
Randomized Stopping Times and Provably
Secure Pseudorandom Permutation Generators

Michal Kulis1, Pawel Lorek2, and Filip Zagorski1(B)

1 Department of Computer Science,
Faculty of Fundamental Problems of Technology,

Wroclaw University of Science and Technology, Wroclaw, Poland
filip.zagorski@pwr.edu.pl

2 Faculty of Mathematics and Computer Science, Mathematical Institute,

Wroclaw University, Wroclaw, Poland

Abstract. Conventionally, key-scheduling algorithm (KSA) of a cryp-
tographic scheme runs for predefined number of steps. We suggest a
different approach by utilization of randomized stopping rules to gen-
erate permutations which are indistinguishable from uniform ones. We
explain that if the stopping time of such a shuffle is a Strong Stationary
Time and bits of the secret key are not reused then these algorithms are
immune against timing attacks.

We also revisit the well known paper of Mironov [15] which analyses
a card shuffle which models KSA of RC4. Mironov states that expected
time till reaching uniform distribution is 2nHn − n while we prove that
nHn + n steps are enough (by finding a new strong stationary time for
the shuffle).

Nevertheless, both cases require O(n log2 n) bits of randomness while
one can replace the shuffle used in RC4 (and in Spritz) with a better
shuffle which is optimal and needs only O(n log n) bits.

Keywords: Pseudo-random permutation generator · Markov chains ·
Mixing time · Stream cipher · Timing-attacks

1 Introduction

The applicability of card shuffles to cryptography was noticed many years ago by
e.g., Naor [17] for Thorp shuffle. The shuffles can be categorized into two groups.
The first one are the oblivious shuffles, meaning that the trajectory of a card
during the shuffle can be traced without tracing trajectories of other cards. Thus
oblivious shuffles can be seen as block ciphers. The other group of card shuffles
– non-oblivious shuffles require tracing all the cards in order to trace a single
one. Since one needs to trace each of the n cards, straightforward application
of non-oblivious shuffles as block ciphers would be inefficient. But non-oblivious

Authors were supported by Polish National Science Centre contract number DEC-
2013/10/E/ST1/00359.

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 145–167, 2017.
DOI: 10.1007/978-3-319-61273-7 8

146 M. Kulis et al.

shuffles are used in cryptographic schemes anyway, just in a slightly different
role – often as a building block of a stream cipher.

Let us use the naming convention used by RC4 – a stream cipher designed in
1987 by Ronald Rivest. There is also a long line of stream ciphers: RC4A [23],
Spritz [20], RC4+ [21], VMPC [25] – all of them are very similar – they are
composed from two algorithms:

1. KSA (Key Scheduling Algorithm) uses a secret key to transform identity per-
mutation of n cards into some other permutation (one can model KSA as a
card shuffle).

2. PRGA (Pseudo Random Generation Algorithm) starts with a permutation
generated by KSA and outputs random bits from it updating permutation at
the same time.

Thus, KSAs of all aforementioned algorithms (RC4, RC4A, Spritz, RC4+,
VMPC) can be seen as performing some card shuffling, where a secret key
corresponds to/replaces randomness. If we consider a version of the algorithm
with purely random secret key of infinite length then we indeed consider a card
shuffling procedure. Following [15], we call such a version of the algorithm an
idealized version. In the case of KSA used by RC4 the idealized version (math-
ematical model) of the card shuffle is called Cyclic-to-Random Transpositions
shuffle which indeed is an example of non-oblivious shuffle. Recently, in 2013,
Rivest and Schuldt presented a new version of an RC4-like cipher (Spritz [20])
which has a new sponge-like KSA which performs more complicated shuffle: 6N
steps of Cyclic-to-Random Transpositions (as part of Whip procedure, see Fig. 7;
compared to only N steps of in RC4) and in between, partial sorting (so called
Crush) of elements in the internal state is performed twice (after 2-nd and 4-th
shuffling).

The KSAs of mentioned ciphers perform shuffling for some predefined num-
ber of steps. The security of such a scheme is mainly based on analyzing ide-
alized version of the algorithm and corresponds to the “quality of a shuffling”.
Roughly speaking, shuffling is considered as a Markov chain on permutations,
all of them converge to uniform distribution (perfectly shuffled cards). Then we
should perform as many steps as needed to be close to this uniform distribution,
what is directly related to the so-called mixing time. This is one of the main
drawbacks of RC4: it performs Cyclic-to-Random Transpositions for n steps,
whereas the mixing time is of order n log n.

There is a long list of papers which point out weaknesses of the RC4 algo-
rithm. Attacks exploited both weaknesses of PRGA and KSA or the way RC4 was
used in specific systems [4,9,10,12,13]. As a result, in 2015 RC4 was prohibited
in TLS by IETF, Microsoft and Mozilla.

In the paper we use so-called Strong Stationary Times (SST) for Markov
chains. The main area of application of SSTs is studying the rate of convergence
of a chain to its stationary distribution. However, they may also be used for
perfect sampling from stationary distribution of a Markov chain, consult [19]
(on Coupling From The Past algorithm) and [8] (on algorithms involving Strong
Stationary Times and Strong Stationary Duality).

Randomized Stopping Times and Provably Secure Pseudorandom 147

1.1 Our Contribution

(1) Strong stationary time based KSA algorithm(s). Instead of running
a KSA algorithm (i.e., performing the shuffle) for some pre-defined number of
steps, we make it randomized (Las Vegas algorithm). To be more specific we
suggest utilization of so-called Strong Stationary Times (SST) for Markov
chains. We use SST to obtain samples from uniform distribution on all per-
mutations (we actually perform perfect sampling). We show benefits of such
approach:

1. Use of SST may allow to close the gap between theoretical models and prac-
tice. As a result of Mironov’s [15] work, one knows that idealized version of
RC4’s KSA would need keys of length ≈23 037 in order to meet the math-
ematical model. In fact one may use a better shuffling than the one that is
used in RC4 i.e., time-reversed riffle shuffle which requires (on average) 4096
bits – not much more than 2048 bits which are allowed for RC4 (see Sect. 4.1).

2. Coupling methods are most commonly used tool for studying the rate of
convergence to stationarity for Markov chains. They allow to bound so-called
total variation distance between the distribution of given chain at time instant
k and its stationary distribution. However, the (traditional) security defini-
tions require something “stronger”. It turns out that bounding separation
distance is what one actually needs. It fits perfectly in the notion of Strong
Stationary Times we are using (see Sect. 4.2).

3. By construction, the running time of our model is key dependent. In extreme
cases (very unlikely) it may leak some information about the key but it does
not leak any information about the resulting permutation to an adversary.
We also discuss how one can mask such a leakage (see Sect. 4.3).

(2) Better SST for RC4’s KSA. Our complementary contribution (Sect. 5.2)
is the analysis of RC4 showing a new upper bound on number of steps the algo-
rithm should perform. Similarly as in [15], we propose SST which is valid for
Cyclic-to-Random Transpositions and Random-to-Random Transpositions, for
the latter one we calculate the mixing time, which is however “faster” than the
one given in [15]. It is known that Random-to-Random Transpositions card shuf-
fling needs 1

2n log n steps to mix. It is worth mentioning that although Random-
to-Random Transpositions and Cyclic-to-Random Transpositions are similar in
the spirit it does not transfer automatically that the latter one also needs 1

2n log n
steps to mix. Mironov [15] states that expected time till reaching uniform distri-
bution is upper bounded by 2nHn − n, we show in Lemma 3 that the expected
running time for this SST in Random-to-Random Transpositions is equal to:

E[T] = nHn + n + O(Hn)

and empirically check that the result is similar for Cyclic-to-Random Transposi-
tions. This directly translates into the required steps that should be performed
by RC4’s KSA.

148 M. Kulis et al.

(3) Note on Spritz construction. We also have a look at Spritz (Sect. 6),
a newer sponge-like construction. We explain why the Sign distinguisher attack
cannot be successful and provide arguments why the KSA algorithm in Spritz
may not perform enough steps.

2 Preliminary

Throughout the paper, let Sn denote a set of all permutations of a set
{1, . . . , n} =: [n].

2.1 Markov Chains and Rate of Convergence

Consider ergodic Markov chain X = {Xk, k ≥ 0} on finite state space E =
{0, . . . , M − 1} with stationary distribution ψ. Let L(Xk) denote the distrib-
ution of a chain at time instant k. By the rate of convergence we understand
the knowledge on how fast a distribution of a chain converges to its stationary
distribution. We have to measure it according to some distance dist. Define

τdist
mix(ε) = inf{k : dist(L(Xk), ψ) ≤ ε},

which is called mixing time (w.r.t. given distance dist). In our case the state space
is the set of all permutations of [n], i.e., E := Sn. The stationary distribution is
the uniform distribution over E, i.e., ψ(σ) = 1

n! for all σ ∈ E. In most applications
the mixing time is defined w.r.t. total variation distance:

dTV (L(Xk), ψ) =
1
2

∑

σ∈Sn

∣∣∣∣Pr(Xk = σ) − 1
n!

∣∣∣∣ .

The separation distance is defined by

sep(L(Xk), ψ) := max
σ∈E

(1 − n! · Pr(Xk = σ)) .

It is relatively easy to check that dTV (L(Xk), ψ) ≤ sep(L(Xk), ψ).

Strong Stationary Times. The definition of separation distance fits perfectly
into notion of Strong Stationary Time (SST) for Markov chains. This is a prob-
abilistic tool for studying the rate of convergence of Markov chains allowing
also perfect sampling. We can think of stopping time as of a running time of
algorithm which observes Markov chain X and which stops according to some
stopping rule (depending only on the past).

Definition 1. Random variable T is a randomized stopping time if it is a run-
ning time of the Randomized Stopping Time algorithm.

Randomized Stopping Times and Provably Secure Pseudorandom 149

Algorithm. Randomized Stopping Time

1: k := 0
2: coin := Tail

3: while coin == Tail do
4: At time k, (X0, . . . , Xk) was observed
5: Calculate fk(X), where fk : (X0, . . . , Xk) → [0, 1]
6: Let p = fk(X0, . . . , Xk). Flip the coin resulting in Head with probability p and

in Tail with probability 1 − p. Save result as coin.
7: k := k + 1
8: end while

Definition 2. Random variable T is Strong Stationary Time (SST) if it is
a randomized stopping time for chain X such that:

∀(i ∈ E) Pr(Xk = i|T = k) = ψ(i).

Having SST T for chain with uniform stationary distribution lets us bound the
following (see [3])

sep(L(Xk), ψ) ≤ Pr(T > k). (1)

We say that T is an optimal SST if sep(L(Xk), ψ) = Pr(T > k).

2.2 Distinguishers and Security Definition

We consider three distinguishers: Sign distinguisher and Position distinguisher
which are exactly the same as defined in [15], we also consider Permutation
distinguisher – we consider his advantage in a traditional cryptographic security
definition. That is, Permutation distinguisher is given a permutation π and needs
to decide whether π is a result of a shuffle or if it is a permutation selected uni-
formly at random from the set of all permutations of a given size. The important
difference is that the upper bound on Permutation distinguisher’s advantage is an
upper bound on any possible distinguisher – even those which are not bounded
computationally.

Position distinguisher Sign distinguisher

Input: S, t, table
(p(t)i,j), threshold A
Output: b
p:=0
for i:=0 to n − 1 do

p:=p + log(np)(t)i,S[i]

if p < A
then return false
else return true

Input: S, t
Output: b
if sign(S)=(−1)t

then return false
else return true

150 M. Kulis et al.

Position Distinguisher. Because of the nature of the process (in fact both:
Random-to-Random Transpositions and Cyclic-to-Random Transpositions), the
probability that ith card is at jth position depends on t: p

(t)
i,j = P (S[j] = i at

time t) which can be pre-computed according to recursion: p
(0)
i,j =

{
1 if i = j
0 otherwise

and for t > 0 :

p
(t)
i,j =

{
p
(t−1)
i,j

(
1 − 1

n

)
+ 1

np
(t−1)
t0,j if i �= t0,

1
n otherwise,

where t0 = t mod n. The advantage of Position distinguisher dissolves in time –
we will upper bound the time needed for this distinguisher to lose his advantage.

Sign Distinguisher. For a permutation π which has a representation of
non-trivial transpositions π = (a1b1)(a2b2) . . . (ambm) the sign is defined as:
sign(π) = (−1)m. So the value of the sign is +1 whenever m is even and is equal
to −1 whenever m is odd.

Permutation Distinguisher. The distinguishability game for the adversary is
as follows:

Definition 3. The permutation indistinguishability ShuffleS,A(n, r) experiment.

Algorithm. ShuffleS,A(n, r)
Let S be a shuffling algorithm which in each round requires m bits.

1. S is initialized with:
(a) a key generated uniformly at random K ∼ U({0, 1}rm),
(b) S0 = π0 (identity permutation)

2. S is run for r rounds: Sr := S(K) and produces a permutation πr.
3. We set:

• c0 := πrand a random permutation from uniform distribution is chosen,
• c1 := πr.

4. A challenge bit b ∈ {0, 1} is chosen at random, permutation cb is sent to the
Adversary.

5. Adversary replies with b′

6. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

In the case when adversary wins the game (if b = b′) we say that A succeeded.
Adversary wins the game if she can distinguish the random permutation from
the permutation being a result of the PRPG algorithm.

Definition 4. A shuffling algorithm S generates indistinguishable permutations
if for all adversaries A there exists a negligible function negl such that

Pr [ShuffleS,A(n, r) = 1] ≤ 1
2

+ negl(n).

Randomized Stopping Times and Provably Secure Pseudorandom 151

The above translates into:

Definition 5. A shuffling algorithm S generates indistinguishable permutations
if for any adversary A there exists a negligible function negl such that:

∣∣∣∣ Pr
K←{0,1}KeyLen

[A(S(K)) = 1] − Pr
R←U(Sn)

[A(R) = 1]
∣∣∣∣ ≤ negl(n)

3 Related Work

3.1 RC4 Algorithm

RC4 is a stream cipher, its so-called internal state is (S, i, j), where S is a per-
mutation of [n] and i, j are some two indices. As input it takes L−byte message
m1, . . . ,mL and a secret key K and returns ciphertext c1, . . . , cL. The initial
state is the output of KSA. Based on this state PRGA is used to output bits
which are XORed with the message. The actual KSA algorithm used in RC4
is presented in Fig. 1 together with its idealized version KSA∗ (where a secret
key-based randomness is replaced with pure randomness) and our version of
the algorithm KSA∗∗ (where, in addition to KSA∗, it does not run pre-defined
number of steps, but the number depends on a key and is determined by some
stopping procedure ST). The details on KSA∗∗ will be given in Sect. 4.1.

Fig. 1. KSA of RC4 algorithm and its idealized version KSA∗. The KSA∗∗ has some
additional procedure ST (stopping time) which is computed during the execution of the
algorithm (for original RC4 simply ST is: stop after n steps).

A closer look at KSA∗ reveals that it is actually so-called Cyclic-to-Random
Transpositions. If we identify elements [n] with cards then we do the following:
at step t exchange card t mod n with randomly chosen one. Throughout the
paper, let Z = {Z}t≥0 denote the chain corresponding to this shuffling and let
L(Zt) denote the distribution of the chain at time t.

152 M. Kulis et al.

3.2 Sign Distinguisher for RC4’s KSA

It was observed in [15] that the sign of the permutation at the end of KSA
algorithm is not uniform. And as a conclusion it was noticed that the number of
discarded shuffles (by PRGA) must grow at least linearly in n. Below we present
this result obtained in a different way than in [15], giving the exact formula for
advantage at any step t. This form will be used by us to draw conclusions about
Spritz algorithm in Sect. 6.1.

One can look at the sign-change process for the Cyclic-to-Random Transposi-
tions as follows: after the table is initialized, sign of the permutation is +1 since it
is identity so the initial distribution is concentrated in v0 = (Pr(sign(Z0) = +1),
P r(sign(Z0) = −1)) = (1, 0).

Then in each step the sign is unchanged if and only if i = j which hap-
pens with probability 1/n. So the transition matrix Mn of a sign-change process
induced by the shuffling process is equal to:

Mn :=
(

1
n 1 − 1

n
1 − 1

n
1
n

)
.

This conclusion corresponds to looking at the distribution of the sign-change
process after t steps: v0 · M t

n, where v0 is the initial distribution. The eigenval-
ues and eigenvectors of Mn are (1, 2−n

n) and (1, 1)T , (−1, 1)T respectively. The
spectral decomposition yields

v0 · Mt
n = (1, 0)

⎛
⎝

1 −1

1 1

⎞
⎠
⎛
⎝

1 0

0 2−n
n

⎞
⎠

t⎛
⎝

1
2 − 1

2

− 1
2

1
2

⎞
⎠ =

(
1

2
+

1

2

(
2

n
− 1

)t

,
1

2
− 1

2

(
2

n
− 1

)t)
.

For n = 256 (which corresponds to the value of n used in RC4) and initial
distribution being identity permutation after t = n = 256 steps one gets: v0 ·
M256

256 = (0.567138, 0.432862).
In [13] it was suggested that the first 512 bytes of output should be dropped.

The Fig. 3 in AppendixA presents the advantage ε of a sign-adversary after
dropping k bytes of the output (so after n + k steps of the shuffle, for the
mathematical model).

3.3 Position Distinguisher for RC4’s KSA

Mironov suggested analysis of idealized version of KSA algorithm. Being in per-
mutation S ∈ Sn at step i, the idealized version swaps element S[i] with purely
random S[j]. Treating the permutation as a permutation of a deck of cards,
this is exactly a known Cyclic-to-Random Transpositions card shuffling. On the
other hand if both, S[i] and S[j] are chosen uniformly at random, the procedure
is called Random-to-Random Transpositions card shuffling. It is known that
Random Transposition requires around 1

2n log n to reach uniform distribution,
see [7]. Moreover, authors showed that “most of the action” actually happens
at this step – the process exhibit so called cut-off phenomena. The analysis of
Position distinguisher uses Strong Stationary Time (called Strong Uniform Times

Randomized Stopping Times and Provably Secure Pseudorandom 153

in [15]), based on Broder’s construction for Random-to-Random Transpositions.
Unfortunately Mironov’s “estimate of the rate of growth of the strong uniform
time T is quite loose” and results “are a far cry both from the provable upper
and lower bounds on the convergence rate”. He:

• proved an upper bound O(n log n). More precisely Mironov showed that there
exists some positive constant c such that P [T > cn log n] → 0 when n → ∞.
Author experimentally checked that P [T > 2n lg n] < 1/n for n = 256 which
corresponds to P [T > 4096] < 1/256.

• experimentally showed that E[T] ≈ 11.16n ≈ 1.4n lg n ≈ 2857 (for n = 256)
– which translates into: on average one needs to drop ≈ 2601 initial bytes.

Later Mosel et al. [16] proved a matching lower bound establishing mixing
time to be of order Θ(n log n). However, the constant was not determined.

4 Randomized Stopping Times and Cryptographic
Schemes

4.1 Strong Stationary Time Based KSA Algrorithms

We propose to use the KSA∗∗
Shuffle,ST(n) algorithm which works as follows. It

starts with identity permutation. Then at each step it performs some card shuf-
fling procedure Shuffle. Instead of running it for a pre-defined number of steps,
it runs until an event defined by a procedure ST occurs. The procedure ST is
designed in such a way that it guarantees that the event is a Strong Stationary
Time. At each step the algorithm uses new randomness – one can think about
that as of an idealized version but when the length of a key is greater than the
number of random bits required by the algorithm then we end up with a per-
mutation which cannot be distinguished from a random (uniform) one (even by
a computationally unbounded adversary).

Algorithm. KSA∗∗
Shuffle,ST(n)

Require: Card shuffling Shuffle procedure, stopping rule ST which is a Strong Sta-
tionary Time for Shuffle.

for i := 0 to n − 1 do
S[i] := i

end for

while (¬ ST) do
Shuffle(S)

end while

Notational convention: in KSA∗∗
Shuffle,ST(n) we omit parameter n. Moreover,

if Shuffle and ST are omitted it means that we use Cyclic-to-Random Trans-
positions as shuffling procedure and stopping rule is clear from the context

154 M. Kulis et al.

(as in KSA∗∗ given earlier in Fig. 1). Note that if we use for stopping rule ST
“stop after n steps” (which of course is not SST), it is equivalent to RC4’s KSA∗

(also in Fig. 1).
Given a shuffling procedure Shuffle one wants to have a “fast” stopping rule

ST (perfectly one wants an optimal SST which is stochastically the smallest). The
stopping rule ST is a parameter, since for a given shuffling scheme one can come
up with a better stopping rule(s). This is exactly the case with Cyclic-to-Random
Transpositions and Random-to-Random Transpositions, we recall Mironov’s [15]
stopping rule as well as new “faster” rule called StoppingRuleKLZ is given (in
Sect. 5.2).

4.2 RST and Security Guarantees

Coupling method is a commonly used tool for bounding the rate of conver-
gence of Markov chains. Roughly speaking, a coupling of a Markov chain X
with transition matrix P is a bivariate chain (X′,X′′) such that marginally X′

and X′′ are Markov chains with transition matrix P and once the chains meet
they stay together (in some definitions this condition can be relaxed). Let then
Tc = infk{X ′

k = X ′′
k } i.e., the first time chains meet, called coupling time. The

coupling inequality states that dTV (L(Xk), ψ) ≤ Pr(Tc > k).
On the other hand separation distance is an upper bound on total vari-

ation distance, i.e., dTV (L(Xk), ψ) ≤ sep(L(Xk), ψ). At first glance it seems
that it is better to directly bound dTV , since we can have dTV very small,
whereas sep is (still) large. However, knowing that sep is small gives us much
more than just knowing that dTV is small, what turns out to be crucial
for proving security guarantees (i.e., Definition 5). In our case (E = Sn and
ψ is a uniform distribution on E) having dTV small, i.e., dTV (L(Xk), ψ) =
1
2

∑
σ∈Sn

∣∣Pr(Xk = σ) − 1
n!

∣∣ ≤ ε does not imply that |Pr(Xk = σ) − 1
n! | is

uniformly small (i.e., of order 1
n!). Knowing however that sep(L(Xk), ψ) ≤ ε

implies

∀(σ ∈ E)
∣∣∣∣Pr(Xk = σ) − 1

n!

∣∣∣∣ ≤ ε

n!
. (2)

Above inequality is what we need in our security definitions and shows that the
notion of separation distance is an adequate measure of mixing time for our
applications.

It is worth noting that dTV (L(Xk),U(E)) ≤ ε implies (see Theorem 7 in [2])
that sep(L(X2k),U(E)) ≤ ε. This means that proof of security which bounds
directly total variation distance by ε would require twice as many bits of random-
ness compared to the result which guarantees ε bound on separation distance.

4.3 RST and Timing-Attacks

One of the most serious threats to any cryptographic scheme are side-channel
attacks. One type of such attacks are timing-attacks where an attacker by

Randomized Stopping Times and Provably Secure Pseudorandom 155

observing the running time of the execution of a cryptosystem derives infor-
mation about the key used. Timing attacks are especially powerful [1,22] since
an attacker may perform them remotely, over the network (while most of other
types of side-channel attacks can be performed only when an attacker is nearby).
In order to limit threat of timing-attacks, attempts to implement constant-time
cryptographic schemes are made. The problem is that such attempts are usu-
ally unsuccessful [18] even if the underlying architecture (“claims”) allows for
that [11,24].

The running time of an SST-based algorithm strictly depends on the secret
key. However, in this section we explain why algorithms using randomized stop-
ping times are immune to timing-attacks, we discuss separately security of two
assets: (1) resulting permutation, (2) secret key.

Timing-Attacks and the Security of the Resulting Permutation. We
already defined SST (Definition 2) in Sect. 2.1 but one can define SST differently.

Definition 6. Random variable T is Strong Stationary Time (SST) if it is
a randomized stopping time for chain X such that:

XT has distribution ψ and is independent of T.

Corrolary 1. The information about the number of rounds that an SST-
algorithm performs does not reveal any information about the resulting permu-
tation.

Corollary 1 comes from the fact that the Definition 2 which defines SST as a
certain randomized stopping time is equivalent to the Definition 6 which defines
SST as a variable independent of the resulting distribution. For the proof of the
equivalence see [3].

Timing Attacks and the Security of the Secret Key. Unfortunately,
although no information about the resulting permutation leaks, some informa-
tion about the secret key may leak. Shuffling may reveal randomness through
the running time (see Example 2 in AppendixD). In practical implementations,
one may use some function of a key instead of pure randomness in each step.
Then (at least) two following cases may happen:

1. Bits of the keystream are re-used: the running time of the algorithm (SST)
may leak both: information about key and the information about permutation
(compare with Example 1 in AppendixD).

2. Bits of the keystream are “fresh” (never re-used): the running time of the
algorithm (SST) may leak information about the key but it does not leak any
information about the produced permutation! (compare with the Example 2
in AppendixD).

Masking SST. One can prevent obtaining information about the secret key
by timing-attacks by performing a simple masking. For a stopping rule ST that

156 M. Kulis et al.

results in expected running time ET one runs the algorithm for at least ET
steps even if the ST occurred earlier.

This eliminates very short executions which could reveal information about
the key.

On the other hand, for practical implementation one may want to eliminate
the extremely long executions. This can be done by letting the algorithm run
for e.g., ET + c · √

V arT (where c is a parameter and V arT is the variance for
the ST).

5 (Not So) Random Shuffles of RC4 – Revisited

5.1 Mironov’s Stopping Rule – Details

The goal of KSA of original RC4 is to produce a pseudorandom permutation of
n = 256 cards. The original algorithm performs 256 steps of Cyclic-to-Random
Transpositions. However it is known that the mixing time of Cyclic-to-Random
Transpositions is Θ(n log n). Then performing only 256 (i.e., n) steps seems
much too less. In fact, it is recommended to perform at least 3072 steps, see
Mironov [15]. Generally, the more steps are performed, the closer to uniformity
the final permutation is. Mironov considered idealized version of the algorithm
together with the following marking rule:

“At the beginning all cards numbered 0, . . . , n − 2 are unchecked, the
(n−1)th card is checked. Whenever the shuffling algorithm exchanges two
cards, S[i] and S[j], one of the two rules may apply before the swap takes
place:

a. If S[i] is unchecked and i = j, check S[i].
b. If S[i] is unchecked and S[j] is checked, check S[i].

The event T happens when all cards become checked.”

Then the author proves that this is a SST for Cyclic-to-Random Transpositions
and shows that there exists constant c (can be chosen less than 30) such that
Pr[T > cn log n] → 0 when n → ∞. Empirically, for n = 256 he shows that
Pr[T > 2n log n] < 1/n. Note that this marking scheme is also valid for Random-
to-Random Transpositions shuffling.

Lemma 1. The expected running time of Random-to-Random Transpositions
shuffling with Mironov stopping rule is:

ET = 2nHn − n + O(Hn).

Proof. We start with one card checked. When k cards are checked, then prob-
ability of checking another one is equal to pk = (n−k)(k+1)

n2 . Thus, the time to
check all the cards is distributed as a sum of geometric random variables and its
expectation is equal to:

n−1∑

k=1

1
pk

= 2
n2

n + 1
Hn − n = 2nHn − n + O(Hn).

Randomized Stopping Times and Provably Secure Pseudorandom 157

5.2 Better Stopping Rule

We suggest another “faster” SST which is valid for both Cyclic-to-Random
Transpositions and Random-to-Random Transpositions. We will calculate its
expectation and variance for Random-to-Random Transpositions and check
experimentally (see Appendix C) that it is similar if the stopping rule is applied
to Cyclic-to-Random Transpositions. As a result (proof given at the end of this
Section) we have:

Theorem 1. Let A be an adversary. Let K ∈ {0, 1}rn be a secret key. Let S(K)
be KSA∗

RTRT (i.e., with Random-to-Random Transpositions shuffling) which runs
for

r = n(Hn + 1) +
πn

2
1√
n!ε

steps with 0 < ε < 1
n! . Then

∣∣∣∣ Pr
K←{0,1}rm

[A(S(K)) = 1] − Pr
R←U(Sn)

[A(R) = 1]
∣∣∣∣ ≤ ε

The stopping rule is given in StoppingRuleKLZ algorithm.

Algorithm. StoppingRuleKLZ
Input set of already marked cards M ⊆ {1, . . . , n}, round r, Bits
Output {YES,NO}

j = n-value(Bits)
if there are less than �(n − 1)/2� marked cards then

if both π[r] and π[j] are unmarked then
mark card π[r]

end if
else

if (π[r] is unmarked and π[j] is marked) OR (π[r] is unmarked and r = j) then
mark card π[r]

end if
end if

if all cards are marked then
STOP

else
CONTINUE

end if

Lemma 2. The resulting permutation of KSA∗∗ with ST =StoppingRuleKLZ

has a uniform distribution over Sn.

158 M. Kulis et al.

Proof. We will show that the running time of the algorithm is a SST, i.e., that
the card marking procedure specified in StoppingRuleKLZ is a SST for Cyclic-to-
Random Transpositions. First phase of the procedure (i.e., the case when there
are less than �(n − 1)/2� cards marked) is constructing a random permutation
of marked cards by placing unmarked cards on randomly chosen unoccupied
positions, this is actually first part of Matthews’s marking [14] scheme. Second
phase is simply a Broder’s construction. Theorem 9 of [15] shows that this is a
valid SST for Cyclic-to-Random Transpositions. Both phases combined produce
a random permutation of all cards.

Remark 1. One important remark should be pointed. Full Matthews’s marking
[14] scheme is “faster” than ours. However, although it is a SST for Random-to-
Random Transpositions, this is not SST for Cyclic-to-Random Transpositions.

Calculating ET or V arT seems to be a challenging task. But note that mark-
ing scheme StoppingRuleKLZ also yields a valid SST for Random-to-Random
Transpositions. In next Lemma we calculate ET and V arT for this shuffle, later
we experimentally show that ET is very similar for both marking schemes.

Lemma 3. Let T be the running time of KSA∗∗ with Random-to-Random
Transpositions shuffling and ST=StoppingRuleKLZ. Then we have

E[T] = nHn + n + O(Hn),

V ar[T] ∼ π2

4 n2,
(3)

where Hn is the n−th harmonic number and f(k) ∼ g(k) means that
limk→∞

f(k)
g(k) = 1.

The details of the proof of the Lemma3 are in AppendixB.

Proof. Define Tk to be the first time when k cards are marked (thus T ≡ Tn).
Let d = �(n−1)/2�. Then Td is the running time of the first phase and (Tn − Td)
is the running time of the second phase. Denote Yk := Tk+1 − Tk.

Assume that there are k < d marked cards at a certain step. Then the new
card will be marked in next step if we choose two unmarked cards what happens
with probability: pa(k) = (n−k)2

n2 . Thus Yk is a geometric random variable with
parameter pa(k) and

E[Td] = n2
(
H(2)

n − H
(2)
n−d

)
.

Now assume that there are k ≥ d cards marked at a certain step. Then, the new
card will be marked in next step with probability:

pb(k) =
(n − k)(k + 1)

n2

and Yk is a geometric random variable with parameter pa(k). Thus:

E[Tn − Td] = nHn − n

n + 1
Hn +

n2

n + 1
(Hn−d − Hd) .

Randomized Stopping Times and Provably Secure Pseudorandom 159

For variance we have:

V ar[Tn] = V ar[Td] + V ar[Tn − Td] ∼ π2

4
n2.

�
From Lemma 3 and Chebyshev’s inequality we immediately have the following:

Corrolary 2. Consider the chain corresponding to KSA∗∗ with Random-to-
Random Transpositions shuffling and ST=StoppingRuleKLZ. Then we have

τsep
mix(ε) ≤ n(Hn + 1) +

πn

2
1√
ε
.

Proof (of Theorem 1). In Theorem 1 we perform Random-to-Random Transpo-
sitions for r = τsep

mix(n!ε) steps, i.e., sep(L(Xr), ψ) ≤ n!ε Inequality (2) implies
that |Pr(Xr = σ) − 1

n! | ≤ ε for any permutation σ and thus completes the
proof. �

5.3 Predefined Number of Steps vs SST-based Algorithms

There is a subtle difference between the randomized stopping time (like the one
suggested in the paper) and an algorithm that performs a predefined number of
steps. If one wants to achieve security level of e.g., ε = O(1/nk), k > 2 then the
number of steps that would assure that the advantage is smaller than ε would
need to be equal to: τmix(ε) ≤ n(Hn + 1) + πn

2 nk/2 = O
(
n1+k/2

)
.

As we can see the estimated running time of Cyclic-to-Random Transposi-
tions with both stopping rules is similar to the theoretical results for Random-to-
Random Transpositions. Recall that for Cyclic-to-Random Transpositions it is
known that the mixing time is of order Θ(n log n), see [16], however the constant
was not determined. Based on our new SST and simulations (see AppendixC)
one can conjecture the following

Conjecture 1. The mixing time τsep
mix for Cyclic-to-Random Transpositions con-

verges to n log n as n → ∞.

6 A Note on Spritz

Spritz [20] is a new stream cipher that was proposed in 2014 by Rivest and
Schuldt as a possible replacement for RC4.

The first cryptanalytic results were already achieved: inefficient state recovery
attack [5] (with 21400 complexity) later improved by [6] (with 21247 steps). The
second paper presents also a devastating distinguishing attacks of complexity
244.8 (multiple key-IV setting) and 260.8 (single key-IV setting).

Here we analyze the distribution of the internal state of Spritz after the
main part of the scheme (procedure Shuffle()) is run. Similarly to the previous
approach we replace the deterministic part of Update() function: j := k+S[j +
S[i]], with its idealized version: j := random(n)).

The definitions of Spritz’ procedures that are of our interest are presented in
AppendixE.

160 M. Kulis et al.

6.1 Sign Distinguisher

Although we did not find strong stationary time for “KSA” part of Spritz algo-
rithm, one can easily notice that the Sign Distinguisher has no advantage at all.
This property is achieved thanks to Crush procedure. During this procedure,
the table S is partially sorted i.e., elements at positions v and n − 1 − v (for
v = 0 . . . �N/2�−1) are swapped whenever S[v] > S[n−1−v]. So this corresponds
to multiplying the sign process by:

Mcrush :=

(1
2

1
2

1
2

1
2

)
.

If Spritz is used as stream cipher, as part of Squeeze procedure, at least one call
to Shuffle is made. So the distribution of sign can be described as

v0 · M2n
n M

n/2
crushM2n

n M
n/2
crushM2n

n =
(

1
2
,
1
2

)
.

This means that advantage of Sign Distinguisher for Spritz equals to 0.

6.2 Position Distinguisher

Let us recall what was one of the main drawbacks of the original RC4: it per-
formed n steps instead of cn log n. The underlying mathematical model is simply
a Cyclic-to-Random Transpositions card shuffling. This is somehow similar to
Random-to-Random Transpositions for which it takes of order of n log n steps.
More exactly, there is so-called cutoff phenomena at 1

2n log n. Roughly speak-
ing, lower and upper bounds are of this order. Analysis of Cyclic-to-Random
Transpositions seemed to be harder, recently [16] the matching lower bound was
established showing that mixing time is of order Θ(n log n).

Recall that Spritz performs: in total 6n steps of Cyclic-to-Random Trans-
positions (as part of Whip procedure) and partial sorting of elements (Crush
procedure) in the internal state is performed twice (after 2-nd and 4-th shuf-
fling). This is of course more complicated shuffling than just repeating Cyclic-
to-Random Transpositions.

Clever use of Crush lets Spritz to get rid of the Sign Distinguisher but at the
same time it seems that it may badly influence the mixing time.

Imagine that there exists some SST which during the Spritz execution per-
forms marking of the elements. Marked elements satisfy property that their
mutual position is equally distributed. Now, take a look at the step when Crush
is performed and there are two marked elements at positions v and N − 1 − v.
Then after Crush their relative position will be uniquely determined! This obser-
vation suggests that mixing time for Spritz would be greater than n log n.

7 A Note on Optimal Shuffling

Cyclic-to-Random Transpositions is the shuffle used in RC4 and in Spritz. To
reach stationarity (i.e., produce random permutation), as we shown, one needs

Randomized Stopping Times and Provably Secure Pseudorandom 161

to perform O(n log n) steps. In each step we use a random number from interval
[0, . . . , n − 1], thus this shuffling requires O(n log2 n) random bits.

One can ask the following question: Is this shuffling optimal in terms of
required bits? The answer is no. The entropy of the uniform distribution on [n]
is O(n log n) (since there are n! permutations of [n]), thus one could expect that
optimal shuffling would require this number of bits.

We will shortly describe (time reversal of) Riffle Shuffle, for details see [2].
For a given permutation σ ∈ Sn we assign each element a random bit. Then we
put all the elements (cards) with assigned bit 0 to the top keeping their relative
ordering. The following is a known SST for this shuffle: At the beginning all

(
n
2

)

pairs of cards are unmarked. At each step one marks a pair (i, j) if elements i
and j were assigned different bits. Let T be the first time all pairs are marked.

The above SST of Riffle Shuffle has ET = 2 lg n, at each step n random
bits are used, thus this shuffling requires 2n lg n random bits, matching the
requirement of optimal shuffle (up to a constant).

In this paper we mainly focused on RC4 and thus on Cyclic-to-Random Trans-
positions shuffle. However, we wanted to point out that using Riffle Shuffle (or
other shuffling schemes) can result in better efficiency of the whole scheme.

8 Conclusions

We presented the benefits of using Strong Stationary Times in cryptographic
schemes (pseudo random permutation generators). These algorithms have a
“health-check” built-in and guarantee the best possible properties (when it comes
to the quality of randomness of the resulting permutation). We showed that use
of SST does not lead to timing attacks. We showed that algorithms using SST
achieve better security guarantees than any algorithm which runs predefined
number of steps.

Fig. 2. Comparison between number of bits used by RC4 (40 to 2048) and required
by mathematical models (Mironov [15] and ours) versus length of the key for the
time-reversed riffle shuffle. Bits asymptotics approximates the number of fresh bits
required by the mathematical model (number of bits required by the underlying Markov
chain to converge to stationary distribution). Bits required is (rounded) value of # bits
asymptotics when n = 256.

Complementarily, we proved better bound for the mixing-time of the Cyclic-
to-Random Transpositions shuffling process which is used in RC4 and showed
that different, more efficient shuffling methods (i.e., time reversal of Riffle
Shuffle) may be used as KSA. This last observation shows that the gap between

162 M. Kulis et al.

mathematical model (4096 bits required) and reality (2048 allowed as maxi-
mum length of RC4) is not that big as previously thought (bound of 23037 by
Mironov [15]).

Appendix

A Sign Distinguisher Advantage

Fig. 3. The advantage (ε) of Sign distinguisher of RC4 after discarding initial k bytes.

B Detailed Proof of Lemma3

Proof. Define Tk to be the first time when k cards are marked (thus T ≡ Tn).
Let d = �(n−1)/2�. Then Td is the running time of the first phase and (Tn − Td)
is the running time of the second phase. Denote Yk := Tk+1 − Tk.

Assume that there are k < d marked cards at a certain step. Then the new
card will be marked in next step if we choose two unmarked cards what happens
with probability:

pa(k) =
(n − k)2

n2
.

Thus Yk is a geometric random variable with parameter pa(k) and

E[Td] =
d−1∑

k=0

E[Yk] =
d−1∑

k=0

1
pa(k)

=
d−1∑

k=0

n2

(n − k)2
= n2

n∑

k=n−d+1

1
k2

= n2
(
H(2)

n − H
(2)
n−d

)
= n2

(
1
n

+ O

(
1
n2

))
= n + O(1).

Now assume that there are k ≥ d cards marked at a certain step. Then, the new
card will be marked in next step with probability:

pb(k) =
(n − k)(k + 1)

n2

Randomized Stopping Times and Provably Secure Pseudorandom 163

and Yk is a geometric random variable with parameter pa(k). Thus:

E[Tn − Td] =

d−1∑

k=0

E[Yk] =

n−1∑

k=d

1

pb(k)
=

n−1∑

k=d

n2

(n − k)(k + 1)

=
n2

n + 1

n−1∑

k=d

(
1

n − k
+

1

k + 1

)
=

n2

n + 1

⎛

⎝
n−d∑

k=1

1

k
+

n∑

k=d+1

1

k

⎞

⎠

=
n2

n + 1
(Hn−d + Hn − Hd) =

n2

n + 1
Hn +

n2

n + 1
(Hn−d − Hd)

= nHn − n
n+1

Hn + n2

n+1
(Hn−d − Hd)=nHn + O(Hn) + O(1) = nHn + O(Hn).

For variance we have:

V ar[Td] =

d−1∑

k=0

V ar[Yk] =

d−1∑

k=0

1 − pa(k)

(pa(k))
2

=

d−1∑

k=0

1 − (n−k)2

n2
(

(n−k)2

n2

)2 ≈
∫ n

2

0

1 − (n−x)2

n2
(

(n−x)2

n2

)2 dx =
4

3
n.

V ar[Tn − Td] =

n−1∑

k=d

V ar[Yk] =

n−1∑

k=d

1 − pb(k)

(pb(k))
2

=

n−1∑

k=d

1 − (n−k)(k+1)

n2

(n−k)2(k+1)2

n4

= n2
n−1∑

k=d

n(n − 1) + k(1 − n) + k2

(n − k)2(k + 1)2
≈ n2 · 1

2

n−1∑

k=0

n(n − 1) + k(1 − n) + k2

(n − k)2(k + 1)2

≈ n2

2

[(
2

n
− 4

n2

)
Hn + 3H

(2)
n

]
∼ π2

4
n2.

Finally

V ar[Tn] = V ar[Td] + V ar[Tn − Td] ∼ π2

4
n2.

�

C Experimental Results

The expected running time of KSA∗∗
RTRT (i.e., with Random-to-Random Transpo-

sitions shuffling) is known:

• with ST=StoppingRuleKLZ it is n(Hn + 1)
• with stopping rule used in [15] it is 2nHn − n

For both stopping rules applied to Cyclic-to-Random Transpositions no precise
results on expected running times are known. Instead we estimated them via
simulations, simply running 10.000 of them. The results are given in Fig. 4.

164 M. Kulis et al.

Fig. 4. Simulations’ results for Mironov’s and StoppingRuleKLZ stopping rules.

D Timing-Attacks and KSA∗∗

Example 1 (Top to random shuffle T2R – timing attack – re-used randomness).
Consider algorithm KSA∗∗

T2R,ST with shuffling procedure corresponding to Top-
To-Random card shuffling (put the card S[1] which is currently on top to the
position j defined by the randomness in the current round) and following stop-
ping time ST:

step: 1 step: 2 step: 3 step: 4 step: 5 step: 6 step: 7 step: 8

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

1

K[1] 111

3

4

5

6

7

8

2

1

K[2]
110

111

4

5

6

7

8

2

1

3

K[3]

101

110

111

5

6

7

8

2

1

3

4

K[4] = K[1]

6

7

8

2

1

3

5

4

K[5] = K[2]

7

8

2

1

3

5

4

6

K[6] = K[3]

8

2

1

3

5

4

6

7

K[7] = K[1]

2

1

3

5

4

6

8

7

K[8] = K[2]

Fig. 5. Example run of top-to-random shuffle with “reused randomness” which is taken
from the key K of the length equal to three 8-value bytes (9-bits). Let us assume that
the running time of SST was exactly 8. Conditioning on the number of steps one can
figure out that the first word of the key must be equal to 111 while the second part
K[2] ∈ {110, 111} with the same probability. Finally K[3] ∈ {101, 110, 111} and for the
step i: K[i] = K[i mod 3]. So now, instead of possible 29 = 512 permutations which
can be generated from 9 bits of key, only 6 are possible (based on the fact that SST
has stopped exactly after 8 steps).

Randomized Stopping Times and Provably Secure Pseudorandom 165

• before the start of the algorithm, mark the last card (i.e., the card n is
marked1),

• stop one step after the marked card reaches the top of the deck.

The sample execution of the algorithm is given in Fig. 5.

Example 2 (Top-to-random – timing attack – fresh randomness). Let us now
consider a very similar situation with one important difference. Now no portion
of the key is re-used. An example run of the algorithm is presented on the Fig. 6.
Based on the knowledge on the number of performed steps, one can learn some
information about the secret key (i.e., K[1] = 000, K[2] is either 110 or 111) but
still no adversary can learn anything about the resulting permutation because
any information is generated with exactly the same probability.

step: 1 step: 2 step: 3 step: 4 step: 5 step: 6 step: 7 step: 8

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

1

K[1] ∈ {000}
= [8] \ [7]

3

4

5

6

7

8

2

1

K[2]
110

111

4

5

6

7

8

2

1

3

K[3]

101

110

111

5

6

7

8

2

1

4

3

K[4] ∈ [8] \ [4]

6

7

8

2

5

1

4

3

K[5] ∈ [8] \ [3]

7

8

6

2

5

1

4

3

K[6] ∈ [8] \ [2]

8

6

2

5

1

7

4

3

K[7] ∈ [8] \ {000}

6

8

2

5

1

7

4

3

K[8] ∈ [8]

Fig. 6. Example run of top-to-random shuffle with “fresh randomness” taken from the
key K of the length equal to 8 8-value bytes (24-bits). Conditioning on the number of
steps of the SST (in this case 8) one can find out that: out of the possible 224 keys only
(exactly) 8! keys are possible (due to the fact that SST stopped after 8 steps) and every
of 8! permutations are possible (based on the fact that SST has stopped exactly after
8 steps) – moreover each permutation with exactly the same probability. SST leaks
bits of the key i.e., K[1] = 111 but does not leak any information about the produced
permutation.

1 It is known [2] that optimal SST for top to random initially marks second from the
bottom card.

166 M. Kulis et al.

E Spritz Definition

for v := 0 to �N/2	 − 1 do
if S[v] > S[N − 1 − v] then

swap(S[v], S[N − 1 − v])
end if

end for

i = i + w
j = k + S[j + S[i]]
k = i + k + S[j]
swap(S[i], S[j])

for v := 0 to r − 1 do
Update()

end for

repeat
w = w + 1

until GCD(w,N) = 1

Whip(2N)
Crush()
Whip(2N)
Crush()
Whip(2N)

Fig. 7. Building blocks of Spritz

References

1. Albrecht, M.R., Paterson, K.G.: Lucky microseconds: a timing attack on Amazon’s
s2n implementation of TLS. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 622–643. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49890-3 24

2. Aldous, D., Diaconis, P.: Shuffling cards and stopping times. Am. Math. Mon.
93(5), 333–348 (1986)

3. Aldous, D., Diaconis, P.: Strong uniform times and finite random walks. Adv. Appl.
Math. 8, 69–97 (1987)

4. AlFardan, N., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.: On
the security of RC4 in TLS. In: Presented as Part of the 22nd USENIX Secu-
rity Symposium (USENIX Security 13), Washington, D.C., pp. 305–320. USENIX
(2013)

5. Ankele, R., Kölbl, S., Rechberger, C.: State-recovery analysis of spritz. In: Lauter,
K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 204–
221. Springer, Cham (2015). doi:10.1007/978-3-319-22174-8 12

6. Banik, S., Isobe, T.: Cryptanalysis of the full spritz stream cipher. In: Peyrin, T.
(ed.) FSE 2016. LNCS, vol. 9783, pp. 63–77. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-52993-5 4

7. Diaconis, P., Shahshahani, M.: Generating a random permutation with random
transpositions. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete
57(2), 159–179 (1981)

8. Fill, J.A.: An interruptible algorithm for perfect sampling via Markov chains. Ann.
Appl. Probab. 8(1), 131–162 (1998)

http://dx.doi.org/10.1007/978-3-662-49890-3_24
http://dx.doi.org/10.1007/978-3-662-49890-3_24
http://dx.doi.org/10.1007/978-3-319-22174-8_12
http://dx.doi.org/10.1007/978-3-662-52993-5_4
http://dx.doi.org/10.1007/978-3-662-52993-5_4

Randomized Stopping Times and Provably Secure Pseudorandom 167

9. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm of
RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 1–24.
Springer, Heidelberg (2001). doi:10.1007/3-540-45537-X 1

10. Fluhrer, S.R., McGrew, D.A.: Statistical analysis of the alleged RC4 keystream
generator. In: Goos, G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 19–30. Springer, Heidelberg (2001). doi:10.1007/
3-540-44706-7 2

11. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A Survey of Microarchitectural Timing
Attacks and Countermeasures on Contemporary Hardware. IACR Eprint (2016)

12. Golić, J.D.: Linear statistical weakness of alleged RC4 keystream generator. In:
Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238. Springer,
Heidelberg (1997). doi:10.1007/3-540-69053-0 16

13. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002). doi:10.1007/
3-540-45473-X 13

14. Matthews, P.: A strong uniform time for random transpositions. J. Theoret.
Probab. 1(4), 411–423 (1988)

15. Mironov, I.: (Not so) random shuffles of RC4. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002). doi:10.1007/
3-540-45708-9 20

16. Mossel, E., Peres, Y., Sinclair, A.: Shuffling by semi-random transpositions. In:
Foundations of Computer Science, pp. 572–581 (2004)

17. Naor, M., Reingold, O.: On the construction of pseudo-random permutations. In:
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Com-
puting - STOC 1997, pp. 189–199. ACM Press, New York (1997)

18. Pereida Garćıa, C., Brumley, B.B., Yarom, Y.: Make sure DSA signing exponenti-
ations really are constant-time

19. Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and appli-
cations to statistical mechanics. Random Struct. Algorithms 9, 223–252 (1996)

20. Schuldt, J.C.N., Rivest, R.L.: Spritz–a spongy RC4-like stream cipher and hash
function (2014)

21. Paul, S., Preneel, B.: A new weakness in the RC4 keystream generator and an
approach to improve the security of the cipher. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25937-4 16

22. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. In: Sadeghi, A.-R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security, pp. 99–134. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14452-3 5

23. Maitra, S., Paul, G.: Analysis of RC4 and proposal of additional layers for better
security margin. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT
2008. LNCS, vol. 5365, pp. 27–39. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89754-5 3

24. Yarom, Y., Genkin, D., Heninger, N.: CacheBleed: a timing attack on OpenSSL
constant time RSA. CHES (2016)

25. Zoltak, B.: VMPC one-way function and stream cipher. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 210–225. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-25937-4 14

http://dx.doi.org/10.1007/3-540-45537-X_1
http://dx.doi.org/10.1007/3-540-44706-7_2
http://dx.doi.org/10.1007/3-540-44706-7_2
http://dx.doi.org/10.1007/3-540-69053-0_16
http://dx.doi.org/10.1007/3-540-45473-X_13
http://dx.doi.org/10.1007/3-540-45473-X_13
http://dx.doi.org/10.1007/3-540-45708-9_20
http://dx.doi.org/10.1007/3-540-45708-9_20
http://dx.doi.org/10.1007/978-3-540-25937-4_16
http://dx.doi.org/10.1007/978-3-540-25937-4_16
http://dx.doi.org/10.1007/978-3-642-14452-3_5
http://dx.doi.org/10.1007/978-3-540-89754-5_3
http://dx.doi.org/10.1007/978-3-540-89754-5_3
http://dx.doi.org/10.1007/978-3-540-25937-4_14
http://dx.doi.org/10.1007/978-3-540-25937-4_14

	Randomized Stopping Times and Provably Secure Pseudorandom Permutation Generators
	1 Introduction
	1.1 Our Contribution

	2 Preliminary
	2.1 Markov Chains and Rate of Convergence
	2.2 Distinguishers and Security Definition

	3 Related Work
	3.1 RC4 Algorithm
	3.2 Sign Distinguisher for RC4's KSA
	3.3 Position Distinguisher for RC4's KSA

	4 Randomized Stopping Times and Cryptographic Schemes
	4.1 Strong Stationary Time Based KSA Algrorithms
	4.2 RST and Security Guarantees
	4.3 RST and Timing-Attacks

	5 (Not So) Random Shuffles of RC4 -- Revisited
	5.1 Mironov's Stopping Rule -- Details
	5.2 Better Stopping Rule
	5.3 Predefined Number of Steps vs SST-based Algorithms

	6 A Note on Spritz
	6.1 Sign Distinguisher
	6.2 Position Distinguisher

	7 A Note on Optimal Shuffling
	8 Conclusions
	A Sign Distinguisher Advantage
	B Detailed Proof of Lemma3
	C Experimental Results
	D Timing-Attacks and KSA**
	E Spritz Definition
	References

