice that 
.x/ D O.x
1
3 /

for x ! 0 and 
.x/ D O.x/ for x ! 1.
All the nonlinear volatility models mentioned in this section can be written in the

form of a solution to the fully nonlinear parabolic equation:

@tV C 1

2
�.@2SV/2S2@2SV C .r � q/S@SV � rV D 0; t 2 Œ0;T/; S > 0: (1.10)

Jandačka and Ševčovič [22] proposed the method of transformation of equation
(1.10) into a quasi-linear parabolic equation for the second derivative @2SV (the so-
called Gamma of an option) of a solution. Indeed, if we introduce the new variables
H.x; �/ D S@2SV.S; t/, x D ln S and � D T � t then Eq. (1.10) can be transformed
into the so-called Gamma equation:

@�H D @2xˇ.H/C @xˇ.H/C .r � q/@xH � qH; x 2 R; � 2 .0;T/; (1.11)

where

ˇ.x;H/ D 1

2
�.H/2H

(cf. [10, 22]). Recall that the Gamma equation can be obtained by twice differentia-
tion with respect to x of the Black-Scholes equation (1.18) with the volatility of the
general type (1.2). A solution H.x; �/ to the Cauchy problem for (1.11) is subject to
the initial condition H.x; 0/ D H0.x/.

1.2 Nonlinear Hamilton-Jacobi-Bellman Equation
and Optimal Allocation Problems

Optimal allocation and optimal investment problems with state constraints attracted
a lot of attention from both theoretical as well as application point of view. The main
purpose is to maximize the total expected discounted utility of consumption for the
optimal portfolio investment consisting of several stochastic assets, over infinite or
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finite time horizons. It is known that the value function of the underlying stochastic
control problem is the unique smooth solution to the corresponding Hamilton-
Jacobi-Bellman (HJB) equation and the optimal consumption and portfolio are
presented in feedback form (Zariphopoulou [44]).

Let us consider the stylized financial market in which the aim of a portfolio
manager is to maximize the expected value of the terminal wealth of a portfolio,
measured by a prescribed utility function U. In particular, if n is the number of
assets entering the portfolio, T the investment horizon, the goal is to find an optimal
trading strategy f�g D f�t 2 R

n j t 2 Œ0;T
g belonging to a set A D A0;T of strategies
At;T D ff�gj�s 2 Sn; s 2 Œt;T
g, where Sn D f�t 2 R

nj�t 2 Œ0; 1
n; 1T�t D 1g is a
convex compact simplex such that f�g maximizes the expected terminal utility from
the portfolio:

max
f�g2A

E
�
U.X�T/jX�0 D x0

�
: (1.12)

Here Xt D ln Yt represents a stochastic process governed by the following stochastic
differential equation

dX�t D
�
	.�/ � 1

2
�.�/2

�
dt C �.�/dWt

for a logarithmic portfolio value, where x0 is its initial value at the time t D 0. Here
	.�/ and �.�/ are the expected return and volatility of the portfolio. As a typical
example, one can consider functions 	.�/ D 	T� and �2.�/ D �T˙� , where 	 is
a vector of mean returns and ˙ is a covariance matrix. It is known from the theory
of stochastic dynamic programming that the so-called value function

V.x; t/ WD sup
f�g2At;T

E
�
U.X�T/jX�t D x

�
(1.13)

subject to the terminal condition V.x;T/ WD U.x/ can be used for solving the
stochastic dynamic optimization problem (1.12) (cf. Bertsekas [9], Fleming and
Soner [14]). Moreover, it is also known, that the value function V D V.x; t/ satisfies
the following Hamilton-Jacobi-Bellman equation:

@tV C max
�2Sn

��
	.�/ � 1

2
�.�/2

�
@xV C 1

2
�.�/2@2xV

	
D 0 ; (1.14)

for all x 2 R; t 2 Œ0;T/ and it satisfies the terminal condition V.:;T/ WD U.:/ (see
e.g. [20, 32]).

In general, explicit solutions to HJB equations are not available and this
is why various numerical approaches have to be adopted. Regarding numerical
approaches for solving HJB equations associated with portfolio optimization, we
can mention and refer to finite difference methods for approximating its viscosity
solution developed and analyzed by Tourin and Zariphopoulou [42], Crandall
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et al. [12], Nayak and Papanicolaou [36]. Other approach based on Markov chain
approximation techniques was investigated by Song [41] and Fleming and Soner
[14]. Classical methods for solving HJB equations are discussed by Benton [44].
In [34], Musiela and Zariphopoulou applied the power-like transformation in order
to linearize the non-linear PDE for the value function in the case of an exponential
utility function. Muthamaran and Sunil [35] solved a multi-dimensional portfolio
optimization problem with transaction costs. They used finite element method and
iterative procedure that converts a free-boundary problem into a sequence of fixed
boundary problems. Peyrl et al. [37] applied a successive approximation algorithm
for solving the corresponding HJB equation. The fixed point-policy iteration scheme
for solving discretized HJB equations is discussed in Huang et al. [19]. Witte and
Reisinger [43] presented a penalty approach for the numerical solution of discrete
continuously controlled HJB equations.

In the recent paper [23] Kilianová and Ševčovič transformed the fully nonlinear
HJB equation (1.14) into the Cauchy problem for the quasi-linear parabolic
equation:

@t' C @2xˇ.'/C @xŒ.1 � '/ˇ.'/
 D 0; x 2 R; t 2 Œ0;T/; (1.15)

'.x;T/ D 1 � U00.x/
U0.x/ ; x 2 R: (1.16)

To this aim we introduced the following transformation:

'.x; t/ D 1 � @2xV.x; t/

@xV.x; t/
:

It is referred to as the Riccati transformation and it has been proposed and studied
in [1, 32] and further analyzed by Ishimura and Ševčovič in [20]. The resulting
equation was solved numerically by an iterative method based on the finite volume
approximation. Furthermore, it follows from the analysis [23] by Kilianová and
Ševčovič that the diffusion function ˇ.'/ is the value function of the following
parametric optimization problem:

ˇ.'/ D min
�2Sn

f�	.�/C '

2
�.�/2g : (1.17)

The dispersion function � 7! �.�/2 is assumed to be strictly convex and
� 7! 	.�/ is a linear function. Therefore problem (1.17) belongs to a class of
parametric convex optimization problems (cf. Bank et al. [6], Hamala and Trnovská
[17]). Useful generalization of the HJB equation (1.14) in case the covariance matrix
˙ belongs to some set P of (e.g. ellipsoidal sets) of covariance matrices was studied
by Kilianová and Trnovská in [24] with regard to application to the so-called “worst
case variance” portfolio model in which the diffusion function (1.17) has the form:

ˇ.'/ D min
�2Sn

max
˙2P

�	T� C '

2
�T˙� :
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They showed this problem can be analyzed by the methods of semidefinite
programming. The value function ˇ.'/ need not be sufficiently smooth and its
second derivative can have jumps.

In fact, the Riccati transformation is the logarithmic derivative of the derivative of
the value function. In the context of a class of HJB equations with range constraints,
the Riccati transformation has been analyzed recently by Ishimura and Ševčovič
in [20] where a traveling wave solution to the HJB equation was constructed.
Concerning numerical methods for solving the quasi-linear parabolic PDE obtained
from the HJB equation by means of the Riccati transformation we mention recent
papers by Ishimura et al. [21, 25]. In [25], Koleva considered a similar nonlinear
parabolic equation, obtained by means of a Riccati-like transformation of the HJB
equation, arising in pension saving management. In contrary to our model problem,
she considered a problem without constraints on the optimal decision. She applied
two iterative numerical methods, namely the fully implicit Picard method and the
mixed Picard-Newton method and discussed their accuracy and effectiveness.

In summary, the nonlinear volatility generalization of the Black-Scholes equation
as well as the Hamilton-Jacobi-Bellman equation can be transformed into the
quasilinear parabolic equation for the unknown function H D H.x; �/ representing
either the Gamma of the portfolio H D S@2SV (nonlinear volatility Black-Scholes
models) or the relative risk aversion function H D 1 � @2xV=@xV (Hamilton-Jacobi-
Bellman equation). The resulting quasilinear parabolic equation has the form:

@�H D @2xˇ.H/C f .x;H; @xH/; x 2 R; � 2 .0;T/; (1.18)

where ˇ is a suitable nonlinear function.

1.3 Existence of Classical Solutions, Comparison Principle

In this section we recall results on existence of classical smooth solutions to
the Cauchy problem for the quasilinear parabolic equation (1.18). Following
the methodology based on the so-called Schauder’s type of estimates (cf.
Ladyzhenskaya et al. [30]), we shall proceed with a definition of function spaces
we will work with. Let ˝ D .xL; xR/ � R be a bounded interval. We denote
QT D ˝ � .0;T/ the space-time cylinder. Let 0 < � < 1. By H �.˝/

we denote the Banach space consisting of all continuous functions H defined
on N̋ which are �-Hölder continuous. It means that their Hölder semi-norm
hHi.�/ D supx;y2˝;x 6Dy jH.x/ � H. y/j=jx � yj� is finite. The norm in the space
H �.˝/ is then the sum of the maximum norm of H and the semi-norm hHi.�/. The
space H 2C�.˝/ consists of all twice continuously differentiable functions H in N̋
whose second derivative @2xH belongs to H �.˝/. The space H 2C�.R/ consists
of all functions H W R ! R such that H 2 H 2C�.˝/ for any bounded domain
˝ � R.
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The parabolic Hölder space H �;�=2.QT/ of functions defined on a bounded
cylinder QT consists of all continuous functions H.x; �/ in NQT such that H is �-
Hölder continuous in the x-variable and �=2-Hölder continuous in the t-variable.
The norm is defined as the sum of the maximum norm and corresponding Hölder
semi-norms. The space H 2C�;1C�=2.QT/ consists of all continuous functions on
NQT such that @�H; @2xH 2 H �;�=2.QT/. Finally, the space H 2C�;1C�=2.R � Œ0;T
/
consists of all functions H W R � Œ0;T
 ! R such that H 2 H 2C�;1C�=2.QT/ for
any bounded cylinder QT (cf. [30, Chap. I]).

In the nonlinear models discussed in the previous sections one can derive useful
lower and upper bounds of a solution H to the Cauchy problem (1.18). The idea of
proving upper and lower estimates for H.x; �/ is based on construction of suitable
sub- and super-solutions to the parabolic equation (1.18) (cf. [30]).

�� � ˇ0.H/ � �C

for any H � 0 where �˙ > 0 are constants. This implies strong parabolicity of the
governing nonlinear parabolic equation.

Theorem 1.1 ([39, Theorem 3.1]) Suppose that the initial condition H.:; 0/ � 0

belongs to the Hölder space H 2C�.R/ for some 0 < � < min.1=2; "/ and H D
supx2R H.x; 0/ < 1. Assume that ˇ; f 2 C1;" and ˇ satisfies �� � ˇ0.H/ � �C for
any 0 � H � H where �˙ > 0 are constants.

Then there exists a unique classical solution H.x; �/ to the quasilinear parabolic
equation (1.18) satisfying the initial condition H.x; 0/. The function � 7! @�H.x; �/
is �=2-Hölder continuous for all x 2 R whereas x 7! @xH.x; �/ is Lipschitz
continuous for all � 2 Œ0;T
. Moreover, ˇ.H.:; :// 2 H 2C�;1C�=2.R � Œ0;T
/ and
0 < H.x; �/ � H for all .x; �/ 2 R � Œ0;T/.

The proof is based on the so-called Schauder’s theory on existence and unique-
ness of classical Hölder smooth solutions to a quasi-linear parabolic equation of
the form (1.18). It follows the same ideas as the proof of [23, Theorem 5.3]
where Kilianová and Ševčovič investigated a similar quasilinear parabolic equation
obtained from a nonlinear HJB equation in which a stronger assumption ˇ 2 C1;1 is
assumed.

1.4 Numerical Full Space-Time Discretization Scheme
for Solving the Gamma Equation

In this section we present an efficient numerical scheme for solving the Gamma
equation. The construction of numerical approximation of a solution H to (1.18) is
based on a derivation of a system of difference equations corresponding to (1.18) to
be solved at every discrete time step. We make use of the numerical scheme adopted
from the paper by Jandačka and Ševčovič [22] in order to solve the Gamma equation
(1.18) for a general function ˇ D ˇ.H/ including, in particular, the case of the
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model with variable transaction costs. The efficient numerical discretization is based
on the finite volume approximation of the partial derivatives entering (1.18). The
resulting scheme is semi-implicit in a finite-time difference approximation scheme.

Other finite difference numerical approximation schemes are based on dis-
cretization of the original fully nonlinear Black-Scholes equation in non-divergence
form. We refer the reader to recent publications by Ankudinova and Ehrhardt [3],
Company et al. [11], Düring et al. [13], Liao and Khaliq [31], Zhou et al. [45].
Recently, a quasilinearization technique for solving the fully nonlinear parabolic
equation was proposed and analyzed by Koleva and Vulkov [26]. Our approach is
based on a solution to the quasilinear Gamma equation written in the divergence
form, so we can use existing finite volume based numerical scheme to solve the
problem efficiently (cf. Jandačka and Ševčovič [22], Kútik and Mikula [27]).

For numerical reasons we restrict the spatial interval to x 2 .�L;L/ where L > 0
is sufficiently large. Since S D Eex 2 .Ee�L;EeL/ it is sufficient to take L � 2 in
order to include the important range of values of S. For the purpose of construction
of a numerical scheme, the time interval Œ0;T
 is uniformly divided with a time step
k D T=m into discrete points �j D jk, where j D 0; 1; : : : ;m. We consider the
spatial interval Œ�L;L
 with uniform division with a step h D L=n, into discrete
points xi D ih; where i D �n; : : : ; n.

The proposed numerical scheme is semi-implicit in time. Notice that the term
@2xˇ; can be expressed in the form @2xˇ D @x .ˇ

0.H/@xH/, where ˇ0 is the derivative
of ˇ.H/ with respect to H. In the discretization scheme, the nonlinear terms ˇ0.H/
are evaluated from the previous time step �j�1 whereas linear terms are solved at the
current time level.

Such a discretization scheme leads to a solution of a tridiagonal system of linear
equations at every discrete time level. First, we replace the time derivative by the
time difference, approximate H in nodal points by the average value of neighboring
segments, then we collect all linear terms at the new time level �j and by taking
all the remaining terms from the previous time level �j�1. We obtain a tridiagonal
system for the solution vector Hj D .Hj

�nC1; : : : ;H
j
n�1/T 2 R

2n�1:

a j
i Hj

i�1 C b j
i Hj

i C c j
i Hj

iC1 D d j
i ; Hj�n D 0; Hj

n D 0 ; (1.19)

where i D �n C 1; : : : ; n � 1 and j D 1; : : : ;m. The coefficients of the tridiagonal
matrix are given by

a j
i D � k

h2
ˇ0

H.H
j�1
i�1/C k

2h
r c j

i D � k

h2
ˇ0

H.H
j�1
i /� k

2h
r ; b j

i D 1 � .a j
i C c j

i / ;

d j
i D Hj�1

i C k

h



ˇ.Hj�1

i / � ˇ.Hj�1
i�1/

�
:

It means that the vector Hj at the time level �j is a solution to the system of linear
equations A. j/ Hj D dj;where the .2n�1/�.2n�1/matrix A. j/ D tridiag.a j; b j; c j/.
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In order to solve the tridiagonal system in every time step in a fast and effective way,
we can use the efficient Thomas algorithm.

In [39] the authors showed that the option price V.S;T � �j/ can be constructed
from the discrete solution Hj

i by means of a simple integration scheme:

(call option) V.S;T � �j/ D h
nX

iD�n

.S � Eexi/CHj
i ; j D 1; : : : ;m;

(put option) V.S;T � �j/ D h
nX

iD�n

.Eexi � S/CHj
i ; j D 1; : : : ;m:

1.5 Numerical Results for the Nonlinear Model with Variable
Transaction Costs

In this section we present the numerical results for computation of the option price
for the nonlinear volatility Black-Scholes model with variable transaction costs
derived and analyzed by Ševčovič and Žitnanská in the recent paper [39]. As an
example for numerical approximation of a solution we consider variable transaction
costs described by the piecewise linear non-increasing function, depicted in Fig. 1.1.
The function ˇ.H/ corresponding to the variable transaction costs function C.�/ has
the form

ˇ.H/ D �20
2

 

1 �
r
2

�
QC.� jHjp�t/

sgn.H/

�
p
�t

!

H;

where QC is the modified transaction costs function.
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Fig. 1.1 Left: The piecewise linear transaction costs function C (solid line), its mean value
modification QC (dashed line). Right: the graph of the corresponding function ˇ.H/. Source [39]
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Fig. 1.2 The call option price V.S; t/ as a function of S for t D 0 (left) and its delta �.S; t/ D
@SV.S; t/. Source [39]

In our computations we chose the following model parameters describing the
piecewise transaction costs function: C0 D 0:02, � D 0:3, �� D 0:05, �C D 0:1.
The length of the time interval between two consecutive portfolio rearrangements:
�t D 1=261. The maturity time T D 1, historical volatility � D 0:3 and the risk-
free interest rate r D 0:011. As for the numerical parameters we chose L D 2:5,
n D 250, m D 200. The parameters C0, � , �, �˙ and �t correspond to the Leland
numbers Le D 0:85935 and Le D 0:21484. In Fig. 1.2 we plot the solution Vvtc.S; t/
and the option price delta factor �.S; t/ D @SV.S; t/, for t D 0. The upper dashed
line corresponds to the solution of the linear Black-Scholes equation with the higher
volatility

O�2max D �2

 

1 � C0

r
2

�

1

�
p
�t

!

;

where C0 D C0 � �.�C � ��/ > 0, whereas the lower dashed line corresponds to
the solution with a lower volatility

O�2min D �2

 

1 � C0

r
2

�

1

�
p
�t

!

:
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Chapter 2
Modeling of Herding and Wealth Distribution
in Large Markets

Ansgar Jüngel and Lara Trussardi

Abstract The dynamics of the number of participants in a large market is described
by nonlinear partial differential equations of kinetic and diffusive type. The results
on the modeling, analysis, and numerical simulation of three market models
are briefly reviewed. The interplay of the agents with external sources, herding
phenomena, and irrationality of the individuals as well as the exchange of knowl-
edge and wealth is explored mathematically. The focus lies on the mathematical
understanding of the differential equations rather than on the modeling of real
economic situations, aiming at identifying models which are able to produce the
desired effects.

2.1 Introduction

The modeling of markets with a large number of agents became very vital in
recent years with the aim to understand inefficient markets or irrational behavior
of agents, for instance. The dynamics of such markets may be described by
agent-based models, kinetic equations, or diffusive systems. Agent-based models
specify the behavior of individuals by using elements of game theory and Monte-
Carlo simulation techniques [31]. In kinetic modeling, the analogy with statistical
mechanics is exploited: Interactions between market agents are interpreted as
collisions between gas particles, and conservation laws for income and/or wealth
may hold [26, 28]. Diffusive systems are often derived from kinetic equations in the
so-called grazing collision limit , and they illustrate the behavior on a macroscopic
level [33]. In this section, we summarize the results of Boudin et al. [7], Düring et al.
[15], Jüngel et al. [25] on kinetic and diffusive equations modeling socio-economic
scenarios.
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The first scenario is the herding in financial markets. Herding is characterized by
a homogenization of the actions of the market participants, which behave at a certain
time in the same way. Herding may lead to strong trends with low volatility of asset
prices, but eventually also to abrupt corrections, so it promotes the occurrence of
bubbles and crashes. Numerous socio-economic papers [4, 8, 30] and research in
biological sciences [1, 19] show that herding interactions play a crucial role in social
scenarios. Herding behavior is often irrational because people are not basing their
decision on objective criteria.

A full understanding of herding behavior needs the ability to understand two lev-
els: the microscopic one, which considers each individual of the crowd separately;
and the macroscopic level, which deals with the group of individuals, i.e. the herd.
The first level usually represents the individual as a particle, and a microscopic
particle-type or mesoscopic kinetic description may be useful. The latter one may
be represented by a density function depending (continuously) on space and time,
leading to diffusive equations. We consider a diffusive herding model in Sect. 2.2
and a kinetic herding equation in Sect. 2.3.

The second scenario addressed in this review is the distribution of wealth. Most
of the models in the literature are agent-based models [9], mean-field games [18], or
kinetic equations [27]. In kinetic modeling, binary collisions are replaced by trades
between agents by defining rules which specify how wealth is exchanged in trades.
The output of the model are the statistics of the wealth distribution in the market. It
turns out that in many models, the stationary profile has an overpopulated tail (called
fat tail or Pareto tail), which is interpreted as the existence of an upper class of
very wealthy people [27]. Pareto tails appear under various assumptions, assuming
wealth conservation in the mean or pointwise wealth conservation [14].

Binary wealth exchange models go back to the work [3]. Later, the relation
to statistical mechanics was highlighted [24], and strictly conservative exchange
models were developed [10]. The strict conservation was relaxed in [12] to
conservation in the mean. Our contribution is to combine wealth and knowledge
of agents in a society and to examine the interaction of these qualities; see Sect. 2.4.

We stress the fact that the models that we are proposing and analyzing are quite
simple. Certainly, the socio-economic behavior of real market agents is extremely
complex and includes psychological and social phenomena. Still, we believe that a
large number of agents may be described to some extent in an averaged sense—at
least in simplified situations. Our aim is to understand the mathematical phenomena
arising from the new terms in the models rather than devising models that include
as many features as possible. Our analysis shows which terms produce the desired
effects and henceforth can be included in more realistic models. The hope is that this
analysis helps to identify irregularities in (financial) markets or in societies and to
lead to improved market regulations and counter-actions to avoid financial crashes.
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2.2 A Cross-Diffusion Herding Model

A very simple model for herding behavior is given by the cross-diffusion system
[25]

@tu D div.ru � g.u/rv/; @tv D div.ıru C �rv/C f .u/ � ˛v; (2.1)

where u.x; t/ represents the normalized density of individuals with information
variable x 2 ˝ at time t � 0 (˝ � R

d being a bounded domain), and v.x; t/ is
an influence function which modifies the information state of the individuals. The
influence function acts through the cross-diffusion term g.u/rv in the first equation
in (2.1). We assume that the influence becomes weak if the number of individuals at
a fixed state x is very low or close to the maximal value u D 1. Thus, we suppose that
g.0/ D g.1/ D 0. The influence function is modified by diffusive effects also due to
the random behavior of the agents with parameter ı > 0, by the nonnegative source
term f .u/, time relaxation with rate ˛ > 0, and diffusion with coefficient � > 0.
Our aim is to understand whether the above model exhibits herding phenomena, i.e.
regions in which the density of the agents is very low or close to the maximal value.

The equations are supplemented by no-flux boundary and initial conditions:

.ru � g.u/rv/ � � D 0; .ıru C �rv/ � � D 0 on @˝;

u.�; 0/ D u0; v.�; 0/ D v0 in ˝; t > 0; (2.2)

where � denotes the exterior unit normal vector to @˝ .
If ı D 0, system (2.1) correspond to a nonlinear chemotaxis Keller-Segel model,

where u represents the cell density and v the concentration of the chemoattractant
[20]. While the original Keller-Segel model exhibits finite-time blow-up of the solu-
tions, the nonlinear mobility g.u/ D u.1�u/ prevents blow up [34]. Equations (2.1)
with ı > 0 can be derived from stochastic partial differential equations describing
interacting particles, at least for constant mobility functions g.u/ [17]. The case
ı > 0 and g.u/ D u was analyzed in [23]. A typical example in the present situation
is g.u/ D u.1 � u/ since this function satisfies g.0/ D g.1/ D 0.

In the work [25], the following results have been obtained.

2.2.1 Existence of Solutions

If f and g are smooth, bounded, nonnegative functions such that there exists m 2
.0; 1/ satisfying

g.0/ D g.1/ D 0;

Z m

0

ds

g.s/
D
Z 1

m

ds

g.s/
D 1; (2.3)
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and u0, v0 2 L1.˝/, then there exists a global weak solution .u; v/ to (2.1)–(2.2)
satisfying 0 � u � 1 in ˝ , t > 0, as long as ı > ��=� , where � D maxs2Œ0;1
 g.s/.
The function g.u/ D u.1� u/ satisfies (2.3).

The restriction on ı ensures that the real parts of the eigenvalues of the diffusion
matrix from (2.1) are positive, such that the system is parabolic in the sense of
Petrovskii and local existence of solutions can be expected [2]. The challenge is to
prove the existence of global (weak) solutions. A key element of the proof is the
observation that Eq. (2.1) admit a Lyapunov functional (called an entropy),

H.u; v/ D
Z

˝

�
h.u/C v2

2ı0

�
; where h.u/ D

Z s

m

Z �

m

dt

g.t/
d�;

and ı0 D ı if ı > 0, ı0 D �=� if ı < 0. A computation shows that for ı > ��=� ,
there exists cı > 0 such that

dH

dt
C cı

Z

˝

� jruj2
g.u/

C jrvj2
ı20

�
dx � c;

where cı > 0 also depends on ˝ , f , and g. The gradient estimate is needed
to prove the compactness of the fixed-point operator needed to apply the Leray-
Schauder fixed-point theorem [25]. The exponential decay of the solutions (in terms
of H.u; v/) to a constant steady state holds for sufficiently large values of ı > 0. We
wish to understand what happens if ı becomes small positive or negative large. This
is done via a bifurcation analysis.

2.2.2 Bifurcation Analysis

Choosing ı as a bifurcation parameter, we can apply bifurcation theory to show
that the stationary solutions bifurcate from the constant steady state .u�; v�/ for
ı ¤ ıd WD ��=g.u�/. For this result, we employed in [25] the local bifurcation
theory of Crandell and Rabinowitz and the global bifurcation theory for nonlinear
Fredholm mappings from Shi and Wang [32]. The difficulty here is that .u�; v�/ is
not an isolated bifurcation branch as a function of ı, since fixing any initial mass,
there is a family of homogeneous steady states with u� D R

˝
u.x/dx=meas.˝/.

For the numerical bifurcation analysis, this degeneracy is resolved by introducing a
small relaxation term �.u � u�/ in the first equation of (2.1) with very small � > 0

and by applying a homotopy continuation step to achieve solutions for � D 0.
Numerically, there exist local bifurcation points on the branch of homogeneous

steady states if ı < ıd for sufficiently large ˛ and if ı > ıd for sufficiently small ˛.
The results have been obtained by using the software AUTO; for details we refer to
[25]. Here, we only depict one stationary density u in Fig. 2.1, showing that there is
indeed a region in which the number of individuals with a certain information state
is very small, which indicates some herding phenomenum.
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Fig. 2.1 Stationary density
of individuals for the
model (2.1) with parameters
˛ D 0:001, � D 1, ı D 9,
and ˝ D .0; 50/
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2.3 A Kinetic Model with Irrationality and Herding

A second approach to model herding consists in using kinetic equations. We
describe the evolution of the distribution function f .x;w; t/ of the agents depending
on the rationality x 2 R and the estimated asset value w 2 RC WD Œ0;1/, assigned
to the asset by an individual. The agent behaves rational when x > 0 and irrational
when x < 0. The time evolution is given by the inhomogeneous kinetic equation

@tf C .˚.x;w/ f /x D QI. f /C QH. f ; f /; .x;w/ 2 R � RC; t > 0; (2.4)

with the boundary and initial conditions

f .x; 0; t/ D 0; f .x;w; 0/ D f0.x;w/ for .x;w/ 2 R � RC; t > 0: (2.5)

The second term in (2.4) models the irrationality of the agents. When the asset price
w lies within a certain range jw � Wj < R around a “fair” prize W > 0 which
is determined by fundamentals, the agents are supposed to behave more irrational
because of psychological biases like overconfidence or limited attention [22]. This
is modeled by a negative drift field ˚.x;w/. When the asset value is outside of
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the “fair” prize region, it is believed to be driven by speculation. The agents will
recognize this fact at a certain point and are becoming more rational. Thus, the drift
field is positive. An example for such a function is

˚.x;w/ D
(

�ı� if jw � Wj < R;

� if jw � Wj � R;
(2.6)

where ı and � are some positive numbers.
The first term on the right-hand side of (2.4) describes an interaction that is solely

based on economic fundamentals, and the second term describes binary interactions
of the agents modeling the exchange of information and possibly leading to herding.
The precise modeling is as follows.

2.3.1 Public Information and Herding

Let w be the estimated asset value of an agent before the interaction and w� the
asset value after exchanging information with a public source. Similarly as in [11],
the interaction is given by

w� D w � ˛P.jw � Wj/.w � W/C �d.w/; (2.7)

where P 2 Œ0; 1
 measures the compromise propensity, ˛ > 0 measures the strength
of this effect, � is a random variable with distribution 	 with variance �2I and zero
mean taking values in R, and d.w/ 2 Œ0; 1
 models the modification of the asset
prize due to diffusion. For instance, we may choose P.jw � Wj/ as the characteristic
function 1fjw�Wj<rg on fjw � Wj < rg for some r > 0. The above interaction rule
means that if a market agent trusts an information source, she/he will update her/his
estimated value to bring it closer to the one suggested by the information source. A
rational investor is supposed to follow such a strategy.

The second interaction rule models herding effects by taking into account the
interaction between an agent and other investors. We choose, similarly as in [33],

w� D w � ˇ�.v;w/.w � v/C �1d.w/;

v� D v � ˇ�.v;w/.v � w/C �2d.v/: (2.8)

Here, .w; v/ and .w�; v�/ denote the asset values of two arbitrary agents before and
after the interaction, respectively. The constant ˇ 2 Œ0; 1=2
 measures the attitude
of the market participants to change their mind because of herding mechanisms,
�1, �2 are random variables with the same distribution with variance �2H and zero
mean, and the function d is as above. The function � 2 Œ0; 1
 describes a socio-
economic scenario where individuals are highly confident in the asset. In [13], the
example �.v;w/ D 1fw<vgvf .w/ is suggested, where f is nonincreasing, f .0/ D 1,
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and limw!1 f .w/ D 0. The meaning of this choice is as follows: If an agent has an
asset value w smaller than v, the function � will push the agent to assume a higher
value w� than that one before the interaction. This means that the agent trusts other
agents that assign a higher value. If w is larger than v, the agent hesitates to lower
her/his asset value and nothing changes. For a discussion of the nonnegativity of w�
and v�, we refer to [15, Sect. 2].

With the above interaction rules, we can define the interaction operators QI and
QH in the weak form. Let �.w/ WD �.x;w/ be a regular test function and set ˝ D
R � RC, z D .x;w/. Then

Z

˝

QI. f /�.w/dz D 1

�H

� Z

RC

Z

˝

�
�.w�/ � �.w/�M.W/ f .x;w; t/dzdW



;

Z

˝

QH. f ; f /�.w/dz D 1

�I

� Z

RC

Z

˝

�
�.w�/� �.w/

�
f .x;w; t/ f .x; v; t/dzdW



;

where h�i is the expectation value with respect to the random variable � and M.W/ �
0 is a fixed background satisfying

R
RC

M.W/dW D 1.
We have obtained in [15] the following results.

2.3.2 Grazing Collision Limit

The analysis of the Boltzmann equation (2.4) is quite involved, and we expect that
its main features are contained in the limiting equation derived in the diffusion limit
.˛; ˇ; �2H ; �

2
I / ! 0. More precisely, we scale the variables according to t 7! ˛t and

x 7! ˛x. Performing a Taylor expansion in the collision integrals and passing to
the limit .˛; ˇ; �2H ; �

2
I / ! 0 such that �I D �2I =˛ and �H D �2H=˛ are fixed, the

limiting equation for the function g.x;w; t/ reads as

@tg C .˚.x;w/g/x D .KŒg
g C H.w//w C .D.w/g/ww; (2.9)

where .x;w/ 2 R � RC, t > 0, D.w/ D 1
2
.�I=�I C �H�=�H/d.w/2, � D R

˝
fdz,

KŒg
 D
Z 1

0

� .v;w/g.v/dv; � .v;w/ D k

�H
�.v;w/.v � w/;

H.w/ D 1

�I

Z

RC

P.jw � Wj/.w � W/M.W/dW:

(2.10)

The equation is supplemented by the boundary and initial conditions

g.x; 0; t/ D 0; g.x;w; 0/ D g0.x;w/ for .x;w/ 2 R � RC; t > 0: (2.11)
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2.3.3 Existence of Weak Solutions

Equation (2.9) is nonlinear, nonlocal, degenerate in w, and anisotropic in x
(incomplete diffusion) and hence, its analysis is challenging. Partial diffusion may
lead to singularity formation [21], and often solutions have very low regularity [16].
As the transport in x is linear in (2.9), our situation is better but still delicate. In
particular, we need the hypothesis that D.w/ is strictly positive to get rid of the
degeneracy in w. Assuming additionally that the functions in (2.10) are smooth,
� � 0 and @� =@w � 0, and the initial datum g0 is nonnegative and bounded,
there exists a weak solution g to (2.9)–(2.11) such that g 2 L2.0;TI H1.˝//,
@tg 2 L2.0;TI H1.˝/0/ and 0 � g.x;w; t/ � kg0kL1 e�t for .x;w/ 2 ˝ , t > 0,
for some � > 0 and for all T > 0.

The idea of the proof is to regularize Eq. (2.9) by adding a second-order derivative
with respect to x, to truncate the nonlinearity, and to solve the equation in the
finite interval w 2 .0;R/. Then we pass to the deregularization limit. The key
step of the proof is the derivation of H1 estimates uniform in the approximation
parameters, which allow for the compactness argument. These estimates are derived
by analyzing the differential equation satisfied by gx and by making crucial use of
the boundary conditions. For details, we refer to [15].

2.3.4 Numerical Simulations

We illustrate the behavior of the solution to the kinetic model (2.4) numerically
by using an operator splitting ansatz, i.e., we split (2.4) into a drift part and the
collisional parts @tf D QI. f /=�I and @tf D QH. f ; f /=�H. The collisional parts are
solved by using the interaction rules (2.7), (2.8), respectively, and a slightly modified
Bird scheme [5]. The transport part @tf D .˚.x;w/ f /x is numerically solved by
a flux-limited Lax-Wendroff/upwind scheme. The parameters and functions are
chosen as follows: �H D �I D 1 and

P.jw � Wj/ D 1; d.w/ D 4w.1 � w/; �.v;w/ D 1fw<vgv.1 � w/;

˚ is given by (2.6), and we choose the time-dependent background

W.t/ D .sin.t=200/C 0:5 	 exp.t=500//=30:

The time evolution of the first moment

m. f .t// D
Z

˝

f .x;w; t/d.x;w/

is shown in Fig. 2.2. The mean asset value stays within the range ŒW.t/�R;W.t/CR

if W.t/ is increasing but it has the tendency to become larger than W.t/C R if W.t/
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Fig. 2.2 Mean asset value m. f .t// versus time for � D 1, ˛ D 0:3, ˇ D 0:2, ı D 1:5, R D 0:05,
and � D ˙0:061

is not varying much. Furthermore, if ˛ is “small”, m. f .t// usually does not leave the
interval ŒW.t/�R;W.t/CR
 (see [15]). Large values of ˛ mean that the compromise
propensity is larger and thus, herding may be become more likely.

2.4 A Kinetic Model with Wealth and Knowledge Exchanges

The effect of wealth and knowledge exchange in a closed society may be described
by kinetic equations. Let f .x;w; t/ be the distribution function depending on the
knowledge variable x 2 RC, the wealth v 2 RC, and time t > 0. We assume that
the evolution of f is given by the homogeneous Boltzmann-type equation

@tf D QK. f ; f /C QW. f ; f /; .x;w/ 2 RC � RC; t > 0; (2.12)

where the operators QK and QW model the interaction of the agents with respect to
knowledge and wealth, respectively. The exchange rules, defining these operators,
are as follows.

Let .x; v/ and .y;w/ denote the knowledges and wealths of two agents, respec-
tively. The knowledges x� and y� after the interaction are, similarly as in (2.8), given
by

x� D x C �.w/.y � x/; y� D y C �.v/.x � y/;
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where � is a nondecreasing function of the wealth variable, modeling the confidence,
i.e., agent .y;w/ trusts agent .x; v/ more if the latter agent is wealthier than the
former one. The wealth values v� and w� after the interaction are defined by

v� D .1 � �
.x//v C �
.y/w; w� D �
.x/v C .1 � �
.y//w;

where � 2 .0; 1/ is fixed and 
 W RC ! .0; 1
 is a nonincreasing continuous
function of the knowledge variable. This rule is exactly that one used in [29] without
the random risk parameter. The quantity �
.x/ can be understood as the saving/risk-
taking propensity of agent .x; v/. The monotonicity of
 means that the higher is the
knowledge of an agent, the less risky is the wealth exchange for her/him. We observe
that the microscopic total wealth is conserved during the exchange, v�Cw� D vCw.
With the above exchange rules, the interaction operators are defined in weak form,
for some smooth test function �, as

Z

.RC/2
QK. f ; f /�dz1 D �K

Z

.RC/4

�
�.x�; v/ � �.x; v/� f .x; v; t/ f .y;w; t/dz1dz2;

Z

.RC/2
QW. f ; f /�dz2 D �W

Z

.RC/4

�
�.x; v�/� �.x; v/

�
f .x; v; t/ f .y;w; t/dz1dz2;

where �K , �W are some rate parameters and dz1 D dxdv, dz2 D dydw.

2.4.1 Existence of Solutions

If 
 is lower bounded by a positive constant and the initial datum f0 2 L1.R2C/
is nonnegative, there exists a nonnegative solution f 2 L1.0;TI L1.R2C/ to (2.12),
f .x; v; 0/ D f0.x; v/ for .x; v/ 2 R

2C. This result is shown similarly as in [6]. The
idea is to solve (2.12) iteratively, thus defining a sequence . fn/which is bounded and
satisfies fnC1 � fn. The monotone convergence theorem then ensures the existence
of a limit function which solves (2.12) in a distributional sense in time and in a weak
sense in L1.R2C/.

2.4.2 Numerical Simulations

Equation (2.12) is numerically solved by a particle method [5], approximating the
distribution function by a sum of Dirac masses,

f .x;w; t/ �
NX

pD1
ı.xp.t/;wp.t//.x; v/;
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Fig. 2.3 Level sets for the stationary distribution function at f D 1 if only knowledge (left) or
wealth (right) is exchanged

where N 2 N is the number of agents and xp.t/, wp.t/ are the knowledge and
wealth of the pth agent at time t > 0, respectively. The simulations are repeated
30 times for N D 2000 agents with a fixed set of parameters, and the results are
averaged. The simulations are performed until we have approximately reached the
stationary state. The functions are defined by �.v/ D 0:15 and 
.x/ D .1 C x/�ˇ ,
and we have taken the parameters ˇ D 1, � D 0:9, and �k D �w D 1. Figure 2.3
shows the level set f D 1 of the stationary distribution function if only interactions
for the knowledge QK (left figure) or for the wealth QW (right figure) are present,
i.e., we have considered only one type of collisions in each simulation series. The
collision rule for the knowledge induces a concentration of the agents at the average
knowledge, which equals 0:5, having no effect on the wealth distribution. If only
the wealth collision rule is applied, the agents aggregate again on a line, but they
do not have the same wealth. The less informed agents are poorer, while the more
informed are more wealthy. Choosing other values for ˇ will not give a line but a
curve, which allows for more flexibility in the modeling. For instance, for ˇ > 1, the
wealth increases superlinearly with the knowledge, i.e., even a small improvement
of the knowledge leads to a significant increase of the wealth. Thus, Fig. 2.3 (right)
presents a situation which seems to be not unrealistic, giving rise to the hope that
the model may be applicable to more complex socio-economic scenarios.
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Chapter 3
Indifference Pricing in a Market
with Transaction Costs and Jumps

Nicola Cantarutti, João Guerra, Manuel Guerra, and Maria do Rosário
Grossinho

Abstract We present an approach for pricing a European call option in presence
of proportional transaction costs, considering the dynamics of the stock price
following a general exponential Lévy process. The model is a generalization of the
celebrated work of Davis, Panas and Zariphopoulou, where the value of the option is
defined as the utility indifference price. This approach requires the solution of two
stochastic singular control problems in finite time, satisfying the same Hamilton-
Jacobi-Bellman equation with different terminal conditions. Numerical results are
obtained by Markov chain approximation methods. Option prices are computed for
both writer and buyer, when the returns follow a Brownian motion and a Variance
Gamma process.

3.1 Introduction

Option pricing in complete markets uses the concept of replication, whereby a
portfolio in stocks and cash replicates the terminal payoff of the option. The unique
price of the option is given by the initial wealth necessary to create the replicating
portfolio. The most famous example of a complete market model is the Black-
Scholes (BS) model [2], where all the market frictions are ignored, the risk free
interest rate is constant and the asset returns are modelled by a Brownian motion.

However, the real markets are incomplete, and it is not possible to perfectly hedge
an option. The presence of any kind of transactions costs (proportional costs, fixed
commissions, bid/ask spread) as well as portfolio constraints and price jumps, are
the main sources of incompleteness that a trader can face in the markets. In this
situation, the notion of pricing by replication falls apart. Continuous time trading
is infinitely costly due to the transaction costs. Moreover, there are sources of risk,
such as the jumps in the underlying, that are impossible to hedge with the common

N. Cantarutti (�) • J. Guerra • M. Guerra • M. do Rosário Grossinho
CEMAPRE - Centre for Applied Mathematics and Economics, ISEG - University of Lisbon,
Lisbon, Portugal
e-mail: nicolacantarutti@gmail.com; jguerra@iseg.ulisboa.pt; mguerra@iseg.ulisboa.pt;
mrg@iseg.ulisboa.pt

© Springer International Publishing AG 2017
M. Ehrhardt et al. (eds.), Novel Methods in Computational Finance,
Mathematics in Industry 25, DOI 10.1007/978-3-319-61282-9_3

31

mailto:nicolacantarutti@gmail.com
mailto:jguerra@iseg.ulisboa.pt
mailto:mguerra@iseg.ulisboa.pt
mailto:mrg@iseg.ulisboa.pt


32 N. Cantarutti et al.

delta-hedging approach. A completely different approach to option pricing is to
introduce preferences. The investor’s risk profile is described by a utility function.
The hedging problem is formulated as a finite time portfolio optimization problem,
where the investor aims to maximize the expectation of the utility of his portfolio
net value at the terminal time, corresponding to the expiration of the option. The
indifference price, also known as the reservation price, is the price at which an
agent would have the same expected utility of his final wealth by selling (buying)
the option or by not doing so, and then trading in the optimal way. Thus the
indifference price is not unique. This definition produces two prices, for the writer
and for the buyer, which is a more realistic property. A general overview of the
indifference pricing concept applied to several incomplete models can be found in
[4]. Applications for processes with jumps are presented in [6].

Hodges and Neuberger [13] were the first to compute indifference prices in
a market with proportional transaction costs. They assumed Gaussian distributed
returns. They used an exponential utility function, which has the property that
the risk aversion coefficient is constant and does not depend on the total wealth.
This choice simplifies the problem reducing by one the number of state variables.
The model was further developed by Davis et al. [11]. They formulated the utility
maximization problem rigorously as a singular stochastic optimal control problem.
They proved also that the value functions can be interpreted as the viscosity
solutions of the associated Hamilton-Jacobi-Bellman (HJB) equation, and that the
numerical solution, based on the Markov chain approximation, converges to the
viscosity solution. Other results within the framework of this model are obtained in
[5, 9, 10, 17]. Barles and Soner [1] developed an asymptotic analysis of this model
for small levels of transaction cost, reducing the complicated HJB equation, which
is a variational inequality, to a simpler non-linear PDE.

The model has been generalized in [3] for an underlying asset following a general
exponential Lévy process. Considering processes with jumps allows the possibility
of bankruptcy for the portfolio, which is an important innovation in the model.
The drawback is an additional complexity in the general equation, that cannot be
simplified by the choice of the exponential utility function. In order to be able to do
numerical computations, the authors considered the simplified case of a huge firm
such that they could ignore the possibility of default and thus use the exponential
utility for the variable reduction. Numerical results are presented for the case of a
Merton jump-diffusion process.

In Sect. 3.2, we briefly present the general theory following [3]. In Sect. 3.3, we
explain the algorithm to solve the optimization problem. In Sect. 3.4 we show some
numerical results for the well known case of diffusion dynamics, and for a Variance
Gamma (VG) process.
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3.2 The Model

In this section we present the utility maximization problem formulated as a
singular stochastic control problem and derive the associated HJB equation. In this
framework, we model the portfolio dynamics considering the proportional transac-
tion costs. Then we explain the indifference pricing method and, introducing the
assumption of an always solvent investor, derive a simpler HJB equation. We obtain
explicit expressions for the writer and buyer option prices. More details can be found
in [3].

3.2.1 Portfolio Dynamics

Consider a portfolio with one risk-free asset B in the cash account, paying an interest
rate r > 0, and a stock S. We call Y the number of shares of the stock. The investor
creates the portfolio at time t0, when the option is sold (or purchased), and liquidates
it at the time of option expiration T. For t 2 Œt0;T
, the state of the portfolio is
indicated as .B�t ;Y

�
t ; St/, where the superscript� indicates the presence of a control.

The portfolio dynamics is:

8
ˆ̂
<

ˆ̂
:

dB�t D rBtdt � .1C �b/StdLt C .1 � �s/StdMt

dY�t D dLt � dMt

dSt D St
�
	dt C �dWt C R

R
.ez � 1/ QN.dt; dz/

�
:

(3.1)

The parameters �b, �s � 0 are the proportional transaction costs when buying and
selling, respectively. The process �.t/ D .L.t/;M.t// is the trading strategy and
represents the cumulative number of shares bought (L.t/) and sold (M.t/) in Œt0;T
.
These processes are right-continuous, nondecreasing, and progressively measurable.
By convention L.t�0 / D M.t�0 / D 0 and we allow a possible initial transaction at t0.
The price St follows an exponential Lévy process with finite mean and variance:

St D S0e
Xt : (3.2)

The Lévy process Xt has the characteristic Lévy triplet .b; �; �/, where b 2 R, � � 0

and � is the Lévy measure. The drift parameter 	 and the Lévy triplet are related by

	 D b C 1

2
�2 C

Z

R

�
ez � 1 � z1fjzj<1g

�
�.dz/: (3.3)
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The last line in (3.1) is the differential form of St. It can be obtained applying the Itô
lemma on (3.2), considering the Lévy-Itô decomposition for Xt.1 The term QN.dt; dz/
is the compensated Poisson martingale measure, defined by

QN.dt; dz/ D N.dt; dz/ � dt �.dz/; (3.4)

where N.dt; dz/ is the Poisson random measure with intensity dt �.dz/.

3.2.2 Utility Maximization

Before introducing the cost functional that we want to maximize, we have to define
some other important concepts. Define the cash value as the value in cash when long
positions are sold and short positions are covered:

c.y; s/ D
(
.1C �b/ys; if y � 0

.1 � �s/ys; if y > 0:
(3.5)

We consider three different portfolios:

• No option: A portfolio with just cash and shares, with initial value .B0;Y0; S0/.
• Writer: A portfolio with cash, shares and short in a European vanilla option with

strike K and expiration T, with initial value .B0 C pw;Y0; S0/. The value pw is the
price at which the option is sold.

• Buyer: A portfolio with cash, shares and long in a European vanilla option with
strike K and expiration T, with initial value .B0 � pb;Y0; S0/. The value pb is the
price at which the option is purchased.

For t 2 Œt0;T
, we define the total wealth process (in cash) for the “no option”
portfolio:

W0
t D Bt C c.Yt; St/: (3.6)

The wealth process for the writer and buyer portfolios considers the additional
option payoff:

Ww
t D Bt C c.Yt; St/1ft<T;c.1;ST /�Kg C

�
c
�
Yt � 1; St

�C K

�
1ftDT;c.1;ST />Kg;

(3.7)

Wb
t D Bt C c.Yt; St/1ft<T;c.1;ST /�Kg C

�
c
�
Yt C 1; St

� � K

�
1ftDT;c.1;ST />Kg:

(3.8)

1For a review of these concepts, see [6].
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In case of proportional transaction costs, the option is not exercised when ST > K,
but when c.1; ST/ D ST.1 � �s/ > K. In this model we require the wealth to be
always greater than a fixed constant �C, with C � 0 for all t 2 Œt0;T
, as a condition
for the solvency of the investor. The solvency region is defined for the three cases:

S j D
�
.Bt;Yt; St/ 2 R � R � R

C W Wj
t � �C

	
; (3.9)

with j D 0;w; b. Define the first exit time from the solvency region as

� j D inf
˚
t 2 Œt0;T
 W Wj

t 62 S j
�
: (3.10)

Define the set of admissible trading strategies ˘ j.Bt;Yt; St/, as the set of all right-
continuous, nondecreasing, measurable processes L.t/ and M.t/, such that the triplet
.B�.t/;Y�.t/; S.t// is a solution of (3.1) for t 2 Œt0; � j ^ T
, and with initial values
. QB j

0;Y0; S0/. The auxiliary variable QB j
0 can assume the values B0, B0 C pw or B0 � pb

depending on the portfolio we consider, respectively for j D 0;w; b.
This is a dynamic set, so at every time t 2 Œt0; � j ^ T
 it depends on the

current state. Later on we assume that the investor has such a big size that we
can ignore the possibility of insolvency. In this case, the set of portfolios at
terminal time .B�.T/;Y�.T/; S.T// is completely determined by the starting value
. QB j

0;Y0; S0/, and we can substitute the dynamic set ˘ j.Bt;Yt; St/ with the static set
˘ j. QB j

0;Y0; S0/. We will use this assumption later in order to simplify the problem.
The investor wishes to maximize the expected utility of the wealth of his portfolio

at � j ^ T over all the admissible strategies. This expectation is conditioned on the
initial value of cash, number of shares and value of the stock. The value function of
the maximization problem is:

Vj.t0; QB j
0;Y0; S0/ D sup

�2˘.Bt;Yt ;St/

EQB j
0;Y0;S0

�
U .Wj

T/1f� j>Tg C U .�C/er.T�� j/1f� j�Tg
�

(3.11)

for j D 0;w; b. The function U W R ! R is a concave and increasing utility
function, such that U .0/ D 0. The associated HJB equation is a variational
inequality:

max

�
@Vj

@t
C rb

@Vj

@b
C 	s

@Vj

@s
C 1

2
�2s2

@2Vj

@s2
(3.12)

C
Z

R

�
Vj.t; b; y; sez/ � Vj.t; b; y; s/ � s.ez � 1/

@Vj

@s

�
�.dz/ ;

@Vj

@y
� .1C �b/s

@Vj

@b
; �

�
@Vj

@y
� .1 � �s/s

@Vj

@b

�	
D 0;

for .t; b; y; s/ 2 Œt0;T
 � S j and j D 0;w; b.
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A rigorous derivation of the previous equation can be found in [12]. The terminal
and lateral conditions are given by (3.11). This HJB equation is a partial integro-
differential equation (PIDE). The presence of the integral operator implies that the
lateral conditions have to be defined not only on the boundary of the solvency region,
but also beyond. This condition reads:

Vj.t; b; y; s/ D er.T�t/U .�C/ for t 2 Œt0;T
; .b; y; s/ 62 S j; j D 0;w; b:
(3.13)

3.2.3 Indifference Price

With this model we can compute two option prices: the price for the writer pw and
the price for the buyer pb. The indifference price is defined as the initial amount
of money required to have the same final expected utility of wealth trading in the
optimal way in the portfolio with the option, as if trading in the optimal way in
the portfolio without the option. The two prices can be obtained implicitly by the
conditions

V0.t0;B0;Y0; S0/ D Vw.t0;B0 C pw;Y0; S0/; (3.14)

V0.t0;B0;Y0; S0/ D Vb.t0;B0 � pb;Y0; S0/: (3.15)

3.2.4 Variable Reduction

We now assume the simple case of a big investor that cannot default. The dynamic
set ˘ j.Bt;Yt; St/ can be replaced by the static set ˘ j. QB j

0;Y0; S0/. As long as
the portfolio never goes into bankruptcy (� j > T), we can ignore the lateral
boundary conditions (3.13). Moreover we can use the properties of the exponential
utility function to reduce the number of variables of the problem. The exponential
utility is defined by

U .w/ D 1 � e��w: (3.16)

The exponential utility has the property that the coefficient of risk aversion

� D �U 00.x/=U 0.x/

is constant, and does not depend on the wealth w. This means that the amount
invested in the risky asset at time T, is independent of the total wealth at time
T. As long as the amount in the risky asset is independent of the total wealth,
the amount in the cash account is irrelevant to the trading strategy. We can thus
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remove Bt from the state dynamics. The integral representation of the evolution of
Bt in (3.1) is:

B�.T/ D B0
ı.t0;T/

�
Z T

t0

.1C�b/
S.t/

ı.t;T/
dL.t/C

Z T

t0

.1��s/
S.t/

ı.t;T/
dM.t/; (3.17)

where ı.t;T/ D e�r.T�t/. Putting these expressions into (3.11), we get

Vj.t0; QB j
0;Y0; S0/ D 1 � e�� QB

j
0

ı.t0;T/Q j.t0;Y0; S0/; (3.18)

with

Q j.t0;Y0; S0/ D inf
�2˘.QB j

0;Y0;S0/
EY0;S0

�
e��

�
�R T

t0
.1C�b/

St
ı.t;T/ dLtC

R T
t0
.1��s/

St
ı.t;T/ dMt

�

(3.19)

� Hj.Y�.T/; S.T//

�
:

The first factor can be interpreted as a discount factor, while the function Hj.y; s/ D
Q j.T; y; s/ is the terminal cost.

• No option:

H0.y; s/ D e�� c.y;s/: (3.20)

• Writer:

Hw.y; s/ D e��
�

c.y;s/1fc.1;s/�KgC
�

c.y�1;s/CK
�
1fc.1;s/>Kg

�
: (3.21)

• Buyer:

Hb.y; s/ D e��
�

c.y;s/1fc.1;s/�KgC
�

c.yC1;s/�K
�
1fc.1;s/>Kg

�
: (3.22)

Using conditions (3.18) together with (3.14), (3.15), we obtain the price of the
option as:

pw.t0; y; s/ D ı.t0;T/

�
log

�
Qw.t0; y; s/

Q0.t0; y; s/

�
; (3.23)

pb.t0; y; s/ D ı.t0;T/

�
log

�
Q0.t0; y; s/

Qb.t0; y; s/

�
: (3.24)
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Passing to a log-variable x D log.s/, the derivative operators change to

s
@

@s
D @

@x
; s2

@2

@s2
D @2

@x2
� @

@x
: (3.25)

The simplified HJB equation is

min

�
@Q j

@t
C .	 � 1

2
�2/

@Q j

@x
C 1

2
�2
@2Q j

@x2
(3.26)

C
Z

R

�
Q j.t; y; x C z/ � Q j.t; y; x/ � .ez � 1/

@Q j

@x

�
�.dz/ ;

@Q j

@y
C .1C �b/e

x �

ı.t;T/
Q j ; �

�
@Q j

@y
C .1 � �s/e

x �

ı.t;T/
Q j

�	
D 0;

with j D 0;w; b. It is convenient to consider the integral representation

Q j.t; y; x/ D min

�
Ey;x

�
Q j
�
t C�t; y; x C�X

�
�
; (3.27)

exp

�
�

ı.t;T/
.1C �b/e

x�L�
t

�
Q j
�
t; y C�L�

t ; x
�
;

exp

�
� �

ı.t;T/
.1 � �s/e

x�M�
t

�
Q j
�
t; y ��M�

t ; x
�	
;

where each term inside the “min” is the solution of the corresponding term in the
differential equation taken equal to zero. The values�L�

t and �M�
t are the optimal

number of shares bought or sold at time t.

3.3 The Algorithm

In this section we describe the method to solve the minimization problems (3.19).
The solution can be found by discretizing the dynamic programming equa-
tion (3.27). To this purpose, we use the Markov chain approximation method
for singular control problems developed by Kushner and Dupuis in [14], where the
portfolio dynamics is approximated by a discrete state controlled Markov chain
in discrete time. The method consists in creating a backward recursive dynamic
programming algorithm, in order to compute the value function at time t, given its
value at time t C�t. With the variable reduction introduced in the previous section
(Bt is removed from the state variables) and the change to the log-variable (3.25),
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the portfolio stochastic differential equation (SDE) (3.1) has the simpler form

(
dY�t D dLt � dMt;

dXt D �
	 � 1

2
�2 � R

R

�
ez � 1 � z

�
�.dz/

�
dt C �dWt C R

R
z QN.dt; dz/:

(3.28)

We have to discretize the time and space to create a Markov chain approximation
for this portfolio dynamics. The theory developed by Kushner and Dupuis considers
only Lévy processes with finite activity of jumps, which means that

R
R
�.z/dz < 1.

For Lévy processes with infinite activity, it is possible to approximate the small
jumps with a Brownian motion, as explained in [6]. This helps to remove the
singularity of the Lévy measure near the origin, and therefore allows us to use the
Markov chain framework of Kushner and Dupuis.

For n D 0; 1; : : :N 2 N, define the discrete time step �t D T�t0
N such that

tn D t0 C n�t. Define the set ˙x D f�K1hx; � � � � hx; 0; hx; � � � C K2hxg, where we
consider the discrete log-price step hx > 0 and K1;K2 2 N. The values of K1 and
K2 can be different to capture the possible asymmetry of the jump sizes. Define also
the set ˙y D f�K3hy; � � � � hy; 0; hy; � � � C K4hg, where hy > 0 is a discrete step and
K3;K4 2 N. The number of shares Yn takes values in ˙y. The discretized version of
the SDE (3.28) is

(
�Yn D �Ln ��Mn

�Xn D O	�t C O��Wn C�QJn

(3.29)

where we consider the increment�Xn D X.tn C�t/�X.tn/, and the new drift O	 and
volatility O� parameters. The term �Wn D W.tn C�t/ � W.tn/ 2 ˙x assumes only
the three possible values f�hx; 0; hxg, and �QJn is the compensated Poisson jump
term with finite activity �, that assumes all the values in ˙x.

The two increments �Ln, �Mn which describe the change in the number of
shares bought or sold are positive multiples of hy. The action of the control is
supposed to happen instantaneously: �Ln D L.tn/ � L.t�n / and �Mn D M.tn/ �
M.t�n / happen at the same time tn. We indicate by L.t�n / and M.t�n / the number of
shares just before the transaction.

The Markov chain approximation has to satisfy two conditions:

1. The transition probabilities pX are represented as:

pX.x; z/ D .1 � ��t/ pW.x; z/C .��t/ pJ.x; z/; (3.30)

where � > 0 is the jumps activity, pW and pJ are the transition probabilities of
the Brownian and jump components respectively.

2. The transition probabilities have to be locally consistent with the SDE (3.28).
This means that, at each time step, the first two moments of the Markov chain
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have to be equal to the first two moments of the continuous process:

En
�
�Xn

� D O	�t; (3.31)

En

��
�Xn � E

�
�Xn

��2
�

D
�

O�2 C
Z

R

z2�.dz/

�
�t: (3.32)

In the construction of the chain Xn, the transition probabilities and the sizes of
time and space steps have to be chosen such that the Markov chain satisfies the
two properties. A possible technique to obtain those parameters is to discretize
the infinitesimal generator of the process by an explicit finite difference method.
In the numerical examples of the next section we model the discrete dynamics
of the diffusion process with a binomial tree. For the discretization of the infinite
activity Variance Gamma process, we first have to approximate it with a jump-
diffusion process in order to use the Kushner framework, and then we obtain
the transition probabilities by discretizing the infinitesimal generator, following
the procedure described in [3]. The discrete version of the dynamic programming
equation (3.27) is:

Q.tn;Yn;Xn/ D min

�
En

�
Q
�
tnC1;Yn;Xn C�Xn

�
�
; (3.33)

min
�Ln

exp

�
�

ı.tn;T/
.1C �b/e

Xn�Ln

�
En

�
Q
�
tnC1;Yn C�Ln;Xn C�Xn

�
�
;

min
�Mn

exp

�
� �

ı.tn;T/
.1 � �s/e

Xn�Mn

�
En

�
Q
�
tnC1;Yn ��Mn;Xn C�Xn

�
�	
:

Algorithm 1
Input: r, .b; �; �/, S0, K, T, �b, �s, � , N, NL, NM,
Output: Q.t0; y; s/ for j D 0;w; b
1: Compute the transition probabilities and the steps �t and hx D SdŒ�Xt
.
2: Create the log-price tree for the Markov chain (3.29).
3: Create the

�
N.NL � 1/C 1

�� NM grid with terminal conditions (3.20), (3.21) or (3.22).
4: for n = N-1 to 0 do
5: Wj;iCl D PK2

kD�K1 pk QnC1
j;iCk

6: Qn
j;i D minfWj;i�m; minl F.xi; l; n/Wj;i�m; minm G.xi;m; n/Wj;i�mg

At time n the grid has size
�
n.NL � 1/C 1

� � NM.
7: end for
8: Once obtained Q0.t0; y; s/, Qw.t0; y; s/, Qb.t0; y; s/ use (3.23) and (3.24) for pw and pb.
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We can solve it with a backward induction algorithm, where we used the short
notation: Q.tn; yj; xi/ D Qn

j;i, the parameters NL D K1 C K2 C 1 and NM D K3 C
K4 C 1 and defined the functions F.x; l; n/ D e� l .1C�b/ ex=ı.n;N/ and G.x;m; n/ D
e�� m .1��s/ ex=ı.n;N/.

3.4 Numerical Results

In this section we implement the algorithm for two different Lévy processes: the
Brownian motion and the Variance Gamma.

3.4.1 Brownian Motion

The diffusion case has been extensively studied theoretically and numerically in
[9, 11, 13, 17] and related works. The Brownian motion with drift is a Lévy process
with triplet .b; �; 0/. The Lévy measure is identically zero, so the path of the process
has no jumps. The parameter b is related with the drift	 D bC 1

2
�2 by formula (3.3).

A simple discretization of the Brownian motion can be obtained by the “binomial
tree”, see [8]. The binomial method with zero transaction costs converge to the
Black-Scholes price. For the numerical computations, we use the following set of
input parameters:

K T r 	 � N NM �

15 1 0.1 0.1 0.25 1000 1000 0.01

Considering the Black-Scholes price as the reference price, we implement
Algorithm 1 for different levels of transaction costs and assuming �b D �s.

In Figs. 3.1 and 3.2, we obtain values respectively for the writer and for the
buyer of the option. We can see that when the level of transaction costs is zero, the
algorithm reproduces the Black-Scholes prices.2 The option price is an increasing
function of the level of transaction costs for the writer, while for the buyer is a
decreasing function. Therefore the spread is bigger when the market has bigger
transaction costs. In our computation we chose 	 D r. In [3], the authors show that
the parameter 	 is not relevant for the value of the option.

2The BS curve in this case has been computed solving the BS PDE using a finite difference implicit
method.
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3.4.2 Variance Gamma

The Variance Gamma process is a pure jump Lévy process with infinite activity.
Applications of the VG process to financial modelling can be found for example in
[6, 15, 16]. This process can be obtained by time subordination of Brownian motion
or as the difference of two Gamma processes. These two methods are equivalent
(see [16]). We choose the first representation. Consider a Brownian motion with
drift Xt D � t C �Wt and substitute the time variable with the gamma subordinator
Tt 
 � .t; �/. We obtain the Variance Gamma process:

XTt D �Tt C �WTt : (3.34)

It depends on three parameters:

• � , the drift of the Brownian motion,
• � , the volatility of the Brownian motion,
• �, the variance of the Gamma process.

The VG Lévy measure is:

�.dz/ D e
�z
�2

�jzj exp

0

B
@�

q
2
�

C �2

�2

�
jzj

1

C
A dz; (3.35)

and completely describe the process. Even if the process has been created by
Brownian subordination, it has no diffusion components. The Lévy triplet is
.
R

jzj<1 z�.dz/; 0; �/
We now approximate the small jumps with a Brownian motion. Fixing a

truncation parameter � > 0, the infinitesimal generator of the process [the first term
in Eq. (3.26)] becomes:

L Q D @Q

@t
C 	

@Q

@x
C
Z

jzj<�
�
Q.t; y; x C z/ � Q.t; y; x/ � .ez � 1/

@Q

@x

�
�.dz/

C
Z

jzj��
�
Q.t; y; x C z/ � Q.t; y; x/ � .ez � 1/@Q

@x

�
�.dz/;

where � D 0 and 	 can be computed using (3.3). In the integral term on the domain
jzj < �, use the Taylor approximation:

• Q.t; y; x C z/ D Q.t; y; x/C @Q
@x z C 1

2
@2Q
@x2

z2 C O.z3/.

• ez � 1 D z C z2

2
C O.z3/.
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Considering only the terms up to the second order, the integral for jzj < � is

Z

jzj<�
z2

2

�
@2Q

@x2
� @Q

@x

�
�.dz/ D �2�

2

�
@2Q

@x2
� @Q

@x

�
;

where we called the second moment of the Lévy measure

�2� D
Z

jzj<�
z2�.dz/: (3.36)

We can define also the parameters:

w� D
Z

jzj��
.ez � 1/�.dz/

and

�� D
Z

jzj��
�.dz/:

We obtain an infinitesimal generator of a jump-diffusion process:

LQ D @Q

@t
C .	 � 1

2
�2� � w�/

@Q

@x
C 1

2
�2�
@2Q

@x2
(3.37)

C
Z

jzj��
Q.t; y; x C z/�.dz/� ��Q.t; y; x/:

In the numerical computations, we use the following parameters:

K T r � � � � N NL NM
15 1 0.05 0.02 �0:1 0.2 0.1 138 33 146

The transition probabilities of the Markov chain are obtained by a finite
difference discretization of (3.37). For more details, see [3].

Figures 3.3 and 3.4 show the prices with the presence of transaction costs.
The continuous line is the solution of the VG PIDE for the price of the option.
We solved the PIDE using an implicit/explicit scheme and the Brownian approx-
imation as proposed in [7]. In order to estimate the numbers of time steps N and
branches for the multinomial tree NL, we consider the space step hX D �X

p
�t,

where �X D p
�2 C �2� and �t D T=N. We demand that hX � L > 3�J, where

�2J D R
jzj�� z2�.dz/ is the variance of the jump process. Of course �2X D �2� C �2J .

Putting all this together, we obtain NL � 3�J
�X

p
N. Using our values for the parameters,

this corresponds to NL � 2:8
p

N.
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Chapter 4
Negative Rates: New Market Practice

Jörg Kienitz

Abstract Considering the current interest rate environment it has become neces-
sary to extend option pricing models for strikes in .�1; 0
. We consider the new
market environment and show the changes in the modelling landscape. Our scope is
on models that can accommodate negative rates. Especially, we focus on a recently
proposed model which extends the classical SABR model of Hagan et al. (Wilmott
Mag 1:84–108, 2002). This model was introduced in (Antonov et al., Risk, 2015)
and is called the Free Boundary SABR model.

Since for practitioners it is necessary to frequently calibrate a model to market
data fast approximation methods together with benchmark methods for their
performance and testing their accuracy are essential. In this chapter we consider two
approximation formulae for the Bachelier volatility, also known as Gaussian or
Normal volatility, produced by this model. The latter numbers can be used as input
to the Bachelier pricing formula. Together with the current forward value and the
time to maturity this leads to prices of European Call and Put options.

We have to stress the fact that the approximation formulae can serve for
calibration purposes where fast calculation of prices is essential. However, the
inapplicability to certain parameter ranges have to be taken into account. The
numerical approach proposed by Antonov et al. (Risk, 2015) does not lead to
implied volatilities. The implied volatilities have to be inferred by numerical
methods from option prices where this method also suffers from the fact that not
all values of the parameters may be covered.

4.1 Introduction

If we consider recent market data we find that certain interest rates have negative
values. This was assumed to be impossible in the past at least if one considers the
major currencies, e.g. EUR or CHF. Figure 4.1 shows the short end of the OIS
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curve and the 6M curves for EUR. Significant parts of the curve exhibit negative
values. For the OIS curve the rates up to 6 years are negative while for the 6M curve
the rates are negative up to 4 years. Negative rates do have further consequences.
One consequence is that the quoting mechanism using implied logarithmic normal
volatility is not possible anymore. This is due to the fact that this model does not
allow negative values to be realized by the underlying rate and, thus, for instance
Floors having a strike equal or less than 0 would simply be worth 0. The current
market quotes in fact assign non-zero values to such options.

While logarithmic normal models cannot be used any longer the market has
started to apply the Bachelier model, respectively the Displaced Diffusion/Shifted
Lognormal model to quote option prices in terms of volatility for interest rate
derivatives. Before the market adopted models other than the standard logarithmic
normal model it was observed that the corresponding implied logarithmic normal
volatilities increased, even exploded and finally disappeared. This is due to the fact
that values for options are bounded in this model, European Call options can only
be as large as the forward subtracted by the strike, F.T/ � K. This means that it
does not matter how big we choose the volatility the bound is determined by the
current forward asset price and the strike. But actually the market quoted prices that
were larger. We come back to this issue in Sect. 4.1.2. We introduce the Bachelier
model in Sect. 4.1.1 and the Displaced Diffusion model in Sect. 4.1.2. Furthermore,
standard approaches to model the skew/smile such as the SABR model, [5], cannot
be used either and extensions to such models have to be explored. We consider a
version of the SABR model in Sect. 4.2.

The following sections highlighting the pricing methods are based on [7]. For
numerical implementations see [9] and the accompanying software.

4.1.1 Bachelier Model

For the Bachelier model which is also sometimes also called Gaussian or Normal
model the dynamic of an asset S is given by

dS.t/ D �NdW.t/; S.0/ D s0 (4.1)

For a European Call, respectively Put option price denoted by VC, respectively VP

with strike K, maturity T and dynamic given by (4.1) we have

CN.S.0/;K;T; �/ D .S.0/� K exp.�rT//N .d.�N//C �
p

Tn.d.�N// (4.2)

PN.S.0/;K;T; �/ D .K � S.0//N .�d.�N//C �
p

Tn.d.�N// (4.3)

with d.�/ D S.0/�K

�N

p
T

. Since S.T/ is distributed with respect to a Gaussian distribution

realizations of S.T/ can become negative. The volatilities �impl matching a given
price, that is VC D C.S.0/;K;T; �impl/ are called Bachelier implied volatilities or
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bp (basis point) volatilities and are currently used to quote prices for interest rate
options. The fact that S.T/ can become negative is heavily important here since
using this model it is possible to quote values for strikes K � 0.

Example 4.1 Let us take S.0/ D 0:03, K D 0:032, T D 2, r D 0 and � D 0:2. We
obtain d D �0:01767767which leads to a Call option price of 0:110355547.

For the Bachelier model to every price p of a European Call/Put option it
is possible to find a value �N such that put into the corresponding valuation
formula, (4.2) or (4.3), leads to the price p. The Bachelier model leads to unbounded
option prices.

4.1.2 Displaced Diffusion Model: Shifted Lognormal Model

Another approach, see for instance [11], to take negative rates into account is to
consider the following dynamics:

dS.t/ D .S.t/C b/�dddW.t/; S.0/ D s0: (4.4)

Together with the volatility �dd there is a displacement parameter b. The pricing
equations for European Call and Put options for the model given by (4.4) are:

CDD.S.0/;K;T; �/ D .S.0/C b/N .d1/ � .K C b/N .d2/ (4.5)

PDD.S.0/;K;T; �/ D .K C b/N .�d2/� .S.0/C b/N .�d1/ (4.6)

with d1 D log



SCb
KCb

�
C˙2dd

2

˙dd
and d2 D d1 � ˙dd, ˙dd D �dd

p
T . Data providers have

started to quote � together with the displacement parameter b. Then, the option
prices can be obtained by (4.5), respectively (4.6). We observe that the pricing
within the displaced diffusion model is very close to the Black76 model. It is just
to replace the input data and adjust the data by the displacement coefficient. For a
given displacement parameter there is only one input parameter—the volatility—
which can uniquely be used to determine prices for European Call and Put options.
Using the same methodology as for the Black and the Bachelier models we define
the Displaced Diffusion/Shifted Lognormal implied volatility.

Example 4.2 Let us take S.0/ D 0:03, K D 0:032, T D 2, r D 0, � D 0:2 and
b D 0:005. We obtain d1 D �0:33068341 and d2 D �0:613526122 which leads to
a Call option price of 0:001671505.

Let us consider an ATM option with a given implied Bachelier volatility �N .
Then, the price can be expressed in terms of a shifted/displaced log-normal implied
volatility if and only if

F C d >

r
T

2�
�N (4.7)
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This means: Only if (4.7) holds there is a number �DD which lead to the same
price as calculate with the formula (4.2). In this case there is a Displaced Diffusion
volatility �DD and

�DD D 2
p
2p

T
� erf �1

 
�N

F C d

r
T

2�

!

This implicitly leads to a lower bound on the displacement. This is given by

d >

q
T
2�
�N

F

If we would chose a smaller displacement it would not be possible to recover the
option price. Thus, the Displaced Diffusion/Shifted Black model suffers from the
same shortcoming as the standard lognormal model. With fixed displacement it
might not be possible to recover the prices for European Call/Put options. Methods
for converting between different volatilities are considered in [3, 4].

Finally, the Displaced Diffusion as well as the Bachelier model are limited in
terms of modelling the skew/smile. To handle this problem it is possible to consider
a Displaced Diffusion version of the SABR or any other smile model. The next
section introduces a variant of the SABR model which takes a different approach.

4.2 The Free Boundary SABR Model

It is possible to consider the standard SABR model from [5] extended by a
displacement. But let us consider the model introduced in [2]. It is given by the
system of Stochastic Differential Equations:

dF.t/ D ˛.t/jF.t/jˇdW1.t/ (4.8)

d˛.t/ D �˛.t/dW2.t/ (4.9)

hdW1.t/; dW2.t/i D �dt (4.10)

F.0/ D f0

˛.0/ D ˛0

It is called the Free Boundary SABR model abbreviated fSABR. The dynamic for
the forward rate F.t/, (4.8), is a CEV type process. The special feature here is that
not only forward value but its absolute value is chosen to govern the dynamic.
The volatility, (4.9), evolves as in the original SABR model and is modelled as
Geometric Brownian Motion. The Brownian motions driving the processes are
correlated, (4.10). The initial values are given by f0 and ˛0.
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In [2] the authors propose to use the analytic solution for the case � D 0. This
is done by deducing a formula for the time value O fSABR

F .T;K/ of a European Call
option:

OSABR
F .T;K/ D 1

�

p
jKf0jf1K�0A1 C sin.��/A2g (4.11)

with � D ˇ
ˇ� 1

2
.1 � ˇ/�1ˇˇ and

A1 D
Z �

0

sin.�/ sin.��/

b � cos.�/

G.T�2; s.�/

cosh.s.�//
d�

A2 D
Z 1

0

sinh. / .1K�0 cosh.� /C 1K<0 sinh.� //

b C cosh. /

G.T�2; s. /

cosh.s. //
d 

and

sinh.s.�// D �

˛

s

2
j f0Kj1�ˇ
.1 � ˇ/2 .b � cos.�//

sinh.s. // D �

˛

s

2
j f0Kj1�ˇ
.1 � ˇ/2 .b � cosh. //

G.t; s/ D 2
p
2

e�t=8

t
p
2�t

Z 1

s
ue�u2=.2t/

p
cosh.u/� cosh.s/du

b D j f0j2.1�ˇ/ C jKj2.1�ˇ/
2j f0Kj1�ˇ

Since (4.11) does only hold for � D 0 it is not applicable for the general case � ¤ 0.
To apply the model for the remaining cases the authors show that (Markovian)
projection technique (see [10]) can be utilized to find a Free Boundary SABR model
with zero correlation which is in a sense close to the model with � ¤ 0. This
technique allows to use a model, call it the p-model, where valuation techniques
are well known. The model under consideration is then projected onto the p-model.
This projection is essentially expressing the parameters of the p-model as functions
of the model’s parameters. The resulting distributions at maturity are very close.

However, they remark that the approach not necessarily leads to a model which
is free of arbitrage and, furthermore, it can be shown that the technique is not stable
or not even applicable for all possible combinations of parameters. Especially for
large values of j�j that is close to 1. This is not addressed further but we consider
a method in Chap. 15 that can be applied for the full range of parameter values
including �1 � � � 1.

We introduce two approximation formulae for calculating the Bachelier volatility
in this model. These formulae are in the spirit as [1, 5, 6]. The final section gives
numerical results and we also provide an application for the calibration to market
data for Caplets.
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Fig. 4.2 Intuition for the effect of the parameters on the implied Bachelier volatility for the Free
SABR model ˛ (upper left), ˇ (upper right), � (mid left), � (mid right) and f0 (lower left)

4.2.1 The Parameters

We wish to gain intuition what the role of the each parameter plays in this model. To
this end we consider a base scenario and change the parameters. As a base scenario
we take ˛ D 0:005095939, ˇ D 0:1, � D 0:3, � D �0:3, f0 D 0:005 and T D 5.
The results are shown in Fig. 4.2. This is taken from [8]

The results displayed in Fig. 4.2 illustrate the effects a change in a given
parameter has on the implied volatility for a fixed time to maturity.

4.2.2 Applicability

The integration limits need to be adjusted with respect to the parameters and we
observe that small values of the CEV parameter lead to erroneous results as well as
small values for the forward rates also leverage this phenomenon.
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Now, we wish to consider the model with � ¤ 0. In [2] the general recipe for the
projection is to choose a mimicking zero correlation model such that

Q̌ D ˇ

Q� D
r

�2 � 3

2

�
�2�2 C ˛��.1� ˇ/Fˇ�1� (4.12)

Q̨ .0/ D 2�� Q�
�2 � 1

Q�.1/
Q�.0/

ˇ
ˇ
ˇ
ˇ
KDF

D 1

12

�
1 � Q�2

�2
� 3

2
�2
�
�2 C 1

4
ˇ�˛�Fˇ�1

with

� D K1�ˇ � F1�ˇ

1 � ˇ ; � D
�
˛min C �� C ��

.1C �/˛

� Q�
�

˛min D
p
�2�2 C 2���˛ C ˛2

Figure 4.3 shows Q�2 from Formula (4.12) and it is clear that this expression can
become negative, thus, it is not possible to get a real square root.

We have observed that the standard integration formula depends on the choice
of the integration upper bound. Figure 4.4 illustrates this. We plotted the calculated
implied Bachelier volatilities for the prices calculated with different upper bounds
for the integration.

Again we based this subsection on [8].
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Fig. 4.3 Instabilities using Numerical Integration of the valuation equation (4.11). We show the
implied Bachelier volatility calculated from prices using different upper bounds for integration
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Fig. 4.4 Instabilities using Numerical Integration of the valuation equation (4.11). We show the
implied Bachelier volatility calculated from prices using different upper bounds for integration

4.3 Approximation Formulae

In this section we consider approximation formulae for the implied Bachelier
volatility. These formulae are straightforward generalizations of results obtained in
[5] and [1]. The approximation formulae suffer from the well known shortcomings.
This includes inaccuracy, resp. inapplicability for large values of volatility,
long time to maturity and may lead to negative densities around 0 for certain
parameter settings.

4.3.1 Approximation 1

First, we consider the approximation formula for Bachelier volatility by following
the same lines of thought as in [5] and [6]. We obtain the formula

�H
B .T;K/ � ˛0. f0 � K/

I

�

x.�/

�
1C

�
g˛0 � ��˛0

4
� .K/C 2 � 3�2

24
�2
�

T

�
;

(4.13)
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with

g D log
�
. f0 � K/�1Ij f0jˇjKjˇ� =I2

� D �˛�1
0 I

x.�/ D .1 � �/�1.
p
1 � 2�� C �2 � � C �/

I WD
Z f0

K
jxj�ˇ dx:

Substituting (4.13) into the Bachelier pricing formula gives the price of a European
Call option. This is a computationally cheap approach that can be used for
calibration purposes.

To be able to use (4.13) we take C. f / D j f j�ˇ and find that

I D

8
ˆ̂
<

ˆ̂
:

.�f /1�ˇ�.�K/1�ˇ

1�ˇ K < 0; f < 0
f 1�ˇC.�K/1�ˇ

1�ˇ K < 0; f > 0
f 1�ˇ�K1�ˇ

1�ˇ K > 0; f > 0

(4.14)

The analytic solution (4.14) is used to calculate (4.13) and putting it into the
Bachelier pricing formula gives the price of a European Call option.

4.3.2 Approximation 2

We wish to consider another approximation formula within the framework of the
Free Boundary SABR model. To this end we follow the same lines of thought as in
[1]. Here with T being the maturity and K the strike an expression for the Bachelier
volatility is obtained. We have

�AB
B .T;K/ � ˙0.K/u1=2.T/C˙1.K/u3=2.T/p

T
(4.15)

For the free boundary SABR model we determine ˙0.K/, ˙1.K/ and u to get an
expression for the approximate volatility which can be put into the Bachelier pricing
formula. We have:

�AB
B .T;K/ D

( j f0jCjKj
�K

�
1C .gK C 1

4
��˛0�K/T

�
K < 0; f0 � 0

j f0j�jKj
�KK

.1C .gK C 1
4
��˛0�K/T/ else

(4.16)

with the corresponding function

�KK D
log.

q
1 � 2��K C �2K � � C �K/

�.1� �/
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and Df D ˛j f0jˇ and Dk D
q
˛20 C 2˛0��yK C �2y2K jKjˇ with the expressions for

gK and yK depending on the sign of the strike K, namely for the case K < 0:

gK D � log

� j f0j C jKj
�KK

p
Df DK

�
=�2KK ; �K D �jKjˇ � j f0jˇ

1 � ˇ

yK D �jKj1�ˇ � j f0j1�ˇ
1 � ˇ ; �K D �

˛.1 � ˇ/
.j f0j1�ˇ C jKj1�ˇ/

and K > 0:

gK D � log

� j f0j � jKj
�KK

p
Df Dk

�
=�2KK ; �K D jKjˇ � j f0jˇ

1� ˇ

yK D jKj1�ˇ � j f0j1�ˇ
1 � ˇ

; �K D �

˛.1 � ˇ/
.j f0j1�ˇ � jKj1�ˇ/

Again this leads to a computational effective way that can be used for calibration
purposes.

4.4 Numerical Results

Now, we consider the Free Boundary SABR model and test the proposed numerical
methods discussed in this chapter, Sects. 4.3.1 and 4.3.2. To this end we consider
the model parameters ˛ D 0:005095939, ˇ D 0:1, � D 0:3, � D �0:3 with
forward f D 0:005 and maturity T D 3.

Table 4.1 displays the results for pricing a European Call option for different
strike values obtained using (4.11). We displayed the true prices obtained by a
benchmark method which we describe later in this book. This method is based
on a partial differential equation efficiently solved numerically that is considered
in Chap. 15.

To consider the performance of the approximations we calculate the Bachelier
volatilities using formulae (4.13) and (4.16) as well as the corresponding prices.
Furthermore, we also calculate the absolute values of the differences with respect to
the prices obtained by integration and by applying the PDE solution. We summarize
our findings in Table 4.2. We took many strike values for a given parameter set.
All methods lead to nearly the same option prices and work very well on the used
parameter set.

4.4.1 Approximations vs Integration

First, we consider the differences of all methods compared to the PDE approach.
Figure 4.5 shows the option prices as well as the differences for all strike values.
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Table 4.1 Applying the PDE
and the numerical integration
method

Strike Benchmark Integration Rel Diff

�0:03 0:03500118 0:03500238 0:00003432

�0:029 0:03400137 0:03400269 0:00003882

�0:028 0:03300159 0:03300304 0:00004411

�0:027 0:03200185 0:03200345 0:0000501

�0:026 0:03100216 0:03100393 0:00005694

�0:025 0:03000254 0:03000448 0:00006475

�0:024 0:02900298 0:02900513 0:00007406

�0:023 0:02800351 0:02800588 0:0000846

�0:022 0:02700415 0:02700676 0:00009673

�0:021 0:02600492 0:0260078 0:00011073

�0:02 0:02500585 0:02500902 0:00012688

�0:019 0:02400698 0:02401048 0:00014555

�0:018 0:02300834 0:0230122 0:00016777

�0:017 0:02201002 0:02201427 0:00019306

�0:016 0:02101208 0:02101676 0:00022235

�0:015 0:02001464 0:02001975 0:00025538

�0:014 0:01901778 0:01902339 0:00029483

�0:013 0:01802169 0:01802783 0:00034062

�0:012 0:01702656 0:01703327 0:00039361

�0:011 0:01603269 0:01603998 0:00045475

�0:01 0:01504043 0:01504833 0:00052516

�0:009 0:01405025 0:01405877 0:00060611

�0:008 0:01306495 0:01307194 0:00053405

�0:007 0:01207884 0:01208867 0:00081257

�0:006 0:01109958 0:01111012 0:00094888

�0:005 0:01012658 0:0101379 0:0011169

�0:004 0:00916197 0:00917424 0:00133784

�0:003 0:00820878 0:00822238 0:00165386

�0:002 0:00727138 0:00728704 0:00214869

�0:001 0:00635677 0:00637561 0:00295456

0 0:00547749 0:00550237 0:0045226

0:001 0:00466845 0:00469153 0:00492124

0:002 0:00391954 0:00393808 0:00470724

0:003 0:00323394 0:00324754 0:00418695

0:004 0:00261781 0:00262651 0:00330935

0:005 0:00207666 0:00217132 0:04359626

0:006 0:00161351 0:00161347 �0:00002349
0:007 0:00122821 0:0012248 �0:00278862
0:008 0:00091696 0:000911 �0:00653648
0:009 0:00067271 0:00066511 �0:01142512
0:01 0:0004862 0:00047782 �0:01754904
0:011 0:0003473 0:00033878 �0:02514202
0:012 0:00024589 0:00023782 �0:03393193

The final column show the absolute differences
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Table 4.2 Numerical results, prices, Bachelier volatilities and differences to the integration as
well as the PDE approach

Approx 1 Approx 1 Approx 1 Approx 2 Approx 2 Approx 2
K Vol Price –Integral Vol Price –Integral

�0:03 0:0062 0:035 �0:0000009 0:0061 0:035 �0:0000012
�0:029 0:0061 0:034 �0:000001 0:006 0:034 �0:0000013
�0:028 0:006 0:033 �0:0000011 0:0059 0:033 �0:0000014
�0:027 0:0059 0:032 �0:0000012 0:0058 0:032 �0:0000016
�0:026 0:0058 0:031 �0:0000013 0:0057 0:031 �0:0000017
�0:025 0:0057 0:03 �0:0000014 0:0056 0:03 �0:0000019
�0:024 0:0056 0:029 �0:0000016 0:0055 0:029 �0:000002
�0:023 0:0055 0:028 �0:0000017 0:0054 0:028 �0:0000022
�0:022 0:0054 0:027 �0:0000019 0:0053 0:027 �0:0000024
�0:021 0:0053 0:026 �0:000002 0:0052 0:026 �0:0000026
�0:02 0:0052 0:025 �0:0000022 0:0051 0:025 �0:0000028
�0:019 0:0051 0:024 �0:0000024 0:005 0:024 �0:0000031
�0:018 0:0049 0:023 �0:0000027 0:0049 0:023 �0:0000033
�0:017 0:0048 0:022 �0:0000029 0:0048 0:022 �0:0000035
�0:016 0:0047 0:021 �0:0000032 0:0047 0:021 �0:0000038
�0:015 0:0046 0:02 �0:0000035 0:0046 0:02 �0:000004
�0:014 0:0045 0:019 �0:0000038 0:0045 0:019 �0:0000042
�0:013 0:0044 0:018 �0:0000042 0:0044 0:018 �0:0000043
�0:012 0:0043 0:017 �0:0000046 0:0043 0:017 �0:0000043
�0:011 0:0042 0:016 �0:0000051 0:0042 0:016 �0:0000042
�0:01 0:0041 0:015 �0:0000057 0:0041 0:015 �0:0000039
�0:009 0:004 0:0141 �0:0000065 0:004 0:014 �0:0000033
�0:008 0:0038 0:0131 �0:0000074 0:0039 0:013 �0:0000023
�0:007 0:0037 0:0121 �0:0000086 0:0038 0:012 �0:0000008
�0:006 0:0036 0:0111 �0:0000103 0:0037 0:011 0:0000015

�0:005 0:0035 0:0101 �0:0000126 0:003 0:010 �0:0000804
�0:004 0:0034 0:0092 �0:0000158 0:0035 0:009 0:0000092

�0:003 0:0033 0:0082 �0:0000202 0:0034 0:008 0:0000147

�0:002 0:0032 0:0073 �0:000026 0:0033 0:007 0:0000195

�0:001 0:0031 0:0063 �0:000032 0:0032 0:006 0:0000124

0 0:003 0:0054 �0:0000551 0:0031 0:006 �0:0000052
0:001 0:0031 0:0047 0:0000192 0:003 0:005 �0:000031
0:002 0:0031 0:004 0:0000277 0:003 0:004 �0:0000041
0:003 0:0031 0:0033 0:0000288 0:003 0:003 0:0000069

0:004 0:0031 0:0027 0:000027 0:003 0:003 0:0000122

0:005 0:003 0:0021 �0:0000669 0:003 0:002 �0:000076
0:006 0:003 0:0016 0:0000213 0:003 0:002 0:0000163

0:007 0:003 0:0012 0:0000188 0:003 0:001 0:000017

0:008 0:003 0:0009 0:0000167 0:003 0:001 0:000017

0:009 0:003 0:0007 0:000015 0:003 0:001 0:0000164

0:01 0:0031 0:0005 0:0000135 0:0031 0:001 0:0000154

0:011 0:0031 0:0004 0:0000121 0:0031 0:000 0:0000139

0:012 0:0031 0:0002 0:0000107 0:0031 0:000 0:0000122
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Fig. 4.6 Differences of the approximation formulas (4.13) and (4.15) with respect to the PDE and
the integration approach for ˛ D 0:005095939, ˇ D 0:1, � D 0:3, � D �0:3 with forward 0:005
and T D 3

Now, we consider the approximation formulae with respect to the results they
produce on European Call option prices for our example. Figure 4.6 shows the
results for the absolute differences. The difference observed on the right wing gets
worse for large values of T and/or �.

4.4.2 Calibration

We performed a calibration using market data of the EUR from Cap/Floor markets
and applied the integration as well as the approximation formulae. Figure 4.7 shows
the result. We have showed that at least for a restricted parameter set the calibration
can be achieved using the approximation formulae presented in this chapter.

4.5 Conclusions

We have considered the standard ways of quoting option prices after the crisis. This
includes negative interest rates being observed even for the major currencies. The
market standard methods are using either Bachelier implied volatility or Displaced
Diffusion/Shifted Log-Normal volatility. For the second method the quotation needs
two parameters, namely the volatility and the displacement. Without fixing the
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displacement the volatility is not unique. Then, we reviewed an extension of the
SABR model which is a generalization to negative rates. We review the proposed
valuation technique and show that straight forward approximation formulae exist.
However, these formulae suffer from the same problems as the approximation tech-
niques for the standard SABR model. Finally, we included some numerical results.
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Chapter 5
Accurate Vega Calculation for Bermudan
Swaptions

Mark Beinker and Sebastian Schlenkrich

Abstract Short rate models are widely used for pricing of Bermudan Swaptions.
In addition to prices, traders and risk managers need sensitivities for hedging and
risk management. Vega is the sensitivity of the price with respect to changes in
market volatilities (i.e. implied Black’76 or Bachelier volatilities). This sensitivity
is of particular importance for Bermudan Swaptions.

It is common practice to evaluate Vega by shifting market data and re-evaluating
model prices. Even though this procedure is often used, in practice it is inefficient
here since the model calibration process flattens out the shift of single volatility
surface grid points. Thus this procedure may underestimate sensitivities. In this
chapter, we demonstrate how Adjoint Algorithmic Differentiation can be used to
calculate accurate and stable Vegas without loss of performance.

5.1 Financial Models and Algorithmic Differentiation

Hedging and risk management require knowledge of the sensitivities of financial
instrument prices with respect to their key risk factors (i.e., Greeks). Mathematically,
these sensitivities can be identified with partial derivatives with respect to input
parameters of the pricing model. From that perspective it does not come as a
surprise that methods of Algorithmic Differentiation (AD) attracted some attention
in financial engineering recently. Some studies in that field are, for example,
[2, 3, 5, 8, 12].

5.1.1 Financial Models and Sensitivities

Prices of exotic financial derivatives are typically determined by means of a specific
financial model rather than by balancing offer and demand for this product. Such
a model could be described by the dynamics of certain risk factors and parameters
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involved. Common risk factors are stock prices, foreign exchange rates, or interest
rates. Exotic derivatives will also frequently depend on volatilities implied by
liquidly traded Plain Vanilla options (implied volatilities). Often, implied volatilities
of plain vanilla options are directly quoted instead of prices. Thus it might not be
necessary to imply these volatilities, because they are directly observable. Still,
throughout this chapter, we use the term implied volatilities synonymously for
market volatilities.

The implementation of the model should be able to price plain vanilla options as
well as exotic financial derivatives in order to verify the calibration quality of the
model or a given set of calibrated model parameters. Here, we focus on pricing
Bermudan swaptions. Then, the particular market observable parameters are the
yield curve and implied volatilities

�Mkt D .�Mkt;1; : : : ; �Mkt;N/
>

of plain vanilla European swaptions observed at the valuation date t. These implied
volatilities correspond to either log-normal volatilities based on Black’s formula or
normal volatilities based on Bachelier’s formula.1 We require our pricing model to
match a set of market prices of plain vanilla European swaptions (called benchmark
swaptions) given as a function of the implied volatility Market.�Mkt/:

Market .�Mkt/ D

0

B
@

Swaption1.�Mkt/;
:::

SwaptionN.�Mkt/

1

C
A :

Here, Swaptioni.:/ represents either Black’s or Bachelier’s formula with appropriate
parameters for the ith swaption. Since we are only interested in the volatility
dependence, all other parameters are suppressed.

In general, a specific pricing model depends on a set of M model parameters.
These parameters are calibrated such that the model prices for a given set of
benchmark products matches the observed market prices as good as possible. This
yields to a minimization problem minxMdl � .xMdl; xMkt/. Here � is a differentiable
cost functional depending on market observables xMkt and model parameters
xMdl. Then, the first order optimality condition yields the calibration function

 .xMdl; xMkt/ D rxMdl� .xMdl; xMkt/ D 0. A typical choice for the cost function
is

� .xMdl; xMkt/ D 1

2
.F.xMdl/ � y.xMkt//

> .F.xMdl/� y.xMkt//

1Volatilities based on the shifted log-normal model are also common nowadays. Since the shifted
log-normal model is related to the log-normal model by a simple variable transformation x 7!
x C a with some constant offset a, we will not consider shifted log-normal models here since this
wouldn’t add much value, but would complicate notation unnecessarily.
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with N � M. In that setting F.xMdl/ and y.xMkt/ are model- and market-implied
reference prices, respectively. This yields a calibration function of the form


 .xMdl; xMkt/ D F0.xMdl/
> .F.xMdl/� y.xMkt// D 0 :

In the special case that we have the same number of model parameters as
reference prices we may simplify the calibration function 
 .�/. Suppose M D N
and F0 .xMdl/ is regular then we may write the calibration function equivalently as


 .xMdl; xMkt/ D F.xMdl/ � y.xMkt/ D 0:

In particular for our application we use this reduced setting.
The Hull White interest rate model (see Sect. 5.2), which we focus on, specifies

the dynamics of the instantaneous short rate. Its model parameters are the short
rate volatility function and the mean reversion speed. In our setting the short rate
volatility is chosen piecewise constant in time. In particular we have the same
number of short rate volatility pieces as market implied volatilities. We denote the
Hull White short rate model volatilities by

�Mdl D .�1; : : : ; �N/
> :

The mean reversion speed is chosen constant and predefined by the user.2

The Hull White model allows the pricing of European coupon bond options
(CBO) that are equivalent to our plain vanilla European swaptions. Of course, the
model prices depend on the model parameters used. Hence, we get a function

Model.�Mdl/ D

0

B
@

CBO1.�Mdl/
:::

CBON.�Mdl/

1

C
A

summarizing the model prices of our reference plain vanilla instruments.
In this setting, the short rate model volatilities �Mdl are chosen such that the

coupon bond option prices equal the equivalent reference European swaption prices.
That is we consider a calibration function 
 with


 .�Mdl; �Mkt/ D Model.�Mdl/ � Market .�Mkt/ :

2Since we have N benchmark prices and N C 1 model parameters, we have to fix one parameter,
otherwise the optimization problem would not be well defined. Experience shows that adding an
additional benchmark swaption does not lead to a stable calibration process, i.e. calibrating the
mean reversion parameter to swaption prices is generally not a good choice. However, it is possible
to calibrate the parameter to Bermudan swaption prices, if available from an external source.
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The model is calibrated to the market observable implied volatility parameters if


 .�Mdl; �Mkt/ D 0 :

After the model is calibrated to the market, we may use the determined model
parameters to price exotic derivatives. The mathematical formulation of the exotic
option price is often more complex than the formulation of the plain vanilla option
prices. Typically, a numerical scheme implements an approximate solution. We
determine the Bermudan swaption price

V D Exotic .�Mdl/

by successive numerical integration.

5.1.1.1 Evaluating Sensitivities

For hedging and risk management purposes the sensitivities of exotic option prices
with respect to market parameters are of particular interest. Evaluation of these
sensitivities requires the differentiation of the Exotic option pricing procedure as
well as the calibration procedure of the model applied. In this study we consider
the sensitivity of the Bermudan price with respect to changes in the market implied
volatilities of our reference European swaptions. Hence we want to evaluate

dV

d�Mkt
D Exotic0 .�Mdl/ � d�Mdl

d�Mkt
:

The term d�Mdl=d�Mkt may be considered the differentiation of the calibration
procedure. We assume 
 is differentiable and 
�Mdl is non-singular at the solution.
Then the implicit function theorem yields

d�Mdl

d�Mkt
D �

�
@

@�Mdl

 .�Mdl; �Mkt/

��1
� @

@�Mkt

 .�Mdl; �Mkt/

D Model0 .�Mdl/
�1 � Market0 .�Mkt/ :

Consequently, we get

dV

d�Mkt
D Exotic0 .�Mdl/ � Model0 .�Mdl/

�1 � Market0 .�Mkt/ :

Thus, the evaluation of Bermudan swaption Vegas requires derivatives of the
Market./, Model./, and Exotic./ functions, as well as a solution of a linear system.
In practice these functions are implemented as computer programs. Although
we probably do not have a closed form representation of these functions, we
can apply the chain rule of differentiation to the individual operations of the
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computer programs. This approach is facilitated by the methods of Algorithmic
Differentiation.

5.1.2 Algorithmic Differentiation at a Glance

Algorithmic Differentiation (AD) provides principles and techniques to augment
computer models with additional code that allows to compute sensitivities of output
variables with respect to inputs of the model. Sensitivities computed by AD-
enhanced models (AD models) are computed as numerical values (not symbolic)
for the evaluation point given by the values of the model inputs. They are exact
up to machine precision. In contrast, widely used approximations of derivatives
computed by finite difference schemes often suffer from rounding and cancellation
errors (especially for higher order derivatives).

The key idea of Algorithmic Differentiation is applying the chain rule of
differentiation to the individual or atomic functions of a computer program. Two
basic modes are distinguished in this context: the forward mode and the reverse (or
adjoint) mode. In the forward mode, the chain-rule is applied in the same order as
the function evaluation itself, starting at the independent variables and evaluating
the dependent variables. On the contrary, the chain-rule can also be applied in
the reverse order of the function evaluation. This means, the sensitivities of the
intermediate variables with respect to the dependent variables are computed succes-
sively and in reverse order. However, this procedure requires a preceding function
evaluation where all overwritten program variables are stored for restoration in the
reverse sweep.

In the reverse mode the additional computational cost for gradient derivative
evaluation is independent of the number of input variables and roughly bounded by
five times the cost of the function evaluation itself. This property makes Algorithmic
differentiation particularly appealing for finance applications. A typical use case is
that sensitivities of many inputs (like interest rates and volatilities) with respect to a
single output (present value) are desired.

From a technical point of view, two fundamental concepts of AD tools have to be
distinguished: Source transformation tools are directly applied to the model code.3

A source transformation AD tool generates the AD model as new source code. AD
tools based on overloading of operators and intrinsic functions provide a new (often
called active) data type. This active data type is embedded into a sensitivity aware
arithmetic. This means, all relevant operators and intrinsic functions are defined
for the active data type and the intrinsic data types. The AD model is derived
by activating a copy of the original model. In practice, the data types of relevant
floating point variables are changed into the active data type. This can be realized,
for example, by hand, global definitions, or some scripting. Another approach is

3Often the original code has to be adapted slightly to meet the requirements of the AD tool applied.
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based on template metaprogramming. This allows binding classes and functions to
active data types at compile time.

An introduction to Algorithmic Differentiation can be found in [4, 9]. For this
study we apply the operator overloading AD tool dco/C++ [10] developed by NAG
and RWTH Aachen.

5.2 Pricing Bermudan Swaptions with a Hull White Model

In this section we present the details of our Hull White model implementation. We
aim at pricing Bermudan swaptions. A Bermudan swaption gives the option holder
the right to enter an interest rate swap at predefined dates. The underlying swap
exchanges a fixed rate cash flows based on simple compounding rate R against a
variable cash flow based on a float rate index Li. Typical floating rate indices are
interbank offered rates (Ibor), such as Euribor or Libor. Forthcoming we use the
general term Ibor rate. The subscript i indicates the dependency of the floating rate
on fixing date ti at which the Ibor rate is determined. Each accrual period has its own
rate. The Ibor rate is typically fixed between 0 and 3 business days prior to accrual
start date.

Fixed leg coupon payment dates are denoted by S1; : : : ; SM and S0 is the start
date of the first coupon period. Year fractions associated with the fixed leg coupon
periods are �1; : : : ; �M . Here, we assume that fixed leg payment dates are a subset
of the floating rate payment dates. In the Euro market fixed payments are usually
annual and the fixed leg day count convention is 30/360.

Floating leg payment dates are given by OS1; : : : ; OS OM and OS0 D S0 is again the start
date of the first coupon period. Corresponding year fractions are �1; : : : ; � OM . Fixed
and float leg have identical maturity dates, i.e. SM D OS OM .

The price of a risk free zero coupon bond at observation time t D 0 with maturity
T (t � T) is given by P.t;T/. The mapping T 7! P.t;T/ represents the yield curve
at observation time t. A yield curve may be inferred from deposit, forward rate, and
swap rates quoted in the market. We assume it to be given as an interpolated set of
zero coupon bond prices (i.e., discount factors).

To simplify notations we work in a single yield curve setting. Individual curves
for forward rate projection and discounting can easily be incorporated into the
pricing of Bermudans. This feature has effects on European swaption pricing as
well as the specification of the Hull White model. Details on tenor and funding
spread modeling are discussed, for example, in [13].

The price of the underlying swap at time t � S0 is determined by discounting the
fixed and forward floating leg cash flows. For a (fixed) receiver swap it becomes

Swap.t/ D R
MX

iD1
�iP.t; Si/

„ ƒ‚ …
FixedLeg.t/

�
OMX

jD1
Lj.t/�jP.t; OSj/

„ ƒ‚ …
FloatLeg.t/

:
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In a single interest rate curve setting the forward Ibor rate Lj.t/ is given by

Lj.t/ D
2

4
P



t; OSj

�

P



t; OSj�1
� � 1

3

5 1

�j
:

Consequently, the floating leg of the swap can be simplified to

FloatLeg.t/ D
OMX

jD1
Lj.t/�jP.t; OSj/ D P .t; S0/� P .t; SM/ :

Thus, we obtain the swap pricing formula

Swap.t/ D R
MX

iD1
�iP.t; Si/ � ŒP.t; S0/� P.t; SM/


D R a0.t/ � ŒP.t; S0/ � P.t; SM/


which depends on the fixed rate R, the fixed leg schedule S0; : : : ; SM, and the yield
curve T 7! P.t;T/. Here, we have introduced the annuity ai.t/ D PM

iC1 �iP.t; Si/.
Rearranging terms yields that the swap can also be interpreted as the time t price of
a risk free (forward) bond contract with unit bond price paid at S0, fixed coupons
R�i paid at Si for i D 1; : : : ;M and unit notional payment at SM . That is

Bond.t/ D �P.t; S0/„ ƒ‚ …
bond price

C R a0.0; t/C P.t; SM/„ ƒ‚ …
coupons and notional

and

Swap.t/ D Bond.t/ : (5.1)

A swaption gives its holder the right to enter a swap at a given strike rate R.
The swaption is considered to be of European style if the right may be exercised at
a single predefined date. A Bermudan swaption gives its holder the right to enter
into a fixed maturity swap at one of several predefined exercise dates. Therefore, the
holder has to decide at each exercise date, whether it is more favourable to enter into
the swap right now instead of keep holding the option to enter the swap at some later
exercise date.4 At an exercise date T with Si0 D miniD1;:::;M fSijSi � Tg the exercise

4Here we assume physical settlement rather than cash settlement, where the option holder receives
a cash compensation only in case of exercise.
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value of the Bermudan swaption equals the value of a European swaption given by

Swaption.T/ D Œ! Swap.T/
C

D Œ! fR ai0 .T/� ŒP.T; Si0 /� P.T; SM/
g
C :

Here ! 2 f�1;C1g distinguishes between a payer (�1) and receiver (C1) swaption
and Œ � 
C abbreviates maxf � ; 0g.

Exploiting the equivalence between swaps and bonds yields that the swaption
may be interpreted as a coupon bond option with payoff

CBO.T/ D

2

6
4!

8
<̂

:̂
R ai0 .T/„ ƒ‚ …

coupons

C P.T; SM/„ ƒ‚ …
notional

� P.T; Si0 /„ ƒ‚ …
strike

9
>=

>;

3

7
5

C

:

The underlying bond coupons equal the fixed leg payments of the swap. At maturity
the unit notional is paid and the option strike equals the unit notional. The exercise
date is assumed to coincide with the accrual start date of the first period, i.e. T D Si0 .

5.2.1 Market Formulas for European Swaptions

The payoff of the swaption is rewritten as

Swaption.T/ D ai0 .T/

�
!

�
R � P.T; Si0 / � P.T; SM/

ai0 .T/

��C
:

In this representation the (forward) par swap rate is denoted by

Y.T/ D P.T; Si0 /� P.T; SM/

ai0 .T/
;

and the swaption payoff becomes

Swaption.T/ D ai0 .T/ Œ�! .Y.T/ � R/
C :

Thus a European receiver (payer) swaption is equivalent to a European put (call) on
the forward par swap rate Y.T/ with strike R.

The present value of the swaptions is derived by discounting the expectation of
the payoff as

Swaption.t/ D at0 .t/ E
A
��! .Y.T/ � R/C

�
:
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The expectation is taken in the so-called annuity measure which uses ai0 .t/ as
numéraire. Since the annuity ai0 .t/ can be interpreted as the weighted sum of zero
bond prices, it is indeed a valid choice as numéraire. It is market practice to evaluate
the expectation E

A
��! .Y.T/ � R/C

�
by means of Black’s or Bachelier’s formula

and corresponding implied volatilities �B and �N respectively. Black’s formula is
given by

Black.Y;R; �B;T; !/ D ! � .Y � N .! � d1/� R � N .! � d2// ;

d1;2 D ln .Y=R/

�B � p
T

˙ �B � p
T

2
;

and Bachelier’s formula is given by

Bachelier.Y;R; �N ;T; !/ D ! � .Y � R/ � N .! � d/C N0.! � d/ � �N � p
T;

h D Y � R

�N � p
T
:

5.2.2 Analytical Pricing Formulas for the Hull White Model

The Hull White model [6] specifies a stochastic process for the short rate r.t/. The
model is given by

dr.t/ D Œ�.t/� ar.t/
 dt C �.t/dW.t/:

Here �.t/ denotes the risk neutral drift and is fully determined by the current interest
rate curve, a the constant mean reversion parameter, and �.t/ the volatility of the
short rate. The stochasticity is given by the Brownian motion increment dW.t/ under
the risk neutral probability measure. It is common to assume that the volatility is
piecewise constant between two exercise dates of a Bermudan swaption. Let T0 D t
and denote the Bermudan exercise dates with T1; : : : ;TN then we have that

�.t/ D �j for t 2 .Tj�1;Tj
; j D 1; : : : ;N:

With a given set of model parameters (i.e. short rate volatilities and mean
reversion speed) as of time t, the price of a (future) zero coupon bond at the future
date Tj > t, with maturity S, and realized short rate r at time t is

ZCB.tI Tj; S; r/ D A.tI Tj; S/ e�B.Tj;S/ r
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with

A.tI Tj; S/ D P.t; S/

P.t;Tj/
exp

�
B.Tj; S/f .t;Tj/� B.Tj; S/2

2
e�2a ı.t;Tj/C.tI Tj/

	
;

B.Tj; S/ D 1

a

�
1 � e�a ı.Tj;S/

�
;

C.tI Tj/ D
jX

kD1

�2k
2a

�
e2a ı.t;Tk/ � e2a ı.t;Tk�1/

�
;

f .t;Tj/ D �@ log.P.t;Tj//

@Tj
:

(5.2)

A coupon bond with cash flows ci at coupon payment dates Si is determined by the
sum of the scaled zero coupon bond prices, i.e.

CB.tI Tj; S1; : : : ; SM; r/ D
X

Si�Tj

ci ZCB.tI Tj; Si; r/:

The time t price of an option on a zero coupon bond with exercise date Tj, bond
maturity S, and strike price K paid at Tj is given by

ZCO.tI Tj; S;K; !/ D P.t;Tj/Black.P.t; S/=P.t;Tj/;K; �P; 1; !/ (5.3)

with

�P D 1

a

�
e�a ı.t;Tj/ � e�a ı.t;S/

�q
C.tI Tj/:

Note that the notation � D 1 in the Black formula implies no loss of generality.
The temporal scaling of the volatility �P is already incorporated in the terms�
e�a ı.t;Tj/ � e�a ı.t;S/

�
and C.tI Tj/.

An option on a coupon bond with cash flows ci at coupon payment dates Si,
exercise date Tj, and strike price K may be valued using Jamshidian’s decomposition
[7]. This approach requires to solve the equation

CB.tI Tj; S1; : : : ; SM; r
?/ D K

for the short rate r?. Using the resulting short rate r? we can evaluate corresponding
individual strikes Ki by

Ki D ZCB.tI Tj; Si; r
?/:
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With these individual strikes the coupon bond option can be priced as a sum of zero
coupon bond options, i.e.

CBO.t;Tj; S1; : : : ; SM; !/ D
X

Si�Tj

ci ZCO.t;Tj; Si;Ki; !/:

For the calibration procedure it is important to note that the price of a coupon
bond option with exercise date Tj depends only on short rate volatilities �1 to �j.
The price is independent on volatilities corresponding to times larger than Tj.

5.2.3 Pricing Bermudan Swaptions

Once the Hull White model is calibrated to European swaptions, it may be applied
to price Bermudan swaptions. In Sect. 5.2 we demonstrated the equivalence between
European swaptions and European bond options. Analogously, we find that a
Bermudan swaption can be represented as a Bermudan option to buy or sell a coupon
bond at predefined exercise dates with given strike prices.

Bermudan swaptions are frequently traded as hedges against call rights of multi-
callable bonds. They are probably the most frequently traded interest rate derivatives
which require a term structure model for pricing. The term structure model is
necessary to determine the exercise boundary which separates the two regions where
exercise is optimal and where exercise should be postponed. This decision depends
on the interest rate level. At each exercise date, the value of the Bermudan option
equals the maximum of hold value and exercise value.

The exercise value can easily be determined, since it is just the value of the
underlying swap at the exercise date. The hold value, i.e. the value of the Bermudan
option if exercise is postponed, is more difficult to determine, since it is essentially
the value of a Bermudan option with one exercise date less. But there is one
exception: at the last exercise date TM�1, no further exercise dates are left, therefore
the hold value must be zero. It follows that at the last exercise date, the value of
the Bermudan swaptions equals the maximum of the exercise value and zero. For
numerical methods running backwards in time, this Bermudan value can be rolled
back to the previous exercise date TM�2. Here, the new Bermudan swaption value
equals the maximum of the rolled-back value (which is the hold value) and the
exercise value at TM�2, and so forth to the valuation date t. Numerical methods
which apply a forward simulation approach (e.g., Monte Carlo methods) would
require instead some additional method to estimate the exercise boundary in order
to price Bermudan options.

In this subsection we sketch our approach for the pricing of Bermudan bond
options in the Hull White model. The method is based on the reformulation of the
Hull White model in the time-T neutral measure. For references, see for example
[1] or [11, Appendix C]. The fundamental theorem of asset pricing yields for the
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price V.t; r.t// of a security depending on the time t and a (also time-dependent)
risk factor r.t/ that

V.t; r.t// D ZCB.0I t;T; r.t// � ET ŒV.T; r.T//
 for t < T :

In this representation ZCB.0I t;T; r.t// is the time-t price of a zero coupon bond
maturing at time T. The zero coupon bond price depends on the model calibration
at time-0 and the time-t state of the risk factor r.t/. For the Hull White model the
risk factor is the short rate. The analytical formula for ZCB./ was elaborated in
Sect. 5.2.2.

The expectation E
T , conditional on the information at time t, is evaluated in the

time-T neutral measure. That is, the numéraire applied is the zero coupon bond
maturing at time T. In our setting the price of the numéraire is given by the ZCB./
formula. For the pricing of the option in this setting we require the dynamics of the
short rate r.t/ in the time-T neutral measure.

Provided we can evaluate E
T ŒV.T; r.T//
 for a given option price or payoff at

time T then we can also price Bermudan bond options. We discretize the short rate
by a grid r0; : : : ; rn. Analogously to a PDE approach, we start at the last exercise
date TN and work backwards in time. We evaluate the auxiliary option price

QV.TN�1; rj/ D ZCB.0I TN�1;TN ; rj/ � ETN ŒpN.r.TN//


for j D 0; : : : ; n. Here pN.r/ is the Nth payoff function of the Bermudan option. We
consider a sequence of coupon bond options. Therefore

pi.r/ D Œ! .CB.0I Ti; S1; : : : ; SM; r/ � Ki/

C for i D 1; : : : ;N

with ! 2 f�1;C1g distinguishing put and call options, Ki determining the (dirty)
strike price of the bond, and CB.: : : / defined in Sect. 5.2.2. The option price at TN�1
then becomes

V.TN�1; rj/ D max
˚ QV.TN�1; rj/; pN�1.rj/

�
for j D 0; : : : ; n:

The resulting discrete points V.TN�1; r0/; : : : ;V.TN�1; rn/ are interpolated to model
the option price function V.TN�1; r/ at time TN�1 and intermediate short rate points
r. We proceed by evaluating

QV.TN�2; rj/ D ZCB.0I TN�2;TN�1; rj/ � ETN�1 ŒV.TN�1; r.TN�1//
 ;

V.TN�2; rj/ D max
˚ QV.TN�2; rj/; pN�2.rj/

�

for j D 0; : : : ; n. These steps are repeated until V.T1; r/ is available. The desired
price of the Bermudan option is finally determined as
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V.0; r.0// D P.0;T1/ � ET1 ŒV.T1; r.T1//
 :

The computationally crucial step is the evaluation of the expectation

E
TN�1 ŒV.TN�1; r.TN�1//


depending on the stochastic short rate r.TN�1/ given the information at time TN�2.
From the dynamics of the Hull White model we know that the short rate is normally
distributed. Moreover, we may derive corresponding mean and variance parameters

	 D E
TN�1 Œr.TN�1/


and

� D Var Œr.TN�1/
 D E
TN�1

h�
r.TN�1/� E

TN�1 Œr.TN�1/

�2i

:

For a derivation of these quantities, see e.g. [11, Appendix C]. Given the distribution
parameters the expectation of the option payoff is evaluated as

E
TN�1 ŒV.TN�1; r.TN�1//
 D 1

2��2
�
Z 1

�1
V.TN�1; r/ � e� .r�	/2

2�2 dr:

In the implementation the integral is solved by interpolating V.TN�1; �/ and numer-
ical quadrature.

5.3 Pricing and Vega Calculation Example

In this section we illustrate an example for price and Vega calculation. As example,
we choose a 5 years into 10 years Bermudan swaption with annual exercise dates.
Market data are selected for EUR as of September 2016 month end.

As mentioned in Sect. 5.2, we work in a single interest rate curve setting.
We model the 6m swap curve which is derived from par quotes of forward rate
agreements and Vanilla swaps. Figure 5.1 shows the calibrated yield curve in terms
of continuous compounded zero rates. Note that rates are negative up to about 7y
maturity; a phenomenon typical for current low interest rate markets.

In addition to interest rates, we need to incorporate volatility information. Current
low interest rates are not compatible with log-normal implied volatilities and
corresponding models. The market provides quotes for shifted log-normal as well
as normal implied volatilities. For this analysis we choose normal volatilities to
avoid the additional dependency on the volatility shift parameter. Nevertheless, the
concepts can be adapted easily to shifted log-normal volatilities as well.
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Fig. 5.1 EUR 6 months swap curve

Fig. 5.2 EUR at-the-money normal swaption volatilities

Figure 5.2 illustrates the at-the-money swaption volatility surface. For brevity,
we omit the volatility smile, i.e. the market implied dependency of the volatilities
on the option strike.

The Hull White model is set up with 1% mean reversion speed and piecewise
constant (backward flat) short rate volatilities. We calibrate the model to co-
terminal European swaptions corresponding to the exercises of the Bermudan.
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Fig. 5.3 European and Bermudan swaption present value

Given that we have a 5 years into 10 years Bermudan with annual exercises
we get exercise dates 5 years; 6 years; : : : ; 14 years. Market volatilities for the
reference European swaption expiries are derived by interpolating the at-the-money
implied normal volatility surface. The resulting market volatilities �Mkt,i are fed into
Bachelier’s formula to get the reference European swaption prices corresponding
to the Swaptioni.�/ market prices in Sect. 5.1.1. We set the short rate volatility grid
equal to the expiry dates of the reference European swaptions and calibrate the short
rate volatility parameters to match the market prices.

Before looking at Vega calculation we analyze the Bermudan swaption pricing.
Figure 5.3 illustrates the European swaption present values Swaptioni.�/ as well
as the Bermudan value denoted by V D Exotic.�/ in Sect. 5.1.1. The result nicely
illustrates that the Bermudan value exceeds the maximum European value by the
switch option value, i.e. the value of the option to postpone the exercise decision.

Figure 5.4 compares the Vegas of the European swaptions with the flat Vega of
the Bermudan swaption. European Vega is evaluated by differentiating Bachelier’s
formula. Bermudan Vega is derived along the lines elaborated in Sect. 5.1.1 utilizing
Algorithmic Differentiation to derive the gradient Exotic0.�/ and the Jacobian
Model0.�/. This procedure naturally yields sensitivities w.r.t. all the individual input
volatilities. A flat Bermudan Vega is derived by summing up the individual Vega
contributions.

The results in Fig. 5.4 show a similar pattern as for the present value: The
Bermudan Vega exceeds the Vega of the maximum European swaption Vega.
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Fig. 5.5 Bucketed Bermudan Vega (per 1bp normal vol shift)

For risk management and hedging it is of particular interest to understand the risk
contribution of the individual buckets. This information is naturally obtained by the
sensitivity calculation procedure applied. The corresponding bucketed Bermudan
Vega dV=d�Mkt is shown in Fig. 5.5.

Note that the Bucketed normal Vega w.r.t. market volatilities differs structurally
from the Bermudan sensitivity w.r.t. the short rate model volatilities. The latter is
denoted by dV=d�Mdl and given in Fig. 5.6. The short rate volatility of the initial 5y
no-call period dominates the overall impact on the Bermudan value.
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Fig. 5.6 Bucketed Bermudan short rate Vega (per 1bp normal vol shift)

5.3.1 Implementation and Computational Costs

The methodology described is implemented in C++ and exported to Excel. The main
computational effort lies in the evaluation of the Bermudan value. Model calibration
and matrix factorization (or inversion) are usually not an issue for this kind of
application. AD theory predicts an increase of the AD-enabled code compared to the
original code by a factor of 4–5. In our application we observe a factor of about 10.
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Chapter 6
Modelling and Calibration of Stochastic
Correlation in Finance

Long Teng, Matthias Ehrhardt, and Michael Günther

Abstract This chapter deals with the modelling and calibration of stochastic
correlations. Correlation plays essential role in pricing derivatives on multi-assets.
Market observations give evidence that the correlation is hardly a determinis-
tic quantity, however, a constant or deterministic correlation has been widely
used, although it may lead to correlation risk. It has been recently proposed to
model correlation by a stochastic process, similar to stochastic volatility pro-
cess. In this chapter, we review the concept of stochastic correlation process
including calibration via the transition density function and its application for
pricing the European-style Quanto option. As an illustrating example, we compare
the Quanto option prices between using constant and stochastic correlation and
analyze the effect of considering stochastic correlations on pricing the Quanto
option.

6.1 Introduction

For two random variables X1 and X2 with finite variances, the correlation of them is
defined as

�1;2 D Corr.X1;X2/ D Cov.X1;X2/

�1�2
; (6.1)

with covariance

Cov.X1;X2/ D E
�
.X1 � 	1/.X2 � 	2/

�
; (6.2)
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where 	i and �i are the expectation and standard deviation of Xi, i D 1; 2. Here �1;2
denotes a coefficient number in the interval Œ�1; 1
. The boundaries �1 and 1 will
be reached if and only if X1 and X2 are indeed perfectly negatively and positively
related. The greater the absolute value of �1;2 the stronger the dependence between
Xi, i D 1; 2 is. Hence, the concept can be used to quantify the relationship between
financial quantifies driven by random variables.

In finance, the relationship between financial quantities plays usually an essential
role, see, e.g., wrong way and right way risk in portfolio credit models [2, 15]. The
correlation concept (6.1) known in statistics as the (linear) Pearson correlation coef-
ficient [10], had been widely applied for the relationship in financial applications.
However, by doing that, there are several disadvantages or fallacies, we state only
some of them:

• If the random variables X1 and X2 are independent, then it follows �1;2 D
0. However, the converse implication does not hold, since in (6.1) only the
two first moments are included. For example, we compute that �1;2 D 0 for
X2 D X21 . Indeed, X1 and X2 depend even almost perfectly on each other. This
simple example illustrates that the correlation coefficient only recognizes linear
dependences between random variables.

• Correlation is invariant under strictly increasing linear transformations, but, in
contrast to Copula methods, not invariant under nonlinear strictly increasing
transformations. For example, in general the correlation of the random variables
X1 and X2 does not equal the correlation of the random variables ln X1 and ln X2,
i.e. after a transformation of the financial data the correlation may change.

• Usually, the given marginal distributions and pairwise correlations of a random
vector cannot determine its joint distribution.

• Finally, as stated above, the variances of the two random variables X1 and X2 has
to be finite. This assumptions is not fulfilled for every standard distribution, e.g.
the Students’s t-distribution with v � 2 degrees of freedom possess an infinite
variance.

For more detailed information about the disadvantages or fallacies we refer to [9].
Using the correlated Brownian motions (BMs) is a standard way to insert the

correlation concept for relationship in financial models. We illustrate this by a
simple example: the coupled stochastic processes for the European-style Quantity
(Quanto) adjusting option in the Black-Scholes framework

(
dSt D 	SSt dt C �SSt dWS

t

dRt D 	RRt dt C �RRt dWR
t ;

(6.3)

with positive constants 	S, 	R, �S and �R. The first stochastic differential equation
(SDE) describes the price of the traded asset in a currency A. The second SDE is
used to model the exchange rate between currency A and another currency B. The
dependence between the series is given by the correlated BMs WS and WR, with the
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symbolic notion

dWS
t dWR

t D �S;R dt: (6.4)

We see that the BMs are assumed to be correlated by a constant correlation �S;R 2
Œ�1; 1
 which is a measure of co-movements between St and Rt.

In financial markets, the first problem of using a correlation concept is the
“observability”. Unlike other quantities as price, exchange rate and so on, the
correlation can not be obtained directly from the market and can only be measured
in the context of a model. The easiest estimator of the correlation is the sample
correlation coefficient. Given a series of N measurements of X1 and X2, which are
observable quantities in the market, and denoting the measurements by x1;j and x2;j,
j D 1; 2; : : : ;N, the sample coefficient correlation reads

O�1;2 D
PN

jD1.x1;j � N	1/.x2;j � N	2/
qPN

jD1.x1;j � N	1/2PN
jD1.x2;j � N	2/2

; (6.5)

where N	1 and N	2 are the sample means of X1 and X2.
As we explained above, the constant correlation coefficient defined by (6.1) only

captures linear relationships between X1 and X2. Therefore, in the model (6.3) a
linear dependence between St and Rt is assumed. However, from the market we
realize that there is often a non-linear dependence between returns. Specifically,
a constant correlation means that the two return processes are jointly stationary
which is generally not true in the real world. Thus, the correlation is hardly a
fixed constant, i.e. the constant correlation may not be an appropriate measure
of co-dependence. There exist already some works which show that the corre-
lation should not be constant and even changes over a small time interval as
the volatility, see e.g. [14]. Several approaches generalize the constant corre-
lation to a time-varying and stochastic concept, like conditional correlation in
[3, 5].

How to estimate a time-varying correlation from the market data using the
estimator (6.5)? At time t, using the nT times most recent daily returns, the
correlation at time t is given by the following estimator

O�t D
PnT

jD1.Ost�j � 1
nT

PnT
jD1 Ost�j/.Ort�j � 1

nT

PnT
jD1 Ort�j/

qPnT
jD1.Ost�j � 1

nT

PnT
jD1 Ost�j/2

PnT
jD1.Ort�j � 1

nT

PnT
jD1 Ort�j/2

: (6.6)

We then just need to roll it to the time t C 1, and so on to obtain a series of
correlations through the time, which is known as historical correlation. And the
following question is how long should the time window NT be? To address this
question we firstly give an example of historical correlations between S&P 500
index and Euro/US-Dollar exchange rate on a daily basis. We use Ns and Nr to denote
the daily return series of S&P 500 and Euro/US-Dollar exchange rate and fix a size
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time window nT , e.g. nT D 60 for 60-day historical correlation. In Fig. 6.1, the
15-day, 30-day and 60-day historical correlations are displayed.

Firstly, we see that the longer a time window (the value of nT ) the less volatile a
historical correlation is. In Fig. 6.1, the 15-day historical correlation is more variable
than the 30-day historical correlation which is again more variable than the 60-day
correlation. With a longer averaging period a long-term correlation is calculated. If
we choose nT D 10 or 15 days, the estimated correlation for each time t using (6.6),
could be seen as a short-term correlation of the current market phenomena whose
immediate past returns are used for the estimation. It is worthwhile noting that the
events, especially, some extreme events in a time window will affect the correlation
which would be estimated in the following time windows, even has a delayed effect
on the long-term correlation. If one assumes that the phenomena in the past could
be a reflection of the future, one would like to use the historical correlation as a
forecast for the future.

The behaviour of the historical correlations in Fig. 6.1 gives evidence that one
should describes the correlation using a mean-reverting stochastic process. Thereby,
not only the variation of the short-term correlation can be reflected, also the
attributes of long-term correlation is determined by the long-term parameter values,
like long-term mean value and mean reversion speed. Besides, implied correlation
in the context of a model also shows us that the correlation should be time-varying
and behaves like a stochastic process.

To see more properties, which a mean-reverting stochastic process should have
to be a stochastic correlation process (SCP), we plot its empirical density functions
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Fig. 6.1 Historical correlation between S&P 500 and Euro/US-Dollar exchange rate. (Source of
data: www.yahoo.com)

www.yahoo.com
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Fig. 6.2 Empirical density function of the historical correlation between S&P 500 and Euro/US-
Dollar exchange rate with bandwidth 1=40

in Figs. 6.2 and 6.3, using different bandwidths. We refer to [1] for the detailed
information about the estimation of density function from historical data. From
studying the empirical density functions we request that the SCP should satisfy the
following properties:

1. only takes values in the interval .�1; 1/,
2. varies around a mean value,
3. the probability mass tends to zero at the boundaries �1, C1.

6.2 Stochastic Correlation Models

For modelling correlation as a stochastic quantity, we firstly refer to the dynamic
conditional correlation model by Engle [5] and the Wishart autoregressive process
proposed by Gourieroux [7]. Moreover, as the previous section indicates that one
could model correlation as a proper stochastic process. In [8, 21], the authors
suggested to use a modified Jacobi process to model stochastic correlations. A
restriction on the parameter range has been found to ensure that the boundaries �1
and 1 of the correlation process are not attractive and unattainable. A more general
stochastic correlation process was proposed by Teng et al. [16], which relies on
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Fig. 6.3 Empirical density function of the historical correlation between S&P 500 and Euro/US-
Dollar exchange rate with bandwidth 1=30

the hyperbolic transformation with the function tangens hyperbolicus of any mean-
reverting process with positive and negative value, the properties (1)–(3) above can
be thus directly satisfied without facing any additional parameter restrictions. It is
more general because it had been proved that the type of modified Jacobi process in
[8, 21] turns out to be a special case of the hyperbolic transformation of a stochastic
process, cf. [17].

How to incorporate a SCP into financial models? The most intuitive way is
to generalise the concept of the correlated BMs (6.4). Based on two independent
Brownian motions W2;t and W3;t we define

W1;t D
Z t

0

�s dW2;s C
Z t

0

q
1 � �2s dW3;s; (6.7)

where �t is a SCP.

Lemma 6.1 W1;t satisfies

(1) W1;0 D 0,
(2) E

�
.W1;t/

2
� D t,

(3) EŒW1;tjFs
 D W1;s; for s � t.
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Proof

(1) is obvious.
We calculate the two expected values as follows:

(2)

E
�
.W1;t/

2
� D E

"�Z t

0

�s dW2;s

�2
C
�Z t

0

q
1 � �2s dW3;s

�2

C2
Z t

0

�s dW2;s

Z t

0

q
1 � �2s dW3;s

�

D E

�Z t

0

�2s ds C
Z t

0

.1 � �2s / ds

�
C E

�
2

Z t

0

�s dW2;s

Z t

0

q
1 � �2s dW3;s

�

„ ƒ‚ …
D0; since W2?W3:

D
Z t

0

1 ds D t:

(3)

EŒW1;tjFs
 D W1;s C E

�Z t

s
�s1dW2;s1 C

Z t

s

q
1 � �2s1dW3;s1 jFs

�

„ ƒ‚ …
WD0

:

Regarding the two independent BMs W2;t and W3;t, the new BM W1;t has been
defined which satisfies

E ŒW1;t � W2;t
 D E

�Z t

0

�s ds

�
: (6.8)

One can straightly see that (6.8) agrees for

E ŒW1;t � W2;t
 D �1;2 t; (6.9)

where W1;t and W2;t are correlated by the constant �1;2. Thus we use the symbolic
notion

dW1;t dW2;t D �t dt: (6.10)

for the definition of that the Brownian motions W1;t and W2;t are correlated by
the SCP �t. Through this stochastically correlated BMs we can directly include
exogenous stochastic correlations into financial models.
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6.3 A General Stochastic Correlation Process

In this section, we study the hyperbolic transformation proposed in [16, 17] of a
mean-reverting process to be a SCP. We fix a probability space .˝;F ;P/ and an
information filtration .Ft/t2RC satisfying the standard conditions, see e.g., [11].

6.3.1 The Transformed Mean-Reverting Process

For the motivations and the properties (1)–(3) in Sect. 6.1, Teng et al. [16] proposed
to use the tangens hyperbolicus function of a mean-reverting stochastic process Xt

with positive and negative values)

dXt D a.t;Xt/dt C b.t;Xt/ dWt; t � 0; X0 D x0; (6.11)

to model the correlation as

�t D tanh.Xt/; �0 D tanh.x0/ 2 .�1; 1/: (6.12)

Obviously, the properties (1)–(3) are fulfilled due to the range of values of the
tangens hyperbolicus and mean reversion of the process. Besides, the function tanh
is symmetrical and measurable. Although the function tanh can not really attain �1
and 1 which presents perfect negative and perfect positive dependence, respectively.
It should make no difference to use this function for modelling correlations, because
the correlation equal to �1 or 1 is indeed an extreme event which happens very
rarely in the real market, see e.g., Fig. 6.1. Besides, the function tanh tends to the
boundaries �1 and 1 at infinity.

Applying Itô’s Lemma with (6.12)

d�t D d tanh.Xt/ D @ tanh.Xt/

@t
dt C @ tanh.Xt/

@x
dXt C 1

2

@2 tanh.Xt/

@x2
.dXt/

2 ;

(6.13)

we obtain the SCP

d�t D .1 � �2t /
�
.Qa � �t Qb2/dt C QbdWt

�
; t � 0; (6.14)

where �0 2 .�1; 1/, Qa D a.t; artanh.�t// and Qb D b.t; artanh.�t//. From (6.14)
we see that there is a suitable number of free parameters to calibrate the model
to market data. Besides, it is obvious, in this approach any mean-reverting process
(with positive and negative values) can be considered without facing any additional
parameter restrictions. The free parameters are hidden in the functions a and b,
see the example (6.16) in Sect. 6.3.2 and (6.26) in Sect. 6.3.3. Why is the function
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tanh.x/ chosen for modelling correlation, we refer to [16, 17]. In the next sections
we present two examples of SCPs.

6.3.2 The van Emmerich’s Correlation Model

As the first example, we show that van Emmerich’s correlation model can be
obtained by transforming a special mean-reverting process (6.15), i.e. the van
Emmerich’s correlation process is just a special case of the general transformation
[16]. To do so, we define the following mean-reverting process

dXt D �
�
	 � tanh.Xt/

�

1 � tanh2.Xt/
dt C �

p
1 � tanh2.Xt/

dWt; t � 0; X0 D x0; (6.15)

where � and � are positive, 	 2 .�1; 1/. Next, we transform (6.15) with �t D
tanh.Xt/. Again, applying Itô’s Lemma we obtain

d�t D �
.�.	 � �t// � �2�t

�
dt C �

q
1 � �2t dWt; (6.16)

the calculation is straight but a little tedious. If we define

�� D � C �2; (6.17)

	� D �	

� C �2
; (6.18)

�� D �; (6.19)

the correlation process (6.16) can be rewritten as

d�t D ��.	� � �t/dt C ��
q
1 � �2t dWt; (6.20)

which is exactly the van Emmerich’s correlation process in [21]. Due to the
transformation with the function tanh, the correlations provided by (6.20), whose
coefficients are found in (6.17)–(6.19), are obviously located in the interval .�1; 1/.
van Emmerich [21] derived the analytic condition

�� � ��

1˙ 		 (6.21)

of that the boundaries �1 and 1 can not be unattainable. We see that the correlation
process (6.20) must have already satisfied the condition (6.21): substituting
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(6.17)–(6.19) in (6.21) we get

�2

�.1˙ 	/C �2
� 1; (6.22)

which always holds whilst � is positive and 	 2 .�1; 1/.

6.3.3 The Transformed Modified Ornstein-Uhlenbeck Process

As the other example, we consider the SCP obtained by transforming the modified
Ornstein-Uhlenbeck (OU) process The OU process [20] is defined by the stochastic
differential equation

dXt D �.	 � Xt/ dt C � dWt; (6.23)

where �, � > 0 and X0, 	 2 R. If we want to restrict the mean value 	 to be only
in .�1; 1/, it is reasonable to modify the Ornstein-Uhlenbeck process (6.23) as

dXt D �
�
	� tanh.Xt/

�
dt C � dWt; (6.24)

where �, � > 0 and X0, 	 2 .�1; 1/.
Lemma 6.2 Applying Itô’s Lemma with �t D tanh.Xt/,

d�t D @ tanh.Xt/

@x
dXt C 1

2

@2 tanh.Xt/

@x2
�2 dt (6.25)

gives the stochastic correlation process as

d�t D .1 � �2t /
�
�.	� �t/� �2�t

�
dt C .1 � �2t /� dWt; (6.26)

where t � 0, �0 2 .�1; 1/, �, � > 0 and 	 2 .�1; 1/.
Proof

(6.25) D sech2.Xt/�
�
	 � tanh.Xt/

�
dt � sech3.Xt/ sinh.Xt/�

2dt C sech2.Xt/�
2dWt

D sech2.Xt/�
�
	 � tanh.Xt/

�
dt � sech2.Xt/

sinh.Xt/

cosh.Xt/
�2dt C sech2.Xt/�

2dWt

D .1 � �2t /�.	 � �t/dt � .1 � �2t /�t�
2dt C .1 � �2t /�2dWt

D (6.26):
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Again, we define

�� D � C �2; (6.27)

	� D �	

� C �2
; (6.28)

�� D �; (6.29)

and rewrite (6.26) as

d�t

1 � �2t
D ��.1 � 	�/dt C �� dWt; (6.30)

where t � 0, �0 2 .�1; 1/, ��, �� > 0 and 	� 2 .�1; 1/.

6.4 Calibration Via Density Function

In this section, we show how to fit a SCP to historical market data via its density
function. As an example, we consider the calibration of the SCP (6.30).

6.4.1 Transition Density Function

Let us assume that the stochastic correlation process (6.30) possesses a transition
density f .t; Q�j�0/ which satisfies the following Fokker-Planck equation

@

@t
f .t; Q�/C @

@ Q�
�Oa.t; Q�/f .t; Q�/� � 1

2

@2

@ Q�2
�Ob.t; Q�/2f .t; Q�/� D 0; (6.31)

with

Oa.t; Q�/ D ��.1 � 	�/.1� Q�2/; (6.32)

Ob.t; Q�/ D .1 � Q�2/��: (6.33)

For the calibration purpose we consider the stationary density (for t ! 1/

f . Q�/ WD lim
t!1 f .t; Q�j�0/: (6.34)

With the above construction the SCP (6.30) is also a mean-reverting process. Thus
one can show that every two solutions of (6.31) are the same for t ! 1, i.e., a
unique stationary solution f . Q�/ exists, cf. [13]. In [17], f . Q�/ has been given in a
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closed form

f . Q�/ D .1C Q�/aCb.1 � Q�/a�b

M
; (6.35)

where

a D �� � 2��2

��2 ; b D ��	�

��2 ; (6.36)

M WD� .1C a � b/F.1;�a � b; 2C a � b;�1/
� .2C a � b/

C � .1C a C b/F.1;�a C b; 2C a C b;�1/
� .2C a C b/

;

(6.37)

with the hypergeometric function F.a; b; c; x/ D P1
kD0 xk

kŠ
.a/k.b/k
.c/k

; jxj < 1, and the
Gamma function � . .�/k denotes the Pochhammer symbol .a/k D a.a C 1/.a C
2/ � � � .a C k � 1/; .a/0 D 1. The condition of existence of the density function
(35) is

a ˙ b > 1 (6.38)

which is equivalent to 	 2 .�1; 1/.
This result can be transmitted to the SCP in the form of

d�t

1 � �2t
D �.1 � 	/dt C � dWt: (6.39)

with the arbitrary parameter coefficients � > 0, 	 2 .�1; 1/ and � > 0 instead of
the defined ��; 	�; ��. We check the existence condition of the density function:
for this case we have for a and b, like defined in (6.36), as

a D � � 2�2
�2

; b D �	

�2
: (6.40)

We perform a similar calculation for checking the condition (6.38):

a C b > �1 ( ��2�2
�2

C �	

�2
> �1 ( �.1C 	/ > �2 ( � > �2

1C	 ,

a � b > �1 ( ��2�2
�2

� �	

�2
> �1 ( �.1 � 	/ > �2 ( � > �2

1�	 .

Thus, the process (6.39) could be employed for the stochastic correlation if the
condition

� >
�2

1˙ 	
(6.41)
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Fig. 6.4 Comparison of f . Q�/ for different values of � (� D 2 and 	 D 0)

is fulfilled. We find that this condition dovetails nicely with that condition in [21],
which ensures that the boundaries �1 and 1 are unattainable.

As an example, we let � D 2 and 	 D 0 and display f . Q�/ with different values of
� , which is equal to 0:3, 0:4 and 0:5, respectively. The behaviour of f . Q�/ is displayed
in Fig. 6.4. Obviously, � shows the magnitude of variation from the mean value
	 D 0.

6.4.2 Calibration

We assume that the correlation is itself observable. Under this assumption the
transition density can be used for calibration purposes. One uses usually maximum-
likelihood estimation (MLE) when the density function is known. Considering
the density function (6.35), it will be tedious to get its likelihood-function. An
alternative approach to estimate the parameters is to fit the empirically observed
density to the stationary density (6.35). As an example we fit the historical data
from Fig. 6.2 to (6.35). This fitting works very well, see Fig. 6.5.
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Fig. 6.5 Correlation between S&P 500 and Euro/US-Dollar exchange rate, empirical density
compared to density (6.35) computed with � D 7:937, 	 D 0:003 and � D 1:186 (Mean Squared
error: 2.46e-06)

6.5 Pricing Quantos with Stochastic Correlation

To illustrate the impact of using stochastic correlation on pricing, we use European-
style Quantos as an example. These options hedge the exchange rate risk when
investing in financial products not valued in the domestic currency. We extend the
model (6.3) by including stochastic correlations driven by, e.g., the SCP (6.20) as

8
<

:

dSt D 	sSt dt C �sSt dWs
t ;

dRt D 	rRt dt C �rRt dWr
t ;

d�t D ��.	� � �t/dt C ��
p
1 � �2t dW�

t ; �0 2 Œ�1; 1
;
(6.42)

where

dWs
t dWr

t D �t dt; dWs
t dW�

t D �s� dt; dWr
t dW�

t D �r� dt: (6.43)

And the parameters of d�t are assumed to satisfy the condition (6.41). In this model
setting, the underlying asset process and the exchange rate process are assumed to
be correlated stochastically, driven by the correlation process �t which is by itself
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correlated with the underlying asset process by �s� and with the exchange rate by
�r�, respectively.

For this model (6.42), Teng et al. [19] have found the well approximated pricing
formula in a closed form. In the sequel we present their results. The model can be
straightforwardly specified under the risk-neutral measure as

8
<̂

:̂

dSt D .rf � �s�r�t/St dt C �sSt d QWs
t ;

dRt D .rh � rf /Rt dt C �rRt d QWr
t ;

d�t D .��.	� � �t/ � �.St;Rt; �t; t//dt C ��
p
1� �2t d QW�

t ;

(6.44)

with

d QWs
t d QWr

t D �t dt; d QWs
t d QW�

t D �s� dt; d QWr
t d QW�

t D �r� dt; (6.45)

where �.St;Rt; �t; t/ represents the price of the correlation risk and could be
assumed to be ��t, with a constant �. For notational simplicity we let � D 0. With
the transform xt D ln.St/ and yt D ln.Rt/ the model (6.44) can be represented by

8
<̂

:̂

dxt D .rf � 1
2
�2s � �s�r�t/ dt C �s d QWs

t ;

dyt D .rh � rf � 1
2
�2r / dt C �r d QWr

t ;

d�t D ��.	� � �t/dt C ��
p
1 � �2t d QW�

t :

(6.46)

We know that the underlying asset S is denominated in the foreign currency (denoted
by F). Let the exchange rate R be the number of units of the domestic or home
currency (denoted by H) per unit of F, namely R D H=F. Let U.ln.St/; ln.Rt/; �t; t/
denote the value of any contract with the underlying asset in F but paid in H,
obviously, based on (6.46), U must satisfy the partial differential equation (PDE)

@U

@t
C .rf � �2s

2
� �s�r�t/

@U

@x
C .rh � rf � �2r

2
/
@U

@r
C ��.	� � �t/.t; �t/

@U

@�

C �2s
2

@2U

@x2
C �2r

2

@2U

@r2
�2� .1 � �2t /.t; �t/

2

@2U

@�2
C �s�r�t

@2U

@x@r

C �s��

q
1 � �2t �s�

@2U

@x@�
C �r��

q
1 � �2t �r�

@2U

@r@�
� rhU D 0:

(6.47)

We denote the value of a standard Quanto option by V.St;Rt; �t; t/ which yields

V.St;Rt; �t; t/ D R0 � e�rh.T�t/ � EHŒ˛.ST � K/C
 (6.48)

with the terminal condition R0 � .˛.ST � K/C/, where R0 is the fixed exchange rate
for the payment, e.g., one can take the today’s rate, EH Œ�
 is the expectation under
domestic risk-neutral probability measure and ˛ D 1 for Quanto calls and ˛ D �1
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for Quanto puts. Obviously, as a contract with the underlying asset in a foreign
currency but paid in a domestic currency, the value of Quanto option (6.48) must
satisfy the pricing PDE (6.47). As an example, we consider Quanto calls and without
loss of generality we assume R0 D 1, we thus have

C.St;Rt; �t; t/ D e�rh.T�t/ � EHŒ.ST � K/C
; (6.49)

the price of Quanto puts can be determined straightforwardly from the put-call
parity.

It is assumed that a solution of (6.49) has the form

C.St;Rt; �t; t/ DextC.rf �rh/�EŒe��s�r
R T

t �sds
P1.xT � ln.K//

� e�rh�KP2.xT � ln.K//
(6.50)

with the time to maturity � D T � t. Due to the embedded stochastic correlation
process, the probabilities P1 and P2 are not immediately available in a closed form.
We know that not only Pj, but also their corresponding characteristic functions
�j.x; r; �; tI u/ D EŒeiuxT jFt
 satisfy the PDE (6.47) subject to the terminal
condition

�j.x; r; �;TI u/ D eiuxT ; j D 1; 2: (6.51)

Thus, one can obtain

@�1

@t
C .rf C �2s

2
� �s�r�t/

@�1

@x
C .rh � rf � �2r

2
C �s�r�t/

@�1

@r

C .��	� � ���t C �s���s�/
@�1

@�
C �2s
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@2�1

@x2
C �2r

2
.1 � �2t /
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@r2
C �2�

2

@2�1

@�2

C �s�r�t
@2�1

@x@r
C �s��

q
1� �2t �s�

@2�1

@x@�
C �r��

q
1� �2t �r�

@2�1

@r@�
D 0

(6.52)

and

@�2

@t
C .rf � �2s

2
� �s�r�t/

@�2

@x
C .rh � rf � �2r

2
/
@�2

@r
C ��.	� � �t/

@�2

@�

C �2s
2

@2�2

@x2
C �2r

2

@2�2

@r2
C �2�

2
.1 � �2t /

@2�2

@�2
C �s�r�t

@2�2

@x@r

C �s��

q
1 � �2t �s�

@2�2

@x@�
C �r��

q
1 � �2t �r�

@2�2

@r@�
D 0:

(6.53)
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Obviously, due to the nonlinear coefficients �2t and
p
1 � �2t , the corresponding

characteristic functions�j.x; r; �t; tI u/ can not be derived in a closed form. However,
as indicated by Teng et al. in [18], such nonlinear coefficient could be linearized by
its expectation which further can be well approximated by a linear combination of
exponential functions.

Proposition 6.1 Denote the original solution of EŒ�2t 
 in (6.52) and (6.53) by f�.t/
which can be approximated by

e�mt C be�nt C a; (6.54)

where

a D .�2� C ��/.�
2
� C 2��	

2
�/

�4� C 3���2� C 2�2�
; b D �20 � a � 1; (6.55)

m D �2 log


�1 � be� n

2

�
; n D �2 log

0

B
@

b�1 �
q

b2�21 � �2�3
�2

1

C
A ; (6.56)

with

�1 WD f�.0:5/� a; �2 WD b C b2; �3 WD �21 C a � f�.1/: (6.57)

Proposition 6.2 Denote the original solution of EŒ
p
1 � �2t 
 in (6.52) and (6.53)

by g�.t/ which can be approximated by

e� Omt C Obe�Ont C Oa; (6.58)

where

Oa D
s

1 � .�2� C ��/.�2� C 2��	2�/� 	4�.�
4
� C 3���2� C 2�2�/

.1 � 	2�/.�
4
� C 3���2� C 2�2�/

;

Ob D
q
1 � �20 � Oa � 1;

(6.59)

Om D �2 log


�1 � Obe� On

2

�
; On D �2 log

0

B
@

Ob�1 �
q

Ob2�21 � �2�3

�2

1

C
A ; (6.60)

with

�1 WD g�.0:5/ � Oa; �2 WD Ob C Ob2; �3 WD �21 C Oa � g�.1/: (6.61)
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For the proof and measure quality of the approximation we refer to [18]. Based
on the Propositions 6.1 and 6.2, the corresponding approximated characteristic
functions �j.x; r; �t; tI u/ of Pj; j D 1; 2 can thus be obtained by solving PDEs.

Lemma 6.3 The characteristic function �1 reads

�1.x; r; �; tI u/ D eD1.�;u/CC1.�;u/�tCiuxt ; (6.62)

with

C1.u; �/ D iu�s�r

��„ƒ‚…
WDc1

.e���� � 1/ (6.63)

and

D1.u; �/ D d1.u/.1� e���� /
��

C �2� c21.1 � a/.1� e�2��� /
4��
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m � ��
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2.n � 2��/

C �s���s�c1.1C iu/e� OmTC. Om���/�

Om � �� C �s���s�c1 Ob.1C iu/e�OnTC.On���/�

On � ��

� �2� c21e
�.T��/m

2m
� b�2� c21e

�.T��/n

2n
� �s���s�c1.1C iu/e�.T��/ Om
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�
Ob�s���s�c1.1C iu/e�.T��/On

On C d2.u/� C d3.u/;

(6.64)

where

d1.u/ D ��	�c1 C �s���s� Oac1.1C iu/C �2� c21.a � 1/; (6.65)

d2.u/ D rf iu � ��	�c1 C .
�2s iu

2
� �s���s� Oac1/.1C iu/C �2� c21.a � 1/ (6.66)
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(6.67)
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Analogously,

Lemma 6.4 The characteristic function �2 reads

�2.x; r; �; tI u/ D eD2.�;u/CC2.�;u/�tCiuxt (6.68)

with C2.u; �/ D C1.u; �/ given in (6.63) and
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(6.69)

where d1.u/; d2.u/ and d3.u/ are defined in the last lemma.
We refer to [19] for the proof. Now, the both probabilities in (6.50) can be computed
by

Pj.xT � ln K/ D 1

2
C 1

�

Z 1

0

<
"

e�iu ln K Q�j.x; r; �; tI u/

iu

#

du; j D 1; 2 (6.70)

using e.g., Fourier techniques [4, 6]. For computing the Quanto price in (6.50), the
task remaining is to compute EŒe��s�r

R t
0 �sds
 which is addressed in the following

lemma.

Lemma 6.5 Let Rt WD R t
0
�sds be a integrated SCP in the form of (6.20). We have

EŒe��s�rRt 
 D e� .t/��0�.t/ (6.71)
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with

�.t/ D �s�r

��
.1 � e��� t/; (6.72)
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�2�
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(6.73)

where a; b;m and n have been defined in Proposition 6.1.
The proof is available in [19].

6.6 Numerical Results

To recognize the effect of stochastic correlations we compare the Quanto prices
between using constant and stochastic correlation. The pricing formula of the
Quanto based on model (6.3) can be given by the extended Black-Scholes formula
with a special dividend yield of

rh � rf C �S�R �S;R; (6.74)

in a closed form, cf. [12, 22]. For the constant correlation, we apply the sample
coefficient correlation (6.5) to estimate a constant correlation using the whole
historical data (Jan 2003–Mar 2013) of S&P 500 and Euro/US-Dollar exchange
rate, which is 0:025. For initializing the SCP we take the estimates in Fig. 6.5 and
let the SCP starting from the first correlation in the historical correlations.

In Fig. 6.6, we compare the both prices for several maturities between using
constant and stochastic correlation and present the relative price differences in
Fig. 6.7. We can observe, whilst the maturity T is shorter than 2 years, the
price with constant correlation is higher than the price with stochastic corre-
lation. Then, from nearly T D 1:8, the price calculated with constant cor-
relation becomes lower than the corresponding price calculated with stochas-
tic correlation. The reason for this, before the time T D 1:8, the SCP pro-
vides the correlations which are closed to the initial correlation �0 D 0:3

which is larger than the constant correlation � D 0:025. That’s why is the
price with stochastic correlation lower than the price with constant correlation
before T D 1:8 due to the fact that the price of quanto Put-option decreases
direct proportional with that correlation. As the time increases, the generated
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Fig. 6.6 Black-Scholes parameters: K D 80, S0 D 100, R0 D 1, rd D 0:05, re D 0:03, �S D 0:2,
�R D 0:4, Correlation process parameters: � D 7:937, 	 D 0:003, � D 1:186 and �0 D 0:3

correlations tend to the mean value 	. Obviously, the parameter � determines
the speed of approach as the correlation nears the mean value. The price differ-
ences could be seen as the correlation risk by misusing the constant correlation.

6.7 Conclusions

In this chapter we considered modelling stochastic correlations as a stochastic pro-
cess. In particular, we studied the general SCP established by applying hyperbolic
transformation of a mean-reverting process, including the fitting to the historical
market data via the density function.

As an application example, we showed how to price European-style Quanto
including stochastic correlations. For the numerical results we compared the both
prices of Quanto calls between using constant and stochastic correlation. The results
show that the correlation risk caused by using a wrong (constant) correlation model
cannot be neglected.
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Fig. 6.7 The relative price difference between using constant and stochastic correlation in Fig. 6.6
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Chapter 7
Lie Group Analysis of Nonlinear
Black-Scholes Models

Ljudmila A. Bordag and Ivan P. Yamshchikov

Abstract In this chapter we discuss the problem of financial illiquidity and give an
overview of different modeling approaches to this problem. We focus on one of the
approaches to an optimization problem of a portfolio with an illiquid asset sold in an
exogenous random moment of time. We formulate the problem in a mathematically
rigorous way and apply it to the problems of liquidity in such context for the
first time to our knowledge. We provide a compact summary of achieved results.
We have demonstrated the uniqueness and existence of the viscosity solution for
this problem under certain conditions. The formulation of such problem gives rise
to a number of three dimensional nonlinear partial differential equations (PDEs)
of Black-Scholes type. Such equations rather challenging for further studies with
analytical or numerical methods. One of the standard techniques to reduce the
complexity of the problem is to find an inner symmetry of the equation with a
help of Lie group analysis. We carried out a complete Lie group analysis of PDEs
describing value function as well as investment and consumption strategies for a
portfolio with an illiquid asset that is sold in an exogenous random moment of
time with a prescribed liquidation time distribution. The admitted Lie algebra of
the studied PDEs and the optimal system of subalgebras of this algebra provides a
complete set of different invariant reductions of three dimensional PDEs to lower
dimensional ones. We provide two examples of such reductions for the case of a
logarithmic utility function.
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7.1 Economical Setting of the Optimization Problem for a
Portfolio with an Illiquid Asset with a Given Liquidation
Time Distribution

One of the challenging problems of modern mathematical finance is a management
of a portfolio that includes an illiquid asset. The practical importance of such
problems became especially obvious during the global financial crisis of 2008–2009
that has demonstrated a significant deficit of solid mathematical models addressing
this problem. Despite the fact that financial institutes deal with illiquid assets on a
daily basis there are no widely accepted approaches to the models of such assets
especially if they provide stochastic income or down payments.

Indeed it is rather difficult to incorporate the illiquidity in a mathematically
rigorous way. One can easily form an intuitive understanding of this phenomenon,
yet there is still no widely accepted way of defining illiquidity of an asset as a
measurable empiric parameter. This might be explained with the fact that illiquidity
is connected with different sale mechanisms and some of the deals tend to have
an essential time-lag. Such a variety of different assets is extremely tempting for
the empirical research. One can find more and more works about certain type of
illiquid assets and ad-hoc descriptions of their behavior, see, for example, [9] or
[14]. However, there seems to be no integrated approach to such problems.

In this particular work we focus on one of the approaches to the problem of
financial illiquidity, namely, an optimization of a portfolio with an illiquid asset sold
in an exogenous random moment of time. We believe this approach could be a good
unified method to work with the problems of illiquid assets. This is an approach that
is well developed in academic literature yet seems to be industrially applicable and
can be used as unifying methodology for different types of the assets.

The model that we formulate further represents an interesting class of optimiza-
tion problems that go in line with the so-called adapted resource allocation problem
developed by Pickenhain et al. in [21]. Indeed the idea to work with an infinite
horizon problem with certain weight function, see [25] and [26] for the details,
seems very promising and fruitful. The problem of a portfolio optimization with an
asset that has an exogenous random liquidation time that we describe further, can
be regarded as an infinite horizon problem with a special weight-function.

We manage to formulate a problem of portfolio optimization in a framework
mentioned above and show the existence and uniqueness of the solution for such
problem under certain assumptions of the liquidation time distribution.

The formulation of such problem gives rise to a number of three dimensional
nonlinear partial differential equations (PDEs) of Black-Scholes types. We carried
out a complete Lie group analysis of PDEs describing value function and investment
and consumption strategies for a portfolio with an illiquid asset that is sold in an
exogenous random moment of time with a prescribed liquidation time distribution
in [4]. Such three dimensional nonlinear Hamilton-Jacobi-Bellman (HJB) equations
are not only tedious for analytical methods but are also quite challenging from
a numeric point of view. One usually uses certain substitutions to reduce the
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three-dimensional problem to a two-dimensional one or even to an ordinary
differential equation (ODE), however the methods used to find such substitutions
are rarely discussed by the authors.

We found in [4] the admitted Lie algebra for a broad class of liquidation
time distributions in cases of HARA- and log-utility functions and formulate
corresponding theorems for all these cases. We use found Lie algebras to obtain
reductions of the studied equations. Several of similar substitutions were used in
other papers before whereas others are new to our knowledge. It is important to note
that this method gives us the possibility to provide a complete set of non-equivalent
substitutions and reduced equations.

Let us also note that we list and discus main results here and address the reader
to the publications [4–6] for detailed proofs and more detailed reasoning.

7.1.1 Theoretical Approaches to Liquidity

The understanding of the liquidity or the illiquidity of a given asset is still a matter
of a debate among practitioner as well as among academics. One of the first authors
to define liquidity was Keynes [18] in 1930, who said that an asset is more liquid if
it is ‘more certainly realizable at short notice without loss’. This intuitive definition
stayed unaltered for the next 50 years, indeed in ‘Wall Street Words: An A to Z
Guide to Investment Terms for Today’s Investor’ by Scott [28] written 50 years
after one can read: Illiquid asset is an asset that is difficult to buy or sell in a short
period of time without its price being affected. This formulation is also far from
mathematical rigor yet it points out two important aspects of illiquidity: temporal
and monetary. The first attempts to define liquidity in a mathematically correct way
were separately taken in these two directions.

In 1986 Lippman and McCall [20] defined the environment characterized by four
different objects: ci;Ti;Xi and ˇ. All of them were described in the discrete time
framework. ci is a cost of owning or operating the asset during the period number i.
It can also be considered as the cost of the attempt to sell the asset. The offers come
at every moment that is in the set fSi W i D 1; 2; : : : g of arrival times. These random
variables Si satisfy

Si D ˙ i
jD1Tj;

where the integer valued random variables Ti > 0 neither need to be independent
nor identically distributed.

Xi are positive independent identically distributed random variables that corre-
spond to the price offered in the ith moment. All the expenditures are discounted at
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the rate ˇ so that a present value of a dollar received in period i is ˇi. The discounted
net receipts R.�/ associated with a stopping time � is given by

R.�/ D ˇ�YN.�/ �˙�
jD1ˇici; (7.1)

Yi D
(

Xi; if recall is not allowed;

max.X1; : : : ;Xi/; if recall is allowed;

where N.�/ D maxfn W Sn 6 �g is the random number of offers that the seller
observes when employing the decision rule � and the random variable YN.�/ is the
size of the accepted offer. Consequently, the seller chooses a stopping rule �� in the
set Ti of all stopping rules such that

EŒR.��/
 D maxfEŒR.�/
 W � 2 Tig:
Obviously, the time it takes to estimate the asset’s value and to convert the asset into
cash is defined by the random variable ��. Lippman and McCall [20] proposed to
regard the expectation of this variable, EŒ��
 as the measure of an assets’ illiquidity.
According to this definition as EŒ��
 increases (i.e. one need to wait longer until the
asset is sold) a liquidity of a corresponding asset is to decrease.

In 1994 Hooker and Kohn [16] addressed a monetary aspect of illiquidity. The
authors introduce an index of liquidity, so-called �.It/, as

�.It/ D V.It/� L.It/

V.It/
;

where V.It/ is the value of the asset under optimal sale, as a function of the
information set It and L.It/ is a loss from immediate sale of the asset. Since �
depends on the information set It they call this index the conditional liquidity of
the asset. The authors also introduce the expected liquidity of an asset, �, which,
naturally, is

� D EŒ�.It/
:

These two approaches to illiquidity that give rise to a number of others that quite
often base on one or another approach. As we have mentioned before, illiquidity is
still broadly discussed and there seems to be no agreement among the academics
and practitioners. For example, since the beginning of 2000s the idea to estimate
the liquidity of the assets through the bid-ask spread became rather popular, see
Bangia et al. [1] or Coppejans et al. [8]. However, the definitions addressing either
one or another aspect of illiquidity have certain mishaps. In particular, different
assets can demonstrate different temporal and monetary behavior under same market
circumstances and a definition that addresses only one of the aspects could not be
used as an unified approach. However, a portfolio optimization problem for a
portfolio with an illiquid asset can incorporate both aspects and this is the approach
that we want to focus on.
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In 1974 Miller in [23] formulated a problem of optimal consumption with a
stochastic income. He showed that an upper bound on consumption is lower than
the value of optimal consumption in the case where the random labour income is
replaced by its mean. To our knowledge, this was a first work that formulated the
problem of a portfolio optimization in presence of a stochastic income.

In 1987 Grossman and Baroque [15] analyzed a model of optimal consumption
and portfolio selection in which consumption services are generated by holding a
durable good. This problem was very close to the problem of a stochastic income
that we discuss later in detail, but it did not take into consideration any random
effects associated with illiquidity. These effects could be associated with liquidation
time or price discount, yet were out of the scope of this moment.

Two years later Zeldes provided the first numerical solution for the problem
of optimal consumption with stochastic income and constant relative risk aversion
in [33].

Finally, in 1993 Duffie and Zariphopoulou [10] propose the framework of the
optimal consumption with undiversifiable income risk (also called a stochastic
income model) as an extension for the continuous time model, developed by Merton
[22]. Under an assumption of an infinite time horizon the authors showed the
existence and uniqueness of the viscosity solution of the associated HJB equation for
the class of concave utility functions U.c/ satisfying the following conditions: U in c
is strictly concave; U.c/ 2 C2.0;C1/, U.c/ � M.1Cc/� , with 0 < � < 1;M > 0;
U.0/ � 0; lim

c!0
U0.c/ D C1; lim

c!1U0.c/ D 0:

In 1997, in [11] the authors extended the problem of hedging in incomplete
markets with hyperbolic absolute risk aversion (so called HARA) utility function.
The stochastic income in this case cannot be replicated by trading available
securities. An investor receives stochastic income in moment t at a rate Yt, where

dYt D 	Ytdt C �YtdW1
t ; t � 0;Y0 D y; y � 0

and 	; � > 0 � const, here W1
t is a standard Brownian motion. The riskless bank

account has a constant continuously compound interest rate r. A traded security has
a price S given by

dSt D ˛Stdt C �St.�dW1
t C

p
1 � �2dW2

t /;

˛; � > 0� const and W2
t is an independent standard Brownian motion, � 2 .�1; 1/

is a correlation between price processes St and Yt. The investor utility function for
consumption process ct is given by

U .c.t// D E

�Z 1

0

e��tU.c.t//dt

�
; U.c.t// D c.t/� ;

where � 2 .0; 1/ and � is a discount factor � > r.
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Remark 7.1 The notation of the strategy .�; c/ is standard for the problems of such
kind. We also further denote the amount of the investment in a liquid risky asset as �
and investor’s consumption as c. Both controls do depend on time, so to emphasize
it to the reader we might also use .�.t/; c.t// or even .�t; ct/ from time to time.

The investors wealth process L evolves

dLt D ŒrLt C .˛ C ı � r/�t � ct C Yt
 dt

C ��t



�dW1

t C
p
1 � �2 dW2

t

�
; t � 0; L0 D l;

where ı could be regarded as the dividends paid constantly from an illiquid asset
or as the possession costs, l is an initial wealth endowment and �t represents
an investment in the risky asset S, with the remaining wealth held in riskless
borrowing or lending. The goal is to characterize an investor value function
V.l; y/ D sup

.�;c/2A .l;y/
U .c/. The set A .l; y/ is a set of admissible controls .�; c/

such that Lt � 0.
The authors in [11] proved the smoothness of the viscosity solution of the

associated Hamilton-Jacobi-Bellman (HJB) equation in the case of the HARA utility
function and the infinite time horizon. This proof heavily relies on a reduction of the
initial HJB equation to an ODE. After this reduction the main result follows from
the uniform convergence of the classical solution of a uniformly elliptic equation to
the viscosity solution, which is unique. Here one should mention that the authors
use the discount factor e��t in [11] as a technical factor which is not related to
stochastic income. The economical setting of this problem does not imply any
liquidation of an illiquid asset which provides stochastic income Yt. Further we
demonstrate in [5] that such a discounting could be interpreted as an exponential
liquidation time distribution and is a unique situation that allows to reduce the three-
dimensional PDE to an ODE (see also [4]).

In 2007 Schwarz and Tebaldi in [27] broadened a model of random income
proposed before and connected it to the problems of illiquidity. They assumed
that the non-traded illiquid asset generates a flow of random income in the form
of dividends, until it is sold at a fixed moment of time. This idea allowed to
build models for a portfolios with illiquid assets, using the results obtained for
the problems with random income. One of a huge challenges connected with
optimizations problems in presence of illiquidity is the question of pricing of illiquid
assets that is a serious mathematical problem in itself. Assuming that the asset
generates a certain dividends, connected with its fair price authors could elegantly
incorporate illiquid asset in the model. Further, the authors define illiquid asset
as an asset that can not be sold neither piece by piece nor at once before the
investment’s horizon, denoted as T, which is a fixed deterministic value at which
the asset generates a random cash-flow equal to its’ paper-value at this moment
T (the cash-flow is denoted as HT). With this economical reasoning behind it this
model of illiquidity looks rather promising yet needs a more exact qualitative and



7 Lie Group Analysis of Nonlinear Black-Scholes Models 115

quantitative description. In [31] we have broadened this framework for the case of
logarithmic utility and finite deterministic liquidation time.

Later in 2008 Schwarz et al. [7] applied the approach very close to the
one formulated in [27] to the problem of housing choice for a household. The
constrained of a deterministic time was abandoned as the idea of the model was
to compare two ‘realities’: one, where housing was purely illiquid and another
‘thought-experiment’ reality, where the household could sell the real-estate partially.
It was demonstrated that optimal strategies for two models differ significantly.

In this work we focus on the case when a time-horizon is an exogenous random
variable. We would like to note that the set-up with exogenous time is actually
economically motivated. For example, standard inheritance procedures in several
EU countries assume that the illiquid assets are sold and the cash is then divided
between the heirs. Naturally the sale occurs in a random moment of time and the
inheritance manager splits the cash between the heirs immediately after the sale.
Another example of an exogenous liquidation time that justifies our model are
shares-for-the-loan auctions. This phenomenon is typical for the emerging markets
where governmentally owned businesses are at some point privatized fully or
partially. For example, it was very typical for a post-soviet markets in their transition
period and is still relevant for a number of states in the Eastern Europe [30].

7.1.2 Portfolio Optimization in the Case of an Illiquid Asset
with a Given Liquidation Time Distribution:
Problem Setting

Here we describe the proposed model. We assume that the investor’s portfolio
consists of a riskless bond, a risky asset and a non-traded asset that generates
stochastic income, i.e. dividends. However, in contrast with the previous works
we replace the liquidation time that was deterministic before with a stochastically
distributed time T. A risk-free bank account Bt with the interest rate r and a stock
price St describe the classical Black-Scholes market [2]

dBt D rBtdt; dSt D St.˛dt C �dW1
t /; t � T; (7.2)

where the interest rate r, the continuously compounded rate of return ˛ > r and the
standard deviation � are assumed to be constant; r; ˛; � � const. An illiquid asset
Ht that can not be traded up to the time T and which paper value is correlated with
the stock price and follows

dHt

Ht
D .	� ı/dt C �.�dW1

t C
p
1 � �2dW2

t /; t � T; (7.3)
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where 	 is the expected rate of return of the risky illiquid asset, .W1
t ;W

2
t / are two

independent standard Brownian motions, ı is the rate of dividend paid by the illiquid
asset, � is the continuous standard deviation of the rate of return, and � 2 .�1I 1/ is
the correlation coefficient between the stock index and the illiquid risky asset. The
parameters 	, ı, �, � are all assumed to be constant. The liquidation time T is an
exogenous random-distributed continuous variable which does not depend on the
Brownian motions .W1

t ;W
2
t /. The probability density function of liquidation time

distribution T is denoted by �.t/ whereas ˚.t/ denotes the cumulative distribution
function, and ˚.t/ the survival function also known as a reliability function ˚.t/ D
1�˚.t/. We omit here the explicit notion of the possible parameters of distribution
in order to make the formulae shorter.

Since the filtration fFtg generated by the Brownian motion W D .W1
t ;W

2
t / we

assume that the consumption process is an element of the space LC of non-negative
fFtg-progressively measurable processes ct such that

E

�Z s

0

c.t/dt

�
< 1; s 2 Œ0;T
; (7.4)

where E denotes a mathematical expectation with respect to filtration fFtg. The
investor wants to maximize the average utility consumed up to the time of
liquidation, given by

U .c/ WD E

�Z T

0

U.c.t//dt

�
: (7.5)

Here we used E to indicate that we are averaging over all random variables including
T. The wealth process Lt is the sum of cash holdings in bonds, stocks and random
dividends from the non-traded asset minus the consumption stream. Thus, we
can write

dLt D .rLt C ıHt C �t.˛ � r/� ct/dt C �t�dW1
t : (7.6)

The set of admissible policies is standard and consists of investment strategies
.�t; ct/ such that

1. ct belongs to LC,
2. �t is fFtg-progressively measurable and

R s
t .�� /

2d� < 1 a.s. for any t � � � T,
3. Lt, defined by the stochastic differential equation (7.6) and initial conditions

Lt D l > 0; Ht D h > 0 a.e. (t � T).

We proved in [5] that one can explicitly average (7.5) over T and with the certain
conditions (which are formulated later in Proposition 7.1) posed on ˚ and U.c/ the
problem (7.5) is equivalent to the maximization of

U .c/ WD E

�Z 1

0

˚.t/U.c.t//dt

�
; (7.7)

where E is an expectation over space coordinates excluding T.
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Remark 7.2 If T is exponentially distributed we get precisely the problem of
optimal consumption with random income that was studied in [11] and already
discussed in the introduction.

Remark 7.3 There several works dealing with the problems of random time hori-
zon, for example, Ekeland in [12, 13] has shown the possibility to work with
different discounting factors. Skiba and Tobacman [29] also mentioned a non-
exponential discounting in the loan context, yet the authors do not provide any
mathematically strict way to model these effects. To our knowledge the idea of a
discounting different from an exponential one in a framework of illiquidity was
never proposed before.

Proposition 7.1 ([5]) The problems (7.5) and (7.7) are equivalent provided

lim
t!1˚.t/E ŒU.c.t/
 D 0: (7.8)

Remark 7.4 Consumption c.t/ is usually bounded as time goes to infinity. For all
these models condition (7.8) is satisfied automatically. Yet if one regards absolute
values of consumption and it grows as time goes to infinity this constraint is needed.

In this work we regard the problem (7.5) with random liquidation time T that
has a distribution satisfying the condition (7.8) in Proposition 7.1 and, therefore,
corresponds to the value function V.t; l; h/ which is defined as

V.t; l; h/ D max
.�;c/

E

�Z 1

t
˚.�/U.c.�//d� jL.t/ D l;H.t/ D h

�
: (7.9)

For the value function V.t; l; h/ we can derive a HJB equation on which we focus in
this work

Vt.t; l; h/ C 1

2
�2h2Vhh.t; l; h/C .rl C h/Vl.t; l; h/C .	� ı/hVh.t; l; h/

C max
�

GŒ�
C max
c�0 HŒc
 D 0; (7.10)

GŒ�
 D 1

2
Vll.t; l; h/�

2�2 C Vlh.t; l; h/����h

C �.˛ � r/Vl.t; l; h/; (7.11)

HŒc
 D �cVl.t; l; h/C ˚.t/U.c/; (7.12)

with the boundary condition

V.t; l; h/ ! 0; as t ! 1:

The value function for a problem of such kind as (7.10) is a viscosity solution if
the control and state variables are uniformly bounded. However, this is not the case
for the optimal consumption problem and thus a more sophisticated proof is needed.
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Similar problems were previously studied in [10, 11, 32]. The main difficulties in
our case come from the non-exponential time discounting we are using in the utility
functional (7.9). Now we list the main results of [5] were we proved the existence
and uniqueness of viscosity solutions in details.

Theorem 7.1 There exists a unique viscosity solution of the corresponding HJB
equation (7.10) if

1. U.c/ is strictly increasing, concave and twice differentiable in c,
2. limt!1˚.t/EŒU.c.t//
 D 0, ˚.t/ 
 e��t or faster as t ! 1,
3. U.c/ � M.1C c/� with 0 < � < 1 and M > 0,
4. limc!0 U0.c/ D C1, limc!C1U0.c/ D 0.

The proof of this statement is to be done in three steps. At first we need to establish
certain properties of the value function V.t; l; h/ that corresponds to our problem.
These properties are formulated and proved in Lemma 7.1 that follows. Then we
show that the value function with such properties is a viscosity solution of the
problem, this is done in Lemma 7.2. The uniqueness of this solution follows from
the comparison principle that is actually a very useful tool by itself and is formulated
and proved in Theorem 7.2.

Lemma 7.1 Under the conditions .1/–.4/ from Theorem 7.1 the value function
V.t; l; h/ (7.9) has the following properties:

1. V.t; l; h/ is concave and non-decreasing in l and in h,
2. V.t; l; h/ is strictly increasing in l,
3. V.t; l; h/ is strictly decreasing in t starting from some point,
4. 0 � V.t; l; h/ � O.jlj� C jhj�/ uniformly in t.

Now the existence of the viscosity solution of the problem (7.10) can be proved.

Lemma 7.2 Under the conditions of Lemma 7.1 the function V.t; l; h/ is a viscosity
solution of (7.10) on the domain D D .0;1/ � .0;1/� .0;1/.

The third result that is needed to finalize the proof of Theorem 7.1 is a
comparison principle formulated below as Theorem 7.2. Results of this type are
well-known in general for bounded controls, but due to the unbounded controls,
classical proofs require adaptations for our case.

Theorem 7.2 (Comparison Principle) Let u.t; l; h/ be an upper-semicontinuous
concave viscosity subsolution of (7.10) on D and V.t; l; h/ is a supersolution
of (7.10) on D which is bounded from below, uniformly continuous on D, and
locally Lipschitz in D, such that u.t; l; h/ ! 0, V.t; l; h/ ! 0 as t ! 1 and
ju.t; l; h/j C jV.t; l; h/j � O.jlj� C jhj�/ for large l; h, where 0 < � < 1, uniformly
in t. Then u � v on D.

For the detailed proofs of these results and for applications of these principles to
the specific cases we address the reader to [5].
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7.2 Lie Group Analysis of the HJB Equations
with HARA- and Log-Utility Functions

In a number of the results listed above the dimension reduction of the original HJB
problem plays a crucial role. A majority of authors dealing with three dimensional
HJB equations come up with variable substitutions yet they generally do not have
any remark on how to get similar substitution in other cases or why they use this
or that substitution. Let us note here that the smooth point transformations with
continuous parameter admitted by linear or nonlinear PDEs can be found algorith-
mically using Lie group analysis. This is a well-known fact demonstrated by Lie in
[19]. Such procedure that find a symmetry group admitted by a PDE is described in
many textbooks, see, for example, [17, 24] or [3]. However practical application of
these procedures is connected with tedious and voluminous calculations which can
be only slightly facilitated with the help of modern computer packages. Preparing
our work [4] we have, for example, used the program IntroToSymmetry to
obtain the determining system of equations. Nevertheless solving these determining
systems of partial differential equations is usually hard and can rarely be done
algorithmically, but the possibility to find the system of determining equations
facilitates the work of a researcher since the systems are quite voluminous. For
example, in the studied cases the systems had more then a hundred equations. Now
we provide a short summary of results proved in [4].

7.2.1 The Case of HARA Utility Function

A utility function U.c/ where the risk tolerance R.c/ is defined as R.c/ D � U0.c/
U00.c/

and is a linear function of c, is called a HARA (hyperbolic absolute risk aversion)
utility function. We use two types of utility functions: a HARA utility function
UHARA.c/ and the log-utility function ULOG.c/ D log.c/. Let us note here that the
log-utility function is often regarded as a limit case of HARA utility function. One
can indeed choose HARA utility in such a way that allows a formal transition from
HARA utility to log-utility as parameter � of HARA utility goes to zero, but in
general this transition does not hold for any form of HARA utility. We demonstrated
this transition on different levels in [4] and because of that further in this chapter we
work with HARA utility in the form

UHARA.c/ D 1 � �

�

��
c

1 � �

��
� 1

�
; (7.13)

with the risk tolerance R.c/ D c
1�� , 0 < � < 1. One can easily see that as � ! 0

HARA-utility function written as (7.13) tends the to log-utility

UHARA.c/ �!
�!0

ULOG.c/; (7.14)
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and by � ! 1 we obtain UHARA.c/ ! c. The HJB equation (7.10) where we insert
the HARA utility in the form (7.13) after formal maximization procedure (see also
[5]) will take the form

Vt.t; l; h/C 1

2
�2h2Vhh.t; l; h/C .rl C ıh/Vl.t; l; h/C .	 � ı/hVh.t; l; h/

� .˛ � r/2V2
l .t; l; h/C 2.˛ � r/��hVl.t; l; h/Vlh.t; l; h/C �2�2�2h2Vlh

2.t; l; h/

2�2Vll.t; l; h/

C .1 � �/2

�
˚.t/

1
1�� Vl.t; l; h/

� �
1�� � 1 � �

�
˚.t/ D 0; V �!

t!1 0: (7.15)

Here the investment �.t; l; h/ and consumption c.t; l; h/ strategies look as follows in
terms of the value function V.t; l; h/

�.t; l; h/ D ����hVlh.t; l; h/C .˛ � r/Vl.t; l; h/

�2Vll.t; l; h/
; (7.16)

c.t; l; h/ D .1 � �/Vl.t; l; h/
� 1
1�� ˚.t/

1
1�� : (7.17)

Equation (7.15) is a nonlinear three dimensional PDE with three independent
variables t; l; h. To reduce the dimension of the Eq. (7.15) we use Lie group analysis,
that allows us to find the generators of the corresponding symmetry algebra admitted
by this equation. In detail one can find the description of this method applied to
similar PDEs in [3]. Here we formulate the main theorem of Lie group analysis for
the optimization problem with HARA type utility function which we proved in [4].

Theorem 7.3 The Eq. (7.15) admits the three dimensional Lie algebra LHARA
3

spanned by generators U1;U2;U3, i.e. LHARA
3 D< U1;U2;U3 >, where

U1 D @

@V
; U2 D ert @

@l
; U3 D l

@

@l
C h

@

@h
C
�
�V � .1 � �/

Z
˚.t/dt

�
@

@V
;

(7.18)

for any liquidation time distribution. Moreover, if and only if the liquidation time
distribution has the exponential form, i.e. ˚.t/ D de��t, where d; � are constants
the studied equation admits a four dimensional Lie algebra LHARA

4 with an additional
generator

U4 D @

@t
� �V

@

@V
; (7.19)

i.e. LHARA
4 D< U1;U2;U3;U4 >.
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Except finite dimensional Lie algebras (7.18) and (7.19) correspondingly
Eq. (7.15) admits also an infinite dimensional algebra L1 D<  .h; t/ @

@V > where
the function  .h; t/ is any solution of the linear PDE

 t.h; t/C 1

2
�2h2 hh.h; t/C .	 � ı/h h.h; t/ D 0: (7.20)

The Lie algebra LHARA
3 has the following non-zero commutator relations

ŒU1;U3
 D �U1; ŒU2;U3
 D U2: (7.21)

The Lie algebra LHARA
4 has the following non-zero commutator relations

ŒU1;U3
 D �U1; ŒU1;U4
 D ��U1; ŒU2;U3
 D U2; ŒU2;U4
 D �rU2:

(7.22)

7.2.2 The Case of the Log-Utility Function

A logarithmic utility could be regarded as a limit case of HARA-utility (7.14). Yet
logarithm has particular properties than make it rather popular utility function in
financial mathematics therefore we analyze it separately.

The proposed approach is similar to the method described above therefore we
omit some details here. In the case of the log-utility function the HJB equation after
the formal maximization procedure will take the following form

Vt.t; l; h/C 1

2
�2h2Vhh.t; l; h/C .rl C ıh/Vl.t; l; h/C .	 � ı/hVh.t; l; h/

� .˛ � r/2V2
l .t; l; h/C 2.˛ � r/��hVl.t; l; h/Vlh.t; l; h/C �2�2�2h2Vlh

2.t; l; h/

2�2Vll.t; l; h/

� ˚.t/
�
log Vl � log˚.t/C 1

� D 0; V �!
t!1 0: (7.23)

Here the investment �.t; l; h/ and consumption c.t; l; h/ look as follows in terms of
the value function V(t,l,h)

�.t; l; h/ D ����hVlh.t; l; h/C .˛ � r/Vl.t; l; h/

�2Vll.t; l; h/
; c.t; l; h/ D ˚.t/

Vl.t; l; h/
:

(7.24)

Remark 7.5 HARA-utility is chosen in such a way that (7.14) holds and the
maximization procedure that transforms HJB equation to PDE preserves this
property as well. If we formally take a limit of (7.15) as � ! 0 we obtain (7.23).
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As we proved in [4] a log-utility can be regarded as a limit case of HARA utility
and this correspondence holds for all analytical and algebraic structures connected
to these problems.
Analogously to the previous paragraph one can formulate the main theorem of Lie
group analysis for this PDE which was proved in [4].

Theorem 7.4 The Eq. (7.23) admits the three dimensional Lie algebra LLOG
3

spanned by generators U1;U2;U3, i.e. LLOG
3 D< U1;U2;U3 >, where

U1 D @

@V
; U2 D ert @

@l
; U3 D l

@

@l
C h

@

@h
�
Z
˚.t/dt

@

@V
; (7.25)

for any liquidation time distribution. Moreover, if and only if the liquidation time
distribution has the exponential form, i.e. ˚.t/ D de��t, where d; � are constants,
the studied equation admits a four dimensional Lie algebra LLOG

4 with an additional
generator

U4 D @

@t
� �V

@

@V
; (7.26)

i.e. LLOG
4 D< U1;U2;U3;U4 >.

Except finite dimensional Lie algebras LLOG
3 and LLOG

4 correspondingly the
Eq. (7.23) admits also an infinite dimensional algebra L1 D<  .h; t/ @

@V > where
the function  .h; t/ is any solution of the linear PDE

 t.h; t/C 1

2
�2h2 hh.h; t/C .	 � ı/h h.h; t/ D 0: (7.27)

The Lie algebra LLOG
3 has one non-zero commutator relation ŒU2;U3
 D U2.

The Lie algebra LLOG
4 has the following non-zero commutator relations

ŒU1;U4
 D ��U1; ŒU2;U3
 D U2; ŒU2;U4
 D �rU2:

Remark 7.6 If we compare the form of Lie algebras generators in the cases of
HARA- and log- utilities, i.e. formulas (7.18) and (7.25) as well as (7.19) and (7.26),
we can see that the formal limit procedure holds for them as well and the generators
for HARA-utility transfer to generators for log-utility under a formal limit � ! 0.

When the Lie algebra admitted by the studied PDE is found we can find all non
equivalent variable substitutions which reduce the dimension of the given PDE, if
there are any. Using the corresponding exponential map of the adjoint representation
of the admitted Lie algebra we can find the symmetry group or subgroups of the
equation as well. It is rather fortunate that we do not have to look for an explicit
form of the admitted symmetry group to find possible reductions or simplification of
the studied PDEs and invariant solutions of the equations. It is enough to know and
to use the properties of the admitted Lie algebra which corresponds to the symmetry
group. The optimal system of subalgebras of this algebra gives rise to a complete
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set of non equivalent substitutions and as a result a set of different reductions of the
studied PDE. Reductions of the studied three dimensional PDEs (7.15) and (7.23)
for different liquidation time distributions we discuss in the next section.

7.3 Symmetry Reductions for Different Liquidation
Time Distributions

We obtain reductions of studied three dimensional PDEs if we replace original
variables with new independent and dependent variables which are invariant under
the action of one of the subgroups of the symmetry group admitted by the equation.
The solutions of reduced PDEs are called invariant solutions because they are
invariant under the action of a given subgroup. We find the admitted Lie algebras
for a certain class of liquidation time distributions in cases of HARA- and log-utility
functions and formulate corresponding results in Theorems 7.3 and 7.4 in previous
section and in details in [4]. In [4] we provided the optimal system of subalgebras
for a general case of a liquidation time distribution in both cases of HARA and
logarithmic utility functions. We separately regarded there a case of an exponential
distribution of a liquidation time where the corresponding PDE admits an extended
Lie algebra. It leads to certain distinguishing properties that give rise to non trivial
reductions of three dimensional PDEs to two dimensional equations and even to
ODEs in some cases.

As it was shown in Theorem 7.3 the admitted Lie algebra for the case of
HARA-utility function and with a general form of liquidation time distribution
is three dimensional. As it was proved in [4] the optimal system of subalgebras
of this algebra has four non equivalent one dimensional and three non equivalent
two dimensional subalgebras. Just one of these subalgebras allowed a meaningful
reduction of the three dimensional PDE (7.15) to a two dimensional one (see [4]).
Any further reductions of this PDE in the framework of Lie group analysis are not
possible.

Theorem 7.3 demonstrates that the admitted Lie algebra is four dimensional if
and only if we use an exponential liquidation time distribution. In this case the
optimal system of subalgebras is richer and we can reduce (7.15) to an ODE. All
the reductions and corresponding conditions are listed in [4].

In fact, the case of log-utility function is very similar to the case with HARA-
utility function. As it was proved in Theorem 7.4 for the general form of the
liquidation time distribution we obtain just one meaningful reduction of (7.23) to
a two dimensional PDE.

Now let us look at the case when the liquidation time T is a random Weibull-
distributed variable independent of the Brownian motions .W1

t ;W
2
t /.
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The probability density function of the Weibull distribution is defined as follows

�.t; �; k/ D
(

k
�

�
t
�

�k�1
e�.t=�/k ; if t � 0;

0; if t < 0;

where � > 0 and k; �� const and the survival function ˚.t/ D 1�˚.t/ has a form
˚.t/ D e�.t=�/k . We will often omit the constant parameters � and k in notations for
shortness.

Indeed, when k D 1 the Weibull-distribution turns into exponential one, and for
k > 1 its probability density has a local maximum. This situation corresponds to
our economical motivation.

The Eq. (7.10) is the same as before but the term that corresponds to ˚ is
naturally replaced by Weibull survival function ˚.t/ D e�.t=�/k

Vt.t; l; h/ C 1

2
�2h2Vhh.t; l; h/C .rl C h/Vl.t; l; h/C .	� ı/hVh.t; l; h/

C max
�

GŒ�
C max
c�0 HŒc
 D 0; (7.28)

GŒ�
 D 1

2
Vll.t; l; h/�

2�2 C Vlh.t; l; h/����h

C �.˛ � r/Vl.t; l; h/; (7.29)

HŒc
 D �cVl.t; l; h/C e�.t=�/k U.c/; (7.30)

Proposition 7.2 ([5]) Theorem 7.1 holds for the case of the Weibull distribution
with k > 1 and, therefore, there exists a unique solution for the problem (7.28).

We can use one dimensional subalgebra of the admitted Lie algebra (see
Theorem 7.4) and introduce the invariant variables

z D l

h
; W.t; z/ D V.t; l; h/ � �

k
log h� .

1

k
;

 t

�

�k

/:

So we obtain the two dimensional PDE on W.t; z/

Wt C 1

2
�2
�
2zWz C z2Wzz

�C .rz C ı/Wz � .	 � ı/zWz

� .˛ � r/2W2
z � 2.˛ � r/��Wz.Wz C zWzz/C �2�2�2.Wz � zWzz/

2

2�2Wzz

� e�.t=�/k log Wz C �

k

�
�2

2
� 	C ı

�
�

�
1

k
;

 t

�

�k
�

� e�.t=�/k/
�
1C


 t

�

�k
�

D 0;

where�


1
k ;
�

t
�

�k
�

is an incomplete gamma function. A similar substitution we have

used in [5]. However one can not reduce the original PDE to an ordinary differential
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equation as one could do with exponential liquidation time distribution. But also a
two dimensional PDE is better for further analytical or numerical studies as a three
dimensional one.

When there is an exponential liquidation time distribution and just in this case
one can reduce (7.23) to an ODE. Let us now briefly show the reduction in the case
of an exponential liquidation time distribution and log-utility function.

The value function (7.9) in this case is defined as follows

V.t; l; h/ D max
.�;c/

E

�Z 1

t
e��t log.c/dtjL.t/ D l;H.t/ D h

�
; � > 0: (7.31)

The HJB equation and the resulting PDE (7.23) is now homogeneous in time. We
introduce QV.l; h/

QV.l; h/ D max
.�;c/

E

�Z 1

t
e��.s�t/ log.c/ds

�
D max

.�;c/
E

�Z 1

0

e��v log.c/dv

�
;

which is independent on time and substituting V.t; l; h/ D e��t QV.l; h/ into the HJB
equation (7.10) we arrive at a time-independent PDE on QV.l; h/. With a slight abuse
of notation, hereafter we will use the same letter V for QV . Now using substitution
for V.l; h/ in the form

V.l; h/ D v.z/C log h

�
C 1

�2

�
	 � ı � �2

2

�
; z D l=h; (7.32)

we obtain that v.z/ satisfies the ordinary differential equation of second order

�2

2
z2v00 C max

�

�
1

2
�2�2v0 � �

�
.v0 C zv00/��� C .˛ � r/v0�

�

C max
c��ı

Œ�cvz C log.c C ı/
 D �v; (7.33)

where v0 D vz and the dimension of the problem is reduced to one. It is important
to note that such reduction was possible due to existence of the corresponding two
dimensional Lie subalgebra of the four dimensional admitted Lie algebra provided
in Theorem 7.4 (see [4] for the proofs). Performing a formal maximization of the
quadratic part (7.33) and coming back to the original independent variables we
obtain the optimal policies in the form

c?.l; h/ D h

v0.l=h/
; �?.l; h/ D ���

�
l � h

d1
�

v0.l=h/

v00.l=h/
: (7.34)

Summing up, we formulate the following theorem
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Theorem 7.5 ([5]) Suppose r � .	 � ı/ > 0 and d1 D ˛�r����
�2

¤ 0.

• There is the unique C2.0;C1/ solution v.z/ of (7.33) in a class of concave
functions.

• For l; h > 0 the value function is given by (7.32). For h D 0; l > 0 the value
function V.l; 0/ coincides with the classical Merton solution

V.l; 0/ D 1

�2

�
r C 1

2

.˛ � r/2

�2
� �

�
C log.�l/

�
D M C log.�l/

�
: (7.35)

• If the ratio between the stochastic income and the total wealth tends to zero, the
policies .�?; c?/ given by (7.34) tend to the classical Merton’s policies

c?.l; 0/ 
 �l; �?.l; 0/ 
 � .˛ � r/l

�2
V2

l

Vll
: (7.36)

• Policies (7.34) are optimal.

We do not provide the proofs here and for all further details we address the reader
to [5].

7.4 Conclusions

In this chapter we have formulated an optimization problem for a portfolio with
an illiquid asset sold at an exogenous random moment of time. One can prove that
under certain conditions there exists a unique viscosity solution for the problem of
such type. We have also closely regarded a family of three dimensional nonlinear
PDEs that such problem gives rise to in [4, 5] and discussed here the main results.
The study of the Lie algebraic structure of such PDEs gives a possibility to find
invariant variables and reduce three dimensional PDEs to two dimensional or in
the case of an exponential liquidation time distribution to ODEs. We provided two
examples of such reductions.
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Chapter 8
Analytical and Numerical Results for American
Style of Perpetual Put Options Through
Transformation into Nonlinear Stationary
Black-Scholes Equations

Maria do Rosário Grossinho, Yaser Faghan, and Daniel Ševčovič

Abstract We analyze and calculate the early exercise boundary for a class of
stationary generalized Black-Scholes equations in which the volatility function
depends on the second derivative of the option price itself. A motivation for studying
the nonlinear Black Scholes equation with a nonlinear volatility arises from option
pricing models including, e.g., non-zero transaction costs, investors preferences,
feedback and illiquid markets effects and risk from unprotected portfolio. We
present a method how to transform the problem of American style of perpetual put
options into a solution of an ordinary differential equation and implicit equation for
the free boundary position. We finally present results of numerical approximation of
the early exercise boundary, option price and their dependence on model parameters.

8.1 Introduction

In this chapter we are concerned with a financial option with no fixed maturity and
no exercise limit, called the perpetual option. This type of an option, which can
be exercised at any time, can be considered as the American style of an option.
However, in this case, the time to maturity has no impact on the price of the option.
From the mathematical point of view, this leads to a solution of the stationary Black-
Scholes problem. More precisely, the valuation problem is transformed into the free
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boundary problem that consists of the construction of the function V.S/ together
with the early exercise boundary point % satisfying the following conditions:

1

2
�2S2@2SV C rS@SV � rV D 0; S > %;

and

V.%/ D E � %; @SV.%/ D �1; V.C1/ D 0

(cf. [5, 11, 18]). The function V is defined in the domain S > %, where % is the
free boundary position. If the diffusion coefficient � > 0 is constant then we are, in
fact, considering stationary solutions of the classical linear Black-Scholes parabolic
equation. However, we suppose that � depends on the asset price S and the product
of the asset price S and the second derivative (Gamma) of the option price H D
S@2SV , i.e.

� D �.S;H/ D �.S; S@2SV/: (8.1)

Let us mention our motivation for studying a nonlinear volatility of the form (8.1).
As it is known, the classical linear Black-Scholes model (cf. [12, 14]) was derived
under several restrictive assumptions that did not reflect the real market. In fact,
no transaction costs were considered, the volatility was supposed to be constant,
only liquid and complete markets were considered. Since then, several results have
appeared in the literature relaxing these assumptions in order to overcome some
drawbacks they created in practice. Regarding the volatility, it has been justified
in practice that it is not constant and it may depend on the asset price itself.
With this volatility function (8.1), the classical model is generalized in such a way
that it allows to consider non-zero transaction costs, market feedback and illiquid
market effects due to large trading volumes, risk from investors preferences, etc..
Mathematically, the problem will lose its linear feature, since the equation becomes
a nonlinear partial differential equation (see e.g. [18]).

One of the first nonlinear models taking into account non-trivial transaction costs
was proposed by Leland [16] for put or call options, later extended for more general
types of option by Hoggard, Whalley and Wilmott [10]. Avellaneda and Paras [2]
proposed the jumping volatility model in which the volatility changes with respect
to the sign of the Gamma of the option. Frey and Patie [6], Frey and Stremme [7]
developed models dealing with feedback and illiquid market impact due to large
trading (see also [17]). We also mention the so-called the risk adjusted pricing model
(RAPM) derived by Kratka [13] and Jandačka and Ševčovič [12] in which both
the transaction costs as well as the risk from unprotected portfolio are taken into
account. In the RAPM model the volatility function depends on H D S@2SV only,
and it has the form:

�.H/2 D �20 .1C �H
1
3 / D �20 .1C �.S@2SV/

1
3 /; (8.2)



8 Analytical and Numerical Results for American Style of Perpetual Put Options 131

where �0 > 0 is the constant historical volatility of the underlying asset and �
is a model parameter depending on the transaction cost rate and the unprotected
portfolio risk exposure. Recently, explicit solutions to European style of options
described by the nonlinear Black-Scholes equation with varying volatility have been
derived by Bordag et al. [4] for the Frey and Patie as well as the RAPM models.

Barles and Soner [3] proposed a model assuming that investor’s preferences
are shown by an exponential utility function. In this model, the volatility function
depends on H D S@2SV as well as S, and it has the following form:

�.S;H/2 D �20
�
1C 
.a2SH/

� D �20
�
1C 
.a2S2@2SV/

�
; (8.3)

where the function 
 is the unique solution to the ODE:


 0.x/ D .
.x/C 1/=.2
p

x
.x/ � x/; 
.0/ D 0

and a � 0 is a constant depending transaction costs and investor’s risk aversion
parameter (see [3] for details). Note that 
.x/ � 0 for all x � 0 and it has the
following asymptotic: 
.x/ D O.x

1
3 / for x ! 0 and 
.x/ D O.x/ for x ! 1.

Finally, we also mention the nonlinear volatility model developed by Amster et
al. [1], where the transaction costs depend on the volume of trading assets in a linear
decreasing way. Recently, it was generalized for arbitrary transaction cost functions
by Ševčovič and Žitňanská [19].

This chapter is organized as follows. In the next section, we recall the mathemat-
ical formulation of the perpetual American put option pricing model. Furthermore,
we prove the existence and uniqueness of a solution to the free boundary problem.
We derive a formula for the option price and a single implicit equation for the free
boundary position %. In Sect. 8.3 we construct suitable sub- and upper-solutions
based on Merton’s explicit solutions with constant volatility. Finally, in Sect. 8.4,
we present computational results of the free boundary position %, the option price
V.S/ and their dependence on model parameters.

8.2 Perpetual American Put Option

In this section we analyze the problem of the American style of perpetual put
options. As referred previously, perpetual options are financial options with no fixed
maturity and no exercise limit. As they can be exercised at any time, they have
infinite maturity T D C1.

Consider the American style of a put option with the volatility � of the form (8.1).
Suppose that there exist a limit of the solution V and an early exercise boundary
position Sf for the maturity T ! 1. The pair consisting of the limiting price
V D V.S/ D limT�t!1 V.S; t/ and the limiting early exercise boundary position
% D limT�t!1 Sf .t/ of the perpetual put option is a solution to the stationary
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nonlinear Black-Scholes problem (cf. [8]):

1

2
�.S; S@2SV/S2@2SV C rS@SV � rV D 0; S > %; (8.4)

and

V.%/ D E � %; @SV.%/ D �1; V.C1/ D 0 (8.5)

(cf. [14, 15, 18]). We shall prove that under certain assumptions made on the
volatility function the perpetual American put option problem (8.4)–(8.5) has the
unique solution .V.:/; %/. We will present its explicit formula for the case when
� D �.H/, i.e. the volatility depends on the term H D S@2SV only. Furthermore,
we will also present comparison results with explicit Merton’s solutions recently
obtained by the authors in [9].

Throughout the chapter we will assume that the volatility function � D �.S;H/
fulfills the following assumption:

Assumption 8.1 The volatility function � D �.S;H/ in (8.4) is assumed to be a C1

smooth nondecreasing function in the H > 0 variable and �.S;H/ � �0 > 0 for
any S > 0 and H � 0 where �0 is a positive constant.

If we extend the volatility function �.S;H/ by �.S; 0/ for negative values of H,
i.e. �.S;H/ D �.S; 0/ for H � 0 then the function

R 3 H 7�! 1

2
�.S;H/2H 2 R

is strictly increasing and therefore there exists the unique inverse function ˇ W R !
R such that

1

2
�.S;H/2H D w if and only if H D ˇ.x;w/; where S D ex: (8.6)

Note that the function ˇ is a continuous and increasing function such that ˇ.0/ D 0.
Concerning the inverse function we have the following useful lemma:

Lemma 8.1 Assume the volatility function �.S;H/ satisfies Assumption 8.1. Then
the inverse function ˇ has the following properties:

1. ˇ.x; 0/ D 0 and ˇ.x;w/
w � 2

�20
for all x;w 2 R;

2. ˇ0
w.x;w/ � 2

�20
for all x 2 R and w > 0.

Proof Clearly, ˇ.x; 0/ D 0. For w > 0 we have ˇ.x;w/ > 0 and w D
1
2
�.ex; ˇ.x;w//2 ˇ.x;w/ � �20

2
ˇ.x;w/ and so ˇ.x;w/

w � 2

�20
. If w < 0 then ˇ.x;w/ < 0

and we can proceed similarly as before.
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Differentiating the equality w D 1
2
�.ex; ˇ.x;w//2ˇ.x;w/ � �20

2
ˇ.x;w/ with

respect to w > 0 yields:

1 D 1

2
�2.ex; ˇ.x;w//ˇ0

w.x;w/C @H

�
1

2
�.ex;H/2

�
H � 1

2
�20 ˇ

0
w.x;w/

for H D ˇ.x;w/ > 0 and the proof of the second statement of Lemma follows.
The key step how to solve the perpetual American put option problem (8.4)–(8.5)

consists in introduction of the following variable:

W.x/ D r

S
.V.S/� S@SV.S// where S D ex: (8.7)

Lemma 8.2 Let x0 2 R be given. The function V.S/ is a solution to Eq. (8.4) for
S > % D ex0 satisfying the boundary condition:

V.S/� S@SV.S/ D E; at S D %;

iff and only if the transformed function W.x/ is a solution to the initial value problem
for the ODE:

@xW.x/ D �W.x/ � rˇ.x;W.x//; x > x0; (8.8)

W.x0/ D rEe�x0 :

Proof As @x D S@S we obtain

@xW.x/ D rS@S.S
�1V.S/� @SV.S// D rSS�1@SV.S/� rS�1V.S/� rS@2SV.S/

D �W.x/ � rS@2SV.S/ D �W.x/ � rˇ.x;W.x//;

because ˇ.x;W.x// D H � S@2SV.S/ if and only if 1
2
�.S;H/2H D W.x/ and V

solves (8.4), i.e.

1

2
�.S;H/2H C r

S
.S@SV.S/� V.S// D 0:

Finally, W.x0/ D r
S .V.S/� S@SV.S// D rEe�x0 where S D % D ex0 , as claimed.

Notice the equivalence of conditions:

V.S/�S@SV.S/ D E and V.S/ D E �S ” @SV.S/ D �1 and V.S/ D E �S:
(8.9)

Concerning the solution W of the ODE (8.8) we have the following auxiliary
result:
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Lemma 8.3 Assume x0 2 R. Let W D Wx0 .x/ be the unique solution to the
ODE (8.8) for x 2 R satisfying the boundary condition W.x0/ D rEe�x0 at the
initial point x0. Then

1. Wx0 .x/ > 0 for any x 2 R,
2. the function x0 7! Wx0 .x/ is increasing in the x0 variable for any x 2 R,
3. if the volatility function depends on H D S@2SV only, i.e. � D �.H/, then

Wx0 .x/DF�1.x0�x/ where F.W/D
Z W

W0

1

w C rˇ.w/
dw; W0 D W.x0/ D rEe�x0 :

Proof According to Lemma 8.1 we have ˇ.x;w/=w � 2=�20 for any x 2 R and
w 6D 0. Hence

@xj ln.W.x/j D �
�
1C r

ˇ.x;W.x//

W.x/

�
� �.1C �/

where � D 2r=�20 . Therefore

jW.x/j � jW.x0/je�.1C�/.x�x0/ > 0;

and this is why the function W.x/ does not change the sign. As W.x0/ D rEe�x0 > 0

we have Wx0 .x/ > 0 as well.
The solution Wx0 .x/ to the ODE (8.8) can be expressed in the form

Wx0 .x/ D Wx0 .x0/�
Z x

x0

.Wx0 .�/C rˇ.�;Wx0 .�///d�

D rEe�x0 �
Z x

x0

.Wx0 .�/C rˇ.�;Wx0 .�/// d�:

Let us introduce the auxiliary function

y.x/ D @x0Wx0 .x/:

Then

y.x/ D �rEe�x0 C Wx0 .x0/C rˇ.x0;Wx0 .x0//�
Z x

x0

�
1C rˇ0

w.�;Wx0 .�//
�

y.�/d�

D rˇ.x0;Wx0 .x0//�
Z x

x0

�
1C rˇ0

w.�;Wx0 .�//
�

y.�/d�:
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Hence y is a solution to the ODE:

@xy.x/ D � �1C rˇ0
w.x;Wx0 .x//

�
y.x/; x 2 R; (8.10)

y.x0/ D rˇ.x0; rEe�x0 / > 0:

With regard to Lemma 8.1 we have ˇ0
w.x;Wx0 .x// � 2=�20 . Therefore the function y

is a solution to the differential inequality:

@xy.x/ � �.1C �/y.x/; x 2 R;

where � D 2r=�20 . As a consequence we obtain

jy.x/j � jy.x0/je�.1C�/.x�x0/ > 0 (8.11)

and this is why the function y.x/ does not change the sign. Therefore @x0Wx0 .x/ D
y.x/ > 0 and the proof of the statement (2) follows.

Finally, if � D �.H/ we have ˇ D ˇ.w/ and so

@xF.W.x// D 1

W.x/C rˇ.W.x//
@xW.x/ D �1:

Hence F.W.x// D F.W.x0//� .x � x0/ D x0 � x and the statement (3) follows.

Lemma 8.4 Under Assumption 8.1, there exists the unique root x0 2 R of the
implicit equation

Z 1

x0

ˇ.x;Wx0 .x//dx D 1: (8.12)

Proof Denote �.x0/ D R1
x0
ˇ.x;Wx0 .x//dx. Then �.1/ D 0 and

�0.x0/ D �ˇ.x0;Wx0 .x0//C
Z 1

x0

ˇ0
w.x;Wx0 .x//y.x/dx

where y.x/ D @x0Wx0 .x/ is the solution to (8.10). That is

@xy.x/ D � �1C rˇ0
w.x;Wx0 .x//

�
y.x/

and y.x0/ D rˇ.x0;Wx0 .x0// D rˇ.x0; rEe�x0 /. Therefore

�0.x0/ D �ˇ.x0;Wx0 .x0// � 1

r

Z 1

x0

@xy.x/C y.x/dx

D �1
r

y.1/� 1

r

Z 1

x0

y.x/dx � �1
r

Z 1

x0

y.x/dx:
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As y.x/ D @x0Wx0 .x/ � y.x0/e�.1C�/.x�x0/ we have

�0.x0/ � �1
r

y.x0/

1C �
D �ˇ.x0;Wx0 .x0//

1C �
:

It means that the function � is strictly decreasing. Since

1

2
�.ex0 ; ˇ.x0;Wx0 .x0///

2ˇ.x0;Wx0 .x0// D Wx0 .x0/ D rEe�x0 ! C1 as x0 ! �1;

we have limx0!�1 ˇ.x0;Wx0 .x0// D 1 and therefore limx0!�1 �0.x0/ D �1.
Therefore �.�1/ D 1. In summary, there exists the unique root x0 of the equation
�.x0/ D 1, as claimed.

Now we are in a position to state our main result on unique solvability of the
perpetual American put option problem (8.4)–(8.5).

Theorem 8.1 Assume the volatility function � satisfies Assumption 8.1. Then
there exists the unique solution .V.:/; %/ to the perpetual American put option
problem (8.4)–(8.5). The function V.S/ is given by

V.S/ D S

r

Z 1

ln S
Wx0 .x/dx; for S � % D ex0 ;

where Wx0 .x/ is the solution to the ODE (8.8) and x0 is the unique root of the implicit
equation (8.12).

Proof Differentiating the above expression for V.S/ we obtain

@SV.S/ D 1

r

Z 1

ln S
Wx0 .x/dx � 1

r
Wx0 .ln S/

S@2SV.S/ D �1
r
.Wx0 .x/C @xWx0 .x// D ˇ.x;Wx0 .x//;

where x D ln S. Hence

1

2
�.S; S@2SV/2S2@2SV C rS@SV � rV

D S

�
1

2
�.ex; ˇ.x;Wx0 .x///

2ˇ.x;Wx0 .x// � Wx0 .x/

�
D 0;

i.e. V.S/ is the solution to (8.4) for S > % D ex0 .
Furthermore,

ŒV.S/� S@SV.S/
SD% D V.%/ � %

r

Z 1

ln %
Wx0 .x/dx C %

r
Wx0 .ln%/ D E%e� ln % D E;
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and,

V.%/ D %

r

Z 1

ln %
Wx0 .x/dx D %

r

Z 1

ln %
�@xWx0 .x/ � rˇ.x;Wx0 .x//dx

D %

r
Wx0 .ln %/ � %

Z 1

ln %
ˇ.x;Wx0 .x//dx D E � %

because x0 is the unique solution to (8.12). With regard to the equivalence (8.9) we
have @SV.S/ D �1 at S D %. In summary, .V.:/; %/ is the unique solution to the
perpetual American put option problem (8.4)–(8.5).

Remark 8.1 In the case the volatility function depends on H D S@2SV only, i.e. � D
�.H/, then Eq. (8.12) can be simplified by introducing the change of variables w D
Wx0 .x/. Indeed, ˇ D ˇ.w/ and dw D @xWx0 .x/dx D �.Wx0 .x/ C rˇ.Wx0 .x///dx.
Therefore

Z 1

x0

ˇ.Wx0 .x//dx D �
Z 0

Wx0 .x0/

ˇ.w/

w C rˇ.w/
dw D

Z rE
%

0

ˇ.w/

w C rˇ.w/
dw:

Equation (8.12) can be rewritten in the following form

Z rE
%

0

ˇ.w/

w C rˇ.w/
dw D 1: (8.13)

This is the condition for the free boundary position % recently derived by the authors
in [9].

8.3 The Merton Explicit Solution, Sub- and Super-Solutions

In this section we recall recent results due to the authors [9] dealing with comparison
of the solution .V.:/; %/ to the perpetual American put option problem (8.4)–(8.5)
for the case when the volatility function depends on H D S@2SV only, i.e. � D �.H/.

Suppose that the volatility � � �0 is constant, then for the function V.S/ and the
limiting early exercise boundary position % the free boundary value problem (8.4)–
(8.5) has the explicit solution presented by Merton (cf. [14, 18]), which has the
closed form:

V� .S/ D
(

E � S; 0 < S � %� ;
E
1C�



S
%�

���
; S > %� ;

(8.14)
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where

%� D E
�

1C �
; � D 2r

�20
: (8.15)

Our next goal is to establish sub- and super-solutions to the perpetual American
put option pricing problem. Let � > 0 is a positive constant and denote by V� the
explicit Merton solution defined before. It is clear that the pair .V�.�/; %� / is the
explicit Merton solution with constant volatility �20 D 2r=� .

Then, for the transformed function W� .x/ we have

W� .x/ D rE%��e�.1C�/x; for x D ln S > x0� D ln%� :

Furthermore W� is a solution to the ODE:

@xW� C W� C �W� D 0: (8.16)

Applying the Eq. (8.16) we can construct a super-solution W�C and a sub-solution
W�� to the solution W of the equation:

@xW D �W � rˇ.W/

using the Merton solution W� . Here �C is the unique root of the equation

�C�.1C �C/2 D 2r

and �� satisfies

���.0/2 D 2r:

As a consequence, the following inequalities hold. For more details, we refer to
[9].

8
<

:

@xW�C.x/ � �W�C.x/� rˇ.W�C.x//; for x > x0�C D ln%�C ;

@xW��.x/ � �W��.x/� rˇ.W��.x//; for x > x0�� D ln%�� :

(8.17)

Moreover, it can be proved that

%�C � % � %�� :

Since, for initial conditions we have W�˙.x0�˙/ D rE
%
�˙

and W.x0/ D rE
%

and so

W��.x0��/ � W.x0/ � W�C.x0�C/:
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Using the comparison principle for solutions of ordinary differential inequalities
in (8.17) we conclude

W��.x/ � W.x/ � W�C.x/:

Then taking into account the explicit solution of the function V.S/ from Theorem 8.1
we present the following result:

Theorem 8.2 ([9, Theorem 3]) Let .V.�/; %/ be the solution to the perpetual
American pricing problem (8.4)–(8.5). Then for any S � 0 we have

V��.S/ � V.S/ � V�C.S/

and

%�C � % � %��

where .V�˙.:/; %�˙/ are explicit Merton’s solutions with constant volatilities.

8.4 Numerical Approximation Scheme and Results

In the last section, our aim is to present an efficient numerical scheme for
constructing a solution to the perpetual American put option problem (8.4)–(8.5)
for the case when the volatility function has the form: � D �.H/ where H D S@2SV .
The numerical results were obtained by the authors in [9].

Our scheme is based on transformation H D ˇ.w/, i.e. w D 1
2
�.H/2H and

dw D 1
2
@H.�.H/2H/dH by using this we can rewrite the Eq. (8.13) for the free

boundary position % as follows:

Z ˇ.rE=%/

0

H
1
2
�.H/2H C rH

1

2
@H.�.H/

2H/dH D 1: (8.18)

Similarly, the expression (see Theorem 8.1) for the price of the option can be
rewritten in terms of the H variable as follows:

V.S/ D S

r

Z ˇ.F�1.ln.%=S///

0

1
2
�.H/2H

1
2
�.H/2H C rH

1

2
@H.�.H/

2H/dH: (8.19)

When the inverse function ˇ.w/ is not given by a closed form formula by applying
this transformation we can avoid computational complexity.

In what follows we recall numerical results of computation of the solution to the
perpetual American put option problem (8.4)–(8.5) for the RAPM model with the
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nonlinear volatility function of the form:

�.H/2 D �20



1C �H

1
3

�
; (8.20)

We propose the results of numerical calculation for the risk adjusted pricing
methodology model (RAPM). We would like to show the position of the free
boundary % and the value of the perpetual option V evaluated at exercise price
S D E. The option values are computed for various values of the model � 2 Œ0; 2


for the RAPM model. The rest of the model parameters were chosen as: r D 0:1,
E D 100 and �0 D 0:3. In computations shown in Table 8.1 we present results of
the free boundary position and the perpetual American put option price V.E/ for the
RAPM model.

Finally, in Fig. 8.1 we show the option price V.S/ for the Risk adjusted pricing
methodology model with closed form explicit Merton’s solutions with constant
volatility.

Table 8.1 The perpetual put option free boundary position % and the option price V.S/ evaluated
at S D E for various values of the model parameter � � 0 for the RAPM model (Source [9])

� 0.00 0.20 0.40 0.60 1.20 1.60 2.00

% 68.9655 64.7181 61.2252 58.2647 51.1474 47.2975 44.5433

V.E/ 13.5909 15.4853 17.1580 18.6669 22.5461 24.7444 26.6804

50 75 100 125 150 175 200
S

0

10

20

30

40

50

60

V
S

Fig. 8.1 Solid curve represents a graph of a perpetual American put option V.S/ for the RAPM
model with � D 1. Sub- and super- solutions V�� and V�C are depicted by dashed curves. The
model parameters: r D 0:1, E D 100 and �0 D 0:3 (Source [9])
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8.5 Conclusions

In this chapter we analyzed the problem of American style perpetual options when
the nonlinear volatility is a function of the second derivative. We studied the free
boundary problem that models this type of options, by transforming it into a single
implicit equation for the free boundary position and explicit integral expression for
the option price.
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Chapter 9
Stochastic Dynamic Programming and Control
of Markov Processes

Manuel Guerra

Abstract This chapter contains a brief discussion of the basic mathematical ideas
behind dynamic programming methods for optimal control of Markov processes. It
is based on lectures given by the author at the Summer School on Computational
Finance held at Smolenice Castle, Slovakia, in September 2014.

The key theoretical ideas behind the approach are outlined in a somewhat abstract
setting. We hope that this will help the reader to understand the key points of the
dynamic programming principle and Hamilton-Jacobi-Bellman equations and their
potential as tools to solve a large array of optimization problems, without paying too
much attention to the technical difficulties that often arise in concrete applications.

9.1 Introduction

The most common type of stochastic optimal control problem concerns the control
of diffusions. For this type of control problems, a rather complete theory is available
(see [6, 9, 10], among others). The main approach to these problems is the so-
called dynamic programming approach which relies on the dynamic programming
principle and yields the solution of the optimal control problem in the form of a
solution of a nonlinear second order PDE, known as the Hamilton-Jacobi-Bellman
equation.

The same approach may, in principle, be applied to many other types of optimal
control problems, leading to other types of Hamilton-Jacobi-Bellman equations.
There is a large number of recent publications dealing with different types of
extensions and applications of the basic method. A survey of this literature is out
of the scope of this text, but we mention a very general if short discussion in [5].
About more specific results, we note that generalizations to optimal control of Lévy
processes as draw particular attention, as in [2, 3, 7], among others.

This paper presents the dynamic programming approach in a very general setting,
from a point of view that has similarities to [5], but uses different mathematical

M. Guerra (�)
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tools. It differs from the classical approach in the fact that our emphasis is on control
of the law of the process, rather than control of the sample paths.

We discuss dynamic programming in the class of Feller processes. This is
a broad class that includes Lévy processes as particular cases. By contrast, the
regularity assumptions on the optimization criterion are quite restrictive. This option
is motivated by the belief that this setting is quite convenient to present the basic
ideas without having to deal with too much technical detail. Also, the class of
optimization criteria that can be dealt with is sensitive to the type of process being
considered. Hence, it is difficult to present a discussion that is simultaneously
general with respect to the processes and with respect to the optimization criteria.

The paper is organized as follows. Section 9.2 contains a brief outline of
the dynamic programming principle and Hamilton-Jacobi-Bellman equation for
diffusions, in the form it is usually presented in the literature [6, 9, 10]. This serves
as a background of concepts and results that will be discussed and generalized
in the following sections. Section 9.3 deals with Feller processes, their operator
semigroups and infinitesimal generators. These are the basic concepts from which
control systems will be build in Sect. 9.4. In that section, a suitable class of
optimal control problems is introduced. The dynamic programming principle and
the relation between solutions of the optimal control problem and solutions of the
appropriate Hamilton-Jacobi-Bellman equation are proved. A final section contains
some global remarks and references about the contents of this text.

9.2 Optimal Control of Diffusions

In this section, we sketch the optimal stochastic control problem and the main results
concerning its solution by dynamic programming, in the case of diffusions. The
Theorems 9.1, 9.2 and 9.3 below constitute the main topic of discussion for the
subsequent sections of this paper. Readers who are not familiar with these results
and want a deeper understanding of the material in this section may see [6] or [9].

9.2.1 The Optimal Control Problem, the Dynamic
Programming Principle, and the
Hamilton-Jacobi-Bellman Equation

Consider a filtered probability space .˝;F ; fFtgt�0;P/, supporting an m-
dimensional fFtg-adapted Brownian motion W. Let A � R

n, U � R
k be

nonempty sets, with A open, and fix functions b W Œ0;T
 � A � U 7! R
n,

� W Œ0;T
 � A � U 7! R
n�m. The process to be controlled is the solution of

the stochastic differential equation

dXs D b.s;Xs; us/ds C �.s;Xs; us/dWs; (9.1)
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where u is the “control”, i.e., a process to be chosen among a class U of fFtg-
progressively measurable U-valued processes.

The functions b; � are assumed to satisfy some regularity and growth conditions
ensuring that for each control process u 2 U , each initial time t 2 Œ0;TŒ and state
x 2 A � R

n, there is one unique A-valued process Xt;x;u
s solving Eq. (9.1) in the time

interval Œt;T
 with initial condition Xt D x.
Take functions f W Œ0;T
 � A � U 7! R, g W A 7! R, � W Œ0;T
 � A � U 7! R, and

for each u 2 U and 0 � t � s � T, let

ˇu
t;s D e� R s

t �.�;X
t;x;u
� ;u� /d� :

For each initial time and state .t; x/ 2 Œ0;TŒ�A, the optimal control problem consists
of finding the control Ou 2 U maximizing the functional

J.t; x; u/ D E

�Z T

t
ˇu

t;s f .s;Xt;x;u
s ; us/ds C ˇu

t;T g.Xt;x;u
T /

�
: (9.2)

Thus, ˇu
t;s is a (stochastic) discount factor corresponding to the stochastic interest

rate �.s;Xt;x;u
s ; us/. This comes naturally in problems arising from finance or

economics. Again, the functions f ; g; � are assumed to satisfy regularity and growth
conditions ensuring that the functional (9.2) is well defined for every .t; x/ 2
Œ0;T
 � A and every u 2 U .

To solve the problem (9.1)–(9.2), we introduce the value function

V.t; x/ D sup
u2U

J.t; x; u/;

and the differential operators f' 7! L u'gu2U, defined as

L u'.t; x/ D ��.t; x; u/'.t; x/C @

@x
'.t; x/b.t; x; u/

C 1

2
Tr

�
���.t; x; u/

@2

@x2
'.t; x/

�

The dynamic programming principle is a theorem of the following type:

Theorem 9.1 (Under Suitable Assumptions)
For every .t; x/ 2 Œ0;TŒ�A and every fFtg-stopping time such that t � � � T:

V.t; x/ D sup
u2U

E

�Z �

t
ˇu

t;s f .s;Xt;x;u
s ; us/ds C ˇu

t;T V.�;Xt;x;u
� /

�
: (9.3)

Thus, the dynamic programming principle allows for the decomposition of
problem (9.1)–(9.2) into a pair of problems in any non-overlapping stochastic
intervals Œt; � 
, 
�;T
.
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Using the dynamic programming principle, it is possible to prove the following
theorems, which characterize the solution of the problem (9.1)–(9.2).

Theorem 9.2 (Under Suitable Assumptions)
If the value function is C1;2, then it solves the Hamilton-Jacobi-Bellman (HJB)
equation:

@

@t
V.t; x/C sup

u2U

�
f .t; x; u/C L uV.t; x/

� D 0; (9.4)

V.T; x/ D g.x/: (9.5)

Theorem 9.3 (Verification Theorem) (Under Suitable Assumptions)
If a function V solves the HJB equation (9.4)–(9.5), then it is the value function.
Further, if there is a measurable function Ou W Œ0;TŒ�Rn 7! U such that

f
�
s; x; Ou.s; x/�C L Ou.s;x/V.s; x/ D max

u2U

�
f .s; x; u/C L uV.s; x/

�
; 8.s; x/

then the process Ous D Ou



s;Xt;x;Ou
s

�
is an optimal control.

Usually, the Theorems 9.2 and 9.3 can be proved only under somewhat different
assumptions. Therefore, they are not the exact converse of each other.

9.2.2 Time-Homogeneous Problems

Before proceeding to the discussion and generalization of the theorems above, we
introduce some simplifications of problem (9.1)–(9.2) to obtain a formulation more
suitable for the abstractions we have in mind.

Consider the autonomous version of problem (9.1)–(9.2). That is, the controlled
stochastic differential equation

dXs D b.Xs; us/ds C �.Xs; us/dWs: (9.6)

As before, let Xt;x;u
s denote the unique solution of (9.6) for the particular control

u 2 U and initial condition Xt D x. Now, we seek to maximize the simplified
functional

J.t; x; u/ D E
�
g
�
Xt;x;u

T

��
: (9.7)

To see that there is no loss of generality in substituting the problem (9.6)–(9.7) for
the problem (9.1)–(9.2), introduce the additional processes

�s D s; ˇs D e� R s
t �.r;Xr ;ur/dr; Ys D

Z s

t
ˇrf .r;Xr; ur/dr:
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The vector .�s; ˇs;Ys;Xs/ solves the SDE

d

0

B
B
@

�s

ˇs

Ys

Xs

1

C
C
A D

0

B
B
@

1

��.�s;Xs; us/ˇs

f .�s;Xs; us/ˇs

b.�s;Xs; us/

1

C
C
A ds C

0

B
B
@

0

0

0

�.�s;Xs; us/

1

C
C
A dWs D

DQb.�s; ˇs;Ys;Xs/ds C Q�.�s; ˇs;Ys;Xs/dWs;

and the objective function (9.2) can be represented in the form

J.t; x; u/ D E
�
Yt;x;u

T C ˇt;x;u
T g.Xt;x;u

T /
� D E

�Qg.ˇt;x;u
T ;Yt;x;u

T ;Xt;x;u
T /

�
:

This reduces the problem (9.1)–(9.2) to a problem of type (9.6)–(9.7). For this type
of problem, the dynamic programming principle (9.3) takes the form

V.t; x/ D sup
u2U

E
�
V.�;Xt;x;u

� /
�

(9.8)

for every fFtg-stopping time t � � � T. The Hamilton-Jacobi-Bellman equation
(9.4) reduces to

@

@t
V.t; x/C sup

u2U
L uV.t; x/ D 0; (9.9)

with

L u'.t; x/ D @

@x
'.t; x/b.x; u/C 1

2
Tr

�
���.x; u/

@2

@x2
'.t; x/

�
: (9.10)

9.3 Feller Processes, Feller Semigroups,
and Infinitesimal Generators

Feller processes are a class of stochastic processes that are suitable to be “con-
trolled”, as shown in Sect. 9.4 below. Other classes may be considered to outline
similar arguments (see Sect. 9.5), but Feller processes fit particularly well in the
general point of view adopted in this paper.

This section contains only the briefest outline of the topic. For a complete
account, see [1, 4, 8], among others.
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9.3.1 Feller Processes and Feller Semigroups

Let .˝;F ; fFtgt�0; 	/ be a filtered probability space satisfying the following
conditions

(A1) The filtration fFtg is complete, i.e., F0 contains all the 	-null sets;
(A2) The filtration fFtg is right continuous, i.e., FtC D Ft for every t � 0.

Let C0.Rn/ be the space of all continuous functions f W R
n 7! R vanishing

at infinity, provided with the topology of uniform convergence. That is, C0.Rn/ is
provided the norm k f k D max

x2Rn
j f .x/j.

Any R
n-valued random variable X W ˝ 7! R

n induces a probability measure in
R

n, defined as

	X.A/ D 	 f! 2 ˝ W X.!/ 2 Ag ;

for every A, a Borel subset of Rn. Thus, for any R
n-valued stochastic process X,

any f 2 C0.Rn/, and any s; t � 0, the function x 7! E Œ f .Xt/j Xs D x
 is well
defined 	Xs -almost everywhere in R

n. As usual, we say that such a function is
bounded (continuous, differentiable, etc.) if it coincides	Xs -almost everywhere with
a bounded (continuous, differentiable, etc.) function.

Let X W Œ0;C1Œ�˝ 7! R
n be an fFtg-adapted process such that:

(A3) X is a càdlàg process, i.e., for 	-almost every ! 2 ˝ , the trajectory t 7!
Xt.!/ is right-continuous and has finite left limit at every point t 2 Œ0;C1Œ;

(A4) X is a Markov process, i.e., Pr fXt 2 AjFsg D Pr fXt 2 Aj Xsg for every
0 � s � t < C1 and every A, a Borel subset of Rn.

(A5) X has the Feller property, i.e., for every f 2 C0.Rn/ and every 0 � s �
t < C1, the function x 7! E Œ f .Xt/j Xs D x
 is continuous and vanishes at
infinity.

We denote the function x 7! E Œ f .Xt/j Xs D x
 by Ps;t f . From the above it follows
that X induces a family of continuous linear operators

fPs;t W C0.R
n/ 7! C0.R

n/g0�s�t<C1 :

We consider two further conditions on the process X:

(A6) For every f 2 C0.Rn/, 0 � s � t < C1, we have lim
u!t

kPs;u f � Ps;t f k D 0

if t > s, or lim
u!tC

kPs;u f � Ps;t f k D 0 if t D s;

(A7) X is time-homogeneous, i.e., for every f 2 C0.Rn/ and every 0 � s � t <
C1, Ps;t f D P0;.t�s/ f .

A process satisfying conditions (A1)–(A6) is called a Feller process. If it satisfies
also (A7), it is called a time-homogeneous Feller process. Notice that the continuity
condition (A6) does not require X to have continuous sample paths. Many important
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Markov processes are Feller. For example, every Lévy process (including Brownian
motion but also many processes with jumps) is a Feller process.

The condition (A7) is not restrictive: for any R
n-valued Feller process X, .t;Xt/

is a time-homogeneous RnC1-valued Feller process. For time homogeneous Feller
processes, we write Pt instead of P0;t, and the Markov property (A4) implies that
fPtgt�0 is a semigroup with respect to composition of operators:

P0 f D f ; PsPt f D PsCt f

for every f 2 C0.Rn/, s; t � 0. Notice that all the operators Pt are positive
contractions, i.e.,

0 � Pt f � k f k 8t 2 Œ0;C1Œ; f 2 C0.R
n/; f � 0: (9.11)

In the time-homogeneous case, the continuity condition (A6) reduces to the
apparently simpler condition

lim
t!0C

kPt f � f k D 0 8f 2 C0.R
n/: (9.12)

A semigroup of linear operators fPt W C0.Rn/ 7! C0.Rn/gt�0 satisfying (9.11)–
(9.12) is called a Feller semigroup. It can be proved that given an initial distribution
	X0 , every Feller semigroup is the semigroup of a unique (in law) Feller process.
Further, for an appropriate modification of the Feller process, the minimal filtration
satisfying conditions (A1)–(A2) is the natural filtration generated by the process
augmented with all the null sets. Thus, every statement about Feller semigroups is a
statement about Feller processes an vice-versa.

9.3.2 Infinitesimal Generators

It turns out that Feller semigroups are characterized by their infinitesimal generators,
a concept that we now introduce.

Theorem 9.4 Let fPt W C0.Rn/ 7! C0.Rn/gt�0 be a Feller semigroup. There is a
dense linear subspace D � C0.Rn/ such that for each f 2 D there is g 2 C0.Rn/

such that lim
t!0C

�
� 1

t .Pt f � f /� g
�
� D 0.

The transformation

f 7! L f D lim
t!0C

1

t
.Pt f � f /

is a (usually unbounded) linear operator from D into C0.Rn/. It is called the
infinitesimal generator of the semigroup fPtgt�0 (or, of the corresponding Feller
process X).
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Example 9.1 (Compound Poisson Process) Consider the process

Xt D X0 C
NtX

iD1
Yi;

where Nt is a Poisson process with intensity � > 0, and Yi; i D 1; 2; : : : are i.i.d.
real-valued random variables. This is a càdlàg time-homogeneous Markov process.
A simple computation shows that for any f 2 C0.Rn/:

E Œ f .Xt/jX0 D x
 D f .x/e��t C
C1X

nD1
E

"

f

 

x C
nX

iD1
Yi

!#
�ntn

nŠ
e��t:

Thus, it is a Feller process with infinitesimal generator

L f .x/ D � .E Œ f .x C Y/
 � f .x// ;

where Y is any random variable with the same law as Yi, i D 1; 2; : : :. This is a
continuous operator and its domain is the whole space C0.Rn/.

Example 9.2 (Diffusion) Consider the stochastic differential equation

dXt D b.Xt/dt C �.Xt/dWt: (9.13)

If there is some constant C < 1 such that

jb.x/� b. y/j C j�.x/ � �. y/j < Cjx � yj 8x; y 2 R
n;

then Eq. (9.13) admits one unique solution. This solution is a time-homogeneous
Markov process.

Let C2
0.R

n/ be the space of all functions twice continuously differentiable,
vanishing at infinity and with partial derivatives up to second order vanishing at
infinity. This is a dense linear subspace of C0.Rn/. Due to Itô’s formula, for every
f 2 C2

0.R
n/ and t > 0:

f .Xt/ D f .X0/C
Z t

0

�
Dfb C 1

2
Tr
�
���D2f

��
.Xs/ds C

Z t

0

.Df�/ .Xs/dWs:

The stochastic integral in the right-hand side is a martingale and therefore

E Œ f .Xt/j X0 D x
 D f .x/C E

�Z t

0

�
Dfb C 1

2
Tr
�
���D2f

�
�
.Xs/ds

ˇ
ˇ
ˇ̌X0 D x

�
:
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From this, a simple computation shows that the infinitesimal generator of X is

L f .x/ D Df .x/b.x/C 1

2
Tr
�
�.x/�.x/�D2f .x/

�
:

Its domain contains at least all the functions in C2
0.R

n/. Notice that in this case,
the infinitesimal generator is not a bounded operator: uniform convergence does not
imply convergence of partial derivatives.

The similitude between the expression above and Eq. (9.10) is not a coincidence.
As mentioned above and illustrated in Example 9.2, the infinitesimal generator

is in general, an unbounded operator. However, it has some regularity. Recall that
an operator ˚ W D � X 7! Y is closed if for every sequence fxk 2 Dgk2N, if fxkg
converges towards some x 2 X and f˚xkg converges towards some y 2 Y, then
x 2 D and ˚x D y. An operator is said to be closable if it admits some extension
that is closed. The closure of an operator is its minimal closed extension. It turns out
that infinitesimal generators of Feller semigroups are always closable. Indeed, if we
set D to be the maximal subspace with the property described in Theorem 9.4, then
the infinitesimal generator is closed. This is the most usual definition of infinitesimal
generators, but since two closable operators coinciding in a dense subset must have
the same closure, we do not insist on this point.

The relation between infinitesimal generators and Feller processes goes both
ways: the next theorem shows that the infinitesimal generator characterizes the
Feller semigroup and therefore it characterizes the law of the Feller process.

Theorem 9.5 Let fPt W C0.Rn/ 7! C0.Rn/gt�0 be a Feller semigroup with closed
infinitesimal generator L W D 7! C0.Rn/. Then:

(a) For every f 2 C0.Rn/ and t � 0, we have
R t
0

Ps fds 2 D and Pt f D f C
L
R t
0 Ps fds;

(b) For every f 2 D and t 2 Œ0;C1Œ, we have Pt f 2 D , L Pt f D PtL f , and
fPtgt�0 is the unique family of operators satisfying

Pt f D f C
Z t

0

L Ps fds D f C
Z t

0

PsL fds: (9.14)

The integral
R t
0

Ps fds is understood in the weak sense: for every x 2 R
n, the mapping

s 7! .Ps f /.x/ is a continuous function from Œ0;C1Œ into R. Thus, the integralR t
0
.Ps f /.x/ds is well defined.

R t
0

Ps fds denotes the function x 7! R t
0
.Ps f /.x/ds. The

definition of the integral
R t
0
L Ps fds is analogous.

The Eq. (9.14) is called the (integral form of the) Kolmogorov equation. It implies
that two Feller semigroups with the same infinitesimal generator must be identical.
The following theorem gives a characterization of infinitesimal generators
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Theorem 9.6 (Hille-Yosida) A linear operator L W D � C0.Rn/ 7! C0.Rn/ is
the infinitesimal generator of some Feller semigroup if and only if it satisfies all the
following conditions:

(a) D is dense in C0.Rn/;
(b) There is some � > 0 such that the image .�Id � L /.D/ is dense in C0.Rn/;
(c) For every f 2 D and every � > 0, k.�Id � L /f k � � k f k.

An operator satisfying condition (c) of Theorem 9.6 is called a dissipative
operator. Unfortunately, this condition is not easy to check in practice. Thus, it
is useful to have the following sufficient condition.

Proposition 9.1 Consider a linear operator L W D � C0.Rn/ 7! C0.Rn/.
If L f .x/ � 0 for every f 2 D with a positive maximum and every x a maximizer

of f , then L is dissipative.
Notice that the infinitesimal generators in Examples 9.1 and 9.2 satisfy the

condition in Proposition 9.1.

9.3.3 Properties of Feller Processes

Feller processes have very good properties. In particular, the Propositions 9.2,
9.3, and 9.4 below play a central role in the concept of stochastic control system
presented in the next section.

Proposition 9.2 Let X be a time-homogeneous Feller process, and let
˚
F X

t

�
t�0 be

its natural filtration. X has the strong Markov property:

Pr
˚

X�Ct 2 AjF X
�

� D Pr fX�Ct 2 Aj X�g

for every finite
˚
F X

t

�
-stopping time � , every t � 0, and every Borel set A. If Pt is

the Feller semigroup generated by X, then

E
�

f .X�Ct/jF X
�

� D Pt f .X� / (9.15)

for every f 2 C0.Rn/.

Proposition 9.3 Let X be a time-homogeneous Feller process with infinitesimal
generator L W D 7! C0.Rn/. For every f 2 D , the process

Mt D f .Xt/�
Z t

0

.L f /.Xs/ds

is a martingale.
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Proof The proposition follows easily from the definitions of semigroup of a Feller
process and infinitesimal generator.

Let fPtgt�0 be the semigroup of X. Then,

E ŒMsCtjFs
 D

DE Œ f .XsCt/jFs
 �
Z s

0

.L f /.Xu/du �
Z sCt

s
E Œ .L f /.Xu/jFs
 du D

D.Pt f /.Xs/�
Z s

0

.L f /.Xu/du �
Z sCt

s
.Pu�s.L f // .Xs/du D

Df .Xs/C
Z t

0

.Pu.L f // .Xs/du �
Z s

0

.L f /.Xu/du�

�
Z t

0

.Pu.L f // .Xs/du D Ms:

Since X is càdlàg, it follows that M is a càdlàg martingale and therefore, Doob’s
optional sampling theorem states that

E

�
f .X� /�

Z �

0

.L f /.Xs/ds

ˇ
ˇ
ˇ
ˇF�

�
D f .X� /�

Z �

0

.L f /.Xs/ds (9.16)

for every bounded stopping times 0 � � � � .
Rearranging equality (9.16), we obtain the following.

Proposition 9.4 Let X be a time-homogeneous Feller process with infinitesimal
generator L W D 7! C0.Rn/. For every f 2 D and every bounded stopping times
0 � � � �:

E Œ f .X� /jF� 
 D E Œ f .X� /j X� 
 D f .X� /C E

�Z �

�

.L f /.Xs/ds

ˇ
ˇ̌
ˇX�

�
: (9.17)

9.3.4 The Feynman-Kac Equation

Before introducing controlled stochastic processes, it is useful to consider a simpler
problem.

Let X be a Feller process with semigroup fPtgt�0 and infinitesimal generator
L W D 7! C0.Rn/. Fix f 2 D , T 2
0;C1Œ, and consider the function V W Œ0;T
 �
R

n 7! R defined as

V.t; x/ D E Œ f .XT/j Xt D x
 : (9.18)

Clearly, V is a well-defined function. The problem is to find a suitable characteriza-
tion of this function. This is given by the following theorem.
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Theorem 9.7 The function V defined by (9.18) is the unique solution of the terminal
value problem

@V

@t
.t; x/C L V.t; x/ D 0 8.t; x/ 2 Œ0;TŒ�Rn; (9.19)

V.T; x/ D f .x/ 8x 2 R
n: (9.20)

Proof By definition, V.t; x/ D PT�t f .x/. Thus, equality (9.20) must hold. By the
Theorem 9.5, the function t 7! L Pt f .x/ is continuous for every x 2 R

n. Using
Theorem 9.5, we see that every t; s < T:

V.t; x/ � V.s; x/ DPT�t f .x/ � PT�s f .x/ D
Z T�t

T�s
L Pu f .x/du D

D � .t � s/L PT�t f .x/C o.t � s/

when s ! t. This is equality (9.19).
Uniqueness of the solution is a consequence of uniqueness of the solution of the

Kolmogorov equation (9.14).
The Eq. (9.19) is known as the Feynman-Kac equation.

Example 9.3 (Compound Poisson Process) For the process described in Exam-
ple 9.1, the Feynman-Kac equation is an integro-differential equation

@V

@t
.t; x/C � .EŒV.t; x C Y/
 � V.t; x// D 0:

Example 9.4 (Diffusion) For the diffusion described in Example 9.2, the Feynman-
Kac equation is the parabolic PDE:

@V

@t
.t; x/C DxV.t; x/b.x/C 1

2
Tr
�
�.x/�.x/�D2

xV.t; x/
� D 0:

9.4 Optimal Control of Feller Processes

Now, we are ready to introduce a general definition of controlled stochastic process
and obtain the corresponding analogous to Theorems 9.1, 9.2, and 9.3.

9.4.1 Controlled Processes

Let U be a nonempty set, and consider a family of Feller semigroups indexed by U,˚
Pu

t

�
u2U

. All semigroups Pu
t are understood to operate on the same space C0.Rn/.
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We use L u to denote the infinitesimal generator of the semigroup Pu
t and Xu to

denote any Feller process with semigroup Pu
t . For each u 2 U, let Du be the maximal

domain of the infinitesimal generator L u (thus, L u W Du 7! C0.Rn/ is a closed
operator for every u 2 U).

We assume that the collection fDugu2U satisfies the following condition:

(A8) The linear subspace D D T

u2U
Du is dense in C0.Rn/.

From these elements, we construct new processes in the following way.
Pick an element u 2 U and consider the corresponding process Xu and its natural

filtration
˚
F Xu

t

�
t�0. Pick � , a finite

˚
F Xu

t

�
-stopping time, and a new element v 2 U.

Then (provided the underlying probability space is sufficiently rich), there is a
càdlàg process Y (unique in law) such that

Yt D Xu
t for t � �;

E
�

f .Y�Ct/jF Xu

�

� D Pvt f .Xu
� / for every t � 0; f 2 C0.R

n/:

The idea behind this construction is simple: create a new process which coincides
with the process Xu until the stopping time � . After the stopping time, Y follows a
new process that behaves like Xv, starting from the point where Xu left at time � .

The process Y is not time homogeneous, but the expression

PY
s;t f .x/ D E Œ f .Yt/j Ys D x


defines a two-parameter family of linear operators

˚
PY

s;t W C0.R
n/ 7! C0.R

n/
�
0�s�t<C1

such that

PY
s;s D Id 8s 2 Œ0;C1Œ;

PY
s;u ı PY

u;t D PY
s;t 80 � s � u � t < C1:

Further, the process Y satisfies a time-dependent version of equality (9.17): for any
bounded

˚
F Y

t

�
-stopping times �1 � �2,

E
�

f .Y�2/jF Y
�1

� D E Œ f .Y�2 /j Y�1 
 D

Df .Y�1/C E

"Z �2

�1

.L uf / .Ys/�s�� C .L vf / .Ys/�s>�ds

ˇ̌
ˇ
ˇ
ˇ
Y�1

#

: (9.21)
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The procedure above can be iterated any finite number of times: take two processes

Y1, Y2 of the type above, pick � , a finite
n
F Y1

t

o
-stopping time, and a constant s � 0.

From these, construct a new càdlàg process Y3 such that

Y3t D Y1t for t � �;

E

h
f .Y3�Ct/

ˇ
ˇF Y1

�

i
D PY2

s;sCt f .Y1� / for every t � 0; f 2 C0.R
n/:

Thus, we obtain a collection of stochastic processes .u;Xu/ such that

(a) u is a U-valued process of type ut D u0�Œ0;�0
.t/ C
kP

iD1
ui�
�i�1;�i
.t/, where all

the ui are fixed elements of U and 0 � �0 � �1 � � � � � �k < C1 are finite˚
F Xu

t

�
-stopping times.

(b) .u;Xu/ satisfies the trivial generalization of equality (9.21):

E
�

f .Xu
�2
/
ˇ
ˇF Xu

�1

� DE
�

f .Xu
�2
/
ˇ
ˇXu

�1

� D

Df .Xu
�1
/C E

"Z �2

�1

.L us f / .Xu
s /ds

ˇ̌
ˇ
ˇ
ˇ
Xu
�1

#

; (9.22)

for any bounded
˚
F Xu

t

�
-stopping times �1 � �2.

The process u above is called a simple control process, while the corresponding
process Xu is the controlled process. The set of all such pairs is denoted by XS. The
set of admissible pairs of control and controlled processes can be greatly expanded
by considering limits in some appropriate sense (e.g., convergence in probability,
convergence in mean-squares, etc.) over sequences of pairs .u;Xu/ with number of
stopping times going to infinity. In that case, the set of all admissible pairs is denoted
by X .

Now, we can give a general formulation of the stochastic control problem:

Problem 9.1 For each .t; x/ 2 Œ0;TŒ�Rn, find the pair(s) .Ou; OX/ 2 X maximizing
the functional

J.t; x; u;X/ D E Œg.XT/j Xt D x
 :

Here g W Rn 7! R is a given function. To avoid technical difficulties, we assume that
g 2 C0.Rn/.

We will not go into the details of the construction of the space X . Instead, we
will take the following assumption:

(A9) For every .t; x/ 2 Œ0;TŒ�Rn and every .u;X/ 2 X , there is a sequence
f.uk;Xk/ 2 XSgk2N such that lim

k!1 J.t; x; uk;Xk/ � J.t; x; u;X/.

Assumption (A9) allows us to deal with the main arguments in this text using only
simple controls.
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Remark 9.1 The fact that simple controls are left continuous while controlled
processes are right continuous is significant.

To see this, consider a controlled version of the compound Poisson process from
Example 9.1:

Xu
t D X0 C

NtX

iD1
.uTi C Yi/ ;

where Nt is a Poisson process with intensity � > 0, Ti is the time of the ith jump of
Nt, Yi; i D 1; 2; : : : are i.i.d. real-valued random variables, and ut is a real-valued
control process. Thus, the effect of the control is to change the expected value of the
jumps .Xt � Xt�/.

Left continuity of the control means that this shifting is decided before the jump.
Clearly, if the choice of the shift could be delayed until the jump occurs, then it
could be made to fully compensate for the value of the “default” jump Yi, completely
changing the nature of the problem.

In the setting above, the filtration being considered is always the natural filtration˚
F X

t

�
of the process .u;X/ 2 X being considered. Thus, a change in control can

lead to a change in filtration. For this reason, we need to consider a type of stopping
times that can be applied to every filtration generated by elements of X .

For each .u;X/ 2 X , let TX be the set of all
˚
F X

t

�
-stopping times. A universal

stopping time is a mapping � W X 7! S

.u;X/2X
TX such that:

(a) �.u;X/ 2 TX for every .u;X/ 2 X ,
(b) If .u;X/ and .u0;X0/ are identical in law, then

�
u;X; �.u;X/

�
and�

u0;X0; �.u0;X0/

�
are identical in law.

For example, for any open set B � R
n, the first exit time of B, �X D inf fs W Xs … Bg

is a universal stopping time. Also, deterministic times are universal stopping times
and the class of universal stopping times is closed under lattice operations: for any
universal stopping times �; � , � ^ � and � _ � are universal stopping times.

Consider a finite number of universal stopping times 0 D �0 � �1 � �2 � : : : �
� k and u1; u2; : : : ; uk 2 U. For each .u;X/ 2 XS, these elements define a unique
U-valued process

wt D
kX

iD1
ui�
� i�1

.u;X/;�
i
.u;X/


.t/: (9.23)

That is, (9.23) defines a collection of U-valued processes parameterized by XS.
Such a collection is called a (simple) feedback control, and we use the short notation

wt D
kP

iD1
ui�
� i�1;� 
 .t/. It can be checked that there is one unique process (in law) X

such that .w;X/ 2 XS.
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Notice that the notion of controlled process introduced in this section is in fact a
way of controlling families of linear operators

fPs;t W C0.R
n/ 7! C0.R

n/g0�s�t<C1 :

In other words, we are concerned with control of laws of processes rather than
control of the sample paths of a given process.

9.4.2 The Dynamic Programming Principle

Now, we present and prove the theorem analogous to Theorem 9.1 for the stochastic
optimal control problem (Problem 9.1).

First, we introduce some notation: for any function ' W Œ0;T
 � R
n 7! R, let

'.t; x/ D lim inf
.s;y/!.t;x/

'.s; y/; '.t; x/ D lim sup
.s;y/!.t;x/

'.s; y/;

be, respectively, the lower semi-continuous and the upper semi-continuous
envelopes of '. Notice that every semi-continuous function is Borel-measurable.

We introduce the value function V W Œ0;TŒ�Rn 7! R, defined as

V.t; x/ D sup
.u;X/2X

J.t; x; u;X/ D sup
.u;X/2X

E Œg.XT/j Xt D x
 : (9.24)

Notice that, due to assumption (A9), the supremum in (9.24) can be taken over the
smaller set XS. The value function extends trivially to t D T by V.T; x/ D g.x/.

The dynamic programming principle takes the following form:

Theorem 9.8 (Dynamic Programming Principle) For every .t; x/ 2 Œ0;TŒ�R
and every universal stopping time � such that t � � � T:

sup
.u;X/2XS

E ŒV.�;X� /jXt D x
 � V.t; x/ � sup
.u;X/2XS

E
�
V.�;X� /jXt D x

�

Proof The right-hand side inequality is easy to prove.
Fix a universal stopping time � with t � � � T. For every .u;X/ 2 XS,

E Œg.XT/j Xt D x
 D E
�
E
�

g.XT/jF X
�

�ˇ̌
Xt D x

� D
DE ŒE Œg.XT/j X� 
j Xt D x
 � E

�
V.�;X� /

ˇ
ˇXt D x

�
:

The inequality follows by taking the supremum over .u;X/ 2 XS.
The proof of the left-hand side inequality is more labourious.
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Due to Urysohn’s lemma, every lower semicontinuous function f W R
n 7! R,

bounded from below is the pointwise limit of a monotonically increasing sequence
of continuous functions.

Notice that jV.t; x/j � kgk and therefore, the same holds for V . Thus, we can
pick a bounded continuous function ' W Œ0;T
 � R

n 7! R such that ' � V . Fix
a constant " > 0. For each .t; x/ 2 Œ0;T
 � R

n, pick .ut;x;Xt;x/ 2 XS such that
E
�

g.Xt;x
T /
ˇ
ˇXt;x

t D x
�
> V.t; x/ � ".

For every fixed .u;X/ 2 XS, the function .t; x; s/ 7! E Œg.Xs/j Xt
 is continuous.
Thus, for each .t; x/ 2 Œ0;T
 � R

n, there is a constant rt;x > 0 such that

E
�

g.XT0/j Xt0 D x0� > E Œg.XT/j Xt D x
 � ";

'.t0; x0/ < '.t; x/C ";

whenever jt0 � tj C jx0 � xj C jT 0 � Tj < rt;x.
The collection of balls

˚
B 1
2 r.t;x/ .t; x/

�
.t;x/2Œ0;T
�Rn is an open cover of Œ0;T
 � R

n.

Hence it contains a countable subcover
˚
B 1
2 r.ti;xi/ .ti; xi/

�
i2N. We use the short notation

Bi D B 1
2 r.ti ;xi/ .ti; xi/, ri D r.ti;xi/, .ui;Xi/ D .uti;xi ;Xti;xi/. The sequence

˚
Ai D Bi n

S

j<i
Bj
�

i2N is a countable partition of Œ0;T
 � R
n into Borel subsets.

For every .t; x/ 2 Bi, we have:

E
�

g.Xi
TCti�t/

ˇ
ˇXi

t D x
�
> E

�
g.Xi

T/
ˇ
ˇXi

ti
D xi

� � " > V.ti; xi/� 2"

� '.ti; xi/� 2" > '.t; x/ � 3": (9.25)

Fix a universal stopping time � such that t � � � T, and .u;X/ 2 XS. Notice
that for every i 2 N, the event f.�X;X�X / 2 Aig is F X

�X
-measurable. Therefore, the

random variables �i, defined as

�i D
(

T; if .�X;X�X / … Ai;

�X; if .�X;X�X / 2 Ai; i 2 N

are
˚
FX

t

�
-stopping times. Using these stopping times and the sequence of processes

f.ui;Xi/g chosen above, we obtain a new sequence f.vi;Yi/ 2 XSgi2N such that

Y1t D Xt; for t � �1;

E
�

f .Y1�1Ct/
ˇ̌
F X
�1

� D PX1
t1;t1Ct f .X�1/; for t � 0; f 2 C0.R

n/I
YiC1

t D Yi
t ; for t � �iC1;

E

h
f .YiC1

�iC1Ct/
ˇ
ˇ
ˇF Yi

�iC1

i
D PXiC1

tiC1;tiC1Ct f .Yi
�iC1

/; for t � 0; f 2 C0.R
n/; i 2 N:
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Notice that every �X is a
n
F Yi

t

o
-stopping time for every i 2 N. Hence, the same

holds for every �i.
Also,

E

h
g.Yk

T/
ˇ
ˇF Yk

�X

i
D

kX

iD1



PXi

ti;TCti��X
g.X�X /

�
�Ai.�X;X�X /

C �
PX
�X ;T��X

g.X�X /
�
� 1S

iDkC1

Ai

.�X;X�X /:

Hence, inequality (9.25) shows that

E

h
g.Yk

T/
ˇ
ˇF Yk

�X

i
> '.�X;X�X /� kS

iD1

Ai

.�X;X�X / � kgk� 1S

iDkC1

Ai

.�;Xv� /� 3"

almost certainly. Therefore,

V.t; x/ �E
�
g.Yk

T/jYk
t D x

� D E

h
E

h
g.Yk

T/
ˇ
ˇF Yk

�X

iˇ̌
ˇ Yk

t D x
i

�
�E Œ'.�X;X�X /j Xt D x
�

�C Pr

(

.�X;X�X / 2
1[

iDkC1
Ai

ˇ
ˇ
ˇ
ˇ̌Xt D x

)

� 3";

where C is a finite constant, independent of k. Since fAigi2N is a partition of Œ0;T
�
R

n, lim
k!1 Pr

�
.�X;X�X / 2

1S
iDkC1

Ai

ˇ
ˇ
ˇ
ˇXt D x

	
D 0. Therefore,

V.t; x/ � E Œ'.�X;X�X /j Xt D x
 � 3":

Since " is arbitrary, we conclude that V.t; x/ � E Œ'.�X;X�X /j Xt D x
.
Finally, take a monotonically increasing sequence of bounded continuous func-

tions f'kgk2N, converging pointwise to V . Due to Lebesgue’s monotone convergence
theorem, we obtain

V.t; x/ � lim
k!1E Œ'k.�X;X�X /j Xt D x
 D E ŒV.�X ;X�X /j Xt D x
 ;

Since this holds for every .u;X/ 2 XS, the proof is complete.
Notice that the statement in Theorem 9.8 reduces to

V.t; x/ D sup
.u;X/2XS

E ŒV.�;X� /j Xt D x
 ;

when V is a continuous function. Obviously, this is a general form of equality (9.8).
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9.4.3 The Hamilton-Jacobi-Bellman Equation

Now we will present our versions of Theorems 9.2 and 9.3. In the setting of
Problem 9.1, the Theorem 9.2 takes the following form.

Theorem 9.9 Let V W Œ0;T
 � R
n 7! R be the value function (9.24), and suppose

that:

(a) for every x 2 R
n, the map t 7! V.t; x/ is absolutely continuous;

(b) for every t 2 Œ0;TŒ, the map x 7! V.t; x/ is an element of D .

Then, the value function satisfies the Hamilton-Jacobi-Bellman equation

@V

@t
.t; x/C sup

u2U
L uV.t; x/ D 0; (9.26)

for every .t; x/, a continuity point of the functions .t; x/ 7! @V
@t , .t; x/ 7!

sup
u2U

L uV.t; x/.

Proof Fix .t; x/ 2 Œ0;TŒ�Rn, a continuity point of the function .t; x/ 7! @V
@t , and fix

small h; " > 0. Let

� D min .t C h; inf fs � t W jXs � xj � "g/ :

This is a universal stopping time, and therefore the dynamic programming principle
(Theorem 9.8) states that

V.t; x/ � E
�

V.�;Xu
� /j Xt D x

�

for every u 2 U. This implies

V.t; x/ �E
�

V.�;Xu
� /� V.t;Xu

� /j Xt D x
�C E

�
V.t;Xu

� /j Xt D x
�
:

Due to the assumptions above and equality (9.22), this is

V.t; x/ �E

�Z �

t

@V

@t
.s;Xu

� /ds

ˇ
ˇ
ˇ
ˇXt D x

�
C

C V.t; x/C E

�Z �

t
.L uV/.t;Xu

s /ds

ˇ
ˇ̌
ˇXt D x

�
D

DV.t; x/C h

�
@V

@t
.t; x/C L uV.t; x/

�
C o.h/;
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when h goes to zero. Since u is arbitrary, this shows that

@V

@t
.t; x/C sup

u2U
L uV.t; x/ � 0:

Now, suppose there is some .t; x/ 2 Œ0;TŒ�Rn, a continuity point of the functions
.t; x/ 7! @V

@t , .t; x/ 7! sup
u2U

L uV.t; x/, such that @V
@t .t; x/C sup

u2U
L uV.t; x/ < 0. Then,

there is some " > 0 such that

@V

@t
.t; x/C sup

u2U
L uV.t; x/ < �":

By continuity, there is some � > 0 such that

@V

@t
.s; y/C sup

u2U
L uV.s0; y0/ < � "

2

whenever js � tj C jy � xj � � and js0 � tj C jy0 � xj � �.
For every k 2 N, there is a function 'k 2 C0 .Œ0;TŒ�Rn/ such that

'.t; x/ D 0; '.s; y/ D 1 whenever � � js � tj C jy � xj � k:

Since D is dense, there is a function �k W Œ0;TŒ�Rn 7! R such that

(i) for every s 2 Œ0;TŒ the map y 7! �k.s; y/ is an element of D ;
(ii) for every y 2 R

n the map s 7! �k.s; y/ is continuously differentiable;
(iii) k�k � 'kk < 1

4
.

Consider the universal stopping time

� D inf fs � t W s � t C jXs � xj � �g ;
and fix .u;X/ 2 XS. Then, for every ı > 0:

V.t; x/ � V.t; x/C ı

�
�k.t; k/ � 1

4

�
D

DE ŒV.�;X� /j Xt D x
C ıE Œ'k.�;X� /j Xt D x
�
� .E Œ .V C ı�k/.�;X� /j Xt D x
 � E Œ .V C ı�k/.t;X� /j Xt D x
/�

� .E Œ .V C ı�k/.t;X� /j Xt D x
 � .V C ı�k/.t; x// � ı

4
D

DE ŒV.�;X� /j Xt D x
C ıE Œ'k.�;X� /j Xt D x
�

� E

�Z �

t

@

@t
.V C ı�k/.s;X� /ds

ˇ
ˇ
ˇ̌Xt D x

�
�

� E

�Z �

t
L u.V C ı�k/.t;Xs/ds

ˇ
ˇ
ˇ
ˇXt D x

�
� ı

4
:
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Notice that lim inf
k!1 E Œ'k.�;X� /j Xt D x
 � 3

4
. Hence, for k sufficiently large

V.t; x/ �E ŒV.�;X� /j Xt D x
C ı

4
�

� E

�Z �

t

@

@t
.V C ı�k/.s;X� /ds

ˇ
ˇ̌
ˇXt D x

�
�

� E

�Z �

t
L u.V C ı�k/.t;Xs/ds

ˇ
ˇ
ˇ
ˇXt D x

�
�

�E ŒV.�;X� /j Xt D x
C ı

4
C E Œ � � tj Xt D x



 "
2

� ı kL u�kk
�
:

Thus, for sufficiently small ı > 0,

V.t; x/ �E ŒV.�;X� /j Xt D x
C ı

4
:

This contradicts the dynamic programming principle and therefore

@V

@t
.t; x/C sup

u2U
L uV.t; x/ � 0

must hold for every .t; x/ 2 Œ0;TŒ�Rn, a continuity point of @V
@t and sup

u2U
L uV .

Example 9.5 Consider the controlled compound Poisson process of Remark 9.1.
For each u 2 R, the generator L u is

L uf .x/ D � .E Œ f .x C u C Y/
 � f .x// :

Thus, if the control process is allowed to take values in some subset U � R, the
Hamilton-Jacobi-Bellman equation becomes the integro-differential equation

@V

@t
.t; x/C �

�
sup
u2U

E Œ f .x C u C Y/
 � f .x/

�
D 0:

Example 9.6 Consider the problem (9.6)–(9.7). For each fixed u 2 U, the infinites-
imal generator L u is given by (9.10). Thus, (9.9) is the Hamilton-Jacobi-Bellman
equation for this problem.

The verification theorem can be stated as follows.

Theorem 9.10 Let v W Œ0;T
 � R
n 7! R be a continuous function such that:

(a) for every t 2 Œ0;TŒ, the function x 7! v.t; x/ is an element of D;
(b) for every x 2 R

n, the function t 7! v.t; x/ is differentiable and @v
@t is continuous

and bounded in Œ0;TŒ�Rn;
(c) the function .t; x/ 7! sup

u2U
L uv.t; x/ is continuous in Œ0;TŒ�Rn.
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If v solves the Hamilton-Jacobi-Bellman equation (9.26) with terminal condition

v.T; x/ D g.x/ 8x 2 R
n; (9.27)

then v is the value function.
Further, if there is a function Ou W Œ0;TŒ�Rn 7! U such that

L Ou.t;x/v.t; x/ D sup
u2U

L uv.t; x/ 8.t; x/ 2 Œ0;TŒ�Rn;

and there is a process OX such that



Ou.t; OXt/; OXt

�
2 X , then the process



Ou.t; OXt/; OXt

�

is a solution for Problem 9.1.

Proof Let V W Œ0;T
 � R
n 7! R be the value function (9.24), and fix .u;X/ 2 XS.

Under the assumptions (a)–(c), v satisfies the analogous to equality (9.22):

E Œ v.�2;X�2/j X�1 
 D v.�1;X�1/C E

"Z �2

�1

@v

@t
.s;Xs/C L usv.s;Xs/ds

ˇ
ˇ
ˇ̌
ˇ
X�1

#

;

for every universal stopping times 0 � �1 � �2 � T. Therefore,

E Œg.XT/j Xt D x
 D E Œ v.T;XT/j Xt D x
 D

Dv.t; x/C E

�Z T

t

@v

dt
.s;Xs/C .L usv/.s;Xs/ds

ˇ
ˇ
ˇ
ˇXt D x

�
�

�v.t; x/C E

�Z T

t

@v

dt
.s;Xs/C sup

u2U
.L uv/.s;Xs/ds

ˇ
ˇ
ˇ
ˇXt D x

�
D v.t; x/:

Since .u;X/ is arbitrary, this proves that V.t; x/ � v.t; x/. Further, if the function Ou
and the process OX described in the theorem exist, the inequality above becomes an

equality in the particular case .ut;Xt/ D



Ou.t; OXt/; OXt

�
. Hence, the result follows.

To prove the inequality v.t; x/ � V.t; x/ in the general case, we build a sequence˚
.wk;Xk/ 2 XS

�
k2N as follows.

Suppose that v solves (9.26)–(9.27), and fix " > 0. For each .t; x/ 2 Œ0;TŒ�Rn,
there is some rt;x > 0 and ut;x 2 U such that

sup
u2U

L uv.s; y/ < L ut;x
v.s; y/C " 8.s; y/ 2 Brt;x.t; x/:

The collection
n
B 1
2 rt;x.t; x/

o

.t;x/2Œ0;TŒ�Rn
is an open cover of Œ0;TŒ�Rn. Hence, it

admits a countable subcover
n
B 1
2 rti;xi .ti; xi/

o

i2N. We use the short notation ri D rti;xi ,

Bi D Brti ;xi .ti; xi/, Ai D B 1
2 ri
.ti; xi/, ui D uti;xi .

Fix .t; x/ 2 Œ0;TŒ�Rn. Without loss of generality, we set .t1; x1/ D .t; x/, and
construct the sequence of feedback controls

˚
wk
�

k2N as follows.
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We set w1 D u1, a constant control, and define the universal stopping time �1 D
min .T; inf fs � t W .s;Xs/ … B1g/. Let w2 be the feedback

w2t D

8
ˆ̂
<

ˆ̂:

w1t ; for t � �1;

u2; for t > �1 if .�1;X�1/ 2 A2;

w1t ; for t > �1 if .�1;X�1/ … A2;

For k � 2, and i D 1; 2; : : : ; k, set

�k;i D
(
�k�1 if .�k�1;X�k�1 / … Ai;

inf fs > �k�1 W .s;Xs/ … Big if .�k�1;X�k�1 / 2 Ai:

Let

�k D min .T;max.�k;1; �k;2; : : : ; �k;k// ;

wkC1
t D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

wk
t ; for t � �k;

ui; for t > �k if .�k;X�k / 2 Ai nS
j<i

Aj; i D 1; 2; : : : ; k C 1;

wk
t ; for t > �k if .�k;X�k / …

kC1S
iD1

Ai:

Let Qwk D
�

wk
t for t � �k;

u1 for t > �k;
and let Xk be the unique (in law) process such that

. Qwk;Xk/ 2 XS. Then, f�kg is a monotonically increasing sequence converging to
T and for every s 2 Œ0; �k
:

L Qwk
sv.s;Xk

s / > sup
u2U

L uv.s;Xk
s /� ":

Therefore,

V.t; x/ �E
�

g.Xk
T/
ˇ̌
Xk

t D x
� D E

�
v.T;Xk

T/
ˇ̌
Xk

t D x
� D

DE
�
v.�k;X

k
�k
/
ˇ
ˇXk

t D x
�C E

�
v.T;Xk

T /� v.�k;X
k
�k
/
ˇ
ˇXk

t D x
� D

Dv.t; x/C E

�Z �k

t

@v

@t
.s;Xk

s /C L Qwk
sv.s;Xk

s /ds

ˇ
ˇ
ˇ
ˇXk

t D x

�
C

C E
�
v.T;Xk

T /� v.�k;X
k
�k
/
ˇ
ˇXk

t D x
� �

�v.t; x/C E

�Z �k

t

@v

@t
.s;Xk

s /C sup
u2U

L uv.s;Xk
s / � "ds

ˇ
ˇ
ˇ
ˇX

k
t D x

�
C

C E
�
v.T;Xk

T /� v.�k;X
k
�k
/
ˇ
ˇXk

t D x
� �

�v.t; x/ � .T � t/"C E
�
v.T;Xk

T /� v.�k;X
k
�k
/
ˇ
ˇXk

t D x
�
:
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Now,

E
�
v.T;Xk

T/ � v.�k;X
k
�k
/
ˇ
ˇXk

t D x
� D

DE
�
E
�
v.T;Xk

T /
ˇ̌
X�k

� � v.�k;X
k
�k
/
ˇ̌
Xk

t D x
�
;

the sequence E
�
v.T;Xk

T/
ˇ
ˇX�k

� � v.�k;Xk
�k
/ is uniformly bounded and converges

pointwise to 0 when k goes to infinity. Therefore,

lim
k!1E

�
v.T;Xk

T /� v.�k;X
k
�k
/
ˇ̌
Xk

t D x
� D 0

and, since " is arbitrary, we conclude that V.t; x/ � v.t; x/.
Notice, due to Theorem 9.10, any solution of the Hamilton-Jacobi-Bellman

equation with the regularity stated in the theorem is unique, since it must coincide
with the value function. Also, the first part of the theorem does not require the
Problem 9.1 to have a solution. Indeed, the proof gives a method to construct "-
optimal solutions, given the solution of the Hamilton-Jacobi-Bellman equation.

9.5 Conclusions

Though we presented the dynamic programming principle and the Hamilton-Jacobi-
Bellman equation in a setting that does not depend on the particular type of process
being controlled, we did not try to achieve maximal generality. Many variants of the
results above can be obtained along the same lines but in different settings.

We introduced Feller processes as Rn-valued processes. Therefore, our controlled
processes are also R

n-valued processes. This is just for convenience of writing. All
the arguments used in the text are entirely valid if Rn is replaced by any separable
locally compact metric space.

More importantly, the approach outlined above can be extended to Markov pro-
cesses that are not Feller processes. Control systems analogous to those described
in Sect. 9.4 can be constructed for any class of càdlàg processes, provided that class
corresponds to a class of semigroups acting on a suitable Banach space of functions
such that equality (9.15) holds.

The class of optimization criteria treated in this text is quite restricted, since we
assume that the function g is an element of C0.Rn/. This assumption fails in many
cases of practical interest, namely in economics and financial applications where
optimization criteria are frequently unbounded and/or have discontinuities. Also
very restrictive are the assumptions concerning the regularity of the value function
required for Theorem 9.9 and 9.10. Naturally, these two issues are related. They can
be partially overcome on a case-by-case approach. Often, it is possible to extend the
results taking sequences of problems with regular optimization criteria and regular
value functions and taking limits in some appropriate sense.
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Issues related to the regularity of the value function are very present in all
dynamic programming approaches to optimal control problems, including control
of deterministic systems and control of diffusions. In the deterministic and diffusion
cases, the Hamilton-Jacobi-Bellman equation is a PDE. It can be proved (under
suitable assumptions) that appropriate versions of Theorems 9.9 or 9.10 hold
if solutions of the Hamilton-Jacobi-Bellman equation in the viscosity sense are
considered, instead of classical solutions (see [6, 9], among others). Viscosity
solutions and their application to optimal control problems are the topic of a vast
and growing volume of published literature, including generalizations to some types
of Lévy processes.

Readers interested in the control of diffusions may see the monograph by
Fleming and Soner [6] or the more recent book by Touzi [9]. These books contain a
rigorous and comprehensive study of the topic, including solutions of the Hamilton-
Jacobi-Bellman equation in the viscosity sense.

A study of Markov processes from the point of view outlined in Sect. 9.3 can be
found in the lecture notes [1]. The monograph by Ethier and Kurtz [4] contains a
very complete account of the same topic.

The study of general Markov processes from the point of view outlined in
Sect. 9.4 above, has not been, to our best knowledge, the topic of any comprehensive
publication. This material is can be rigorously constructed from the material
contained in the references provided for Sect. 9.3.
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Chapter 10
Numerical Analysis of Novel Finite Difference
Methods

Rafael Company, Vera N. Egorova, Mohamed El Fakharany, Lucas Jódar,
and Fazlollah Soleymani

Abstract The core target of this chapter is numerical analysis and computing of
novel finite difference methods related to several different option pricing models,
including jump-diffusion, regime switching and multi-asset options. A special
attention is paid to positivity, consistency and stability of the proposed methods. The
consideration of jump processes leads to partial integro-differential equation (PIDE)
for the European option pricing problem. The problem is solved by using quadrature
formulas for the approximation of the integrals and matching the discretization of
the integral and differential part of the PIDE problem. More complicated model
under assumption that the volatility is a stochastic process derives to a PIDE
problem where the volatility is also an independent variable. Such a problem
is solved by introducing appropriate change of variables. Moreover, American
options are considered proposing various front-fixing transformations to treat a free
boundary. This free boundary challenge can be treated also by a recent rationality
parameter approach that takes into account the irrational behavior of the market.
Dealing with multidimensional problems the core difficulty is the appearance of
the cross derivative terms. Appropriate transformations allow eliminating the cross
derivative terms and reduce of the computational cost and the numerical instabilities.
After using a semidiscretization approach, the time exponential integration method
and appropriate quadrature integration formulas, the stability of the proposed
method is studied independent to the problem dimension.

10.1 Introduction

This chapter deals with numerical analysis and computing of novel finite difference
methods related to several option pricing models that correct the lack of adaptability
of the classic Black-Scholes (BS) model to the reality of the market. As the best
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model may be wasted with a disregarded analysis, we will pay attention to important
issues such as consistency and stability of the proposed methods.

Dealing with prices, the guarantee of positivity of the numerical solution is a
necessity that will be always considered here. After the 2008 financial crisis, the
multidimensional option pricing problems became more relevant for both market
industries and academia claiming for comfortable methods that be quick and reliable
at the same time.

In Sect. 10.2, we consider finite difference methods for solving partial integro-
differential equations (PIDEs) related to a wide class of Lévy processes introducing
jump processes in the changes of the underlying assets. The consideration of jump
processes motivates the appearance of the integral part of the PIDE. In Sect. 10.2.1,
we solve the problem by introducing quadrature formulas for the approximation of
the integrals and matching the discretization of the integral and differential part of
the PIDE problem. Sect. 10.2.2 assumes that the volatility is a stochastic process
deriving to a PIDE problem where the volatility is also an independent variable.

In Sect. 10.3, for dealing with American option pricing problems we follow
the front-fixing approach initiated by [40] adding the numerical analysis in the
numerical treatment of the problem and another transformation of the original PDE
problem. To our knowledge we are the first users of the front-fixing method for
regime-switching models fitting better the changing reality of the market.

Section 10.4 incorporates the rationality parameter approach recently proposed
by [30] having the relevant issue that American option pricing problems can be
approximated by solving a PDE instead of partial differential inequalities. This
approach takes into account the irrational behavior of the market.

Section 10.5 addresses the challenge of the dimensionality. Firstly, in Sect. 10.5.1
the elimination of the cross derivative terms of the multidimensional PDE by
using appropriate transformations allows the reduction of the computational cost
and the numerical instabilities. After using a semidiscretization approach, the time
exponential integration method and appropriate quadrature integration formulas, the
stability of the proposed method is studied independent to the problem dimension.

10.2 Solving PIDE Option Pricing Using Finite Difference
Schemes

The financial markets show that the underlying assets do not behave like a Brownian
motion with a drift and a constant volatility. This fact motivates the emergence of
alternative models to the pioneering Black-Scholes model [3]. Alternative models
are stochastic volatility [35], deterministic volatility [17], jump diffusion [46, 64]
and infinite activity Lévy models. Jump diffusion and Lévy models are characterized
by a partial integro-differential equation (PIDE). This PIDE involves two major
parts, namely, the differential part as in the Black-Scholes model and the non-local
integral part due to the assumption of having assets with jumps. The option pricing
under jump diffusion has been studied using the double discretization [7] and the
integral term is approximated using the trapezoidal rule.
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In this section, we propose positive stable and consistent methods to solve a
wide class of infinite activity Lévy models using Gauss-Laguerre quadrature for
approximating the integral part. Furthermore, the Bates model that incorporates both
stochastic volatility and Jump diffusion is studied.

10.2.1 Solving PIDE for a Wide Class of Infinite Activity Lévy
Processes

One of the most relevant and versatile Lévy models is the one proposed by Carr et
al. the so called CGMY [6], that belongs to the family of KoBoL models [4]. Apart
from these models, other Lévy processes such as Meixner [44, 57], Hyperbolic and
Generalized Hyperbolic (GH) are used to obtain better estimation for the stock
returns [56]. The Meixner process was introduced in 1998, it is used when the
environment is changing stochastically over the time showing a reliable valuation
for some indices such as Nikkei 225 [57].

The option pricing partial integro-differential equation (PIDE) unified model for
several Lévy measures �.y/, given by [14, Chap. 12]

@C

@�
.S; �/ D �2

2
S2
@2C

@S2
.S; �/C .r � q/S

@C

@S
.S; �/ � rC .S; �/

C
Z C1

�1
�.y/

�
C .Sey; �/ � C .S; �/ � S.ey � 1/

@C

@S
.S; �/

�
dy; S 2 .0;1/; � 2 .0;T 
;

(10.1)

C .S; 0/ D f .S/ D .S � E/C; S 2 .0;1/; (10.2)

C .0; �/ D 0I lim
S!1C .S; �/ D Se�q� � Ee�r� ; (10.3)

where C is the value of a contingent claim, S is the underlying asset and � D T � t
is the time to the maturity. The Lévy measures �.y/ are given in Table 10.1.

Table 10.1 The forms of �.y/

Model The corresponding Lévy measure

KoBoL �.y/ D C�e�G jyj

jyj
1CY 1y<0 C CCe�M jyj

jyj
1CY 1y>0

Meixner �.y/ D Ae�ay

y sinh.by/

GH process �.y/ D eˇy

jyj

0

@
Z

1
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p
2�C˛2jyj

�2�
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.ı
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2�/C Y2
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2�/
�d� C max.0; �/e�˛jyj

1
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Note that the Hyperbolic process is obtained from the GH process when ˇ D 0

and � D �1.
The KoBoL model and in particular the CGMY, see Table 10.1 with parameter

C� D CC, has been widely studied because its versatile and includes the finite and
infinite activity cases as well as the finite and infinite variation, obtained by changing
the value of Yor parameter Y < 2. A fairly complete revision of the methods used
to solve the CGMY model can be found in [9, 15, 53, 65].

In this study we focus on the numerical analysis of the unified model (10.1)–
(10.3) for the European case, by proposing a consistent, explicit and conditionally
positive and stable finite difference scheme while the integral part is approximated
using Gauss-Laguerre quadrature formula. We also include the computation of the
linear complementarity problem (LCP) for the American option case using both
the projected successive over relaxation method (PSOR) and the multigrid method
(MG). The discretization for the differential operator is done using the three-level
approximation, while the integral part is discretized as the same as in the European
case. So, the integral part of the PIDE operator for the American and European
cases is discretized using the Gauss-Laguerre quadrature. Although the three-level
method is widely used and it is argued that the approximation error is of order two,
however such method has two unsuitable properties, in fact as the method needs the
first time step that must be obtained using another method (usually by implicit Euler
method), in practice the accuracy is reduced.

Let us begin by transforming the PIDE (10.1) into a simpler one. Since the kernel
of the integral in (10.1) presents a singularity at y D 0, a useful technique is to split
the real line, for an arbitrary small parameter " > 0, into two regions ˝1 D Œ�"; "

and ˝2 D Rn˝1, the complementary set of ˝1 in the real line. The integral on ˝1

is replaced by a suitable coefficient in the diffusion term of the differential part of
(10.1) obtained by Taylor expansion of V.Sey; �/ about S, see [9, 15, 53, 65]. This
coefficient depending on " is a convergent integral and takes the form

M�2."/ D
Z "

�"
�.y/.ey � 1/2dy D "

Z 1

�1
�."�/.e"� � 1/2d�: (10.4)

The resulting approximating PIDE is given by

@C

@�
D O�2

2
S2
@2C

@S2
C .r � q � �."//S@C

@S
� .r C �."//C

C
Z

˝2

�.y/C .Sey; �/dy; (10.5)

where

O�2 D �2 C M�2."/; �."/ D
Z

˝2

�.y/.ey � 1/dy; �."/ D
Z

˝2

�.y/dy: (10.6)
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The convergent integrals (10.4) and (10.6) are evaluated using Gauss quadrature
approximation. In order to obtain an approximation for M�2."/, the Gauss-Legendre
quadrature approximation is used, so the weighting function w.�/ D 1 such that

M�2."/ � "

MX

mD1
!m�."�m/.e

"�m � 1/2; (10.7)

where �m are the roots of the Legendre polynomial PM.�/ of degree M and !m

is calculated based on [1, Eq. (25.4.29), p. 887]. Here M is chosen to be an even
number so that zero is not a root of PM . The improper integrals �."/ and �."/ are
approximated using the shifted Gauss-Laguerre quadrature [19, p. 226]. Note that
under change of variables � D �y � " for y < 0 and � D y � " for y > 0 then �."/
and �."/ have the following forms

�."/ D
Z 1

0

.�.��� "/C �.�C "// d� (10.8)

and

�."/ D
Z 1

0

�
�.��� "/.e�.�C"/ � 1/C �.�C "/.e�C" � 1/� d�: (10.9)

From (10.8), (10.9) and since the weighting function is w.�/ D e��, then we have

�."/ �
MX

mD1
$mF.�m; "/; �."/ �

MX

mD1
$mF .�m; "/; (10.10)

where

F.�; "/ D e�.�.��� "/C �.�C "//

F .�; "/ D e�
�
�.��� "/.e�.�C"/ � 1/C �.�C "/.e�C" � 1/� :

Here �m are the roots of the Laguerre polynomial LM.�/ of degree M and the
weighting function$m is given in [1, Eq. (25.4.45), p. 890].

Coming back to (10.5) in order to eliminate the convection and reaction terms,
using the transformation defined by

x D expŒ.r � q � �."//�
S; V.x; �/ D expŒ.r C �."//�
C .S; �/; (10.11)

one gets

@V

@�
D O�2

2
x2
@2V

@x2
C
Z

˝2

�.y/V.xey; �/dy; x 2 .0;1/; � 2 .0;T
; (10.12)
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with the initial and boundary conditions

V.x; 0/ D f .x/ D .x � E/C (10.13)

V.0; �/ D 0I lim
x!1 V.x; �/ D e�."/� .xe�."/� � E/: (10.14)

Next, for the sake of convenience in the numerical treatment we rewrite the integral
part of (10.12) as follows

Z

˝2

�.y/V.xey; �/dy D
Z 1

�1
O�.y/V.xey; �/dy; (10.15)

where

O�.y/ D
(
�.y/; y 2 ˝2

0; y 2 ˝1

: (10.16)

After that, in order to match the interval of the integration with the spatial domain
of the problem, we use the following substitution � D xey into (10.15), obtaining

Z

˝2

�.y/V.xey; �/dy D
Z 1

0

O�.ln.�
x
//V.�; �/

d�

�
: (10.17)

Hence the PIDE for the European option under Lévy model, takes the following
form

@V

@�
D O�2

2
x2
@2V

@x2
C
Z 1

0

O�.ln.�
x
//V.�; �/

d�

�
: (10.18)

Now, we are in a good situation to construct an efficient explicit numerical scheme
for the transformed problem (10.18) after choosing our numerical domain Œ0; xmax
�
Œ0;T
 for large enough value of xmax. For the time discretization, we take �n D nk;
n D 0; 1; : : : ;N� where k D T

N�
and the spatial variable x is discretized by xj D jh,

j D 0; 1; 2; : : : ;Nx, h D xmax
Nx

.
Since the Laguerre-Gauss quadrature will be used for approximating the integral

part of (10.18), then we have the sequence of roots f�mgM
mD1 of the Laguerre

polynomial LM.�/. The suitable value for M is selected such that E < �M < xmax.
By using explicit forward approximation for the time derivative of V and the

central difference approximation for second spatial derivative, one gets

@V

@�
.xj; �

n/ � VnC1
j � Vn

j

k
;
@2V

@x2
.xj; �

n/ � Vn
jC1 � 2Vn

j C Vn
j�1

h2
: (10.19)

In order to approximate the integral part of (10.18) matching the discretization of
the integral and differential parts, taking into account that zeroes of Laguerre poly-
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nomial do not need to be nodes of the mesh, we use linear Lagrange interpolation
polynomial. For any m, 1 � m � M, let us denote by `m the last integer such that
the mesh point x`m < �m. The approximating value Vn.�m/ is given by

Vn.�m/ D Qa`mVn
`m

C Oa`mVn
`mC1; (10.20)

where the interpolation coefficients are

Qa`m D .x`mC1 � �m/

h
I Oa`m D .�m � x`m/

h
: (10.21)

Note that the linear interpolation approximation (10.20) has an error of order
O.h2/ that coincide with the associated error of the central approximation of the
spatial derivative (10.19). Hence the discretization for the integral part is given by

In
j D

MX

mD1
O�.ln �m

xj
/
e�m

�m
$m

�Qa`mVn
`m

C Oa`mVn
`mC1

�
: (10.22)

Summarizing, from (10.19) to (10.22), the discretization of (10.18) with (10.13)
and (10.14) takes the form

VnC1
j D ˛j.V
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jC1 C Vn

j�1/C ˇjV
n
j C k
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O�.ln �m

xj
/
e�m
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C Oa`mVn
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�
;

(10.23)
1 � j � Nx � 1; 0 � n � N� � 1; where

˛j D k

2h2
O�2x2j ; ˇj D 1 � 2˛j; (10.24)

satisfying

V0
j D .xj � E/C; Vn

0 D 0; Vn
Nx

D e�."/�
n
.xmaxe�."/�

n � E/: (10.25)

In what follows, we state that the solution is conditionally positive and stable. The
proof of this statement and consistency of the scheme can be found in [28].

Theorem 10.1 The numerical solution fVn
j g of the scheme (10.23)–(10.25) is

nonnegative under the condition.

k

h2
� 1

O�2x2max
: (10.26)

Based on Von Neumann approach, the stability of the numerical scheme (10.23)
has been studied and summarized in the following theorem.
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Theorem 10.2 Under the positivity condition (10.26), the numerical scheme
(10.23) for (10.18) is conditionally stable see [29].

The objective of the first example is to exhibit the importance of the positivity
condition (10.26) for the three studied Lévy models.

Example 10.1 Here, we have an European option with E D 30, T D 0:5, r D 0:08,
q D 0, � D 0:2, xmin D 0, xmax D 90, M D 15, " D 0:5 and Nx D 128. The
parameters for Lévy models are given in Table 10.2.

Figures 10.1, 10.2, and 10.3 display the behavior of the option price C evaluated
by the proposed explicit scheme when the positivity condition (10.26) holds for
N� D 25e3 and when it is broken for N� D 1e3 represented by the solid and dot
curves respectively under several Lévy processes.

The aim of the next example is to show the variation of the error for the Variance
Gamma VG model as the stepsizes h and k change. The VG is obtained from the
CGMY model when Y D 0, the reference option values for S D f20; 30; 40; 50g are
obtained using the closed form solution given in [45].

Table 10.2 The parameters
for Lévy models used in
Example 10.1

Model Parameters

CGMY C D 0:5, G D 15, M D 25 and Y D 1:2945

Meixner A D 0:5, a D �2:5 and b D 8

GH ˛ D 4, ˇ D �3:2, ı D 0:4775 and � D 2
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Fig. 10.1 About positivity condition of the explicit scheme under CGMY process
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Fig. 10.2 The positivity condition of the explicit scheme under Meixner process
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Fig. 10.3 The effect of positivity condition on the option price under GH process
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Table 10.3 Errors and convergence rates for the VG model for several values of Nx

S 20 30 40 5 CPU

Nx AE ˛ AE ˛ AE ˛ AE ˛ in s

32 8.909e � 4 � 1.926e � 3 � 3.742e � 3 � 4.386e � 3 � 1:84

64 2.409e � 4 1.89 5.335e � 4 1.85 1.022e � 3 1.87 1.181e � 3 1.89 4:63

128 6.363e � 5 1.92 1.413e � 4 1.92 2.710e � 4 1.91 3.053e � 4 1.95 10:85

256 1.552e � 5 2.04 3.698e � 5 1.93 6.952e � 5 1.96 7.603e � 5 2.01 18:99

Table 10.4 Errors and convergence rates for the VG model for various values of N�

S 20 30 40 50 CPU

N� AE ˇ AE ˇ AE ˇ AE ˇ in s

1.2e3 2.161e � 4 � 4.790e � 4 � 9.243e � 4 � 1.151e � 3 � 4:06

2.4e3 1.154e � 4 0.91 2.552e � 4 0.89 4.883e � 4 0.92 6.049e � 4 0.93 7:28

4.8e3 5.883e � 5 0.97 1.304e � 4 0.94 2.519e � 4 0.95 3.072e � 4 0.98 12:65

9.6e3 2.916e � 5 1.02 6.462e � 5 0.96 1.288e � 4 0.97 1.489e � 5 1.04 20:37

Example 10.2 Consider an European option under the VG process with parameters
E D 30, T D 0:5, r D 0:1, q D 0, � D 0:25, C� D CC D 11:718, G D 15 and
M D 25, xmin D 0, xmax D 90, M D 15, " D 0:35.

Table 10.3 reveals the variation of the absolute error (AE) as h changes as well
as the spatial numerical convergence rate ˛ and the CPU time while N� D 4:5e3 for
the explicit scheme (10.23). The change of the error due to the variation of N� , its
convergence rate ˇ and the elapsed time are shown in Table 10.4 while Nx D 128.

10.2.2 Positive Finite Difference Schemes for Partial
Integro-Differential Option Pricing Bates Model

The Bates model is considered one of the effective mathematical models that has
ability to describe the behavior of real markets of options usually of complex types
for instance, currency options. In the Bates model, the Heston stochastic volatility
model [35] and the Merton jump-diffusion model [46] are combined to describe the
behavior of the underlying asset S and its variance � [2]. The PIDE for the unknown
option price U.S; �; �/ under Bates model is given by

@U

@�
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2
�S2

@2U

@S2
C ���S

@2U

@S@�
C 1

2
�2�

@2U

@�2
C .r � q � ��/S@U

@S

C �.� � �/@U

@�
� .r C �/U C �

Z 1

0

U.S�; �; �/f .�/d�;

(10.27)
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and the density function f .�/ is given by

f .�/ D 1p
2� O�� expŒ� .ln � � 	/2

2 O�2 
; (10.28)

where 	 is the mean of the jump and O� is the standard deviation. For the European
call option we consider the initial condition

U.S; �; 0/ D g1.S; �/ D maxfS � E; 0g; (10.29)

where E is the strike price. We assume the boundary conditions applied to the Heston
model, see [20], but modified for � D 0 due to the additional integral term appearing
in Bates model. For the boundaries S D 0 and S ! 1 one gets

U.0; �; �/ D 0; lim
S!1

@U

@S
.S; �; �/ D 1: (10.30)

Note that this last condition means a linear behavior of the option price for large
values of S with slope 1 when no dividend payments are considered, q D 0. Based
on that fact, we replace it by the following condition, see [66, Chap. 3, p. 54]

U.S; �; �/ D e�q�S: (10.31)

For � ! 1 and � D 0, the corresponding boundary conditions are imposed as
follows

lim
�!1 U.S; �; �/ D S; (10.32)
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2 O�2 


d'

'
; (10.33)

where ' D S�.
The model (10.28)–(10.33) has two challenges from the numerical analysis point

of view. Firstly, the presence of a mixed spatial derivative term involves the existence
of negative coefficient terms into the numerical scheme deteriorating the quality of
the numerical solution such as spurious oscillation and slow convergence, see the
introduction of [70]. Secondly, the discretization of the improper integral part should
be adequate with the bounded numerical domain and the incorporation of the initial
and boundary conditions.

Dealing with prices, guaranty of the positivity of the solution is essential. In
this chapter we construct an explicit difference scheme that guarantees positive
solutions. We transform the PIDE (10.27) into a new PIDE without mixed spatial
derivative before the discretization, following the idea of [10], and avoiding the
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above quoted drawbacks. Furthermore, this strategy has additional computational
advantage of the reduction of the stencil scheme points, from nine [22] or seven
[54] to just five.

We begin this section by eliminating the mixed spatial derivative term of (10.28),
inspired by the reduction of second order linear partial differential equation in two
independent variables to canonical form, see [31, Chap. 3] and [10] for details. Let
us consider the following transformation

x D Q�� ln SI y D �� ln S � �I w.x; y; �/ D e.rC�/�U.S; �; �/; (10.34)

where Q� D p
1 � �2; 0 < j�j < 1, obtaining the following transformed equation

@w

@�
D Q�2��2

2

�@2w
@x2

C @2w

@y2
�C Oı @w

@x
C Qı @w

@y
C I.w/; (10.35)

with

I.w/ D �

Z 1

0

w.x C � Q� ln �; y C �� ln �; �/f .�/d�; (10.36)

where

Oı D � Q�. O� � �

2
/; Qı D ��. O� � �

2
/� �.� � �/ and O� D r � q � ��: (10.37)

For the sake of convenience in the matching of the further discretization of the
differential and integral parts of (10.35), we consider now the substitution

� D x C � Q� ln �: (10.38)

Hence from (10.29) and (10.36) one gets

I.w/ D �p
2� O� Q��

Z 1

�1
w.�; y C m.� � x/; �/ exp

"
�1
O�2
�
� � x

� Q� � 	

�2#

d�;

(10.39)
where m D �

Q� . Note that from (10.34), we have y D mx � �.
The initial and boundary conditions (10.29)–(10.33) are transformed into the

corresponding conditions using (10.34) and (10.38).

w.x; y; 0/ D maxfe
x
� Q� � E; 0g; lim

x!�1 w.x; y; �/ D 0; (10.40)

w.x; y; �/ � exp

�
x

� Q� C .r � q C �/�

�
; x ! 1; (10.41)

w.x; y; �/ � exp

�
x

� Q� C .r C �/�

�
; mx � y ! 1; (10.42)
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@w

@�
� � Q� O� @w

@x
C .�� O� � ��/@w

@y

C �p
2� O� Q��

Z 1

�1
w.�;m� � �; �/ exp

"
�1
O�2
�
� � x

� Q� � 	
�2#

d�; � ! 0:

(10.43)

From [27] a suitable bound for the underlying asset variable S is available and
generally accepted. In an analogous way, considering an admissible range of the
variance �, we can identify a convenient-bounded numerical domain R D ŒS1; S2
�
Œ�1; �2
 in the S � � plane. Under the transformation (10.34) as it is shown in [10]
the rectangle R is transformed into the rhomboid ABCD see [28]. In light of the
transformation (10.34) we use a discretization of the numerical domain where the
space step sizes h D �x and hy D �y D jmjh are related by the slope m D �

Q� . Here
we subdivide space-time axes into uniform spaced points using

xi D a C ih; 0 � i � Nx; yj D y0 C jjmjh; i � j � Ny C i;
�i;j D mxi � yj; �n D nk; 0 � n � N� ;

(10.44)

where h D b�a
Nx
; y0 D ma � �2, Ny D �2��1jmjh and k D T

N�
. Note that any mesh point

in the computational spatial domain has the form

.xi; yj/ D .a C ih;mxi � �2 C .j � i/jmjh/:
By denoting the approximate value of w at a representative mesh point P.xi; yj; �

n/

by Wn
i;j, we implement the center difference approximation for spatial partial

derivatives. On the other hand the improper integral I.w/ (10.39) is truncated into
Œa; b
, then the composite four points integration formula of open type has been
implemented using the same step size for the variable x as in the differential part.
Hence the corresponding finite difference equation for (10.35) is given by

WnC1
i;j D ˇi;jW

n
i;j C Ǫ i;jW

n
iC1;j C M̨ i;jW

n
i�1;j C ˛i;jW

n
i;j�1 C �i;jW

n
i;jC1 C O�Jn

i;j;

(10.45)

1 � i � Nx � 1; i C 1 � j � Ny C i � 1; 0 � n � N� � 1;

where

ˇi;j D 1 � k�2

h2m2
�i;j D .1� k

h2
Qaij/;

Ǫ i;j D k� Q�
2h

h
.2 Q���h/
2h �i;j C O�

i
D k

h .
�2

2h Qaij C Qbij/

M̨ i;j D k� Q�
2h

h
.2 Q��Ch/

2h �i;j � O�
i

D k
h .
�2

2h Qaij � Qbij/;

˛i;j D k
2jmjh

h

�2 Q�2
jmjh C ��

2
� �

�
�i;j � �� O� C ��

i
D k

h .
Q�2
2h Qaij � m

jmj Qbij C Qcij/;

�i;j D k
2jmjh

h

�2 Q�2
jmjh � ��

2
C �

�
�i;j C �� O� � ��

i
D k

h .
Q�2
2h Qaij C m

jmj Qbij � Qcij/;

(10.46)
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O� D 5kh�

24
p
2� O� Q�� ; (10.47)

and the integral part is given by

Jn
i;j D

Nx=5�1X

`D0



11gi;5`C1Wn

5`C1;5`C1Cj�i C gi;5`C2Wn
5`C2;5`C2Cj�i

Cgi;5`C3Wn
5`C3;5`C3Cj�i C 11gi;5`C4Wn

5`C4;5`C4Cj�i

�
; (10.48)

assuming that Nx has been previously chosen as a multiple of 5. The weight function
gi;` is given by

gi;` � g.xi; �`/ D exp

"
�1
2 O�2

�
�` � xi

� Q� � 	

�2#

; 0 � ` � Nx: (10.49)

The following theorem is established in order to guarantee nonnegative numerical
solutions such that

Theorem 10.3 If stepsizes h and k satisfy

C1. h � min
n
2� Q��i

j2O���ij ;
�2 Q�2�i

2m2j˛�iCˇj ; i D 1; 2
o

C2. k � min
n

m2h2

�2�2
; 2h
3� Q�jO�j ;

jmjh
3��

o
,

then the numerical solution fWn
i;jg of the scheme (10.45) is nonnegative.

The numerical scheme (10.45) is written in a matrix form in order to study its
stability, see [28]. It has been shown that under the positivity conditions, the infinite
norm of the vector solution is bounded such that

kWnk1
kW0k1

� exp ..r C �C �1/T/ :

Establishing a conditional strong uniform stable scheme.

Example 10.3 The parameters are selected as follows T D 0:5, E D 100, r D 0:05,
q D 0, � D 0:05, � D 2:0, � D 0:3, O� D 0:35, 	 D �0:5, � D 0:2 and � D �0:5
with a tolerance error " D 10�4.

The boundary points a and b of the spatial computational domain are obtained
from [28], while �1 D 0:1 and �2 D 1. Table 10.5 shows the variation of the RMSRE
for several values of the time step sizes, for fixed Nx D 70 and Ny D 35, with respect
to reference values computed at .Nx;Ny;N� / D .500; 146; 7000/.

The variation of error due to the change of the spatial step sizes, while N� D 500

has been presented in Table 10.6.
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Table 10.5 The RMSRE for
several values of N�

N� RMSRE Ratio CPU (s)

500 2:485 � 10�3 � 6:66

1000 1:322 � 10�3 1.88 6:94

2000 6:429 � 10�4 2.06 7:28

4000 3:296 � 10�4 1.95 7:69

8000 1:569 � 10�4 2.10 7:91

Table 10.6 The associated
RMSRE for different values
of .Nx;Ny/

.Nx;Ny/ RMSRE Ratio CPU (s)

.40; 20/ 1:526 � 10�2 � 0:32

.60; 30/ 3:459 � 10�3 4.412 1:83

.80; 40/ 9:271 � 10�4 3.371 6:95

.100; 50/ 3:589 � 10�4 2.583 19:64

.120; 60/ 8:473 � 10�5 4.236 46:72

10.3 Front-Fixing Methods for American Option Pricing
Problems

American option pricing problem leads to a free boundary value problem, that is
challenging because one has to find the solution of a PDE that satisfies auxiliary
initial conditions and boundary conditions on a fixed boundary as well as on an
unknown free boundary. This complexity is reduced by transforming the problem
into a new nonlinear PDE where the free boundary appears as a new variable of the
PDE problem.

This technique which originated in physics problems is the so called front-fixing
method based on the Landau transform [41] to fix the optimal exercise boundary
on a vertical axis. The front-fixing method has been applied successfully to a wide
range of problems arising in physics (see Crank [18]) and finance (see [11, 59, 68],
etc.) In this section the front-fixing method combined with the use of an explicit
finite difference scheme avoid the drawbacks of alternative algebraic approaches
since it avoids the use of iterative methods and underlying difficulties such as how
to initiate the algorithm, when to stop it and which is the error after the stopping.

10.3.1 Front-Fixing Methods for American Vanilla Options

First of all, classical Black-Scholes model for American call option (10.50)–(10.53)
is considered. The option price C.S; �/, where � D T � t is the time to maturity,
with constant dividend yield q is the solution of linear PDE of the second order

@c

@�
D 1

2
�2S2

@2C

@S2
C .r � q/S

@C

@S
� rC; S < Sf .�/; 0 < � � T; (10.50)
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supplied with the following initial conditions

C.S; 0/ D max.S � E; 0/; Sf .0/ D E max

�
r

q
; 1

�
; (10.51)

and the boundary conditions

C.Sf .�/; �/ D Sf .�/ � E; lim
S!1 P.S; �/ D 0: (10.52)

Since an additional unknown function Sf .�/ is included in the free boundary
formulation, one extra condition is necessary. This condition is called smooth
pasting condition and requires that the slope of the option price curve at the free
boundary coincides with the slope of payoff function. Thus, for put option it is
presented as follows

@C

@S

�
Sf .�/; �

� D 1: (10.53)

A dimensionless Landau transformation [41] is proposed as follows

x D ln
Sf .�/

S
; c.x; �/ D C.S; �/

E
; sf .�/ D Sf .�/

E
: (10.54)

The spatial variable x transfers the free boundary domain S < Sf .�/ to the
fixed, but unbounded domain .0I 1/. In new coordinates .x; �/ the problem (10.50)–
(10.53) is rewritten in the following normalized form

@c

@�
D 1

2
�2
@2c

@x2
C
�

r � q � �2

2

�
@c

@x
� rc C s0

f

sf

@c

@x
; x > 0; 0 < � � T;

(10.55)

where s0
f denotes the derivative of sf with respect to � . The new transformed equation

(10.55) is a nonlinear PDE on the domain .0;1/� .0;T
 since sf and its derivative
are involved. The problem (10.55) is solved by explicit FDM.

Further, let us consider American call option problem with another dimensionless
transformation that allows to fix the computational domain as in [68] and to simplify
the boundary conditions like [66, p. 122],

x D ln
Sf .�/

S
; c.x; �/ D C.S; �/ � S C E

E
; sf .�/ D Sf .�/

E
: (10.56)

Using transformation (10.56) the problem (for call option) can be rewritten in
normalized form

@c

@�
D �2

2

@2c

@x2
�
 

r � q � �2

2
C s0

f

sf

!
@c

@x
� rc � qsf e

�x C r; x > 0; 0 < � � T;

(10.57)
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with new initial conditions

sf .0/ D max

�
r

q
; 1

�
; c.x; 0/ D

(
1 � e�x; r � q;

g.x/; r > q;
x � 0; (10.58)

g.x/ D max

�
1 � r

q
e�x; 0

�
: (10.59)

Analytical or closed form solution of the transformed problems (10.55) or
(10.57) does not exist. Therefore explicit and fully implicit FDMs are employed
for constructing effective and stable numerical solution.

The problem (10.57)–(10.59) can be numerically studied on the fixed domain
Œ0; xmax
 � Œ0; �
. The value xmax is chosen big enough to guarantee the boundary
condition. The computational grid of M C 1 spatial points and N C 1 time levels is
chosen to be uniform with respective step sizes h and k:

h D xmax

M
; k D T

N
; (10.60)

xj D hj; j D 0; : : : ;M; �n D kn; n D 0; : : : ;N: (10.61)

The approximate value of option price at the point xj and time �n is denoted
by cn

j � c.xj; �
n/ and the approximate value of the free boundary is denoted by

Sn
f � Sf .�

n/. Then a forward two-time level and centred in a space explicit scheme
is constructed for internal spatial nodes as follows

cnC1
j D an

1c
n
j�1 C bcn

j C an
2c

n
jC1 C k

�
r � qSn

f e�xj
�
; 1 � j � M � 1; (10.62)

where

an
1 D k

2h2

�
�2 C

�
r � q � �2

2

�
h

�
C SnC1

f � Sn
f

2hSn
f

D a1 C SnC1
f � Sn

f

2hSn
f

;

b D 1 � �2
k

h2
� rk; (10.63)

an
2 D k

2h2

�
�2 �

�
r � q � �2

2

�
h

�
� SnC1

f � Sn
f

2hSn
f

D a2 � SnC1
f � Sn

f

2hSn
f

:

Special attention is paid to study positivity and monotonicity of the numerical
solution as well as stability and consistency of the proposed schemes. Note, that
using expressions (10.63) it is easy to obtain that the constants of the scheme a1, b
and a2 are positive for both cases: r � q and r > q under following conditions

h <
�2

ˇ
ˇ
ˇr � q � �2

2

ˇ
ˇ
ˇ
; r ¤ q C �2

2
; k <

h2

�2 C rh2
; (10.64)
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Fig. 10.4 The function c.x; �/ calculated by the proposed fully implicit method

If r D qC �2

2
, then under the condition (10.64), coefficients a1, b and a2 are positive.

Note, that these conditions are sufficient also for stability of the proposed explicit
scheme. The details of the stability and consistency analysis can be found in [12].

Stability conditions on step sizes for explicit methods have been found. The
implicit method is unconditionally stable, that allows to reduce computational time.
But, there exist additional calculations of the inverse Jacobian matrix on each
iteration. It has been shown that for the same step sizes the explicit method is ten
times faster than the implicit one. The solution of (10.57) calculated by the proposed
fully implicit method is shown in Fig. 10.4.

10.3.2 Moving Boundary Transformation for Nonlinear
Models

For the case of American options with constant volatility various front-fixing
transformations have been studied in [12, 40, 47, 58]. In this section an efficient
front-fixing method for a nonlinear Black-Scholes equation is proposed. Under the
transformation the free boundary is replaced by a time-dependent known boundary.
In the resulting equation there is no reaction term and the convection term is
simplified in a such way that the operator splitting technique is not required.
This ensured a single numerical scheme is suitable for the entire equation. The
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connection between the transformed boundary conditions with the transformed
option price and the free boundary does not require additional information.

The proposed formulation of the nonlinear problem allows the use of a versatile
numerical treatment. In this chapter an explicit Euler and alternating direction
explicit (ADE) method [21, 49] together with implicit methods are studied.

With the previous notation, nonlinear American call option pricing models may
be formulated as the free boundary PDE problem

@C

@�
D Q�2

2
S2
@2C

@S2
C .r � q/S

@C

@S
� rC; 0 � S < Sf .�/; 0 < � � T; (10.65)

where the adjusted volatility function is given by Q�2 D Q�2 .�; S;CSS/. Two nonlinear
models with different adjusted volatility functions are considered:

• RAPM model: Q�2 D �20

�
1C 	



S @

2C
@S2

� 1
3

�
,

• Barles and Soner model: Q�2 D �20
�
1C 


�
er�a2S2CSS

��
,

where a D 	
p
�N, � is the risk aversion factor and N denotes the number of

options to be sold. The function 
 is the solution of the nonlinear singular initial
value problem


 0.A/ D 
.A/C 1

2
p

A
.A/� A
; A ¤ 0; 
.0/ D 0: (10.66)

Taking advantages of the Landau transformation [41] with modifications in the
exponential factors like those described in [10], it is possible to remove the reaction
term and partially the convection term by using the transformation given below.

x D e.r�q/� S

Sf .�/
; V.x; �/ D er�

E
C.S; �/; sf .�/ D Sf .�/

E
: (10.67)

Using transformation (10.67) the equation (10.65) takes the form

V� D �2

2
x2Vxx C s0

f

sf
xVx; 0 � x < e.r�q/� ; 0 < � � T; (10.68)

where

�2 D �2 .�; x;Vxx/ D Q�2.�; S;CSS/:

Note that the transformation described in (10.67) transforms the original free
boundary value problem to a known moving boundary problem. In the case r > q
the computational domain increases with respect to time, otherwise it decreases.
The numerical solution of the transformed problem can be found by explicit, ADE
and implicit methods.

In Table 10.7 the results and comparisons are presented. Since the domain is
changing in time and is covered by an equidistant grid, the spatial step size hn is
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Table 10.7 Root Mean
Square Error (RMSE) with
respect to CPU-time for
different step sizes h0 and
fixed k D 0:0001, published
in [26]

h0 0:08 0:04 0:02 0:01

Explicit method

RMSE 0:04984 0:02629 0:01232 0:00464

CPU-time, s 15:810 27:566 51:476 99:434

ADE method

RMSE 0:16816 0:08172 0:02099 0:00620

CPU-time, s 15:129 27:776 53:865 104:247

Implicit method

RMSE 0:04984 0:02355 0:00958 0:00445

CPU-time, s 34:099 60:030 112:728 257:880

Newton-like method

RMSE 0:11376 0:06026 0:01389 0:00471

CPU-time, s 33:869 58:141 107:561 315:505

We acknowledge the permission of Taylor & Francis Ltd (http://
www.tandfonline.com)

varying in time. The time step is fixed at k D 0:0001 to guarantee stability of all
numerical solutions. For the implicit method the tolerance was chosen as � D 10�4.

Note that the main part of the computational time is pertained for the calculation
of 
.A/. For the implicit methods it has to be calculated on each iteration of
Newton’s method. Thus, their computational costs may be noticeably reduced by
choosing another model. The details of the proposed methods can be found in [26].

10.3.3 Front-Fixing Method for Regime-Switching Model

An American put option on the asset St D S with strike price E and maturity T < 1
is considered under regime-switching model. Let Vi.S; �/ denote the option price
functions, where � D T � t denotes the time to maturity, the asset price S and
the regime ˛t D i. Then, Vi.S:�/, 1 � i � I, satisfy the following free boundary
problem:

@Vi

@�
D �2i

2
S2
@2Vi

@S2
C riS

@Vi

@S
� riVi C

X

l¤i

qil.Vl � Vi/; S > S�
i .�/; 0 < � � T;

(10.69)

where S�
i .�/ denote optimal stopping boundaries of the option. Initial conditions are

Vi.S; 0/ D max.E � S; 0/; S�
i .0/ D E; i D 1; : : : ; I: (10.70)

In spite of the apparent complexity of the transformed problem due to the appear-
ance of new spatial variables, one for each equation, the explicit numerical scheme
constructed becomes easy to implement, computationally cheap and accurate when

http://www.tandfonline.com
http://www.tandfonline.com
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one compares with the more relevant existing methods. Implicit weighted schemes
have been developed for the sake of performance comparison.

Based on the transformation used by the authors in [11, 68] for the case of just
one equation, the following multi-variable transformation is considered

xi D ln
S

S�
i .�/

; 1 � i � I: (10.71)

Note that the new variables xi lie in the fixed positive real line. The price Vi of
i-th regime involved in i-th equation of the system and i-th free boundary are related
by the dimensionless transformation

Pi.x
i; �/ D Vi.S; �/

E
; Xi.�/ D S�

i .�/

E
; 1 � i � I: (10.72)

Then the value of option l-th regime appearing in i-th coupled equation, l ¤ i,
becomes Pl;i.xi; �/ D Vl.S;�/

E :

Since from (10.72), Vl.S;�/
E D Pl.xl; �/ and taking into account transformation

(10.71) for indexes i and l one gets that

Pl;i.x
i; �/ D Pl.x

l; �/; (10.73)

and it occurs when the variables are related by the equation

xl D xi C ln
Xi.�/

Xl.�/
; 1 � i; l � I: (10.74)

From (10.71) to (10.73) the problem (10.69) for 1 � i � I takes a new form

@Pi

@�
.xi; �/ D �2i

2

@2Pi

@.xi/2
.xi; �/C

�
ri � �2i

2
C X0

i.�/

Xi.�/

�
@Pi

@xi
.xi; �/ � riPi.x

i; �/

C
X

l¤i

qil.Pl;i.x
i; �/� Pi.x

i; �// D 0; xi > 0; 0 < � � T:

(10.75)

PDE problem (10.75) is solved by the explicit FDM. Let us denote un
i;j �

Pi.xj; �
n/ the approximation of Pi in i-th equation at mesh point .xi D xj; � D �n/

and Qun
li;j

� Pl;i.xj; �
n/ be the approximation of Pl in i-th equation evaluated at the

point .xi D xj; � D �n/. The discretization of the transformed optimal stopping
boundary is denoted by Xn

i � Xi.�
n/. Then an explicit finite difference scheme can

be written in the form

unC1
i;j � un

i;j

k
D �2i

2

un
i;jC1 � 2un

i;j C un
i;j�1

h2
C
 

ri � �2i
2

C XnC1
i � Xn

i

kXn
i

!
un

i;jC1 � un
i;j�1

2h

� riu
n
i;j C

X

l¤i

qil.Qun
li;j

� un
i;j/;

(10.76)
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where

Qun
li;j � Pl;i.xj; �

n/ D Pl

�
xj C ln

Xn
i

Xn
l

; �n

�
;

are obtained by linear interpolation of values un
l;j at the point xj C ln Xn

i
Xn

l
known from

the previous time level n.
We have studied the stability of the proposed explicit scheme following the

von Neumann analysis approach originally applied to schemes with constant
coefficients. However, such approach can be used also for the variable coefficients
case by freezing at each level (see [61, p. 59], [24, 34]).

In order to avoid notational misunderstanding among the imaginary unit with
the regime index i used in previous section, here we denote the regime index by R.
An initial error vector for every regime g0R, R D 1; : : : ; I, is expressed as a finite
complex Fourier series, so that at xj the solution un

i;j can be rewritten as follows

un
R;j D gn

Reij� ; j D 1; : : : ;M � 1; R D 1; : : : ; I; (10.77)

where i D .�1/1=2 is the imaginary unit and � is phase angle. Then the scheme is

stable if for every regime R D 1; : : : ; I the amplification factor GR D gnC1
R
gn

R
satisfies

the relation

jGRj � 1C Kk D 1C O.k/; (10.78)

where the positive number K is independent of h, k and � , see [60, p. 68], [61, p. 50].
After some manipulations, one gets

jGj
ˇ
ˇ
ˇ
ˇ1� i sin �

h

ˇ
ˇ
ˇ
ˇ � jA.k; h; �/j C C.n/k;

where C.n/ D
ˇ
ˇ
ˇ

gn
l0.n/

gn

ˇ
ˇ
ˇ jqR;Rj is independent of � , h and k and depends only on the

index n.

jA.k; h; �/j2 D
 

1 � 2�
2k sin2 �

2

h2
� .r � q/k

!2

C sin2 �

h2

 �
r � �2

2

�2
k2 � 2k

�
r � �2

2

�
C 1

!

:
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Thus, in agreement with (10.78) the scheme is stable, if

8
<̂

:̂

�2k


.r � q/� �2

h2

�
� �2 � 0;

�

r � �2

2

�2 C .r � q/�2
�

k � 2r � 0:
(10.79)

Summarizing the following result can be established:

Theorem 10.4 With previous notation the scheme (10.76) is conditionally stable
under the constraint

k � min
1�R�I

0

B
@

h2

�2R C .rR � qR;R/h2
;

2rR



rR � �2R
2

�2
C .rR � qR;R/�

2
R

1

C
A : (10.80)

Stability conditions on step sizes are found and proven by numerical experiments
(see Figs. 10.5 and 10.6). Consistency of the proposed scheme is studied in [25].
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Fig. 10.5 Optimal stopping boundary for regime 1 and regime 2 (stability condition is fulfilled)
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Fig. 10.6 Optimal stopping boundary for regime 1 and regime 2 (stability condition is violated)

10.4 Rationality Parameter Approach

Recently, in [30] a new nonlinear BS model that takes into account irrational
exercise behaviour is proposed. We confirm numerically that the solution of the
irrational problem proposed in [30] for large values of rationality parameter tends
to the solution of the rational American option problem. This technique has been
successfully applied to a regime switching model described in previous subsection.

With the previous notation, let .f �/�>0 be a family of positive deterministic
intensity functions. For each � > 0, let the stochastic intensity process be given
by

	�t D f �
�
.E � St/

C � P�.t; St/
�
;

where P�.t; St/ D P�.t; StI ��.�/ and ��.�/ is the exercise strategy of the American
put given as the first jump time of a point process with intensity 	�. Let ��.x/ D
1.x<0/ supy�x f �.y/C 1.x�0/ supy�x f �.y/ and assume that

• ��.0C/ ! 1 as � ! 1.
• There exists a function � W .0;1/ ! .0;1/ such that ��.��.�/// ! 0 and
�.�/��.0�/ ! 0 as � ! 1.

Then � is a rationality parameter in the sense that for every t 2 Œ0;T
 we have that
P�.t; St/ tends to PA.t; St/ when � ! 1. Moreover, if f � is increasing then f � D ��.
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We first consider the two cases proposed in [30] and we additionally propose two
alternative expressions:

f �1 .x/ D
(
�; for x � 0;

0; for x < 0I f �2 .x/ D �e�
2x: (10.81)

We have proposed two intensity functions that are the smooth analogue of the
stepwise function (10.81):

f �3 .x/ D 2�

1C e��2x
; f �4 .x/ D �

�
1C 2

�
arctan�2x

�
: (10.82)

This irrational behaviour model of the American put option is studied and solved
numerically in the following subsection. Then we apply this approach to model of
the American option under regime-switching.

10.4.1 Irrational Behaviour Model of American Put Option

The following nonlinear Black-Scholes equation in the unbounded domain ˝ D
.0;C1/ � .0;T/ is considered (sub-index and super-index of f are skipped):

@P

@�
D �2

2
S2
@2P

@S2
C.r�q/S

@P

@S
�rPCf

�
.E � S/C � P

� �
.E � S/C � P

�
: (10.83)

when S ! 0, the standard condition for American options, P.0; �/ D E, is no
longer valid in the irrational case, as prices bellow exercise price may occur due
to irrational exercise, which is more evident when the rationality parameter tends
to zero. The typical boundary condition for European options P.0; �/ D Ee�r� is
not consistent with the equation for � ! �1, as the solution converges to the
one of the rational case of American options. Since Eq. (10.83) is nonlinear and
describes option pricing with rationality parameter, a new boundary condition has
to be established. Therefore, we propose to pass to the limit in Eq. (10.83) when
S ! 0:

@P

@�
.0; �/ D �rP.0; �/C f .E � P.0; �// .E � P.0; �// :

The previous equation allows to adapt the option price when S D 0 according to
rationality of the holder.

We introduce the new variable

x D ln
S

E
; u.x; �/ D P.S; �/

E
:
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Then the original problem is transformed to the following problem for x 2 R:

@u

@�
D �2

2

@2u

@x2
C
�

r � q � �2

2

�
@u

@x
� ru C f

�
E.1 � ex/C � Eu

� �
.1 � ex/C � u

�
:

(10.84)

For the transformed problem the numerical solution is constructed by the explicit
FDM.

In the previous notation, let us denote un
j � u.xj; �

n/, then the explicit finite
difference scheme can be written in the form

unC1
j D b1u

n
j�1 C b2u

n
j C b3u

n
jC1 C kf n

j ; j D 1; : : : ;Nx � 1; (10.85)

where

b1 D�2

2

k

h2
�
�

r � q � �2

2

�
k

2h
;

b2 D1 �
�
�2

k

h2
C rk

�
;

b3 D�2

2

k

h2
C
�

r � q � �2

2

�
k

2h
:

(10.86)

Note that under conditions

h <
�2

ˇ
ˇ
ˇr � q � �2

2

ˇ
ˇ
ˇ
; k <

h2

�2 C rh2
; k � ki; i D 1; : : : 4; (10.87)

where depending on the chosen rationality function

k1 D 1

r C �
; k2 D 1

�
r C �e�2rk2

� ; k3 D 1

r C 2�
; k4 D 1

r C �C 2
�E�

;

(10.88)

the coefficients b1, b2 and b3 defined in (10.86) are positive and rationality term
kjjf njj is bounded.

In order to study the stability of the scheme we first choose the minimum index
m, such that unC1

m D jjunC1jj. Note that if m D 0 or m D Nx, then the scheme is
stable by the definition.

Suppose for the index 1 � m � Nx � 1, then taking into account that all
coefficients are positive, one gets

junC1
m j D jb1un

m�1 C b2u
n
m C b3u

n
mC1 C kf n

mj � .1� rk/jjunjj C kjf n
mj;

The connection between .n C 1/-th and n-th level is obtained:

jjunC1jj D junC1
m j � jjunjj C kjjf njj: (10.89)
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Fig. 10.7 Numerical solution for the intensity function belonging to family f2 (10.81) for various
values of �

Therefore, under conditions (10.87), the scheme (10.85) is stable.
Assuming that u.x; �/ is continuously differentiable four times with respect to x

and twice with respect to � and following the procedure of consistency study, one
finds that the truncation error behaves

Tn
j .Qu/ D O.h2/C O.k/:

The aim of this part of work is to study numerically the rationality parameter
approach and to prove the convergence of the solution to American option price
with growing rationality parameter �, that is presented in Fig. 10.7.

10.4.2 Rationality Parameter Approach for Regime-Switching
Model

For an intensity function f W Œ�E;E
 ! Œ0;1/ in the regime switching setting
we assume that the relation between the profitability and the stochastic exercise
intensity is f ..E � S/C � Vi.S; �// for each regime. After incorporating this term to
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the system of PDEs satisfied by the option price in describing the regime switching
model (10.69) one gets for i D 1; : : : ; I,

@Vi

@�
D�2i
2

S2
@2Vi

@S2
C riS

@Vi

@S
� riVi C f

�
.E � S/C � Vi

� �
.E � S/C � Vi

�

C
X

l¤i

qi;l.Vl � Vi/; S > 0; 0 < � � T:

(10.90)

In order to construct an effective FDM with constant coefficients in the differen-
tial part, let us introduce the following normalized transformation

x D ln
S

E
; ui D Vi.S; �/

E
; i D 1; : : : ; I:

Then, problem (10.90) takes the following equivalent form:

@ui

@�
D �2i

2

@2u

@x2
C
�

ri � �2i
2

�
@ui

@x
� riui C

X

l¤i

qi;l.ul � ui/

C f
�
E.1 � ex/C � Eui

� �
.1� ex/C � ui

�
; i D 1; : : : ; I:

(10.91)

The resulting nonlinear system of PDEs is solved by a weighted FDM, also
known as �-method. In order to avoid the need of an iterative method for the
nonlinear system, the term with rationality parameter and the coupling term are
treated explicitly. Next, the resulting linear system is solved by the Thomas
algorithm. Stability conditions for the numerical scheme are studied by using the
von Neumann approach.

Consistency of the �-scheme for the PDE system is established and the truncation
error takes the following form

Tn
j . Qui/ D .1 � 2�/k@

2ui

@�2
.xj; �

nC� /C O.k2/C O.h2/ 8i D 1; : : : ; I:

Numerical experiments illustrate the efficiency and accuracy of the proposed
method. In order to find computational convergence rate, a series of numerical
results has been provided with fixed time step and various spatial steps h. The
convergence rate �h has been calculated by formula

�h D log2
kUh=2 � Uhk

kUh=4 � Uh=2k ; (10.92)

for the proposed scheme with � D 0; 0:5; 1. The results are collected in Table 10.8
showing the expected orders for the approximation with � D 103 and various
intensity function families.
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Table 10.8 Convergence
rate in space of the proposed
� -scheme for � D 103

Regime 1 Regime 2

� 0 0:5 1 0 0:5 1

f1 2:0084 2:0003 2:0007 2:0143 2:0004 2:0015

f2 2:0083 2:0003 2:0005 2:0142 2:0007 2:0013

f3 2:0079 2:0002 2:0001 2:0156 2:0005 2:0004

Table 10.9 Convergence
rate in time of the proposed
� -scheme for � D 103

Regime 1 Regime 2

� 0 0:5 1 0 0:5 1

f1 1:0013 1:7795 1:0007 1:0013 1:8889 1:0010

f2 1:0009 1:7802 1:0007 1:0009 1:9017 1:0007

f3 1:0010 1:8543 1:0001 1:0010 1:8943 1:0000

An analogous formula can be used in order to estimate the convergence rate in
time, �k, for a fixed space step h:

�k D log2
kUk=2 � Ukk

kUk=4 � Uk=2k : (10.93)

The convergence rates �k of the proposed method for various intensity function
families (10.81) and (10.82) are presented in Table 10.9. The numerical convergence
rate are in agreement with the theoretical study of consistency.

10.5 A Semi-Discretization Technique for Multi-Asset
Option Pricing Problems

10.5.1 Removing Transformation Techniques for Multi-Asset
Option Pricing

This section mainly covers removing the cross derivative terms in the formulation
of an option pricing problem where the exercise value depends on more than one
risky asset.

Basically the techniques for transformations aim at constructing the correspond-
ing PDE with constant coefficients and also at removing the mixed derivative terms
from the structure. Each of these transformations have some pros and cons.

The merit of transformations for removing the cross derivative terms is that
the re-constructed PDE is easy to handle numerically since it has fewer number
of terms which obviously ends in fewer mesh nodes in stencil in contrast to its
non-transformed version. Furthermore, it may avoid the oscillation and spurious
behaviors [39, 50] of the numerical solutions in the presence of mixed derivatives.
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A transformation of spatial variables based on obtaining the canonical form of the
second order PDE [31] can be used for the two correlated assets problems.

Technically speaking, it should be noticed that enforcing any types of transfor-
mations would change the initial and boundary conditions for the Black-Scholes
multi-dimensional PDE problem.

In this section, we handle the new boundary conditions in order to obtain accurate
and stable numerical solutions.

Considering a system of stochastic ordinary differential equations for an option
pricing problem with two state variables, the authors in [38] used a transformation
(with the Itô lemma and standard arbitrage arguments) that makes the instantaneous
standard deviation of each to be constant. To be more precise, they suggest that a
transformation be carried out to diagonalize a correlation matrix (tensor) in order to
remove the cross derivative terms. This corresponds to a stretching and rotation of
the coordinate system.

In the well-known stochastic volatility model (Heston model) [35], two space
variables are existed in the presence of a cross derivative term. Such models
are basically in the form of a the partial integro-differential equations (PIDEs)
while they do not endure the pitfall of not capturing features like heavy tails and
asymmetries observed in market-data log-returns densities unlike the normality of
the log returns considered originally by Black-Scholes.

In [10], the authors applied two transformations in order to remove the reaction
term and the cross derivative term from the Heston model and construct an elliptic
form of it which is defined on rhomboid domain but with fewer terms which yielded
to the construction of a stable and accurate numerical scheme.

One of the state-of-the-art techniques to remove the cross derivative terms is
the use of eigenvalue decomposition [43, 52] which is also an algebraic transfor-
mation. In this technique, the eigenvalue decomposition of the diffusion matrix is
constructed and used for deriving the multi-asset option pricing PDE without mixed
derivative terms. We recall that the diffusion matrix in a multidimensional second
order PDE is a symmetric matrix containing the coefficients of the second order
derivatives in the PDE.

The multi-asset Black-Scholes PDE is expressed as follows [23, 62]:

@V

@�
D1

2

MX

i;jD1
�ij�i�jSiSj

@2V

@Si @Sj
C

MX

iD1
.r � qi/Si

@V

@Si
� rV; (10.94)

where T, V , Si, qi, r, �i � are the maturity, the value of the option price, the i-th
asset, the constant dividend yield of i-th asset, risk-free rate, the i-th volatility, the
correlation parameter, respectively, while � D T � t and �ii D 1, �ij D �ji; i ¤ j,
and

j�ijj � 1: (10.95)
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The mixed derivative terms appearing in (10.94) show the correlation among the
prices of the assets Si.

The logarithmic transformation [8] could transform the multi-dimensional PDE
(10.94) into a PDE with constant coefficients as follows:

xi D log Si

�i
; 1 � i � M; (10.96)

with V.S; �/ D W.X; �/, where X D .x1; x2; : : : ; xM/
>, and we may achieve

@W

@�
D1

2

MX

i;jD1
�ij

@2W

@xi @xj
C

MX

iD1

�
r � qi � �2i

2

�
1

�i

@W

@xi
� rW; (10.97)

Note that for a M-dimensional Black-Scholes PDE, the number of cross deriva-
tive terms is

1

2
.M � 1/M: (10.98)

This evidently shows that by increasing the number underlying assets, the number
of mixed derivative terms gets bigger which could cause several certain issues in the
process of solving (10.94).

Apart from the appearance of instability and inaccuracy due to the presence of the
cross derivative terms mentioned above, the number of stencil nodes or matrices that
must be filled and computed in the development of the numerical schemes would be
higher and subsequently relinquish further computational burden [67].

Here the main objective is to remove the mixed derivatives so as to reduce
unsuitable instability drawbacks for the (10.94). Essentially, this may be pursued by
applying transformations. This new transformation is different from the eigenvalue
transformation and it is based on LDL> factorization.

Toward this goal, let us consider the symmetric positive semi-definite correlation
matrix [55]:

R D .�ij/1�i;j�M; (10.99)

as the diffusion matrix corresponding to the PDE (10.97). Accordingly, in this
section we present a general way by means of an easy to implement transformation
based on Gaussian elimination and pivoting strategies [37] to remove the cross
derivative terms.

Let us first recall the definition of the LDL> factorization in what follows. If
R be a symmetric positive semidefinite matrix in R

M�M . Then, there exists a unit
lower triangular matrix L and a diagonal matrix D D .dij/ in R

M�M with dii � 0,
1 � i � M, such that [33]:

R D LDL>: (10.100)
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Generally speaking, if the matrix R is only positive semidefinite, then (10.100) is
not valid, but when R is positive definite then it is unique.

Here in order to have stable computation of this factorization [36], basically
a permuted version of (10.100) on the matrix R should be performed, viz, this
permuted factorization could be written as comes next:

PRP> D LDL>; (10.101)

where P is a permutation matrix, jlijj � 1 and

d11 � d22 � � � � � dnn � 0: (10.102)

Now in order to remove the cross derivative terms in the parabolic second-order
constant-coefficient PDE (10.96), we take into account a linear transformation as
follows:

Y D CX; C D .cij/1�i;j�M; (10.103)

where C is the matrix that should be computed such that the mixed derivative terms
get vanished.

Now by applying (10.103), the PDE (10.97) reads

@U

@�
D1

2

MX

i;jD1
.ciRc>

j /
@2U

@yi @yj
C

MX

i;jD1

 
r � qj � �2j =2

�j

!

cij
@U

@yi
� rU; (10.104)

where U.Y; �/ D W.X; �/ and ci D .ci1; ci2; � � � ; ciM/ is the ith row vector of matrix
C. Here, ci denotes the ith row of matrix L�1P:

ci D .L�1P/i: (10.105)

Using

.L�1P/R.L�1P/> D D; (10.106)

we obtain

ciRc>
j D

�
0; i ¤ j;
dii; i D j:

(10.107)

Hence, Eq. (10.104) becomes:

@U

@�
D1

2

MX

iD1
.dii/

@2U

@y2i
C

MX

iD1

0

@
MX

jD1

.r � qj � �2j =2/cij

�j

1

A @U

@yi
� rU: (10.108)
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Here we remark that the discussed transformation based on the permuted
Cholesky factorization has several upsides from the computational cost and stability
points of view, but it is not the only way to eliminate mixed derivative terms. In fact,
if one uses the standard diagonalization transform of

R D FDF�1; (10.109)

even when F�1 D FT is available, the transformation

C D F�1; (10.110)

also transforms Eq. (10.94) into a PDE without cross derivative terms.

Example 10.4 In this experiment, we consider the general multi-asset option
pricing problem (10.94) with M D 7 underlying assets, where the correlation matrix
R is given by

R D

0

B
B
B
BB
B
B
B
B
@

1:00 �0:65 0:25 0:2 0:25 �0:05 0:05

�0:65 1:00 0:5 0:1 0:25 0:11 �0:016
0:25 0:5 1:00 0:37 0:25 0:21 0:076

0:2 0:1 0:37 1:00 0:25 0:27 0:13

0:25 0:25 0:25 0:25 1:00 0:14 �0:04
�0:05 0:11 0:21 0:27 0:14 1:00 0:19

0:05 �0:016 0:076 0:13 �0:04 0:19 1:00

1

C
C
C
CC
C
C
C
C
A

; (10.111)

with the parameters

� D .�1; : : : ; �7/ D .0:25; 0:35; 0:20; 0:25; 0:20; 0:21; 0:27/; (10.112)

r D 0:045, T D 1 year, and

q D .q1; : : : ; q7/ D .0:05; 0:07; 0:04; 0:06; 0:04; 0:03; 0:02/: (10.113)

Applying the factorization (10.101), (10.96) and (10.103), one gets

D D diag.1:000; 0:998; 0:960; 0:907; 0:861; 0:787; 0:00786/: (10.114)
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Subsequently, the transformation matrix which is a lower triangular matrix can be
expressed as:

C D L�1P D

0

B
BB
B
B
B
BB
B
@

1:000 0 0 0 0 0 0

0:050 0 0 0 0 1:000 0

�0:060 0 0 0 0 �0:190 1:000

�0:260 0 0 0 1:000 �0:170 0:085

�0:210 0 1:000 0 �0:170 �0:190 �0:036
�0:110 0 �0:270 1:000 �0:130 �0:190 �0:074
0:900 1:000 �0:680 0:021 �0:330 0:120 �0:017

1

C
CC
C
C
C
CC
C
A

:

(10.115)

Now, the corresponding problem (10.94) is transformed into the following compact
notation form

@U

@�
D 1

2
.Dr/ � rU C .CQ/ � rU � rU; (10.116)

where r D



@
@y1
; @
@y2
; : : : ; @

@yM

�>
, U.Y; �/ D V.S; �/ and Q D .Q1;Q2; : : : ;QM/

>.

The interesting point is that the original multi-asset PDE with 37 terms has now
been re-constructed into one with only 16 terms.

In the rest of this section, we discuss the cases when the diffusion matrix is
symmetric possibly indefinite. This would be practical in the general case of solving
PDEs with cross derivative terms [42]. Let us consider the equation

MX

i;jD1
aij

@2v

@xi@xj
C

MX

iD1
bi
@v

@xi
C cv D 0; (10.117)

where A D .aij/1�i;j�M is a real symmetric matrix, b D .b1; : : : ; bM/
> 2 R

M and
c 2 R.

In this case, the matrix A could be indefinite. So, the factorization (10.100)
breaks [37] but we may use an alternative as discussed below which is called as
Bunch-Kaufman factorization [5]. This approach does not always provide a diagonal
factorization of A, but only a block-diagonal matrix B with 1 � 1 or 2 � 2 diagonal
blocks such that

PAP> D LBL>; (10.118)

where the permutation matrix P provides a partial pivoting strategy. Thus, one gets a
more efficient method than other diagonal pivoting strategies as complete pivoting.
In this way, only a part of mixed derivative terms are removed. However, with the
use of eigenvalues decomposition on the final 2 � 2 block, we may remove all the
mixed derivative terms and obtain a corresponding PDE without such terms.
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The next example is related to multi-asset cross currency option pricing [38,
Chap. 29] with indefinite sample correlation matrix.

Example 10.5 ([67]) Consider Eq. (10.94) for M D 3, with indefinite sample
correlation matrix

R D
0

@
1 3

10
9
10

3
10
1 9

10
9
10

9
10
1

1

A : (10.119)

Using Bunch-Kaufman strategy, one gets the transformation matrix C and the
resulting matrix B,

C D L�1P D
0

@
1 0 0

� 3
10

1 0

� 9
13

� 9
13
1

1

A ; B D diag .1; 91=100;�16=65/D D:

(10.120)

Hence, the original partial differential equation is transformed into a new one
without cross derivative terms.

10.5.2 Stability and Numerical Example

Options with multi assets are based upon more than one underlying asset, unlike
the well-known standard vanilla options. In this situation, due to the curse of
dimensionality which is of exponential growth, the complexity of the problem grows
when the dimensionality increases. That is to say, the number of unknowns for
solving the corresponding PDE simultaneously grows exponentially [63].

One of the main restrictions here in the process of solving a multi-asset option
pricing problem is that the mixed derivative of the solution has to be bounded and
its presence could cause instability and further computational burdensome.

Efficient pricing of American and European options that are dependent on more
than one asset is discussed in this section. The holder of a multi-asset contract has
the right to buy a set of assets if the conditions are profitable which is known as a
basket of assets.

To formulate this problem, we may choose S D .S1; : : : ; SM/ to be the vector
consisting the asset prices, where M is the number of assets in a portfolio while
P.S; �/ is the value of the option pricing.

This class of basket options (for put) can be described by a general equation for
the contract function [48]

P.S; 0/ D
 

E �
MX

iD1
˛iSi

!C
; (10.121)
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where E is the exercise price of the complete basket and ˛i are the percentages in the
set of assets. The option price P.S; �/ is the solution of the following PDE problem

@P

@�
D 1

2

MX

iD1;jD1
�ij�i�jSiSj

@2P

@Si@Sj
C

MX

iD1
.r � qi/Si

@P

@Si
� rP C F.P/;

Si > 0; i D 1; : : : ;M; 0 < � � T;

(10.122)

where �i is the volatility of Si, �i;j is the correlation between Si and Sj, r is the risk
free rate, qi is the constant dividend yield of i-th asset and F.P/ is the rationality
parameter term.

In the formulation (10.122), we applied the penalty approach [50] in order to
handle the American options by transforming the free boundary value problem into
a nonlinear PDE. In fact, due to opportunity to exercise at any time to maturity,
American option pricing problems introduce a free exercise boundary which is more
difficult than European options.

In this work, we consider the rationality term as follows [30]:

F.P/ D � .P.S; 0/� P.S; �//C ; (10.123)

which is a simpler version of the following general form

F.P/ D f �

0

@

 

E �
MX

iD1
˛iSi

!C
� P.S; �/

1

A �
0

@

 

E �
MX

iD1
˛iSi

!C
� P.S; �/

1

A ;

(10.124)
where f �.x/ is an intensity function and � is a rationality parameter.

It is required to state that the boundary of a M-dimensional Black-Scholes PDE
in option pricing is the solution of the .M�1/-dimensional problem while in infinity
they approach to zero. Furthermore, at each boundary Si D 0 we have

P.S1; : : : ; Si ! 1; : : : ; �/ D 0: (10.125)

There are several approaches to value this option pricing problem in the presence
of multi assets using finite difference, finite element schemes and Monte-Carlo
method [32]. The most challenging issue in dealing with such nonlinear PDEs is
to control the boundedness of the numerical solution, i.e., stability of the numerical
scheme when the size of the discretized system gets bigger by considering higher
number of assets and nodal points for discretization.

As discussed in the second section of this chapter, another problem is the
presence of the cross derivative terms which cause instability and oscillation in the
process of solving (10.122) numerically. Thus, the objective of this section is to
address a numerically stable finite difference schemes for multi-asset American/Eu-
ropean option pricing problems based on the semi-discretization technique.
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The matrix involving the second order partial derivative terms, so called the
diffusion matrix, can be diagonalized by means of its orthogonal transformation.
This technique could be applied to remove the cross derivative terms as it has been
done in [43].

But in this section, we follow the suggested LDL> factorization given previously
in the second section so as to construct a corresponding nonlinear PDE without
mixed derivative terms.

In [69] a semi-discretized method has been applied for multi-asset problem under
regime-switching. In that work the spatial step sizes are fixed, and so the size of the
matrix A in order to obtain L-stability.

To keep going, we first do a same procedure as in the second section by obtaining
the corresponding PDE with constant coefficient and then the PDE without cross
derivative terms. Thus using the dimensionless logarithmic substitution

xi D 1

�i
ln

Si

E
; i D 1; : : : ;M; V.x; �/ D P.S; �/

E
; (10.126)

where x D Œx1; : : : ; xM

>, we obtain

@V

@�
D 1

2

MX

iD1;jD1
�ij

@2V

@xi@xj
C

MX

iD1
ıi
@V

@xi
� rV C 1

E
F.EV/;

xi 2 R; i D 1; : : : ;M; 0 < � � T;

(10.127)

where ıi D r�qi� �2i
2

�i
.

Now by applying the linear transformation discussed before based on the LDL>
factorization of the correlation matrix [13]

y D Œy1; : : : ; yM

> D Cx; U.y; �/ D V.x; �/; (10.128)

where C D �
cij
�
1�i;j�M

D L�1, we can obtain the following simplified transformed
nonlinear PDE for multi-asset option pricing problem

@U

@�
D 1

2

MX

iD1
Dii
@2U

@y2i
C

MX

iD1

0

@
MX

jD1
ıjcij

1

A @U

@yi
� rU C 1

E
F.EU/; (10.129)

where the cross derivative terms have been removed. Under transformations
(10.126) and (10.128) the initial condition (10.121) takes the form

U.y; 0/ D
 

1 �
MX

iD1
˛ie

�ixi

!C
; (10.130)
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where

x D Œx1; : : : ; xM

> D C�1y: (10.131)

For dealing with the above time-dependent PDEs, one way is the method of lines
based on the semi-discretization with respect to spatial variables which results in
a system of (linear or nonlinear) ordinary differential equations in time with the
corresponding matrix of coefficients A.

Then semi-discretization of Eq. (10.129) is obtained by using the central
difference approximation for the spatial derivatives, resulting in the system of
(nonlinear) ordinary differential equations (ODEs) of the form

duj1;:::;jM

d�
D 1

2

MX

iD1
Dii

uj1;:::;ji�1;:::;jM � 2uj1;:::;ji;:::;jM C uj1;:::;jiC1;:::;jM
h2i

C
MX

iD1

0

@
MX

jD1
ıicij

1

A uj1;:::;jiC1;:::;jM � uj1;:::;ji�1;:::;jM
2hi

� ruj1;:::;jM C 1

E
F.Euj1;:::;jM /;

(10.132)

which its stencil has only 2M C 1 mesh points in contrast to M2 C M C 1 mesh
points based on the recent finite difference method given in [69].

To construct conditions for finding stable solutions, we first consider that for
i D 1; : : : ;M:

hi D ˇih; (10.133)

di D Dii

ˇ2i
; d D

MX

iD1
di; (10.134)

ci D
MX

jD1
ıjcij; (10.135)

a0 D � 1

h2
�
d C rh2

�
; (10.136)

aCi D 1

2h2

�
di C h

ˇi
ci

�
; (10.137)

a�i D 1

2h2

�
di � h

ˇi
ci

�
: (10.138)
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The nonlinear system (10.132) with the boundary and initial conditions can be
presented in the following vector form

(
du
d� .�/ D Au.�/C � .u.0/� u.�//C ;
u.0/ D Œu0.0/; : : : ; uN.0/


>;
(10.139)

where uj.0/ D U.�j; 0/ D


1 �PM

iD1 ˛ie�ixi.�j/
�C
; wherein xi.� j/ D �

C�1�j

�
i

is

the i-th entry of C�1�j.
The entries of the matrix A are given by:

aij D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

a0; �i 2 ˝; j D i;

a˙1; �i 2 ˝; j D i ˙ 1;

a˙m �i 2 ˝; j D i ˙Qm�1
nD1 .Nn C 1/; 2 � m � M;

0; otherwise:

(10.140)

Note that as the chosen artificial boundary conditions do not change with � , then
their derivative with respect to � are zero which motivates the appearance of zeros
in the corresponding rows of A.

If k D T
N�

, so �n D nk, n D 0; : : : ;N� . Thus for full discretization we have [16]:

u.�nC1/ D eAku.�n/C �

Z k

0

eAs
�
u.0/� u.�nC1 � s/

�C
ds: (10.141)

Now, by replacing u.�nC1�s/ by the known value u.�n/ corresponding to s D k,
we attain

Z k

0

eAs
�
u.0/ � u.�nC1 � s/

�C
ds �

�Z k

0

eAsds

�
.u.0/� u.�n//C : (10.142)

We use the accurate Simpson’s rule

Z k

0

eAsds � k'.A; k/ (10.143)

where '.A; k/ D 1
6



I C 4eA k

2 C eAk
�
:

Denoting un D u.�n/, we get the final explicit scheme

unC1 D eAkunCk�'.A; k/
�
u0 � un

�C
; �n D nk; n D 0; : : : ;N��1: (10.144)
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This is the proposed explicit full-discretized FD method for solving multi-asset
option pricing problem which is stable under two conditions along spatial and
temporal variables.

Coefficients a�i and aCi, i D 1; : : : ;M, depend on di and ci, see (10.134) and
(10.135) respectively. If step size h is chosen as

h � min
1�i�M

di

jcij ; (10.145)

then a�i and aCi are non-negative. This is the first condition on the step size
along spatial variable which could result in the positivity of the numerical schemes
after several investigations on the structure of the schemes using bounds on matrix
exponential and Metzler matrices.

Subsequently we may prove that un
i � 1, 0 � i � N, 0 � n � N� using the

induction principle. We remark that

u0i � 1; (10.146)

and from (10.144) unC1
i is a function gi on the arguments un

0; : : : ; u
n
N , given by

unC1
i D gi.u

n
0; : : : ; u

n
N/ D �

eAk
�

i
un C k� .'.A; k//i

�
u0 � un

�C
: (10.147)

And furthermore by the non-negativity of eAk and '.A; k/ one gets

@gi

@un
j

� �
eAk
�

ij � k� .'.A; k//ij ; 0 � i; j � N: (10.148)

Finally, we attain the following bound for the temporal step size

k <
h2

d C .r C �/h2
: (10.149)

Theorem 10.5 With previous notation under conditions (10.145) and (10.149) the
numerical solution un of the scheme (10.144) is non-negative and k�k1-stable, with
kunk1 � 1 for all values of � � 0 and any time level 0 � n � N� .

In what follows, we try to investigate the robustness of the proposed approach
for solving several experiments in the presence of multi assets.

Example 10.6 The American basket call option of two assets is considered with the
following parameters [51]

�1 D 0:12; �2 D 0:14; r D 0:03; � D 0:3; q1 D 0:01; q2 D 0:01; T D 0:5; E D 100:

(10.150)
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Table 10.10 American
basket call option price
comparisons

Nodes Proposed method HOC

12 � 12 3:18982 2:86247

24 � 24 3:35338 3:27894

48 � 48 3:41344 3:35094

Table 10.11 Option price on
an equidistant grid of
n � n � n nodes

KM (with
n Ph Pl rationality)

8 11:4957 12:862 12:394

16 13:3457 13:150 13:055

32 13:3272 13:221 13:235

64 13:2470 13:239 13:241

Reference value (P) 13.245

In the following table, we include the results at S D .100; 100/ for � D 100,
various spatial step sizes h and corresponding k under the discussed conditions. The
numerical solution by high-order computational method of [51] is denoted by HOC
(Table 10.10).

Example 10.7 As a numerical example we consider the European basket call option
with no dividends and the following parameters (see [43, p. 76])

�1 D 0:3; �2 D 0:35; �4 D 0:4; r D 0:04; �ij D 0:5; ˛i D 1

3
; T D 1; E D 100:

(10.151)

The spot price is chosen to be S1 D S2 D S3 D E. The reference value Pref D
13:245 is computed by using an accurate Fast Fourier Transform technique (see
[43, Chap. 4]). Since the considered option is of European style, penalty term is not
necessary and � is chosen to be zero.

The numerical results of the proposed method Ph are presented in the following
table and compared with the sparse grid solution technique Pl on an equidistant
grid of [43] and the method of [69] denoted by KM with rationality approach [30]
(Table 10.11).

As could be seen from the numerical experiments, the theoretical bounds for
the temporal and spatial variables are quite useful and necessary in solving real-
life problems. The transformations made the process of solving this type of options
quite easier and much more efficient. After spatial semi-discretization, the problem
is fully discretized. We could handle American/European put/call options.
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Chapter 11
Modified Barrier Penalization Method
for Pricing American Options

Miglena N. Koleva and Radoslav L. Valkov

Abstract We propose a modified interior penalization method which is applicable
to different types of American options. Further, we develop an efficient numerical
approach for solving the resulting nonlinear parabolic partial differential problem.
Numerical experiments illustrate the performance of the method.

11.1 Introduction

The pricing of early-exercise securities is important in quantitative finance because
these are the most widely-traded type of instruments on the derivative market.
The American-style option valuation is an illustrative example of an optimal
stopping time problem which could be further formulated as a parabolic variational
inequality.

Let S stand for the underlying asset price process, following a standard geometric
Brownian motion with volatility � and drift equal to the interest rate r while t is the
time to maturity. For computational purposes one must truncate the spatial domain
S 2 Œ0;1/ and introduce the far field boundary location Smax. We consider pricing
with the following conditions on the parabolic boundary:

V.S; 0/ D V�.S/; V.0; t/ D VL; V.Smax; t/ D VR;

where VL � 0 and VR � 0 are given constants. The American put is a classical
Stefan problem where the payoff is convex, continuous but nonsmooth.
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The option value with maturity T satisfies the parabolic variational inequality, cf.
e.g. [4]

LV.S; t/ WD Vt � 1

2
�2S2VSS � rVS C rV � 0 ? V.S; t/ � V�.S/ in .0;1/ � Œ0;T/;

which could be written down as the following linear complementarity problem

LCP W
(

LV.S; t/ D � � 0;

V.S; t/� V�.S/ � 0; LV.S; t/ � .V.S; t/� V�.S// D 0:

From the complementarity condition

V � V�; � � 0; � � .V.S; t/ � V�.S// D 0

we infer for the Lagrange multiplier

� D max
�
0; �C ��1.V� � V/

�
(11.1)

for any sufficiently small (penalty) parameter � > 0. Thus, we get to solve the
following nonlinear equation, equipped with the complementarity condition and
drawing analogies with the augmented Lagrangian method:

LV.S; t/ � max
�
0; �C ��1.V� � V/

� D 0:

Superimposing infinite penalty when violating the constraint V.S; t/ � V�.S/ � 0

we may embed the LCP [1] in the family of the nonlinear equations

LV�.S; t/� max
�
0; ��1.V� � V�/

� D 0: (11.2)

The penalty method guarantees in an asymptotic sense the fulfilment of constraints
by including in the objective function an additional penalty term. If we consider the
upper bound on the multiplier �max we may state the following approximation, see
[4]:

LV�.S; t/� max
�
0;�max C ��1.V� � V�/

� D 0:

There are, however, some issues with this approach since the early exercise
constraint is not strictly satisfied by the solution for fixed small � while the penalty
term is nonsmooth and unbounded. The following interior approximation aims to
tackle these drawbacks with C � rK for pricing the American put, cf. [6, 11],

LV�.S; t/� �C

V� C � � .K � S/
D 0 (11.3)
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where the general interior penalty method, applicable to any type of payoff, is

LV�.S; t/� �C

V� C � � V� D 0: (11.4)

Zhang and Wang [14] prove convergence of the penalized solution V� to the
solution of the underlying variational inequality V . However, a major issue with this
approach is its dependence on � and some vague parameter C, resulting in overall
lower accuracy and more Newton iterations per time level.

We therefore consider modifying this interior barrier method in order to enhance
the performance [8]. Let us set up the fully-discrete LCP in order to present our
considerations in a clear and concise manner. First, by the method of lines, we define
a smooth nonuniform spatial grid and approximate the spatial derivatives by second-
order finite difference formulas. After backward Euler time discretization with step
�t we have to solve the following discrete linear complementarity problem for Un 2
R

m�1

(
.I ��tA/Un D Un�1 C�tg C�t�n

�n � 0; Un � U0; �n � �Un � U0
� D 0;

where A 2 R
.m�1/�.m�1/ stands for the spatial discretization matrix, g 2 R

m�1 is the
boundary information (assuming Dirichlet conditions on the elliptic boundary) and
�n 2 R

m�1 is the nonnegative auxiliary (multiplier) vector which satisfies

�n D max

�
0; �n C 1

�t
.U0 � Un/

�
: (11.5)

The solution Un of the discrete LCP is the saddle point of the Lagrange functional

�.Un; �n/ D 1

2
.I ��tA/Un � Un � bn � Un ��t�n � .Un � U0/; bn WD Un�1 C�tg:

Let us now observe the following equivalence [12]

Un � U0 � 0 , � log
�
1C ��1.Un � U0/

� � 0

and further we shall modify the Lagrange functional accordingly

�.Un; �n/ D 1

2
.I ��tA/Un � Un � bn � Un ��t�n � .� log

�
1C ��1.Un � U0/

�
/:

From the Karush-Kuhn-Tucker conditions we get the discrete LCP:

(
.I ��tA/Un ��t�n �

Un�U0C� D bn

�n � 0; Un � U0; �n � �Un � U0
� D 0:

(11.6)
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As a matter of fact, if we consider the fairly rough estimate for the multiplier �n �
rK in the put case we get the discrete interior penalty method (11.4):

.I ��tA/Un ��t
rK�

Un � U0 C �
D bn:

Substituting U0 D max.K�S; 0/with K�S as in Eq. (11.3) is a band-aid for the case
of put option to fix the accuracy and minimize the penalty term in the continuation
region where S > K, far away from the free boundary.

11.2 The Finite Difference Method

There are many papers using the penalty method for solving American options, see
[1, 2, 5–7, 9–11, 14]. In this section we present a simplified version of barrier penalty
method (11.6), introduced in Sect. 11.1.

We consider the penalized problem which approximates the LCP for some
sufficiently small positive parameter �

V�
t � 1

2
�2S2V�

SS � rSV�
S C rV� � g.S;V�/ D 0; .S; t/ 2 .0; Smax/ � Œ0;T/;

V�.S; 0/ D V�.S/; V�.0; t/ D VL; V�.Smax; t/ D VR

(11.7)

with the penalty term

g.S;V�/ D ��

V� C � � V� : (11.8)

For given integers m and N we define�t D T=N; tn D n�t and the nonuniform
spatial grid

! D fS0 D 0; SiC1 D Si C hi; i D 0; : : : ;m � 1; Sm D Smaxg;

where the discrete solution, computed on the mesh ! is denoted by Un
i D V�.Si; tn/.

Let us now write down the considered finite difference approximations of the first
derivative for hi D SiC1 � Si; „i D 0:5.hi C hi�1/

.ULS/
n
i D Un

iC1 � Un
i

hi
; .UOS/

n
i D Un

i � Un
i�1

hi�1
; .UVS/

n
i D hi�1ULS

n
i C hiUOS

n
i

2„i
;

where .ULS/ni ; .UOS/ni are of first order and .UVS/
n
i of second on a smooth grid. The

second derivative is further approximated as

.USS/
n
i D �

.ULS/
n
i � .UOS/

n
i

�
=„i:
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After backward Euler time discretization of (11.7), (11.8) and application of the
maximal use of central differencing with flag � WD H.�2Si � rhi/ (H stands for the
Heaviside function), see Wang and Forsyth [13], we get the following system of
nonlinear equations for n D 0; : : : ;N and i D 2; : : : ;m � 1:

LhUnC1
i � ��i

UnC1
i C � � U0

D 0;

U.0; tnC1/ D VL; U.Sm; t
nC1/ D VR; U.Si; 0/ D U0.Si/ D V�.Si/; (11.9)

LhUn
i WD UnC1

i � Un
i

�t
� �2S2i

2
.USS/

n
i � rSi



�.UVS/

n
i C .1 � �/.ULS/

n
i

�
C rUn

i :

Next, on the base of (11.1), (11.5) we set the simple version of �:

�i D maxf0;LhU0
i g; i D 1; : : : ;m � 1: (11.10)

Numerical experiments show that with this choice of � we attain similar precision
as with �n, computed by (11.5), but for smaller computational cost.

We find the solution UnC1 by initiating a Newton’s iteration process with initial
guess U.0/ D Un, where the Newton increment on the .k C 1/th step �.kC1/ D
U.kC1/ � U.k/ is the solution of the following tridiagonal system of linear equations

� Ai�
.kC1/
i�1 C C.k/

i �
.kC1/
i �Bi�

.kC1/
iC1

(11.11)

D Un
i C AiP

.k/
i�1 �eCiU

.k/
i C BiU

.k/
iC1 C F.k/i ;

where A0 D Am D B0 D Bm D 0, C.k/
1 D C.k/

m D 1, F.k/1 D VL, F.k/m D VR and

Ai D Si�t
2„ihi�1

�
�2Si � �rhi

�
; Bi D Si�t

2„ihi

�
�2Si C �rhi�1

�C .1 � �/ rSi�t
hi
;

C.k/
i D eCi C ��i�t

.U
.k/
i C��U0

i /
2
; eCi D 1C Ai C Bi C r�t; F.k/i D ��i�t

U
.k/
i C��U0

i

;

The iteration process is terminated when reaching the desired tolerance i.e. we set
UnC1 WD U.kC1/ when max

i
fj�.kC1/

i j=.maxf1;U.kC1/
i g/g < tol.

At each iteration k, in view of the definition of �, the coefficient matrix M.k/ D
tridiagŒ�Ai;C

.k/
i ;�Bi
, being strictly diagonally dominant and Ai;C

.k/
i ;Bi > 0 it is

an M-matrix.

Theorem 11.1 The approximate option value Un
i , obtained by the scheme (11.9),

(11.10) satisfy

Un
i � U0

i ; i D 0; : : : ;m; n D 0; : : : ;N:
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Proof We follow the same line of consideration as in [11]. Rewrite the scheme
(11.9), (11.10) in the following equivalent form

.1CAi CBi C r�t/UnC1
i �BiU

nC1
iC1 �AiU

nC1
i�1 D Un

i C ���t

UnC1
i C � � U0

: (11.12)

Let wn
i D Un

i � U0
i . Thus, from (11.12) we obtain

.1CAiCBiCr�t/wnC1
i �Biw

nC1
iC1 �Aiw

nC1
i�1 D wn

i C ���t

wnC1
i C �

��tLhU0
i : (11.13)

Define wnC1 D min
i

wnC1
i and let j be an index, such that wnC1

j D wnC1. For i D j,

from (11.13) we have

.1C Ai C Bi C r�t/wnC1 � wn
j C Biw

nC1 C Aiw
nC1 C ���t

wnC1
j C �

��tLhU0
j

and therefore

.1C r�t/wnC1 � wn
j C ���t

wnC1
j C �

��tLhU0
j :

Rearranging the above inequality, we obtain

.1C r�t/wnC1 � ���t

wnC1 C �
C�tLhU0

j � wn
j � wn:

We use induction method on n: taking into account that w0 � 0, assume that wn � 0

and prove wnC1 � 0. Now we have

F .wnC1/ � 0; where F .w/ WD .1C r�t/w � ���t

w C �
C�tLhU0

i :

Observe that

F .0/ D ��t.� � LhU0
i / D �t.LhU0

i � maxf0;LhU0
i g/ D

�t

�
0; if LhU0

i � 0;

LhU0
i ; if LhU0

i < 0;
i.e. F .0/ � 0:
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Further, from

F 0.w/ WD 1C r�t C ���t

.w C �/2
� 0

and F .wnC1/ � 0 we conclude that wnC1 � 0.
For the discrete scheme (11.9), (11.10) we develop a two-grid algorithm TGA

[7].
Let us define two non-uniform spatial grids—a coarse mesh !c and a fine grid

!f

!c D fS0 D 0; SiC1 D Si C hc
i ; i D 1; : : : ;mc � 1; Smc D Smaxg;

! f D fS0 D 0; SiC1 D Si C h f
i ; i D 1; : : : ;mf � 1; Smf D Smaxg;

where mf � mc and the discrete solution, computed on the mesh !� is denoted by
Un

i;� D U.Si; tn/.

Algorithm 2 (TGA)
At each time level n D 0; 1; : : : we perform the two steps:

1: Set U.0/
c WD Un

c and compute UnC1
c by (11.9), (11.10) through Newton’s iterations (11.11) on

the coarse mesh !c.
2: Set U.0/

f WD I.UnC1
c /, where I.Uc/ is the interpolant of Pc on the fine grid, perform only one

Newton’s iteration (11.11) on the fine mesh !f and get UnC1
f .

11.3 Numerical Experiments

We consider an American butterfly option with the payoff

V�.S/ D maxfS � K1; 0g � 2maxfS � Kg C maxfS � K2; 0g;

where K1, K D .K1 C K2/=2, K2 are the strikes and VL D VR D 0. The model
parameters are: K1 D 90, K2 D 100, � D 0:2, r D 0:1, � D 1:e�6. We will test the
relevance of the modified penalty method (11.9), (11.10) and the accuracy, order of
convergence and efficiency of the constructed TGA.

The linearized system (11.11) is solved by BiConjugate gradients stabilized
method using preconditioning with upper and lower triangular matrix. For stopping
criteria, we chose tolD1.e�6.
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In the computational domain for Smax D 200, we use a smooth non-uniform grid,
cf. in ’t Hout et al. [3]—uniform inside the region ŒSl; Sr
 D Œ1=2K; 3=2K
, and
non-uniform outside with stretching parameter c D K=10:

Si WD �.�i/ D
8
<

:

Sl C c sinh.�i/; �min � �i < 0;

Sl C c�i; 0 � �i � �int;

Sr C c sinh.�i � �int/; �int � �i < �max:

The uniform partition of Œ�min; �max
 is defined through �min D �0 < � � � < �M D
�max:

�min D sinh�1
��Sl

c

�
; �int D Sr � Sl

c
; �max D �int C sinh�1

�
Smax � Sr

c

�
:

Example 11.1 (Early Exercise Constraint) We compare the different penalty
methods—interior penalty (11.3), exterior penalty (11.2) and modified barrier
penalty (11.8), (11.10) in maintaining the condition V� < U. On Fig. 11.1 we plot
the corresponding solutions at T D 1 and payoff, while on Fig. 11.2 we plot the
difference Un � V� for exterior penalty (11.2) and modified penalty (11.8), (11.10).
We observe that for butterfly option, only with modified barrier penalty (11.8),
the numerical solution satisfy the early exercise constraint. Thus, the statement of
Theorem 11.1 is verified.

Example 11.2 (One-Grid Computations) We perform computations only on one
mesh !, i.e. step 1 of TGA with time steps �t D h and �t D h2, h D min

i
hi.

The results are listed in Tables 11.1 and 11.2. We give the values of the solution
at strike points K1 and K at final time T, diff—the absolute value of the difference
in the solution from the coarser grid, CR—computed as log2 from the ratio of the
changes on successive grids, iter—the averaging number of iterations k at each time
level and CPU time (in seconds). We observe that the order of convergence in space
at strike points is closed to two and the computational process is more efficient for
smaller time step.

Example 11.3 (TGA) For the numerical tests, we set �t D h f , �t D .h f /2,
h f D min

i
h f

i and mf D .mc/
2=Smax, i.e. h f D .hc/2 in the case of uniform

meshes. The results are given in Tables 11.3 and 11.4. We observe that the order
of convergence on the coarse mesh, tested at strike points K1 and K is closed to four,
i.e. O.�tCjhcj4Cjh f j2/, jhj D max

i
hi. Also, the TGA accelerate the computational

efficiency. Comparable values of the solution in Tables 11.1, 11.2, 11.3, and 11.4 are
highlighted.
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Fig. 11.2 Un � V�, Left: exterior penalty (11.2); Right: modified penalty (11.8)

Table 11.1 Values of U.K1; T/, U.K; T/ D 10 C eU.K; T/, convergence rate (CR), averaging
number of iterations (iter) and CPU time, one-grid computations, �t D h

m U.K1; T/ diff CR eU.K; T/ diff CR iter CPU

400 6:70216 5.3352e�7 10 0:05

800 6:90697 2.048e�1 5.7003e�7 3.99e�8 10 0:09

1600 7:00017 2.980e�1 9.8146e�7 4.10e�7 9:54 0:23

3200 7:05562 5.545e�2 2.426 1.1000e�6 1.20e�7 1:773 7:46 0:56

6400 7:08314 2.752e�2 1.011 1.1481e�6 4.81e�8 1:319 5:77 1:44

12;800 7:09683 1.370e�2 1.006 1.1750e�6 2.69e�8 0:839 4:39 3:85

25;600 7:10366 6.831e�3 1.004 1.1886e�6 1.35e�8 0:986 3:49 11.91

51;200 7.10706 3.401e�3 1.006 1.1944e�6 5.75e�9 1:241 2:99 47.72

102;400 7:10877 1.707e�3 0.995 1.1966e�6 2.23e�9 1:364 2:57 208:75

204;800 7.10962 8.548e�4 0.998 1.1975e�6 8.58e�10 1:378 2:27 1175.56

Table 11.2 Values of U.K1; T/, U.K; T/ D 10 C eU.K; T/, convergence rate (CR), averaging
number of iterations (iter) and CPU time, one-grid computations, �t D h2

m U.K1; T/ diff CR eU.K; T/ diff CR iter CPU

400 6:95822 1.0960e�6 7:35 0:08

800 7:07028 1.121e�1 1.1724e�6 7.63e�8 4:47 0:26

1600 7:10047 3.019e�2 1:892 1.1918e�6 1.94e�8 1:977 3:28 0:93

3200 7:10797 7.505e�3 2:008 1.1967e�6 4.97e�9 1:963 2:60 4:49

6400 7.10985 1.880e�3 1:997 1.1978e�6 1.09e�9 2:190 2:17 23.31

12;800 7:11032 4.696e�4 2:001 1.1980e�6 2.14e�10 2:350 2:03 143:96
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Table 11.3 Values of U.K1; T/, U.K; T/ D 10 C eU.K; T/, convergence rate (CR), averaging
number of iterations (iter) and CPU time, two-grid computations, �t D .h f /

mc mf U.K1; T/ diff CR eU.K; T/ diff CR iter CPU

400 800 6:90690 1.0501e�6 7:83 0:18

800 3200 7:05559 1.49e�1 1.1623e�6 1.10e�7 4:72 0:36

1600 12;800 7:09682 4.12e�2 1:855 1.1885e�6 2.85e�8 1:949 3:39 2.53

3200 51;200 7.10706 1.02e�2 2:014 1.1960e�6 7.51e�9 1:925 2:73 30.82

6400 204;800 7.10962 2.56e�3 1:994 1.1977e�6 1.65e�9 2:189 2:25 538.10

Table 11.4 Values of U.K1; T/, U.K; T/ D 10 C eU.K; T/, convergence rate (CR), averaging
number of iterations (iter) and CPU time, two-grid computations, �t D .h f /2

mc mf U.K1; T/ diff CR eU.K; T/ diff CR iter CPU

400 800 7:07020 1.1782e�6 5:77 0:38

800 3200 7.10795 3.77e�2 1.1978e�6 1.96e�8 3:74 6.94

1600 12;800 7:11032 2.37e�3 3:992 1.1985e�6 6.71e�10 4:868 2:58 203:55

11.4 Conclusions

In contrast to the interior (11.3) and exterior (11.2) penalty methods, the modified
penalty method guarantees that the solution always satisfy the early exercise
constraint, independently of the type of the option.

The two-grid algorithm attains fourth order convergence in space on the coarse
mesh. We observe very fast performance of the presented TGA, independently
of the choice of the time step size. One and the same accuracy as with one-grid
computations, can be obtained by TGA, saving computational time.
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Chapter 12
Newton-Based Solvers for Nonlinear PDEs in
Finance

Shih-Hau Tan and Choi-Hong Lai

Abstract In this chapter, different Newton-based solvers are introduced to solve
fully nonlinear PDEs generated from financial problems. The first one concentrates
on solving the root-finding problem from the nonlinear system after applying the
standard finite difference method with implicit scheme. The second one addresses to
solve the deferred correction problem which is transformed from the original PDE.
Different numerical experiments in terms of accuracy and efficiency are compared
and some improvements using Newton-like methods are also discussed.

12.1 Introduction

The ideal market assumptions, including frictionless, perfect liquid, zero transaction
costs and constant volatility, used in the classical linear Black-Scholes PDE model
for option pricing [2] are not always true in the real market. In particular factors
like transaction costs, illiquid market effects or other market feedback need to be
considered. Modification to the classical Black-Scholes model usually comes into
the form of a nonlinear Black-Scholes equation in which the volatility function
depends on the option price itself and/or its derivatives. Over the last two decades
there were various models aimed to take account of the above situations as discussed
in the literature [3, 4, 8, 10, 13, 15, 23].

The generalized nonlinear Black-Scholes equation to be considered may be
written as

@V

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
� rV D 0; (12.1)

where V.S; t/ 2 fS W S � 0g � Œ0;T/ is the price of the option, r is the risk-free
interest rate, t is the time, T is the maturity date, S is the current spot price of the
underlying asset and � is the nonlinear volatility which depends on V , Vt, VS, and
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VSS, where

Vt D @V

@t
;VS D @V

@S
;VSS D @2V

@S2
;

and the boundary and terminal conditions depend on the type of option to be
considered. For example, in the case of an European call option these conditions
are

8
ˆ̂
<

ˆ̂
:

V.S;T/ D .S � K/C; for 0 � S < Smax;

V.0; t/ D 0; for 0 � t � T;

V.S; t/ D S � Ke�r.T�t/; when S D Smax:

Here Smax is usually chosen as an integer multiple of K.
In this section, the aim is to solve Eq. (12.1) with nonlinear volatility � D

�.S;VSS/ which depends on the underlying asset and the second order derivative
VSS. For instances:

I. � D �0
p
1C er.T�t/aS2VSS (A Simplified Barles and Soner Model [1]),

II. � D �0

q
.1C 	.SVSS/

1
3 / (Risk Adjusted Pricing Methodology Model [15]),

III. � D �0.1 � ��.S/SVSS/
�1 (Frey-Patie Model [11]).

Here �0 is a constant historical volatility; a, 	, � and �.S/ are suitable constants and
function which present the financial factors under different considerations.

To solve the nonlinear parabolic partial differential equation, an implicit finite
difference scheme with standard notations and the transformation � D T � t can be
adopted which transforms Eq. (12.1) to

VnC1
i � Vn

i

��
� 1

2
.�nC1

i /2S2i
VnC1

iC1 � 2VnC1
i C VnC1

i�1
.�S/2

� rSi
VnC1

iC1 � VnC1
i�1

2�S
C rVnC1

i D 0;

(12.2)

where�� D T=N and�S D Smax=.M C 1/ are the sizes of the temporal and spatial
discretisation, respectively, with number of grid points N C 1 (time) and M C 2

(space), �n D n�� , n D 0; 1; : : : ;N; Si D i�S, i D 0; 1; : : : ;M C1; and Vn
i denotes

the finite difference approximation of V.Si; n��/, n D 0; 1; : : : ;N. Note that for
each n, Vn

0 and Vn
MC1 are given by the boundary conditions. Equation (12.2) can be

simplified to

aiV
nC1
i�1 C biV

nC1
i C ciV

nC1
iC1 D Vn

i ;
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where the tri-diagonal coefficients,

ai D ��

 

�S2i .�
nC1
i /2

2.�S/2
C rSi

2.�S/

!

; bi D 1C��

 
.�nC1

i /2S2i
.�S/2

C r

!

;

ci D ��

 

�S2i .�
nC1
i /2

2.�S/2
� rSi

2.�S/

!

;

depend on the volatility itself. The discretisation leads to the nonlinear system of
equations

H.VnC1/VnC1 D Vn; (12.3)

where

H.VnC1/ D

0

B
BB
B
B
B
B
@

b1 c1 0 � � � � � � 0

a2 b2 c2 0 � � � � � � 0

� � � � � � � � � � � �
� � � � � � � � � � � �
0 � � � � � � 0 aM�1 bM�1 cM�1
0 � � � � � � 0 aM bM

1

C
CC
C
C
C
C
A

and Vn D .Vn
1 ;V

n
2 ; : : : ;V

n
M/

T .
Equation (12.3) will need numerical solvers to obtain a solution. Frozen coeffi-

cient method is a common technique and the main idea is to keep the coefficient
H.VnC1/ lagging behind when iteratively solving for a new VnC1 until the solution
converges. Algorithm 3, shown below, outlines the steps of the method. The
drawback of the method is that the number of iterations can become large in cases
without proper initial guess (or may even diverge).

In the following sections, some solvers based on Newton’s linearisation are intro-
duced [6, 14] to show other approaches for solving Eq. (12.1). These approaches

Algorithm 3 Frozen coefficient method
Input: M;N; r; �0; tol, initial condition V0 D V.S; � D 0/, initial guess V�

Output: VN D V.S; � D T/
1: for n = 0 to N-1 do
2: VnC1 D H.V�/�1Vn

3: if
��VnC1 � V�

�� < tol then
4: VnC1 D V�

5: break
6: else
7: V� D VnC1 and go back to 2.
8: end if
9: end for
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concentrate on different linearisation techniques and methodologies of using direct
or iterative solver for the nonlinear system (12.3). The developed Newton-based
solvers can provide an appropriate direction in order to achieve a faster convergence
to the solution, but need to afford the evaluation of updating terms which is like a
trade-off. Different numerical results are shown to discuss more details.

12.2 Root-Finding Problem

There are different approaches in implementing Newton’s method, and the most
common way is to change the original problem to a root-finding algorithm and to
update the numerical approximate solution by using the Jacobian matrix. This idea
can be applied to solve Eq. (12.3) by defining

G.VnC1/ D H.VnC1/VnC1 � Vn D 0; (12.4)

and by calculating ŒJac.G.VnC1//
�1, which is the inverse of the Jacobian matrix
of G for the update as stated in Algorithm 4. In order to obtain the Jacobian matrix
efficiently, a decomposition of the nonlinear matrix H.VnC1/ as the one below may
be used,

H.VnC1/ D ˙nC1 H1 C H2; where ˙nC1 D diag..�nC1
i /2/:

Note that H1 and H2 are constant tri-diagonal matrices. By using this decomposition,
the Jacobian matrix of G becomes

Jac.G.VnC1// D @ŒH.VnC1/VnC1

@VnC1 D H.VnC1/C diag.H1 VnC1/r.˙nC1/ ;

Algorithm 4 Root-finding problem (NM1)
Input: M;N; r; �0; tol, initial condition V0 D V.S; � D 0/, initial guess V�

Output: VN D V.S; � D T/
1: for n = 0 to N-1 do
2: VnC1 D V�

3: GnC1 D H.VnC1/VnC1 � Vn

4: if
��GnC1

�� < tol then
5: VnC1 D V�

6: break
7: else
8: V� D V� � .Jac.GnC1//�1GnC1 and go back to 3.
9: end if

10: end for
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where r.˙nC1/ D ..r.�nC1
1 /2/T ; .r.�nC1

2 /2/T ; : : : ; .r.�nC1
M /2/T/T (each

r.�nC1
k /2 is a row vector) simplifies the computing of the Jacobian matrix in

terms of the nonlinear volatility. In the concerning models (Model I,II and III)
r.˙nC1/ is at most a tri-diagonal matrix. Each r.�nC1

k /2 can be obtained by either
deriving the exact formula or by using a finite difference replacement of the spatial
derivatives.

Algorithm 4 stops on the norm of the function G or could have been extended
by also including a check on the correction of the Newton’s iteration. A more
appropriate size of performing the updating is discussed in Sect. 12.3.

12.3 Newton-Like Methods

Solving the root-finding problem with Algorithm 4 can obtain the numerical
solution of the original nonlinear partial differential equation (12.1). But there
are some drawbacks of this method, for example, the oscillations of root-finding
function might occur which affects the convergence of the solution. Also the
cost of evaluating Jacobian matrix is computationally expensive when analytic
formula doesn’t exist. Therefore in this section, the aim is to introduce several
improvements for Algorithm 4 to make it more efficient and robust. Different
strategies are introduced here and some of them may be merged or combined
in actual implementation to optimise the performance of the iterative method. To
simply the notation, Eq. (12.4) is rewritten as

G.v/ D 0;

with the updating formula

vkC1 D vk C ıvk; ıvk D �ŒJac.G.vk//
�1G.vk/;

where k represents the iteration step.

• Damped Newton’s Method

The updating direction ıvk sometimes may become too large resulting into an
unnecessary large change to the current approximate solution leading to a lost in
accuracy. Also this large change may occur oscillations of the root-finding function
which affects the convergence of solution a lots. In order to avoid this situation,
a damping factor s is usually inserted to scale the direction in order to provide a
smaller and safer correction in the updating process. This leads to

vkC1 D vk C sıvk;
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Fig. 12.1 Results of Frey-Patie model with �� D 2:833e�04; �S D 0:75. The left plot is
without damped updating and the right plot is using damped updating

in which s may be chosen as 2�m (see [16]) such that m is the smallest integer
satisfying

�
�G.vk C 2�mıvk/

�
� < .1 � ˛2�m/

�
�G.vk/

�
� ;

where ˛ is usually chosen as a small number.
Figure 12.1 gives an example of using damped Newton’s method to achieve an

adaptive updating. It can be observed that using damped Newton’s method can avoid
the oscillations of the root-finding function, though it might require to evaluate the
root-finding function at least twice within a Newton’s iteration. However this extra
cost can guarantee a more robust result of applying the Newton-based solver.

• Inexact Newton’s method

One main problem when applying Newton’s method is that it is expensive to
calculate the updating direction ıvk, which requires the inversion of the Jacobian
matrix ŒJac.G/
�1. Therefore reducing the number of iterations would be a way to
shorten the overall computation time. The idea is to do the whole Newton’s iteration
approximately as shown in [5] by finding an update direction which satisfies the
inexact Newton condition

�
�G.vk/C JacŒG.vk/
ıvk

�
� < �

�
�G.vk C ıvk/

�
� ;

where � is known as the forcing term.
In terms of implementation there are two loops, one being the inner loop for

finding the updating direction and the other being the outer Newton’s iterative loop.
The choice of � is important. Small values of � reduce the iteration to become simply
Newton’s method. Other choices of � may not improve the result, but rather lead to
a poorer one. Discussions of suitable choices can be found from [16, 18].
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• Jacobian-free Newton-Krylov (JFNK) method

Once the procedure for regulating the direction in the updating formula and
the inexact Newton condition are applied, the most challenging problem is the
evaluation of the Jacobian matrix, or, alternatively, the efficient multiplication of
the Jacobian matrix and a vector in the inexact Newton condition when an exact
formula is not readily available. To take on this challenge the so-called Jacobian-free
Newton-Krylov technique, which is one of the variants from the class of Newton-
Krylov methods, may be used. In the Jacobian-free Newton-Krylov method, in
which the evaluation of the Jacobian matrix is not necessary, the input for the inexact
Newton condition can be approximated as

Jac.G/u � G.v C �u/� G.v/

�
;

where � is a small number. The choice of � again is important which can not be too
large. For more detailed discussion and numerical analysis one can check [18].

• Broyden-type method

Another approach to avoid the excessive computation of the Jacobian matrix is
Broyden’s method. From experiences through numerical experiments, a highly
accurate Jacobian matrix in each iteration is often unnecessary in achieving fast
convergence. Broyden’s method relies on the concept of a generalised secant method
which leads to an iterative scheme for approximating the Jacobian matrix,

Jac.G/n D Jac.G/n�1 C �G � Jac.G/n�1�v
k�vk2 �vT :

One shortcoming of Broyden’s method is that the matrix structure of each new
Broyden’s approximation to the Jacobian matrix easily changes from one iteration
to another. For example, suppose that the original Jacobian matrix is a tri-diagonal
matrix. Then it might become a full matrix after applying one step of Broyden’s
method. This means that it might perturb the approximate solution in the Newton’s
iteration in the wrong direction. There are several modifications of Broyden’s
method [12, 19, 20], for example, one is to preserve the matrix structure by using the
sparse Broyden method in [22]. In some cases the implementation of this sparsity
preservation method does not save much time. Therefore a simple trick adopted
in the numerical tests is to pick up only the tri-diagonal entries after performing
each iteration in Broyden’s method. Comparisons of using different Broyden-type
methods can be found in [7].

• Fundamental algorithm

Finally, a fundamental algorithm in combining these Newton-like techniques with
Algorithm 4, as given below in Algorithm 5, in an attempt to improve the
performance of root-finding approach in solving nonlinear parabolic equations.
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Algorithm 5 Newton-like method (NLM)
Input: M;N; r; �0; tol, initial condition V0 D V.S; � D 0/, initial guess V�

Output: VN D V.S; � D T/
1: for n = 0 to N-1 do
2: VnC1 D V�

3: GnC1 D H.VnC1/VnC1 � Vn

4: if
��GnC1

�� < tol then
5: VnC1 D V�

6: break
7: else
8: � Evaluate Jac.G/d by the JFNK method or evaluate Jac.G/ by Broyden’s method,
9: � Decide d to satisfy the Inexact Newton condition,

10: � Use d and apply Damped Newton method to do update V�, and go back to 3.
11: end if
12: end for

Fig. 12.2 Different strategies to implement Newton-like method

Figure 12.2 also illustrate different strategies of implementing Newton-like methods
in exact or inexact sense.

12.4 Deferred Correction Problem

Instead of solving the root-finding problem as shown in Eq. (12.4), another approach
of applying Newton’s linearisation is to consider a smooth function F representing
the nonlinear Black-Scholes equation (12.1), i.e.

F.V� ;VS;VSS;V/ D V� � 1

2
�2S2VSS � rSVS C rV D 0;

and the linearisation of the function F at .V�
� ;V

�
S ;V

�
SS;V

�/ in direction .e� ; eS; eSS; e/
reads as follows:

F.V�
� C e� ;V

�
S C eS;V

�
SS C eSS;V

� C e/

D F.V�
� ;V

�
S ;V

�
SS;V

�/C @F

@V�
�

e� C @F

@V�
S

eS C @F

@V�
SS

eSS C @F

@V� e C O.D2/;

(12.5)
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Algorithm 6 Deferred correction problem (NM2)
Input: M;N; r; �0; tol, initial guess V�

Output: VN D V.S; � D T/
1: for n = 0 to N-1 do
2: Evaluate @F

@V�

�
; @F
@V�

S
; @F
@V�

SS
; @F
@V�

by V�

3: Solve Eq. (12.5) to obtain e
4: if kek < tol then
5: VnC1 D V�

6: break
7: else
8: V� D V� C e and go back to 2.
9: end if

10: end for

where D2 represents all higher order terms and the partial derivatives are evaluated
at .V�

� ;V
�
S ;V

�
SS;V

�/.
The original nonlinear differential equation becomes a linear parabolic partial

differential equation of the correction term e with zero boundary and initial
conditions. Equation (12.5) is easier to solve once all the coefficients like @F

@V�

�
,

@F
@V�

S
, @F
@V�

SS
, @F
@V�

are computed and these coefficients again can be evaluated by

either deriving the exact formula or by using a finite difference replacement of the
derivatives. This approach is also known as Waveform-Newton [9, 17, 21] and is
described in Algorithm 6.

12.5 Numerical Experiments

In this section different comparisons of solving Eq. (12.1) are shown and discussed
in terms of the accuracy, number of iterations and computation time with boundary
and terminal conditions given as introduced in Sect. 12.1. Some common model
parameters were chosen as

�0 D 0:4; K D 100; r D 0:03; Smin D 0; Smax D 300; T D 1=12

and the tolerance of Newton-based solvers was set as 10�8. The initial guess V� for
Newton-based solvers was selected to be the approximate solution at the previous
time level (for the first iteration the V� D V.S; � D 0/). M and N are the grid points
used for the spatial and temporal discretisation respectively. The special parameters
used in Model I, II, III are a D 0:05; � D 0:03; �.S/ � 1; 	 D 0:05. For exact
Newton’s method the Thomas algorithm was used as the tri-diagonal solver to do the
inversion of Jacobian matrix. For the inexact Newton’s method, Jacobi method was
applied as an iterative solver. The computations were implemented using MATLAB
R2013b.
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12.5.1 Comparisons of Numerical Methods with Explicit
Invariant Solution

In order to ensure all the Newton-based solvers are accurate, the explicit invariant
solutions for the Frey-Patie model (model III) derived by Bordag in [3, (86), (87)]
with parameters c D �0:05, d1 D 0, d2 D 30 were computed and taken as
reference solutions for evaluating the experimental order of convergence (EOC).
The boundary conditions and initial conditions were generated from these invariant
solutions.

The experimental order of convergence (or convergence ratio) is constructed
from the convergence rate of the error defined as follows:

˛ D log..Err/mC1=.Err/m/

log..�S/mC1=.�S/m/
:

Here the error E is defined as E D kV.S; �/ � OV.S; �/k=k OV.S; �/k for S 2
Œ0:5E; 1:5E
, where V.S; �/ is the solution from numerical solver, and OV.S; �/
is from the invariant solution. The ratio .�S/2=�� is fixed to be 108,000, and
.�S/mC1=.�S/m D 0:5. Tables 12.1 and 12.2 show results for the l1 maximum
norm and l2 integral norm. Both results demonstrate that all the solvers converge
to the same solution which converges to the explicit invariant solution with refined
grid points.

Table 12.1 EOC for the Frey-Patie Model with the l1 maximum norm

�� �S ENM1 ˛NM1 ENM2 ˛NM2 EFrozen ˛Frozen

0.00833 30 2.93e�05 – 2.93e�05 – 2.93e�05

0.00208 15 1.72e�06 4:09 1.72e�06 4:09 1.72e�06 4:09

5.21e�04 7.5 1.02e�07 4:08 1.02e�07 4:08 1.02e�07 4:08

1.30e�04 3.75 2.50e�08 2:02 2.50e�08 2:02 2.50e�08 2:02

3.26e�05 1.875 5.00e�09 2:32 5.00e�09 2:32 5.00e�09 2:32

8.14e�06 0.9375 1.25e�09 2:00 1.25e�09 2:00 1.25e�09 2:00

Table 12.2 EOC for the Frey-Patie Model with the l2 integral norm

�� �S ENM1 ˛NM1 ENM2 ˛NM2 EFrozen ˛Frozen

0.00833 30 2.93e�05 – 2.93e�05 – 2.93e�05

0.00208 15 1.79e�06 4:03 1.79e�06 4:03 1.79e�06 4:03

5.21e�04 7.5 1.39e�07 3:68 1.39e�07 3:68 1.39e�07 3:68

1.30e�04 3.75 4.46e�08 1:64 4.46e�08 1:64 4.46e�08 1:64

3.26e�05 1.875 1.25e�08 1:83 1.25e�08 1:83 1.25e�08 1:83

8.14e�06 0.9375 4.32e�09 1:53 4.32e�09 1:53 4.32e�09 1:53
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Table 12.3 Average number of iterations for Model I

M N NM1 NM1� NM2 NM2� Frozen Frozen�

40 40 4:02 4:20 4:07 4:60 10.1 27:6

80 80 4:02 4:40 5:03 5:60 9.28 53:4

160 160 5:01 5:4 – – – –

Table 12.4 Average number of iterations for Model II

M N NM1 NM1� NM2 NM2� Frozen Frozen�

40 40 5:00 5:00 14:2 14:0 4:32 5:00

80 80 3:53 4:20 21:2 21:0 4:22 5:00

160 160 3:28 5:00 32:6 32:0 4:12 5:20

Table 12.5 Average number of iterations for Model III

M N NM1 NM1� NM2 NM2� Frozen Frozen�

40 40 3:15 4:00 3:05 3:40 5:20 6.60

80 80 3:21 5:40 3:10 4:20 5:28 12.8

160 160 3:21 8:6 3:15 7:40 – –

12.5.2 Comparisons of Number of Iterations

Tables 12.3, 12.4 and 12.5 show the number of iterations of using frozen coefficient
method and Newton-based solvers to different models. The numbers ‘NM1, NM2,
Frozen’ are the average of number of iterations in all time steps and the numbers
‘NM1�, NM2�, Frozen�’ are the average of number of iteration just for the first
five time steps. The numerical experiments show that the root-finding approach
(NM1) with adaptive updating (damped Newton’s method) is the most robust one
as the deferred correction (NM2) is sensitive to the nonlinearity of problems and
sometimes also doesn’t converge. Frozen coefficient method requires more number
of iterations and as shown in the tables some results diverge when grid sizes become
small.

An observation shown in Fig. 12.3 is that after several time steps, the number of
iterations for frozen coefficient method seems to reduce and not very far from the
ones in Newton-based solvers. This can help to create hybrid solvers, namely using
Newton-based solvers in the beginning of several time steps, and switch to frozen
coefficient method which the computation is cheaper.

12.5.3 Comparisons of Computation Time

Tables 12.6, 12.7 and 12.8 show the computation time of using frozen coefficient
method, Newton-based and the hybrid solvers to different models. The Jacobian
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Fig. 12.3 Number of
iterations in the first 240 time
steps for Model III with
�� D 8:14e�06,
�S D 0:9375. The red line is
for NM1; the blue one is for
NM2; the black one is for the
frozen coefficient method
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Table 12.6 Computation
time (sec) for Model I

M N NM1 NM2 Frozen Hybrid

40 40 0:08 0:08 0:10 0:10

80 80 0:19 0:17 0:23 0:19

160 160 0:88 – – 0:59

Table 12.7 Computation
time (sec) for Model II

M N NM1 NM2 Frozen Hybrid

40 40 0:08 0:16 0:07 0:08

80 80 0:17 0:64 0:14 0:14

160 160 0:51 3:56 0:40 0:37

Table 12.8 Computation
time (sec) for Model III

M N NM1 NM2 Frozen Hybrid

40 40 0:08 0:07 0:05 0:10

80 80 0:16 0:12 0:07 0:17

160 160 0:50 0:33 – 0:46

matrix is evaluated by derived formula. The hybrid solver is a merged version of
root-finding approach and frozen coefficient method which in the first 6 time steps,
Algorithm 4 is applied to have a faster convergent result, and after that Algorithm 3
is used to get the benefit of easier calculation. The results show that the hybrid solver
can take advantages from both solvers and is also robust.

Another comparison in Fig. 12.4 shows using different Newton-like meth-
ods to solve Frey-Patie Model. The aim is to compare using exact and inexact
Newton’s methods, combined with finite difference method and Broyden-type
method to approximate the Jacobian matrix. The grid points of temporal dis-
cretisation is fixed to be N D 1000 and of spatial discretisation were chosen as
M D 50; 100; 150; 200; 250. Damped Newton’s method was also used to guarantee
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Fig. 12.4 Different strategies
to implement Newton-like
method
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an adaptive updating. It is observed that Broyden-type method can replace the finite
difference method to evaluate the Jacobian matrix and reduce the computation time.
Also direct solver performs well than iterative solver, as the systems to be solved
are always with simple tri-diagonal structure. It demonstrates that if there is no
exact formula for Jacobian matrix, then a better strategy of solving nonlinear Black-
Scholes equation in one-dimensional case is to choose exact Newton’s method with
some approximation of Jacobian matrix like Broyden-type methods.

12.6 Conclusions

Some important algorithms based on Newton’s method and its variants are intro-
duced to solve nonlinear parabolic partial differential equations from financial
market. The main idea is to use Newton’s method with invariant approaches, and
to improve the method based on various techniques in order to tackle drawbacks.
Essentially these Newton-based solvers are efficient and robust, and can be adopted
to different kinds of nonlinear Black-Scholes equations. In the end some improve-
ments like using hybrid solver, or applying Newton-like methods to do some
approximation are also addressed and compared with numerical experiments.
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Chapter 13
Implicit-Explicit Schemes for European Option
Pricing with Liquidity Shocks

Walter Mudzimbabwe and Lubin Vulkov

Abstract We consider the numerical valuation of European options with liquidity
shocks. We propose two implicit-explicit schemes that preserve the positivity of
the differential problem. Comparison principle and convergence for the difference
schemes are provided. Numerical tests illustrate the theoretical results and show
second order accuracy after Richardson extrapolation in time. (This chapter is a
summary of the paper (Mudzimbabwe and Vulkov, J Comp Appl Math 299:245–
256, 2016); all theoretical statements in this summary are proved in that reference.)

13.1 Introduction

Ludkovski and Shen [5] proposed a nonlinear pricing mechanism based on utility
maximization. Their model is an example of regime switching models. They
consider a investor whose utility is described by an exponential utility function
U .x/ D �e��x where � > 0 is the coefficient of risk aversion.

The investor seeks to maximise utility of both terminal wealth XT and option
payoff h at time horizon T < 1, which is chosen to coincide with the expiration
date of all securities in market model. The prices Ri.t; S/ are also related to the
indifference prices. Then the pair fRi.t; S/; i D 0; 1g is the unique viscosity
solutions of the coupled semi-linear system,

R0t C 1
2
�2S2R0SS � �01

�
e��.R1�R0/ C .d0C�01/

�
D 0;

R1t � �10
�

e��.R0�R1/ C �10
�

D 0:
(13.1)

The terminal conditions are:

Ri.T; S/ D h.S/; i D 0; 1:
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Here � is the volatility of the underlying, �01; �10 are the transition intensities from
state (0) to state (1) and vice versa, respectively,	 denotes the drift of the underlying
and d0 D 	2=2�2, see [4, 5] for more details.

The indifference prices

p D R0 C ��1 ln F0.t/; q D R1 C ��1 ln F1.t/;

can be shown to satisfy the parabolic-ordinary system

pt C 1
2
�2S2pSS � v01

�
F1
F0

e��.q�p/ C .d0Cv01/
�

� 1
�

F0

0

F0
D 0;

qt � v10
�

F0
F1

e��. p�q/ C v10
�

� 1
�

F0

1

F1
D 0

(13.2)

with terminal conditions

p.T; S/ D q.T; S/ D h.S/: (13.3)

The numerical solution of the system (13.2) is the main object of this section. A
possible way to build an efficient numerical solution of (13.2), (13.3) is to implement
an IMEX method [1–3, 9]. In this procedure, the diffusion term is discretized
implicitly in time and the reaction terms are discretized explicitly. By making the
substitutions � D T � t, u D �R0 and v D �R1, the system (13.1) becomes

Lp.u; v/ � u� � 1
2
�2S2uSS C aeue�v � b D 0;

L0.u; v/ � v� C ceve�u � c D 0;
(13.4)

where a D �01, b D d0 C �01, c D �10. In accordance with (13.3) we take the initial
conditions to be

u.0; S/ D u0.S/ D �h.S/; v.0; S/ D v0.S/ D �h.S/: (13.5)

13.2 IMEX Linear Scheme

Here we develop a linear IMEX scheme to solve the coupled semi-linear parabolic-
ordinary system problem (13.4). We consider a call option with boundary conditions
[10, 11]

u.�; 0/ D 'l.�/ D 0; u.�; S/ D 'r.�/ � Smax for large S:

The left natural boundary condition for u reads as follows

u� .�; 0/ D �ae�.v.�;0/�u.�;0// C b:
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On the domain QT D ˝ � Œ0;T
 we introduce the uniform mesh wS� D wS � w� W

wS D fSi D i�S; �S > 0; i D 0; 1; : : : ; II I�S D Smaxg; wS D wS [ fS0; SIgI

w� D f�j D j��; �� > 0; j D 0; 1; : : : ; JI J�� D Tg:; w� D w� [ f�0; �Jg

Next, on the discrete domain wS� we approximate the problem (13.4)–(13.5) by the
finite difference scheme [7, 8]

Lp.U;V/ D U jC1
i � U j

i

��
� 1

2
�2S2i

U jC1
i�1 � 2U jC1

i C U jC1
iC1

.�S/2
C

ae�V
j
i eU

j
i � b D 0; (13.6)

L0.U;V/ D V jC1
i � V j

i

��
C ce�U

j
i eV

j
i � c D 0; (13.7)

for i D 1; : : : ; I � 1; j D 0; 1; : : : ; J � 1:

U0
i D U0.Si/; i D 0; 1; : : : ; II (13.8)

U j
0 D 'l.�j/; U j

i D 'r.�j/; j D 0; 1; : : : ; JI (13.9)

V0
i D V0.Si/; i D 1; : : : ; I: (13.10)

We approximate the natural boundary conditions explicitly

UjC1
0 D U j

0 ���.ae�V
j
0eU

j
0 � b/:

In algebraic form of the on the . j C 1/-th time level j D 0; 1; : : : ; J � 1, the
scheme (13.6) and (13.7) reads as follows

�AiU
jC1
i�1 C CiU

jC1
i � BiU

jC1
iC1 D Fi;

V jC1
i D V j

i ���ce�U
j
i CV

j
i C c;

where

Ai D Bi D 1

2
�2

S2i
.�S/2

; Ci D 1

��
C Ai C Bi;

Fi D 1

��
U j

i � ae�V
j
i eU

j
i C b; i D 1; : : : ; I � 1I
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Theorem 13.1 Let .u; v/ 2 C2;4.QT/ is classical solution of problem (13.4)–(13.5).
Then the error estimate holds

ku � UkC.wS� / C kv � VkC.wS� / � C.�� C .�S/2/;

for sufficiently small �S and �� , where the constant C doesn’t depend on �S and
�� .

The discrete comparison principle for .U;V/ is important for the positivity of the
numerical indifference prices p and q.

Theorem 13.2 Suppose that the assumptions of Theorem 13.1 hold and .U;V/,
.U;V/ be grid functions defined on wS� . Let the following inequalities

Lp.U;V/ � Lp.U;V/; L0.U;V/ � L0.U;V/;

U
0

i � U0
i ; V

0

i � V0
i ; i D 0; : : : ; I;

V
j
0 � Vi

0; U
j
M � U j

M; j D 1; : : : ; J:

hold and let �S and�� are sufficiently small such that �� satisfies

�� < min.a; c/e2Cue2Cv :

Then

U
j
i � U j

i; V
j
i � V j

i ; i D 0; 1 : : : ; I; j D 0; 1; : : : ; J:

13.3 IMEX Linearised Scheme

Let us start with the fully implicit scheme:

U jC1
i � U j

i

��
� 1

2
�2S2i

U jC1
i�1 � 2U jC1

i C U jC1
iC1

.�S/2
C aeV

jC1
i eU

jC1
i � b D 0;

V jC1
i � V j

i

��
C ce�U

jC1
i eV

jC1
i � c D 0;

for i D 1; 2; : : : ; I � 1, j D 0; 1; : : : ; J � 1 with boundary and initial approximations
given by (13.8)–(13.10). By Taylor expansion the exponential nonlinear terms can
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be linearised to obtain the IMEX linearised scheme:

U jC1
i � U j

i

��
� 1

2
�2S2i

U jC1
i�1 � 2U jC1

i C U jC1
iC1

.�S/2
C a.e�V

j
i eU

j
i .1C V j

i � U j
i /

C e�V
j

i eU
j
i .U jC1

i � V jC1
i //� b D 0; (13.11)

V jC1
i � V j

i

��
C c.e�U

j
i eV

j
i .1 � V j

i C U j
i /C e�U

j
i eV

j
i .V jC1

i � U jC1
i // � c D 0;

(13.12)

which simplifies to

� OAiU
jC1
i�1 C OCiU

jC1
i � OBiU

jC1
iC1 C ODiV

jC1
i D OFi; (13.13)

OEiU
jC1
i C OKiV

jC1
i D Gi; (13.14)

where

OAi D OBi D 1

2
�2

S2i
.�S/2

; OCi D 1

��
C OAi C OBi C aeU

j
i �V

j
i ;

ODi D �a�eU
j
i �V

j
i ; OFi D 1

��
U j

i � a�eU
j
i �V

j
i .1C V j

i � U j
i /C b��;

OEi D �c��eV
j
i �U

j
i ; OKi D 1

��
C ceV

j
i �U

j
i ;

Gi D 1

��
V j

i � c�eV
j
i �U

j
i .1 � V j

i C U j
i /C c:

Substituting V jC1
i from (13.14) into (13.13) we get

� OAiU
jC1
i�1 C

 
OCi �

ODi OEi

OKi

!

U jC1
i � OBiU

jC1
iC1 D OFi �

ODi

OKi

QFi;

V jC1
i D Gi

OKi

�
OEi

OKi

U jC1
i ; i D 1; : : : ; I � 1

with U0
i ; i D 0; 1; : : : ; I and U j

0; U j
i ; j D 0; 1; : : : ; J given by (13.8)–(13.10).

Since aeU
j
i �V

j
i > 0, the diagonal domination can significantly increase in

comparison with IMEX linear scheme (13.6) and (13.7).

Theorem 13.3 Suppose that the assumptions of Theorem 13.1 hold and that there
exists a classical solution .u; v/ 2 C2;4.QT/ of problem (13.4)–(13.5). Then for
sufficiently small �S and�� the following error estimate holds:

ku � UkC.wS� / C kv � VkC.wS� / � C.�� C .�S/2/;

where the constant C doesn’t depend on �S and �� .
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13.4 Numerical Experiments

In what follows, we try to investigate the accuracy, effectiveness and convergence
of the implicit-explicit linear scheme (13.6)–(13.10) (Scheme 1) and implicit-
explicit linearised scheme (13.11) and (13.12) (Scheme 2). We perform numerical
experiments both with uniform and non-uniform meshes. Also, we present results
of numerical experiments using Richardson extrapolation in time.

The following two tables show the accuracy in maximal discrete norm k � k1 and
convergence rate at initial time t D 0, using two consecutive meshes with formulas

Order D log2.E
w
I=2=Ew

I /; Ew
I D kWI=2 � WIk1;

where W is R0 or R1.
We improve the convergence in time by applying Richardson extrapolation [3].

To this end we use the formula

Yn D 2pWn � Zn

2p � 1
;

where p is order of numerical solution (1 in our case) and Wn is the solution obtained
using time step ��=2 and Zn is the solution obtained using time step �� . The
resulting solution Yn has order of accuracy p C 1.

Table 13.1 shows the result of applying this technique to the Scheme 1. The order
of accuracy in time is now two. Similarly this technique is applied to Scheme 2, see
Table 13.2. The convergence is much slower but smoother compared to the explicit
based Scheme 1 due the error of linearisation. Tables 13.1 and 13.2 shows second
order in time.

In Fig. 13.1 we compare option values p and q at issue and maturity in the liquid
and illiquid states using the parameters	 D 0:06, �=0.3, �01 D 1, �10 D 12, K D 2,
T D 1, Smax D 5 and � D 1 using Scheme 1. These values are taken arbitrary but

Table 13.1 Convergence results for at the money (S D 2, K D 2, Smin D 0 and Smax D 5) and
taking �� D �S=2 based on Scheme 1 using Richardson extrapolation

I Zn;Wn Yn Difference Ratio (order)

10 0.2451080

20 0.2465578 0.2480075

40 0.2472811 0.2480045 3.02e�6

80 0.2476431 0.2480051 5.79e�7 5.22 (2.38)

160 0.2478242 0.2480053 1.96e�7 2.96 (1.56)

320 0.2479148 0.2480053 5.13e�8 3.82 (1.93)

640 0.2479600 0.2480053 1.27e�8 4.05 (2.02)

1280 0.2479827 0.2480053 3.08e�9 4.12 (2.04)

2560 0.2479940 0.2480053 7.45e�10 4.13 (2.05)
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Table 13.2 Convergence results for at the money (S D 2, K D 2, Smin D 0 and Smax D 5) and
taking �� D �S=2 based on Scheme 2 using Richardson extrapolation

I Zn;Wn Yn Difference Ratio (order)

10 0.2451717

20 0.2465832 0.2479947

40 0.2472928 0.2480023 7.64e�6

80 0.2476486 0.2480045 2.14e�6 3.57 (1.84)

160 0.2478269 0.2480051 6.22e�7 3.44 (1.78)

320 0.2479161 0.2480053 1.78e�7 3.49 (1.81)

640 0.2479607 0.2480053 4.93e�8 3.62 (1.85)

1280 0.2479830 0.2480053 1.32e�8 3.73 (1.90)

2560 0.2479942 0.2480053 3.46e�9 3.81 (1.93)

5120 0.2479998 0.2480053 8.95e�10 3.87 (1.95)

10240 0.2480026 0.2480053 2.29e�10 3.91 (1.97)
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Fig. 13.1 Comparing European option values at issue and maturity in the liquid and illiquid states
for the IMEX Linear scheme. (a) p at t D 0 and t D T. (b) q at t D 0 and t D T

are justified e.g. �10 D 12 is much larger than �01 and means that the market will be
illiquid for about a month during a year.

Figure 13.2 illustrate the solution from the linearised scheme, using the same
parameters. Figures 13.1 and 13.2 show that for this set of parameters, the solution
. p; q/ is positive using both schemes. This is in line with our theoretical results that
p; q � 0 when h � 0.
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Fig. 13.2 Comparing European option values at issue and maturity in the liquid and illiquid states
for the IMEX linearised scheme. (a) p at t D 0 and t D T. (b) q at t D 0 and t D T

13.5 Conclusions

In this chapter, we have considered a one-dimensional problem of European
options with liquidity shocks. We have constructed and analyzed two IMEX finite
difference schemes and for both schemes they preserve the positivity property of
the differential solution. The second one (the IMEX linearized scheme) has better
diagonal domination, hence it is monotone. It would be interesting to consider
extensions of the IMEX schemes to the American options with liquidity shocks.
In this case one has to solve a free boundary problem. It could be written as a linear
complementary problem which could be discretized using the schemes given here.
The extension is beyond the scope of this chapter, and we leave it for further work.
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Chapter 14
A Highly Efficient Numerical Method
for the SABR Model

Álvaro Leitao, Lech A. Grzelak, and Cornelis W. Oosterlee

Abstract In Leitao et al. (Appl Math Comput 293:461–479, 2017), we have
presented a one time-step Monte Carlo simulation of the SABR model (Hagan et al.
Wilmott Mag 84–108, 2002). The technique is based on an efficient simulation of
SABR’s time-integrated variance process. We base our approach on the derivation of
the cumulative distribution function of the integrated variance by means of Fourier
techniques and the use of a copula to approximate the conditional distribution
(integrated variance conditional on the SABR volatility process). Resulting is a fast
simulation algorithm which can be employed to price European options under the
SABR dynamics. This converts our approach into an alternative to Hagan analytic
formula for short maturities, where some known issues of the implied volatility
expression for small strike values are overcome. A generalization of this technique
to the multiple time-step case has been presented in Leitao et al. (On an efficient
multiple time-step Monte Carlo simulation of the SABR model 2016, submitted for
publication. Available at SSRN: http://ssrn.com/abstract=2764908).

14.1 Introduction

The Stochastic Alpha Beta Rho (SABR) model [6] is an established SDE system
which is often used for interest rates and FX modeling in practice. The model
belongs to the so-called stochastic local volatility (SLV) models. The idea behind
SLV models is that the modeling of volatility is partly done by a local volatility and
partly by a stochastic volatility contribution, aiming to preserve the advantages and
minimize the disadvantages of the individual models.
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In the original paper [6], the authors have provided a closed-form approximation
formula for the implied volatility under SABR dynamics. This is important for
practitioners, as it can be used highly efficiently within the calibration exercise.
However, the closed-form expression is derived by perturbation theory and its
applicability is thus not general. The formula is for example not always accurate
for small strike values and/or high volatility.

In [10], we have proposed a one time-step Monte Carlo method for the SABR
model. We based our approach on an accurate approximation of the cumulative
distribution function of the so-called time-integrated variance (conditional on
the SABR volatility), using Fourier techniques and copulas. Resulting is a fast
simulation algorithm which can be employed to price European derivative contracts
up to 2 years under the SABR dynamics. This kind of contract is often traded in
foreign-exchange (FX) markets. Our approach can thus be seen as an alternative
to Hagan’s analytic formula for short maturities that may be employed for model
calibration purposes. In this chapter, this work is summarized.

14.2 The SABR Model

The SABR model [6] is defined by the following SDE system, with independent
Brownian motions d OWS.t/ and d OW�.t/,

dS.t/ D �.t/Sˇ.t/


�d OW� .t/C

p
1� �2d OWS.t/

�
; S.0/ D S0 exp .rT/ ;

d�.t/ D ˛�.t/d OW� .t/; �.0/ D �0:
(14.1)

Here S.t/ D NS.t/ exp .r.T � t// denotes the forward price of the asset NS.t/, with r the
interest rate, S0 the spot price, T the maturity and �.t/ a stochastic volatility process,
with �.0/ D �0. The model parameters are ˛ > 0 (the volatility of volatility),
0 � ˇ � 1 (the variance elasticity) and � (the correlation coefficient).

Based on the work by Islah [7], an analytic approximation for the cumulative
distribution function (CDF) of the SABR conditional process has been obtained.
For some S.0/ > 0, the conditional CDF of S.t/ with an absorbing boundary at
S.t/ D 0, and given the volatility, �.t/, and the conditional time-integrated variance,R t
0
�2.s/dsj�.t/, reads

Pr

�
S.t/ � XjS.0/ > 0; �.t/;

Z t

0

�2.s/ds

�
D 1 � �2.aI b; c/; (14.2)
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where

a D 1

�.t/

�
S.0/1�ˇ

.1 � ˇ/ C �

˛
.�.t/ � �.0//

�2
; c D X2.1�ˇ/

.1 � ˇ/2�.t/
;

b D 2 � 1 � 2ˇ � �2.1 � ˇ/
.1 � ˇ/.1 � �2/

; �.t/ D .1 � �2/
Z t

0

�2.s/ds;

and �2.xI ı; �/ is the non-central chi-square CDF. This formula is exact in the case
of � D 0 and constitutes an approximation otherwise.

Therefore, to perform an “almost exact” one time-step Monte Carlo method for
the SABR model, several steps need to be performed:

• Simulation of the SABR volatility process. By Eq. (14.1), the stochastic
volatility process of the SABR model exhibits a log-normal distribution.

• Simulation of the time-integrated variance process,
R t
0
� 2.s/dsj� .t/. This con-

ditional distribution is not available in closed-form and needs to be approximated.
• Simulation of the SABR forward price process. The forward price S.t/ can be

simulated by inverting the CDF in Eq. (14.2).

In the above steps of the SABR model almost exact simulation, the challenging
part is the simulation of the time-integrated variance,

R T
0
�2.s/ds, conditional on

�.T/ [and �.0/]. We propose a computationally efficient approximation, based
on a copula multi-variate distribution, to simulate the conditional distribution ofR T
0
�2.s/ds given the volatility �.T/. Simulation by means of a copula technique

requires the CDF of the involved marginal distributions. In Sect. 14.3, the derivation
of the CDF of

R T
0
�2.s/ds is presented in detail. Hereafter, for notational conve-

nience, we will use Y.T/ WD R T
0
�2.s/ds.

14.3 CDF of SABR’s Time-Integrated Variance

In this section, we present a procedure to approximate the CDF of the time-
integrated variance, Y.T/. Since we will work in the log-space, an approximation of
the CDF of log Y.T/, Flog Y.T/, will be derived. We approximate Y.T/ by its discrete
analogue, i.e.

Z T

0

�2.s/ds �
MX

jD1
�2.tj/�t DW OY.T/;
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where M is the number of discrete time points,1 i.e., tj D j�t, j D 1; : : : ;M
and �t D T

M . OY.T/ is subsequently transformed to the logarithmic domain, being

flog OY.T/ the probability density function (PDF) of log OY.T/. This PDF is found
by approximating the associated characteristic function, �log OY.T/, and applying a
Fourier inversion procedure. The characteristic function and the desired PDF of
log OY.T/ form a so-called Fourier pair. Based on the work in [11], we develop a
recursive procedure to recover the characteristic function of flog OY.T/. We start by
defining the sequence,

Rj D log

�
�2.tj/

�2.tj�1/

�
D log

�
�2.tj/

� � log
�
�2.tj�1/

�
; (14.3)

where Rj is the logarithmic increment of �2.t/ between tj and tj�1. As the volatility
process follows log-normal dynamics, the Rj are independent and identically

distributed, i.e. Rj
dD R. By the definition of Rj in Eq. (14.3), we write �2.tj/ as

�2.tj/ D �2.t0/ exp.R1 C R2 C � � � C Rj/: (14.4)

At this point, a backward recursion procedure in terms of Rj will be set up by
which we will recover �log OY.T/. We define

Y1 D RM; Yj D RMC1�j C Zj�1; j D 2; : : : ;M: (14.5)

with Zj D log.1C exp.Yj//.
By Eqs. (14.4) and (14.5), the discrete time-integrated variance can be expressed

as

OY.T/ D
MX

iD1
�2.ti/�t D �t�20 exp.YM/: (14.6)

From Eq. (14.6) and by applying the definition of the characteristic function, we
determine �log OY.T/, as follows

�log OY.T/.u/ D eŒexp.iu log OY.T//
 D exp
�
iu log

�
�t�20

��
�YM .u/:

We have reduced the computation of �log OY.T/ to the computation of �YM . An
accurate and efficient way of approximating �YM was derived in [10], which is
employed also here. Once the approximation of �YM , O�YM , has been derived, we

1These time points are not to be confused with the Monte Carlo time steps. We will have only one
Monte Carlo time-step. M is the number of points for the discrete approximation of Y.T/.
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recover flog OY.T/ from �log OY.T/ by employing the COS method [4], as follows

flog OY.T/.x/ � 2

Ob � Oa
N�1X0

kD0
Ck cos

�
.x � Oa/ k�

Ob � Oa
�
;

with

Ck D <
�
�log OY.T/

�
k�

Ob � Oa
�

exp

�
�i

Oak�
Ob � Oa

��
;

where N is the number of COS expansion terms, ŒOa; Ob
 is the support of log OY.T/
and the prime 0 and < symbols indicate division of the first term in the summation
by two and taking the real part of the complex-valued expressions in the brackets,
respectively. The CDF Flog OY.T/ is then obtained by integration.

14.4 Simulation of Y.T/j�.T/: Copula Approach

The CDF, Flog OY.T/ derived in Sect. 14.3 is now employed to simulate Y.T/j�.T/
by means of a copula. In order to define any copula, a measure for the correlation
between the involved distributions needs to be determined. Here, we choose the
Pearson’s correlation coefficient, P , which is directly employed in many copulas
(Gaussian and Student t copulas, for example) and a relation with Kendall’s � exists
for Archimedean copulas. By definition, the Pearson coefficient for log Y.T/ and
log �.T/ is given by

Plog Y.T/;log �.T/ D
cov

h
log

R T
0
�2.s/ds; log �.T/

i

r
var

h
log

R T
0 �

2.s/ds
i

var Œlog �.T/


:

We employ the following approximation

log
Z T

0

�2.s/ds �
Z T

0

log �2.s/ds D 2

Z T

0

log �.s/ds:

where the logarithm and the integral are interchanged. Since the log function is
concave, this approximation forms a lower bound (Jensen’s inequality) for the
true value. After some algebraic manipulations, an approximation of the Pearson’s
correlation coefficient is then obtained as

Plog Y.T/;log �.T/ �
1
2
˛2T2

q
1
3
˛4T4

D
p
3

2
: (14.7)
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Fig. 14.1 Pearson’s correlation coefficient: Empirical (surface) vs. approximation (red grid)

The approximation obtained is a constant value. We can show numerically that,
for the problems at hand, this appears to be a very reasonable approximation. The
correlation between log Y.T/ and log �.T/ is affected by the maturity time T, and by
the volatility-of-volatility parameter ˛. In Fig. 14.1, the empirical and approximated
(red grid) correlations are depicted for typical values of T and ˛. Because we focus
on short maturity options, we restrict T 2 Œ0; 2
 and ˛ 2 .0; 1
. The experiment
shows that, only in rather extreme cases (˛ > 0:7), the differences between the
empirical and approximated correlation increase, but remain within five basis points
and do not affect the performed simulation significantly.

The following steps describe the complete procedure for the simulation of Y.T/
given �.T/ by using a bivariate copula approach:

1. Determine Flog�.T/ (analytically) and Flog OY.T/ (Sect. 14.3).
2. Determine the correlation by Eq. (14.7).
3. Define a bivariate copula distribution.
4. Generate correlated uniforms, Ulog �.T/ and Ulog OY.T/ from the bivariate copula.
5. From Ulog �.T/ and Ulog OY.T/ invert the original marginals, Flog �.T/ and Flog OY.T/.
6. Finally, the samples of Y.T/j�.T/ are obtained by taking exponentials.
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14.5 Simulation of S.T/ Given S.0/, �.T/ and
R T
0
� 2.s/ds

We complete the one time-step SABR simulation by the conditional sampling of
S.t/. The most commonly used techniques can be classified in two categories:
direct inversion of the SABR distribution function given in Eq. (14.2) and moment-
matching approaches. The direct inversion procedure has a higher computational
cost because of the evaluation of the non-central �2 distribution. However some
recent developments make this computation affordable. In [3], the authors proposed
a forward asset simulation based on a combination of moment-matching (Quadratic
Gaussian) and enhanced direct inversion procedures. We employ this technique also
here.

As already pointed out by Andersen [1], the almost exact simulation of the
asset price in some stochastic volatility models can result in loss of the martingale
property, due to the approximation of a continuous process by its discrete equivalent.
This is especially seen when the size of time time-step is large and for certain
configurations of the SABR parameters, like small ˇ values, close-to-zero initial
asset values S0, high vol-vol parameter ˛ or large initial volatility �0. We employ a
simple but effective numerical martingale correction, as follows

S.t/ D S.t/� 1

n

nX

iD1
Si.t/C eŒS.t/
 D S.t/� 1

n

nX

iD1
Si.t/C S0;

where Si.t/ represents the i-th Monte Carlo sample.

14.6 Numerical Experiments

Different numerical experiments have been carried out. In Sect. 14.6.1, we compare
different copulas for the simulation of Y.T/j�.T/. After that, in Sect. 14.6.2, we
employ the best fitting copulas in a SABR pricing experiment. We consider several
representative SABR data sets with special characteristics, like a zero correlation
(Set I), a normal SABR model (Set II) and a high volatility-of-volatility SABR set
(Set III). The parameter values are shown in Table 14.1. Other parameters in our
one-step SABR method include the number of discrete time points, M D 1000 and
the number of COS elements: N D 150.

Table 14.1 Data sets S0 �0 ˛ ˇ � T

Set I 1:0 0:5 0:4 0:7 0:0 2

Set II 0:05 0:1 0:4 0:0 �0:8 0:5

Set III 0:04 0:4 0:8 1:0 �0:5 2
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14.6.1 Copula Approach Analysis

We consider here Gaussian and Student t copulas (Gaussian-based), and Clayton,
Frank and Gumbel copulas (Archimedean). In order to select an optimal copula,
we assess a so-called goodness-of-fit (GOF) criterion for copulas. We split the
analysis, first evaluating the Archimedean copulas and subsequently, after choosing
the optimal copula from this class, performing an analysis of the remaining copulas.
The GOF testing for Archimedean copulas is a graphic procedure proposed by
Genest and Rivest [5]. Given a function OK based on based on Kendall’s processes,
the graphical GOF test consists in comparing the distance O�.u/ WD u � OK.u/
and the empirical distance, �.u/. In Fig. 14.2, the distances O�.u/ between three
Archimedean copulas (Clayton, Frank and Gumbel) are depicted. The experiment
is performed for each data set in Table 14.1. As the measurable quantity, the mean
squared error (MSE) of O�.u/� �.u/ is presented in Table 14.2.

From the GOF results for the Archimedean copulas, we find that the Gumbel
copula fits best in our framework. Thus, we perform a GOF test including the
Gaussian, Student t and Gumbel copulas. Hence, we perform a new GOF test which
is based on the distances between the empirical Deheuvels copula, Cd, and the
analyzed copula C . By using the discrete L2 norm, this GOF measure reads

Dd .Cd;C / D kCd � C kL2 ;

where d is the number of random variables to build the copula, d D 2. In Table 14.3,
the distances, D2, between the tested copulas and the Deheuvels copula are shown.

According to the GOF results, the three copulas perform very similarly. When
longer maturities are considered, the Gumbel copula exhibits smaller errors. In
terms of speed, the Gaussian copula is around three times faster than the Gumbel
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Fig. 14.2 Archimedean GOF test: O�.u/ vs. empirical �.u/. (a) Set I. (b) Set II. (c) Set III

Table 14.2 MSE ofO�.u/� �.u/
Clayton Frank Gumbel

Set I 1:3469 � 10�3 2:9909 � 10�4 5:1723 � 10�5

Set II 1:0885 � 10�3 2:1249 � 10�4 8:4834 � 10�5

Set III 2:1151 � 10�3 7:5271 � 10�4 2:6664 � 10�4
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Table 14.3 Generic GOF: D2

Gaussian Student t (� D 5) Gumbel

Set I 5:0323 � 10�3 5:0242 � 10�3 3:8063 � 10�3

Set II 3:1049 � 10�3 3:0659 � 10�3 4:5703 � 10�3

Set III 5:9439 � 10�3 6:0041 � 10�3 4:3210 � 10�3

Table 14.4 Convergence in n: mean and standard deviation of the error (basis points) and
time (s)

n D 1000 n D 10; 000 n D 100; 000 n D 1; 000; 000

Gaussian (Set I, X1)

Error 519:58 .204:02/ 132:39 .68:03/ 37:42 .16:55/ 16:23 .7:66/

Time 0:3386 0:3440 0:3857 0:5733

Gumbel (Set I, X1)

Error 151:44 .199:36/ �123:76 .86:33/ 34:14 .17:03/ 11:59 .6:58/

Time 0:3492 0:3561 0:3874 0:6663

copula, although the impact in the overall method is very small. The Student t copula
is discarded since its accuracy and performance are very similar to the Gaussian
copula and the calibration of the � parameter adds extra complexity. As a general
strategy, we conclude that the Gumbel copula is the most robust choice. When short
maturities are considered, the Gaussian copula may be a satisfactory alternative.

14.6.2 Pricing European Options by the One-Step SABR
Method

For the pricing experiment, the strike values Xi are chosen by the expression Xi.T/ D
S.0/ exp.0:1 � T � ıi/; ıi D �1:5;�1:0; : : : ; 1:0; 1:5.

First of all, the accuracy and the performance of the one-step SABR method are
analyzed, considering the Gaussian and Gumbel copulas for the simulation of the
time-integrated variance. In Table 14.4, the convergence of our method when the
number of samples, n, is increased is empirically shown. We present the mean and
the standard deviation of the error in basis points for the implied volatilities given
by our one-step method and the reference price (Antonov et al. [2]) when Set I
and X1 are employed. We observe a reduction in the error (both mean and standard
deviation) according to the expected Monte Carlo ratio (1=

p
n). Also in Table 14.4,

the execution times of the one-step SABR method are shown. We can see that the
number of paths hardly affects the performance.

To further test the one-step SABR method, in Table 14.5, the differences (in
basis points) between the obtained implied volatilities with Hagan’s formula, Monte
Carlo simulation with a Milstein discretization and the one-step SABR method and
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Table 14.5 One-step SABR method with Gaussian and Gumbel copulas—implied volatilities:
differences in basis points

Strikes X1 X2 X3 X4 X5 X6 X7
Set I (reference: [2])

Hagan 55:07 52:34 50:08 N/A 47:04 46:26 45:97

MC 23:50 21:41 19:38 N/A 16:59 15:58 14:63

Gaussian 16:23 20:79 24:95 N/A 33:40 37:03 40:72

Gumbel 11:59 15:57 19:12 N/A 25:41 28:66 31:79

Set II (reference: [8])

Hagan �558:82 �492:37 �432:11 �377:47 �327:92 �282:98 �242:22
MC 5:30 6:50 7:85 9.32 10:82 12:25 13:66

Gaussian 9:93 9:98 10:02 10.20 10:57 10:73 11:04

Gumbel �9:93 �9:38 �8:94 �8:35 �7:69 �6:83 �5:79
Set III (MC Milstein)

Hagan 287:05 252:91 220:39 190.36 163:87 141:88 126:39

Gaussian 16:10 16:76 16:62 15.22 13:85 12:29 10:67

Gumbel 6:99 3:79 0:67 �2:27 �5:57 �9:79 �14:06

several strikes are presented. Our copula-based one-step method achieves a very
high accuracy.

14.7 Conclusions

In this chapter an efficient method to obtain samples of the SABR dynamics based
on the time-integrated variance has been developed. The technique employs a
Fourier method to derive the CDF of the time-integrated variance. By means of a
copula, the conditional sampling technique is obtained. Its application gives us a fast
and accurate one time-step Monte Carlo method for the SABR model simulation. By
numerical experiments, we have shown that our method does not suffer from well-
known problems of the Hagan formula in the case of small strike values and higher
volatilities.

The use of the proposed technique is restricted to option maturities up to 2 years
and European-type options. In [9], we have generalized the methodology to the
multiple time-step case. This generalization allows us to deal with problems with
longer maturities (more than 2 years) and also with more involved exotic options
(early-exercise and path-dependent options). We need to introduce new method
components to deal with the increasing computational complexity in that case.
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Chapter 15
PDE Methods for SABR

Jörg Kienitz, Thomas McWalter, and Roelof Sheppard

Abstract In this chapter we consider the general SABR model which includes
the Free Boundary SABR model considered in Chap. 4. We summarize as well
as further illustrate the results from Kienitz et al. (Clipping the wings of SABR—
stable and efficient numerics for sticky SABR. Preprint, 2016, submitted), Kienitz
(Approximate and PDE Solution to the Boundary Free SABR Model—Applications
to Pricing and Calibration. SSRN, http://papers.ssrn.com/sol3/papers.cfm?abstract_
id=2647344, 2015) and Kienitz and Caspers (Interest rates explained volume 2: term
structure models. Palgrave MacMillan, Basingstoke, 2017). The dynamic is given by
the system of SDEs:

dF.t/ D ˛.t/C.F.t//dW1.t/

d˛.t/ D �˛.t/dW2.t/

hdW1.t/; dW2.t/i D �dt

F.0/ D f0

˛.0/ D ˛0

.W1.t//t and .W2.t//t are correlated Brownian motions. f0 and ˛0 � 0 are the starting
values called the current forward rate and the initial volatility. The parameter � >
0 is the volatility of volatility and � 2 Œ�1; 1
 is the correlation parameter. The
function C is a local volatility parametrization.
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The case C.F/ D Fˇ is the original SABR model which was introduced in Hagan
et al. (Wilmott Mag 1:84–108, 2002). Special versions of the model are known as
the log-normal SABR model, C.F/ D F, the Normal or Bachelier SABR model,
C.F/ D 1 and the shifted SABR model C.F/ D .F C b/ˇ, with b > 0. Recently,
Antonov et al. (Free boundary SABR. RISK, 2015) introduced the Free Boundary
SABR model. They proposed to choose C.F/ D jFjˇ. The choices of the local
volatility reflects the area of application of the model. For instance C.F/ D .F C
b/ˇ or C.F/ D 1 and C.F/ D jFjˇ makes it possible to cope with negative rates
prevailing in some interest rate markets including the EUR and CHF.

We consider a stable numerical scheme for the Free Boundary SABR model and
show that it is stable for all types of parameters.

15.1 Introduction

The SABR model gained its popularity from the ease of use due to the asymptotic
expansion formula derived in [9] and its flexibility to fit market observed volatility
data. This solution covers the case of the classic SABR as well as the Bachelier
and the shifted SABR model. The log-normal, �BS.K;T/, or the Bachelier volatility,
�B.K;T/, can approximately be expressed in terms of the SABR parameters, the
strike K and the maturity T. These values can then be used with the Black76,
resp. Bachelier formula to price European Call and Put options. The approximation
formula for the Bachelier model was considered in Chap. 4. Improvements to
the asymptotic expansion such as [22] extend the area of application. For further
improvements and their numerical implementation see [17].

The known deficiencies of the asymptotic expansions, namely the problems
stemming from using it for very long dated options, large values of volatility of
volatility or very small strikes were solved by practitioners using ad hoc methods.
Especially during and in the aftermath of the financial crisis with very low or even
negative rates and high values for implied volatilities revealed the deficiencies even
more. It was realized that the density obtained from Call prices derived from using
implied volatilities calculated by the asymptotic expansion formula led to negative
values and, thus, to arbitrage. Again practitioners developed ad hoc methods for
instance to be use for replication methods to price CMS based contracts—called
wing extensions, see [14] or [5]. The first theoretical solution for this problem can
be found in [6] who considered the density as the sum of two components that are
always positive. These components reflect the decomposition into a continuous part
and to an absorbing part. The latter is a Dirac measure in 0. In addition to that
result an upper bound on the time to maturity was derived. Beyond that bound the
standard asymptotic expansion cannot be applied safely. For related recent papers
on the SABR model we refer the reader to [15, 16, 18].
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Recent work of [10] suggests to consider the cumulative probability density

P ŒF < FT < F C dFjFt D f0; ˛t D ˛0


The equation for the forward density is then

@q

@T
D ˛2

2

@2
��
1C 2��y C �2y2

�
exp .��v� .F/.T � t//C2.F/q

�

@F2

with y.F/ D R F
f0

dg
C.g/ and � .F/ D C.F/�C. f0/

F�f0
. Subsuming all the notation into a

function D.F/ WD p
˛2 C 2˛��y.F/C �2y.F/2Fˇ we have

@q

@T
D v2

2

@2
�
D2.F/q

�

@F2

To keep track of the lower boundary of F called FMin at 0 for the standard SABR
model or �b for the shifted model as well as for very large values, called FMax,
two additional equations are derived based on conservation laws. Summarizing, the
numerical method is designed to keep the martingale property as well as the fact
that the cumulative density sums up to 1. We finally have to consider the following
set of equations for q, qL and qR:

@q

@T
D ˛2

2

@2
�
D2.F/q

�

@F2
; q.0/ D ı.F � f0/ (15.1)

dqL

dT
D lim

F#FMin

v

2

�
D2.F/q

�
F
; qL.0/ D 0 (15.2)

dqR

dT
D � lim

F"FMax

v

2

�
D2.F/q

�
F
; qR.0/ D 0 (15.3)

While Hagan et al. [10] suggest to use a Crank-Nicholson discretization to solve the
system of equations, LeFloch and Kennedy [21] showed that this is not efficient
and even leads to erratic effects. This was earlier remarked by Duffy [7] in a
different context. Thus, different numerical schemes for efficiently solve the system
of equations to produce reliable and stable results. For our considerations we take
the Lawson-Swayne scheme, see [20], they propose to apply as one of the schemes
leading to stable results for SABR. We extend the applicability of the effective
PDE solution to the case of the Free Boundary SABR model as well by applying a
suitable transformation.

In a series of publications on the SABR model [2–4] choose to split the Call
option price C.K;T/ and consider the sum of the intrinsic value .F � K/C and
the time value denoted by OSABR

F .T;K/. Then, the authors derive an integral
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representation for O.T;K/ for the case � D 0 which is close to the one given in
[12]. The main idea from [2, 3] which was extended to the free SABR model in
[4] was to find an efficient approximation to the integral expression (15.4). The
corresponding formula for OSABR

F .T;K/ is given in Chap. 4 (4.11),

OSABR
F .T;K/ D 1

�

p
jKf0jf1K�0A1 C sin.��/A2g (15.4)

with � D ˇ
ˇ� 1

2
.1 � ˇ/�1ˇˇ and the corresponding values

A1 D
Z �

0

sin.�/ sin.��/

b � cos.�/

G.T�2; s.�/

cosh.s.�//
d�

A2 D
Z 1

0

sinh. / .1K�0 cosh.� /C 1K<0 sinh.� //

b C cosh. /

G.T�2; s. /

cosh.s. //
d 

The functions appearing in the above equations can be found in Chap. 4. While
theoretically appealing this approach can lead to numerical instabilities for certain
values of correlation and far out of the money strikes, especially for j�j large, i.e.
near 1 the proposed projection is not applicable. This will not be addressed further
but we remark that the proposed PDE as well as the approximate solutions can be
applied for �1 � � � 1. This is essential for calibration.

The aim of the current chapter is twofold. First, we extend numerical methods
to be applicable to the Free Boundary SABR model—denoted by fSABR from now
on. This results in a PDE approach similar to that of [10] for the standard SABR
model. Second, we derive Finite Difference schemes based on [23] that are applied
to the fSABR model. Finally, we wish to fill a gap in the current literature namely
the comparison of the proposed numerical schemes in terms of accuracy, efficient
pricing, stability for extreme parameters and the calculation of hedge sensitivities.
To this end we consider the different numerical methods for different versions of the
general SABR model and for different values of the SABR parameters. Then, we
derive European Call option prices, implied volatilities and risk-neutral densities.

We have organized this chapter as follows: We use the results from [10] and [21]
to adapt the techniques to work for the fSABR model. To this end we briefly review
the numerical scheme which we apply. Then, we make the necessary changes to
apply the methods in case of the fSABR model.

The following sections are dedicated to the benchmark solution. This is a finite
difference method (FDM) in two dimensions based on Soviet splitting that extends
work of [23] to the more general setting of fSABR. This method serves as a
benchmark for all the other numerical techniques we considered.

Finally, we compare all the proposed numerical method in terms of accuracy
for different types of SABR models and for different parameter values. From the
numerical studies we reach the conclusion that the performance of the numerical
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techniques, the applicability for extreme model parameters and the calculation of
hedge sensitivities are in favour of the PDE solution.

15.2 (Free Boundary Boundary) SABR: PDE Solution

Before we present our numerical approach to the fSABR model we outline some of
the possible pitfalls of the integration approach:

• Inapplicability of projection method Inaccuracy for the projected solution for
ITM and OTM options

– Inaccuracy for ITM and OTM options
– Arbitrage possibilities
– Constraints on the SABR parameters

• Stability of the numerical integration with respect to the used number of
quadrature points and for choosing the upper bound for numerical integration

For more information on the model and pitfalls see also Chap. 4

15.2.1 Effective PDE

In [21] many Finite-Difference schemes for calculating the density for the (No-
Arbitrage) SABR model are proposed. Here we take the Lawson-Swayne scheme,
[20], and modify it in a way such that it can be applied to the fSABR model.

First, we derive the effective PDE for the fSABR model. To this end we use the
techniques from [10] and adapt it to the our setting. We use (15.1)–(15.3) together
with the local volatility function C.F/ D jFjˇ. The function D.F/ is given by

D.F/ D
vu
ut
˛2 C 2˛��

�Z F

f0

jgj�ˇdg

�
C �2

�Z F

f0

jgj�ˇdg

�2
jFjˇ (15.5)

To efficiently solve this equation we fix the notation and for j D 1; : : : ;NF; n D
0; : : : ;NT �1 we consider zj D z� C jh, yj D y.zj � h

2
/, Fj D F. yj/, Cj D D.Fj/ and

�j D jFjjˇ � f ˇ

Fj � f0

Ej.T/ D exp.��˛�jT/:
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Take tn D nT=N and qn
j D q.zj; tn/. To define the discrete operator governing the

evolution let

Ln
j q.zj; tn/ D 1

�

Cj�1
Fj � Fj�1

Ej�1.tn/q.zj�1; tn/

� 1

�

�
Cj

FjC1 � Fj
C Cj

Fj � Fj�1

�
Ej.tn/q.zj; tn/

C 1

�

CjC1
FjC1 � Fj

EjC1q.zjC1; tn/

For the boundaries we update according to

C0
F1 � F0

E0.T/q.t0;T/ D � C1
F1 � F0

E1.T/q.z1;T/

CJC1
FJC1 � FJ

EJC1q.tJC1;T/ D � CJ

FJC1 � FJ
EJ.T/q.zJ ;T/

The discretization is done using the Lawson-Swayne scheme which for b D 1�
p
2
2

is

qnCb
j � qn

j D b�LnCb
j qnCb

j

PL.tnCb/� PL.tn/ D b�
C1

F1 � F0
E1.tnCb/q

nCb
1

PR.tnCb/� PR.tn/ D b�
CJ

FJC1 � FJ
EJ.tnCb/q

nCb
J :

The step from n C b we step forward to n C 2b by

qnC2b
j � qnCb

j D b�LnC2b
j qnC2b

j

PL.tnC2b/ � PL.tnCb/ D b�
C1

F1 � F0
E1.tnC2b/q

nC2b
1

PR.tnC2b/ � PR.tnCb/ D b�
CJ

FJC1 � FJ
EJ.tnC2b/q

nC2b
J :

The final step computes the new values at tnC1 and is given by

qnC1
j D .

p
2C 1/qnC2b

j � p
2qnCb

j

PL.tnC1/ D .
p
2C 1/PL.tnC2b/ � p

2PL.tnCb/

PR.tnC1/ D .
p
2C 1/PR.tnC2b/ � p

2PR.tnCb/

The final outcome are the density q for FMin < F < FMax and the values at FMin and
FMax.
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Within the described set up the choice of the coordinate transformation
z 7! y 7! f is the crucial part. To account for the local volatility structure of the
fSABR model we take the transformation given as follows:

f . y/ D p. p. f 1�ˇ C .1 � ˇ/y//1=.1�ˇ/ (15.6)

with

p WD
(
1 ; y � � f 1�ˇ

1�ˇ
�1 ; else

with y.z/ D ˛
�

sinh.�z/C �.cosh.�z/ � 1/. For illustration, we consider the values
given in [4], ˛ D 0:005095939, ˇ D 0:1, � D 0:3, � D �0:3 with forward f0 D
0:005 and T D 3. The grid consists of NF D 160 and NT D 160 points. First, we
show the transformed coordinates in Fig. 15.1.

In fact this transformation is the only thing that has to be changed to solve the
system of equations necessary to numerically approximate the probability density
function in the fSABR setting. The resulting probability density is then used to price
European Call options. This is done by numerically integrating the density. Using
this approach for a given maturity options on different strikes can be computed in
one sweep. Next, we use the integration and the PDE approach for pricing European
Call options. Figure 15.2 show densities obtained by the PDE method using different
values for T.

Take ˛0 D 0:014703823, ˇ D 0:3, � D 0:3, � D �0:3, f0 D 0:005 and T D 3,
we consider the effects of introducing a displacement into the fSABR model as
well as an artificial lower bound FMin. Using this set-up it is possible to control the
stickyness. The results are shown in Fig. 15.3. The stickyness controls the peak of
the distribution which is at 0 for the standard fSABR model. Furthermore, the lower
bound controls the region where we wish to have contributions of the smile. This
proves useful for the replication method used for CMS pricing for instance.
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Fig. 15.1 Coordinate transformation for the fSABR using ˛0 D 0:005095939, ˇ D 0:1, � D 0:3,
� D �0:3 with forward f0 D 0:005. We plotted the function y.�/ (left) and the function f . y.�//
(right)
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Fig. 15.2 Densities obtained using different values for T

To use the effective PDE solution we need to price financial instruments. First,
we remark that we constructed the solution in a way that

hqj.T/ D
Z zj

zj�1
q.T; z/dz D

Z F.zj/

F.zj�1/

Q.T;F/dF (15.7)

hFj� 1
2
qj.T/ D

Z zj

zj�1
F.z/q.T; z/dz D

Z F.zj/

F.zj�1/

FQ.T;F/dF (15.8)

If a strike value K is such that Fj < K < FjC1 for some grid points Fj and
FjC1 we need to take two things into account. First, we need to account for the
integration from K to FjC1 and, second, we need to handle the boundary Fmax. To
this end we regard the probability distribution obtained by the PDE method as a
discrete cumulative probability on each grid cell. To account for strikes not lying
on the grid we use for the ease of implementation a linear interpolation to get the
corresponding density within a single grid. This can be accomplished by keeping
the overall probability (15.7) and the forward (15.8). Then, the density to be used
for numerical integration can be used on the subgrid (15.9).

Q.T;F/ D hqj

Fj � Fj�1

�
1C 3b

2F � Fj�1 � Fj

Fj � Fj�1

�
(15.9)
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The value of b can be calculated since we know the cumulative density within each
grid. Thus, the price of a European Call is given by (15.10)

C.T;K/ D 1

2
hqk

.Fk � K/2

Fk � Fk�1
�
�
1C bk

Fk C 2K � 3Fk�1
Fk � Fk�1

�
(15.10)

Ch
JX

jDkC1
.Fj� 1

2
� K/qj.T/C .FMax � K/QR.T/

The same can be done for pricing European Put options. We have

P.T;K/ D 1

2
hqk

.K � Fk/
2

Fk � Fk�1
�
�
1C bk

3Fk � 2K � Fk�1
Fk � Fk�1

�

Ch
JX

jDkC1
.K � Fj� 1

2
/qj.T/C .K � FMin/Q

L.T/:

This extends to arbitrary payoff functions on the forward F.T/.

15.3 Benchmark PDE Solution

In the general SABR framework the value of a European Call option, V.t0;F0; ˛0/,
with strike K and maturity T, can be obtained by solving the following PDE arising
using the Feynman-Kac Theorem

@V

@t
C 1

2
˛2C2.F/

@2V

@F2
C ��˛2C.F/

@2V

@F@˛
C 1

2
�2˛2

@2V

@˛2
D 0 (15.11)

Equation (15.11) is on the domain .t;F; ˛/ 2 ˝ D Œt0;T
 � ŒFmin;Fmax
 � Œ0; ˛max


subject to the following boundary conditions

V.T;F; ˛/ D max.F � K; 0/ (15.12)

V.t;Fmin; ˛/ D 0 (15.13)

@V

@F
.t;Fmax; ˛/ D 1 (15.14)

@V

@t
.t;F; 0/ D 0 (15.15)

@V

@t
.t;F; ˛max/C 1

2
˛2maxC2.F/

@2V

@F2
D 0 (15.16)

For Eqs. (15.12)–(15.16) t0 is the valuation date, F0 the spot forward rate and ˛0 the
calibrated volatility parameter. The parameters Fmin, Fmax and ˛max of the domain is
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chosen such that perturbations on the boundaries have minimal impact on the value
of the contingent claim.

The terminal condition of the boundary value problem is given by the payoff
function, see Eq. (15.12). Equation (15.13) reflects that the Call Option will be
worthless when the forward, F, is very small and Eq. (15.14) specifies a von
Neumann boundary condition. The lower boundary condition is obtained by letting
˛ D 0 in Eq. (15.11) whereas the upper boundary follows from the assumption that
the value of a Call Option will not be very sensitive to changes in volatility (vega)
if volatility is very large.

The Finite Difference Method used to solve this boundary value problem is based
on techniques described in [23] and can be summarized as follows:

1. Partition the domain, ŒFmin;Fmax
 � Œ0; ˛max
, into a non-uniform grid. This grid
is chosen such that the number of grid points is concentrated at F0 and ˛0 and
can be obtained my applying a grid generating function to uniform partitions of
ŒFmin;Fmax
 and Œ0; ˛max
. Let xmin D x0 < x1 < � � � < xm D xmax denote a
uniform partition for an arbitrary interval Œxmin; xmax
 where xi � xi�1 D xiC1 � xi

for i D 1; : : : ;m � 1. To obtain the benchmark solution we made use of the
following grid generating function

g.x/ D Ox C c

p
sinh

h
p.x � xmin/C sinh�1 
�p

c
.Ox � xmin/

�i

where Ox is the concentration point, c defines the density of the grid at Ox and p is
chosen such that g.xmax/ D xmax. By applying this grid generating function we
obtain the following non-uniform partitions for ŒFmin;Fmax
 and Œ0; ˛max


Fmin D f0 < f1 < � � � < fm D Fmax

0 D a0 < a1 < � � � < an D ˛max

Let 0 D t0 < t1 < � � � < tl D T be a uniform partition for the time interval
Œt0;T
 where ti � ti�1 D �t for i D 1; : : : ; l and denote the finite difference
approximation at each node point by

vk
ij � V.tk; fi; aj/

for k D 0; : : : ; l,i D 0; : : : ;m and j D 0; : : : ; n.
2. The solution at time t0 can be obtained by marching backward trough time with

the following Yanenko scheme

evij � vk
ij

�t
D 1

2
a2j C2.Fi/�

2
Fevij C 1

2
��a2j C.Fi/�F˛v

k
ij

vk�1
ij �evij

�t
D 1

2
�a2j�

2
˛v

k�1
ij C 1

2
��a2j C.Fi/�F˛evij
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where �2
F , �2

˛ and �F˛ are second order finite difference approximations for
@2

@F2
, @2

@˛2
and @2

@F˛ . This scheme has better stability properties than traditional ADI
schemes for non-smooth payoff functions and is better with approximating mixed
derivatives, see [8].

3. The major drawback of this Yanenko scheme is that it is only first order
accurate in time. Accuracy can be drastically improved by making use of
extrapolation techniques as described in [13]. The benchmark solution was
obtained by applying similar extrapolation techniques to the above-mentioned
Yanenko scheme as described in [23].

15.4 Numerical Results

In this section we consider some examples from the literature and apply the
proposed numerical techniques.

First, we consider the standard SABR model on some challenging parameter
sets proposed in [10]. Here we consider all the numerical methods and display the
results. Second, we apply a numerical study to the fSABR case. Here we consider
the parameter sets from [4] and take different time to maturities, extreme parameters
and, furthermore, consider the Greeks � and � .

15.4.1 SABR

For the numerical study we consider parameter sets based on [4] and [10]. Thus,
we take the parameters ˛0 D 0:318, ˇ D 0, � D �0:183 and � D 0:777 for Set
1 and ˛ D 0:329, ˇ D 0:5, � D �0:455 and � D 0:867 for Set 2. To analyze
the accuracy of the different numerical methods we chose to calculate the implied
Bachelier volatility. Table 15.1 displays the results:

15.4.2 Free SABR

For the free SABR model we take the following sets of parameters, f0 D 0:005,
˛0 D 0:6F1�ˇ0 , ˇ D 0:1, � D 0:3 and � D �0:3 for FSet 1 and f0 D 0:01,

˛ D 0:3f 1�ˇ0 , � D 0:3, ˇ D 0:25 and � D �0:3 for FSet 2. We consider the
fSABR model with the parameter set FSet 1 with T D 3. The benchmark price is
obtained by applying the 2d FDM scheme introduced in Sect. 15.3. Then, the PDE
approach from Sect. 15.2 and the two asymptotic expansions from Chap. 4 as well
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Fig. 15.4 Performance of the Numerical Techniques against the Benchmark on FSet1 in terms of
prices (top) and implied Bachelier volatility (bottom)

as the integration method from [4] are applied. In Fig. 15.4 we show the relative
error with respect to the benchmark price. For this set of parameters the PDE as
well as the Approximation based on the Hagan approach show the best accuracy.
The integration is the worst.
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Fig. 15.5 Difference jPrice=PriceBenchmark � 1j of the different numerical methods. We consider
FSet1 (top) and FSet2 (bottom)

Further illustrations on the performance of the numerical methods can be found
in Fig. 15.5 which shows the difference to our benchmark implementation.

15.4.3 Stability for Extreme Parameters

Let us consider the parameter set FSet1. Keeping the values of this parameter set but
varying one parameter the time to maturity T, the correlation � and the volatility of
volatility �. These parameters are known to challenge a numerical method or even
make it inapplicable. We consider:

• T D 1; 5; 10; 20; 50

The finding here is that except of the PDE solution none of the other numerical
techniques is capable to accurately price Call options for all maturities and, thus,
give accurate values for the implied Bachelier volatilities. As expected the quality
of the approximation formulas deteriorate. The results can be seen in Fig. 15.6.
But if we include higher order terms in the standard expansion from [9] this effect
can be accounted for.
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Fig. 15.6 Implied Bachelier Volatility for FSet1 and different T D 1Y; 3Y; 5Y; 10Y; 20Y; 50Y
from top left to bottom right. The different numerical techniques are shown

• � D �0:9; 0:9
We find that the integration technique cannot cope with all values for the

correlation parameter. It is well known that for certain market parameters to
recover the prices, resp. volatilities the model parameters have to be chosen near
the lowest/largest possible values. Thus, care has to be taken by choosing the
appropriate domain for the parameters. For values of the correlation parameter �
near 1 even the PDE method does not seem to work properly. But it is possible to
adjust the method by choosing a larger grid and increasing the number of space
steps. Especially, we observe that the method based on integration and projection
breaks down here. The results can be seen in Fig. 15.7.

• � D 0:5; 1; 2

The approximation formulas, especially the formula based on the Hagan
asymptotic expansion is not suitable for large values of volatility of volatility.
The calculated values for the implied Bachelier volatilities are far off the correct
results. But we observe that the approximation method based on Approx 2 from
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Chap. 4 is better suited here. The results can be seen in Fig. 15.8. Again, higher
order terms in the approximate solution can be used to cope with high values of
the volatility of volatility.

We show the effect by plotting the implied Bachelier volatility in Figs. 15.6, 15.7
and 15.8. It shows that the PDE method is stable for all times to maturity, especially
very long dated options can be priced safely.

15.4.4 The Greeks

In this subsection we analyze the Greeks, � D @C.K;T/
@f0

and � D @2C.K;T/
@f 20

for all

the suggested methods in terms of accuracy. To this end we consider the Call prices
C.K;T;˙�/ depending on a parameter � > 0 where this expression means that we
calculate the Call option price taking f0;˙� D f0 ˙ �.

We consider

� D C.K;T; �/ � C.K;T;��/
2�

� D C.K;T;��/C C.K;T; �/ � 2C.K;T; 0/

2�

We observe the following:

• The accuracy and the stability depends on the choice of the parameter �, see for
instance [19] on a systematic account of numerical differentiation. For instance
the PDE method cannot be applied with too small values for �. For the integration
approach the value of � should not be too large. Figure 15.9 illustrates this result.
The asymptotic approximation result is not sensitive to value of �. In practice
people often wish to choose not the theoretical optimal value but 1% or 1bp.

• For accurately calculating the Greeks the number of discretization steps applied
for the PDE method is crucial. Too few space steps give inaccurate results but we
also observe that the choice of time steps does not effect that much.

Finally, we show the performance of all methods with respect to the benchmark
method. Tables 15.2 and 15.3 summarize our findings.
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15.5 Conclusions

Our conclusion is that the PDE method based on the effective solution of the general
SABR model should be applied in practice. For the standard SABR model this is
described in [10] whereas we extended it to the case of the fSABR model here. This
method is the most reliable and gives accurate results for extreme parameters and
for the Greeks. If efficiently implemented, e.g. using the method proposed here it is
also reasonable fast.

All other methods have their advantages mainly in terms of speed but this
often comes with a decreasing range of applicability. For instance the very fast
approximation methods cannot handle extreme parameters as large values for the
maturity for instance. Let us summarize our findings:

• PDE and asymptotic expansions can be carried over to the fSABR model
• All the numerical methods have been benchmarked against 2d FDM scheme
• PDE method is the most accurate approximation to the benchmark solution
• Approximation formulas efficient near ATM and small time to maturity
• Integration formula not applicable for all values of correlation (PROBLEMS for

calibration)
• Greeks can be calculated and it is shown that the approximation formula leads to

values different than the PDE and Integration approach
• Accuracy of PDE scheme relies of � and mainly on the number of space steps

Thus, we conclude that an appropriate implementation of the No-Arbitrage SABR as
well as the extension to the fSABR model should apply the PDE solution approach.
Comparison to our 2d FDM benchmark approach have shown that it is accurate,
stable and due to the fact the efficient numerical schemes exist is reasonable fast.

We expect that the method of the effective PDE is applicable to a larger set of
stochastic volatility models. The authors applied the model successfully to the case
of the ZABR model, see [1].

Furthermore, [11] showed that for a variety of stochastic volatility models
effective PDE can be derived. This makes the described technique applicable to
a variety of models.
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Chapter 16
Sparse Grid High-Order ADI Scheme for Option
Pricing in Stochastic Volatility Models

Bertram Düring, Christian Hendricks, and James Miles

Abstract We present a sparse grid high-order alternating direction implicit (ADI)
scheme for option pricing in stochastic volatility models. The scheme is second-
order in time and fourth-order in space. Numerical experiments confirm the
computational efficiency gains achieved by the sparse grid combination technique.

16.1 Introduction

Stochastic volatility models such as the Heston model [22] have become one of
the standard approaches in financial option pricing. For some stochastic volatility
models and under additional restrictions, closed-form solutions can be obtained by
Fourier methods (e.g. [9, 22]). Another approach is to derive approximate analytic
expressions, see e.g. [2] and the literature cited therein. In general, however,—even
in the Heston model [22] when the parameters in it are non constant—the partial
differential equations (PDEs) arising from stochastic volatility models have to be
solved numerically.

In the mathematical literature, there are many papers on numerical methods
for option pricing, mostly addressing the one-dimensional case of a single risk
factor and using standard, second order finite difference methods (see, e.g., [40] and
the references therein). More recently, high-order finite difference schemes (fourth
order in space) were proposed [19, 36, 39] that use a compact stencil (three points
in space). In the option pricing context, see e.g. [11, 12, 30].

There are less works considering numerical methods for option pricing in
stochastic volatility models, i.e., for two spatial dimensions. Finite difference
approaches that are used are often standard, second-order methods, e.g. in [28]
where different efficient methods for solving the American option pricing problem
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for the Heston model are proposed. In [10] a high-order compact finite difference
scheme for option pricing in the Heston model is derived and this approach is
extended to non-uniform grids in [14]. Other approaches include finite element-
finite volume [43], multigrid [5], sparse wavelet [23], FFT-based [35] or spectral
methods [42].

The classical alternating direction implicit (ADI) method, introduced by Peace-
man and Rachford [33], Douglas [6, 7], Fairweather and Mitchell [32], is a very
powerful method that is especially useful for solving parabolic equations (without
mixed derivative terms) on rectangular domains. Beam and Warming [1], however,
have shown that no simple ADI scheme involving only discrete solutions at time
levels n and n C 1 can be second-order accurate in time in the presence of mixed
derivatives. To overcome this limitation, unconditionally stable ADI schemes which
are second order in time have been proposed by Hundsdorfer and Verwer [26, 27]
and more recently by in’t Hout and Welfert [24]. These schemes are second-order
accurate in time and space. In [25] different second-order ADI schemes of this type
are applied to the Heston model. In [13] this approach is combined with different
high-order discretisations in space, using high-order compact schemes for two-
dimensional convection-diffusion problems with mixed derivatives and constant
coefficients. In [21] this approach is combined with sparse grids and applied to
multi-dimensional diffusion equations, again with constant coefficients. Building
on the ideas in [13, 26, 27], a high-order (second-order accurate in time and fourth-
order accurate in space) ADI method for option pricing in stochastic volatility mod-
els which involve the solution of two-dimensional convection-diffusion equations
with mixed derivative terms and space-dependent coefficients is derived in [16].

In this chapter we combine the approaches from [21] and [16], to obtain a sparse
grid high-order ADI scheme for option pricing in stochastic volatility models. In the
next section we recall stochastic volatility models for option pricing and the related
convection-diffusion partial differential equations. Section 16.3 is devoted to the
Hundsdorfer-Verwer ADI splitting in time. The spatial discretisation is introduced in
Sect. 16.4 for the implicit steps, and in Sect. 16.5 for the explicit steps. The solution
of the resulting scheme and the discretisation of boundary conditions are discussed
in Sects. 16.6 and 16.7. The sparse grid combination technique is explained in
Sect. 16.8. We present numerical convergence results in Sect. 16.9.

16.2 Stochastic Volatility Models

We consider the following class of stochastic volatility models: assume that asset
spot price 0 � S.t/ < 1 and variance 0 � �.t/ < 1 follow two stochastic
diffusive processes for t 2 Œ0;T
,

dS.t/ D 	S.t/dt C
p
�.t/S.t/dW.1/.t/; (16.1a)

d�.t/ D �.�.t//˛.� � �.t//dt C v.�.t//ˇdW.2/.t/; (16.1b)
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which are characterised by two Brownian motions, dW.1/.t/ and dW.2/.t/, with
constant correlation parameter dW.1/.t/dW.2/.t/ D �dt. The drift coefficient for
stochastic asset returns is given by the mean return of the asset where 	 2 R and
the diffusion coefficient is given by

p
�.t/S.t/.

The drift coefficient of the asset variance is given by �.�.t//˛.e� � �.t//, where
constants � � 0 and � � 0 are the mean reversion speed of �.t/ and the long
run mean of �.t/, respectively. The diffusion coefficient is given by v.�.t//ˇ where
constant v � 0 is the volatility of volatility. The constant riskless interest rate is
denoted by r � 0: The constants ˛; ˇ determine the stochastic volatility model
used.

The class of stochastic volatility models (16.1) includes a number of known
stochastic volatility models: The most prominent stochastic volatility model, the
Heston model [22] (also called square root (SQR) model) specifies the variance by

d�.t/ D � .� � �.t// dt C v
p
�.t/dW.2/.t/:

Other known stochastic volatility models include the GARCH (or VAR model)
model, see [8], where the stochastic variance is modelled by

d�.t/ D � .� � �.t// dt C v�.t/dW.2/.t/;

and the 3/2 model [31] in which the variance follows the process

d�.t/ D � .� � �.t// dt C v�
3
2 .t/dW.2/.t/:

All of the three stochastic volatility models mentioned above use a linear mean-
reverting drift for the stochastic process of the variance v.t/, but there are also
models, in which the drift is mean reverting in a non-linear fashion. Following [4],
we denote these models with an additional “N”: in the SQRN model the stochastic
variance follows

d�.t/ D ��.t/ .� � �.t// dt C v
p
�.t/dW.2/.t/;

in the VARN model

d�.t/ D ��.t/ .� � �.t// dt C v�.t/dW.2/.t/;

and in the 3=2-N model

d�.t/ D ��.t/ .� � �.t// dt C v�
3
2 .t/dW.2/.t/;

see [4].
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Applying standards arbitrage arguments and Itos lemma to the class of stochastic
volatility models (16.1), we can derive the following second order partial differential
equation for any financial derivative V.S; �; t/, to be solved backwards in time with
0 < S < 1, 0 < � < 1, t 2 Œ0;T/:

Vt C S2�

2
VSS C �v�ˇC

1
2 SVS� C v2�2ˇ

2
V�� C rSVs C Œ��˛.� � �/� �0�
V� � rV D 0:

(16.2)

Here, �0�.t/ is the market price of volatility risk, where �0 2 R, which is
usually assumed to be proportional to the variance. In the following we assume
�0 D 0 for streamlining the presentation. The generalisation to the case �0 ¤ 0

is straightforward by consistently adding in the additional term in the coefficient
of V� . The boundary conditions and final condition are determined by the type of
financial derivative V.S; �; t/ we are solving for. The boundary conditions of any
European option will depend on a prescribed exercise price, denoted here by E > 0.
For example, in the case of the European Put Option:

V.S; �;T/ D max.E � S; 0/; 0 <S < 1; 0 < � < 1;

lim
S!1 V.S; �; t/ D 0; 0 <� < 1; 0 < t < T;

V.0; �; t/ D E exp.�r.T � t//; 0 <� < 1; 0 < t < T;

lim
�!1 V� .S; �; t/ D 0; 0 <S < 1; 0 < t < T;

The remaining boundary condition at � D 0 can be obtained by looking at the
formal limit � ! 0 in (16.2), i.e.,

Vt C rSVS C ��V� � rV D 0; T > t � 0; S > 0; as � ! 0: (16.3)

This boundary condition is used frequently, e.g. in [28, 43]. Alternatively, one can
use a homogeneous Neumann condition [5], i.e.,

V� .S; 0; t/ D 0; 0 < S < 1; 0 < t < T: (16.4)

By using a change of variables:

x D ln
S

E
; y D �

v
; � D T � t; u D exp.r�/

V

E

we transform the partial differential equation to an convection-diffusion equation
in two spatial dimensions with a mixed derivative term. The transformed partial
differential equation and boundary/initial conditions are now satisfied by u.x; y; �/,
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where x 2 R, y > 0, � 2 .0;T
:

u� D vy

2
uxx C .vy/2ˇ

2
uyy C �.vy/ˇC 1

2 uxy C



r � vy

2

�
ux C

�
� .vy/˛

� � vy

v

�
uy;

(16.5)

u.x; y; 0/ D max.1 � exp.x/; 0/; �1 <x < 1; 0 < y < 1; (16.6a)

lim
x!1 u.x; y; �/ D 0; 0 <y < 1; 0 � � < T; (16.6b)

lim
x!�1 u.x; y; �/ D 1; 0 <y < 1; 0 � � < T; (16.6c)

lim
y!1 uy.x; y; �/ D 0; �1 <x < 1; 0 < � � T; (16.6d)

lim
y!0

uy.x; y; �/ D 0; �1 <x < 1; 0 < � � T: (16.6e)

In order to discretise the problem and solve numerically, we truncate our spatial
boundaries to finite values. Take L1 � x � K1, where L1 < K1, and L2 � y � K2,
where 0 < L2 < K2, so that the spatial domain forms a closed rectangle in R

2 of
M�N points with uniform spacing of�x in the x-direction and�y in the y-direction:

xi D L1 C .i � 1/�x; i D 1; 2; : : : ;M; yj D L2 C .j � 1/�y; j D 1; 2; : : : ;N:

The lower y-boundary is truncated to L2 > 0 to ensure non-degeneracy of the partial
differential equation for all values of y. We assume cell aspect ratios to be moderate.
We also take a uniform partition of � 2 Œ0;T
 into P points such that �k D .k �
1/�� , where k D 1; 2; : : : ;P. We denote the discrete approximation of u..i � 1/�x;

.j � 1/�y; .k � 1/��/ by uk
i; j and Un D .un

i; j/i; j.

16.3 Hundsdorfer-Verwer ADI Splitting Scheme

We consider the Alternating Direction Implicit (ADI) time-stepping numerical
method proposed by Hundsdorfer and Verwer [26, 27]. Our partial differential
Eq. (16.5) takes the form u� D F.u/. We employ the splitting F.u/ D F0.u/ C
F1.u/C F2.u/ where unidirectional and mixed derivative differential operators are
given by:

F0.u/ D �.vy/ˇC 1
2 uxy; F1.u/ D vy

2
uxx C



r � vy

2

�
ux;

F2.u/ D .vy/2ˇ

2
uyy C

�
� .vy/˛

� � vy

v

�
uy: (16.7)
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We consider (16.5) with the splitting (16.7) and look for a semi-discrete approxi-
mation Un � u.�n/ at time n�� . Given an approximation Un�1 we can calculate an
approximation for Un at time n�� using the differential operators from (16.7):

Y0 D Un�1 C�tF.U
n�1/; (16.8a)

Y1 D Y0 C ��t.F1.Y1/ � F1.U
n�1//; (16.8b)

Y2 D Y1 C ��t.F2.Y2/ � F2.U
n�1//; (16.8c)

eY0 D Y0 C  �t.F.Y2/ � F.Un�1//; (16.8d)

eY1 D eY0 C ��t.F1.eY1/ � F1.Y2//; (16.8e)

eY2 D eY1 C ��t.F2.eY2/ � F2.Y2//; (16.8f)

Un D eY2: (16.8g)

The parameter  is taken to be  D 1=2 to ensure second-order accuracy in
time. The parameter � is typically fixed to � D 1=2. Larger values give stronger
damping of the implicit terms while lower values return better accuracy. The role
of � is discussed in [26]. Its influence in the connection with high-order spatial
approximations is investigated numerically in [16].

The first and fourth step in (16.8) can be solved explicitly, while the remaining
steps are solved implicitly. Our aim is to derive high-order spatial discretisations
of the differential operators. Following [13] we combine high-order compact finite
difference methods for the implicit steps with a (classical, non-compact) high-order
stencil for the explicit steps.

16.4 High-Order Compact Scheme for Implicit Steps

For F1.u/, consider the one-dimensional convection-diffusion equation

uxx C c1ux D c2g (16.9)

with constants c1 D 2r=.vy/ � 1 and c2 D 2=.vy/. To discretise the partial
derivatives in (16.9), we employ standard, centered second-order finite difference
operators, denoted by ıx0 and ı2x . The second-order terms in the truncation error
involve higher-order partial derivatives, uxxx and uxxxx. Hence, if we can find second-
order accurate expressions for uxxx and uxxxx, using only information on the compact
stencil, then it will be possible to approximate ux and uxx with fourth order accuracy
on the compact stencil. By differentiating (16.9) once and twice with respect to x,
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respectively, it is possible to express uxxx and uxxxx in terms of first- and second-order
derivatives of u and g with respect to x. We obtain the following relations, concisely
written in matrix form,

0

B
B
@

1 0 1
6
0

0 1 0 1
12

0 c1�2
x 1 0

0 0 c1 1

1

C
C
A

0

B
B
@

ux

uxx

�2
xuxxx

�2
xuxxxx

1

C
C
AD

0

B
B
@

ıx0ui; j

ı2x ui; j

c2�2
xgx

c2�2
xgxx

1

C
C
AC

0

B
B
@

O.�4
x/

O.�4
x/

0

0

1

C
C
AD

0

B
B
@

ıx0ui; j

ı2x ui; j

c2�2
xıx0gi; j

c2�2
xı
2
x gi; j

1

C
C
AC O.�4

x/:

This shows that only second-order approximations for ux; uxx, gx and gxx are needed.
Using these relations to discretise (16.9) and to replace the partial derivatives
uxxx and uxxxx in the truncation error, yields a fourth-order compact approximation
for (16.9) at all points of the spatial grid except those that lie on the x- and
y-boundaries. We refer to [16] for more details of the derivation of the compact
high-order spatial discretisation.

To approximate F1.u/ at points along the x boundaries of the inner grid of the
spatial domain, we will require a contribution from the Dirichlet values at the
x-boundaries of the spatial domain. We collect these separately in a vector d. Details
on the boundary conditions are given in Sect. 16.7. The resulting linear system to be
solved can be written in matrix form:

Axu D Bxg C d;

where u D .u2;2; u2;3; : : : ; uM�1;N�1/, g D .g2;2; g2;3; : : : ; gM�1;N�1/. The coeffi-
cient matrices Ax and Bx are block diagonal matrices, with the following structure:

Ax D

0

B
B
B
@

A1;1x 0 0 0

0 A2;2x 0 0

0 0
: : : 0

0 0 0 AN�2;N�2
x

1

C
C
C
A
; Bx D

0

B
B
B
@

B1;1x 0 0 0

0 B2;2x 0 0

0 0
: : : 0

0 0 0 BN�2;N�2
x

1

C
C
C
A
;

where each Aj; j
x D diagŒaj; j

�1; a
j; j
0 ; a

j; j
1 
 and Bj; j

x D diagŒbj; j
�1; b

j; j
0 ; b

j; j
1 
 are tri-diagonal

matrices. Explicit expression for all coefficients are given in [16].
For F2.u/ the derivation can be presented in a concise form, similar as for

F1.u/, again we refer to [16] for additional details. Consider the one-dimensional
convection-diffusion equation

uyy C c1uy D c2g (16.10)
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with c1.y/ D 2�.vy/˛�2ˇ.� � vy/=v and c2.y/ D 2=.vy/2ˇ, the necessary relations
can be concisely written in matrix form,

0

B
BB
@

1 0 1
6
0

0 1 0 1
12

c0
1�

2
y c1�2

y 1 0

c00
1�

2
y 2c0

1�
2
y c1 1

1

C
CC
A

0

B
BB
@

uy

uyy

�2
yuyyy

�2
yuyyyy

1

C
CC
A

D

0

B
B
B
@

ıy0ui; j

ı2y ui; j

�2
y.ıy0c2; jgi; j C c2; jıy0gi; j/

�2
y.ı

2
y c2; jgi; j C 2ıy0c2; jıy0gi; j C c2; jı2y gi; j/

1

C
C
C
A

C O.�4
y/;

where the first two lines of the system correspond to standard, central second-order
difference approximations, while the third and fourth are obtained from the repeated
differentiation of (16.10). Using these relations to discretise (16.10) and to replace
the partial derivatives uyyy and uyyyy in the truncation error, yields a fourth-order
compact approximation for (16.10).

We obtain a linear system which can be represented in matrix form:

Ayu D Byg

where u D .u2;2; u2;3; : : : ; uM�1;N�1/, g D .g2;2; g2;3; : : : ; gM�1;N�1/. We do not
impose any boundary conditions in y-direction, but discretise the boundary grid
points with the same scheme, and handle resulting ghost points via extrapolation;
details on the boundary conditions are given in Sect. 16.7. The coefficient matrices
Ay and By are block tri-diagonal matrices with the following structures:

Ay D

0

B
B
B
B
BB
@

A1;1y A1;2y 0 0 0

A2;1y A2;2y A2;3y 0 0

0
: : :

: : :
: : : 0

0 0 AN�3;N�4
y AN�3;N�3

y AN�3;N�2
y

0 0 0 AN�2;N�3
y AN�2;N�2

y

1

C
C
C
C
CC
A

;

By D

0

B
B
BB
B
B
@

B1;1y B1;2y 0 0 0

B2;1y B2;2y B2;3y 0 0

0
: : :

: : :
: : : 0

0 0 BN�3;N�4
y BN�3;N�3

y BN�3;N�2
y

0 0 0 BN�2;N�3
y BN�2;N�2

y

1

C
C
CC
C
C
A

;

where each Aj; j
y D diagŒai; j
 and Bj; j

y D diagŒbi; j
 are diagonal matrices. Explicit
expression for all coefficients are given in [16].
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16.5 High-Order Scheme for Explicit Steps

The first and fourth steps of the ADI scheme (16.8) operate only on previous
approximations to explicitly calculate an updated approximation. The differential
operator in these steps takes the form of the right hand side of (16.5). For the
mixed derivative term it seems not to be possible to exploit the structure of
the differential operator to obtain a fourth-order approximation on a compact
computational stencil. Hence, in order to maintain fourth-order accuracy of the
scheme in the explicit steps of (16.8), the derivatives in each differential operator F0,
F1 and F2 are approximated using classical, fourth-order central difference operators
which operate on a larger 5 � 5-stencil in the spatial domain. Here we use the shift
operator defined by:

sx D e�xıx where .sxu/i; j D uiC1; j; sy D e�yıy where .syu/i; j D ui; jC1:

For F1.u/ D vy
2

uxx � .
vy
2

� r/ux, we have the following scheme:

hvy

2
uxx C



r � vy

2

�
ux

i

i; j
D vyj

2

��s�2
x C 16s�1

x � 30C 16sx � s2x
12�2

x

�
ui; j

C



r � vyj

2

�� s�2
x � 8s�1

x C 8sx � s2x
12�x

�
ui; j C O.�4

x/:

For F2.u/ D .vy/2ˇ

2
uyy C �.vy/˛.��vy/

v
uy, we have:

h .vy/2ˇ

2
uyy C �.vy/˛.� � vy/

v
uy

i

i; j

D .vyj/
2ˇ

2

 �s�2
y C 16s�1

y � 30C 16sy � s2y
12�2

y

!

ui; j

C �.vyj/
˛.� � vyj/

v

 
s�2

y � 8s�1
y C 8sy � s2y
12�y

!

ui; j C O.�4
y/:

Finally, for the mixed derivative term F0 D �.vy/ˇC 1
2 uxy, the following computa-

tional stencil is used:

h
�.vy/ˇC 1

2 uxy

i

i; j

D �.vyj/
ˇC 1

2

�
s�2

x � 8s�1
x C 8sx � s2x
12�x

� 
s�2

y � 8s�1
y C 8sy � s2y
12�y

!

ui; j

C O.�4
x�

4
y/C O.�4

x/C O.�4
y/:
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• u4,1 u4,2 u4,3 u4,4
• u3,1 u3,2 u3,3 u3,4
• u2,1 u2,2 u2,3 u2,4
• u1,1 u1,2 u1,3 u1,4
� ◦ ◦ ◦ ◦

Fig. 16.1 Example: evaluation of F.u2;2/ using the 5� 5-point computational stencil in the lower
left corner of the computational domain; ghost points outside the computational domain at which
values are extrapolated from the interior of the domain are marked by bullets (�,ı,ˇ), grid points
on the boundary are set in Roman

Using these fourth-order approximations, the first and fourth step in (16.8) can be
computed directly. The values at the spatial boundaries for each solution of the ADI
scheme are determined by the boundary conditions, the computational stencil is
required for all remaining points in the spatial domain. For the explicit steps, the
5 � 5-point computational stencil exceeds the spatial boundary when we wish to
approximate differential operator F.u/ at any point along the boundary of the spatial
domain’s inner grid. For example if we wish to evaluate F.u2;2/, we will require
contributions from ghost points which fall outside the spatial domain, as marked
by bullet points in Fig. 16.1. We extrapolate information from grid points u.xi; yj/,
where i D 1; : : : ;M � 1; j D 1; : : : ;N � 1 to establish values at these ghost points
for the purpose of evaluating the differential operator F.u/ at any point along the
boundary of the inner grid of the spatial domain. To calculate the values at these
ghost points, we use the following five-point extrapolation formulae for three cases:

x D L1.
/ : ui;0 D 5ui;1 � 10ui;2 C 10ui;3 � 5ui;4 C ui;5 C O.�5
x/;

y D L2.ı/ : u0; j D 5u1; j � 10u2; j C 10u3; j � 5u4; j C u5; j C O.�5
y/;

x D L1; y D L2.ˇ/ : u0;0 D 5u1;1 � 10u2;2 C 10u3;3 � 5u4;4 C u5;5 C O.�5
x/

C O.�4
x�y/C O.�3

x�
2
y/C O.�2

x�
3
y/C O.�x�

4
y/C O.�5

y/:

The extrapolation at the x D K1 and y D K2 boundaries and the remaining three
corners is handled analogously.

16.6 Solving the High-Order ADI Scheme

Starting from a given Un�1, the ADI scheme (16.8) involves six approximation steps
to obtain Un, the solution at the next time level. The first approximation Y0 can be
solved for explicitly using the 5�5-point computational stencil derived in Sect. 16.5.
The second approximation for our solution, denoted by Y1, has to be solved for
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implicitly:

Y1 DY0 C ��t.F1.Y1/� F1.U
n�1// ” F1.Y1 � Un�1/ D 1

��t
.Y1 � Y0/:

(16.11)

We apply the fourth-order compact scheme established in Sect. 16.4 to solve (16.11).
In matrix form we obtain

Ax.Y1 � Un�1/ D Bx


 1

��t
.Y1 � Y0/

�
C d:

Collecting unknown Y1 terms on the left hand side and known terms Y0, Un�1 and d
on the right hand side we get

.Bx � ��tAx/ Y1 D BxY0 � ��tAxUn�1 � ��td:

To solve, we invert the tri-diagonal matrix .Bx � ��tAx/. For the third step of the
ADI scheme, we proceed analogously, and use the high-order compact scheme
presented in Sect. 16.4 to solve for Y2 implicitly. The fourth, fifth and sixth step
of the ADI scheme are performed analogously as the first, second and third steps,
respectively.

Note that the matrix .Bx � ��tAx/ appears twice in the scheme (16.8), in the
second and fifth step. Similarly,

�
By � ��tAy

�
appears in the third and the sixth step.

Hence, using LU-factorisation, only two matrix inversions are necessary in each
time step of scheme (16.8). Moreover, since the coefficients in the partial differential
Eq. (16.5) do not depend on time, and the matrices are therefore constant, they can
be LU-factorised before iterating in time to obtain a highly efficient algorithm.

The combination of the fourth-order spatial discretisation presented in Sect. 16.4
and 16.5 with the second-order time splitting (16.8) yields a high-order ADI scheme
with order of consistency two in time and four in space.

16.7 Boundary Conditions

For the case of the Dirichlet conditions at x D L1 and x D K1 we impose

u.L1; yj; �k/ D 1 � er�CL1 ; j D 1; 2; : : : ;N; k D 1; 2; : : : ;

u.K1; yj; �k/ D 0; j D 1; 2; : : : ;N; k D 1; 2; : : : :

Using the homogeneous Neumann conditions (16.6d) and (16.6e) which are correct
in the limit y ! 1 and y ! 0, respectively, at the (finite) boundaries y D L2 > 0

and y D K2 would result in a dominant error along these boundaries. Hence, we do
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not impose any boundary condition at these two boundaries but discretise the partial
differential equation using the computational stencil from the interior. The values of
the unknown on the boundaries are set by extrapolation from values in the interior.
This introduces a numerical error, and it needs to be considered that the order of
extrapolation should be high enough not to affect the overall order of accuracy. We
refer to Gustafsson [20] to discuss the influence of the order of the approximation
on the global convergence rate. We use the following extrapolation formulae:

uk
i;1 D 5uk

i;2 � 10uk
i;3 C 10uk

i;4 � 5uk
i;5 C uk

i;6 C O.�6
y/;

uk
i;N D 5uk

i;N�1 � 10uk
i;N�2 C 10uk

i;N�3 � 5uk
i;N�4 C uk

i;N�5 C O.�6
y/:

16.8 Sparse Grid Combination Technique

Due to the ADI splitting and the compactness of the finite difference discretisation
in the implicit steps, the computational effort grows linearly with the number
of unknowns, namely O.N � M/. In the following we use the so-called sparse
grid combination technique to reduce the number of grid nodes and thus also the
computational effort. Sparse grids go back to Smolyak [38], who used them for
numerical integration. Zenger [41], Bungartz et al. [3] and Schiekofer [37] extended
his idea and applied sparse grids to solve PDEs with finite element, finite volume
and finite difference methods. These methods in general require hierarchical, tree-
like data structures, which makes the data structure management more complicated
than in the full grid case. With the help of the sparse grid combination technique
[18] this problem can be overcome. Here, full tensor-based solutions are linearly
combined to construct the sparse grid solution. This allows us to use standard full
grid PDE solvers. Hence, this approach is very versatile and broadly applicable.
Furthermore, each sub-solution can be computed independently, which makes it
easily parallelisable.

The combination technique is based on the error splitting structure of the
underlying numerical scheme. Let the numerical solution of the HO-ADI scheme
be given by ul with multi-index l D .l1; l2/ and mesh widths �x D 2�l1 .K1 � L1/,
�y D 2�l2 .K2�L2/. We assume that our numerical scheme satisfies an error splitting
structure of the form

u � ul D �4
xw1.�x/C�4

yw2.�y/C�4
x�

4
yw1;2.�x; �y/;

with functions w1;w2;w1;2 bounded by some constant C 2 R
C. The mesh widths

�x and�y are independent of one another. Since the error functions w1 and w2 only
depend on either�x or�y, we can subtract two solutions with the same mesh width
in one coordinate direction, such that the error term cancels out. Exploiting this idea
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further leads to the combination technique

us
n D

X

jlj1DnC1
ul �

X

jlj1Dn

ul: (16.12)

Applying the error splitting from above, the lower order terms cancel out and we
obtain

us
n D u C 2�4.nC1/R1w1.2�.nC1/R1/C 2�2.nC1/.R2/w2.2�.nC1/R2/

C 2�4.nC1/R1R2
nC1X

iD0
w1;2.2

�iR1; 2
�.nC1�i/R2/

� 2�4nR1R2

nX

iD0
w1;2.2

�iR1; 2
�.n�i/R2/;

where R1 D K1 � L1 and R2 D K2 � L2. As w1; w2 and w1;2 are bounded by C the
pointwise error is given by

jus
n � uj D O.n2�4n/;

which is equivalent to

jus
n � uj D O.�4 log2.�

�1// (16.13)

for � D 2�n. We observe that the error of the sparse grid combination technique is
deteriorated by a factor of log2.�

�1/ compared to the fourth-order full grid solution.
Figure 16.2 shows the two-dimensional grid hierarchy at levels n D 0; : : : ; 4.

The sparse grid in two dimensions at level n consists of sub-grids, whose sum of
refinement levels fulfils jlj1 D n. Hence the number of grid points on each sub-grid
grows with O.2n/. As the number of grids increases with O.n/, this leads to O.n2n/

nodes in the sparse grid. Let � D 2�n, then this results in O.��1 log2.�
�1// grid

points compared to O.��2/ nodes in the full grid. Thus we are able to reduce the
number of grid nodes significantly while maintaining a high accuracy.

It should be noted that for larger n the combination technique as introduced above
involves solutions on grids which violate the assumption of moderate cell aspect
ratios which may lead to reduced accuracy and potential instability of the scheme
due to the extreme distortion of the grid. This aspect of the combination technique
is of general nature and not specific to our scheme. A usual remedy would be to
exclude solutions on extremely distorted grids in (16.12). For further details we
refer to the pertinent literature on sparse grids.
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Fig. 16.2 Sub-grids and
sparse grid for n D 0; : : : ; 4

16.9 Numerical Experiments

In this section we test the proposed sparse grid high-order ADI scheme. Beside
the accuracy of the full grid solution we are also interested in the efficiency of the
combined sparse grid solution.

It is well known that due to the non-smooth nature of the payoff function in option
pricing problems one cannot expect to see higher-order in practice [34]. Some form
of smoothing has to be applied to the initial condition. In [29] suitable smoothing
operators are identified in Fourier space. Since the order of convergence of our high-
order compact scheme is four, we could use the smoothing operator ˚4 as in [15],
given by its Fourier transformation

O̊
4.!/ D

 
sin
�
!
2

�

!
2

!4 �
1C 2

3
sin2


!
2

��
:

This leads to the smooth initial condition determined by

Qu0 .x; y/ D
3hZ

�3h

3hZ

�3h

˚4

� Qx
h

�
˚4

� Qy
h

�
u0 .x � Qx; y � Qy/ dQx dQy

for any stepsize h > 0, where u0 is the original initial condition and ˚4.x/ denotes
the Fourier inverse of O̊

4.!/, see [29]. As h ! 0, the smooth initial condition
Qu0 tends towards the original initial condition u0 and the approximation of the
smoothed problem tends towards the true solution. For our numerical experiments
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we use this smoothing operator which has already been applied successfully to
option pricing problems in [15].

A numerical solution computed on a grid with �x D � � .K1 � L1/, �y D � �
.K2 � L2/ and time step �t D 5 ��2 serves as a reference solution, where� D 2�8.
Since the accuracy of option prices close to the strike price is of highest interest
from a practitioner’s point of view, we compute the maximum absolute error in the
region Œ0:5E; 2E
� Œ0:05; 1
. The grid parameters of the computational domain are
chosen to be L1 D �5, K1 D 1:5, L2 D 0:05 and K2 D 2:5. The parameters of
the ADI method are  D 1=2 and � D 1=2, cf. Sect. 16.3. The full grid solution
is computed with step sizes �x D � � .K1 � L1/, �y D � � .K2 � L2/ and �t D
5 � �2 with � D 2�n, while the sparse grid solution us

n is constructed according to
definition (16.12). In order to avoid instabilities due to the extreme distortion of the
grid we neglect grids within the combination technique, where li � 2 for i D 1; 2.
Thus, the finest resolution in one of the sub-grids along one coordinate direction is
given by � D 2�.n�3/.

We compare the performance of the high-order ADI scheme in the full and sparse
grid case for a European put option with the parameters given in table in Fig. 16.3.
Figure 16.4 shows the maximum error plotted versus the grid resolution � for both

Fig. 16.3 Parameters used in the numerical experiments

Fig. 16.4 Error decay of the full grid for n D 3; 4; : : : ; 7 and sparse grid combination technique
for n D 6; 7; : : : ; 11
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Fig. 16.5 Error versus computational time for the full grid for n D 3; 4; : : : ; 7 and sparse grid
combination technique for n D 6; 7; : : : ; 11

cases. The fourth-order compact finite difference scheme achieves an estimated
numerical convergence order of 3:33, the error of the sparse grid solution decays
slightly slower due to the logarithmic factor in (16.13).

To illustrate the computational efficiency we compare the run-time to the
accuracy in Fig. 16.5 for both approaches. We confirm that, as the mesh width
decreases, the lower number of employed grid nodes in the sparse grid method
outweighs its slightly lower convergence rate. The serial implementation of the
combination technique outperforms the full grid solver in the high accuracy region,
reducing the computational time by about an order of magnitude, while achieving a
similar accuracy.
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Chapter 17
Essentially High-Order Compact Schemes
with Application to Stochastic Volatility Models
on Non-Uniform Grids

Bertram Düring and Christof Heuer

Abstract We present high-order compact schemes for a linear second-order
parabolic partial differential equation (PDE) with mixed second-order derivative
terms in two spatial dimensions. The schemes are applied to option pricing PDE
for a family of stochastic volatility models. We use a non-uniform grid with more
grid-points around the strike price. The schemes are fourth-order accurate in space
and second-order accurate in time for vanishing correlation. In our numerical
convergence study we achieve fourth-order accuracy also for non-zero correlation.
A combination of Crank-Nicolson and BDF-4 discretisation is applied in time.
Numerical examples confirm that a standard, second-order finite difference scheme
is significantly outperformed.

17.1 Introduction

We consider the following parabolic partial differential equation for u D u.x1; x2; t/
in two spatial dimensions and time,

du� C a1ux1x1 C a2ux2x2 C b12ux1x2 C c1ux1 C c2ux2 D 0 (17.1)

in ˝�
0;T
 DW QT , subject to suitable boundary conditions and initial condition
u.x1; x2; 0/ D u0.x1; x2/ with T > 0 and ˝ D �

x.1/min; x
.1/
max
� � �x.2/min; x

.2/
max
� � R

2 with

x.i/min < x.i/max for i D 1; 2. The functions ai D ai.x1; x2; �/ < 0, b12 D b12.x1; x2; �/,
ci D c.x1; x2; �/, d D d.x1; x2; �/ map QT to R, and ai .�; �/, b .�; �/, ci .�; �/, and
d .�; �/ are assumed to be in C2.˝/ and u .�; t/ 2 C6.˝/ for all � 2
0;T
. We define

B. Düring (�)
Department of Mathematics, University of Sussex, Pevensey II, BN1 9QH Brighton, UK
e-mail: bd80@sussex.ac.uk

C. Heuer
Chair of Applied Mathematics/Numerical Analysis, Bergische Universität Wuppertal, Gaußstraße
20, 42097 Wuppertal, Germany
e-mail: heuer.chr@googlemail.com

© Springer International Publishing AG 2017
M. Ehrhardt et al. (eds.), Novel Methods in Computational Finance,
Mathematics in Industry 25, DOI 10.1007/978-3-319-61282-9_17

313

mailto:bd80@sussex.ac.uk
mailto:heuer.chr@googlemail.com


314 B. Düring and C. Heuer

a uniform spatial grid G with step size �xk in xk direction for k D 1; 2. Setting
f D �du� and applying a standard, second-order central difference approximation
leads to the elliptic problem

f DA0 � a1.�x1/2

12

@4u

@x41
� a2.�x2/2

12

@4u

@x42
� b12.�x1/2

6

@4u

@x31@x2

� b12.�x2/2

6

@4u

@x1@x32
� c1.�x1/2

6

@3u

@x31
� c2.�x2/2

6

@3u

@x32
C ";

(17.2)

with A0 WD a1Dc
1D

c
1Ui1;i2 C a2Dc

2D
c
2Ui1;i2 C b12Dc

1D
c
2Ui1;i2 C c1Dc

1Ui1;i2 C c2Dc
2Ui1;i2 ,

where Dc
k denotes the central difference operator in xk direction, and " 2 O

�
h4
�

if �xk 2 O .h/ for h > 0. We call a finite difference scheme high-order compact
(HOC) if its consistency error is of order O

�
h4
�

for �x1;�x2 2 O .h/ for h > 0,
and it uses only points on the compact stencil, Uk;p with k 2 fi1 � 1; i1; i1 C 1g and

p 2 fi2 � 1; i2; i2 C 1g, to approximate the solution at .xi1 ; xi2 / 2 VG.

17.2 Auxiliary Relations for Higher Derivatives

Our aim is to replace the third- and fourth-order derivatives in (17.2) which are
multiplied by second-order terms by equivalent expressions which can be approxi-
mated with second order on the compact stencil. Indeed, if we differentiate (17.1)
(using f D �du� ) once with respect to xk (k D 1; 2), we obtain relations

@3u

@x31
DA1;

@3u

@x32
D A2; (17.3)

where we can discretise Ai with second order on the compact stencil using the central
difference operator. Analogously, we obtain

@4u

@x41
DB1 � b12

a1

@4u

@x31@x2
” @4u

@x31@x2
D a1

b12
B1 � a1

b12

@4u

@x41
;

@4u

@x42
DB2 � b12

a2

@4u

@x1@x32
” @4u

@x1@x32
D a2

b12
B2 � a2

b12

@4u

@x42
; (17.4)

@4u

@x31@x2
DC1 � a2

a1

@4u

@x1@x32
” @4u

@x1@x32
D C2 � a1

a2

@4u

@x31@x2
;

where we can approximate Bk and Ck with second order on the compact stencil using
the central difference operator. A detailed derivation can be found in [3, 5].
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17.3 Derivation of High-Order Compact Schemes

In general it is not possible to obtain a HOC scheme for (17.1), since there are
four fourth-order derivatives in (17.2), but only three auxiliary equations for these
in (17.4). Hence, we propose four different versions of the numerical schemes,
where only one of the fourth-order derivatives in (17.2) is left as a second-order
remainder term. Using (17.3) and (17.4) in (17.2) we obtain as Version 1 scheme

f DA0 � c1.�x1/2

6
A1 � c2.�x2/2

6
A2 � a2.�x2/2

12
B2 � b12.�x2/2

12
C2

� a1
�
2a2.�x1/2 � a1.�x2/2

�

12a2
B1 C a1

�
a2.�x1/2 � a1.�x2/2

�

12a2

@4u

@x41
C ";

(17.5)

as Version 2 scheme

f DA0 � c1.�x1/2

6
A1 � c2.�x2/2

6
A2 � a1.�x1/2

12
B1 � b12.�x1/2

12
C1

� a2
�
2a1.�x2/2 � a2.�x1/2

�

12a1
B2 C a2

�
a1.�x2/2 � a2.�x1/2

�

12a1

@4u

@x42
C ";

(17.6)

as Version 3 scheme

f DA0 � c1.�x1/2

6
A1 � c2.�x2/2

6
A2 � a1.�x1/2

12
B1 � a2.�x2/2

12
B2

� b12.�x2/2

12
C2 C b12

�
a1.�x2/2 � a2.�x1/2

�

12a2

@4u

@x31@x2
C ";

(17.7)

and, finally, as Version 4 scheme

f DA0 � c1.�x1/2

6
A1 � c2.�x2/2

6
A2 � a1.�x1/2

12
B1 � a2.�x2/2

12
B2

� b12.�x1/2

12
C1 C b12

�
a2.�x1/2 � a1.�x2/2

�

12a1

@4u

@x1@x32
C ":

(17.8)

Employing the central difference operator with�x D �y D h for h > 0 to discretise
Ai; Bi; Ci; in (17.5)–(17.8) and neglecting the remaining lower-order term leads to
four semi-discrete (in space) schemes. A more detailed description of this approach
can be found in [3, 5]. When a1 � a2 or b12 � 0 these schemes are fourth-order
consistent in space, otherwise second-order.
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In time, we apply the implicit BDF4 method on an equidistant time grid with
stepsize k 2 O

�
h
�
. The necessary starting values are obtained using a Crank-

Nicolson time discretisation, where we subdivide the first time steps with a step
size k0 2 O

�
h2
�

to ensure the fourth-order time discretisation in terms of h.
With additional information on the solution of (17.1) even better results are

possible. If the specific combination of pre-factors in (17.1) and the higher
derivatives in the second-order terms is sufficiently small, the second-order term
dominates the computational error only for very small step-sizes h. Before this error
term becomes dominant one can observe a fourth-order numerical convergence.
In this case we call the scheme essentially high-order compact (EHOC).

17.4 Application to Option Pricing

In this section we apply our numerical schemes to an option pricing PDE in a
family of stochastic volatility models, with a generalised square root process for
the variance with nonlinear drift term,

dSt D	Stdt C p
vtStdW.1/

t ; dvt D �v˛t .� � vt/ dt C �
p
vtdW.2/

t ;

with ˛ � 0, a correlated, two-dimensional Brownian motion, dW.1/
t dW.2/

t D �dt,
as well as drift 	 2 R of the stock price S, long run mean � > 0, mean reversion
speed � > 0, and volatility of volatility � > 0. For ˛ D 0 one obtains the standard
Heston model, for ˛ D 1 the SQRN model, see [1]. Using Itô’s lemma and standard
arbitrage arguments, the option price V D V.S; v; t/ solves

@V

@t
C vS2

2

@2V

@S2
C ��vS

@2V

@S@v
C �2v

2

@2V

@v2
C rS

@V

@S
C �v˛ .� � v/

@V

@v
� rV D 0;

(17.9)

where S; � > 0 and t 2 Œ0;TŒ with T > 0. For a European Put with exercise
price K we have the final condition V.S;T/ D max .K � S; 0/. The transformations
� D T � t, u D er�V=K; OS D ln.S=K/; y D v=� as well as OS D ' .x/ [2], lead to

'3x u� C �y

2

�
'xuxx C '3x uyy

� � ��y'2x uxy

C
h�y'xx

2
C

�y

2
� r
�
'2x

i
ux � ��˛y˛

� � �y

�
'3x uy D 0;

with initial condition u.x; y; 0/ D max
�
1 � e'.x/; 0

�
. The function ' is considered

to be four times differentiable and strictly monotone. It is chosen in such a way that
grid points are concentrated around the exercise price K in the S–v plane when using
a uniform grid in the x–y plane.
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Dirichlet boundary conditions are imposed at x D xmin and x D xmax similarly as
in [2],

u.xmin; y; �/ D u.xmin; y; 0/; u.xmax; y; �/ D u.xmax; y; 0/;

for all � 2 Œ0; �max
 and y 2 Œymin; ymax
: At the boundaries y D ymin and y D ymax we
employ the discretisation of the interior spatial domain and extrapolate the resulting
ghost-points using

Ui;�1 D 3Ui;0 � 3Ui;1 C Ui;2 C O
�
h3
�
;

Ui;MC1 D 3Ui;M � 3Ui;M�1 C Ui;M�2 C O
�
h3
�
;

for i D 0; : : : ;N. Third-order extrapolation is sufficient here to ensure overall
fourth-order convergence [4].

17.5 Numerical Experiments

We employ the function '.x/ D sinh.c2x C c1.1� x//=�; where c1 D asinh.� OSmin/,
c2 D asinh.� OSmax/ and � > 0. We use � D 1:1, � D 0:2, v D 0:3, r D 0:05,
K D 100, T D 0:25, vmin D 0:1, vmax D 0:3, Smin D 1:5, Smax D 250, � D 0;�0:4
and � D 7:5. Hence, xmax � xmin D ymax � ymin D 1. For the Crank-Nicolson method
we use k0=h2 D 0:4, for the BDF4 method k=h D 0:1. We smooth the initial
condition according to [3, 6], so that the smoothed initial condition tends towards
the original initial condition for h ! 0. We neglect the case ˛ D 0 (Heston model),
since a numerical study of that case has been performed in [2]. In the numerical
convergence plots we use a reference solution Uref on a fine grid (h D 1=320) and
report the absolute l2-error compared to Uref. The numerical convergence order is
computed from the slope of the linear least square fit of the points in the log-log
plot.

Figure 17.1a shows the transformation from x to S. The transformation focuses on
the region around the strike price. Figures 17.1b–e show that the HOC schemes lead
to a numerical convergence order of about 3:5, whereas the standard, second-order
central difference discretisation (SD) leads to convergence orders of about 2:3, in
the case of vanishing correlation. In all cases with non-vanishing correlation (� ¤ 0)
we observe only slightly improved convergence for Version 1 (V1) when comparing
it to the standard discretisation. Version 2 (V2) and Version 3 (V3), however, lead to
similar convergence orders as the HOC scheme, even for non-vanishing correlation.
Results of Version 4 are not shown as this scheme shows instable behaviour in this
example.
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Fig. 17.1 Transformation of the spatial grid and numerical convergence plots. (a) Transformation
with � D 7:5. (b) HOC: ˛ D 0:25, � D 0. (c) HOC: ˛ D 0:5, � D 0. (d) HOC: ˛ D 0:75, � D 0.
(e) HOC: SQRN model, � D 0. (f) EHOC: ˛ D 0:25, � D �0:4. (g) EHOC: ˛ D 0:5, � D �0:4.
(h) EHOC: ˛ D 0:75, � D �0:4. (i) EHOC: SQRN model, � D �0:4

In summary, we obtain high-order compact schemes for vanishing correlation
and achieve high-order convergence also for non-vanishing correlation for the
family (17.9) of stochastic volatility model. A standard, second-order discretisation
is significantly outperformed in all cases.
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Chapter 18
High Order Compact Schemes for Option
Pricing with Liquidity Shocks

Miglena N. Koleva, Walter Mudzimbabwe, and Lubin G. Vulkov

Abstract This chapter concerns the numerical pricing of European options for
markets with liquidity shocks. We derive and analyze high-order weighted com-
pact finite difference schemes (WCFDS). Numerical simulations for the price
and Greeks, using WCFDS combined with Richardson extrapolation in time are
presented.

18.1 Introduction

We consider the market model of Ludkovski and Shen [8], described by the
parabolic-ordinary system

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ

R0t C 1

2
�2S2R0SS � v01

�
e��.R1�R0/ C .d0 C v01/

�
D 0;

R1t � v10

�
e��.R0�R1/ C v10

�
D 0;

(18.1)

subject with the following terminal conditions

Ri.S;T/ D H.S/; i D 0; 1:

The process is backward in time (T � t � 0) and S � 0 is the underlying asset.
Next, � is the volatility of the stock, �01 is the transition rate from state 0 ! 1, �10
is the transition rate from state 1 ! 0 (assuming that the market has two states:
liquid - 0 and illiquid - 1), d0 D 	=.2�2/, while 	 is the drift.

Numerical solution of this problem is considered in [5, 9]. In this chapter we will
extend the results in [5] and construct high-order weighted compact finite difference
scheme (WCFDS) for the model problem.
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Just as in [5, 8, 9] we are interesting in buyer indifference prices p, q, which
satisfy the semi-parabolic system

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

pt C 1

2
�2S2pSS � v01

�

F1
F0

e��.q�p/ C .d0 C v01/

�
� 1

�

F0
0

F0
D 0;

qt � v10

�

F0
F1

e��. p�q/ C v10

�
� 1

�

F0
1

F1
D 0;

(18.2)

where S 2 R
C, 0 � t � T and p.S;T/ D q.S;T/ D H.S/.

We transform this system in a suitable for our numerical method form [5, 8,
9]. For this purpose, we set eu WD �R0, ev D �R1. Then, taking into account that
e�. p�R0/ D F0.t/ and e�.q�R1/ D F1.t/, i.e.

p D R0 C ��1 ln F0.t/ D ��1 .eu C ln F0.t// ;

q D R1 C ��1 ln F1.t/ D ��1 .ev C ln F1.t// ;

a comparison principle in . p; q/ solutions will be equivalent to a comparison
principle for the .eu;ev / variables.

It is easily to check that the pair .eu;ev/ satisfies the problem:

ˇ
ˇ̌
ˇ
ˇ
eut C 1

2
�2S2euSS D ae�.ev�eu / � b;

evt D ce�.eu�ev / � c;
(18.3)

where a D �01, b D �01 C d0, c D �10 andeu.S;T/ D �H.S/,ev.S;T/ D �H.S/.
As in many models in financial mathematics [2, 10], in order to to formulate our

model as initial value problem, to overcome the degeneration and simultaneously to
remove the reaction term, we use the substitution

� D T � t; x D ln S; u D e� x
2� �2�

8 eu; v Dev: (18.4)

Thus, from (18.3) we obtain the following initial value parabolic-ordinary system

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

u� � 1

2
�2uxx D e� x

2� �2�
8 .�aeue

x
2C

�2�
8 �v C b/; x 2 R; 0 � � � T;

v� D �ce�ue
x
2C

�2�
8 Cv C c; x 2 R; 0 � � � T;

(18.5)

u.x; 0/ D �e� x
2 H.ex/; v.x; 0/ D �H.ex/; x 2 R:
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Also, the writer’s indifference price pw.S; t/ and qw.S; t/ are solutions of the
problem, see [8, Remark 4.6]

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

pw
t C 1

2
�2S2pw

SS C v01

�

F1
F0

e�.q
w�pw/ � .d0 C v01/

�
C 1

�

F0
0

F0
D 0;

qw
t C v10

�

F0
F1

e�. pw�qw/ � v10

�
C 1

�

F0
1

F1
D 0;

where S 2 R
C, 0 � t � T and pw.S;T/ D qw.S;T/ D H.S/.

Next, applying the transformation

pw D R0 � ��1 ln F0.t/ D ��1 .eu � ln F0.t// ;

qw D R1 � ��1 ln F1.t/ D ��1 .ev � ln F1.t// ;

in combination with (18.4) we have

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

u� � 1

2
�2uxx D e� x

2� �2�
8 .ae�ue

x
2C

�2�
8 Cv � b/; x 2 R; 0 � � � T;

v� D ceue
x
2C

�2�
8 �v � c; x 2 R; 0 � � � T;

(18.6)

u.x; 0/ D �e� x
2 H.ex/; v.x; 0/ D �H.ex/; x 2 R:

In what follows, we will solve the problem (18.5), corresponding to option
buyer’s price model (18.2).

18.2 Construction and Analysis of WCFDS

There are a number of methods in the literature for solving non-linear parabolic and
hyperbolic problems, but the results in the case of exponential non-linear term are
scarce [11]. Efficient finite difference schemes for model (18.2) are constructed and
analyzed in [5, 9]. The numerical scheme, presented in [9] is of second order in
space, while in [5] is developed implicit-explicit compact finite difference schemes
(CFDS). For a single PDEs in finance, CFDS are proposed in many papers, see e.g.
[2, 3, 7].

In this section we construct a weighted fourth-order in space compact finite
difference scheme for problem (18.5). In the same manner can be obtained WCFDS
for the problem (18.6).

The discretization of problem (18.5) is based on the Padé approximation. Let
ŒL�;LC
 is the computational interval. We consider Dirichlet boundary condi-
tions U0.L�; t/, UN.LC; t/, which corresponds to boundary conditions (u�.eL�

; t/,
uC.eLC

; t/) of the model (18.2).
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First, we approximate the system (18.5) in time. To this aim, we introduce
uniform mesh in time, with step size 4� and �nC1 D n4� , n D 0; 1; : : : . Further
we use the following notations

� WD �.x/ D �.x; �n/; b� WDb�.x/ De�.x; �nC1/;

g1.u; v; x; �/ WD e� x
2� �2�

8 .�aeue
x
2C

�2�
8 �v C b/;

g2.u; v; x; �/ WD �ce�ue
x
2C

�2�
8 Cv C c:

Thus, for �1 2 Œ0; 1
 and �2 2 Œ0; 1
, the semi-discretization in time of (18.5)
reads as follows

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ

bu � u

4� � 1

2
�1�

2bu 00 � 1

2
.1 � �1/�2u00 D �2bg1 C .1 � �2/g1; x 2 R;

bv � v
4� D �2bg2 C .1 � �2/g2; x 2 R;

(18.7)

wherebg1 D g1.bu;bv; x; �nC1/, g1 D g1.u; v; x; �n/.
Let us consider the uniform partition of the space interval and define the mesh

!h D fxi W xi D L� C ih; i D 0; : : : ;N; h D .LC � L�/=Ng. Using the notation
ui D u.xi/, we define the second-order central finite difference approximation by

ı2x ui D uiC1 � 2ui C ui�1
h2

:

Applying Taylor series expansion for the second derivative approximation of the
solution u in the first equation of (18.7), we obtain

�1ı
2
xbui C .1 � �1/ı2x ui D �1bu00

i C .1 � �1/u
00
i

C h2

12

�
ı2x�1bu

00
i C ı2x .1 � �1/u00

i C O.h2/
�C O.h4/:

(18.8)

Substituting �1bu00
i C .1 � �1/u00

i from (18.7) in (18.8) and multiplying the resulting
equation by ��2=2, for the first equation in (18.7) we find

��
2

2

�
�1ı

2
xbu C .1 � �1/ı2x u

�

D
�
1C h2

12
ı2x

��
u �bu
4� C �2bg1 C .1 � �2/g1

�
C O.h4/:

(18.9)

This formula enable to construct different difference schemes for problem (18.6).
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Let Ui and Vi are discrete approximations of u.xi/ and v.xi/, respectively and
U D .U0;U1; : : : ;UN/

T , V D .V0;V1; : : : ;VN/
T . In view of (18.7) and (18.9), e.g.

see [1] we derive the full discretization of (18.5)

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

��
2

2



�1ı

2
x
bU C .1 � �1/ı2x U

�

D
�
1C h2

12
ı2x

� 
U � bU

4� C �2bg1 C .1 � �2/g1
!

;

bV � V

4� D �2bg2 C .1 � �2/g2;

(18.10)

U0 D u.x; 0/; V0 D v.x; 0/;

bU0 D �e� L�

2 � �2�
8 u�.eL�

; �nC1/; bUN D �e� LC

2 � �2�
8 uC.eLC

; �nC1/:

The local truncation errors of the first and second equations in (18.10) are

Tr.U/ D 1

2

�
�2

2
.2�1 � 1/u00

� C .2�2 � 1/u��
�

4�

C1

4

�
�2

4
u00
�� C 1

3
u���

�
.4�/2

C 1

24

�
�2

2
.2�1 � 1/uiv

� C .2�2 � 1/u00
��

�
4�h2

C 1

48

�
�2

4
uiv
�� � 1

3
u00
���

�
.4�/2h2 � �2

480
uvih4;

Tr.V/ D .2�2 � 1/
v��

2
4� C v���

12
.4�/2;

where .�/� WD @.�/
@�

, .�/0 WD @.�/
@x at point .x; �/, x 2 .xi � h; xi C h/, � 2 .�n; �n C 4�/.

For the solution of the numerical scheme (18.10), �1 D 1 and �2 D 0 in [5] is
proved the following convergence result.

Theorem 18.1 ([5]) Suppose that there exists a classical solution .u; v/ 2 C6;2.QT/

of problem (18.5) on QT D .�L;L/ � .0;T/. Then for sufficiently small h and 4�
the following error estimate holds:

ku � Uk1 C kv � Vk1 � C.4� C 4�h2 C h4/;

where the constant C > 0 doesn’t depend on h and 4� .
The same result can be established for WCFDS, �1 D �2 D 1 and �1 D �2 D 0.

For Crank-Nicolson scheme, i.e. WCFDS, �1 D �2 D 0:5 we establish a high-order
of convergence

ku � Uk1 C kv � Vk1 � C.4�2 C 4�2h2 C h4/: (18.11)
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In the case �2 > 0, we solve the system of non-linear equations (18.10) by
classical Newton method. The iteration process continues until the difference (in
maximal discrete norm) between two consecutive iterations, for both solutions U
and V is less than given tolerance tol.

18.3 Numerical Simulations

We test the efficiency, accuracy and the order of convergence in maximal discrete
norm (k � k) of the numerical solution of the model (18.1), � D 0:2, � D 1, 	0 D
0:06, T D 0:5, �01 D 1, �10 D 12. Also, we verify the convergence rate of the
numerical buyer’s and writer’s indifference prices, computed by WCFDS (18.10)
and the corresponding WCFDS for writer’s price. To this aim we use the following
formula

CRW D log2
kWN=2 � WNk
kWN � W2Nk ;

where WN WD ŒW0; : : : ;WN 

> is the computed numerical solution for buyer’s price

or writer’s price at final time T.
For the test example we choose the payoff function H.S/ D max.0; S�E/, where

E is the strike price. Thus, the compatibility with initial data, boundary conditions
are u� D H.L�/ and uC D H.LC/.

The computations are performed in two domains: ˝1 D Œ�5; 5
 and ˝2 D
Œ�5 ln 2; 5 ln 2
 for E D 2. Note that E D 2 is a grid node of the original mesh
S in ˝2. In the case �2 > 0, we choose the tol D 1:e � 6 for the iteration process.

To improve the order of convergence in time, we implement active Richardson
extrapolation (RE) [4]

fW N D 2�WN.4�=2/� WN.4�/
2� � 1 ; (18.12)

where WN.4�/ is the numerical solution computed for time step 4� and � is the
order of convergence of the underlying numerical method. Then, eWN is of order
�C 1.

Regarding to [6], we cannot obtain fourth order convergence in space for the
given pay off function, because it is not smooth. We smooth the function H.x/ D
max.0; ex � E/ and therefore the initial conditions u0.x/ D u.x; 0/ and v0.x/ D
v.x; 0/ of (18.5). Following the results in [6], we use the smoothing operators ˚4,
given by its Fourier transform b̊

4

b̊
4 D

�
sin .w=2/

w=2

�4 �
1C 2

3
sin2.w=2/

�
:
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The resulting smooth function is

eH.x�/ D 1

h

3hZ

�3h

˚4


 x

h

�
H.x� � x/dx;

where ˚4 is the Fourier inverse of b̊4. This technique is used only for grid nodes
near by point ln E. In smooth regions remains the original initial function. Similar
smoothing technique is applied in [3].

The resulting smooth function, converges to the original function H as h ! 0.
Moreover, the solution of the smoothed problem converges (with high-order rate) to
the solution of (18.5), see [6].

Taking into account Theorem 18.1, if we apply active Richardson extrapola-
tion (18.12), � D 1, the likely order of convergence of the numerical solution is
O.4�2 C 4�2h2 C h4/. Further, to verify this convergence rate, both in space and
time, we perform the numerical test with fixed ratio 4� D h2. The same is for the
fully implicit CFDS (�1 D �2 D 1) and the explicit CFDS (�1 D �2 D 0).

To verify the estimate (18.11), for �1 D �2 D 0:5 we perform the computations
with time step 4� D h2. If the Richardson extrapolation (18.12), � D 2 is used,
then the expected convergence is O.4�3C4�3h2Ch4/ and it is naturally to choose
4� D h4=3 to confirm this order, both in space and time.

We give the results for indifference writer’s price per contract pw, indifference
buyer’s price per contract p and the corresponding option values R0.

In Table 18.1 is presented the order of convergence of the numerical solutions
p and pw, obtained from U, solving (18.10) (for (18.5) and (18.6)) with WCFDS,
�1 D 1, �2 D 0 and applying Richardson extrapolation, � D 1. We observe that the
order of convergence in space is closed to four, and because of the fixed time-space
space size ratio (4� D h2), we can conclude that the convergence rate in time is not
less than two.

In Table 18.2 are listed the buyer’s and writer’ values of R0 at point S D E in
˝2, obtained as before from U with WCFDS, �1 D 1, �2 D 0. Here ‘diff’ is the
absolute value of the difference between solutions, computed on two consecutive
space meshes. The given order of convergence in space is at strike point S D E.

In Table 18.3 we give the buyer’s values of R0 at point S D E in ˝2 and
corresponding order of convergence, obtained from U with WCFDS, �1 D �2 D 0:5

for 4t D h2 without Richardson extrapolation and for 4t D h4=3 with Richardson

Table 18.1 CRp and CRpw
in

discrete maximum norm,
corresponding to buyer’s and
writer’s prices

Numerical buyer’s price Numerical writer’s price

N ˝1 ˝2 ˝1 ˝2

40 3:3125 2:8886 3:3352 2:8423

80 3:1405 3:3780 3:1413 3:3958

160 3:5548 3:6732 3:5936 3:7403

320 3:7489 3:8577 3:8427 4:0178
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Table 18.2 Values of R0 and convergence rate (CR) at point E, corresponding to buyer’s price

Buyer’s price Writer’s price

N R0 diff CR R0 diff CR

20 0:1569522 0:1137874

40 0:1337066 2.32456e-2 2:8886 0:0915802 2.22072e-2 2:8423

80 0:1305678 3.13885e-3 3:3780 0:0884836 3.09657e-3 3:3958

160 0:1302659 3.01911e-4 3:6732 0:0881894 2.94203e-4 3:7403

320 0:1302422 2.36673e-5 3:8577 0:0881674 2.20150e-5 4:0183

640 0:1302406 1.63251e-6 0:0881660 1.35863e-6

Table 18.3 Values of R0 for buyer’s price, convergence rate (CR) at point E and number of
iterations (it(4t)), WCFDS, �1 D �2 D 0:5

4t D h2 4t D h4=3 with RE, � D 2

N R0 CR it(4t) R0 CR it(4t)+it(4t=2)

20 0:1555562 4 0:1555440 5.50+4

40 0:1336810 2:8127 3 0:1336764 2:8141 4+3.80

80 0:1305675 3:3674 2:97 0:1305669 3:3686 3+3

160 0:1302658 3:6719 2 0:1302658 3:6713 3+2.98

320 0:1302422 3:8576 2 0:1302422 3:8602 2.99+2

640 0:1302406 2 0:1302406 2+2

Table 18.4 Values of R0 for buyer’s price, convergence rate (CR) at point E and number of
iterations (it(4t)), WCFDS, �1 D �2 D 1, Richardson extrapolation, � D 1

N R0 diff CR it(4t)+it(4t=2)

20 0:1555382 5+4

40 0:1336685 2.18695e-2 2:8172 3.76+3

80 0:1305656 3.10292e-3 3:3711 3+2.95

160 0:1302657 2.99894e-4 3:6708 3+2.65

320 0:1302422 2.35480e-5 3:8571 2+2

640 0:1302406 1.62501e-6 2+2

extrapolation with � D 2. We show the average number of iterations it(4t) at
each time level, resulting from the mesh with time step size 4t. Similar results
for WCFDS, �1 D �2 D 1, combined with Richardson extrapolation, � D 1 are
given in Table 18.4.

In Table 18.5 we compare CPU times (in seconds) of WCFDS for different values
of �1 and �2, with or without Richardson extrapolation, reaching one and the same
value R0.E;T/ D 0:13024056 for buyer’s price.
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Table 18.5 CPU times of WCFDS for different values of �1 and �2, with or without RE

�1 D �2 D 0:5 �1 D �2 D 0 �1 D 1, �2 D 0 �1 D �2 D 0:5 �1 D �2 D 1

RE, � D 2 RE, � D 1 RE, � D 1 RE, � D 1

22.02 109.74 112.24 149.36 449.70
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Fig. 18.1 Numerical Greek Delta of R0 (left) and R1 (right) for buyer’s price, 0 � t � 1

It is not a surprise that, the highest-order Crank-Nicolson CFDS (�1 D �2 D 0:5),
combined with Richardson extrapolation, � D 2 is faster than the other methods,
although for coarse meshes, the algorithm requires a little bit more iterations (in
comparison with fully implicit scheme) to reach the desired precision.

We observe a very good efficiency of the semi-implicit CFDS (�1 D 1, �2 D
0). The reason is that the method does not require iterations and computation,
respectively updated, of the derivatives of g1.�/, g2.�/ at each new time level/iteration
(as is for the schemes with �2 > 0), the coefficient matrix is one and the same at each
time level (as is for the explicit scheme), so the matrix inversion performs only ones
for the whole computational process. Another advantage of the WCFDS, �1 D 1,
�2 D 0 is that the stability region is closed to the one of the fully implicit CFDS
(�1 D 1, �2 D 1).

On Figs. 18.1, 18.2 we plot the graphics of the numerical Greek Delta (first spatial
derivative of the option value) and Greek Gamma (second spatial derivative of the
option value), of R0 and R1 for buyer’s price, computed in ˝1 by WCFDS, �1 D 1,
�2 D 0 for E D 70, N D 321, 4� D 0:05.
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Fig. 18.2 Numerical Greek Gamma of R0 (left) and R1 (right) for buyer’s price, 0 � t < 1

18.4 Conclusions

In this chapter we construct high-order weighted compact finite difference schemes
for computing options values with liquidity shock. In order to improve the order of
convergence in time, we apply Richardson extrapolation. Numerical test confirm the
higher order of convergence of the presented WCFDS. We compare the efficiency
of the presented method for different values of the weights.

Tables 18.1 and 18.2 are reproduction from [5] with permission of Springer,
License number 4045290562481/Feb. 10, 2017.
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Chapter 19
Alternating Direction Explicit Methods
for Linear, Nonlinear and Multi-Dimensional
Black-Scholes Models

Zuzana Bučková, Matthias Ehrhardt, Michael Günther, and Pedro Pólvora

Abstract In this chapter we discuss Alternating direction explicit (ADE) methods
for one-dimensional convection diffusion equations and their numerical analysis
including stability, consistency and convergence results. We propose ADE schemes
for the two and three dimensional linear Black-Scholes pricing model. Our imple-
mented methodology can be easily extended to higher dimensions. Extension for
nonlinear Frey and Patie model is included at the end of this chapter where the
nonlinear part is treated explicitly (This chapter is a shortened version of the papers
(Bučková et al., Acta Math Univ Comen 84:309–325, 2015; Bučková et al., AIP
Conf Proc 1773:030001, 2016.)).

19.1 Introduction

We focus in this chapter on the ADE methods, as an efficient scheme, which ,
can be used for a wide range of financial problems. We have considered the ADE
method, that strongly uses boundary data in the solution algorithm and hence it is
very sensible to incorrect treatment of boundary conditions. We have implemented
the ADE scheme for solving linear and nonlinear BS equations by treating the
nonlinearity explicitly. ADE scheme consists of two steps (sweeps). In the first step
an upward sweeping is used and in the second step on downward sweeping is used
and they are combined after each time step. To our knowledge, the ADE scheme has
not been applied to nonlinear PDEs before.
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It can compete to the Crank-Nicolson scheme, Alternating Direction Implicit
(ADI) and locally one-dimensional LOD splitting method. ADI methods and
Splitting methods are examples of the Multiplicative Operator Scheme (MOS),
which is difficult to parallelize. Methods from the family of Additive Operator
Scheme (AOS) can be parallelized. ADE methods also belong to this group of
methods. The ADE scheme consists of two explicit sweeps. The sweeping procedure
is done from one boundary to another and vice versa. To our knowledge, the ADE
scheme has not been applied to higher dimensional or nonlinear PDEs before.

We consider the Black-Scholes (BS) equation which is a parabolic PDE with
space dependent coefficients:

vt D 1

2
�2S2vSS C rSvS � rv; t � 0; 8S 2 R; (19.1)

where the solution v.S; t/ stands for a European option price. A European call (put)
option is a contract between its buyer and holder, to buy (sell) a stock at the maturity
time T (final time) for the fixed price K, called also strike price. The solution of the
linear equation (19.1) is given in closed form formula and it is known as the Black-
Scholes formula. Black-Scholes equation is derived under strict assumptions in the
market, such as no transaction costs, illiquidity, etc. Modelling this phenomenon in
a more realistic way, it leads to the nonlinear BS model which does not have any
more analytical solution.

Since the ADE scheme is explicit, stable and thus efficient, it represents a
good candidate to compute the numerical solution of multi-dimensional models in
finance.

Here we present the implementation of the ADE schemes to two and three
dimensional models appearing in finance, esp. the multi-dimensional linear Black-
Scholes model. One of the advantages of this approach is that its fundamental
implementation set-up can be transferred to higher dimensions. We study a financial
derivative that can be exercised only at a pre-fixed maturity time T (commonly
referred as ‘European’ option) and whose payoff depends on the value of N
financial assets with prices S1; : : : ; SN . We assume a financial market with the
standard Black-Scholes assumptions, explained in details e.g. in [15]. Although
this is very restrictive from the modelling point of view, it is enough to illustrate
the implementation of the ADE schemes in a high-dimensional setting. Under
this model the price of a derivative V.S1; : : : ; SN ; �/ is given by the following
N�dimensional linear parabolic PDE:

@V

@�
D

NX

iD1

NX

jD1

�ijSiSj

2

@2V

@Si@Sj
C

NX

iD1
rSi
@V

@Si
� rV; � � 0; 8S 2 R

C
0 ; (19.2)

where r denotes the risk-free interest rate, � D T � t is the remaining time to the
maturity time T and we have the covariance matrix � ,

�ij � �ij�i�j; i; j D 1; : : : ;N; (19.3)
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with �ij being the correlation between asset i and j and �i the standard deviation of
the asset i. Additionally we have an initial condition which is defined by the payoff
of the option,

V.S1; : : : ; SN ; 0/ D ˚.S1; : : : ; SN/: (19.4)

We obtain different models by choosing different numbers of underlying assets
(i.e. the number of spatial variables) and defining different payoff functions with
corresponding initial conditions. Here we consider both spread options and call
options, which have payoffs given by:

2� D Spread option: V.S1; S2; 0/ D max.S1 � S2 � K; 0/;

N � D Call option: V.S1; : : : ; SN ; 0/ D max.max.S1; : : : ; SN/ � K; 0//:

19.2 Alternating Direction Explicit Schemes

ADE schemes are efficient finite-difference schemes to solve PDEs where the
discretization of the spatial derivatives is made using available information of both
the current and the previous time-steps such that the solution can be determined
without solving a linear system of equations.

ADE schemes were proposed by Saul’ev [12] in 1957, later developed by Larkin
[8], Bakarat and Clark [2] in 1964–66. More recently, these schemes have received
some attention by Duffy [5, 6] 2013 and Leung and Osher [9] 2005 who have studied
and applied these schemes in both financial modelling and other applications.

Some advantages of the ADE methods are that they can be implemented in a
parallel framework and are very fast due to their explicitness; for a complete survey
on the advantages and the motivation to use them in a wide range of problems we
refer the reader to [5, 6].

Numerical analysis results focusing on stability and consistency considerations
are described in [9] and [3]. In [3] a numerical analysis of convection-diffusion-
reaction equation with constant coefficients and smooth initial data is provided.
The authors proved that the ADE method applied to the one-dimensional reaction-
diffusion equation on a uniform mesh with the discretization of the diffusion
according to Saul’ev [12] and the discretization of the convection term following
Towler and Yang [13] is unconditionally stable. If a convection term is added to the
equation and upwind discretization for this term is used, the ADE scheme is also
unconditionally stable cf. [3].

In the ADE schemes one computes for each time level two different solutions
which are referred to as sweeps. Hereby the number of sweeps does not depend on
the dimension. It has been shown [3, 5, 9] that for the upward and downward sweep
the consistency is of order O..d�/2 C h2 C d�

h / where d� is the time step and h
denotes the space step. An exceptionality of the ADE method is that the average of
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upward and downward solutions has consistency of order O..d�/2 C h2/. For linear
models, unconditional stability results and the O..d�/2 C h2/ order of consistency
lead to the O..d�/2 C h2/ convergence order.

Stability, consistency and convergence analysis can be extended to higher
dimensional models.

The straightforward implementation to nonlinear cases with preserving good
stability and consistency properties of the scheme is also a strong advantage.
We show how one can implement this scheme for higher dimensional models by
focusing on a linear model. The procedure is implemented for non-linear models
as well. One way how to do it is to solve nonlinear equation in each time level,
instead of system of nonlinear equations in case of implicit schemes. Another way
is to keep nonlinearity in the explicit form and solve it directly. Powerful tool for
nonlinear equations represents also the Alternating segment explicit-implicit and the
implicit-explicit parallel difference method [16].

19.2.1 The Idea of the ADE scheme

The ADE scheme consists of two explicit sub steps, called sweeps. A sweeping
step is constructed from one boundary to another and vice versa. Figure 19.1 is
an illustrative example of an upward sweep (analogous to the downward sweep in
Fig. 19.2).

Figures 19.1 and 19.2 display the grid for the calculating the price of call
option in the Black-Scholes model. The blue line represents the payoff as an initial
condition and the green lines are given by Dirichlet boundary conditions for small
and big asset values. The calculation is provided backward in time.

To calculate the value of the yellow point we use the black values. We can see
that we do not use only values from the previous time level but also already known
values from the current time level, which preserve explicitness of the scheme. After

Fig. 19.1 Upward sweep
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Fig. 19.2 Downward sweep

each time level we combine the solutions from the upward and downward sweep by
averaging.

To introduce the ADE method systematically we follow the lines of Leung
and Osher [9], and Duffy [5]. The computational spatial interval .xmin; xmax/, or
.0; Smax/, respectively, is divided into J subintervals, i.e. the space step is h D
.xmax � xmin/=J and the grid points xj D jh, or h D Smax=J, Sj D jh, respectively.
Thus we get for the coefficients of the BS equation (19.1) a.Sj/ D 1

2
�2. jh/2,

b.Sj/ D rjh, c.Sj/ D r.
We consider the resulting spatial semidiscretization to the PDE (19.1), i.e. the

following system of ODEs

v0 D A.v/v; t > 0; (19.5)

with v.t/ 2 R
J�1. Let us consider for simplicity a uniform grid; the time interval

Œ0;T
 is divided uniformly into N sub-intervals, with the step size k D T=N, i.e. we
have the grid points tn D nk. Applying the trapezoidal rule to (19.5) leads to the
Crank-Nicolson scheme

vnC1 D �
I � kA.vn/

��1�
I C kA.vn/

�
vn; (19.6)

where vn � v.tn/. While this classical scheme (19.6) is unconditionally stable and
of second order in time and space, it becomes computationally expensive to invert
the operator I � kA.vn/ especially in higher space dimensions. In order to obtain an
efficient scheme while keeping the other desirable properties, this operator is split
additively by the matrix decomposition A D L C D C U, where L is lower diagonal,
D is diagonal and U denotes an upper-diagonal matrix. Next, following the notation
of [9] we further define the symmetric splitting

B D L C 1

2
D; C D U C 1

2
D: (19.7)
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Then we can formulate the three steps of the ADE scheme with its upward/down-
ward sweeps and the combination (also for higher dimensions) as

UP unC1 D �
I � kB.vn/

��1�
I C kC.vn/

�
vn; (19.8)

DOWN dnC1 D �
I � kC.vn/

��1�
I C kB.vn/

�
vn; (19.9)

COMB vnC1 D 1

2

�
unC1 C dnC1�: (19.10)

In other words, in the two sweeps above we assign the solution values that are
already computed on the new time level to the operator to be inverted. Hence, the
resulting scheme is explicit, i.e. efficient. There remain the questions, if we could
preserve the unconditional stability and second order accuracy. This will be our
main topic in the sequel.

Let us summarize the procedure for one space dimension. The approximation to
the solution v.x; t/ at the grid point .xj; tn/ is c.xj; tn/ DW cn

j given as an average of
upward sweep un

j and downward sweep dn
j . This combination cn

j contains the initial
data at the beginning. For n D 0; 1; : : : ;N � 1 we repeat the following steps:

1. Initialization: un
j D cn

j ; dn
j D cn

j ; j D 1; : : : ; J � 1

2. Upward sweep: unC1
j ; j D 1; : : : ; J � 1

3. Downward sweep: dnC1
j ; j D J � 1; : : : ; 1

4. Combination: cnC1 D .unC1 C dnC1/=2

Using different approximation strategies for the convection, diffusion and reaction
terms we obtain different variations of the ADE schemes, which were proposed by
Saul’ev [12].

19.2.2 Solving PDEs with the ADE Method

We start considering the partial differential equation (PDE)

vt D a vxx C b vx � c v; t � 0; 8x 2 R; (19.11)

with the constant coefficients a � const: > 0, b � 0, c � 0 and supplied with
smooth initial data. We denote the analytical classical solution of (19.11) by v WD
v.x; t/ and use subscripts to abbreviate partial differentiation, e.g. vxx WD @2v=@x2.

Secondly, we will consider the classical linear Black-Scholes (BS) equation

vt D 1

2
�2S2vSS C rSvS � rv; t � 0; 8S 2 R; (19.12)
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which is a generalization of the PDE (19.11) to space dependent coefficients. In
computational finance a solution v.S; t/ of the PDE (19.12) represents a European
option price. A European option is a contract between the holder of the option
and the future buyer, that at a time instance T, the expiration time, the underlying
asset (stock) can be sold or bought (call or put option) for a fixed strike price K.
Using the Black-Scholes formula the option price is calculated for the corresponding
underlying asset price S (stock price) in a time interval t 2 .0;T/.

Let us note that the BS equation (19.12) is derived under quite restrictive market
assumptions, which are not very realistic. Relaxing these assumptions leads to new
models (e.g. including transaction costs, illiquidity on the market) that are strongly
nonlinear BS equations that can only be solved analytically in very simple cases.

While there exist analytical tools to solve explicitly (19.11) and (19.12), the
interest in studying the ADE method for these simple 1D cases is the fact that we
want to extend this approach in a subsequent work to nonlinear PDEs and to higher
dimensions. Applying the ADE to the nonlinear BS equations we need to solve only
a scalar nonlinear equation (instead of a nonlinear system of equations for a standard
implicit method). Thus, the computational effort using ADE instead of an implicit
scheme is highly reduced. Also, for higher space dimensions the number of ADE
sweeps does not increase, it remains two. These facts make the ADE methods an
attractive candidate to study them in more detail.

19.2.3 The Modified Difference Quotients for the ADE Method

In this subsection we want to illustrate the outcome of the previous Sect. 19.2.1.
Thus, we select some spatial discretization and investigate which ADE scheme will
result.

For the discretization of the diffusion term we use, cf. [12]

@2v.xj; tn/

@x2
� un

jC1 � un
j � unC1

j C unC1
j�1

h2
; j D 1; : : : ; J � 1

@2v.xj; tn/

@x2
� dnC1

jC1 � dnC1
j � dn

j C dn
j�1

h2
; j D J � 1; : : : ; 1:

(19.13)

In order to obtain a symmetric scheme we use the following approximations of
the reaction term, the same for the upward and downward sweep

v.xj; tn/ � unC1
j C un

j

2
; j D 1; : : : ; J � 1;

v.xj; tn/ � dnC1
j C dn

j

2
; j D J � 1; : : : ; 1:

(19.14)
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Different approximations of the convection term are possible [4, 9]. In the following
we state three of them. First, Towler and Yang [13] used special kind of centered
differences

@v.xj; tn/

@x
� un

jC1 � unC1
j�1

2h
; j D 1; : : : ; J � 1;

@v.xj; tn/

@x
� dnC1

jC1 � dn
j�1

2h
; j D J � 1; : : : ; 1:

(19.15)

More accurate approximations were proposed by Roberts and Weiss [11], Piacsek
and Williams [10]

@v.xj; tn/

@x
� un

jC1 � un
j C unC1

j � unC1
j�1

2h
; j D 1; : : : ; J � 1;

@v.xj; tn/

@x
� dnC1

jC1 � dnC1
j C dn

j � dn
j�1

2h
; j D J � 1; : : : ; 1:

(19.16)

As a third option we will use upwind approximations combined with the ADE
technique. Since we have in mind financial applications we will focus on left going
waves, i.e. b > 0 in (19.11). Right going waves b < 0 are treated analogously.

The well-known first order approximation reads

@v.xj; t/

@x
� vjC1.t/ � vj.t/

h
j D J � 1; : : : ; 1; (19.17)

and the forward difference of second order [14]

@v.xj; t/

@x
� �vjC2.t/C 4vjC1.t/ � 3vj.t/

2h
; j D J � 1; : : : ; 1: (19.18)

Applying the ADE time splitting idea of Sect. 19.2.1 we obtain for the upwind
strategy (19.17)

@v.xj; tnC1/
@x

� un
jC1 � un

j

h
; j D 1; : : : ; J � 1;

@v.xj; tnC1/
@x

� dn
jC1 � dn

j C dnC1
jC1 � dnC1

j

2h
; j D J � 1; : : : ; 1;

(19.19)

and for the second order approximation

@v.xj; tnC1/
@x

�
�un

jC2 C 4un
jC1 � 3un

j

2h
; j D 1; : : : ; J � 1;

@v.xj; tnC1/
@x

�
�dn

jC2 C 4dn
jC1 � 3dn

j � dnC1
jC2 C 4dnC1

jC1 � 3dnC1
j

4h
; j D J � 1; : : : ; 1:

(19.20)

We will show that this upwind approximation (19.19) leads to a stable scheme.
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19.3 Stability of the ADE Method

In this section we investigate the stability of the proposed ADE method using
the matrix approach in Sect. 19.3.1 and the classical von Neumann method in
Sect. 19.3.2. For the convection-diffusion-reaction equation (19.11) we obtain
unconditional stability using the matrix approach. This stability analysis can be
extended by adding homogeneous BCs, without affecting the stability results. This
is our motivation to deal with the matrix approach.

19.3.1 Stability Analysis Using the Matrix Approach

We are motivated by [9], where the authors claim and proof that “if A is symmetric
negative definite, the ADE scheme is unconditionally stable”. We have to define
symmetric discretization quotients to get symmetric discrete operators. For reaction-
diffusion equation applying central difference quotients we get symmetric operator
A and we can follow the ideas for the proof for the heat equation from [9].

Using upwind discretization formulas instead of central differencing leads also
to an unconditionally stable scheme. “If A is lower-triangular with all diagonal ele-
ments negative, the ADE scheme is unconditionally stable” is generally claimed and
proved in [9]. In the following we choose suitable differentiating approximations,
we formulate theorems about stability properties and prove it.

Theorem 19.1 The ADE scheme applied to the reaction-diffusion PDE (19.11)
(with b D 0) is unconditionally stable.

Proof Without loss of generality we focus on the upward sweep

unC1
j � un

j

k
D a

un
jC1 � un

j � unC1
j C unC1

j�1
h2

� c
unC1

j C un
j

2
:

Let us denote the parabolic mesh ratio ˛ WD a k
h2

, � WD ck; where a, c are constants.

unC1
j D un

j C ˛



un
jC1 � un

j � unC1
j C unC1

j�1
�

� �

2



unC1

j C un
j

�



1C ˛ C �

2

�
unC1

j C .�˛/unC1
j�1 D



1 � ˛ � �

2

�
un

j C ˛un
jC1 (19.21)

We follow roughly the train of thoughts of Leung and Osher [9] and write the upward
sweep (19.21) with homogeneous BCs in matrix notation

AuunC1 D Buun; n � 0;
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with Au, Bu 2 R.J�1/�.J�1/ given by

Au D

0

BB
B
B
@

1C ˛ C �

2
0 : : : 0

�˛ :: :
:::

:::
: : :

: : : 0

0 : : : �˛ 1C ˛ C �

2

1

CC
C
C
A

D I C

0

BB
B
B
@

˛ C �

2
0 : : : 0

�˛ : : :
:::

:::
: : :

: : : 0

0 : : : �˛ ˛ C �

2

1

CC
C
C
A

Au DW I C E;

Bu D

0

B
B
B
B
@

1 � ˛ � �

2
˛ : : : 0

0
: : :

: : :
:::

:::
: : : ˛

0 : : : 0 1 � ˛ � �

2

1

C
C
C
C
A

D I �

0

B
B
B
B
@

˛ C �

2
�˛ : : : 0

0
: : :

: : :
:::

:::
: : : �˛

0 : : : 0 ˛ C �

2

1

C
C
C
C
A

Bu DW I � E>:

Next, we consider the matrices

A>
u C Au D 2I C D;

where D WD E C E> D

0

B
B
B
B
@

2˛ C � �˛ : : : 0

�˛ :: :
: : :

:::
:::

: : : �˛
0 : : : �˛ 2˛ C �

1

C
C
C
C
A
:

The matrix D is positive definite and thus we can define the induced D-norm as

jjCjj2D WD sup
x¤0

jjCxjj2D
jjxjj2D

D sup
x¤0

x>C>DCx

x>Dx
;

and the upward sweep can be written as

UnC1 D A�1
u Bu Un:

Next, we consider the D-norm for the upward sweep matrix A�1
u Bu

jjA�1
u Bujj2D WD sup

x¤0
x>B>

u A�>
u DA�1

u Bux

x>Dx

The numerator B>
u A�>

u DA�1
u Bu can be easily rewritten after a few algebraic steps as

D � 2�.A�1
u D/>.A�1

u D/. From our notation Au D I C E and Bu D I � E> follows

B>
u A�>

u DA�1
u Bu D .I � E>/>A�>

u DA�1
u .I � E>/
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where E> D D � E. An expression in terms of matrices Au and D gets the following
form:

.A>
u � D/>A�>

u DA�1
u .A>

u � D/

D D � DA�1
u D � D>A�>

u D C DA�>
u DA�1

u D

D D � DA�>
u A>

u A�1
u D � DA�>

u AuA�1
u D C DA�>

u DA�1
u D

D D C DA�>
u

� � A�>
u � Au C D

�
A�1

u D

D D � 2.A�1
u D/>.A�1

u D/

and hence it follows

jjA�1
u Bujj2D D 1 � 2 sup

x¤0
jjA�1

u Dxjj22
jjxjj2D

:

Thus the spectral radius of the upward sweep matrix A�1
u Bu reads

�.A�1
u Bu/ � jjA�1

u BujjD < 1

and we can conclude that the upward sweep is unconditionally stable.
An analogous result holds for the downward step. In the corresponding equation

AddnC1 D Bddn; n � 0 (19.22)

the matrices Ad and Bd are defined as Ad D A>
u and Bd D B>

u . The analysis is done
analogously: we can define a positive definite matrix and follow again the steps from
the previous proof of the Theorem 19.1. Consequently also the combination, as an
arithmetic average of these two sub steps, is also unconditionally stable.

The stability analysis using the matrix approach according to [9] worked for
reaction-diffusion equations with constant coefficients. However, this proof is not
transferable for the stability analysis of methods with non-symmetric terms, e.g.
the difference quotients for the convection term proposed by Towler and Yang
(Eq. 19.15), or Roberts and Weiss (Eq. 19.16), cf. Sect. 19.3.2.

As a remedy we can apply a modified upwind discretization of the convection
term. The resulting structure of the matrices Au, Bu is different but we can perform
a similar proof.

Theorem 19.2 ADE scheme, using upwind discretization in convection term,
applied to the reaction-diffusion-convection equation (19.11) is unconditionally
stable in the upward sweep and unconditionally stable in the downward one.

Proof Again, without loss of generality, we focus on the upward sweep and consider
an upwind discretization for a left-going wave, i.e. b � 0 (since later we would like
to extend this approach for the Black-Scholes model, where b � 0). In the upward
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sweep we use difference quotients using values just from the old time level (19.17)

unC1
j � un

j

k
D a

un
jC1 � un

j � unC1
j C unC1

j�1
h2

C b
un

jC1 � un
j

h
� c

unC1
j C un

j

2
:

Using the abbreviations ˛ WD a k
h2

, ˇ WD b k
h � 0, � WD ck, we can write

� ˛unC1
j�1 C



1C ˛ C �

2

�
unC1

j D


1� ˛ � ˇ � �

2

�
un

j C


˛ C ˇ

�
un

jC1 (19.23)

We follow again roughly the ideas of Leung and Osher [9] and consider the upward
sweep (19.23) with homogeneous BCs

AuunC1 D Buun; n � 0;

with the system matrices Au, Bu 2 R.J�1/�.J�1/ given by

Au D

0

BB
B
B
@

1C ˛ C �

2
0 : : : 0

�˛ : : :
:::

:::
: : :

: : : 0

0 : : : �˛ 1C ˛ C �

2

1

CC
C
C
A

DW I C E;

Bu D

0

B
BB
B
@

1 � ˛ � ˇ � �

2
˛ C ˇ : : : 0

0
: : :

: : :
:::

:::
: : : ˛ C ˇ

0 : : : 0 1 � ˛ � ˇ � �

2

1

C
CC
C
A

DW I � F:

where D WD E C F D

0

B
B
BB
@

2˛ C ˇ C � �˛ � ˇ : : : 0

�˛ : : :
: : :

:::
:::

: : : �˛ � ˇ

0 : : : �˛ 2˛ C ˇ C �

1

C
C
CC
A
:

The matrix D is not symmetric but obviously positive definite.
In the sequel we have just outlined the steps which differ from the previous proof.

The numerator B>
u A�>

u DA�1
u Bu can be easily rewritten after a few algebraic steps as

D � 2�.A�1
u D/>.A�1

u D/.
From our notation Au D I C E and Bu D I � F follows

B>
u A�>

u DA�1
u Bu D .I � F/>A�>

u DA�1
u .I � F/
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where F WD D � E. An expression in terms of matrices Au and D gets the following
form:

.I C E � D/>A�>
u DA�1

u .I C E � D/ D .Au � D/>A�>
u DA�1

u .Au � D/

and we proceed the same way as in the previous proof.
For the downward sweep we have:

dnC1
j � dn

j

k
D a

dnC1
jC1

� dnC1
j � dn

j C dn
j�1

h2
Cb

dn
jC1

C dnC1
jC1

� dn
j � dnC1

j

2h
�c

dnC1
j C dn

j

2
:

Using the abbreviations ˛ WD a k
h2

, ˇ WD b k
h � 0, � WD ck, we can write



1C˛C ˇ

2
C �

2

�
dnC1

j C



�˛� ˇ

2

�
dnC1

jC1 D ˛dn
j�1 C



1�˛� ˇ

2
� �

2

�
dn

j C ˇ

2
dn

jC1
(19.24)

ADdnC1 D BDdn; n � 0;

with AD, BD 2 R.J�1/�.J�1/ given by matrices AD, BD. The matrix AD is upper-
diagonal AD D diag.1 C ˛ C ˇ

2
C �

2
;�˛ � ˇ

2
/. The matrix BD is tridiagonal with

diagonal terms: BD D diag.˛; 1 � ˛ � ˇ

2
� �

2
;
ˇ

2
/. Likewise we construct matrices

D D diag.�˛; 2˛ C ˇ C �;�˛ � ˇ/ as a tridiagonal positive definite matrix. We
can follow the same way of proof and thus we conclude the unconditional stability
of the downward sweep.

19.3.2 Von Neumann Stability Analysis for the
Convection-Diffusion-Reaction Equation

Since analysis using matrix approach was suitable for upwind kind of approximation
in convection term, here we investigate stability properties of the ADE schemes,
where discretization of convection term is provided according to [13] and [11].

We consider the convection-diffusion-reaction equation (19.11) and focus on the
sequel on the upward sweep of the ADE procedure. An appropriate choice for the
approximation of the convection term is the one due to Roberts and Weiss [11], since
performing just a downward sweep leads to the unconditionally stable solution.

Theorem 19.3 The ADE scheme with the Roberts and Weiss approximation in the
convection term, applied to the PDE (19.11) is conditionally stable in the upward
sweep and unconditionally stable for the downward one.



346 Z. Bučková et al.

Proof Using Roberts and Weiss discretization in convection term we get

unC1
j � un

j

k

D a
un

jC1 � un
j � unC1

j C unC1
j�1

h2
C b

un
jC1 � un

j C unC1
j � unC1

j�1
2h

� c
unC1

j C un
j

2
:

Let us denote the parabolic mesh ratio ˛ WD a k
h2

, the hyperbolic mesh ratio ˇ WD b k
h

and � WD ck; where a, b, c are nonnegative constants.

unC1
j D un

j C ˛



un
jC1 � un

j � unC1
j C unC1

j�1
�

C ˇ

2



un

jC1 � un
j C unC1

j � unC1
j�1
�

� �

2



unC1

j C un
j

�

Applying von Neumann ansatz un
j WD e�tnei�xj the amplification factor A1 reads:

A1 D A C Bei�h

C C De�i�h

where A D 1�˛�ˇ=2��=2; B D ˛Cˇ=2; C D 1C˛�ˇ=2C�=2; D D �˛Cˇ=2.
For stability we require jA1j � 1, i.e.

jA1j2 D A1A1 D
�
A C Bei�h

� �
A C Be�i�h

�

�
C C De�i�h

� �
C C Dei�h

� � 1

A2 C B2 C 2AB cos.�h/ � C2 C D2 C 2CD cos.�h/

2 .AB � CD/ cos.�h/ � C2 C D2 � A2 � B2

.4˛ � 4˛ˇ � ˇ�/ cos.�h/ � 4˛ � 4˛ˇ � ˇ� C 2�: (19.25)

We need to check two cases with respect to the sign of .4˛ � 4˛ˇ � ˇ�/.
• Case 1: By substituting ˛; ˇ; � into 4˛ � 4˛ˇ � ˇ� > 0 we get following

condition:

˛ <
a

2Pe
� ck

4
(19.26)

where Pe D bh
2

is the so-called Péclet number. In this case equation (19.25) can
be rewritten as

cos.�h/ � 4˛ � 4˛ˇ � ˇ� C 2�

4˛ � 4˛ˇ � ˇ�
8�h (19.27)
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i.e.

1 � 1C 2�

4˛ � 4˛ˇ � ˇ�

or

0 � 2�

4˛ � 4˛ˇ � ˇ�
: (19.28)

We can notice that condition (19.28) is satisfied for all the possible values of
parameters, since � > 0 and 4˛ � 4˛ˇ � ˇ� > 0.

• Case 2: We consider 4˛ � 4˛ˇ � ˇ� < 0, what is equivalent with the condition

˛ >
a

2Pe
� ck

4
: (19.29)

In this case equation (19.25) can be rewritten as

cos.�h/ � 4˛ � 4˛ˇ � ˇ� C 2�

4˛ � 4˛ˇ � ˇ�
8�h (19.30)

i.e.

�1 � 1C 2�

4˛ � 4˛ˇ � ˇ� ;

or

2 � �2�
4˛ � 4˛ˇ � ˇ� (19.31)

or

1

2
ˇ� C 2˛ˇ � 2˛ � � (19.32)

or

˛ � ˛

ˇ
� �

4
C �

2ˇ
(19.33)

After substituting ˛; ˇ; � and after elementary algebraic steps we get

˛ � a

2Pe
� ck

4
C ch

4b
: (19.34)

Case 2 leads to conditions (19.29) and (19.34) what means that

˛ 2
�

a

2Pe
� ck

4
;

a

2Pe
� ck

4
C ch

4b

�
(19.35)
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To sum up case 1 and case 2 we can claim that conditions (19.26) and (19.35) and
also considering the situation where .4˛ � 4˛ˇ � ˇ�/ D 0 we get

˛ � a

2Pe
� ck

4
C ch

4b
: (19.36)

For the downward sweep we get the following amplification factor:

A2 D
h
1 � ˛ C ˇ

2
� �

2

i
C Œ˛ � ˇ

2

e�i�h

h
1C ˛ C ˇ

2
C �

2

i
C Œ�˛ � ˇ

2

ei�h

(19.37)

Stability condition jA2j2 � 1 leads to the formula:

cos.�h/ � 4˛ C 4˛ˇ C ˇ� C 2�

4˛ C 4˛ˇ C ˇ�
:

Let us note that the last condition can be simplified to the condition:

2�

4˛ C 4˛ˇ C ˇ�
� 0: (19.38)

The coefficients ˛, ˇ, � are positive, i.e. the condition (19.38) is satisfied and thus
we have the unconditional stability for the downward sweep using the Roberts and
Weiss approximation, which completes the proof.

In case of the Roberts and Weiss approximation we propose to use only the
unconditional stable downward sweep.

Theorem 19.4 The ADE scheme, using Towler and Yang approximation in the
convection term, applied to the PDE (19.11) is conditionally stable in both sweeps.

Proof For the Towler and Yang approximation the stability condition for the upward
sweep reads

.4˛ � 2˛ˇ � ˇ�/ cos.�h/ � 4˛ � 2˛ˇ C 2�; (19.39)

where again we can distinguish 2 cases with respect to the sign of left hand side of
the Eq. (19.39).

• Case 1: If .4˛ � 2˛ˇ � ˇ�/ > 0, it means

˛ <
a

Pe
� ck

2
: (19.40)
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In this case equation (19.39) can be rewritten as

cos.�h/ � 4˛ � 4˛ˇ � ˇ� C 2�

4˛ � 2˛ˇ � ˇ� (19.41)

1 � 1C �.2C ˇ/

4˛ � 2˛ˇ � ˇ�

0 � �.2C ˇ/

4˛ � 2˛ˇ � ˇ� : (19.42)

We can notice that condition (19.42) is satisfied for all the possible values of
parameters, since � � 0 and .2C ˇ/ > 0 and 4˛ � 2˛ˇ � ˇ� > 0.

• Case 2: We consider .4˛�2˛ˇ�ˇ�/ < 0, what is equivalent with the condition

˛ >
a

Pe
� ck

2
: (19.43)

In this case equation (19.39) can be rewritten as

cos.�h/ � 4˛ � 4˛ˇ � ˇ� C 2�

4˛ � 2˛ˇ � ˇ� (19.44)

�2 � �.2C ˇ/

4˛ � 2˛ˇ � ˇ�
After substituting ˛; ˇ; � and simplification it leads to the condition

˛ � a

Pe
� ck

2
C ch

2b
C 1

2
: (19.45)

In case 2 we obtain two conditions (19.43) and (19.45), namely:

˛ 2
�

a

2Pe
� ck

2
;

a

Pe
� ck

2
C ch

2b
C 1

2

�
(19.46)

From case 1 condition (19.40) and case 2 condition (19.46) in Towler and Yang
case and considering also possibility of .4˛ � 2˛ˇ � ˇ�/ D 0 we can sum up

˛ � a

Pe
� ck

2
C ch

2b
C 1

2
: (19.47)

For the downward sweep the stability condition is

cos.�h/ � 4˛ C 2˛ˇ C 2�

4˛ C 2˛ˇ C ˇ�
;
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which leads to the condition:

k

h2
� 1

Pe
(19.48)

Both sweeps in the Towler and Yang discretization of the convection term in the
reaction-diffusion-convection equation are conditionally stable under the condi-
tions (19.47) and (19.48)

19.4 Consistency Analysis of the ADE Methods

In this section we provide a consistency analysis of the ADE methods for solving
the convection-diffusion-reaction equation (19.11) and for the BS model.

19.4.1 Consistency of the ADE Scheme for
Convection-Diffusion-Reaction Equations

We study the consistency of the following ADE discretization

unC1
j � un

j

k
D a

un
jC1 � un

j � unC1
j C unC1

j�1
h2

Cb
un

jC1 � un
j C unC1

j � unC1
j�1

2h
�c

unC1
j C un

j

2

to the convection-diffusion-reaction equation (19.11). The local truncation error
(LTE) of the upward sweep is given by

LTEup D k
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2
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2
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2
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�
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6
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4
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6
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1
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4
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2
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1
6
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�
;

and analogously the LTE for the downward sweep reads

LTEdown D k
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2
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2
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2
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�
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6
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�
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Thus we end up for the LTE for the combined sweep

LTEADE D k



� 1

2
vtt C 1

2
avxxt C 1

2
bvxt

�

C k2



� 1

6
vttt C 1

4
avxxtt C 1

4
bvxtt

�
C h2


 1
12

avxxxx
1

6
bvxxx

�

Assuming a constant parabolic mesh ratio k=h2, the first order term in k can be
written in the form O.k/ D O.h2/ and hence we get

LTEADE D k2
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4
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C h2

 1
12

avxxxx
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6
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2
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2
bvxt

�

Hence, the order of consistency of the ADE method for the PDE (19.11) is O.k2 C
h2/.

19.4.2 The Consistency of the ADE Method for the Linear BS
Model

As an extension of the PDE (19.11) we consider now the linear BS equation.

Theorem 19.5 The order of consistency of the ADE method for the linear BS
equation is O.k2 C h2/ in both sweeps and in the final combined solution.

Proof The linear BS PDE is a special case of (19.11) with the space-dependent
coefficients a.S/ D 1

2
�2S2, b.S/ D rS, c.S/ D r. The LTE for the upward sweep

reads:

LTEBS D k
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If we assume a constant parabolic mesh ratio ˛ D k=h2, then we get

LTE D k



� 1

2
vtt

�
C k2



� 1

6
vttt

�
D ˛h2



� 1

2
vtt

�
C k2



� 1

6
vttt

�
;

where we neglected higher order terms. A similar result holds for the downward
sweep. We have shown that consistency for the linear BS model is O.k2 C h2/ in
downward, upward and hence also in the combination.

19.4.3 Application and Numerical Experiments with the
Linear Model

We apply the ADE method and calculate a price for a vanilla European call option
in a classic linear BS model with constant coefficients. Choosing the following set
of parameters r D 0:03 (interest rate); q D 0 (continuous dividend yield); � D 0:2

(volatility); T D 1 (maturity time in years); Smax D 90 (maximal stock price);
K D 30 (strike price); and defining a grid with N D 50 time steps; J D 200 space
steps we get an option price, which is shown in Fig. 19.3 (Fig. 19.4).

In this subsection we analyze the computational and theoretical order of conver-
gence. In table in Fig. 19.5 it is recorded an error as a difference between numerical
solution using ADE method and the closed form BS formula for different meshes
with fixed mesh ratio 0.23. In table in Fig. 19.6 ratios of errors from the table
in Fig. 19.5 are calculated. One can observe that using double space steps, ratio
of errors converges to the number 4, what confirms that the theoretical order of
convergence is 2.
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Fig. 19.3 Option price
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Fig. 19.4 Solution at time t D 0 and t D T

N J mesh ratio error
3 50 0.23 0.2458
12 100 0.23 0.0855
50 200 0.23 0.0208
200 400 0.23 0.0052
800 800 0.23 0.0013

Fig. 19.5 Error as a difference between exact solution and approximation

ratio of errors
error50/error100 2.87
error100/error200 4.11
error200/error400 4
error400/error800 4

Fig. 19.6 Ratio of errors

Figures 19.7, 19.8, 19.9, 19.10, and 19.11 show an error on different grids, as
a difference between numerical solution and the exact one (from the BS formula).
Table in Fig. 19.5 records the maximum value of the error from the time t D 0,
it means that we observe the maximal value of the errors whole calculation in the
current time. At the beginning of the calculation (nearby maturity time) we can
observe the highest error, which is caused by the non-smooth initial data. This error
decreases during the calculation. The finer the mesh, the faster the decrease of the
error (19.7)–(19.11).
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19.5 ADE Schemes for Multi-Dimensional Models

In this section we introduce the ADE scheme for multi-dimensional PDE models.
We first consider the 2D case and then we proceed to higher dimensional cases.

19.5.1 ADE Schemes for Two-Dimensional Models

We now explain in detail how to construct the ADE scheme for two-dimensional
PDE models, i.e. N D 2 in (19.2).

The first key aspect of this scheme is choosing the difference quotients approxi-
mating the partial derivatives of our equation in a way that we use the information
from both time levels without the need to solve a linear system of equations. In
particular, in a two dimensional setting, we would use the points as exemplified in
Fig. 19.12: we wish to compute the value in black, at time level nC1, and we use the
information from the neighbour points with an empty filling, from both time level n
and n C 1.

The second key aspect is that in order to improve the accuracy of this scheme, for
each time-level two different calculations of the grid points are done using different
difference quotients, these are referred to as the downward sweep and the upward
sweep. Then, the solution at that time level is taken as the average of both sweeps.
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Fig. 19.12 Downward sweep. Left figure: time level n. Right figure: time level n C 1. We depict
the spatial grid for two different time-steps. The empty circles represent the points used in the
computation of the value at the location of the black circle. S1 and S2 denote the spatial dimensions

Fig. 19.13 Upwards sweep. As in Fig. 19.12, the empty circles represent the points used in the
computation of the value at the location of the black circle. S1 and S2 denote the spatial dimensions.
Left figure: time level n. Right figure: time level n C 1

From Figs. 19.12 right and 19.13 right the difference between the two sweeps is
apparent.

The final key aspect is that the structure imposed by the stencil illustrated in
Figs. 19.12 and 19.13 is not by itself enough to guarantee that the scheme is explicit,
we must make sure that the empty filling points in the time level n C 1 have been
computed before we compute the black point. This imposes a structure on the
algorithm to compute the points as illustrated in Fig. 19.14.

For a fixed time level and starting from the boundary we see that in the first step
we can only compute the points numbered as 1, since, our stencil is as described in
the Figs. 19.12 right, 19.13 right. After computing these points we have a total of
four points that can be now computed, these are numbered as 2. Hence, we chose
any of those points which in turn allows new points to be computed, and so forth.
As long as we respect this order, our algorithm is fully explicit.

As we can see in the second step, we have more than one possibility per step as
to what point to compute, hence, there are different sequences of points. A natural
choice is to choose the sequence of points as shown in Fig. 19.15. We called this
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Fig. 19.14 First steps of the algorithm in the 2D case. Elements numbered 1 correspond to the
step 1 from both sweeps UP and DOWN. Elements numbered 2 correspond to the elements that
can be computed as the second step also for both sweeps

Fig. 19.15 The complete algorithm in the 2D case. The points are computed in the order of the
numbering. The left part of the figure refers to the UP sweep and the right to the DOWN sweep.
Approach of numbering is called jumping approach or house numbering

approach of numbering as a jumping approach or house numbering approach. We
are moving from one corner of the square to another where diagonal points are
computed and the others. We could do the same strategy in higher dimensions,
but it is not straightforward and yields no advantage in comparison with the next
approach. The approach we have implemented is a row-wise ordering and it is
displayed in Fig. 19.16. It is just more straightforward way of ordering grid points.
It is also more convenient to use this approach in hypercubes.
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Fig. 19.16 The complete algorithm in the 2D case. The points are computed in the order of the
numbering. The left part of the figure refers to the UP sweep and the right to the DOWN sweep.
Approach of numbering is called line approach or sequence approach

19.5.2 ADE Schemes for Three and Higher Dimensional
Models

In this section we describe how to extend the two-dimensional ADE scheme
introduced before to three and higher dimensional models. We suggest an algorithm
which can be extended to higher dimensional models quite easily.

As for the two dimensional case, a key part of the ADE in higher dimensions
is to choose the proper difference quotients such that we keep good stability and
consistency properties and explicitness of the scheme. Solely for simplicity we will
use a uniform grid.

Consider the three dimensional case where we are solving the PDE of the
price of an option under the linear Black-Scholes model introduced before, with
three underlying assets. The PDE’s solution will be a four-dimensional function
where one dimension represents time and the other three are spatial dimensions
representing the values of the underlying assets. For each time level, we have a three
dimensional solution which can be illustrated as a three-dimensional grid. Recall
that the initial condition is given for V.S1; S2; S3; 0/ and step by step we calculate
the values for the new time layer.

As before, we retain the explicitness of the scheme by using only values that have
already been computed at the current time level. Specifically, this explicit (as in the
lower dimensional case) is obtained by computing the value of points in a particular
sequence that only uses points that either arise from the previous time level or that
have been already computed for the current time level.

For illustration purposes we depict a two-dimensional slice of the domain in
Fig. 19.17. We see that we move in a straight line in one dimension until we hit
the boundary and then we proceed to the next point in the second dimension and
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Fig. 19.17 Algorithm for computing all the points in the upward sweep solution of the three
dimensional implementation of the ADE, the grey dots represent the boundary conditions and the
black dots represent the computed values. The arrows represent the direction and sequential order
of the computation. First, second and third direction in the pictures, respectively

so forth. By using this approach, the extension to higher dimensional models is
straightforward.

19.5.3 Boundary Conditions

In higher dimensional models we also have to deal with the issue of boundary
conditions. Just as in the three dimensional model 8 boundary conditions are
required (each edge of the cube), for a N-dimensional model 2N boundary conditions
have to be prescribed. In an ideal case we prescribe values for the maximum
values of the assets prices (truncated values) as Dirichlet boundary conditions.
Alternatively one could also consider Neumann boundary conditions or Robin type
boundary conditions.

19.6 The Numerical Scheme

The discretization of the PDE (19.2) is done on a uniform grid. In the time domain
we have N� subintervals of the interval Œ0;T
, thus the time step size is defined
as d� D T=Nt. As we have N different underlying assets our spatial space is N-
dimensional. In our numerical studies we consider both N D 2 and N D 3.

For the 3-dimensional model we have 3 spatial intervals Œxmin; xmax
, Œymin; ymax
,
Œzmin; zmax
, specifically Œ0; S1max
, Œ0; S2max
, Œ0; S3max
 as all stocks have non-negative
values.

The space steps on the uniform grid are defined by the following h˛ D S˛max=N˛
for ˛ D 1; : : : ; 3, where S˛max denotes the maximal value for the asset ˛ and N˛
denotes the number of points for the direction of the ˛ asset.

A point on the spatial grid is then given by Œxi; yj; zk
with xi D .i�1/h1, yj D . j�
1/h2,zk D .k �1/h3; where i D 1; : : : ;N1C1, j D 1; : : : ;N2C1, k D 1; : : : ;N3C1.
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The discrete numerical solution of the 3-dimensional Black-Scholes equation at
Œxi; yj; zk
 and time level n for the upward sweep is denoted by un

ijk D u.xi; yj; zk; n/
and for the downward sweep is denoted by un

ijk D d.xi; yj; zk; n/,
Since this notation would easily become very cumbersome we will introduce

some abbreviations: u.xi; yj; zk; n/ and d.xi; yj; zk; n/ will be shortened to un and dn.
When we consider u at a point shifted from the point indexed by .i; j; k/ we will
introduce a subscript un

ˇC
where ˇ denotes the direction where we’re performing

the shift. For example,

u.xi; yjC1; zk; n/ DW un
2C

u.xi; yj; zk�1; n/ DW un
3� : (19.49)

In the case that we have shifts in multiple directions we simply introduce another
subscript, for example,

u.xi�1; yjC1; zk; n/ DW un
1�2C

u.xi; yjC1; zk�1; n/ DW un
3�2C

: (19.50)

This notation would not be suitable if we denote a point such as u.xi; yjC3; zk; n/ but
since we are considering only a first-order scheme we will not have shifts of more
than 1 unit, therefore this notation is appropriate.

19.6.1 Algorithm of the Scheme

We can construct the upward sweep and the downward sweep separately for each
time step and then combine them, this bring opportunities for the parallelization of
the scheme. The upward sweep is calculated in a way that we are moving from one
corner of the hypercube to the opposite. The downward sweep is constructed in the
opposite way. This procedure can be done in different ways, but it is important to
keep the explicitness of the scheme in each of the sweeps. In the following we
outline the algorithms. As an illustration the upward sweep of this algorithm is
represented in Fig. 19.17.

According to the described procedure we construct upward and downward sweep
of the solution and after each time level we calculated its average. This way we get
final numerical solution cn.

For n D 0; 1; : : : ;Nt � 1 we repeat

1. Initialization: un D cnI dn D cn

2. Upward: unC1
ijk I i D 1; : : : ;N1 � 1; j D 1; : : : ;N2 � 1; k D 1; : : : ;N3 � 1

3. Downward: dnC1
ijk I i D N1 � 1; : : : ; 1; j D N2 � 1; : : : ; 1; k D N3 � 1; : : : ; 1

4. cn D .unC1 C dnC1/=2
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19.6.2 Upward Finite Difference Quotients and Its Numerical
Scheme

Finite difference quotients using the upward sweep in the ADE scheme are
introduced. Exact continuous solution of the PDE (19.2) in the point xi; yj; zk; �nC 1

2

is denoted as: V WD V.x; y; z; �/j.xi;yj;zk;�nC
1
2
/ and e.g. in the time level n it is

denoted as: Vn WD V.x; y; z; �/j.xi;yj;zk;�n/, For derivatives it holds as follow: @V
@�

WD
@V.x;y;z;�/

@�
j.xi;yj;zk;�nC

1
2
/. Approximation of the Vn is denoted as un for an upward

sweep.

V ' Vn C VnC1

2
: (19.51)

For the time derivative the explicit Euler discretization is used:

@V

@�
D VnC1 � Vn

d�
C O.�2n /: (19.52)

In the convection term we choose the Robert and Weiss approximation [11]

@V

@S˛
D Vn

˛C
� Vn C VnC1 � VnC1

˛�

2h˛
C O.h2˛/; 8˛ D 1; 2; 3 (19.53)

and the diffusion term is approximated by a special kind of central difference,

@2V

@S2˛
D Vn

˛C
� Vn � VnC1 C VnC1

˛�

h2˛
C O.h2˛/; 8˛ D 1; 2; 3: (19.54)

Note that in all the above mentioned difference quotients we use values from two
time layers in the fashion that we can use all the values from the previous time layer,
but due to the algorithm explained in Fig. 19.16 only known values from the current
time layer are used to keep the explicitness of the algorithm.

We approximate mixed term derivatives in an explicit way, as well:

@2V

@S˛Sˇ
D

Vn
˛CˇC

� Vn
˛Cˇ�

� Vn
˛�ˇC

C Vn
˛�ˇ�

4h˛hˇ
CO.h2˛ C h2ˇ/ 8˛; ˇ D 1; 2; 3:

(19.55)
We now use the difference quotients introduced above to discretize the 3-

dimensional Black-Scholes PDE (19.2). Let us define,

�
ij
1 .x1; x2/ � dt

2hihj
�ijSi.x1/Sj.x2/; � i

2.x1/ � dt

2hi
rSi.x1/;

with Si.p/ D .p � 1/hi. The discretized equation for the 3D model becomes,
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unC1 � un D
3X

iD1
� ii
1

�
un

iC
� un � unC1 C unC1

i�
�

(19.56)

C
3X

iD1

3X

jD1;i¤j

�
ij
1

4

h
un

iCjC
� un

iCj�
� un

i�jC
C un

i�j�

i

C
3X

iD1
� i
2

�
un

iC
� un C unC1 � unC1

i�
� � r

un C unC1

2

The resulting algorithm is fully explicit, if we follow the procedure illustrated in
Fig. 19.14. From Eq. (19.56) we express unC1 and we realize an explicit formula for
the scheme.

19.6.3 Difference Quotients and Numerical Scheme for the
Downward Sweep

Let V be the exact continuous solution in point xi; yj; zk; �nC 1
2
. The approximation

of the Vn obtained by the downward sweep is dn, where the following difference
quotients are used:

V ' Vn C VnC1

2
; (19.57)

@V

@�
D VnC1 � Vn

dt
C O.�2n /; (19.58)

@V

@S˛
D VnC1

˛C
� Vn C VnC1 � Vn

˛�

2h˛
C O.h2˛/; 8˛ D 1; 2; 3; (19.59)

@2V

@S2˛
D VnC1

˛C
� Vn � VnC1 C Vn

˛�

h2˛
C O.h2˛/; 8˛ D 1; 2; 3; (19.60)

@2V

@S˛Sˇ
D

Vn
˛CˇC

� Vn
˛Cˇ�

� Vn
˛�ˇC

C Vn
˛�ˇ�

4h˛hˇ
CO.h2˛Ch2ˇ/; 8˛; ˇ D 1; 2; 3:

(19.61)
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In the same manner we get the discretized equation for the downward sweep,

dnC1 � dn D
3X

iD1
� ii
1

h
dnC1

iC
� dn � dnC1 C dn

i�

i
(19.62)

C
3X

iD1

3X

jD1;i¤j

�
ij
1

4

h
dn

iCjC
� dn

iCj�
� dn

i�jC
C dn

i�j�

i

C
3X

iD1
� i
2

h
dnC1

iC
� dn C dnC1 � dn

i�

i
� r

dn C dnC1

2
:

19.7 Numerical Results and Experimental Study of
Convergence

We now present numerical results for two particular cases of the implementation of
the ADE scheme to Black-Scholes pricing models. In particular, we show the results
for the price of a Spread option depending on two underlying assets S1 and S2 and
a three-dimensional European Call Option on three underlying assets S1; S2 and S3.
For both cases we show illustrations of the obtained price surfaces and experimental
convergence rates.

19.7.1 Two Dimensional Black-Scholes Model

We denote the Black-Scholes price for a spread option by V.S1; S2; �/ where � D
T � t is the time to maturity T. Recall that the payoff of a spread option is

V.S1; S2; 0/ D max.S1 � S2 � K; 0/

where K 2 R
C denotes the strike price. The boundary conditions are given by:

V.S1; 0; �/ D BS1d.S1; �/; S1; � 2 R
C;

V.0; S2; �/ D 0; S2; � 2 R
C;

V.Smax
1 ; S2; �/ D e�q1�S1 � e�r� .S2 C K/; Smax

1 WD S1 � S2 C K;

V.S1; S
max
2 ; �/ D Vkirk.S1; S

max
2 ; �/;



19 Alternating Direction Explicit Methods for Linear, Nonlinear and Multi-. . . 365

where BS1d.S1; �/ denotes the Black-Scholes price formula for a call option on
a stock with price S and time to maturity � and Vkirk.S1; Smax

2 ; �/ denotes the
approximation in [1].

We choose the different grid configurations displayed in Table 19.1 and we use
following parameters: volatility of S2 �2 is 0.1; volatility of S1, �1 is 0.25; correlation
of S1 and S2, � is -0.33; maturity time T is 1 year; strike price K is 3; maximal stock
price for S1 S1max is 60; maximal stock price for S2 S2max is 225. As an example
we display the numerical solution for the option price at � D T (or equivalently
t D 0) with a grid of N1 D N2 D 20 spatial points and Nt D 50 temporal points in
Fig. 19.18.

In the Fig. 19.19 we display a log-log plot of the errors in the L2 norm (blue line)
and the theoretical second order of convergence (red line).

Table 19.1 Specifications of
different grids

N1 N2 Nt d�=h21 d�=h22
Solution 1 5 5 3 0:0578 0:004

Solution 2 10 10 12 0:0578 0:004

Solution 3 20 20 50 0:0578 0:004

Solution 4 40 40 200 0:0578 0:004

Solution 5 80 80 800 0:0578 0:004

Solution 6 160 160 3200 0:0578 0:004

V

ADE Spread option: = N1=20 N2=20 Nt = 50 at t=0

50

40

30

20

10

0
30

20

10

0 0
5

10
15

20
25

S2
S1

Fig. 19.18 Numerical solution at the final time for two dimensional spread option on the grid with
N1 D N2 D 20 space steps and Nt D 50 time steps
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Fig. 19.19 Experimental convergence analysis

19.7.2 Three Dimensional Black-Scholes Model

We now show the results of the implementation of the ADE to the three dimensional
Black-Scholes model for the price V.S1; S2; S3; �/ of a call option, where � D T � t
denotes the time to maturity T and Si denotes the value of the underlying asset i.
Recall the payoff for a call option:

V.S1; S2; S3; 0/ D max ..max.S1; S2; S3/� K; 0// :

with K 2 R
C denoting the strike price. The boundary conditions are taken from the

numerical solution of the 2D Black-Scholes model, BS2d, implemented as outlined
in Sect. 19.7.1 but for a call-option payoff,

V.Si D 0; t/ D BS2d.Sj; Sk; t/; i; j; k D 1; 2; 3; i ¤ j ¤ k

V.Si D Smax
i ; t/ D max .Smax

i � K; 0/; i; j; k D 1; 2; 3:

The model parameters are following: volatility of S1 �1 is 0.11; volatility of S2
�2 is 0.5; volatility of S3, �3 is 0.25; correlation of S1 and S2, � is 0.3; correlation
of S2 and S3, � is -0.2; correlation of S1 and S3, � is 0.5; maturity time T is 1 year;
strike price K is 30.

The grid parameters are as follows: N1 D N2 D N3 D 20I Nt D 50.
Analogously to the two dimensional case, for the three dimensional case we have

computed the experimental order of convergence using different grid settings cf.
Table 19.2. Numerical results (Fig. 19.20) confirm that we keep second order of
convergence also in the three dimensional model.
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Table 19.2 Usage of
different grids

N1 N2 N3 Nt d�=h21 d�=h22 d�=h23
5 5 5 3 0:004 0:004 0:004

10 10 10 12 0:004 0:004 0:004

20 20 20 50 0:004 0:004 0:004

40 40 40 200 0:004 0:004 0:004

80 80 80 800 0:004 0:004 0:004

160 160 160 3200 0:004 0:004 0:004

Fig. 19.20 Experimental order of convergence in three dimensional call option model

19.8 Influence of the Dimensionality on the Computational
Complexity of the Scheme

In this section we highlight the fact, where the ADE scheme has a good potential to
be an effective scheme in higher dimensions. We compare it with the behaviour of
the classical Crank-Nicolson scheme.

The solution of the option price for the Crank-Nicolson (CN) scheme is
implemented with a lot of optimization steps, so we do not compare the real time for
the calculation. We focus on the fact observed in the Fig. 19.21 for the CN scheme
is growing with dimension. It means for the same number of total points in a grid
we need more time in the 3D model as in the 2D model. The explanation is coming
from the construction of the scheme. Although for the same number of total points
in a grid the size of the matrix is the same, but its structure is different. For 3D more
non-diagonal terms are present and to compute solution in the implicit scheme is
becoming costly for higher-dimensional models.

The costs for the ADE schemes in Fig. 19.22 for higher dimensions are not
increasing, even opposite, since the calculation of the explicit scheme depends only
on the total number of grid points and size of the stencil.
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Fig. 19.21 Computational complexity with respect to the total number of points in the grid for
Crank-Nicolson scheme
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Fig. 19.22 Computational complexity with respect to the total number of points in the grid for
ADE scheme

19.9 Application of the ADE Scheme to the Frey and Patie
Model

We provide numerical experiments on the nonlinear Frey and Patie model [7], which
considers the nonlinear Black-Scholes equation

vt C �2S2

2

vSS

.1 � �SvSS/2
D 0: (19.63)

This is a backward-in-time equation with a terminal condition, the so-called pay-
off function. For the call option it is max.S � K; 0/. To obtain an initial condition
we apply the time reversal � D T � t, where � is a new variable representing time
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remaining to the maturity:

� v� C �2S2

2

vSS

.1 � �SvSS/2
D 0; (19.64)

with the initial condition: v.S; 0/ D .S � K/C.
A uniform grid was used in time and in space. The time � D 0; : : : ;T is divided

into N sub-intervals, with the step length k D T
N and time points tn D nk, for

k D 0; : : : ;N.
The space variable (stock price) S 2 .0; Smax/ is divided into M subintervals. The

step size in space is h D Smax
M . The corresponding index to the stock price Sj at jh is

j, for j D 0; : : : ;M.
We have chosen a boundary condition from the asymptotic behaviour of the exact

analytical solution of the linear BS model. For small values of the stock price the
option price C.S; t/ satisfies C.0; tn/ D 0; 8n D 0; : : : ;N. For S ! Smax it is
C.Smax; t/ D Smax � Ke�r� .

The scheme consists of two independent steps (sweeps). In the first step the
upward sweeping is used. The particular solution at the grid point . j; n C1/ is UnC1

j
(marked in bold to highlight the unknown in the equation)

�
 

UnC1
j � Cn

j

k

!

C S2j
�2

2

Cn
jC1

�Cn
j �UnC1

j CUnC1
j�1

h2�
1 � �Sj

Cn
jC1

�Cn
j �UnC1

j CUnC1
j�1

h2

�2 D 0: (19.65)

The second step is downward sweeping. At the grid point . j; n C 1/ the particular
solution VnC1

j is described by the following equation:

�
 

VnC1
j � Cn

j

k

!

C S2j
�2

2

VnC1
jC1 �VnC1

j �Cn
j CCn

j�1

h2�
1 � �Sj

VnC1
jC1

�VnC1
j �Cn

j CCn
j�1

h2

�2 D 0: (19.66)

After solving the Eqs. (19.65) and (19.66) we calculate the combination of the
upward and downward sweeps as an average of it:

CnC1
j D UnC1

j C VnC1
j

2
for j D 1; : : :M: (19.67)

We repeat this procedure for each time n. The obtained solution Cn
j is the

numerical approximation of the solution v.S; t/ of the Eq. (19.64) at each grid point
(Table 19.3).

In Table 19.4 we can see the effect that with a finer mesh (in time and space) and
constant mesh ratio the error decreases; here, by halving the time step size, with a
factor close to 4, what is also the result from the theoretical (quadratic) order.
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Table 19.3 Absolute error
between numerical solution
and reference solution on fine
mesh

N J Mesh ratio Error

3 50 0:23 0:1911

12 100 0:23 0:0987

48 200 0:23 0:0340

192 400 0:23 0:0094

768 800 0:23 0:0024

Table 19.4 Ratio of errors
with different number of
space steps

Ratio of errors

Error50/error100 1:93

Error100/error200 2:89

Error200/error400 3:59

Error400/error800 3:88

Error50 corresponds to the absolute
error with J D 50

19.10 Conclusions

We have considered the alternating direction explicit (ADE) method, that strongly
uses boundary data in the solution algorithm and hence is very sensible to incorrect
treatment of boundary conditions. We have implemented the ADE scheme for
solving linear and nonlinear BS equations by reducing the nonlinearity to scalar
equations. For linear equations the ADE scheme consists of two explicit sweeps.
The sweeping procedure is done from one boundary to another and in the opposite
way. The final solution is defined as an average of these two sweeps after each time
step. Numerical analysis in the sense of studying stability and consistency of this
method has been provided. For the linear heat equation with the constant coefficients
we get unconditional stability using the matrix analysis approach. The consistency
of the upward and downward sweeps is of order O

�
k2 C h2 C �

k
h

��
, and for the final

(averaged) solution we obtain a consistency of order O
�
k2 C h2

�
.

The ADE can compete with the Crank-Nicolson scheme, ADI and LOD splitting
methods. Applying the ADE method to linear models leads to an explicit scheme
with unconditional stability. Applying ADE to the nonlinear model it does not lead
to the explicit scheme any more. Now, at each sweep we need to solve a series of
scalar nonlinear equations, but not any more a full nonlinear system of equations.
Thus, the computational effort using the ADE instead of the full implicit scheme
is highly reduced. For nonlinear cases we obtain only conditional stability. To our
knowledge, the ADE scheme has not been applied to nonlinear PDEs before.

Alternating Direction Implicit methods and Splitting methods are examples of
the Multiplicative Operator Scheme (MOS), which is difficult to parallelise. Meth-
ods from the family of the Additive Operator Scheme (AOS) can be parallelised.
The ADE method belongs to this last group of methods.



19 Alternating Direction Explicit Methods for Linear, Nonlinear and Multi-. . . 371

Acknowledgements The authors were partially supported by the European Union in the FP7-
PEOPLE-2012-ITN Program under Grant Agreement Number 304617 (FP7 Marie Curie Action,
Project Multi-ITN STRIKE—Novel Methods in Computational Finance).

References

1. Alexander, C., Venkatramanan, A.: Analytic approximations for spread options. Available at
SSRN 1012521, 2007

2. Barakat, H.Z., Clark, J.A.: On the solution of the diffusion equations by numerical methods. J.
Heat Transf. 88(4), 421–427 (1966)
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Chapter 20
Numerical Study of Splitting Methods
for American Option Valuation

Karel in ’t Hout and Radoslav L. Valkov

Abstract This chapter deals with the numerical approximation of American-style
option values governed by partial differential complementarity problems. For a
variety of one- and two-asset American options we investigate by ample numerical
experiments the temporal convergence behaviour of three modern splitting methods:
the explicit payoff approach, the Ikonen-Toivanen approach and the Peaceman-
Rachford method. In addition, the temporal accuracy of these splitting methods is
compared to that of the penalty approach.

20.1 Introduction

American-style options are one of the most common instruments on the derivative
markets and their valuation is of major interest to the financial industry. In
this chapter we investigate by ample numerical experiments the accuracy and
convergence of a collection of recent splitting methods that are employed in the
numerical valuation of one- and two-asset American options.

Let u.s1; s2; t/ denote the fair value of a two-asset American-style option under
the Black-Scholes framework if at t time units before the given maturity time T the
underlying asset prices equal s1 � 0 and s2 � 0. Let �.s1; s2/ denote the payoff of
the option and define the spatial differential operator

A D 1
2
�21 s21

@2

@s21
C��1�2s1s2

@2

@s1@s2
C 1

2
�22 s22

@2

@s22
C rs1

@

@s1
C rs2

@

@s2
� r: (20.1)

Here constant r is the risk-free interest rate, the positive constant �i denotes the
volatility of the price of asset i for i D 1; 2 and the constant � 2 Œ�1; 1
 stands for
the correlation factor pertinent to the two underlying asset price processes.
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It is well-known that the function u satisfies the partial differential complemen-
tarity problem (PDCP)

u � �;
@u

@t
� A u; .u � �/

�
@u

@t
� A u

�
D 0; (20.2)

valid pointwise for .s1; s2; t/ with s1 > 0, s2 > 0, 0 < t � T. The initial condition is
prescribed by the payoff,

u.s1; s2; 0/ D �.s1; s2/ (20.3)

for s1 � 0, s2 � 0 and boundary conditions are given by imposing (20.2) for
s1 D 0 and s2 D 0, respectively. The three conditions in (20.2) naturally induce
a decomposition of the .s1; s2; t/-domain: the early exercise region is the set of all
points .s1; s2; t/ where u D � holds and the continuation region is the set of all
points .s1; s2; t/ where @u=@t D A u holds. The joint boundary of these two regions
is referred to as the early exercise boundary or free boundary.

For most American-style options both the option value function and the early
exercise boundary are unknown in (semi-)closed analytical form. Accordingly, one
resorts to numerical methods for their approximation. Following the method of
lines, one first discretizes the PDCP (20.2) in the spatial variables .s1; s2/ and next
discretizes in the temporal variable t. This leads to a linear complementarity problem
(LCP) in each time step.

Various approaches have been proposed in the literature to handle these LCPs.
In this chapter we study three modern splitting methods: the explicit payoff (EP)
approach, the Ikonen-Toivanen (IT) approach and the Peaceman-Rachford (PR)
method. The IT splitting approach was introduced in [12, 13] and has recently been
combined in [5] with Alternating Direction Implicit (ADI) schemes for the temporal
discretization. The PR method was proposed in [14].

At present the convergence theory pertinent to the IT splitting approach appears
to be limited in the literature. The main goal of this chapter is to gain more insight
into its convergence behaviour by numerically studying temporal discretization
errors. In addition, all splitting approaches above are compared to the popular
penalty (P) approach, which was introduced for American option valuation in
[3, 17, 18]. An outline of our chapter is as follows.

In Sect. 20.2 a suitable spatial discretization of the PDCP (20.2) is formulated. In
Sect. 20.3 the temporal discretization methods under consideration are described:
the �-EP method, the �-IT method, the PR method, the �-P method and three
families of ADI-IT methods. Section 20.4 provides an illuminating interpretation
of the IT approach and the PR method. Subsequently, an ample numerical study of
the temporal discretization errors for all methods above is performed in Sect. 20.5,
where five American-style options are considered. Conclusions are presented in
Sect. 20.6.
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20.2 Spatial Discretization

The numerical solution of the PDCP (20.2) commences with the discretization of the
spatial differential operator A defined by (20.1). To this purpose, the unbounded
spatial domain is first truncated to a square .0; Smax/ � .0; Smax/ with given value
Smax chosen sufficiently large. We prescribe homogeneous Neumann conditions at
the far-field boundaries s1 D Smax and s2 D Smax, consistent with the payoffs under
consideration.

For the spatial discretization a suitable nonuniform Cartesian grid is taken,

.s1;i ; s2; j/ for 0 � i � m1; 0 � j � m2;

where 0 D sk;0 < sk;1 < : : : < sk;mk D Smax is the mesh in the k-th spatial direction
for k D 1; 2. The use of nonuniform grids, instead of uniform ones, can yield a
substantial improvement in efficiency. We consider here the type of grid used in
[4, 5]. Let k 2 f1; 2g and let ŒSleft; Sright
 be any given fixed subinterval of Œ0; Smax


that is of practical interest in the k-th direction. Let parameter d > 0 and let
equidistant points �min D �0 < �1 < : : : < �mk D �max be given with

�min D sinh�1
��Sleft

d

�
;

�int D Sright � Sleft

d
;

�max D �int C sinh�1
�

Smax � Sright

d

�
:

Note that �min < 0 < �int < �max. The mesh 0 D sk;0 < sk;1 < : : : < sk;mk D Smax is
then defined through the transformation

sk;l D '.�l/ .0 � l � mk/;

where

'.�/ D

8
ˆ̂
<

ˆ̂:

Sleft C d sinh.�/ .for �min � � � 0/;

Sleft C d� .for 0 < � � �int/;

Sright C d sinh.� � �int/ .for �int < � � �max/:

By construction, this mesh is uniform inside the interval ŒSleft; Sright
 and nonuniform
outside, where the mesh widths outside the interval are always larger than the mesh
width inside. The parameter d controls the fraction of mesh points that lie inside.
Let�� D �1��0. It is readily shown that the above mesh is smooth, in the sense that
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there exist real constants C0, C1, C2 > 0 such that the mesh widths hk;l D sk;l �sk;l�1
satisfy

C0 �� � hk;l � C1 �� and jhk;lC1 � hk;lj � C2 .��/
2 uniformly in l; mk:

For our applications it turns out to be beneficial for accuracy if the given strike
price K > 0 of an option is located exactly midway between two successive mesh
points. This can be achieved with the above type of mesh as follows. Fix an interval
ŒSleft; Sright
 such that K lies in the middle. Then K D '.�int=2/. Let � � 1 be any
given integer and take

�� D �int � 2 �min

�
;

so that �min D �0 < �1 < : : : < �� D �int � �min. It holds that sk;� D '.�int � �min/ D
Sleft C Sright. The point �int=2 is the middle of the interval Œ�min; �int � �min
 and
lies exactly midway between two successive �-mesh points whenever � is odd. This
implies that K lies exactly midway between two successive sk-mesh points whenever
� is odd. Then let mk D mk.�/ be the smallest integer such that mk�� � �max � �min

and reset �max to �min C mk��.
The discretization of the operator A is performed using finite differences. Let

f W R ! R be any given smooth function. Let fxlgl2Z be any given increasing
sequence of mesh points and �xl D xl � xl�1 for all l. For approximating the first
and second derivatives of f we consider the following well-known finite difference
formulas:

f 0.xl/ � ˛0 f .xl/C ˛1 f .xlC1/; (20.4a)

f 0.xl/ � ˇ�1 f .xl�1/C ˇ0 f .xl/C ˇ1 f .xlC1/; (20.4b)

f 00.xl/ � ı�1 f .xl�1/C ı0 f .xl/C ı1 f .xlC1/ (20.4c)

with

˛0 D �1
�xlC1

; ˛1 D 1
�xlC1

;

ˇ�1 D ��xlC1

�xl.�xlC�xlC1/
; ˇ0 D �xlC1��xl

�xl�xlC1
; ˇ1 D �xl

�xlC1.�xlC�xlC1/
;

ı�1 D 2
�xl.�xlC�xlC1/

; ı0 D �2
�xl�xlC1

; ı1 D 2
�xlC1.�xlC�xlC1/

:

The approximation (20.4a) is the first-order forward formula. The approxima-
tions (20.4b), (20.4c) are both central formulas that are second-order whenever the
mesh is smooth.

For the discretization of the terms @2u=@s2k (k D 1; 2) in A u, formula (20.4c) is
taken. For the terms @u=@sk (k D 1; 2) formula (20.4b) is applied at each mesh point
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sk;l such that the corresponding coefficient

rsk;lˇ�1 C 1
2
�2k s2k;lı�1

is nonnegative, otherwise formula (20.4a) is used. This mixed central/forward
discretization of the convection terms is often employed in the literature. For the
cross derivative term @2u=@s1@s2 the finite difference formulas used for @u=@s1,
@u=@s2 are successively applied. Concerning the boundary of the spatial domain,
at sk D 0 all spatial derivative terms involving the k-th direction vanish, so that this
part of the boundary is trivially dealt with (k D 1; 2). At sk D Smax the Neumann
condition directly yields @u=@sk and @2u=@s2k is approximated using a virtual point
sk;mkC1 > Smax, where the value at this point is defined by linear extrapolation
(k D 1; 2).

The given spatial discretization leads to a semidiscrete PDCP system

U.t/ � U0; U0.t/ � AU.t/; .U.t/ � U0/
T.U0.t/ � AU.t// D 0 (20.5)

for 0 < t � T with U.0/ D U0. Here U.t/ denotes the M �1 vector representing the
semidiscrete approximation to the option value function u.�; �; t/ on the spatial grid,
where M D .m1 C 1/.m2 C 1/. The M � M matrix A and the initial M � 1 vector U0

are given, where the latter represents the payoff function � on the spatial grid. The
vector inequalities are to be interpreted componentwise and the symbol T denotes
taking the transpose.

Taking into account the selection of the finite difference formulas and the
boundary conditions, it readily follows that �A is always an M-matrix (see e.g. [2])
whenever the correlation � D 0. This feature is widely used in the computational
finance literature to prove favourable properties of numerical methods. If � 6D 0,
then �A is usually not an M-matrix anymore when standard finite difference for-
mulas for the mixed derivative are applied. Advanced techniques exist to overcome
this, but in the present chapter we shall adhere to the standard discretization above.

20.3 Temporal Discretization

For the temporal discretization of the obtained semidiscrete PDCP system (20.5) we
deal in Sect. 20.3.1 with the well-known family of �-methods. Special instances of
this are the Crank-Nicolson (CN) method for � D 1

2
, and the backward Euler (BE)

method for � D 1. Next, in Sect. 20.3.2 three prominent families of Alternating
Direction Implicit (ADI) schemes are considered.
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20.3.1 �-Methods

Let parameter � > 0. Let I denote the M � M identity matrix. Let �t D T=N with
integer N � 1 be a given time step and let temporal grid points tn D n�t for integers
0 � n � N. The �-method applied to (20.5) defines approximations Un � U.tn/
successively for n D 1; 2; : : : ;N by

Un � U0; (20.6a)

.I � ��tA/Un � .I C .1 � �/�tA/Un�1; (20.6b)

.Un � U0/
T..I � ��tA/Un � .I C .1 � �/�tA/Un�1/ D 0: (20.6c)

The fully discrete PDCP (20.6) forms a linear complementarity problem (LCP) for
the vector Un. Much attention has been paid in the literature to the solution of LCPs.
We consider in the following several approximation approaches that are popular in
the present time-dependent context.

The explicit payoff (EP) approach is arguably the most commonly used in
financial practice. It yields the simple method (20.7), generating for n D 1; 2; : : : ;N
approximationsbUn � U.tn/.
�-EP method :

.I � ��tA/ NUn D .I C .1 � �/�tA/bUn�1; (20.7a)

bUn D maxf NUn ; U0g (20.7b)

with bU0 D U0 where the maximum of any two vectors is to be taken component-
wise. Method (20.7) can be regarded as a fractional step splitting technique in which
one first performs a time step by ignoring the American constraint and next applies
this constraint explicitly, compare [1]. More precisely, the latter means projecting
NUn onto the closed convex subspace of vectors V 2 R

M satisfying V � U0. The
computational cost per time step of the �-EP method is essentially the same as that
in the case of the European counterpart of the option, which is very favourable.

The Ikonen-Toivanen (IT) operator splitting approach [12, 13] has the same
computational cost. It yields the
�-IT method :

.I � ��tA/ NUn D .I C .1 � �/�tA/bUn�1 C�tb�n�1; (20.8a)

8
ˆ̂<

ˆ̂
:

bUn � NUn ��t .b�n �b�n�1/ D 0;

bUn � U0; b�n � 0; .bUn � U0/
Tb�n D 0

(20.8b)
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with b�0 D 0. The vector bUn and the auxiliary vector b�n are computed in two
stages. In the first stage, an intermediate approximation NUn is defined by the
linear system (20.8a). In the second stage, NUn and b�n�1 are updated to bUn and b�n

by (20.8b). It is easily seen that for these updates one has the simple formula

8
<

:

bUn D max
n NUn ��tb�n�1 ; U0

o
;

b�n D max
n
0 ; b�n�1 C .U0 � NUn/=�t

o
:

(20.9)

A related approach has been considered by Lions & Mercier [14], which was
inspired by the original Peaceman-Rachford (PR) directional splitting scheme [15].
It can be formulated as the
PR method :

.I � 1
2
�tA/ NUn D bUn�1 C 1

2
�tb�n�1; (20.10a)

(
bUn D max

˚
.I C 1

2
�tA/ NUn ; U0

�
;

b�n D max
˚
0 ; U0 � .I C 1

2
�tA/ NUn

�
=. 1

2
�t/:

(20.10b)

A useful interpretation of the IT splitting approach and the PR method shall be given
in Sect. 20.4.

Let Large > 0 be any fixed large number and integer � � 1. The penalty
approach has been proposed for American option valuation in [3, 17, 18]. It yields
�-P method :

�
I � ��tA C P.k/n

� NU.kC1/
n D .I C .1 � �/�tA/bUn�1 C P.k/n U0

for k D 0; 1; : : : ; � � 1 and bUn D NU.�/
n : (20.11)

This forms an iteration in each time step. Here NU.0/
n D bUn�1 and P.k/n (for 0 �

k < �) is defined as the diagonal matrix with l-th diagonal entry equal to Large
whenever NU.k/

n;l < U0;l and zero otherwise. In each time step, � linear systems
have to be solved, involving different matrices. Accordingly, the penalty method
is computationally more expensive per time step than the three foregoing methods.
A natural convergence criterion is

max
l

j NU.kC1/
n;l � NU.k/

n;l j
maxf1; j NU.kC1/

n;l jg
< tol or P.kC1/

n D P.k/n ; (20.12)
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with given sufficiently small tolerance tol > 0. Let � denote the machine precision
of the computer. A rule of thumb1 for the choice of penalty factor is then

Large � ˛
tol

�
with ˛ D 10�2: (20.13)

We have � � 10�16 and choose tol D 10�7 and Large D 107. In our applications,
the average number of iterations � per time step lies between 1 and 2.

20.3.2 ADI Schemes

ADI schemes are attractive for the temporal discretization of semidiscrete multidi-
mensional PDEs as their computational cost per time step is directly proportional to
the number of spatial grid points M from the semidiscretization, which is optimal.
For these schemes, the matrix A is split into

A D A0 C A1 C A2: (20.14)

Here A0 is the part of A that corresponds to the semidiscretization of the mixed
derivative term. This matrix is nonzero whenever the correlation � is nonzero. Next,
A1 and A2 are the parts of A that correspond to the semidiscretization of all spatial
derivative terms in the s1- and s2-directions, respectively, and also contain an equal
part of �rI. These two matrices are essentially tridiagonal (that is, up to a possible
permutation).

In the literature on the numerical valuation of European-style options, three
prominent families of ADI schemes have been considered: the Douglas (Do)
scheme, the Modified Craig-Sneyd (MCS) scheme and the Hundsdorfer-Verwer
(HV) scheme, compare e.g. [7]. In [5, 6] these schemes have been adapted for
the numerical valuation of American-style options by combining them with the IT
splitting approach, leading to so-called ADI-IT methods:
Do-IT method :

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:̂

Y0 D .I C�tA/bUn�1 C�tb�n�1;
Yj D Yj�1 C ��tAj



Yj � bUn�1

�
. j D 1; 2/;

NUn D Y2;

bUn D max
n NUn ��tb�n�1 ; U0

o
;

b�n D max
n
0 ; b�n�1 C .U0 � NUn/=�t

o
:

(20.15)

1Suggested to the authors by P.A. Forsyth.
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MCS-IT method :

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:̂

Y0 D .I C�tA/bUn�1 C�tb�n�1;
Yj D Yj�1 C ��tAj



Yj � bUn�1

�
. j D 1; 2/;

eY0 D Y0 C �
��t A0 C . 1

2
� �/�tA

� 

Y2 � bUn�1

�
;

eYj D eYj�1 C ��tAj



eYj � bUn�1

�
. j D 1; 2/;

NUn D eY2;

bUn D max
n NUn ��tb�n�1 ; U0

o
;

b�n D max
n
0 ; b�n�1 C .U0 � NUn/=�t

o
:

(20.16)

HV-IT method :

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:

Y0 D .I C�tA/bUn�1 C�tb�n�1;
Yj D Yj�1 C ��tAj



Yj � bUn�1

�
. j D 1; 2/;

eY0 D Y0 C 1
2
�tA



Y2 � bUn�1

�
;

eYj D eYj�1 C ��tAj
�
eYj � Y2

�
. j D 1; 2/;

NUn D eY2;

bUn D max
n NUn ��tb�n�1 ; U0

o
;

b�n D max
n
0 ; b�n�1 C .U0 � NUn/=�t

o
:

(20.17)

The Do-IT method constitutes the basic ADI-IT method. The MCS-IT and HV-IT
methods form different extensions to this method, which require about twice the
amount of computational work per time step.

In the ADI-IT methods above, the A0 part is always treated in an explicit manner
and the A1 and A2 parts in an implicit manner. In each time step, linear systems have
to be solved with the two matrices I � ��tAj for j D 1; 2. Since these matrices
are both tridiagonal, the solution can be done very efficiently by computing once,
upfront, their LU factorizations and then employ these in all time steps. It thus
follows that the computational cost per time step of each ADI-IT method is directly
proportional to the number of spatial grid points M, which is very favourable.

Concerning the underlying ADI schemes it holds that the MCS and HV schemes
both have a classical order of consistency (that is, for fixed nonstiff ODE systems)
equal to two for any value � . We mention that the MCS scheme with � D 1

2
is the

so-called Craig-Sneyd (CS) scheme. For the Do scheme, if A0 is nonzero, then the
classical order of consistency is only equal to one. This lower order is due to the fact
that in this scheme the A0 part is treated in a simple, forward Euler fashion.
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20.4 An Interpretation of the IT Approach and the PR
Method

In this section we present an illuminating interpretation of the IT splitting approach
and the PR method. It is obtained upon rewriting the semidiscrete PDCP (20.5) by
means of an auxiliary variable �.t/, often called a Lagrange multiplier:

U0.t/ D AU.t/C �.t/; (20.18a)

U.t/ � U0; �.t/ � 0; .U.t/ � U0/
T�.t/ D 0: (20.18b)

Suppose for the moment that �.t/ is known and write the ODE system (20.18a) in
splitted form as

U0.t/ D F.t;U.t//C G.t;U.t//

with

F.t;V/ D AV and G.t;V/ D �.t/ .0 � t � T; V 2 R
M/:

Assume bUn�1 � U.tn�1/ is given and consider bUn � U.tn/ defined by

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

Y0 D bUn�1 C�t F.tn�1;bUn�1/C�t G.tn�1;bUn�1/;

Y D Y0 C �1�t



F.tn;Y/ � F.tn�1;bUn�1/
�
;

Z D Y C �2�t



G.tn;Z/ � G.tn�1;bUn�1/
�
;

bUn D Z:

(20.19)

The above can be viewed as a Douglas type splitting scheme for (20.18a) involving
two parameters �1, �2, compare e.g. [11]. Note that the splitting here is different
from the directional splitting considered in Sect. 20.3.2. A simple relation holds
between the scheme (20.19) and the �-IT method (20.8): upon taking �1 D � and
�2 D 1, writing Y D NUn and replacing �.tq/ by an approximation b�q for q 2
fn � 1; ng, it is easily seen that (20.19) becomes (20.8a) together with the first line
of (20.8b). The second line of (20.8b), which complements the �-IT method, forms a
discrete analogue of the complementarity condition (20.18b) at t D tn. We mention
that a related, operator-theoretic derivation was given in [14] if � D 1, where it was
called the Douglas-Rachford scheme.

The above interpretation of the �-IT method is directly extended to all ADI-IT
methods (20.15), (20.16), (20.17) upon nesting into (20.19) the directional splitting
of the function F induced by (20.14).
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Consider next a Peaceman-Rachford type splitting scheme for (20.18a),

8
ˆ̂̂
<

ˆ̂
:̂

Y D bUn�1 C 1
2
�t F.tn�1=2;Y/C 1

2
�t G.tn�1;bUn�1/;

Z D Y C 1
2
�t F.tn�1=2;Y/C 1

2
�t G.tn;Z/;

bUn D Z:

(20.20)

Elaborating (20.20), and next replacing �.tq/ by an approximation b�q for q 2
fn � 1; ng, gives

bUn D .I C 1
2
�tA/ NUn C 1

2
�tb�n with NUn defined by .20.10a/:

The discrete analogue of the complementarity condition (20.18b) at t D tn reads

bUn � U0; b�n � 0; .bUn � U0/
Tb�n D 0:

This is equivalent, for any given " > 0, to

bUn � U0 D max
n
0 ; bUn � U0 � "b�n

o
and b�n D max

n
0 ; b�n � .bUn � U0/="

o
:

Selecting " D 1
2
�t and inserting the above expression for bUn yields (20.10b).

Hence, the PR method (20.10) can be viewed as obtained from a Peaceman-
Rachford type splitting scheme, with the comment that the pertinent splitting is
not directional. This interpretation corresponds to the operator-theoretic exposition
given in [14].

We remark that a natural variant to the �-IT method is obtained by selecting
�1 D �2 D � in (20.19). This leads to (20.8) except that in the first line of
the update (20.8b) the step size �t is replaced by ��t. Accordingly, the same
replacement occurs in (20.9). As it turns out, for � D 1

2
this variant of the �-IT

method is equivalent to the PR method.

20.5 Numerical Study

In the following we present extensive numerical experiments for the temporal
discretization methods described in Sect. 20.3. Our main objectives are to study their
actual convergence behaviour in the numerical solution of (20.5) and to assess their
relative performance.

To this purpose, we study the temporal discretization error at t D T D N�t, on
a natural region of interest, defined by

be.�tI m/ D maxfjUl.T/�bUN;lj W 0 � i; j � m; 1
2
K < s1;i ; s2; j <

3
2
Kg: (20.21)
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Here U.T/ represents the exact solution to the semidiscrete PDCP (20.5) for t D T
and l D l.i; j/ denotes the index such that the components Ul.T/ andbUN;l correspond
to the spatial grid point .s1;i; s2;j/. In our experiments always the same number of
mesh points in the two spatial directions is taken, m1 D m2 D m. For each given m,
a reference solution for U.T/ is computed by applying the �-P method with � D 1

2

and N D 10m time steps.
Clearly, (20.21) measures the temporal error in the maximum norm, which is the

most relevant norm in financial practice. Note that the spatial discretization error is
not contained in (20.21). We investigate here in detail the error due to the temporal
discretization itself. This will lead to important new insights. We take the number
of time steps N directly proportional to m, which forms the common situation in
applications. The following methods are considered:

• BE-EP : (20.7) with � D 1

• BE-IT : (20.8) with � D 1

• BE-P : (20.11) with � D 1

• CN-EP : (20.7) with � D 1=2

• CN-IT : (20.8) with � D 1=2

• CN-P : (20.11) with � D 1=2

• PR : (20.10)

and

• Do-IT : (20.15) with � D 1=2

• CS-IT : (20.16) with � D 1=2

• MCS-IT : (20.16) with � D 1=3

• HV-IT : (20.17) with � D 1=.2C p
2/

The selected values of � for methods (20.15), (20.16), (20.17) are motivated by the
favourable unconditional stability results obtained for the underlying ADI schemes
in [8, 9].

It is well-known that in financial applications the payoff function � is usually
nonsmooth at one or more given points, which has an adverse effect on the
accuracy of numerical solution methods. For the spatial discretization, this effect
can be alleviated by constructing a spatial grid such that the coordinates of these
points of nonsmoothness always lie exactly midway between two successive mesh
points. Such a construction has been considered in Sect. 20.2. Subsequently, for the
temporal discretization, a common approach is to apply backward Euler damping,
also known as Rannacher time stepping. In the case of European options, this means
that the first few time steps are all replaced by two substeps with step size �t=2 of
the backward Euler method. In analogy to this, we always replace each of the first
two time steps of any of the �-EP, �-IT and �-P methods by two substeps with step
size �t=2 of the same method using � D 1. Next, for damping the PR method and
all ADI-IT methods, the �-IT method is employed with � D 1.
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20.5.1 One-Asset American Options

We begin with the special case of one-asset American options under the Black-
Scholes framework. The pertinent (one-dimensional) spatial differential operator is

A D 1
2
�2s2

@2

@s2
C rs

@

@s
� r: (20.22)

The spatial discretization is performed as in Sect. 20.2, where for the nonuniform
mesh the following parameter values are taken,

d D K=3; Sleft D 0:8K; Sright D 1:2K; Smax D 5K: (20.23)

As a first example we consider an American put option, which has payoff �.s/ D
max.K � s; 0/ (for s � 0), and choose financial parameter values

r D 0:02; � D 0:40; T D 0:5; K D 100: (20.24)

Figure 20.1 displays, for all methods listed above except the ADI-IT methods, their
temporal discretization errorsbe.�tI m/ for N D m and 20 different values m between
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Fig. 20.1 American put option and parameters (20.24). Temporal errorbe.�tI m/ versus 1=m with
N D m for 10 � m � 1000. Constant step sizes. BE-EP: light bullets, BE-IT: light squares,
BE-P: light triangles, CN-EP: dark bullets, CN-IT: dark squares, CN-P: dark triangles, PR: dark
diamonds
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10 and 1000, given by an equal number of appropriate odd values � (see Sect. 20.2).
One observes that the errors obtained with the three methods BE-EP, BE-IT, BE-P
are very close to each other. They show a first-order convergence behaviour, as might
be expected. The errors obtained with the four methods CN-EP, CN-IT, CN-P, PR
are substantially smaller. Of these four, the CN-EP method is the least accurate. The
errors for the CN-IT, CN-P, PR methods are relatively close to each other and a
convergence order approximately equal to 1.3 is observed for these. Clearly, this
order is significantly lower than two, which is attributed to the nonsmoothness of
the option value function near the early exercise boundary, see e.g. [3].

We next choose the more challenging example of an American butterfly option,
see [10]. It has the nonconvex payoff

�.s/ D max.s � K1; 0/� 2max.s � K; 0/C max.s � K2; 0/

with strikes K1 < K2 and K D .K1 C K2/=2. Figure 20.2 displays, analogously
to the above, the temporal discretization errors for all methods under consideration
with financial parameter values

r D 0:02; � D 0:40; T D 0:5; K1 D 80; K2 D 120: (20.25)

The BE-IT, BE-P, CN-IT, CN-P, PR methods reveal a neat first-order convergence
behaviour. The explicit payoff methods, BE-EP and CN-EP, invariably yield large
errors and appear to converge only very slowly as N D m increases. We mention
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Fig. 20.2 American butterfly option and parameters (20.25). Temporal errorbe.�tI m/ versus 1=m
with N D m for 10 � m � 1000. Constant step sizes. BE-EP: light bullets, BE-IT: light squares,
BE-P: light triangles, CN-EP: dark bullets, CN-IT: dark squares, CN-P: dark triangles, PR: dark
diamonds



20 Numerical Study of Splitting Methods for American Option Valuation 387

0

50

100

150 0
0.1

0.2
0.3

0.4
0.5

0

0.5

1

1.5

2

2.5

Fig. 20.3 American put option and parameters (20.24). Lagrange multipliersb�n;i versus .s1;i; tn/

in Œ0; 3
2
K
� .0; T
 for BE-IT method and m D 100

that for the latter methods the temporal errors are largest near the strike K (which is
always an early exercise point for the butterfly option).

Ample additional experiments in the case of one-asset American put and butterfly
options support our above conclusions. The CN-based methods are in general more
accurate than the BE-based methods, as could be expected. Further, it is found that
the PR method is often somewhat more accurate than the CN-IT method.

Examining the Lagrange multiplier vectors b�n provides further useful insight.
Figures 20.3 and 20.4 display for the American put and butterfly options, respec-
tively, the Lagrange multiplierb�n;i versus .s1;i; tn/ in the domain Œ0; 3

2
K
� .0;T
 for

the BE-IT method and m D 100. The subdomain where the multiplier is nonzero
represents the early exercise region. Clearly, for the butterfly option this region
forms a narrow neighbourhood of the strike K. Replacing the BE-IT method by
the CN-IT method or the PR method yields essentially the same outcome as in
Figs. 20.3 and 20.4. Upon increasing m, the outcome for the American put remains
approximately the same, but for the American butterfly the maximum grows, in a
manner directly proportional to m. The latter phenomenon can be explained from
the nonsmoothness (kink) of the exact butterfly option value function at the strike K
at all times, which renders the numerical valuation of the American butterfly much
more challenging than that of the American put.
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Fig. 20.4 American butterfly option and parameters (20.25). Lagrange multipliers b�n;i versus
.s1;i; tn/ in Œ0; 3

2
K
 � .0; T
 for BE-IT method and m D 100

It was demonstrated in [3] that by employing suitable adaptive variable step sizes,
instead of constant step sizes, one can recover second-order convergence for the
CN-P method. All temporal discretization methods from Sect. 20.3 are extended
straightforwardly to variable step sizes. We consider here temporal grid points
defined upfront by (compare also e.g. [13, 16])

tn D

 n

N

�2
T for n D 0; 1; 2; : : : ;N: (20.26)

The corresponding step sizes are smallest near t D 0 (which is where the option
value and early exercise boundary vary strongest) and they grow linearly with n.
Figures 20.5 and 20.6 are the analogues of Figs. 20.1 and 20.2, respectively, obtained
in the case of these variable step sizes. Indeed, for the CN-P method a favourable
second-order convergence behaviour is observed. We note that relatively larger
temporal errors can occur near the early exercise boundary in the case of the put
option, resulting in the occasional “peaks” in Fig. 20.5, see also [3]. With variable
step sizes, however, the CN-P method is in general substantially more accurate than
all other methods under consideration. For the other methods, employing variable
step sizes does not lead to a significant improvement in accuracy compared to
constant step sizes. Because with the CN-P method the pertinent LCP in each time
step is essentially solved exactly, we conclude that for the other CN-based methods
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Fig. 20.5 American put option and parameters (20.24). Temporal errorbe.�tI m/ versus 1=m with
N D m for 10 � m � 1000. Variable step sizes. BE-EP: light bullets, BE-IT: light squares,
BE-P: light triangles, CN-EP: dark bullets, CN-IT: dark squares, CN-P: dark triangles, PR: dark
diamonds

(including PR) the error due to the approximate solution of the LCP in each time
step dominates the error due to the CN time stepping; notice that the temporal
discretization error (20.21) can be viewed as the sum of these two errors, since
U.T/� bUN D .U.T/ � UN/C .UN � bUN/ with UN defined by (20.6).

20.5.2 Two-Asset American Options

We next consider numerical experiments for several two-asset American options.
The spatial discretization of the PDCP (20.2) is done on the nonuniform grid
described in Sect. 20.2 with parameter values (20.23). For the temporal discretiza-
tion we apply all methods listed at the beginning of this section except those using
the explicit payoff approach.

As a first example an American put option on the minimum of two asset prices
is taken. It has payoff �.s1; s2/ D max.K � s; 0/ with s D min.s1; s2/. We choose
financial parameter values from [18],

r D 0:05; �1 D 0:30; �2 D 0:30; � D 0:50; T D 0:5; K D 40: (20.27)
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Fig. 20.6 American butterfly option and parameters (20.25). Temporal errorbe.�tI m/ versus 1=m
with N D m for 10 � m � 1000. Variable step sizes. BE-EP: light bullets, BE-IT: light squares,
BE-P: light triangles, CN-EP: dark bullets, CN-IT: dark squares, CN-P: dark triangles, PR: dark
diamonds

The numerically approximated early exercise region for t D T is shown in Fig. 20.7.
We compute the temporal discretization errorsbe.�tI m/ for N D m constant step
sizes and 15 different values m between 10 and 200, corresponding to an equal
number of odd values �. Figure 20.9 displays the obtained results for the �-based
methods (Fig. 20.8 will be discussed on the following page). Similar to the one-asset
American put option case, the errors for the BE-IT and BE-P methods are very close
to each other and show an approximate first-order convergence behaviour. Also, as
before, the errors for the CN-based methods are substantially smaller and relatively
close to each other and show a convergence order approximately equal to 1.3. In
Fig. 20.10 the results are displayed for the four ADI-IT methods under considera-
tion. The obtained accuracies with the CS-IT, MCS-IT and HV-IT methods are about
the same and close to those for the CN-based methods. The observed convergence
orders for these three ADI-IT methods are thus also approximately equal to 1.3. The
Do-IT method is substantially less accurate than the three more advanced ADI-IT
methods, but it is somewhat more accurate than the BE-IT and BE-P methods. The
observed convergence order for the Do-IT method is slightly smaller than one.

As a second example we consider an American put option on the arithmetic
average of two asset prices, which has the payoff �.s1; s2/ D max.K � s; 0/ with
s D .s1 C s2/=2. The numerically approximated early exercise region when t D T
is displayed in Fig. 20.8. Figures 20.11 and 20.12 form the analogues of Figs. 20.9
and 20.10, respectively, for this option. Comparing the achieved accuracies of the
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Fig. 20.7 Early exercise region if t D T for two-asset American put on the minimum and
parameters (20.27)
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Fig. 20.8 Early exercise region if t D T for two-asset American put on the average and parameters
(20.27)



392 K. in ’t Hout and R.L. Valkov

10−2 10−1
10−5

10−4

10−3

10−2

10−1

Fig. 20.9 Two-asset American put on the minimum and parameters (20.27). Temporal error
be.�tI m/ versus 1=m with N D m for 10 � m � 200. Constant step sizes. BE-IT: light squares,
BE-P: light triangles, CN-IT: dark squares, CN-P: dark triangles, PR: dark diamonds
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Fig. 20.10 Two-asset American put on the minimum and parameters (20.27). Temporal error
be.�tI m/ versus 1=m with N D m for 10 � m � 200. Constant step sizes. Do-IT: dark bullets,
CS-IT: dark squares, MCS-IT: dark stars, HV-IT: dark diamonds
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Fig. 20.11 Two-asset American put on the average and parameters (20.27). Temporal error
be.�tI m/ versus 1=m with N D m for 10 � m � 200. Constant step sizes. BE-IT: light squares,
BE-P: light triangles, CN-IT: dark squares, CN-P: dark triangles, PR: dark diamonds
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Fig. 20.12 Two-asset American put on the average and parameters (20.27). Temporal error
be.�tI m/ versus 1=m with N D m for 10 � m � 200. Constant step sizes. Do-IT: dark bullets,
CS-IT: dark squares, MCS-IT: dark stars, HV-IT: dark diamonds
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different methods, the same conclusions are obtained as in the case of the put option
on the minimum, with the exception of the PR method, which is often somewhat
more accurate than the other methods. The observed convergence orders for the
CN-P and PR methods are approximately equal to 1.1 and 1.3, respectively, and for
all other methods they are slightly smaller than one.

As a third example we select an American butterfly option on the maximum of
two asset prices with payoff

�.s1; s2/ D max.s � K1; 0/� 2max.s � K; 0/C max.s � K2; 0/

with s D max.s1; s2/ and K D .K1CK2/=2. For this option the early exercise region
encompasses all points .s1;K/ and .K; s2/ with 0 � s1; s2 � K. We choose financial
parameter values

r D 0:05; �1 D �2 D 0:30; � D 0:50; T D 0:5; K1 D 32; K2 D 48: (20.28)

The obtained temporal errors for the �-based methods and the ADI-IT methods are
displayed in Figs. 20.13 and 20.14, respectively. The outcome is quite distinct from,
and less favourable than, that in all foregoing (one- and two-asset) American option
examples. For the BE-IT, BE-P and CN-P methods a neat first-order convergence
is observed. Of these, the CN-P method is by far the most accurate. For all other
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Fig. 20.13 Two-asset American butterfly and parameters (20.28). Temporal errorbe.�tI m/ versus
1=m with N D m for 10 � m � 200. Constant step sizes. BE-IT: light squares, BE-P: light
triangles, CN-IT: dark squares, CN-P: dark triangles, PR: dark diamonds
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Fig. 20.14 Two-asset American butterfly and parameters (20.28). Temporal errorbe.�tI m/ versus
1=m with N D m for 10 � m � 200. Constant step sizes. Do-IT: dark bullets, CS-IT: dark
squares, MCS-IT: dark stars, HV-IT: dark diamonds

methods the converge behaviour is unclear. We note that setting the correlation
� D 0, or computing the reference solution by the PR method instead of the CN-P
method, does not change this conclusion. Subsequent experiments for the two-asset
American butterfly option up to the value m D 500 suggest that for the CN-IT and
PR methods there is convergence in m D N of order 0:5. The converge behaviour of
the ADI-IT methods is difficult to assimilate in this example and further research is
required.

Employing the temporal grid points (20.26), corresponding to variable step
sizes, leads in general again to a substantial improvement in accuracy for the
CN-P method. In the case of the two-asset butterfly option, a smooth second-
order convergence behaviour is observed. For the two-asset put options above,
such a favourable result is obtained when the region of interest for the temporal
error (20.21) does not intersect with the early exercise boundary.

20.6 Conclusions

In this chapter an ample numerical study has been performed for a collection of
contemporary temporal discretization methods for PDCPs modelling the fair values
of one- and two-asset American-style options. To this purpose, a detailed numerical
investigation has been carried out of the temporal discretization error (20.21). Here
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the maximum norm is considered and the number of time steps N has been taken
directly proportional to the number of mesh points m in each spatial direction.

Five American-style options are chosen for the numerical experiments: the one-
asset put, the one-asset butterfly, the two-asset put on the minimum, the two-asset
put on the arithmetic average, and the two-asset butterfly on the maximum. For
the temporal discretization, the backward Euler (BE) and Crank-Nicolson (CN)
methods are selected together with three ADI schemes: Douglas (Do), Modified
Craig-Sneyd (MCS) and Hundsdorfer-Verwer (HV). For the numerical treatment of
the LCPs that occur in each time step, the explicit payoff (EP) approach, the Ikonen-
Toivanen (IT) splitting approach and the penalty (P) approach are considered. In
addition to this, the Peaceman-Rachford (PR) method has been selected, which is
related to the CN-IT method. For the ADI schemes, only the combination with the
IT splitting approach is studied in the present chapter.

The two explicit payoff methods, BE-EP and CN-EP, have been considered just
for one-asset options. They show a temporal convergence order equal to 1.0 for the
one-asset put option, but in the case of the one-asset butterfly option their temporal
errors turn out to be large and convergence appears to be slow.

In contrast, for all five options above, the BE-IT and BE-P methods always show
a temporal convergence order close to 1.0 and the CN-P method a convergence
order between 1.0 and 1.3. By employing suitable variable step sizes, defining the
temporal grid points (20.26), the CN-P method reveals a favourable convergence
order close to 2.0 whenever the early exercise boundary is not contained in the
region of interest. For all other methods under consideration, using these variable
step sizes does unfortunately not lead to an improvement in their convergence
behaviour.

The CN-IT and PR methods always show a convergence order between approx-
imately 1.0 and 1.3, except for the two-asset butterfly option, where it appears to
reduce to 0.5.

Concerning the ADI-IT methods, the Do-IT method with � D 1=2 shows a
convergence order about equal to 1.0 for both two-asset put options. The MCS-IT
methods with � D 1=3 and � D 1=2 and the HV-IT method with � D 1=.2C p

2/

show convergence orders approximately equal to 1.3 and 1.0 for these two options,
respectively. The convergence behaviour of the ADI-IT methods is unclear in the
case of the two-asset butterfly option.

The above observations on the temporal convergence behaviour of the methods
employing the IT splitting approach appear to be largely new in the literature. Only
for the BE-IT method a directly related theoretical result is known to us, see [5].
The numerical results in this chapter are in agreement with this theoretical result.
For the methods using the penalty approach, our observations agree well with the
(theoretical and practical) findings in [3]. Clearly, a temporal convergence order
close to or equal to two is only observed in the experiments in this chapter for the
CN-P method applied with suitable variable step sizes.

Comparing the size of the temporal errors of the different methods with constant
step size, the experiments suggest that for the two methods BE-IT, BE-P these are
always very similar, and the same is valid for the three methods CN-IT, CN-P, PR.
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The latter group was found to be always significantly more accurate than the former
group. Further, the PR method proved to be often somewhat more accurate than
the CN-IT method. The ADI-based methods MCS-IT and HV-IT revealed a similar
accuracy to the CN-based methods in the case of the two-asset put options. The
Do-IT method was significantly less accurate than these. With the pertinent variable
step sizes, the CN-P method has been found to be the most accurate in general
among all methods under consideration.

Based on the numerical experiments discussed in this chapter, and taking
into account the amount of computational work per time step, the MCS-IT and
HV-IT methods are recommended in the numerical solution of (20.2) for two-asset
American-style options whenever the payoff function and the financial parameters
are standard. If the payoff function is more advanced, such as the (nonconvex) two-
asset butterfly on the maximum, we recommend the CN-P method with variable
step sizes. The BE-IT and BE-P methods are advocated if general applicability is
important, which goes at the expense of temporal accuracy. As a comprise between
general applicability and temporal accuracy, the PR method forms a good candidate.
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Chapter 21
High-Order-Compact ADI Schemes for Pricing
Basket Options in the Combination Technique

Christian Hendricks, Christof Heuer, Matthias Ehrhardt,
and Michael Günther

Abstract In this chapter we combine high-order-compact (HOC) and alternating-
direction-implicit (ADI) schemes for pricing basket options in a sparse grid setting
HOC schemes exploit the structure of the underlying partial differential equation
to obtain a high order of consistency while employing a compact stencil. As time
discretisation we propose an efficient ADI splitting to derive a stable scheme.
The combination technique is used to construct the so called sparse grid solution,
which leads to a significant reduction of necessary grid points and thus to a lower
computational effort.

21.1 Introduction

We consider the d-dimensional Black-Scholes partial differential equation (PDE)

@V

@t
C 1

2

dX

i;jD1
�ij�i�jSiSj

@2V

@Si@Sj
C r

dX

iD1
Si
@V

@Si
� rV D 0

in ˝ � ˝t with ˝ D Œ0; Smax
1 
 � � � � � Œ0; Smax

d 
 and ˝t D Œ0;T
. The volatility
of the single assets Si is denoted by �i > 0, their correlation is given by �ij for
i; j D 1; : : : ; d. The risk-free interest rate is given by r. At maturity t D T the option
value is given by its payoff

g.S1; : : : ; Sd/ D .K � S1 � � � � � Sd/
C (Put);

g.S1; : : : ; Sd/ D .S1 C � � � C Sd � K/C (Call)
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with the strike price K > 0. We apply the transformations xi D log.Si/ for i D
1; : : : ; d, � D T � t and u D er�V , which leads to the transformed PDE

@u

@�
� 1

2

dX

i;jD1
�ij�i�j

@2u

@xi@xj
�

dX

iD1

�
r � 1

2
�2i
� @u

@xi
D 0; (21.1)

with space-independent coefficients. In order to solve the PDE (21.1) numerically
we use the method-of-lines approach and end up with a semi-discretisation in space

@u

@�
D F.u.�//; 0 � � � T; u.0/ D g:

We consider ADI splitting schemes in the time domain with the decomposition of
the spatial discretisation

F.u/ D F0.u/C F1.u/C � � � C Fd.u/;

where F0 stems from all mixed derivatives and Fi for i D 1; : : : ; d belongs to the
unidirectional contribution of the i-th coordinate in the PDE (21.1). Within the
ADI framework the F0 part will always be treated explicitly. We propose a HOC
finite difference discretisation of the Fi-terms to compute a highly accurate solution
while employing a compact stencil. To reduce the number of grid points we use the
combination technique to compute the so called sparse grid solution. Compared to
a tensor-based full grid with O.h�d/ points in space, the sparse grid consists of only
O.h�1 log.h�1/d�1/ nodes. Under suitable regularity assumptions the pointwise rate
of convergence is O.h4 log.h�1/d�1/ if a fourth order scheme is used to compute the
sub solutions.

21.2 HOC Finite Differences

We derive a HOC approximation of the single Fi arising in the decomposition of F.
Throughout this chapter we use standard finite difference operators to approximate
the derivatives. A central discretisation to the first and second derivative of order
two is given by

ı2xi
uk D 1

h2i
.ukC1 � 2uk C uk�1/ D @2u

@x2i
C O.h2i /;

ı0xi
uk D 1

2hi
.ukC1 � uk�1/ D @u

@xi
C O.h2i /:
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The mixed derivative term F0 is approximated with the help of fourth order stencils

Qı0xi
uk D 1

12hi
.�ukC2 C 8ukC1 � 8uk�1 C uk�2/ D @u

@xi
C O.h4i /:

Thus we can approximate F0 via

F0.u/ D
dX

i;jD1
i¤j

1
2
�ij�i�j

Qı0xi
Qı0xj

ukl C
X

i;j

O.h4i h4j /:

As F0 is always treated explicitly we do not expect any significant adverse
effects incorporating these large stencils regarding the computational effort. The
unidirectional contributions are given by

Fi.u/ D 1
2
�2i
@2u

@x2i
C �

r � 1
2
�2i
� @u

@xi
D f ; (21.2)

for i D 1; : : : ; d and some arbitrary right hand side f . Inserting the finite difference
operators we obtain

Fi.uk/ D 1
2
�2i ı

2
xi

uk � 1
2
�2i

h2i
12

@4u

@x4i

C �
r � 1

2
�2i
�
ı0xi

uk � �
r � 1

2
�2i
� h2i
6

@3u

@x3i
C O.h4i / D fk: (21.3)

Since the truncation error in (21.3) is of order two, we can derive a fourth order
approximation if the third and fourth derivative are approximated with second order
accuracy. In order to derive these approximations, we differentiate Eq. (21.2) once
with respect to xi and get

@3u

@x3i
D 2

�2i

@f

@xi
�
�
2r

�2i
� 1

�
@2u

@x2i
: (21.4)

Differentiating (21.2) twice with respect to xi gives

@4u

@x4i
D 2

�2i

@f

@xi
�
�
2r

�2i
� 1

��
2

�2i

@f

@xi
�
�
2r

�2i
� 1

�
@2u

@x2i

�
: (21.5)

The derivatives (21.4) and (21.5) can be approximated via central discretisation on
the compact stencil with second order. Hence using (21.4) and (21.5) in (21.3) leads
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to a fourth order accurate approximation

0

B
@

h2i

 

r� �2i
2

!2

6�2i
C �2i

2

1

C
A ı2xi

uk C
�

r � �2i
2

�
ı0xi

uk

D fk C h2i
12
ı2xi

fk C
h2i



r � �2i

2

�

6�2i
ı0xi

fk: (21.6)

Rewriting this scheme in terms of matrices or symbolic operators gives

AxiU D Bxi F

for vectors U and F, where Axi corresponds to the left hand side of (21.6) and Bxi to
its right hand side. The semi-discrete scheme can thus be written as

@u

@t
D F0.u/C B�1

x1
Ax1u C � � � C B�1

xd
Axd u C O.h41/C � � � C O.h4d/C

X

i;j

O.h4i h4j /:

21.3 HOC-ADI Schemes

We now apply three well known ADI schemes to the spatial discretisation given in
the previous section, namely
HOC Douglas scheme:

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
:

Z0 D Qd
jD1 Bxj un C�t

 
Qd

jD1 Bxj F0.un/CPd
iD1

Qd
jD1
j¤i

BxjAxi un

!

.Bxi � ��tAxi/ Zi D Zi�1 � ��t
Qd

jDiC1 BxjAxi un for i D 1; : : : ; d

unC1 D Zd;

(21.7)

HOC Craig-Sneyd scheme:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:̂

Z0 D Qd
jD1 Bxj un C�t

 
Qd

jD1 Bxj F0.un/CPd
iD1

Qd
jD1
j¤i

BxjAxi un

!

.Bxi � ��tAxi/ Zi D Zi�1 � ��t
Qd

jDiC1 BxjAxi un for i D 1; : : : ; d

QZ0 D Z0 C 1
2
�t


Qd
jD1 BxjF0.Zd/ �Qd

jD1 BxjF0.un/
�

.Bxi � ��tAxi/
QZi D QZi�1 � ��t

Q
jDiC1 BxjAxi un for i D 1; : : : ; d

unC1 D QZd:

(21.8)
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HOC Modified Craig-Sneyd scheme:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂̂
:̂

Z0 D Qd
jD1 Bxj un C�t

 
Qd

jD1 Bxj F0.un/CPd
iD1

Qd
jD1
j¤i

BxjAxi un

!

.Bxi � ��tAxi/ Zi D Zi�1 � ��t
Qd

jDiC1 BxjAxi un for i D 1; : : : ; d

OZ0 D Z0 C ��t


Qd
jD1 Bxj F0.Zd/�Qd

jD1 Bxj F0.un/
�

QZ0 D OZ0 C . 1
2

� �/�t


Qd
jD1 BxjF.Zd/�Qd

jD1 Bxj F.un/
�

.Bxi � ��tAxi/
QZi D QZi�1 � ��t

Q
jDiC1 BxjAxi un for i D 1; : : : ; d

unC1 D QZd:

(21.9)

The Douglas scheme, see [2], exhibits a consistency order 2 in time if � D 1
2

and F0 D 0, order 1 otherwise. The consistency order in time of the Craig-Sneyd
scheme, see [1], is given by 2 if and only if � D 1

2
. The modified Craig-Sneyd

scheme, see [5], exhibits consistency order 2 in time for any � . The Craig-Sneyd
and the Modified Craig-Sneyd scheme can be seen as an extension of the Douglas
scheme.

21.4 Combination Technique

In order to construct the solution on the sparse grid we use the combination
technique, which exploits the error splitting structure to linearly combine an
anisotropic sequence of solutions in such a way that low order error terms cancel
out. We assume

u.xh/� ul D
dX

kD1

X

f j1;:::;jkg
	f1;:::;dg

wj1;:::;jk.:I hj1 ; : : : ; hjk/h
4
j1 � � � h4jk ;

as error with bounded coefficient functions w. The analytical solution on the discrete
grid xh is denoted by u.xh/. Note that such an splitting structure can be shown for a
wide class of PDEs and linear finite difference schemes [7]. Combining the solutions
according to

us
n D

d�1X

qD0
.�1/q

 
d � 1

q

!
X

jlj1Dn�q

ul;
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we can expect a pointwise rate of convergence of O.h4 log.h�1/d�1/. Here us
n

denotes the sparse grid solution on level n. The numerical sub solutions ul are com-
puted on a grid with step sizes .h1; h2; : : : ; hd/ D �

2�l1 � c1; 2�l2 � c2; : : : ; 2�ld � cd
�

with multi-index l D .l1; l2; : : : ; ld/ and grid length ci in the coordinate direction i
for i D 1; : : : ; d.

21.5 Numerical Experiments

In this section we apply our numerical schemes to a European basket put option
with two underlyings with parameters

T D 1; K D 20; �1 D 0:4; �2 D 0:3; �12 D 0:5;

xmin
i D �5 and xmax

i D log.5K/

for i D 1; 2. Figure 21.1 shows the results of our numerical tests. In the time domain
we use the lowest � value ensuring unconditionally stability in the case of standard
second order finite differences [3, 4]. All three schemes show a stable behaviour,
see Fig. 21.1a and lead to their expected convergence order. Figure 21.1b and c
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Fig. 21.1 Numerical convergence plots. (a) Error in time, �t ! 0. (b) Spatial error, h ! 0. (c)
Error on sparse grid for h ! 0
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show the evolution of the error on the full and sparse grid. We compute the sparse
grid error at the central grid node, which is the only point that belongs to all sub
grids and is therefore not influenced by the interpolation technique used to combine
the solutions. The convergence in both plots is in line with the theoretical findings.
Please note that the initial value has been smoothed according to Kreiss et al. [6] in
order to overcome the deteriorations from the non-smooth option’s payoff.

21.6 Conclusions

In this chapter we introduced HOC-ADI schemes to price basket options. The
number of grid points could be reduced significantly using sparse grids and the
combination technique. In a forthcoming paper we will generalise these schemes
to problems settings with space-dependent coefficients. Furthermore we analyse the
stability in the von Neumann framework.
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Chapter 22
Splitting Methods for Fokker-Planck Equations
Related to Jump-Diffusion Processes

Beatrice Gaviraghi, Mario Annunziato, and Alfio Borzì

Abstract A splitting implicit-explicit (SIMEX) scheme for solving a partial
integro-differential Fokker-Planck equation related to a jump-diffusion process
is investigated. This scheme combines the method of Chang-Cooper for spatial
discretization with the Strang-Marchuk splitting and first- and second-order time
discretization methods. It is proven that the SIMEX scheme is second-order
accurate, positive preserving, and conservative. Results of numerical experiments
that validate the theoretical results are presented. (This chapter is a summary of the
paper Gaviraghi et al. (Appl Math Comput, 2017); all theoretical statements in this
summary are proved in that reference.)

22.1 Introduction

The Fokker-Planck (FP) equation (also known as the forward Kolmogorov equation)
governs the time evolution of the probability density function (PDF) of a Markovian
stochastic processes and plays a fundamental role in any problem involving random
quantities [8, 19], including stochastic processes with jumps. Within this class of
problems, Lévy processes, that have stationary and independent increments, are
increasing in popularity from the need of modeling the market behavior beyond
the Black-Scholes framework [5] and in statistical physics [17].

We consider the numerical discretization of the FP equation corresponding to a
jump-diffusion Markov process Xt 2 R

d, for t 2 I D Œt0; tf 
, which is modelled by
the following stochastic differential problem

(
dXt D b.Xt/dt C �.Xt/dWt C dPt;

Xt0 D X0;
(22.1)
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where X0 2 R
d is a given initial random data. This stochastic differential

equation (SDE) relates the infinitesimal increments of the stochastic process Xt to
both deterministic and random increments, given by the multidimensional Wiener
process Wt 2 R

m and the compound Poisson process Pt 2 R
d. We denote with

� 2 R
C the rate of the time events of a compound Poisson process and with g.y/

the PDF of the size of its jumps. The density g.y/ is nonnegative and normalized,R
Rd g.y/dy D 1. The deterministic functions b W R

d ! R
d and � W R

d ! R
d�m

represent the drift and the diffusion coefficients, respectively. We assume that the
matrix � is full-rank. The solvability of (22.1) follows under growth and regularity
conditions on b and � ; see, e.g. [2, 13].

The PDF f .x; t/ of Xt is defined in R
d � I and it is governed by the following FP

partial integro-differential equation (PIDE)

@tf .x; t/ D L f .x; t/C I f .x; t/; (22.2)

where the two linear operators L and I are defined as follows

L f .x; t/ WD �
dX

iD1
@xi .bi.x/f .x; t//C

dX

i;jD1
@2xixj

�
aij.x/f .x; t/

�

I f .x; t/ WD �

Z

Rd
f .x � y; t/g.y/dy � �f .x; t/;

(22.3)

where aij.x/ are the elements of a matrix defined as aij.x/ WD 1
2

Pd
kD1 �ik.x/�jk.x/.

Since the diffusion coefficient � is full rank, the matrix a is positive definite. We
note that the operator L is related to the drift-diffusion component of the process
and I to the jump term.

In application, PIDEs naturally arise when option prices in jump diffusion
models have to be computed [3, 5, 6, 16]. We recall that in [1, 4, 15] a conservative
and positive preserving finite difference scheme was proposed and analyzed for the
case of Itô SDEs without jumps. Conservative numerical schemes for our FP PIDE
problem have been less investigated.

The purpose of this work is to implement and analyse a conservative scheme
that solves the FP problem for a jump-diffusion process, with appropriate initial and
boundary conditions.

In the next section, we define our FP problem. In Sect. 22.3, we illustrate
our discretization method and the resulting SIMEX schemes. Section 22.4 is
devoted to the convergence analysis of our SIMEX1 and SIMEX2 schemes, i.e.
the stability in time and second-order accuracy in space. In particular, we discuss
first- and second-order accuracy in time for the SIMEX1 and SIMEX2 schemes,
respectively. In Sect. 22.5, we show that our numerical schemes guarantee the same
structural properties of the PDF solution, i.e. the non-negativity and conservation
of total probability of the PDF solution. Section 22.6 presents results of numerical
experiments that validate the theoretical results.
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22.2 The PIDE Fokker-Planck Problem

We focus on the following FP problem

8
ˆ̂
<

ˆ̂
:

@tf .x; t/ D L f .x; t/C I f .x; t/C  .x; t/ for .x; t/ 2 ˝ � I

f .x; 0/ D f0.x/ for x 2 ˝
F .x; t/ D 0 for .x; t/ 2 @˝ � I;

(22.4)

where f0 is the PDF of X0 in (22.1) and F is defined below in (22.7). The source
term  is included for the purpose of error analysis. Notice that the space variable
x has the same domain of the considered stochastic process Xt in (22.1).

Our main focus is (22.4) with  D 0, whose solution is the PDF of the process
Xt governed by (22.1). Therefore, in the case of zero source term  , f satisfies the
following conditions

1/ f .x; t/ � 0 for each .x; t/ 2 ˝ � I;

2/

Z

˝

f .x; t/dx D 1 for each time t 2 I;
(22.5)

provided that the initial data f0 is the PDF of the initial data X0. The positivity is
ensured by standard maximum principle arguments [9].

Notice that the differential operator L in (22.3) can be written in divergence
form as follows

L f .x; t/ D r � F .x; t/; (22.6)

where F .x; t/ is defined as follows

F .x; t/ WD B.x/f .x; t/C C.x/rf .x; t/ (22.7)

Bi.x/ WD
dX

iD1
@xj aij.x/ � bi.x/

Cij.x/ WD aij.x/:

Notice that (22.7) defines the flux of the drift-diffusion process and the condition
F D 0 (zero flux) on the boundary corresponds to that process evolving in a domain
with reflecting barriers at the boundary. Moreover, when g.x/ is also set for the
reflecting boundary conditions, the following conservation property holds

Proposition 22.1 Let us consider our FP problem with  D 0, and assume that
the density g satisfies

Z

˝

g.x/dx D 1:
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Then
Z

˝

f .x; t/ D
Z

˝

f0.x/dx 8t 2 I:

22.3 Discretization Scheme of the PIDE

For simplicity, we discuss our FP problem in one dimension. Consider the domain
˝ D .r; s/ and the time interval I D Œt0; tf 
. We set the mesh sizes h and ıt as
follows

h WD s � r

N � 1
and ıt WD tf � t0

M
; with N;M 2 N:

We consider uniform meshes in space and time. We have

˝h WD fxj D r C .j � 1/h; j D 1; : : : ;Ng � N̋
Iıt WD ftn D t0 C nıt; n D 0; : : : ;Mg � I:

(22.8)

First, we carry out the spatial discretization of the integro-differential terms of L
and I defined in (22.3), that together lead to a large system of ODEs. Exploiting
the divergence form (22.6) of the differential operator L , we discretize the spatial
derivative of F defined by (22.7) using the Chang-Cooper (CC) scheme [4, 15].
This is a cell-centered finite-volume scheme with an exponential fitting technique
to determine the fluxes at the cell boundaries, xj˙ 1

2
, j D 1; : : : ;N, and the unknown

variables are considered on the grid points xj, j D 1; : : : ;N. In the following, ˚j.t/
and ˚j˙ 1

2
.t/ denote the time-continuous restrictions of a generic function ˚.x; t/ to

the grid points xj and xj˙ 1
2

WD xjCxj˙1

2
, respectively, accordingly to the method of

the lines.
Using the CC scheme, we have the following discretization formula

@xF .xj; t/ �
FjC 1

2
.t/ � Fj� 1

2
.t/

h
;

where

FjC 1
2
.t/ D

�
.1 � ıj/BjC 1

2
C 1

h
CjC 1

2

�
fjC1.t/ �

�
1

h
CjC 1

2
� ıjBjC 1

2

�
fj.t/:

The parameter ıj 2 Œ0; 1
 is defined as follows

ıj WD 1

hBjC 1
2
=CjC 1

2

� 1

expfhBjC 1
2
=CjC 1

2
g � 1 : (22.9)



22 Splitting Methods for Fokker-Planck Equations 413

The integral over˝ in the PIDE is approximated by the midpoint rule [7]. Hence
the discretization of the integral operator takes the following form

I f .xj; t/ � �

 

h
NX

iD1
f .xi; t/g.xj � xi/ � f .xj; t/

!

:

The space discretization above gives the following approximation

(
f 0
SD.t/ D .A C G /fSD.t/C 
.t/

fSD.t0/ D fSD.0/;
(22.10)

where A and G , denoting the matrices related to the operators A and G respec-
tively, are defined below. Notice that (22.10) is a system of ordinary differential
equations parametrized by the space mesh size h in A and G . In other words,
fSD.t/ D ffSD;1.t/; : : : ; fSD;N.t/g 2 R

N can be viewed as a grid function, where each
component describes the time evolution of fSD on the correspondent grid point of
˝h. The initial value fSD.0/ and the source term 
 represent the restriction on the
grid ˝h of the sufficiently smooth initial data f0 and of the source term  in (22.4),
respectively.

The matrix A in (22.10) follows from the CC spatial discretization and the
boundary condition on F . By setting wj D expfhBjC 1

2
=CjC 1

2
g, ˇj D CjC 1

2
=h �

ıjBjC 1
2

D BjC 1
2
=.wj � 1/, the tridiagonal matrix A is defined as follows

ŒA 
ij D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

ˇi�1=h j D i � 1; 2 � i � N;

�.ˇi�1 wi�1 C ˇi/=h j D i; 1 � i � N; ˇ0 D ˇN D 0;

ˇi wi=h j D i C 1; 1 � i � N � 1;
0 otherwise.

(22.11)
The matrix G in (22.10) is defined as follows

G WD �.G � I/;

where I denotes the N�dimensional identity matrix and G is the matrix with
normalized columns as follows

ŒG
ij WD h g.xi � xj/
PN

kD1 h g.xk � xj/
: (22.12)

The choice of the normalization in (22.12) is discussed in Sect. 22.5.
The next step of our discretization procedure is to consider the semi-discrete

system (22.10), for which we use an operator splitting method. Setting ıt also
as the splitting time step, we apply the Strang-Marchuk (SM) splitting scheme
[11, 12, 14, 20]. In the following, we refer to the time-continuous solution of the



414 B. Gaviraghi et al.

splitting scheme as fSP.t/. The idea to process the computation for A and G at
separate time steps. The initial data is set as follows, fSP.t0/ WD fSD.t0/, where fSP is
the splitting solution and fSD is the solution of the semi-discretized system (22.10)
without splitting.

In each time interval Œtn; tnC1
, given the splitting solution fSP.tn/, the following
subproblems, connected via the initial conditions, are solved

1:

(
�0
1.t/ D A �1.t/

�1.tn/ D fSP.tn/
t 2 Œtn; tnC 1

2



2:

(
�0
2.t/ D G�2.t/C 
.t/

�2.tn/ D �1.tnC 1
2
/

t 2 Œtn; tnC1
 (22.13)

3:

(
�0
3.t/ D A �3.t/

�3.tnC 1
2
/ D �2.tnC1/

t 2 ŒtnC 1
2
; tnC1
:

4:
n
fSP.tnC1/ WD �3.tnC1/

This system of continuous-time equations is approximated by time discretization.
The fully discrete numerical solution will be referred to as Of D .f n

j /, j D 1; : : : ;N,
n D 0; : : : ;M. We propose to use two different time discretization methods
that together with the space discretization give the schemes named SIMEX1 and
SIMEX2.

In SIMEX1, the solution of the first and third step of (22.13) is carried out with
the implicit Euler method, while the second step is explicit, in order to avoid the
drawback of inverting dense matrices. Given f n at time tn, the three initial value
problems in (22.13) read as follows

1:
f nC 1

2 � f n

ıt=2
D A f nC 1

2

2:
f .nC 1

2 /
� � f nC 1

2

ıt
D G f nC 1

2 C 
.tn/ (22.14)

3:
f nC1 � f .nC 1

2 /
�

ıt=2
D A f nC1;

where the unknown are sequentially solved: f n ! f nC 1
2 ! f .nC 1

2 /
� ! f nC1.
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The time discretization of (22.13) in SIMEX2 is carried out with the predictor
corrector method. Given f n at time tn, the discretization of the three initial value
problems in (22.13) take the following form

1:

8
<

:

Nf nC 1
2 D f n C ıt

2
A f n

f nC 1
2 D f n C ıt

4

h
A f n C A Nf nC 1

2

i

2:

8
<

:

Nf nC 1
2

� D f nC 1
2 C ıtŒG f nC 1

2 C 
.tn/


f nC 1
2

� D f nC 1
2 C ıt

2

h
G f nC 1

2 C 
.tn/C G Nf nC 1
2

� C 
.tnC1/
i (22.15)

3:

8
<

:

Nf nC1 D f nC 1
2

� C ıt
2
A f nC 1

2

�

f nC1 D f nC 1
2

� C ıt
4

h
A f nC 1

2

� C A Nf nC1
i
:

22.4 Convergence Analysis

In this section, we investigate stability and accuracy properties of the SIMEX1
and SIMEX2 schemes. After determining the order of convergence of the spatial
discretization, we focus on the rate of convergence in time.

The discrete L2-scalar product of two grid functions u and v on˝h �Iıt is defined
as follows

.u; v/L2h;ıt WD hıt
NX

jD1

MX

nD0
un

j v
n
j ;

with associated norm kukL2h;ıt
WD

q
.u; u/L2h;ıt . In a similar fashion, the discrete L2h

inner product and norm are defined for functions w; z on the spatial grid ˝h as
follows

.w; z/L2h WD h
NX

jD1
wjzj and kwkL2h

WD
q
.w;w/L2h :

We aim at comparing the continuous PIDE solution f of (22.4) and the numerical
solution Of , which is defined on the grid points of ˝h � Iıt. Central to our analysis is
the following inequality

kf � Of kL2h;ıt
� kfh � fSDkL2h;ıt

C kfSD � fSPkL2h;ıt
C kfSP � Of kL2h;ıt

; (22.16)

where fh.t/ D f .Nx; t/ 2 R
N is the PIDE solution restricted to Nx 2 ˝h, fSD

solves (22.10) and fSP is obtained as in (22.13). In (22.16), the L2h;ıt norms are
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computed after evaluating the continuous functions at the points of the meshes ˝h

and Iıt defined in (22.8).
In the following, we provide bounds for each of the three norms of (22.16).

Specifically, we can prove that kfh � fSDkL2h;ıt
D O.h2/. In Proposition 22.3, we

obtain kfSD � fSPkL2h;ıt
D O.ıt2/. Further, for the SIMEX1 scheme, we report in

Proposition 22.5 the following, kfSP � Of kL2h;ıt
D O.ıt/; and in Proposition 22.7, we

obtain kfSP � Of kL2h;ıt
D O.ıt2/ for the SIMEX2 scheme.

Proposition 22.2 If the solution f of (22.4) has continuous space derivatives up
to the 4th order and g in (22.3) is twice continuously differentiable, the spatial
truncation error ˛, related to the semi-discrete Eq. (22.13), is consistent of order
2 as follows

k˛.t/kL2h
D O.h2/:

We now discuss a bound for the second addend in (22.16) related to the splitting
method. Consider the matrices A and G as in (22.11) and (22.12), respectively, and
define the operator S as follows

S WD e
ıt
2 A eıtG e

ıt
2 A : (22.17)

Consider the time interval Œtn; tnC1
. We apply four times the variation of
constants formula for ODEs [12] to integrate the ODE systems (22.13). Therefore,
the splitting solution can be formally written as follows

fSP.tnC1/ DS fSP.tn/C e
ıt
2 A e

ıt
2 G

Z ıt
2

0

e.
ıt
2 �s/G
.tn C s/ds

C e
ıt
2 A

Z ıt
2

0

e.
ıt
2 �s/G
.tnC 1

2
C s/ds: (22.18)

We define with dn the local truncation splitting error for each n D 0; : : : ;M � 1,
which is the residual obtained at time tn by inserting the exact solution of the
semidiscretized system (22.10) in the formal expression of the splitting solu-
tion (22.18) as follows

dn WDfSD.tnC1/ � S fSD.tn/� e
ıt
2 A e

ıt
2 G

Z ıt
2

0

e.
ıt
2 �s/G
.tn C s/ds

� e
ıt
2 A

Z ıt
2

0

e.
ıt
2 �s/G
.tnC 1

2
C s/ds: (22.19)
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Define the global splitting error at time tn as En WD fSD.tn/ � fSP.tn/. Subtract-
ing (22.18) from (22.19), we obtain the following relation

EnC1 D S En C dn (22.20)

Exploiting the linearity of the solution operator S and the fact that E0 D 0, we
recursively apply (22.20), and obtain

En D
nX

kD0
S n�kdk: (22.21)

Proposition 22.3 Let 
 in (22.10) be of class C 1.Œt0; tf 
/. Then kfSD � fSPkL2h;ıt
D

O.ıt2/.
Next, we discuss a bound for the third term in (22.16), where the full numerical

solution Of D f n
j , j D 1; : : : ;N, n D 0; : : : ;M, is given by either the Euler

discretization or by the predictor corrector scheme. By the definition of the operator
S in (22.17), we write the solution of (22.13) in a convenient form as follows

fSP.tnC1/ DS fSP.tn/C e
ıt
2 A

Z ıt

0

e.ıt�s/G
.tn C s/ds; (22.22)

where we applied three times the variation of constants formula [12] to (22.13).
Next, we write (22.14) in a compact form. Given f n, the computation of f nC1 is

carried out as follows

f nC1 D
�

I � ıt

2
A

��1 �
.I C ıtG /.I � ıt

2
A /�1f n C ıt
.tn/

�

D R1.A ;G ; ıt/f n C ıt

�
I � ıt

2
A

��1

.tn/; (22.23)

where R1.A ;G ; ıt/ WD �
I � ıt

2
A
��1

.I C ıtG /.I � ıt
2
A /�1 is the amplification

factor. The non singularity of the matrix I � ıt
2
A is discussed in [15].

For each time window Œtn; tnC1
 we define the respective time truncation error
Tn, obtained by inserting the formal splitting solution fSP defined in (22.22) in the
numerical approximation given by (22.23). We have

Tn WD fSP.tnC1/� R1.A ;G ; ıt/fSP.tn/� ıt

�
I � ıt

2
A

��1

.tn/ (22.24)

Proposition 22.4 (Consistency of SIMEX1) The truncation error (22.24) is of
order O.ıt2/.
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Next, we define, for each n D 1; : : : ;M, the time discretization error en as follows

en WD fSP.tn/ � f n;

such that by subtracting (22.24) from (22.23), we obtain the following relation

enC1 D R1.A ;G ; ıt/en C Tn; (22.25)

Proposition 22.5 (Accuracy of SIMEX1) If the time step ıt is chosen such that
kR1.A ;G ; ıt/kL2h

� 1, then kfSP � Of kL2h;ıt
D O.ıt/.

Next, we write (22.15) in a compact form. Given f n, the computation of f nC1 is
carried out as follows

f nC1 D R

�
ıt

2
A

�
R.ıtG /R

�
ıt

2
A

�
f n C R

�
ıt

2
A

�
N
n; (22.26)

where

N
n WD ıt

2
Œ.I C ıtG /
.tn/C 
.tnC1/


and the function R is the amplification factor; given a matrix M and z 2 R, R is
defined as R.zM/ WD I C zM C z2

2
M2.

For each time window Œtn; tnC1
, we define the time truncation error Tn, obtained
by inserting the formal splitting solution fSP defined in (22.22) in the numerical
approximation given by (22.26)

Tn WD fSP.tnC1/ � R

�
ıt

2
A

�
R.ıtG /R

�
ıt

2
A

�
fSP.tn/� R

�
ıt

2
A

�
N
n: (22.27)

Proposition 22.6 (Consistency of SIMEX2) The truncation error (22.27) is of
order O.ıt3/.

Now, we introduce R2.A ;G ; ıt/ WD R
�
ıt
2
A
�

R.ıtG /R
�
ıt
2
A
�

and state the
following.

Proposition 22.7 (Accuracy of SIMEX2) If the time step ıt is chosen such that
kR2.A ;G ; ıt/kL2h

� 1, then kfSP � Of kL2h;ıt
D O.ıt2/.

22.5 Positivity and Conservativeness of the SIMEX Schemes

In this section, we show that the SIMEX1 and SIMEX2 schemes are conservative
and conditionally positive preserving. First, we focus on the SIMEX1 scheme,
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where the time discretization is given by the Euler scheme. Given the numerical
solution f n at time tn, we compute f nC1 as follows

1:
f nC 1

2 � f n

ıt
2

D A f nC 1
2

2:
f nC 1

2

� � f nC 1
2

ıt
D G f nC 1

2 (22.28)

3:
f nC1 � f nC 1

2

�

ıt
2

D A f nC1:

Proposition 22.8 Let us consider (22.28). Assume that ıt � minf 1
�
; 2L g, with � rate

of jumps of the compound Poisson process P in (22.1) and let L be the Lipschitz
constant of the function B that defines F in (22.7). If f n

j � 0 for each j D 1; : : : ;N,

then f nC1
j � 0 for each j D 1; : : : ;N.

Proposition 22.9 Let us consider (22.28). The total probability is preserved, in the
sense that

NX

jD1
f n
j D

NX

jD1
f nC1
j :

Next, we focus on the SIMEX2 scheme, where the time discretization is given by
the predictor-corrector scheme. Given the numerical solution f n at time tn, the three
steps required to compute f nC1 are as follows

1:

8
<

:

Nf nC 1
2 D f n C ıt

2
A f n

f nC 1
2 D f n C ıt

4

h
A f n C A Nf nC 1

2

i

2:

8
<

:

Nf nC 1
2

� D f nC 1
2 C ıtG f nC 1

2

f nC 1
2

� D f nC 1
2 C ıt

2

h
G f nC 1

2 C G Nf nC 1
2

i (22.29)

3:

8
<

:

Nf nC1 D f nC 1
2

� C ıt
2
A f nC 1

2

�

f nC1 D f nC 1
2

� C ıt
4

h
A f nC 1

2

� C A Nf nC1
i
:

Proposition 22.10 Let us consider (22.29) and suppose that ıt � minf 1
�
; 2

maxj jAjjjg,

where � is the rate of the compound Poisson process P in (22.1), and Ajj are the
diagonal elements of A as defined in (22.11). If f n

j � 0 for each j D 1; : : : ;N, then

f nC1
j � 0 for each j D 1; : : : ;N.
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Remark 22.1 We obtain an estimate for maxj jAjjj as follows.

jAjjj D .ˇi C ˇi�1wi�1/=h D CjC1=2
h2

rjC1=2
erjC1=2 � 1 C Cj�1=2

h2
�rj�1=2

e�rj�1=2 � 1

where r.x/ D hB.x/=C.x/ is the Péclet number, and rjC1=2 D r.xjC1=2/. Therefore,

max
j

jAjjj � maxx.C.x//

h2
.max.1; 1 � r.x//C max.1; 1C r.x/// �

maxx.C.x//

h2
.2C max

x
.jr.x/j//:

Hence, the positivity bound to ıt in the previous theorem becomes

ıt � minf 1
�
;

2h2

maxxfC.x/g.2C h maxxfjB.x/j=C.x/g/g:

We observe that for vanishing space step size h, the time step size must vanishes
with order 2. In small diffusion regime, i.e. C.x/ ' 0, it scales linearly as ıt <
2h=maxxfB.x/g.

Proposition 22.11 Let us consider (22.29). The total probability is conserved, in
the sense that

NX

jD1
f n
j D

NX

jD1
f nC1
j :

22.6 Numerical Experiments

In this section, we present results of numerical experiments for the FP prob-
lem (22.4). We set b.x/ D �x and � D p

2, i.e. a.x/ D 1 (Ornstein-Uhlenbeck
process, e.g. see [18] for applications). The jumps of the compound Poisson process
are chosen to have rate � D 5 and the distribution g is chosen to be g 
 N .3; 0:22/.
We consider the domain ˝ D .�15; 30/ and I D Œ0; 1
. In order to test the
performance of the SIMEX schemes, we set the solution to (22.4) as the following
a moving Gaussian

f .x; t/ D 1p
2� Q� exp

�
� .x � 	t/2

2 Q�2
	
;

with 	 D 10 and Q� D 3, hence compute analytically the corresponding source term
 .x; t/, as discussed in Sect. 22.4.



22 Splitting Methods for Fokker-Planck Equations 421

Table 22.1 L2h;ıt-error of the
scheme SIMEX1

N M kf � Of kh;ıt

100 100 5:39 � 10�3

200 400 1:09 � 10�3

400 800 2:90 � 10�4

800 1600 7:37 � 10�5

Table 22.2 L2h;ıt-error of the
scheme SIMEX2

N M kf � Of kh;ıt

200 200 1:10 � 10�3

400 400 2:93 � 10�4

800 800 7:45 � 10�5

1600 1600 1:87 � 10�5

In Table 22.1, we report the norm of the SIMEX1 solution error as a function
of the mesh size. We see that the scheme is first-order accurate in time and second-
order accurate in space, as proved in Sect. 22.4.

In Table 22.2, we present results for the same test case, obtained with the
SIMEX2 method. We have second-order convergence in time and space.
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Chapter 23
A Fokker-Planck Based Approach to Control
Jump Processes

Beatrice Gaviraghi, Mario Annunziato, and Alfio Borzì

Abstract A framework for the optimal sparse-control of the probability density
function of a jump-diffusion process is presented. This framework is based on the
partial integro-differential Fokker-Planck (FP) equation that governs the time evolu-
tion of the probability density function of this process. In the stochastic process and,
correspondingly, in the FP model the control function enters as a time-dependent
coefficient. The objectives of the control are to minimize a discrete-in-time, resp.
continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter
is considered to promote control sparsity. An efficient proximal scheme for solving
these optimal control problems is considered. Results of numerical experiments are
presented to validate the theoretical results and the computational effectiveness of
the proposed control framework. (This chapter is a summary of the paper Gaviraghi
et al. (Appl Math 7:1978–2004, 2016); all theoretical statements in this summary
are proved in that reference.)

23.1 Introduction

In this chapter, we focus on control problems related to stochastic jump-diffusion
(JD) processes evolving in a bounded domain with reflecting barriers. These
problems are very important in the modeling of the dynamics of stock prices [6, 18]
and of market models; see, e.g., [14]. In both cases, the need arises to control these
models involving random quantities and, correspondingly, stochastic optimization
problems must be solved. Such problems have largely been examined in the
scientific literature [9, 19, 27]. In this work, we consider the problem of controlling
a stochastic process by following an alternative approach already proposed in
[1, 2, 20], where the problem is reformulated from stochastic to deterministic. The
key idea of this strategy is to assume the probability density function (PDF) be the
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state function of the considered process. The time evolution of the PDF is modeled
by the Fokker-Planck (FP) equation, also known as forward Kolmogorov equation.

In the case of JD process, the FP equation takes the form of a partial-integro
differential equation (PIDE), which endowed with initial and boundary conditions,
gives rise to a FP initial-boundary value problem. While the Cauchy data must be
the initial distribution of the given random variable, the boundary conditions of a FP
problem depend on the properties of the barriers on the considered stochastic model
[7, 23]. Furthermore, starting from a controlled stochastic differential equation, a
controlled FP equation is obtained, leading to the formulation of optimal control
problems governed by the FP PIDE. For a general reference on PDE-based optimal
control problems see [4, 16, 25]. The strategy of designing control functions for
stochastic models based on the FP formulation was considered in [1–3, 20] for
different stochastic problems other than JD processes. In the present work, FP sparse
control problems are considered for the first time.

For control purposes, we focus on tracking objectives that include mean expecta-
tion values as in [15] and costs of the control that include sparsity promoting L1-cost
functionals as in, e.g., [22, 24]. With the aim of solving these optimization problems,
we use a very recent proximal iterative schemes developed in [17, 21].

In the next section, we discuss the functional setting of the FP problem modeling
the evolution of the PDF of a JD stochastic process. In Sect. 23.3, we formulate
our optimal control problems. Section 23.4 is devoted to the formulation of the
corresponding first-order optimality systems. In Sect. 23.5, we illustrate a proximal
method for solving our optimal control problems. Section 23.6 is devoted to the
illustration of our numerical tests, including a discussion on the robustness of the
algorithm to the choice of the parameters of the optimization problem.

23.2 The Fokker-Planck Equation of a Jump-Diffusion
Process

Consider a time interval I WD Œt0; tf 
 and a stochastic process X D fXtgt2I with range
in a bounded domain ˝ � R

n. We assume that the set ˝ is convex with Lipschitz
boundary. The dynamic of X is governed by the following stochastic differential
problem

(
dXt D b.Xt; t/dt C �.Xt/dWt C dPt

Xt0 D X0;
(23.1)

where X0 2 R
n is a random variable with known distribution. The functions b W

˝ � I ! R
n and � W ˝ ! R

n�d represent the drift and the diffusion coefficients,
respectively. We assume that � is full rank. Random increments to the process X
in (23.1) are given by a Wiener process W 2 R

d and a compound Poisson process
P 2 R

n. The rate of jumps and the jump distribution are denoted with � 2 R
C and
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Og, respectively. Define a W ˝ ! R
n�n, aij.x/ WD Pd

kD1 12�ik.x/�jk.x/. Since � is full
rank, a is positive definite, and hence there exists ca > 0 such that

vTa.x/v � cakvk2
Rn ; for each v 2 R

n; a.e. in ˝: (23.2)

In this work, we consider a stochastic process with reflecting barriers. This
assumption determines the boundary conditions for the FP equation corresponding
to (23.1), see below. Define Q WD ˝ � I and ˙ WD @˝ � I, and denote with f the
PDF of the process given by (23.1). It is known [7, 23] that the time evolution of f
is modeled by the following FP equation of PIDE type

@tf .x; t/ D L f .x; t/C I f .x; t/; .x; t/ 2 Q; (23.3)

where the differential operatorL and the integral operatorI are defined as follows

L f .x; t/ WD �
nX

iD1
@i .b.x; t/f .x; t//C

nX

i;jD1
@2ij ..a.x/f .x; t// ; (23.4)

and

I f .x; t/ WD �

�Z

Rn
f .y; t/g.x; y/dy � f .x; t/

�
; (23.5)

respectively. The definition of g in (23.5) takes into account the presence of
reflecting barriers and the dependence on the jump amplitude Og, as we discuss later.

Notice that the differential operator L can be rewritten as follows

L f .x; t/ WD r � F.x; t/;

where the flux of the differential part is given by

F.x; t/ WD B.x; t/f .x; t/C a.x/rf .x; t/: (23.6)

and

Bi.x/ WD
nX

jD1
@jaij.x/ � bi.x; t/; (23.7)

for each i D 1; : : : ; n.
The PDF f of X in (23.1) in the bounded domain˝ is obtained by solving (23.3),

endowed by suitable initial and boundary conditions. In our setting, the initial
data f0 represents the PDF of the initial random variable X0. The choice of a
bounded domain with reflecting barriers results in the following zero-flux boundary
conditions for the FP model

F.x; t/ � On.x; t/ D 0 for .x; t/ 2 ˙; (23.8)

where On is the unit outward normal on @˝ .
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Notice that the flux F corresponds to the differential part of the FP equation,
that is, to the drift and diffusion components of the stochastic process. In order
to take into account the action of a reflecting barrier on the jumps, we consider a
suitable definition of the kernel g, which can be conveniently illustrated in the one-
dimensional case as follows.

Consider n D 1 and ˝ D .r; s/. We consider a jump density Og with compact
support .r � s; s � r/. With this choice, multiple reflections in the dynamic of the JD
process are avoided. The kernel g in (23.5) takes the following form

g.x; y/ WD Og.x � y/C Og.2r � x � y/�.r C s � x � y/C Og.2s � x � y/�.x C y � r � s/;
(23.9)

where� is the step function defined by

�.z/ WD

8
ˆ̂
<

ˆ̂:

1; z > 0

0; z < 0

1=2; z D 0:

Since Og is a PDF, we have that
R s�r

r�s Og.z/ dz D 1; from (23.9), it results that the
function g satisfies

Z

R

g.x; y/dx D 1 for all y 2 ˝: (23.10)

Our FP problem is stated as follows

8
ˆ̂
<

ˆ̂:

@tf .x; t/ D r � F.x; t/C I f .x; t/ for .x; t/ 2 Q

f .x; 0/ D f0.x/ for x 2 ˝
F.x; t/ � n.x; t/ D 0 for .x; t/ 2 ˙:

(23.11)

The choice of the boundary conditions (23.8) together with (23.10) ensures that
the total probability is preserved over time.

Next, we recall some definitions concerning the functional spaces needed to state
the existence and uniqueness of solutions to (23.11). The space C0.˝/ refers to the
functions that are continuous in ˝ and it is endowed with the supremum norm. Let
˛ be a constant, ˛ > 1=2. The space C˛.˙/ refers to the functions that are Hölder
continuous on ˙ , with Hölder exponent ˛ with respect to the space variable. The
space L1.˝/ denotes all the functions that are bounded on ˝ , up to a set of zero
measure. The spaces H1.˝/ and H2;1.Q/ are defined as follows

H1.˝/ WDfv 2 L2.˝/ j @iv 2 L2.˝/; i D 1; : : : ; ng;
H2;1.Q/ WDfv 2 L2.Q/ j @tv; @iv; @

2
ijv 2 L2.Q/; i; j D 1; : : : ; ng:

(23.12)
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These spaces are endowed with the following norms

kvkH1.˝/ WD
1X

jijD0
k@ivkL2.˝/; kvkH2;1.Q/ WD

2X

2jCjijD0
k@j

t@
i
xvkL2.Q/;

where i; j 2 N
n denote multi-indices. We also consider the Gelfand triple V � H �

V�, with V WD H1.˝/ and H WD L2.˝/. The space V� denotes the dual space of
V . This allows us to define the following space W WD fy 2 L2.II V/ with @ty 2
L2.II V�/g.

We assume that the coefficients a and b in (23.4) satisfy the following conditions

a.x/ 2 C0.˝/\ C˛.@˝/; @ia.x/ 2 L1.˝/\ C˛.@˝/; @2ija.x/ 2 L1.˝/

bi.x; t/ 2 L1.Q/\ C˛.˙/; @ibj.x; t/ 2 L1.Q/
(23.13)

for each i; j D 1; : : : ; n.

Proposition 23.1 Assume (23.13) and f0 2 H1.˝/. Then the unique solution
to (23.11) belongs to L2.II V/, with @tf 2 L2.II V�/. Therefore, f 2 W. Moreover,
f 2 C.II H/.

We define F WD ff 2 W j f .0/ D f0g, where f0 is the initial data in (23.11). The
initial-boundary value problem (23.11) can be stated as K . f / D 0, where the map
K is defined as follows

K . f / WD
(
@tf � r � F. f /� I f in Q

F. f /; on ˙;
(23.14)

with F and I defined in (23.6) and (23.5), respectively.

23.3 Two Fokker-Planck Optimal Control Problems

In this section we discuss existence of solutions to our optimal control problems
governed by (23.14). We consider a control function u that acts through the drift
function b D b.x; tI u/ by means of a time-dependent control u D u.t/ 2 R.
Therefore we refer to (23.14) as K . f ; u/ D 0. We assume that b is a smooth
function of its arguments and that assumption (23.13) is fulfilled. We remark that a
time-dependent control function is a natural choice considering that it originates
from the stochastic differential model where the time is the only independent
variable.

We assume the presence of control constraints given by ua; ub 2 R, with ua <

0 < ub. We denote

Uad WD fu 2 U W ua � u � ubg � U WD L2.I/: (23.15)
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Let � and � be positive constants. We consider the following objective

J . f ; u/ WD D. f /C �

2
kuk22 C �kuk1: (23.16)

The term D. f / in (23.16) represents a tracking objective that involves the
expectation value of Xt, EŒXt
 WD R

˝
xf .x; t/dx, and a desired trajectory or a discrete

set of values (e.g. measurements). We investigate the following two cases.

1. Discrete time tracking. Given a set of values f�kgK
kD1 at different times tk 2

.t0; tf /, 8k D; 1; : : : ;K, we have

D. f / WD 1

K

KX

kD1

�
�k �

Z

˝

xf .x; tk/dx

�2
: (23.17)

2. Continuous time tracking. Given a square-integrable function � W I ! R, we
have

D. f / WD
Z tf

t0

�
�.t/ �

Z

˝

xf .x; t/dx

�2
dt: (23.18)

The norms in (23.16) are defined as follows

kuk2 WD
�Z

I
ju.t/j2dt

�1=2
and kuk1 WD

Z

I
ju.t/jdt:

We investigate the following optimal control problem(s)

minJ . f ; u/

such that K . f ; u/ D 0; . f ; u/ 2 F � Uad:
(23.19)

In order to discuss the existence of solutions to (23.19), we consider the control-
to-state operator S W U ! F , that maps a given u 2 U into S .u/ WD f 2
F , where . f ; u/ satisfies K . f ; u/ D 0. Note that the definition of Uad in (23.15)
ensures that b satisfies (23.13). Because of Proposition 23.1, the operator S is well
defined.

Therefore the constrained optimization problem (23.19) can be transformed into
an unconstrained one as follows

min
u2Uad

OJ .u/; (23.20)

where OJ W u 7! OJ .u/ WD J .S .u/; u/ is the so-called reduced cost functional.
The solvability of (23.20) is ensured by the next theorem, whose proof adapts

techniques given in [25] and [10].
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Theorem 23.1 There exists at least one optimal pair .Nf ; Nu/ that solves (23.19), such
that Nu solves (23.20) and Nf D S .Nu/ 2 F .

The next proposition can be proved by using standard arguments [2, 25].

Proposition 23.2 The mapping S W U ! C.II H/; u 7! f D S .u/ solution
to (23.11) is Fréchet differentiable and the directional derivative e WD S 0.u/ � h
satisfies the following initial-boundary problem

8
ˆ̂
<

ˆ̂:

@te D r � F.e/C I .e/� r � . fb0.u/h/ for .x; t/ 2 Q;

ŒF.e/� fb0.u/h
 � n D 0 for .x; t/ 2 ˙;
e.x; t0/ D 0 for x 2 ˝;

(23.21)

where b is the drift in (23.1) and F is defined in (23.6).

23.4 Two First-Order Optimality Systems

We follow the standard approach [8, 25, 26] of characterizing the solution of our
optimal control problem as the solution to first-order optimality conditions that
constitute the optimality system.

Consider the reduced problem (23.20) and write the reduced functional OJ as
OJ WD J1 C J2, Ji W U ! R

C, i D 1; 2; where

J1.u/ WD D.S .u//C �

2
kuk22;

J2.u/ WD �kuk1: (23.22)

Remark 23.1 The functional J1 is smooth thanks to Proposition 23.2 and possibly
nonconvex, while J2 is convex and nonsmooth.

The following definitions are needed in order to determine the first-order
optimality system. If OJ is finite at a point u, the Fréchet subdifferential of OJ
at u is defined as follows [8]. We have

@ OJ .u/ WD
(

' 2 U � W lim inf
v!u

OJ .v/ � OJ .u/� h'; v � ui
kv � uk2 � 0

)

; (23.23)

where U � is the dual space of U . Any element ' 2 @ OJ .u/ is called a subgradient.
In our framework, we have

@ OJ .u/ D rJ1.u/C @J2.u/;
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since J1 is Fréchet differentiable at u; this follows from standard arguments [25].
Moreover, for each ˛ > 0, it holds that @.˛ OJ / D ˛@ OJ .

The following proposition gives a necessary condition for a local minimum of
OJ .

Proposition 23.3 If OJ D J1 C J2, with J1 and J2 given by (23.22), attains a
local minimum in Nu 2 Uad, then

0 2 @ OJ .Nu/;

or equivalently

�rJ1.Nu/ 2 @J2.Nu/:

With this preparation and using results in [8, 24], we have that each � 2 @J2.Nu/,
with Nu a local minimum, satisfies the following inequality

hrJ1.Nu/C �; v � Nui � 0 for each v 2 Uad: (23.24)

Moreover, recalling the definition of J2 in (23.22) and exploiting the isomorphism
U � ' U , the inclusion � 2 @J2.Nu/ gives the following

� 2 �� WD fl 2 L2.I/ W jlj � � a.e. on Ig: (23.25)

A pointwise analysis of (23.24), which takes into account the definition (23.15) of
the admissible controls, ensures the existence of two nonnegative functions N�a; N�b 2
U � that play the role of Lagrange multipliers [25]. The previous considerations
lead to the following proposition, that states the optimality system for the reduced
problem (23.20).

Proposition 23.4 The optimal solution Nu of the minimization problem (23.20) with
OJ D J1CJ2 defined in (23.22), is characterized by the existence of . N�; N�a; N�b/ 2

�� � U � � U � such that

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:

rJ1.Nu/C N� � N�a C N�b D 0

N�b � 0; ub � Nu � 0; h N�b; ub � Nui D 0

N�a � 0; Nu � ua � 0; h N�a; Nu � uai D 0

N� D � a.e. on ft 2 I W Nu.t/ > 0g
j N�j � � a.e. on ft 2 I W Nu.t/ D 0g
N� D �� a.e. on ft 2 I W Nu.t/ < 0g

(23.26)

We refer to the last three conditions in (23.26) for the pair .Nu; N�/ as the complemen-
tarity conditions.
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The differentiability of K , J1 and S with respect to f and u allows us to
compute rJ1.u/ in (23.26) within the adjoint approach. By definition, for each
u 2 U , we have

rJ1.u/ D �u C .S 0.u//�D0.S .u//:

By considering the total derivative of K .S .u/; u/ D 0, we have

Kf .S .u/; u/S 0.u/C Ku.S .u/; u/ D 0:

Therefore, we obtain

rJ1.u/ D �u � Ku.S .u/; u/�.Kf .S .u/; u/�/�1D0.S .u//:

Defining the adjoint variable p as the solution to the following adjoint problem

Kf .S .u/; u/�p D �D0.S .u//; (23.27)

we obtain the following reduced gradient

rJ1.u/ D �u C Ku. f ; u/�p: (23.28)

After some calculation, we have that (23.27) can be rewritten as the following
adjoint system

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂:

�@tp.x; t/ D b.xI u/rp.x; t/CPn
i;jD1 aij.x/@2ijp.x; t/C QI p.x; t/C ˛.x; t/ on Q

p.x; tf / D 0 on ˝

rp.x; t/ � n.x; t/ D 0 on @˝ � I

p.x; t�k / D p.x; tCk /C ˇ.x; k/ on˝; for each k D 1; : : : ;K;
(23.29)

where ˛ and ˇ depend on the choice of D in (23.17) and (23.18). When D is
given by (23.17), ˛.x; t/ D 0 and ˇ.x; k/ D �2x.�k � R

˝
sf .s; tk/ds/, for each

k D 1; : : : ;K. On the other hand, when D is given by (23.18), ˛.x; t/ D 2x.�.t/ �R
˝

sf .s; t/ds/ and ˇ.x; k/ D 0.
The operator QI is defined as follows

QI p.x; t/ WD �

�Z

˝

p.y; t/g.y; x/dy � p.x; t/

�
for each .x; t/ 2 Q:

The terminal boundary-value problem (23.29) admits a unique solution p 2
H2;1.Q/; see [11].
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The reduced gradient in (23.28), for given u, f , and p, takes the following form

r OJ1.u/ D �u C
Z

˝

f .rp/ � .@ub/: (23.30)

The complementarity conditions in (23.26) can be recast in a more compact form,
as follows. We define N	 WD N� � N�a C N�b. For each k 2 R

C, we define the following
quantity

E.Nu; N	/ WDNu � maxf0; Nu C k. N	 � �/g � minf0; Nu C k. N	C �/gC
maxf0; Nu � ub C k. N	 � �/g C minf0; Nu � ua C k. N	C �/g:

The complementarity conditions in (23.26) and the inequalities related to the
Lagrange multipliers N�a and N�b, together with the requirement N� 2 �� , are
equivalent to E.Nu; N	/ D 0; see, e.g., [24].

The previous considerations can be summarized in the following propositions.

Proposition 23.5 (Optimality System for a Discrete-in-Time Tracking Func-
tional)

A local solution . f ; u/ 2 F � Uad of (23.19) with D given by (23.17) is
characterized by the existence of .p; 	/ 2 H2;1.Q/ � U �, such that the following
system is satisfied

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:̂

�u C R
˝

f .rp/ � .@ub/C 	 D 0 a.e. in I

@tf .x; t/ D r � F.x; t/C I . f .x; t// for .x; t/ 2 Q

f .x; 0/ D f0.x/ for x 2 ˝
F.x; t/ � n.x; t/ D 0 for .x; t/ 2 ˙
�@tp.x; t/ D b.xI u/rp.x; t/C

nP

i;jD1
aij.x/@2ijp.x; t/C QI p.x; t/ for .x; t/ 2 Q

p.x; tf / D 0 for x 2 ˝
rp.x; t/ � n.x; t/ D 0 for .x; t/ 2 ˙
p.x; t�k / D p.x; tCk / � 2x.�k � R

˝
sf .s; tk/ds/; k D 1; : : : ;K for x 2 ˝

E.u; 	/ D 0 a.e. in I:
(23.31)
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Proposition 23.6 (Optimality System for a Continuous-in-Time Tracking Func-
tional) A local solution . f ; u/ 2 F � Uad of (23.19) with D given by (23.18) is
characterized by the existence of .p; 	/ 2 H2;1.Q/ � U �, such that the following
system is satisfied

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂̂
:

�u C R
˝ f .rp/ � .@ub/C 	 D 0 a.e. in I

@t f .x; t/ D r � F.x; t/C I . f .x; t// for .x; t/ 2 Q

f .x; 0/ D f0.x/ for x 2 ˝
F.x; t/ � n.x; t/ D 0 for .x; t/ 2 ˙
�@tp.x; t/ D b.xI u/rp.x; t/CPn

i;jD1 aij.x/@2ijp.x; t/C QI p.x; /C
C2x.�.t/ � R

˝ sf .s; t/ds/ for .x; t/ 2 Q

p.x; tf / D 0 for x 2 ˝
rp.x; t/ � n.x; t/ D 0 for .x; t/ 2 ˙
E.u; 	/ D 0 a.e. in I:

(23.32)

Notice that for the discretization of the optimality systems given in (23.31)
and (23.32), we use the splitting schemes discussed in [11]; see also [13].

If we follow the optimize-before-discretize (OBD) approach, the optimality
system has already been computed on a continuous level as in (23.31) and (23.32)
and subsequently discretized. As a consequence, the OBD approach allows one to
discretize the forward and adjoint FP problems according to different numerical
schemes. However, the OBD procedure might introduce an inconsistency between
the discretized objective and the reduced gradient; see [4] and references therein.
For this reason, we pursue the DBO (discretize-before-optimize) approach.

23.5 A Proximal Optimization Scheme

In this section, we discuss a proximal optimization scheme for solving (23.20). This
scheme and the related theoretical discussion follow the work in [5, 12, 21, 22].
Proximal methods conveniently exploit the additive structure of the reduced objec-
tive, and in our framework, we have that the reduced functional OJ is given by the
sum of a nonconvex smooth function J1 and a convex nonsmooth function J2 as
in (23.22).

For our discussion, we need the following definitions and properties.

Definition 23.1 (Proximity Operator) Let Z be a Hilbert space and l a convex
lower semi continuous function, l W Z ! R. The proximity operator proxl W Z ! Z
of l is defined as follows

proxl.z/ WD arg min
w2Z

�
l.w/C 1

2
kz � wk2Z

	
; z 2 Z:
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Proposition 23.7 Let Z be a Hilbert space and l a convex lower semi continuous
function, l W Z ! R, with proximity operator proxl. The following relation holds

p D proxl.z/ , z � p 2 @l.p/; (23.33)

where @l is the subdifferential defined in (23.23).

Proposition 23.8 The solution Nu of (23.20) satisfies

Nu D prox˛J2 .Nu � ˛rJ1.Nu//: (23.34)

for each ˛ > 0.
The relation (23.34) suggests that a solution procedure based on a fixed point

iteration should be pursued. We discuss how such algorithm can be implemented.
In the following, we assume that J1.u/ in (23.22) has a locally Lipschitz-

continuous gradient rJ1 as follows

krJ1.u/� rJ1.v/k � Lku � vk; (23.35)

for each v 2 V , V � Uad neighborhood of u, with L a Lipschitz continuity constant.
It is shown in [17] that (23.35) implies the following inequality

J1.u/ � J1.v/C hrJ1.v/; u � vi C L

2
ku � vk2;

for each v 2 V , and hence

min
u2Uad

˚
J1.u/C J2.u/

� �

min
u2Uad

�
J1.v/C J2.u/C hrJ1.v/; u � vi C L

2
ku � vk2

	
: (23.36)

Inequality (23.36) is the starting point for the formulation of a proximal scheme,
whose strategy consists of minimizing the right-hand side in (23.36). One can prove
the following equality

arg min
u2Uad

�
J1.v/C J2.u/C hrJ1.v/; u � vi C L

2
ku � vk2

	
D

arg min
u2Uad

(

J2.u/C L

2

��
�
�u �

�
v � 1

L
rJ1.v/

���
�
�

2
)

: (23.37)

Recall the definition of J2 in (23.22). The following lemma gives an explicit
expression for the right-hand side in (23.37).
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Lemma 23.1 Let Uad be as in (23.15). Then

arg min
u2Uad

�
�kuk1 C 1

2
ku � wk2

	
D S

Uad
� .w/ for each w 2 U ;

where the projected soft thresholding function S
Uad
� is defined as follows

S
Uad
� .w/ WD

8
ˆ̂
<

ˆ̂
:

minfw � �; ubg on ft 2 I W w.t/ > �g
0 on ft 2 I W jw.t/j � �g
maxfw C �; uag on ft 2 I W w.t/ < ��g:

Based on this lemma, we conclude the following

arg min
u2Uad

(

J2.u/C L

2

��
�
�u �

�
v � 1

L
rJ1.v/

���
�
�

2
)

D S
Uad
�
L

�
v � 1

L
rJ1.v/

�
;

which can be taken as starting point for a fixed-point algorithm as follows

ukC1 D S
Uad
�

Lk

�
uk � 1

Lk
rJ1.vk/

�
; (23.38)

where Lk is the local Lipschitz continuity constant defined in (23.35). Such method
has been investigated in, e.g., [5, 22]. In this chapter, we apply an extension
of (23.38), which takes for each iteration k the following form

ukC1 D S
Uad
�=Lk

�
uk � 1

Lk
rJ1.uk/C �k.uk � uk�1/

�
; (23.39)

with �k 2 .0; 1/. This method has been proposed in [17]. Our inertial proximal
method is summarized in the following algorithm.

Next, we discuss the convergence of our algorithm, using some existing results
[17, 21].

Proposition 23.9 The sequence fuigi2N generated by (23.39) satisfies the following
properties.

• The sequence f OJ .ui/gi2N converges in R.
• There exists a weakly convergent subsequence fuijgj2N � fuigi2N.

Definition 23.2 (Proximal Residual) The proximal residual r is defined as follows

r.u/ WD u � S
Uad
�

�
u � rJ1.u/

�
: (23.40)



436 B. Gaviraghi et al.

Algorithm 7 Inertial proximal method
Input: initial guess u0, i D 0, imax, �i 2 .0; 1/, tolerance tol, initial guess of the Lipschitz constant

L D L0.
1: while i � imax, do: do
2: Evaluate rJ1.ui/ according to Algorithm 8.
3: Update Li D �Li until

J1.Qu/ � J1.ui/C hruJ1.ui/; Qu � uii C Li

2
kQu � uik2

where

Qu D S
Uad
�=Li
.ui � 1

Li
rJ1.ui/C �i.ui � ui�1//:

4: Set uiC1 D Qu.
5: Compute E according to (23.31) or (23.32).
6: If E < tol, break.
7: if E < tol then
8: break
9: end if

10: i D i C 1.
11: end while

Algorithm 8 Evaluation of the gradient
Input: ui, initial value f0 at time t0, terminal value pf at time tf .
1: Compute fi, given f0 and ui.
2: Compute pi.
3: Evaluate rJ1.ui/ according to (23.30).

Proposition 23.8 tells us that r.u/ D 0 in L2.I/ whenever u solves (23.20). The
next proposition establish a connection between the condition r.u/ D 0 and the
solution provided by Algorithm 7; see, e.g., [22].

Proposition 23.10 Let fuigi2N be the sequence generated by Algorithm 7. Then the
following holds

min
0�i�imax

kr.ui/k22 D O.1=imax/:

23.6 Numerical Experiments

We present results of numerical experiments to validate our optimal control
framework. Our purpose is to determine a sparse control u D u.t/ such that the
expected value of the process X defined by (23.1) minimizes the quantity defined
by (23.17) and (23.18).



23 A Fokker-Planck Based Approach to Control Jump Processes 437

We take ˝ D .�100; 100/ and Œt0; tf 
 D Œ0; 1
, and assume that the initial prob-
ability density function f0 is given, f0 
 N .0; 10/. The compound Poisson process
corresponds to the choice � D 3 and g 
 N .0; 0:04/. We take b.x; u/ WD x � u.t/
and �.x/ D 50. In case of (23.17), we consider � D Œ�5; 20; 0; 10;�10; 0;�5; 20
.
In the case of (23.18), we take �.t/ D 20 sin.10t/. We choose N D 300 and
M D 200.

We investigate the behavior of the optimal solution considering the full optimiza-
tion setting including the L1-cost, i.e. � � 0, and the control constraints given by
the bounds ua D �20, ub D 20 in (23.15). For simplicity, we discuss only the case
with � D 10�2.

In Fig. 23.1, we depict the optimal controls for three different choices of values
of � and considering the discrete-in-time tracking functional given by (23.17). In
Fig. 23.2, we show the optimal controls for three different choices of values of �
and considering the continuous-in-time tracking functional given by (23.18). In both
cases, we can clearly see that increasing the value of the parameter � significantly
increases the sparsity of the solution, as expected.
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Fig. 23.1 From left to right: optimal controls with � D 0:25; 3; 5; tracking objective given
by (23.17)
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Fig. 23.2 From left to right: optimal controls with � D 1=2; 3; 5; tracking objective given
by (23.18)
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Chapter 24
Proper Orthogonal Decomposition in Option
Pricing

José P. Silva, E. Jan W. ter Maten, Michael Günther, and Matthias Ehrhardt

Abstract In this chapter model order reduction (MOR) and the forward-backward
duality are combined to generate forward and backward reduced models. We
show that both resulting models are numerically efficient models and can in most
situations reduce the computational effort in comparison with the full order models,
when applying ADI and BDF2 time discretization schemes on a centered second-
order and Chang-Cooper spatial discretizations, respectively. For the MOR part, a
Proper Orthogonal Decomposition approach was taken.

24.1 Model Order Reduction

Model Order Reduction (MOR) [1] emerged at the end of the twentieth century
as an answer to the increasing complexity of the models being developed. Higher
and higher resolution schemes led to bigger problems, which, in turn, led to the
development of new, more accurate schemes (non-uniform and refined grids, higher-
order schemes, sparse schemes, parallelization, problem-specific hardware, etc.).
The goal of MOR is to generate smaller models, faster to solve and, if not with
similar, with high enough precision with respect to the original Full Order Model
(FOM). The Reduced Order Model (ROM) is then a cheaper and faster proxy of
the FOM, making it ideal for multi-query problems: parameter studies, parameter
optimization, inverse problems, control problems. In finance, and particularly option
pricing, inverse problems arise when calibrating model parameters to market data,
with volatility being one of the parameters, for example.

Among the different MOR techniques, cf. [1], Proper Orthogonal Decomposition
(POD) stands out as a fairly robust technique as it is one of the few techniques able
to tackle general non-linear problems. Due to its data-driven approach, it generates
ROM in a tailored way. The POD approach consists essentially of two steps.
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In the first one, we collect information on the original problem by solving the
full order model(s) and then proceed to generate a basis for a (best approximating)
subspace from that information.

In the second step, the original model is projected (solution is looked for in
this subspace) onto this subspace, a procedure known as Galerkin projection or as
Petrov-Galerkin projection, depending whether it is projected on the same or on a
different subspace, respectively.

POD can in its essence be described as a mathematical technique that, given
an ensemble of data, constructs a basis for the ensemble that is optimal in the
least-squares sense. Let X be a real Hilbert space, with inner product .�; �/X , and
Y D �

y1 y2 : : : yn

�
an ensemble of n snapshots yi 2 X. The snapshots contain

the solution for different configurations of the problem, i.e., it may contain the
solution at different time instances for an evolution problem, it may contain the
solution for different parameter values or any other configuration, which will need
to be approximated by the ROM. Then, for some l � n a POD basis is an optimal
orthonormal basis  j; j D 1; : : : ; l such that the square error between the elements
yi and its l-partial sum of the decomposition of yi in the space spanned by  j, is
minimized, i.e.

min
f kgl

kD1

J . / D min
f kgl

kD1

nX

iD1

�
��
�
�
�

yi �
lX

jD1

�
yi;  j

�
X
 j

�
��
�
�
�

2

X

; (24.1)

subject to
�
 i;  j

�
X

D ıij. It can be proven [4] that the above minimization problem
is equivalent to the eigenvalue problem

YY> D � :

Factorizing Y using a singular value decomposition (SVD), it can be proven [4]
that the resulting left-singular vectors form a POD basis, where � D �2, with �
the singular values of Y. For the POD basis, J . / D Pn

iDlC1 �i D Pn
iDlC1 �2i .

The size of the basis l necessary for a good approximation is problem dependent,
but we can take the relative error as a good indicator. As we are minimizing a sum
of squares, this criterion guarantees that we are maximizing the information on the
reconstructed snapshots in the least-squares sense,

E .l/ D
Pl

iD1 �2iPn
iD1 �2i

: (24.2)

As the singular values are ordered and reflect the relevance of each dimension in the
state space, (24.2) is sometimes called relative information measure. It is important
to note that this basis will originate a reduced model, which will approximate
optimally the existing snapshots and but not necessarily the model as a whole.
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When in possession of the POD basis, we proceed to process the existing partial
differential equation (PDE) onto the space spanned by the POD Basis. Rewriting
the PDE as

@

@t
u D L u; (24.3)

where L is a differential operator. We will restrict the following derivation to the
linear case, with the non-linear case following the same principles but originating a
non-linear system to be solved. For more details see [4]. We project the PDE in a
Galerkin fashion, i.e.

�
 i;

@u

@t

�

X

D . i;L u/X ; i D 1; : : : ; l:

Substituting u by its representation in the POD basis of size l , u.t; s/ D Pl
j aj .t/

 j .s/ we obtain the explicit system of ODEs

Pa .t/i D
lX

jD1
aj .t/ . i;L l/X i D 1; : : : ; l;

making use of the orthonormality property of the basis.
Before proceeding further, we should call attention to the fact that there is an

implicit dependence of the basis on the PDE. Let us assume that our differential
operator L has a parametric dependence on a parameter vector �.1 The parametric
dependence will affect the solution in a non-linear way, which in turn will affect the
resulting basis, which ultimately will introduce a parametric dependence through
the basis on the reduced model. As a result of POD being a technique based on the
SVD of the solution, i.e. a numerical technique is employed to calculate the basis,
the parametric dependence of the basis on the parameters cannot be determined.
For that reason, we will omit its representation, having in mind that the basis is not
parameter independent. This dependence will be more obvious in Sect. 24.3, where
a parametric ROM is generated and the basis keeps changing with each addition of
snapshots from a different parameter vector at each iteration.

When solving the PDE a decision has to be made if the discretization step comes
before or after the projection one. We can discretize the PDE and perform model
order reduction on the system of matrices or we can project the PDE and then
discretize. We will use the former variant, which in spite of not guaranteeing better
results, it stems from a more fundamental approach. We solve the FOM numerically,
generate the POD Basis and then project the discretized system of ODE, obtained
as a result of applying the method of lines (MOL) to discretize our PDE in space.

1The previous example can be extended to the case where the dependence is on an initial condition,
geometry or boundary condition.
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24.2 Forward-Backward Approach

The price of derivatives usually satisfies deterministic equations, as in general it
depends on deterministic quantities of Markov Processes, i.e., they are a function
of an expectation of a random variable associated with a stochastic process. One
way in which we can obtain a deterministic equation, which can then be of use
in determining the price is through the Kolmogorov equations. The Kolmogorov
equations are the evolution equations for the transition probability density function
p.t; xI t0; x0/ of the statistics of the stochastic process Xt. The transition probability
density function p.t; xI t0; x0/ represents the probability of the stochastic process Xt

transitioning from the state x0 at t0 to the state x at t. The PDE for p.t; x/ reads

@p

@t
D 1

2

X

i;j

@2

@xi@xj

 
X

k

Bik .t; x/Bjk .t; x/ p

!

�
X

i

@

@xi
.Ai .t; x/ p/ (24.4)

where Bij and Ai are the diffusion and drift coefficients of the diffusion process,
respectively.

We will call this the forward approach and the price is calculated by discounting
the expected value of the payoff at maturity,

u.t; x/ D E

h
e�r.T�t/u .T;XT/ jXt D x

i
D e�r.T�t/

Z
p .T; yI t; x/ �T .yI K/ dy;

(24.5)

with �T.xI K/ a function of the underlying x representing the payoff at maturity.
Although it has no dependence on time, to make it more clear that it represents the
payoff at t D T, we add T as index.

On the other hand, we also obtain an evolution equation for a deterministic
equation through Itô’s Lemma. In this case, which we will call the backward
approach, the parabolic equation resulting from applying Itô’s Lemma to our
quantity of interest will tell us how to evolve the payoff from maturity back to today.

In the forward approach, we want to calculate the transition probability density
function p.t; xI t0; x0/ from the initial time t0 until time T for all the possible values
of x, such that the integral in (24.5) can be evaluated for all the European payoffs
�T.�I K/ traded in the market, as well as for all the maturities up to T � t0. Once
the strike price K, the maturity T, the payoff function �T and the current time t0 are
known, calculating the price consists of

1. Start with a Dirac delta initial condition p.t0; xI t0; x0/ D ı.x � x0/
2. Integrate (24.4) from t D t0 < T up to t D T
3. Obtain the expected future payoff from (24.5)
4. Discount to present time t D t0

In point 3. a quadrature involving the product of the numerically determined
transition pdf p.t; x/ and the payoff �T is performed, in a step which can also be



24 Proper Orthogonal Decomposition in Option Pricing 445

Fig. 24.1 Diagram of FOM
ROM relations

described as a post-processing step. Note that �T is usually continuous, piecewise
linear and p.t; xI t0; x0/ is a smooth function. Therefore, in some particular cases of
�T some special quadrature methods may be applicable.

For comparison, the backward approach follows similar steps

1. Start from the payoff u .T; x/ D �T .xI K/ (the same in step 3. for the forward
approach)

2. Integrate (24.3) backwards from t D T down to t D t0 < T
3. Price is u .t0; x/ at x D x0

The above approaches result in the following rules of thumb:

Backward Equation For calculating the price of one option u.t; x D XI K0;T0/ for
different t; x and given pair K0;T0.

Forward Equation For calculating the price of different options u.t0; x D
X0I K;T/ for different K;T and given pair t0;X0. We have two possible PDEs,
which we’ll need to solve and in both cases there is nothing which prohibits us from
applying MOR. Figure 24.1 represents the four ways in which we can calculate the
price and their interconnections. In Sect. 24.4 we present results for the four cases.

24.3 Speed-up

In the last couple of years, splitting methods have become the go-to choice for
the efficient time integration step of the system of ODE resulting from the space
discretization of the PDE (24.3) [5]. In particular Alternate Direction Implicit
schemes, which result in very efficient schemes to solve the sparse multidimensional
PDE, have now seen its stability and consistent properties proved. The system
matrix A resulting from the spatial discretization of a d-dimensional problem has
dimensions A 2 R

N�N ;N D Qd
iD1 ni. The matrix consists mostly of zeros except

for 3d diagonals, in the case of a compact stencil.
In Figs. 24.2 and 24.3, we represent graphically the computational cost of an ADI

vs a reduced model generated with basis of different sizes. Note that the reduced
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Fig. 24.2 Sparsity of the system matrix from a FOM (a few diagonals) and from a ROM (fully
dense matrix)

Fig. 24.3 Computational advantage of MOR compared to the Full Order Model when both are
solved by an ADI method

model will have much less sparsity than the FOM, as can be seen from the example
on the following figure.

The ADI method exploits this sparsity and, therefore, only when the dense ROM
can compete with the ADI, it can be of practical use. If we calculate the ratio of total
floating point operations in both methods, knowing that the total number of floating
point operations for the ADI method will be f .�/ D dnd

�
9
2

C 8nt C 5dnt C 2ntnd
d

�

and using the same scheme for the dense ROM, we obtain the speed-up profile
presented in Fig. 24.3. Although splitting the ROM in the system matrices for
each dimension will be overkill from the performance point of view, it only adds
a multiplier proportional to the number of dimensions of the problem to the
computational cost but allows from the practical point of view to use exactly the
same scheme as for the FOM, which can simplify its implementation. For a more
detailed calculation, see [7].

We see in Fig. 24.3 that we can achieve a significant reduction in the number
of operations (speed-up) already for a two-dimensional problem even in the 50
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modes case. Due to the exponential dependence on dimension for the ADI method
and the respective independence for the reduced model, we can theoretically
obtain better and better results the higher the dimension of the problem. Although
higher dimensional ADI methods still lack some rigorous proofs of their properties
(stability, consistency), in practice they have been applied with success [3] and so,
at least for up to four dimensional problems, we can regard Fig. 24.3 as showing
realistic cases of application.

24.3.1 Greedy Approach

The greedy approach guides us to select the worst-case scenario. We use the Latin
Hypercube Sampling (LHS) for generating a sample of parameter values P from
the parametric space D covering the whole space. We then compare with the high-
fidelity model and select the parameter values which maximize the error and add
the snapshots corresponding to this set of parameters. We continue to iterate until
the desired number of iterations is reached, or a pre-established error threshold is
reached, or the error decrease is smaller than a pre-established threshold.

Input: Nt, P , tolsv
Output: VNC1, 	�

1: Select mid-point of D as 	0
2: Calculate u .ti; xI	0/ for i D 0; : : : ;Nt

3: T0 D Œu .t0; xI	0/ � � � u .tNt ; xI	0/

4: Initialize N; error
5: while error does not satisfy an accuracy condition do
6: 	�

NC1 D arg max	i2P �N .	i/

7: Calculate u
�
ti; xI	�

NC1
�

for i D 0; : : : ;Nt

8: TNC1 D �
TN u

�
t0; xI	�

NC1
� � � � u

�
tNt ; xI	�

NC1
��

9: VNC1; SNC1 D SVD .TNC1/
10: size D min argk

Pk
iD1 �NC1;iPn
iD1 �NC1;i

� tolsv
11: VNC1 D VNC1.W; 1 W size/
12: N D N C 1

13: update error
14: end while

In step 5. an error indicator �N .	i/ is used to determine 	�
NC1. Greedy

approaches are divided in two types of algorithms, strong greedy and weak greedy.
In the strong greedy approach, an exact error is used to calculate the error indicator
while in the weak greedy approach an approximation is used for that purpose.
A residual approach was tested with very similar results, but we opted to choose
the strong greedy approach as in [2]. This step involves the pre-calculation of the
FOM solutions for the parameter vectors inP . As this is an offline procedure, which
can even be done in parallel, it is not that relevant if the FOM is not prohibitively
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expensive and it saves time in the online phase by having the snapshots readily
available. The error indicator�.	i/ is then

�.	i/ D kuFOM .0; xI	i/� uROM .0; xI	i/ k1:

The update error in the last step of the algorithm involves calculating the error
between the FOM and the ROM for a set of pre-chosen parametric points, which
will be different than the ones used for evaluating which snapshots to gather. As
with the error indicator �N , we use the max-norm on the solution at maturity in
the forward approach and at time t0 in the backward approach. A more detailed
description can be found in [8].

In Sect. 24.4, in Figs. 24.5, 24.6, 24.7, 24.8, we can see the selected parameter
values and the corresponding decreasing error.

24.4 Numerical Experiments

For the numerical experiments we select the classical one dimensional Black-
Scholes and the Heston models. We select the following parameters for the maturity,
strike price and dividend yield for all the models:

T D 1;K D 100; q D 0:01:

The different type of solutions results in the choice of different computational
domains. For the Black-Scholes case, we will select the same computational
domain,

˝ D Œ0; 4K


for both the backward and adjoint (forward) cases. The adjoint equation needs an
additional parameter, the current spot x0, which we choose as 1:2K. Due to the fact
that we selected a call option as the numerical example in both models, this results
in the option being in-the-money (x0 > K). In the case of the Heston model we
select again x0 D 1:2K for the current spot price, with the domain

˝ D Œ0; 30K
 � Œ0; 15


for the backward equation and

˝ D Œ0; 10K
 � Œ0; 1


for the adjoint equation, with the difference laying in the solution profile.
For the numerical parameters, we have used Nt D 100 for both models in both

variants. For the spatial discretization we choose Nx D 200 for the Black-Scholes
model and NS D 2N� D 64 for the Heston Model. Regarding the ROM threshold
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to truncate the basis, we select a ratio between �1 and �l of 1010. Depending on the
range of parameters and accuracy desired, we may decrease the ratio, which will
result in a smaller number of basis vectors. For the parametric search, we select
the same parameters, r and � , not forgetting that � is the volatility in the Black-
Scholes model and �� is the volatility (standard deviation) of the stochastic volatility
in the Heston Model. In the Black-Scholes model, the parametric space is D D
Œ0:02; 0:1
 � Œ0:1; 0:8
 and in the Heston Model D D Œ0:025; 0:035
� Œ0:35; 0:45
.

We collect the snapshots at every time step and at a discretized grid for the
parametric domain. We discretize the parametric domain P D Qn

iD1 Œ�i;min; �i;max


with a uniform grid pk containing five equally distanced points per parameter,
including the extreme values. We will have then 25 and 25 parameter vectors
to generate our snapshots for the Black-Scholes and Heston models, respectively
(Table 24.1). For the selection of the parameters for which successively snapshots
will be calculated at the specified time levels we perform the greedy search of
Sect. 24.3.1 on 100 samples of the parametric domain, sampled using a Latin
Hypercube Sampling method. The parameter intervals are centered around values
which are common in equity markets.

For the spatial discretization we use a centered second-order scheme for the
backward equations, both FOM and ROM, and a Chang-Cooper discretization
for the forward ones. This difference results from the fact that, as seen before,
the solution of the forward equation represents a probability density function and
should, therefore preserve the total probability and be non-negative during the time
evolution. The Chang-Cooper scheme is known to preserve those properties [6].

We can observe on the left side of Fig. 24.4 that the first basis function tends
to approximate the “average” shape of the solution, with the other ones counting as

Table 24.1 Centers of the
parameter ranges

(a) Black-Scholes

r �

0.03 0.3

(b) Heston Model

r � � �

0.03 0.16 4 0.3

Fig. 24.4 Black-Scholes basis



450 J.P. Silva et al.

Greedy
σ

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

r
0.02 0.04 0.06 0.08 0.1

3
6

4
7

91

2

180
5

Fig. 24.5 Black-Scholes backward pROM convergence. Note that at the left the worst-cases for
mu are at the border of the parameter space. At the right the error at the final time t D 0.
kuFOM.0; :/� uROM.0; :/k1 is calculated after injecting uROM back to the full space

Fig. 24.6 Black-Scholes forward pROM convergence

corrections. Those corrections will have their coefficients ai.t/ changing along time,
which can be seen on the right side in Fig. 24.4 for the first six coefficients.

Figures 24.5, 24.6, 24.7, 24.8 show the convergence of the pROM for the
backward PDE of the Black-Scholes model, for the forward PDE of the Black-
Scholes model, for the backward PDE of the Heston model, and for the forward
PDE of the Heston model, respectively. We can see that 10 and 20 greedy iterations
are enough to achieve the best possible approximation for the selected ratio of
singular values for the Black-Scholes and Heston models, respectively. The size
of the reduced system matrix was 42 for the Black-Scholes model and 120 for the
Heston model.
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Fig. 24.7 Heston backward pROM convergence
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Fig. 24.8 Heston forward pROM convergence

24.5 Conclusions

Having calculated reduced models with the POD for both the 1D Black-Scholes
and the Heston models, the level of approximation of the above reduced models
has shown to be fit for usage in the Heston case. In the one-dimensional Black-
Scholes case, as can be inferred from Fig. 24.3, the reduced model doesn’t provide
any speed-up, which is not particularly worrying, as the one dimensional model has
a closed formula solution. One possible improvement would be combining together
the ADI scheme and the Chang-Cooper discretization, as it is still a compact
discretization and could potentially benefit from the splitting, especially in 3D or
higher dimensions.

Acknowledgements The authors were partially supported by the European Union in the FP7-
PEOPLE-2012-ITN Program under Grant Agreement Number 304617 (FP7 Marie Curie Action,
Project Multi-ITN STRIKE—Novel Methods in Computational Finance).



452 J.P. Silva et al.

References

1. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems (Advances in Design and
Control) (Advances in Design and Control). Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (2005)

2. Haasdonk, B., Salomon, J., Wohlmuth, B.: A reduced basis method for the simulation of
American options. In: Numerical Mathematics and Advanced Applications 2011, pp. 821–829.
Springer Science + Business Media, Berlin (2012)

3. Haentjens, T.: ADI schemes for the efficient and stable numerical pricing of financial options
via multidimensional partial differential equations. Ph.D. thesis, Universiteit Antwerpen (2013)

4. Hinze, M., Volkwein, S.: Proper Orthogonal Decomposition Surrogate Models for Nonlin-
ear Dynamical Systems: Error Estimates and Suboptimal Control, pp. 261–306. Springer,
Berlin/Heidelberg (2005)

5. in ’t Hout, K., Toivanen, J.: Application of operator splitting methods in finance. arXiv preprint
arXiv:1504.01022 (2015)

6. Mohammadi, M., Borzì, A.: Analysis of the Chang-Cooper discretization scheme for a class of
Fokker-Planck equations. J. Numer. Math. 23(3), 271–288 (2015)

7. Silva, J., ter Maten, E.J.W., Günther, M., Ehrhardt, M.: Proper Orthogonal Decomposition
in option pricing: Basket options and Heston model. In: G. Russo, V. Capasso, G. Nicosia,
V. Romano (Eds): Progress in Industrial Mathematics at ECMI 2014, Series Mathematics in
Industry, vol. 22. Springer International Publishing, Cham (2016)

8. Silva, J.P.: Model Order Reduction in Option Pricing. Ph.D. thesis, Bergische Universität
Wuppertal (2017)



Part VII
High Performance Computing



Chapter 25
Alternative Parallel Strategies for Linear
and Nonlinear PDEs in Option Pricing

Choi-Hong Lai, André M.S. Ribeiro, and Natkunam Kokulan

Abstract This chapter provides an exposition on alternative parallel strategies for
pricing options using Black Scholes PDE with nonlinear volatility models. Details
of a Laplace transform method and its induced parallel properties when applied
to the Black Scholes PDE are discussed. An application is given of the method to
the numerical solution of an European option pricing with the Frey-Patie volatility
model. An extension to a general transformation technique is explained. Finally a
hybrid technique to handle nonlinear volatility is presented.

25.1 The Black-Scholes Equation

Let V.S; t/ denote the value of an option, where S is the current value of the
underlying asset and t is the time. An European put option pricing problem may
be described by the Black-Scholes PDE

@V

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
� rV D 0; (25.1)

subject to the terminal and boundary conditions

8
ˆ̂
<

ˆ̂
:

V.S;T/ D .K � S/C; for 0 � S � Smax;

V.0; t/ D Ke�r.T�t/; for 0 � t < T;

V.Smax; t/ D 0:

Here � is the volatility, r is the interest rate, and K is the strike price. For a
perfect market � may be taken as a constant. For an imperfect market where
transaction costs, illiquidity and friction exist � takes a nonlinear form. In this
chapter numerical tests were performed for a hypothetical nonlinear volatility
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�.V/ D �0

q
1C sin.V�

K / [1] and the simplified Frey-Patie model � D �0.1 �
�SVSS/

�1, where � ¤ .SVSS/
�1 is a constant which controls the nonlinearity [2].

Note that (25.1) is a backward equation in time. It can be transformed to a
forward equation by using � D T � t which leads to the forward equation

@v

@�
D 1

2
�2S2

@2v

@S2
C rS

@v

@S
� rv; (25.2)

where v.S; �/ 2 fS W S � 0g � .0;T
, and supplemented with these conditions

8
ˆ̂<

ˆ̂
:

v.S; 0/ D .K � S/C; for 0 � S � Smax;

v.0; �/ D Ke�r� ; for 0 < � � T;

v.Smax; �/ D 0:

In the case when a closed form solution is not possible with certain types of
nonlinear volatility, finite difference methods are to be used along the spatial and
temporal axes. Typical temporal integration schemes for Eq. (25.2) are forward and
backward finite difference methods. These integration schemes lead to an explicit
and an implicit scheme, respectively, where data dependence of the current time step
cannot be removed from previous time steps. In the latter case where the temporal
step size does not require to satisfy a CFL condition does not qualify it to march an
arbitrary large step to reach the final solution at � D T. This leads to the conclusion
that concurrent computation of v at many different times is impossible using a
temporal marching scheme.

Attempts have been made by several researchers in the direction of modified
temporal marching schemes. For examples Miranker and Liniger [3] proposed a
family of parallel Runge-Kutta methods; Lions, Maday and Turinici [4] proposed
the ‘parareal’ algorithm in time discretisation; and Gander and Vandewalle [5]
provided an analysis of the parareal algorithm for parallel temporal integration. The
concept relies on partitioning the temporal axis into a number of non-overlapped
sections known as time subdomains and the same time-dependent problem is con-
sidered in each of these time subdomains. Very often a coarse temporal partitioning
is needed to provide corrections using the concept of a multigrid correction method.

The idea of using various transformation methods to induce parallel properties
into a given time dependent PDE was first discussed in [6]. It relies on replacing
the temporal dependence of a PDE to a simplified form with certain parameters.
The technique has been used in many engineering problems in an attempt to
obtain closed form solution and in the study of the long term behaviour of many
time dependent problems. It is the use of such parametric differential equations
that led to the decoupling of problems suitable for parallel processing. Further
details may be found from [6]. This chapter provides a detailed exposition of one
of the transformation method known as Laplace transform and demonstrates the
effectiveness and restrictions of such method in the context of parallel computing.
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25.2 The Laplace Transform Method

The forward equation as described in (25.2) is used as the model equation in this
section. Let

L .v/ �
Z 1

0

e���v.S; �/d� D U.�I S/

be the Laplace transform of the function v.S; �/, then the Laplace transform
of (25.2) leads to

1

2
�2S2

d2U

dS2
C rS

dU

dS
� .r C �/U D �v.S; 0/ (25.3)

subject to the boundary conditions U.�I 0/ D K
�Cr and U.�I Smax/ D 0. The above

transform is valid only if the volatility � is a constant. The result of applying the
Laplace transform method is to remove the temporal dependence of the problem
defined in Eq. (25.2). The transformed problem is now converted to the dependence
on the parameter � 2 f�j D j ln 2

T W j D 1; 2; : : : ;mg, which is a finite set
of transformation parameters. Each element of the set of parametric equations
fU.xI�j/ W j D 1; 2; : : : ;mg satisfies Eq. (25.3) and is decoupled from each
other and may be solved independently from the others. Thus an important parallel
property is induced to the mathematical model leading to a set of independent
parametric equations which may be solved without the knowledge of each other. In
terms of distributed computing, this independence amounts to null communication
between each computer in the distributed computing environment, assuming there
are as many computers as the number of parametric equations.

25.2.1 Computing the Inverse Laplace

It is not the intention of this chapter to examine various inverse Laplace trans-
form methods in the retrieval of v.S;T/. Instead, without lost of generality, the
approximate inverse Laplace transform due to Stehfest [7] was used to compute
the weighted sum of the Laplace transformed solutions, i.e.

v.S;T/ �
mX

jD1
wjU.�jI S/ (25.4)
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where

wj D ln 2

T
.�1/m=2Cj

min. j;m=2/X

kD.1Cj/=2

km=2.2k/Š

.m=2� k/ŠkŠ.k � 1/Š.j � k/Š.2k � j/Š

are the weighting factors.
Note that m is required to be chosen as an even number if (25.4) is used to

compute the inverse Laplace transform. Early experience indicated that the value
of m does not require to be larger than 12 and smaller values of m do not lead to
good accurate results.

25.2.2 Extension to Nonlinear Volatility

In order to apply the Laplace transform method to Eq. (25.2) the nonlinear volatility
should be linearised in a suitably chosen larger time interval. An iterative process
is thus required to ensure the nonlinear volatility converges to the correct value.
Typically Laplace transform of (25.2) is to be applied in the time interval � 2
.Ti;TiC1
, and the transformed equation in its differential form is given by

1

2
�. Nv/S2 d2U

dS2
C rS

dU

dS
� .r C �/U D �v.S;Ti/ (25.5)

where U D L .v/. An update process is used to renew the value of Nv and an
inverse Laplace transform is used to obtain the numerical solution v.n/.S;TiC1/,
using v.n/.S;Ti/ as the initial approximation to Nv.

Algorithm: Update process - Laplace transform method.
Initial approximation:- v.0/.S;TiC1/ WD v.n/.S;Ti/;
k WD 0;
Iterate

k WD k C 1;
Compute �. Nv/ such that Nv WD v.k�1/.S;TiC1/;
Parallel for j WD 1 to m.i/

Find U.�jI S/ such that
1
2
�. Nv/S2 d2U

dS2
C rS dU

dS � .r C �j/U D �v.S;Ti/

End Parallel for
Compute v.k/.S;TiC1/ using inverse Laplace in Eq. (25.4)

Until jjv.k/.S;TiC1/� v.k�1/.S;TiC1/jj < �
n WD k
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Here m.i/ is the number of transformation parameters and Ti D i�� . In order to
solve Eq. (25.5) for U.�jI S/, one can employ the same finite difference technique
described above. In order to solve (25.2) for v.S;T/, this algorithm needs to be
iterated through ti WD T1;T2; : : : ;T by using suitable values of m.i/ in the form of
an outer iteration. In essence the actual implementation does not require different
values of m.i/ for many problems, and the numerical tests shown here used the same
number of transformation parameters, denoted as Nm, for different values of i during
the outer iteration loop. Note that in this case �� can be chosen to be much greater
than ı� because the fine details of at each time step of a temporal integration is not
required in the inverse Laplace transformation calculation.

25.3 Numerical Experiments

Numerical experiments were performed for a hypothetical nonlinear volatility and
a simplified Frey-Patie model as described in Sect. 25.1.

25.3.1 Numerical Results for the Hypothetical Nonlinear
Volatility

The hypothetical nonlinear volatility was used in an European put option with strike
price K D 100, Smax D 3:2K, r D 0:05, �0 D 0:4, and the expiry time is one
year. An implicit finite difference method was used to solve the nonlinear forward
problem defined in Eq. (25.2) with the mesh ıS D Smax

215
and ı� D 1

250
, and a reference

solution VR.S; 0/ was obtained for comparison. The computational time for this
reference solution on the Stafflinux platform, a virtual machine with two cores from
Intel(R) Xeon(R) CPU E5-4650 0 @ 2.70 GHz, 4 GB memory and 16 GB Harddisk,
at Greenwich was 3.954 s.

The Laplace transform method was applied to solve the nonlinear forward
problem defined in Eq. (25.2) with the same mesh ıS D Smax

215
. As the problem is

nonlinear a time stepping process is still required in the computation. A series of
larger time steps, each defined as �� D TiC1 � Ti, were chosen to be 4ı� , 8ı� ,
16ı� , 32ı� , and 64ı� . The resulting solution VL using a�� was compared with the
reference solution. Table 25.1 records the 2-norm of the point-wise comparison of
VL using different �� and m with the reference solution VR. It can be seen that the
effect of �� is not significant for this particular hypothetical volatility. The choice
of m � 8 produces similar order of accuracy.

The parallel version was implemented using Fortran with MPI on the Stafflinux
platform, as described above, at Greenwich. The parallel run time was simulated
on a single processor. Table 25.2 shows the parallel computing time excluding the
inverse Laplace transform which is trivial compare with the other equation solvers.
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Table 25.1 jjVL.S; 0/�
VR.S; 0/jj2 m / �� 64ı� 32ı� 16ı� 8ı� 4ı�

2 0.02190 0.02200 0.02208 0.02208 0.02200

4 0.00173 0.00085 0.00041 0.00035 0.00043

6 0.00104 0.00062 0.00042 0.00031 0.00026

8 0.00107 0.00068 0.00048 0.00037 0.00031

10 0.00107 0.00068 0.00048 0.00036 0.00031

12 0.00107 0.00068 0.00048 0.00036 0.00031

14 0.00107 0.00068 0.00048 0.00036 0.00031

Table 25.2 Parallel
computing time for different
choices of ��

m / �� 64ı� 32ı� 16ı� 8ı� 4ı�

2 0.1094 0.1735 0.3152 0.5660 0.8877

4 0.1089 0.1600 0.3135 0.4690 0.8418

6 0.0959 0.1610 0.3130 0.4657 0.8393

8 0.0963 0.1610 0.3145 0.4694 0.8683

10 0.1043 0.1744 0.3435 0.5077 0.9159

12 0.0983 0.1645 0.3209 0.4782 0.8597

14 0.0979 0.1647 0.3213 0.4781 0.8581

The results demonstrated that a coarse grain parallel algorithm suits the current
purposes. The parallel algorithm is an efficient way of solving the BS PDE with
nonlinear volatility. It is observed that the volatility cannot be oscillatory in a given
larger time interval, �� , such as .Ti;TiC1
. The solution quality of the Laplace
transform method was comparable to the reference solutions VR.

25.3.2 Numerical Results for Frey-Patie Nonlinear Volatility

The Frey-Patie model was used in the same European put option pricing problem.
The same discretisation mesh was used in the reference solution and the Laplace
transform method. This set of results was obtained for the case when �0 D 0:4

and � D 0:01. An implicit finite difference method was used to solve the nonlinear
forward problem defined in Eq. (25.2) with the mesh ıS D Smax

100
and ı� D 1

255
,

and a reference solution VR.S; 0/ was obtained for comparison. The computational
time for this reference solution on the same Stafflinux platform at Greenwich was
0.019 seconds. Table 25.3 shows that with suitable choice of � the choice of larger
time stepping is still possible demonstrating the viability of the Laplace transform
method for the Frey-Patie model.

The Laplace transform method was implemented using Fortran with MPI on
the Stafflinux platform at Greenwich. The parallel run time was simulated on a
single processor. Table 25.4 shows the parallel computing time excluding the inverse
Laplace transform which is trivial compare with the other equation solvers. Similar
conclusion can be drawn as in the case for the hypothetical volatility.
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Table 25.3 jjVL.S; 0/�
VR.S; 0/jj2 m / �� 64ı� 32ı� 16ı� 8ı�

2 0.27911 0.28204 0.28361 0.28442

4 0.00728 0.00602 0.00605 0.00630

6 0.00234 0.00238 0.00242 0.00245

8 0.00303 0.00304 0.00305 0.00305

10 0.00302 0.00302 0.00302 0.00302

12 0.00301 0.00301 0.00301 0.00301

14 0.00301 0.00301 0.00301 0.00301

Table 25.4 Parallel
computing time for different
choices of ��

m / �� 64ı� 32ı� 16ı� 8ı�

2 0.00015 0.00031 0.00063 0.00125

4 0.00016 0.00031 0.00063 0.00130

6 0.00016 0.00031 0.00063 0.00125

8 0.00015 0.00031 0.00062 0.00124

10 0.00015 0.00031 0.00063 0.00126

12 0.00015 0.00031 0.00063 0.00125

14 0.00015 0.00031 0.00063 0.00125

25.4 A Sequence of Transformations

A generalisation of using the concept of transformation through the use of a
sequence of transformation in order to remove the temporal axis was also inves-
tigated. The idea is to apply several transformation leading to a differential equation
which does not involve time but several parametric differential equations as those
described above. The method is derived here.

Consider Eq. (25.1) treating the volatility as a constant in the process of two
transformations. First, take S D ey and t D T � � with the stretch transformation
u D er�V leads to the forward equation

@u

@�
� 1

2
�2
@2u

@y2
� .r � 1

2
�2/

@u

@y
D 0;

in which the first order term can be removed by using x D y C .r � 1
2
�2/� leading

to

@u

@�
D 1

2
�2
@2u

@x2
:

An invariant transformation using � D xp
t

and taking u.x; �/ D f .�/ leads to the
parametric equation

�
d2f

d�2
C 1

2

df

d�
D 0 (25.6)
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with suitable boundary conditions easily derived through the same transformation
process. Equation (25.6) does not involve temporal axis and the solution u.x; �/
at many different � may be evaluated simultaneously. Suppose one requires the
numerical solution of u at various different times on a set of fixed grid points along
the x-axis defined by the discretised mesh ıx, the corresponding mesh size to be
used in the transformed system is ı� D ı�.ıx; t; �/. It is possible to simultaneously
compute as many time dependent solutions as possible at various different times,
i.e.

ı�k D ı�.ıx; tk; �/

The computations at different times can be performed simultaneously. Each inde-
pendent calculation depends on the value of tk which affects the corresponding mesh
size ı�k used only at that particular time. In other words there are as many problems,
each defined by Eq. (25.6) and is decoupled from the others, as those times when
solutions are required. It is also possible to compute u.x; �/ using the closed form
solution of Eq. (25.6).

The above process may be applied to cases with nonlinear volatility. A lin-
earisation method, such as frozen coefficients, is applied to the forward equation
following with the sequence of transformations as described above. This represents
one linearisation step of the nonlinear update process which must be repeated until
it is converged.

25.5 Conclusions

Two alternative parallel algorithms for nonlinear option pricing were examined.
The first one is based on the Laplace transform method in which the temporal
dimension is replaced by a set of finite number of parametric equations. This
resulted to a coarse grained parallelisation of the numerical Laplace transform. A set
of numerical experiments were performed and discussed. The second one is based
on the use of a sequence of transformations leading to a differential equation that
has no temporal involvement. This technique can also be implemented as a coarse
grain parallel algorithm in a similar way as the Laplace transform method.

Experience shown that the nonlinear volatility within a larger time interval, �� ,
as the one described in the Laplace transform method is that the rate of change of
volatility must not be abrupt. However it is possible to accommodate a steady or
constant rate of change of � which is a necessary condition for an efficient Laplace
transform method. This does not apply to the case of the other multiple stretch or
similarity transformations.



25 Alternative Parallel Strategies for Linear and Nonlinear PDEs in Option Pricing 463

References

1. Lai, C.-H.: Numerical solutions of certain nonlinear models in European options on a distributed
computing environment. In: Ehrhardt, M. (ed.) Nonlinear Models in Mathematical Finance: New
Research Trends in Option Pricing, ISBN: 978-1-60456-931-5. Nova Science Publisher, New
York, (2008)

2. Frey, R., Patie, P.: Risk management for derivatives in illiquid markets: a simulation study,
In: K. Sandmann, P.K. Schönbucher (eds.) Advances in Finance and Stochastics, pp. 137–160.
Springer, Berlin (2002)

3. Miranker, W.L., Liniger, W.: Parallel methods for the numerical integration of ordinary
differential equations. Math. Comput. 91, 303–320 (1967)

4. Lions, J.-L., Maday, Y., Turinici, G.: A parareal in time discretisation of PDE’s. C.R. Acad. Sci.
Paris, Serie I 332, 661–668 (2001)

5. Gander, M.J., Vandewalle, S.: Analysis of parareal time-parallel time-integration method. SIAM
J. Sci. Comput. 29, 558–578 (2007)

6. Lai, C.-H.: On transformation methods and the induced parallel properties for the temporal
domain. In: Magoules, F. (ed.) Substructuring Techniques and Domain Decomposition Methods,
ISBN: 1759-3158 (DOI: 10.4203/csets.24.3). Saxe-Coburg, Stirlingshire (2010)

7. Stehfest, H. Numerical inversion of Laplace transforms. Commun. ACM 13, 47–49 (1970)



Chapter 26
Modern Monte Carlo Methods and GPU
Computing

Álvaro Leitao and Cornelis W. Oosterlee

Abstract Pricing early-exercise options under multi-dimensional stochastic pro-
cesses is a major challenge in the financial sector. In Leitao and Oosterlee (Int
J Comput Math 92(12):2433–2454, 2015), a parallel GPU version of the Monte
Carlo based Stochastic Grid Bundling Method (SGBM) (Jain and Oosterlee, Appl
Math Comput 269:412–431, 2015) for pricing multi-dimensional Bermudan options
is presented. The method is based on a combination of simulation, dynamic pro-
gramming, regression and bundling of Monte Carlo paths. To extend the method’s
applicability, the problem dimensionality and the number of bundles is increased
drastically. This makes SGBM very expensive in terms of computational costs
on conventional hardware systems. A parallelization strategy of the method is
developed and the GPGPU paradigm is used to reduce the execution time. An
improved technique for bundling asset paths, which is more efficient on parallel
hardware, is introduced. Thanks to the performance of the GPU version of SGBM,
we can fully exploit the method and deal with very high-dimensional problems.
Pricing results and comparisons between sequential and GPU parallel versions are
presented.

26.1 Introduction

Monte Carlo methods are intensively employed in the financial field. Their sim-
plicity in both interpretation and implementation makes them very attractive for
practitioners. However, the main drawback usually attributed to this technique is
the high computational cost. Although this fact has been improved in the last
decades (due to the rapid evolution of the software and hardware), there still
are some particular problems where the application of Monte Carlo methods can
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be considered “expensive”. That is the case when we deal with multi- or high-
dimensional problems. In many cases, the use of Monte Carlo is the only option
for this type of problems since other methodologies like PDE- or Fourier-based
approaches can not be applied for very high dimensions (more than three), due
to the curse of dimensionality. In this chapter, we will focus our analysis on
high-dimensional early-exercise option contracts and how to combine a Monte
Carlo based pricing method with parallel GPU computing resulting in an efficient
technology.

In recent years, different Monte Carlo simulation techniques for pricing multi-
dimensional early-exercise options were developed. Some representative methods
were developed by Longstaff and Schwartz [7] and Tsitsiklis and Van Roy [8].
One of the recent Monte Carlo pricing techniques is the Stochastic Grid Bundling
Method (SGBM), proposed by Jain and Oosterlee in [5] for pricing Bermudan
options with several underlying assets. The method is a hybrid of regression- and
bundling- based approaches, and uses regressed value functions, together with
bundling of the state space to approximate continuation values at different time
steps. In [6], the method’s applicability has been extended by increasing the number
of bundles and the problem dimensionality, which, together, also imply a drastic
increase of the number of Monte Carlo paths. As the method becomes much more
time-consuming then, we have parallelized the SGBM method taking advantage of
the General-Purpose computing on Graphics Processing Units (GPGPU) paradigm.
In this chapter, this work is summarized.

26.2 Problem Formulation

This section defines the Bermudan option pricing problem and sets up the notations
used in this chapter. A Bermudan option is an option where the buyer has the right
to exercise at a set number of times, t 2 Œt0 D 0; : : : ; tm; : : : ; tM D T
, before the
end of the contract, T. St D .S1t ; : : : ; S

d
t / 2 R

d defines the d-dimensional underlying
process. Let ht WD h.St/ be an adapted process representing the intrinsic value of the
option, i.e. the holder of the option receives max.ht; 0/, if the option is exercised at
time t. The value of the option at the terminal time T is equal to the option’s payoff,
i.e.,

VT.ST/ D max.h.ST/; 0/:

The conditional continuation value Qtm , i.e. the expected payoff at time tm, is

Qtm.Stm/ D DtmE
�
VtmC1

.StmC1
/jStm

�
;
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where Dtm is the discount factor. The Bermudan option value at time tm and state Stm
is then given by

Vtm.Stm/ D max.h.Stm/;Qtm.Stm//:

We are interested in finding the option value at the initial state St0 , i.e. Vt0 .St0 /.

26.3 Stochastic Grid Bundling Method

SGBM [5] is a simulation-based Monte Carlo method for pricing early-exercise
options (such as Bermudan options). SGBM first generates Monte Carlo paths
forward in time, which is followed by determining the optimal early-exercise policy,
moving backwards in time in a dynamic programming framework, based on the
Bellman principle of optimality. The steps involved in the SGBM algorithm are
briefly described in the following:

• Step I: Generation of stochastic grid points. The grid points in SGBM are
generated by Monte Carlo sampling, i.e., by simulating independent copies of
sample paths, fSt0 .n/; : : : ;StM .n/g; n D 1; : : : ;N; of the underlying process St;

all starting from the same initial state St0 .
• Step II: Option value at terminal time. The option value at the terminal time

tM D T is given by

VtM .StM / D max.h.StM /; 0/;

with max.h.StM /; 0/ a multi-dimensional payoff function.
The following steps are subsequently performed for each time step, tm; m �

M; recursively, moving backwards in time, starting from tM .
• Step III: Bundling. The grid points at tm�1 are clustered or bundled into

Btm�1 .1/; : : : ;Btm�1 .�/ non-overlapping sets or partitions. SGBM employs
bundling to approximate the conditional distribution using simulation. It samples
this distribution by bundling the grid points at tm�1 and then uses those paths that
originate from the corresponding bundle to obtain a conditional sample for time
tm.

• Step IV: Mapping high-dimensional state space to a low-dimensional space.
Corresponding to each bundle Btm�1 .ˇ/; ˇ D 1; : : : ; �, a parameterized value
function Z W R

d � R
K 7! R; which assigns values Z.Stm ; ˛

ˇ
tm/ to states Stm , is

computed. Here ˛ˇtm 2 R
K is a vector of free parameters. The objective is then to

choose, for each tm and ˇ; a parameter vector ˛ˇtm so that

Z.Stm ; ˛
ˇ
tm/ � Vtm.Stm/:
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• Step V: Computing the continuation and option values at tm�1. The con-
tinuation values for Stm�1 .n/ 2 Btm�1 .ˇ/; n D 1; : : : ;N; ˇ D 1; : : : ; �; are
approximated by

bQtm�1 .Stm�1 .n// D EŒZ.Stm ; ˛
ˇ
tm/jStm�1 .n/
: (26.1)

The option value is then given by

bVtm�1 .Stm�1 .n// D max.h.Stm�1 .n//;bQtm�1 .Stm�1 .n///:

Due to their importance, the last three steps are more extensively described in the
following sections.

26.3.1 Bundling

We propose a bundling technique in the SGBM context which is highly efficient
when taking into account our goal of high dimensionality, called equal-partitioning.
This technique is particularly well-suited for parallel processing: it does not involve
an iterative process, distributes the data equally and does not need to store the
d-dimensional points. Equal-partitioning has two steps: sorting and splitting. The
general idea is to sort the data first under some convenient criterion and then split
the sorted data items into sets (i.e. bundles) of equal size. The sorting process is
independent of the dimension of the problem, efficient and, furthermore, it is highly
parallelizable. In addition, the storage of all Monte Carlo simulation data points can
be avoided since only a reduced part is needed in the bundling stage. The split stage
assigns directly the portions of data to bundles which will contain the same number
of similar (following some criterion) data items. Hence, the regression can be
performed accurately even though the number of bundles increases in a significant
way. Furthermore, the equally sized bundles allow for a better load balancing within
the parallel implementation.

26.3.2 Parameterizing the Option Values

The high-dimensional option pricing problem become intractable and requires
the approximation of the value function. This can be achieved by introducing a
parameterized value function Z W Rd � R

L 7! R; which assigns a value Z.Stm ; ˛/

to state Stm ; where ˛ 2 R
L is a vector of free parameters. The goal is to choose,

corresponding to each bundle ˇ at time point tm�1; a parameter vector ˛ˇtm WD ˛ so
that,

Vtm.Stm/ � Z



Stm ; ˛
ˇ
tm

�
:
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SGBM follows the approach of Tsitsiklis and Van Roy [8] and it uses basis functions
to approximate the values of the options. Hence, two important decisions have to be
made: the form of the function Z and the basis functions. For each particular problem
we define several basis functions, �1; �2; : : : ; �L, that are typically chosen based
on experience, as in the case of the LSM method [7], aiming to represent relevant

properties of a given state, Stm . In our case, the form of Z



Stm ; ˛
ˇ
tm

�
depends on Stm

only through �k.Stm/. Hence, for some function f W RL � R
L 7! R, we can write

Z



Stm ; ˛
ˇ
tm

�
D f



�k.Stm/; ˛

ˇ
tm

�
, where

Z



Stm ; ˛
ˇ
tm

�
D

LX

kD1
˛
ˇ
tm.k/�k.Stm/:

An exact computation of the vector of free parameters, ˛ˇtm , is generally not feasible

for the corresponding bundle Btm�1 .ˇ/. Thus, an approximation b̨ˇtm is computed by
using ordinary least squares regression.

By using the parameterized option value function Z



Stm ;b̨
ˇ
tm

�
for the bundle

Btm�1 .ˇ/; the continuation values in Eq. (26.1) are approximated by

bQtm�1 .Stm�1 .n// D Dtm�1E

" 
LX

kD1
b̨ˇtm.k/�k.Stm/

!

jStm�1 D Stm�1 .n/

#

D Dtm�1

LX

kD1
b̨ˇtm.k/E Œ�k.Stm/jStm�1 D Stm�1 .n/
 ;

(26.2)

where Stm�1 .n/ 2 Btm�1 .ˇ/. The continuation value will give us a reference
value to compute the early-exercise policy. The basis functions �k should be
chosen such that the expectations E Œ�k.Stm/jStm�1 D Stm�1 .n/
 in Eq. (26.2) are
easy to calculate, i.e. they are preferably known in closed form or otherwise have
analytic approximations. In [6], several choices to determine the basis functions are
described, either for particular cases or more general situations.

26.3.3 Estimating the Option Value

The estimation of the option value is the final step in SGBM. We consider the so-
called direct estimator and path estimator. The direct estimator is typically biased
high, i.e., it is often an upper bound. The definition of the direct estimator is

bVtm�1 .Stm�1 .n// D max



h .Stm�1 .n// ;bQtm�1 .Stm�1 .n//
�
;
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where n D 1; : : : ;N. The final option value reads

EŒbVt0 .St0 /
 D 1

N

NX

nD1
bVt0 .St0 .n//:

The direct estimator corresponds to Step V in the initial description.
Once the optimal early-exercise policy has been obtained, the path estimator,

which is typically biased low, can be developed based on the early-exercise policy.
The resulting confidence interval is useful, because, depending on the problem at
hand, sometimes the path estimator and sometimes the direct estimator is superior.
The obtained confidence intervals are generally small, indicating accurate results.
In order to compute the low-biased estimates, we generate a new set of paths, as
in common for duality-based Monte Carlo methods, S.n/ D fSt1 .n/; : : : ;StM .n/g,
n D 1; : : : ;NL. Along each path, the approximate optimal policy exercises are

b�� .S.n// D minftm W h .Stm.n// � bQtm .Stm.n// ; m D 1; : : : ;Mg;

where bQtm.Stm.n// is previously computed using Eq. (26.2). The path estimator is
then defined by v.n/ D h

�
S O��.S.n//

�
. Finally, the low-biased estimate given by the

path estimator is

Vt0
.St0 / D lim

NL

1

NL

NLX

nD1
v.n/:

26.4 Parallel SGBM Method: Implementation Details

The GPU parallel implementation was performed by employing the Compute Uni-
fied Device Architecture, CUDA, a parallel computing platform and programming
model developed by NVIDIA (see [2]).

Since SGBM is based on two clearly separated stages, we parallelize them
separately. First of all, the Monte Carlo path generation is parallelized (Step I).
As is well-known, Monte Carlo methods are very suitable for parallelization,
because of characteristics like a very large number of simulations and data
independence. In Fig. 26.1a, we see schematically how the parallelization is done
where p0; p1; : : : ; pN�1 are the CUDA threads. The second main stage of SGBM
is the regression and the computation of the continuation and option values (Steps
IV and V) in each bundle, backwards in time. Due to the data dependency between
time steps, the way to parallelize this stage of the method is by parallelizing over
the bundles, performing the calculations in each bundle in parallel. Schematic and
simplified representation with two bundles is given in Fig. 26.1b. Note that, actually,
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(a)

(b)

Fig. 26.1 Stages of the parallel SGBM method. (a) Monte Carlo stage. (b) Bundling stage

several stages of parallelization are performed, one per time step. Between each
parallel stage, the bundling (Step III) is carried out.

In the following subsections, we will show more specific details of the CUDA
implementation of the parallel SGBM method.
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26.4.1 Parallel Monte Carlo paths

We launch one CUDA thread per Monte Carlo path. The necessary random numbers
are obtained “on the fly” in each thread by means of the cuRAND standard library. In
addition, the intrinsic value of the option and also the computation of the expectation
in Eq. (26.2) are performed within the Monte Carlo generator, decreasing the
number of launched loops and taking advantage of the parallel execution. The
intermediate results are stored in an array defined inside the CUDA kernel which
can be allocated in the registers, speeding up the memory accesses. We also perform
calculations for the sorting criterion (required in the equal partitioning bundling)
inside the Monte Carlo generator, avoiding the storage of the complete Monte Carlo
grid points and the transfers of data from GPU global memory to CPU main memory
in each time step. This approach gives us a considerable performance and allows
us to increase drastically the dimensionality and also the number of Monte Carlo
simulations (depending on the number of bundles).

26.4.2 Bundling Scheme

As mentioned, equal-partitioning bundling involves two operations: sorting and
splitting. For the sort part, we take advantage of the CUDA Data-Parallel Primitives
Library (CUDPP), described in [3]. We choose the parallel Radix sort which
is included in version 2.1 of CUDPP. In addition, CUDPP provides a kernel-
level Application Programming Interface (API), allowing us to avoid the transfers
between stages of parallelization. Once the sorting stage has been performed, the
splitting stage is immediate since the size of the bundles is known, i.e. N=�. Each
CUDA thread manages a pointer which points at the beginning of the corresponding
region of GPU global memory for each bundle. The memory allocation is made for
all bundles together which means that the bundle’s memory areas are adjacent and
the accesses are faster (coalescing).

26.4.3 Estimators

The exercise policy and the final option values can be computed by means of
direct and path estimators. For the direct estimator, one CUDA thread per bundle
is launched at each time step. For each bundle, the regression and option values
are calculated on the GPU. All CUDA threads collaborate in order to compute
the continuation value which determines the early-exercise policy. Once the early-
exercise policy is determined, the path estimator can be executed. Its parallelization
can be done over paths because the early-exercise policy is already known (given
by the previous computation of the direct estimator) and is not needed to perform
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the regression. One CUDA thread per path is launched and it computes the optimal
exercise time and the cash flows according to the policy.

26.5 Results

The implementation have been carried out in two programming languages: C and
CUDA. This allows us to assess the improvement given by the parallel version
compared with the sequential one. Experiments were performed on the Accelerator
Island system of the Cartesius Supercomputer (more information in [1]). We
consider the d-dimensional problem of pricing basket Bermudan options under the
multi-dimensional Geometric Brownian Motion (GBM). The experiments setting
is

• Initial state: St0 D .40; 40; : : : ; 40/ 2 R
d.

• Strike: K D 40.
• Risk-free interest rate: rt D 0:06.
• Dividend yield rate: qı D 0:0, ı D 1; 2; : : : ; d.
• Volatility: �ı D 0:2, ı D 1; 2; : : : ; d.
• Correlation: �i;j D 0:25, j D 2; : : : ; d, i D 1; : : : ; j.
• Maturity: T D 1:0.
• Exercise times: M D 10.
• Number of basis functions: L D 3.

26.5.1 Equal-Partitioning: Convergence Test

First, we wish to test the convergence of the new equal-partitioning technique
bundling. Regarding the sorting criterion, we choose the payoff criterion, i.e. we
sort the Monte Carlo scenarios following the geometric or arithmetic average of
the assets for geometric and arithmetic basket options, respectively. In Fig. 26.2,
we show the convergence in option prices for geometric and arithmetic basket
Bermudan options with different dimensionalities, i.e. d D 5, d D 10 and d D 15.
In the case of the geometric basket option, we can also specify the reference price
obtained by the COS method [4].

26.5.2 Parallel SGBM: Performance Test

With the convergence of the equal-partitioning technique shown numerically, we
now increase drastically the number of bundles and, hence, the number of Monte
Carlo paths, and perform a computational cost experiment, comparing the C and
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Fig. 26.2 Convergence with
equal-partitioning technique.
Configuration: N D 218 and
�t D T=M. (a) Geometric
basket put option. (b)
Arithmetic basket put option

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

V
t 0
(S

t 0
)

5d Reference price
5d Direct estimator
5d Path estimator
10d Reference price
10d Direct estimator
10d Path estimator
15d Reference price
15d Direct estimator
15d Path estimator

(a)

1 4 16
0.9

1

1.1

1.2

1.3

1.4

1.5

Bundles ν

1 4 16

Bundles ν

V
t 0
(S

t 0
)

5d Direct estimator
5d Path estimator
10d Direct estimator
10d Path estimator
15d Direct estimator
15d Path estimator

(b)

CUDA implementations. We now focus on pricing arithmetic basket Bermudan
option since it is a more interesting and involved problem. In the first half of the
Table 26.1, the execution times for the different SGBM stages, i.e. Monte Carlo path
generation (MC), direct estimator computation (DE) and path estimator computation
(PE) are shown. The total computational cost for d D 5, d D 10 and d D 15

problems are presented in the second half of the Table 26.1. In both experiments,
we observe a significant acceleration of the CUDA versions. The impact of the
dimensionality is much less important in the parallel version than in the sequential
version, resulting in an increasing speedup in terms of the problem dimension.
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Table 26.1 Time (s) for the C and CUDA versions

Stages time (d D 5) Total time

MC DE PE d D 5 d D 10 d D 15

C 79:22 39:64 58:65 256:05 600:09 1143:06

CUDA 0:83 4:14 1:20 8:02 11:23 15:73

Speedup 95:44 9:57 48:87 31:93 53:44 72:67

Configuration: N D 222, �t D T=M and � D 210

Table 26.2 Time (s) for a high-dimensional problem

� D 210 � D 214

d D 30 d D 40 d D 50 d D 30 d D 40 d D 50

C 993:96 1723:79 2631:95 992:29 1724:60 2631:43

CUDA 11:14 17:88 26:99 11:20 17:94 27:07

Speedup 89:22 96:41 97:51 88:60 96:13 97:21

Configuration: N D 220 and �t D T=M

This is thank to equal-partitioning bundling technique, since the parallelism can
be efficiently exploited.

26.5.3 High-Dimensional Problems

We now test a high-dimensional option pricing problem. In Table 26.2, the execution
times for pricing arithmetic basket Bermudan put options in different dimensions
and with different numbers of bundles, �, are presented. Note that the number
of bundles hardly influences the execution times and the performance is mainly
dependent on the number of paths and the dimensionality. The obtained speedup
reaches around 100 times for the 50-dimensional problem.

26.6 Conclusions

In this chapter, we have presented an efficient implementation of the Stochastic Grid
Bundling Method on a GPU architecture. Through the GPU parallelism, we could
speed up the execution times when the number of bundles and the dimensionality
increase drastically. In addition, we have proposed a parallel bundling technique
which is more efficient in terms of memory use and more suitable on parallel
systems. These two improvements enable us to extend the method’s applicability
to high-dimensional problems.
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Compared with other GPU parallel implementations of early-exercise option
pricing methods, our parallel SGBM is very competitive in terms of computational
time since we provided a new way to parallelize the backward stage, according to
the bundles, which gave us a remarkable performance improvement.
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Chapter 27
Sparse Grid Combination Technique for Hagan
SABR/LIBOR Market Model

José Germán López-Salas and Carlos Vázquez Cendón

Abstract SABR models have been used to incorporate stochastic volatility to
LIBOR market models (LMM) in order to describe interest rate dynamics and
price interest rate derivatives. From the numerical point of view, the pricing of
derivatives with SABR/LIBOR market models (SABR/LMMs) is mainly carried
out with Monte Carlo simulation. However, this approach could involve excessively
long computational times. In the present chapter we propose an alternative pricing
based on partial differential equations (PDEs). Thus, we pose the PDE formulation
associated to the SABR/LMM proposed by Hagan and Lesniewski (LIBOR market
model with SABR style stochastic volatility. Working paper, available at http://
lesniewski.us/papers/working/SABRLMM.pdf (2008)). As this PDE is high dimen-
sional in space, traditional full grid methods (like standard finite differences or finite
elements) are not able to price derivatives over more than one or two underlying
interest rates and their corresponding stochastic volatilities. In order to overcome
this curse of dimensionality, a sparse grid combination technique is proposed. So
as to assess on the performance of the method a comparison with Monte Carlo is
presented.

27.1 Introduction

The LIBOR market model (LMM) [5, 19, 23] has become the most popular interest
rate model. The main reason is the agreement between this model and Black’s
formulas, which are the standard formulas employed in the market [6]. The standard
LIBOR market model considers constant volatilities for the forward rates, no
volatility smile modeling is taken into account.

Among the different stochastic volatility models offered in the literature, the
SABR model proposed by Hagan et al. [17] in the year 2002 stands out for becoming
the market standard to reproduce the price of European options. The SABR model
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can not be used to price derivatives whose payoff depends on several forward rates.
In fact, SABR model works in the terminal measure, under which both the forward
rate and its volatility are martingales. This can always be done if we work with one
forward rate in isolation at a time. Under this same measure, however, the process
for another forward rate and for its volatility would not be driftless.

In order to allow LMM to fit market volatility smiles, different extensions of the
LMM that incorporate the volatility smile by means of the SABR model were pro-
posed. These models are known as SABR/LIBOR market models (SABR/LMMs).
In this chapter we will deal with the model proposed by Hagan et al. in [16].

While Monte Carlo [12] simulation remains the industry’s tool of choice for
pricing interest rate derivatives within SABR/LMM setting, several difficulties
motivate researchers to address alternative approaches based on partial differential
equation (PDE) formulations. The first issue is that the convergence of Monte Carlo
methods, although it depends only very weakly on the dimension of the problem, is
very slow. The second drawback of Monte Carlo methods is the valuation of options
with early-exercise, like in the case of the American options, due to the so-called
“Monte Carlo on Monte Carlo” effect. However, the modification of the PDE to
a linear complementarity problem is usually straightforward. Finally, the weakest
point of Monte Carlo methods appears to be the computation of the sensitivities of
the solution with respect to the underlyings, the so-called “Greeks”, which are very
used by traders, and are directly given by the partial derivatives of the PDE solution.

In view of previous arguments, in the present chapter we pose the equivalent PDE
formulation for the SABR/LMM proposed by Hagan. From the numerical point of
view, one main difficulty in this PDE formulation lies in its high dimensionality
in space-like variables. In order to cope with this so-called curse of dimensionality
several methods are available in the literature, see [3, 11] for example, which can be
put into three categories. The first group uses the Karhunen-Loeve transformation to
reduce the stochastic differential equation (SDE) to a lower dimensional equation,
therefore this results in a lower dimensional PDE associated to the previously
reduced SDE. The second category gathers those methods which try to reduce
the dimension of the PDE itself, like for example dimension-wise decomposition
algorithms. Finally, the third category groups the methods which reduce the
complexity of the problem in the discretization layer, like for example the method
of sparse grids, which we use in the present chapter.

The sparse grid method was originally developed by Smolyak [29], who used
it for numerical integration. It is mainly based on a hierarchical basis [30, 31], a
representation of a discrete function space which is equivalent to the conventional
nodal basis, and a sparse tensor product construction. Zenger [33] and Bungartz and
Griebel [7] extended this idea and applied sparse grids to solve PDEs with finite
elements, finite volumes and finite differences methods. Besides working directly in
the hierarchical basis, the sparse grid can also be computed using the combination
technique [15] by linearly combining solutions on traditional Cartesian grids with
different mesh widths. This is the approach we follow in this chapter. Recently,
this technique has been used for a financial application related to the pricing of
basket options in [18]. Also in our previous work [21] we have posed the analogous
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PDE formulation for the SABR/LMM proposed by Mercurio and Morini [22].
Moreover, we have used the same numerical methodology based on the sparse grids
combination technique to solve the resulting high dimensional PDE problem.

The chapter is organized as follows. In Sect. 27.2 we pose the PDE formulation
for the Hagan SABR/LMM. In Sect. 27.3 we describe the use of a full grid finite
differences scheme for the Hagan model. Numerical results show the limitations
of the full grid method when the number of forward rates increases. Therefore, in
Sect. 27.4 we describe the sparse grid combination technique applied to the Hagan
SABR/LMM and show numerical results that illustrate the behaviour of the method
when the number of forward rates increases. For this purpose, a comparison with
Monte Carlo simulation results is used.

27.2 The Hagan SABR/LMM PDE

We first consider a set of N � 1 LIBOR forward rates Fi, 1 � i � N � 1,
F D .F1; : : : ;FN�1/ on the tenor structure ŒT0;T1; : : : ;TN�1;TN 
, the accruals being
�i D TiC1 � Ti. Hagan SABR/LMM is defined by the following system of SDEs
[16]:

dFi.t/ D 	Fi.t/Fi.t/
ˇi dt C ˛iVi.t/Fi.t/

ˇi dWQ
i .t/; Fi.0/ given;

dVi.t/ D 	Vi.t/Vi.t/dt C �iVi.t/dZQ
i .t/; Vi.0/ D 1; (27.1)

which are posed on a probability space f˝;F ;Qg with filtration fFtg, t 2 ŒT0;TN 
.
On one hand, 	Fi is the drift of the i-th forward rate, ˇi 2 Œ0; 1
 is the variance
elasticity coefficient, WQ

i is a standard Brownian motion under the risk neutral
measure Q, and � is the correlation matrix between the forward rates, i.e.

< dWQ
i .t/; dWQ

j .t/ >D �ijdt; 8i; j 2 f1; : : : ;N � 1g:

On the other hand, Vi is the stochastic volatility of the forward rate Fi, 	Vi is the
drift of the i-th stochastic volatility, ˛i is a deterministic (constant) instantaneous
volatility coefficient used to embed in the model any initial value of the volatility
process Vi, ZQ

i is a standard Brownian motion, and � is the correlation matrix
between the stochastic volatilities, i.e.

< dZQ
i .t/; dZQ

j .t/ >D �ijdt; 8i; j 2 f1; : : : ;N � 1g:

Besides, the Brownian motions driving the forward rates are correlated with those
ones driving the stochastic volatilities, � will denote the correlation matrix between
the forward rates and their stochastic volatilities, i.e.

< dWQ
i .t/; dZQ

j .t/ >D �ijdt; 8i; j 2 f1; : : : ;N � 1g:
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Thus, the correlation structure is given by the block-matrix

P D
�
� �

�> �

�
;

which is assumed to be positive definite.
The drifts of the forward rates and their stochastic volatilities are determined

by the chosen numeraire. Under the terminal probability measure associated with
choosing the bond P.t;TN/ as numeraire, the drifts of the forwards rates are given by

	Fi.t/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�˛iVi.t/
N�1X

jDiC1

�jFj.t/ˇj

1C �jFj.t/
�ij˛jVj.t/ if j < N � 1;

0 if j D N � 1;

while the drifts of the stochastic volatilities are given by

	Vi.t/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

��i

N�1X

jDiC1

�jFj.t/ˇj

1C �jFj.t/
�ij˛jVj.t/ if j < N � 1;

0 if j D N � 1:

Our model for the correlation structure is taken from Rebonato [26], who
suggests the following functional parameterization:

�ij D expŒ��1jTi � Tjj
; (27.2)

�ij D expŒ��2jTi � Tjj
; (27.3)

�ij D sign.�ii/

q
j�ii�jjjexpŒ��3.Ti � Tj/

C � �3.Tj � Ti/
C
: (27.4)

So far we have introduced Hagan SABR/LMM. Now suppose we need to price
an interest rate product u.t;F;V/ whose payoff at expiry TN is a function of forward
rates from F1 to FN�1, and also of their stochastic volatilities V D .V1; : : : ;VN�1/.
If G is the payoff of the option, then the arbitrage-free value of the option relative to
a numeraire N is given by

u.t;F.t/;V.t// D EQ

 
G.T;F.T/;V.T//

N .T/

ˇ
ˇ
ˇ
ˇ̌ Ft

!

: (27.5)
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Thus, the value u of the option satisfies the PDE

@u

@t
C 1

2

N�1X

i;jD1
�ij�iVi�jVj

@2u

@Vi@Vj
C 1

2

N�1X

i;jD1
�ij˛iViF

ˇi
i ˛jVjF

ˇj

j

@2u

@Fi@Fj
C

N�1X

i;jD1
�ij˛iViF

ˇi
i �jVj

@2u

@Fi@Vj
C

N�1X

iD1
	Fi.t/Fˇi

i

@u

@Fi
C

N�1X

iD1
	Vi.t/Vi

@u

@Vi
D 0;

(27.6)

with the terminal condition given by the derivative payoff,

u.T;F;V/ D g.T;F;V/;

on Œ0;T
 � R
N�1 � R

N�1. For simplicity of notation, we have used the relative

payoff g.�/ D G.�/
N .T/

. This PDE was be derived by applying multi-dimensional

Itô’s Lemma to u, see [28] for details.
Hereafter, for sake of brevity in the notation, let us consider the following

operator:

L Œu
 D@u

@t
C 1

2

N�1X

i;jD1
�ij�iVi�jVj

@2u

@Vi@Vj
C 1

2

N�1X

i;jD1
�ij˛iViF

ˇi
i ˛jVjF

ˇj

j

@2u

@Fi@Fj
C

N�1X

i;jD1
�ij˛iViF

ˇi
i �jVj

@2u

@Fi@Vj
C

N�1X

iD1
	Fi.t/Fˇi

i

@u

@Fi
C

N�1X

iD1
	Vi.t/Vi

@u

@Vi
;

where u is a function defined on the domain Œ0;T
 � R
N�1 � R

N�1.

27.3 Finite Differences Method with Full Grids

In this section we introduce a full grid finite differences method to solve the
problem (27.6). Domain truncation and boundary conditions are proposed. Notice
that while the choice of the range of the time variable is totally unambiguous, Œ0;T
,
an a priori choice must be made about which values of the space variables are too
high or too low to be of interest, so far we will denote them by ŒFmin

i ;Fmax
i 
 and

ŒVmin
i ;Vmax

i 
. Selecting boundary values such that the option of interest is too deeply
in or out-of-the money is a common and reasonable choice.

We are going to define a .2N �1/-dimensional mesh with the time sampled from
today (time 0) to the final expiry of the option (time T) at M C 1 points uniformly

spaced by the time step �t D T

M
.
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The variables representing the forward rates F D .F1; : : : ;FN�1/ and their
stochastic volatilities V D .V1; : : : ;VN�1/, often referred as the “space variables”,
will be sampled at Ri C 1 and Si C 1 points, i D 1; : : : ;N � 1, spaced by

hi D Fmax
i � Fmin

i

Ri
and Ohi D Vmax

i � Vmin
i

Si
, respectively.

For a given mesh, each point is uniquely determined by the time level m (m D
0; : : : ;M), the index vectors of the N � 1 forward rates f D . f1; : : : ; fi; : : :, fN�1/
and stochastic volatilities v D .v1; : : : ; vi; : : : ; vN�1/, where fi D 0; : : : ;Ri and
vi D 0; : : : ; Si. We seek approximations of the solution at these mesh points, which
will be denoted by

Um
f;v � u.m�t; . fihi/1�i�N�1; .vi Ohi/1�i�N�1/:

It is natural for this PDE to be solved backwards in time. We approximate the
time derivative by the time-forward approximation

@u

@t

ˇ
ˇ̌
ˇ
ˇ
tDm�t;FD. fihi/1�i�N�1;VD.vi Ohi/1�i�N�1

D @u

@t

ˇ
ˇ̌
ˇ
ˇ
m;f;v

� UmC1
f;v � Um

f;v

�t
:

For the space derivatives we have chosen second-order approximations. We will
write fi˙1 to mean the forward rates index vector . f1; : : : ; fi ˙ 1; : : : ; fN�1/ which
corresponds to the forward rates point . f1h1; : : : ; . fi ˙ 1/hi; : : : ; fN�1hN�1/. The
same notation will be used in the case of the stochastic volatilities index vector.
The first derivatives are approximated by central differences:

•
@u

@Fi

ˇ
ˇ
ˇ
ˇ̌
m;f;v

�
Um

fiC1;v
� Um

fi�1;v

2hi
;

•
@u

@Vi

ˇ
ˇ
ˇ
ˇ
ˇ
m;f;v

�
Um

f;viC1
� Um

f;vi�1

2Ohi

:

The second derivatives are approximated by:

•
@2u

@F2i

ˇ
ˇ
ˇ̌
ˇ
m;f;v

�
Um

fiC1;v
� 2Um

f;v C Um
fi�1;v

h2i
;

•
@2u

@V2
i

ˇ
ˇ
ˇ
ˇ̌
m;f;v

�
Um

f;viC1
� 2Um

f;v C Um
f;vi�1

Oh2i
:

The cross derivatives terms are approximated by:

• For i ¤ j,
@2u

@Fi@Fj

ˇ
ˇ̌
ˇ
ˇ
m;f;v

�
Um

fiC1;jC1;v
C Um

fi�1;j�1;v
� Um

fiC1;j�1;v
� Um

fi�1;jC1;v

4hihj
;
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• For i ¤ j,
@2u

@Vi@Vj

ˇ
ˇ
ˇ̌
ˇ
m;f;v

�
Um

f;viC1;jC1
C Um

f;vi�1;j�1
� Um

f;viC1;j�1
� Um

f;vi�1;jC1

4Ohi Ohj

,

•
@2u

@Fi@Vj

ˇ
ˇ
ˇ
ˇ̌
m;f;v

�
Um

fiC1;vjC1
C Um

fi�1;vj�1
� Um

fiC1;vj�1
� Um

fi�1;vjC1

4hi Ohj

:

The finite differences solution under the so-called �-scheme satisfies

UmC1
f;v � Um

f;v

�t
C �Wm

f;v C .1 � �/WmC1
f;v D 0;

where � 2 Œ0; 1
 and Wm
f;v is the discretization given by

Wm
f;v D1

2

N�1X

i;jD1
i¤j

�ij�iVi�jVj

Um
f;viC1;jC1

C Um
f;vi�1;j�1

� Um
f;viC1;j�1

� Um
f;vi�1;jC1

4Ohi Ohj

C

1

2

N�1X

iD1
�2i V2

i

Um
f;viC1

� 2Um
f;v C Um

f;vi�1

Oh2i
C

1

2

N�1X

i;jD1
i¤j

�ij˛iViF
ˇi
i ˛jVjF

ˇj

j

Um
fiC1;jC1;v

C Um
fi�1;j�1;v

� Um
fiC1;j�1;v

� Um
fi�1;jC1;v

4hihj
C

1

2

N�1X

iD1
˛2i V2

i F2ˇi
i

Um
fiC1;v

� 2Um
f;v � Um

fi�1;v

h2i
C

N�1X

i;jD1
�ij˛iViF

ˇi
i �jVj

Um
fiC1;vjC1

C Um
fi�1;vj�1

� Um
fiC1;vj�1

� Um
fi�1;vjC1

4hi Ohj

C

N�1X

iD1
	Fi.m�t/Fˇi

i

Um
fiC1;v

� Um
fi�1;v

2hi
C

N�1X

iD1
	Vi.m�t/Vi

Um
f;viC1

� Um
f;vi�1

2Ohi

; (27.7)

and with terminal condition UM
f;v D g.T;F;V/.

Three different � values represent three canonical discretization schemes, � D 0

is the explicit scheme, � D 1 the fully implicit scheme and � D 0:5 the
Crank-Nicolson scheme. The fully implicit discretization is the best method with
respect to stability, whereas the Crank-Nicolson time-stepping provides the best
convergence rate. Although the explicit method is the simplest to implement, it has
the disadvantage of being conditionally stable.
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We shall first discriminate explicit and implicit parts as follows:

Um
f;v

�t
� �Wm

f;v D UmC1
f;v

�t
C .1 � �/WmC1

f;v : (27.8)

As a result of such discretization we arrive to the linear system of equations
Ax D b, where A is the band matrix of known coefficients, x is the vector of the
unknown solutions Um

f;v and b is the vector of known values corresponding to
the right-hand side of (27.8).

Equation (27.8) can be rewritten as:

�

N�1X

iD1
.Obi � Ori/U

m
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C �

N�1X
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.bi C ri/U

m
fiC1;v

C

�
X

ij2P

aij
�
Um

fiC1;vjC1
C Um
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�1C 2 O�
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iD1
.Obi C bi/

!

UmC1
f;v ; (27.9)
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where O� D .1 � �/, P is the set containing the permutations of the numbers
1; 2; : : : ;N � 1 taken two at a time with repetition (the number of elements in P
is .N �1/2), C is the set containing the combinations of the numbers 1; 2; : : : ;N �1
taken two at a time without repetition (the number of elements in C is

�N�1
2

� D
2�1.N � 1/.N � 2/) and the known coefficients Obi, bi, Ori, ri, O ij,  ij and aij are
defined as

Obi D �t�2i V2
i

2Oh2i
; bi D �t˛2i V2

i F2ˇi
i

2h2i
;

Ori D �t	Vi .t/Vi

2Ohi

; ri D �t	Fi.t/Fˇi
i

2hi
;

O ij D �t�ij�iVi�jVj

4Ohi Ohj

;  ij D �t�ij˛iViF
ˇi
i ˛jVjF

ˇj

j

4hihj
;

aij D �t�ij˛iViF
ˇi
i �jVj

4hi Ohj

;

where we have denoted F D .Fi D fihi/1�i�N�1 and V D .Vi D vi Ohi/1�i�N�1.

27.3.1 Boundary Conditions

In order to specify boundary conditions, a combination of mathematical, financial
and heuristic reasoning allows us to find consistent and acceptable ones. There are
several possibilities, see [8] for example.

We assume that forward rates and their stochastic volatilities are non negative
and hence take values in the range zero to infinity. We first truncate the unbounded
interval to a bounded one and then we must specify conditions at the new boundary.
Thus we will consider the truncated domain ŒFmin

i ;Fmax
i 
 � ŒVmin

i ;Vmax
i 
, with

Fmin
i D 0 and Vmin

i D 0.
For the forward rates we consider Dirichlet boundary conditions. Particularly, the

terminal condition holds on the forward rates boundaries, i.e.

Um
ffj9fiD0g;v D UM

f;v; 8m D 0; : : : ;M � 1;

Um
ffj9fiDRig;v D UM

f;v; 8m D 0; : : : ;M � 1:

At the stochastic volatility boundaries we consider the following conditions:

L Œu
 D 0; Vk D 0; (27.10)

@u

@Vk
D 0; Vk D Vmax: (27.11)
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Thus, when Vk D 0we require that the PDE itself must be satisfied on this boundary.
When Vk approaches to infinity, the price of the derivative becomes independent of
Vk. This is reflected by using Neumann conditions instead of the Dirichlet ones used
for the forward rates boundaries.

For the boundary Vk D Vmax in order to maintain the second order accuracy in
the discretization of the first derivative the ghost point method is considered. Let
us consider the volatility index vector s D .v1; v2; : : : ; Sk; : : : ; vN�1/. The ghost
grid points Uf;skC1

are added. Then, the finite differences scheme of Eq. (27.9) can
also be applied at the boundary points Uf;s. However, we now have more unknowns
than equations. The additional equations come from the central finite differences
discretization of the Neumann boundary condition (27.11):

Uf;skC1
� Uf;sk�1

2Ohk

D 0;

which yields Uf;skC1
D Uf;sk�1 . Inserting this into the finite differences equation at

Vk D Vmax we achieve
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27.3.2 Numerical Results

It is not clear where to place Fmax
i and Vmax

i . On one hand, it is advantageous to place
them far away of the initial forward rates. This reduces the error of the artificial
boundary conditions. On the other hand a large computational domain requires
a large discretization width. This increases the error of the approximation of the
derivatives. In our experiments we will consider Fmax

i D 0:1 and Vmax
i D 2:0, which

corresponds to interest rates of 10% and volatilities of 200%.
We are going to value T˛ � .Tˇ � T˛/ European swaptions, meaning that the

swaption has maturity at time T˛ and the length of the underlying swap is .Tˇ � T˛/
(also known as the tenor of the swaption).

Some specifications of the financial product are given in Table 27.1 and the
employed market data, taken from [4], are shown in Table 27.2. We will consider
�1 D �2 D �3 D 0:1 in the model for the correlation structure (27.2)–
(27.4). Besides, the Crank-Nicolson scheme will be used in (27.8). For solving the
system (27.9) the Gauss-Seidel iterative solver has been employed using a tolerance
of 10�6.

The numerical experiments have been performed with the following hardware
and software configurations: two recent multi-core Intel Xeon CPUs E5-2620 v2
clocked at 2.10 GHz (6 cores per socket) with 62 GBytes of RAM, CentOS Linux,
GNU C++ compiler 4.8.2.

First of all, the results from pricing a 1�1 European swaption are discussed. The
value # of this swaption is the same as the price of the corresponding caplet, and so

Table 27.1 Specification of
the interest rate model

Currency EUR

Index EURIBOR

Day count e30/360

Strike 5:5%
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Table 27.2 Market data used in pricing

Start date End date LIBOR rate (%) Volatility (%)

T0 29-07-04 29-07-05 2.423306 0

T1 29-07-05 29-07-06 3.281384 24.73

T2 29-07-06 29-07-07 3.931690 22.45

T3 29-07-07 29-07-08 4.364818 19.36

T4 29-07-08 29-07-09 4.680236 17.43

T5 29-07-09 29-07-10 4.933085 16.15

T6 29-07-10 29-07-11 5.135066 15.02

T7 29-07-11 29-07-12 5.273314 14.24

T8 29-07-12 29-07-13 5.376115 13.42

Data taken from 27th July 2004

depends only on F1. Hence, in one dimension a closed form expression for the price
of a European swaption can be found by using Black’s formula [6]:

# D P.T0;T2/�1Bl.K;F.T1;T2I T0/; �1/;

where

Bl.K;F; �/ D Fˆ
�
d1.K;F; �/

�� Kˆ
�
d2.K;F; �/

�
;

d1.K;F; �/ D ln.F=K/C �2=2

�
;

d2.K;F; �/ D ln.F=K/� �2=2
�

;

�i D �Black

p
Ti;

where P.T0;T2/ is the price at time T0 of a bond with maturity T2 and �Black is
the constant volatility of the forward rate. This value is equal to 0:659096 basis

points (one basis point is one hundredth of one percent,
1%

100
D 1

10000
). As Black-

Scholes formula for caplets considers constant volatility �Black, in this first test the
volatility of the volatility parameter of Hagan model is considered equal to zero, i.e.,
�1 D 0, therefore a standard LIBOR market model is used. The solution was found
on several levels and Table 27.3 shows the convergence of the model. In all tables of
this chapter, Level refers to the refinement level n, i.e., the mesh size is hi D 2�n � ci

in each coordinate direction, where ci denotes the computational domain length in
direction i, which is Fmax

i in the case of the forward rates and Vmax
i in the case of

their stochastic volatilities. Besides, the solution and the error with respect to the
exact solution are also shown in basis points. Additionally, the execution time is
measured in seconds and the column labelled as Grid points shows the number of
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Table 27.3 Convergence of the full grid finite differences solution in basis points in the pricing of
a 1� 1 swaption, �1 D 0, V1.0/ D 1, ˇ1 D 1, 128 time steps

Level Solution Error Time Grid points

3 2:078086 1:418989 0:0024 81

4 1:108211 0:449114 0:0094 289

5 0:779033 0:119936 0:07 1089

6 0:672004 0:012907 0:53 4225

7 0:665176 0:006079 6:34 16;641

8 0:661164 0:002067 84:12 66;049

9 0:659380 0:000283 1122:86 263;169

10 0:659032 0:000064 14;288:34 1;050;625

Exact solution, 0:659096 basis points

grid points employed in the full grid used by the finite differences method without
taking into account the time coordinate.

When the volatilities of the volatilities �i, 1 � i < N, of the model are non
zero or when the length of the underlying swap of the swaption being considered is
greater than one, no closed form solutions are available. However, an estimate can
be obtained from Monte Carlo simulations. On Table 27.4 Monte Carlo values for
the 1 � 1 European swaption with �1 D 0 are shown for several numbers of paths
(#Paths). More details about Monte Carlo simulation of SABR/LMMs can be found
in the article [9].

In Table 27.5 the pricing of the 1 � 1 European swaption with �1 D 0:3 for
different resolution levels n are shown. In Table 27.6 the results for the 1�2 swaption
are given. Note that with this numerical method it was not feasible to price the
swaption past refinement level n D 6 due to the huge number of required grid
points.

Theoretically, it is possible to solve the discrete system (27.9) for a general
number of dimensions. However, in computational science, a major problem occurs
when the number of dimensions increases. A natural way to reduce the discretization
error is to decrease the mesh step in each coordinate direction. However, then
the number of grid points in the resulting full grid grows exponentially with the
dimension, i.e. the size of the discrete solution increases drastically. This is called
the curse of dimensionality [2]. Therefore, this procedure of improving the accuracy
by decreasing the mesh step is mainly bounded by two factors, the storage and the
computational complexity. Due to these limitations, using a full grid discretization
method which achieves sufficiently accurate approximations is only possible for
problems with up to three or four dimensions, even on the most powerful machines
presently available [7].
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Table 27.4 Convergence of
the Monte Carlo solution in
basis points in the pricing of a
1� 1 swaption, �1 D 0,
V1.0/ D 1, ˇ1 D 1, 128 time
steps

#Paths Solution

105 0.616799

107 0.658598

109 0.659506

Exact solution, 0:659096
basis points

Table 27.5 Convergence of
the full grid finite differences
solution in basis points in the
pricing of a 1� 1 swaption,
�1 D 0:3, �11 D 0:4,
V1.0/ D 1, ˇ1 D 1, 128 time
steps

Level Solution Time Grid points

3 6:254822 0:0039 81

4 2:501988 0:0122 289

5 1:991646 0:07 1089

6 1:597470 0:62 4225

7 1:526047 7:48 16;641

8 1:519841 98:45 66;049

9 1:519742 1291:76 263;169

10 1:519732 16;238:98 1;050;625

Monte Carlo value using 107 paths, 1:657662 basis
points

Table 27.6 Convergence of
the full grid finite differences
solution in basis points in the
pricing of a 1� 2 swaption,
�i D 0:3, �ii D 0:4,
Vi.0/ D 1, ˇi D 1, 128 time
steps

Level Solution Time Grid points

3 5:289644 1:03 6561

4 5:134938 33:84 83;521

5 5:023293 1258:56 1;185;921

6 4:997679 60;396:44 17;850;625

Monte Carlo value using 107 paths, 4:564905
basis points

27.4 Sparse Grids and the Combination Technique

Two approaches to try to overcome the curse of dimensionality are increasing the
order of accuracy of the applied numerical approximation scheme or reducing the
dimension of the problem by choosing suitable coordinates. Both approaches are
not always possible for every option pricing problem. In this chapter we will take
advantage of the sparse grid combination technique first introduced by Zenger and
co-workers [15] in order to try to overcome the curse of dimensionality and allow
to use the PDE formulation of SABR/LMM for the pricing problem we are dealing
with. The combination technique replicates the structure of a so-called sparse grid
by linearly combining solutions on coarser grids of the same dimensionality. This
technique reduces the computational effort and the storage space involved with
the mentioned traditional finite differences discretization methods. The number
of sub-problems to solve increases, while the computational time per problem
decreases drastically. This method can be implemented in parallel as each sub-grid is
independent of the others. In the next two subsections we give a brief introduction
to sparse grids and the combination technique. For a detailed discussion we refer
to [7].
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27.4.1 Sparse Grids

First, we introduce some notations and definitions. Let l D .l1; l2; : : : ; ld/ 2 Nd
0

denote a d-dimensional multi-index. Let jlj1 and jlj1 denote the discrete L1�norm
and L1�norm of the multi-index l, respectively, that are defined as

jlj1 D
dX

kD1
lk and jlj1 D max

1�k�d
lk:

We define the anisotropic grid ˝l with mesh size h D .h1; h2; : : : ; hd/ D .2�l1c1,
2�l2c2; : : : ; 2�ld cd/ with multi-index l and grid length c D .c1; c2; : : : ; cd/.

Then, the full grid at refinement level n 2 N and mesh size hi D 2�n � ci for all i
can be defined via the sequence of subgrids

˝n D ˝.n;:::;n/ D
[

jlj1�n

˝l:

Figure 27.1 visualizes two dimensional full grids for levels n D 0; : : : ; 4.
The number of grid points in each coordinate direction of the full grid is 2n C 1

and therefore the number of grid nodes in the full grid increases with O.2n�d/, i.e.
grows exponentially with the dimensionality d of the problem.

The sparse grid ˝n
s at refinement level n consists of all anisotropic Cartesian

grids˝l, where the total sum of all refinement factors lk in each coordinate direction
equals the resolution n. Then, the sparse grid ˝n

s is given by

˝n
s D

[

jlj1�n

˝l D
[

jlj1Dn

˝l:

Figure 27.2 shows the two-dimensional grid hierarchy for levels n D 0; : : : ; 4.

Fig. 27.1 Two-dimensional full grid hierarchy up to level n D 4
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Fig. 27.2 Two-dimensional sparse grid hierarchy up to level n D 4
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The total number of nodes in the grid ˝l is
dY

kD1
.2lk C 1/ D O.2jlj1 / D O.2n/. In

addition, there exist exactly
�nCd�1

d�1
�

grids˝l with jlj1 D n,

 
n C d � 1

d � 1

!

D .n C d � 1/Š

.d � 1/ŠnŠ
D .n C d � 1/ � : : : � .n C 1/nŠ

.d � 1/ŠnŠ

D n C .d � 1/

d � 1
� n C .d � 2/

d � 2 � : : : � n C .d � .d � 1//

d � .d � 1/

D


1C n

d � 1
�

�


1C n

d � 2
�

� : : : �


1C n

2

�
�


1C n

1

�

� .1C n/d�1 D O.nd�1/:

Thus, the total number of grid points of the sparse grid˝n
s grows according to

 
n C d � 1

d � 1

!

�
dY

kD1
.2lk C 1/ D O.nd�1/O.2n/ D O.nd�12n/; (27.12)

which is far less the size of the corresponding full grid with O.2nd/ grid points.
Let hn D 2�n, therefore the sparse grid employs O.h�1

n � log2.h
�1
n /d�1/ grid points

compared to O.h�d
n / nodes in the full grid.

Bungartz and Griebel [7] show that the accuracy of the sparse grid using O.h�1
n �

log2.h
�1
n /d�1/ nodes is of order O.h2n log2.h

�1
n /d�1// in the case of finite elements

discretization and under certain smoothness conditions. Thus, the accuracy of the
sparse grid is only slightly deteriorated from the accuracy O.h2n/ of conventional
full grid methods which need O.h�d

n / grid points. Therefore, sparse grids need much
less points than regular full grids to achieve a similar approximation quality.

However, the structure of a sparse grid is more complicated than the one of a
full grid. Common PDE solvers usually manage only full grid solutions. Existing
sparse grid methods working directly in the hierarchical basis involve a challenging
implementation [1, 32]. This handicap can be circumvented with the help of the
sparse grid combination technique which not only exploits the economical structure
of the sparse grids but also allows for the use of traditional full grid PDE solvers.

Finally, two and three dimensional sparse grids for several resolution levels n
are shown in Figs. 27.3 and 27.4, respectively. Additionally, the growth of the grid
points when increasing n can be observed.
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Fig. 27.3 Two dimensional sparse grids for levels n D 5; : : : ; 10. (a) ˝5
s , 177 grid points.

(b) ˝6
s , 385 grid points. (c) ˝7

s , 833 grid points. (d) ˝8
s , 1793 grid points. (e) ˝9

s , 3841 grid
points. (f) ˝10

s , 8193 grid points

Fig. 27.4 Three dimensional sparse grids for levels n D 5; 6; 7 and 8. (a) ˝5
s , 705 grid points.

(b) ˝6
s , 1649 grid points. (c) ˝7

s , 3809 grid points. (d) ˝8
s , 8705 grid points
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27.4.2 Combination Technique

Similar to the Richardson extrapolation [27], the so-called combination technique
linearly combines the numerical solution on the sequence of anisotropic grids ˝l

where

jlj1 D n � q; q D 0; : : : ; d � 1:

The combination technique reads

Un
s D

d�1X

qD0
.�1/q �

 
d � 1

q

!

�
X

jlj1Dn�q

Ul; lk � 0; 8k D 1; : : : ; d; (27.13)

where Ul denotes the numerical solution on the grid ˝l and Un
s the combined

solution on the sparse grid ˝n
s .

The grids employed by the combination technique of level n D 4 in two
dimensions are shown in Fig. 27.5.

The idea of this technique is that the leading order errors from the discretization
on each grid cancel each other out in the combination solution.

The number of grid points involved in the approximation of Un
s grows according

to O.nd�1 � 2n/. In fact, from the formula (27.12) we have to solve
�nCd�1

d�1
�

problems
with O.2n/ unknowns,

�nCd�2
d�1

�
problems with O.2n�1/ unknowns, . . . and

� n
d�1
�

problems with O.2n�.d�1// unknowns. This results in a total number of O.nd�1 � 2n/

grid points which is much less than the O.2n�d/ grid nodes used by traditional full
grid methods. Thus, the efficient use of sparse grids greatly reduces the computing
time and the storage requirements which allows for the treatment of problems with
ten variables and even more [7].

We have seen that the combination technique linearly combines the numerical
solution on several traditional full grids. The solution can be calculated on each of
these grids by using any existing PDE numerical method like finite differences, finite
volume or finite elements. In addition, since all these sub-problems are independent
the combination technique can be parallelized [13].

The combination technique approach presumes the existence of a so-called error
splitting. It requires for an associated numerical approximation method on the full
grid˝l an error splitting of the form

u.x/� Ul.x/ D
dX

kD1

X

f j1;:::;jkg
	f1;:::;dg

Cj1;:::;jk .x; hj1 ; : : : ; hjk / � hp
j1

� : : : � hp
jk
; (27.14)

at each grid point x 2 ˝l. Here u denotes the exact solution of the PDE
under consideration, Ul the numerical solution on the grid ˝l, p > 0 is the
order of accuracy of the numerical approximation method with respect to each
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Fig. 27.5 Combination
technique with level n D 4 in
two dimensions

coordinate direction and the coefficient functions Cj1;:::;jk of x and the mesh sizes hjk ,
k D 1; : : : ; d are required to be bounded by a positive constant K such that

jCj1;:::;jk .x; hj1 ; : : : ; hjk/j � K; 8k; 1 � k � d; 8f j1; : : : ; jmg � f1; : : : ; dg:

In [14] Griebel and Thurner showed that if the solution of the PDE is sufficiently
smooth, the pointwise accuracy of the sparse grid combination technique is O.nd�1 �
2�n�p/ D O.Œlog2 h�1

n 
d�1hp
n/, which is only slightly worse than O.2�n�p/ D O.hp

n/

obtained by the full grid solution.
The solution at points which do not belong to the sparse grid can be computed

through interpolation. The applied interpolation method should provide at least the
same order of accuracy of the numerical discretization scheme used to solve the
PDE. Otherwise, the accuracy of the numerical scheme will be deteriorated.
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27.4.3 Numerical Results

Taking advantage of the previously described sparse grid combination technique, in
this section we are pricing the same interest rate derivatives that have been valued
in the former Sect. 27.3.2 where traditional full grid finite differences methods
were considered. In addition to those products, we are going to price interest rate
derivatives with up to four underlying LIBOR rates and their stochastic volatilities,
showing that the sparse grid combination technique is able to cope with the curse
of dimensionality up to a certain extent. As in the previous Sect. 27.3.2, we will use
Crank-Nicolson scheme, we will consider the Gauss-Seidel iterative solver and the
same boundary conditions as in Sect. 27.3.1. In the present case, we are interested
in the evaluation of the solution at a single point which corresponds with the value
of the forward rates at time zero (see Table 27.2) and Vi.0/ D 1. The numerical
solution on each grid handled by the combination technique is interpolated at this
point using multilinear interpolation and then added up with the appropriate weights.

The sparse grid combination technique has been implemented to run on multi-
core CPUs. The program was optimized and parallelized using OpenMP [25]. CPU
times, measured in seconds, correspond to executions using 24 threads, so as to
take advantage of Intel Hyperthreading. The speedups of the parallel version with
respect to the pure sequential code are around 16. To the best of our knowledge,
graphic processor units (GPUs) are not well-suited to parallelize the combination
technique, due to the fact that the different grids employed by the combination
technique involve memory accesses patterns totally different, therefore, it is not
possible to access the device memory in a coalesced way [24], thus GPU global
memory can not serve threads in parallel. In this scenario, the GPU code will be ill
performing. In the work [10] the authors take advantage of GPUs to parallelize the
solver of each full grid considered by the combination technique. However, they do
not parallelize the combination technique itself.

In Table 27.7 a 1 � 1 European swaption is priced. The exact price of this
derivative is 0:659096 basis points, as discussed in Sect. 27.3.2. These results are to
be compared with those of Table 27.3, where it can be seen how the computational

Table 27.7 Convergence of
the sparse grid finite
differences solution in basis
points in the pricing of a 1� 1
swaption, �1 D 0, V1.0/ D 1,
ˇ1 D 1, 128 time steps

Level Solution Error Time Grid points

3 6:715346 6:056250 0:04 37

4 2:182057 1:522961 0:05 81

5 1:097761 0:438665 0:05 177

6 0:782767 0:123671 0:05 385

7 0:663808 0:004712 0:06 833

8 0:657536 0:001560 0:11 1793

9 0:658183 0:000913 0:46 3841

10 0:659363 0:000267 2:32 8193

Exact solution, 0:659096 basis points
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Table 27.8 Convergence of
the sparse grid finite
differences solution in basis
points in the pricing of a
1� 1 swaption, �1 D 0:3,
�11 D 0:4, V1.0/ D 1,
ˇ1 D 1, 128 time steps

Level Solution Time

3 6:818116 0:05

4 2:694770 0:05

5 1:919198 0:05

6 1:596501 0:08

7 1:499332 0:12

8 1:505709 0:14

9 1:515855 0:64

10 1:521027 2:83

Monte Carlo value using 107

paths, 1:657662 basis points

Table 27.9 Convergence of
the sparse grid finite
differences solution in basis
points in the pricing of a
1� 2 swaption, �i D 0:3,
�ii D 0:4, Vi.0/ D 1, ˇi D 1,
128 time steps

Level Solution Time

7 5:260049 0:21

8 4:951410 0:47

9 4:651916 1:45

10 4:424338 4:10

11 4:463664 17:04

12 4:515542 81:04

13 4:537787 472:07

Monte Carlo value using 107

paths, 4:564905 basis points

Table 27.10 Convergence of
the sparse grid finite
differences solution in basis
points in the pricing of a
1� 3 swaption, �i D 0:3,
�ii D 0:4, Vi.0/ D 1, ˇi D 1,
128 time steps

Level Solution Time

11 9:177020 151:26

12 8:461583 431:29

13 7:455562 1219:71

14 7:442483 3849:56

Monte Carlo value using 107

paths, 7:648443 basis points

times and the grid points employed by the sparse grid combination technique have
been substantially reduced.

Next, in Table 27.8 a 1 � 1 European swaption is priced considering stochastic
volatility. These results are to be compared with those of Table 27.5.

In the following Table 27.9, the pricing of a 1 � 2 European swaption taking
into account stochastic volatilities is shown, as in the Table 27.6. For the higher
resolution levels, the full grid method became very slow, while the sparse grid
combination technique results much faster. Note that the combination technique is
able to price successfully the 1 � 2 European swaption, this was not attainable in
Table 27.6.

Finally, in Tables 27.10 and 27.11, 1�3 and 1�4 European swaptions are priced,
respectively, taking into account stochastic volatilities. The pricing of these interest
rate derivatives was not viable with the full grid approach of Sect. 27.3. In order
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Table 27.11 Convergence of the sparse grid finite differences solution in basis points in the pricing
of a 1� 4 swaption, �i D 0:3, �ii D 0:4, Vi.0/ D 1, ˇi D 1, 8 time steps

Level Solution Time

15 11:316526 16;595:66

16 11:564127 53;184:37

Monte Carlo value using 107 paths, 11:674706 basis points

to be able to price derivatives over more than 4 LIBORs and their corresponding
stochastic volatilities, the combination technique method should be parallelized
to run on a cluster of processors. In [11, Chap. 13] Schröder et al. discuss the
parallelization of the combination technique using MPI (Message Passing Interface)
API. In [20] the authors parallelize the sparse grid combination technique taking
advantage of a MapReduce framework, algorithms that are inherently fault tolerant.
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Chapter 28
Stochastic Filtering Methods in Electronic
Trading

Paul Bilokon, James Gwinnutt, and Daniel Jones

Abstract Stochastic filtering methods have found many applications, from Space
Shuttles to self-driving cars. In this chapter we shall review some classical and
modern filtering algorithms and show how they can be used in finance, especially
electronic trading, to estimate and forecast econometric models, stochastic volatility
and term structure of risky bonds. We shall discuss the practicalities, such as outlier
filtering, parameter estimation, and diagnostics.

28.1 Introduction

In this chapter we shall present the foundations of stochastic filtering from the
standpoint of an electronic trading practitioner. We shall not dwell here on the
numerous mathematical technicalities and nuances of the subject; these the reader
will find elsewhere in the literature, including the selection of texts mentioned in
the final section. This selection is, of necessity, incomplete. We do not aim here
to present novel research. Instead, we shall refer the reader to examples from a
small selection of papers by academics and practitioners as well as tried and tested
examples from our own experience as practitioners, omitting many technical details
for ease of exposition. All the models discussed in this chapter are implemented in
the open-source Python package BayesTSA, which is available at

https://github.com/thalesians/bayestsa

The totally ordered set T will represent the time. Let .˝;F ;P; .Ft/t2T/ be
a filtered probability space satisfying the usual conditions. An .Ft/t2T-adapted
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stochastic process X D .Xt/t2T, taking values on a complete separable metric
space S, will represent the (hidden, latent, unobserved) state of the system at time
t. We shall refer to X as the state process and to S as the state space. While we
cannot observe X directly, we have access to another .Ft/t2T-adapted stochastic
process Y D .Yt/t2T, which is a function of X and a Wiener process V D .Vt/t2T:
Yt WD ht.Xt;Vt/, t 2 T. The function ht is sometimes referred to as the observation
model.1 The specification of the dynamics of X, often in the form of an SDE, is
called the process model.

Let .Yt/t2T be the �-algebra generated by the observation process Y. The
filtering problem consists of computing the filtering distribution, � D .�t/t2T, the
conditional distribution of Xt given .Yt/t2T. It is defined as a random probability
measure, which is—crucially—measurable w.r.t. .Yt/t2T, such that

E Œ .Xt/ j Yt 
 D
Z

S

 .x/�t.dx/

for all statistics  for which both sides of the above identity make sense. A formal
definition of � relies on some technicalities and can be found in [5, Chap. 2].

Interest in the filtering problem dates back to the late 1930s–early 1940s. It was
considered in Kolmogorov’s (1903–1987) work on time series [75–77] and Wiener’s
(1894–1964) on improving radar communication during WWII [132],2 which first
appeared in 1942 as a classified memorandum nicknamed “The Yellow Peril” [131],
so named after the colour of the paper on which it was printed [5]. In [131, 132],
Wiener considered the special case of a stationary state process and additive noise
and minimised the mean square error between the estimated and actual state process,
working in continuous time. The result is nowadays known as the Wiener filter. A
discrete-time equivalent of this filter was obtained independently by Kolmogorov
and published in earlier in Russian [76]. Due to the contributions by these two
scientists, the theory is referred to as the Wiener–Kolmogorov theory of filtering
and prediction [70].

Kálmán (1930–2016) extended this work to non-stationary processes. This work
had military applications, notably the prediction of ballistic missile trajectories.
Non-stationary processes were required to realistically model their launch and re-
entry phases. Of course, non-stationary processes abound in other fields—even
the standard Brownian motion of the basic Bachelier model [4] in finance is
non-stationary. Kálmán’s fellow electrical engineers initially met his ideas with
skepticism, so he ended up publishing in a mechanical engineering journal [67]. In
1960, Kálmán visited the NASA Ames Research Center, where Stanley F. Schmidt

1Elsewhere in the literature observations are sometimes referred to as measurements, e.g. in [119].
2The abstract to the MIT Press edition (ISBN 9780262257190) of this book starts with the
following words: “It has been the opinion of many that Wiener will be remembered for his
Extrapolation long after Cybernetics is forgotten. Indeed few computer-science students would
know today what cybernetics is all about, while every communication student knows what Wiener’s
filter is.”
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took interest in this work. This led to its adoption by the Apollo programme and
other projects in aerospace and defence.

The discrete-time version of the filter derived in [67] is now known as the
Kálmán filter. The continuous-time version, known as the Kálmán–Bucy filter,3 was
published in a joint paper with Bucy [70]. Before meeting Kálmán, Bucy worked on
continuous-time stochastic filtering independently, with Follin, Carlton, and Hanson
at John Hopkins Applied Physics Lab in the late 1950s. The Kálmán and Kálmán–
Bucy filters address the particularly important special case when the process model
and the observation model are linear and both stochastic processes are Gaussian,
the so-called linear-Gaussian case,4 where there is an analytic solution for � .
The general case of the filtering problem was addressed by Stratonovich (1930–
1997) [123, 124], Kushner [78], and Zakai (1926–2015) [136].

The general solutions are, however, infinite-dimensional and not easily applica-
ble. In practice, numerical approximations are employed. Particle filters constitute a
particularly important class of such approximations. These methods are sometimes
referred to as sequential Monte Carlo (SMC), a term coined by Liu and Chen
[85]. The Monte Carlo techniques requisite for particle filtering date back to the
work of Hammersley and Morton [48]. Sequential importance sampling (SIS) dates
back to the work of Mayne and Handschin [49, 95]. The important resampling
step was added by Gordon, Salmond, and Smith [44], based on an idea by Rubin
[112], to obtain the first sequential importance resampling (SIR) filter, which, in our
experience, remains the most popular particle filtering algorithm used in practice.
Other important early contributions to the development of particle filtering include
[8, 17, 58, 59, 73, 74, 85].

Our overview of the development of stochastic filtering theory is necessarily
brief. We focus on the development of the algorithms to motivate the discussion
in the sequel, and merely scratch the surface of advances in stochastic analysis on
which these algorithms rely. The reader interested in this important aspect of the
theory can examine the work of Cameron (1908–1989), Fujisaki, Girsanov (1934–
1967), Kallianpur (1925–2015), Kunita, Liptser, Martin (1911–2004), Shiryaev,
Striebel (1929–2014), including the significance of the Cameron-Martin-Girsanov
theorem [15, 43], the Fujisaki–Kallianpur–Kunita equation and orthogonal pro-
jection in Hilbert spaces [36], the Kallianpur–Striebel formula [64–66, 84], and
non-linear filtering of Markov diffusion processes and jump processes [83, 117].

3The continuous-time Kálmán–Bucy filter, unlike the Kálmán filter, does not use a predictor-
corrector method to update its state estimates. Instead, a differential Riccati equation is integrated
over time.
4Feynman aptly summarised the reason why linear systems merit special treatment: “Finally, we
make some remarks on why linear systems are so important. The answer is simple: because we
can solve them!” [34, pp. 24–25].
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28.2 Special Case: General State-Space Models

We have spoken thus far in considerable generality. Let us turn our attention to a
particularly important special case of the filtering problem, viz. filtering for discrete-
time, general state-space models, also known as hidden Markov models (HMM)
[79]. Such models are prevalent in econometrics due to the relative ease of the
estimation of their parameters and forecasting. We shall keep our notation and
terminology roughly consistent with [21, Sect. 2.2].

These models are discrete-time, i.e. we regard T as a countable set. Without loss
of generality, we shall identify T with N

0. Since our models consider the evolution
of a system over time, they are described as dynamic. We shall also assume that the
state process .Xt/t2T takes values in the Euclidean space S D R

dX , dX 2 N
� (so it

is now represented by a state vector), the observation process .Yt/t2Tn0 takes values
in the Euclidean space R

dY , dY 2 N
� (so it is now represented by an observation

vector).
We assume that the sequence of random variables X0;X1;X2; : : : is a Markov

chain—i.e., the conditional distribution of Xt, t 2 N
�, given X0; : : : ;Xt�1, depends

only upon Xt�1. Mathematically this means that, for each A 2 B.RdX /:

PŒXt 2 A j X0 D x0; : : : ;Xt�1 D xt�1
 D PŒXt 2 A j Xt�1 D xt�1
 WD �t.A j xt�1/;

where �t W B.RdX / � R
dX ! Œ0; 1
 is referred to as the Markov transition kernel.

The state process .Xt/t2T is assumed to be not directly observable, hence the term
‘latent Markov model’.

We regard the sequence of random variables Y1;Y2; : : : as observations ordered
in time—such a sequence is usually referred to as a time series. Each random
variable Yt will be assumed to be conditionally independent of other observations
given the state Xt, i.e., for t 2 N

�,

PŒYt 2 A j X0 D x0; : : : ;Xt D xt; .Ys D ys/s2N�;s¤t
 D PŒYt 2 A j Xt D xt


for each A 2 B.RdY /.
For all t 2 N

�, A 2 B.RdY /, the probability measure

�t.A j xt/ WD PŒYt 2 A j Xt D xt


is assumed to have a positive density, denoted p�t. y j x/ and called the observation
density, w.r.t. the Lebesgue measure, hence

�t.A j xt/ D
Z

A
p�t. y j xt/ dy:

While Xt is indeed latent, it is related to the observation Yt via p�t .
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28.3 Particle Filtering Methods

Particle filtering methods rely on the numerical approximation of �t with a set of
‘particles’. To apply these methods we don’t require the Markov transition kernel
to have a probability density (the Markov transition density), i.e. for all t 2 N

�,
A 2 B.RdX /, p�t in

�t.A j xt�1/ D
Z

A
p�t .x j xt�1/ dx:

However, we need to be able to sample from the Markov transition kernel.
Here we have given the most common version of the particle filter known as

the sequential importance resampling (SIR)5 algorithm [44, 112]. There are many
variations on Algorithm 9. For example, in some such variations the number of

Algorithm 9 Particle filter: sequential importance resampling (SIR)
1. Initialisation step: At time t D 0, draw M i.i.d. samples (called particles) from the initial

distribution �0 D �0. Also, initialise M normalised (to 1) weights to an identical value of 1
M .

For i D 1; 2; : : : ;M, the samples will be denoted Ox.i/
0 j 0

and the normalised weights �.i/0 .

2. Recursive step: At time t 2 N
�, let .Ox.i/t�1 j t�1

/iD1;:::;M be the particles generated at time t�1.

a. Importance sampling:

i. For i D 1; : : : ;M, sample Ox.i/t j t�1
from the Markov transition kernel �t.� j Ox.i/t�1 j t�1

/.
ii. For i D 1; : : : ;M, use the observation density to compute the non-normalised weights

!
.i/
t WD �

.i/
t�1 � p�t . yt j Ox.i/t j t�1

/ (28.1)

and the values of the normalised weights before resampling (‘br’)

br�
.i/
t WD !

.i/
t

PM
kD1 !

.k/
t

:

b. Resampling (or selection): For i D 1; : : : ;M, use an appropriate resampling algorithm (such
as Algorithm 10) to sample Ox.i/t j t from the mixture

MX

kD1

br�
.k/
t ı.xt � Ox.k/t j t�1

/;

where ı.�/ denotes the Dirac delta generalised function, and set the normalised weights
after resampling, �.i/t , appropriately (for most common resampling algorithms this means
�
.i/
t WD 1

M ).

5Alternatively, sometimes this is referred to as sequential importance sampling with resampling
(SISR) [26].
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particles M may vary with time, so instead of M we would have an appropriately
defined Mt [82]. In this particular formulation of the filter, all the weights after
resampling are set to 1

M , so we could write (28.1) as

!
.i/
t WD p�t. yt j Ox.i/t j t�1/;

i D 1; : : : ;M, and omit the initialisation of the normalised weights at time 0, �.i/0 ,
since they wouldn’t be used. This isn’t the case in all variants of the particle filter.
A simpler version of the filter would omit the resampling step altogether; instead,
for i D 1; : : : ;M, setting �.i/t WD br�

.i/
t and Ox.i/t j t WD Ox.i/t j t�1. This version of the

algorithm, known as sequential importance sampling (SIS) [49, 95], suffers from
the degeneracy problem [85], [16, Chap. 7] when, in some situations, only a few
particles end up with significant weight, and all the other particles have near-zero
weights. The resampling step is designed to remedy this. The particular scheme that
we give here as Algorithm 10 is known as multinomial resampling [31, 44, 112]6

and the filter that uses it is sometimes referred to as the (weighted) bootstrap filter.
The naïve implementation of multinomial resampling step has the time complexity
O.M ln M/. An implementation based on [17] has the time complexity O.M/. One
alternative is to use stratified sampling [17, 74, 85], which won’t be discussed here.
It introduces no computational overhead.

Algorithm 10 Multinomial resampling
Notice that we are working with the normalised weights computed before resampling,
br�

.1/
t ;

br�
.2/
t ; : : : ;

br�
.M/
t .

1. For i D 1; 2; : : : ;M, compute the cumulative sums

br�
.i/
t D

iX

kD1

br�
.k/
t ;

so that, by construction, �.M/
t D 1.

2. Generate M random samples from U .0; 1/, u1; u2; : : : ; uM .
3. For each i D 1; : : : ;M, choose the particle Ox.i/t j t D Ox. j/

t j t�1
with j 2 f1; 2; : : : ;M � 1g such that

ui 2
h

br�
. j/
t ;

br�
. jC1/
t

i
.

Thus we end up with M new particles (children), Ox.1/t j t; : : : ; Ox.M/t j t sampled from the existing set

Ox.1/t j t�1
; : : : ; Ox.M/t j t�1

, so that some of the existing particles may disappear, while others may appear

multiple times. For each i D 1; : : : ;M the number of times Ox.i/t j t�1
appears in the resampled set of

particles is known as that particle’s replication factor, N.i/
t .

Set the normalised weights after resampling: �.i/t WD 1
M .

We could view this algorithm as the sampling of the replication factors N
.1/
t ; : : : ;N

.M/
t from the

multinomial distribution with probabilities br�
.1/
t ; : : : ;

br�
.M/
t , respectively. Hence the name of the

method.

6See [120] for proofs of convergence.
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For each t 2 N
�, this algorithm provides the prior and posterior, respectively,

approximations to �t:

�M
t j t�1 WD

MX

iD1
�
.i/
t�1ı.xt � Ox.i/t j t�1/; �M

t j t WD
MX

iD1
�
.i/
t ı.xt � Ox.i/t j t/

(when using the resampling scheme given here the resampled weights are all set
to 1

M , so this constant can be factored out of the sum). The prior state mean and
covariance estimates in the particle filter are given by, respectively,

Oxt j t�1 WD
MX

iD1
�
.i/
t�1 Ox.i/t j t�1; Pt j t�1 WD

MX

iD1
�
.i/
t�1.Ox.i/t j t�1�Oxt j t�1/|.Ox.i/t j t�1�Oxt j t�1/:

Similarly, one obtains the posterior state mean and covariance before resampling,
br Oxt j t and brPt j t, (using the weights br�

.i/
t and particles Ox.i/t j t�1) and after resampling,

Oxt j t and Pt j t, (using the weights �.i/t and particles Ox.i/t j t).

28.4 Applying the Particle Filter to the Stochastic Volatility
Model with Leverage and Jumps

Pitt, Malik, and Doucet apply the particle filter to the stochastic volatility with
leverage and jumps (SVLJ) model [89–91, 109]. The model has the general form
of Taylor’s [126] with two modifications. For t 2 N

0, let yt denote the log-return on
an asset and xt denote the log-variance of that return. Then

yt D �te
xt=2 C Jt$t; (28.2)

xtC1 D 	.1 � �/C �xt C �v�t; (28.3)

where 	 is the mean log-variance, � is the persistence parameter, �v is the volatility
of log-variance. The first change to Taylor’s original model is the introduction of
correlation between �t and �t:

�
�t

�t

�

 N .0;˙/ ; ˙ D

�
1 �

� 1

�
:

The correlation � is the leverage parameter, and it is a well-known stylised fact
that, in general, � < 0. The second change is the introduction of jumps in (28.2):
Jt 2 f0; 1g is a Bernoulli counter with intensity p (thus p is the jump intensity
parameter),$t 
 N

�
0; �2J

�
determines the jump size (thus �J is the jump volatility

parameter).
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Fig. 28.1 An example of the SVLJ data generated using StateSpaceModelDataGenerator of
the BayesTSA library. Here we have used the same parameters as those in Fig. 1 in [109], namely
	 D 0:25, � D 0:975, �2v D 0:025, � D �0:8, p D 0:01, �2J D 10. The vertical red lines indicate
the times at which the simulated jumps occur. We assume that the initial price is 100

We obtain a stochastic volatility with leverage (SVL), but no jumps, if we delete
the Jt$t term or, equivalently, set p to zero. Taylor’s original model is a special case
of SVLJ with p D 0, � D 0. In Fig. 28.1 we show an example of the SVLJ data
generated using the StateSpaceModelDataGenerator of BayesTSA.
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Here we use the convention adopted in [52, 72, 105, 109] and designate the
disturbance that propagates the log-variance between the times t and t C 1 by �t.
In much of the literature [53, 113, 135] this disturbance is designate �tC1, so (28.3)
becomes

xtC1 D 	.1 � �/C �xt C �v�tC1: (28.4)

In discrete-time econometric models the choice between (28.3) and (28.4) is a matter
of convention. The important point to realise is that, whichever convention that we
use, in this model, it is the disturbance on the log-return yt and the disturbance that
propagates the log-variance from xt to xtC1 that are correlated. If the disturbance on
the log-return yt were instead correlated with the disturbance that propagated the
log-variance from xt�1 to xt, we would have a different correlation structure and
therefore a different model. Throughout the literature, yt is the log-return that is
related, through (28.2), to xt. In [135], although the convention (28.4) is used, (28.3)
is described as “clearer and more consistent”. We shall stick with (28.3), so in our
case Cor Œ�t; �t
 D �, the rest of the disturbances being independent. The differences
between the two conventions used in the literature to designate the noises and the
two different correlation structures are summarised in Fig. 28.2.

From the filtering perspective, the latent, unobserved log-variance is the state and
the log-return, which is observable on the markets, the observation. Using the fact
that the disturbances in (28.2) and (28.3) are conditionally Gaussian, they write

�t D ��t C
p
1 � �2�t (28.5)

where �t
i:i:d:
 N .0; 1/, turning (28.3) into

xt D 	.1� �/C �xt�1 C �v��t�1 C �v
p
1 � �2�t�1: (28.6)

In the absence of jumps, �t D yte�xt=2, and (28.6) can be further rewritten as

xt D 	.1 � �/C �xt�1 C �v�yt�1e�xt�1=2 C �v
p
1 � �2�t�1:

From this we see that, even in the absence of jumps, p.xt j xt�1; yt�1/ is highly
nonlinear, so particle methods are prime candidates for devising a filtering scheme.

Notice that

p.�t j xt; yt/

D ı. yte
�xt=2/P ŒJt D 0 j xt; yt
C '



�tI	�t j JtD1; �2� j JtD1

�
P ŒJt D 1 j xt; yt
 :
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Fig. 28.2 The two conventions used in designating disturbances (noises) in econometric models
and the two different correlation structures between the disturbances. Within each subfigure we
show the two disturbances that are assumed to be correlated in bold red; all the other disturbances
are assumed to be uncorrelated. Subfigures (a) and (c) show the first convention, where the
disturbance that propagates xt to xtC1 is ascribed to time t and so referred to as �t. Subfigures (b)
and (d) show the second convention, where the disturbance that propagates xt to xtC1 is ascribed to
time tC1 and so referred to as �tC1 Subfigures (a) and (b) show the first correlation structure (CS1),
in which the disturbance �t, involved in yt (yt being a function of xt and �t), is correlated with the
disturbance that propagates xt to xtC1. Subfigures (c) and (d) show the second correlation structure
(CS2), in which the disturbance �t, involved in yt (yt being a function of xt and �t), is correlated
with the disturbance that propagates xt�1 to xt. SVL(J) has the first correlation structure (CS1),
the contemporaneous dependence in the language of [135], sometimes referred to as correlation
at the same time in stochastic filtering literature [88]. CS2 is the inter-temporal dependence in the
language of [135]. In this stochastic filtering literature this is referred to as correlation one time
step apart [88]

Pitt et al. design a procedure for simulating �t from the mixture density p.�t j xt; yt/,
which is then used in (28.6) to propagate the state. It is described in detail
in Appendix B of [89]; we have implemented it in BayesTSA. In the same
Appendix they derive the values of the conditional moments 	�t j JtD1 and
�2
� j JtD1.
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The initial distribution of x0 is taken to be N
�
0; �2v =.1� �2/

�
. This, then, leads

to the following modification of Algorithm 9 for this special case with nonadditive,
correlated noises:

Algorithm 11 An adaptation of the particle filter (Algorithm 9) developed by Pitt
et al. for the SVLJ model
1. Initialisation step: At time t D 0, draw M i.i.d. particles from the initial distribution

N
�
0; �2v =.1� �2/

�
. Also, initialise M normalised (to 1) weights to an identical value of 1

M .

For i D 1; 2; : : : ;M, the samples will be denoted Ox.i/
0 j 0

and the normalised weights �.i/0 .

2. Recursive step: At time t 2 N
�, let .Ox.i/t�1 j t�1

/iD1;:::;M be the particles generated at time t�1.

a. Importance sampling:

i. A. For i D 1; : : : ;M, sample O�.i/t�1 from p.�t�1 j xt�1 D Ox.i/t�1 j t�1
; yt�1/. (If no yt�1

is available, as at t D 1, sample from p.�t�1 j xt�1 D Ox.i/t�1 j t�1
/).

B. For i D 1; : : : ;M, sample Ox.i/t j t�1
from p.xt j xt�1 D Ox.i/t�1 j t�1

; yt�1; O�.i/t�1/.
ii. For i D 1; : : : ;M, compute the non-normalised weights

!
.i/
t WD �

.i/
t�1 � p�t . yt j Ox.i/t j t�1

/; (28.7)

using the observation density

p. yt j Ox.i/t j t�1
; p; �2J / D .1� p/

�

2�eOx

.i/
t j t�1

��1=2

exp


�y2t =.2eOx

.i/
t j t�1 /

��
C

p

�

2�eOx

.i/
t j t�1 C �2J

��1=2

exp


�y2t =.2eOx

.i/
t j t�1 C �2J /

��
;

and the values of the normalised weights before resampling (‘br’)

br�
.i/
t WD !

.i/
t

PM
kD1 !

.k/
t

:

b. Resampling (or selection): For i D 1; : : : ;M, use an appropriate resampling algorithm (such
as Algorithm 10) sample Ox.i/t j t from the mixture

MX

kD1

br�
.k/
t ı.xt � Ox.k/t j t�1

/;

where ı.�/ denotes the Dirac delta generalised function, and set the normalised weights after
resampling, �.i/t , according to the resampling algorithm.
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Fig. 28.3 The result of applying Algorithm 11 to the SVLJ data generated using StateSpace-
ModelDataGenerator of the BayesTSA library. Here we have used the same parameters as those
in Fig. 1 in [109], namely 	 D 0:25, � D 0:975, �2v D 0:025, � D �0:8, p D 0:01, �2J D 10. We
assume that the parameters are known exactly, i.e. we use the same parameters in the particle filter
as the ones that we used to generate the data. The figure includes the diagnostic plots produced
by BayesTSA. The tails on the Q-Q plot deviate from normal significantly due to the substantial
jumps (�2J D 10)

The result of applying this algorithm to simulated data is shown in Fig. 28.3.
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28.5 The Kálmán Filter

The model considered in Sect. 28.4 is nonlinear with correlated Gaussian state
process noise and observation noise. Let us now consider a simpler and particularly
important specialisation of the general state-space model of Sect. 28.2—the linear-
Gaussian state-space model. For t 2 N

�, suppose that our dX-dimensional state
vector is driven by dW-dimensional noise and evolves according to the process
model that is specified by the single equation—the process (evolution, transition)
equation

Xt D FtXt�1 C at C Wtwt; (28.8)

and our dY-dimensional observation vector, incorporating dV -dimensional observa-
tion noise, is related to the state by the observation model (or, in this case, the
observation equation)

Yt D HtXt C bt C Vtvt; (28.9)

where Ft 2 R
dX �dX , Wt 2 R

dX�dW , at 2 R
dX ; whereas wt 
 N .0;Qt/ are R

dW -
valued random variables; Ht 2 R

dY �dX , Vt 2 R
dY �dV , bt 2 R

dY ; whereas vt 

N .0;Rt/ are RdV -valued random variables. We assume that X0 
 N

�Ox0 j 0;P0 j 0
�

and the random variables fX0;w1; : : : ;wt; v1; : : : ; vtg are mutually independent.
The matrices Ft, at, Wt, Qt, Ht, bt, Vt, Rt are sometimes referred to as system

matrices. When they don’t depend on t, i.e., for all t, Ft D F fixed, etc., the system
is called time invariant.

We could, equivalently, write (28.8) and (28.9), respectively, as

Xt j Xt�1 
 N
�
FtXt�1 C at;WtQtW

|
t

�
;

Yt j Xt 
 N
�
HtXt C bt;VtRtV

|
t

�
;

or say that

p�t D '
�
FtXt�1 C at;WtQtW

|
t

�
; p�t D '

�
HtXt C bt;VtRtV

|
t

�
:

The Kálmán filter (Algorithm 12) [67, 70] is an analytic solution to the filtering
problem in this setting.
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Algorithm 12 Kálmán filter
For each t 2 N

�, repeat the following two steps:

1. Prediction step:

a. Predicted (prior) state estimate: Oxt j t�1 D Ft Oxt�1 j t�1 C at.
b. Predicted (prior) error covariance: Pt j t�1 D FtPt�1 j t�1F

|

t C W tQtW
|

t .

2. Update (or correction) step:

a. Predicted observation: Oyt j t�1 D Ht Oxt j t�1 C bt.
b. Innovation (or observation residual): Qyt D yt � Oyt j t�1.
c. Innovation covariance: St D HtPt j t�1H

|

t C VtRtV
|

t .
d. (Optimal) Kálmán gain: Kt D Pt j t�1H

|

t S�1
t .

e. Updated (posterior) state estimate: Oxt j t D Oxt j t�1 C KtQyt.
f. Updated (posterior) error covariance: Pt j t D .I � KtHt/Pt j t�1.

Proposition 28.1 (Some Properties of the Kálmán Filter)

1. Pt j t�1 is a faithful representation of the prior error covariance: Pt j t�1 D
Cov

�Oxt j t�1 � Xt
�
;

2. Pt j t is a faithful representation of the posterior error covariance: Pt j t D
Cov

�Oxt j t � Xt
�
;

3. St is a faithful representation of the innovation covariance: St D Cov Œ Qyt
;
4. the prior state estimate is unbiased: E

�Oxt j t�1 � Xt
� D 0;

5. the posterior state estimate is unbiased: E
�Oxt j t � Xt

� D 0;
6. The solution to the filtering problem at time t, Oxt j t, is:

a. causal (or based on the observations): the estimate is obtained using only the
observations ys for s � t;

b. optimal: Oxt j t minimises the mean square error (MSE), E
�kXt � Oxt j tk22

�
, so it

is a minimum mean square error estimate (MMSE);
c. online: for an arbitrary time t 2 T, the estimate is available (prior, if we

haven’t seen the observation yet, otherwise posterior).

The iterative equation for the predicted (prior) error covariance,

Pt j t�1 D Ft.Pt�1 j t�2 � KtHtPt�1 j t�2/F
|
t C WtQtW

|
t (28.10)

is a discrete-time, time-varying matrix Riccati equation. From this equation we
notice7 that the covariance calculations are independent of the state estimate
calculations occurring elsewhere in the filter. Therefore it is possible to perform
the covariance calculations separately, offline. There is a rich mathematical theory
of matrix Riccati equations, which underly much of filtering and control [1].
In particular, it is known that (28.10) converges to a steady state covariance,

7This won’t hold, e.g. for the extended Kálmán filter, which we consider next.
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P1, provided that the system is observable, a term coined by Kálmán [68, 69],
which means, informally, that the state of the system can be determined from the
observations.

From (28.10) we notice that the covariance calculations are independent of the
state calculations, so can be performed offline, i.e. before the filter is applied to
observations arriving in real time.

It is worth noting here that Kálmán’s original thinking [67] wasn’t formally
Bayesian. It was Ho and Lee [57] that would later reinterpret this filter from the
Bayesian perspective. There are several Bayesian ways to derive the Kálmán filter
[6]. For an overview of the filtering theory from the point of view of a Bayesian,
see [18].

28.6 Some Examples of Linear-Gaussian State Space Models

We shall now examine some situations where we get Kálmán-style, i.e. linear-
Gaussian, state-space models of the kind considered in Sect. 28.5. Before we
turn to financial applications of Kálmán filtering, let us consider a more basic
and paradigmatic example from mechanics—the classical Newtonian system [119,
Example 5.1].

28.6.1 A Non-financial Example: The Newtonian System

For simplicity, we shall disregard the process noise. Let r be the position of a
particle, v its velocity, and a its (constant) acceleration. Then

0

@
dr=dt
dv=dt
da=dt

1

A D
0

@
0 1 0

0 0 1

0 0 0

1

A

0

@
r
v

a

1

A :

The state of our system is given by the vector Xt D .r; v; a/|. Denote the matrix of
ones and zeros above by A. Then the evolution of the state is described by the matrix
differential equation dXt

dt D AXt. By analogy with the scalar ordinary differential
equation, its solution is Xt D e Atx0, where Xt D .rt; vt; at/

| is the state of the
system at time t and the matrix exponential is defined by the (matrix) Taylor series
expansion

e At WD
1X

jD0

.At/ j

jŠ
:
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Note that, for s � t 2 T, Xt D e A.t�s/Xs. Let us now discretise this equation
using hk WD t� s as the time interval between the time ticks k �1 and k (for k 2 N

�).
We get Xk D FkXk�1, where

Fk WD e Ahk D
1X

jD0

.Ahk/
j

jŠ
D
0

@
1 0 0

0 1 0

0 0 1

1

AC
0

@
0 1 0

0 0 1

0 0 0

1

A hk C 1

2

0

@
0 0 1

0 0 0

0 0 0

1

A h2k

D
0

@
1 hk h2k=2
0 1 hk

0 0 1

1

A ;

since all the powers of A greater than 2 are zero matrices. We observe that this
process model fits the Kálmán filter paradigm, a hint as to why this paradigm is so
widely applicable in practice.

28.6.2 Autoregressive Moving Average Models

Consider the ubiquitous autoregressive moving average ARMA. p; q/model, which
is often fitted to financial time series:

yt D �1yt�1 C : : :C �pyt�p C �t C �1�t�1 C : : :C �q�t�q;

where �t 
 N
�
0; �2

�
. This model includes as special cases all AR. p/ and

MA.q/ models. We account for the possibility that the model is nonstationary
(an autoregressive integrated moving average, ARIMA). There are several ways
of representing this model as a linear-Gaussian state-space model with a view to
applying the Kálmán filter. The approach that we give here is by far the most
common [11, 12, 47, 50]. The earlier approach by Pearlman [107], while more
efficient, would require one to deal with correlated process and observation noises.
Set m WD max. p; q C 1/, �i WD 0 for i > p, �i WD 0 for i > q. Then we get (28.8)
and (28.9) with dX D m, dY D 1, dW D 1, and no observation noise, and

Xt D

0

B
B
B
B
B
@

yt

�2yt�1 C : : :C �pyt�mC1 C �1�t C : : :C �m�1�t�mC2
�3yt�1 C : : :C �pyt�mC2 C �2�t C : : :C �m�1�t�mC3

:::

�myt�1 C �m�1�t

1

C
C
C
C
C
A

2 R
m�1;
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F D

0

B
B
B
BB
@

�1 1 0 � � � 0
�2 0 1 0
:::

:::
: : :

: : :
:::

�m�1 0 0 1

�m 0 0 � � � 0

1

C
C
C
CC
A

2 R
m�m;

W D �
1 �1 � � � �m�1

�| 2 R
m�1;

wt D �t; Qt D �2; H D �
1 0 : : : 0

� 2 1 � m; bt D 0; Vt D 0:

If yt is stationary, then Xt 
 N .0;P/ with P given by the equation P D
FPF| C �2WW|, so we can set the initial state and error covariance to 0 and P,
respectively. For a detailed discussion of applying the Kálmán filter in this particular
case, see [25, 138] (Fig. 28.4).

Fig. 28.4 An ARMA.2; 1/ time series generated using StateSpaceModelDataGenerator of the
BayesTSA library. Its parameters are �1 D 0:75, �2 D �0:4, �1 D 0:7, and �2 D 0:1. We have
also generated noisy observations of this series by adding to it white Gaussian noise with variance
�2=2
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28.6.3 Continuous-Time Stochastic Processes: The Wiener
Process, Geometric Brownian Motion,
and the Ornstein-Uhlenbeck Process

Let us now consider how we can construct state-space models by discretising some
continuous-time stochastic processes that are of particular importance in finance
[110, Chap. 4], [118, Chap. 3]. We begin with the one-dimensional variance-scaled
Wiener process with drift 	 and volatility � , given by the SDE

dXt D 	 dt C � dWt;

Let us now discretise the solution of this SDE, for s � t 2 T,

Xt D Xs C 	.t � s/C �.Wt � Ws/:

by setting hk WD t�s as the time interval between the time ticks k�1 and k (k 2 N
�)

to obtain a special case of the linear-Gaussian state-space model of Sect. 28.5,

Xk D FkXk�1 C ak C wk; (28.11)

where Fk D 1, ak D 	hk, wk 
 N
�
0; �2hk

�
. It is not necessary to make the

continuous time intervals, corresponding to each discrete time tick, equal. We must,
however, be careful, to scale the drift and process noise variance appropriately, as
they are functions of the time step hk (Fig. 28.5).

To handle the case of geometric Brownian motion (GBM) with percentage drift
	0 and percentage volatility � 0,

dSt D 	0St dt C � 0St dWt;

we transform the process by taking the natural logarithm, Xt WD ln St, obtaining
the Wiener process with the initial value X0 D ln S0, drift 	 D 	0 � .� 0/2=2, and
volatility � 0. We can then apply the Kálmán filter to the transformed process.

Now consider the one-dimensional Ornstein-Uhlenbeck (OU) process [110,
Chap. 4], the stationary Gauss-Markov process given by the SDE

dXt D �.	� Xt/ dt C � dWt;

where Xt 2 R, X0 D x0, and � > 0, 	 and � > 0 are constants. The solution to this
SDE is well-known:

Xt D x0e
�� t C 	.1� e�� t/C

Z t

0

�e��.t�u/ dWu:
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Fig. 28.5 The result of applying the Kálmán filter (Algorithm 12) to the noisy observation in
Fig. 28.4 using the state-space model of Sect. 28.6.2 plus additive observation noise with true
parameters taken as known

An Itō integral,
R t

s f .u/ dWu, of a deterministic integrand, f .u/, is a Gaussian random
variable with mean 0 and variance

R t
0 f 2.u/ du. In our case, f .u/ D �e��.t�u/,

and
R t
0

f 2.u/ du D �2

2�

�
1 � e�2� t

�
. Since this Markov process is homogeneous, its

transition density depends only upon the time difference. Setting, for s � t 2 T,
hk WD t � s as the time interval between the time ticks k � 1 and k (for k 2 N

�), we
again get the discretised process model equation (28.11), this time with Fk D e��hk ,

ak D 	.1 � e��hk/, wk 
 N


0; �

2

2�

�
1 � e�2�hk

��
. Again, we observe that this

process model fits the Kálmán filter paradigm.
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These results readily extend to higher dimensions. The d-dimensional correlated
Wiener process with drift follows the SDE

dXt D � dt C L dWt;

where the drift (or infinitesimal mean) � is a d-dimensional real column vector, L
is a .d � k/-dimensional real matrix LL| D ˙ 2 R

d�d is positive-definite, and
W is a k-dimensional standard Wiener process. The matrix ˙ is referred to as the
infinitesimal covariance matrix. Discretising with the timestep hk WD t � s, as above,
we get the linear-Gaussian state-space model representation

Xk D FkXk�1 C ak C wk; (28.12)

where Fk D Id�d, ak D hk�, wk 
 N .0d�d; hk˙ /.
The SDE for the d-dimensional version of the OU process [98],

dXt D ��.Xt � �/ dt C L dWt;

where� 2 R
d�d, has the solution

Xt D e�� tx0 C .I � e�� t/�C
Z t

0

e�.s�t/L dWs:

Hence, for s � t 2 T,

EŒXt
 D E

�
e�� tx0 C .I � e�� t/�C

Z t

0

e�.s�t/L dWs

�
D e�� tx0 C .I � e�� t/�;

Cov.Xs;Xt/ D E

"�Z s

0

e�.u�s/L dWu

��Z t

0

e�.v�t/L dWv

�T
#

;

Var.Xt/ D E

"�Z s

0

e�.u�t/L dWu

��Z s

0

e�.u�t/L dWu

�T
#

Itô isometryD
Z t

0

e�.u�t/˙ e�
T .u�t/ du:

Meucci [98], citing his correspondence with Van der Werf, shows how to compute
this integral using tensor calculus, obtaining

vec.Var.Xt// D .� ˚�/�1
�
I � e�.�˚�/t� vec.˙ /;
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whence Var.Xt/ is obtained simply by ‘unstacking’ the columns of vec.Var.Xt//.
Hence we again obtain the discretisation (28.12) using, as in the one-dimensional
case, the fact that this Markov process is homogeneous.

The OU process is ubiquitous in finance and has applications in statistical
arbitrage and cointegration [98]. In practice, care is needed when implementing
numerics dealing with the matrix exponentials that result [100].

28.7 The Extended Kálmán Filter

We have now seen the two main algorithms of stochastic filtering: the particle filter
of Sect. 28.3 and the Kálmán filter of Sect. 28.5. Since the invention of these two
algorithms, researchers have come up with numerous new algorithms. Many of these
algorithms fall into two categories: extensions of the particle filter and extensions
of the Kálmán filter. The scope of this work does not permit us to consider many
of these algorithms. In the sequel we shall consider only two important extensions
of the Kálmán filter—the extended Kálmán filter and the Gaussian assumed density
filter.

For t 2 N
�, suppose that, instead of being given by Eqs. (28.8) and (28.9), our

process and observation models are, respectively,

Xt D f t.Xt�1;wt/; Yt D ht.Xt; vt/;

where

f t W RdX � R
dW ! R

dX ; f t W X;w 7! f t.X;w/;

ht W RdX � R
dV ! R

dY ; ht W X; v 7! ht.X; v/

are differentiable functions. As before, wt 
 N .0;Qt/ are R
dW -valued

random variables, vt 
 N .0;Rt/ are R
dV -valued random variables. Also

as before, we assume that X0 
 N
�Ox0 j 0;P0 j 0

�
and the random variables

fX0;w1; : : : ;wt; v1; : : : ; vtg are mutually independent.
We can linearise these models by means of the truncated Taylor expansions: of

f t around .Oxt�1 j t�1; 0/,

Xt D f t.Oxt�1 j t�1; 0/C @f t

@x

ˇ̌
ˇ
ˇ
.Oxt�1 j t�1;0/

.Oxt�1 j t�1 � Xt/C @f t

@w

ˇ̌
ˇ
ˇ
.Oxt�1 j t�1;0/

wt C : : : ;

and of ht around .Oxt j t�1; 0/,

Yt D ht.Oxt j t�1; 0/C @ht

@x

ˇ
ˇ̌
ˇ
.Oxt j t�1;0/

.Oxt j t�1 � Xt/C @ht

@v

ˇ
ˇ̌
ˇ
.Oxt j t�1;0/

vt C : : : :



524 P. Bilokon et al.

Algorithm 13 Extended Kálmán filter
For each t 2 N

�, define the following Jacobian matrices:

Ft WD @f t

@x

ˇ
ˇ̌
ˇ
.Oxt�1 j t�1;0/

; W t WD @f t

@w

ˇ
ˇ̌
ˇ
.Oxt�1 j t�1;0/

;

Ht WD @ht

@x

ˇ
ˇ̌
ˇ
.Oxt j t�1;0/

; Vt WD @ht

@v

ˇ
ˇ̌
ˇ
.Oxt j t�1;0/

I

repeat the following two steps:

1. Prediction step:

a. Predicted (prior) state estimate: Oxt j t�1 D f t.Oxt�1 j t�1; 0/.
b. Predicted (prior) error covariance: Pt j t�1 D FtPt�1 j t�1F

|

t C W tQtW
|

t .

2. Update (or correction) step:

a. Predicted observation: Oyt j t�1 D ht.Oxt j t�1; 0/.
b. Innovation (or observation residual): Qyt D yt � Oyt j t�1.
c. Innovation covariance: St D HtPt j t�1H

|

t C VtRtV
|

t .
d. Kálmán gain: Kt D Pt j t�1H

|

t S�1
t .

e. Updated (posterior) state estimate: Oxt j t D Oxt j t�1 C KtQyt.
f. Updated (posterior) error covariance: Pt j t D .I � KtHt/Pt j t�1.

This approximation gives rise to the extended Kálmán filter (Algorithm 13) [55, 93,
96, 119, 121].

28.8 An Example Application of the Extended Kálmán
Filter: Modelling Credit Spread

One way to quantify the credit risk of a risky bond is in terms of the zero volatility
spread, or Z-spread for short. It is obtained by solving for zt0 in

Pt0 D
nX

iD1

cfti
�
1C �

si
t0 C zt0

�
ı
�i ;

where Pt0 is the dirty market price of the bond at time t0, cfti is the cash flow
generated by the bond at time ti, si

t0 is the zero-coupon swap rate of appropriate
maturity for this cashflow, ı is the frequency of the cashflows expressed as a fraction
of the year. For a given issuer, we are interested in modelling the term structure of
the Z-spreads across the universe of that issuer’s bonds. The Z-spread is then viewed
as a function of � � t0: zt0 .� I �t0 /, � being the time of maturity or, for example, the
modified duration, and a d-dimensional vector of parameters. Its dependence on t0
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indicates that the Z-spread curve (as a function of �) evolves as time progresses.
One of our tasks, then, is to keep estimating �t0 as t0 moves on.

Suppose that, for a particular issuer, we have a universe of K bonds with Z-
spreads z.1/t0 ; : : : ; z

.K/
t0 and maturities (or modified durations, etc.) �.1/; : : : ; � .K/. Each

of these Z-spreads may not lie exactly on the Z-spread curve zt0 .�/ due to the
idiosyncracies of that particular bond, so we allow there to be an idiosyncratic
spread, �.k/t0 , k 2 f1; : : : ;Kg:

z.k/t0 D zt0 .�
.k/I �t0 /C �

.k/
t0 :

As indicated by their dependence on t0, the idiosyncratic spreads also evolve over
time. We will have to keep computing their updated estimates as well.

Thus our latent state at t0 is the vector

xt0 D


.�t0 /1 � � � .�t0 /d �

.1/
t0 � � � �.K/t0

�| 2 R
dX ;

dX D d C K. We are observing individual bond prices, thus dY D 1 and our
observation at time t0 is yt0 D P.k/t0 , the dirty8 market price of bond k for some
k 2 f1; : : : ;Kg.

The function h that maps our state to the corresponding observation is given by

h.k/.xt0 / D P.k/t0 .z
.k/
t0 / D

n.k/X

iD1

cf .k/ti

1C



si

t0 C zt0 .�
.k/I �t0 /C �

.k/
t0

�
ı.k/
�i :

Thus, given our state vector, we can evaluate h.k/.xt0 /. Note that the equation above
also depends on the appropriate zero-coupon swap rates si

t0 . These are fast-moving
and can be provided exogenously.

Let the scalar parameter ˛t0 be a particular element of our parameter vector �t0 ,
so it is .�t0 /

j for some j 2 f1; : : : ; dg. Then

@h.k/

@˛t0

ˇ
ˇ
ˇ
xt0

D @h.k/

@zt0

ˇ
ˇ
ˇ
xt0

� @zt0

@˛t0

ˇ
ˇ
ˇ
xt0

D

0

B
@�ı.k/

n.k/X

iD1

i � cf.k/ti

1C



si

t0 C zt0 .�
.k//C �

.k/
t0

�
ı.k/
�i

1

C
A
@zt0

@˛t0

ˇ
ˇ
ˇ
�.k/
;

8Chances are that our market feeds are providing us with clean prices. We should therefore
remember to convert these prices to dirty prices before we proceed.
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where
@zt0
@˛t0

can be computed analytically for many simple curve models, such as

Nelson–Siegel [102]. Similarly, for j 2 f1; : : : ;Kg,

@h.k/

@�
. j/
t0

ˇ
ˇ
ˇ
xt0

D
8
<

:

@h.k/

@zt0

ˇ
ˇ
ˇ
xt0

� @zt0

@�
. j/
t0

ˇ
ˇ
ˇ
xt0

D �ı.k/Pn.k/

iD1
i�cf

.k/
ti


1C



si
t0Czt0 .�

.k//C�.k/t0

�
ı.k/

�i ; j = k;

0; otherwise.

We need to assume suitable dynamics for the process model. For example, one
may start with diffusive curve parameters and mean-reverting idiosyncratics. In
practice, prices observed in financial markets include costs, which may or may not
be known. Observation noise can be used to model this uncertainty.

28.9 Outlier Detection in (Extended) Kálmán Filtering

Note that the predicted observation is distributed as

N
�
Ht Oxt j t�1 C bt;HtPt j t�1H|

t

�
:

Just as we can assign a z-score to yt if y is one-dimensional, we can assign a
Mahalanobis distance to it (which does correspond to the z-score in the one-
dimensional case). In general, the Mahalanobis norm of a vector y with respect
to N .�;˙ / is given by

kykN .�;˙ / D
q
. y � �/|˙�1. y � �/:

It measures the distance of y 2 R
dY from the centroid (multidimensional mean) of

the distribution. kyk2N .�;˙ /
follows the �2-distribution with m degrees of freedom.

Thus we can set a cut-off for yt, e.g. on the basis of the 0:975th quantile of the
�2-distribution.

28.10 Gaussian Assumed Density Filtering

In the extended Kálmán filter algorithm, the possibly nonlinear and non-Gaussian
process and observation models are approximated by means of linearisation. One
could use moment matching as an alternative. By matching the moments of the
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normal distribution one obtains the Gaussian assumed density filter, also known as
the Gaussian filter [60, 81, 94, 115, 133].

When the noises are additive, the Gaussian moment matching approximation
of an additive transform (Algorithm 14) is used to derive the Gaussian filter with
additive noise (Algorithm 16). Otherwise, for non-additive noises, the Gaussian
moment matching approximation of a non-additive transform (Algorithm 15) is used
to derive the Gaussian filter with non-additive noise (Algorithm 17).

Algorithm 16 applies when the process and observation models are, respectively,

Xt D f t.Xt�1/C wt; Yt D ht.Xt/C vt;

with f t W RdX ! R
dX , ht W RdX ! R

dY . Algorithm 17 applies in the more general
case when

Xt D f t.Xt�1;wt/; Yt D ht.Xt; vt/;

with f t W RdX � R
dX ! R

dX , ht W RdX � R
dY ! R

dY . As before, wt 
 N .0;Qt/

are RdX -valued random variables, vt 
 N .0;Rt/ are RdY -valued random variables.
Also as before, we assume that X0 
 N

�Ox0 j 0;P0 j 0
�

and the random variables
fX0;w1; : : : ;wt; v1; : : : ; vtg are mutually independent.

Algorithm 14 Gaussian moment matching approximation of an additive trans-
form [115, Algorithm 6.1]
The moment matching-based Gaussian approximation to the joint distribution of the R

dX -valued
random variable X and the transformed R

dY -valued random variable Y D g.X/ C Z, where X 

N .m;P/ and Z 
 N .0;˙ / is given by

�
X
Y

�
approx.
 N

��
m
�

�
;

�
P 	

	 | S

��
;

where

� D
Z

g.x/' .xI m;P/ dx;

S D
Z
.g.x/��/.g.x/� �/|' .xI m;P/ dx C˙ ;

	 D
Z
.x � m/.g.x/� �/|' .xI m;P/ dx:
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Algorithm 15 Gaussian moment matching approximation of a possibly non-additive
transform [115, Algorithm 6.2]
The moment matching-based Gaussian approximation to the joint distribution of the R

dX -valued
random variable X and the transformed R

dY -valued random variable Y D g.X;Z/, where X 

N .m;P/ and Z 
 N .0;˙ / is given by

�
X
Y

�
approx.
 N

��
m
�

�
;

�
P 	

	 | S

��
;

where

� D
Z

g.x; z/' .xI m;P/ ' .zI 0;˙ / dx dz;

S D
Z
.g.x; z/� �/.g.x; z/� �/|' .xI m;P/ ' .zI 0;˙ / dx dz;

	 D
Z
.x � m/.g.x; z/� �/|' .xI m;P/ ' .zI 0;˙ / dx dz:

Algorithm 16 Gaussian filter with additive noise [115, Algorithm 6.3]
The prediction and update steps of the additive noise Gaussian assumed density (Kálmán) filter are:

1. Prediction step:

a. Predicted (prior) state estimate: Oxt j t�1 D R
f t.xt�1/'

�
xt�1I Oxt�1 j t�1;Pt�1 j t�1

�
dxt�1.

b. Predicted (prior) error covariance: Pt j t�1 D R
. f t.xt�1/� Oxt j t�1/. f t.xt�1/� Oxt j t�1/

|

'
�
xt�1I Oxt�1 j t�1;Pt�1 j t�1

�
dxt�1 C Qt .

2. Update (or correction) step:

a. Predicted observation: Oyt j t�1 D R
ht.xt/'

�
xtI Oxt j t�1;Pt j t�1

�
dxt .

b. Innovation (or observation residual): Qyt D yt � Oyt j t�1.
c. Innovation covariance: St D R

.ht.xt/� Oyt j t�1/.ht.xt/� Oyt j t�1/
|

'
�
xtI Oxt j t�1;Pt j t�1

�
dxt C Rt .

d. Crosscovariance: 	 t D R
.xt � Oxt j t�1/.ht.xt/� Oyt j t�1/

|

'
�
xtI Oxt j t�1;Pt j t�1

�
dxt .

e. (Optimal) Kálmán gain: Kt D 	 tS�1
t .

f. Updated (posterior) state estimate: Oxt j t D Oxt j t�1 C KtQyt .
g. Updated (posterior) error covariance: Pt j t D Pt j t�1 � Kt	 tK

|

t .
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Algorithm 17 Gaussian filter with possibly non-additive noise [115, Algorithm 6.4]
The prediction and update steps of the possibly non-additive noise Gaussian assumed density (Kálmán) filter are:

1. Prediction step:

a. Predicted (prior) state estimate: Oxt j t�1 D R
f t.xt�1; qt/'

�
xt�1I Oxt�1 j t�1;Pt�1 j t�1

�

'
�
qtI 0;Qt

�
dxt�1 dqt .

b. Predicted (prior) error covariance: Pt j t�1 D R
. f t.xt�1; qt/� Oxt j t�1/. f t.xt�1; qt/� Oxt j t�1/

|

'
�
xt�1I Oxt�1 j t�1;Pt�1 j t�1

�

'
�
qtI 0;Qt

�
dxt�1 dqt .

2. Update (or correction) step:

a. Predicted observation: Oyt j t�1 D R
ht.xt ; rt/'

�
xtI Oxt j t�1;Pt j t�1

�

' .rtI 0;Rt/ dxt drt .
b. Innovation (or observation residual): Qyt D yt � Oyt j t�1 .
c. Innovation covariance: St D R

.ht.xt; rt/� Oyt j t�1/.ht.xt ; rt/� Oyt j t�1/
|

'
�
xtI Oxt j t�1;Pt j t�1

�
' .rtI 0;Rt/ dxt drt .

d. Crosscovariance: 	 t D R
.xt � Oxt j t�1/.ht.xt; rt/� Oyt j t�1/

|

'
�
xtI Oxt j t�1;Pt j t�1

�
' .rtI 0;Rt/ dxt drt .

e. (Optimal) Kálmán gain: Kt D 	 tS�1
t .

f. Updated (posterior) state estimate: Oxt j t D Oxt j t�1 C KtQyt .
g. Updated (posterior) error covariance: Pt j t D Pt j t�1 � Kt	 tK

|

t .

Ito and Xiong [60] were the first to point out the considerable generality of this
approach. They showed that the unscented Kalman filter, then recently discovered
by Julier and Uhlmann, [62, 63, 128], remedying the deficiencies of the extended
Kálmán filtering approach, could be regarded as a special case of the Gaussian filter.
The integrals appearing in the Gaussian filter can be computed by means of various
powerful quadrature and cubature methods [3, 133] when they cannot be computed
analytically. The Gauss–Hermite Kálmán filter (GHKF) and cubature Kálmán filter
(CKF) can also be seen as approximations of the Gaussian filter. For details, see
[115, Chap. 6].

28.11 Parameter Estimation

Let us now suppose that our state-space model is parameterised by some parameter
vector � 2 R

d� , d� 2 N
�. For example, in the case of the linear-Gaussian state-

space model of the Kálmán filter—equations (28.8) and (28.9)—this would amount
to saying that (at least some of) Ft, at, Wt, Qt, Ht, bt, Vt, Rt are actually functions
of �: Ft.�/, at.�/, Wt.�/, Qt.�/, Ht.�/, bt.�/, Vt.�/, Rt.�/. Similarly for all the
other special cases of the general state-space model. We may not know the true value
of this parameter. How do we estimate it? In other words, how do we calibrate the
model?

Suppose that we have a time series of observations (historical, generated, etc.),
y1; y2; : : : ; yT , T 2 T D N

�, and we would like to use this data to calibrate
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the state-space model. The frequentist approach to parameter estimation relies
on the (joint) probability density function of the observations, which depends on
the parameters, p. y1; y2; : : : ; yT I�/. We can regard this as a function of � with
y1; y2; : : : ; yT fixed, p. y1; y2; : : : ; yT I�/ WD L .�/—the likelihood function. In the
context of filtering this likelihood function is referred to as marginal likelihood,
since the hidden states, x1; x2; : : : ; xT , are margined out. Our goal, then, is to
find the maximum likelihood estimator (MLE), O�ML, which is that value of � that
maximises the likelihood function. In most practical applications one needs to
resort to numerical methods, perhaps quasi-Newton methods, such as Broyden-
Fletcher-Goldfarb-Shanno (BFGS) [42, Sect. 4.5.2], to find O�ML. Each evaluation
of the objective function, L .�/, requires us to run the stochastic filter over the
observations y1; y2; : : : ; yT , which, depending on the state-space model, can be quite
costly computationally. By the chain rule (i), and since we are dealing with a Markov
chain (ii),

p. y1; : : : ; yT/
(i)D

TY

tD1
p. yt j y0; : : : ; yt�1/

(ii)D
TY

tD1

Z
p. yt j xt/p.xt j y0; : : : ; yt�1/ dxt:

Here we have omitted the dependence of all the probability densities on � , e.g.
we should have really written p. y1; : : : ; yT I�/. For the Kálmán filter, this becomes
[50, 51]

p. y1; : : : ; yT/ D
TY

tD1

Z
'
�

ytI Htxt C bt;VtRtV
|
t

�
'
�
xtI Oxt j t�1;Pt j t�1

�
dxt

D
TY

tD1
'
�

ytI Ht Oxt j t�1 C bt;VtRtV
|
t C HtPt j t�1H|

t

�

D
TY

tD1
'
�

ytI Oyt j t�1;St
�
:

In fact, the final equation holds for the other related filters, including the extended
Kálmán and Gaussian assumed density filter (up to the approximation error). Since
the natural logarithm function is increasing, maximising the log-likelihood function,
ln.L .�//, is equivalent to maximising L .�/. The log-likelihood, then, is given by

ln.L .�// D ln

 
TY

tD1
'
�

ytI Oyt j t�1;St
�
!

D
TX

tD1
ln
�
'
�

ytI Oyt j t�1;St
��

D �1
2

 

T � dY � ln.2�/C
TX

tD1
ln.det.St//C

TX

tD1
QyT

t S�1
t Qyt

!

:
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(Recall that dY is the number of elements in each observation vector yt.) Notice that,
after receiving each observation yt, we can update the likelihood by adding to it the
term

�1
2

�
dY � ln.2�/C ln.det.St//C QyT

t S�1
t Qyt

�
;

having initialised it to zero before receiving any observations, as Qyt D Qyt.�/ and
St D St.�/ are byproducts of running the update (correction) step of the filter.
This log-likelihood is referred to as the prediction error decomposition form in [50,
p. 126]. Further details on its use for statistical inference about unknown parameters
can be found in [46].

For the particle filter, we can estimate the log-likelihood function from the non-
normalised weights:

p. y1; : : : ; yT/ D
TY

tD1

Z
p. yt j xt/p.xt j y0; : : : ; yt�1/ dxt �

TY

tD1

 
1

M

MX

kD1
!
.k/
t

!

;

whence

ln.L .�// D ln

(
TY

tD1

 
1

M

MX

kD1
!
.k/
t

!)

D
TX

tD1
ln

 
1

M

MX

kD1
!
.k/
t

!

: (28.13)

This was first proposed by Kitagawa [73, 74] for the purposes of approximating O�ML.
Malik et al. [109] point out the practical difficulties which result when using (28.13)
as an objective function in an optimiser. In the resampling (or selection) step of the
particle filter, we are sampling from a discontinuous empirical distribution function.
Therefore ln.L .�// will not be continuous as a function of � . To remedy this, they
rely on an alternative, continuous, resampling procedure described in [91]. A quasi-
Newton method is then used to find O�ML for the parameters � D .	; �; �2v ; �; p; �

2
J /

|

of the SVLJ model discussed in Sect. 28.4.

28.12 Relationship with Markov Chain Monte Carlo
Methods

Let us briefly discuss how filtering methods relate to Markov chain Monte Carlo
methods (MCMC)9—a vast subject in its own right, therefore our discussion will
be cursory at best. The technique takes its origin from the work of Nicholas

9“Markov chain” in MCMC refers to the Markov chains that are produced in algorithms such as
the Gibbs sampler (see below) rather than the Markov chains that we talked about in Sect. 28.2.
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Metropolis (1915–1999), Marshall N. Rosenbluth (1927–2003) and his first wife,
Arianna W. Rosenbluth, Edward Teller10 (1908–2003) and his wife, Augusta H.
Teller (1909–2000), at Los Alamos on simulating a liquid in equilibrium with its gas
phase [97]. The discovery came when its authors realised that, instead of simulating
the exact dynamics, they could simulate a certain Markov chain with the same
equilibrium distribution.

Proceeding along the lines of [72], Meyer and Yu [99] demonstrate how MCMC
techniques can be used to estimate the parameters of the SVL model. They calibrate
the parameters to the time series of observations of daily mean-adjusted log-returns,
y1; : : : ; yT . They obtain the joint prior density

p.�; x0; : : : ; xT/ D p.�/p.x0 j �/
TY

tD1
p.xt j xt�1;�/

by successive conditioning. Here � D .	; �; �2v ; �/
| is, as before, the vector of the

model’s parameters. They assume prior independence of the parameters and choose
the same priors as in [72] for	, �, and �2v , and a uniform prior for �. The observation
model (28.2) and the conditional independence assumption give the likelihood

p. y1; : : : ; yT j � ; x0; : : : ; xT/ D
TY

tD1
p. yt j xt/;

and the joint posterior distribution of the unobservables (the parameters � and the
hidden states x0; : : : ; xT ; in the Bayesian perspective these are treated identically and
estimated in a similar manner) follows from Bayes’s theorem; for the SVL model,
this posterior satisfies

p.�; x0; : : : ; xT j y1; : : : ; yT/ / p.	/p.�/p.�2v /p.�/

TY

tD1
p.xtC1 j xt; 	; �; �

2
v /

TY

tD1
p. yt j xtC1; xt; 	; �; �

2
v ; �/;

where p.	/, p.�/, p.�2v /, p.�/ are the appropriately chosen priors,

xtC1 j xt; 	; �; �
2
v 
 N

�
	.1 � �/C �xt; �

2
v

�
;

yt j xtC1; xt; 	; �; �
2
v ; � 
 N

�
�

�v
ext=2 .xtC1 � 	.1 � �/� �xt/ ; e

xt .1 � �2/

�
:

10Edward Teller is known in the West as “the father of the hydrogen bomb”.
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Meyer and Yu use the software package BUGS11 [87, 122] to represent the
resulting Bayesian model as a directed acyclic graph (DAG), where the nodes
are either constants (denoted by rectangles), stochastic nodes (variables that are
given a distribution, denoted by ellipses), or deterministic nodes (logical functions
of other nodes); the arrows either indicate stochastic dependence (solid arrows)
or logical functions (hollow arrows). This graph helps visualise the conditional
(in)dependence assumptions and is used by BUGS to construct full univariate
conditional posterior distributions for all unobservables. It then uses Markov chain
Monte Carlo algorithms to sample from these distributions.

The algorithm based on the original work [97] is now known as the Metropo-
lis algorithm. It has been generalised by Hastings (1930–2016) to obtain the
Metropolis-Hastings algorithm [54] and further by Green to obtain what is known
as the Metropolis-Hastings-Green algorithm [45]. A popular algorithm based on a
special case of the Metropolis-Hastings algorithm, known as the Gibbs sampler,
was developed by the brothers Geman [39] and, independently, Tanner and Wong
[125].12 It was further popularised by Gelfand and Smith [38]. Gibbs sampling
and related algorithms [41, 111] are used by BUGS to sample from the univariate
conditional posterior distributions for all unobservables.

As a result we perform Bayesian estimation—obtain estimates of the distribu-
tions of the parameters 	, �, �2v , �—rather than frequentist estimation, where a
single value of the parameters vector, which maximises the likelihood, O�ML, is pro-
duced, as we saw in Sect. 28.11. Stochastic filtering, sometimes in combination with
MCMC, can be used for both frequentist and Bayesian parameter estimation [18].
Filtering methods that update estimates of the parameters online, while processing
observations in real-time, are referred to as adaptive filtering (see [20, 101, 116, 127]
and references therein).

28.13 Prediction

The Kálmán filter equations provide a natural way of predicting the observation
yTC1 given all the observations up to time T, y1; y2; : : : ; yT , T 2 T D N

�. Indeed,
the predicted state estimate equation yields

OxTC1 j T D FTC1 OxT j T C aTC1;

while the predicted observation equation gives us the one-step-ahead prediction

OyTC1 j T D HTC1 OxTC1 j T C bTC1:

11An acronym for Bayesian inference Using Gibbs Sampling.
12Sometimes the Gibbs sampler is referred to as data augmentation following this paper.
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The innovation is precisely the difference between the actual observation and the
corresponding one-step-ahead prediction.

The l-step-ahead prediction, l 2 N
�, is obtained by applying the predicted state

estimate equation l times, then taking expectations, to obtain

xTCl j T D
0

@
lY

jD1
FTCj

1

A xT j T C
l�1X

jD1

0

@
lY

iDjC1
FTCi

1

A aTCj C aTCl;

then applying the predicted observation equation,

yTCl j T D HTCl OxTCl j T C bTCl:

In practice, including software implementations, the easiest way to obtain the l-step
ahead prediction (and associated uncertainties) is by applying the prediction step of
the filter l times, then running the prediction observation, innovation, and innovation
covariance substeps of the update step.

To obtain one-step-ahead predictions in particle filters [56, p. 199], [108], we
begin by estimating the one-step ahead density

p. yTC1 j y1; : : : ; yT/ �
MX

iD1

(
1

K

KX

kD1
p�TC1

. yTC1 j Ox.i;k/TC1 j T/

)

�
.i/
T :

Here Ox.i;k/TC1 j T are drawn from �TC1.� j Ox.i/T j T/. In [108] the authors recommend
setting K to a suitable number greater than one. l-step-ahead predictions can
be obtained by propagating the particles through the Markov transition kernels
�TC1; : : : ; �TCl and then using the result to approximate p. yTCl j y1; : : : ; yT/. It is
then possible to sample from the resulting mixture distribution.

28.14 Diagnostics

When the true state is known, e.g. when applying the filters to simulated data, the
root mean square error (RMSE) can be computed for each time T as

vuu
t

TX

tD1
kxtrue

t � Oxt j tk22

and is a very useful diagnostic. Another useful value to look at is the log-likelihood
of Sect. 28.11. The RMSE and log-likelihood are useful for comparing different
filtering algorithms or different parameterisations of the same filtering algorithm.
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To assess the health of the Kálmán (extended Kálmán, Gaussian assumed
density) filter state-space model, we can look at the standardised residuals,

Qyst
t WD S�1=2

t Qyt:

In many cases, dY D 1, so we simply have the scalar equation Qyst
t D Qyt=

p
St.

Otherwise, the innovation covariance matrix, St, should be symmetric and positive
definite, so that13

S�1=2
t D Ut


�1=2
t U|

t ;

where 
t is the diagonal matrix of all the eigenvalues of St, and Ut is the
orthogonal matrix whose columns are the normalised eigenvectors associated with
the eigenvalues in the corresponding diagonal entries of 
t. The standardised
residuals Qyst

t should be uncorrelated and follow the standard (possibly multivariate,
if dY > 1) normal distribution. In other words, the sequence Qyst

t should constitute
white noise.14 We can use, for example, the Ljung-Box test [86] to confirm that the
residuals do indeed have zero autocorrelation. We can use the standard normality
tests, such as the Q-Q plot or the Jarque-Bera test [7], to detect deviations from
normality, which indicates that the model is misspecified. The most basic (but still
useful) test consists in visually inspecting the plot of Qyst

t over time, the so-called
standardised plot.

For a comprehensive treatment of Kálmán filter diagnostics and model selection
we refer the reader to [50, Chap. 5].

The degeneracy (see Sect. 28.3) of particle filters can be measured by an estimate
of the effective sample size [92, Sect. 3.5.2], [106]:

effMt D 1
PM

iD1.br�
.i/
t /

2
:

A smaller effMt indicates a larger variance of the weights, i.e. more degeneracy, at
time t. In the extreme cases, when, for all i D 1; : : : ;M, br�

.i/
t D 1

M , effMt D M;
when, for all but one particle the weights are zero, effMt D 1. Thus we could monitor
effMt and spot the degeneracy when it drops below a certain threshold; [92] suggests
M=2.

13By the result that the mathematicians calls the spectral theorem and mechanical engineers the
principal axis theorem. As is well known, all the eigenvalues of a positive definite matrix are
positive.
14The innovations, Qyt, by construction, form the innovation process of Wold’s decomposition. For
this reason, the Kálmán and related filters are known as whitening filters: the possibly correlated
sequence of observations yt is transformed into a white noise process.
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28.15 Further Reading

The subjects of state-space models and stochastic filtering have been studied from
different angles by stochastic analysts, mechanical and electrical engineers, statis-
ticians and econometricians, both frequentist and Bayesian. In our brief overview
of the subject we have included references to a very small subset of papers on the
subject. In this section we shall provide some further bibliographical references—
to textbooks and monographs. Our list will of necessity be very incomplete, so we
apologise in advance.

Among the first books on state-space models written from an engineering
standpoint are [2, 61, 114]. A statistician’s (econometrician’s) early expositions of
the subject can be found in [50, 134]. From the Bayesian standpoint, the subject is
examined in [130] and later, in more detail, in [35]. Other statistical texts examining
state-space modelling include [29, 30, 47]. Applications of state-space models in
economics and finance are discussed in depth in the monograph [137]. A look at
finance-specific applications of stochastic filtering oriented towards the practitioner
is given in [10]. Practical applications to financial multi-factor models are discussed
in [23].

Classic texts on the deeper mathematical aspects of stochastic filtering
include [24, 64]. A more recent exposition of the technicalities of the subject
from the standpoint of stochastic analysis is [5]. One of the de facto standard
introductory textbooks on stochastic analysis [104] dedicates an individual chapter
(Chap. 6) to the subject. Bucy, co-inventor of linear-Gaussian filtering, has published
his lectures on the mathematics of filtering and Riccati equations [14]. [115] is a
recent graduate-level introduction to the mathematics of both linear and nonlinear
filtering, whereas [32] is a primer on the mathematics specifically of the Kálmán
filter; [19] is an update on an early (1987) text on Kálmán filtering with applications.
A straightforward introductory tutorial on Kálmán filtering is available online [129].

The applied and computational aspects are discussed in, inter alia, [55, 119].
Classic texts on the subject include an electrical engineer’s [93]. These texts look
at Kálmán filtering in much greater depth than is possible here. Particle filtering
methods are reviewed in [27, 28]. See [26] for a comparison of resampling methods.
A visual explanation of how they work can be found in [33, p. 407].

MCMC methods were only considered in passing, so we cannot provide a
detailed bibliography here. A good, fairly succinct introduction to MCMC is [40].
For details we refer the reader to [13, 22, 37, 137]. For an introduction to applications
of MCMC in econometrics, see [80]. Many practical details of Bayesian analysis
of stochastic volatility models are mentioned in [99]. The free BUGS, WinBUGS,
OpenBUGS and JAGS remain in active use in many fields outside econometrics.15

We refer the reader to WinBUGS documentation [87], a fairly detailed tutorial [9],
and a text [103] intended for practitioners.

15According to [71, p. 44], these software products are “the most widely used MCMC engine[s]
currently available”.
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Chapter 29
Using Python to Analyse Financial Markets

Saeed Amen

Abstract In this chapter we discuss the benefits of using Python to analyse
financial markets. We discuss the parallels between the stages involved in solving
a generalised data science problem, and the specific case of developing trading
strategies. We outline the general stages of developing a trading strategy. We briefly
describe how open source Python libraries finmarketpy, findatapy and chartpy aim to
tackle each of these specific stages. In particular, we discuss how abstraction can be
used to help generate clean code for developing trading strategies, without the low
level details of data collection and data visualisation. Later, we give Python code
examples to show how we can download market data, analyse it, and how to present
the results using visualisations. We also give an example of how to implement a
backtest for a simple trend following trading strategy in Python using finmarketpy.

29.1 Why Analyse Markets in Python?

When analysing financial markets, traders are often faced with conflicting objec-
tives. Furthermore, these objectives can vary significantly between traders. For
high frequency traders, it is crucial that they can quickly digest market data and
execute trades based on that analysis as soon as possible. This necessitates the use
of languages such as Java or C++. Furthermore, in some cases they might turn to
more specialised programming techniques such as using GPU or FPGA. For traders
active at lower frequencies, the speed of execution is less important. However, what
is common amongst all traders is that they all need to develop trading strategies
before they put them into production. The panacea for traders is a language which
allows them to quickly develop a trading strategy and put it into production. C++
could be one candidate? It compiles down to machine code, however, it can be time
consuming for implementation. R is popular amongst statisticians and boasts a very
wide array of statistical libraries. However, it is slow and also not ideal for the
implementation of large scale systems.
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In this context, Python can be seen as a language of compromises. First, it is
a general purpose language, like C++ or Java (unlike R). It is obviously not as
quick as C++ or Java, hence is not likely to be a candidate for a high frequency
trading production system. However, it is possible to engineer large libraries in
Python, given it has lots of features that implement the object oriented paradigm
of coding. Python can call C++ libraries, if there are specific bottlenecks in your
code that need to be very fast. There’s also the Cython[5] library, which enables you
to write Python-like code which compiles down into machine code. The cloud has
also brought down the cost of computation, so if we want to speed up our Python
code and we can parallelise it, it is relatively inexpensive to throw more cores and
memory at it. Speed is not purely a matter of execution but also the time it takes
to develop an idea. From the perspective of development time, Python is a “quick”
language.

29.2 Python Data Analysis Ecosystem

Another benefit of using Python for doing market data analysis is that there is also
a rich ecosystem of Python libraries that deal with data analysis. Here we describe
some of the most well known libraries used in Python based data science, beginning
with the SciPy stack.

29.2.1 Core Libraries (SciPy Stack)

• IPython [9]—Interactive console for Python (part of Jupyter—which also sup-
ports many other languages)

• NumPy [11]—Adds support for high level efficient operations on matrices, which
are much quicker than using for loops in Python

• pandas [12]—Time series library, which grew out of work at AQR, which
provides common operations for time series, such as aligning, joining etc.

• SciPy library [17]—Operations for numerical analysis and optimisation
• Sympy [18]—For symbolic mathematical operations

29.2.2 Visualisation

• bokeh [3]—JavaScript based library for graphics, similar to plotly.
• matplotlib [10]—Most well known Python based visualisation library. Whilst the

interface can seem complex, it is a very flexible library.
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• plotly [13]—JavaScript based visualisation library, which also allows sharing of
charts to the web or in a private environment. Also accessible from many other
languages, including R and Matlab.

29.2.3 Machine Learning

• PyMC3 [14]—Probabilistic programming in Python
• scikit-learn [16]—Most well known library for Python based machine learning
• TensorFlow [19]—Library for machine learning, which has been open sourced

by Google

29.2.4 Front-Ends

• Flask [8]—Micro web framework to provide a relatively straightforward front
end for Python computations

• xlwings [20]—Uses Excel as a front end for Python based computation

29.2.5 Databases and Market Data

• arctic [1]—Man-AHL’s open sourced Python library provides a front end for
efficient storing of pandas dataframes in MongoDB

• BLPAPI [2]—Bloomberg’s Open Source API for accessing Bloomberg market
data

• Quandl [15]—Open source market data provider

29.3 Parallels Between Solving Data Science Problems
and Developing Trading Strategies

If we think of any data science problem, it tends to involve several steps. Below, we
outline these steps albeit from the perspective of developing a trading strategy.

• Step 1—The first step is in a sense the most important. This involves formulating
our hypothesis. In the case of developing a trading strategy, this involves
brainstorming to think of a trading rationale. Is our trading strategy based on
some sort of traditional factor, such as trend following (and if so, what is the
rationale for this factor)? Are we trying to model a certain trader behaviour, such
as specific flows? We can think of the rationale as effectively pruning the search
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space of possible trading strategies. A well thought out rationale can also help
to reduce the chances that our final result is the result of excessive data mining
(where “help” is the key word!). In practice, coming up with a hypothesis, is
something where real world knowledge of markets and a deep experience of what
price action can mean is most important.

• Step 2—Once we have our hypothesis, we need data. Typically, we need price
data at the very least to compute the returns of the market asset we wish to trade.
In many cases, we need other data to generate a trading signal. This can range
from fundamental data on the economy to more unusual data sources such as
news data and social media.

• Step 3—With both a hypothesis and data, we can now create our trading signal
and also backtest our trading rule if we are developing a systematic trading
rule. This involves looking at historical data to see how well our trading signal
performed. We can split up our analysis between in-sample and out-of-sample
sections Alternatively, we might be doing market analysis to inform our decision
a discretionary trading decision.

• Step 4—Lastly, once we have completed our backtest, we need to present our
results, in written form, along with some data visualisation. A well thought out
visualisation can tell us more about any trading rule than a massive table of
numbers. Furthermore, the importance of visualisation is not purely confined to
the research stage. Understanding how our trading model is performing live is
key in helping us to risk manage it, and make adjustments if necessarily over
time.

29.4 Building a Python Markets Ecosystem

Over a year ago, I started a Python based library, pythalesians to facilitate my own
analysis of markets, which centres around building systematic trading strategies.
I eventually open sourced that library, and subsequently split it into several more
specialised rewritten libraries listed below. In general, smaller more specialised
libraries are more successful as open source projects. It is easier for potential users to
understand what a library does when it is smaller and it is easier to identify how each
library helps with solving each stage of the data science problem. When a library
is very large and encompasses too much functionality, it can become difficult to
understand precisely what it does. It is also easier to find contributors to an open
source project when its purpose is better defined. The libraries are built upon many
other open source Python libraries in particular from the SciPy stack.

• finmarketpy (for backtesting)[7]
• findatapy (for collecting market data)[6]
• chartpy (for data visualisation) [4]



29 Using Python to Analyse Financial Markets 547

29.5 Designing a Financial Market Research Platform:
Abstraction Is the Key

Whilst I’ve extolled the virtues of Python, for having a rich data science ecosystem,
in many cases we can have many choices for which underlying library to use. For
example, if we wish to visualise data, we could for example use Plotly, Bokeh
or Matplotlib (and this is a curtailed list). Each of these libraries has a different
API. If we want to switch between these libraries, we would need to rewrite all our
code. The same is true if we are downloading data from multiple sources, each data
provider has a different API. If we end up using multiple APIs for visualisation and
data collection, our code could become very messy indeed.

Furthermore, it will make it difficult to concentrate on what is the most important
part of our problem, creating a trading signal. In finmarketpy, findatapy and chartpy,
I’ve used abstraction to hide away the low level APIs for visualisation and data
collection. In their place, I’ve create a common higher level API. Hence, to the end
user, downloading data from Bloomberg or Quandl should look very similar, save
for the change of a single keyword. Hence, it allows the trader to concentrate on the
more pressing issue of developing a trading algorithm, rather than fiddling around
with lower level details. This approach also makes it easier to maintain, in particular
when we want to add new data sources or ways of visualising data.

29.6 Event Driven Code for Backtesting or Not?

Furthermore, for common tasks such as backtesting, I’ve also created templates that
make it quicker to generate new ideas, simply define the signal and the assets which
are traded. When creating a backtesting environment, the key question is whether
you want to make it event driven or not. By event driven, we mean that every new
tick of market data triggers a computation which decides whether or not to execute
a trade. From a production perspective, this is preferable, because we can use the
same code for production or backtesting. If we are simply using a system to research
a trading strategy (or trading at low frequencies), it is possible to adopt a simpler
approach which involves collecting all our signal data at the outset and all our return
data, and multiplying this data together to generate a historical backtest. This is the
approach I’ve adopted for finmarketpy. In languages like Python, there will also be
significant speed increase in doing this, given we can vectorise our code more easily
in this approach, exploiting libraries like NumPy. Event driven code, by contrast
would be much slower in a language such as Python.
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29.7 Collecting Market Data and Visualising

We now demonstrate how we can use Python to collect market data using findatapy,
using several external sources including Bloomberg.

We use pandas dataframes as our structures to hold the time series data. In our
first example, we collect daily data from Quandl for S&P500, which is a free data
source. The Market class acts as an interface to lower level market data APIs. We
construct a MarketDataRequest object to describe the nature of the market data we
want to download.

from findatapy.market import MarketDataRequest,
Market, MarketDataGenerator

market = Market(market_data_generator
=MarketDataGenerator())

md_request = MarketDataRequest(
start_date="01 Jan 2005",
data_source=’quandl’,
tickers=[’S&P500’],
fields=[’close’],
vendor_tickers=[’YAHOO/INDEX_GSPC’],
vendor_fields=[’Close’])

df_sp = market.fetch_market(md_request)

We now repeat the exercise for Bloomberg for S&P500, which requires a valid
Bloomberg data license.

md_request = MarketDataRequest(
start_date="01 Jan 2005",
data_source=’bloomberg’,
tickers=[’S&P500’],
fields=[’close’],
vendor_tickers=[’SPX Index’],
vendor_fields=[’PX_LAST’])

df_sp_bbg = market.fetch_market(md_request)

As we can see that the code is virtually identical in both cases, the only difference
are the vendor specific tickers the data source keyword. We can also download tick
data, this time from a retail FX broker, using similar code.

md_request = MarketDataRequest(
start_date=’14 Jun 2016’,
finish_date=’15 Jun 2016’,
category=’fx’,
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fields=[’bid’, ’ask’],
freq=’tick’,
data_source=’dukascopy’,
tickers=[’EURUSD’])

df_retail = market.fetch_market(md_request)

Now that we have seen how we can download market data, we discuss ways in
which we can analyse and plot this data. Here we show how we can use Python
to visual time series. In this example, we collect intraday USD/JPY data from
Bloomberg and also the event times for the US employment report for the past few
months from Bloomberg.

import pandas, datetime
from datetime import timedelta
start_date = datetime.date.today()-timedelta(days=180)

md_request = MarketDataRequest(
start_date=start_date,
category=’fx’,
freq=’intraday’,
data_source=’bloomberg’,
tickers=[’EURUSD’],
fields=[’close’],
cache_algo=’internet_load_return’)

df_fx_bbg = market.fetch_market(md_request)

from findatapy.timeseries import Calculations
calc = Calculations()
df_fx_bbg = calc.calculate_returns(df_fx_bbg)

# fetch NFP times from Bloomberg
md_request = MarketDataRequest(

start_date=start_date,
finish_date=finish_date,
category="events",
freq=’daily’,
data_source=’bloomberg’,
tickers=[’NFP’],
fields=[’release-date-time-full’],
vendor_tickers=[’NFP TCH Index’],
cache_algo=’internet_load_return’)

df_event_times = market.fetch_market(md_request)
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df_event_times =
pandas.DataFrame(index=df_event_times

[’NFP.release-date-time-full’])

We now have the raw data available, the next step is to do an event study, where
we analyse the moves in USD/JPY during the 3 h following the release of the US
employment report. We also do the same for intraday volatility

from finmarketpy.economics import EventStudy

df_event = EventStudy().
get_intraday_moves_over_custom_event(df_fx_bbg,

df_event_times)
df_event[’Avg’] = df_event.mean(axis=1)

Finally, we can plot (see Fig. 29.1) the various event study time series, using the
popular matplotlib library. Alternatively, if we were displaying on a webpage, we
might prefer the plotly library. We can see that the bulk of the volatility occurs over
the actual data release and quickly dissipates.

from chartpy import Chart, Style

style = Style()
style.scale_factor = 3
style.file_output = ’eurusd-nfp.png’
style.title = ’EURUSD spot moves over recent NFP’

style.color = ’Blues’; style.color_2 = []
style.y_axis_2_series = []
style.display_legend = False

style.color_2_series = [df_event.columns[-2],
df_event.columns[-1]]

style.color_2 = [’red’, ’orange’]
style.linewidth_2 = 2
style.linewidth_2_series = style.color_2_series

chart = Chart(engine=’matplotlib’)
chart.plot(df_event * 100, style=style)
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Fig. 29.1 EUR/USD moves during 3 h following recent the US employment reports

Another popular analysis, involves understanding the seasonality of an asset. We
can use S&P500, which we downloaded earlier, together with the Seasonality class
which is part of finmarketpy (Fig. 29.2).

from finmarketpy.economics import Seasonality
df_ret = calc.calculate_returns(df_sp)
day_of_month_seasonality =

Seasonality().bus_day_of_month_seasonality(df_ret,
partition_by_month=False)

day_of_month_seasonality =
calc.convert_month_day_to_date_time(

day_of_month_seasonality)

style = Style()
style.date_formatter = ’%b’
style.title = ’S&P500 seasonality’
style.scale_factor = 3
style.file_output = "sp-seasonality.png"

chart = Chart()
chart.plot(day_of_month_seasonality, style=style)
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Fig. 29.2 S&P500 plotted on a seasonal basis

29.8 Visualising a Volatility Surface

Sometimes, more complicated plots might be relevant. One example of this can be
seen with FX volatility. Implied volatility is quoted for a range of both strike and
tenor combinations. An efficient way to plot this is using a surface. Below, we show
how to download FX volatility surface data from Bloomberg and how to plot it (see
Fig. 29.3) in chartpy using a plotly backend.

md_request = MarketDataRequest(
start_date=datetime.datetime.now()-timedelta(days=1),
data_source=’bloomberg’,
cut=’NYC’,
category=’fx-vol-market’,
tickers=[’EURUSD’])

df_vol = market.fetch_market(md_request)

from findatapy.market import FXVolFactory

df_vs = FXVolFactory().extract_vol_surface_for_date(
df_vol, ’EURUSD’, -1)
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from chartpy import Chart, Style

style = Style(title="EURUSD vol surface",
source="chartpy", color=’Blues’,

file_output = ’eurusd-volsurface.png’)

chart = Chart(df=df_vs, chart_type=’surface’,
style=style)

chart.plot(engine=’plotly’)
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Fig. 29.3 EUR/USD implied volatility surface in mid-October 2016
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29.9 Backtesting a Trading Strategy

In this section we show how to create a backtest for a basic trend following style
strategy for FX. We extend the abstract class TradingModel to create our backtest,
creating the TradingModelFXTrend_Example class. First, we do all the appropriate
imports of other Python modules that we shall use later. In the init function, we
define some parameters for where we want to output our results, the name of our
strategy and also the underlying plotting engine we shall use for displaying the
results.

import datetime

from findatapy.market import Market,
MarketDataGenerator, MarketDataRequest

from finmarketpy.backtest import TradingModel,
BacktestRequest

from finmarketpy.economics import TechIndicator

class TradingModelFXTrend_Example(TradingModel):
def __init__(self):

super(TradingModel, self).__init__()

self.market = Market(market_data_generator
=MarketDataGenerator())

self.DUMP_PATH = ’’
self.FINAL_STRATEGY = ’FX trend’
self.SCALE_FACTOR = 1
self.DEFAULT_PLOT_ENGINE = ’matplotlib’
self.br = self.load_parameters()

return

Now we define the parameters for the backtest including the start and end date.
We also define leverage parameters here on the signal and portfolio level. For each
asset we define a volatility target of 10%. The idea behind this is that we equalise the
risk in each asset we are trading. If we do not do this, we are essentially allocating
more risk in the higher volatility assets. We also apply a final volatility target for the
whole portfolio too. In practice, given we don’t know what future realised volatility
will be, we are unlikely to hit our target exactly.

def load_parameters(self):

br = BacktestRequest()

br.start_date = "04 Jan 1989"
br.finish_date = datetime.datetime.utcnow()
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br.spot_tc_bp = 0.5
br.ann_factor = 252
br.plot_start = "01 Apr 2015"

br.calc_stats = True
br.write_csv = False
br.plot_interim = True
br.include_benchmark = True

# have vol target for each signal
br.signal_vol_adjust = True
br.signal_vol_target = 0.1
br.signal_vol_max_leverage = 5
br.signal_vol_periods = 20
br.signal_vol_obs_in_year = 252
br.signal_vol_rebalance_freq = ’BM’
br.signal_vol_resample_freq = None

# have vol target for portfolio
br.portfolio_vol_adjust = True
br.portfolio_vol_target = 0.1
br.portfolio_vol_max_leverage = 5
br.portfolio_vol_periods = 20
br.portfolio_vol_obs_in_year = 252
br.portfolio_vol_rebalance_freq = ’BM’
br.portfolio_vol_resample_freq = None

# tech params
br.tech_params.sma_period = 200

return br

We load up all the market data next. For simplicity we shall be using spot data
from Quandl. We do note however, that in practice, using spot data for calculation
of FX returns is only an approximation given it doesn’t include carry.

def load_assets(self):
full_bkt = [’EURUSD’, ’USDJPY’, ’GBPUSD’, ’AUDUSD’,

’USDCAD’, ’NZDUSD’, ’USDCHF’, ’USDNOK’, ’USDSEK’]

basket_dict = {}

for i in range(0, len(full_bkt)):
basket_dict[full_bkt[i]] = [full_bkt[i]]

basket_dict[’FX trend’] = full_bkt
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br = self.load_parameters()
self.logger.info("Loading asset data...")
vendor_tickers = [’FRED/DEXUSEU’, ’FRED/DEXJPUS’,

’FRED/DEXUSUK’, ’FRED/DEXUSAL’, ’FRED/DEXCAUS’,
’FRED/DEXUSNZ’, ’FRED/DEXSZUS’, ’FRED/DEXNOUS’,
’FRED/DEXSDUS’]

md_request = MarketDataRequest(
start_date = br.start_date,
finish_date = br.finish_date,
freq = ’daily’,
data_source = ’quandl’,
tickers = full_bkt,
fields = [’close’],
vendor_tickers = vendor_tickers,
vendor_fields = [’close’],
cache_algo = ’internet_load_return’)

asset_df = self.market.fetch_market(md_request)
spot_df = asset_df
spot_df2 = None

return asset_df, spot_df, spot_df2, basket_dict

Next, we calculate the signal. This involves calculating a 200D simple moving
average. If spot is above the moving average it triggers a buy signal and if it is below,
we define a sell signal. This is predefined signal, so it can be defined with very few
lines of code.

def construct_signal(self, spot_df, spot_df2,
tech_params, br):

tech_ind = TechIndicator()
tech_ind.create_tech_ind(spot_df, ’SMA’,

tech_params)
signal_df = tech_ind.get_signal()

return signal_df

We also define a benchmark for our trading strategy which is simply being long
EUR/USD in this case (mainly for simplicity).

def construct_strategy_benchmark(self):
tsr_indices = MarketDataRequest(
start_date = self.br.start_date,

finish_date = self.br.finish_date,
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freq = ’daily’,
data_source = ’quandl’,
tickers = ["EURUSD"],
vendor_tickers=[’FRED/DEXUSEU’],
fields = [’close’],
vendor_fields = [’close’],
cache_algo = ’internet_load_return’)

df = self.market.fetch_market(tsr_indices)
df.columns = [x.split(".")[0] for x in df.columns]

return df

We can now kick off the actual calculation, by instantiating the Trading-
ModelFXTrend_Example class and running a few commands to do the number
crunching. We also plot some of the results.

if __name__ == ’__main__’:
model = TradingModelFXTrend_Example()
model.construct_strategy()
model.plot_strategy_pnl()

We display some out the plot output in (see Fig. 29.4) from our backtest.
As a next step we do some sensitivity analysis using the TradeAnalysis class from

finmarketpy. We examine how much transaction costs impact returns. For higher
frequency strategies, transaction costs can make up a larger proportion of returns,
given they trade more rapidly.

Cuemacro FX CTA Port Ret = 5.4% Vol = 12.7% IR = 0.43 Dr = –30.2% Kurt = 0.3
Source: Web
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Fig. 29.4 Cumulative returns of FX trend following strategy
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from finmarketpy.backtest import TradeAnalysis
ta = TradeAnalysis()
tc = [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0]
ta.run_tc_shock(strategy, tc = tc)

We also apply a sensitivity analysis, to understand how removing volatility
targeting impacts returns. We see in Fig. 29.5 that using volatility targeting signifi-
cantly improves risk returns for this strategy.

parameter_list = [{’portfolio_vol_adjust’: True,
’signal_vol_adjust’ : True},
{’portfolio_vol_adjust’: False, ’signal_vol_adjust’

: False}]
pretty_portfolio_names = [’Vol target’,

’No vol target’]
parameter_type = ’vol target’

ta.run_arbitrary_sensitivity(strategy,
parameter_list=parameter_list,
pretty_portfolio_names=pretty_portfolio_names,
parameter_type=parameter_type)

Whenever, you create a trading strategy, it can be useful to apply sensitivity
analysis to our parameters, to try to understand how robust the strategy is. If a
strategy only “works” for a very specific set of parameters, it could suggest that
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Fig. 29.5 Sensitivity analysis of FX trend depending on vol targeting
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we have gone a bit overboard on data mining (unless we can find a very good
explanation to why other parameters should not work).

29.10 Conclusions

We have discussed the various benefits of using Python to analyse financial markets.
Whilst its speed of execution is slower than languages such as Java or C++, it has a
rich ecosystem for data science. It is also quicker to prototype ideas in Python. More
broadly we discussed the general steps we adopt when creating a trading strategy,
which can be viewed as a data science problem. Later, we briefly discussed our
approach to building an Python based ecosystem for developing trading strategies
and analysing market data. Lastly, we gave some practical Python based examples
showing how to download and analyse data. We also went through an example
demonstrating how to create a simple trend following trading strategy in FX.
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Chapter 30
The STRIKE Computational Finance Toolbox

Christof Heuer, Pedro Pólvora, José Silva, Matthias Ehrhardt,
Michael Günther, and E. Jan W. ter Maten

Abstract The STRIKE Computational Finance Toolbox (CFT) is one of the output
results of the “ITN STRIKE—Novel Methods in Computational Finance” and is
concerned with combining the research output of the network. For this purpose
the implemented models (MATLAB and PYTHON) of the PhD students and
postdocs are collected and user interfaces are developed for a convenient use
of those programs. Two different interfaces have been implemented. The first
interface combines those submissions, which are dealing with one-dimensional
spatial models, e.g. a problem settings with one stock price. With the second user
interface two-dimensional programs can be used, which consist of problem settings
with two spatial variables, e.g. one stock price and it’s volatility, or two stock prices.

30.1 Introduction

The structure of this chapter is as follows. In the first section we will discuss the
user interface for the models with one spatial dimension. The spatial dimension
in these cases is the price of a stock price S. The options in these cases include
European Call and Put options as well as American options. The second section is
concerning itself with the user interface for models with two spatial dimensions,
which means that not necessary all spatial dimensions are stock prices. In each of
those two sections we describe the user interface in detail. After this we introduce
each in the Computational Finance Toolbox included model and the implemented
numerical solvers for these models Finally, we will conclude and give an outlook.
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30.2 Models with One Spatial Variable

In this section we want to show and explain the structure of the user interface,
which combines the research output of models containing one spatial variable.
The included models are the linear Black–Scholes (BS) model, non-linear Black–
Scholes models as well as a model with coupled liquid an illiquid states of a market.
The included option types are European as well as American options. Figure 30.1
shows the results of the calculation of an American Call in the BS model, when
using the front-fixing method, as an example. The figure also shows the complete
user interface for methods with one spatial dimension. The following sections are
organised as follows. First, we describe the Computational Finance Toolbox user
interface for models with one spatial dimension in detail. For this, we describe
each part of the user interface individually. Afterwards, we discuss the numerical
methods, separated by model. For this, we show the differential equations of the
models and briefly explain the numerical methods the user can choose in each
setting. We additionally mention manuscripts for further reading regarding the
numerical schemes.

Fig. 30.1 STRIKE toolbox for one spatial variables
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30.2.1 General Description of the User Interface

In this section we describe the settings of the Computational Finance Toolbox (CFT)
for models with one-dimensional spatial domain. Figure 30.1 shows an example
setting, where a front fixing technique is used to approximate the value of an
American option. We have a closer look at each selection field as well as the input
fields of the user interface. Figure 30.1 shows the complete CFT after an American
Call is calculated. In the following, we describe the separate parts of the CFT for
problem settings with one spatial domain individually.

At the top left of the user interface we can see the basic configuration of the
CFT for problem settings with one spatial variable. In Fig. 30.2 the user can choose
from three different general model settings, namely the linear BS model, a non-
linear BS model as well as a model, where liquid and illiquid markets are coupled.
On the right hand side of this field, the user can choose when the option can be
exercised, see Fig. 30.3. If the linear BS model is chosen, it is possible to choose
between American and European options. In the case of non-linear BS models and
the model distinguishing between a liquid and illiquid market only European options
are possible.

Next to the selection of the expiration rights of the option it is possible to choose
whether the option should be a Call or a Put, see Fig. 30.4. On the right side of the
choice of the final condition it is possible to choose, whether the market is in a liquid
or illiquid state, see Fig. 30.5. This choice is only needed when a coupled liquid and
illiquid market is chosen. It is thus invisible in all other cases.

Underneath the choice of the final condition or the liquidity of the market the
numerical schemes are chosen, see Fig. 30.6. The number of choices is depending

Fig. 30.2 Model selection

Fig. 30.3 Exercise rights

Fig. 30.4 Final condition
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Fig. 30.5 Liquidity of market

Fig. 30.6 Popup menu for the numerical method

Fig. 30.7 Example and clear all button

on the choice of the discussed model and the exercise rights of the option. For an
American option in the linear BS setting the only possibility is to use front fixing,
whereas for the non-linear BS models the user can choose from different numerical
schemes. The possible selections are discussed in Sects. 30.2.2–30.2.4.

Since this user interface is not only meant for people who already know every
presented single financial model or numerical scheme, it is important to present the
user the opportunity to use pre-defined test variables in the calculation. This can be
done using the Example button, see Fig. 30.7, which is located underneath the field
for choosing the model. This way it is possible for the user to get familiar with the
models as well as numerical schemes by seeing directly possible input variables and
their impact.

It is important to mention that the input variables are checked for each problem
setting and the program only shows the error message of the firstly determined error.
This error message then explains which bounds the parameter has to fulfill. If a user
would not have the possibility to use and then change pre-defined input parameters,
it might be that the user chooses several parameters out of their bounds at once.
This might lead to frustration as a chain of error messages might show, each after
correcting the error and then pushing the start again.

It is also possible to clear all input variables with the according button right
next to the example button, see Fig. 30.7. Since we want to introduce models
to the user as well, we included a Documentation button. Pushing this button
shows an explanation for the chosen combination of the model, option type and
numerical scheme. The Acknowledgement button is located underneath the field for
the numerical input and above the Documentation button. Both of these buttons are
shown in Fig. 30.8.

After choosing the general settings, so the model, the option type as well as the
numerical scheme, one typically has to specify the input variables. This could be
done, as mentioned above, with a default example. But if the user is already familiar
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Fig. 30.8 Acknowledgement
and documentation button

Fig. 30.9 Stock and option
input

Fig. 30.10 Numerical input

with the chosen combination of model, option type and numerical solver, the user
can directly choose suited input variables. The input field for the stock as well as the
option parameters, see Fig. 30.9, is located underneath the example button. These
input variables can be the volatility/continuous dividend of the stock price or the
strike price/expiration date of the chosen option type. Below the stock and option
input the user has to define the numerical input, such as the number of grid points
or minimal/maximal values of the stock price, see Fig. 30.10. Finally, also values of
the market, such as the risk-free interest rate or the parameter for the change of the
market from liquid to illiquid and backwards have to be defined on the right hand
side of the stock and option input. The field for the market input can be seen in
Fig. 30.11.

Finally, it is necessary to determine which output is wanted. It is possible to only
save the results, only show visual results, or both. If a non-equidistant grid is used,
it is also the opportunity to only show the transformation grid and thus focus on the
structure of the grid-points. With this output option the user can see how much the
grid concentrates at the strike price. The output options are located below the market
input and can be seen in Fig. 30.12. If the user chooses a visualisation of the option
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Fig. 30.11 Market input

Fig. 30.12 Output options

Fig. 30.13 Plot options

price as output, it is also possible to determine whether the results should be shown
only for t D 0 or for the complete time domain. These options are placed below the
output option field, see Fig. 30.13.

30.2.2 Numerical Methods for the Linear Black–Scholes
Model

In this section we want to introduce the first possible choice for the model, namely
the linear BS model. We first define the partial differential equation of the model.
After that we discuss which numerical schemes are possible for which option type.
In the linear BS model the partial differential equation (PDE) is given by

@V

@t
C �2S2

2

@2V

@S2
C rS

@V

@S
� rV D 0;
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see e.g. [3, 12]. The volatility of the stock price S � 0 is given by � � 0. The
risk-free interest rate is determined by r � 0. The Final condition of this equation is
given by

V.S;T/ D
(

max.S � K; 0/ for a Call

max.K � S; 0/ for a Put

with strike price K > 0. It is possible to approximate European options as well as
American options through the Computational Finance Toolbox.

30.2.2.1 European Options Using Alternating Direction Explicit Method

European Calls can be calculated via Alternating Direction Explicit (ADE) method
for an equidistant or non-equidistant grid. It is also possible to show the structure
of the non-equidistant grid when choosing the respective method. The following
description is taken from [1], only the format has been changed. The Fichera Theory
focuses on the question of appropriate boundary conditions (BCs) for parabolic
PDEs degenerating at the boundary. According to the sign of the Fichera function
one can separate the outflow or inflow part of the solution at the boundary, i.e. it
indicates whether one has to supply a BC at the degenerating boundary. It turned
out to be very useful for establishing the well-posedness of initial boundary value
problems for parabolic PDEs degenerating at the boundary.

We have considered an ADE method, that strongly uses boundary data in the
solution algorithm and hence is very sensible to incorrect treatment of boundary
conditions. We have implemented this ADE scheme for solving linear and nonlinear
BS equations by treating the nonlinearity explicitly. The ADE scheme consists
of two explicit sweeps. The ‘sweeping procedure’ is done from one boundary to
another and vice versa. The final solution is defined as an average of these two
sweeps after each time step.

ADE schemes are superior to other numerical methods due to their explicitness,
stability and the property allowing for an easy parallelisation. Numerical analysis in
sense of studying stability and consistency of this method is provided in [2].

For linear models we obtain

• an explicit and unconditionally stable method.
• stability + consistency of order O

�
k2 C h2

�

) convergence of order O
�
k2 C h2

�
.

The computational effort using ADE schemes instead of implicit schemes for
(non)linear models is highly reduced and stability properties are preserved. For
results, see [2] (Figs. 30.14 and 30.15).
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Fig. 30.14 Upward swing

Fig. 30.15 Downward swing

30.2.3 Numerical Methods for Non-linear Black–Scholes
Models

In this category two different models are discussed. The first model is the Frey and
Patie model, the second model consists of the BS PDE with non-linear volatility.
For both of these models we will discuss the included discretisation methods. For
the Frey and Patie model, the ADE method is used once with an equidistant or
non-equidistant grid. For the non-linear BS model with non-linear volatility we will
discuss two different approaches, both using the Newton method.

30.2.3.1 Using the ADE Method for the Frey and Patie Model

The first non-linear Black–Scholes model we discuss is given by the Frey and Patie
model,

@V

@t
C 1

2

�2S2

Œ1 � �.S/S
2
@2V

@S2
D 0:
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We consider a European Call option, so

V.S;T/ D max .S � K; 0/

with strike price K > 0. Again, the description is taken from [1], only the format
has been changed.

The Fichera Theory focuses on the question of appropriate boundary conditions
(BCs) for parabolic partial differential equations (PDEs) degenerating at the bound-
ary. According to the sign of the Fichera function one can separate the outflow or
inflow part of the solution at the boundary, i.e. it indicates whether one has to supply
a BC at the degenerating boundary. It turned out to be very useful for establishing the
well-posedness of initial boundary value problems for parabolic PDEs degenerating
at the boundary.

We have considered an ADE method, that strongly uses boundary data in the
solution algorithm and hence is very sensible to incorrect treatment of boundary
conditions. We have implemented this ADE scheme for solving linear and nonlinear
BS equations by treating the nonlinearity explicitly. The ADE scheme consists
of two explicit sweeps. The ‘sweeping procedure’ is done from one boundary to
another and vice versa. The final solution is defined as an average of these two
sweeps after each time step.

ADE schemes are superior to other numerical methods due to their explicitness,
stability and the property allowing for an easy parallelisation. Numerical analysis in
sense of studying stability and consistency of this method is provided.

For nonlinear models (Frey and Patie, Barles and Soner model)

• only conditional stability, but in each time step we only need to solve a scalar
nonlinear equation.

The computational effort using ADE schemes instead of implicit schemes for
(non)linear models is highly reduced and stability properties are preserved. For
results see [2] (Figs. 30.16 and 30.17).

Fig. 30.16 Upward swing
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Fig. 30.17 Downward swing

30.2.3.2 Using Newton-Methods for the Non-linear Black–Scholes Model
with Non-linear Volatility

The second choice in the partial differential equation field is given by the non-linear
Black–Scholes model. For

@V

@t
C �.V/2S2

2

@2V

@S2
C rS

@V

@S
� rV D 0; (30.1)

where the non-linearity is given by �.V/ D Q� .1 � sin.V// ; one numerical
scheme uses the central difference operator and implicit time discretisation and then
Newton iteration to approximate the solution, whereas the other program first uses
linearisation. Both numerical schemes can be used to approximate European Calls
and Puts, so

V.S;T/ D
�

max .S � K; 0/ for a Call
max .K � S; 0/ for a Put.

The following description is taken from [14], only the format has been changed.

• Newton’s method approach 1:
The idea of the first approach to Newton’s method is to use finite difference

method to do temporal and spatial discretizations on Eq. (30.1) with an implicit
scheme. The problem will turn to solve the solution of a function G.V/ defined
as

G.VnC1/ D Vn � H.VnC1/VnC1 D 0: (30.2)

To solve Eq. (30.2), one needs to calculate the Jacobian matrix of G for the
updating of the approximate.



30 The STRIKE Computational Finance Toolbox 571

Table 30.1 The error
between NM1 and NM2

�S D 0:1 2� 10�6

�S D 0:05 2� 10�6

�S D 0:01 1� 10�6

• Newton’s method approach 2:
Another approach for Newton’s method is to perform linearization first, and

then do discretization. The idea is to consider the equation

F.Vt;VS;VSS;V/ D Vt C 1

2
�2.V/ S2 VSS C rS VS � rV D 0: (30.3)

Supposing that .V�
t ;V

�
S ;V

�
SS;V

�/ is an approximate solution, the linearization of
(30.3) leads to

0 D F.V�
t C et;V

�
S C eS;V

�
SS C eSS;V C e/

� F.V�
t ;V

�
S ;V

�
SS;V

�/C

.
@F

@V�
t

et C @F

@V�
S

eS C @F

@V�
SS

eSS C @F

@V� e/: (30.4)

A discretization of the correction term e with an implicit scheme may be used to
solve the value e and to do updating.

An example for calculating European Put options with transaction costs (Case I
above) is provided here. We fix the time discretization �t D 0:001 with given
parameters

a D 0:001, r D 0:03, Q� D 0:2; Smax D 10, K D 5:5, T D 1, tol D 10�6:

We compare the results obtained by NM1, which is from approach 1, and NM2,
which is from approach 2. The error is the maximum norm between the option
values from both solvers at t D 0 (Table 30.1).

In the end, the aim is to find a robust strategy to speed up the whole computation.
From the complexity analysis, we can understand that the most time-consuming part
from NM1 is to calculate the Jacobian matrix, and similarly in NM2 we have to do
calculations to obtain the matrix for updating (Fig. 30.18).

30.2.4 Numerical Methods for Coupled Liquid and Illiquid
Market

The description of the numerical scheme as well as the used model are given in [13],
where only the format has been changed.
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Fig. 30.18 Blue line is computation time for NM1. Red line is computation time for NM2

In most modern option pricing, models are characterised by discontinuous payoff
functions and volatility of underlying may be very low. Risk preferences in optimal
investment models may be expressed by variables which vanish in the limit. Against
this background, numeric solutions are sought that are adapted to resolve the
resulting degenerate equations.

We consider a system of ODEs which arises in option pricing for markets that
switch between liquid (state 0) and illiquid (state 1):

8
<

:
�.R0� � 1

2
�2S2R0SS/ D ��01e��R1e�R0 C d0 C �01;

�R1� D ��10e��R0e�R1 C �10;

with the terminal conditions Ri.T; S/ D h.S/; i D 0; 1.
We use an implicit approximation for the two equations and linearise the

exponential term using Taylor expansion.
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Fig. 30.19 Complexity analysis for both solvers
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Fig. 30.20 Solution surface of r0

Another way of looking at this system is recasting it as a Partial Integro-
Differential Equation (PIDE):

 � � 1

2
�2S2 SS D �ae .S;�/

�
c
Z �

0

e� .S;s/ds C e��h.S/

�

Cb � c;
 .S; 0/ D �h.S/:

The PIDE can be approximated using implicit in time together with a quadrature
method for the integral term. A difficulty of this PIDE is that the upper limit of the
integral is nonconstant. We use a trapezoidal rule for our quadrature rule together
with a Taylor expansion linearisation of the nonlinear term (Fig. 30.19).

Figure 30.20 shows the approximate solution to R0 which are the dynamics of
the price when the market is liquid. As is expected, the surface takes the form of
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Fig. 30.21 Comparing European option values at issue and maturity in the liquid state

the Black–Scholes surface where the market is assumed to be always liquid. In
Fig. 30.21 we compare the value of the option in the liquid state at maturity and
issue of the option. As expected, the option value increases with time to maturity.

30.3 Models with Two Spatial Variables

In this section we want to describe the user interface, which combines the
implementations of the financial models with two spatial variables. Figure 30.22
shows the example calculation of the value of a butterfly option in the linear two-
dimensional model by Black and Scholes.

This section is organised as follows. First, we describe the user interface and give
an overview on the functionality of the Computational Finance Toolbox for models
with two spatial dimensions. After this, we describe the numerical methods for
each included model. The first numerical schemes we describe are implemented for
the linear two-dimensional Black–Scholes model with Finite Difference schemes,
from upwind-discretisation to high-order compact schemes using a combination
of the implicit BDF4 and Crank-Nicolson in the time-discretisation. Thereafter we
describe an ADI approach for a non-linear two-dimensional Black–Scholes model,
where the non-linearity is given by the correlation.

Then, we describe Alternating Direction Implicit (ADI) schemes as well as finite
difference approaches, up to high-order compact schemes, for the Heston model.
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Fig. 30.22 STRIKE toolbox for two spatial variables

Finally, we discuss finite difference schemes for a rather general class of Stochastic
Volatility models, starting from the standard second-order central discretisation and
up to high-order compact schemes using a combination of the implicit BDF4 and
Crank-Nicolson time-discretisation.

30.3.1 General Description of the User Interface

In this section we give an overview on the user interface of the Computational
Finance Toolbox for models with two-dimensional spatial domain. In Fig. 30.22 we
can see the user interface after calculating a European Butterfly option in the linear
two-dimensional Black–Scholes model. In the following we have a closer look on
all the separate parts of the user interface. We start with the general model settings,
then explain the parameter input fields and finally discuss the output options. A
description of the possible numerical schemes in each model setting is given in the
Sects. 30.3.2–30.3.5.

In the top-left corner we can see again the logos of the STRIKE network, Marie
Curie Actions as well as the seventh framework program. These buttons lead to
the respective web pages. Underneath them we can see the field, where the user
can choose the overall model. These models include the linear or a non-linear
two-dimensional Black–Scholes model, the Heston model or a family of stochastic
volatility models, see Fig. 30.23. The next part the user has to define is the final
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Fig. 30.23 Model selection

Fig. 30.24 Final condition

Fig. 30.25 Popup menu for the numerical method

Fig. 30.26 Output options

condition of the European option. Depending on the given model, the European
options include Call options, Put options as well as Butterfly options, see Fig. 30.24.

Naturally, the next selection is the type of the numerical method. A popup
menu on the right side of the choice for the final conditions gives the user the
opportunity to select the wanted method. Figure 30.25 shows an example menu,
when a European Call in the Heston model is chosen. The first choice in this setting
is the Douglas ADI method.

In the far right of the user interface the plot options can be chosen, see Fig. 30.26.
Depending on the numerical method these plot options may contain the option price,
the non-constant dividend yield, gridpoints where smoothing of the initial condition
is applied or the influence of this smoothing on the initial condition.
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Fig. 30.27 Checkbox
non-constant dividend

Fig. 30.28 S1 in 2D BLS
model

Fig. 30.29 Stock in SV
model

The non-constant dividend yield can be activated through a check box right below
the choice of the numerical method, see Fig. 30.27, when a high-order compact or
the standard second order discretisation is chosen in combination with the linear
Black–Scholes model. The dividend is constant, if this check box is not selected or
a different combination of model and numerical method is used. The check box is
invisible, if it is not possible to choose a non-constant dividend.

In Figs. 30.28 and 30.29 we can see the field where the user can define the
parameter values regarding the first spatial variable. Figure 30.28 shows the input
field for the first spatial domain, when the underlying model is the linear or non-
linear Black–Scholes model. The minimum and maximum values for the stock price
have to be defined. as well as the constant values for the volatility and the continuous
dividend of the first stock price. The field for the continuous dividend vanishes in
the case where the continuous dividend is chosen to be space dependent. When a
stochastic volatility model is used the volatility of the stock price is not constant
any more, but a random variable itself, which means that the value of the volatility
does not have to be defined and is thus invisible in these cases, see Fig. 30.29.

In Fig. 30.30 we can see the input field for the second spatial variable when
a linear or non-linear Black–Scholes model is used. This means that the same
parameters have to be defined as for the first stock price. In the case of a stochastic
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Fig. 30.30 S2 in 2D BLS
model

Fig. 30.31 Volatility in SV
model

volatility model the field changes, see Fig. 30.31. Then the volatility, the mean
reversion speed as well as the long run mean of the volatility have to be specified.
Additionally, the user has to chose a minimum and maximum value for the volatility,
see Fig. 30.31.

Figure 30.32 shows the field where the user can define the additional model
parameters, such as the risk-free interest rate, the expiration date of the option, the
strike price of the option or the correlation between the two spatial variables.

In Fig. 30.33 we can see the field for the input of the numerical parameters, such
as the number of grid points in the spatial and time directions. In both fields the
input variables vary due to the given numerical algorithm and underlying model.
Again, only necessary input variables are visible.

Once all the necessary input variables have been defined, the user might want
to save these values in order to be able to re-use them. This can be done using
the buttons and input field, which can be seen in Fig. 30.34. These are located
underneath the popup menu for the selection of the numerical methods. The user
simply writes a name for the parameter setting in the field next to “User example
name:” and can then save this setting with the corresponding button. A combination
of the name defined by the user and the current combination of model, final
condition and numerical method is used to save these example values. Thus it is
possible to re-use a specific name when the combination of model, final condition



30 The STRIKE Computational Finance Toolbox 579

Fig. 30.32 Additional model
input

Fig. 30.33 Numerical input

Fig. 30.34 Popup menu for
the numerical method

and numerical method is not identical. It is also possible to delete an already saved
parameter setting. For one has to select the corresponding combination of model
and numerical method and write again the name in the according field. Pushing the
Delete user example button then erases the parameter setting.

In Fig. 30.35 we can see a number of buttons located underneath the fields for
the numerical input. Since we included several numerical methods and underlying
models it is important to provide the user with default examples for the parameter
settings. If the corresponding button is used, all necessary variables for the chosen
combination of model and numerical method are defined and the program can be
started, which is done with the start button. This way one can get an idea on the
magnitude of the input variables if the user is not familiar with the model. But
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Fig. 30.35 Popup menu for
the numerical method

Fig. 30.36 Documentation
buttons

Fig. 30.37 Acknowledge-
ment button

the user can load previously defined user examples as well. Note, the name of the
parameter setting for the combination of model and numerical method has to exist
and the name has to be written in the appropriate field next to “User example name:”,
see Fig. 30.34.

Additionally, we included a clear all button and of course a start button. If started,
the program checks whether the input parameters are in line with the setting of the
model and the numerical method. If a parameter should not fit the restrictions given
by either the model or the numerical method, the program shows an error message.
This message explains the restrictions on this parameter. Only the first error found
by the program is shown.

Descriptions of the Computational Finance Toolbox and the chosen numerical
method for the current financial model as well as Acknowledgements can be
accessed through buttons in the lower left or upper right corner of the toolbox, see
Fig. 30.36 for the documentation buttons and Fig. 30.37 for the Acknowledgements
button.

Results may also be saved by checking a tick box above the visual results.

30.3.2 The Linear Two-Dimensional Black–Scholes Model

In this section we want to discuss the first included model, namely the two-
dimensional Black–Scholes model, see e.g. [16]. The partial differential equation
of the linear two-dimensional Black–Scholes model is given by

0 D@V

@t
� �21 S21

2

@2V

@S21
� ��1�2S1S2

@2V

@S1@S2
� �22 S22

2

@2V

@S22

� .r � ı1.S1// S1
@V

@S1
� .r � ı2.S2// S2

@V

@S2
C rV

(30.5)
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for .S1; S2; t/ 2 ˝ � Œ0;T/, where �i � 0 and ıi.Si/ � 0 are the volatility and
continuous dividend of the asset Si > 0 for i D 1; 2, respectively, r > 0 the risk-free
interest rate and � 2 Œ�1; 1
 is the correlation between the two stock prices. The
continuous dividend ıi is either constant or given by

ıi.Si/ D Oıi

tanh


�i.Si � OSi/

�
C tanh.�i OSi/

2
(30.6)

with �i > 0, Oıi � 0 and OSi 2 ŒS.i/min; S
.i/
max
 for i D 1; 2, see e.g. [6].

The payoff functions are given by

VT.S1; S2/ D

8
<̂

:̂

.!1S1 C !2S2 � K/C

.K � !1S1 � !2S2/
C

�NS � K1
�C � 2 �NS � K12

�C C �NS � K2
�C

for a Call, Put or Butterfly option with NS D max.S1; S2/ and positive strike prices K,
K1, K2 and K12 D .K1 C K2/=2.

In the following we describe those numerical methods, which can be used
within the Computational Finance Toolbox for models with two-dimensional spatial
domain to approximate the solution of the two-dimensional Black–Scholes model.

30.3.2.1 High-Order Compact Schemes and Compact Central
Second-Order Scheme

First, we restrict the spatial domain to

˝ D ŒS.1/min; S
.1/
max
 � ŒS.2/max; S

.2/
max
;

where

0 < S.i/min < K (Call/Put) or 0 < S.i/min < min.K1;K2/ (Butterfly)

and

K < S.i/max < 1 (Call/Put) or max.K1;K2/ < S.i/max < 1 (Butterfly)

for i D 1; 2.
Using OK D K (Call/Put) or OK D K12 (Butterfly) the transformations

xi D min .�1; �2/

�i
ln

�
Si

OK
�
; � D T � t; u D e�r� V

K
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are applied to (30.5) and the initial conditions. This is the reason why the minimal
stock prices have to be positive instead of non-negative.

The program uses a uniform grid Gh with step-size h > 0 in each direction,

where with the input parameter N 2 N it holds h D



x.1/max � x.1/min

�
=.N � 1/.

On this grid we apply a fourth-order spatial discretisation in terms of h, which only
uses the compact stencil, or the standard second-order discretisation with the central
difference operator, see [6]. The semi-discrete scheme reads

i1C1X

j1Di1�1

i2C1X

j2Di2�1

�
Mj1;j2@�Uj1;j2 .�/C Pj1;j2Uj1;j2 .�/

� Dg.x; �/;

where Mj1;j2 and Pj1;j2 are constant in time. They are space-dependent when using
(30.6), constant otherwise. Crank-Nicolson type time discretisation with step-size
�� D ch2 and c > 0 is then applied to the semi-discrete scheme, see [6, 7].
Alternatively, the Crank-Nicolson type time discretisation is only applied to the
semi-discrete scheme in order to calculate the starting values for the BDF4 scheme,
which is then applied with �� D c2h and c2 > 0. This leads to overall O .N/ grid
points in time and a consistency order of 4 in terms of h.

The transformed smoothed initial condition is given by

Qu0 .x1; x2/ D 1

h2

3hZ

�3h

3hZ

�3h

˚4


 x

h

�
˚4


 y

h

�
u0 .x1 � x; x2 � y/ dxdy;

for any .x1; x2/ 2 Gh and step size h > 0, where ˚4.x/ denotes the Fourier inverse
of

O̊
4.!/ D

 
sin
�
!
2

�

!
2

!4 �
1C 2

3
sin2


!
2

��

and u0 the original initial condition, see [11]. Thus the smoothed initial condition

Qu0 h!0���! u0. A complete derivation of this discretisation as well as some examples
for European options is given in [6].

This program has several output options. Firstly, it is possible to show the non-
continuous dividend for each spatial direction. Figure 30.38 shows an example with
� D 0:05, Oı D 2% and OS D 130.

In Fig. 30.39 the grid points where smoothing is applied are shown for a Call/Put.
It has to be assured that at least three grid points are above, below, left and right
of the function of the non-differentiable points in order to only smooth the initial
condition, where it is necessary. This means the number of grid points where u0 has
to be smoothed can be reduced to O .N/, whereas the total number of grid points is
in O

�
N2
�
. In the example in Fig. 30.39 this leads to a saving of about 86:67% of the

computation for smoothing.
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Fig. 30.38 Example non-constant dividend
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Fig. 30.39 Smoothing points Call/Put

Figure 30.40 shows the points where smoothing is necessary for a Butterfly
option. It is important to mention that only for a very small amount of grid points
(green points) a smoothing in both spatial directions is necessary. For the green
points one has to assure that at least three points are above, below, left and right
of the corner points of the non-differentiable points, which means that maximal
number of grid points, which need to be smoothed in both direction is not depending
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Fig. 30.41 Difference original and smoothed payoff Call option

on h. For the blue and red points it is sufficient to smooth only in one spatial
direction. Smoothing the initial condition on a grid point only in one spatial direction
is much quicker than smoothing it in both spatial directions.

It is also possible to show the difference between the smoothed initial condition
QVT , which is Qu0 re-transformed, and the original payoff VT , see Fig. 30.41 for a Call,
and Fig. 30.42 for a Butterfly.
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Fig. 30.42 Difference original and smoothed payoff Butterfly option

Fig. 30.43 European Call option

Finally, the solution of the two-dimensional Black Scholes partial differential
equation is an output option as well, see Fig. 30.43 for a Call using the high-order
compact scheme including the BDF4 in the discretisation process,

Figure 30.44 for a Put using the high-order compact scheme which only uses
Crank-Nicolson time discretisation and Fig. 30.45 for a Butterfly, where a standard
second order discretisation in space was used in combination with Crank-Nicolson
discretisation in time.
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Fig. 30.44 European Put option
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Fig. 30.45 European Butterfly option

30.3.3 The Non-linear Two-Dimensional Black–Scholes Model

The partial differential equation of the non-linear two-dimensional Black–Scholes
model is given by

@u

@t
D 1

2

�
�21 s21

@2u

@s21
C 2�.� /�1�2s1s2

@2u

@s1@s2
C �22 s22

@2u

@s22

�

C r

�
s1
@u

@s1
C s2

@u

@s2

�
� ru for .s1; s2; t/ 2 ˝ � .0;T
;

�.� / D
�
�� if � > 0;

�C if � < 0;
� D @2u

@s1@s2
; ˝ D .0; Smax/

2:



30 The STRIKE Computational Finance Toolbox 587

We select u.s1; s2; 0/ D .s � K1/C � 2.s � K/C C .s � K2/C with s D max.s1; s2/
and K D .K1 C K2/=2 which is a butterfly payoff, see e.g. [15]

30.3.3.1 ADI Time-Stepping for the Uncertain Correlation Black–Scholes
PDE

The description of this program is taken from [15], only the format has been
changed. For the numerical valuation of two-asset options we consider a 2D
nonlinear degenerate convection-diffusion-reaction problem with a cross derivative
term. The boundary conditions are homogeneous on the far field boundaries and
natural on the degenerate boundaries.

To alleviate the nonsmoothness of the payoff at the strikes K1, K, K2 we construct
a suitable rectangular spatial grid. For each coordinate sj a uniform mesh is taken
in Œ 1

2
K1;

3
2
K2
 and outside this interval the mesh sizes gradually increase. Next a

second-order central finite difference discretization is applied for all derivatives in
the PDE w.r.t. s1 and s2. This leads to a large stiff nonlinear ODE system,

U0.t/ D F.U.t// D A.U.t//U.t/; 0 < t � T;

with given matrix function A.�/ and initial vector U.0/ D U0. Splitting the function
F D F0 C F1 C F2 with F0.�/ D A0.�/�, F1.�/ D A1�, F2.�/ D A2�, the Modified
Craig-Sneyd (MCS) scheme [9, 10] then generates approximations Un to U.n�t/ for
n 2 N. It is a modern time-stepping scheme of ADI type where the (nonlinear) cross
derivative part A0 is conveniently treated in an explicit manner and for j D 1; 2 the
(essentially one-dimensional) part Aj in the sj-direction in an implicit manner. The
implicit stages stabilize the explicit stages.

We take K1 D 35, K2 D 45, T D 0:5, Smax D 200, �1 D �2 D 0:5, r D 0:05,
�� D 0:4, �C D 0:6. Figure 30.46 shows the numerical results for the option value
at t D T and Fig. 30.47 for the corresponding cross derivative.

The MCS scheme and similar ADI schemes are highly efficient compared
to common un-split schemes. Our present research is devoted to studying their
fundamental properties, notably stability, monotonicity and convergence.

30.3.4 The Heston Model

The Heston model is a prominent example of a stochastic volatility model with
partial differential equation

0 D@V

@t
C vS2

2

@2V

@S2
C ��vS

@2V

@S@v
C �2v

2

@2V

@v2

C .r � ı/ S
@V

@S
C � .� � v/

@V

@v
� rV;

(30.7)
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with .S; v; t/ 2 ŒSmin; Smax
�Œvmax; vmax
�.0;T
. We demand 0 < Smin < Smax < 1
as well as 0 < vmin < vmax < 1. The continuous dividend of the stock price S is
given by ı � 0. Additionally, � > 0 is the mean-reversion speed, � > 0 is the long-
run mean and � � 0 is the volatility of the volatility v, r > 0 the risk-free interest
rate, T > 0 the expiration time and � 2 Œ�1; 1
 is the correlation between the stock
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price and its volatility, see [8]. The payoff functions are given by

VT.S1; S2/ D
8
<

:

.S � K/C

.K � S/C

.S � K1/
C � 2 .S � K12/

C C .S � K2/
C

for a Call, Put or Butterfly option with positive strike prices K, K1, K2 and K12 D
.K1 C K2/=2 are in the interval ŒSmin; Smax
.

30.3.4.1 High-Order Compact Schemes and Compact Central
Second-Order Scheme

Firstly, we use OK D K (Call/Put) or OK D K12 (Butterfly) and apply the
transformations

x D ln

�
S
OK
�
; y D v

�
; � D T � t; u D e�r� V

K

to (30.7) and the final conditions. The transformed problem setting is then solved
and its solution later re-transformed. The program uses a uniform grid Gh in space
with step-size h > 0 in each direction, where with the input parameter N 2 N it
holds h D .xmax � xmin/ =N. On this grid we apply the central difference operator
for the spatial discretisation, which only uses the compact stencil and has second
order consistency. The semi-discrete scheme reads

i1C1X

j1Di1�1

i2C1X

j2Di2�1

�
Mj1;j2@�Uj1;j2 .�/C Pj1;j2Uj1;j2 .�/

� Dg.x; �/;

where Mj1;j2 and Pj1;j2 are depending on the variable y, but neither on x nor on
� . In the same way as for the two-dimensional linear Black–Scholes model, it is
possible to apply BDF4 scheme with �� D c2h and c2 > 0 to the above mentioned
semi-discrete scheme for a high-order compact spatial discretisation. The necessary
starting values are generated using Crank-Nicolson type time discretisation with
step-size�� D c1h2 and c1 > 0. This leads to overall O .N/ grid points in time and
a consistency order of 4 in terms of h.

Alternatively, it is possible to only apply the Crank-Nicolson (CN) type time
discretisation, see [5]. In this case there are overall O

�
N2
�

grid points in time. For
the standard central second order spatial discretisation it is only possible to use the
Crank-Nicolson time discretisation.

The transformed smoothed initial condition is given by

Qu0 .x; y/ D 1

h

3hZ

�3h

˚4


x1
h

�
u0 .x � x1; y/ dx1;
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Fig. 30.48 Difference original and smoothed payoff Put option

for any .x; y/ 2 Gh and step size h > 0, where ˚4.x/ denotes the Fourier inverse of

O̊
4.!/ D

 
sin
�
!
2

�

!
2

!4 �
1C 2

3
sin2


!
2

��

and u0 the original initial condition, see [11]. The smoothing is only applied in
x-direction, as u0 is constant in y-direction. Thus, the smoothed initial condition

Qu0 h!0���! u0.
For all following examples we chose ı D 0:03, � D 0:02, � D 0:25, � D

0:25, � D �0:4 and r D 0:05. We have S 2 Œ3; 300
 and v 2 Œ0:01; 0:4
 and use
N D 200 as well as c1 D 0:8 and c2 D 0:3. Since this program uses a smoothed
initial condition, one output option is the difference between the original and the
smoothed initial condition. Figure 30.48 shows this difference for a European Put.
The difference is only non-zero in the area around the strike price, which is the only
non-differentiable point.

In Fig. 30.49 we can see the difference between the original and smoothed initial
condition for a Butterfly option. We can see a wider support of the difference, as
there are three non-differentiable points in the initial condition.

Additionally, one can approximates the values of European Puts or Butterfly
options. A European Call could be calculated using the Call-Put parity and the
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value of the European Put option. In Fig. 30.50 we approximate a European Put
with K D 100.

For the approximation of the Butterfly option in Fig. 30.51 we used the strike
prices K1 D 70 and K2 D 110.

30.3.4.2 ADI Schemes (Douglas scheme and Modified Craig-Sneyd
Scheme)

We applied two ADI-type schemes, Douglas (D) and Modified Craig-Sneyd (MCS),
to solve the ODE system resulting from the spatial discretization of (30.7). For the
Douglas scheme the user can calculate an European Put option, whereas for the
Modified Craig-Sneyd scheme the calculation of both European Put and European
Call is possible.

The Douglas scheme consists of an explicit predictor stage followed by two
implicit corrector stages

8
<

:

Y0 D Un�1 C�tF .tn�1;Un�1/

Yj D Yj�1 C ��t
�
Fj

�
tn; Yj

�� Fj .tn�1;Un�1/
�
; j D 1; 2

Un D Y2
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Its order of consistency is 1 whenever the mixed-derivatives term is nonzero,
otherwise it exhibits consistency of order 2 for � D 1

2
.

The Modified Craig-Sneyd is an unconditionally stable scheme of order 2 for
� � 1

2
.

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
:

Y0 D Un�1 C�tF .tn�1;Un�1/

Yj D Yj�1 C ��t
�
Fj

�
tn; Yj

�� Fj .tn�1;Un�1/
�

j D 1; 2; : : : ; k
OY0 D Y0 C�tA0

�
F0 .tn; Y3/� Fj .tn�1;Un�1/

�

QY0 D OY0 C �
1
2

� �
�
�t ŒF .tn; Y3/� F .tn�1;Un�1/


QYj D QYj�1 C ��t
�
Fj

�
tn; QYj

�� Fj .tn�1;Un�1/
�

j D 1; 2; : : : ; k

Vn D QY3

We used a non-uniform spatial grid based on the hyperbolic sine with focus
around � D 0 and S D K.

By default, a spatial domain ˝ D Œ0; 15
 � Œ0; 30K
 is selected (Figs. 30.52 and
30.53).
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We have several numerical inputs available:

1. nS—number of grid points in the S direction.
2. n�—number of grid points in the � direction.
3. nt—number of grid points in the t direction.
4. c—concentration of points around K in the S direction.
5. d—concentration of points around 0 in the � direction.

The financial input variables are given by

1. �—speed of mean-reversion
2. �—long-term mean of variance
3. �—volatility of variance process
4. �—correlation
5. rd—domestic interest rate
6. rf —foreign interest rate
7. K—Strike Price
8. T—Maturity (years)

The program has several possible outputs. The most common one is the surface
of option values for different S0 and v0. Additionally, also the main greeks are
available, namely:

1. Delta—Sensitivity of option price to current underlying price
2. Gamma—Second-order sensitivity of option price to underlying price
3. Vega—Sensitivity of option price to volatility
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30.3.5 The General Stochastic Volatility Model

The option price in a general stochastic volatility model follows the partial
differential equation

0 D@V

@t
C vS2

2

@2V

@S2
C ��vbC 1

2 S
@2V

@S@v
C �2v2b

2

@2V

@v2

C .r � ı/ S
@V

@S
C �va .� � v/ @V

@v
� rV;

(30.8)

with

.S; v; t/ 2 ŒSmin; Smax
 � Œvmax; vmax
 � .0;T
;

where

a � 0; b 2
�
0;
3

2

�
:

We demand 0 < Smin < Smax < 1 as well as 0 < vmin < vmax < 1. for .S; v; t/ 2
˝ � .0;T
, The continuous dividend of the stock price S > 0 is denoted by ı � 0.
Additionally, � > 0 is the mean-reversion speed, � > 0 is the long-run mean and
� � 0 is the volatility of the volatility v > 0, r > 0 the risk-free interest rate, T > 0
the expiration time and � 2 Œ�1; 1
 is the correlation between the stock price and its
volatility, see e.g. [4]. The payoff functions are given by

VT.S1; S2/ D
�
.K � S/C

.S � K1/
C � 2 .S � K12/

C C .S � K2/
C

for a Put or Butterfly option with positive strike prices K, K1, K2 and K12 D .K1 C
K2/=2.

30.3.5.1 High-Order Compact Schemes and Compact Central
Second-Order Scheme

Firstly, we use OK D K (Put) or OK D K12 (Butterfly) Eq. (30.8) is transformed using
� D T � t, u D er�V=K as well as

x D ln

�
S
OK
�
; y D ln.v/

�
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in the case b D 3=2 and otherwise

x D
�
3

2
� b

�
ln

�
S
OK
�
; y D v

3
2�b

� :

The program uses a uniform grid Gh in space with step-size h > 0 in each
direction, where with the input parameter N 2 N it holds h D .xmax � xmin/ =N. On
this grid we apply the central difference operator for the spatial discretisation, which
only uses the compact stencil and has second order consistency. Applying the spatial
discretisation according to [6] the fourth-order accurate semi-discrete scheme reads

i1C1X

j1Di1�1

i2C1X

j2Di2�1

�
Mj1;j2@�Uj1;j2 .�/C Pj1;j2Uj1;j2 .�/

� Dg.x; �/;

where Mj1;j2 and Pj1;j2 are depending on the variable y, but neither on x nor on � .
A Crank-Nicolson type time discretisation with step-size �� D c1h2 and c1 > 0

is applied to the semi-discrete scheme in order to calculate the starting values for
the BDF4 scheme, which is then applied with �� D c2h and c2 > 0. This leads to
overall O .N/ grid points in time and a consistency order of 4 in terms of h.

The transformed smoothed initial condition is given by

Qu0 .x; y/ D 1

h

3hZ

�3h

˚4


x1
h

�
u0 .x � x1; y/ dx1;

for any .x; y/ 2 Gh and step size h > 0, where ˚4.x/ denotes the Fourier inverse of

O̊
4.!/ D

 
sin
�
!
2

�

!
2

!4 �
1C 2

3
sin2


!
2

��

and u0 the original initial condition, see [11]. The smoothing is only applied in
x-direction, as u0 is constant in y-direction. Thus, the smoothed initial condition

Qu0 h!0���! u0.
For all following examples we chose a D 1, b D 1:25, ı D 0:03, � D 0:02, � D

0:25, � D 0:25, � D �0:4 and r D 0:05. We also use S 2 Œ3; 300
, v 2 Œ0:01; 0:4
,
T D 0:25, N D 100 as well as c1 D 0:8 and c2 D 0:3. Since this program uses
a smoothed initial condition (IC), one output option is the difference between the
original and the smoothed initial condition. Figure 30.54 shows this difference (re-
transformed) for a European Put, where the initial condition does not depend on y.
The difference is only non-zero in the area around the strike price, which is the only
non-differentiable point.

In Fig. 30.55 we can see the difference (re-transformed) between the original and
smoothed initial condition for a Butterfly option. Again, the initial condition does
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Fig. 30.56 European Put option

not depend on the variable y and thus neither the smoothed initial condition. We can
see a wider support of the difference, as there are three non-differentiable points in
the initial condition. If the spatial step-size h is small enough, we can see that the
support of the difference is given by three disjunct intervals.

Besides the difference between the smoothed and the original initial condition it
is of course possible to calculate option prices, namely the values of European Puts
or Butterfly options. In Fig. 30.56 we approximate a European Put with K D 100.

For the approximation of the Butterfly option in Fig. 30.57 we use K1 D 70 and
K2 D 110.

30.3.5.2 ADI Schemes (Modified Craig-Sneyd Scheme)

We applied two ADI-type schemes, Douglas (D) and Modified Craig-Sneyd (MCS),
to solve the ODE system resulting from the spatial discretization of (30.8). It is
possible to approximate European Put and European Call options.
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Fig. 30.57 European Butterfly option

The Modified Craig-Sneyd scheme is an unconditionally stable scheme of order
2 for � � 1

2
.

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

Y0 D Un�1 C�tF .tn�1;Un�1/

Yj D Yj�1 C ��t
�
Fj
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j D 1; 2; : : : ; k

OY0 D Y0 C�tA0
�
F0 .tn; Y3/� Fj .tn�1;Un�1/
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�

j D 1; 2; : : : ; k

Vn D QY3

We used a non-uniform spatial grid based on the hyperbolic sine with focus around
� D 0 and S D K.

By default, a spatial domain ˝ D Œ0; 15
 � Œ0; 30K
 is selected (Figs. 30.52 and
30.53).

We have several numerical inputs available:

1. nS—number of grid points in the S direction.
2. n�—number of grid points in the � direction.
3. nt—number of grid points in the t direction.
4. c—concentration of points around K in the S direction.
5. d—concentration of points around 0 in the � direction.
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The financial input variables are given by

1. �—speed of mean-reversion
2. �—long-term mean of variance
3. �—volatility of variance process
4. �—correlation
5. rd—domestic interest rate
6. rf —foreign interest rate
7. K—Strike Price
8. T—Maturity (years)

The program has several possible outputs. The most common one is the surface
of option values for different S0 and v0. Additionally, also the main greeks are
available, namely:

1. Delta—Sensitivity of option price to current underlying price
2. Gamma—Second-order sensitivity of option price to underlying price
3. Vega—Sensitivity of option price to volatility

30.4 Conclusions

The presented user interface focuses on one- and two-dimensional option pricing
models. The (already existing or future) implementations of numerical schemes
for further one- or two-dimensional or even higher-dimensional models for option
pricing as well as other implementations of numerical schemes for further financial
models still have to be implemented.
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Lévy-Itô decomposition, 34
Landau transform, 185
Laplace transform method, 457
Leland model, 4
LIBOR market model, 477
Lie algebra, 111
linear complementarity problem, 216
linear complementarity problem (LCP), 374
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log-utility function, 121
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M-matrix, 219
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Markov chain approximation, 32
Markov chain Monte Carlo method, 531
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maximum-likelihood estimation, 95, 530
mean-field games, 18
mean-reverting process, 91
Meixner process, 173
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Metropolis algorithm, 533
mixed derivative terms, 199
Monte Carlo method, 255, 465
multinomial resampling, 508

negative interest rates, 47
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Newton’s method, 232, 570
nonlinear volatility, 233
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observation model, 504
OpenMP, 497
operator
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optimal control problem, 427
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proximal optimization scheme, 433
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scheme
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sequential importance resampling, 507
sequential importance sampling, 505
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