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Foreword

The traditional view of computational finance is based on making rather simplistic
assumptions about markets and then, using hedging arguments, deriving risk-neutral
pricing equations. From a computational point of view, this leads to the numerical
solution of linear partial integro-differential equations (PIDEs) for low-dimensional
problems, and Monte Carlo techniques for high-dimensional applications.

However, once realistic market effects are modelled, the standard paradigm is
no longer applicable. In fact, perhaps the most general way to think about finance
problems is as a form of optimal stochastic control. In the context of option pricing,
the objective is to design a hedging strategy (the control) which results in the
smallest profit and loss (P&L) risk. Right from the start, we are assuming that the
hedge may not be perfect, which is one of the essential complete market assumptions
which form the basis of the Black-Scholes analysis. Given the framework of optimal
control, it is straightforward to consider liquidity effects and valuation adjustments,
such as debt value adjustment (DVA) and credit value adjustment (CVA). This
modelling approach naturally gives rise to nonlinear PIDEs, often of the Hamilton-
Jacobi-Bellman (HJB) type. In the low-dimensional case, these nonlinear PDEs can
be attacked directly. For higher-dimensional problems, methods based on backward
stochastic differential equations (BSDEs) look promising.

Of course, these ideas also have relevance to problems in wealth management.
With the trend towards replacing defined benefit pension plans with defined
contribution (DC) plans, there is a need for automated asset allocation techniques.
Since most DC plan participants have strict constraints on allowable strategies (e.g.
no leverage), it goes without saying that any asset allocation algorithm must be able
to handle realistic constraints. These optimal asset allocation problems also give rise
to nonlinear HIB PIDEs.

Many problems in the insurance industry result in massive computational issues.
For example, determining the distribution of the P&L for a large book of variable
annuities involves simulation of the asset prices in the objective measure while at
the same time assuming an imperfect hedge. Determining the hedging parameters
is usually done using a Monte Carlo (MC) technique. The standard approach for
solving this problem involves a nested MC simulation, which may require weeks
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vi Foreword

of computational time using current algorithms and hardware. In addition, since
retail clients rarely exercise their optionality in optimal fashion, machine/statistical
learning techniques are the method of choice for analysing customer behaviour.

Consequently, the future of computational finance is bright. We face challenges
associated with the development of numerical algorithms for solution of nonlinear
PIDEs, possibly using BSDE approaches. However, in order to produce timely
results, it will be necessary to exploit the latest hardware advances (e.g. GPUs)
and programming environments. This will all have to be coupled with data science
methods.

This book focuses on these new techniques, with specific chapters devoted to
many of the issues listed above. Students, academics and practitioners will find
much of interest here, with a glimpse of the future of computational finance.

Waterloo, ON, Canada Peter A. Forsyth
January 2017



Preface

This book originated from the Marie Curie European research network STRIKE
Novel Methods in Computational Finance, which was coordinated by the
University of Wuppertal and continued from 2013 to 2016. This initial network
was based on the beneficiary partners (11 universities) and the associated partners
(3 universities, 6 SMEs and 1 bank) from 11 European countries.

In recent years, the computational complexity of mathematical models employed
in financial mathematics has witnessed tremendous growth. Advanced numerical
techniques are indispensable to most present-day applications in the financial
industry.

The motivation for this European training network STRIKE was the need for a
network of highly educated European scientists in the field of financial mathematics
and computational science, so as to exchange and discuss current insights and ideas
and to lay the groundwork for future long-term collaborations. Here, the challenge
lays in the necessity of combining transferable techniques and skills such as
mathematical analysis, sophisticated numerical methods and stochastic simulation
methods with a deep qualitative and quantitative understanding of mathematical
models arising from financial markets.

In STRIKE, the aim was to achieve a better understanding of complex (mostly
nonlinear) financial models and to develop effective and robust numerical schemes
for solving linear and nonlinear problems arising from the mathematical theory of
pricing financial derivatives and related financial products. This aim was accom-
plished by means of financial modelling, mathematical analysis and numerical
simulations, optimal control techniques and validation of models.

Special attention was devoted to a uniform methodology for both testing the
latest achievements and simultaneously educating young researchers: Most of the
mathematical codes emerging from the STRIKE projects are linked into a new
computational finance toolbox (CFT, cf. Chap. 30), which is provided in MATLAB
and PYTHON in an open access licence.

Generalized nonlinear option pricing models are capable of capturing several
important phenomena like transaction costs, investor’s risk from unprotected port-
folios, investor’s expected utility maximization, illiquid markets, large traders’

vii



viii Preface

feedback influence, etc. Such generalizations can be mathematically stated in the
form of a nonlinear generalization of the Black-Scholes (BS) equation, in which the
local volatility is a function of the option price and its derivatives. In STRIKE,
we investigated a wide range of financial derivatives described by a nonlinear
BS equation (see the survey Chap.1). In this regard, an important aspect was
the development of high-order compact finite difference methods (FDMs) and
transformation techniques for numerically solving nonlinear BS equations.

One of our principal goals in STRIKE was to provide training in advanced
methods and techniques in scientific computing with applications to complex
financial models. As such, STRIKE provided intensive courses in large-scale
financial computing in the many-core graphical processing units (GPUs) cluster
used for Monte Carlo simulations, finite difference and fast Fourier numerical
methods.

In the context of our research training programme, we covered the complete
development cycle for novel financial derivative products starting from setting up
stochastic differential equations (SDEs) for underlying assets, and modelling new
product prices, to the calibration of model parameters with respect to financial
market data by means of a hedge test, scenario studies, inverse problem techniques,
etc. This typical development cycle is reflected in the structure of this book.
Accordingly, we grouped the chapters into the 8 topics: modelling, analysis,
transformation methods and special discretizations, numerical methods in finance,
compact FDMs and splitting schemes, scientific computing, high-performance
computing and software.

With an eye to the future, we established an ECMI Special Interest Group on
Computational Finance, providing a network and basis for further fruitful collabo-
rations. Additionally, we founded a conference series, the International Conference
on Computational Finance (ICCF); see www.iccf.eu. The first conference took
place in December 2015 in Greenwich, London, and will be followed by a second
instalment in Lisbon in September 2017 and a third conference in A Coruiia in July
2019.

The editors wish to thank their colleagues from the STRIKE network for their
past cooperation and their valued contributions in the chapters of this handbook:
Daniel Sevcovic of Bratislava, Lucas Jédar Sdnchez of Valencia, Lyuben Vulkov of
Ruse, Maria do Rosario Lourenco Grossinho of Lisbon, Ljudmila Bordag of Zittau,
Ansgar Jiingel of Vienna, Kees Oosterlee of Delft, Choi-Hong Lai of Greenwich,
Alfio Borzi of Wiirzburg, Karel in ’t Hout of Antwerp, Olivier Pironneau of Paris,
Bertram Diiring of Sussex, Carlos Vazquez Cendén of A Corufia, Jorg Kienitz of
Quaternion and Jacques Du Toit of NAG.

Let us close the preface with a citation from a STRIKE PhD fellow:

The highlights of the STRIKE network are several. STRIKE is a serious boost to 17 young
people — 12 ESRs and 5 ERs — in their professional development in computational finance.
These researchers work extensively together with their supervisors and professionals from
the associated partners in order to get results of high importance to industry (novel models,
novel numerical algorithms and theoretical results).


www.iccf.eu
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Further, last but not least important, STRIKE strengthens seriously the interaction and
transfer of knowledge of methods and algorithms between all parties involved in the
consortium. This is going to produce very good results in the long term as collaboration
and team work is a recipe for success.

STRIKE is a big boost in their professional career of ESRs and ERs who are in the focus of
the project.

STRIKE may provide financial assistance in the several remaining months through mobi-
lization of all resources in order to support the researchers in completing their tasks, in
completing some courses (or industry experience) which are essential for a professional in
computational finance and further in finding a position in the academy or industry.

Acknowledgement The authors were partially supported by the European Union in the FP7-
PEOPLE-2012-ITN Program under Grant Agreement Number 304617 (FP7 Marie Curie Action,
Project Multi-ITN STRIKE Novel Methods in Computational Finance).

* X %

* *
ITN * STRIKE
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Wuppertal, Germany Matthias Ehrhardt
January 2017 Michael Giinther
E. Jan W. ter Maten
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Chapter 1
Nonlinear Parabolic Equations Arising
in Mathematical Finance

Daniel Sevcovic

Abstract This survey chapter is focused on qualitative and numerical analyses of
fully nonlinear partial differential equations of parabolic type arising in financial
mathematics. The main purpose is to review various non-linear extensions of the
classical Black-Scholes theory for pricing financial instruments, as well as models of
stochastic dynamic portfolio optimization leading to the Hamilton-Jacobi-Bellman
(HJB) equation. After suitable transformations, both problems can be represented by
solutions to nonlinear parabolic equations. Qualitative analysis will be focused on
issues concerning the existence and uniqueness of solutions. In the numerical part
we discuss a stable finite-volume and finite difference schemes for solving fully
nonlinear parabolic equations.

1.1 Nonlinear Generalization of the Black-Scholes Equation
for Pricing Financial Instruments

According to the classical theory developed by Black, Scholes and Merton the
value V(S, 1) of an option in the idealized financial market can be computed from a
solution to the well-known Black-Scholes (BS) linear parabolic equation:

1
oV + 202S28§V + (r—q)SdsV —rV =0, te0,7), S>0, (1.1)

derived by Black and Scholes and, independently by Merton (cf. [29, 38]). Here
o > 0 is the volatility of the underlying asset driven by the geometric Brownian
motion, r > 0 is the risk-free interest rate of zero-coupon bond and ¢ > 0 is the
dividend rate. Similarly, as in the case of the HIB equation the solution is subject to
the terminal condition V(S,T) = V(S) atr = T.

The linear Black-Scholes equation with constant volatility o has been derived
under several restrictive assumptions like e.g., frictionless, liquid and complete

D. Sev&ovié (5<)
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markets, etc. We also recall that the linear Black-Scholes equation provides a
solution corresponding to a perfectly replicated hedging portfolio which need not
be a desirable property. In the last decades some of these assumptions have been
relaxed in order to model, for instance, the presence of transaction costs (see
e.g. Leland [18, 29] and Avellaneda and Paras [5]), feedback and illiquid market
effects due to large traders choosing given stock-trading strategies (Schonbucher
and Willmott [40], Frey and Patie [16], Frey and Stremme [15], imperfect replication
and investor’s preferences (Barles and Soner [8]), risk from the unprotected portfolio
(JandaZka and Sev&ovi¢ [22]). Another nonlinear model in which transaction costs
are described by a decreasing function of the number of shares has been derived by
Amster et al. [2]. In all aforementioned generalizations of the linear BS equation
(1.1) the constant volatility o is replaced by a nonlinear function:

o = o (SRV) (1.2)

depending on the second derivative 8§V of the option price itself.

One of the first nonlinear models taking into account transaction costs is the
Leland model for pricing the call and put options. This model was further extended
by Hoggard et al. [18] for general type of derivatives. In this model the variance o2
is given by

2(1-Le), ifd?
o (S92V)? = 02 (1 — Lesgn (s2v)) = | 0 (1 E 1105V > 000 )
o%(1 + Le), if3§V <0,

2 G
- ™ o/ Al . : .
volatility, Cyp > 0 is a constant transaction costs per unit dollar of transaction in

the underlying asset market and At is the time-lag between consecutive portfolio
adjustments. The nonlinear model with the volatility function given as in (1.3)
can be also viewed as a jumping volatility model investigated by Avellaneda and
Paras [5].

The important contribution in this direction has been presented in the work by
Amster et al. [2], where the transaction costs are assumed to be a non-increasing
linear function of the form C(§) = Cy — k&, (Cp, k > 0), depending on the volume
of trading stock £ > 0 needed to hedge the replicating portfolio. A disadvantage of
such a transaction costs function is the fact that it may attain negative values when
the amount of transactions exceeds the critical value § = Cy/«. In the model studied
by Amster et al. [2] (see also Averbuj [4], Mariani et al. [33]) the volatility function
has the following form:

where Le = is the so-called Leland number, oy is a constant historical

0(S93V)* = oy (1 —Lesgn (S95V) + kSo5V) . (1.4)



1 Nonlinear Parabolic Equations Arising in Mathematical Finance 5

In the recent paper [39] Sevéovi¢ and Zitnansk4 investigated a model for pricing
option under variable transaction costs.

(1.5)

2
O’(S(?éV)z — o'g (1 _ \/ié(USlaﬁle/At) Sgn(Sasv))

o At

where C is the mean value modification of the transaction cost function C = C(§)

~. 2 .
defined as follows: C(§) = fooo C(Ex)xe™ /?dx. As an example one can consider
the piecewise linear transaction cost function of the form:

Co, if 0<é&=<é&,
Cé)=(Co—rk(E—&), if & <E<éy, (1.6)
Co. if E>&4.

Bakstein and Howison [7] investigated a parametrized model for liquidity effects
arising from the asset trading. In their model o is a quadratic function of the term
H = SoiV:

o(S0V)? :gg(l + 721 —a)® + 24803V + A% (1 —a)? (sa§v)2
(1.7)
2 2 2 2092
+24/ 7sgn(S05V) +2¢/ T A0 —)’y [SHV] |
T b

The parameter A corresponds to a market depth measure, i.e. it scales the slope of the
average transaction price. Next, the parameter y models the relative bid-ask spreads
and it is related to the Leland number through relation 2y \/ 2/m = Le. Finally, «
transforms the average transaction price into the next quoted price, 0 < o < 1.

The risk adjusted pricing methodology (RAPM) model takes into account the
risk from the unprotected portfolio was proposed by Kratka [28]. It was generalized
and analyzed by Jandacka and Sev&ovi¢ [22]. In this model the volatility function
has the form:

o (SA2V): = o} (1 + 1 (Sagv)é) : (1.8)

where op > 0 is the constant historical volatility of the asset price return and
w = 3(C3R/ 27r)§, where Cy, R > 0 are non-negative constants representing the
transaction cost measure and the risk premium measure, respectively.

If transaction costs are taken into account perfect replication of the contingent
claim is no longer possible and further restrictions are needed in the model. By
assuming that investor’s preferences are characterized by an exponential utility
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function Barles and Soner (cf. [8]) derived a nonlinear Black-Scholes equation with
the volatility o given by

o(SHV,S, 0 = of (1 + w(@eTI529V)) (1.9)
where ¥ is a solution to the ODE:

v= TOFL 0 =0
2 \/ X (x) —x
and a > 0 is a given constant representing risk aversion. Notice that ¥ (x) = O(xé)
for x — 0 and ¥ (x) = O(x) for x — oc.
All the nonlinear volatility models mentioned in this section can be written in the
form of a solution to the fully nonlinear parabolic equation:

1
0,V + 20(8§V)2528§V +(r—q)SosV—rV =0, te[0,T),S>0. (1.10)

Jandacka and Sev&ovi¢ [22] proposed the method of transformation of equation
(1.10) into a quasi-linear parabolic equation for the second derivative 8§V (the so-
called Gamma of an option) of a solution. Indeed, if we introduce the new variables
H(x,7) = SB%V(S, 1), x = InSand t = T — ¢ then Eq. (1.10) can be transformed
into the so-called Gamma equation:

d.H = 3B(H) + 9,.p(H) + (r — q)d.H —qH, x € R, 7€ (0,T), (1.11)

where
Bx,H) = ;U(H)ZH

(cf. [10, 22]). Recall that the Gamma equation can be obtained by twice differentia-
tion with respect to x of the Black-Scholes equation (1.18) with the volatility of the
general type (1.2). A solution H(x, t) to the Cauchy problem for (1.11) is subject to
the initial condition H(x, 0) = Hy(x).

1.2 Nonlinear Hamilton-Jacobi-Bellman Equation
and Optimal Allocation Problems

Optimal allocation and optimal investment problems with state constraints attracted
a lot of attention from both theoretical as well as application point of view. The main
purpose is to maximize the total expected discounted utility of consumption for the
optimal portfolio investment consisting of several stochastic assets, over infinite or
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finite time horizons. It is known that the value function of the underlying stochastic
control problem is the unique smooth solution to the corresponding Hamilton-
Jacobi-Bellman (HJB) equation and the optimal consumption and portfolio are
presented in feedback form (Zariphopoulou [44]).

Let us consider the stylized financial market in which the aim of a portfolio
manager is to maximize the expected value of the terminal wealth of a portfolio,
measured by a prescribed utility function U. In particular, if » is the number of
assets entering the portfolio, T the investment horizon, the goal is to find an optimal
trading strategy {6} = {6, € R" |t € [0, T]} belonging to a set A = A 7 of strategies
A = {{0}10; € S",s € [t,T]}, where §" = {6, € R"|6, € [0,1]",176, = 1} isa
convex compact simplex such that {0} maximizes the expected terminal utility from
the portfolio:

E[Uux?)|x? = x]. 1.12
max [UXD)IXG = x0] (1.12)

Here X, = In Y, represents a stochastic process governed by the following stochastic
differential equation

dx? = (u(e) - ;0(0)2) dt + o (6)dw,

for a logarithmic portfolio value, where xy is its initial value at the time r = 0. Here
w(0) and o (0) are the expected return and volatility of the portfolio. As a typical
example, one can consider functions ;(6) = u’0 and 02(9) = 07 X0, where u is
a vector of mean returns and ¥ is a covariance matrix. It is known from the theory
of stochastic dynamic programming that the so-called value function

Vx,t):= sup E[UXD)[X! =x] (1.13)
{0}eA,r
subject to the terminal condition V(x,7T) := U(x) can be used for solving the

stochastic dynamic optimization problem (1.12) (cf. Bertsekas [9], Fleming and
Soner [14]). Moreover, it is also known, that the value function V = V(x, ¢) satisfies
the following Hamilton-Jacobi-Bellman equation:

1 1
B,V—l—max%(u(@)— 0(0)2) .V + _0(0)?#V: =0, (1.14)
fesn 2 2

forall x € R, € [0,T) and it satisfies the terminal condition V(.,T) := U(.) (see
e.g. [20, 32]).

In general, explicit solutions to HJB equations are not available and this
is why various numerical approaches have to be adopted. Regarding numerical
approaches for solving HIB equations associated with portfolio optimization, we
can mention and refer to finite difference methods for approximating its viscosity
solution developed and analyzed by Tourin and Zariphopoulou [42], Crandall
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et al. [12], Nayak and Papanicolaou [36]. Other approach based on Markov chain
approximation techniques was investigated by Song [41] and Fleming and Soner
[14]. Classical methods for solving HIB equations are discussed by Benton [44].
In [34], Musiela and Zariphopoulou applied the power-like transformation in order
to linearize the non-linear PDE for the value function in the case of an exponential
utility function. Muthamaran and Sunil [35] solved a multi-dimensional portfolio
optimization problem with transaction costs. They used finite element method and
iterative procedure that converts a free-boundary problem into a sequence of fixed
boundary problems. Peyrl et al. [37] applied a successive approximation algorithm
for solving the corresponding HIB equation. The fixed point-policy iteration scheme
for solving discretized HIB equations is discussed in Huang et al. [19]. Witte and
Reisinger [43] presented a penalty approach for the numerical solution of discrete
continuously controlled HIB equations.

In the recent paper [23] Kilianova and Sev&ovi¢ transformed the fully nonlinear
HIB equation (1.14) into the Cauchy problem for the quasi-linear parabolic
equation:

0 + 82B(p) + 0:[(1 —9)B(@)] =0. x€R1€[0.7), (1.15)
<p(x,T)=1—’,§f(<g, x €R. (1.16)

To this aim we introduced the following transformation:

2V (x, 1)
e, =1 VD)
It is referred to as the Riccati transformation and it has been proposed and studied
in [1, 32] and further analyzed by Ishimura and Sevéovi¢ in [20]. The resulting
equation was solved numerically by an iterative method based on the finite volume
approximation. Furthermore, it follows from the analysis [23] by Kilianovad and
SevEovi¢ that the diffusion function B(¢) is the value function of the following
parametric optimization problem:

B(e) = min{—u(0) +  o(6)%} (1.17)
esn 2

The dispersion function § > o(6)* is assumed to be strictly convex and
6 +— () is a linear function. Therefore problem (1.17) belongs to a class of
parametric convex optimization problems (cf. Bank et al. [6], Hamala and Trnovska
[17]). Useful generalization of the HIB equation (1.14) in case the covariance matrix
X belongs to some set P of (e.g. ellipsoidal sets) of covariance matrices was studied
by Kilianova and Trnovskd in [24] with regard to application to the so-called “worst
case variance” portfolio model in which the diffusion function (1.17) has the form:

i T a1
PO =g 0+ 050
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They showed this problem can be analyzed by the methods of semidefinite
programming. The value function B(¢) need not be sufficiently smooth and its
second derivative can have jumps.

In fact, the Riccati transformation is the logarithmic derivative of the derivative of
the value function. In the context of a class of HIB equations with range constraints,
the Riccati transformation has been analyzed recently by Ishimura and Sev&ovié
in [20] where a traveling wave solution to the HIB equation was constructed.
Concerning numerical methods for solving the quasi-linear parabolic PDE obtained
from the HIB equation by means of the Riccati transformation we mention recent
papers by Ishimura et al. [21, 25]. In [25], Koleva considered a similar nonlinear
parabolic equation, obtained by means of a Riccati-like transformation of the HIB
equation, arising in pension saving management. In contrary to our model problem,
she considered a problem without constraints on the optimal decision. She applied
two iterative numerical methods, namely the fully implicit Picard method and the
mixed Picard-Newton method and discussed their accuracy and effectiveness.

In summary, the nonlinear volatility generalization of the Black-Scholes equation
as well as the Hamilton-Jacobi-Bellman equation can be transformed into the
quasilinear parabolic equation for the unknown function H = H(x, ) representing
either the Gamma of the portfolio H = S32V (nonlinear volatility Black-Scholes
models) or the relative risk aversion function H = 1 — Bf( V/0,V (Hamilton-Jacobi-
Bellman equation). The resulting quasilinear parabolic equation has the form:

0.H = 3*B(H) +f(x,H,0,H), xeR,te(0,T), (1.18)

where f is a suitable nonlinear function.

1.3 Existence of Classical Solutions, Comparison Principle

In this section we recall results on existence of classical smooth solutions to
the Cauchy problem for the quasilinear parabolic equation (1.18). Following
the methodology based on the so-called Schauder’s type of estimates (cf.
Ladyzhenskaya et al. [30]), we shall proceed with a definition of function spaces
we will work with. Let 2 = (x7,xg) C R be a bounded interval. We denote
QOr = £ x (0,T) the space-time cylinder. Let 0 < A < 1. By J7*(R2)
we denote the Banach space consisting of all continuous functions H defined
on £2 which are A-Holder continuous. It means that their Holder semi-norm
(HY™ = sup, co .z, |[H(x) — H(y)|/|x — y|* is finite. The norm in the space
*(£2) is then the sum of the maximum norm of H and the semi-norm (H)*). The
space 7>+ (£2) consists of all twice continuously differentiable functions H in 2
whose second derivative 3*H belongs to #*(§2). The space J#>T*(R) consists
of all functions H : R — R such that H € #>**(£2) for any bounded domain
2 CR
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The parabolic Holder space #**/2(Qr) of functions defined on a bounded
cylinder Q7 consists of all continuous functions H(x, ) in Q7 such that H is A-
Hoélder continuous in the x-variable and A/2-Holder continuous in the t-variable.
The norm is defined as the sum of the maximum norm and corresponding Holder
semi-norms. The space .#>t4174/2(Q) consists of all continuous functions on
Qr such that 3, H, 3*H € 7#**/2(Qr). Finally, the space #>T*1+4/2(R x [0, T])
consists of all functions H : R x [0, 7] — R such that H € s#2T*1+4/2(Q;) for
any bounded cylinder Q7 (cf. [30, Chap.I]).

In the nonlinear models discussed in the previous sections one can derive useful
lower and upper bounds of a solution H to the Cauchy problem (1.18). The idea of
proving upper and lower estimates for H(x, 7) is based on construction of suitable
sub- and super-solutions to the parabolic equation (1.18) (cf. [30]).

Ao < B(H) <Ay

for any H > 0 where A+ > 0 are constants. This implies strong parabolicity of the
governing nonlinear parabolic equation.

Theorem 1.1 ([39, Theorem 3.1]) Suppose that the initial condition H(.,0) > 0
belongs to the Holder space 7#°*(R) for some 0 < A < min(1/2,¢) and H =
sup,eg H(x,0) < 0o. Assume that B,f € C'* and B satisfies \_ < B'(H) < A4 for
any 0 < H < H where A1 > 0 are constants.

Then there exists a unique classical solution H(x, ) to the quasilinear parabolic
equation (1.18) satisfying the initial condition H(x,0). The function t — 0.H(x, T)
is A/2-Holder continuous for all x € R whereas x — 0,H(x,t) is Lipschitz
continuous for all t € [0, T]. Moreover, B(H(.,.)) € S*T*1HA/2(R x [0, T]) and
0<H(x,t) <Hforall (x,7) e Rx[0,T).

The proof is based on the so-called Schauder’s theory on existence and unique-
ness of classical Holder smooth solutions to a quasi-linear parabolic equation of
the form (1.18). It follows the same ideas as the proof of [23, Theorem 5.3]
where Kilianové and Sev&ovi¢ investigated a similar quasilinear parabolic equation
obtained from a nonlinear HJB equation in which a stronger assumption 8 € C"! is
assumed.

1.4 Numerical Full Space-Time Discretization Scheme
for Solving the Gamma Equation

In this section we present an efficient numerical scheme for solving the Gamma
equation. The construction of numerical approximation of a solution H to (1.18) is
based on a derivation of a system of difference equations corresponding to (1.18) to
be solved at every discrete time step. We make use of the numerical scheme adopted
from the paper by Jandacka and Sevovié [22] in order to solve the Gamma equation
(1.18) for a general function 8 = B(H) including, in particular, the case of the
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model with variable transaction costs. The efficient numerical discretization is based
on the finite volume approximation of the partial derivatives entering (1.18). The
resulting scheme is semi-implicit in a finite-time difference approximation scheme.

Other finite difference numerical approximation schemes are based on dis-
cretization of the original fully nonlinear Black-Scholes equation in non-divergence
form. We refer the reader to recent publications by Ankudinova and Ehrhardt [3],
Company et al. [11], Diiring et al. [13], Liao and Khaliq [31], Zhou et al. [45].
Recently, a quasilinearization technique for solving the fully nonlinear parabolic
equation was proposed and analyzed by Koleva and Vulkov [26]. Our approach is
based on a solution to the quasilinear Gamma equation written in the divergence
form, so we can use existing finite volume based numerical scheme to solve the
problem efficiently (cf. Jandacka and Sevcovié [22], Kitik and Mikula [27D).

For numerical reasons we restrict the spatial interval to x € (—L, L) where L > 0
is sufficiently large. Since S = Ee* € (Ee™L, Ee") it is sufficient to take L ~ 2 in
order to include the important range of values of S. For the purpose of construction
of a numerical scheme, the time interval [0, T is uniformly divided with a time step
k = T/m into discrete points 7; = jk, where j = 0,1,...,m. We consider the
spatial interval [—L, L] with uniform division with a step 2 = L/n, into discrete
points x; = ih, where i = —n, ..., n.

The proposed numerical scheme is semi-implicit in time. Notice that the term
2B, can be expressed in the form 928 = 9, (B'(H)d.H), where 8’ is the derivative
of B(H) with respect to H. In the discretization scheme, the nonlinear terms 8’ (H)
are evaluated from the previous time step 7;—; whereas linear terms are solved at the
current time level.

Such a discretization scheme leads to a solution of a tridiagonal system of linear
equations at every discrete time level. First, we replace the time derivative by the
time difference, approximate H in nodal points by the average value of neighboring
segments, then we collect all linear terms at the new time level 7; and by taking
all the remaining terms from the previous time level 7;—;. We obtain a tridiagonal

system for the solution vector #/ = (., ..., H,_)T e R~
@H_ +blH +cH,, =d, H,=0 H =0, (1.19)
wherei = —n+1,...,n—1andj = 1,...,m. The coefficients of the tridiagonal

matrix are given by

k

. k - k . . .
" c = _hz'BI/LI(H; l)— e bl=1—(al +¢)),

; k i
. . k . .
J— ! 2 g—1

di i h('B( i ) ,B(H,'_l))-

It means that the vector A’ at the time level 7; is a solution to the system of linear
equations AY) H/ = &/, where the (2n—1) x(2n—1) matrix AY) = tridiag(a’, b7, ¢/).
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In order to solve the tridiagonal system in every time step in a fast and effective way,
we can use the efficient Thomas algorithm.
In [39] the authors showed that the option price V(S, T — t;) can be constructed

from the discrete solution H{ by means of a simple integration scheme:

(call option) VIS, T—1)=h Z(S—Ee"i)+H{, j=1,...,m,

i=—n

(put option) V. T—1)=hY (Ee"—S)TH. j=1.....m.

i=—n

1.5 Numerical Results for the Nonlinear Model with Variable
Transaction Costs

In this section we present the numerical results for computation of the option price
for the nonlinear volatility Black-Scholes model with variable transaction costs
derived and analyzed by Sev&ovi¢ and Zitnansk4 in the recent paper [39]. As an
example for numerical approximation of a solution we consider variable transaction
costs described by the piecewise linear non-increasing function, depicted in Fig. 1.1.
The function S(H) corresponding to the variable transaction costs function C(€) has
the form

o _\/2~ sgn(H)
i) = (1 ﬂC(olHlx/At)UJAt)H,

where C is the modified transaction costs function.

0.14
0.020 | 0.12
0.10
@ 0.015 | 0.08
&) - r
= N e BH)
¥ 0.010 - 0.06 -
o
0.04
0.005 |
0.02
0.000 - L . . ) ) 0.00 = \ L . L Il
0.00 0.01 0.02 0.03 0.04 0.05 0 1 ) 3 4 5
3 H

Fig. 1.1 Left: The piecewise linear transaction costs function C (solid line), its mean value
modification C (dashed line). Right: the graph of the corresponding function S(H). Source [39]
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V(S
ASH

50

Fig. 1.2 The call option price V(S, ) as a function of S for t = 0 (left) and its delta A(S,1) =
dsV(S, t). Source [39]

In our computations we chose the following model parameters describing the
piecewise transaction costs function: Cy = 0.02, k = 0.3, é_ = 0.05, £, = 0.1.
The length of the time interval between two consecutive portfolio rearrangements:
At = 1/261. The maturity time T = 1, historical volatility o = 0.3 and the risk-
free interest rate r = 0.011. As for the numerical parameters we chose L = 2.5,
n = 250, m = 200. The parameters Cy, o, k, £+ and At correspond to the Leland
numbers Le = 0.85935 and Le = 0.21484. In Fig. 1.2 we plot the solution V. (S, t)
and the option price delta factor A(S, 1) = dsV(S, 1), for t = 0. The upper dashed
line corresponds to the solution of the linear Black-Scholes equation with the higher
volatility

where C, = Cy — k({4 — £—) > 0, whereas the lower dashed line corresponds to
the solution with a lower volatility

2 1
62, =ao’ 1—c0\/
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Chapter 2
Modeling of Herding and Wealth Distribution
in Large Markets

Ansgar Jiingel and Lara Trussardi

Abstract The dynamics of the number of participants in a large market is described
by nonlinear partial differential equations of kinetic and diffusive type. The results
on the modeling, analysis, and numerical simulation of three market models
are briefly reviewed. The interplay of the agents with external sources, herding
phenomena, and irrationality of the individuals as well as the exchange of knowl-
edge and wealth is explored mathematically. The focus lies on the mathematical
understanding of the differential equations rather than on the modeling of real
economic situations, aiming at identifying models which are able to produce the
desired effects.

2.1 Introduction

The modeling of markets with a large number of agents became very vital in
recent years with the aim to understand inefficient markets or irrational behavior
of agents, for instance. The dynamics of such markets may be described by
agent-based models, kinetic equations, or diffusive systems. Agent-based models
specify the behavior of individuals by using elements of game theory and Monte-
Carlo simulation techniques [31]. In kinetic modeling, the analogy with statistical
mechanics is exploited: Interactions between market agents are interpreted as
collisions between gas particles, and conservation laws for income and/or wealth
may hold [26, 28]. Diffusive systems are often derived from kinetic equations in the
so-called grazing collision limit , and they illustrate the behavior on a macroscopic
level [33]. In this section, we summarize the results of Boudin et al. [7], Diiring et al.
[15], Jiingel et al. [25] on kinetic and diffusive equations modeling socio-economic
scenarios.
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The first scenario is the herding in financial markets. Herding is characterized by
a homogenization of the actions of the market participants, which behave at a certain
time in the same way. Herding may lead to strong trends with low volatility of asset
prices, but eventually also to abrupt corrections, so it promotes the occurrence of
bubbles and crashes. Numerous socio-economic papers [4, 8, 30] and research in
biological sciences [1, 19] show that herding interactions play a crucial role in social
scenarios. Herding behavior is often irrational because people are not basing their
decision on objective criteria.

A full understanding of herding behavior needs the ability to understand two lev-
els: the microscopic one, which considers each individual of the crowd separately;
and the macroscopic level, which deals with the group of individuals, i.e. the herd.
The first level usually represents the individual as a particle, and a microscopic
particle-type or mesoscopic kinetic description may be useful. The latter one may
be represented by a density function depending (continuously) on space and time,
leading to diffusive equations. We consider a diffusive herding model in Sect. 2.2
and a kinetic herding equation in Sect. 2.3.

The second scenario addressed in this review is the distribution of wealth. Most
of the models in the literature are agent-based models [9], mean-field games [18], or
kinetic equations [27]. In kinetic modeling, binary collisions are replaced by trades
between agents by defining rules which specify how wealth is exchanged in trades.
The output of the model are the statistics of the wealth distribution in the market. It
turns out that in many models, the stationary profile has an overpopulated tail (called
fat tail or Pareto tail), which is interpreted as the existence of an upper class of
very wealthy people [27]. Pareto tails appear under various assumptions, assuming
wealth conservation in the mean or pointwise wealth conservation [14].

Binary wealth exchange models go back to the work [3]. Later, the relation
to statistical mechanics was highlighted [24], and strictly conservative exchange
models were developed [10]. The strict conservation was relaxed in [12] to
conservation in the mean. Our contribution is to combine wealth and knowledge
of agents in a society and to examine the interaction of these qualities; see Sect. 2.4.

We stress the fact that the models that we are proposing and analyzing are quite
simple. Certainly, the socio-economic behavior of real market agents is extremely
complex and includes psychological and social phenomena. Still, we believe that a
large number of agents may be described to some extent in an averaged sense—at
least in simplified situations. Our aim is to understand the mathematical phenomena
arising from the new terms in the models rather than devising models that include
as many features as possible. Our analysis shows which terms produce the desired
effects and henceforth can be included in more realistic models. The hope is that this
analysis helps to identify irregularities in (financial) markets or in societies and to
lead to improved market regulations and counter-actions to avoid financial crashes.
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2.2 A Cross-Diffusion Herding Model

A very simple model for herding behavior is given by the cross-diffusion system
[25]

i = div(Vu — gw)Vv), d,v = div(§Vu + kVv) 4+ f(u) — av, (2.1)

where u(x,t) represents the normalized density of individuals with information
variable x € £2 at time ¢t > 0 (22 C R? being a bounded domain), and v (x, ) is
an influence function which modifies the information state of the individuals. The
influence function acts through the cross-diffusion term g(x) Vv in the first equation
in (2.1). We assume that the influence becomes weak if the number of individuals at
a fixed state x is very low or close to the maximal value u = 1. Thus, we suppose that
£(0) = g(1) = 0. The influence function is modified by diffusive effects also due to
the random behavior of the agents with parameter § > 0, by the nonnegative source
term f(«), time relaxation with rate ¢ > 0, and diffusion with coefficient ¥ > 0.
Our aim is to understand whether the above model exhibits herding phenomena, i.e.
regions in which the density of the agents is very low or close to the maximal value.
The equations are supplemented by no-flux boundary and initial conditions:

(Vu—gw)Vv)-v =0, @BVu+«Vv)-v=0 onas2,
u(-0) = uy, v(-0)=vo Inf2,1>0, 2.2)

where v denotes the exterior unit normal vector to 052.

If § = 0, system (2.1) correspond to a nonlinear chemotaxis Keller-Segel model,
where u represents the cell density and v the concentration of the chemoattractant
[20]. While the original Keller-Segel model exhibits finite-time blow-up of the solu-
tions, the nonlinear mobility g(u) = u(1 — u) prevents blow up [34]. Equations (2.1)
with § > 0 can be derived from stochastic partial differential equations describing
interacting particles, at least for constant mobility functions g(u) [17]. The case
8 > 0 and g(u) = u was analyzed in [23]. A typical example in the present situation
is g(u) = u(1 — u) since this function satisfies g(0) = g(1) = 0.

In the work [25], the following results have been obtained.

2.2.1 Existence of Solutions

If f and g are smooth, bounded, nonnegative functions such that there exists m €
(0, 1) satisfying

" ds U ds
g(0) = ¢g(1) =0, /O 2 =L 20) = 00, (2.3)
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and ugy, vg € L*°(S2), then there exists a global weak solution (u, v) to (2.1)—(2.2)
satisfying 0 < u < 1in §2,¢ > 0, as long as § > —«/y, where y = max,eo,1] §(5)-
The function g(u) = u(1 — u) satisfies (2.3).

The restriction on § ensures that the real parts of the eigenvalues of the diffusion
matrix from (2.1) are positive, such that the system is parabolic in the sense of
Petrovskii and local existence of solutions can be expected [2]. The challenge is to
prove the existence of global (weak) solutions. A key element of the proof is the
observation that Eq. (2.1) admit a Lyapunov functional (called an entropy),

2 s po
H(u,v) = /Q (h(u)+ 21)80)’ where h(u):/ / gc(l;)dcr,

and 6y = §if § > 0, 8o = k/y if § < 0. A computation shows that for § > —«/y,
there exists ¢s > 0 such that

dH + / (|Vu|2 n |Vv|2)d -
C X =C,
da o\ g 52 =

where cs > 0 also depends on £2, f, and g. The gradient estimate is needed
to prove the compactness of the fixed-point operator needed to apply the Leray-
Schauder fixed-point theorem [25]. The exponential decay of the solutions (in terms
of H(u, v)) to a constant steady state holds for sufficiently large values of § > 0. We
wish to understand what happens if § becomes small positive or negative large. This
is done via a bifurcation analysis.

2.2.2 Bifurcation Analysis

Choosing § as a bifurcation parameter, we can apply bifurcation theory to show
that the stationary solutions bifurcate from the constant steady state (u*,v*) for
8 # 84 := —«/g(u*). For this result, we employed in [25] the local bifurcation
theory of Crandell and Rabinowitz and the global bifurcation theory for nonlinear
Fredholm mappings from Shi and Wang [32]. The difficulty here is that (u*, v*) is
not an isolated bifurcation branch as a function of 6, since fixing any initial mass,
there is a family of homogeneous steady states with u* = [, u(x)dx/meas(£2).
For the numerical bifurcation analysis, this degeneracy is resolved by introducing a
small relaxation term p(u — u*) in the first equation of (2.1) with very small p > 0
and by applying a homotopy continuation step to achieve solutions for p = 0.

Numerically, there exist local bifurcation points on the branch of homogeneous
steady states if § < &, for sufficiently large o and if § > §, for sufficiently small «.
The results have been obtained by using the software AUTO; for details we refer to
[25]. Here, we only depict one stationary density « in Fig. 2.1, showing that there is
indeed a region in which the number of individuals with a certain information state
is very small, which indicates some herding phenomenum.
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Fig. 2.1 Stationary density
of individuals for the

model (2.1) with parameters
a=0.00l,k=1,§ =09,
and 2 = (0, 50)

2.3 A Kinetic Model with Irrationality and Herding

A second approach to model herding consists in using kinetic equations. We
describe the evolution of the distribution function f(x, w, ¢) of the agents depending
on the rationality x € R and the estimated asset value w € Ry := [0, 00), assigned
to the asset by an individual. The agent behaves rational when x > 0 and irrational
when x < 0. The time evolution is given by the inhomogeneous kinetic equation

atf + (@(X, W)f)x = Ql(f) + QH(fvf)? (X, W) € R x R-l-’ r> Oa (24)

with the boundary and initial conditions
f(x,0,1) =0, f(x,w,0) = folx,w) for(x,w) e RxR4, t>0. (2.5)

The second term in (2.4) models the irrationality of the agents. When the asset price
w lies within a certain range |w — W| < R around a “fair” prize W > 0 which
is determined by fundamentals, the agents are supposed to behave more irrational
because of psychological biases like overconfidence or limited attention [22]. This
is modeled by a negative drift field @(x, w). When the asset value is outside of
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the “fair” prize region, it is believed to be driven by speculation. The agents will
recognize this fact at a certain point and are becoming more rational. Thus, the drift
field is positive. An example for such a function is

bl = | K T WI<R 06
X, W) = .
K if jw— W| > R,

where § and k are some positive numbers.

The first term on the right-hand side of (2.4) describes an interaction that is solely
based on economic fundamentals, and the second term describes binary interactions
of the agents modeling the exchange of information and possibly leading to herding.
The precise modeling is as follows.

2.3.1 Public Information and Herding

Let w be the estimated asset value of an agent before the interaction and w* the
asset value after exchanging information with a public source. Similarly as in [11],
the interaction is given by

w* =w—aP(lw—W))Ww—W) + nd(w), 2.7)

where P € [0, 1] measures the compromise propensity, @ > 0 measures the strength
of this effect, 1 is a random variable with distribution p with variance 012 and zero
mean taking values in R, and d(w) € [0, 1] models the modification of the asset
prize due to diffusion. For instance, we may choose P(|w — W|) as the characteristic
function 1y),,_w|<,3 on {jw — W| < r} for some r > 0. The above interaction rule
means that if a market agent trusts an information source, she/he will update her/his
estimated value to bring it closer to the one suggested by the information source. A
rational investor is supposed to follow such a strategy.

The second interaction rule models herding effects by taking into account the
interaction between an agent and other investors. We choose, similarly as in [33],

w* =w— By, w)(w—v) + nid(w),
V¥ =v— By(v,w)(v —w) + nd(v). (2.8)

Here, (w, v) and (w*, v*) denote the asset values of two arbitrary agents before and
after the interaction, respectively. The constant 8 € [0, 1/2] measures the attitude
of the market participants to change their mind because of herding mechanisms,
N1, N2 are random variables with the same distribution with variance 0}1 and zero
mean, and the function d is as above. The function y € [0, 1] describes a socio-
economic scenario where individuals are highly confident in the asset. In [13], the
example y (v, w) = 1y, uf(w) is suggested, where f is nonincreasing, f(0) = 1,
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and limy,— 0 f(w) = 0. The meaning of this choice is as follows: If an agent has an
asset value w smaller than v, the function y will push the agent to assume a higher
value w* than that one before the interaction. This means that the agent trusts other
agents that assign a higher value. If w is larger than v, the agent hesitates to lower
her/his asset value and nothing changes. For a discussion of the nonnegativity of w*
and v*, we refer to [15, Sect. 2].

With the above interaction rules, we can define the interaction operators Q; and
Qpy in the weak form. Let ¢ (w) := ¢ (x, w) be a regular test function and set £2 =
R x Ry, z = (x,w). Then

/ 01(f)p(w)dz = 1< / / (¢(w*)—¢(w))M(W)f(x,w,t)dde>,
2 TH\JR; /2

/ 0u(f-F)p(w)dz = 1< / / (¢(w*)—¢(w))f(x,w,r)f(x,v,r)dzdw>,
Q U\JrRy J@2

where (-) is the expectation value with respect to the random variable n and M(W) >
0 is a fixed background satisfying fR+ MW)dw = 1.
We have obtained in [15] the following results.

2.3.2 Grazing Collision Limit

The analysis of the Boltzmann equation (2.4) is quite involved, and we expect that
its main features are contained in the limiting equation derived in the diffusion limit
(o, B, afl, 012) — 0. More precisely, we scale the variables according to ¢ +— «f and
x +— ax. Performing a Taylor expansion in the collision integrals and passing to
the limit (o, ,3,021,012) — 0 such that A; = 012/0{ and Ay = 0121/05 are fixed, the
limiting equation for the function g(x, w, r) reads as

0:g + (P(x, w)g)x = (K[glg + HW))w + (D(W)&)ww, (2.9
where (x,w) € R xRy, 1> 0,D(w) = ) (A1/7 + Aup/ta)dw)?, p = [, fdz,
*© k
Klg] = / I'(v,w)ig(v)dv, I'(v,w)= _y,w)(v—w),
0 TH

| (2.10)
H(w) = / P(lw — W) (w — W)M(W)dW.
T Ry

The equation is supplemented by the boundary and initial conditions

g(x,0,1) =0, glx,w,0) = go(x,w) for(x,w) e RxR,, t>0. (2.11)
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2.3.3 Existence of Weak Solutions

Equation (2.9) is nonlinear, nonlocal, degenerate in w, and anisotropic in x
(incomplete diffusion) and hence, its analysis is challenging. Partial diffusion may
lead to singularity formation [21], and often solutions have very low regularity [16].
As the transport in x is linear in (2.9), our situation is better but still delicate. In
particular, we need the hypothesis that D(w) is strictly positive to get rid of the
degeneracy in w. Assuming additionally that the functions in (2.10) are smooth,
I' > 0and 0I'/ow < 0, and the initial datum g¢ is nonnegative and bounded,
there exists a weak solution g to (2.9)—(2.11) such that g € L*(0,T;H'(£2)),
0,g € L2(0,T;H'(2)) and 0 < g(x,w,1) < | gollzce* for (x,w) € 2,1 > 0,
for some A > 0 and for all 7 > 0.

The idea of the proofis to regularize Eq. (2.9) by adding a second-order derivative
with respect to x, to truncate the nonlinearity, and to solve the equation in the
finite interval w € (0,R). Then we pass to the deregularization limit. The key
step of the proof is the derivation of H' estimates uniform in the approximation
parameters, which allow for the compactness argument. These estimates are derived
by analyzing the differential equation satisfied by g, and by making crucial use of
the boundary conditions. For details, we refer to [15].

2.3.4 Numerical Simulations

We illustrate the behavior of the solution to the kinetic model (2.4) numerically
by using an operator splitting ansatz, i.e., we split (2.4) into a drift part and the
collisional parts d,f = Q;(f)/t; and d,f = Qu(f.f)/tu. The collisional parts are
solved by using the interaction rules (2.7), (2.8), respectively, and a slightly modified
Bird scheme [5]. The transport part d,f = (D(x,w)f), is numerically solved by
a flux-limited Lax-Wendroff/upwind scheme. The parameters and functions are
chosen as follows: Ty = 7; = 1 and

P(lw=W) =1, dw) =4w(l—-w), y,w) =1y vl —w),
@ is given by (2.6), and we choose the time-dependent background
W(t) = (sin(z/200) + 0.5 * exp(z/500))/30.
The time evolution of the first moment

m(f () = /Q F w1 w)

is shown in Fig. 2.2. The mean asset value stays within the range [W(t)—R, W(#)+R]
if W(7) is increasing but it has the tendency to become larger than W(z) + R if W(¢)
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Fig. 2.2 Mean asset value m(f(¢)) versus time for« = 1, = 0.3, § =0.2,6 = 1.5, R = 0.05,
and n = £0.061

is not varying much. Furthermore, if « is “small”, m(f (7)) usually does not leave the
interval [W(7) —R, W(f) +R] (see [15]). Large values of @ mean that the compromise
propensity is larger and thus, herding may be become more likely.

2.4 A Kinetic Model with Wealth and Knowledge Exchanges

The effect of wealth and knowledge exchange in a closed society may be described
by kinetic equations. Let f(x, w, f) be the distribution function depending on the
knowledge variable x € R, the wealth v € R4, and time ¢ > 0. We assume that
the evolution of f is given by the homogeneous Boltzmann-type equation

atf = QK(fvf) + QW(fvf)s (-xv W) € ]R-l- X R-‘rs > Os (212)

where the operators Qg and Qw model the interaction of the agents with respect to
knowledge and wealth, respectively. The exchange rules, defining these operators,
are as follows.

Let (x,v) and (y, w) denote the knowledges and wealths of two agents, respec-
tively. The knowledges x* and y* after the interaction are, similarly as in (2.8), given
by

K =x4+cwy—x), yY=y+r@)x—y),
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where « is a nondecreasing function of the wealth variable, modeling the confidence,
i.e., agent (y,w) trusts agent (x,v) more if the latter agent is wealthier than the
former one. The wealth values v* and w* after the interaction are defined by

vi= (1 =y¥ @) +y¥ow, wh=y¥ v+ 1 - y¥()w,

where y € (0,1) is fixed and ¥ : Ry — (0, 1] is a nonincreasing continuous
function of the knowledge variable. This rule is exactly that one used in [29] without
the random risk parameter. The quantity y ¥ (x) can be understood as the saving/risk-
taking propensity of agent (x, v). The monotonicity of ¥ means that the higher is the
knowledge of an agent, the less risky is the wealth exchange for her/him. We observe
that the microscopic total wealth is conserved during the exchange, v*+w* = v+w.
With the above exchange rules, the interaction operators are defined in weak form,
for some smooth test function ¢, as

/ Ok (f.f)ddz1 = v / (G, v) — B 0)) F(x. v, 1) f (v w. Dz,
(R4)?

(R4)*

/ Ow(fof)pder = vy / (6. v™) — B 1)) £(x. v, 1) £ w. D21 .
(Ry)? (R4)*

where vk, vy are some rate parameters and dz; = dxdv, dzp = dydw.

2.4.1 Existence of Solutions

If ¥ is lower bounded by a positive constant and the initial datum f € Ll(Ri)
is nonnegative, there exists a nonnegative solution f € L*°(0, T; L (R%r) to (2.12),
fx,v,0) = fo(x,v) for (x,v) € R%r. This result is shown similarly as in [6]. The
idea is to solve (2.12) iteratively, thus defining a sequence (f;,) which is bounded and
satisfies f,+1 > f,. The monotone convergence theorem then ensures the existence
of a limit function which solves (2.12) in a distributional sense in time and in a weak
sense in L'(R?).

2.4.2 Numerical Simulations

Equation (2.12) is numerically solved by a particle method [5], approximating the
distribution function by a sum of Dirac masses,

N
flew. 1) ~ 25(Xp(t),wp(t))(x, v),

p=1
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Fig. 2.3 Level sets for the stationary distribution function at f = 1 if only knowledge (left) or
wealth (right) is exchanged

where N € N is the number of agents and x,(f), w,(¢) are the knowledge and
wealth of the pth agent at time ¢ > 0, respectively. The simulations are repeated
30 times for N = 2000 agents with a fixed set of parameters, and the results are
averaged. The simulations are performed until we have approximately reached the
stationary state. The functions are defined by «(v) = 0.15 and ¥ (x) = (1 + x)~#,
and we have taken the parameters § = 1, y = 0.9, and vy = v,, = 1. Figure 2.3
shows the level set f = 1 of the stationary distribution function if only interactions
for the knowledge Qg (left figure) or for the wealth Qy (right figure) are present,
i.e., we have considered only one type of collisions in each simulation series. The
collision rule for the knowledge induces a concentration of the agents at the average
knowledge, which equals 0.5, having no effect on the wealth distribution. If only
the wealth collision rule is applied, the agents aggregate again on a line, but they
do not have the same wealth. The less informed agents are poorer, while the more
informed are more wealthy. Choosing other values for § will not give a line but a
curve, which allows for more flexibility in the modeling. For instance, for 8 > 1, the
wealth increases superlinearly with the knowledge, i.e., even a small improvement
of the knowledge leads to a significant increase of the wealth. Thus, Fig. 2.3 (right)
presents a situation which seems to be not unrealistic, giving rise to the hope that
the model may be applicable to more complex socio-economic scenarios.
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Chapter 3
Indifference Pricing in a Market
with Transaction Costs and Jumps

Nicola Cantarutti, Joao Guerra, Manuel Guerra, and Maria do Rosario
Grossinho

Abstract We present an approach for pricing a European call option in presence
of proportional transaction costs, considering the dynamics of the stock price
following a general exponential Lévy process. The model is a generalization of the
celebrated work of Davis, Panas and Zariphopoulou, where the value of the option is
defined as the utility indifference price. This approach requires the solution of two
stochastic singular control problems in finite time, satisfying the same Hamilton-
Jacobi-Bellman equation with different terminal conditions. Numerical results are
obtained by Markov chain approximation methods. Option prices are computed for
both writer and buyer, when the returns follow a Brownian motion and a Variance
Gamma process.

3.1 Introduction

Option pricing in complete markets uses the concept of replication, whereby a
portfolio in stocks and cash replicates the terminal payoff of the option. The unique
price of the option is given by the initial wealth necessary to create the replicating
portfolio. The most famous example of a complete market model is the Black-
Scholes (BS) model [2], where all the market frictions are ignored, the risk free
interest rate is constant and the asset returns are modelled by a Brownian motion.
However, the real markets are incomplete, and it is not possible to perfectly hedge
an option. The presence of any kind of transactions costs (proportional costs, fixed
commissions, bid/ask spread) as well as portfolio constraints and price jumps, are
the main sources of incompleteness that a trader can face in the markets. In this
situation, the notion of pricing by replication falls apart. Continuous time trading
is infinitely costly due to the transaction costs. Moreover, there are sources of risk,
such as the jumps in the underlying, that are impossible to hedge with the common

N. Cantarutti (><) * J. Guerra * M. Guerra * M. do Rosario Grossinho

CEMAPRE - Centre for Applied Mathematics and Economics, ISEG - University of Lisbon,
Lisbon, Portugal

e-mail: nicolacantarutti @gmail.com; jguerra@iseg.ulisboa.pt; mguerra@iseg.ulisboa.pt;
mrg @iseg.ulisboa.pt

© Springer International Publishing AG 2017 31
M. Ehrhardt et al. (eds.), Novel Methods in Computational Finance,
Mathematics in Industry 25, DOI 10.1007/978-3-319-61282-9_3


mailto:nicolacantarutti@gmail.com
mailto:jguerra@iseg.ulisboa.pt
mailto:mguerra@iseg.ulisboa.pt
mailto:mrg@iseg.ulisboa.pt

32 N. Cantarutti et al.

delta-hedging approach. A completely different approach to option pricing is to
introduce preferences. The investor’s risk profile is described by a utility function.
The hedging problem is formulated as a finite time portfolio optimization problem,
where the investor aims to maximize the expectation of the utility of his portfolio
net value at the terminal time, corresponding to the expiration of the option. The
indifference price, also known as the reservation price, is the price at which an
agent would have the same expected utility of his final wealth by selling (buying)
the option or by not doing so, and then trading in the optimal way. Thus the
indifference price is not unique. This definition produces two prices, for the writer
and for the buyer, which is a more realistic property. A general overview of the
indifference pricing concept applied to several incomplete models can be found in
[4]. Applications for processes with jumps are presented in [6].

Hodges and Neuberger [13] were the first to compute indifference prices in
a market with proportional transaction costs. They assumed Gaussian distributed
returns. They used an exponential utility function, which has the property that
the risk aversion coefficient is constant and does not depend on the total wealth.
This choice simplifies the problem reducing by one the number of state variables.
The model was further developed by Davis et al. [11]. They formulated the utility
maximization problem rigorously as a singular stochastic optimal control problem.
They proved also that the value functions can be interpreted as the viscosity
solutions of the associated Hamilton-Jacobi-Bellman (HJB) equation, and that the
numerical solution, based on the Markov chain approximation, converges to the
viscosity solution. Other results within the framework of this model are obtained in
[5,9, 10, 17]. Barles and Soner [1] developed an asymptotic analysis of this model
for small levels of transaction cost, reducing the complicated HIB equation, which
is a variational inequality, to a simpler non-linear PDE.

The model has been generalized in [3] for an underlying asset following a general
exponential Lévy process. Considering processes with jumps allows the possibility
of bankruptcy for the portfolio, which is an important innovation in the model.
The drawback is an additional complexity in the general equation, that cannot be
simplified by the choice of the exponential utility function. In order to be able to do
numerical computations, the authors considered the simplified case of a huge firm
such that they could ignore the possibility of default and thus use the exponential
utility for the variable reduction. Numerical results are presented for the case of a
Merton jump-diffusion process.

In Sect. 3.2, we briefly present the general theory following [3]. In Sect. 3.3, we
explain the algorithm to solve the optimization problem. In Sect. 3.4 we show some
numerical results for the well known case of diffusion dynamics, and for a Variance
Gamma (VG) process.
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3.2 The Model

In this section we present the utility maximization problem formulated as a
singular stochastic control problem and derive the associated HIB equation. In this
framework, we model the portfolio dynamics considering the proportional transac-
tion costs. Then we explain the indifference pricing method and, introducing the
assumption of an always solvent investor, derive a simpler HIB equation. We obtain
explicit expressions for the writer and buyer option prices. More details can be found
in [3].

3.2.1 Portfolio Dynamics

Consider a portfolio with one risk-free asset B in the cash account, paying an interest
rate r > 0, and a stock S. We call Y the number of shares of the stock. The investor
creates the portfolio at time 7y, when the option is sold (or purchased), and liquidates
it at the time of option expiration 7. For ¢ € [y, T], the state of the portfolio is
indicated as (B, Y, S;), where the superscript 7 indicates the presence of a control.
The portfolio dynamics is:

dB;r == rBrdt - (1 + eb)S[dLr + (1 - QS)S[dM[
dY™ =dL, —dM, (3.1)

t

ds, =S, (udt +odW; + [;(e¢ — )N(dt, dz)) .

The parameters 6, 6; > 0 are the proportional transaction costs when buying and
selling, respectively. The process 7 (f) = (L(t), M(t)) is the trading strategy and
represents the cumulative number of shares bought (L(¢)) and sold (M(?)) in [, T).
These processes are right-continuous, nondecreasing, and progressively measurable.
By convention L(f;) = M(ty) = 0 and we allow a possible initial transaction at f,.
The price S; follows an exponential Lévy process with finite mean and variance:

S, = Sper. (3.2)

The Lévy process X; has the characteristic Lévy triplet (b, 0, v), where b € R, 0 > 0
and v is the Lévy measure. The drift parameter ¢ and the Lévy triplet are related by

1
uw=>b+ 202 + / (e‘Z —1- z]1{|z|<1})v(dz). 3.3)
R
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The last line in (3.1) is the differential form of S;. It can be obtained applying the It6
lemma on (3.2), considering the Lévy-Ité decomposition for X,." The term N(dt, dz)
is the compensated Poisson martingale measure, defined by

N(dt,dz) = N(dt, dz) — dt v(dz), (3.4)

where N(dt, dz) is the Poisson random measure with intensity dt v(dz).

3.2.2 Utility Maximization

Before introducing the cost functional that we want to maximize, we have to define
some other important concepts. Define the cash value as the value in cash when long
positions are sold and short positions are covered:

(14 6)ys, ify<o0

c@y,s) =
G:3) (1—6y)ys, ify>D0.

3.5)

We consider three different portfolios:

* No option: A portfolio with just cash and shares, with initial value (By, Yo, So)-

*  Writer: A portfolio with cash, shares and short in a European vanilla option with
strike K and expiration 7', with initial value (By + p", Yo, So). The value p" is the
price at which the option is sold.

* Buyer: A portfolio with cash, shares and long in a European vanilla option with
strike K and expiration T, with initial value (By — p®, Y. So). The value p® is the
price at which the option is purchased.

For ¢t € [ty, T], we define the rotal wealth process (in cash) for the “no option”
portfolio:

W) = B, + c(Y,,S)). (3.6)

The wealth process for the writer and buyer portfolios considers the additional
option payoff:

WY = B, + c(Y;, S) Lt ci.50)<ky + (C(Yr -1S)+ K)]l{r=r,c(1,sr)>1<},
3.7)

WP =B, + c(Yy, S) Ly<reisr)<ky + (C(Yr +1,5) - K)l{r=T,c(1,sT)>K}-
(3.8)

IFor a review of these concepts, see [6].
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In case of proportional transaction costs, the option is not exercised when Sy > K,
but when ¢(1,S7) = Sr(1 — 6;) > K. In this model we require the wealth to be
always greater than a fixed constant —C, with C > 0 for all ¢ € [z, T, as a condition
for the solvency of the investor. The solvency region is defined for the three cases:

(B,,Y.,S) e RxRxRt: W > —c!, (3.9)

with j = 0, w, b. Define the first exit time from the solvency region as
v =inf{t € [0, 7] : W] & A} (3.10)

Define the set of admissible trading strategies IT/(B;, Y,, S;), as the set of all right-
continuous, nondecreasing, measurable processes L(¢) and M(¢), such that the triplet
(B™(1), Y (1), 8(1)) is a solution of (3.1) for ¢ € [ty, ©/ A T), and with initial values
(BO, Yy, So). The auxiliary variable B’ can assume the values By, By + p" or By — p”
depending on the portfolio we con31der respectively forj = 0, w, b.

This is a dynamic set, so at every time t € [ty, ¥/ A T] it depends on the
current state. Later on we assume that the investor has such a big size that we
can ignore the possibility of insolvency. In this case, the set of portfolios at
terminal time (B™(T), Y™ (T), S(T)) is completely determined by the starting value
(Eé, Yo, So), and we can substitute the dynamic set IT/(B;, Y;, S;) with the static set
I (B‘é, Yo, So). We will use this assumption later in order to simplify the problem.

The investor wishes to maximize the expected utility of the wealth of his portfolio
at ¥ A T over all the admissible strategies. This expectation is conditioned on the
initial value of cash, number of shares and value of the stock. The value function of
the maximization problem is:

Vi(to. B}, Yo.80) = sup g s [%(Wg)ﬂ{ﬁﬂ} + %(—C)er(T_fj)]l{rjsT}}
nel(B,.Y,s) 000

(3.11)

for j = 0,w,b. The function 7 : R — R is a concave and increasing utility

function, such that %7(0) = 0. The associated HJB equation is a variational
inequality:

Vi v/ v 1, ,0*V
max +rb + us + o°s
ds 2 ds?

9 % (3.12)

/ |:V/(t b,y,se?) — Vi(t,b,y,s) — s(ef — 1) :|v(dz)
R

avi ovi o (Vi avi
—(1+6 , — — (1 -6, =0,
gy ~ AT, ( gy ~ 05y, )}

for (¢,b,y,s) € [to, T] x .7’ andj = 0, w, b.



36 N. Cantarutti et al.

A rigorous derivation of the previous equation can be found in [12]. The terminal
and lateral conditions are given by (3.11). This HIB equation is a partial integro-
differential equation (PIDE). The presence of the integral operator implies that the
lateral conditions have to be defined not only on the boundary of the solvency region,
but also beyond. This condition reads:

Vit b,y,s) =T Y (=C) for rtel,T]. (b.y.s) €., j=0,w,b.
(3.13)

3.2.3 Indifference Price

With this model we can compute two option prices: the price for the writer p* and
the price for the buyer p®. The indifference price is defined as the initial amount
of money required to have the same final expected utility of wealth trading in the
optimal way in the portfolio with the option, as if trading in the optimal way in
the portfolio without the option. The two prices can be obtained implicitly by the
conditions

VO(to, Bo, Yo, So) = V" (to, Bo + p", Yo, So), (3.14)
VO(ty, B, Yo, So) = V’(to, Bo — p°. Yo, So). (3.15)

3.2.4 Variable Reduction

We now assume the simple case of a big investor that cannot default. The dynamic
set IT/(B,, Y,,S;) can be replaced by the static set IT/(B], Yo, So). As long as
the portfolio never goes into bankruptcy (z/ > T), we can ignore the lateral
boundary conditions (3.13). Moreover we can use the properties of the exponential
utility function to reduce the number of variables of the problem. The exponential
utility is defined by

Uw)=1—e7, (3.16)
The exponential utility has the property that the coefficient of risk aversion
y=—U"(x)|% (x)
is constant, and does not depend on the wealth w. This means that the amount
invested in the risky asset at time 7, is independent of the total wealth at time

T. As long as the amount in the risky asset is independent of the total wealth,
the amount in the cash account is irrelevant to the trading strategy. We can thus
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remove B, from the state dynamics. The integral representation of the evolution of
B,in (3.1) is:

wom _ Bo ! S@) T S(1)
B0 =0 —/m (14+06) g T)dL(t)—}-/ro (=60 g gy @MO. G17)

where 8(¢, T) = e~""="_ Putting these expressions into (3.11), we get

. ~ B] .
Vi(to. B], Yo, 80) = 1 — ™7 5000 Q1 (19, Y. So). (3.18)
with
Q/(to. Yo.S0) = inf EYO,SOI: o[+ sy Lt [ (1= oy o ]
HEH(E'(/),Y(),S())
(3.19)

x H/(Y™(T), S(T))}.

The first factor can be interpreted as a discount factor, while the function H/(y, s) =
Q/(T,y,s) is the terminal cost.

* No option:

H'(y,s) = e77¢0), (3.20)

e Writer:
H(y.5) = o0z (0-19+K) e noxs ] (3.21)

e Buyer:
H(y.5) = o7 [0 =+ (0+19-K) Lo ] (3.22)

Using conditions (3.18) together with (3.14), (3.15), we obtain the price of the
option as:

w _ S(IOvT) Qw(lo,y, S)
Pl =y, (QO(ro,y,s))’ (329
b _ (0, T) 0°(to, y, )

Py =" s (G ) 329
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Passing to a log-variable x = log(s), the derivative operators change to

5 9 LR R )
Sos T ox’ o2 T ox (3.25)

The simplified HIB equation is

00/

aQ‘i 1, aZQj
o
ot

1
o) +

2 ox 27 ox2 (3.26)

min % +(n—

+ / [Qf(r, Y4 2) = 0ty ) — (€ — 1) aQ’}mdz) ,
R ox

3Q‘i LY ; 3Q<i LY ; _
ay + (1 + 6p)e 5. T)QI , —( oy + (1 —Hy)e 5. T)Ql)} =0,

with j = 0, w, b. It is convenient to consider the integral representation
Q’(t,y,x) = min %EN [Qf (t+ Aty x + AX)}, (3.27)

Y X * i *
exp (8(1‘, T) (1+6,)e"AL; )Q (t,y + AL, ,x),

y X * / *
exp ( — 5(1.7) (1—-6))e"AM; )Q/(t,y — AM; ,x) ,

where each term inside the “min” is the solution of the corresponding term in the
differential equation taken equal to zero. The values ALY and AM}* are the optimal
number of shares bought or sold at time ¢.

3.3 The Algorithm

In this section we describe the method to solve the minimization problems (3.19).
The solution can be found by discretizing the dynamic programming equa-
tion (3.27). To this purpose, we use the Markov chain approximation method
for singular control problems developed by Kushner and Dupuis in [14], where the
portfolio dynamics is approximated by a discrete state controlled Markov chain
in discrete time. The method consists in creating a backward recursive dynamic
programming algorithm, in order to compute the value function at time ¢, given its
value at time 7 + At. With the variable reduction introduced in the previous section
(B, is removed from the state variables) and the change to the log-variable (3.25),
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the portfolio stochastic differential equation (SDE) (3.1) has the simpler form

dan == dL[ - er,

dX, = (u— 402 — [y (¢ =1 —2)v(dz))dt + 6dW, + [, zN(dt, dz).
(3.28)

We have to discretize the time and space to create a Markov chain approximation
for this portfolio dynamics. The theory developed by Kushner and Dupuis considers
only Lévy processes with finite activity of jumps, which means that fR v(z)dz < 00.
For Lévy processes with infinite activity, it is possible to approximate the small
jumps with a Brownian motion, as explained in [6]. This helps to remove the
singularity of the Lévy measure near the origin, and therefore allows us to use the
Markov chain framework of Kushner and Dupuis.

Forn = 0,1,...N € N, define the discrete time step At = T;'O such that
t, = to + nAt. Define the set X, = {—Kh,, -+ — hy, 0, hy, - -+ + Kxh,}, where we
consider the discrete log-price step #, > 0 and K, K, € N. The values of K| and
K, can be different to capture the possible asymmetry of the jump sizes. Define also
the set ¥, = {—K3hy,---—hy,0, hy, - + K4h}, where h, > 0 is a discrete step and
K3, K4 € N. The number of shares Y, takes values in X,. The discretized version of
the SDE (3.28) is

AY, = AL, — AM,

~ (3.29)

AX, = (At + 6 AW, + AJ,
where we consider the increment AX,, = X (¢, + At) — X (¢,), and the new drift /i and
volatility 6 parameters. The term AW, = W(t, + Atf) — W(t,) € X, assumes only
the three possible values {—#,, 0, h,}, and AJ, is the compensated Poisson jump
term with finite activity A, that assumes all the values in X,.

The two increments AL,, AM, which describe the change in the number of
shares bought or sold are positive multiples of h,. The action of the control is
supposed to happen instantaneously: AL, = L(t,) — L(t,) and AM,, = M(t,) —
M(z;) happen at the same time #,. We indicate by L(f,") and M(z,") the number of
shares just before the transaction.

The Markov chain approximation has to satisfy two conditions:

1. The transition probabilities p* are represented as:
PX(x,z) = (1 =240 p"(x,2) + (A A1) p’(x,2), (3.30)

where A > 0 is the jumps activity, p" and p’ are the transition probabilities of
the Brownian and jump components respectively.

2. The transition probabilities have to be locally consistent with the SDE (3.28).
This means that, at each time step, the first two moments of the Markov chain
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have to be equal to the first two moments of the continuous process:

E.[AX,] = i At, (3.31)
En[[AXn - IE[AXn]]Z} = (62 + / zzv(dz)) At. (3.32)
R

In the construction of the chain X, the transition probabilities and the sizes of
time and space steps have to be chosen such that the Markov chain satisfies the
two properties. A possible technique to obtain those parameters is to discretize
the infinitesimal generator of the process by an explicit finite difference method.
In the numerical examples of the next section we model the discrete dynamics
of the diffusion process with a binomial tree. For the discretization of the infinite
activity Variance Gamma process, we first have to approximate it with a jump-
diffusion process in order to use the Kushner framework, and then we obtain
the transition probabilities by discretizing the infinitesimal generator, following
the procedure described in [3]. The discrete version of the dynamic programming
equation (3.27) is:

Q(ty, Yn, X,,) = min {]En |:Q(tn+1, Yo, Xo + AXH)}, (3.33)

. y X,
12151 exp (S(In, T (1 + 6y)e ALn)En [Q(tn+1, Y, + AL, X, + AXn):|,

I}}&II: exp ( - 8(1‘:, T) (1 - Qs)eanMn)En [Q(tn+lv Yn - AMns Xn + AXn):|} .

Algorithm 1

Input: r, (b,0,v), So, K, T, 6y, 0,, v, N, L, M,
Output: Q(o,y,s) forj = 0,w,b

1: Compute the transition probabilities and the steps At and h, = Sd[AX,].

2: Create the log-price tree for the Markov chain (3.29).

3: Create the (N(Z -1+ 1) x M grid with terminal conditions (3.20), (3.21) or (3.22).
4: forn=N-1to0do
5.
6

Wiits = Yotk P Q;j__,_lk
07 = min{W; ;—,,, min; F(x;, [, ) Wj;—p, min,, G(x;, m, m)Wji—p}
At time n the grid has size (n(L — 1) + 1) X M.
: end for
8: Once obtained Q°(ty, v, s), 0" (to. v, 5), Q% (to. v, s) use (3.23) and (3.24) for p* and p®.

3
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We can solve it with a backward induction glgorithm, where we use_d the short
notation: Q(t,,yj, Xi) = Q]'.fi, the parameters L = K; + K, + 1and M = K3 +

K4 + 1 and defined the functions F(x, [, n) = e?’!0+0) /50N and G(x, m,n) =
e—ym(l—ﬁx)ex/S(n,N)'

3.4 Numerical Results

In this section we implement the algorithm for two different Lévy processes: the
Brownian motion and the Variance Gamma.

3.4.1 Brownian Motion

The diffusion case has been extensively studied theoretically and numerically in
[9, 11, 13, 17] and related works. The Brownian motion with drift is a Lévy process
with triplet (b, o, 0). The Lévy measure is identically zero, so the path of the process
has no jumps. The parameter b is related with the drift © = b+ éoz by formula (3.3).
A simple discretization of the Brownian motion can be obtained by the “binomial
tree”, see [8]. The binomial method with zero transaction costs converge to the
Black-Scholes price. For the numerical computations, we use the following set of
input parameters:

K T r n o N M y
15 1 0.1 0.1 0.25 1000 1000 0.01

Considering the Black-Scholes price as the reference price, we implement
Algorithm 1 for different levels of transaction costs and assuming o, = 0.

In Figs.3.1 and 3.2, we obtain values respectively for the writer and for the
buyer of the option. We can see that when the level of transaction costs is zero, the
algorithm reproduces the Black-Scholes prices.” The option price is an increasing
function of the level of transaction costs for the writer, while for the buyer is a
decreasing function. Therefore the spread is bigger when the market has bigger
transaction costs. In our computation we chose = r. In [3], the authors show that
the parameter u is not relevant for the value of the option.

2The BS curve in this case has been computed solving the BS PDE using a finite difference implicit
method.
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3.4.2 Variance Gamma

The Variance Gamma process is a pure jump Lévy process with infinite activity.
Applications of the VG process to financial modelling can be found for example in
[6, 15, 16]. This process can be obtained by time subordination of Brownian motion
or as the difference of two Gamma processes. These two methods are equivalent
(see [16]). We choose the first representation. Consider a Brownian motion with
drift X, = 6t + oW, and substitute the time variable with the gamma subordinator
T, ~ I'(t, k). We obtain the Variance Gamma process:

X7, = 0T, + oWr,. (3.34)

It depends on three parameters:

e @, the drift of the Brownian motion,
* 0, the volatility of the Brownian motion,
* K, the variance of the Gamma process.

The VG Lévy measure is:
et NER
v(dz) = exp| — |z| | dz, (3.35)
Klz|

and completely describe the process. Even if the process has been created by
Brownian subordination, it has no diffusion components. The Lévy triplet is
(f}zj<1 2v(d2), 0,v)

We now approximate the small jumps with a Brownian motion. Fixing a
truncation parameter € > 0, the infinitesimal generator of the process [the first term
in Eq. (3.26)] becomes:

$Q=8Q+an+

: 00
o o T [0ty x +2) = 0. y.%) = (e = 1), “]v(d2)

9Q
4 [0+ = 0y - (€ = )T
M dx
where 0 = 0 and p can be computed using (3.3). In the integral term on the domain
|z| < €, use the Taylor approximation:

2
* O(t,y.x+2z) =0ty x) + %fz + é%xgzz + 0.
s E-l=z435 +0@).
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Considering only the terms up to the second order, the integral for |z| < € is
/ Z[0%Q aQ b(d) = 3 Q90
lz]<e 2 | ox? ox2 ox ’

where we called the second moment of the Lévy measure

ol = / 2v(dz). (3.36)

|z]<e
We can define also the parameters:
We = / (ef = v (dz)
|zl>€

and

Ae = /leE v(dz).

We obtain an infinitesimal generator of a jump-diffusion process:

3
Z0 = 3Q+(M—

+ Q(t,y,x+z)v(dz)—)LEQ(t,y,x).

|z|=e

2
3—w€)aQ + 1023 Q (3.37)

1
2 ox 2 € ox?

In the numerical computations, we use the following parameters:

K T r y 0 o K N L M
15 1 0.05 0.02 —0.1 0.2 0.1 138 33 146

The transition probabilities of the Markov chain are obtained by a finite
difference discretization of (3.37). For more details, see [3].

Figures 3.3 and 3.4 show the prices with the presence of transaction costs.
The continuous line is the solution of the VG PIDE for the price of the option.
We solved the PIDE using an implicit/explicit scheme and the Brownian approx-
imation as proposed in [7]. In order to estimate the numbers of time steps N and
branches for the multinomial tree L, we consider the space step hx = ox+/At,
where oy = /02 4 02« and Ar = T/N. We demand that hy - L > 30, where

2 _ 2 : : ; 2 _ 2 2
o5 = fIZIZe z°v(dz) is the variance of the jump process. Of course oy = 0. + 07J.

Putting all this together, we obtain L > fg(f V/N. Using our values for the parameters,
this corresponds to L > 2.8+N.
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Chapter 4
Negative Rates: New Market Practice

Jorg Kienitz

Abstract Considering the current interest rate environment it has become neces-
sary to extend option pricing models for strikes in (—oo, 0]. We consider the new
market environment and show the changes in the modelling landscape. Our scope is
on models that can accommodate negative rates. Especially, we focus on a recently
proposed model which extends the classical SABR model of Hagan et al. (Wilmott
Mag 1:84-108, 2002). This model was introduced in (Antonov et al., Risk, 2015)
and is called the Free Boundary SABR model.

Since for practitioners it is necessary to frequently calibrate a model to market
data fast approximation methods together with benchmark methods for their
performance and testing their accuracy are essential. In this chapter we consider two
approximation formulae for the Bachelier volatility, also known as Gaussian or
Normal volatility, produced by this model. The latter numbers can be used as input
to the Bachelier pricing formula. Together with the current forward value and the
time to maturity this leads to prices of European Call and Put options.

We have to stress the fact that the approximation formulae can serve for
calibration purposes where fast calculation of prices is essential. However, the
inapplicability to certain parameter ranges have to be taken into account. The
numerical approach proposed by Antonov et al. (Risk, 2015) does not lead to
implied volatilities. The implied volatilities have to be inferred by numerical
methods from option prices where this method also suffers from the fact that not
all values of the parameters may be covered.

4.1 Introduction

If we consider recent market data we find that certain interest rates have negative
values. This was assumed to be impossible in the past at least if one considers the
major currencies, e.g. EUR or CHF. Figure 4.1 shows the short end of the OIS
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curve and the 6M curves for EUR. Significant parts of the curve exhibit negative
values. For the OIS curve the rates up to 6 years are negative while for the 6M curve
the rates are negative up to 4 years. Negative rates do have further consequences.
One consequence is that the quoting mechanism using implied logarithmic normal
volatility is not possible anymore. This is due to the fact that this model does not
allow negative values to be realized by the underlying rate and, thus, for instance
Floors having a strike equal or less than 0 would simply be worth 0. The current
market quotes in fact assign non-zero values to such options.

While logarithmic normal models cannot be used any longer the market has
started to apply the Bachelier model, respectively the Displaced Diffusion/Shifted
Lognormal model to quote option prices in terms of volatility for interest rate
derivatives. Before the market adopted models other than the standard logarithmic
normal model it was observed that the corresponding implied logarithmic normal
volatilities increased, even exploded and finally disappeared. This is due to the fact
that values for options are bounded in this model, European Call options can only
be as large as the forward subtracted by the strike, F(T) — K. This means that it
does not matter how big we choose the volatility the bound is determined by the
current forward asset price and the strike. But actually the market quoted prices that
were larger. We come back to this issue in Sect.4.1.2. We introduce the Bachelier
model in Sect. 4.1.1 and the Displaced Diffusion model in Sect. 4.1.2. Furthermore,
standard approaches to model the skew/smile such as the SABR model, [5], cannot
be used either and extensions to such models have to be explored. We consider a
version of the SABR model in Sect. 4.2.

The following sections highlighting the pricing methods are based on [7]. For
numerical implementations see [9] and the accompanying software.

4.1.1 Bachelier Model

For the Bachelier model which is also sometimes also called Gaussian or Normal
model the dynamic of an asset § is given by

dS(t) = oxdW(1), S(0) = so @.1)

For a European Call, respectively Put option price denoted by V¢, respectively Vp
with strike K, maturity 7 and dynamic given by (4.1) we have

Cn(S(0),K.T,0) = (S(0) — Kexp(—rT)) A (d(0y)) + 0~/ Tn(d(oy)) (4.2)
Pn(S(0).K.T,0) = (K — S(0)) A (—=d(0y)) + 0~/Tn(d(0y)) 4.3)

withd(o) = S;O)Jf. Since S(T) is distributed with respect to a Gaussian distribution
N

realizations of S(7) can become negative. The volatilities o;,,, matching a given
price, that is Vo = C(5(0),K, T, 0,,,) are called Bachelier implied volatilities or
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bp (basis point) volatilities and are currently used to quote prices for interest rate
options. The fact that S(7) can become negative is heavily important here since
using this model it is possible to quote values for strikes K < 0.

Example 4.1 Letus take S(0) = 0.03, K =0.032, T =2,r=0and o = 0.2. We
obtain d = —0.01767767 which leads to a Call option price of 0.110355547.

For the Bachelier model to every price p of a European Call/Put option it
is possible to find a value oy such that put into the corresponding valuation
formula, (4.2) or (4.3), leads to the price p. The Bachelier model leads to unbounded
option prices.

4.1.2 Displaced Diffusion Model: Shifted Lognormal Model

Another approach, see for instance [11], to take negative rates into account is to
consider the following dynamics:

dS(1) = (S() + b)oaadW (1),  S(0) = so. (4.4)

Together with the volatility oy, there is a displacement parameter b. The pricing
equations for European Call and Put options for the model given by (4.4) are:

Cpp(S(0),K,T,0) = (S(0) + b) A (d1) — (K + b).N (d2) (4.5)
Ppp(S(0),K,T,0) = (K + b)N (—d2) — (S(0) + b).A (—d)) (4.6)

2
: _ tog(FH )+ _ _ .
with dy = o and dy = di — X, Zu = 044~/T. Data providers have

started to quote Uddtogether with the displacement parameter b. Then, the option
prices can be obtained by (4.5), respectively (4.6). We observe that the pricing
within the displaced diffusion model is very close to the Black76 model. It is just
to replace the input data and adjust the data by the displacement coefficient. For a
given displacement parameter there is only one input parameter—the volatility—
which can uniquely be used to determine prices for European Call and Put options.
Using the same methodology as for the Black and the Bachelier models we define
the Displaced Diffusion/Shifted Lognormal implied volatility.

Example 4.2 Let us take S(0) = 0.03, K = 0.032, 7T = 2,r = 0,0 = 0.2 and
b = 0.005. We obtain d; = —0.33068341 and d, = —0.613526122 which leads to
a Call option price of 0.001671505.

Let us consider an ATM option with a given implied Bachelier volatility oy.
Then, the price can be expressed in terms of a shifted/displaced log-normal implied
volatility if and only if

T
F+d> \/ oy 4.7
2
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This means: Only if (4.7) holds there is a number opp which lead to the same
price as calculate with the formula (4.2). In this case there is a Displaced Diffusion

volatility opp and
Opp = 22 erf ! oN \/ T
e T F+d\on

This implicitly leads to a lower bound on the displacement. This is given by

T
d> \/ZﬂGN
F

If we would chose a smaller displacement it would not be possible to recover the
option price. Thus, the Displaced Diffusion/Shifted Black model suffers from the
same shortcoming as the standard lognormal model. With fixed displacement it
might not be possible to recover the prices for European Call/Put options. Methods
for converting between different volatilities are considered in [3, 4].

Finally, the Displaced Diffusion as well as the Bachelier model are limited in
terms of modelling the skew/smile. To handle this problem it is possible to consider
a Displaced Diffusion version of the SABR or any other smile model. The next
section introduces a variant of the SABR model which takes a different approach.

4.2 The Free Boundary SABR Model

It is possible to consider the standard SABR model from [5] extended by a
displacement. But let us consider the model introduced in [2]. It is given by the
system of Stochastic Differential Equations:

dF (1) = a()|F(1)|Paw, (1) (4.8)

da(t) = va(t)dW, (1) 4.9)
(dW, (1), dW,(0)) = pdt (4.10)

F(0) = fo

a(0) = ap

It is called the Free Boundary SABR model abbreviated fSABR. The dynamic for
the forward rate F(), (4.8), is a CEV type process. The special feature here is that
not only forward value but its absolute value is chosen to govern the dynamic.
The volatility, (4.9), evolves as in the original SABR model and is modelled as
Geometric Brownian Motion. The Brownian motions driving the processes are
correlated, (4.10). The initial values are given by f, and .
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In [2] the authors propose to use the analytic solution for the case p = 0. This
is done by deducing a formula for the time value ﬁf ABR(T, K) of a European Call
option:

YT K) = ||l Lkzod + sin(vm)Az) (411
withy = |-} (1—B)~'| and

A = / ™ sin(¢) sin(y¢) G(Tv?, s(¢)
' Jo b—cos(¢) cosh(s(e))
A, = / % sinh() (1x=0 cosh(y¥) + lg<o sinh(yy)) G(Tv, s(¥)
S A b + cosh(¥) cosh(s(y))

d¢
dy

and

1-B
sinh(s(#) = \/ 2 '(’;OI_{' gy (0= c0s®)

1-f
sinh(s(y)) = \/ 2 '{ff' gy (0 = cosh¥)

—1/8 9]
G(t,s) = 22 ¢ / ue ™/ /cosh () — cosh(s)du
t 2t Jg
Lfo20-B) 4 |K20-8)
b =
2| foK|'=#

Since (4.11) does only hold for p = 0 it is not applicable for the general case p # 0.
To apply the model for the remaining cases the authors show that (Markovian)
projection technique (see [10]) can be utilized to find a Free Boundary SABR model
with zero correlation which is in a sense close to the model with p # 0. This
technique allows to use a model, call it the p-model, where valuation techniques
are well known. The model under consideration is then projected onto the p-model.
This projection is essentially expressing the parameters of the p-model as functions
of the model’s parameters. The resulting distributions at maturity are very close.

However, they remark that the approach not necessarily leads to a model which
is free of arbitrage and, furthermore, it can be shown that the technique is not stable
or not even applicable for all possible combinations of parameters. Especially for
large values of |p| that is close to 1. This is not addressed further but we consider
a method in Chap. 15 that can be applied for the full range of parameter values
including -1 < p < 1.

We introduce two approximation formulae for calculating the Bachelier volatility
in this model. These formulae are in the spirit as [1, 5, 6]. The final section gives
numerical results and we also provide an application for the calibration to market
data for Caplets.
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Fig. 4.2 Intuition for the effect of the parameters on the implied Bachelier volatility for the Free
SABR model o (upper left), B (upper right), v (mid left), p (mid right) and fy (lower left)

4.2.1 The Parameters

We wish to gain intuition what the role of the each parameter plays in this model. To
this end we consider a base scenario and change the parameters. As a base scenario
we take ¢ = 0.005095939,8 = 0.1,v = 0.3, p = =03, fp = 0.005and T = 5.
The results are shown in Fig. 4.2. This is taken from [8]

The results displayed in Fig.4.2 illustrate the effects a change in a given
parameter has on the implied volatility for a fixed time to maturity.

4.2.2 Applicability

The integration limits need to be adjusted with respect to the parameters and we
observe that small values of the CEV parameter lead to erroneous results as well as
small values for the forward rates also leverage this phenomenon.
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Now, we wish to consider the model with p # 0. In [2] the general recipe for the
projection is to choose a mimicking zero correlation model such that

B=8
3 3
b= 4/v2— 5 (0?v? + avp(1 — B)FF1) (4.12)
20AD
~(0) _
¥ T
M 1 23 1
_ 1— 2 2) .2 Fh-1
5O |, 12( v2 2p)” =y Peay
with
Az K'=B —F'-# _ (ocmi“+pv—|-vA)5
1= (1+pa

Uiy = \/va2 + 2pvAa + a?

Figure 4.3 shows 72 from Formula (4.12) and it is clear that this expression can
become negative, thus, it is not possible to get a real square root.

We have observed that the standard integration formula depends on the choice
of the integration upper bound. Figure 4.4 illustrates this. We plotted the calculated
implied Bachelier volatilities for the prices calculated with different upper bounds
for the integration.

Again we based this subsection on [8].

Projection function VolofVol
Dependence on Spot Vol
0,07

0,06
0,05 -
0,04 -
0,03 -
0,02 + -

o
0,01 =

0,00

Value nubar2

—o10— — 015 020 025

-0,01+
Spot VolofVol

Fig. 4.3 Instabilities using Numerical Integration of the valuation equation (4.11). We show the
implied Bachelier volatility calculated from prices using different upper bounds for integration
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Bachelier Vols via Integration using Different Upper
Bounds
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Fig. 4.4 Instabilities using Numerical Integration of the valuation equation (4.11). We show the
implied Bachelier volatility calculated from prices using different upper bounds for integration

4.3 Approximation Formulae

In this section we consider approximation formulae for the implied Bachelier
volatility. These formulae are straightforward generalizations of results obtained in
[5] and [1]. The approximation formulae suffer from the well known shortcomings.
This includes inaccuracy, resp. inapplicability for large values of volatility,
long time to maturity and may lead to negative densities around O for certain
parameter settings.

4.3.1 Approximation 1

First, we consider the approximation formula for Bachelier volatility by following
the same lines of thought as in [5] and [6]. We obtain the formula

_ _ 2.2
o (T, K) ~ Oéo(fol K xé) (1 + (gao - ,01;0{0 ')+ 2 22'0 vz) T],
(4.13)
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with

g = log (o —K) 1/’ |KIP) /PP

£ = voy'l

x(6) = 1—p) (V1 -2p6 + 8 —p+£)

fo
I:=/ x| ~# dx.
K

Substituting (4.13) into the Bachelier pricing formula gives the price of a European
Call option. This is a computationally cheap approach that can be used for
calibration purposes.

To be able to use (4.13) we take C(f) = |f|~* and find that

_Al=B_(—g)1—B
CHHZCRT K <0f <0

1= {/THERT k<00 (4.14)
f'*ﬁl:’;‘*ﬁ K>0f>0

The analytic solution (4.14) is used to calculate (4.13) and putting it into the
Bachelier pricing formula gives the price of a European Call option.

4.3.2 Approximation 2

We wish to consider another approximation formula within the framework of the
Free Boundary SABR model. To this end we follow the same lines of thought as in
[1]. Here with T being the maturity and K the strike an expression for the Bachelier
volatility is obtained. We have

Zo(K)u'/>(T) + 1 (K)yu?*(T)
JT

For the free boundary SABR model we determine X (K), X;(K) and u to get an
expression for the approximate volatility which can be put into the Bachelier pricing
formula. We have:

opB(T,K) ~ (4.15)

KT (1 4 (gx + Jpvano TOT) K < 0.fp = 0

- (4.16)
IfOE‘KKIK‘ (1+ (gk + ypvaoT)T) else

oy (T,K) =

with the corresponding function

log(y/1 — 2pkx + & — p + &)

Ekk = v(1— p)
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and Df = a|fy|? and Dk = \/053 + 200 pvyx + v2y%|K|? with the expressions for
gk and yg depending on the sign of the strike K, namely for the case K < 0:

R A Sl

Yk = _|K|1_1ﬁ__ﬂ|f0|l_ﬂ’ Ex = Ol(lU—IB)(|ﬁ)|l_ﬂ + K|
and K > O:

gk = —log (élfi/_leKle) .. Tx= |K|/‘1e :|ﬂfo|ﬁ

Vg = |K|l_i:,|3ﬁ)|l_ﬂ’ £y = a(ll)—ﬂ)(lf(’ll_ﬂ K|y

Again this leads to a computational effective way that can be used for calibration
purposes.

4.4 Numerical Results

Now, we consider the Free Boundary SABR model and test the proposed numerical
methods discussed in this chapter, Sects.4.3.1 and 4.3.2. To this end we consider
the model parameters « = 0.005095939, 8 = 0.1, v = 0.3, p = —0.3 with
forward f = 0.005 and maturity 7 = 3.

Table 4.1 displays the results for pricing a European Call option for different
strike values obtained using (4.11). We displayed the true prices obtained by a
benchmark method which we describe later in this book. This method is based
on a partial differential equation efficiently solved numerically that is considered
in Chap. 15.

To consider the performance of the approximations we calculate the Bachelier
volatilities using formulae (4.13) and (4.16) as well as the corresponding prices.
Furthermore, we also calculate the absolute values of the differences with respect to
the prices obtained by integration and by applying the PDE solution. We summarize
our findings in Table 4.2. We took many strike values for a given parameter set.
All methods lead to nearly the same option prices and work very well on the used
parameter set.

4.4.1 Approximations vs Integration

First, we consider the differences of all methods compared to the PDE approach.
Figure 4.5 shows the option prices as well as the differences for all strike values.
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Table 4.1 Applying the PDE
and the numerical integration
method

J. Kienitz
Strike Benchmark | Integration | Rel Diff
—0.03 | 0.03500118 |0.03500238 0.00003432
—0.029 | 0.03400137 | 0.03400269 0.00003882
—0.028 | 0.03300159 |0.03300304 0.00004411
—0.027 |0.03200185 | 0.03200345 0.0000501
—0.026 |0.03100216 |0.03100393 0.00005694
—0.025 | 0.03000254 | 0.03000448 0.00006475
—0.024 | 0.02900298 | 0.02900513 0.00007406
—0.023 | 0.02800351 |0.02800588 0.0000846
—0.022 | 0.02700415 | 0.02700676 0.00009673
—0.021 |0.02600492 | 0.0260078 0.00011073
—0.02 | 0.02500585 |0.02500902 0.00012688
—0.019 | 0.02400698 | 0.02401048 0.00014555
—0.018 | 0.02300834 | 0.0230122 0.00016777
—0.017 |0.02201002 | 0.02201427 0.00019306
—0.016 |0.02101208 |0.02101676 0.00022235
—0.015 | 0.02001464 | 0.02001975 0.00025538
—0.014 | 0.01901778 |0.01902339 0.00029483
—0.013 | 0.01802169 |0.01802783 0.00034062
—0.012 | 0.01702656 |0.01703327 0.00039361
—0.011 |0.01603269 |0.01603998 0.00045475
—0.01 |0.01504043 | 0.01504833 0.00052516
—0.009 | 0.01405025 |0.01405877 0.00060611
—0.008 | 0.01306495 |0.01307194 0.00053405
—0.007 |0.01207884 | 0.01208867 0.00081257
—0.006 |0.01109958 |0.01111012 0.00094888
—0.005 |0.01012658 | 0.0101379 0.0011169
—0.004 | 0.00916197 |0.00917424 0.00133784
—0.003 | 0.00820878 | 0.00822238 0.00165386
—0.002 | 0.00727138 | 0.00728704 0.00214869
—0.001 | 0.00635677 | 0.00637561 0.00295456
0 0.00547749 |0.00550237 0.0045226
0.001 |0.00466845 |0.00469153 0.00492124
0.002 |0.00391954 |0.00393808 0.00470724
0.003 |0.00323394 |0.00324754 0.00418695
0.004 |0.00261781 |0.00262651 0.00330935
0.005 |0.00207666 |0.00217132 0.04359626
0.006 |0.00161351 |0.00161347 | —0.00002349
0.007 |0.00122821 |0.0012248 | —0.00278862
0.008 |0.00091696 |0.000911 —0.00653648
0.009 |0.00067271 |0.00066511 | —0.01142512
0.01 |0.0004862 |0.00047782 | —0.01754904
0.011 |0.0003473 |0.00033878 | —0.02514202
0.012 |0.00024589 |0.00023782 | —0.03393193

The final column show the absolute differences
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Table 4.2 Numerical results, prices, Bachelier volatilities and differences to the integration as

well as the PDE approach

Approx 1 Approx 1 Approx 1 Approx 2 Approx 2 Approx 2
K Vol Price —Integral Vol Price —Integral
—0.03 0.0062 0.035 —0.0000009 0.0061 0.035 —0.0000012
—0.029 0.0061 0.034 —0.000001 0.006 0.034 —0.0000013
—0.028 0.006 0.033 —0.0000011 0.0059 0.033 —0.0000014
—0.027 0.0059 0.032 —0.0000012 0.0058 0.032 —0.0000016
—0.026 0.0058 0.031 —0.0000013 0.0057 0.031 —0.0000017
—0.025 0.0057 0.03 —0.0000014 0.0056 0.03 —0.0000019
—0.024 0.0056 0.029 —0.0000016 0.0055 0.029 —0.000002
—0.023 0.0055 0.028 —0.0000017 0.0054 0.028 —0.0000022
—0.022 0.0054 0.027 —0.0000019 0.0053 0.027 —0.0000024
—0.021 0.0053 0.026 —0.000002 0.0052 0.026 —0.0000026
—0.02 0.0052 0.025 —0.0000022 0.0051 0.025 —0.0000028
—0.019 0.0051 0.024 —0.0000024 0.005 0.024 —0.0000031
—0.018 0.0049 0.023 —0.0000027 0.0049 0.023 —0.0000033
—0.017 0.0048 0.022 —0.0000029 0.0048 0.022 —0.0000035
—0.016 0.0047 0.021 —0.0000032 0.0047 0.021 —0.0000038
—0.015 0.0046 0.02 —0.0000035 0.0046 0.02 —0.000004
—0.014 0.0045 0.019 —0.0000038 0.0045 0.019 —0.0000042
—0.013 0.0044 0.018 —0.0000042 0.0044 0.018 —0.0000043
—0.012 0.0043 0.017 —0.0000046 0.0043 0.017 —0.0000043
—0.011 0.0042 0.016 —0.0000051 0.0042 0.016 —0.0000042
—0.01 0.0041 0.015 —0.0000057 0.0041 0.015 —0.0000039
—0.009 0.004 0.0141 —0.0000065 0.004 0.014 —0.0000033
—0.008 0.0038 0.0131 —0.0000074 0.0039 0.013 —0.0000023
—0.007 0.0037 0.0121 —0.0000086 0.0038 0.012 —0.0000008
—0.006 0.0036 0.0111 —0.0000103 0.0037 0.011 0.0000015
—0.005 0.0035 0.0101 —0.0000126 0.003 0.010 —0.0000804
—0.004 0.0034 0.0092 —0.0000158 0.0035 0.009 0.0000092
—0.003 0.0033 0.0082 —0.0000202 0.0034 0.008 0.0000147
—0.002 0.0032 0.0073 —0.000026 0.0033 0.007 0.0000195
—0.001 0.0031 0.0063 —0.000032 0.0032 0.006 0.0000124
0 0.003 0.0054 —0.0000551 0.0031 0.006 —0.0000052
0.001 0.0031 0.0047 0.0000192 0.003 0.005 —0.000031
0.002 0.0031 0.004 0.0000277 0.003 0.004 —0.0000041
0.003 0.0031 0.0033 0.0000288 0.003 0.003 0.0000069
0.004 0.0031 0.0027 0.000027 0.003 0.003 0.0000122
0.005 0.003 0.0021 —0.0000669 0.003 0.002 —0.000076
0.006 0.003 0.0016 0.0000213 0.003 0.002 0.0000163
0.007 0.003 0.0012 0.0000188 0.003 0.001 0.000017
0.008 0.003 0.0009 0.0000167 0.003 0.001 0.000017
0.009 0.003 0.0007 0.000015 0.003 0.001 0.0000164
0.01 0.0031 0.0005 0.0000135 0.0031 0.001 0.0000154
0.011 0.0031 0.0004 0.0000121 0.0031 0.000 0.0000139
0.012 0.0031 0.0002 0.0000107 0.0031 0.000 0.0000122
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Now, we consider the approximation formulae with respect to the results they
produce on European Call option prices for our example. Figure 4.6 shows the
results for the absolute differences. The difference observed on the right wing gets
worse for large values of T and/or v.

4.4.2 Calibration

We performed a calibration using market data of the EUR from Cap/Floor markets
and applied the integration as well as the approximation formulae. Figure 4.7 shows
the result. We have showed that at least for a restricted parameter set the calibration
can be achieved using the approximation formulae presented in this chapter.

4.5 Conclusions

We have considered the standard ways of quoting option prices after the crisis. This
includes negative interest rates being observed even for the major currencies. The
market standard methods are using either Bachelier implied volatility or Displaced
Diffusion/Shifted Log-Normal volatility. For the second method the quotation needs
two parameters, namely the volatility and the displacement. Without fixing the
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displacement the volatility is not unique. Then, we reviewed an extension of the
SABR model which is a generalization to negative rates. We review the proposed
valuation technique and show that straight forward approximation formulae exist.
However, these formulae suffer from the same problems as the approximation tech-
niques for the standard SABR model. Finally, we included some numerical results.
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Chapter 5
Accurate Vega Calculation for Bermudan
Swaptions

Mark Beinker and Sebastian Schlenkrich

Abstract Short rate models are widely used for pricing of Bermudan Swaptions.
In addition to prices, traders and risk managers need sensitivities for hedging and
risk management. Vega is the sensitivity of the price with respect to changes in
market volatilities (i.e. implied Black’76 or Bachelier volatilities). This sensitivity
is of particular importance for Bermudan Swaptions.

It is common practice to evaluate Vega by shifting market data and re-evaluating
model prices. Even though this procedure is often used, in practice it is inefficient
here since the model calibration process flattens out the shift of single volatility
surface grid points. Thus this procedure may underestimate sensitivities. In this
chapter, we demonstrate how Adjoint Algorithmic Differentiation can be used to
calculate accurate and stable Vegas without loss of performance.

5.1 Financial Models and Algorithmic Differentiation

Hedging and risk management require knowledge of the sensitivities of financial
instrument prices with respect to their key risk factors (i.e., Greeks). Mathematically,
these sensitivities can be identified with partial derivatives with respect to input
parameters of the pricing model. From that perspective it does not come as a
surprise that methods of Algorithmic Differentiation (AD) attracted some attention
in financial engineering recently. Some studies in that field are, for example,
[2,3,5,8, 12].

5.1.1 Financial Models and Sensitivities

Prices of exotic financial derivatives are typically determined by means of a specific
financial model rather than by balancing offer and demand for this product. Such
a model could be described by the dynamics of certain risk factors and parameters
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involved. Common risk factors are stock prices, foreign exchange rates, or interest
rates. Exotic derivatives will also frequently depend on volatilities implied by
liquidly traded Plain Vanilla options (implied volatilities). Often, implied volatilities
of plain vanilla options are directly quoted instead of prices. Thus it might not be
necessary to imply these volatilities, because they are directly observable. Still,
throughout this chapter, we use the term implied volatilities synonymously for
market volatilities.

The implementation of the model should be able to price plain vanilla options as
well as exotic financial derivatives in order to verify the calibration quality of the
model or a given set of calibrated model parameters. Here, we focus on pricing
Bermudan swaptions. Then, the particular market observable parameters are the
yield curve and implied volatilities

T
oMkt = (OMk 15 - - - » OMKLN)

of plain vanilla European swaptions observed at the valuation date #. These implied
volatilities correspond to either log-normal volatilities based on Black’s formula or
normal volatilities based on Bachelier’s formula.! We require our pricing model to
match a set of market prices of plain vanilla European swaptions (called benchmark
swaptions) given as a function of the implied volatility Market(owmy:):

Swaption; (omk),
Market (omy) =

Swaption, (onk)

Here, Swaption,(.) represents either Black’s or Bachelier’s formula with appropriate
parameters for the ith swaption. Since we are only interested in the volatility
dependence, all other parameters are suppressed.

In general, a specific pricing model depends on a set of M model parameters.
These parameters are calibrated such that the model prices for a given set of
benchmark products matches the observed market prices as good as possible. This
yields to a minimization problem min,,,, x (xmar, Xmkt). Here y is a differentiable
cost functional depending on market observables xyy and model parameters
xmai- Then, the first order optimality condition yields the calibration function
U (xMdls *Mkt) = Vaya X (dma1, Xmke) = 0. A typical choice for the cost function
is

1 Conaats i) = ; (Fomar) — yCe) T (FCinta) — ¥(oam)

"Volatilities based on the shifted log-normal model are also common nowadays. Since the shifted
log-normal model is related to the log-normal model by a simple variable transformation x >
x + a with some constant offset a, we will not consider shifted log-normal models here since this
wouldn’t add much value, but would complicate notation unnecessarily.
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with N > M. In that setting F(xyma) and y(xmy:) are model- and market-implied
reference prices, respectively. This yields a calibration function of the form

¥ (xma, Xvie) = FComtar) T (F (emar) — y(oove)) = 0

In the special case that we have the same number of model parameters as
reference prices we may simplify the calibration function ¥ (-). Suppose M = N
and F’ (xmq)) is regular then we may write the calibration function equivalently as

¥ (xmar, Xmke) = FQomar) — y(emke) = 0.

In particular for our application we use this reduced setting.

The Hull White interest rate model (see Sect. 5.2), which we focus on, specifies
the dynamics of the instantaneous short rate. Its model parameters are the short
rate volatility function and the mean reversion speed. In our setting the short rate
volatility is chosen piecewise constant in time. In particular we have the same
number of short rate volatility pieces as market implied volatilities. We denote the
Hull White short rate model volatilities by

oma = (01, . ... ,UN)T-
The mean reversion speed is chosen constant and predefined by the user.”

The Hull White model allows the pricing of European coupon bond options
(CBO) that are equivalent to our plain vanilla European swaptions. Of course, the
model prices depend on the model parameters used. Hence, we get a function

CBO; (omal)
MOde](UMdl) = :
CBOw(omar)

summarizing the model prices of our reference plain vanilla instruments.

In this setting, the short rate model volatilities opg are chosen such that the
coupon bond option prices equal the equivalent reference European swaption prices.
That is we consider a calibration function ¥ with

¥ (omdl, OMkt) = Model(oma) — Market (Omkt) -

2Since we have N benchmark prices and N + 1 model parameters, we have to fix one parameter,
otherwise the optimization problem would not be well defined. Experience shows that adding an
additional benchmark swaption does not lead to a stable calibration process, i.e. calibrating the
mean reversion parameter to swaption prices is generally not a good choice. However, it is possible
to calibrate the parameter to Bermudan swaption prices, if available from an external source.
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The model is calibrated to the market observable implied volatility parameters if

¥ (omai, om) = 0.

After the model is calibrated to the market, we may use the determined model
parameters to price exotic derivatives. The mathematical formulation of the exotic
option price is often more complex than the formulation of the plain vanilla option
prices. Typically, a numerical scheme implements an approximate solution. We
determine the Bermudan swaption price

V = Exotic (oma1)

by successive numerical integration.

5.1.1.1 Evaluating Sensitivities

For hedging and risk management purposes the sensitivities of exotic option prices
with respect to market parameters are of particular interest. Evaluation of these
sensitivities requires the differentiation of the Exotic option pricing procedure as
well as the calibration procedure of the model applied. In this study we consider
the sensitivity of the Bermudan price with respect to changes in the market implied
volatilities of our reference European swaptions. Hence we want to evaluate

A% d
= Exotic’ (oma) * aMdl.
Ao domk

The term dowmg/dovke may be considered the differentiation of the calibration
procedure. We assume ¥ is differentiable and ¥,,,,, is non-singular at the solution.
Then the implicit function theorem yields

domar

dove [30Md1

= Model (oma1)”" - Market’ (o) -

-1
‘P(GMdl,UMkt)} "o ¥ (Omdi, OMkt)
Mkt

Consequently, we get

dv

= Exotic’ (opar) - Model’ (omar) ™" - Market' (o) -
Aok

Thus, the evaluation of Bermudan swaption Vegas requires derivatives of the
Market(), Model(), and Exotic() functions, as well as a solution of a linear system.
In practice these functions are implemented as computer programs. Although
we probably do not have a closed form representation of these functions, we
can apply the chain rule of differentiation to the individual operations of the
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computer programs. This approach is facilitated by the methods of Algorithmic
Differentiation.

5.1.2 Algorithmic Differentiation at a Glance

Algorithmic Differentiation (AD) provides principles and techniques to augment
computer models with additional code that allows to compute sensitivities of output
variables with respect to inputs of the model. Sensitivities computed by AD-
enhanced models (AD models) are computed as numerical values (not symbolic)
for the evaluation point given by the values of the model inputs. They are exact
up to machine precision. In contrast, widely used approximations of derivatives
computed by finite difference schemes often suffer from rounding and cancellation
errors (especially for higher order derivatives).

The key idea of Algorithmic Differentiation is applying the chain rule of
differentiation to the individual or atomic functions of a computer program. Two
basic modes are distinguished in this context: the forward mode and the reverse (or
adjoint) mode. In the forward mode, the chain-rule is applied in the same order as
the function evaluation itself, starting at the independent variables and evaluating
the dependent variables. On the contrary, the chain-rule can also be applied in
the reverse order of the function evaluation. This means, the sensitivities of the
intermediate variables with respect to the dependent variables are computed succes-
sively and in reverse order. However, this procedure requires a preceding function
evaluation where all overwritten program variables are stored for restoration in the
reverse sweep.

In the reverse mode the additional computational cost for gradient derivative
evaluation is independent of the number of input variables and roughly bounded by
five times the cost of the function evaluation itself. This property makes Algorithmic
differentiation particularly appealing for finance applications. A typical use case is
that sensitivities of many inputs (like interest rates and volatilities) with respect to a
single output (present value) are desired.

From a technical point of view, two fundamental concepts of AD tools have to be
distinguished: Source transformation tools are directly applied to the model code.’
A source transformation AD tool generates the AD model as new source code. AD
tools based on overloading of operators and intrinsic functions provide a new (often
called active) data type. This active data type is embedded into a sensitivity aware
arithmetic. This means, all relevant operators and intrinsic functions are defined
for the active data type and the intrinsic data types. The AD model is derived
by activating a copy of the original model. In practice, the data types of relevant
floating point variables are changed into the active data type. This can be realized,
for example, by hand, global definitions, or some scripting. Another approach is

30ften the original code has to be adapted slightly to meet the requirements of the AD tool applied.
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based on template metaprogramming. This allows binding classes and functions to
active data types at compile time.

An introduction to Algorithmic Differentiation can be found in [4, 9]. For this
study we apply the operator overloading AD tool dco/C++ [10] developed by NAG
and RWTH Aachen.

5.2 Pricing Bermudan Swaptions with a Hull White Model

In this section we present the details of our Hull White model implementation. We
aim at pricing Bermudan swaptions. A Bermudan swaption gives the option holder
the right to enter an interest rate swap at predefined dates. The underlying swap
exchanges a fixed rate cash flows based on simple compounding rate R against a
variable cash flow based on a float rate index L;. Typical floating rate indices are
interbank offered rates (Ibor), such as Euribor or Libor. Forthcoming we use the
general term Ibor rate. The subscript i indicates the dependency of the floating rate
on fixing date #; at which the Ibor rate is determined. Each accrual period has its own
rate. The Ibor rate is typically fixed between 0 and 3 business days prior to accrual
start date.

Fixed leg coupon payment dates are denoted by Sy, ..., Sy and Sy is the start
date of the first coupon period. Year fractions associated with the fixed leg coupon
periods are 1y, ..., ty. Here, we assume that fixed leg payment dates are a subset
of the floating rate payment dates. In the Euro market fixed payments are usually
annual and the fixed leg day count convention is 30/360.

Floating leg payment dates are given by Si,....8 5 and So = Sois again the start
date of the first coupon period. Corresponding year fractions are 7y, ..., n;,. Fixed
and float leg have identical maturity dates, i.e. Sy = S e

The price of a risk free zero coupon bond at observation time ¢t = 0 with maturity
T (t < T)is given by P(t, T). The mapping T — P(t, T) represents the yield curve
at observation time ¢. A yield curve may be inferred from deposit, forward rate, and
swap rates quoted in the market. We assume it to be given as an interpolated set of
zero coupon bond prices (i.e., discount factors).

To simplify notations we work in a single yield curve setting. Individual curves
for forward rate projection and discounting can easily be incorporated into the
pricing of Bermudans. This feature has effects on European swaption pricing as
well as the specification of the Hull White model. Details on tenor and funding
spread modeling are discussed, for example, in [13].

The price of the underlying swap at time ¢ < Sy is determined by discounting the
fixed and forward floating leg cash flows. For a (fixed) receiver swap it becomes

M it
Swap(t) = R wP(t.S)— Y L(OnP(t.5) .

i=1 Jj=1

FixedLeg(?) FloatLeg(r)
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In a single interest rate curve setting the forward Ibor rate L;(f) is given by

P(5) |

—1 .
P(l, Sj—l) nj

Consequently, the floating leg of the swap can be simplified to

Li(t) =

M
FloatLeg(t) = Y _ Li(t)n;P(t.5)) = P (t.50) — P (t.Su) -

j=1
Thus, we obtain the swap pricing formula

M
Swap(f) = Ry wP(t.S;) — [P(t,S0) — P(t.Su)]
i=1

= Raop(t) — [P(t,S0) — P(t, Su)]

which depends on the fixed rate R, the fixed leg schedule Sy, ..., Sy, and the yield
curve T +— P(t,T). Here, we have introduced the annuity a;(f) = Zﬁ_l TP(t,S;).
Rearranging terms yields that the swap can also be interpreted as the time ¢ price of
a risk free (forward) bond contract with unit bond price paid at Sy, fixed coupons
Rt; paid at S; fori = 1,..., M and unit notional payment at Sy,. That is

Bond(f) = —P(t, So) + Rao(0, 1) + P(t, Syr)
———

bond price coupons and notional

and
Swap(f) = Bond(?) . 5.1

A swaption gives its holder the right to enter a swap at a given strike rate R.
The swaption is considered to be of European style if the right may be exercised at
a single predefined date. A Bermudan swaption gives its holder the right to enter
into a fixed maturity swap at one of several predefined exercise dates. Therefore, the
holder has to decide at each exercise date, whether it is more favourable to enter into
the swap right now instead of keep holding the option to enter the swap at some later

“Here we assume physical settlement rather than cash settlement, where the option holder receives
a cash compensation only in case of exercise.
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value of the Bermudan swaption equals the value of a European swaption given by

Swaption(T) = [w Swap(T)]"

[ {Rai,(T) —[P(T,S;,) — P(T,Sw)}]" .

Here w € {—1, 41} distinguishes between a payer (—1) and receiver (4 1) swaption
and [ - ] abbreviates max{ - , 0}.

Exploiting the equivalence between swaps and bonds yields that the swaption
may be interpreted as a coupon bond option with payoff

+
CBO(T) = | {Ra,(T)+P(T.Sy) — P(T.S;)
N—— N—— N——
coupons notional strike

The underlying bond coupons equal the fixed leg payments of the swap. At maturity
the unit notional is paid and the option strike equals the unit notional. The exercise
date is assumed to coincide with the accrual start date of the first period, i.e. T = §j,.

5.2.1 Market Formulas for European Swaptions

The payoff of the swaption is rewritten as

_ P(T.S;,) — P(T, SM))T'

Swaption(7) = a;,(T) [w (R ai,(T)

In this representation the (forward) par swap rate is denoted by

P(T,S;,) — P(T,Sy)
ajy (T)

’

Y(T) =

and the swaption payoff becomes
Swaption(T) = a;,(T) [-w (Y(T) —R)]".

Thus a European receiver (payer) swaption is equivalent to a European put (call) on
the forward par swap rate Y(7') with strike R.

The present value of the swaptions is derived by discounting the expectation of
the payoff as

Swaption(r) = a;, () E* [-w (Y(T) —R)"].
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The expectation is taken in the so-called annuity measure which uses a;, () as
numéraire. Since the annuity a;,(¢) can be interpreted as the weighted sum of zero
bond prices, it is indeed a valid choice as numéraire. It is market practice to evaluate
the expectation [E4 [—a) () — R)+] by means of Black’s or Bachelier’s formula
and corresponding implied volatilities o and o respectively. Black’s formula is
given by

Black(Y,R, 0%, T,w) =w- (Y -N(w-d)) —R-N (0 -d>)),

In(Y/R) o -JT
12 = =+ ,
oB.JT 2

and Bachelier’s formula is given by
Bachelier(Y,R, 0", T,w) =w- (Y —R) -N(w-d) + N (v -d) - 0" - VT,

Y—R
oN - JT '

5.2.2 Analytical Pricing Formulas for the Hull White Model

The Hull White model [6] specifies a stochastic process for the short rate r(f). The
model is given by

dr(t) = [0(t) — ar(t)] dt + o (£)dW(2).

Here 6(¢) denotes the risk neutral drift and is fully determined by the current interest
rate curve, a the constant mean reversion parameter, and o (¢) the volatility of the
short rate. The stochasticity is given by the Brownian motion increment dW (#) under
the risk neutral probability measure. It is common to assume that the volatility is
piecewise constant between two exercise dates of a Bermudan swaption. Let Ty = ¢
and denote the Bermudan exercise dates with 77, . .., Ty then we have that

o) =0; for te(Ti,Tj],j=1,...,N.
With a given set of model parameters (i.e. short rate volatilities and mean

reversion speed) as of time ¢, the price of a (future) zero coupon bond at the future
date 7; > ¢, with maturity S, and realized short rate r at time 7 is

ZCB(t; T, S.r) = A(t: T}, S) e BS)
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with

P(t,5)
P(t.T)

B(T;.S) = : L= e 9

B(T;.S)?

A T;,S) =
(:T.5) A

Xp {B(T,» F(T)) — e 2Ot T))

Ct;T;) = Z 2a8(t,Tk) _ 82a8(t,Tk71))’
k=1
alog(P(t T))

sy = ="

5.2)

A coupon bond with cash flows ¢; at coupon payment dates S; is determined by the
sum of the scaled zero coupon bond prices, i.e.

CB(:T;.51.....Su.r) = »_ &;ZCB(1:T;. S, 7).
Si>T;

The time # price of an option on a zero coupon bond with exercise date 7T}, bond
maturity S, and strike price K paid at T} is given by

ZCO(t; T;, S, K, w) = P(t, T;) Black(P(t,S)/P(t, T)). K, 0p, 1, ®) 5.3)
with
op = ; (e_‘“g(”Tf) - e_”‘g(”s)) \/C(t; T;).
Note that the notation 7 = 1 in the Black formula implies no loss of generality.

The temporal scaling of the volatility op is already incorporated in the terms
(e=430T)) — =a549)) and C(1.T)).

An option on a coupon bond with cash flows ¢; at coupon payment dates S;,
exercise date 7}, and strike price K may be valued using Jamshidian’s decomposition
[7]. This approach requires to solve the equation

CB([;T},Sl,...,SM,r*) =K

for the short rate r*. Using the resulting short rate #* we can evaluate corresponding
individual strikes K; by

K, = ZCB([, 7}, Si, r*).
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With these individual strikes the coupon bond option can be priced as a sum of zero
coupon bond options, i.e.

CBO(t. T} S1.....Su.0) = Y ¢;ZCO(1. T, S;. Ki, o).
Si>T;

For the calibration procedure it is important to note that the price of a coupon
bond option with exercise date 7; depends only on short rate volatilities o7 to oj.
The price is independent on volatilities corresponding to times larger than 7;.

5.2.3 Pricing Bermudan Swaptions

Once the Hull White model is calibrated to European swaptions, it may be applied
to price Bermudan swaptions. In Sect. 5.2 we demonstrated the equivalence between
European swaptions and European bond options. Analogously, we find that a
Bermudan swaption can be represented as a Bermudan option to buy or sell a coupon
bond at predefined exercise dates with given strike prices.

Bermudan swaptions are frequently traded as hedges against call rights of multi-
callable bonds. They are probably the most frequently traded interest rate derivatives
which require a term structure model for pricing. The term structure model is
necessary to determine the exercise boundary which separates the two regions where
exercise is optimal and where exercise should be postponed. This decision depends
on the interest rate level. At each exercise date, the value of the Bermudan option
equals the maximum of hold value and exercise value.

The exercise value can easily be determined, since it is just the value of the
underlying swap at the exercise date. The hold value, i.e. the value of the Bermudan
option if exercise is postponed, is more difficult to determine, since it is essentially
the value of a Bermudan option with one exercise date less. But there is one
exception: at the last exercise date T),—, no further exercise dates are left, therefore
the hold value must be zero. It follows that at the last exercise date, the value of
the Bermudan swaptions equals the maximum of the exercise value and zero. For
numerical methods running backwards in time, this Bermudan value can be rolled
back to the previous exercise date Tj;—,. Here, the new Bermudan swaption value
equals the maximum of the rolled-back value (which is the hold value) and the
exercise value at Ty—,, and so forth to the valuation date ¢. Numerical methods
which apply a forward simulation approach (e.g., Monte Carlo methods) would
require instead some additional method to estimate the exercise boundary in order
to price Bermudan options.

In this subsection we sketch our approach for the pricing of Bermudan bond
options in the Hull White model. The method is based on the reformulation of the
Hull White model in the time-7" neutral measure. For references, see for example
[1] or [11, Appendix C]. The fundamental theorem of asset pricing yields for the
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price V(t, r(t)) of a security depending on the time 7 and a (also time-dependent)
risk factor r(¢) that

V(t,r(t)) = ZCB(0;1, T, r(t)) - ET [V(T,r(T))] for t<T.

In this representation ZCB(0; ¢, T, r(¢)) is the time-t price of a zero coupon bond
maturing at time 7. The zero coupon bond price depends on the model calibration
at time-0 and the time-f state of the risk factor r(¢). For the Hull White model the
risk factor is the short rate. The analytical formula for ZCB() was elaborated in
Sect.5.2.2.

The expectation ET, conditional on the information at time ¢, is evaluated in the
time-7T neutral measure. That is, the numéraire applied is the zero coupon bond
maturing at time 7. In our setting the price of the numéraire is given by the ZCB()
formula. For the pricing of the option in this setting we require the dynamics of the
short rate r(¢) in the time-7 neutral measure.

Provided we can evaluate E” [V(T, r(T))] for a given option price or payoff at
time 7 then we can also price Bermudan bond options. We discretize the short rate
by a grid ry, ..., r,. Analogously to a PDE approach, we start at the last exercise
date Ty and work backwards in time. We evaluate the auxiliary option price

V(Ty-1,1;) = ZCB(0; Ty—1, Ty, ;) - E™ [py(r(Ty))]

forj = 0,...,n. Here py(r) is the Nth payoff function of the Bermudan option. We
consider a sequence of coupon bond options. Therefore

pi(r) = [w (CB(0; T}, S1,....Su.r) —K)|T for i=1,....N
with w € {—1, 41} distinguishing put and call options, K; determining the (dirty)

strike price of the bond, and CB(. . . ) defined in Sect. 5.2.2. The option price at Ty—,
then becomes

V(Tn-1.r) = max {V(Ty_1.1;). px—1(ry)} for j=0.....n.

The resulting discrete points V(Ty—1, ro), - .., V(Ty—1, ) are interpolated to model
the option price function V(Ty—1, r) at time Ty—; and intermediate short rate points
r. We proceed by evaluating

V(Ty=2,1;) = ZCB(0; Ty—2, Ty—1,1;) - EN=1 [V(Tiy—1, "(Ty—1))] ,
V(Ty-2,1;) = max {V(Ty—a, 1), pn—2(r})}

forj = 0,...,n. These steps are repeated until V(77y, r) is available. The desired
price of the Bermudan option is finally determined as
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V(0,r(0)) = P(0,Ty)-E" [V(Ty, r(T1))].
The computationally crucial step is the evaluation of the expectation
EN=1 [V(Ty—1, (Ty-1))]

depending on the stochastic short rate r(Ty—;) given the information at time Ty—;.
From the dynamics of the Hull White model we know that the short rate is normally
distributed. Moreover, we may derive corresponding mean and variance parameters

p=E™ [1(Ty-1)]
and
o = Var[r(Ty_1)] = Ev-! [(r(TN—l) — E™v- [F(TN—I)])Z] .

For a derivation of these quantities, see e.g. [11, Appendix C]. Given the distribution
parameters the expectation of the option payoff is evaluated as

© (=)

V(Ty—1,r)- e 22 dr.
o0

1
ETN,I [V(TN_I,}’(TN—I))] = 271_0_2 /

In the implementation the integral is solved by interpolating V(7y—1, ) and numer-
ical quadrature.

5.3 Pricing and Vega Calculation Example

In this section we illustrate an example for price and Vega calculation. As example,
we choose a 5 years into 10 years Bermudan swaption with annual exercise dates.
Market data are selected for EUR as of September 2016 month end.

As mentioned in Sect.5.2, we work in a single interest rate curve setting.
We model the 6m swap curve which is derived from par quotes of forward rate
agreements and Vanilla swaps. Figure 5.1 shows the calibrated yield curve in terms
of continuous compounded zero rates. Note that rates are negative up to about 7y
maturity; a phenomenon typical for current low interest rate markets.

In addition to interest rates, we need to incorporate volatility information. Current
low interest rates are not compatible with log-normal implied volatilities and
corresponding models. The market provides quotes for shifted log-normal as well
as normal implied volatilities. For this analysis we choose normal volatilities to
avoid the additional dependency on the volatility shift parameter. Nevertheless, the
concepts can be adapted easily to shifted log-normal volatilities as well.
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Fig. 5.1 EUR 6 months swap curve

Normal Volatility

Fig. 5.2 EUR at-the-money normal swaption volatilities

Figure 5.2 illustrates the at-the-money swaption volatility surface. For brevity,

we omit the volatility smile, i.e. the market implied dependency of the volatilities

on the option strike.

The Hull White model is set up with 1% mean reversion speed and piecewise
constant (backward flat) short rate volatilities. We calibrate the model to co-
terminal European swaptions corresponding to the exercises of the Bermudan.
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Fig. 5.3 European and Bermudan swaption present value

Given that we have a 5 years into 10 years Bermudan with annual exercises
we get exercise dates 5 years, 6 years, ..., 14 years. Market volatilities for the
reference European swaption expiries are derived by interpolating the at-the-money
implied normal volatility surface. The resulting market volatilities oy ; are fed into
Bachelier’s formula to get the reference European swaption prices corresponding
to the Swaption;(-) market prices in Sect. 5.1.1. We set the short rate volatility grid
equal to the expiry dates of the reference European swaptions and calibrate the short
rate volatility parameters to match the market prices.

Before looking at Vega calculation we analyze the Bermudan swaption pricing.
Figure 5.3 illustrates the European swaption present values Swaption,(-) as well
as the Bermudan value denoted by V = Exotic(-) in Sect.5.1.1. The result nicely
illustrates that the Bermudan value exceeds the maximum European value by the
switch option value, i.e. the value of the option to postpone the exercise decision.

Figure 5.4 compares the Vegas of the European swaptions with the flat Vega of
the Bermudan swaption. European Vega is evaluated by differentiating Bachelier’s
formula. Bermudan Vega is derived along the lines elaborated in Sect. 5.1.1 utilizing
Algorithmic Differentiation to derive the gradient Exotic’(-) and the Jacobian
Model(+). This procedure naturally yields sensitivities w.r.t. all the individual input
volatilities. A flat Bermudan Vega is derived by summing up the individual Vega
contributions.

The results in Fig.5.4 show a similar pattern as for the present value: The
Bermudan Vega exceeds the Vega of the maximum European swaption Vega.
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For risk management and hedging it is of particular interest to understand the risk
contribution of the individual buckets. This information is naturally obtained by the
sensitivity calculation procedure applied. The corresponding bucketed Bermudan
Vega dV /doyy is shown in Fig. 5.5.

Note that the Bucketed normal Vega w.r.t. market volatilities differs structurally
from the Bermudan sensitivity w.r.t. the short rate model volatilities. The latter is
denoted by dV /doyg and given in Fig. 5.6. The short rate volatility of the initial 5y
no-call period dominates the overall impact on the Bermudan value.
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Fig. 5.6 Bucketed Bermudan short rate Vega (per 1bp normal vol shift)

5.3.1 Implementation and Computational Costs

The methodology described is implemented in C++ and exported to Excel. The main
computational effort lies in the evaluation of the Bermudan value. Model calibration
and matrix factorization (or inversion) are usually not an issue for this kind of
application. AD theory predicts an increase of the AD-enabled code compared to the
original code by a factor of 4-5. In our application we observe a factor of about 10.
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Chapter 6
Modelling and Calibration of Stochastic
Correlation in Finance

Long Teng, Matthias Ehrhardt, and Michael Giinther

Abstract This chapter deals with the modelling and calibration of stochastic
correlations. Correlation plays essential role in pricing derivatives on multi-assets.
Market observations give evidence that the correlation is hardly a determinis-
tic quantity, however, a constant or deterministic correlation has been widely
used, although it may lead to correlation risk. It has been recently proposed to
model correlation by a stochastic process, similar to stochastic volatility pro-
cess. In this chapter, we review the concept of stochastic correlation process
including calibration via the transition density function and its application for
pricing the European-style Quanto option. As an illustrating example, we compare
the Quanto option prices between using constant and stochastic correlation and
analyze the effect of considering stochastic correlations on pricing the Quanto
option.

6.1 Introduction

For two random variables X; and X, with finite variances, the correlation of them is
defined as

Cov(X;, X
p1a = Corr(Xy, Xy) = VX1 X2) 6.1)
01072
with covariance
COV(Xl,Xz) = E[(Xl — ,LLl)(XQ — /,Lz)], (62)
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where (; and o; are the expectation and standard deviation of X;, i = 1, 2. Here p; »
denotes a coefficient number in the interval [—1, 1]. The boundaries —1 and 1 will
be reached if and only if X| and X, are indeed perfectly negatively and positively
related. The greater the absolute value of p; , the stronger the dependence between
X;,i = 1,2 is. Hence, the concept can be used to quantify the relationship between
financial quantifies driven by random variables.

In finance, the relationship between financial quantities plays usually an essential
role, see, e.g., wrong way and right way risk in portfolio credit models [2, 15]. The
correlation concept (6.1) known in statistics as the (linear) Pearson correlation coef-
ficient [10], had been widely applied for the relationship in financial applications.
However, by doing that, there are several disadvantages or fallacies, we state only
some of them:

e If the random variables X; and X, are independent, then it follows p;, =
0. However, the converse implication does not hold, since in (6.1) only the
two first moments are included. For example, we compute that p;, = 0 for
X, = Xlz. Indeed, X; and X, depend even almost perfectly on each other. This
simple example illustrates that the correlation coefficient only recognizes linear
dependences between random variables.

* Correlation is invariant under strictly increasing linear transformations, but, in
contrast to Copula methods, not invariant under nonlinear strictly increasing
transformations. For example, in general the correlation of the random variables
X, and X, does not equal the correlation of the random variables In X; and In X>,
i.e. after a transformation of the financial data the correlation may change.

e Usually, the given marginal distributions and pairwise correlations of a random
vector cannot determine its joint distribution.

 Finally, as stated above, the variances of the two random variables X; and X, has
to be finite. This assumptions is not fulfilled for every standard distribution, e.g.
the Students’s t-distribution with v < 2 degrees of freedom possess an infinite
variance.

For more detailed information about the disadvantages or fallacies we refer to [9].

Using the correlated Brownian motions (BMs) is a standard way to insert the
correlation concept for relationship in financial models. We illustrate this by a
simple example: the coupled stochastic processes for the European-style Quantity
(Quanto) adjusting option in the Black-Scholes framework

dSt == /uLSS[ dt + USSt dW;g

(6.3)
dR, = jigR, dt + ogrR, AW,

with positive constants [is, (g, 05 and og. The first stochastic differential equation

(SDE) describes the price of the traded asset in a currency A. The second SDE is

used to model the exchange rate between currency A and another currency B. The

dependence between the series is given by the correlated BMs WS and WX, with the



6 Stochastic Correlation 85

symbolic notion
dW? dWR = pgr dt. (6.4)

We see that the BMs are assumed to be correlated by a constant correlation psg €
[—1, 1] which is a measure of co-movements between S, and R;.

In financial markets, the first problem of using a correlation concept is the
“observability”. Unlike other quantities as price, exchange rate and so on, the
correlation can not be obtained directly from the market and can only be measured
in the context of a model. The easiest estimator of the correlation is the sample
correlation coefficient. Given a series of N measurements of X; and X,, which are
observable quantities in the market, and denoting the measurements by x; ; and x» j,
j=1,2,...,N, the sample coefficient correlation reads

. ZJZ‘V=1(XIJ — 1) (2 — f2)

P12 = N ) . B (6.5)
\/Zi=l(le = [11)? X (o — [i2)?
where 11 and i, are the sample means of X; and X5.

As we explained above, the constant correlation coefficient defined by (6.1) only
captures linear relationships between X; and X,. Therefore, in the model (6.3) a
linear dependence between S; and R; is assumed. However, from the market we
realize that there is often a non-linear dependence between returns. Specifically,
a constant correlation means that the two return processes are jointly stationary
which is generally not true in the real world. Thus, the correlation is hardly a
fixed constant, i.e. the constant correlation may not be an appropriate measure
of co-dependence. There exist already some works which show that the corre-
lation should not be constant and even changes over a small time interval as
the volatility, see e.g. [14]. Several approaches generalize the constant corre-
lation to a time-varying and stochastic concept, like conditional correlation in
[3,5].

How to estimate a time-varying correlation from the market data using the
estimator (6.5)? At time ¢, using the nr times most recent daily returns, the
correlation at time ¢ is given by the following estimator

~ 1 ~ ~ 1 ~
~ Z/y‘l;l(sf—j “onr Z;lil ST—J')(VT—J' ~ onr Z;lil rf—j)

pr= nrooa 1 nrooq 2N (% 1 nro s 2 . (6.6)
\/Zj=l(sf—j - Zj=l 81-j) Z;’:l(’t—j - Zj=l Ti—j)
We then just need to roll it to the time ¢ + 1, and so on to obtain a series of
correlations through the time, which is known as historical correlation. And the
following question is how long should the time window Ny be? To address this
question we firstly give an example of historical correlations between S&P 500
index and Euro/US-Dollar exchange rate on a daily basis. We use s and 7 to denote
the daily return series of S&P 500 and Euro/US-Dollar exchange rate and fix a size
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time window nr, e.g. np = 60 for 60-day historical correlation. In Fig. 6.1, the
15-day, 30-day and 60-day historical correlations are displayed.

Firstly, we see that the longer a time window (the value of nr) the less volatile a
historical correlation is. In Fig. 6.1, the 15-day historical correlation is more variable
than the 30-day historical correlation which is again more variable than the 60-day
correlation. With a longer averaging period a long-term correlation is calculated. If
we choose nr = 10 or 15 days, the estimated correlation for each time ¢ using (6.6),
could be seen as a short-term correlation of the current market phenomena whose
immediate past returns are used for the estimation. It is worthwhile noting that the
events, especially, some extreme events in a time window will affect the correlation
which would be estimated in the following time windows, even has a delayed effect
on the long-term correlation. If one assumes that the phenomena in the past could
be a reflection of the future, one would like to use the historical correlation as a
forecast for the future.

The behaviour of the historical correlations in Fig. 6.1 gives evidence that one
should describes the correlation using a mean-reverting stochastic process. Thereby,
not only the variation of the short-term correlation can be reflected, also the
attributes of long-term correlation is determined by the long-term parameter values,
like long-term mean value and mean reversion speed. Besides, implied correlation
in the context of a model also shows us that the correlation should be time-varying
and behaves like a stochastic process.

To see more properties, which a mean-reverting stochastic process should have
to be a stochastic correlation process (SCP), we plot its empirical density functions
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Fig. 6.1 Historical correlation between S&P 500 and Euro/US-Dollar exchange rate. (Source of
data: www.yahoo.com)
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Fig. 6.2 Empirical density function of the historical correlation between S&P 500 and Euro/US-
Dollar exchange rate with bandwidth 1/40

in Figs.6.2 and 6.3, using different bandwidths. We refer to [1] for the detailed
information about the estimation of density function from historical data. From
studying the empirical density functions we request that the SCP should satisfy the
following properties:

1. only takes values in the interval (—1, 1),
2. varies around a mean value,
3. the probability mass tends to zero at the boundaries —1, +1.

6.2 Stochastic Correlation Models

For modelling correlation as a stochastic quantity, we firstly refer to the dynamic
conditional correlation model by Engle [5] and the Wishart autoregressive process
proposed by Gourieroux [7]. Moreover, as the previous section indicates that one
could model correlation as a proper stochastic process. In [8, 21], the authors
suggested to use a modified Jacobi process to model stochastic correlations. A
restriction on the parameter range has been found to ensure that the boundaries —1
and 1 of the correlation process are not attractive and unattainable. A more general
stochastic correlation process was proposed by Teng et al. [16], which relies on
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Fig. 6.3 Empirical density function of the historical correlation between S&P 500 and Euro/US-
Dollar exchange rate with bandwidth 1/30

the hyperbolic transformation with the function tangens hyperbolicus of any mean-
reverting process with positive and negative value, the properties (1)—(3) above can
be thus directly satisfied without facing any additional parameter restrictions. It is
more general because it had been proved that the type of modified Jacobi process in
[8, 21] turns out to be a special case of the hyperbolic transformation of a stochastic
process, cf. [17].

How to incorporate a SCP into financial models? The most intuitive way is
to generalise the concept of the correlated BMs (6.4). Based on two independent
Brownian motions W, ; and W3, we define

t t
Wl,t = / Ps dWZ,s + / \/1 - P% dWS,sv (67)
0 0

where p; is a SCP.
Lemma 6.1 W, satisfies

(1) Wip =0,
2) E[(W)?] =1,
(3) E[Wl,t|ys] = Wi, for s<t
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Proof

(1) is obvious.
We calculate the two expected values as follows:

(2
st ([ -
+2 /0 pedia, /0 r \/ 1—p} dwh]
_E [/Orpfds 4 /0,(1 —pf.)ds] +E [2/0tpsdwz,sfot\/1 —pgdwls]

=0, since Wp_L Wj3.
t
= / lds=1.
0

3)

t

t
E[Wl,tlgzx] = Wl,x +E |:/ pxldWZ,xl + / \/1 - ,0%1 dW3,S1 Igzvi| .

=0

Regarding the two independent BMs W,, and Ws,, the new BM W, , has been
defined which satisfies

E[W Wy ]=E |:/ Ps ds:| . (6.8)
0

One can straightly see that (6.8) agrees for
E[Wi:Wa = piat, (6.9)

where W, , and W, are correlated by the constant p; ;. Thus we use the symbolic
notion

dW]’t dWZ,t = ,0[ dt (610)
for the definition of that the Brownian motions W;, and W, are correlated by

the SCP p,. Through this stochastically correlated BMs we can directly include
exogenous stochastic correlations into financial models.
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6.3 A General Stochastic Correlation Process

In this section, we study the hyperbolic transformation proposed in [16, 17] of a
mean-reverting process to be a SCP. We fix a probability space (£2,.%,P) and an
information filtration (.%,),cp+ satisfying the standard conditions, see e.g., [11].

6.3.1 The Transformed Mean-Reverting Process

For the motivations and the properties (1)—(3) in Sect. 6.1, Teng et al. [16] proposed
to use the tangens hyperbolicus function of a mean-reverting stochastic process X;
with positive and negative values)

dX[ == a(l, Xr)dt + b(l, Xr) dW[, t Z O, X() = X0, (6.11)
to model the correlation as
pr = tanh(X;), po = tanh(xp) € (—1,1). (6.12)

Obviously, the properties (1)—(3) are fulfilled due to the range of values of the
tangens hyperbolicus and mean reversion of the process. Besides, the function tanh
is symmetrical and measurable. Although the function tanh can not really attain —1
and 1 which presents perfect negative and perfect positive dependence, respectively.
It should make no difference to use this function for modelling correlations, because
the correlation equal to —1 or 1 is indeed an extreme event which happens very
rarely in the real market, see e.g., Fig. 6.1. Besides, the function fanh tends to the
boundaries —1 and 1 at infinity.
Applying It6’s Lemma with (6.12)

d tanh(X, d tanh (X 1 9% tanh(X,
dp, = dtanh(x,) = O BN ), dtanhXy) o 1OT@nR(X)
ot ox 2 ox2
(6.13)
we obtain the SCP
dp; = (1= p?) ((@— pb*)dt + baw,), >0, (6.14)

where py € (—1,1), @ = a(t,artanh(p,)) and b = b(t, artanh(p,)). From (6.14)
we see that there is a suitable number of free parameters to calibrate the model
to market data. Besides, it is obvious, in this approach any mean-reverting process
(with positive and negative values) can be considered without facing any additional
parameter restrictions. The free parameters are hidden in the functions a and b,
see the example (6.16) in Sect. 6.3.2 and (6.26) in Sect. 6.3.3. Why is the function
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tanh(x) chosen for modelling correlation, we refer to [16, 17]. In the next sections
we present two examples of SCPs.

6.3.2 The van Emmerich’s Correlation Model

As the first example, we show that van Emmerich’s correlation model can be
obtained by transforming a special mean-reverting process (6.15), i.e. the van
Emmerich’s correlation process is just a special case of the general transformation
[16]. To do so, we define the following mean-reverting process

K(/L - tanh(Xt))

dx, =
"7 1 —tanh?(X,) V1 — tanh?(X,)

dw,, t>0, Xo=xp,  (6.15)

where x and o are positive, € (—1,1). Next, we transform (6.15) with p, =
tanh(X;). Again, applying [t6’s Lemma we obtain

dpi = [(k( = p) = 0] di + 0 \[1 = p W, (6.16)

the calculation is straight but a little tedious. If we define

k* =Kk + 02, (6.17)
K

w= (6.18)

o* =o, (6.19)

the correlation process (6.16) can be rewritten as

dp, = K*(* — p))dt + o* \/1 — p2dW,, (6.20)

which is exactly the van Emmerich’s correlation process in [21]. Due to the
transformation with the function fanh, the correlations provided by (6.20), whose
coefficients are found in (6.17)—(6.19), are obviously located in the interval (—1, 1).
van Emmerich [21] derived the analytic condition

*

K > 1:; . (6.21)
m

of that the boundaries —1 and 1 can not be unattainable. We see that the correlation
process (6.20) must have already satisfied the condition (6.21): substituting
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(6.17)—~(6.19) in (6.21) we get

02

<1 6.22
k(1£p)+o%~ (6.22)

which always holds whilst « is positive and u € (—1,1).

6.3.3 The Transformed Modified Ornstein-Uhlenbeck Process

As the other example, we consider the SCP obtained by transforming the modified
Ornstein-Uhlenbeck (OU) process The OU process [20] is defined by the stochastic
differential equation

dX[ == K(,LL - X[) d[ + UdW[, (6.23)

where «, 0 > 0 and X, u € R. If we want to restrict the mean value p to be only
in (—1, 1), it is reasonable to modify the Ornstein-Uhlenbeck process (6.23) as

X, = K(,u — tanh(X,)) dt + o dW,, (6.24)

where k, 0 > 0 and Xy, u € (—1,1).
Lemma 6.2 Applying It6’s Lemma with p, = tanh(X;),

d tanh (X, 1 82 tanh(X,
_ OtanhXD) y, | L 0anb() o 4

d 6.25
Pt ox o, 2 ( )
gives the stochastic correlation process as
dp = (1= p})(k (1 — pr) — 0°p;) dt + (1 — p})o dW,, (6.26)

wheret >0, pg € (—1,1), k,0 > 0and u € (—1,1).
Proof

(6.25) = sech®(X,)x (1 — tanh(X,))dt — sech® (X,) sinh(X,)o*dr + sech®(X,)o>dW,

sinh(X;) , 2 5
dt h”(X,)o“dW,
cosh (X,)U + sech”(X)o .

= (1 — p))k(p — p)dt — (1 — p))pio’di + (1 — p})adW,
= (6.26).

= sech?(X,)x (n — tanh(X,))dt — sech®(X,)
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Again, we define

K* =k 402, (6.27)
* Kk

= , 6.28

W= (6.28)

o* =o, (6.29)

and rewrite (6.26) as
dpt * * *
|- g2 =k (1 = pu)dt + o™ dw;, (6.30)
t

wheret >0, pp € (—1,1), 4™, 0% > 0and u* € (—1,1).

6.4 Calibration Via Density Function

In this section, we show how to fit a SCP to historical market data via its density
function. As an example, we consider the calibration of the SCP (6.30).

6.4.1 Transition Density Function

Let us assume that the stochastic correlation process (6.30) possesses a transition
density f (¢, p|po) which satisfies the following Fokker-Planck equation

9 . . 0 o 19> . .
o P+ 0 (@@ p)f(t.p)) — 205 (b(z. p)*f (1. §)) = 0, (6.31)
with
a(t, p) = k*(1—p*)(1 — @), (6.32)
b(t,p) = (1 — p*)o*. (6.33)

For the calibration purpose we consider the stationary density (for t — 00)
f(p) := lim f(z, p|po). (6.34)
=00

With the above construction the SCP (6.30) is also a mean-reverting process. Thus
one can show that every two solutions of (6.31) are the same for t — oo, i.e., a
unique stationary solution f(p) exists, cf. [13]. In [17], f(p) has been given in a
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closed form

(1 + [)‘)a-l—b(l _ Ib')a—b

p) = , 6.35
f(®) u (6.35)
where
K* —20*2 K*u*
a= o2 b= R (6.36)
M'—F(l 4+a—b)F(1,—a—b,24+a—b,—1)
o I'+a-—b)

(6.37)

n I'l+a+bF(Q,—a+b,24+a+b,—1)

'C+a+b) ’

with the hypergeometric function F(a, b, c,x) = /fio ’,‘j (”Z;f)k, |x| < 1, and the

Gamma function I". (-); denotes the Pochhammer symbol (a); = a(a + 1)(a +

2)---(a + k — 1), (a)o = 1. The condition of existence of the density function
(35) is

ath>1 (6.38)

which is equivalentto u € (—1, 1).
This result can be transmitted to the SCP in the form of

dp

' =k(l = p)dt + o dW,. (6.39)
1—p?

t

with the arbitrary parameter coefficients k > 0, u € (—1,1) and o > 0 instead of
the defined «*, pu*, o*. We check the existence condition of the density function:
for this case we have for a and b, like defined in (6.36), as

— 202
a:K cr’ b:/c,u

I (6.40)

o2’
We perform a similar calculation for checking the condition (6.38):

a+b>—1<2 L% s | e(l+p)>c2esk> %

o2 o2 I+p’
k=202 KL 2 o?
a=b>-1<="7 - >-l<k(l—p)>o0 s> 2

Thus, the process (6.39) could be employed for the stochastic correlation if the
condition

02

K>
1+pu

(6.41)
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Fig. 6.4 Comparison of f(p) for different values of o (x = 2 and u = 0)

is fulfilled. We find that this condition dovetails nicely with that condition in [21],
which ensures that the boundaries —1 and 1 are unattainable.

As an example, we let k = 2 and u = 0 and display f(p) with different values of
o, which is equal to 0.3, 0.4 and 0.5, respectively. The behaviour of f(p) is displayed
in Fig.6.4. Obviously, o shows the magnitude of variation from the mean value

n=0.

6.4.2 Calibration

We assume that the correlation is itself observable. Under this assumption the
transition density can be used for calibration purposes. One uses usually maximum-
likelihood estimation (MLE) when the density function is known. Considering
the density function (6.35), it will be tedious to get its likelihood-function. An
alternative approach to estimate the parameters is to fit the empirically observed
density to the stationary density (6.35). As an example we fit the historical data
from Fig. 6.2 to (6.35). This fitting works very well, see Fig. 6.5.
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1.4

Stationary Transition Density

— © — Empirical Density function
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p

Fig. 6.5 Correlation between S&P 500 and Euro/US-Dollar exchange rate, empirical density
compared to density (6.35) computed with « = 7.937, u = 0.003 and o = 1.186 (Mean Squared
error: 2.46e-06)

6.5 Pricing Quantos with Stochastic Correlation

To illustrate the impact of using stochastic correlation on pricing, we use European-
style Quantos as an example. These options hedge the exchange rate risk when
investing in financial products not valued in the domestic currency. We extend the
model (6.3) by including stochastic correlations driven by, e.g., the SCP (6.20) as

dS;j == ,LLSS; dt + O—SS[ dW;‘,
dR; = u,R,dt + o.R, dW], (6.42)
dp; :Kp(Mp_Pt)dt+Up\/1 _Ptderps po € [—1,1],

where
dW;dW] = p,dt, dW:dW! = py,dt,  dWdW! = p,, dt. (6.43)

And the parameters of dp, are assumed to satisfy the condition (6.41). In this model
setting, the underlying asset process and the exchange rate process are assumed to
be correlated stochastically, driven by the correlation process p, which is by itself
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correlated with the underlying asset process by p, and with the exchange rate by
Prp» TESpECtively.

For this model (6.42), Teng et al. [19] have found the well approximated pricing
formula in a closed form. In the sequel we present their results. The model can be
straightforwardly specified under the risk-neutral measure as

dS; = (ry — 0,0,p)S; dt + 0,5, dW;,
dR, = (rp — rp)R, dt + o,R, dW], ) (6.44)
dpi = (Kp(itp = pr) — A(St, Ry, pr. 0))dt + 0,4/ 1 — p2dW,

with
AWSAWr = p,dt,  dWSAW! = pyydt,  dWrdW’ = p,, dt, (6.45)

where A(S:, R, pi,t) represents the price of the correlation risk and could be
assumed to be Ap;, with a constant A. For notational simplicity we let A = 0. With
the transform x; = In(S;) and y, = In(R,) the model (6.44) can be represented by

dx; = (rp — 07 — 0,0,p;) di + 0, AW},
dy; = (rp— 1 — Yo?)dt + o, AW/, (6.46)

dpr = kp(p — p)dt + a,/1 — p2dWY.

We know that the underlying asset S is denominated in the foreign currency (denoted
by F). Let the exchange rate R be the number of units of the domestic or home
currency (denoted by H) per unit of F, namely R = H/F. Let U(In(S,), In(R,), pr, 1)
denote the value of any contract with the underlying asset in F but paid in H,
obviously, based on (6.46), U must satisfy the partial differential equation (PDE)

8U+( o? )8U+( of)8U+ ( Y’ )BU
rr— ° — 0,0, TR — 71 — K - ,
g T TPy TURTIE T o ), TR e T PO PO

o7 U 0} U o, (1= p})(t, p1) *U PU

0,0,
2 ox? 2 or? 2 0p? Pt oxar
+ 0\/1 2 82U+00\/1 2 ru U=0
Os - s r - r -7 = VU
14 ptppaxap P ptpparap h
(6.47)

We denote the value of a standard Quanto option by V(S;, R;, p;, t) which yields
V(S R, pr 1) = Ro - " B [o(S7 — K) T] (6.48)
with the terminal condition Ry - (a(S7 — K)™), where Ry is the fixed exchange rate

for the payment, e.g., one can take the today’s rate, Ef’[] is the expectation under
domestic risk-neutral probability measure and « = 1 for Quanto calls and @ = —1
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for Quanto puts. Obviously, as a contract with the underlying asset in a foreign
currency but paid in a domestic currency, the value of Quanto option (6.48) must
satisfy the pricing PDE (6.47). As an example, we consider Quanto calls and without
loss of generality we assume Ry = 1, we thus have

C(Si. Ry, pi.t) = e "0 EH[(Sp — K)F]. (6.49)
the price of Quanto puts can be determined straightforwardly from the put-call

parity.
It is assumed that a solution of (6.49) has the form

C(S,, Ry, pr, 1) =" O R[50 651p, (4 > In(K))
—e ""KP;(xr > In(K))

(6.50)

with the time to maturity t = T — t. Due to the embedded stochastic correlation
process, the probabilities P; and P, are not immediately available in a closed form.
We know that not only P;, but also their corresponding characteristic functions
¢i(x,r,p.t;u) = E[e"7|F] satisfy the PDE (6.47) subject to the terminal
condition

¢i(x,r, p, T;u) =e™7, j=1,2. (6.51)
Thus, one can obtain
991 o} ¢ o} ¢
o + (rp + 5 050+01) . + (rp—rp— 5 + 050,01) o
¢1 o} P¢p | o} 2 %P1 | 0p Py
+ (eppty = Ko+ ayoppyp) 2 ox? 2 (I=pr) or? + 2 dp?
32¢1 2 2¢1 2¢1
+ 050,01 xdr + 050, \/1 — PfPsp axip + 0,0, \/1 — ,o, Pro arp =0
(6.52)
and
Ao o} d¢ o} 3¢, L3
9t + Oy = 2 — 050,01 I + =1y = 2)3 +Kp(:up_,0t)a
02 3¢y o2 ¢y 0, 5. 0% 9%¢>
y 1- sYr
+28x2+232 o (=P gy + 000y o

¢ ¢
+ 050, \/ 1—p7psp Dxip + 0,0, \/ 1 — o7 prp orop 0.

(6.53)
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Obviously, due to the nonlinear coefficients p? and \/ 1 — p2, the corresponding
characteristic functions ¢;(x, r, p;, t; u) can not be derived in a closed form. However,
as indicated by Teng et al. in [18], such nonlinear coefficient could be linearized by
its expectation which further can be well approximated by a linear combination of
exponential functions.

Proposition 6.1 Denote the original solution of E[p?] in (6.52) and (6.53) by f, ()
which can be approximated by

e ™ 4+ be™ 4 q, (6.54)

where

02 + k) (02 + 26,12
=("4 2 7 "’;”), b=p—a-1. (6.55)
o, + 3kp0, + 2k}
. by — \/bzylz —Y2¥3
m = —2log ()/1 — be_Z) , n=-2log , (6.56)
Y2
with

V=05 —a, yi=b+b yii=yita—f(1). (6.57)

Proposition 6.2 Denote the original solution of E[\/l — p?] in (6.52) and (6.53)
by g,(t) which can be approximated by

M 4 e 44, (6.58)
where
[ @F ) OF o+ 2p02) — bt 4 3,07 4 2)
(1 = p2) (o + 3ic,02 + 212) (6.59)
b=Jl-p—a—1.

bty — /25— ot

ﬁ1:—2log<§1—f9e—g), n= —2log 6

, (6.60)

with

Gi=gp(05)—a, &i=b+D &= +a—g). (6.61)
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For the proof and measure quality of the approximation we refer to [18]. Based
on the Propositions 6.1 and 6.2, the corresponding approximated characteristic
functions ¢;(x, r, p, t; u) of P;, j = 1,2 can thus be obtained by solving PDEs.

Lemma 6.3 The characteristic function ¢, reads

¢1 (x’ rp.t; M) — eDl(t,u)+C1 (‘t,u)p,+iux,’ (662)
with
iUo0
Ciu,ty = " (e* " =1) (6.63)
K
—_——
=c
and
d 1 — o=kt O'2C2(1 _ a)(l _ e—2kpr) O.ZCZe—mT+(m—Kp)r
Di(u,7) = 1(u)( e )+ Pt + Pl
Ko 4k, m—K,
U/%C%e_mT_Hm_ZK’O)T bU/%C%e_nT_Hn_Kp)t bO’gC%e_nT_Hn_ZKp)T
+ +
2(m —2k,) n—Kp 2(n —2k,)
050pPspc1 (1 + i)+ + Usappspcli?(l + i) M)
m—Kp, n—kK,
B ogc%e_(T_f)m B bagc%e_(T_T)” _ osopscr(1+ iu)e~(T—0in
2m 2n m
l;a‘a soC1(1 + iu e~ (T—0h
- bl 1 T o)t + d ),
(6.64)
where
di(u) = Kpltpct + 0s0ppspaci (1 + in) + opci(a— 1), (6.65)

) o2iu A .
do () = rpiu — kppipcr + ( 2 — 050ppspact)(1 + iu) + opci(a—1)  (6.66)

ogc%e_’”T Ugc%e_”’T b(rgc%e_"T ogc%e_"T
di(u) =~ 20m—2,) 2(n—2
m—K, (m—2k,) n—Kp (n—2kp)
N 2 N i 2.2 ,—mT
050,p5pc1 (1 + i)e™T  oy0,p5pc1b(1 + iu)e™" N o)cle
mn—K, n—Kp 2m

bagc%e_”T n 050, pspc1 (1 + iu)e™" T i’asoppwcl(l +iu)e "

2n m n

(6.67)
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Analogously,

Lemma 6.4 The characteristic function ¢, reads
¢2(x’ r. P, t: M) — eDz(t,u)+C2(r,u)p,+iux, (668)
with C(u, t) = C1(u, t) given in (6.63) and

(i () = puosoyae))(1 —e7m) | (1 —a)(1 —e707)

Dz(u, ‘L') = 4
Kp Kp
algc%e—mT+(m—Kp)t ch%e—mT-l—(m—ZKp)t bo_gc%e—nT-l—(n—Kp)t
m—Kp 2(m — 2kp) n—=K,
ba,fc%e_”T'H”_z’(/’)I 050, ,ospcliue_’A”T*'(’A”_’(P)r
2(l’l — 2Kp) m—Kp
e AT+ (h— 2.2 ,—(T—1t)m 2.2 ,—(T—1)n
0,0, 05pC1biue™" (n—xp)T B o,cre 3 bapcle
n—Kp, 2m 2n

050,pspctive” T baia,pgpcriue™ TR

A A

mn i
—AT
030,PspC1€ "
~ 2. sO0pPsp
+ (d2(u) + ppx0s0,act — o)t + d3(u) + N
m—Kp,
N 050,p5pc1ble™  a0,p5c16™T boso,pspcieT
n—Kp i fn ’

(6.69)

where dy(u), d2(u) and dz(u) are defined in the last lemma.
We refer to [19] for the proof. Now, the both probabilities in (6.50) can be computed
by

e K. (x, 7, p, t; u)

11 [
Pi(xr >InK) = _ + / N [ :| du, j=1,2 (6.70)
2w iu
using e.g., Fourier techniques [4, 6]. For computing the Quanto price in (6.50), the
task remaining is to compute E[e™%°" Jo #sds] which is addressed in the following
lemma.

Lemma 6.5 Let #Z, .= fot psds be a integrated SCP in the form of (6.20). We have

E[e—oxor%] — e—W(f)—POU(f) (6.71)
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with
n(r) = os0r (1 —e7"), (6.72)
P
o) = 020202 (2(e~otmr 1) . (e k)t _ 1) g @eptmi _
B 2k; Kp +m Ko+ n 2k, +m

b(e~ et — 1) N 2@—1)(e™" —1) (a—1)(e %' —1)
2k, + 1 Kp 2K,
e —1 ble™-1)

m

0,0, o0 (e Ft —1
+ + ( ),

+ (a— l)t) )
Kp K2

(6.73)

where a, b, m and n have been defined in Proposition 6.1.
The proof is available in [19].

6.6 Numerical Results

To recognize the effect of stochastic correlations we compare the Quanto prices
between using constant and stochastic correlation. The pricing formula of the
Quanto based on model (6.3) can be given by the extended Black-Scholes formula
with a special dividend yield of

rn — 1f + OSOR PSR, (6.74)

in a closed form, cf. [12, 22]. For the constant correlation, we apply the sample
coefficient correlation (6.5) to estimate a constant correlation using the whole
historical data (Jan 2003-Mar 2013) of S&P 500 and Euro/US-Dollar exchange
rate, which is 0.025. For initializing the SCP we take the estimates in Fig. 6.5 and
let the SCP starting from the first correlation in the historical correlations.

In Fig. 6.6, we compare the both prices for several maturities between using
constant and stochastic correlation and present the relative price differences in
Fig.6.7. We can observe, whilst the maturity 7 is shorter than 2 years, the
price with constant correlation is higher than the price with stochastic corre-
lation. Then, from nearly 7 = 1.8, the price calculated with constant cor-
relation becomes lower than the corresponding price calculated with stochas-
tic correlation. The reason for this, before the time 77 = 1.8, the SCP pro-
vides the correlations which are closed to the initial correlation py = 0.3
which is larger than the constant correlation p = 0.025. That’s why is the
price with stochastic correlation lower than the price with constant correlation
before T = 1.8 due to the fact that the price of quanto Put-option decreases
direct proportional with that correlation. As the time increases, the generated
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Fig. 6.6 Black-Scholes parameters: K = 80, Sy = 100, Ry = 1, r; = 0.05, r, = 0.03, 05 = 0.2,
og = 0.4, Correlation process parameters: k = 7.937, u = 0.003, 0 = 1.186 and p, = 0.3

correlations tend to the mean value p. Obviously, the parameter x determines
the speed of approach as the correlation nears the mean value. The price differ-
ences could be seen as the correlation risk by misusing the constant correlation.

6.7 Conclusions

In this chapter we considered modelling stochastic correlations as a stochastic pro-
cess. In particular, we studied the general SCP established by applying hyperbolic
transformation of a mean-reverting process, including the fitting to the historical
market data via the density function.

As an application example, we showed how to price European-style Quanto
including stochastic correlations. For the numerical results we compared the both
prices of Quanto calls between using constant and stochastic correlation. The results
show that the correlation risk caused by using a wrong (constant) correlation model
cannot be neglected.
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Chapter 7
Lie Group Analysis of Nonlinear
Black-Scholes Models

Ljudmila A. Bordag and Ivan P. Yamshchikov

Abstract In this chapter we discuss the problem of financial illiquidity and give an
overview of different modeling approaches to this problem. We focus on one of the
approaches to an optimization problem of a portfolio with an illiquid asset sold in an
exogenous random moment of time. We formulate the problem in a mathematically
rigorous way and apply it to the problems of liquidity in such context for the
first time to our knowledge. We provide a compact summary of achieved results.
We have demonstrated the uniqueness and existence of the viscosity solution for
this problem under certain conditions. The formulation of such problem gives rise
to a number of three dimensional nonlinear partial differential equations (PDEs)
of Black-Scholes type. Such equations rather challenging for further studies with
analytical or numerical methods. One of the standard techniques to reduce the
complexity of the problem is to find an inner symmetry of the equation with a
help of Lie group analysis. We carried out a complete Lie group analysis of PDEs
describing value function as well as investment and consumption strategies for a
portfolio with an illiquid asset that is sold in an exogenous random moment of
time with a prescribed liquidation time distribution. The admitted Lie algebra of
the studied PDEs and the optimal system of subalgebras of this algebra provides a
complete set of different invariant reductions of three dimensional PDEs to lower
dimensional ones. We provide two examples of such reductions for the case of a
logarithmic utility function.
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7.1 Economical Setting of the Optimization Problem for a
Portfolio with an Illiquid Asset with a Given Liquidation
Time Distribution

One of the challenging problems of modern mathematical finance is a management
of a portfolio that includes an illiquid asset. The practical importance of such
problems became especially obvious during the global financial crisis of 2008—2009
that has demonstrated a significant deficit of solid mathematical models addressing
this problem. Despite the fact that financial institutes deal with illiquid assets on a
daily basis there are no widely accepted approaches to the models of such assets
especially if they provide stochastic income or down payments.

Indeed it is rather difficult to incorporate the illiquidity in a mathematically
rigorous way. One can easily form an intuitive understanding of this phenomenon,
yet there is still no widely accepted way of defining illiquidity of an asset as a
measurable empiric parameter. This might be explained with the fact that illiquidity
is connected with different sale mechanisms and some of the deals tend to have
an essential time-lag. Such a variety of different assets is extremely tempting for
the empirical research. One can find more and more works about certain type of
illiquid assets and ad-hoc descriptions of their behavior, see, for example, [9] or
[14]. However, there seems to be no integrated approach to such problems.

In this particular work we focus on one of the approaches to the problem of
financial illiquidity, namely, an optimization of a portfolio with an illiquid asset sold
in an exogenous random moment of time. We believe this approach could be a good
unified method to work with the problems of illiquid assets. This is an approach that
is well developed in academic literature yet seems to be industrially applicable and
can be used as unifying methodology for different types of the assets.

The model that we formulate further represents an interesting class of optimiza-
tion problems that go in line with the so-called adapted resource allocation problem
developed by Pickenhain et al. in [21]. Indeed the idea to work with an infinite
horizon problem with certain weight function, see [25] and [26] for the details,
seems very promising and fruitful. The problem of a portfolio optimization with an
asset that has an exogenous random liquidation time that we describe further, can
be regarded as an infinite horizon problem with a special weight-function.

We manage to formulate a problem of portfolio optimization in a framework
mentioned above and show the existence and uniqueness of the solution for such
problem under certain assumptions of the liquidation time distribution.

The formulation of such problem gives rise to a number of three dimensional
nonlinear partial differential equations (PDEs) of Black-Scholes types. We carried
out a complete Lie group analysis of PDEs describing value function and investment
and consumption strategies for a portfolio with an illiquid asset that is sold in an
exogenous random moment of time with a prescribed liquidation time distribution
in [4]. Such three dimensional nonlinear Hamilton-Jacobi-Bellman (HIB) equations
are not only tedious for analytical methods but are also quite challenging from
a numeric point of view. One usually uses certain substitutions to reduce the
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three-dimensional problem to a two-dimensional one or even to an ordinary
differential equation (ODE), however the methods used to find such substitutions
are rarely discussed by the authors.

We found in [4] the admitted Lie algebra for a broad class of liquidation
time distributions in cases of HARA- and log-utility functions and formulate
corresponding theorems for all these cases. We use found Lie algebras to obtain
reductions of the studied equations. Several of similar substitutions were used in
other papers before whereas others are new to our knowledge. It is important to note
that this method gives us the possibility to provide a complete set of non-equivalent
substitutions and reduced equations.

Let us also note that we list and discus main results here and address the reader
to the publications [4—6] for detailed proofs and more detailed reasoning.

7.1.1 Theoretical Approaches to Liquidity

The understanding of the liquidity or the illiquidity of a given asset is still a matter
of a debate among practitioner as well as among academics. One of the first authors
to define liquidity was Keynes [18] in 1930, who said that an asset is more liquid if
it is ‘more certainly realizable at short notice without loss’. This intuitive definition
stayed unaltered for the next 50 years, indeed in ‘Wall Street Words: An A to Z
Guide to Investment Terms for Today’s Investor’ by Scott [28] written 50 years
after one can read: Illiquid asset is an asset that is difficult to buy or sell in a short
period of time without its price being affected. This formulation is also far from
mathematical rigor yet it points out two important aspects of illiquidity: temporal
and monetary. The first attempts to define liquidity in a mathematically correct way
were separately taken in these two directions.

In 1986 Lippman and McCall [20] defined the environment characterized by four
different objects: ¢;, T;, X; and B. All of them were described in the discrete time
framework. ¢; is a cost of owning or operating the asset during the period number i.
It can also be considered as the cost of the attempt to sell the asset. The offers come
at every moment that is in the set {S; : i = 1,2, ...} of arrival times. These random
variables S; satisfy

Si = X' T;,

where the integer valued random variables 7; = 0 neither need to be independent
nor identically distributed.

X; are positive independent identically distributed random variables that corre-
spond to the price offered in the ith moment. All the expenditures are discounted at
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the rate B so that a present value of a dollar received in period i is B°. The discounted
net receipts R(t) associated with a stopping time t is given by

R(t) = B Ynw) — X5=1Bci (7.1)
)X if recall is not allowed,
l max(Xy,...,X;), ifrecallis allowed,

where N(t) = max{n : S, < 1} is the random number of offers that the seller
observes when employing the decision rule t and the random variable Yy is the
size of the accepted offer. Consequently, the seller chooses a stopping rule t* in the
set T; of all stopping rules such that

E[R(t*)] = max{E[R(t)] : T € T}}.

Obviously, the time it takes to estimate the asset’s value and to convert the asset into
cash is defined by the random variable t*. Lippman and McCall [20] proposed to
regard the expectation of this variable, E[t*] as the measure of an assets’ illiquidity.
According to this definition as E[t*] increases (i.e. one need to wait longer until the
asset is sold) a liquidity of a corresponding asset is to decrease.

In 1994 Hooker and Kohn [16] addressed a monetary aspect of illiquidity. The
authors introduce an index of liquidity, so-called A(Z;), as

AL, = V(Itz/(_lrf(lt) ’

where V(I;) is the value of the asset under optimal sale, as a function of the
information set I, and L(/;) is a loss from immediate sale of the asset. Since A
depends on the information set /; they call this index the conditional liquidity of
the asset. The authors also introduce the expected liquidity of an asset, A, which,
naturally, is

A = E[A(I)].

These two approaches to illiquidity that give rise to a number of others that quite
often base on one or another approach. As we have mentioned before, illiquidity is
still broadly discussed and there seems to be no agreement among the academics
and practitioners. For example, since the beginning of 2000s the idea to estimate
the liquidity of the assets through the bid-ask spread became rather popular, see
Bangia et al. [1] or Coppejans et al. [8]. However, the definitions addressing either
one or another aspect of illiquidity have certain mishaps. In particular, different
assets can demonstrate different temporal and monetary behavior under same market
circumstances and a definition that addresses only one of the aspects could not be
used as an unified approach. However, a portfolio optimization problem for a
portfolio with an illiquid asset can incorporate both aspects and this is the approach
that we want to focus on.
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In 1974 Miller in [23] formulated a problem of optimal consumption with a
stochastic income. He showed that an upper bound on consumption is lower than
the value of optimal consumption in the case where the random labour income is
replaced by its mean. To our knowledge, this was a first work that formulated the
problem of a portfolio optimization in presence of a stochastic income.

In 1987 Grossman and Baroque [15] analyzed a model of optimal consumption
and portfolio selection in which consumption services are generated by holding a
durable good. This problem was very close to the problem of a stochastic income
that we discuss later in detail, but it did not take into consideration any random
effects associated with illiquidity. These effects could be associated with liquidation
time or price discount, yet were out of the scope of this moment.

Two years later Zeldes provided the first numerical solution for the problem
of optimal consumption with stochastic income and constant relative risk aversion
in [33].

Finally, in 1993 Duffie and Zariphopoulou [10] propose the framework of the
optimal consumption with undiversifiable income risk (also called a stochastic
income model) as an extension for the continuous time model, developed by Merton
[22]. Under an assumption of an infinite time horizon the authors showed the
existence and uniqueness of the viscosity solution of the associated HIB equation for
the class of concave utility functions U(c) satisfying the following conditions: U in ¢
is strictly concave; U(c) € C?(0, +00), U(c) < M(1+c¢)”,with0 <y < 1,M > 0;
U(0) >0, limU'(c) = +oo, lim U'(c) = 0.

c—>0 c—>00

In 1997, in [11] the authors extended the problem of hedging in incomplete
markets with hyperbolic absolute risk aversion (so called HARA) utility function.
The stochastic income in this case cannot be replicated by trading available
securities. An investor receives stochastic income in moment ¢ at a rate Y;, where

dY, = uYdt + nY,dw!, t>0,Yo=y, y>0
and w,n > 0 — const, here W,1 is a standard Brownian motion. The riskless bank
account has a constant continuously compound interest rate 7. A traded security has
a price S given by
dS, = aS,dt + oS,(pdW, + /1 — p2dW?),
o, 0 > 0— const and Wr2 is an independent standard Brownian motion, p € (—1, 1)

is a correlation between price processes S; and Y;. The investor utility function for
consumption process ¢, is given by

U(c(t)) = E [ /0 ” e_’”U(c(t))dti| . U(c() = c(t),

where y € (0, 1) and « is a discount factor ¥ > r.
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Remark 7.1 The notation of the strategy (7, ¢) is standard for the problems of such

kind. We also further denote the amount of the investment in a liquid risky asset as

and investor’s consumption as c. Both controls do depend on time, so to emphasize

it to the reader we might also use (77 (¢), c(¢)) or even (7, ¢;) from time to time.
The investors wealth process L evolves

st: [rL,«-l—(C(-l—(S—r)]T,«—C,-i—Y,]dt

+on,(de,l+\/l—p2dW,2), t>0, Ly=1I,

where § could be regarded as the dividends paid constantly from an illiquid asset

or as the possession costs, / is an initial wealth endowment and 7, represents

an investment in the risky asset S, with the remaining wealth held in riskless

borrowing or lending. The goal is to characterize an investor value function

V(l,y) = sup % (c). The set @7 (l,y) is a set of admissible controls (7, c)
(.0 (Ly)

such that L; > 0.

The authors in [11] proved the smoothness of the viscosity solution of the
associated Hamilton-Jacobi-Bellman (HJB) equation in the case of the HARA utility
function and the infinite time horizon. This proof heavily relies on a reduction of the
initial HIB equation to an ODE. After this reduction the main result follows from
the uniform convergence of the classical solution of a uniformly elliptic equation to
the viscosity solution, which is unique. Here one should mention that the authors
use the discount factor e in [11] as a technical factor which is not related to
stochastic income. The economical setting of this problem does not imply any
liquidation of an illiquid asset which provides stochastic income Y;. Further we
demonstrate in [5] that such a discounting could be interpreted as an exponential
liquidation time distribution and is a unique situation that allows to reduce the three-
dimensional PDE to an ODE (see also [4]).

In 2007 Schwarz and Tebaldi in [27] broadened a model of random income
proposed before and connected it to the problems of illiquidity. They assumed
that the non-traded illiquid asset generates a flow of random income in the form
of dividends, until it is sold at a fixed moment of time. This idea allowed to
build models for a portfolios with illiquid assets, using the results obtained for
the problems with random income. One of a huge challenges connected with
optimizations problems in presence of illiquidity is the question of pricing of illiquid
assets that is a serious mathematical problem in itself. Assuming that the asset
generates a certain dividends, connected with its fair price authors could elegantly
incorporate illiquid asset in the model. Further, the authors define illiquid asset
as an asset that can not be sold neither piece by piece nor at once before the
investment’s horizon, denoted as 7', which is a fixed deterministic value at which
the asset generates a random cash-flow equal to its’ paper-value at this moment
T (the cash-flow is denoted as Hr). With this economical reasoning behind it this
model of illiquidity looks rather promising yet needs a more exact qualitative and
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quantitative description. In [31] we have broadened this framework for the case of
logarithmic utility and finite deterministic liquidation time.

Later in 2008 Schwarz et al. [7] applied the approach very close to the
one formulated in [27] to the problem of housing choice for a household. The
constrained of a deterministic time was abandoned as the idea of the model was
to compare two ‘realities’: one, where housing was purely illiquid and another
‘thought-experiment’ reality, where the household could sell the real-estate partially.
It was demonstrated that optimal strategies for two models differ significantly.

In this work we focus on the case when a time-horizon is an exogenous random
variable. We would like to note that the set-up with exogenous time is actually
economically motivated. For example, standard inheritance procedures in several
EU countries assume that the illiquid assets are sold and the cash is then divided
between the heirs. Naturally the sale occurs in a random moment of time and the
inheritance manager splits the cash between the heirs immediately after the sale.
Another example of an exogenous liquidation time that justifies our model are
shares-for-the-loan auctions. This phenomenon is typical for the emerging markets
where governmentally owned businesses are at some point privatized fully or
partially. For example, it was very typical for a post-soviet markets in their transition
period and is still relevant for a number of states in the Eastern Europe [30].

7.1.2  Portfolio Optimization in the Case of an Illiquid Asset
with a Given Liquidation Time Distribution:
Problem Setting

Here we describe the proposed model. We assume that the investor’s portfolio
consists of a riskless bond, a risky asset and a non-traded asset that generates
stochastic income, i.e. dividends. However, in contrast with the previous works
we replace the liquidation time that was deterministic before with a stochastically
distributed time 7. A risk-free bank account B; with the interest rate r and a stock
price S; describe the classical Black-Scholes market [2]

dB; = rB,dt, dS, = Si(adt +o0dW}), t<T, (7.2)

where the interest rate r, the continuously compounded rate of return & > r and the
standard deviation o are assumed to be constant; r, &, 0 — const. An illiquid asset
H; that can not be traded up to the time 7 and which paper value is correlated with
the stock price and follows

dH[

g = (= 8+ n(pdW, + V1 = p2dW}). (=T, (7.3)
t
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where 1 is the expected rate of return of the risky illiquid asset, (W, Wrz) are two
independent standard Brownian motions, § is the rate of dividend paid by the illiquid
asset, 1 is the continuous standard deviation of the rate of return, and p € (—1; 1) is
the correlation coefficient between the stock index and the illiquid risky asset. The
parameters (, 8, 1, p are all assumed to be constant. The liquidation time 7 is an
exogenous random-distributed continuous variable which does not depend on the
Brownian motions (W,l, W,Z). The probability density function of liquidation time
distribution 7 is denoted by ¢ (f) whereas @(¢) denotes the cumulative distribution
function, and @ (¢) the survival function also known as a reliability function @ (t) =
1 — @(r). We omit here the explicit notion of the possible parameters of distribution
in order to make the formulae shorter.

Since the filtration {.%,} generated by the Brownian motion W = (W, W?) we
assume that the consumption process is an element of the space .2+ of non-negative
{-Z#,}-progressively measurable processes ¢, such that

E (/Y c(t)dt) <00, s€]0,T], (7.4)
0

where E denotes a mathematical expectation with respect to filtration {.%;}. The
investor wants to maximize the average utility consumed up to the time of
liquidation, given by

T
Uc):=8& [/O U(c(t))dti| . (7.5)

Here we used & to indicate that we are averaging over all random variables including
T. The wealth process L, is the sum of cash holdings in bonds, stocks and random
dividends from the non-traded asset minus the consumption stream. Thus, we
can write

dL, = (rL; + 8H, + m,(o — r) — ¢,)dt + madW,. (7.6)

The set of admissible policies is standard and consists of investment strategies
(74, ¢;) such that

1. ¢, belongs to %,

2. m, is {%;}-progressively measurable and fts(nt)zdt <ooas. foranyr <7 <T,

3. L;, defined by the stochastic differential equation (7.6) and initial conditions
L=1>0,H=h>0ae.(t<T).

We proved in [5] that one can explicitly average (7.5) over T and with the certain
conditions (which are formulated later in Proposition 7.1) posed on @ and U(c) the
problem (7.5) is equivalent to the maximization of

U (c):=E |:/0 @(t)U(c(t))dt:| , (7.7)

where E is an expectation over space coordinates excluding 7.
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Remark 7.2 If T is exponentially distributed we get precisely the problem of
optimal consumption with random income that was studied in [11] and already
discussed in the introduction.

Remark 7.3 There several works dealing with the problems of random time hori-
zon, for example, Ekeland in [12, 13] has shown the possibility to work with
different discounting factors. Skiba and Tobacman [29] also mentioned a non-
exponential discounting in the loan context, yet the authors do not provide any
mathematically strict way to model these effects. To our knowledge the idea of a
discounting different from an exponential one in a framework of illiquidity was
never proposed before.

Proposition 7.1 ([S]) The problems (7.5) and (7.7) are equivalent provided
tlim @ (E[U(c(1)] = 0. (7.8)
—00

Remark 7.4 Consumption c¢(¢) is usually bounded as time goes to infinity. For all
these models condition (7.8) is satisfied automatically. Yet if one regards absolute
values of consumption and it grows as time goes to infinity this constraint is needed.

In this work we regard the problem (7.5) with random liquidation time 7 that
has a distribution satisfying the condition (7.8) in Proposition 7.1 and, therefore,
corresponds to the value function V(t, 1, h) which is defined as

V(L) = maxE [ / ” ®(0)U(c(x))dr|L(t) = L, H(t) = h} . (7.9)

For the value function V(¢, [, h) we can derive a HIB equation on which we focus in
this work

1
Vit Lh) + Vi (t, L h) + (il + h)Vi(t, 1 h) + (u — §)hVi(t, 1, )

+ max G[r] + max Hlc] =0, (7.10)
g c>

1
Gla] = Vu(e.L hm0® + Vi(t, 1, hynprroh

+ (e —n)Vi(t, L h), (7.11)
H[c] = —cVi(t,1,h) + & (1) U(c), (7.12)

with the boundary condition
V(t,l,h) — 0, as t — oo.
The value function for a problem of such kind as (7.10) is a viscosity solution if

the control and state variables are uniformly bounded. However, this is not the case
for the optimal consumption problem and thus a more sophisticated proof is needed.
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Similar problems were previously studied in [10, 11, 32]. The main difficulties in
our case come from the non-exponential time discounting we are using in the utility
functional (7.9). Now we list the main results of [5] were we proved the existence
and uniqueness of viscosity solutions in details.

Theorem 7.1 There exists a unique viscosity solution of the corresponding HJB
equation (7.10) if

1. Ul(c) is strictly increasing, concave and twice differentiable in c,
2. limy— 00 @(DE[U(c(£))] = 0, @ (1) ~ e " or faster as t — 00,
3.U() <M +c)withO<y <landM > 0,

4. lime—o U'(c) = +00, lim.—+00U'(c) = 0.

The proof of this statement is to be done in three steps. At first we need to establish
certain properties of the value function V(z, [, h) that corresponds to our problem.
These properties are formulated and proved in Lemma 7.1 that follows. Then we
show that the value function with such properties is a viscosity solution of the
problem, this is done in Lemma 7.2. The uniqueness of this solution follows from
the comparison principle that is actually a very useful tool by itself and is formulated
and proved in Theorem 7.2.

Lemma 7.1 Under the conditions (1)—(4) from Theorem 7.1 the value function
V(t,1,h) (7.9) has the following properties:

1. V(t,1, h) is concave and non-decreasing in l and in h,

2. V(t,1,h) is strictly increasing in |,

3. V(t,1, h) is strictly decreasing in t starting from some point,
4. 0 <V(t,I,h) < O(l|” + |h|") uniformly in t.

Now the existence of the viscosity solution of the problem (7.10) can be proved.

Lemma 7.2 Under the conditions of Lemma 7.1 the function V(t, 1, h) is a viscosity
solution of (7.10) on the domain D = (0, c0) x (0, c0) x (0, 00).

The third result that is needed to finalize the proof of Theorem 7.1 is a
comparison principle formulated below as Theorem 7.2. Results of this type are
well-known in general for bounded controls, but due to the unbounded controls,
classical proofs require adaptations for our case.

Theorem 7.2 (Comparison Principle) Let u(t, 1, h) be an upper-semicontinuous
concave viscosity subsolution of (7.10) on D and V(t,1,h) is a supersolution
of (7.10) on D which is bounded from below, uniformly continuous on D, and
locally Lipschitz in D, such that u(t,l,h) — 0, V(t,I,h) — 0ast — oo and
lu(t, I, h)| + |V, L h)| < O(I|” + |h|¥) for large I, h, where 0 < y < 1, uniformly
int. Thenu < v on D.

For the detailed proofs of these results and for applications of these principles to
the specific cases we address the reader to [5].
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7.2 Lie Group Analysis of the HJB Equations
with HARA- and Log-Utility Functions

In a number of the results listed above the dimension reduction of the original HIB
problem plays a crucial role. A majority of authors dealing with three dimensional
HIJB equations come up with variable substitutions yet they generally do not have
any remark on how to get similar substitution in other cases or why they use this
or that substitution. Let us note here that the smooth point transformations with
continuous parameter admitted by linear or nonlinear PDEs can be found algorith-
mically using Lie group analysis. This is a well-known fact demonstrated by Lie in
[19]. Such procedure that find a symmetry group admitted by a PDE is described in
many textbooks, see, for example, [17, 24] or [3]. However practical application of
these procedures is connected with tedious and voluminous calculations which can
be only slightly facilitated with the help of modern computer packages. Preparing
our work [4] we have, for example, used the program IntroToSymmetry to
obtain the determining system of equations. Nevertheless solving these determining
systems of partial differential equations is usually hard and can rarely be done
algorithmically, but the possibility to find the system of determining equations
facilitates the work of a researcher since the systems are quite voluminous. For
example, in the studied cases the systems had more then a hundred equations. Now
we provide a short summary of results proved in [4].

7.2.1 The Case of HARA Utility Function

A utility function U(c) where the risk tolerance R(c) is defined as R(¢) = — g,/,((?)

and is a linear function of c, is called a HARA (hyperbolic absolute risk aversion)
utility function. We use two types of utility functions: a HARA utility function
UHARA(¢) and the log-utility function U*9%(c) = log(c). Let us note here that the
log-utility function is often regarded as a limit case of HARA utility function. One
can indeed choose HARA utility in such a way that allows a formal transition from
HARA utility to log-utility as parameter y of HARA utility goes to zero, but in
general this transition does not hold for any form of HARA utility. We demonstrated
this transition on different levels in [4] and because of that further in this chapter we
work with HARA utility in the form

— Y
Ry = | V(( ¢ ) —1), (7.13)
14 l—y

with the risk tolerance R(c) = lﬁy, 0 < y < 1. One can easily see thatas y — 0

HARA-utility function written as (7.13) tends the to log-utility

UMARA (¢) = UM% (c), (7.14)
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and by y — 1 we obtain U#4®4(¢) — c. The HJB equation (7.10) where we insert

the HARA utility in the form (7.13) after formal maximization procedure (see also
[5]) will take the form

1
Vi(t, 1, h) + ) RV (t, 1, h) + (rl + 8R)Vi(1, 1, h) + (i — 8)hV(t, 1, h)

(= VR L h) + 2(a = r)nphVi(e, L) Vin(t, 1, h) + 17 p*0 Vi (8, 1, h)
ZUZVH(Z‘, 1, ]’l)

1—y)? _ 1-—
+ (1= cb(t)l—ly Vi(t, 1, h) Ly J/qb(t) =0, V—0O. (7.15)
)/ )/ —>00

Here the investment 7t (¢, [, #) and consumption c(¢, [, h) strategies look as follows in
terms of the value function V(z, [, h)

t,1,h) =
( ) a2 Vy(t, 1, h)

, (7.16)

et Lh) = (1 — Y)Vilt, L, k)" 1= (1) 1. (7.17)

Equation (7.15) is a nonlinear three dimensional PDE with three independent
variables t, /, h. To reduce the dimension of the Eq. (7.15) we use Lie group analysis,
that allows us to find the generators of the corresponding symmetry algebra admitted
by this equation. In detail one can find the description of this method applied to
similar PDEs in [3]. Here we formulate the main theorem of Lie group analysis for
the optimization problem with HARA type utility function which we proved in [4].

Theorem 7.3 The Eq.(7.15) admits the three dimensional Lie algebra L§IARA
spanned by generators Uy, U,, Us, i.e. LgIARA =< U;,U,, Uz >, where

0 0
U1: s Uzzerr

d d d
v o Us = laz +h3h + (yV—(l —y)/<1>(t)dt) Y

(7.18)

for any liquidation time distribution. Moreover, if and only if the liquidation time
distribution has the exponential form, i.e. ®(t) = de™', where d, k are constants
the studied equation admits a four dimensional Lie algebra LfARA with an additional
generator

3 3
Up=, —V, . (7.19)

ie. LZIARA =< U,U0,, U3, Uy >.



7 Lie Group Analysis of Nonlinear Black-Scholes Models 121

Except finite dimensional Lie algebras (7.18) and (7.19) correspondingly
Eq. (7.15) admits also an infinite dimensional algebra Loo =< Y (h,t) 3‘3/ > where
the function  (h, t) is any solution of the linear PDE

Vb D) 4 PR (1) + (1 = 8, ) = 0. (720

The Lie algebra L§IARA has the following non-zero commutator relations
[Ui,Us] = yUi,  [Us,Us] = Us. (7.21)

The Lie algebra LEA® has the following non-zero commutator relations

[U13U3] = VUh [U19U4] = _KUI, [UQ,U3] = Uz, [Uz’U4] = _rUZ-
(7.22)

7.2.2 The Case of the Log-Utility Function

A logarithmic utility could be regarded as a limit case of HARA-utility (7.14). Yet
logarithm has particular properties than make it rather popular utility function in
financial mathematics therefore we analyze it separately.

The proposed approach is similar to the method described above therefore we
omit some details here. In the case of the log-utility function the HIB equation after
the formal maximization procedure will take the following form

1
Vit L) + Ph Vi (t, 1, h) + (7l + Sh)Vi(t, 1, h) + (w — §)hVi(t, 1, h)

(@ =)V L)+ 2(a = PnphVit, L Vi, L k) + 0 p? oWV (1,1, h)
20'2V11(l, L, h)

— @) (logVi—log®() +1) =0, V — 0. (7.23)
—>00

Here the investment 7 (%, [, h) and consumption c(t, [, i) look as follows in terms of
the value function V(t,1,h)

npahVip(t,1,h) + (e — r)Vi(t, 1, h) (t.1.h) (1)
- c\, L, = .
o2Vy(t, 1, h) ' Vi(t, 1, h)
(7.24)

w(t, L, h) =

Remark 7.5 HARA-utility is chosen in such a way that (7.14) holds and the
maximization procedure that transforms HJB equation to PDE preserves this
property as well. If we formally take a limit of (7.15) as y — 0 we obtain (7.23).
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As we proved in [4] a log-utility can be regarded as a limit case of HARA utility
and this correspondence holds for all analytical and algebraic structures connected
to these problems.

Analogously to the previous paragraph one can formulate the main theorem of Lie
group analysis for this PDE which was proved in [4].

Theorem 7.4 The Eq.(7.23) admits the three dimensional Lie algebra L§OG
spanned by generators Uy, U,, Us, i.e. L§OG =< Uy, U,,U; >, where

3 9 9
_ ot _ _
U=_, Uy=c¢ Us=1l, +h, /CD(t)dtaV, (7.25)

for any liquidation time distribution. Moreover, if and only if the liquidation time
distribution has the exponential form, i.e. ®(t) = de™', where d, k are constants,

the studied equation admits a four dimensional Lie algebra LﬁOG with an additional
generator
d d
U=_ —«kV__, 7.26
oy (7:20)

ie. LﬁOG =<< Ul,Uz,U3,U4 >.

Except finite dimensional Lie algebras L%OG and LﬁOG correspondingly the
Eq. (7.23) admits also an infinite dimensional algebra Loo =< Y (h,t) aav > where
the function v (h, t) is any solution of the linear PDE

1
Vi(h,t) + znzhzwh(h, 1) + (1 — §)hyu(h, 1) = 0. (7.27)

The Lie algebra LgOG has one non-zero commutator relation [U,, Us] = U,.
The Lie algebra LﬁOG has the following non-zero commutator relations

U, Us] = —«U;,  [Uz,Us] = Uz, [Uz,Uy] = —rUs.

Remark 7.6 If we compare the form of Lie algebras generators in the cases of
HARA- and log- utilities, i.e. formulas (7.18) and (7.25) as well as (7.19) and (7.26),
we can see that the formal limit procedure holds for them as well and the generators
for HARA -utility transfer to generators for log-utility under a formal limit y — 0.
When the Lie algebra admitted by the studied PDE is found we can find all non
equivalent variable substitutions which reduce the dimension of the given PDE, if
there are any. Using the corresponding exponential map of the adjoint representation
of the admitted Lie algebra we can find the symmetry group or subgroups of the
equation as well. It is rather fortunate that we do not have to look for an explicit
form of the admitted symmetry group to find possible reductions or simplification of
the studied PDEs and invariant solutions of the equations. It is enough to know and
to use the properties of the admitted Lie algebra which corresponds to the symmetry
group. The optimal system of subalgebras of this algebra gives rise to a complete
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set of non equivalent substitutions and as a result a set of different reductions of the
studied PDE. Reductions of the studied three dimensional PDEs (7.15) and (7.23)
for different liquidation time distributions we discuss in the next section.

7.3 Symmetry Reductions for Different Liquidation
Time Distributions

We obtain reductions of studied three dimensional PDEs if we replace original
variables with new independent and dependent variables which are invariant under
the action of one of the subgroups of the symmetry group admitted by the equation.
The solutions of reduced PDEs are called invariant solutions because they are
invariant under the action of a given subgroup. We find the admitted Lie algebras
for a certain class of liquidation time distributions in cases of HARA- and log-utility
functions and formulate corresponding results in Theorems 7.3 and 7.4 in previous
section and in details in [4]. In [4] we provided the optimal system of subalgebras
for a general case of a liquidation time distribution in both cases of HARA and
logarithmic utility functions. We separately regarded there a case of an exponential
distribution of a liquidation time where the corresponding PDE admits an extended
Lie algebra. It leads to certain distinguishing properties that give rise to non trivial
reductions of three dimensional PDEs to two dimensional equations and even to
ODEs in some cases.

As it was shown in Theorem 7.3 the admitted Lie algebra for the case of
HARA-utility function and with a general form of liquidation time distribution
is three dimensional. As it was proved in [4] the optimal system of subalgebras
of this algebra has four non equivalent one dimensional and three non equivalent
two dimensional subalgebras. Just one of these subalgebras allowed a meaningful
reduction of the three dimensional PDE (7.15) to a two dimensional one (see [4]).
Any further reductions of this PDE in the framework of Lie group analysis are not
possible.

Theorem 7.3 demonstrates that the admitted Lie algebra is four dimensional if
and only if we use an exponential liquidation time distribution. In this case the
optimal system of subalgebras is richer and we can reduce (7.15) to an ODE. All
the reductions and corresponding conditions are listed in [4].

In fact, the case of log-utility function is very similar to the case with HARA-
utility function. As it was proved in Theorem 7.4 for the general form of the
liquidation time distribution we obtain just one meaningful reduction of (7.23) to
a two dimensional PDE.

Now let us look at the case when the liquidation time 7 is a random Weibull-
distributed variable independent of the Brownian motions (W, W,Z).
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The probability density function of the Weibull distribution is defined as follows

k k—1 _ 1)K .
ot A, k) = () e ife =0,
0, ifr <0,

where A > 0 and k, A — const and the survival function @(f) = 1 — @(¢) has a form
&) = e M We will often omit the constant parameters A and k in notations for
shortness.

Indeed, when k = 1 the Weibull-distribution turns into exponential one, and for
k > 1 its probability density has a local maximum. This situation corresponds to
our economical motivation.

The Eq.(7.10) is the same as before but the term that corresponds to @ is
naturally replaced by Weibull survival function @ (r) = e~/ A

1
Vit L) + 2 Vin(t, 1, h) + (il + R)Vi(t, 1, h) + (0 — 8)hVi(t, 1, h)

+ max G[r] + max H[c] = 0, (7.28)
T c=>0

1
Gr] = 2V11(t, I, hym*0? + V(1,1 hynpmoh
+ (o — Vit L h), (7.29)
Hlc] = —cVi(t, 1, h) + e~ Uge), (7.30)

Proposition 7.2 ([5]) Theorem 7.1 holds for the case of the Weibull distribution
with k > 1 and, therefore, there exists a unique solution for the problem (7.28).

We can use one dimensional subalgebra of the admitted Lie algebra (see
Theorem 7.4) and introduce the invariant variables

W(t,2) = V(i1 h) — 2 loghF(Ilc, (t)k).

= 2

h bl
So we obtain the two dimensional PDE on W(t, 7)

1
W, + 5 n* (22W, + W) + (rz + §)W, — (1 — 8)zW,

_ (o — V)ZWZZ —2(a — W (W, + zW,;) + UZPZUZ(WZ - Zsz)2
202W,,

A 2 1 /t\* \k
(/M o _ /M _
e long/z—i-k(2 ’M—HS)F(I(’(A)) e (1+<A)) 0,

where I (ll( , ( ;) ) is an incomplete gamma function. A similar substitution we have

used in [5]. However one can not reduce the original PDE to an ordinary differential
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equation as one could do with exponential liquidation time distribution. But also a
two dimensional PDE is better for further analytical or numerical studies as a three
dimensional one.

When there is an exponential liquidation time distribution and just in this case
one can reduce (7.23) to an ODE. Let us now briefly show the reduction in the case
of an exponential liquidation time distribution and log-utility function.

The value function (7.9) in this case is defined as follows

o0
V(L h) = r(na))(E [/ e “log(c)dt|L(t) = LLH(t) = hi| , k>0, (7.31)
T.c ¢

The HIB equation and the resulting PDE (7.23) is now homogeneous in time. We
introduce V (I, h)

o0
V(l,h) = max E |:/ ekl log(c)ds:| = max E |:/
(.c) t (m.0) 0

which is independent on time and substituting V(z, [, k) = ¢ *'V(I, h) into the HIB
equation (7.10) we arrive at a time-independent PDE on V(l, h). With a slight abuse
of notation, hereafter we will use the same letter V for V. Now using substitution
for V(I, h) in the form

(o]

e log(c)dv} ,

logh 1 2
VAR =v@+ o+ 2(u—8—”), 2=/, (7.32)
K K 2
we obtain that v(z) satisfies the ordinary differential equation of second order

2 1
772 Zv” + max |:2712c72v’ — 7 (W' 4+ 20")npo + (a — r)v’):|

+ ma>§ [—cv; + log(c + 8)] = kv, (7.33)
c=—

where v = v, and the dimension of the problem is reduced to one. It is important
to note that such reduction was possible due to existence of the corresponding two
dimensional Lie subalgebra of the four dimensional admitted Lie algebra provided
in Theorem 7.4 (see [4] for the proofs). Performing a formal maximization of the
quadratic part (7.33) and coming back to the original independent variables we
obtain the optimal policies in the form

dy v'(I/h
Ay =" 1—n 1 v'(l/h)
o

callh) = o v (/R

I (7.34)

h
v'(I/h)’

Summing up, we formulate the following theorem
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Theorem 7.5 ([5]) Supposer —(u—8) > 0andd; = “~" "7 #0.

» There is the unique C*(0,+00) solution v(z) of (7.33) in a class of concave
functions.
e Forl,h > O the value function is given by (7.32). For h = 0,1 > 0 the value
Sunction V(1,0) coincides with the classical Merton solution
1 1 (@ —r)? log(k!l log(k!
V(L,0) = 2[r+ ( 2) —K:|+ glel) _ ppy logleh g5,
K 2 o K K
o [f the ratio between the stochastic income and the total wealth tends to zero, the
policies (*, c*) given by (7.34) tend to the classical Merton’s policies

(@ —r)iV?

¢ (1,0) ~ kl, 7, (1,0) ~ — o2V

(7.36)

* Policies (7.34) are optimal.

We do not provide the proofs here and for all further details we address the reader
to [5].

7.4 Conclusions

In this chapter we have formulated an optimization problem for a portfolio with
an illiquid asset sold at an exogenous random moment of time. One can prove that
under certain conditions there exists a unique viscosity solution for the problem of
such type. We have also closely regarded a family of three dimensional nonlinear
PDEs that such problem gives rise to in [4, 5] and discussed here the main results.
The study of the Lie algebraic structure of such PDEs gives a possibility to find
invariant variables and reduce three dimensional PDEs to two dimensional or in
the case of an exponential liquidation time distribution to ODEs. We provided two
examples of such reductions.
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Chapter 8

Analytical and Numerical Results for American
Style of Perpetual Put Options Through
Transformation into Nonlinear Stationary
Black-Scholes Equations

Maria do Rosario Grossinho, Yaser Faghan, and Daniel Sevcovic¢

Abstract We analyze and calculate the early exercise boundary for a class of
stationary generalized Black-Scholes equations in which the volatility function
depends on the second derivative of the option price itself. A motivation for studying
the nonlinear Black Scholes equation with a nonlinear volatility arises from option
pricing models including, e.g., non-zero transaction costs, investors preferences,
feedback and illiquid markets effects and risk from unprotected portfolio. We
present a method how to transform the problem of American style of perpetual put
options into a solution of an ordinary differential equation and implicit equation for
the free boundary position. We finally present results of numerical approximation of
the early exercise boundary, option price and their dependence on model parameters.

8.1 Introduction

In this chapter we are concerned with a financial option with no fixed maturity and
no exercise limit, called the perpetual option. This type of an option, which can
be exercised at any time, can be considered as the American style of an option.
However, in this case, the time to maturity has no impact on the price of the option.
From the mathematical point of view, this leads to a solution of the stationary Black-
Scholes problem. More precisely, the valuation problem is transformed into the free
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boundary problem that consists of the construction of the function V(S) together
with the early exercise boundary point g satisfying the following conditions:

1
202528§V + 1895V —rV =0, S>o,
and

Vi) =E—o, 9V(e)=-1, V(+o0) =0

(cf. [5, 11, 18]). The function V is defined in the domain S > g, where o is the
free boundary position. If the diffusion coefficient o > 0 is constant then we are, in
fact, considering stationary solutions of the classical linear Black-Scholes parabolic
equation. However, we suppose that o depends on the asset price S and the product
of the asset price S and the second derivative (Gamma) of the option price H =
SV, ie.

o =0(S,H) = o(S,SV). (8.1)

Let us mention our motivation for studying a nonlinear volatility of the form (8.1).
As it is known, the classical linear Black-Scholes model (cf. [12, 14]) was derived
under several restrictive assumptions that did not reflect the real market. In fact,
no transaction costs were considered, the volatility was supposed to be constant,
only liquid and complete markets were considered. Since then, several results have
appeared in the literature relaxing these assumptions in order to overcome some
drawbacks they created in practice. Regarding the volatility, it has been justified
in practice that it is not constant and it may depend on the asset price itself.
With this volatility function (8.1), the classical model is generalized in such a way
that it allows to consider non-zero transaction costs, market feedback and illiquid
market effects due to large trading volumes, risk from investors preferences, etc..
Mathematically, the problem will lose its linear feature, since the equation becomes
a nonlinear partial differential equation (see e.g. [18]).

One of the first nonlinear models taking into account non-trivial transaction costs
was proposed by Leland [16] for put or call options, later extended for more general
types of option by Hoggard, Whalley and Wilmott [10]. Avellaneda and Paras [2]
proposed the jumping volatility model in which the volatility changes with respect
to the sign of the Gamma of the option. Frey and Patie [6], Frey and Stremme [7]
developed models dealing with feedback and illiquid market impact due to large
trading (see also [17]). We also mention the so-called the risk adjusted pricing model
(RAPM) derived by Kratka [13] and Jandacka and Sevéovit [12] in which both
the transaction costs as well as the risk from unprotected portfolio are taken into
account. In the RAPM model the volatility function depends on H = SB%V only,
and it has the form:

o(H)? = 62(1 + AH3) = o2 (1 + A(S93V)3). (8.2)
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where oy > 0 is the constant historical volatility of the underlying asset and A
is a model parameter depending on the transaction cost rate and the unprotected
portfolio risk exposure. Recently, explicit solutions to European style of options
described by the nonlinear Black-Scholes equation with varying volatility have been
derived by Bordag et al. [4] for the Frey and Patie as well as the RAPM models.

Barles and Soner [3] proposed a model assuming that investor’s preferences
are shown by an exponential utility function. In this model, the volatility function
dependson H = § 3§V as well as S, and it has the following form:

o(S.H)> = 0; (1 + ¥(a’SH)) = a5 (1 + ¥(a’S*03V))., (8.3)
where the function ¥ is the unique solution to the ODE:
W) = (W +1D/QVa) —x),  ¥(0)=0

and a > 0 is a constant depending transaction costs and investor’s risk aversion
parameter (see [3] for details). Note that ¥ (x) > O for all x > 0 and it has the
following asymptotic: ¥ (x) = 0(x§) for x — 0 and ¥ (x) = O(x) for x — oc.

Finally, we also mention the nonlinear volatility model developed by Amster et
al. [1], where the transaction costs depend on the volume of trading assets in a linear
decreasing way. Recently, it was generalized for arbitrary transaction cost functions
by Sevéovi¢ and Zitianska [19].

This chapter is organized as follows. In the next section, we recall the mathemat-
ical formulation of the perpetual American put option pricing model. Furthermore,
we prove the existence and uniqueness of a solution to the free boundary problem.
We derive a formula for the option price and a single implicit equation for the free
boundary position . In Sect. 8.3 we construct suitable sub- and upper-solutions
based on Merton’s explicit solutions with constant volatility. Finally, in Sect. 8.4,
we present computational results of the free boundary position g, the option price
V(S) and their dependence on model parameters.

8.2 Perpetual American Put Option

In this section we analyze the problem of the American style of perpetual put
options. As referred previously, perpetual options are financial options with no fixed
maturity and no exercise limit. As they can be exercised at any time, they have
infinite maturity 7 = +o0.

Consider the American style of a put option with the volatility o of the form (8.1).
Suppose that there exist a limit of the solution V and an early exercise boundary
position Sy for the maturity 7 — oo. The pair consisting of the limiting price
V = V(S) = limr——o V(S,?) and the limiting early exercise boundary position
0 = limr_; 00 Sf(f) of the perpetual put option is a solution to the stationary
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nonlinear Black-Scholes problem (cf. [8]):

;o(s, S:V)S?02V + rSdsV — rV = 0, S> o, (8.4)
and

(cf. [14, 15, 18]). We shall prove that under certain assumptions made on the
volatility function the perpetual American put option problem (8.4)—(8.5) has the
unique solution (V(.), 0). We will present its explicit formula for the case when
o = o(H), i.e. the volatility depends on the term H = Sd3V only. Furthermore,
we will also present comparison results with explicit Merton’s solutions recently
obtained by the authors in [9].

Throughout the chapter we will assume that the volatility function 0 = o (S, H)
fulfills the following assumption:

Assumption 8.1 The volatility function o = o (S, H) in (8.4) is assumed to be a C"'
smooth nondecreasing function in the H > 0 variable and o(S,H) > oy > 0 for
any S > 0 and H > 0 where 0y is a positive constant.

If we extend the volatility function o (S, H) by (S, 0) for negative values of H,
ie.o(S,H) = o(8,0) for H < 0 then the function

1
R>H+— ZU(S,H)ZH eR

is strictly increasing and therefore there exists the unique inverse function 8 : R —
R such that

1
2cr(S, HY’H=w if and only if H = f(x,w), where S =¢". (8.6)

Note that the function f is a continuous and increasing function such that 8(0) = 0.
Concerning the inverse function we have the following useful lemma:

Lemma 8.1 Assume the volatility function o (S, H) satisfies Assumption 8.1. Then
the inverse function 8 has the following properties:

1. B(x,0) =0and ﬁ();w) < 022 Sforall x,w € R;
0
2. Bl (x,w) < 022 forallx € Randw > 0.
0
Proof Clearly, f(x,0) = 0. For w > 0 we have f(x,w) > 0 and w =
2
Jo(e*, Blx,w))? B(x,w) = % B(x,w) and so ﬂ():;w) < 022. If w < 0 then B(x,w) <0
0

and we can proceed similarly as before.
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2
Differentiating the equality w = ;a(e“,ﬂ(x, w)2Bx, w) > 020 B(x,w) with
respect to w > 0 yields:

1= ;oz(ex,ﬂ(x, w)) B (x, w) + On (;o(ex,H)z) H > ;agﬂiv(x, w)

for H = B(x,w) > 0 and the proof of the second statement of Lemma follows.
The key step how to solve the perpetual American put option problem (8.4)—(8.5)
consists in introduction of the following variable:

W(x) = ; (V(S) — SdsV(S)) where S = ¢". (8.7)

Lemma 8.2 Let x° € R be given. The function V(S) is a solution to Eq.(8.4) for
S > o = € satisfying the boundary condition:

V(S)— SdsV(S) =E, at S=o,

iff and only if the transformed function W (x) is a solution to the initial value problem
for the ODE:

W) = -Wkx) —rfx, W), x> xo, (8.8)
W(xg) = rEe ™.

Proof As 0, = Sdg we obtain

AW (x) = rSas(ST'V(S) — dsV(S)) = rSS™'asV(S) — rS™'V(S) — rSIZV(S)
= —W(x) — rS2V(S) = —W(x) — rB(x, W(x)),

because B(x, W(x)) = H = S32V(S) if and only if ;U(S, H)’H = W(x) and V
solves (8.4), i.e.

;o(s, H)H + ; (SA5V(S) — V(S)) = 0.

Finally, W(xo) = § (V(S) — S9sV(S)) = rEe™ where § = ¢ = €', as claimed.
Notice the equivalence of conditions:

V(S)—SdsV(S) = Eand V(S) = E—S <= 9sV(S) = —1 and V(S) = E—S.
(8.9)

Concerning the solution W of the ODE (8.8) we have the following auxiliary
result:
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Lemma 8.3 Assume x° € R. Let W = W, (x) be the unique solution to the
ODE (8.8) for x € R satisfying the boundary condition W(xo) = rEe ™ at the
initial point xo. Then

1. Wy(x) > 0 foranyx € R,
2. the function xo — Wy, (x) is increasing in the xy variable for any x € R,
3. if the volatility function depends on H = S8§V only, i.e. 0 = o(H), then
Yoo
Wy, (1) =F ! (xo—x) where F(W)= dw, Wy = W(xo) = rEe ™.
wy W+ rB(w)

Proof According to Lemma 8.1 we have S(x,w)/w < 2/0? for any x € R and
w # 0. Hence

(x, W(x))

| In(W(x)| = — (l + r'B W)

)2—(1+V)

where y = 2r/o¢. Therefore
IW@)| = [W(xp)|e” N0 >,
and this is why the function W(x) does not change the sign. As W(xg) = rEe™ > 0

we have Wy, (x) > 0 as well.
The solution W, (x) to the ODE (8.8) can be expressed in the form

Weo () = Wiy (10) — / (Wi (8) + rB (&, W (6)))dE

— Ee / (Weo (E) + rB(E. Wy (£))) dE.

Let us introduce the auxiliary function

Y(x) = By Wiy ().

Then

X

y(x) = —rEe™ + Wy, (x0) + B (x0, Wi, (x0)) — / (14 rB,(5. Wy, (£))) y(E)dE

X0

7B (x0. Wi, (x0)) — / (1 + 7B, (5, Wy (§))) ¥(§)dé.

X0
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Hence y is a solution to the ODE:

9.y(0) = — (1 + 7B, (x, Wy (1)) y(),  x€R, (8.10)
y(xo) = rB(xo, rEe™) > 0.

With regard to Lemma 8.1 we have B, (x, Wy, (x)) < 2/0¢. Therefore the function y
is a solution to the differential inequality:

0y(x) = —(1 +y)y(x), xeR,
where y = 2r/ og. As a consequence we obtain

)] = |y(ro)e” 1P > 0 (8.11)
and this is why the function y(x) does not change the sign. Therefore d,, Wy, (x) =

y(x) > 0 and the proof of the statement (2) follows.
Finally, if 0 = o(H) we have 8 = §(w) and so

1
RUCVE @ + B W(x) = —1.

Hence F(W(x)) = F(W(xp)) — (x — xo) = xo — x and the statement (3) follows.

Lemma 8.4 Under Assumption 8.1, there exists the unique root xo € R of the
implicit equation

/ h Bx, Wy, (x))dx = 1. (8.12)

Proof Denote ¢(xo) = [°° B(x, Wy, (x))dx. Then ¢p(o0) = 0 and

X0

¥ ) = =B W) + [ Bl W 00y 0
X0
where y(x) = 0y, Wy, (x) is the solution to (8.10). That is

ey (x) = — (1 + 1B, (x. Wy (1)) y(x)

and y(xo) = rB(x0, Wy, (x0)) = rB(xo, rEe™*). Therefore
/ 1 [
¥ 00) = =Bl W) — [ 0500 + 3w

1 1 [* 1 [*
—— = [ ywar=— [ o

0 0
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As Y(x) = 0y Wiy (X) > y(x0)e™1F7=50) e have

/ L y(xo)  Plxo, Wy (x0))
¢(x0)§_rl+)/__ Ity

It means that the function ¢ is strictly decreasing. Since
1 X
20(ex°,ﬂ(x0, Wy, (x0)))* B (x0, Wy (x0)) = Wiy (X0) = rEe ™ — 400 asxy — —00,

we have limy,— oo B(x0, Wy, (x0)) = oo and therefore limy, o0 ¢'(x9) = —o0.
Therefore ¢ (—oo) = oco. In summary, there exists the unique root x, of the equation
¢(x0) = 1, as claimed.

Now we are in a position to state our main result on unique solvability of the
perpetual American put option problem (8.4)—(8.5).

Theorem 8.1 Assume the volatility function o satisfies Assumption 8.1. Then
there exists the unique solution (V(.),0) to the perpetual American put option
problem (8.4)—(8.5). The function V(S) is given by

S o0
V(S) = / Wy, (X)dx, forS > o = €™,
I Jins
where Wy, (x) is the solution to the ODE (8.8) and x is the unique root of the implicit
equation (8.12).

Proof Differentiating the above expression for V(§) we obtain
1 [ 1
asV(S) = Wy (X)dx — Wy, (InS)
T Jms r
1
SHV(S) = — » (Wi () + 9:Ws, (1)) = Blax, Wy, (1))
where x = In S. Hence
1
50, SO3V)>S205V + rSasV — rV
1
= 5 ({0 B W B Wiy ) = W) =0,

i.e. V(S) is the solution to (8.4) for S > g = €.
Furthermore,

oo
V() = S0VS)my = Vi@ = ¢ [ Wad+ W, (ing) = Foe™ = £,
Inp
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and,

o [ o [
V(o) = / Wiy () = / 0, Wiy (1) — rBCr. Way (1))
¥ Jino " Jino
= Wyno) o | Bl Wy)dx=E~g
no

because xo is the unique solution to (8.12). With regard to the equivalence (8.9) we
have dsV(S) = —1 at S = p. In summary, (V(.), 0) is the unique solution to the
perpetual American put option problem (8.4)—(8.5).

Remark 8.1 In the case the volatility function depends on H = SB%V only,ie.o =
o (H), then Eq. (8.12) can be simplified by introducing the change of variables w =
Wy (x). Indeed, B = B(w) and dw = 9, Wy, (x)dx = —(Wy,(x) + rB(Wy,(x)))dx.
Therefore

- o B(w) )
/XO P(Wiy(x))dr = = /W Wt rBon ™ = /0 w+ rBon ™"

Equation (8.12) can be rewritten in the following form

rE

o Bw) _
/0 W+rﬂ(w)dw—1. (8.13)

This is the condition for the free boundary position g recently derived by the authors
in [9].

8.3 The Merton Explicit Solution, Sub- and Super-Solutions

In this section we recall recent results due to the authors [9] dealing with comparison
of the solution (V(.), 0) to the perpetual American put option problem (8.4)—(8.5)
for the case when the volatility function dependson H = S 3§V only,i.e.c = o(H).

Suppose that the volatility 0 = oy is constant, then for the function V(S) and the
limiting early exercise boundary position ¢ the free boundary value problem (8.4)—
(8.5) has the explicit solution presented by Merton (cf. [14, 18]), which has the
closed form:

v =157 0<S=er 8.14
yS) =19 & (S) V,S>Qy, (8.14)



138 M. do Rosario Grossinho et al.

where

2r
v y="". (8.15)

=E ,
Qr 1+vy o

Our next goal is to establish sub- and super-solutions to the perpetual American
put option pricing problem. Let y > 0 is a positive constant and denote by V, the
explicit Merton solution defined before. It is clear that the pair (V,(-), 0,) is the
explicit Merton solution with constant volatility ag =2r/y.

Then, for the transformed function W, (x) we have

W, (x) = rEQ}}je_(HV)X, forx =1InS > xo, = Ino,.
Furthermore W, is a solution to the ODE:
W, + W, +yW, =0. (8.16)

Applying the Eq. (8.16) we can construct a super-solution W, + and a sub-solution
W,— to the solution W of the equation:

W =—-W—rB(W)
using the Merton solution W,.. Here y* is the unique root of the equation
yto(l +yH? =2r
and y~ satisfies
Yy~ 0 (0)* = 2r.

As a consequence, the following inequalities hold. For more details, we refer to

[9].
W+ (x) = =W, +(x) — rB(W,+(x)), for x > x,+ = Ino,+,
(8.17)
0 W,—(x) < =W, (x) — rf(W,-(x)), forx > xo,— =Ing,-.
Moreover, it can be proved that

0,4+ 0= 0y

Since, for initial conditions we have W+ (xo;/i) = Q’i and W(xg) = ’QE and so
14

Wy (x0y—) < W(xo) < W+ (xg,+)-
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Using the comparison principle for solutions of ordinary differential inequalities
in (8.17) we conclude

Wy=(x) = W(x) < W, +(x).

Then taking into account the explicit solution of the function V(S) from Theorem 8.1
we present the following result:

Theorem 8.2 ([9, Theorem 3]) Let (V(:),0) be the solution to the perpetual
American pricing problem (8.4)—(8.5). Then for any S > 0 we have

V,=(S) S V(S) < V,+(S)
and
0y+ =0 = 0y~

where (Vyi O, Qyi) are explicit Merton’s solutions with constant volatilities.

8.4 Numerical Approximation Scheme and Results

In the last section, our aim is to present an efficient numerical scheme for
constructing a solution to the perpetual American put option problem (8.4)—(8.5)
for the case when the volatility function has the form: ¢ = o (H) where H = S32V.
The numerical results were obtained by the authors in [9].

Our scheme is based on transformation H = B(w), i.e. w = éa(H)zH and
dw = ;BH(G(H)zH)dH by using this we can rewrite the Eq.(8.13) for the free
boundary position g as follows:

BUE/0) H 1
/ | On(o(H)*H)dH = 1. (8.18)
0 ,O0(H)?H + rH 2

Similarly, the expression (see Theorem 8.1) for the price of the option can be
rewritten in terms of the H variable as follows:

BFT'n@/S))  lo(H)2H 1
V(S) = S / 20 ) (o (H)2H)dH. (8.19)

r ;O’(H)ZH +rH?2
When the inverse function §(w) is not given by a closed form formula by applying
this transformation we can avoid computational complexity.

In what follows we recall numerical results of computation of the solution to the
perpetual American put option problem (8.4)—(8.5) for the RAPM model with the
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nonlinear volatility function of the form:
2 2 :
o(H)? = o7 (1 + AHS) , (8.20)

We propose the results of numerical calculation for the risk adjusted pricing
methodology model (RAPM). We would like to show the position of the free
boundary o and the value of the perpetual option V evaluated at exercise price
S = E. The option values are computed for various values of the model A € [0, 2]
for the RAPM model. The rest of the model parameters were chosen as: r = 0.1,
E = 100 and 09 = 0.3. In computations shown in Table 8.1 we present results of
the free boundary position and the perpetual American put option price V(E) for the
RAPM model.

Finally, in Fig. 8.1 we show the option price V(S) for the Risk adjusted pricing
methodology model with closed form explicit Merton’s solutions with constant
volatility.

Table 8.1 The perpetual put option free boundary position ¢ and the option price V(S) evaluated
at § = E for various values of the model parameter A > 0 for the RAPM model (Source [9])
A 0.00 0.20 0.40 0.60 1.20 1.60 2.00
o 68.9655 64.7181 61.2252 | 582647 | 51.1474 | 47.2975 | 44.5433
V(E) 13.5909 15.4853 17.1580 18.6669 | 22.5461 24.7444 | 26.6804

60 -

50

40

30 -

V(S

20 -

10

50 75 100 125 150 175 200
S

Fig. 8.1 Solid curve represents a graph of a perpetual American put option V(S) for the RAPM
model with A = 1. Sub- and super- solutions V- and V,+ are depicted by dashed curves. The
model parameters: r = 0.1, E = 100 and oy = 0.3 (Source [9])
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8.5 Conclusions

In this chapter we analyzed the problem of American style perpetual options when
the nonlinear volatility is a function of the second derivative. We studied the free
boundary problem that models this type of options, by transforming it into a single
implicit equation for the free boundary position and explicit integral expression for
the option price.
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Chapter 9
Stochastic Dynamic Programming and Control
of Markov Processes

Manuel Guerra

Abstract This chapter contains a brief discussion of the basic mathematical ideas
behind dynamic programming methods for optimal control of Markov processes. It
is based on lectures given by the author at the Summer School on Computational
Finance held at Smolenice Castle, Slovakia, in September 2014.

The key theoretical ideas behind the approach are outlined in a somewhat abstract
setting. We hope that this will help the reader to understand the key points of the
dynamic programming principle and Hamilton-Jacobi-Bellman equations and their
potential as tools to solve a large array of optimization problems, without paying too
much attention to the technical difficulties that often arise in concrete applications.

9.1 Introduction

The most common type of stochastic optimal control problem concerns the control
of diffusions. For this type of control problems, a rather complete theory is available
(see [6, 9, 10], among others). The main approach to these problems is the so-
called dynamic programming approach which relies on the dynamic programming
principle and yields the solution of the optimal control problem in the form of a
solution of a nonlinear second order PDE, known as the Hamilton-Jacobi-Bellman
equation.

The same approach may, in principle, be applied to many other types of optimal
control problems, leading to other types of Hamilton-Jacobi-Bellman equations.
There is a large number of recent publications dealing with different types of
extensions and applications of the basic method. A survey of this literature is out
of the scope of this text, but we mention a very general if short discussion in [5].
About more specific results, we note that generalizations to optimal control of Lévy
processes as draw particular attention, as in [2, 3, 7], among others.

This paper presents the dynamic programming approach in a very general setting,
from a point of view that has similarities to [5], but uses different mathematical
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tools. It differs from the classical approach in the fact that our emphasis is on control
of the law of the process, rather than control of the sample paths.

We discuss dynamic programming in the class of Feller processes. This is
a broad class that includes Lévy processes as particular cases. By contrast, the
regularity assumptions on the optimization criterion are quite restrictive. This option
is motivated by the belief that this setting is quite convenient to present the basic
ideas without having to deal with too much technical detail. Also, the class of
optimization criteria that can be dealt with is sensitive to the type of process being
considered. Hence, it is difficult to present a discussion that is simultaneously
general with respect to the processes and with respect to the optimization criteria.

The paper is organized as follows. Section 9.2 contains a brief outline of
the dynamic programming principle and Hamilton-Jacobi-Bellman equation for
diffusions, in the form it is usually presented in the literature [6, 9, 10]. This serves
as a background of concepts and results that will be discussed and generalized
in the following sections. Section 9.3 deals with Feller processes, their operator
semigroups and infinitesimal generators. These are the basic concepts from which
control systems will be build in Sect.9.4. In that section, a suitable class of
optimal control problems is introduced. The dynamic programming principle and
the relation between solutions of the optimal control problem and solutions of the
appropriate Hamilton-Jacobi-Bellman equation are proved. A final section contains
some global remarks and references about the contents of this text.

9.2 Optimal Control of Diffusions

In this section, we sketch the optimal stochastic control problem and the main results
concerning its solution by dynamic programming, in the case of diffusions. The
Theorems 9.1, 9.2 and 9.3 below constitute the main topic of discussion for the
subsequent sections of this paper. Readers who are not familiar with these results
and want a deeper understanding of the material in this section may see [6] or [9].

9.2.1 The Optimal Control Problem, the Dynamic
Programming Principle, and the
Hamilton-Jacobi-Bellman Equation

Consider a filtered probability space (£2,.%,{%}>0,P), supporting an m-
dimensional {.%}-adapted Brownian motion W. Let A C R", U C R be
nonempty sets, with A open, and fix functions b : [0,7] x A x U — R”,
o : [0,T] x A x U +— R™™, The process to be controlled is the solution of
the stochastic differential equation

dXS = b(S,X_y, us)ds + O-(S7X57 MS)dWSs (9'1)
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where u is the “control”, i.e., a process to be chosen among a class % of {.%,}-
progressively measurable U-valued processes.

The functions b, o are assumed to satisfy some regularity and growth conditions
ensuring that for each control process u € %, each initial time # € [0, 7| and state
x € A C R”, there is one unique A-valued process X:** solving Eq. (9.1) in the time
interval [¢, T] with initial condition X, = x.

Take functionsf : [0,T]| xAx U R, g:A—>R,p:[0,T] XA x U+ R, and
foreachu € Z and0 <r<s <T,let

tuv — e—fts p(@,X;'X'u,u@)dQ'

For each initial time and state (¢, x) € [0, T[xA, the optimal control problem consists
of finding the control &t € %/ maximizing the functional

T
J(t,x,u) =E |:/ ,B;fsf(s,XA{vM, us)ds + 'BZTg(X;x,M i| . 9.2)

Thus, B}/, is a (stochastic) discount factor corresponding to the stochastic interest
rate p(s,X:"", ug). This comes naturally in problems arising from finance or
economics. Again, the functions f, g, p are assumed to satisfy regularity and growth
conditions ensuring that the functional (9.2) is well defined for every (z,x) €
[0,T] x A andeveryu € % .

To solve the problem (9.1)-(9.2), we introduce the value function

V(t,x) = sup J(t, x,u),

UEU

and the differential operators {¢ — Z"¢},cu, defined as

ad
Lo(t,x) = —p(t,x, u)e(t, x) + ax(,o(t, x)b(t, x, u)
(o0t Lot
,r| oo™ (t.xu g2 P %

The dynamic programming principle is a theorem of the following type:

Theorem 9.1 (Under Suitable Assumptions)
For every (t,x) € [0, T[XA and every {Z%,}-stopping time such thatt <t < T:

V(t,x) = sup E I:/t Biof (s, X", ug)ds + ,BZTV(r,X?"’“)} . 9.3)

N4

Thus, the dynamic programming principle allows for the decomposition of
problem (9.1)—(9.2) into a pair of problems in any non-overlapping stochastic
intervals [t, 7], |z, T].
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Using the dynamic programming principle, it is possible to prove the following
theorems, which characterize the solution of the problem (9.1)—(9.2).

Theorem 9.2 (Under Suitable Assumptions)
If the value function is C'2, then it solves the Hamilton-Jacobi-Bellman (HJB)
equation:

aat V(t,x) 4+ sup(f(t,x,u) + L"V(1,x)) =0, 9.4)
uelU
V(T,x) = g(x). 9.5)

Theorem 9.3 (Verification Theorem) (Under Suitable Assumptions)
If a function V solves the HIB equation (9.4)—(9.5), then it is the value function.
Further, if there is a measurable function it : [0, T[XR" + U such that

f(s,x, lft(s,x)) + LIV (s, x) = meali((f(s,x, u) + f“V(s,x)), Y (s, x)

then the process u; = i (s, Xﬁx;‘) is an optimal control.

Usually, the Theorems 9.2 and 9.3 can be proved only under somewhat different
assumptions. Therefore, they are not the exact converse of each other.

9.2.2 Time-Homogeneous Problems

Before proceeding to the discussion and generalization of the theorems above, we
introduce some simplifications of problem (9.1)-(9.2) to obtain a formulation more
suitable for the abstractions we have in mind.

Consider the autonomous version of problem (9.1)—(9.2). That is, the controlled
stochastic differential equation

dXx = b(X&‘a u‘v)ds + G(XYa u‘v)de- (96)
As before, let X*" denote the unique solution of (9.6) for the particular control

u € 7 and initial condition X, = x. Now, we seek to maximize the simplified
functional

J(t,x,u) =E[g (X7™)]. 9.7

To see that there is no loss of generality in substituting the problem (9.6)—(9.7) for
the problem (9.1)—(9.2), introduce the additional processes

0y =s, ﬂs =e I p(r,Xr,ur)dr’ Yy = / ﬂrf(rs Xr, Mr)dr'
t
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The vector (6y, Bs, Y5, X;) solves the SDE

O 1 0

Bs _ —p(0y, X, us) Bs 0 _
Nv |7 rexows [“F o ™7

XS b(QSsstus) O—(essXSs ué‘)

ZIB(QH ,Bm Yx’ Xv)ds + a(QVa ,Bm Yx’ Xv)dWw
and the objective function (9.2) can be represented in the form
J(tv X, I/t) — E [Y;x,u + IB;:x,ug(X;:x,u)] — E I:g(IB;:x,u7 Y;x,u’X;x,u)] .

This reduces the problem (9.1)—(9.2) to a problem of type (9.6)—(9.7). For this type
of problem, the dynamic programming principle (9.3) takes the form

V(t,x) = sup E[V(z,X"")] 9.8)

UEU

for every {.%#}-stopping time t < t < T. The Hamilton-Jacobi-Bellman equation
(9.4) reduces to

0
V(t,x) 4+ sup L*V(t,x) =0, 9.9
ot uelU
with

0 1 02
Lot x) = ax(,o(t, x)b(x,u) + 2Tr (00*(x, u) axzqo(t, x)) . (9.10)

9.3 Feller Processes, Feller Semigroups,
and Infinitesimal Generators

Feller processes are a class of stochastic processes that are suitable to be “con-
trolled”, as shown in Sect. 9.4 below. Other classes may be considered to outline
similar arguments (see Sect.9.5), but Feller processes fit particularly well in the
general point of view adopted in this paper.

This section contains only the briefest outline of the topic. For a complete
account, see [1, 4, 8], among others.
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9.3.1 Feller Processes and Feller Semigroups

Let (£2,.7,{% }:>0, ) be a filtered probability space satisfying the following
conditions

(A1) The filtration {.%,} is complete, i.e., %, contains all the p-null sets;
(A2) The filtration {.%,} is right continuous, i.e., #,+ = %, for every t > 0.

Let Cy(R") be the space of all continuous functions f : R"” — R vanishing
at infinity, provided with the topology of uniform convergence. That is, Co(R") is
provided the norm || f|| = max |f(x)].

x€R"

Any R"-valued random variable X : 2 — R” induces a probability measure in
R”, defined as

1XA) = plo € 2 : X(w) € A},

for every A, a Borel subset of R”. Thus, for any R"-valued stochastic process X,
any f € Cy(R"), and any s,z > 0, the function x — E[f(X;)| X, = x] is well
defined p*-almost everywhere in R”. As usual, we say that such a function is
bounded (continuous, differentiable, etc.) if it coincides s -almost everywhere with
a bounded (continuous, differentiable, etc.) function.

Let X : [0, 400[x§2 + R" be an {.%,}-adapted process such that:

(A3) X is a cadlag process, i.e., for u-almost every w € §2, the trajectory ¢t —
X,(w) is right-continuous and has finite left limit at every point ¢ € [0, +o0[;

(A4) X is a Markov process, i.e., Pr{X, € A| %} = Pr{X, € A| X;} for every
0 <s <t < 400 and every A, a Borel subset of R".

(A5) X has the Feller property, i.e., for every f € Co(R") and every 0 < s <
t < 400, the function x — E [ f(X;)| Xy = x] is continuous and vanishes at
infinity.

We denote the function x — E[ f(X;)| Xy = x] by P,,f. From the above it follows
that X induces a family of continuous linear operators

{Ps;: Co(R") — CO(Rn)}05s§r<+oo .

We consider two further conditions on the process X:
(A6) Forevery f € Cp(R"),0 < s <t < 400, we have }}_)mr |Ps.f — Psifll =0
ift > s, or Mli‘}l |Ps.uf — Psif|| =0ift = s,
(A7) X is time-homogeneous, i.e., for every f € Co(R") andevery 0 < s <t <

+00, Py f = Po - f-

A process satisfying conditions (A1)—-(A6) is called a Feller process. If it satisfies
also (A7), it is called a time-homogeneous Feller process. Notice that the continuity
condition (A6) does not require X to have continuous sample paths. Many important
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Markov processes are Feller. For example, every Lévy process (including Brownian
motion but also many processes with jumps) is a Feller process.

The condition (A7) is not restrictive: for any R"-valued Feller process X, (¢, X;)
is a time-homogeneous R"*!-valued Feller process. For time homogeneous Feller
processes, we write P, instead of Py, and the Markov property (A4) implies that
{P1},>0 is a semigroup with respect to composition of operators:

POf:fv PsPl‘f:PS-Hf

for every f € Co(R"), s, > 0. Notice that all the operators P, are positive
contractions, i.€.,

0<Pf=Ifll Vtel0 +oof. feCR"),f=0. 9.11)

In the time-homogeneous case, the continuity condition (A6) reduces to the
apparently simpler condition

lim [Pf —f] =0 VfeCo®. 9.12)
t—0

A semigroup of linear operators {P; : Co(R") — Co(R")},, satisfying (9.11)-
(9.12) is called a Feller semigroup. It can be proved that given an initial distribution
uXo_ every Feller semigroup is the semigroup of a unique (in law) Feller process.
Further, for an appropriate modification of the Feller process, the minimal filtration
satisfying conditions (A1)—(A2) is the natural filtration generated by the process
augmented with all the null sets. Thus, every statement about Feller semigroups is a
statement about Feller processes an vice-versa.

9.3.2 Infinitesimal Generators

It turns out that Feller semigroups are characterized by their infinitesimal generators,
a concept that we now introduce.

Theorem 9.4 Let {P, : Co(R") — Co(R")}1>0 be a Feller semigroup. There is a
dense linear subspace 9 C Cy(R") such that for each f € P there is g € Co(R")
such that lim Ihef—H—g| =0

t—0

The transformation
1
fe=>Zf=lm (Pf—f)
t—0t 1

is a (usually unbounded) linear operator from 2 into Co(R"). It is called the
infinitesimal generator of the semigroup {P,}>o (or, of the corresponding Feller
process X).
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Example 9.1 (Compound Poisson Process) Consider the process

N:
X, =X+ ) Y.
i=1
where N, is a Poisson process with intensity A > 0,and ¥;, i = 1,2,... are i.i.d.

real-valued random variables. This is a cadlag time-homogeneous Markov process.
A simple computation shows that for any f € Co(R"):

+o0 n
A"
_ _ —At g —At
E[f(X0Xo = 2] = f()e™ + Z_;E [f (x + Zl Yﬂ e
Thus, it is a Feller process with infinitesimal generator
L) =AE[fx+ D] -f).

where Y is any random variable with the same law as Y;, i = 1,2,.... Thisis a
continuous operator and its domain is the whole space Cy(R").

Example 9.2 (Diffusion) Consider the stochastic differential equation
er == b(Xr)dt + O—(Xr)dW[. (9.13)
If there is some constant C < oo such that
Ib(x) =b(N| +lo(x) —o(y)| <Clx—y|  VxyeR"
then Eq. (9.13) admits one unique solution. This solution is a time-homogeneous
Markov process.
Let C%(R”) be the space of all functions twice continuously differentiable,
vanishing at infinity and with partial derivatives up to second order vanishing at

infinity. This is a dense linear subspace of Cy(R"). Due to Itd’s formula, for every
feCi(RY)andt > 0:

f(X) =f(Xo) + /0 (be+ ;Tr (aa*sz)) (X)ds + /0 (Dfo) (X,)dW;.

The stochastic integral in the right-hand side is a martingale and therefore

E[f(X)|Xo =] = f(x) + E [ /O T (be + ;Tr (og*sz)) (X,)ds

X() :X:|.
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From this, a simple computation shows that the infinitesimal generator of X is

ZLf(x) = Df(x)b(x) + ;Tr (o(x)(f(x)*sz(x)) )

Its domain contains at least all the functions in C%(R"). Notice that in this case,
the infinitesimal generator is not a bounded operator: uniform convergence does not
imply convergence of partial derivatives.

The similitude between the expression above and Eq. (9.10) is not a coincidence.

As mentioned above and illustrated in Example 9.2, the infinitesimal generator
is in general, an unbounded operator. However, it has some regularity. Recall that
an operator @ : D C X + Y is closed if for every sequence {x; € D}ien, if {x;}
converges towards some x € X and {@x;} converges towards some y € Y, then
x € D and @x = y. An operator is said to be closable if it admits some extension
that is closed. The closure of an operator is its minimal closed extension. It turns out
that infinitesimal generators of Feller semigroups are always closable. Indeed, if we
set Z to be the maximal subspace with the property described in Theorem 9.4, then
the infinitesimal generator is closed. This is the most usual definition of infinitesimal
generators, but since two closable operators coinciding in a dense subset must have
the same closure, we do not insist on this point.

The relation between infinitesimal generators and Feller processes goes both
ways: the next theorem shows that the infinitesimal generator characterizes the
Feller semigroup and therefore it characterizes the law of the Feller process.

Theorem 9.5 Let {P; : Co(R") > Co(R")},5, be a Feller semigroup with closed
infinitesimal generator £ : 9 +— Cy(R"). Then:

(a) For every f € Co(R") and t > 0, we have fOTPsfds € Yand P.f = f+
L [y Psfds;

(b) Foreveryf € P andt € [0,4+00[, we have P,f € 9, XP,f = P,.Lf, and
{P:}i>0 is the unique family of operators satisfying

Pf=f+ /t.,sfpsfds =f+ /rPsffds. (9.14)
0 0

The integral fot P, fds is understood in the weak sense: for every x € R”, the mapping
s + (Psf)(x) is a continuous function from [0, +o0[ into R. Thus, the integral
Jo(Psf)(x)ds is well defined. [; P, fds denotes the function x — [;(P;f)(x)ds. The
definition of the integral fot Z P, fds is analogous.

The Eq. (9.14) is called the (integral form of the) Kolmogorov equation. It implies
that two Feller semigroups with the same infinitesimal generator must be identical.
The following theorem gives a characterization of infinitesimal generators
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Theorem 9.6 (Hille-Yosida) A linear operator £ : 2 C Co(R") — Co(R") is
the infinitesimal generator of some Feller semigroup if and only if it satisfies all the
following conditions:

(a) D is dense in Co(Z");
(b) There is some A > 0 such that the image (Ald — £)(2D) is dense in Co(Z%");
(c) Foreveryf € 9 andevery A > 0, |(AMld — Z2)f|| = A | £l

An operator satisfying condition (¢) of Theorem 9.6 is called a dissipative
operator. Unfortunately, this condition is not easy to check in practice. Thus, it
is useful to have the following sufficient condition.

Proposition 9.1 Consider a linear operator £ : 2 C Co(R") — Co(R").

If Zf(x) < 0forevery f € 9 with a positive maximum and every x a maximizer
of f, then Z is dissipative.

Notice that the infinitesimal generators in Examples 9.1 and 9.2 satisfy the
condition in Proposition 9.1.

9.3.3 Properties of Feller Processes

Feller processes have very good properties. In particular, the Propositions 9.2,
9.3, and 9.4 below play a central role in the concept of stochastic control system
presented in the next section.

Proposition 9.2 Let X be a time-homogeneous Feller process, and let {f X be

t }tzO
its natural filtration. X has the strong Markov property:
Pr{X,4, € A|.FS} =Pr{X.y, € A|X,}

for every finite {%X }-stopping time t, every t > 0, and every Borel set A. If P; is
the Feller semigroup generated by X, then

E[f(Xey)| FX] = Pif(Xo) (9.15)

for every f € Co(R").

Proposition 9.3 Let X be a time-homogeneous Feller process with infinitesimal
generator £ : 9 +— Co(R"). For every f € 9, the process

M, = f(X) /0 (LP)(X,)ds

is a martingale.
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Proof The proposition follows easily from the definitions of semigroup of a Feller
process and infinitesimal generator.
Let {P,}>0 be the semigroup of X. Then,

E [Ms+t| ys] =
K s+t
CE[f(Xern)] F] — / (L) (X, — / E[(£1)(X0)| F] du =
0 s
s s+t
—(P)X,) — / (LF)(X)du — / (Pues (ZF)) (Xy)du =
0 s
—f(X,) + / (Pu(L1)) (X,)du — / (LF) (Xa)diu—
0 0

- /0 (Po(ZF)) (Xo)du = M.

Since X is cadlag, it follows that M is a cadlag martingale and therefore, Doob’s
optional sampling theorem states that

T 0
E[f(Xz)— /0 (L) (X)ds %} — FXe) — /0 (ZF)(X,)ds 9.16)

for every bounded stopping times 0 < 6 < t.
Rearranging equality (9.16), we obtain the following.

Proposition 9.4 Let X be a time-homogeneous Feller process with infinitesimal
generator £ : 9 +— Cy(R"). For every f € 9 and every bounded stopping times
0<6<rt:

E[f(X0)] Fo] = E[f(X:)[ Xo] = f(Xp) + E [/gt(ff)(Xs)ds

X9i| . 9.17)

9.3.4 The Feynman-Kac Equation

Before introducing controlled stochastic processes, it is useful to consider a simpler
problem.

Let X be a Feller process with semigroup {P;};>0 and infinitesimal generator
Z 9+ Co(R").Fixf € 2, T €]0, +00[, and consider the function V : [0, T] x
R" = R defined as

V(t.x) = E[f(X7)| X; = «]. (9.18)

Clearly, V is a well-defined function. The problem is to find a suitable characteriza-
tion of this function. This is given by the following theorem.
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Theorem 9.7 The function V defined by (9.18) is the unique solution of the terminal
value problem

?;(t, X))+ LV(x) =0  Y(x) e [0, T[xR", (9.19)
V(T,x) =f(x) VxeR" (9.20)

Proof By definition, V(t,x) = Pr—;f(x). Thus, equality (9.20) must hold. By the
Theorem 9.5, the function t > £ZP,f(x) is continuous for every x € R". Using
Theorem 9.5, we see thatevery t,s < T

T—t

V(ts X) - V(va) :PT—tf(-x) - PT—Sf(-x) = gPuf(-x)du =
T—s

=—(1—=9)ZLPrf(x) + ot =)
when s — . This is equality (9.19).
Uniqueness of the solution is a consequence of uniqueness of the solution of the

Kolmogorov equation (9.14).
The Eq. (9.19) is known as the Feynman-Kac equation.

Example 9.3 (Compound Poisson Process) For the process described in Exam-
ple 9.1, the Feynman-Kac equation is an integro-differential equation

aa‘t/ tx)+A(EVEx+Y)]—-V(t,x) =0.

Example 9.4 (Diffusion) For the diffusion described in Example 9.2, the Feynman-
Kac equation is the parabolic PDE:

aa‘; (t,x) + D, V(t,x)b(x) + ;Tr (c()o(x)*D2V(t,x)) = 0.

9.4 Optimal Control of Feller Processes

Now, we are ready to introduce a general definition of controlled stochastic process
and obtain the corresponding analogous to Theorems 9.1, 9.2, and 9.3.

9.4.1 Controlled Processes

Let U be a nonempty set, and consider a family of Feller semigroups indexed by U,
{Pt"}u <y~ All semigroups Py are understood to operate on the same space Co(R").
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We use .Z£* to denote the infinitesimal generator of the semigroup P/ and X" to
denote any Feller process with semigroup Py. Foreach u € U, let 2" be the maximal
domain of the infinitesimal generator £* (thus, Z* : 2" — Co(R") is a closed
operator for every u € U).

We assume that the collection {2"}, ¢, satisfies the following condition:

(A8) The linear subspace 2 = (| 2" is dense in Co(R").
uelU

From these elements, we construct new processes in the following way.

Pick an element u € U and consider the corresponding process X“ and its natural
filtration {.#"} _ . Pick z, a finite {.#"}-stopping time, and a new element v € U.
Then (provided the underlying probability space is sufficiently rich), there is a
cadlag process Y (unique in law) such that

Y, =X, fort <,

E[f(Yeqs) ﬂxu] = P/ f(X¥) forevery t > 0, f € Co(R").

T

The idea behind this construction is simple: create a new process which coincides

with the process X* until the stopping time t. After the stopping time, Y follows a

new process that behaves like X", starting from the point where X* left at time 7.
The process Y is not time homogeneous, but the expression

Pl f(0) =E[f(Y)|Ys =]
defines a two-parameter family of linear operators

{Pl,: Co(R") > Co(R")}

0<s<t<4o00
such that
Pl =1d Vsel0,+ol,

P!, oPl, =P, YO<s<u<t<+oo.

Further, the process Y satisfies a time-dependent version of equality (9.17): for any
bounded {.%}-stopping times 6; < 6,,

E[f(Yﬁz)lyeﬁ] = E[f(YGZ)I Y91] =

&)
=f(Y91) +E |:/ (guf) (YS)XSE‘L' + (gvf) (Y‘Y)X‘Y>tds

0

Y91:| . (9.21)
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The procedure above can be iterated any finite number of times: take two processes
Y', Y2 of the type above, pick 8, a finite {ﬁ,Y 1 }-stopping time, and a constant s > 0.

From these, construct a new cadlag process Y3 such that
v =1y fort <0,

E [f(Yngt)\ %Y‘] =P, f(Y))  foreveryt >0, f € Co(R").
Thus, we obtain a collection of stochastic processes (u, X*) such that

k
(a) u is a U-valued process of type u; = uo)[0,](f) + D Ui ]z, (¢), where all
i=1
the u; are fixed elements of U and 0 < 1y < 11 < --- < 1% < 400 are finite
{#X"}-stopping times.
(b) (u, X") satisfies the trivial generalization of equality (9.21):

E [f(ng)| yelll] =E [f(ng)| Xgl] =
0>

=f(Xp) + E [ (Lf) (X{)ds

0

Xgl] , (9.22)

for any bounded {a@txu}-stopping times 6, < 6,.

The process u above is called a simple control process, while the corresponding
process X* is the controlled process. The set of all such pairs is denoted by Z5. The
set of admissible pairs of control and controlled processes can be greatly expanded
by considering limits in some appropriate sense (e.g., convergence in probability,
convergence in mean-squares, etc.) over sequences of pairs (u, X") with number of
stopping times going to infinity. In that case, the set of all admissible pairs is denoted
by 2.

Now, we can give a general formulation of the stochastic control problem:

Problem 9.1 For each (7, x) € [0, T[xR", find the pair(s) (it,f() € 42 maximizing
the functional

J(I,X,M,X) = E[g(XT)|XI‘ :X].

Here g : R"” — R is a given function. To avoid technical difficulties, we assume that
g € Co(R").

We will not go into the details of the construction of the space 2 . Instead, we
will take the following assumption:

(A9) For every (t,x) € [0, T[xR" and every (u,X) € 4, there is a sequence
{(ur, Xi) € Zs}en such that klim J(t, x, up, Xi) = J(t, x, u, X).
—>00

Assumption (A9) allows us to deal with the main arguments in this text using only
simple controls.
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Remark 9.1 The fact that simple controls are left continuous while controlled
processes are right continuous is significant.

To see this, consider a controlled version of the compound Poisson process from
Example 9.1:

Ny
X' =Xo+ ) (ur,+ 7).

i=1

where N, is a Poisson process with intensity A > 0, T; is the time of the ith jump of
N, Y, i = 1,2,... are i.i.d. real-valued random variables, and u, is a real-valued
control process. Thus, the effect of the control is to change the expected value of the
jumps (X; — X,~).

Left continuity of the control means that this shifting is decided before the jump.
Clearly, if the choice of the shift could be delayed until the jump occurs, then it
could be made to fully compensate for the value of the “default” jump Y;, completely
changing the nature of the problem.

In the setting above, the filtration being considered is always the natural filtration
{3‘?} of the process (u,X) € 2 being considered. Thus, a change in control can
lead to a change in filtration. For this reason, we need to consider a type of stopping
times that can be applied to every filtration generated by elements of 2.

For each (u,X) € 2, let Jx be the set of all {yf}-stopping times. A universal
stopping time is amapping t : 2"+ | J Jx such that:

wX)ex
(@) tux € Jx forevery (u.X) e &,
(b) If (u, X) and (', X’) are identical in law, then (u,X , r(u,X)) and
(u’ X, t(,/,X/)) are identical in law.

For example, for any open set B C R”, the first exit time of B, tx = inf {s : X; ¢ B}
is a universal stopping time. Also, deterministic times are universal stopping times
and the class of universal stopping times is closed under lattice operations: for any
universal stopping times 7, 8, T A 6 and t V 0 are universal stopping times.
Consider a finite number of universal stopping times 0 = <tl<?<. .. <
% and u!',u?, ..., u* € U. For each (u,X) € Zs, these elements define a unique

U-valued process

k
" ; Wit ) O 9.23)

That is, (9.23) defines a collection of U-valued processes parameterized by Zs.

Such a collection is called a (simple) feedback control, and we use the short notation
k
wy= > u Xjri—1 1 (2). It can be checked that there is one unique process (in law) X
i=1

such that (w, X) € 2.
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Notice that the notion of controlled process introduced in this section is in fact a
way of controlling families of linear operators

{Pss: Co(R") = CO(Rn)}05s5t<+oo :

In other words, we are concerned with control of laws of processes rather than
control of the sample paths of a given process.

9.4.2 The Dynamic Programming Principle

Now, we present and prove the theorem analogous to Theorem 9.1 for the stochastic
optimal control problem (Problem 9.1).
First, we introduce some notation: for any function ¢ : [0, 7] x R" > R, let

o(t,x) = liminf ¢(s,y), (t,x) = limsup ¢(s,y),
(s,y)—(t,x) (s,y)=>(1,x)

be, respectively, the lower semi-continuous and the upper semi-continuous
envelopes of ¢. Notice that every semi-continuous function is Borel-measurable.
We introduce the value function V : [0, T[xR" — R, defined as

V(t,x) = sup J(t,x,u,X)= sup E[g(Xr)|X, =4x]. (9.24)
(uX)ez” uX)eZ

Notice that, due to assumption (A9), the supremum in (9.24) can be taken over the
smaller set 2. The value function extends trivially to r = T by V(T, x) = g(x).
The dynamic programming principle takes the following form:

Theorem 9.8 (Dynamic Programming Principle) For every (t,x) € [0, T[xR
and every universal stopping time t suchthatt <t <T:

sup E[V(r. X)X, =x] = V(t.x) < sup E[V(r.X)|X, = x]
w.X)eZs w.X)€Zs

Proof The right-hand side inequality is easy to prove.
Fix a universal stopping time t with t < t < T. For every (u, X) € %,

E[g(Xp)| X, = 1] = E[E[g(x)| #}]| X, =] =
=E[E [¢(Xn)| X.]| X, = 2] < E[V(r. X,)| X, = a].

The inequality follows by taking the supremum over (u, X) € Zs.
The proof of the left-hand side inequality is more labourious.
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Due to Urysohn’s lemma, every lower semicontinuous function /' : R" — R,
bounded from below is the pointwise limit of a monotonically increasing sequence
of continuous functions.

Notice that |V (¢, x)| < | g|| and therefore, the same holds for V. Thus, we can
pick a bounded continuous function ¢ : [0,7] x R" + R such that ¢ < V. Fix
a constant ¢ > 0. For each (¢,x) € [0,T] x R", pick (u'*,X") € Zs such that
E [g(X;X)| Xt =x] > V(tx) —e.

For every fixed (u, X) € Z5, the function (¢, x, s) — E[g(X,)| X;] is continuous.
Thus, for each (¢, x) € [0, T] x R", there is a constant 7~ > 0 such that

E[¢(Xr)| Xy =x'] > E[g(X7)|X: = x] — &,
o(t'.x) < o(t.x) + e
whenever |/ —t| + |xX — x| + |[T' = T| < r'*.

The collection of balls {B 10 (t, x)} (1) E0.TXR
Hence it contains a countable subcover {B i) (t;, xi)}l. e+ We use the short notation
Bi = B (ti.3)), 17 = ), X' = (u', X"%). The sequence {A; = B; \
U Bj}i <y 18 @ countable partition of [0, 7] x R" into Borel subsets.

Jj<i

is an open cover of [0, 7] x R".

For every (t,x) € B;, we have:

E [g(X5-+ri_r)| X; = x] >E [g(X’T)‘ X;;_ = xi] —e> V(t;,x;) — 2¢
> @(t;, x;) —2e > @(t,x) — 3e. (9.25)

Fix a universal stopping time 7 such that t < ¢t < T, and (1, X) € Zs. Notice
that for every i € N, the event {(tx, X,) € A;} is fg}i -measurable. Therefore, the
random variables t;, defined as

Tv lf (th X'L'x) ¢ Aiv
Ty, if (‘CXerX) € A, ieN

T =

are {Ff }-stopping times. Using these stopping times and the sequence of processes
{(u', X")} chosen above, we obtain a new sequence {(v’, Y') € Z5};en such that

Yt1 =X, fort < 1,
1 n
E[ (Y} )| FE]=PX,  f(Xe),  fort>0, f e Co(RY);

YTH—l = Yti, fort < Titl,

E[ £ )

i i+1 i n .
ygﬂ] =P L fYE ). forr =0, f e GRY), i€ N.
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Notice that every tx is a {ﬁryi}-stopping time for every i € N. Hence, the same

holds for every t;.
Also,

k

E[sD] ZL] = 3 (Pl oo ) 24, (ox Xey)

i=1

+ (P r—o 8Xe)) X &, (o Xo).

i

i=k+1
Hence, inequality (9.25) shows that
k
B[s0D| Z1] > ot Xodz | (o Xe) —llx g5, (0 X0 =3¢
i=1 ! i=k+1 '

almost certainly. Therefore,

Vi) ZE[s0lvf =] =E[E[0p| Z] || vl =] =

ZE [p(tx, Xo) | Xi = x] =

o0
(TX7XI)() € U Ai

i=k+1

—CPr X, = x; — 3¢,

where C is a finite constant, independent of k. Since {A;},cy is a partition of [0, T] x

o0
R”, lim Pr% (x. X)) e U A
k—>00 i=k+1

X = x} = 0. Therefore,

V(t,x) = E[o(tx, Xop)| X = x] = 3e.
Since ¢ is arbitrary, we conclude that V(#,x) > E[¢(tx, X1, )| X; = x].
Finally, take a monotonically increasing sequence of bounded continuous func-

tions {@x } e, cOnverging pointwise to V. Due to Lebesgue’s monotone convergence
theorem, we obtain

V(tvx) > kl_ifgoE[(pk(TXvXTxNXt = X] = E[V(TX7XTX)|Xt = X] P

Since this holds for every (u, X) € Zs, the proof is complete.
Notice that the statement in Theorem 9.8 reduces to

V(t,x) = sup E[V(r,X))|X: = 4],
(w.X)€Zs

when V is a continuous function. Obviously, this is a general form of equality (9.8).
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9.4.3 The Hamilton-Jacobi-Bellman Equation

Now we will present our versions of Theorems 9.2 and 9.3. In the setting of
Problem 9.1, the Theorem 9.2 takes the following form.

Theorem 9.9 Let V : [0,T] x R" > R be the value function (9.24), and suppose
that:

(a) forevery x € R", the map t — V(t,x) is absolutely continuous;
(b) foreveryt € [0, T], the map x — V(t,x) is an element of 2.

Then, the value function satisfies the Hamilton-Jacobi-Bellman equation

\%4
%t (t,x) + sup £"V(t,x) = 0, (9.26)

uelU

for every (t,x), a continuity point of the functions (t,x) +> aa‘t/ (t,x) —

sup L4V (t, x).

uelU

Proof Fix (t,x) € [0, T[xR", a continuity point of the function (¢, x) — 38‘;, and fix
small 2, & > 0. Let

T=min (¢t + h,inf{s > 1:|X; —x| > ¢&}).

This is a universal stopping time, and therefore the dynamic programming principle
(Theorem 9.8) states that

V(t,x) = E[V(r,X))| X, = x|
for every u € U. This implies
V(t,x) ZE[ V(1. X¥) = V(. X)X, = x] + E[ V(t, X¥)| X, = x].

Due to the assumptions above and equality (9.22), this is

V(t,x) >E |:/ aV(S,X;‘)ds
, ot

thxi|+

+V(t,x) +E [ / ", X")ds

Xr:.x}:

=V(t,x)+h (aa‘t/(t x) + 2"Vt x)) + o(h),
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when & goes to zero. Since u is arbitrary, this shows that

v
(t,x) + sup Z"V(t,x) < 0.
ot uel
Now, suppose there is some (¢, x) € [0, T[xR", a continuity point of the functions
(t,x) — %‘T/, (t,x) — Slelg ZL"V(t, x), such that %‘: (t,x) + 51611[]) L'V (t,x) < 0. Then,
there is some ¢ > 0 such that

av
Y (t,x) +sup L"V(t,x) < —e.

uelU

By continuity, there is some 7 > 0 such that

a(,;t/(s,y) + sup LV (s, y) < —;

uelU

whenever |s —¢| + |y —x| < pand |s' —¢| + |y —x| <.
For every k € N, there is a function ¢, € Cy ([0, T[xR") such that

o(t,x) =0, o(s,y) =1 whenevern < |s—t|+ |y—x| <k

Since 2 is dense, there is a function ¢ : [0, T[XR" — R such that

(i) forevery s € [0, T[ the map y — ¢ (s, y) is an element of Z;
(ii) for every y € R" the map s — ¢ (s, y) is continuously differentiable;

ces 1
(i) [l — il < -
Consider the universal stopping time

t=inf{s>r:s5—t+ |X;—x| > n},

and fix (u, X) € Zs. Then, for every § > 0:

V(t,x) > V(t,x) +§ (¢k(t, k) — i) —

=E[V(t,X.)| X, = x] + §E [¢r(z, X)| X = x] —
—(E[(V + ) (r, X)| Xi = x] = E[(V + dn) (t, X0)| X; = x]) —

)
—(E[(V +8¢) (. X0)| Xy = x] = (V + 1) (1, x)) — 4=

=E[V(z.X0)| X; = x] + $E [@n (7. X:)| X; = x] -

thx:|—
:| )
Xr:.x -
4

—-E [/t E?t (V + 8¢ ) (s, X )ds

-E [ / ‘ LV + 8¢0)(t. X,)ds
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Notice that likm infE [gr(7, X)| X, = x] > i. Hence, for k sufficiently large
—00
)
V(t,x) =E[V(7,X)| X; = x] + e

-E [/TT E?t(v + S¢p) (s, X1 )ds

thx:|—

_E [/ LUV + 50, X,)ds| X, = x} >

8 &
2E [V X)|X =]+ | +E[r— 11X =] () - 51.2"%]).
Thus, for sufficiently small § > 0,
8
V(t,x) =E[V(7,X)| X, = x] + A

This contradicts the dynamic programming principle and therefore

aa‘t/ (t,x) + sup ZL“V(t,x) > 0

uelU

must hold for every (¢, x) € [0, T[xR", a continuity point of aa‘t/ and sup .Z"V.

u€l
Example 9.5 Consider the controlled compound Poisson process of Remark 9.1.
For each u € R, the generator £ is

L) =AE[fx+u+ V)] -fx).

Thus, if the control process is allowed to take values in some subset U C R, the
Hamilton-Jacobi-Bellman equation becomes the integro-differential equation

aa‘t/(t,x) +A (sup]E[f(x+u+ Y)] —f(x)) =0.

uelU

Example 9.6 Consider the problem (9.6)—(9.7). For each fixed # € U, the infinites-
imal generator .£* is given by (9.10). Thus, (9.9) is the Hamilton-Jacobi-Bellman
equation for this problem.

The verification theorem can be stated as follows.

Theorem 9.10 Let v : [0, T] x R" — R be a continuous function such that:

(a) foreveryt € [0, T|, the function x — v(t, x) is an element of D;
(b) forevery x € R", the function t — v(t, x) is differentiable and 38'; is continuous
and bounded in [0, T[xR";

(c) the function (t,x) — sup L"v(t, x) is continuous in [0, T[xR".
uel
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If v solves the Hamilton-Jacobi-Bellman equation (9.26) with terminal condition
v(T,x) = g(x) Vx € R, (9.27)

then v is the value function.
Further, if there is a function it : [0, T[xR" + U such that

LU0y (1, x) = sup Lv(t,x)  Y(1,x) € [0, T[xR",

uelU

and there is a process X such that (it(t, )A(,), )A(,) € X, then the process (it(t, )A(,), )A(,)

is a solution for Problem 9.1.

Proof Let V : [0, T] x R" — R be the value function (9.24), and fix (u, X) € Zs.
Under the assumptions (a)—(c), v satisfies the analogous to equality (9.22):

0>

Xo, |,

d
E[v(02,Xp,)| Xe,] = v(61,Xp,) + E |: 31; (s, X5) + L% v(s, X;)ds

0
for every universal stopping times 0 < 6; < 6, < T. Therefore,

Elg(Xr)| X, =x] = E[v(T,.X7)| X, = x] =

T
:U(l, x) +E [/ Zj;; (S, Xv) + (Zusv)(s, Xv)ds

thx:|<

T
<v(t,x) + E [ / EZ (5. X) + sup(-L"v) (s, X, )ds
t

uelU

X, = xi| = v(t,x).

Since (u, X) is arbitrary, this proves that V (¢, x) < v(t, x). Further, if the function &
and the process X described in the theorem exist, the inequality above becomes an
equality in the particular case (u;, X;) = (it(t, )A(,), }A(t) Hence, the result follows.
To prove the inequality v (¢, x) < V(z, x) in the general case, we build a sequence
{(wk,Xk) € %}keN as follows.
Suppose that v solves (9.26)—(9.27), and fix ¢ > 0. For each (¢, x) € [0, T[xR",
there is some r;, > 0 and u"* € U such that

sup Lv(s,y) < L v(s.y) + & Y (s,y) € Bux(t,x).

uelU

The collection {Bl,,,x(t, x)} is an open cover of [0, T[xR". Hence, it
2 (t.X)€[0. T[XR"

admits a countable subcover {B 1 i (t:, x;) . We use the short notation r; = rfi-,
ieN
B; = Bixi (t,-,x,-), A = Béri(l,’,x,’), u' = u'ii,
Fix (t,x) € [0, T[xR". Without loss of generality, we set (#,x;) = (z,x), and

construct the sequence of feedback controls {wk } ren as follows.
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We set w! = u!, a constant control, and define the universal stopping time 7; =

min (T,inf {s > 1 : (s, X,) ¢ B1}). Let w? be the feedback

wtl, fort <1,

2 .
wr = qu?, fort> 7 if (t1, X)) € Az,

wtl, fort > 1) if (11, X7,) ¢ Aa,

Fork>2,andi=1,2,...,k, set

Th—1 if (-1, X)) € A,

Thi =
inf{S > Tg—1 - (S, X&‘) ¢ Bl} if (Tk—le‘L'kfl) € Ai-

Let
T = min (T, max(tm s Th2s e v Tk,k)) s
wf, fort < 1y,
u, fort > 7 if (v, Xy) € A\ U4, i=1,2,....,k+1,
k+1 _ ~.
w,T = j<i
. . k+1
wh, fort > 7 if (1, Xg,) € U As.
i=1
4 wk fort < 1, " . .
Let w* = ! - and let X* be the unique (in law) process such that

u forr > 7,
Wk, X*) € Z5. Then, {;} is a monotonically increasing sequence converging to
T and for every s € [0, 7]:

LWu(s.X5) > sup Lv(s, X5) —e.

uelU

Therefore,
V(t.x) =E[g(Xp)| XF = x] = E[v(T. X})| X} =x] =
=E [ v(t. X)| X = x] + E[v(T. X}) — v(m. X5 )| X} = x] =

T 31} k ~k "
=v(t,x) +E / o (5, X5) + L v(s, X{)ds
t

Xf = xi| +
+E[v(T.X}) — v(t. X5)| X} = x] >

Tk
>v(t,x) + E [/ ?;; (5, X*) + sup L"v(s, X*) — eds
t

uel

Xf:xi|+

+E[v(T.X}) — v(t. X2)| Xf = x] >

>v(t,x) —(T—te+E [U(T,X;) — v(tk,ka)‘ Xk = x] .
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Now,

E[o(T.X}) = v(u. X5)| X} = x] =
=E[E[v(T.X})| X, ] — v(m. X)) | X} =x].

the sequence E [v(T, X;‘-)\ ka] — v(tk,X’T‘k) is uniformly bounded and converges
pointwise to 0 when k goes to infinity. Therefore,

: k k k
klgxgoE [v(T.X}) — v(. X)) | Xf =x] =0

and, since ¢ is arbitrary, we conclude that V (¢, x) > v(¢, x).

Notice, due to Theorem 9.10, any solution of the Hamilton-Jacobi-Bellman
equation with the regularity stated in the theorem is unique, since it must coincide
with the value function. Also, the first part of the theorem does not require the
Problem 9.1 to have a solution. Indeed, the proof gives a method to construct é&-
optimal solutions, given the solution of the Hamilton-Jacobi-Bellman equation.

9.5 Conclusions

Though we presented the dynamic programming principle and the Hamilton-Jacobi-
Bellman equation in a setting that does not depend on the particular type of process
being controlled, we did not try to achieve maximal generality. Many variants of the
results above can be obtained along the same lines but in different settings.

We introduced Feller processes as R"-valued processes. Therefore, our controlled
processes are also R"-valued processes. This is just for convenience of writing. All
the arguments used in the text are entirely valid if R” is replaced by any separable
locally compact metric space.

More importantly, the approach outlined above can be extended to Markov pro-
cesses that are not Feller processes. Control systems analogous to those described
in Sect. 9.4 can be constructed for any class of cadlag processes, provided that class
corresponds to a class of semigroups acting on a suitable Banach space of functions
such that equality (9.15) holds.

The class of optimization criteria treated in this text is quite restricted, since we
assume that the function g is an element of Cy(R"). This assumption fails in many
cases of practical interest, namely in economics and financial applications where
optimization criteria are frequently unbounded and/or have discontinuities. Also
very restrictive are the assumptions concerning the regularity of the value function
required for Theorem 9.9 and 9.10. Naturally, these two issues are related. They can
be partially overcome on a case-by-case approach. Often, it is possible to extend the
results taking sequences of problems with regular optimization criteria and regular
value functions and taking limits in some appropriate sense.
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Issues related to the regularity of the value function are very present in all
dynamic programming approaches to optimal control problems, including control
of deterministic systems and control of diffusions. In the deterministic and diffusion
cases, the Hamilton-Jacobi-Bellman equation is a PDE. It can be proved (under
suitable assumptions) that appropriate versions of Theorems 9.9 or 9.10 hold
if solutions of the Hamilton-Jacobi-Bellman equation in the viscosity sense are
considered, instead of classical solutions (see [6, 9], among others). Viscosity
solutions and their application to optimal control problems are the topic of a vast
and growing volume of published literature, including generalizations to some types
of Lévy processes.

Readers interested in the control of diffusions may see the monograph by
Fleming and Soner [6] or the more recent book by Touzi [9]. These books contain a
rigorous and comprehensive study of the topic, including solutions of the Hamilton-
Jacobi-Bellman equation in the viscosity sense.

A study of Markov processes from the point of view outlined in Sect. 9.3 can be
found in the lecture notes [1]. The monograph by Ethier and Kurtz [4] contains a
very complete account of the same topic.

The study of general Markov processes from the point of view outlined in
Sect. 9.4 above, has not been, to our best knowledge, the topic of any comprehensive
publication. This material is can be rigorously constructed from the material
contained in the references provided for Sect. 9.3.
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Discretizations



Chapter 10
Numerical Analysis of Novel Finite Difference
Methods

Rafael Company, Vera N. Egorova, Mohamed El Fakharany, Lucas Jédar,
and Fazlollah Soleymani

Abstract The core target of this chapter is numerical analysis and computing of
novel finite difference methods related to several different option pricing models,
including jump-diffusion, regime switching and multi-asset options. A special
attention is paid to positivity, consistency and stability of the proposed methods. The
consideration of jump processes leads to partial integro-differential equation (PIDE)
for the European option pricing problem. The problem is solved by using quadrature
formulas for the approximation of the integrals and matching the discretization of
the integral and differential part of the PIDE problem. More complicated model
under assumption that the volatility is a stochastic process derives to a PIDE
problem where the volatility is also an independent variable. Such a problem
is solved by introducing appropriate change of variables. Moreover, American
options are considered proposing various front-fixing transformations to treat a free
boundary. This free boundary challenge can be treated also by a recent rationality
parameter approach that takes into account the irrational behavior of the market.
Dealing with multidimensional problems the core difficulty is the appearance of
the cross derivative terms. Appropriate transformations allow eliminating the cross
derivative terms and reduce of the computational cost and the numerical instabilities.
After using a semidiscretization approach, the time exponential integration method
and appropriate quadrature integration formulas, the stability of the proposed
method is studied independent to the problem dimension.

10.1 Introduction

This chapter deals with numerical analysis and computing of novel finite difference
methods related to several option pricing models that correct the lack of adaptability
of the classic Black-Scholes (BS) model to the reality of the market. As the best
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model may be wasted with a disregarded analysis, we will pay attention to important
issues such as consistency and stability of the proposed methods.

Dealing with prices, the guarantee of positivity of the numerical solution is a
necessity that will be always considered here. After the 2008 financial crisis, the
multidimensional option pricing problems became more relevant for both market
industries and academia claiming for comfortable methods that be quick and reliable
at the same time.

In Sect. 10.2, we consider finite difference methods for solving partial integro-
differential equations (PIDEs) related to a wide class of Lévy processes introducing
jump processes in the changes of the underlying assets. The consideration of jump
processes motivates the appearance of the integral part of the PIDE. In Sect. 10.2.1,
we solve the problem by introducing quadrature formulas for the approximation of
the integrals and matching the discretization of the integral and differential part of
the PIDE problem. Sect. 10.2.2 assumes that the volatility is a stochastic process
deriving to a PIDE problem where the volatility is also an independent variable.

In Sect. 10.3, for dealing with American option pricing problems we follow
the front-fixing approach initiated by [40] adding the numerical analysis in the
numerical treatment of the problem and another transformation of the original PDE
problem. To our knowledge we are the first users of the front-fixing method for
regime-switching models fitting better the changing reality of the market.

Section 10.4 incorporates the rationality parameter approach recently proposed
by [30] having the relevant issue that American option pricing problems can be
approximated by solving a PDE instead of partial differential inequalities. This
approach takes into account the irrational behavior of the market.

Section 10.5 addresses the challenge of the dimensionality. Firstly, in Sect. 10.5.1
the elimination of the cross derivative terms of the multidimensional PDE by
using appropriate transformations allows the reduction of the computational cost
and the numerical instabilities. After using a semidiscretization approach, the time
exponential integration method and appropriate quadrature integration formulas, the
stability of the proposed method is studied independent to the problem dimension.

10.2 Solving PIDE Option Pricing Using Finite Difference
Schemes

The financial markets show that the underlying assets do not behave like a Brownian
motion with a drift and a constant volatility. This fact motivates the emergence of
alternative models to the pioneering Black-Scholes model [3]. Alternative models
are stochastic volatility [35], deterministic volatility [17], jump diffusion [46, 64]
and infinite activity Lévy models. Jump diffusion and Lévy models are characterized
by a partial integro-differential equation (PIDE). This PIDE involves two major
parts, namely, the differential part as in the Black-Scholes model and the non-local
integral part due to the assumption of having assets with jumps. The option pricing
under jump diffusion has been studied using the double discretization [7] and the
integral term is approximated using the trapezoidal rule.
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In this section, we propose positive stable and consistent methods to solve a
wide class of infinite activity Lévy models using Gauss-Laguerre quadrature for
approximating the integral part. Furthermore, the Bates model that incorporates both
stochastic volatility and Jump diffusion is studied.

10.2.1 Solving PIDE for a Wide Class of Infinite Activity Lévy
Processes

One of the most relevant and versatile Lévy models is the one proposed by Carr et
al. the so called CGMY [6], that belongs to the family of KoBoL models [4]. Apart
from these models, other Lévy processes such as Meixner [44, 57], Hyperbolic and
Generalized Hyperbolic (GH) are used to obtain better estimation for the stock
returns [56]. The Meixner process was introduced in 1998, it is used when the
environment is changing stochastically over the time showing a reliable valuation
for some indices such as Nikkei 225 [57].

The option pricing partial integro-differential equation (PIDE) unified model for
several Lévy measures v(y), given by [14, Chap. 12]

0% o? 282‘5 0%
9 S, 1) = 5 S 552 S, 1)+ (r—¢q)S 2s (S,7) —ré(S, 1)

+o0 9€
—I—/ v()[E (S’ 1) — € (S.T) — S(¢” — 1) as (S.7)]dy. S €(0.00), T €(0,T],

—0o0

(10.1)
€(S.0)=f(S) = (S—E)T, Se(0,00), (10.2)
%(0,7) =0; Sirn € (S, 1) =8Se " —Ee™ ", (10.3)

where % is the value of a contingent claim, S is the underlying assetand t = T — ¢
is the time to the maturity. The Lévy measures v(y) are given in Table 10.1.

Table 10.1 The forms of v(y)

Model The corresponding Lévy measure
C_e—9M C el
KoBoL v(y) = |yf1+y 1,0+ -;;,Tl+y 150
: A
Meixner v(y) = ysiﬁh(,’y)

M [ o~ N2+ B
GH process v(y) = / dt + max (0, A)e !
o w2 (76320 + v} 6v/20))
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Note that the Hyperbolic process is obtained from the GH process when § = 0
and A = —1.

The KoBoL model and in particular the CGMY, see Table 10.1 with parameter
C_ = C4, has been widely studied because its versatile and includes the finite and
infinite activity cases as well as the finite and infinite variation, obtained by changing
the value of Yor parameter ¥ < 2. A fairly complete revision of the methods used
to solve the CGMY model can be found in [9, 15, 53, 65].

In this study we focus on the numerical analysis of the unified model (10.1)-
(10.3) for the European case, by proposing a consistent, explicit and conditionally
positive and stable finite difference scheme while the integral part is approximated
using Gauss-Laguerre quadrature formula. We also include the computation of the
linear complementarity problem (LCP) for the American option case using both
the projected successive over relaxation method (PSOR) and the multigrid method
(MG). The discretization for the differential operator is done using the three-level
approximation, while the integral part is discretized as the same as in the European
case. So, the integral part of the PIDE operator for the American and European
cases is discretized using the Gauss-Laguerre quadrature. Although the three-level
method is widely used and it is argued that the approximation error is of order two,
however such method has two unsuitable properties, in fact as the method needs the
first time step that must be obtained using another method (usually by implicit Euler
method), in practice the accuracy is reduced.

Let us begin by transforming the PIDE (10.1) into a simpler one. Since the kernel
of the integral in (10.1) presents a singularity at y = 0, a useful technique is to split
the real line, for an arbitrary small parameter ¢ > 0, into two regions §2; = [—e¢, €]
and £2, = R\ 2, the complementary set of £2; in the real line. The integral on §2;
is replaced by a suitable coefficient in the diffusion term of the differential part of
(10.1) obtained by Taylor expansion of V(Se”, t) about S, see [9, 15, 53, 65]. This
coefficient depending on ¢ is a convergent integral and takes the form

£ 1
ﬁ@yzflmma—lﬂ@=g/ v(eg)(e®? — 1)%dg. (10.4)
—& —1
The resulting approximating PIDE is given by
¢ 6% ,9°¢ 0%
9 = 2 S 952 + (r—qg—y()S a5 (r+ A(e)¥
+/ v(y)E(S€’, T)dy, (10.5)
2,

where

¥=&+¥@4@=/v@w—mmungu@@ (10.6)
2 2
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The convergent integrals (10.4) and (10.6) are evaluated using Gauss quadrature
approximation. In order to obtain an approximation for 52(¢), the Gauss-Legendre
quadrature approximation is used, so the weighting function w(¢) = 1 such that

M
52 e) ~ &Y wnv(egm) (e — 1), (10.7)

m=1

where ¢,, are the roots of the Legendre polynomial Py (¢) of degree M and w,,
is calculated based on [1, Eq. (25.4.29), p. 887]. Here M is chosen to be an even
number so that zero is not a root of Py;. The improper integrals A(e) and y(e) are
approximated using the shifted Gauss-Laguerre quadrature [19, p. 226]. Note that
under change of variables = —y —e¢ fory < 0O and n = y — ¢ for y > 0 then A(¢)
and y(¢) have the following forms

Ale) = /0 w(=n—¢e)+v(n+e)dn (10.8)

and
y(e) = /OO [V(=n—e)(e” " — 1) + v(n + &) (" — )] dn. (10.9)
0

From (10.8), (10.9) and since the weighting function is w(n) = ¢~ 7, then we have

M M
Me) Y TuF (i €). Y(e) % ) @ (- €). (10.10)

m=1 m=1

where

F(n,e) =e"(v(-n—¢e) +v(n+e¢)
Fm.e) =€ (v(=n—e)(e ") —1) +v(n+ &) —1)).

Here 7,, are the roots of the Laguerre polynomial Ly(n) of degree M and the
weighting function @, is given in [1, Eq. (25.4.45), p. 890].

Coming back to (10.5) in order to eliminate the convection and reaction terms,
using the transformation defined by

x =exp[(r—qg—y()t]S, V(x, ) = exp[(r + A(g))T]€ (S, 1), (10.11)
one gets
v 62 L,V

= x +/ v(y)V(xe’, t)dy, x € (0,00), 7 € (0,T], (10.12)
ot 2 0x2 2,
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with the initial and boundary conditions

V(x,0) =f(x) = (x—E)" (10.13)
V(O,7) =0 lim V(x.7) = MO (xe” @7 — E). (10.14)

Next, for the sake of convenience in the numerical treatment we rewrite the integral
part of (10.12) as follows

/ v(y)V(xe’, t)dy = /00 v(y)V(xe’, T)dy, (10.15)
.Qz —0Q
where
. v(y), Y€
= . 10.16
D) {0’ D (10.16)

After that, in order to match the interval of the integration with the spatial domain
of the problem, we use the following substitution ¢ = xe” into (10.15), obtaining

/ v(y)V(xe’, t)dy = /00 f)(ln(¢))V(¢, r)d¢. (10.17)
2 0 x ¢

Hence the PIDE for the European option under Lévy model, takes the following
form

v 82 LRV

ot 2 ox2

d¢

.
Now, we are in a good situation to construct an efficient explicit numerical scheme
for the transformed problem (10.18) after choosing our numerical domain [0, Xmax] X
[0, T] for large enough value of x;,,x. For the time discretization, we take " = nk,
n=20,1,...,N; where k = 1\{1 and the spatial variable x is discretized by x; = jh,
j=0,1,2,...,N,h= ";@X.

Since the Laguerre-Gauss quadrature will be used for approximating the integral
part of (10.18), then we have the sequence of roots {¢,}_, of the Laguerre
polynomial Ly;(¢). The suitable value for M is selected such that E < ¢p; < Xpax.

By using explicit forward approximation for the time derivative of V and the
central difference approximation for second spatial derivative, one gets

+ /ooﬁ(ln(¢))V(¢,t) (10.18)
0 X

% Vit gty Vit =2V + Vi

9 (xj, ) &~ a2 (xj, ") & ”

r (10.19)

In order to approximate the integral part of (10.18) matching the discretization of
the integral and differential parts, taking into account that zeroes of Laguerre poly-
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nomial do not need to be nodes of the mesh, we use linear Lagrange interpolation
polynomial. For any m, 1 < m < M, let us denote by £,, the last integer such that
the mesh point x¢,, < ¢,,. The approximating value V" (¢,,) is given by

V' @m) = a,Vy, +ae, Vi 41 (10.20)
where the interpolation coefficients are

- g1 =) . (P —xe,)
a N .

b = N a, =", (10.21)

Note that the linear interpolation approximation (10.20) has an error of order
O'(h?) that coincide with the associated error of the central approximation of the
spatial derivative (10.19). Hence the discretization for the integral part is given by

M
. R ¢m e¢m 5 " R "
Iy = m=1 v %j )¢m @ (a0, Vi, + a0, Vi, 1) - (10.22)

Summarizing, from (10.19) to (10.22), the discretization of (10.18) with (10.13)
and (10.14) takes the form

n+1 n n n u ~ ¢m e¢m ~ n ~ n
VIt = (Vi 4+ V) + BV + kY D(in ‘ )¢ @ (ae, V], +ae, Vi ).
m=1 J m

(10.23)

1<j<N.—1, 0<n=<N,—1, where
o = k 622, Bi=1-2q; (10.24)

LY YR J 'js .
satisfying

Vi=@—E)7", Vi=0. Vi =" (tnue’" —E). (10.25)

In what follows, we state that the solution is conditionally positive and stable. The
proof of this statement and consistency of the scheme can be found in [28].

Theorem 10.1 The numerical solution {V}'} of the scheme (10.23)-(10.25) is
nonnegative under the condition.

k 1

2= a0
h 02X«

(10.26)

Based on Von Neumann approach, the stability of the numerical scheme (10.23)
has been studied and summarized in the following theorem.



178 R. Company et al.

Theorem 10.2 Under the positivity condition (10.26), the numerical scheme
(10.23) for (10.18) is conditionally stable see [29].

The objective of the first example is to exhibit the importance of the positivity
condition (10.26) for the three studied Lévy models.

Example 10.1 Here, we have an European option with £ = 30,7 = 0.5, r = 0.08,
qg=0,0 =02, %nn = 0, Xmax = 90, M = 15, ¢ = 0.5 and N, = 128. The
parameters for Lévy models are given in Table 10.2.

Figures 10.1, 10.2, and 10.3 display the behavior of the option price & evaluated
by the proposed explicit scheme when the positivity condition (10.26) holds for
N; = 25€3 and when it is broken for N; = le3 represented by the solid and dot
curves respectively under several Lévy processes.

The aim of the next example is to show the variation of the error for the Variance
Gamma VG model as the stepsizes # and k change. The VG is obtained from the
CGMY model when Y = 0, the reference option values for S = {20, 30, 40, 50} are
obtained using the closed form solution given in [45].

Table 10.2 The parameters Model
for Lévy models used in
Example 10.1

Parameters

CGMY |C=05Y% =15 4 =25andY = 1.2945
Meixner |[A =0.5,a=—2.5and b =8

GH a=4,=-32,§=04775and A =2

The positivity condition for the CGMY mode

100 ‘ T T LI oo
The positivity holds
wwwww The positivity is broken

o 50t |
[0]
0
a
c
§e]
a
(@)
[0)
<
S i

-50 : ; ‘ ‘

90

Fig. 10.1 About positivity condition of the explicit scheme under CGMY process
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100 \

The positivity condition for the Meixner process

The positivity holds
The positivity is broken

50

The Option Price C

20

Fig. 10.2 The positivity condition of the explicit scheme under Meixner process

100 \

The positivity condition for the GH process

The positivity holds
The positivity is broken

The Option Price C

-9 10

20

30 40

S

50

60

70 80

Fig. 10.3 The effect of positivity condition on the option price under GH process

)
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Table 10.3 Errors and convergence rates for the VG model for several values of N,

S 20 30 40 5 CPU
N, |AE o AE o AE o AE o ins
32 (8909 —4 | — 1.926e —3 | — 3.742¢ —3 | — 4.386¢ —3 | — 1.84

64 |2.409¢—4 |1.89 |5.335¢—4 |1.85 [1.022¢e—3 |1.87 |1.181e—3 |1.89 | 4.63
128 [6.363e—5 |1.92 |1.413¢—4 |1.92 |2.710e—4 |1.91 |3.053¢ —4 |1.95 |10.85
256 |1.552e—5 |2.04 |3.698¢e—5 |1.93 [6.952¢e—5 |1.96 |7.603¢e—5 |2.01 |18.99

Table 10.4 Errors and convergence rates for the VG model for various values of N,

S 20 30 40 50 CPU
N. | AE B | AE B |AE B | AE B ins

12e3 | 2.16le—4 |— |4790e—4 | — |9243¢—4 — |1.15le—3 |— 4.06
2463 | 1.154e —4 |091 |2.552¢—4 |0.89 |4.883e—4 |0.92 6.049¢ —4 |0.93 | 7.28
4.8¢3 [5.883¢—5 [0.97 |1.304e—4 | 0.94 |2.519¢ —4 [0.95 3.072¢ —4 |0.98 |12.65
9.6e3 |2.916e —5 | 1.02 |6.462¢—5 |0.96 | 1.288¢ —4 |0.97 | 1.489¢ — 5 | 1.04 |20.37

Example 10.2 Consider an European option under the VG process with parameters
E=30,T=05r=01,¢g=0,0=025C-=Cyqy =11.718,4 = 15 and
M =25, Xmin = 0, Xmax = 90, M = 15, = 0.35.

Table 10.3 reveals the variation of the absolute error (AE) as h changes as well
as the spatial numerical convergence rate « and the CPU time while N, = 4.5¢3 for
the explicit scheme (10.23). The change of the error due to the variation of N, its
convergence rate 8 and the elapsed time are shown in Table 10.4 while N, = 128.

10.2.2 Positive Finite Difference Schemes for Partial
Integro-Differential Option Pricing Bates Model

The Bates model is considered one of the effective mathematical models that has
ability to describe the behavior of real markets of options usually of complex types
for instance, currency options. In the Bates model, the Heston stochastic volatility
model [35] and the Merton jump-diffusion model [46] are combined to describe the
behavior of the underlying asset S and its variance v [2]. The PIDE for the unknown
option price U(S, v, T) under Bates model is given by

v 1

_ us282U PU 1, PU
it 2

9
s g AE)S
a5z TPV asay T 20 Vg2 TU—a A0S

U

S (10.27)

U o
+ k(8 —v) o (r+ MU+ A/O U(Sn, v, 7)f (n)dn.
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and the density function f(n) is given by

_(Inp—p)?

f(n) = Janén expl—" .,

], (10.28)

where p is the mean of the jump and & is the standard deviation. For the European
call option we consider the initial condition

U(S,v,0) = g1(S,v) = max{S — E, 0}, (10.29)

where E is the strike price. We assume the boundary conditions applied to the Heston
model, see [20], but modified for v = 0 due to the additional integral term appearing
in Bates model. For the boundaries § = 0 and § — oo one gets

U
U,v,7) =0, lim S,v,7) =1. (10.30)
S—o0 08

Note that this last condition means a linear behavior of the option price for large
values of S with slope 1 when no dividend payments are considered, g = 0. Based
on that fact, we replace it by the following condition, see [66, Chap. 3, p. 54]

U(S,v,7) = e 7°S. (10.31)

For v — oo and v = 0, the corresponding boundary conditions are imposed as
follows

lim U(S,v,7) = S. (10.32)
V—>00

aU(S, 0,7)=@0r—q— )LE)SBU(S, 0,7)— (r+A)U(S,0,7) + k6 BU(S, 0,7)
at as v

(lngo—lnS—ﬁ)z]dfp

10.33
262 @ ( )

/’\’ o0
+ U(p, 0, 7) exp[—
Jars /0 (¢,0,7) expl

where ¢ = Sn.

The model (10.28)—(10.33) has two challenges from the numerical analysis point
of view. Firstly, the presence of a mixed spatial derivative term involves the existence
of negative coefficient terms into the numerical scheme deteriorating the quality of
the numerical solution such as spurious oscillation and slow convergence, see the
introduction of [70]. Secondly, the discretization of the improper integral part should
be adequate with the bounded numerical domain and the incorporation of the initial
and boundary conditions.

Dealing with prices, guaranty of the positivity of the solution is essential. In
this chapter we construct an explicit difference scheme that guarantees positive
solutions. We transform the PIDE (10.27) into a new PIDE without mixed spatial
derivative before the discretization, following the idea of [10], and avoiding the
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above quoted drawbacks. Furthermore, this strategy has additional computational
advantage of the reduction of the stencil scheme points, from nine [22] or seven
[54] to just five.

We begin this section by eliminating the mixed spatial derivative term of (10.28),
inspired by the reduction of second order linear partial differential equation in two
independent variables to canonical form, see [31, Chap. 3] and [10] for details. Let
us consider the following transformation

x=polnS; y=polnS—v: wx,y 1) =e"™US, v, 1), (10.34)

where p = \/ 1 —p2%, 0 < |p| < 1, obtaining the following transformed equation

ow  prvo? ®w  Pw, 0w =dw
= ) 8 I(w), 10.35
0t 2 (8x2+8y2)+ 8x+ 8y+ ) ( )
with
o0
I(w) = )L/ wx+oplnn, y+ polnn, v)f (n)dn, (10.36)
0
where

§=op(— ;), §=opf - ;)—K(@ —vandf=r—g—2At (1037

For the sake of convenience in the matching of the further discretization of the
differential and integral parts of (10.35), we consider now the substitution

¢ =x+oplnn. (10.38)
Hence from (10.29) and (10.36) one gets

% —1(¢p—x 2
/_ Wi,y +m(¢—x).0)exp| ., ( o —u) dg,
(10.39)

A
I(w) =
) V276 po
where m = z. Note that from (10.34), we have y = mx — v.

The initial and boundary conditions (10.29)—(10.33) are transformed into the
corresponding conditions using (10.34) and (10.38).

w(x,y,0) = max{es — E,0}, lim w(x,y,7) =0, (10.40)
X—>—00
w(x,y,T) ~ exp [:ﬁ +(r—q+ A)r} , X —> 00, (10.41)

w(x,y, T) ~ exp |:ax,5 + (r+ )L)t:| , mX—y — 00, (10.42)
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d
af ~ aps "+ ok —xe>
A o0 -1 - 2
«/2710,00 / W@ mp = v.T)exp |:62 (¢Uﬁx N M) :| . v =0
(10.43)

From [27] a suitable bound for the underlying asset variable § is available and
generally accepted. In an analogous way, considering an admissible range of the
variance v, we can identify a convenient-bounded numerical domain Z = [S, S2] X
[V, V2] in the S — v plane. Under the transformation (10.34) as it is shown in [10]
the rectangle % is transformed into the rhomboid ABCD see [28]. In light of the
transformation (10.34) we use a discretization of the numerical domain where the
space step sizes h = Ax and hy = Ay = |m|h are related by the slope m = g. Here
we subdivide space-time axes into uniform spaced points using

xi=a+ih, 0 <i <N, yj =yo +jlmlh, i <j <N, +1i,
Vij = mx; —yj, " =nk, 0 <n <N,

(10.44)

where h = N , Yo = ma—vy, Ny = ”fm\Z‘ and k = T, Note that any mesh point

in the computat10nal spatial domam has the form
(xi,y) = (a + ih,mx; — vy + (j — i)|m]|h).

By denoting the approximate value of w at a representative mesh point P(x;, y;, t")
by W}, we implement the center difference approximation for spatial partial
derivatives. On the other hand the improper integral /(w) (10.39) is truncated into
[a, b], then the composite four points integration formula of open type has been
implemented using the same step size for the variable x as in the differential part.

Hence the corresponding finite difference equation for (10.35) is given by

WD = BWi o+ @ Wiy + G Wi+ g Wi+ v Wiy + AT

(10.45)
l<i<N,—1,i+1=<j<N,+i—-1,0<n=<N;—1,

where
k ~
Bij=1-— hz‘fzv”—(l alj),
~ kop | (2po—h 2 . =
Gij = 5y [( oo Vi + 5] 3 Gt + i)
o kop [ @po+h ~ z
aiJ = ;hp [( PO ) L. ] = (/z)haij — blj)a

~ ~
®ij = il [(\mm +9 - ) vij = 0p§ +’<9] = 3Gy — b+ &),

5 i
Yii = ol [( mlh vij + opk — "9] = 5 (Gl + by = T,
(10.46)
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SkhA

A= , (10.47)
24276 po
and the integral part is given by
Ny/5—1
Ji = Z (1 18i50+1 W51 5o 14— t 8ise+2Wsppn seqotjmi
£=0
+gi,5€+3W§z+3,sz+3+,’—i + 118i,5€+4ng£+4,5z+4+j—i) ) (10.48)

assuming that N, has been previously chosen as a multiple of 5. The weight function
gie 1s given by

-1 —x 2
gie = 8(xi, o) = eXp[ ~ (d)'z - M) } , 0= =N (10.49)
’ 20 op
The following theorem is established in order to guarantee nonnegative numerical
solutions such that

Theorem 10.3 [f stepsizes h and k satisfy
. 20 pv; o2 pv; P }
Cl. h=minf 2P o =12

C2. k<min|m¥, 2 ik
o 0%’ 3oplE]” KO f

then the numerical solution {Wl'f]} of the scheme (10.45) is nonnegative.

The numerical scheme (10.45) is written in a matrix form in order to study its
stability, see [28]. It has been shown that under the positivity conditions, the infinite
norm of the vector solution is bounded such that

W oo

<exp((r+A+A)7).
WOl p(( )T)

Establishing a conditional strong uniform stable scheme.

Example 10.3 The parameters are selected as follows 7= 0.5, E = 100, r = 0.05,
qg=0,0=0.05k=20,0=03,6 =035 u=-05A=02and p=-0.5
with a tolerance error ¢ = 107,

The boundary points a and b of the spatial computational domain are obtained
from [28], while v{ = 0.1 and v, = 1. Table 10.5 shows the variation of the RMSRE
for several values of the time step sizes, for fixed N, = 70 and N, = 35, with respect
to reference values computed at (Ny, Ny, N;) = (500, 146, 7000).

The variation of error due to the change of the spatial step sizes, while N; = 500
has been presented in Table 10.6.
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Table 10.5 The RMSRE for Nr RMSRE Ratio | CPU (S)

several values of N, 500 2485 < 10— | = .66
1000 | 1.322x 1073 |1.88 |6.94
2000 |6.429 x 107* [2.06 |7.28
4000 |3.296 x 107* | 1.95 |7.69
8000 | 1.569 x 10+ [2.10 |7.91

Table 10.6 The associated (N.,N,) | RMSRE Ratio | CPU (s)

RMSRE for different values " 5

of (N,, N,) (40,20) | 1.526 x 10 0.32
xs LVy

(60,30) |3.459x 1073 |4.412 | 1.83
(80,40) |9.271 x 107 |3.371 | 6.95
(100,50) |3.589 x 10~* |2.583 | 19.64
(120,60) |8.473 x 1075 |4.236 | 46.72

10.3 Front-Fixing Methods for American Option Pricing
Problems

American option pricing problem leads to a free boundary value problem, that is
challenging because one has to find the solution of a PDE that satisfies auxiliary
initial conditions and boundary conditions on a fixed boundary as well as on an
unknown free boundary. This complexity is reduced by transforming the problem
into a new nonlinear PDE where the free boundary appears as a new variable of the
PDE problem.

This technique which originated in physics problems is the so called front-fixing
method based on the Landau transform [41] to fix the optimal exercise boundary
on a vertical axis. The front-fixing method has been applied successfully to a wide
range of problems arising in physics (see Crank [18]) and finance (see [11, 59, 68],
etc.) In this section the front-fixing method combined with the use of an explicit
finite difference scheme avoid the drawbacks of alternative algebraic approaches
since it avoids the use of iterative methods and underlying difficulties such as how
to initiate the algorithm, when to stop it and which is the error after the stopping.

10.3.1 Front-Fixing Methods for American Vanilla Options

First of all, classical Black-Scholes model for American call option (10.50)—(10.53)
is considered. The option price C(S, t), where t = T — ¢ is the time to maturity,
with constant dividend yield ¢ is the solution of linear PDE of the second order

e 1 ,,0°C aC
= 0°§ Sz+(r—q)SaS—r

0 T, (0.
5 =08 C. S<S(x), 0<t<T, (1050
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supplied with the following initial conditions
C(S.0) =max(S—E,0), S¢(0) =Emax (r, 1) , (10.51)
‘ q

and the boundary conditions

C(S(r), 1) = S¢(r) —E, Sl_i)m P(S,7) =0. (10.52)

Since an additional unknown function Sy(7) is included in the free boundary
formulation, one extra condition is necessary. This condition is called smooth
pasting condition and requires that the slope of the option price curve at the free
boundary coincides with the slope of payoff function. Thus, for put option it is
presented as follows

aC

as (Sf(r),r) = 1. (10.53)

A dimensionless Landau transformation [41] is proposed as follows

_ S5
=7

lensf(t),
S

_ C(S, 1)

c(x, 1) N

50 (10.54)

The spatial variable x transfers the free boundary domain S < Sp(7) to the
fixed, but unbounded domain (0; co). In new coordinates (x, 7) the problem (10.50)—
(10.53) is rewritten in the following normalized form

, x>0, 0<7t<T,

(10.55)

de 1 ,9% o2 dc sp dc
or 27 8x2+(r_q_2)8x_r sp 0x
where s} denotes the derivative of sy with respect to 7. The new transformed equation
(10.55) is a nonlinear PDE on the domain (0, co) x (0, T] since sy and its derivative
are involved. The problem (10.55) is solved by explicit FDM.

Further, let us consider American call option problem with another dimensionless
transformation that allows to fix the computational domain as in [68] and to simplify
the boundary conditions like [66, p. 122],

S
x=1In 7(0)
S

_ C(S.t)-S+E

, c(x, 1) E

. sp(n) = (10.56)

Sp(7)
£
Using transformation (10.56) the problem (for call option) can be rewritten in
normalized form

dc  o*d*c o? N s;\ dc — 0. 0<r<T
= —|r—q- — rc — gsye r, x>0, T<T,
it 2 0x? 7= sf ] O0x 4 -

(10.57)
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with new initial conditions

1—e™ <
57(0) = max (r, 1) Loy =4 "¢ "=y, (10.58)
' q g(x). r>gq,
g(x) = max (1 — re_x, 0) . (10.59)
q

Analytical or closed form solution of the transformed problems (10.55) or
(10.57) does not exist. Therefore explicit and fully implicit FDMs are employed
for constructing effective and stable numerical solution.

The problem (10.57)—(10.59) can be numerically studied on the fixed domain
[0, Xpmax] X [0, T]. The value x4, is chosen big enough to guarantee the boundary
condition. The computational grid of M + 1 spatial points and N + 1 time levels is
chosen to be uniform with respective step sizes 4 and k:

max T
L S (10.60)
M N
x=hj. j=0.....M, t"=kn, n=0,....N. (10.61)

The approximate value of option price at the point x; and time t" is denoted
by ¢/ ~ c(x;,7") and the approximate value of the free boundary is denoted by
S ~ Sy (t"). Then a forward two-time level and centred in a space explicit scheme
is constructed for internal spatial nodes as follows

At =did + b + a5l +k(r—gSfe™), 1<j<M—1,  (10.62)

where
k(s AT AL AR A
n = —_ —_ h = s
A= e (0 + (r 1 2) )+ sy TN sy
b= L 0.63
—I—th—r, (10.63)
k ) Sn-l—l —_ Sn+l N
ay = o — r—q—a n)—" f =gy = !
212 2 2hS! 2hS)

Special attention is paid to study positivity and monotonicity of the numerical
solution as well as stability and consistency of the proposed schemes. Note, that
using expressions (10.63) it is easy to obtain that the constants of the scheme a,, b
and a; are positive for both cases: r < g and r > ¢ under following conditions

o? o? h?
h < , , k < , 10.64
=g rEat o2 + rh? (1069
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c(x,t)

Fig. 10.4 The function c(x, t) calculated by the proposed fully implicit method

Ifr=q+ “22 , then under the condition (10.64), coefficients a;, b and a, are positive.
Note, that these conditions are sufficient also for stability of the proposed explicit
scheme. The details of the stability and consistency analysis can be found in [12].

Stability conditions on step sizes for explicit methods have been found. The
implicit method is unconditionally stable, that allows to reduce computational time.
But, there exist additional calculations of the inverse Jacobian matrix on each
iteration. It has been shown that for the same step sizes the explicit method is ten
times faster than the implicit one. The solution of (10.57) calculated by the proposed
fully implicit method is shown in Fig. 10.4.

10.3.2 Moving Boundary Transformation for Nonlinear
Models

For the case of American options with constant volatility various front-fixing
transformations have been studied in [12, 40, 47, 58]. In this section an efficient
front-fixing method for a nonlinear Black-Scholes equation is proposed. Under the
transformation the free boundary is replaced by a time-dependent known boundary.
In the resulting equation there is no reaction term and the convection term is
simplified in a such way that the operator splitting technique is not required.
This ensured a single numerical scheme is suitable for the entire equation. The
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connection between the transformed boundary conditions with the transformed
option price and the free boundary does not require additional information.

The proposed formulation of the nonlinear problem allows the use of a versatile
numerical treatment. In this chapter an explicit Euler and alternating direction
explicit (ADE) method [21, 49] together with implicit methods are studied.

With the previous notation, nonlinear American call option pricing models may
be formulated as the free boundary PDE problem

ac 6% ,0°C

= & 2 + (r—q)S

c
v 279 —rC, 0=S<$(x), 0<t<T, (10.65)

0
as
where the adjusted volatility function is given by 62 = 62 (z, S, Css). Two nonlinear
models with different adjusted volatility functions are considered:

3s?
* Barles and Soner model: 6% = 0§ (1 + ¥ (e""a’S?Css)),
where a = ju+/yN, y is the risk aversion factor and N denotes the number of
options to be sold. The function ¥ is the solution of the nonlinear singular initial
value problem

1
* RAPM model: 2 = o} (1 +u (532C)3)’

W(A) + 1

) = 2 /AW (A) — A

A#£0, w(0)=0. (10.66)

Taking advantages of the Landau transformation [41] with modifications in the
exponential factors like those described in [10], it is possible to remove the reaction
term and partially the convection term by using the transformation given below.

S T S
x = =0T $10)’ V(x, ) = eE C(S.7). sp(1) = fg). (10.67)
Using transformation (10.67) the equation (10.65) takes the form
o? s
ve=" AVt Txv, 0<x<e™97 0<t<T, (10.68)
Sf

where
02 = 0% (1,x, Vi) = 5%(1, S, Css).

Note that the transformation described in (10.67) transforms the original free
boundary value problem to a known moving boundary problem. In the case r > ¢
the computational domain increases with respect to time, otherwise it decreases.
The numerical solution of the transformed problem can be found by explicit, ADE
and implicit methods.

In Table 10.7 the results and comparisons are presented. Since the domain is
changing in time and is covered by an equidistant grid, the spatial step size %, is
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Table 10.7 Root Mean ho 0.08 0.04 0.02 0.01
Square Error (RMSE) with —
respect to CPU-time for Explicit method
different step sizes ho and RMSE 0.04984 | 0.02629 0.01232 0.00464
fixed k = 0.0001, published CPU-time, s |15.810 27.566 51.476 99.434
in [26] ADE method
RMSE 0.16816 | 0.08172 0.02099 0.00620
CPU-time, s |15.129 27.776 53.865 104.247
Implicit method
RMSE 0.04984 | 0.02355 0.00958 0.00445
CPU-time, s | 34.099 60.030 112.728 257.880
Newton-like method
RMSE 0.11376 | 0.06026 0.01389 0.00471
CPU-time, s | 33.869 58.141 107.561 315.505

We acknowledge the permission of Taylor & Francis Ltd (http://
www.tandfonline.com)

varying in time. The time step is fixed at k = 0.0001 to guarantee stability of all
numerical solutions. For the implicit method the tolerance was chosen as € = 107,

Note that the main part of the computational time is pertained for the calculation
of W(A). For the implicit methods it has to be calculated on each iteration of
Newton’s method. Thus, their computational costs may be noticeably reduced by
choosing another model. The details of the proposed methods can be found in [26].

10.3.3 Front-Fixing Method for Regime-Switching Model

An American put option on the asset S, = § with strike price E and maturity 7 < 0o
is considered under regime-switching model. Let V;(S, t) denote the option price
functions, where t = T — ¢ denotes the time to maturity, the asset price S and
the regime o, = i. Then, V;(S.t), 1 < i < I, satisfy the following free boundary
problem:

v, o 3%V, Vi
R S N l—i"i‘i‘g a(Vi=Vy), S§>5/(0).0 =T,
0t 2% s T g T z;é,‘lz(v, Vi) > 5 (0).0<7
(10.69)

where S (1) denote optimal stopping boundaries of the option. Initial conditions are

Vi(S,0) = max(E —S,0), Sf(0)=E, i=1,....,I (10.70)
In spite of the apparent complexity of the transformed problem due to the appear-
ance of new spatial variables, one for each equation, the explicit numerical scheme

constructed becomes easy to implement, computationally cheap and accurate when
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one compares with the more relevant existing methods. Implicit weighted schemes
have been developed for the sake of performance comparison.

Based on the transformation used by the authors in [11, 68] for the case of just
one equation, the following multi-variable transformation is considered

X =1In . 1<i<L (10.71)

Note that the new variables x' lie in the fixed positive real line. The price V; of
i-th regime involved in i-th equation of the system and i-th free boundary are related
by the dimensionless transformation

: Vi(S, \Y
Py = "D x5 i (10.72)
E E
Then the value of option /-th regime appearing in i-th coupled equation, [ # i,
becomes P;;(x', 1) = V’(I‘;’”.
Since from (10.72), Vi (g’t) = Pl(xl ,7) and taking into account transformation

(10.71) for indexes i and / one gets that
P, 1) = Pi(, 1), (10.73)

and it occurs when the variables are related by the equation

X;
@ ii<r (10.74)

/ ;
X =x+1n , <il=
Xi(7)

From (10.71) to (10.73) the problem (10.69) for 1 <i < I takes a new form

BPi : _ O'i2 azPi

97 ', 7)) = 2 90y (', 1) — riPi(x', 7)

o2 Xi(v)\ 9P
2 X,(‘L’))

1) + (ri— Pt .
ox!

+ Zqﬂ(Pz,,-(x", 1) —Pi(x,1)) =0, x>0, 0<7<T.
I£i

(10.75)
PDE problem (10.75) is solved by the explicit FDM. Let us denote u;; ~
P;(x;, t") the approximation of P; in i-th equation at mesh point (x' = x;, T = 1)
and i) ; ~ Py;i(x;, ") be the approximation of P; in i-th equation evaluated at the
point (x' = x;,7 = t"). The discretization of the transformed optimal stopping
boundary is denoted by X' ~ X;(r"). Then an explicit finite difference scheme can

be written in the form

k 2 K2 > T e 2h

n+1 _ n 2 N N n 2 n+1 n n —uy
Uy ; Wij O Wijty 2uiJ+ui,j_1 " (r'— 0; X =X\ Ui — Ui
- 1
— s+ Y gl —ul),
I#i
(10.76)
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where
X"
iy ~ Pri(x;, t") = P (xj +1In th’.[n) ’
I

X"

are obtained by linear interpolation of values uj; at the point x; + In i, known from
K 1

the previous time level n.

We have studied the stability of the proposed explicit scheme following the
von Neumann analysis approach originally applied to schemes with constant
coefficients. However, such approach can be used also for the variable coefficients
case by freezing at each level (see [61, p. 59], [24, 34]).

In order to avoid notational misunderstanding among the imaginary unit with
the regime index i used in previous section, here we denote the regime index by R.
An initial error vector for every regime gg, R = 1,...,1, is expressed as a finite

complex Fourier series, so that at x; the solution u}; can be rewritten as follows

up;=gpe”. j=1... . M—-1,R=1...I (10.77)
where i = (—1)!/? is the imaginary unit and @ is phase angle. Then the scheme is
n+1
stable if for every regime R = 1, ..., [ the amplification factor G = g’;n satisfies
R
the relation
|Gr| <1+ Kk =1+ 0O(k), (10.78)

where the positive number K is independent of 4, k and 6, see [60, p. 68], [61, p. 50].
After some manipulations, one gets

sin 0
G| ‘1 = = Ak 0)] + ok
where C(n) = g’g,ﬁ”) |gr.r| is independent of 6, i and k and depends only on the
index n.
2
5 oksin® §

sin® @ o2\’ o?
+ ((r— 2) k2—2k(r— 2)+1 .
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Thus, in agreement with (10.78) the scheme is stable, if

ok ((r—g)= ) —o* <0,
> (10.79)
((r— "22) + (r—q)az) k—2r<0o.

Summarizing the following result can be established:

Theorem 10.4 With previous notation the scheme (10.76) is conditionally stable
under the constraint

h? 2
k < min 'R

’ 10.80
T asest | of + (rr — qrR)M? ( ( )

2\ 2
TR — UZR) + (rr — qrR)0R

Stability conditions on step sizes are found and proven by numerical experiments
(see Figs. 10.5 and 10.6). Consistency of the proposed scheme is studied in [25].

""""" Regime 1
Regime 2

Optimal stopping boundary

0 0.2 0.4 0.6 0.8 1
Time to maturity

Fig. 10.5 Optimal stopping boundary for regime 1 and regime 2 (stability condition is fulfilled)
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Fig. 10.6 Optimal stopping boundary for regime 1 and regime 2 (stability condition is violated)

10.4 Rationality Parameter Approach

Recently, in [30] a new nonlinear BS model that takes into account irrational
exercise behaviour is proposed. We confirm numerically that the solution of the
irrational problem proposed in [30] for large values of rationality parameter tends
to the solution of the rational American option problem. This technique has been
successfully applied to a regime switching model described in previous subsection.

With the previous notation, let (f*);-o be a family of positive deterministic
intensity functions. For each A > 0, let the stochastic intensity process be given
by

ul = ((E=S)T —P1S)).

where P*(1,S,) = P*(t,S;; t*()) and T* (1) is the exercise strategy of the American
put given as the first jump time of a point process with intensity u*. Let vy (x) =

1 (x<0) SUpy <, fA () + 10 SUPy> fA (v) and assume that
e 11(04) > 0 as A — oc.

e There exists a function € : (0,00) — (0, 00) such that vy (—€(1))) — 0 and
€M)y (0—) > 0as A — oo.

Then A is a rationality parameter in the sense that for every ¢ € [0, T] we have that
P*(1,S,) tends to PA(t, S;) when A — oo. Moreover, if f* is increasing then f* = v;.
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We first consider the two cases proposed in [30] and we additionally propose two
alternative expressions:

A, forx=>0,

) = Aer™. (10.81)
0, forx<O; 2 (

fle) = §

We have proposed two intensity functions that are the smooth analogue of the
stepwise function (10.81):

21 2
Ay Ay 2
)= | 4 ety i) =21 (1 + N arctan A x) . (10.82)

This irrational behaviour model of the American put option is studied and solved
numerically in the following subsection. Then we apply this approach to model of
the American option under regime-switching.

10.4.1 Irrational Behaviour Model of American Put Option

The following nonlinear Black-Scholes equation in the unbounded domain 2 =
(0, 400) x (0, T) is considered (sub-index and super-index of f are skipped):

P aZS2 9P

op
ge = 25 g TO—DS , —PH (E=S)" =P) (E=5)" —P). (1083)

when § — 0, the standard condition for American options, P(0,7) = E, is no
longer valid in the irrational case, as prices bellow exercise price may occur due
to irrational exercise, which is more evident when the rationality parameter tends
to zero. The typical boundary condition for European options P(0,t) = Ee™'" is
not consistent with the equation for A — —o0, as the solution converges to the
one of the rational case of American options. Since Eq. (10.83) is nonlinear and
describes option pricing with rationality parameter, a new boundary condition has
to be established. Therefore, we propose to pass to the limit in Eq. (10.83) when
S —0:

ZI; (0,7) = —rP(0,7) + f(E— P(0,7)) (E— P(0,7)).

The previous equation allows to adapt the option price when S = 0 according to
rationality of the holder.
We introduce the new variable

P(S, 1)
E

S
= 1 N N =
x=1In E u(x, 7)
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Then the original problem is transformed to the following problem for x € R:

u o2 d%u a2\ du ) )
ot 2 02 +(’_q_ 2) ax—ru+f(E(1—e)+—Eu)((1—e)+_u),
(10.84)

For the transformed problem the numerical solution is constructed by the explicit
FDM.

In the previous notation, let us denote u; ~ u(x;, ), then the explicit finite
difference scheme can be written in the form

U = byl 4+ bl + bl + K, =1, Ne— 1, (10.85)
where
) o2 k o2\ k
_ o — ’
T 1= 5 ) o
by, =1 2 k k 1
p=l—(0® , +rk), (10.86)

Note that under conditions

o? h?
h < , k< , k<k,i=1,...4, 10.87
r—q—”; o2 + rh? =k, 1 ( )

where depending on the chosen rationality function

1 1 1 1

T A T (4 deire) 42 r+A+ 2
(10.88)

the coefficients by, b, and b3 defined in (10.86) are positive and rationality term
k||f"|| is bounded.

In order to study the stability of the scheme we first choose the minimum index
m, such that #*! = ||u"*!||. Note that if m = 0 or m = N,, then the scheme is
stable by the definition.

Suppose for the index 1 < m < N, — 1, then taking into account that all
coefficients are positive, one gets

3 =

ki 4=

iy, | = b1,y + bauy, + bauy, oy + Kf| < (1= rk)|[u"|] + Kl
The connection between (n + 1)-th and n-th level is obtained:

e ] = up < (|| -+ KL (10.89)
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Fig. 10.7 Numerical solution for the intensity function belonging to family f> (10.81) for various
values of A

Therefore, under conditions (10.87), the scheme (10.85) is stable.

Assuming that u(x, 7) is continuously differentiable four times with respect to x
and twice with respect to t and following the procedure of consistency study, one
finds that the truncation error behaves

T (@) = O(h*) + O(k).

The aim of this part of work is to study numerically the rationality parameter
approach and to prove the convergence of the solution to American option price
with growing rationality parameter A, that is presented in Fig. 10.7.

10.4.2 Rationality Parameter Approach for Regime-Switching
Model

For an intensity function f : [—E,E] — [0, 00) in the regime switching setting
we assume that the relation between the profitability and the stochastic exercise
intensity is f((E — S)™ — V;(S, 7)) for each regime. After incorporating this term to



198 R. Company et al.

the system of PDEs satisfied by the option price in describing the regime switching
model (10.69) one gets fori = 1,...,1,

v, o* 9%V, oV
1:lS2 i iS l_iVi E—S+—Vi E—S+—Vi
gr 2 g5 TP gs T +f((E=-S9) ) ((E—=5) )
+Z%’,Z(V1—Vi), $S>0,0<t<T.
I#i

(10.90)

In order to construct an effective FDM with constant coefficients in the differen-
tial part, let us introduce the following normalized transformation

S V(S 0)

x=In _, u , i=1,...,1
E E

Then, problem (10.90) takes the following equivalent form:

du;  of Pu ( al-z) u;
ri —

- 2 ) ox

9c = 2 952 — i+ Y qia(u — )
i

(10.91)
+f(EQ—e)" —Euw) (1-eHY —w), i=1,....1

The resulting nonlinear system of PDEs is solved by a weighted FDM, also
known as 6-method. In order to avoid the need of an iterative method for the
nonlinear system, the term with rationality parameter and the coupling term are
treated explicitly. Next, the resulting linear system is solved by the Thomas
algorithm. Stability conditions for the numerical scheme are studied by using the
von Neumann approach.

Consistency of the 8-scheme for the PDE system is established and the truncation
error takes the following form

2.
T!Gi) = (1— 29)k2 ”; (g, ") + 0% + OW?) Vi=1,...,IL
T

Numerical experiments illustrate the efficiency and accuracy of the proposed
method. In order to find computational convergence rate, a series of numerical
results has been provided with fixed time step and various spatial steps h. The
convergence rate y;, has been calculated by formula

|Unj2 — Unll

, (10.92)
2| Upya — Unpall

yn = log

for the proposed scheme with § = 0, 0.5, 1. The results are collected in Table 10.8
showing the expected orders for the approximation with A = 10° and various
intensity function families.
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Table 10.8 Convergence
rate in space of the proposed
6-scheme for A = 10°

Regime 1 Regime 2
0 |0 0.5 1 0 0.5 1
f1 12.0084 |2.0003 |2.0007 |2.0143 |2.0004 |2.0015
f» 12.0083 |2.0003 |2.0005 |2.0142 |2.0007 |2.0013
f3 12.0079 |2.0002 |2.0001 |2.0156 |2.0005 |2.0004

Table 10.9 Convergence
rate in time of the proposed
6-scheme for A = 10°

Regime 1 Regime 2
0 |0 0.5 1 0 0.5 1
fi |1.0013 | 1.7795 |1.0007 |1.0013 |1.8889 |1.0010
f» | 1.0009 |1.7802 |1.0007 |1.0009 |1.9017 |1.0007
f3 | 1.0010 | 1.8543 |1.0001 |1.0010 |1.8943 |1.0000

An analogous formula can be used in order to estimate the convergence rate in
time, v, for a fixed space step h:

U2 — Ukl

. (10.93)
|Uksa — Uk2||

vk = log,

The convergence rates y; of the proposed method for various intensity function
families (10.81) and (10.82) are presented in Table 10.9. The numerical convergence
rate are in agreement with the theoretical study of consistency.

10.5 A Semi-Discretization Technique for Multi-Asset
Option Pricing Problems

10.5.1 Removing Transformation Techniques for Multi-Asset
Option Pricing

This section mainly covers removing the cross derivative terms in the formulation
of an option pricing problem where the exercise value depends on more than one
risky asset.

Basically the techniques for transformations aim at constructing the correspond-
ing PDE with constant coefficients and also at removing the mixed derivative terms
from the structure. Each of these transformations have some pros and cons.

The merit of transformations for removing the cross derivative terms is that
the re-constructed PDE is easy to handle numerically since it has fewer number
of terms which obviously ends in fewer mesh nodes in stencil in contrast to its
non-transformed version. Furthermore, it may avoid the oscillation and spurious
behaviors [39, 50] of the numerical solutions in the presence of mixed derivatives.
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A transformation of spatial variables based on obtaining the canonical form of the
second order PDE [31] can be used for the two correlated assets problems.

Technically speaking, it should be noticed that enforcing any types of transfor-
mations would change the initial and boundary conditions for the Black-Scholes
multi-dimensional PDE problem.

In this section, we handle the new boundary conditions in order to obtain accurate
and stable numerical solutions.

Considering a system of stochastic ordinary differential equations for an option
pricing problem with two state variables, the authors in [38] used a transformation
(with the Itd lemma and standard arbitrage arguments) that makes the instantaneous
standard deviation of each to be constant. To be more precise, they suggest that a
transformation be carried out to diagonalize a correlation matrix (tensor) in order to
remove the cross derivative terms. This corresponds to a stretching and rotation of
the coordinate system.

In the well-known stochastic volatility model (Heston model) [35], two space
variables are existed in the presence of a cross derivative term. Such models
are basically in the form of a the partial integro-differential equations (PIDEs)
while they do not endure the pitfall of not capturing features like heavy tails and
asymmetries observed in market-data log-returns densities unlike the normality of
the log returns considered originally by Black-Scholes.

In [10], the authors applied two transformations in order to remove the reaction
term and the cross derivative term from the Heston model and construct an elliptic
form of it which is defined on rhomboid domain but with fewer terms which yielded
to the construction of a stable and accurate numerical scheme.

One of the state-of-the-art techniques to remove the cross derivative terms is
the use of eigenvalue decomposition [43, 52] which is also an algebraic transfor-
mation. In this technique, the eigenvalue decomposition of the diffusion matrix is
constructed and used for deriving the multi-asset option pricing PDE without mixed
derivative terms. We recall that the diffusion matrix in a multidimensional second
order PDE is a symmetric matrix containing the coefficients of the second order
derivatives in the PDE.

The multi-asset Black-Scholes PDE is expressed as follows [23, 62]:

w1 g rv Y v
= 1A SlS - iS[ - V, .
G =5 D P00 fas,-as,.+z(’ a)Sige — 7 (10.94)

ij=1 i=1
where T, V, S;, q;, r, 0; p are the maturity, the value of the option price, the i-th
asset, the constant dividend yield of i-th asset, risk-free rate, the i-th volatility, the
correlation parameter, respectively, while t = T —rand p; = 1, pj = pji, i # J,
and

[l < 1. (10.95)
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The mixed derivative terms appearing in (10.94) show the correlation among the
prices of the assets S;.

The logarithmic transformation [8] could transform the multi-dimensional PDE
(10.94) into a PDE with constant coefficients as follows:

log S;
w= o0 1sisM, (10.96)
Oi
with V(S.7) = W(X, 7), where X = (x|, x2.....xy) ", and we may achieve
W1 PW o2\ 1w
= if —q; — 1 _ W7 )
it 2%21 Pi sy T ; (r g- ) i (10.97)

Note that for a M-dimensional Black-Scholes PDE, the number of cross deriva-
tive terms is

;(M — M. (10.98)

This evidently shows that by increasing the number underlying assets, the number
of mixed derivative terms gets bigger which could cause several certain issues in the
process of solving (10.94).

Apart from the appearance of instability and inaccuracy due to the presence of the
cross derivative terms mentioned above, the number of stencil nodes or matrices that
must be filled and computed in the development of the numerical schemes would be
higher and subsequently relinquish further computational burden [67].

Here the main objective is to remove the mixed derivatives so as to reduce
unsuitable instability drawbacks for the (10.94). Essentially, this may be pursued by
applying transformations. This new transformation is different from the eigenvalue
transformation and it is based on LDLT factorization.

Toward this goal, let us consider the symmetric positive semi-definite correlation
matrix [55]:

R = (pj)i<ij<m, (10.99)

as the diffusion matrix corresponding to the PDE (10.97). Accordingly, in this
section we present a general way by means of an easy to implement transformation
based on Gaussian elimination and pivoting strategies [37] to remove the cross
derivative terms.

Let us first recall the definition of the LDLT factorization in what follows. If
R be a symmetric positive semidefinite matrix in R”*™_ Then, there exists a unit
lower triangular matrix L and a diagonal matrix D = (d;) in RM*™ with d; > 0,
1 <i < M, such that [33]:

R=LDL". (10.100)
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Generally speaking, if the matrix R is only positive semidefinite, then (10.100) is
not valid, but when R is positive definite then it is unique.

Here in order to have stable computation of this factorization [36], basically
a permuted version of (10.100) on the matrix R should be performed, viz, this
permuted factorization could be written as comes next:

PRP" = LDLT, (10.101)
where P is a permutation matrix, |/;| < 1 and
di1 >dy >-+>dy > 0. (10.102)

Now in order to remove the cross derivative terms in the parabolic second-order
constant-coefficient PDE (10.96), we take into account a linear transformation as
follows:

Y=CX, C=(cj)i<ijems (10.103)

where C is the matrix that should be computed such that the mixed derivative terms
get vanished.
Now by applying (10.103), the PDE (10.97) reads

w1y PU L (r—qi—0}/2\ U
_ iR T J ” _ U, X
5, =5 2. (€ c,)ayia»ﬁZ( . iy, (10.104)

ij=1 ij=1

where U(Y,t) = W(X, t) and ¢; = (c;j1, cin, - -+ , cing) 18 the ith row vector of matrix
C. Here, ¢; denotes the ith row of matrix L™!P:

¢ =(L'P),. (10.105)
Using
L 'PRWL'P)T =D, (10.106)
we obtain
ciRe) = {2;’ ;ij (10.107)

Hence, Eq. (10.104) becomes:

M M

w 1¢ U (r—gq;—07/2)cy \ dU
= > @), +y (X / —/U. (10.108)
dt 2 i=1 dy; i=1 \ j=1 Oj 8y,~
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Here we remark that the discussed transformation based on the permuted
Cholesky factorization has several upsides from the computational cost and stability
points of view, but it is not the only way to eliminate mixed derivative terms. In fact,
if one uses the standard diagonalization transform of

R = FDF™!, (10.109)
even when F~! = FT is available, the transformation
C=F", (10.110)

also transforms Eq. (10.94) into a PDE without cross derivative terms.

Example 10.4 In this experiment, we consider the general multi-asset option
pricing problem (10.94) with M = 7 underlying assets, where the correlation matrix
R is given by

1.00 —0.65 0.25 0.2 0.25-0.05 0.05
—-0.65 1.00 0.5 0.1 0.25 0.11-0.016
0.25 0.5 1.000.37 0.25 0.21 0.076
R = 0.2 0.1 0.371.00 025 027 0.13 ], (10.111)
0.25 0.25 0.250.25 1.00 0.14 —0.04
—-0.05 0.11 0.210.27 0.14 1.00 0.19
0.05 —-0.016 0.076 0.13 —0.04 0.19 1.00

with the parameters

o = (o1,...,07) = (0.25,0.35,0.20, 0.25,0.20, 0.21, 0.27), (10.112)
r = 0.045,T = 1 year, and

q=(q1,-..,97) = (0.05,0.07,0.04,0.06,0.04, 0.03, 0.02). (10.113)
Applying the factorization (10.101), (10.96) and (10.103), one gets

D = diag(1.000,0.998, 0.960,0.907,0.861,0.787,0.00786). (10.114)
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Subsequently, the transformation matrix which is a lower triangular matrix can be
expressed as:

1.000 0 0 0 0 0 0

0.050 0 0 0 0 1.000 0

—0.060 0 0 0 0 —0.190 1.000
C=L"'"P=|-0260 0 0 0 1.000 —0.170 0.085

—0.210 0 1.000 0 —0.170 —0.190 —0.036
—0.110 0 —0.270 1.000 —0.130 —0.190 —0.074
0.900 1.000 —0.680 0.021 —0.330 0.120 —0.017

(10.115)

Now, the corresponding problem (10.94) is transformed into the following compact
notation form

wu 1
5. = ,(PV) VU +(CQ) - VU = U, (10.116)
T
il a il T T
where V.= (00,0 ) LUV 0) = V(S and Q = (01, 02, Oun) -

The interesting point is that the original multi-asset PDE with 37 terms has now
been re-constructed into one with only 16 terms.

In the rest of this section, we discuss the cases when the diffusion matrix is
symmetric possibly indefinite. This would be practical in the general case of solving
PDEs with cross derivative terms [42]. Let us consider the equation

M

Ya ”ax +Zb e =0, (10.117)
ij=1 i0
where A = (a;j)1<ij<m is a real symmetric matrix, b = (by,... ,by)T € RM and

ceR.

In this case, the matrix A could be indefinite. So, the factorization (10.100)
breaks [37] but we may use an alternative as discussed below which is called as
Bunch-Kaufman factorization [5]. This approach does not always provide a diagonal
factorization of A, but only a block-diagonal matrix B with 1 x 1 or 2 x 2 diagonal
blocks such that

PAPT = LBLT, (10.118)

where the permutation matrix P provides a partial pivoting strategy. Thus, one gets a
more efficient method than other diagonal pivoting strategies as complete pivoting.
In this way, only a part of mixed derivative terms are removed. However, with the
use of eigenvalues decomposition on the final 2 x 2 block, we may remove all the
mixed derivative terms and obtain a corresponding PDE without such terms.
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The next example is related to multi-asset cross currency option pricing [38,
Chap. 29] with indefinite sample correlation matrix.

Example 10.5 ([67]) Consider Eq. (10.94) for M = 3, with indefinite sample
correlation matrix

1 3 9
3 10 190
R=[31) (10.119)
9 9 1
10 10

Using Bunch-Kaufman strategy, one gets the transformation matrix C and the
resulting matrix B,

1 00
C=L"'P=|-3 10]. B = diag (1,91/100, —16/65) = D.
9 9
13 131
(10.120)

Hence, the original partial differential equation is transformed into a new one
without cross derivative terms.

10.5.2 Stability and Numerical Example

Options with multi assets are based upon more than one underlying asset, unlike
the well-known standard vanilla options. In this situation, due to the curse of
dimensionality which is of exponential growth, the complexity of the problem grows
when the dimensionality increases. That is to say, the number of unknowns for
solving the corresponding PDE simultaneously grows exponentially [63].

One of the main restrictions here in the process of solving a multi-asset option
pricing problem is that the mixed derivative of the solution has to be bounded and
its presence could cause instability and further computational burdensome.

Efficient pricing of American and European options that are dependent on more
than one asset is discussed in this section. The holder of a multi-asset contract has
the right to buy a set of assets if the conditions are profitable which is known as a
basket of assets.

To formulate this problem, we may choose S = (S, ...,Sy) to be the vector
consisting the asset prices, where M is the number of assets in a portfolio while
P(S, 7) is the value of the option pricing.

This class of basket options (for put) can be described by a general equation for
the contract function [48]

M +
P(S.0) = (E—Za,-S,-) , (10.121)
i=1



206 R. Company et al.

where E is the exercise price of the complete basket and «; are the percentages in the
set of assets. The option price P(S, 7) is the solution of the following PDE problem

M 92p
= 0ii0;0iS:S + (r— ql)S —rP + F(P),
2 ,-:%::1 T 0 08, Z i (10.122)

$i>0, i=1,....M, O0<t<T,

where o; is the volatility of §;, p;; is the correlation between S; and S, r is the risk
free rate, ¢; is the constant dividend yield of i-th asset and F(P) is the rationality
parameter term.

In the formulation (10.122), we applied the penalty approach [50] in order to
handle the American options by transforming the free boundary value problem into
a nonlinear PDE. In fact, due to opportunity to exercise at any time to maturity,
American option pricing problems introduce a free exercise boundary which is more
difficult than European options.

In this work, we consider the rationality term as follows [30]:

F(P) = A (P(S,0) — P(S,7))", (10.123)

which is a simpler version of the following general form

M +
F(P) = ( ZaS) —PS.0) |- (E—ZaiSi) —PS.0) |,
i=1

(10.124)
where f* (x) is an intensity function and A is a rationality parameter.
It is required to state that the boundary of a M-dimensional Black-Scholes PDE
in option pricing is the solution of the (M — 1)-dimensional problem while in infinity
they approach to zero. Furthermore, at each boundary S; = 0 we have

P(Sy,....8—>o00,...,7) =0. (10.125)

There are several approaches to value this option pricing problem in the presence
of multi assets using finite difference, finite element schemes and Monte-Carlo
method [32]. The most challenging issue in dealing with such nonlinear PDEs is
to control the boundedness of the numerical solution, i.e., stability of the numerical
scheme when the size of the discretized system gets bigger by considering higher
number of assets and nodal points for discretization.

As discussed in the second section of this chapter, another problem is the
presence of the cross derivative terms which cause instability and oscillation in the
process of solving (10.122) numerically. Thus, the objective of this section is to
address a numerically stable finite difference schemes for multi-asset American/Eu-
ropean option pricing problems based on the semi-discretization technique.
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The matrix involving the second order partial derivative terms, so called the
diffusion matrix, can be diagonalized by means of its orthogonal transformation.
This technique could be applied to remove the cross derivative terms as it has been
done in [43].

But in this section, we follow the suggested LDLT factorization given previously
in the second section so as to construct a corresponding nonlinear PDE without
mixed derivative terms.

In [69] a semi-discretized method has been applied for multi-asset problem under
regime-switching. In that work the spatial step sizes are fixed, and so the size of the
matrix A in order to obtain L-stability.

To keep going, we first do a same procedure as in the second section by obtaining
the corresponding PDE with constant coefficient and then the PDE without cross
derivative terms. Thus using the dimensionless logarithmic substitution

1 Si Psa
e twmS i m v =S, (10.126)
O; E E
where x = [xl,...,xM]T,we obtain

w1 I PV X v 1
- . 8.0 — V4 F(EV),
g =2, 2 p’axif?x/-Jr; o " ETED (10.127)

i=1j=1
xeR, i=1,....M, 0<t<T,

Ul-z
—qi—
o

Now by applying the linear transformation discussed before based on the LDLT
factorization of the correlation matrix [13]

.
where §; =

y=Di....omul” =Cx, Uy, 1) = V(x,1), (10.128)

where C = (Cif)l <ijem = L™, we can obtain the following simplified transformed
nonlinear PDE for multi-asset option pricing problem

w o1 v XL (HE U 1
= > D; ‘+Z > ey ayi—rU—i—EF(EU), (10.129)

i=1 i i=1 \ j=1

where the cross derivative terms have been removed. Under transformations
(10.126) and (10.128) the initial condition (10.121) takes the form

M +
U(y,0) = (1 - Za,-e”’x") , (10.130)
i=1
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where
_ T _ 1
X=[x,....,xy] =Cy. (10.131)

For dealing with the above time-dependent PDEs, one way is the method of lines
based on the semi-discretization with respect to spatial variables which results in
a system of (linear or nonlinear) ordinary differential equations in time with the
corresponding matrix of coefficients A.

Then semi-discretization of Eq. (10.129) is obtained by using the central
difference approximation for the spatial derivatives, resulting in the system of
(nonlinear) ordinary differential equations (ODEs) of the form

dujy,..ju _ 1 $ il 2Ujy,.. i T Ut i
dt 2 = " hl2
51' . bjtaedit 1 gm i1 eeedi— oM .
+ Z Z Cij 2h;

1
— M. jy T+ EF(E“/'L,...JM)’

which its stencil has only 2M + 1 mesh points in contrast to M> + M + 1 mesh
points based on the recent finite difference method given in [69].

To construct conditions for finding stable solutions, we first consider that for
i=1,...,M:

hi = Bih, (10.133)
D:: M
di="7 d=) d (10.134)
'Bi i=1
M
=) Sy (10.135)
j=1
1
a=-, (d + ri?), (10.136)
1 h
ayi= ), (di+ ﬁici)’ (10.137)

= ! d h (10.138)
a_; = o \ & ﬁjCL . .



10 Numerical Analysis of Novel Finite Difference Methods 209

The nonlinear system (10.132) with the boundary and initial conditions can be
presented in the following vector form

(@) = Au(?) + A ((0) —u(x) ",

u(0) = [u(0),.....uy(0)]T, (10.139)

M - + . .
where u;(0) = U(;.0) = (1 — Zi=laie"f"‘(‘f/’)) , wherein x;(§,) = (C'§;). is
the i-th entry of C‘lgi.

The entries of the matrix A are given by:

ap, giE.Q,jzl.,
at;, &, €82, j=i£1,
atm £, €2, j=ix[["Z/(N,+1),2<m<M,

0, otherwise.

(10.140)

Note that as the chosen artificial boundary conditions do not change with t, then
their derivative with respect to T are zero which motivates the appearance of zeros
in the corresponding rows of A.

Ifk = 1\{1 ,s0t" =nk,n=20,...,N;. Thus for full discretization we have [16]:

k
u(e™t) = (") + A/ & (u(0) —u(x"*+' — s))+ ds. (10.141)
0

n+1

Now, by replacing u(z"™" —s) by the known value u(z") corresponding to s = &,

we attain
k k
/ &M (u(0) —u(r"t' — s))+ ds ~ ( / eAfds) (w0) —u(@)t.  (10.142)
0 0

We use the accurate Simpson’s rule

k
/ Mds ~ kp(A, k) (10.143)
0

where g(A.k) = ! (1 +4eM 4 eAk) .

Denoting u" = u(t"), we get the final explicit scheme

't = Mut kg (A, k) (u° — u”)+, " =nk,n=0,...,N,—1. (10.144)
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This is the proposed explicit full-discretized FD method for solving multi-asset
option pricing problem which is stable under two conditions along spatial and
temporal variables.

Coefficients a—; and ay;, i = 1,...,M, depend on d; and ¢;, see (10.134) and
(10.135) respectively. If step size A is chosen as

d;
h < min , (10.145)

IsisM |c;]

then a—; and a4; are non-negative. This is the first condition on the step size
along spatial variable which could result in the positivity of the numerical schemes
after several investigations on the structure of the schemes using bounds on matrix
exponential and Metzler matrices.

Subsequently we may prove that ! < 1,0 <i < N, 0 < n < N; using the
induction principle. We remark that

u <1, (10.146)
and from (10.144) u;’“ is a function g; on the arguments ug, . . . , uy, given by
W = gl udy) = (), 0"+ KA (0(A, K)); (w0 —u) T (10.147)

And furthermore by the non-negativity of ¢* and ¢(A, k) one gets

0gi ..
- (eAk)U. — kA (p(A.k);. 0<ij<N. (10.148)
J

Finally, we attain the following bound for the temporal step size

h2

k . 10.149
S d+ (r+m (10.143)

Theorem 10.5 With previous notation under conditions (10.145) and (10.149) the
numerical solution 0" of the scheme (10.144) is non-negative and |-|| ., -stable, with
0"l < 1forallvalues of A > 0 and any time level 0 < n < N;.

In what follows, we try to investigate the robustness of the proposed approach
for solving several experiments in the presence of multi assets.

Example 10.6 The American basket call option of two assets is considered with the

following parameters [51]

o1 =0.12, 03 = 0.14, r = 0.03, p =03, g1 = 0.01, g» = 0.01, T = 0.5, E = 100.
(10.150)
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Table 10.10 Ameri'can Nodes Proposed method | HOC
basket call option price 12 12 | 3.18982 2.86247
comparisons
24 x 24 |3.35338 3.27894
48 x 48 |3.41344 3.35094
Table 10.11 Option price on KM (with
an equidistant grid of n P, P, rationality)
n X nx nnodes 11.4957 | 12.862 | 12.394
16 13.3457 | 13.150 |13.055
32 13.3272 | 13.221 |13.235
64 13.2470 |13.239 |13.241

Reference value (P) | 13.245

In the following table, we include the results at S = (100, 100) for A = 100,
various spatial step sizes 4 and corresponding k under the discussed conditions. The
numerical solution by high-order computational method of [51] is denoted by HOC
(Table 10.10).

Example 10.7 As anumerical example we consider the European basket call option
with no dividends and the following parameters (see [43, p. 76])

1
01 =03, 02 =035, 04 =04, r =004, py =05 = . T =1, E=100.
(10.151)

The spot price is chosen to be §; = S, = §3 = E. The reference value P,y =
13.245 is computed by using an accurate Fast Fourier Transform technique (see
[43, Chap. 4]). Since the considered option is of European style, penalty term is not
necessary and A is chosen to be zero.

The numerical results of the proposed method P, are presented in the following
table and compared with the sparse grid solution technique P; on an equidistant
grid of [43] and the method of [69] denoted by KM with rationality approach [30]
(Table 10.11).

As could be seen from the numerical experiments, the theoretical bounds for
the temporal and spatial variables are quite useful and necessary in solving real-
life problems. The transformations made the process of solving this type of options
quite easier and much more efficient. After spatial semi-discretization, the problem
is fully discretized. We could handle American/European put/call options.
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Chapter 11
Modified Barrier Penalization Method
for Pricing American Options

Miglena N. Koleva and Radoslav L. Valkov

Abstract We propose a modified interior penalization method which is applicable
to different types of American options. Further, we develop an efficient numerical
approach for solving the resulting nonlinear parabolic partial differential problem.
Numerical experiments illustrate the performance of the method.

11.1 Introduction

The pricing of early-exercise securities is important in quantitative finance because
these are the most widely-traded type of instruments on the derivative market.
The American-style option valuation is an illustrative example of an optimal
stopping time problem which could be further formulated as a parabolic variational
inequality.

Let S stand for the underlying asset price process, following a standard geometric
Brownian motion with volatility o and drift equal to the interest rate r while 7 is the
time to maturity. For computational purposes one must truncate the spatial domain
S € [0, 00) and introduce the far field boundary location S;,,x. We consider pricing
with the following conditions on the parabolic boundary:

V(Ss 0) = V*(S), V(Ovt) = VLs V(Smath) = VRv

where V;, > 0 and Vz > 0 are given constants. The American put is a classical
Stefan problem where the payoft is convex, continuous but nonsmooth.
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The option value with maturity 7 satisfies the parabolic variational inequality, cf.
e.g. [4]

1
LV(S,1) =V, — 20252Vgs — Vs +rV >0 L V(S,1) > V*(S) in (0, 00) x [0,T),
which could be written down as the following linear complementarity problem

LV(S,H) = A > 0,
V(S.1) — V¥(S) = 0, LV(S.1) - (V(S.1) — V*(S)) = 0.

LCP

From the complementarity condition
V>V 1>0, L-(V(S,0)—V*(S) =0
we infer for the Lagrange multiplier
A =max (0,4 + e (V= V)) (11.1)

for any sufficiently small (penalty) parameter ¢ > 0. Thus, we get to solve the
following nonlinear equation, equipped with the complementarity condition and
drawing analogies with the augmented Lagrangian method:

LV (S, ) — max (O, A+el(vF— V)) =0.

Superimposing infinite penalty when violating the constraint V(S,7) — V*(S) > 0
we may embed the LCP [1] in the family of the nonlinear equations

LV(S, 1) —max (0, ' (V* — V9)) = 0. (11.2)

The penalty method guarantees in an asymptotic sense the fulfilment of constraints
by including in the objective function an additional penalty term. If we consider the
upper bound on the multiplier A,,x we may state the following approximation, see

[4]:
LV*(S, t) — max (0, Amax + € H(VF = Ve)) =0.

There are, however, some issues with this approach since the early exercise
constraint is not strictly satisfied by the solution for fixed small € while the penalty
term is nonsmooth and unbounded. The following interior approximation aims to
tackle these drawbacks with C > rK for pricing the American put, cf. [6, 11],

eC

LVE(S, 1) — =
(5.1) Vete—(K=YS)

0 (11.3)
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where the general interior penalty method, applicable to any type of payoff, is

wesy— € o (11.4)
Vet e—-V>
Zhang and Wang [14] prove convergence of the penalized solution V¢ to the
solution of the underlying variational inequality V. However, a major issue with this
approach is its dependence on € and some vague parameter C, resulting in overall
lower accuracy and more Newton iterations per time level.

We therefore consider modifying this interior barrier method in order to enhance
the performance [8]. Let us set up the fully-discrete LCP in order to present our
considerations in a clear and concise manner. First, by the method of lines, we define
a smooth nonuniform spatial grid and approximate the spatial derivatives by second-
order finite difference formulas. After backward Euler time discretization with step
At we have to solve the following discrete linear complementarity problem for U" €
Rm—l

(I — AtAU" = U™ + Atg + AtA”
Am>0, U= U A"-(U"—-U°) =0,

where A € R"=DXn=1) stands for the spatial discretization matrix, g € R”~! is the
boundary information (assuming Dirichlet conditions on the elliptic boundary) and
A" € R™ 1 is the nonnegative auxiliary (multiplier) vector which satisfies

At = 0,A"
max( + At

! U — U")). (11.5)
The solution U™ of the discrete LCP is the saddle point of the Lagrange functional
AU A = ;(1— AIA)U" - U™ —b" - U" — AtA" - (U = U°), b" := U™ + Atg.
Let us now observe the following equivalence [12]
U'—U">0% elog(1+€ ' (U"-U") >0

and further we shall modify the Lagrange functional accordingly

AU", A" = ;(1 — AtA)U" - U" =" - U" — AtA" - (elog (1 + € (U" = UY))).
From the Karush-Kuhn-Tucker conditions we get the discrete LCP:

(I = AAU" — AA" Sy, = b" (11.6)

At=0, U= U0 A (U -U°) =0
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As a matter of fact, if we consider the fairly rough estimate for the multiplier A" <
rK in the put case we get the discrete interior penalty method (11.4):

K
(I— AU — A 06—,
Ur—U%+ ¢

Substituting U° = max(K—S, 0) with K—S as in Eq. (11.3) is a band-aid for the case

of put option to fix the accuracy and minimize the penalty term in the continuation
region where S > K, far away from the free boundary.

11.2 The Finite Difference Method

There are many papers using the penalty method for solving American options, see
[1,2,5-7,9-11, 14]. In this section we present a simplified version of barrier penalty
method (11.6), introduced in Sect. 11.1.

We consider the penalized problem which approximates the LCP for some
sufficiently small positive parameter €

1
Ve — 202S2V§S — 1SVE + rVE —g(S, V) =0, (S,1) € (0, Smax) X [0, T)&11 .

Ve(Sv O) = V*(S)7 V€(07 t) = VLs Ve(SmaXs t) = VR
with the penalty term

€A
S, Ve = . 11.8
8(S. V) = . by (11.8)
For given integers m and N we define Ar = T/N, " = nAt and the nonuniform
spatial grid

(U:{SO:O, Si-‘rl:Si+hivi:Os---sm_lsSm: max}y

where the discrete solution, computed on the mesh w is denoted by U = V¢(S;, 1").
Let us now write down the considered finite difference approximations of the first
derivative for h; = Siy1 — S;, hi = 0.5(h; + hi—1)

U —ur U — un hi U + hiUs"
Ut = i+1 l, U = i L—l7 Us)" = Si SL7
( S)z hi ( S)z hi—l ( S)l Zhl

where (Uy)}, (Ug)? are of first order and (Ug)}’ of second on a smooth grid. The
second derivative is further approximated as

(Uss)! = (U] — (Uy)?) /.
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After backward Euler time discretization of (11.7), (11.8) and application of the
maximal use of central differencing with flag y := H(o%S; — rh;) (H stands for the
Heaviside function), see Wang and Forsyth [13], we get the following system of

nonlinear equations forn =0,...,Nandi =2,...,m— 1:
i U;'H—l Le— Uo ’
U, = Vi, USp. 0"t = Ve, U(Si.0) = US) = V*(S).  (11.9)
U(H—l —_yr 252
Lup= 0 T =T W =S (U + (1= 0 (U ) + U

Next, on the base of (11.1), (11.5) we set the simple version of A:
Ai = max{0,L"U"}, i=1,....,m—1. (11.10)

Numerical experiments show that with this choice of A we attain similar precision
as with A", computed by (11.5), but for smaller computational cost.

We find the solution U"*! by initiating a Newton’s iteration process with initial
guess U® = U", where the Newton increment on the (k + 1)th step A*+D =
U%TD — U® is the solution of the following tridiagonal system of linear equations

k+1 k) 4 (1 k+1
_AiAE—l '+ Cf )AE )_BiAt('-H )

(11.11)
= U+ APY, - CUP + BUY, + FY.

where Ag = A, = By =B, =0, =¥ = 1,FY = v, FiY) = Vg and

Ai =yt (028 = grhi) . Bi = 35l (07Si+ xrhiza) + (1= 052,

(k) A At = _ (k) _ A At
C C + U(k)€+€_U?)2, C;=14A; + B; + rAt, Fi = Ufkf+e—U?’

The iteration process is terminated when reaching the desired tolerance i.e. we set
Ut = U**t) when max{|Afk+l)|/(max{l, Ui(kH)})} < tol.
1

At each iteration k, in view of the definition of y, the coefficient matrix M® =

tridiag[—A;, Cf , —B,], being strictly diagonally dominant and A;, C( ) ,B; > 0itis
an M-matrix.

Theorem 11.1 The approximate option value U}, obtained by the scheme (11.9),
(11.10) satisfy

ur>0 i=0,....,m, n=0,...,N.
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Proof We follow the same line of consideration as in [11]. Rewrite the scheme
(11.9), (11.10) in the following equivalent form

. . . . eAAL
(1+A;+Bi+rAnUt —B U AU = U+ U 4 e — 0 (11.12)

Letw/ = U" — U?. Thus, from (11.12) we obtain

EAAL

L+ A+ Bt r At Bl — At = wi
( W, i+1 i1 Wt 4

—A'UY. (11.13)

Define w"*! = minw/*! and let j be an index, such that w]'.‘+l = w"t! Fori = j,

from (11.13) we hlave

eAAL
(1+A; + Bi + ranpw™ = wi + Bw™ ' + Aw ™+ 0 — AU)
Wi + €
and therefore
nt1 n €AAL hy10
(14 ranw 2Wj+w;l+1+6_AtLUi'

Rearranging the above inequality, we obtain

eAAL

n+1
(4 ragwtt = 05

+ AtLhU;) > wj'»’ > w'.
€

We use induction method on #: taking into account that w9 > 0, assume that w* > 0
and prove w"*T! > 0. Now we have

AAt
FWt) >0, where F(w) = (1 + rAw— © oAy,
w €

Observe that

F(0) = —At(A — L"UY) = A«(L"U? — max{0, L"U?}) =

0, ifL"U" >0,

At
LYY, if LMY < 0,

ie. Z(0) <0.
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Further, from

eAAL

F'(w) =1+ rAr+ W+ e >

and .Z (Ww"*1) > 0 we conclude that w"*! > 0.
For the discrete scheme (11.9), (11.10) we develop a two-grid algorithm TGA

[7].
Let us define two non-uniform spatial grids—a coarse mesh w, and a fine grid
of

O)CZ{SOZO, Sit1 =Si+h;, i=1,....m.—1, Sml. :Smax}a
wr=1{So=0, Sp1 =Si+hl,i=1,....m—1, Sp, = Smax},

where my >> m,. and the discrete solution, computed on the mesh w4 is denoted by
Ui, = U(S, 1).

Algorithm 2 (TGA)
At each time level n = 0, 1, ... we perform the two steps:
1: Set UC(-O) := U’ and compute U:,’Jrl by (11.9), (11.10) through Newton’s iterations (11.11) on
the coarse mesh w..
2: Set U;O) =1 (U:,’"'l), where I(U,) is the interpolant of P, on the fine grid, perform only one

Newton’s iteration (11.11) on the fine mesh w; and get Uj" +1

11.3 Numerical Experiments

We consider an American butterfly option with the payoff
V*(S) = max{S — K;,0} — 2 max{S — K} + max{S — K>, 0},

where K, K = (K; + K3)/2, K5 are the strikes and V;, = Vx = 0. The model
parameters are: K; = 90, K, = 100,0 = 0.2, = 0.1, € = 1.e—6. We will test the
relevance of the modified penalty method (11.9), (11.10) and the accuracy, order of
convergence and efficiency of the constructed TGA.

The linearized system (11.11) is solved by BiConjugate gradients stabilized
method using preconditioning with upper and lower triangular matrix. For stopping
criteria, we chose tol=1.e—6.
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In the computational domain for Sy,,x = 200, we use a smooth non-uniform grid,
cf. in ’t Hout et al. [3]—uniform inside the region [S;,S,] = [1/2K,3/2K], and
non-uniform outside with stretching parameter ¢ = K/10:

Si + csinh(§)), Emin < & <0,
Si=¢&) =18+ c&, 0 <& < &n.
Sy + csinh(§ — &ino), Sint < & < Emax-
The uniform partition of [Enin, Emax] 1S defined through &y = & < - < &y =
Emax:
L -5, Sr S = S - Sr
Smin = sinh ! ( c Z) s Eint = c l’ Emax = Sinl + sinh ! ( maXC ) .

Example 11.1 (Early Exercise Constraint) We compare the different penalty
methods—interior penalty (11.3), exterior penalty (11.2) and modified barrier
penalty (11.8), (11.10) in maintaining the condition V* < U. On Fig. 11.1 we plot
the corresponding solutions at 7 = 1 and payoff, while on Fig. 11.2 we plot the
difference U" — V* for exterior penalty (11.2) and modified penalty (11.8), (11.10).
We observe that for butterfly option, only with modified barrier penalty (11.8),
the numerical solution satisfy the early exercise constraint. Thus, the statement of
Theorem 11.1 is verified.

Example 11.2 (One-Grid Computations) We perform computations only on one
mesh w, i.e. step 1 of TGA with time steps At = h and At = W, h = min A;.

The results are listed in Tables 11.1 and 11.2. We give the values of the soliltion
at strike points K; and K at final time T, diff—the absolute value of the difference
in the solution from the coarser grid, CR—computed as log, from the ratio of the
changes on successive grids, iter—the averaging number of iterations & at each time
level and CPU time (in seconds). We observe that the order of convergence in space
at strike points is closed to two and the computational process is more efficient for
smaller time step.

Example 11.3 (TGA) For the numerical tests, we set At = h/, At = (h/)?,
no o= min hlf and my = (mC)Z/Smax, ie. /' = (hc)2 in the case of uniform

meshes. The results are given in Tables 11.3 and 11.4. We observe that the order
of convergence on the coarse mesh, tested at strike points K; and K is closed to four,
i.e. O(At+|h¢|*+|h'|?), |h| = max h;. Also, the TGA accelerate the computational

efficiency. Comparable values of the solution in Tables 11.1,11.2, 11.3,and 11.4 are
highlighted.
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Fig. 11.2 U" — V*, Left: exterior penalty (11.2); Right: modified penalty (11.8)

Table 11.1 Values of U(K,T), UK, T) = 10 + U(K, T), convergence rate (CR), averaging
number of iterations (iter) and CPU time, one-grid computations, At = h

m UK, T) | diff CR |TUk. 1) | diff CR |iter |CPU
400 | 6.70216 5.3352e—7 10 0.05
800 |6.90697 |2.048e—1 5.7003e—7 |3.99e—8 10 0.09
1600 | 7.00017 | 2.980e—1 9.8146e—7 | 4.10e—7 9.54 0.23

3200 |7.05562 |5.545e—2 |2.426 |1.1000e—6 |1.20e—7 |1.773 | 7.46 0.56
6400 |7.08314 |2.752e—2 |1.011 |1.1481e—6 |4.81e—8 |1.319 | 5.77 1.44
12,800 |7.09683 |1.370e—2 | 1.006 |1.1750e—6 |2.69e—8 |0.839 | 4.39 3.85
25,600 |7.10366 |6.831e—3 |1.004 |1.1886e—6 |1.35e—8 |0.986 | 3.49 11.91
51,200 |7.10706 |3.40le—3 |1.006 |1.1944e—6 |5.75¢e—9 |1.241 | 2.99 47.72
102,400 |7.10877 |1.707e—3 [0.995 |1.1966e—6 |2.23e—9 |1.364 | 2.57 | 208.75

204,800 n:gm 8.548e—4 |0.998 8.58e—10 | 1.378 | 2.27 6

Table 11.2 Values of U(K,T), UK, T) = 10 + U(K, T), convergence rate (CR), averaging
number of iterations (iter) and CPU time, one-grid computations, At = h?

m UK, T) | diff CR |TK. T diff CR |iter |CPU
400 | 6.95822 1.0960e—6 735 | 0.08
800 |7.07028 |1.121e—1 1.1724e—6 | 7.63e—8 447 | 026

1600 |7.10047 |3.019e—2 |1.892 |1.1918e—6 |1.94e—8 1.977 |3.28 0.93
3200 |7.10797 | 7.505e—3 |2.008 |1.1967e—6 |[4.97e—9 1.963 |2.60 4.49

6400 FALELE] 1.880e—3 | 1.997 BEEFEEEGE 1.09e—9 | 2.190 |2.17
12,800 |7.11032 |4.696e—4 |2.001 |1.1980e—6 |2.14e—10 |2.350 |2.03 |143.96
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Table 11.3 Values of U(K,,T), UK, T) = 10 + U(K ,T), convergence rate (CR), averaging
number of iterations (iter) and CPU time, two-grid computations, At = (h')

me  |my UK,.T) | diff CR UK. T) |diff CR |iter |CPU
400 800 |6.90690 1.0501e—6 783 | 0.8
800 | 3200 |7.05559 |1.49e—1 1.1623e—6 | 1.10e—7 472 036
1600 | 12,800 |7.09682 |4.12e—2 |1.855 | 1.1885e—6 |2.85e—8 | 1.949 |3.39 | 2.53

3200 | 51,200 |7.10706 1.02e—2 |2.014 | 1.1960e—6 |7.51e—9 |1.925 |2.73 | 30.82

6400 (204,800 2.56e—3 | 1.994 1.65e—9 | 2.189 |2.25 FSEEEL0)

Table 11.4 Values of U(K,,T), UK,T) = 10 + U(K ,T), convergence rate (CR), averaging
number of iterations (iter) and CPU time, two-grid computations, At = (hf)?

me |my UK, T) |diff CR |Uk.T) |diff CR |iter |CPU
400 | 800 |7.07020 1.1782e—6 577 | 0.38

800 | 3200 |7.10795 |3.77e—2 1.1978e—6 PRI 3.74
1600 (12,800 |7.11032 |2.37e—3 |3.992 |1.1985¢e—6 |6.71e—10 | 4.868 |2.58 | 203.55

11.4 Conclusions

In contrast to the interior (11.3) and exterior (11.2) penalty methods, the modified
penalty method guarantees that the solution always satisfy the early exercise
constraint, independently of the type of the option.

The two-grid algorithm attains fourth order convergence in space on the coarse
mesh. We observe very fast performance of the presented TGA, independently
of the choice of the time step size. One and the same accuracy as with one-grid
computations, can be obtained by TGA, saving computational time.
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Part IV
Numerical Methods in Finance



Chapter 12
Newton-Based Solvers for Nonlinear PDEs in
Finance

Shih-Hau Tan and Choi-Hong Lai

Abstract In this chapter, different Newton-based solvers are introduced to solve
fully nonlinear PDEs generated from financial problems. The first one concentrates
on solving the root-finding problem from the nonlinear system after applying the
standard finite difference method with implicit scheme. The second one addresses to
solve the deferred correction problem which is transformed from the original PDE.
Different numerical experiments in terms of accuracy and efficiency are compared
and some improvements using Newton-like methods are also discussed.

12.1 Introduction

The ideal market assumptions, including frictionless, perfect liquid, zero transaction
costs and constant volatility, used in the classical linear Black-Scholes PDE model
for option pricing [2] are not always true in the real market. In particular factors
like transaction costs, illiquid market effects or other market feedback need to be
considered. Modification to the classical Black-Scholes model usually comes into
the form of a nonlinear Black-Scholes equation in which the volatility function
depends on the option price itself and/or its derivatives. Over the last two decades
there were various models aimed to take account of the above situations as discussed
in the literature [3, 4, 8, 10, 13, 15, 23].

The generalized nonlinear Black-Scholes equation to be considered may be
written as

v 1025282‘/ + Sav V=0 (12.1)
7 —rvV =0, .
a2 052 S

where V(S,7) € {S : § > 0} x [0,7) is the price of the option, r is the risk-free
interest rate, ¢ is the time, 7 is the maturity date, S is the current spot price of the
underlying asset and o is the nonlinear volatility which depends on V, V;, Vs, and
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Vs, where

V_BVV_BVV _82V

l‘_ata 8_859 SS_aSZ’
and the boundary and terminal conditions depend on the type of option to be
considered. For example, in the case of an European call option these conditions
are

V(. T) = —K)", for 0<S < Snaux:
V(@0,1) =0, for 0<r<T,
V(S,5) =S —Ke 7T when S = Spax.

Here Spax is usually chosen as an integer multiple of K.

In this section, the aim is to solve Eq.(12.1) with nonlinear volatility o =
o (S, Vss) which depends on the underlying asset and the second order derivative
Vss. For instances:

I. 0 =0y \/ 1+ e 9aS2Vss (A Simplified Barles and Soner Model [1]),

II. 0 =09 \/ (1 4+ n(SVss) é) (Risk Adjusted Pricing Methodology Model [15]),
III. 0 = oo(1 — pA(S)SVss)™!  (Frey-Patie Model [11]).

Here 0y is a constant historical volatility; a, i, p and A(S) are suitable constants and
function which present the financial factors under different considerations.

To solve the nonlinear parabolic partial differential equation, an implicit finite
difference scheme with standard notations and the transformation t = T — ¢ can be
adopted which transforms Eq. (12.1) to

" " n+1 n+1 n+1 n+1 n+1
vitt=vr Loy Vet 2Vi Vi Visr = Vst e g
AT o Wi i (AS)? ! 2AS ! '
(12.2)

where At = T/N and AS = Spax/(M + 1) are the sizes of the temporal and spatial
discretisation, respectively, with number of grid points N + 1 (time) and M + 2
(space), " = nAt,n=0,1,...,N;S§; = iAS,i=0,1,...,M+1; and V! denotes
the finite difference approximation of V(S;,nAt), n = 0,1,...,N. Note that for
each n, Vy and Vy,  , are given by the boundary conditions. Equation (12.2) can be
simplified to

a VIR + bVt 4 Vit = v

1
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where the tri-diagonal coefficients,

SHo!thr oS (0712}
;= A — s bl‘ =1 A ! ! ,
4= ar ( 2482 T 2(48) ATl asp T

Sl.z((fi'H'l)2 rS;
ci= At | — - ,
2(AS)? 2(AS)

depend on the volatility itself. The discretisation leads to the nonlinear system of
equations

H(Vn+1)vn+l — Vﬂ7 (12-3)
where
bic 0 --- 0
a b2 cy O 0
H(vﬂ"l‘l) —
0 ------ 0 ay—1 bM—l CM—1
0 «oveee 0 ay by

and V" = (Vi Vi, .. VipT.

Equation (12.3) will need numerical solvers to obtain a solution. Frozen coeffi-
cient method is a common technique and the main idea is to keep the coefficient
H(V"*1) lagging behind when iteratively solving for a new V"*! until the solution
converges. Algorithm 3, shown below, outlines the steps of the method. The
drawback of the method is that the number of iterations can become large in cases
without proper initial guess (or may even diverge).

In the following sections, some solvers based on Newton’s linearisation are intro-
duced [6, 14] to show other approaches for solving Eq. (12.1). These approaches

Algorithm 3 Frozen coefficient method

Input: M, N, r, 0y, tol, initial condition Vo=V, T = 0), initial guess V*
Output: V¥ =V(S, 7 =17)
1: for n=0to N-1 do

2. vl =g “lyr

3:if [Vt — v*| < tol then

4: vl =y

5: break

6:  else

7: v* = V"1 and go back to 2.
8: end if

9: end for
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concentrate on different linearisation techniques and methodologies of using direct
or iterative solver for the nonlinear system (12.3). The developed Newton-based
solvers can provide an appropriate direction in order to achieve a faster convergence
to the solution, but need to afford the evaluation of updating terms which is like a
trade-off. Different numerical results are shown to discuss more details.

12.2 Root-Finding Problem

There are different approaches in implementing Newton’s method, and the most
common way is to change the original problem to a root-finding algorithm and to
update the numerical approximate solution by using the Jacobian matrix. This idea
can be applied to solve Eq. (12.3) by defining

G(Vn-H) — H(Vn-i-l)Vn‘H — V' =0, (12.4)

and by calculating [Jac(G(V"*1))]™!, which is the inverse of the Jacobian matrix
of G for the update as stated in Algorithm 4. In order to obtain the Jacobian matrix
efficiently, a decomposition of the nonlinear matrix H(V""!) as the one below may
be used,

H(V'"™Y = 2" H) + Hy, where ¥"t! = diag((af+1)2).

Note that H; and H> are constant tri-diagonal matrices. By using this decomposition,
the Jacobian matrix of G becomes

a[H(Vn-I-l)Vn-I-l]

Jac(G(V"thy) = f—

— H(Vn-l-l) 4 dlag(H1 Vn+1)V(2n+l) ,

Algorithm 4 Root-finding problem (NM1)

Input: M,N,r, 0y, tol, initial condition V° = V(S, t = 0), initial guess V*
Output: V¥ =V(S,t =17)

1: for n=0to N-1 do

2.yl =y

3 Gn+1 — H(vn+l)vn+l —_yr
4: if |G"T!|| < tol then

5 Vn-‘rl = y*

6 break

7. else
8.

9
10:

V* = V* — (Jac(G"T1))~'G" ! and go back to 3.
end if
end for
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where V(Z™) = (V™)) (Vo3 tH)T, ..., (V(opmHHT)T  (each
V(o,’cﬂ'l)2 is a row vector) simplifies the computing of the Jacobian matrix in
terms of the nonlinear volatility. In the concerning models (Model LII and III)
V(X"*1) is at most a tri-diagonal matrix. Each V(o7 +")? can be obtained by either
deriving the exact formula or by using a finite difference replacement of the spatial
derivatives.

Algorithm 4 stops on the norm of the function G or could have been extended
by also including a check on the correction of the Newton’s iteration. A more

appropriate size of performing the updating is discussed in Sect. 12.3.

12.3 Newton-Like Methods

Solving the root-finding problem with Algorithm 4 can obtain the numerical
solution of the original nonlinear partial differential equation (12.1). But there
are some drawbacks of this method, for example, the oscillations of root-finding
function might occur which affects the convergence of the solution. Also the
cost of evaluating Jacobian matrix is computationally expensive when analytic
formula doesn’t exist. Therefore in this section, the aim is to introduce several
improvements for Algorithm 4 to make it more efficient and robust. Different
strategies are introduced here and some of them may be merged or combined
in actual implementation to optimise the performance of the iterative method. To
simply the notation, Eq. (12.4) is rewritten as

Gv) =0,
with the updating formula
VL = vk 80k, SvF = —[Jac(GW)] TG (Y,

where k represents the iteration step.
e Damped Newton’s Method

The updating direction §v* sometimes may become too large resulting into an
unnecessary large change to the current approximate solution leading to a lost in
accuracy. Also this large change may occur oscillations of the root-finding function
which affects the convergence of solution a lots. In order to avoid this situation,
a damping factor s is usually inserted to scale the direction in order to provide a
smaller and safer correction in the updating process. This leads to

I
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Fig. 12.1 Results of Frey-Patie model with At = 2.833e—04, AS = 0.75. The left plot is
without damped updating and the right plot is using damped updating

in which s may be chosen as 27" (see [16]) such that m is the smallest integer
satisfying

|G@* +278v8)|| < (1 —a27™™) [G(WY)

3

where « is usually chosen as a small number.

Figure 12.1 gives an example of using damped Newton’s method to achieve an
adaptive updating. It can be observed that using damped Newton’s method can avoid
the oscillations of the root-finding function, though it might require to evaluate the
root-finding function at least twice within a Newton’s iteration. However this extra
cost can guarantee a more robust result of applying the Newton-based solver.

e Inexact Newton’s method

One main problem when applying Newton’s method is that it is expensive to
calculate the updating direction §v¥, which requires the inversion of the Jacobian
matrix [Jac(G)]™'. Therefore reducing the number of iterations would be a way to
shorten the overall computation time. The idea is to do the whole Newton’s iteration
approximately as shown in [5] by finding an update direction which satisfies the
inexact Newton condition

|G + Jac[Gw")18vF|| < n | G* + 8v%)

)

where 7 is known as the forcing term.

In terms of implementation there are two loops, one being the inner loop for
finding the updating direction and the other being the outer Newton’s iterative loop.
The choice of 7 is important. Small values of 1 reduce the iteration to become simply
Newton’s method. Other choices of 7 may not improve the result, but rather lead to
a poorer one. Discussions of suitable choices can be found from [16, 18].
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* Jacobian-free Newton-Krylov (JFNK) method

Once the procedure for regulating the direction in the updating formula and
the inexact Newton condition are applied, the most challenging problem is the
evaluation of the Jacobian matrix, or, alternatively, the efficient multiplication of
the Jacobian matrix and a vector in the inexact Newton condition when an exact
formula is not readily available. To take on this challenge the so-called Jacobian-free
Newton-Krylov technique, which is one of the variants from the class of Newton-
Krylov methods, may be used. In the Jacobian-free Newton-Krylov method, in
which the evaluation of the Jacobian matrix is not necessary, the input for the inexact
Newton condition can be approximated as

G + eu) — G(v)
c )

Jac(G)u ~

where € is a small number. The choice of € again is important which can not be too
large. For more detailed discussion and numerical analysis one can check [18].

* Broyden-type method

Another approach to avoid the excessive computation of the Jacobian matrix is
Broyden’s method. From experiences through numerical experiments, a highly
accurate Jacobian matrix in each iteration is often unnecessary in achieving fast
convergence. Broyden’s method relies on the concept of a generalised secant method
which leads to an iterative scheme for approximating the Jacobian matrix,

AG — Jac(G),—1 Av

AvT,
| Av|2 0

Jac(G), = Jac(G),—1 +
One shortcoming of Broyden’s method is that the matrix structure of each new
Broyden’s approximation to the Jacobian matrix easily changes from one iteration
to another. For example, suppose that the original Jacobian matrix is a tri-diagonal
matrix. Then it might become a full matrix after applying one step of Broyden’s
method. This means that it might perturb the approximate solution in the Newton’s
iteration in the wrong direction. There are several modifications of Broyden’s
method [12, 19, 20], for example, one is to preserve the matrix structure by using the
sparse Broyden method in [22]. In some cases the implementation of this sparsity
preservation method does not save much time. Therefore a simple trick adopted
in the numerical tests is to pick up only the tri-diagonal entries after performing
each iteration in Broyden’s method. Comparisons of using different Broyden-type
methods can be found in [7].

e Fundamental algorithm

Finally, a fundamental algorithm in combining these Newton-like techniques with
Algorithm 4, as given below in Algorithm 5, in an attempt to improve the
performance of root-finding approach in solving nonlinear parabolic equations.
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Algorithm 5 Newton-like method (NLM)
Input: M, N, r, 0y, tol, initial condition Vo=V, T = 0), initial guess V*
Output: V¥ =V(S, 7 =17)

1: forn=0to N-1 do

20yl =y

32 Gt = H(yr et —yn

4:if|G"*!|| < tol then

5 vl = y*

6: break

7:  else

8: o Evaluate Jac(G)d by the JENK method or evaluate Jac(G) by Broyden’s method,
9: e Decide d to satisfy the Inexact Newton condition,
10: ® Use d and apply Damped Newton method to do update V*, and go back to 3.
11:  endif
12: end for

Broyden’s method
parameters exactNewton direct solver == for Jac(6) \
tolerance damped
.te.rtr.mlnal condition ——n Broyden’s methoV updating
Initial guess
€ inexact Newton for Jac(G) or

Jacobian-free method
for Jac(F)év

Fig. 12.2 Different strategies to implement Newton-like method

Figure 12.2 also illustrate different strategies of implementing Newton-like methods
in exact or inexact sense.

12.4 Deferred Correction Problem

Instead of solving the root-finding problem as shown in Eq. (12.4), another approach
of applying Newton’s linearisation is to consider a smooth function F representing
the nonlinear Black-Scholes equation (12.1), i.e.

1
F(V,, Vs, Vs, V) =V, — 2GZSZVSS —rSVs+rV =0,

and the linearisation of the function F at (V}, V§, Vg, V*) in direction (e,, e, ess, €)
reads as follows:

F(VY+e., Vi +es, Vig+ess. VE +e)

oF oF oF oF
— + ess+ .. .e+t o(D?),

F ‘r*’ ‘;*’ Vv i v*
( ’ 52758 ) aV;eS 8V§S aV
(12.5)
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Algorithm 6 Deferred correction problem (NM2)

Input: M, N, r, 0y, tol, initial guess V*
Output: V¥ =V(S, 7 =7)
1: forn=0to N-1 do
2: Evaluate a*i,’;, {ﬁ% R 32/?5 , BBVF* by V*
3 Solve Eq. (12.5) to obtain e
4 if |le|| < tol then
5 Vn+l — V*
6: break
7 else
8 V* = V* 4 ¢ and go back to 2.
9 end if
0:

10: end for

where D? represents all higher order terms and the partial derivatives are evaluated
at (V, Vg, Vi, V¥).

The original nonlinear differential equation becomes a linear parabolic partial
differential equation of the correction term e with zero boundary and initial
conditions. Equation (12.5) is easier to solve once all the coefficients like oF

avre
ﬁf*, 32,11, ﬁf* are computed and these coefficients again can be evaluated by
M SS

either deriving the exact formula or by using a finite difference replacement of the
derivatives. This approach is also known as Waveform-Newton [9, 17, 21] and is
described in Algorithm 6.

12.5 Numerical Experiments

In this section different comparisons of solving Eq. (12.1) are shown and discussed
in terms of the accuracy, number of iterations and computation time with boundary
and terminal conditions given as introduced in Sect. 12.1. Some common model
parameters were chosen as

0o = 0.4, K =100, r = 0.03, Spin = 0, Smax = 300, T = 1/12

and the tolerance of Newton-based solvers was set as 10~8. The initial guess V* for
Newton-based solvers was selected to be the approximate solution at the previous
time level (for the first iteration the V* = V(§, v = 0)). M and N are the grid points
used for the spatial and temporal discretisation respectively. The special parameters
used in Model I, II, IIT are a = 0.05,p = 0.03,A(S) = 1, = 0.05. For exact
Newton’s method the Thomas algorithm was used as the tri-diagonal solver to do the
inversion of Jacobian matrix. For the inexact Newton’s method, Jacobi method was
applied as an iterative solver. The computations were implemented using MATLAB
R2013b.
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12.5.1 Comparisons of Numerical Methods with Explicit
Invariant Solution

In order to ensure all the Newton-based solvers are accurate, the explicit invariant
solutions for the Frey-Patie model (model III) derived by Bordag in [3, (86), (87)]
with parameters ¢ = —0.05, d; = 0, d, = 30 were computed and taken as
reference solutions for evaluating the experimental order of convergence (EOC).
The boundary conditions and initial conditions were generated from these invariant
solutions.

The experimental order of convergence (or convergence ratio) is constructed
from the convergence rate of the error defined as follows:

o 10R((Err)e/(Err))
log(AS)ni1/(AS))”

Here the error E is defined as E = |V(S,1) — V(. r)||/||\>(S, )| for § €
[0.5E, 1.5E], where V(S, 1) is the solution from numerical solver, and V(S, 7)
is from the invariant solution. The ratio (AS)?/Art is fixed to be 108,000, and
(AS)m+1/(AS),, = 0.5. Tables 12.1 and 12.2 show results for the /o, maximum
norm and /, integral norm. Both results demonstrate that all the solvers converge
to the same solution which converges to the explicit invariant solution with refined
grid points.

Table 12.1 EOC for the Frey-Patie Model with the /5, maximum norm

At AS Enmn anm1 | Enm anm2 | Erozen QFrozen
0.00833 30 2.93e—05 - 2.93e—05 - 2.93e—05

0.00208 15 1.72e—06 4.09 1.72e—06 4.09 1.72e—06 4.09
5.21e—04 7.5 1.02e—07 4.08 1.02e—07 4.08 1.02e—07 4.08

1.30e—04 |3.75 2.50e—08 |2.02 2.50e—08 |2.02 2.50e—08 | 2.02
3.26e—05 1.875 5.00e—09 |2.32 5.00e—09 |2.32 5.00e—09 |2.32
8.14e—06 | 0.9375 1.25e—09 |2.00 1.25e—09 |2.00 1.25e—09 |2.00

Table 12.2 EOC for the Frey-Patie Model with the /, integral norm

At AS Enmn anm1 | Enm anm2 | Erozen QFrozen
0.00833 30 2.93e—05 - 2.93e—05 - 2.93e—05

0.00208 15 1.79e—06 4.03 1.79e—06 4.03 1.79e—06 4.03
5.21e—04 7.5 1.39e—07 3.68 1.39e—07 3.68 1.39e—07 3.68
1.30e—04 3.75 4.46e—08 1.64 4.46e—08 1.64 4.46e—08 1.64

3.26e—05 1.875 1.25e—08 1.83 1.25e—08 1.83 1.25e—08 1.83
8.14e—06 | 0.9375 | 4.32e—09 1.53 4.32e—09 1.53 4.32e—09 1.53
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Table 12.3 Average number of iterations for Model 1

M N NM1 NM1* NM2 NM2* Frozen Frozen™
40 40 4.02 4.20 4.07 4.60 10.1 27.6
80 80 4.02 4.40 5.03 5.60 9.28 53.4
160 160 5.01 5.4 - - - -

Table 12.4 Average number of iterations for Model II

M N NM1 NM1* NM2 NM2* Frozen Frozen™
40 40 5.00 5.00 14.2 14.0 4.32 5.00
80 80 3.53 4.20 21.2 21.0 4.22 5.00
160 160 3.28 5.00 32.6 32.0 4.12 5.20

Table 12.5 Average number of iterations for Model I1I

M N NM1 NM1* NM2 NM2* Frozen Frozen™
40 40 3.15 4.00 3.05 3.40 5.20 6.60
80 80 3.21 5.40 3.10 4.20 5.28 12.8
160 160 3.21 8.6 3.15 7.40 - -

12.5.2 Comparisons of Number of Iterations

Tables 12.3, 12.4 and 12.5 show the number of iterations of using frozen coefficient
method and Newton-based solvers to different models. The numbers ‘NM1, NM2,
Frozen’ are the average of number of iterations in all time steps and the numbers
‘NM1*, NM2*, Frozen™’ are the average of number of iteration just for the first
five time steps. The numerical experiments show that the root-finding approach
(NM1) with adaptive updating (damped Newton’s method) is the most robust one
as the deferred correction (NM?2) is sensitive to the nonlinearity of problems and
sometimes also doesn’t converge. Frozen coefficient method requires more number
of iterations and as shown in the tables some results diverge when grid sizes become
small.

An observation shown in Fig. 12.3 is that after several time steps, the number of
iterations for frozen coefficient method seems to reduce and not very far from the
ones in Newton-based solvers. This can help to create hybrid solvers, namely using
Newton-based solvers in the beginning of several time steps, and switch to frozen
coefficient method which the computation is cheaper.

12.5.3 Comparisons of Computation Time

Tables 12.6, 12.7 and 12.8 show the computation time of using frozen coefficient
method, Newton-based and the hybrid solvers to different models. The Jacobian
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Fig. 12.3 Number of Number of iterations for NM1, NM2, Frozen Coefficient
iterations in the first 240 time 20
steps for Model III with —NM1
At = 8.14e—006, @ - - =NM2
AS = 0.9375. The red line is I Frozen
for NM1; the blue one is for g
NM2; the black one is for the = 10
frozen coefficient method °
8
E s
S I
0
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Table 12.6 Computation M N NM1 | NM?2 | Frozen Hybrld

time (sec) for Model I
40 40 0.08 |0.08 |0.10 0.10

80 80 [0.19 |0.17 |0.23 0.19
160 | 160 |0.88 |- - 0.59

Table 12.7 Computation M N NM1 | NM2

. Frozen | Hybrid
time (sec) for Model II

40 40 |0.08 |0.16 |0.07 0.08
80 80 [0.17 |0.64 |0.14 0.14
160 | 160 [0.51 |3.56 |0.40 0.37

Table 12.8 Computation M N NM1 | NM2

. Frozen | Hybrid
time (sec) for Model III

40 40 [0.08 |0.07 |0.05 0.10
80 80 [0.16 |0.12 |0.07 0.17
160 | 160 |0.50 [0.33 |- 0.46

matrix is evaluated by derived formula. The hybrid solver is a merged version of
root-finding approach and frozen coefficient method which in the first 6 time steps,
Algorithm 4 is applied to have a faster convergent result, and after that Algorithm 3
is used to get the benefit of easier calculation. The results show that the hybrid solver
can take advantages from both solvers and is also robust.

Another comparison in Fig.12.4 shows using different Newton-like meth-
ods to solve Frey-Patie Model. The aim is to compare using exact and inexact
Newton’s methods, combined with finite difference method and Broyden-type
method to approximate the Jacobian matrix. The grid points of temporal dis-
cretisation is fixed to be N =1000 and of spatial discretisation were chosen as
M =50, 100, 150,200, 250. Damped Newton’s method was also used to guarantee
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Fig. 12.4 Different strategies computation time for Model Il
to implement Newton-like 60 T v
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50 100 150 200 250

grid points on space

an adaptive updating. It is observed that Broyden-type method can replace the finite
difference method to evaluate the Jacobian matrix and reduce the computation time.
Also direct solver performs well than iterative solver, as the systems to be solved
are always with simple tri-diagonal structure. It demonstrates that if there is no
exact formula for Jacobian matrix, then a better strategy of solving nonlinear Black-
Scholes equation in one-dimensional case is to choose exact Newton’s method with
some approximation of Jacobian matrix like Broyden-type methods.

12.6 Conclusions

Some important algorithms based on Newton’s method and its variants are intro-
duced to solve nonlinear parabolic partial differential equations from financial
market. The main idea is to use Newton’s method with invariant approaches, and
to improve the method based on various techniques in order to tackle drawbacks.
Essentially these Newton-based solvers are efficient and robust, and can be adopted
to different kinds of nonlinear Black-Scholes equations. In the end some improve-
ments like using hybrid solver, or applying Newton-like methods to do some
approximation are also addressed and compared with numerical experiments.
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Chapter 13
Implicit-Explicit Schemes for European Option
Pricing with Liquidity Shocks

Walter Mudzimbabwe and Lubin Vulkov

Abstract We consider the numerical valuation of European options with liquidity
shocks. We propose two implicit-explicit schemes that preserve the positivity of
the differential problem. Comparison principle and convergence for the difference
schemes are provided. Numerical tests illustrate the theoretical results and show
second order accuracy after Richardson extrapolation in time. (This chapter is a
summary of the paper (Mudzimbabwe and Vulkov, J Comp Appl Math 299:245-
256, 2016); all theoretical statements in this summary are proved in that reference.)

13.1 Introduction

Ludkovski and Shen [5] proposed a nonlinear pricing mechanism based on utility
maximization. Their model is an example of regime switching models. They
consider a investor whose utility is described by an exponential utility function
U (x) = —e™ " where y > 0 is the coefficient of risk aversion.

The investor seeks to maximise utility of both terminal wealth X7 and option
payoff & at time horizon T < oo, which is chosen to coincide with the expiration
date of all securities in market model. The prices R'(z,S) are also related to the
indifference prices. Then the pair {R'(t,S), i = 0,1} is the unique viscosity
solutions of the coupled semi-linear system,

0 1,.2¢2p0 —y(R'—R° (do+vo1) _
R + 0 S?Rgg — "7 (R=KD 4 W70 = ¢,

13.1)
1 _ vio ,—~y(R°—R") vio (

R, S e + ) 0.
The terminal conditions are:

R(T.S) = h(S), i=0,1.
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Here o is the volatility of the underlying, vy, vi¢ are the transition intensities from
state (0) to state (1) and vice versa, respectively, i denotes the drift of the underlying
and dy = pu?/20?, see [4, 5] for more details.

The indifference prices

p=R'+y'InFo(t). g=R"+y " InF(1),
can be shown to satisfy the parabolic-ordinary system

vo1 gl e v 4 (do+vor) _ 1Fy _
Y

y Fo -

1 2@
pi+ ,0°8°pss — v e =0, (132)

gi— " =10 4 mo — }1/2 =0
with terminal conditions
p(T,S) = q(T,S) = h(S). (13.3)

The numerical solution of the system (13.2) is the main object of this section. A
possible way to build an efficient numerical solution of (13.2), (13.3) is to implement
an IMEX method [1-3, 9]. In this procedure, the diffusion term is discretized
implicitly in time and the reaction terms are discretized explicitly. By making the
substitutions Tt = T —t, u = yR" and v = YR, the system (13.1) becomes

IP(u.v) = u; — y0°S%ugs + ae"e™ —b =0,

13.4
L(u,v) = vy +cebe™ —c =0, ( )

where a = vy, b = dy + vo1, ¢ = vyo. In accordance with (13.3) we take the initial
conditions to be

u(0,8) = up(S) = yh(S), v(0,S) = vo(S) = yh(S). (13.5)

13.2 IMEX Linear Scheme

Here we develop a linear IMEX scheme to solve the coupled semi-linear parabolic-
ordinary system problem (13.4). We consider a call option with boundary conditions
[10, 11]

u(t,0) = @i(r) =0, u(zr,S) = ¢ (t) ~ Smax forlarge S.

The left natural boundary condition for u reads as follows

u.(7,0) = —ae~CEO—U@O) 4 p
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On the domain Qr = §2 x [0, T] we introduce the uniform mesh wg, = wg X w; :
ws = {Sl = iAS, AS > 0, i = 0, 1, e ,I; IAS = Smax}, Ws = Wg @] {S(),S]};
we ={g =jAr, At >0, j=0,1,....J; JAt =T}, w, =w; U{1, 1y}

Next, on the discrete domain wg, we approximate the problem (13.4)—(13.5) by the
finite difference scheme [7, 8]

— Uij+1 -Ul _1 2 2U{:1_2Uij+l +U¢'jill

(U, V) = ‘ :
. v) At 27 (AS)?
ac eVl —p=0, (13.6)
V»j+1 _ Vj o
Lw,vy=" e +ee Ve —c =0, (13.7)
T

for i=1,...,1-1,j=0,1,...,J—1.

U =Uy(S), i=0,1,....1; (13.8)
Uj=w(m). Ul=ge(g), j=01...1J; (13.9)
VO =Vo(S), i=1,....1 (13.10)

We approximate the natural boundary conditions explicitly
Ué+1 = Ué - At(ae_VgeUé —b).

In algebraic form of the on the (j + 1)-th time level j = 0,1,...,J — 1, the
scheme (13.6) and (13.7) reads as follows

AU +qutt —BUT = F

i+1 i g J
Vi]+ =V/— Arce UitV + ¢,

where
1 52
Ai=Bi= o ' | C= +A; + B;,
27 (Asy? At
Lo vi vl
F':AtU’ ae VieYi +b, i=1,...,1—1;
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Theorem 13.1 Let (u,v) € C>*(Qr) is classical solution of problem (13.4)—(13.5).
Then the error estimate holds

= Ullcaus,) + 0 = Vlicws) < C(AT + (AS)?),

Sor sufficiently small AS and Az, where the constant C doesn’t depend on AS and
At.

The discrete comparison principle for (U, V) is important for the positivity of the
numerical indifference prices p and q.

Theorem 13.2 Suppose that the assumptions of Theorem 13.1 hold and (U,V),
(U, V) be grid functions defined on ws;. Let the following inequalities

’(U,v)=I(U,V), L°(U,V)>LU,V),
US> 00 vi=V0 i=0,....1
Vi=Vi UL >=UL j=1.....1.
hold and let AS and At are sufficiently small such that At satisfies
At < min(a, ¢)e*e*Cr .

Then

UlsUlL Visvioi=o01....1, j=01...1.

13.3 IMEX Linearised Scheme

Let us start with the fully implicit scheme:

Jj+1 J Jtl Jtl1 Jtl1 . .
Uim =07 1 L, oUiy =200 + U, Vi Uit

i —b=0,
At 2 (AS)?
yitt _yi i+t
! P ce Ul e l—c:O,
At
fori=1,2,...,I1-1,j=0,1,...,J—1 with boundary and initial approximations

given by (13.8)-(13.10). By Taylor expansion the exponential nonlinear terms can
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be linearised to obtain the IMEX linearised scheme:

vit'—ul 1, Ut it Ul _ :
i N i 5 2S2 (AS)Z i+1 + a(e V’EU (1+V/ Utj)
+e Vel Uit —vithy) —b =0, (13.11)
j+1 j
! A T 4ee” U'e'(l VI4+ U +e le'(Vj+1 U{+1))—C=0,
T
(13.12)
which simplifies to
—AU + Ut —BU + DivIT = F, (13.13)
EUMT + KV =G, (13.14)
where
A 1 s, 1 A A i_yi
Ai=Bi= _o® ., C= Ai+ B +ae” 7V,
20 (AS) Ar+ + B; + ae
. VA 1. ,
Dy = —areVi V| By = A U! —are vl-v/ i1+ V/ U!) + bAr,
T
A . . A 1 . .
E = —cAteVij_Uij, K = + ceVij_Ufj,
At

1
Gi= V- CtelU(l—Vj—i—U/)—}—c
At

Substituting WH from (13.14) into (13.13) we get

i

. .. D . D
_AiU{_*11+(ci— o )Uf“—B ultl = Fi—i{’Fi,
G E
Uit =, 01—
K K

vt —

with UQ i = 0 1,...,Iand Ué, U j=0,1,...,J given by (13.8)-(13.10).

j . L . .
Since ael!~V > 0, the diagonal domination can significantly increase in

comparison with IMEX linear scheme (13.6) and (13.7).

Theorem 13.3 Suppose that the assumptions of Theorem 13.1 hold and that there
exists a classical solution (u,v) € C>*(Qr) of problem (13.4)—~(13.5). Then for
sufficiently small AS and At the following error estimate holds:

= Ullcaus,) + v = Vlicws) < C(AT + (AS)?),

where the constant C doesn’t depend on AS and Art.
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13.4 Numerical Experiments

In what follows, we try to investigate the accuracy, effectiveness and convergence
of the implicit-explicit linear scheme (13.6)-(13.10) (Scheme 1) and implicit-
explicit linearised scheme (13.11) and (13.12) (Scheme 2). We perform numerical
experiments both with uniform and non-uniform meshes. Also, we present results
of numerical experiments using Richardson extrapolation in time.

The following two tables show the accuracy in maximal discrete norm || - || .o and
convergence rate at initial time ¢ = 0, using two consecutive meshes with formulas

Order = log, (E})»/E}), Ej = W72 — W!| o,

where W is R® or R'.
We improve the convergence in time by applying Richardson extrapolation [3].
To this end we use the formula

W, -2,
SE) |

)

where p is order of numerical solution (1 in our case) and W, is the solution obtained
using time step Atr/2 and Z, is the solution obtained using time step At. The
resulting solution Y, has order of accuracy p + 1.

Table 13.1 shows the result of applying this technique to the Scheme 1. The order
of accuracy in time is now two. Similarly this technique is applied to Scheme 2, see
Table 13.2. The convergence is much slower but smoother compared to the explicit
based Scheme 1 due the error of linearisation. Tables 13.1 and 13.2 shows second
order in time.

In Fig. 13.1 we compare option values p and ¢ at issue and maturity in the liquid
and illiquid states using the parameters ;. = 0.06,0=0.3,v9; = 1,vjp = 12, K = 2,
T =1, Smax = 5 and y = 1 using Scheme 1. These values are taken arbitrary but

Table 13.1 Convergence results for at the money (S = 2, K = 2, S;in = 0 and Spax = 5) and
taking At = AS/2 based on Scheme 1 using Richardson extrapolation

1 Zn W, Y, Difference Ratio (order)
10 0.2451080
20 0.2465578 0.2480075
40 0.2472811 0.2480045 3.02¢e—6
80 0.2476431 0.2480051 5.79e—7 5.22(2.38)
160 0.2478242 0.2480053 1.96e—7 2.96 (1.56)
320 0.2479148 0.2480053 5.13e—8 3.82(1.93)
640 0.2479600 0.2480053 1.27e—8 4.05 (2.02)
1280 0.2479827 0.2480053 3.08¢e—9 4.12 (2.04)

2560 0.2479940 0.2480053 7.45e—10 4.13 (2.05)
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Table 13.2 Convergence results for at the money (S = 2, K = 2, Sin = 0 and Sx = 5) and
taking At = AS/2 based on Scheme 2 using Richardson extrapolation

1 Zy, Wy Y, Difference Ratio (order)
10 0.2451717
20 0.2465832 0.2479947
40 0.2472928 0.2480023 7.64e—6
80 0.2476486 0.2480045 2.14e—6 3.57 (1.84)
160 0.2478269 0.2480051 6.22e—7 3.44 (1.78)
320 0.2479161 0.2480053 1.78e—7 3.49 (1.81)
640 0.2479607 0.2480053 4.93e—8 3.62 (1.85)
1280 0.2479830 0.2480053 1.32e—8 3.73 (1.90)
2560 0.2479942 0.2480053 3.46e—9 3.81(1.93)
5120 0.2479998 0.2480053 8.95e—10 3.87 (1.95)
10240 0.2480026 0.2480053 2.29e—10 3.91(1.97)
3.5 T T T T b 35 T
1=0 =0
3 =T] 3 t=T|
25 o 25t
o o
=} =}
T 2 = 2f
> >
§15 §15¢
a °a
o 1 o 1}t
0.5 0.5
0 0 - - -
0 1 2 3 4 5 0 1 2 3 4 5
Stock,S Stock,S

Fig. 13.1 Comparing European option values at issue and maturity in the liquid and illiquid states
for the IMEX Linear scheme. (a) patt =0andt=T.(b)gatt=0andr=T

are justified e.g. vjp = 12 is much larger than vy; and means that the market will be
illiquid for about a month during a year.

Figure 13.2 illustrate the solution from the linearised scheme, using the same
parameters. Figures 13.1 and 13.2 show that for this set of parameters, the solution
(p, q) is positive using both schemes. This is in line with our theoretical results that
p,q > 0whenh > 0.
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Fig. 13.2 Comparing European option values at issue and maturity in the liquid and illiquid states
for the IMEX linearised scheme. (a)patt =0andt=T.(b)gatt=0andr =T

13.5 Conclusions

In this chapter, we have considered a one-dimensional problem of European
options with liquidity shocks. We have constructed and analyzed two IMEX finite
difference schemes and for both schemes they preserve the positivity property of
the differential solution. The second one (the IMEX linearized scheme) has better
diagonal domination, hence it is monotone. It would be interesting to consider
extensions of the IMEX schemes to the American options with liquidity shocks.
In this case one has to solve a free boundary problem. It could be written as a linear
complementary problem which could be discretized using the schemes given here.
The extension is beyond the scope of this chapter, and we leave it for further work.
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Chapter 14
A Highly Efficient Numerical Method
for the SABR Model

Alvaro Leitao, Lech A. Grzelak, and Cornelis W. Oosterlee

Abstract In Leitao et al. (Appl Math Comput 293:461-479, 2017), we have
presented a one time-step Monte Carlo simulation of the SABR model (Hagan et al.
Wilmott Mag 84-108, 2002). The technique is based on an efficient simulation of
SABR’s time-integrated variance process. We base our approach on the derivation of
the cumulative distribution function of the integrated variance by means of Fourier
techniques and the use of a copula to approximate the conditional distribution
(integrated variance conditional on the SABR volatility process). Resulting is a fast
simulation algorithm which can be employed to price European options under the
SABR dynamics. This converts our approach into an alternative to Hagan analytic
formula for short maturities, where some known issues of the implied volatility
expression for small strike values are overcome. A generalization of this technique
to the multiple time-step case has been presented in Leitao et al. (On an efficient
multiple time-step Monte Carlo simulation of the SABR model 2016, submitted for
publication. Available at SSRN: http://ssrn.com/abstract=2764908).

14.1 Introduction

The Stochastic Alpha Beta Rho (SABR) model [6] is an established SDE system
which is often used for interest rates and FX modeling in practice. The model
belongs to the so-called stochastic local volatility (SLV) models. The idea behind
SLV models is that the modeling of volatility is partly done by a local volatility and
partly by a stochastic volatility contribution, aiming to preserve the advantages and
minimize the disadvantages of the individual models.
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In the original paper [6], the authors have provided a closed-form approximation
formula for the implied volatility under SABR dynamics. This is important for
practitioners, as it can be used highly efficiently within the calibration exercise.
However, the closed-form expression is derived by perturbation theory and its
applicability is thus not general. The formula is for example not always accurate
for small strike values and/or high volatility.

In [10], we have proposed a one time-step Monte Carlo method for the SABR
model. We based our approach on an accurate approximation of the cumulative
distribution function of the so-called time-integrated variance (conditional on
the SABR volatility), using Fourier techniques and copulas. Resulting is a fast
simulation algorithm which can be employed to price European derivative contracts
up to 2 years under the SABR dynamics. This kind of contract is often traded in
foreign-exchange (FX) markets. Our approach can thus be seen as an alternative
to Hagan’s analytic formula for short maturities that may be employed for model
calibration purposes. In this chapter, this work is summarized.

14.2 The SABR Model

The SABR model [6] is defined by the following SDE system, with independent
Brownian motions dWg(¢) and dW, (),

ds(t) = a()S” (1) (pdm 0 ++1- pZdWs(r)) . 8(0) = Soexp (rT) ,

do () = ao ()dW, (1), a(0) = 0y.
(14.1)

Here S(1) = S(7) exp (r(T — 1)) denotes the forward price of the asset S(f), with r the
interest rate, Sy the spot price, 7 the maturity and o (¢) a stochastic volatility process,
with 0(0) = 0y. The model parameters are @ > 0 (the volatility of volatility),
0 < B <1 (the variance elasticity) and p (the correlation coefficient).

Based on the work by Islah [7], an analytic approximation for the cumulative
distribution function (CDF) of the SABR conditional process has been obtained.
For some S(0) > 0, the conditional CDF of S(z) with an absorbing boundary at
S(f) = 0, and given the volatility, o (7), and the conditional time-integrated variance,
Jy 02 (s)ds|o(2), reads

Pr (S(t) < X|S(0) > 0,0 (1), / toz(s)ds) =1— y*(a;b,c), (14.2)
0
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where
1 SO p 2 B 201-$)
T e (“(t)_“(o))) ’ = 1)
_ _1—2,3—,02(1—,3) L,
a-p- o= [ e

and y2(x; 8, A) is the non-central chi-square CDF. This formula is exact in the case
of p = 0 and constitutes an approximation otherwise.

Therefore, to perform an “almost exact” one time-step Monte Carlo method for
the SABR model, several steps need to be performed:

e Simulation of the SABR volatility process. By Eq. (14.1), the stochastic
volatility process of the SABR model exhibits a log-normal distribution.

« Simulation of the time-integrated variance process, fot o2(s)ds|o (). This con-
ditional distribution is not available in closed-form and needs to be approximated.

* Simulation of the SABR forward price process. The forward price S(f) can be
simulated by inverting the CDF in Eq. (14.2).

In the above steps of the SABR model almost exact simulation, the challenging
part is the simulation of the time-integrated variance, fOT O'Z(S)ds, conditional on
o(T) [and o(0)]. We propose a computationally efficient approximation, based
on a copula multi-variate distribution, to simulate the conditional distribution of
fOT o (s)ds given the volatility o (7). Simulation by means of a copula technique
requires the CDF of the involved marginal distributions. In Sect. 14.3, the derivation
of the CDF of fOT o2 (s)ds is presented in detail. Hereafter, for notational conve-

nience, we will use Y(7) := fOT o2 (s)ds.

14.3 CDF of SABR’s Time-Integrated Variance

In this section, we present a procedure to approximate the CDF of the time-
integrated variance, Y (7). Since we will work in the log-space, an approximation of
the CDF of log Y(T), Fiog y(1), Will be derived. We approximate Y(7T') by its discrete
analogue, i.e.

T M
/ o?(s)ds ~ Yo7 (t) At =: ¥(T),
0 =



256 A. Leitao et al.

where M is the number of discrete time points,’ i.e., ; = jAt, j = 1,....M
and Ar = AT4 IA/(T) is subsequently transformed to the logarithmic domain, being
flog 7y the probability density function (PDF) of log IA/(T). This PDF is found
by approximating the associated characteristic function, Prog (1) and applying a
Fourier inversion procedure. The characteristic function and the desired PDF of
log IA/(T) form a so-called Fourier pair. Based on the work in [11], we develop a
recursive procedure to recover the characteristic function of flog i(r)- We start by
defining the sequence,

R; = log ( (1) ) =log (o*(1)) — log (0*(t;-1)) . (14.3)

o2(tj-1)

where R; is the logarithmic increment of o(t) between t; and ;1. As the volatility
process follows log-normal dynamics, the R; are independent and identically

distributed, i.e. R; LR By the definition of R; in Eq. (14.3), we write 0(#;) as
0% (t) = 0*(to) exp(Ry + Ry + --- + R)). (14.4)

At this point, a backward recursion procedure in terms of R; will be set up by
which we will recover ¢, o V(1) We define

Yi =Ry, Y;=Ruiij+Z1, j=2,....M. (14.5)

with Z; = log(1 + exp(Y))).
By Egs. (14.4) and (14.5), the discrete time-integrated variance can be expressed
as

M
Y(T) =) o) At = Atog exp(Y). (14.6)
i=1

From Eq. (14.6) and by applying the definition of the characteristic function, we
determine ¢’1og i) a8 follows

Prog 71y (W) = elexpliulog ¥(T))] = exp (iulog (A1) dy,, ().

We have reduced the computation of Prog (1) O the computation of ¢y,. An
accurate and efficient way of approximating ¢py,, was derived in [10], which is
employed also here. Once the approximation of ¢y,,, ¢y, has been derived, we

'These time points are not to be confused with the Monte Carlo time steps. We will have only one
Monte Carlo time-step. M is the number of points for the discrete approximation of Y(T').
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recover flog () from Prog ¥(7) by employing the COS method [4], as follows

~

k
Cy cos ((x—&)]; nA),

N—1
2
flogf/(T)(x) ~ l; ~ Z

—a =0

with

kr akm
Ck =N ¢10g f/(T) ]; _a exp —ll; _2 s

where N is the number of COS expansion terms, [a, b] is the support of log Y(T)
and the prime " and R symbols indicate division of the first term in the summation
by two and taking the real part of the complex-valued expressions in the brackets,
respectively. The CDF F Jog ¥(7) is then obtained by integration.

14.4 Simulation of Y(T)|o (T): Copula Approach

The CDF, Fioeiv(r) derived in Sect. 14.3 is now employed to simulate Y(7)|o(T)
by means of a copula. In order to define any copula, a measure for the correlation
between the involved distributions needs to be determined. Here, we choose the
Pearson’s correlation coefficient, &2, which is directly employed in many copulas
(Gaussian and Student t copulas, for example) and a relation with Kendall’s 7 exists
for Archimedean copulas. By definition, the Pearson coefficient for log Y(7T) and
loga(T) is given by

cov [log fOT o (s)ds, log O'(T)]

Plog Y(T) Jog o(T) = .
\/Var [log fOT 02 (s)ds] var [log o (T)]

We employ the following approximation

T T T
log/ o2(s)ds ~ / log o2(s)ds = 2/ log o (s)ds.
0 0 0

where the logarithm and the integral are interchanged. Since the log function is
concave, this approximation forms a lower bound (Jensen’s inequality) for the
true value. After some algebraic manipulations, an approximation of the Pearson’s
correlation coefficient is then obtained as

1202
o T V3
Progv(Mylogon) X > =, (14.7)
\/%“4T4
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Plog Y (T),Jog o (T)

Fig. 14.1 Pearson’s correlation coefficient: Empirical (surface) vs. approximation (red grid)

The approximation obtained is a constant value. We can show numerically that,
for the problems at hand, this appears to be a very reasonable approximation. The
correlation between log Y(7) and log o (7)) is affected by the maturity time 7, and by
the volatility-of-volatility parameter «. In Fig. 14.1, the empirical and approximated
(red grid) correlations are depicted for typical values of T and «. Because we focus
on short maturity options, we restrict T € [0,2] and o € (0, 1]. The experiment
shows that, only in rather extreme cases (¢ > 0.7), the differences between the
empirical and approximated correlation increase, but remain within five basis points
and do not affect the performed simulation significantly.

The following steps describe the complete procedure for the simulation of Y (7))
given o (T) by using a bivariate copula approach:

. Determine Fjog (1) (analytically) and Flog 1) (Sect. 14.3).

. Determine the correlation by Eq. (14.7).

. Define a bivariate copula distribution.

. Generate correlated uniforms, Uleg () and Ulog (1) from the bivariate copula.
. From Ulyg o (1) and Ulog () invert the original marginals, Fiog o () and F10g vy
. Finally, the samples of Y(7T)|o(T) are obtained by taking exponentials.

AN AW
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14.5 Simulation of S(T) Given S(0), o(T) and f’ o%(s)ds

We complete the one time-step SABR simulation by the conditional sampling of
S(7). The most commonly used techniques can be classified in two categories:
direct inversion of the SABR distribution function given in Eq. (14.2) and moment-
matching approaches. The direct inversion procedure has a higher computational
cost because of the evaluation of the non-central x> distribution. However some
recent developments make this computation affordable. In [3], the authors proposed
a forward asset simulation based on a combination of moment-matching (Quadratic
Gaussian) and enhanced direct inversion procedures. We employ this technique also
here.

As already pointed out by Andersen [1], the almost exact simulation of the
asset price in some stochastic volatility models can result in loss of the martingale
property, due to the approximation of a continuous process by its discrete equivalent.
This is especially seen when the size of time time-step is large and for certain
configurations of the SABR parameters, like small 8 values, close-to-zero initial
asset values Sy, high vol-vol parameter « or large initial volatility o9. We employ a
simple but effective numerical martingale correction, as follows

RS I ¢
SO =50 = D S0 +elSW]=50— >80+,
i=1 i=1

where S;(f) represents the i-th Monte Carlo sample.

14.6 Numerical Experiments

Different numerical experiments have been carried out. In Sect. 14.6.1, we compare
different copulas for the simulation of Y(T)|o(T). After that, in Sect. 14.6.2, we
employ the best fitting copulas in a SABR pricing experiment. We consider several
representative SABR data sets with special characteristics, like a zero correlation
(Set I), a normal SABR model (Set II) and a high volatility-of-volatility SABR set
(Set III). The parameter values are shown in Table 14.1. Other parameters in our
one-step SABR method include the number of discrete time points, M = 1000 and
the number of COS elements: N = 150.

Table 14.1 Data sets So oy |« B o T

Set I 1.0 |05 (0.4 |0.7 00 |2
SetIl [0.05 0.1 |{0.4 0.0 |[—0.8 |0.5
SetIII [0.04 [0.4 |08 |1.0 [—0.5 |2
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14.6.1 Copula Approach Analysis

We consider here Gaussian and Student t copulas (Gaussian-based), and Clayton,
Frank and Gumbel copulas (Archimedean). In order to select an optimal copula,
we assess a so-called goodness-of-fit (GOF) criterion for copulas. We split the
analysis, first evaluating the Archimedean copulas and subsequently, after choosing
the optimal copula from this class, performing an analysis of the remaining copulas.
The GOF testing for Archimedean copulas is a graphic procedure proposed by
Genest and Rivest [5]. Given a function K based on based on Kendall’s processes,
the graphical GOF test consists in comparing the distance i(u) = u — K(u)
and the empirical distance, A(u). In Fig. 14.2, the distances i(u) between three
Archimedean copulas (Clayton, Frank and Gumbel) are depicted. The experiment
is performed for each data set in Table 14.1. As the measurable quantity, the mean
squared error (MSE) of )Ak(u) — A(u) is presented in Table 14.2.

From the GOF results for the Archimedean copulas, we find that the Gumbel
copula fits best in our framework. Thus, we perform a GOF test including the
Gaussian, Student t and Gumbel copulas. Hence, we perform a new GOF test which
is based on the distances between the empirical Deheuvels copula, 6, and the
analyzed copula €. By using the discrete L> norm, this GOF measure reads

Dy (64.€) = |6a — €|l 12,

where d is the number of random variables to build the copula, d = 2. In Table 14.3,
the distances, D,, between the tested copulas and the Deheuvels copula are shown.

According to the GOF results, the three copulas perform very similarly. When
longer maturities are considered, the Gumbel copula exhibits smaller errors. In
terms of speed, the Gaussian copula is around three times faster than the Gumbel

@ | ® ©
N (—Empirical A(u) 4 p

- -Clayton i’ i

Frank i E

Gumbel A -0.05

—Empirical A (u)
- -Clayton
Frank

Gumbel

—Empirical A(u)
A - Clayton
-+ Frank
Gumbel

-0.05 %

Au)
Au)
Au)

-0.1 -0.1 -0.1

-0.15 -0.15 -0.15
0 0 0

Fig. 14.2 Archimedean GOF test: )Ak(u) vs. empirical A(u). (a) Set I. (b) Set II. (c) Set III

Table 14.2 MSE of Clayton Frank Gumbel

A(u) - A(u) —3 —4 —5
Set I 1.3469 x 10 2.9909 x 10 5.1723 x 10
SetIl |1.0885x 1073 |2.1249 x 10—* |8.4834 x 10~
SetIIT |2.1151 x 1073 | 7.5271 x 10™* | 2.6664 x 10~*
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Table 14.3 Generic GOF: D,

Gaussian Student t (v = 5) Gumbel
Set T 5.0323 x 1073 5.0242 x 1073 3.8063 x 1073
Set I 3.1049 x 1073 3.0659 x 1073 4.5703 x 10~3
Set III 5.9439 x 1073 6.0041 x 1073 43210 x 1073

Table 14.4 Convergence in n: mean and standard deviation of the error (basis points) and
time (s)

n = 1000 n = 10,000 n = 100, 000 n = 1,000,000
Gaussian (Set I, X;)
Error 519.58 (204.02) 132.39 (68.03) 37.42 (16.55) 16.23 (7.66)
Time 0.3386 0.3440 0.3857 0.5733
Gumbel (Set I, X,)
Error 151.44 (199.36) —123.76 (86.33) 34.14 (17.03) 11.59 (6.58)
Time 0.3492 0.3561 0.3874 0.6663

copula, although the impact in the overall method is very small. The Student t copula
is discarded since its accuracy and performance are very similar to the Gaussian
copula and the calibration of the v parameter adds extra complexity. As a general
strategy, we conclude that the Gumbel copula is the most robust choice. When short
maturities are considered, the Gaussian copula may be a satisfactory alternative.

14.6.2 Pricing European Options by the One-Step SABR
Method

For the pricing experiment, the strike values X; are chosen by the expression X;(T) =
S(0)exp(0.1 x T x §;),8; = —1.5,—-1.0,...,1.0,1.5.

First of all, the accuracy and the performance of the one-step SABR method are
analyzed, considering the Gaussian and Gumbel copulas for the simulation of the
time-integrated variance. In Table 14.4, the convergence of our method when the
number of samples, n, is increased is empirically shown. We present the mean and
the standard deviation of the error in basis points for the implied volatilities given
by our one-step method and the reference price (Antonov et al. [2]) when Set I
and X; are employed. We observe a reduction in the error (both mean and standard
deviation) according to the expected Monte Carlo ratio (1/4/n). Also in Table 14.4,
the execution times of the one-step SABR method are shown. We can see that the
number of paths hardly affects the performance.

To further test the one-step SABR method, in Table 14.5, the differences (in
basis points) between the obtained implied volatilities with Hagan’s formula, Monte
Carlo simulation with a Milstein discretization and the one-step SABR method and
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Table 14.5 One-step SABR method with Gaussian and Gumbel copulas—implied volatilities:
differences in basis points

Strikes X X5 X3 Xy X5 Xe X7

Set I (reference: [2])

Hagan 55.07 52.34 50.08 |[N/A 47.04 46.26 45.97
MC 23.50 21.41 19.38 | N/A 16.59 15.58 14.63
Gaussian 16.23 20.79 24.95 |N/A 33.40 37.03 40.72
Gumbel 11.59 15.57 19.12 | N/A 25.41 28.66 31.79
Set II (reference: [8])

Hagan —558.82 | —492.37 | —432.11 | —=377.47 |—=327.92 |—282.98 |—242.22
MC 5.30 6.50 7.85 19.32 10.82 12.25 13.66
Gaussian 9.93 9.98 10.02 | 10.20 10.57 10.73 11.04
Gumbel —-9.93 —9.38 —8.94 | —8.35 —7.69 —6.83 —5.79
Set 11l (MC Milstein)

Hagan 287.05 252.91 220.39 | 190.36 163.87 141.88 126.39
Gaussian 16.10 16.76 16.62 | 15.22 13.85 12.29 10.67
Gumbel 6.99 3.79 0.67 | —2.27 —5.57 —9.79 —14.06

several strikes are presented. Our copula-based one-step method achieves a very
high accuracy.

14.7 Conclusions

In this chapter an efficient method to obtain samples of the SABR dynamics based
on the time-integrated variance has been developed. The technique employs a
Fourier method to derive the CDF of the time-integrated variance. By means of a
copula, the conditional sampling technique is obtained. Its application gives us a fast
and accurate one time-step Monte Carlo method for the SABR model simulation. By
numerical experiments, we have shown that our method does not suffer from well-
known problems of the Hagan formula in the case of small strike values and higher
volatilities.

The use of the proposed technique is restricted to option maturities up to 2 years
and European-type options. In [9], we have generalized the methodology to the
multiple time-step case. This generalization allows us to deal with problems with
longer maturities (more than 2 years) and also with more involved exotic options
(early-exercise and path-dependent options). We need to introduce new method
components to deal with the increasing computational complexity in that case.
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Chapter 15
PDE Methods for SABR

Jorg Kienitz, Thomas McWalter, and Roelof Sheppard

Abstract In this chapter we consider the general SABR model which includes
the Free Boundary SABR model considered in Chap. 4. We summarize as well
as further illustrate the results from Kienitz et al. (Clipping the wings of SABR—
stable and efficient numerics for sticky SABR. Preprint, 2016, submitted), Kienitz
(Approximate and PDE Solution to the Boundary Free SABR Model—Applications
to Pricing and Calibration. SSRN, http://papers.ssrn.com/sol3/papers.cfm?abstract_
1d=2647344,2015) and Kienitz and Caspers (Interest rates explained volume 2: term
structure models. Palgrave MacMillan, Basingstoke, 2017). The dynamic is given by
the system of SDEs:

dF (1) = a(t)C(F(t))dW1 (1)

da(t) = va(t)dW, (1)
(dW1(1), dW> (1)) = pdt

F(O) =/

a(0) =

(W1(2)); and (W, (7)), are correlated Brownian motions. fy and og > O are the starting
values called the current forward rate and the initial volatility. The parameter v >
0 is the volatility of volatility and p € [—1, 1] is the correlation parameter. The
function C is a local volatility parametrization.
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The case C(F) = F* is the original SABR model which was introduced in Hagan
et al. (Wilmott Mag 1:84-108, 2002). Special versions of the model are known as
the log-normal SABR model, C(F) = F, the Normal or Bachelier SABR model,
C(F) = 1 and the shifted SABR model C(F) = (F + b)?, with b > 0. Recently,
Antonov et al. (Free boundary SABR. RISK, 2015) introduced the Free Boundary
SABR model. They proposed to choose C(F) = |F|?. The choices of the local
volatility reflects the area of application of the model. For instance C(F) = (F +
b)? or C(F) = 1 and C(F) = |F|? makes it possible to cope with negative rates
prevailing in some interest rate markets including the EUR and CHF.

We consider a stable numerical scheme for the Free Boundary SABR model and
show that it is stable for all types of parameters.

15.1 Introduction

The SABR model gained its popularity from the ease of use due to the asymptotic
expansion formula derived in [9] and its flexibility to fit market observed volatility
data. This solution covers the case of the classic SABR as well as the Bachelier
and the shifted SABR model. The log-normal, o5(K, T), or the Bachelier volatility,
03(K, T), can approximately be expressed in terms of the SABR parameters, the
strike K and the maturity 7. These values can then be used with the Black76,
resp. Bachelier formula to price European Call and Put options. The approximation
formula for the Bachelier model was considered in Chap. 4. Improvements to
the asymptotic expansion such as [22] extend the area of application. For further
improvements and their numerical implementation see [17].

The known deficiencies of the asymptotic expansions, namely the problems
stemming from using it for very long dated options, large values of volatility of
volatility or very small strikes were solved by practitioners using ad hoc methods.
Especially during and in the aftermath of the financial crisis with very low or even
negative rates and high values for implied volatilities revealed the deficiencies even
more. It was realized that the density obtained from Call prices derived from using
implied volatilities calculated by the asymptotic expansion formula led to negative
values and, thus, to arbitrage. Again practitioners developed ad hoc methods for
instance to be use for replication methods to price CMS based contracts—called
wing extensions, see [14] or [5]. The first theoretical solution for this problem can
be found in [6] who considered the density as the sum of two components that are
always positive. These components reflect the decomposition into a continuous part
and to an absorbing part. The latter is a Dirac measure in 0. In addition to that
result an upper bound on the time to maturity was derived. Beyond that bound the
standard asymptotic expansion cannot be applied safely. For related recent papers
on the SABR model we refer the reader to [15, 16, 18].
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Recent work of [10] suggests to consider the cumulative probability density
P[F < Fr < F + dF|F; = fo, a; = o)
The equation for the forward density is then

dg _ a® O [(1+2pvy 4+ v%y?) exp (ovul (F)(T — 1)) C*(F)q]
ar 2 dF?

with y(F) = foF C‘ﬁ;) and I'(F) = cF If.:fc()(-’c"). Subsuming all the notation into a

function D(F) := /a2 + 2apvy(F) + v2y(F)2Ff we have

dg _ v? *[D*(F)q]
T 2 IF?

To keep track of the lower boundary of F called Fy;, at O for the standard SABR
model or —b for the shifted model as well as for very large values, called Fy,
two additional equations are derived based on conservation laws. Summarizing, the
numerical method is designed to keep the martingale property as well as the fact
that the cumulative density sums up to 1. We finally have to consider the following
set of equations for ¢, g~ and ¢~:

dg o2 d? [DZ(F)q]

b= o lam e a(0)=8(F—f) (15.1)
qu_ . Vi, L _

g = Jim O [D(Pal. ¢10)=0 (15.2)
R

N im V[D(Pa],. 4F©) =0 (15.3)

dar FAFyax 2

While Hagan et al. [10] suggest to use a Crank-Nicholson discretization to solve the
system of equations, LeFloch and Kennedy [21] showed that this is not efficient
and even leads to erratic effects. This was earlier remarked by Duffy [7] in a
different context. Thus, different numerical schemes for efficiently solve the system
of equations to produce reliable and stable results. For our considerations we take
the Lawson-Swayne scheme, see [20], they propose to apply as one of the schemes
leading to stable results for SABR. We extend the applicability of the effective
PDE solution to the case of the Free Boundary SABR model as well by applying a
suitable transformation.

In a series of publications on the SABR model [2—4] choose to split the Call
option price C(K,T) and consider the sum of the intrinsic value (F — K)* and
the time value denoted by OSBR(T,K). Then, the authors derive an integral
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representation for (T, K) for the case p = 0 which is close to the one given in
[12]. The main idea from [2, 3] which was extended to the free SABR model in
[4] was to find an efficient approximation to the integral expression (15.4). The
corresponding formula for O$*88(T, K) is given in Chap. 4 (4.11),

1
OSABR(T K) = - VIKfol{1xk=0A1 + sin(ym)Az} (15.4)

with y = \—é(l -/ | and the corresponding values
_ [ sin(¢) sin(yg) G(Tv?, s(9)
A= /0 b —cos(¢p) cosh(s(¢)) dé

A, = /°° sinh(y) (1k=o cosh(y¥) + 1x<o sinh(y¥)) G(Tv?, s(¥)
0

b + cosh(y) cosh(s(y/)) aw

The functions appearing in the above equations can be found in Chap. 4. While
theoretically appealing this approach can lead to numerical instabilities for certain
values of correlation and far out of the money strikes, especially for |p| large, i.e.
near 1 the proposed projection is not applicable. This will not be addressed further
but we remark that the proposed PDE as well as the approximate solutions can be
applied for —1 < p < 1. This is essential for calibration.

The aim of the current chapter is twofold. First, we extend numerical methods
to be applicable to the Free Boundary SABR model—denoted by fSABR from now
on. This results in a PDE approach similar to that of [10] for the standard SABR
model. Second, we derive Finite Difference schemes based on [23] that are applied
to the fSABR model. Finally, we wish to fill a gap in the current literature namely
the comparison of the proposed numerical schemes in terms of accuracy, efficient
pricing, stability for extreme parameters and the calculation of hedge sensitivities.
To this end we consider the different numerical methods for different versions of the
general SABR model and for different values of the SABR parameters. Then, we
derive European Call option prices, implied volatilities and risk-neutral densities.

We have organized this chapter as follows: We use the results from [10] and [21]
to adapt the techniques to work for the fSABR model. To this end we briefly review
the numerical scheme which we apply. Then, we make the necessary changes to
apply the methods in case of the fSABR model.

The following sections are dedicated to the benchmark solution. This is a finite
difference method (FDM) in two dimensions based on Soviet splitting that extends
work of [23] to the more general setting of fSABR. This method serves as a
benchmark for all the other numerical techniques we considered.

Finally, we compare all the proposed numerical method in terms of accuracy
for different types of SABR models and for different parameter values. From the
numerical studies we reach the conclusion that the performance of the numerical
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techniques, the applicability for extreme model parameters and the calculation of
hedge sensitivities are in favour of the PDE solution.

15.2 (Free Boundary Boundary) SABR: PDE Solution

Before we present our numerical approach to the fSABR model we outline some of
the possible pitfalls of the integration approach:

* Inapplicability of projection method Inaccuracy for the projected solution for
ITM and OTM options

— Inaccuracy for ITM and OTM options
— Arbitrage possibilities
— Constraints on the SABR parameters

e Stability of the numerical integration with respect to the used number of
quadrature points and for choosing the upper bound for numerical integration

For more information on the model and pitfalls see also Chap. 4

15.2.1 Effective PDE

In [21] many Finite-Difference schemes for calculating the density for the (No-
Arbitrage) SABR model are proposed. Here we take the Lawson-Swayne scheme,
[20], and modify it in a way such that it can be applied to the fSABR model.

First, we derive the effective PDE for the fSABR model. To this end we use the
techniques from [10] and adapt it to the our setting. We use (15.1)—(15.3) together
with the local volatility function C(F) = |F|?. The function D(F) is given by

F F 2
D(F) = |a?+ 2apv (/ |g|—/3dg) + 2 (/ |g|—/3dg) |F|P (15.5)
Jo Jo

To efficiently solve this equation we fix the notation and forj = 1,...,Np, n =
0,...,Nr—1weconsiderz; = z= +jh, y; = y(z; — ’27), F; = F(y;), C; = D(F;) and

_ IR 17
Fj—fo
E;(T) = exp(pval;T).

I
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Take t, = nT/N and q; = q(zj, t,). To define the discrete operator governing the
evolution let

1 Ci—
Lq(z,t,) = !

1( G L. G
ANFjr1 —F;  Fj—Fj

I G
‘ Eir19(zj+1,tn)
AFj —F 70

Ej—1(t)q(zj—1,tn)

) Ej(t2)q(z), 1n)

For the boundaries we update according to

C() Cl
Eo(T)q(ty, T) = — E\(T T
Fi—Fy 0(T)q(to, T) Fi— Fy 1(T)q(z1,T)
Cr1 G
E tiv1,T) = — E;(T T
Froi—Fy s+19(ty41,T) Froi—Fy 1(Nq(z;, T)

The discretization is done using the Lawson-Swayne scheme which forb = 1 — “éz
is

q](l+b _ qu} — bAL;l"rbq;l"rb

C n
P (tags) — PH(1) = bAFl B FOEI (trsp)d "

C

PR(trs) = PR) = bA " Ey(tarn)g)
Frpn—Fy

The step from n 4 b we step forward to n 4 2b by

n+2b _ _n+b __ n+2b n+2b
g =g =bALTTg;

G n+2b

P (tag2) — P (tags) = A E1(th+2p)q)
Fi—F

C
PR(tyy0p) — PR(ty1p) = bA 4 Ej(tasa)g" ™.
Fr1—Fy

The final step computes the new values at #,4; and is given by
qJVH-l — (\/2 + 1)q1(1+2b _ \/2q1(1+b
P (tay1) = (V2 4 DP (ty12) — V2P (tys)
PR(tyr1) = (V2 + DPR(tuyo) — V2PR (tays)

The final outcome are the density g for F\,;,, < F < F,,, and the values at Fy;, and
FMax'
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Within the described set up the choice of the coordinate transformation
z+> y > f is the crucial part. To account for the local volatility structure of the
fSABR model we take the transformation given as follows:

F) =p(p(f~F + 1=y /=P (15.6)
with
— L, y= _fll:g
P —1, else

with y(z) = ¢ sinh(vz) + p(cosh(vz) — 1). For illustration, we consider the values
given in [4], « = 0.005095939, 8 = 0.1, v = 0.3, p = —0.3 with forward fy =
0.005 and T = 3. The grid consists of Nr = 160 and Ny = 160 points. First, we
show the transformed coordinates in Fig. 15.1.

In fact this transformation is the only thing that has to be changed to solve the
system of equations necessary to numerically approximate the probability density
function in the fSABR setting. The resulting probability density is then used to price
European Call options. This is done by numerically integrating the density. Using
this approach for a given maturity options on different strikes can be computed in
one sweep. Next, we use the integration and the PDE approach for pricing European
Call options. Figure 15.2 show densities obtained by the PDE method using different
values for 7.

Take g = 0.014703823,8 =03, v =03, p = —0.3,fp = 0.005and T = 3,
we consider the effects of introducing a displacement into the fSABR model as
well as an artificial lower bound Fy;,. Using this set-up it is possible to control the
stickyness. The results are shown in Fig. 15.3. The stickyness controls the peak of
the distribution which is at 0 for the standard fSABR model. Furthermore, the lower
bound controls the region where we wish to have contributions of the smile. This
proves useful for the replication method used for CMS pricing for instance.

v(@) f(y)
0,08 0,05
0,06 0,04
0,04 > . 0,03 >~
0,02 "
L 0,01
o — O s 0
$e 6 4 2750 2 4 6 8 01 -008 006 -004 003 O 002 004 006 003
-~ -0,04 002
y -0,06 = -0,03
/ ' S 0,04
/ -0,08 - S04
0.1 0,06
z y

Fig. 15.1 Coordinate transformation for the fSABR using oy = 0.005095939, 8 = 0.1, v = 0.3,
p = —0.3 with forward f; = 0.005. We plotted the function y(-) (left) and the function f(y(:))
(right)
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Free Boundary SABR (Different T)

825

Value

0,1 -0,08 0,06 0,08 01

Forward
0,05

—-—T=3 =a=T=5 =w=T=10

Fig. 15.2 Densities obtained using different values for T

To use the effective PDE solution we need to price financial instruments. First,
we remark that we constructed the solution in a way that

Zj F(z)

hqi(T) = / q(T.2)dz = / O(T, F)dF (15.7)
zj—1 F(zj—1)

Zj F(Zj)

F(z2)q(T,z)dz = / FQ(T, F)dF (15.8)
F(zj—1)

hE;_1;(T) = /

zj—1

If a strike value K is such that F; < K < Fjq; for some grid points F; and
Fjy1 we need to take two things into account. First, we need to account for the
integration from K to Fj1; and, second, we need to handle the boundary F,,,. To
this end we regard the probability distribution obtained by the PDE method as a
discrete cumulative probability on each grid cell. To account for strikes not lying
on the grid we use for the ease of implementation a linear interpolation to get the
corresponding density within a single grid. This can be accomplished by keeping
the overall probability (15.7) and the forward (15.8). Then, the density to be used
for numerical integration can be used on the subgrid (15.9).

hq; (
T,F) = 14+ 3b 15.9
orr =" (159)
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Fig. 15.3 Effects of a variation of the Sticky SABR model controlling the stickiness (/eft) using a displacement and the shape of the smile on the left wing

(right) using an artificial lower bound



274 J. Kienitz et al.

The value of b can be calculated since we know the cumulative density within each
grid. Thus, the price of a European Call is given by (15.10)

(15.10)

1 F, — K)? Fy + 2K — 3F;_
C(T,K)zth(k )-(1+bkk+ ’”)

k
Fk_Fk—l Fk_Fk—l
J
+h Y (Fy = K)gi(T) + (Fu — K)OX(T)
j=k+1
The same can be done for pricing European Put options. We have

(K — Fy)? ‘ (1 N bk3Fk —2K — Fk_l)

1
P(T,K) = _hq;
) 2 Fr — Fr— Fr — Fi—

J
+h Y (K= F_1)gi(T) + (K = Fy,) QX(T).
j=k+1

This extends to arbitrary payoff functions on the forward F(T).

15.3 Benchmark PDE Solution

In the general SABR framework the value of a European Call option, V(ty, Fo, ),
with strike K and maturity 7', can be obtained by solving the following PDE arising
using the Feynman-Kac Theorem

wv o1, , PV ) 9
F F
o +2ozC( )8F2+pv(x C( )aF

Equation (15.11) is on the domain (¢, F, @) € 2 = [ty, T] X [Fouin» Frnax] X [0, ¥max]
subject to the following boundary conditions

Vv 1, ,0V

= 15.11
oo 2]) * a2 0 (s.10)

V(T,F,a) = max(F — K, 0) (15.12)
V(t, Fpin.a) =0 (15.13)
av
o o (0 P ) (15.14)
av
(t,F,00)=0 (15.15)
ot
v I, 0%V _
o . F.,otpax) + 0, C°(F) 9F? = 0 (15.16)

For Eqgs. (15.12)-(15.16) 1, is the valuation date, Fy the spot forward rate and ¢ the
calibrated volatility parameter. The parameters F,, Finqx and oy, of the domain is
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chosen such that perturbations on the boundaries have minimal impact on the value
of the contingent claim.

The terminal condition of the boundary value problem is given by the payoff
function, see Eq. (15.12). Equation (15.13) reflects that the Call Option will be
worthless when the forward, F, is very small and Eq. (15.14) specifies a von
Neumann boundary condition. The lower boundary condition is obtained by letting
a = 0in Eq. (15.11) whereas the upper boundary follows from the assumption that
the value of a Call Option will not be very sensitive to changes in volatility (vega)
if volatility is very large.

The Finite Difference Method used to solve this boundary value problem is based
on techniques described in [23] and can be summarized as follows:

1. Partition the domain, [Fuin, Finax] X [0, ®nay], into a non-uniform grid. This grid
is chosen such that the number of grid points is concentrated at Fp and ¢ and
can be obtained my applying a grid generating function to uniform partitions of
[Fonins Fruax] and [0, pax]. Let Xppin = X0 < X1 < +++ < Xy = Xpax denote a
uniform partition for an arbitrary interval [X,,;,, Xuqc] Where x; — x,—1 = xj41 — X;
fori = 1,...,m — 1. To obtain the benchmark solution we made use of the
following grid generating function

glx) =x+ “ sinh [p(x — Xpin) + sinh™! (_p (x— xmm))]
p c

where X is the concentration point, ¢ defines the density of the grid at X and p is
chosen such that g(X,ux) = Xmax- By applying this grid generating function we
obtain the following non-uniform partitions for [F,, Finay] and [0, 0]

Foin :fO <fl <"'<fm:Fmax
O=ag<a; <--<a, = Upax

Let0 =1 <t < :-- <t = T be a uniform partition for the time interval
[to, T] where t; — t;_; = Atfori = 1,...,] and denote the finite difference
approximation at each node point by

vf‘jr\v\/(tk,ﬁ,aj)
fork=0,...,i=0,...,mandj=0,...,n.

2. The solution at time #y can be obtained by marching backward trough time with
the following Yanenko scheme

~ k
Up—v; 1, , PO k
At = LG C EDARV; +  pva; CF) Arav

vf;_l —szj

1 _ 1 ~
A = zvajzAﬁvfj fy vaq?C(Fi)AFavij
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where A%, Ai and Ap, are second order finite difference approximations for
33;2 , ;52 and Bana . This scheme has better stability properties than traditional ADI
schemes for non-smooth payoff functions and is better with approximating mixed
derivatives, see [8].

3. The major drawback of this Yanenko scheme is that it is only first order
accurate in time. Accuracy can be drastically improved by making use of
extrapolation techniques as described in [13]. The benchmark solution was
obtained by applying similar extrapolation techniques to the above-mentioned
Yanenko scheme as described in [23].

15.4 Numerical Results

In this section we consider some examples from the literature and apply the
proposed numerical techniques.

First, we consider the standard SABR model on some challenging parameter
sets proposed in [10]. Here we consider all the numerical methods and display the
results. Second, we apply a numerical study to the fSABR case. Here we consider
the parameter sets from [4] and take different time to maturities, extreme parameters
and, furthermore, consider the Greeks A and I".

15.4.1 SABR

For the numerical study we consider parameter sets based on [4] and [10]. Thus,
we take the parameters 9 = 0.318, 8 = 0, p = —0.183 and v = 0.777 for Set
land ¢ = 0.329, 8 = 0.5, p = —0.455 and v = 0.867 for Set 2. To analyze
the accuracy of the different numerical methods we chose to calculate the implied
Bachelier volatility. Table 15.1 displays the results:

15.4.2 Free SABR

For the free SABR model we take the following sets of parameters, fy = 0.005,
oy = 0.6F(1)_ﬂ, B =01,v = 03and p = —0.3 for FSet 1 and f; = 0.01,
o = O.Sfol_ﬂ, v = 03,8 = 0.25and p = —0.3 for FSet 2. We consider the
fSABR model with the parameter set FSet 1 with 7 = 3. The benchmark price is
obtained by applying the 2d FDM scheme introduced in Sect. 15.3. Then, the PDE
approach from Sect. 15.2 and the two asymptotic expansions from Chap. 4 as well
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2,500%
g P
;’2,000%-
]
(%)
S !
2 1,500% - i
o
£
8 1,000% |
[
2
=
K 0,500% -
=
&
0,000% R &
O O O O O O O OO0 O O OO0 OO O O O OO0 O o oo o o
A~ O O O © VI O AN —m O —~ AN O F VB ©N 0O O®” O ~ A
- T m O O O O OO0 O O OO0 OO0 OO O OO0 O O« - w
© 9 92 298 989995 99 S S99 9 99 S S99 9
Strike
—+—PDEvs FDM =0O=Intvs FDM === Approx H vs FDM
Implied Bachelier Volatility
> 0,0046
=
-_'—30,0044
§0,0042
5 0,004
= 0,0038
2
S 0,0036
@ 0,0034
T 00032
o 0,003 i B
§0,0028-----------------
O O O O OO0 0O OO0 O O OO0 O OO0 O OO0 O O o o O o
AN~ O O NN © T OAN — O NI 1B O© NN OO O~ A
- - - O O O O O 0O O O O 00 OO0 O © O O OO «— v «—
ceQQ Qg o090 00 Q000 9ggQoo 9 Qo -Q
Strike
——PDEBVol = =IntBVol ===ApproxBVol ==+ Approx2 B Vol

Fig. 15.4 Performance of the Numerical Techniques against the Benchmark on FSetl in terms of
prices (fop) and implied Bachelier volatility (bottom)

as the integration method from [4] are applied. In Fig. 15.4 we show the relative
error with respect to the benchmark price. For this set of parameters the PDE as
well as the Approximation based on the Hagan approach show the best accuracy.
The integration is the worst.
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Fig. 15.5 Difference |Price/Pricegeemax — 1| Of the different numerical methods. We consider
FSetl (top) and FSet2 (bottom)

Further illustrations on the performance of the numerical methods can be found
in Fig. 15.5 which shows the difference to our benchmark implementation.

15.4.3 Stability for Extreme Parameters

Let us consider the parameter set FSetl. Keeping the values of this parameter set but
varying one parameter the time to maturity 7, the correlation p and the volatility of
volatility v. These parameters are known to challenge a numerical method or even
make it inapplicable. We consider:

e T=1,5,10,20,50
The finding here is that except of the PDE solution none of the other numerical
techniques is capable to accurately price Call options for all maturities and, thus,
give accurate values for the implied Bachelier volatilities. As expected the quality
of the approximation formulas deteriorate. The results can be seen in Fig. 15.6.
But if we include higher order terms in the standard expansion from [9] this effect
can be accounted for.
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Fig. 15.6 Implied Bachelier Volatility for FSetl and different 7 = 1Y, 3Y,5Y, 10Y, 20Y, 50Y
from top left to bottom right. The different numerical techniques are shown

e p=-09,09
We find that the integration technique cannot cope with all values for the
correlation parameter. It is well known that for certain market parameters to
recover the prices, resp. volatilities the model parameters have to be chosen near
the lowest/largest possible values. Thus, care has to be taken by choosing the
appropriate domain for the parameters. For values of the correlation parameter p
near 1 even the PDE method does not seem to work properly. But it is possible to
adjust the method by choosing a larger grid and increasing the number of space
steps. Especially, we observe that the method based on integration and projection
breaks down here. The results can be seen in Fig. 15.7.
e v=2051,2
The approximation formulas, especially the formula based on the Hagan
asymptotic expansion is not suitable for large values of volatility of volatility.
The calculated values for the implied Bachelier volatilities are far off the correct
results. But we observe that the approximation method based on Approx 2 from
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Chap. 4 is better suited here. The results can be seen in Fig. 15.8. Again, higher
order terms in the approximate solution can be used to cope with high values of
the volatility of volatility.

We show the effect by plotting the implied Bachelier volatility in Figs. 15.6, 15.7
and 15.8. It shows that the PDE method is stable for all times to maturity, especially
very long dated options can be priced safely.

15.4.4 The Greeks

o 2
the suggested methods in terms of accuracy. To this end we consider the Call prices

C(K, T, +¢) depending on a parameter € > 0 where this expression means that we
calculate the Call option price taking fo +. = fo £ €.
We consider

2
In this subsection we analyze the Greeks, A = ICETD) and " = g;?“ for all

_ C(K,T,e) —C(K,T,—¢)

- e

_ C(K,T,—€)+ C(K,T,e) —2C(K,T,0)
n 2e

A

r

We observe the following:

* The accuracy and the stability depends on the choice of the parameter €, see for
instance [19] on a systematic account of numerical differentiation. For instance
the PDE method cannot be applied with too small values for €. For the integration
approach the value of € should not be too large. Figure 15.9 illustrates this result.
The asymptotic approximation result is not sensitive to value of €. In practice
people often wish to choose not the theoretical optimal value but 1% or 1bp.

* For accurately calculating the Greeks the number of discretization steps applied
for the PDE method is crucial. Too few space steps give inaccurate results but we
also observe that the choice of time steps does not effect that much.

Finally, we show the performance of all methods with respect to the benchmark
method. Tables 15.2 and 15.3 summarize our findings.
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15.5 Conclusions

Our conclusion is that the PDE method based on the effective solution of the general
SABR model should be applied in practice. For the standard SABR model this is
described in [10] whereas we extended it to the case of the fSABR model here. This
method is the most reliable and gives accurate results for extreme parameters and
for the Greeks. If efficiently implemented, e.g. using the method proposed here it is
also reasonable fast.

All other methods have their advantages mainly in terms of speed but this
often comes with a decreasing range of applicability. For instance the very fast
approximation methods cannot handle extreme parameters as large values for the
maturity for instance. Let us summarize our findings:

* PDE and asymptotic expansions can be carried over to the fSABR model

* All the numerical methods have been benchmarked against 2d FDM scheme

* PDE method is the most accurate approximation to the benchmark solution

* Approximation formulas efficient near ATM and small time to maturity

» Integration formula not applicable for all values of correlation (PROBLEMS for
calibration)

* Greeks can be calculated and it is shown that the approximation formula leads to
values different than the PDE and Integration approach

* Accuracy of PDE scheme relies of € and mainly on the number of space steps

Thus, we conclude that an appropriate implementation of the No-Arbitrage SABR as
well as the extension to the fSABR model should apply the PDE solution approach.
Comparison to our 2d FDM benchmark approach have shown that it is accurate,
stable and due to the fact the efficient numerical schemes exist is reasonable fast.

We expect that the method of the effective PDE is applicable to a larger set of
stochastic volatility models. The authors applied the model successfully to the case
of the ZABR model, see [1].

Furthermore, [11] showed that for a variety of stochastic volatility models
effective PDE can be derived. This makes the described technique applicable to
a variety of models.
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Chapter 16
Sparse Grid High-Order ADI Scheme for Option

Pricing in Stochastic Volatility Models
Bertram Diiring, Christian Hendricks, and James Miles

Abstract We present a sparse grid high-order alternating direction implicit (ADI)
scheme for option pricing in stochastic volatility models. The scheme is second-
order in time and fourth-order in space. Numerical experiments confirm the
computational efficiency gains achieved by the sparse grid combination technique.

16.1 Introduction

Stochastic volatility models such as the Heston model [22] have become one of
the standard approaches in financial option pricing. For some stochastic volatility
models and under additional restrictions, closed-form solutions can be obtained by
Fourier methods (e.g. [9, 22]). Another approach is to derive approximate analytic
expressions, see e.g. [2] and the literature cited therein. In general, however,—even
in the Heston model [22] when the parameters in it are non constant—the partial
differential equations (PDEs) arising from stochastic volatility models have to be
solved numerically.

In the mathematical literature, there are many papers on numerical methods
for option pricing, mostly addressing the one-dimensional case of a single risk
factor and using standard, second order finite difference methods (see, e.g., [40] and
the references therein). More recently, high-order finite difference schemes (fourth
order in space) were proposed [19, 36, 39] that use a compact stencil (three points
in space). In the option pricing context, see e.g. [11, 12, 30].

There are less works considering numerical methods for option pricing in
stochastic volatility models, i.e., for two spatial dimensions. Finite difference
approaches that are used are often standard, second-order methods, e.g. in [28]
where different efficient methods for solving the American option pricing problem
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for the Heston model are proposed. In [10] a high-order compact finite difference
scheme for option pricing in the Heston model is derived and this approach is
extended to non-uniform grids in [14]. Other approaches include finite element-
finite volume [43], multigrid [5], sparse wavelet [23], FFT-based [35] or spectral
methods [42].

The classical alternating direction implicit (ADI) method, introduced by Peace-
man and Rachford [33], Douglas [6, 7], Fairweather and Mitchell [32], is a very
powerful method that is especially useful for solving parabolic equations (without
mixed derivative terms) on rectangular domains. Beam and Warming [1], however,
have shown that no simple ADI scheme involving only discrete solutions at time
levels n and n + 1 can be second-order accurate in time in the presence of mixed
derivatives. To overcome this limitation, unconditionally stable ADI schemes which
are second order in time have been proposed by Hundsdorfer and Verwer [26, 27]
and more recently by in’t Hout and Welfert [24]. These schemes are second-order
accurate in time and space. In [25] different second-order ADI schemes of this type
are applied to the Heston model. In [13] this approach is combined with different
high-order discretisations in space, using high-order compact schemes for two-
dimensional convection-diffusion problems with mixed derivatives and constant
coefficients. In [21] this approach is combined with sparse grids and applied to
multi-dimensional diffusion equations, again with constant coefficients. Building
on the ideas in [13, 26, 27], a high-order (second-order accurate in time and fourth-
order accurate in space) ADI method for option pricing in stochastic volatility mod-
els which involve the solution of two-dimensional convection-diffusion equations
with mixed derivative terms and space-dependent coefficients is derived in [16].

In this chapter we combine the approaches from [21] and [16], to obtain a sparse
grid high-order ADI scheme for option pricing in stochastic volatility models. In the
next section we recall stochastic volatility models for option pricing and the related
convection-diffusion partial differential equations. Section 16.3 is devoted to the
Hundsdorfer-Verwer ADI splitting in time. The spatial discretisation is introduced in
Sect. 16.4 for the implicit steps, and in Sect. 16.5 for the explicit steps. The solution
of the resulting scheme and the discretisation of boundary conditions are discussed
in Sects. 16.6 and 16.7. The sparse grid combination technique is explained in
Sect. 16.8. We present numerical convergence results in Sect. 16.9.

16.2 Stochastic Volatility Models

We consider the following class of stochastic volatility models: assume that asset
spot price 0 < S(f) < oo and variance 0 < o(f) < oo follow two stochastic
diffusive processes for ¢ € [0, T,

ds(r) = uS(tydt + /o ()S@)dWV (r), (16.1a)
do (1) = k(0(1))*(0 — o ())dt + v(o ()P dW? (1), (16.1b)
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which are characterised by two Brownian motions, dW(¢) and dW® (), with
constant correlation parameter dW) (1)dW® (t) = pdt. The drift coefficient for
stochastic asset returns is given by the mean return of the asset where € R and
the diffusion coefficient is given by \/ a(t)S(1).

The drift coefficient of the asset variance is given by « (o (¢))* (5 —o(t)), where
constants k > 0 and & > 0 are the mean reversion speed of o(¢) and the long
run mean of o (¢), respectively. The diffusion coefficient is given by v(o(£))? where
constant v > 0 is the volatility of volatility. The constant riskless interest rate is
denoted by r > 0. The constants ¢, 8 determine the stochastic volatility model
used.

The class of stochastic volatility models (16.1) includes a number of known
stochastic volatility models: The most prominent stochastic volatility model, the
Heston model [22] (also called square root (SOR) model) specifies the variance by

do(t) = k (0 — o (1)) dt + v/o () AW (7).

Other known stochastic volatility models include the GARCH (or VAR model)
model, see [8], where the stochastic variance is modelled by

do (1) = k (0 — o (1)) dr + vo (HdWP(r),
and the 3/2 model [31] in which the variance follows the process

do(t) = k (0 — o (1)) dt + vo 2 () dW (5).
All of the three stochastic volatility models mentioned above use a linear mean-
reverting drift for the stochastic process of the variance v(¢), but there are also
models, in which the drift is mean reverting in a non-linear fashion. Following [4],
we denote these models with an additional “N”: in the SORN model the stochastic
variance follows

do (1) = ko (1) (0 — o (1)) dr + v/o (AW (1),
in the VARN model
do(t) = ko (1) (6 — o (1)) dt + vo (HdW? (1),

and in the 3/2-N model

do(t) = ka(t) (6 — o(1)) d + vo2 (AW (p),

see [4].
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Applying standards arbitrage arguments and Itos lemma to the class of stochastic
volatility models (16.1), we can derive the following second order partial differential
equation for any financial derivative V (S, 0, 1), to be solved backwards in time with
0<S<o00,0<0<00,t€]0,7):

SZ 2,28

o v
Vi + Vss-‘rpvaﬁ_’_éSng‘i‘

5 5 Voo +1SVs + [k6%(0 —0) — Ago |V, — 1V = 0.

(16.2)

Here, Ago(f) is the market price of volatility risk, where Ay € R, which is
usually assumed to be proportional to the variance. In the following we assume
Ao = 0 for streamlining the presentation. The generalisation to the case A9 # 0
is straightforward by consistently adding in the additional term in the coefficient
of V. The boundary conditions and final condition are determined by the type of
financial derivative V(S, o, 1) we are solving for. The boundary conditions of any
European option will depend on a prescribed exercise price, denoted here by E > 0.
For example, in the case of the European Put Option:

V(S,0,T) = max(E — S,0), 0<S<o0, 0<o0o <o0,
lim V(S,0,1t) =0, 0<o<o0, 0<t<T,
S—o00
V(0,0,1) = Eexp(—r(T — 1)), 0<o<o0, 0<t<T,
lim V,(S,0,t) =0, 0<S<o0, 0<t<T,
0—>00
The remaining boundary condition at ¢ = 0 can be obtained by looking at the

formal limit 0 — O in (16.2), i.e.,
Vi+rSVs+ 0V, —rV=0, T>t>0,5S>0, aso — 0. (16.3)

This boundary condition is used frequently, e.g. in [28, 43]. Alternatively, one can
use a homogeneous Neumann condition [5], i.e.,

Vo (S,0,1) =0, 0<S<oo, 0<t<T. (16.4)
By using a change of variables:

| o T—1 g

x=1In _, = , t=T-t u=exp(rt

E 7T P g

we transform the partial differential equation to an convection-diffusion equation
in two spatial dimensions with a mixed derivative term. The transformed partial
differential equation and boundary/initial conditions are now satisfied by u(x, y, 1),
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wherex e R,y > 0,7 € (0,T]:

2 09—
v v v v
U, = yuxx + (©y) Uyy + p(vy)ﬂ+éuxy + (r— 2y)ux + (K (vy)* ; y) Uy,

2 2
(16.5)

u(x,y,0) = max(1 —exp(x),0), —oo <x < 00,0 <y < 00, (16.6a)

lim u(x,y,7) =0, 0<y<o0,0<t<T, (16.6b)

X—>00

lim u(x,y,7) =1, 0<y<o0,0<t<T, (16.6¢)
X—>—00

lim u,(x,y,7) =0, -0 <x<00,0<1<T, (16.6d)
y—>00

liII(l) uy(x,y,7) =0, —0<x<00,0<t<T. (16.6¢)

y—>

In order to discretise the problem and solve numerically, we truncate our spatial
boundaries to finite values. Take L; < x < K, where L; < Kj,and L, <y < K>,
where 0 < L, < K, so that the spatial domain forms a closed rectangle in R? of
M xN points with uniform spacing of A, in the x-direction and A, in the y-direction:

=L+ (-4, i=1,2,....M, y=L+(—-1A, j=12,...N.

The lower y-boundary is truncated to L, > 0 to ensure non-degeneracy of the partial
differential equation for all values of y. We assume cell aspect ratios to be moderate.
We also take a uniform partition of ¢ € [0, 7] into P points such that 7, = (k —
1)A;, where k = 1,2, ..., P. We denote the discrete approximation of u((i — 1) Ay,
G—DA,, (k—=1)A;) by uﬁj and U" = (u} ).

16.3 Hundsdorfer-Verwer ADI Splitting Scheme

We consider the Alternating Direction Implicit (ADI) time-stepping numerical
method proposed by Hundsdorfer and Verwer [26, 27]. Our partial differential
Eq. (16.5) takes the form u, = F(u). We employ the splitting F(u) = Fo(u) +
F1(u) + F»(u) where unidirectional and mixed derivative differential operators are
given by:

Folw) = poy)* 2y, Fiu) =+ (r= 5 Y

28 9 —
Fa(u) = (”yz) lyy + (K (vy)” U”y ) u.  (16.7)
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We consider (16.5) with the splitting (16.7) and look for a semi-discrete approxi-
mation U" ~ u(t,) at time nA.. Given an approximation U"~! we can calculate an
approximation for U” at time nA, using the differential operators from (16.7):

Yo=U""+ AFU"), (16.82)
Y1 = Yo + ¢A(F1(Y1) — FiI(U"™), (16.8b)
Yy = Y1 + ¢ A(F2(Y2) — F2(U"), (16.8¢)
Yo = Yo + YA(F(Y2) — F(U'™Y)), (16.8d)
Y1 =Y+ ¢A(F1(Y) — Fi(Y2)), (16.8¢)
Y2 = Y1+ ¢A(F2Y2) - Fa(Y2)), (16.8)
Ut =Y,. (16.82)
The parameter v is taken to be v = 1/2 to ensure second-order accuracy in

time. The parameter ¢ is typically fixed to ¢ = 1/2. Larger values give stronger
damping of the implicit terms while lower values return better accuracy. The role
of ¢ is discussed in [26]. Its influence in the connection with high-order spatial
approximations is investigated numerically in [16].

The first and fourth step in (16.8) can be solved explicitly, while the remaining
steps are solved implicitly. Our aim is to derive high-order spatial discretisations
of the differential operators. Following [13] we combine high-order compact finite
difference methods for the implicit steps with a (classical, non-compact) high-order
stencil for the explicit steps.

16.4 High-Order Compact Scheme for Implicit Steps

For F(u), consider the one-dimensional convection-diffusion equation
Uyy + ClUy = C28 (16.9)

with constants ¢; = 2r/(vy) — 1 and ¢; = 2/(vy). To discretise the partial
derivatives in (16.9), we employ standard, centered second-order finite difference
operators, denoted by &, and 8%. The second-order terms in the truncation error
involve higher-order partial derivatives, u,,, and u,,,,. Hence, if we can find second-
order accurate expressions for uy,, and Uy, using only information on the compact
stencil, then it will be possible to approximate u, and u,, with fourth order accuracy
on the compact stencil. By differentiating (16.9) once and twice with respect to x,
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respectively, it is possible to express .y, and uyy,, in terms of first- and second-order
derivatives of u and g with respect to x. We obtain the following relations, concisely
written in matrix form,

1 0 é 0 Uy 8x0u,-u,~ ﬁ(ﬂi) SX()M,"]'
01 o/} u 82u; O(AY 82u;

12 xXx — x Y] x — x Wi, j 0 A4 .
OclAfl 0 A)Zcuxxx czAfgx 0 czAf&cogi,j +0(4)
0 0 ¢ 1 A%um CzAfgxx 0 czA)%ngi,j

This shows that only second-order approximations for uy, uy,, gx and g,, are needed.
Using these relations to discretise (16.9) and to replace the partial derivatives
Uy and Uy In the truncation error, yields a fourth-order compact approximation
for (16.9) at all points of the spatial grid except those that lie on the x- and
y-boundaries. We refer to [16] for more details of the derivation of the compact
high-order spatial discretisation.

To approximate F(u) at points along the x boundaries of the inner grid of the
spatial domain, we will require a contribution from the Dirichlet values at the
x-boundaries of the spatial domain. We collect these separately in a vector d. Details
on the boundary conditions are given in Sect. 16.7. The resulting linear system to be
solved can be written in matrix form:

A,u = Byg + d,

where u = (u22,u23, ... . uy—1n—1), § = (822,823, -, 8m—-1.,N—1). The coeffi-
cient matrices A, and B, are block diagonal matrices, with the following structure:

A0 0 0 Bl 0o 0 0
0 A22 0 0 0 B2 0 0
Ax = ’ BX = ’
0 0 . 0 0 0 0
0 0 0 AV-2N=2 0 0 0 BV2N=2

where each A7/ = diag[ai;jl, af)"" , a’f‘"] and B/ = diag[bi;jl, b{)’j , b’i’j] are tri-diagonal
matrices. Explicit expression for all coefficients are given in [16].

For F»(u) the derivation can be presented in a concise form, similar as for
F1(u), again we refer to [16] for additional details. Consider the one-dimensional

convection-diffusion equation

Uy + Clity = 28 (16.10)
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with ¢1(y) = 2k(vy)*"*#(8 — vy)/v and c;(y) = 2/(vy)?P, the necessary relations
can be concisely written in matrix form,

10 3)(1) lty
0 1 0L wuy

/A2 2 2
1Ay 1Ay 1T 0 || Afuyyy
A2 A A2 2
¢l A3 2¢1A5 e 1 J\ AJuyyyy

Syolti j
8314,"]'
A%(8y0¢2,i8ij + €2.8,08i5)
45(5362,,'&,/ + 28,0¢2.0,08i.; + Cz,j5fgi,j)

4
+0(ah),

where the first two lines of the system correspond to standard, central second-order
difference approximations, while the third and fourth are obtained from the repeated
differentiation of (16.10). Using these relations to discretise (16.10) and to replace
the partial derivatives u,,, and u,y,, in the truncation error, yields a fourth-order
compact approximation for (16.10).

We obtain a linear system which can be represented in matrix form:

Ayu = Byg

where u = (Mzﬁz, U3z, ..., “M—I,N—1)7 g = (gzﬁz,gzg, Ce 7gM—1,N—1)- We do not
impose any boundary conditions in y-direction, but discretise the boundary grid
points with the same scheme, and handle resulting ghost points via extrapolation;
details on the boundary conditions are given in Sect. 16.7. The coefficient matrices
A, and By are block tri-diagonal matrices with the following structures:

Al al? o 0 0
AZLA22 A23 0 0
Ay=1| o0 - .. . 0 ,
0 0 AN—3,N—4 AN—3,N—3 AIY—S,N—Z
0 0 y 0 A;\/—Z,N—EX A;\’—Z,N—Z
y y
B}I,’l B}I,’2 0 0 0
2,1 p2,2 2,3
B2 B2* B’ 0 0
By = 0o . .. . 0 ’
0 0 BN_S’N_4 BN—3,N—3 BN_S’N_Z
0 0 Y 0 BN—Z,N—3 B;\’—Z,N—Z
y y

where each A}/ = diag[a"/] and B]/ = diag[b*/] are diagonal matrices. Explicit
expression for all coefficients are given in [16].
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16.5 High-Order Scheme for Explicit Steps

The first and fourth steps of the ADI scheme (16.8) operate only on previous
approximations to explicitly calculate an updated approximation. The differential
operator in these steps takes the form of the right hand side of (16.5). For the
mixed derivative term it seems not to be possible to exploit the structure of
the differential operator to obtain a fourth-order approximation on a compact
computational stencil. Hence, in order to maintain fourth-order accuracy of the
scheme in the explicit steps of (16.8), the derivatives in each differential operator Fj,
F| and F, are approximated using classical, fourth-order central difference operators
which operate on a larger 5 x 5-stencil in the spatial domain. Here we use the shift
operator defined by:

A

Sy =e U where (Sct)ij = uit1,j, Sy = e

" where (Sylxl)i,j = Ujj+1-

For Fi(u) = ' ux — (') — r)ux, we have the following scheme:

[vy ( vy vy (=82 4+ 1657 —30 4 165, — 53
Uy + 7 — )ux] = Ui
ij

2 2 2 1242
-2 —1 2
vy [ 8.7 —8s + 8sy — st 4
_ ii+ O(AY).
+(r 2)( 124, uij + O(4)

)28 N —vv
For Fo(u) = )"y, + ")y, we have:

2B ap —
[(vyz) yy + Kk (vy) E} Uy)”y]i,-

_ (vy))* —sy_2 + 16sy_l — 30+ 16sy — s§ .
2 1242 v

-2 —1 2
K(ij)a(e - ij) Sy T 8sy + 83}' -5 4
i+ OA7).
* v 124, uij + O (4)

Finally, for the mixed derivative term Fy = p(vy)?+ 2 Uiy, the following computa-
tional stencil is used:

[y )

ij

:p(vy)ﬁ""é s;z_gs;l +8SX—S§ s;z_gs;l +8Sy_S«% Uu; :
! 124, 124, "

+ O(ALA) + O(A)) + O(4).
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Fig. 16.1 Example: evaluation of F(u, ;) using the 5 X 5-point computational stencil in the lower
left corner of the computational domain; ghost points outside the computational domain at which
values are extrapolated from the interior of the domain are marked by bullets (8,0,0), grid points
on the boundary are set in Roman

Using these fourth-order approximations, the first and fourth step in (16.8) can be
computed directly. The values at the spatial boundaries for each solution of the ADI
scheme are determined by the boundary conditions, the computational stencil is
required for all remaining points in the spatial domain. For the explicit steps, the
5 x 5-point computational stencil exceeds the spatial boundary when we wish to
approximate differential operator F'(u) at any point along the boundary of the spatial
domain’s inner grid. For example if we wish to evaluate F(u;,), we will require
contributions from ghost points which fall outside the spatial domain, as marked
by bullet points in Fig. 16.1. We extrapolate information from grid points u(x;, y;),
wherei =1,...,. M —1,j=1,...,N — 1 to establish values at these ghost points
for the purpose of evaluating the differential operator F(«) at any point along the
boundary of the inner grid of the spatial domain. To calculate the values at these
ghost points, we use the following five-point extrapolation formulae for three cases:

x=L(e): uio = Su;; — 10u;» + 10u;3 — Suja + u;s + ﬁ(Af),

y = Ly(0): ug,j = Suyj— 10us j + 10uz j — Sus j + us j + ﬁ(Ai),

x=L1,y=L(®): upo=>5u11—10uz2 + 10u33 — Suss + uss + ﬁ(Ai)
+ O(AJA) + O(AA) + O(ALA) + O(AA)) + O(A)).

The extrapolation at the x = K| and y = K, boundaries and the remaining three
corners is handled analogously.

16.6 Solving the High-Order ADI Scheme

Starting from a given U"~!, the ADI scheme (16.8) involves six approximation steps
to obtain U", the solution at the next time level. The first approximation Y, can be
solved for explicitly using the 5x5-point computational stencil derived in Sect. 16.5.
The second approximation for our solution, denoted by Yi, has to be solved for
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implicitly:

1
Yi =Yy + oA(F () —F(U'") < F{-U""= o4 (Y — Yy).
(16.11)

We apply the fourth-order compact scheme established in Sect. 16.4 to solve (16.11).
In matrix form we obtain

A = U = By ¢IA (1 = o)) +d.

Collecting unknown Y; terms on the left hand side and known terms Yy, U "l and d
on the right hand side we get

(By —pAA) Y = BYy — pAA U™ — pAd.

To solve, we invert the tri-diagonal matrix (B, — ¢ A,A,). For the third step of the
ADI scheme, we proceed analogously, and use the high-order compact scheme
presented in Sect. 16.4 to solve for Y, implicitly. The fourth, fifth and sixth step
of the ADI scheme are performed analogously as the first, second and third steps,
respectively.

Note that the matrix (B, — ¢$A,A,) appears twice in the scheme (16.8), in the
second and fifth step. Similarly, (By — @A tAy) appears in the third and the sixth step.
Hence, using LU-factorisation, only two matrix inversions are necessary in each
time step of scheme (16.8). Moreover, since the coefficients in the partial differential
Eq. (16.5) do not depend on time, and the matrices are therefore constant, they can
be LU-factorised before iterating in time to obtain a highly efficient algorithm.

The combination of the fourth-order spatial discretisation presented in Sect. 16.4
and 16.5 with the second-order time splitting (16.8) yields a high-order ADI scheme
with order of consistency two in time and four in space.

16.7 Boundary Conditions

For the case of the Dirichlet conditions at x = L; and x = K| we impose

u(Ly,yj, o) = 1—e ™, j=12,...,N, k=1,2,...,
u(Ky,yj, @) =0, j=12,...,N, k=1,2,....
Using the homogeneous Neumann conditions (16.6d) and (16.6e) which are correct

in the limit y — oo and y — 0, respectively, at the (finite) boundaries y = L, > 0
and y = K; would result in a dominant error along these boundaries. Hence, we do
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not impose any boundary condition at these two boundaries but discretise the partial
differential equation using the computational stencil from the interior. The values of
the unknown on the boundaries are set by extrapolation from values in the interior.
This introduces a numerical error, and it needs to be considered that the order of
extrapolation should be high enough not to affect the overall order of accuracy. We
refer to Gustafsson [20] to discuss the influence of the order of the approximation
on the global convergence rate. We use the following extrapolation formulae:

wly = Suby — 10ufs + 1008, — 5ufs + uls + 0(A9),

uy = Suin_y = 100 y_y + 10y = Sufn_y + Uiy_s + O (Aﬁ) .

16.8 Sparse Grid Combination Technique

Due to the ADI splitting and the compactness of the finite difference discretisation
in the implicit steps, the computational effort grows linearly with the number
of unknowns, namely (N - M). In the following we use the so-called sparse
grid combination technique to reduce the number of grid nodes and thus also the
computational effort. Sparse grids go back to Smolyak [38], who used them for
numerical integration. Zenger [41], Bungartz et al. [3] and Schiekofer [37] extended
his idea and applied sparse grids to solve PDEs with finite element, finite volume
and finite difference methods. These methods in general require hierarchical, tree-
like data structures, which makes the data structure management more complicated
than in the full grid case. With the help of the sparse grid combination technique
[18] this problem can be overcome. Here, full tensor-based solutions are linearly
combined to construct the sparse grid solution. This allows us to use standard full
grid PDE solvers. Hence, this approach is very versatile and broadly applicable.
Furthermore, each sub-solution can be computed independently, which makes it
easily parallelisable.

The combination technique is based on the error splitting structure of the
underlying numerical scheme. Let the numerical solution of the HO-ADI scheme
be given by u; with multi-index / = (I;, l,) and mesh widths A, = 271 (K| — L),
A, = 272(K>—L,). We assume that our numerical scheme satisfies an error splitting
structure of the form

u—up = Ajwi(Ay) + Ajwa(4y) + AjA w1 (Ay, Ay,

with functions wy, wy, wi » bounded by some constant C € RT. The mesh widths
A, and A, are independent of one another. Since the error functions w; and w, only
depend on either A, or Ay, we can subtract two solutions with the same mesh width
in one coordinate direction, such that the error term cancels out. Exploiting this idea
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further leads to the combination technique

u = Z u — Z u. (16.12)

|l\1=n+l \Z|1=n

Applying the error splitting from above, the lower order terms cancel out and we
obtain

W =+ 274 FDR Ly DR Y 2 20 DR, 0= Dy

n+1
+ 2—4(11+1)R1R2 Z Wl,z(z_iRl , 2—(ﬂ+1—i)R2)
i=0

—27"RiRy Y wia(27'R1.27"ORy),
i=0

where Ry = K| —L; and R, = K» — L. As wy, wy and wy » are bounded by C the
pointwise error is given by

lu) —u| = O 2=,
which is equivalent to
luS —u| = O(A*logy(A™Y)) (16.13)

for A = 27". We observe that the error of the sparse grid combination technique is
deteriorated by a factor of log,(A™") compared to the fourth-order full grid solution.

Figure 16.2 shows the two-dimensional grid hierarchy at levels n = 0,...,4.
The sparse grid in two dimensions at level n consists of sub-grids, whose sum of
refinement levels fulfils |/|; = n. Hence the number of grid points on each sub-grid
grows with &'(2"). As the number of grids increases with &'(n), this leads to &'(n2")
nodes in the sparse grid. Let A = 27", then this results in &(A™!log,(A™")) grid
points compared to &’(A™2) nodes in the full grid. Thus we are able to reduce the
number of grid nodes significantly while maintaining a high accuracy.

It should be noted that for larger n the combination technique as introduced above
involves solutions on grids which violate the assumption of moderate cell aspect
ratios which may lead to reduced accuracy and potential instability of the scheme
due to the extreme distortion of the grid. This aspect of the combination technique
is of general nature and not specific to our scheme. A usual remedy would be to
exclude solutions on extremely distorted grids in (16.12). For further details we
refer to the pertinent literature on sparse grids.
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Fig. 16.2 Sub-grids and
sparse grid forn =0, ..., 4
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16.9 Numerical Experiments

In this section we test the proposed sparse grid high-order ADI scheme. Beside
the accuracy of the full grid solution we are also interested in the efficiency of the
combined sparse grid solution.

Itis well known that due to the non-smooth nature of the payoff function in option
pricing problems one cannot expect to see higher-order in practice [34]. Some form
of smoothing has to be applied to the initial condition. In [29] suitable smoothing
operators are identified in Fourier space. Since the order of convergence of our high-
order compact scheme is four, we could use the smoothing operator @, as in [15],
given by its Fourier transformation

4
R sin (%) |: 2 L w :|
Dy(w) = 2 1+ 2 .
4(w) ( o ) 3sm (2)

This leads to the smooth initial condition determined by

3h 3h

o (x.y) = / /a>4 (Z) o, (Z)uo(x—sc,y—@ didy

—3h —3h

for any stepsize 1 > 0, where uy is the original initial condition and ®4(x) denotes
the Fourier inverse of @4(w), see [29]. As h — 0, the smooth initial condition
uy tends towards the original initial condition uy and the approximation of the
smoothed problem tends towards the true solution. For our numerical experiments
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we use this smoothing operator which has already been applied successfully to
option pricing problems in [15].

A numerical solution computed on a grid with A, = A - (K} — L), Ay = A -
(K» — L) and time step A; = 5+ A? serves as a reference solution, where A = 278,
Since the accuracy of option prices close to the strike price is of highest interest
from a practitioner’s point of view, we compute the maximum absolute error in the
region [0.5E, 2E] x [0.05, 1]. The grid parameters of the computational domain are
chosento be L, = —5, K; = 1.5, L, = 0.05 and K, = 2.5. The parameters of
the ADI method are ¥ = 1/2 and ¢ = 1/2