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Abstract. How to deal with large tightness gaps in security proofs is a
vexing issue in cryptography. Even when analyzing protocols that are of
practical importance, leading researchers often fail to treat this question
with the seriousness that it deserves. We discuss nontightness in con-
nection with complexity leveraging, HMAC, lattice-based cryptography,
identity-based encryption, and hybrid encryption.

1 Introduction

The purpose of this paper is to address practicality issues in cryptography that
are related to nontight security reductions. A typical security reduction (often
called a “proof of security”) for a protocol has the following form: A certain
mathematical task P reduces to the task Q of successfully mounting a certain
class of attacks on the protocol—that is, of being a successful adversary in a
certain security model. More precisely, the security reduction is an algorithm R
for solving the mathematical problem P that has access to a hypothetical oracle
for Q. If the oracle takes time at most T and is successful with probability at
least ε (here T and ε are functions of the security parameter k), then R solves
P in time at most T ′ with probability at least ε′ (where again T ′ and ε′ are
functions of k). We call (T ′ε)/(Tε′) the tightness gap. The reduction R is said
to be tight if the tightness gap is 1 (or is small); otherwise it is nontight. Usually
T ′ ≈ T and ε′ ≈ ε in a tight reduction.

A tight security reduction is often very useful in establishing confidence in a
protocol. As long as one is not worried about attacks that lie outside the security
model (such as side-channel attacks, duplicate-signature key selection attacks,
or multi-user attacks [56]), one is guaranteed that the adversary’s task is at least
as hard as solving a certain well-studied mathematical problem (such as integer

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 21–55, 2017.
DOI: 10.1007/978-3-319-61273-7 3



22 S. Chatterjee et al.

factorization) or finding a better-than-random way to predict output bits from
a standardized primitive (such as AES).

The usefulness of a nontight security reduction is more controversial. If, for
example, the tightness gap is 240, then one is guaranteed that the adversary’s
task is at least 2−40 times as hard as solving the mathematical problem or
compromising AES. Opinions about whether nontightness is a cause of concern
depend on how much importance one attaches to quantitative guarantees. In his
paper [11] explaining practice-oriented provable security, Bellare writes:

Practice-oriented provable security attempts to explicitly capture the
inherently quantitative nature of security, via a concrete or exact treat-
ment of security.... This enables a protocol designer to know exactly how
much security he/she gets. (emphasis in original)

In contrast, some researchers minimize the importance of quantitative security
and object strongly when someone criticizes a practice-oriented provable security
result for giving a useless concrete security bound. For example, an anonymous
reviewer of [54] defended the nonuniform proof in [12], acknowledging that its
nonuniformity “reduces the quantitative guarantees” but then stating:

Many proofs do not yield tight bounds, but they still are powerful quali-
tative indicators of security.

This reviewer characterized the use of the word “flaw” in [54] in reference to a
fallacious analysis and erroneous statement of quantitative guarantees as “mis-
leading” and “offensive,” presumably because the “qualitative indicators” in [12]
were still valid.

What makes the nontightness question particularly sensitive is that cryptog-
raphers are supposed to be cautious and conservative in their recommendations,
and sources of uncertainty and vulnerability are not supposed to be swept under
the rug. In particular, one should always keep in mind the possibility of what
Menezes in [64] calls the nightmare scenario—that there actually is an attack
on the protocol that is reflected in the tightness gap.

In [27] the authors presented attacks on MAC schemes in the multi-user
setting—attacks that are possible because the natural security reduction relat-
ing the multi-user setting to the single-user setting is nontight. Similar attacks on
protocols in the multi-user setting were given for a network authentication proto-
col, aggregate MAC schemes, authenticated encryption schemes, disk encryption
schemes, and stream ciphers.

In AppendixB we describe the attacks of Zaverucha [77] on hybrid encryption
in the multi-user setting. In Sect. 4 we describe another situation where the
tightness gap reflects the fact that there’s an actual attack, in this case due to
Pietrzak [40,70].

A practical issue that is closely related to the nontightness question is the
matter of safety margins. There are at least two kinds of safety margins: (1)
parameter sizes that give significantly more bits of security than are currently
needed, and (2) “optional” features in a protocol that are believed (sometimes
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because of tradition and “instinct” rather than any rigorous security argument)
to help prevent new attacks or attacks that are outside the commonly used
security models.

At present it is widely agreed that it is prudent to have at least 128 bits of
security.1 Why not 96? In the near future it is unlikely that anyone (even the
N.S.A.) will expend 296 operations to break a protocol. The reason for insisting
on 128 bits of security is that one should anticipate incremental improvements in
cryptanalytic attacks on the underlying mathematical problem that will knock
several bits off the security level. If nontightness has already reduced the security
assurance provided by the proof from 128 to 96 bits (and if the parameter sizes
have not been increased so as to restore 128 bits of security), then even relatively
small advances in attacking the mathematical problem will bring the security
assurance further down to a level where a successful attack on the protocol is
feasible in principle.

A common explanation of the value of security proofs is that features that are
not needed in the proof can be dropped from the protocol. For instance, Katz and
Lindell make this point in the introduction to [49]. However, in AppendixB (see
also Sect. 5 of [56]) we shall find that optional features included in protocols often
thwart attacks that would otherwise reduce the true security level considerably.

On the one hand, there is widespread agreement that tight proofs are prefer-
able to nontight ones, many authors have worked hard to replace nontight proofs
with tighter proofs when possible, and most published security reductions duly
inform the reader when there is a large tightness gap. On the other hand, authors
of papers that analyze protocols that are of practical importance almost never
suggest larger parameters that compensate for the tightness gap. Presumably
the reason is that they would have to sacrifice efficiency. As Bellare says [11],

A weak reduction means that to get the same level of security in our
protocol we must use larger keys for the underlying atomic primitive, and
this means slower protocols.

Indeed, many standardized protocols were chosen in part because of security
“proofs” involving highly nontight security reductions. Nevertheless, we are not
aware of a single protocol that has been standardized or deployed with larger
parameters that properly account for the tightness gaps. Thus, acknowledgment
of the nontightness problem remains on the level of lip service.

In Sects. 2–6 we discuss nontightness in connection with complexity lever-
aging, HMAC, lattice-based cryptography, and identity-based encryption; in
AppendixB we discuss Zaverucha’s results on nontightness in security proofs
for hybrid encryption in the multi-user setting. In the case of HMAC, in view of
the recent work [40,54] on the huge tightness gaps in pseudorandomness results,
in Sect. 4 we recommend that standards bodies reexamine the security of HMAC
when used for non-MAC purposes (such as key derivation or passwords) or with
MD5 or SHA1.
1 By “k bits of security” we mean that there is good reason to believe that, if a

successful attack (of a specified type) takes time T and has success probability ε,
then T/ε > 2k.
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2 Complexity Leveraging

“Complexity leveraging” is a general technique for proving that a cryptographic
protocol that has been shown to be selectively secure is also adaptively secure.
Here “selectively secure” means that the adversary has to select its target before
it is presented with its inputs (e.g., public keys, signing oracles, etc.), whereas
“adaptive security” means that the adversary is free to select its target at any
time during its attack. The second type of adversary is in general much stronger
than the first type. Thus, selective security is in principle a much weaker result
than adaptive security, and so is not usually relevant to practice. Because selec-
tive security is often easier to prove than adaptive security, researchers devised
the method of complexity leveraging to convert any selective security theorem
into an adaptive security theorem.

Complexity leveraging has been used to prove the adaptive security of many
kinds of cryptographic protocols including identity-based encryption [23], func-
tional encryption [39], constrained pseudorandom functions [25], and constrained
verifiable random functions [35]. In Sect. 2.1 we illustrate the problems with com-
plexity leveraging in the context of signature schemes. In Sect. 2.2 we consider
the case of identity-based encryption.

2.1 Signature Schemes

The most widely accepted definition of security of a signature scheme is against
an existential forger under chosen-message attack. This means that the forger is
given a user’s public key and is allowed ≤q queries, in response to which she is
given a valid signature on each queried message. The forger is successful if she
then forges a signature for any message M other than one that was queried.

A much weaker property is security against a selective forger. In that case
the adversary is required to choose the message M for which she will forge a
signature before she even knows the user’s public key. She cannot modify M
in response to the public key or the signature queries, and to be successful she
must forge a signature on the original M . Selective security is obviously much
weaker than existential security. A theorem that gives only selective security is
not generally regarded as satisfactory for practice.

Complexity leveraging works by converting an arbitrary existential forger
into a selective forger, as follows. The selective forger Cynthia guesses a message
M , which she desperately hopes will be the message on which the existential
forger eventually forges a signature. She then runs the existential forger. She is
successful if the message forged is M ; otherwise she simply tries again with a
different guess. Her probability of success in each run is ε = 2−m, where m is
the allowed bitlength of messages. The bound m on the message length could be
large, such as one gigabyte.

Fortunately for Cynthia, in practice messages are normally hashed, say by
SHA256, and it is the hash value that is signed. Thus, Cynthia needs to guess
the 256-bit hash value of the message on which the existential forger forges a
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signature, not the message itself. Her probability of success is then 2−256, and
so the tightness gap in going from selective to existential security is 2256.

Suppose, for example, that we have an integer-factorization-based signature
protocol for which selective security has been shown to be tightly equivalent to
factoring. How large does the modulus N have to be so that the corresponding
existential security theorem gives us a guarantee of 128 bits of security? If only
3072-bit N is used, then the protocol will have 128 bits of selective security,
but complexity leveraging gives us no existential security, because of the 2256

tightness gap. In order to have 128 bits of existential security, we need to have
128 + 256 = 384 bits of security against factoring N , and this means roughly
40,000-bit N . Even though this is what we must do if we want complexity lever-
aging to give us the desired security, no one would ever seriously recommend
deploying 40,000-bit moduli. Thus, from a practical standpoint complexity lever-
aging gives us nothing useful here.

2.2 Identity-Based Encryption

Boneh and Boyen [23] used bilinear pairings on elliptic curves to design an
identity-based encryption scheme. They proved that their scheme is selectively
secure in the sense that the adversary has to select the target before she gets
the public parameters and access to the appropriate oracles (see Sect. 6 for back-
ground on identity-based encryption). The highlight of the proof is that it does
not invoke the random oracle assumption.

Boneh and Boyen [23, Theorem 7.1] then used complexity leveraging to prove
that a generic identity-based encryption scheme that is selectively secure is also
adaptively secure. The proof has a tightness gap of 22�, where � is the desired
security level and 2� is the output length of a collision-resistant hash function
(the hash function is applied to the identifiers of parties). Boneh and Boyen
remarked that the reductionist proof is “somewhat inefficient” and explained
that the desired level of security can be attained by increasing the parameters
of the underlying pairing.

Suppose now that one desires 128 bits of security. Suppose also that the proof
of selective security for the identity-based encryption scheme is tight. Then one
can achieve 128 bits of selective security by using an (asymmetric) bilinear pair-
ing e : G1 ×G2 → GT derived from a prime-order Barreto-Naehrig (BN) elliptic
curve E over a finite field Fp [10]. Here, p is a 256-bit prime, G1 = E(Fp),G2 is
a certain order-n subgroup of E(Fp12), and GT is the order-n subgroup of F∗

p12 ,
where n = #E(Fp). This pairing is ideally suited for the 128-bit security level
since the fastest attacks known on the discrete logarithm problems in G1,G2 and
GT all take time approximately 2128.2 If resistance to adaptive attacks is desired,
then to account for the tightness gap of 2256 a pairing e : G1 ×G2 → GT should
be selected so that the fastest attacks known on the discrete logarithm problems

2 We are not accounting for recent progress by Kim and Barbulescu [51] in algorithms
for computing discrete logarithms in GT . This will lead to working with even larger
parameters.
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in G1,G2 and GT take time at least 2384. If the protocol is implemented using
BN curves, then one now needs p12 ≈ 240000 and thus p ≈ 23300. Consequently,
computations in G1 and GT will be over 3300- and 40000-bit fields, instead of
256- and 3072-bit fields had the reduction been tight. Hence, the tightness gap
that arises from complexity leveraging has a very large impact on efficiency.

3 Nonuniformity to Achieve Better Tightness

Informally speaking, the difference between a nonuniform algorithm to solve a
problem P and the more familiar notion (due to Turing) of a uniform algorithm
is that the former is given an “advice string,” depending on the input length
(and usually assumed to be of polynomial size in the input length). In general,
a nonuniform algorithm is more powerful than a uniform one because the advice
string may be very helpful in solving P. Several prominent researchers have
repeatedly claimed that security theorems that are proved in the nonuniform
model of computation are stronger than theorems proved in the uniform model,
because they provide assurances against successful attacks by nonuniform as well
as uniform adversaries. In their lecture notes for their 2008 course at MIT [42],
Bellare and Goldwasser state:

Clearly, the nonuniform adversary is stronger than the uniform one. Thus
to prove that “something” is “secure” even in presence of a nonuniform
adversary is a better result than only proving it is secure in presence of a
uniform adversary. (p. 254)

In an email explaining why his paper [12] did not inform the reader that the
security reduction was being given in the nonuniform model, Bellare wrote [13]:

I had no idea my paper would be read by anyone not familiar with the
fact that concrete security is nonuniform.

What these researchers are failing to take into account is that the use of
the nonuniform model makes the hypothesis as well as the conclusion of the
theorem stronger. Thus, the theorem’s assumption that a certain mathematical
task is hard or that a certain compression function cannot be distinguished
from a random function has to allow nonuniform algorithms. It is usually very
difficult to get any idea of the strength of the commonly-used primitives against
nonuniform attacks, and in practice they are not designed to withstand such
attacks. See [55] for a discussion of the history of confusion about this issue in
the literature and a detailed rebuttal of the arguments in favor of the nonuniform
model in cryptography.

Whether or not nonuniform algorithms for a problem P are known that are
much faster than uniform ones depends very much on the problem P.

Example 1 (No known difference between uniform and nonuniform). There is no
known nonuniform algorithm for the general integer factorization problem that
is faster than the fastest known uniform algorithms.
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In the next two examples, let Hk be a fixed family of hash functions, one
for each security level k. In both examples, suppose that the input is k writ-
ten in unary (this is a trick used to allow the input length to be different for
different k).

Example 2 (Trivial in the nonuniform model). For a well-constructed family Hk,
by definition one knows no efficient uniform algorithm for finding a collision. In
contrast, one has a trivial nonuniform algorithm, since the advice string can
consist of two messages whose hash values are equal.

Example 3 (Between these two extremes). Consider the problem of distinguish-
ing a hash function Hk in a family of keyed hash functions from a random
function; a function for which this cannot be done with non-negligible success
probability is said to have the pseudorandom function property (PRF). More
precisely, an attack on the PRF property is an algorithm that queries an oracle
that with equal probability is either the hash function with hidden key or else
a random function and, based on the responses, can determine which it is with
probability ε+1/2 of being correct, where the advantage ε is significantly greater
than 0. For a well-constructed hash function no uniform algorithm is known that
is faster than simply guessing the key, and this has advantage roughly T/2�,
where � is the key-length and T is the time (here we are assuming that each
query takes unit time). However, there is a simple nonuniform algorithm that
runs in unit time and distinguishes a hash function with hidden key from a ran-
dom function with advantage roughly 2−�/2—an advantage that would take the
uniform algorithm time T ≈ 2�/2 to achieve. Our advice string is a message M
that has a very special property with respect to Hk when averaged over all pos-
sible keys. For example, let M be a message that maximizes the probability that
the 29th output bit is 1 rather than 0. The nonuniform algorithm then queries M
to the oracle; if the oracle’s response has 29th bit equal to 1, it guesses that the
oracle is the hash function with hidden key, but if the 29th bit is 0, it guesses that
the oracle is a random function. It follows by an easy argument from the theory
of random walks that the expected advantage of this nonuniform algorithm is
roughly 2−�/2.

As pointed out in [55], almost all security proofs in the literature are valid
in the uniform model of complexity, and only a few use what’s sometimes called
coin-fixing to get a proof that is valid only in the nonuniform model. As far as
we are aware, none of the nonuniform theorems in the literature have hypotheses
of the sort in Examples 1 and 2; all are like Example 3, that is, the task whose
hardness is being assumed is easier in the nonuniform model, but not trivial. The
authors’ main purpose in using coin-fixing in these cases is to achieve a tighter
security reduction than they could have achieved in the uniform model.

Unfortunately, it is easy to get tripped up if one attempts to use coin-fixing
to get a stronger result—authors fool themselves (and others) into thinking that
their result is much stronger than it actually is. The most important example of
a researcher who was led astray by his belief in the nonuniform model is Bellare
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in his Crypto 2006 paper [12] on HMAC. We will summarize this story and carry
it up to the present by discussing some errors in his revised version [14], which
was recently published in the Journal of Cryptology.

4 The HMAC Saga

HMAC [17,19] is a popular hash-function-based message authentication code
(MAC). The controversy about nonuniform reductions concerns security proofs
of the PRF property (see Example 3 of Sect. 3) of NMAC, which is a MAC that is
closely related to HMAC. We shall discuss NMAC rather than HMAC, because
the extension of results from NMAC to HMAC has generated relatively little
controversy (see [57] for an analysis of 1-key variants of NMAC).

By a compression function we mean a function z = f(x, y), where y ∈ {0, 1}b

and x, z ∈ {0, 1}c; typically b = 512 and c is equal to either 128 (for MD5), 160
(for SHA1), or 256 (for SHA256).

Given a compression function f , to construct an iterated hash function H
one starts with an initialization vector IV, which is a publicly known bitstring
of length c that is fixed once and for all. Suppose that M = (M1, . . . ,Mm)
is a message consisting of m ≤ m b-bit blocks (where m is the bound on the
block-length of messages; for simplicity we suppose that all message lengths are
multiples of b). Then we set x0 = IV, and for i = 1, . . . , m we recursively set
xi = f(xi−1,Mi); finally, we set H(M) = HIV(M) = xm, which is the c-bit hash
value of M .3

Suppose that Alice shares two secret c-bit keys K1 and K2 with Bob, and
wants to create an NMAC-tag of a message M so that Bob can verify that the
message came from Alice. She first uses K1 as the IV and computes HK1(M).
She pads this with b−c zeros (denoted by a 0-superscript) and sets her tag t(M)
equal to HK2(HK1(M)0).

The purpose of finding a security reduction for NMAC is to show that if one
has confidence that the compression function f enjoys a certain security property,
then one can be sure that NMAC has the same property. Two decades ago
HMAC was first proposed by Bellare et al. [17,19]. In [17] they proved (assuming
weak collision-resistance of H) that if f has the secure-MAC property, then so
does NMAC. (The secure-MAC property is analogous to existential security of
signatures, see Sect. 2.) The proof in [17] was tight. It was also short and well-
written; anyone who was considering using HMAC could readily verify that the
proof was tight and correct.

In 2006 Bellare [12] published a different security reduction for NMAC. First,
he dispensed with the collision-resistance assumption on H, which is a rela-
tively strong assumption that has turned out to be incorrect for some real-
world iterated hash functions. Second, he replaced the secure-MAC property
with the stronger PRF property, that is, he showed that if f(x, y) (with x serv-
ing as the hidden key) has the PRF property, then so does NMAC. This was
3 In iterated hash functions one also appends a “length block” to the message M

before hashing. We are omitting the length block for simplicity.
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important in order to justify the use of HMAC for purposes other than mes-
sage authentication—in applications where the PRF property is desired, such as
key-derivation protocols [34,45,60] and password-systems [66].

Remark 1. A third advantage (not mentioned in [12,14]) of assuming the PRF
property rather than collision-resistance arises if one derives a concrete security
assurance using the best known generic attacks on the property that the com-
pression function is assumed to have. As far as we know the best generic attack
on the PRF property using classical (i.e., uniform and non-quantum) algorithms
has running time ≈2c (it amounts to guessing the hidden key), whereas the
birthday-paradox attack on collision-resistance only takes time ≈2c/2. Other
things being equal, one expects that c must be twice as great if one is assuming
collision-resistance than if one is assuming the PRF property.

However, in 2012 Koblitz and Menezes found a flaw in [12]. For Bellare,
who along with Rogaway popularized the concept of “practice-oriented prov-
able security” [11], his theorem was not merely a theoretical result, but rather
was intended to provide some concrete assurance to practitioners. Thus, it was
important for him to determine in real-world terms what guarantee his theorem
provided. To do this, Bellare’s approach was to take the fastest known generic
attack on the PRF property of a compression function, and evaluate what his
theorem then implied for the security of NMAC. In his analysis he took the key-
guessing attack (see Example 3 of Sect. 3) as the best generic attack on f , and
concluded that NMAC is secure “up to roughly 2c/2/m queries.” For instance,
for a bound of m = 220 on the block-length of messages Bellare was claiming that
NMAC-MD5 is secure up to 244 queries and NMAC-SHA1 up to 260 queries. (In
2006, MD5 and SHA1 were common choices for hash functions.)

Bellare failed to account for the fact that, because of his “coin-fixing,” i.e.,
nonuniform security reduction, he was logically required to examine security of
f against nonuniform attacks, not just uniform attacks. As we saw in Sect. 3,
there are simple generic nonuniform attacks on the PRF property that have
a much higher success probability than the key-guessing attack. If one repeats
Bellare’s analysis using the nonuniform attack described in Sect. 3, one finds
that NMAC’s security is guaranteed only up to at most 2c/4/

√
m queries, that

is, 222 for NMAC-MD5 and 230 for NMAC-SHA1. That level of security is of
little value in practice.

When we say that Bellare’s paper had a basic flaw, we have in mind the
definition of the f-word that was given by Stern et al. [76], who said:

The use of provable security is more subtle than it appears, and flaws in
security proofs themselves might have a devastating effect on the trust-
worthiness of cryptography. By flaws, we do not mean plain mathematical
errors but rather ambiguities or misconceptions in the security model.

Now let us bring this story up to the present. In an effort to determine what
can be said about the relation between the PRF property of the compression
function f and the PRF property of NMAC, Koblitz and Menezes [54] gave a
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uniform security reduction that had tightness gap m · max(2, q2/(2cε)), where ε
is a measure of the PRF-security of f and q is a bound on the number of queries.
They had to use a stronger version of the PRF property of f (a version that’s
similar to the property used in [18]); a corollary of their theorem then gave a
tightness gap of 2mq if one assumes only standard PRF-security of f .4

The interpretation in [54] of the authors’ Theorem 10.1 and Corollary 10.3 on
NMAC security is pessimistic. Those results assume the single-user setting and
strong properties of f ; moreover, they have large tightness gaps. The authors
conclude:

We would not want to go out on a limb and say that our Theorem 10.1
is totally worthless. However, its value as a source of assurance about the
real-world security of HMAC is questionable at best.

Specifically, they caution that “In our opinion none of the provable security
theorems for HMAC with MD5 or SHA1 [...] by themselves provide a useful
guarantee of security.” For instance, suppose that the query bound q is 230, the
block-length bound m is 225, and the number of users n is 225. (As we shall
see in AppendixB, the step from single-user to multi-user setting introduces an
additional factor of n in the tightness gap.) Then the number of bits of security
drops by 30 + 25 + 25 = 80 due to these tightness gaps. In other words, the
guarantees drop to 48 bits and 80 bits in the case of MD5 and SHA1, respectively.

Remark 2. If SHA256 is used in order to have at least 128 bits of HMAC security,
then there is such a huge safety margin that even these tightness gaps do not
lower the security to an undesirable level, at least if one assumes that there
is no attack on the PRF property of the SHA256 compression function that is
faster than the generic key-guessing one. This is because key-guessing takes time
≈2256, leaving a safety margin of 128 bits. One reason SHA256 might be used for
HMAC even if only 128 bits of security are required is that the user might need
SHA256 for other protocols that require collision-resistance and so she cannot
allow fewer than 256 bits of hash-output; in the interest of simplicity she might
decide to use a single hash function everywhere rather than switching to SHA1
for HMAC.

Remark 3. The above comment about a huge safety margin when SHA256 is
used in HMAC applies only if a 256-bit key and 256-bit message tags are used.
Not all standards specify this. For example, the NIST standard [33] recommends
128-bit HMAC keys for 128 bits of security and allows 64-bit tags. The recom-
mendations in [33] are supported by an ad hoc analysis, but are not supported
by any provable security theorem.
4 The early posted versions of [54] contained a serious error that was pointed out to the

authors by Pietrzak, namely, the theorem is given assuming only the PRF property
rather than the strong PRF property that is needed in the proof. This error was
explained and corrected in the posted versions and the published version. Soon after
the corrected version was posted, Pietrzak posted a paper [70] containing a different
proof of essentially the same result as in Corollary 10.3 of Theorem 10.1 of [54] (see
also [40]).



Another Look at Tightness II 31

Aside from the issue of the tightness gaps, there is another fundamental rea-
son why the theorems in [12,14,54] about security of NMAC and HMAC under
the PRF assumption offer little practical assurance. To the best of our knowl-
edge, the PRF assumption has never been seriously studied for the compression
functions used in MD5, SHA1, or SHA256; in fact, we are not aware of a sin-
gle paper that treats this question. Moreover, when those compression functions
were constructed, the PRF property was not regarded as something that had to
be satisfied – rather, they were constructed for the purpose of collision-resistance
and pre-image resistance. Thus, in the case of the concrete hash functions used
in practice, we have no evidence that could rule out attacks on the PRF prop-
erty that are much better than the generic ones. It would be very worthwhile for
people to study how resistant the concrete compression functions are to attacks
on the PRF property; in the meantime it would be prudent not to rely heavily
on theorems that make the PRF assumption.

Remark 4. The situation was quite different for AES, since a longstanding cri-
terion for a good block cipher has been to have the pseudorandom permutation
(PRP) property with respect to the secret (hidden) key. That is, an adversary
should not be able to distinguish between the output of a block cipher with
hidden key and that of a random permutation. The PRF property is close to the
PRP property as formalized by the PRP/PRF switching lemma (see Sect. 5 of
[73]), and so it is reasonable to assume that AES has the PRF property. On the
other hand, the criteria for judging hash constructions have been very different
from those for judging encryption.

Remark 5. In [15] the authors prove security of a MAC scheme called AMAC,
which is a prefix-MAC in which the output of the hash function is truncated so
as to thwart the extension attacks to which prefix-MACs are susceptible. As in
the case of the HMAC papers discussed above, the authors of [15] assume that
the underlying compression function is a PRF. Their proof has the remarkable
feature that it does not lose tightness in the multi-user setting. On the other
hand, the tightness gap in the single-user setting is much larger than in the
above security reductions for HMAC—namely, roughly q2m2. With, for instance,
q ≈ 230 and m ≈ 225 one has a tightness gap of 110 bits. The paper [15] does
recommend the use of SHA512, and if one assumes 512 bits of PRF-security for
its compression function, then we have such a large safety margin that a 2110

tightness gap is not worrisome. Nevertheless, it should be stressed that the PRF
assumption is a very strong one that, to the best of our knowledge, has never
been studied or tested for the SHA512 compression function.

Remark 6. In [43], Goldwasser and Kalai propose a notion of what it means
for a complexity assumption to be reasonable in the context of reductionist
security proofs. Among other things, the assumption should be falsifiable and
non-interactive. Since the assumption that the compression function in a hash
function such as MD5, SHA1, SHA256 or SHA512 has the PRF property is an
interactive one, it does not meet the Goldwasser-Kalai standard for a reasonable
cryptographic assumption. Rather, in the words of Goldwasser and Kalai, such
an assumption “can be harmful to the credibility of our field.”
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Returning to our narrative, in 2015 Bellare [14] published a revised version
of [12] in J. Cryptology that, regrettably, just muddied the waters because of
errors and unclarities in his abstract and introduction that could easily mislead
practitioners. First of all, the first sentence of the abstract states that the 1996
paper [17] proved “HMAC . . . to be a PRF assuming that (1) the underlying
compression function is a PRF, and (2) the iterated hash function is weakly
collision resistant.” In fact, only the secure-MAC property, not the PRF property,
was proved in [17].5

In the second place, in the concluding paragraph of the introduction of [14]
Bellare gives the impression that Pietrzak in [70] proved tight bounds for the
PRF-security of NMAC:6 “Tightness estimates [in the present paper] are now
based on the blackbox version of our reductions and indicate that our bounds
are not as tight as we had thought. The gap has been filled by Pietrzak [70], who
gives blackbox reduction proofs for NMAC that he shows via matching attack
to be tight.”7 A practitioner who reads the abstract and introduction of [14] but
not the technical sections would probably go away believing that PRF-security of
NMAC has been proved to be tightly related to PRF-security of the compression
function. This is false. In fact, it is the opposite of what Pietrzak proved.

What Pietrzak showed in [40,70] was that the mq tightness gap cannot be
reduced in the general case (although the possibility that better tightness might
conceivably be achieved for a special class of compression functions wasn’t ruled
out). He found a simple attack on NMAC that shows this. This is far from
reassuring—it’s what Menezes in [64] called the “nightmare scenario.” To put it
another way, Pietrzak’s attack shows a huge separation in PRF-security between
the compression function and NMAC. The desired interpretation of a security
reduction of the sort in [14,54] or [40] is that it should tell you that the study of a
certain security property of a complicated protocol is unnecessary if one studies
the corresponding property of a standard primitive. In this case the tightness
gap along with Pietrzak’s attack show that this is not the case.

It is unfortunate that neither of Bellare’s papers [12,14] discuss the prac-
tical implications of the large tightness gap. It would be interesting to know

5 The abstract to [40] also erroneously states that “NMAC was introduced by Bel-
lare, Canetti and Krawczyk [Crypto96], who proved it to be a secure pseudorandom
function (PRF), and thus also a MAC, assuming that (1) f is a PRF and (2) the
function we get when cascading f is weakly collision-resistant”.

6 In this quotation Bellare uses the word “blackbox” in a non-standard way. Later in
his paper he defines a “blackbox” reduction to be one that is constructible and a
“non-blackbox” reduction to be one that is non-constructible. However, when com-
paring a proof as in [12] that uses “coin-fixing” with more recent proofs that do not,
the standard terms are nonuniform/uniform rather than non-blackbox/blackbox.

7 The section “Our Contributions” in [40] starts out: “Our first contribution is a
simpler, uniform, and as we will show, basically tight proof for the PRF-security
of NMACf assuming only that f is a PRF.” The authors apparently meant to say
that their tightness gap is best possible, i.e., cannot be improved. Their proof is
not tight, however—far from it. Their tightness gap is nq, essentially the same as in
Corollary 10.3 of [54].
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why he disagrees with the conclusion of Koblitz–Menezes that the tightness
gaps and other weaknesses render the security reductions (proved by them in
Theorems 10.1 and Corollary 10.3 of [54]) “questionable at best” as a source of
real-world assurance. In view of Pietrzak’s recent work, which shows that the
tightness gap cannot be removed and reflects an actual attack, it is particularly
puzzling that even the revised paper [14] has nothing to say about the practical
implications of this weakness in the security reductions for HMAC.

We conclude this section with a recommendation. Standards bodies should
reexamine—taking into account tightness gaps—the security of all standardized
protocols that use HMAC for non-MAC purposes such as key derivation or pass-
words. The same should be done for HMAC-protocols using hash functions such
as MD5 or SHA1 that are not believed to have weak collision-resistance in the
sense of [17].

In some cases adjustments should be made, such as mandating a feature that
is currently optional (such as a nonce or a randomization) in order to prevent
known attacks; in other cases the recommended parameters or choices of hash
function may need to be changed in order to account for the tightness gaps.
Protocols that use HMAC as a MAC and use a collision-resistant hash function
do not have to be reexamined, because in that case [17] has a tight security
reduction. (However, in view of the multi-user attacks discussed in AppendixB,
the standards for any protocol that is used in a setting with a large number of
users should be modified if necessary to account for the multi-user/single-user
tightness gap.)

5 Lattice-Based Quantum-Safe Crypto

The reason for intense interest in lattice-based cryptography can be traced back
to the early years of public key, when Merkle–Hellman proposed the knapsack
public-key encryption system. It aroused a lot of interest both because of its
superior efficiency (compared to RSA) and the supposedly high level of confi-
dence in its security, since it was based on an NP-hard problem. Within a few
years Shamir, Brickell and others completely broke both the original knapsack
and modified versions of it. It turned out that the knapsack was based on an
easy subproblem of the NP-hard subset sum problem, not on hard instances.
This was a traumatic experience for researchers in the nascent field of public-
key cryptography. The lesson learned was that it would be good to base systems
on hardness of a problem for which the average case is provably equivalent to
the hardest case (possibly of a different problem).

There was a lot of excitement (even in the popular press) when Ajtai–Dwork
announced a lattice-based encryption scheme based on such a problem [2,3].
Since that time much of the motivation for working on lattice-based systems
(especially now that standards bodies are looking for quantum-safe crypto-
graphic protocols that have provable security guarantees) is that many of them
can be proved to have worst-case/average-case equivalence. (For a comprehensive
overview of research on lattice-based cryptography in the last ten years, see [69].)
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In this section we shall look at the worst-case to average case reductions from
the standpoint of tightness.

First, though, it is important to recognize that equivalence between average
and worst cases is not the Holy Grail for cryptographers that some might think.
As Dan Bernstein has noted (quoted in [43]), long before Ajtai-Dwork we had
discrete-log cryptosystems over characteristic-two fields. For each k the Discrete
Log Problem (DLP) in the group F

∗
2k is random self-reducible, meaning that

instances can be randomized. This gives a tight equivalence between hardest
instances and average instances. However, the DLP in those groups has long
been known to be weaker than the DLP in the multiplicative group of prime-
order fields [30], and recently it was completely broken [9].

Meanwhile the general DLP in the multiplicative group of prime fields F
∗
p

does not have this nice self-reducibility property, since for a given bitlength of
p one has vastly different levels of difficulty of the DLP. Yet as far as we know
these groups are secure for suitably chosen p of bitlength >1024.

5.1 Lattices

A (full rank) lattice L in R
n is the set of all integer linear combinations of n

linearly independent vectors B = {v1, v2, . . . , vn}. The set B is called a basis of
L, and the dimension of L is n. If the vi are in Z

n, then L is said to be an integer
lattice; all lattices in this section are integer lattices. The length of a vector is
its Euclidean norm. For each 1 ≤ i ≤ n, the ith successive minimum λi(L) is
the smallest real number r such that L has i linearly independent vectors the
longest of which has length r. Thus, λ1(L) is the length of a shortest nonzero
vector in L.

5.2 Lattice Problems

Let L be an n-dimensional lattice. When we say that we are “given a lattice” L,
we mean that we are given some arbitrary basis for L.

A well-studied lattice problem is the Shortest Vector Problem (SVP): Given
L, find a lattice vector of length λ1(L). The SVP problem is NP-hard. The fastest
classical algorithms known for solving it have provable running time 2n+o(n)

[1] and heuristic running time 20.337n+o(n) [61]. The fastest quantum algorithm
known for solving SVP has heuristic running time 20.286n+o(n) [61]. More gen-
erally, one can consider the Approximate-SVP Problem (SVPγ), which is the
problem of finding a nonzero lattice vector of length at most γ ·λ1(L). If γ >

√
n,

then SVPγ is unlikely to be NP-hard [41]. In fact, if γ > 2n log log n/ log n, then
SVPγ can be solved in polynomial time using the LLL algorithm. For γ = 2k,
the fastest algorithm known for SVPγ has running time 2Θ̃(n/k), where the Θ̃
term hides a constant factor and a factor of a power of log n (see [69]).

A related problem to SVPγ is the Approximate Shortest Independent Vectors
Problem (SIVPγ): Given L, find n linearly independent lattice vectors all of
which have length at most γ · λn(L). The hardness of SIVPγ is similar to that
of SVPγ [21]; in fact, SIVP√

nγ polynomial-time reduces to SVPγ [65].
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5.3 Learning with Errors

The Learning With Errors (LWE) problem was introduced by Regev in 2005 [71].
The LWE problem and the related R-LWE problem (see [63]) have been exten-
sively used to design many cryptographic protocols including public-key encryp-
tion, identity-based encryption, and fully homomorphic encryption. Public-key
encryption schemes based on LWE (and R-LWE) are also attractive because
no quantum algorithms for solving LWE are known that perform better than
the fastest known classical algorithms. Thus, LWE-based public-key encryption
schemes are viable candidates for post-quantum cryptography.

Let q = q(n) and m = m(n) be integers, and let α = α(n) ∈ (0, 1) be
such that αq > 2

√
n. Let χ be the probability distribution on Zq obtained by

sampling from a Gaussian distribution with mean 0 and variance α2/2π, and
then multiplying by q and rounding to the closest integer modulo q; for more
details see [71]. Then the (search version of the) LWE problem is the following:
Let s be a secret vector selected uniformly at random from Z

n
q . Given m samples

(ai, ai · s+ ei), where each ai is selected independently and uniformly at random
from Z

n
q , and where each ei is selected independently from Z

n
q according to χ,

determine s. Intuitively, in LWE you are asked to solve a linear system modulo
q, except that the constants on the right of the system are given to you with
random errors according to a Gaussian distribution.

The decisional version of LWE, called DLWE, asks us to determine whether
we have been given m LWE samples (ai, ai ·s+ei) or m random samples (ai, ui),
where each ui is selected independently and uniformly at random from Zq.

5.4 Regev’s Reduction

Regev [71] proved the following remarkable result8.

Theorem 1. If there exists an efficient algorithm that solves DLWE (in the
average case), then there exists an efficient quantum algorithm that solves SIVPγ

in the worst case where γ = Õ(n/α).

Suppose now that a lattice-based cryptosystem has been designed with a
reductionist security proof with respect to the hardness of average-case DLWE.
By Theorem 1, this cryptosystem also has a reductionist security proof with
respect to the hardness of SIVPγ in the worst case. This is widely interpreted
as providing ironclad assurance for the security of the cryptosystem since there
is compelling evidence that the well-studied SIVPγ problem is hard in the worst
case when γ is small.

However, Regev’s theorem and similar results are asymptotic. Although
results of this type are interesting from a qualitative point of view, it is sur-
prising that in the literature there are virtually no attempts to determine the
8 Regev’s theorem can also be stated with the GapSVPγ problem instead of SIVPγ .

Given an n-dimensional lattice L and a number r > 0, GapSVPγ requires that one
output “yes” if λ1(L) ≤ r and “no” if λ1(L) > γr (either “yes” or “no” is allowed if
r < λ1 ≤ γr).
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concrete security assurances that worst-case to average-case results such as
Theorem 1 provide for lattice-based cryptosystems. That is, in the lattice-based
cryptography literature concerning worst-case/average-case results, practice-
oriented provable security in the sense of Bellare-Rogaway (as explained in the
quote from [11] in the Introduction) is conspicuous by its absence.

Remark 7. Suppose that one has a polynomial-time reduction of a well-studied
worst-case problem Π1 to an average-case problem Π2. Then, if one assumes
that the worst-case instances of Π1 are not polytime solvable, then the reduc-
tion provides the assurance that no polynomial-time algorithm can solve Π2 on
average. This asymptotic assurance is viewed by some as ruling out “structural
weaknesses” in Π2; for example, see Sect. 5.1 of [62]. However, in the absence of
a concrete analysis, the reduction by itself does not guarantee the hardness of
fixed-sized instances of Π2.

A closer examination of Theorem 1 reveals several obstacles to using it to
obtain concrete security assurances for DLWE-based cryptosystems. We list five
such difficulties. Whereas the first and second are widely acknowledged in the
literature, there is scant mention of the remaining three difficulties.

1. One needs to assess the hardness of SIVPγ under quantum attacks and not
just under attacks on classical computers.

2. For parameters n, q and α that arise in DLWE-based cryptosystems, the
SIVPγ problem is likely not NP-hard. Thus, the evidence for worst-case hard-
ness of SIVPγ instances that arise in lattice-based cryptography is not as com-
pelling as the evidence for the worst-case hardness of an NP-hard problem.

3. Very little work has been done on concretely assessing the hardness of SIVPγ .
As mentioned in Sect. 5.2, the fastest attack on SIVPγ where γ = 2k has
running time 2Θ̃(n/k); however this expression for the running time is far
from concrete.

4. The statement of Theorem 1 uses “efficient” to mean “polynomial time in n”.
However, the exact tightness gap in the reduction of worst-case SIVPγ to
average-case DLWE has to the best of our knowledge never been stated.

5. A more precise formulation of DLWE involves several parameters including
the number of available samples and the adversary’s advantage in distin-
guishing between LWE and random samples. In practice, these parameters
have to be chosen based on the security needs of the DLWE-based cryptosys-
tem. However, there is little discussion in the literature of concrete values
for these parameters in the context of specific protocols. All the reductionist
security claims that we examined for DLWE-based cryptosystems are stated
in asymptotic terms and make liberal use of the phrases “polynomial time,”
“polynomial number,” and “non-negligible.”

Section 5.5 elaborates on (4) and (5).

5.5 Analysis of Regev’s Reduction

A careful examination of Regev’s proof of Theorem1 (see Appendix A for details)
reveals the following refined statement. For concreteness, we will take q = n2
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and α = 1/(
√

n log2 n), whence γ = Õ(n1.5); these are the parameters proposed
by Regev for his DLWE-based public-key encryption scheme [71]. Suppose that
there is an algorithm W1 that, given m = nc samples, solves DLWE for a fraction
1/nd1 of all s ∈ Z

n
q with advantage at least 1/nd2 . Then there is a polynomial-

time algorithm W2 for solving SIVPγ that calls the W1 oracle a total of

O(n11+c+d1+2d2) (1)

times. The tightness gap is thus O(n11+c+d1+2d2). While this is polynomial in
n, it can be massive for concrete values of n, c, d1 and d2.

Suppose, for example, that one takes n = 1024 (n = 1024 is used in
[5,26] for implementations of an R-LWE based cryptosystem). In a DLWE-
based encryption scheme such as Regev’s [71], the public key is a collection
of m = n1+ε LWE samples and the secret key is s; for simplicity we take m = n
whence c = 1. The encryption scheme is considered to be insecure if an attacker
can distinguish between encryptions of 0 and 1 with advantage at least 1/nd for
some d > 0 depending on the security parameter. This advantage is assessed
over choices of public-private key pairs and the randomness in the encryption
algorithm. Regev showed that such an adversary can be used to solve DLWE for
a fraction 1/4nd of all s ∈ Z

n
q with advantage at least 1/8nd; thus d1 ≈ d and

d2 ≈ d. If one is aiming for the 128-bit security level, then a reasonable choice for
d might be 12.8. Then, ignoring the hidden constant in the expression (1), the
tightness gap is n50.4 ≈ 2504. Thus, if average-case DLWE can be solved in time
T , then Theorem 1 shows that SIVPγ can be solved by a quantum algorithm in
time 2504T . As mentioned above, the fastest quantum algorithm known for solv-
ing SVP has running time 20.286n+o(n). If we assume that this is also the fastest
quantum algorithm for solving SIVPγ and ignore the o(n) term in the exponent,
then the algorithm has running time approximately 2293 � 2504T . Thus, for
our choice of parameters Theorem 1 provides no assurances whatsoever for the
hardness of average-case DLWE or for the security of the encryption scheme. In
other words, even though Theorem1 is viewed by many as providing “power-
ful qualitative indicators of security” (in the words of the anonymous reviewer
quoted in Sect. 1), the quantitative security assurance it provides is vacuous.

Remark 8. The condition αq > 2
√

n is needed for Regev’s proof of Theorem 1
to go through. It was later discovered that this condition is indeed necessary for
security. In 2011, Arora and Ge [7] showed that if αq = nt, where t < 1/2 is
a constant and q � n2t log2 n, then there is a subexponential 2Õ(n2t) algorithm
that solves LWE. This attack is touted as a demonstration of the importance
of security proofs—Theorem 1 anticipated the Arora-Ge attack which was dis-
covered 6 years after Theorem 1 was proven. In the same vein, one can wonder
about the implications of the large tightness gap in Theorem1 for the concrete
hardness of DLWE. One needs to ask: Is the tightness gap anticipating yet-to-
be-discovered algorithms for solving DLWE that are considerably faster than the
fastest algorithms for solving SIVPn1.5? The answer to this question has major
consequences for the security of DLWE-based protocols.



38 S. Chatterjee et al.

On the other hand, if one were to select a larger value for n while still
targeting the 128-bit security level, then the large tightness gap in (1) might
not be a concern if there is a very large safety margin—large enough so that
the fastest quantum algorithm for solving the corresponding SIVPγ is believed
to have running time 2k for k � 128. While this necessitates selecting a larger
value of n, the impact on the cryptosystem’s performance might not be too
large. Thus, there remains the possibility that Theorem1 can indeed provide
meaningful security assurances for DLWE-based cryptosystems in practice. In
order for this to occur, the following problems should be further investigated:

1. Determine concrete lower bounds for the worst-case quantum hardness of
SIVPγ (or GapSVPγ) in terms of n and γ.

2. Determine whether the tightness gap in Regev’s worst-case to average-case
reduction (see the estimate (1)) can be improved. Such improvements might
be achieved either through a closer analysis of Regev’s reduction, or else by
formulating new reductions.

3. Determine appropriate values of c, d1 and d2.
4. Assess the tightness gap in the reductionist security proof for the cryptosys-

tem (with respect to average-case DLWE).

Similarly, it would be very worthwhile to assess whether the analogue of
Theorem 1 for the R-LWE problem provides any meaningful assurances for cryp-
tosystems based on R-LWE using parameters that have been proposed in recent
work [4,5,26,67]. We note that the worst-case to average-case reduction for R-
LWE [63] is with respect to SVPγ in so-called ideal lattices (that is, lattices
that come from ideals in rings). Deriving concrete bounds on the hardness of
SVPγ for these lattices is more challenging than deriving concrete bounds on
the hardness of SIVPγ for arbitrary lattices.

Remark 9. In preparation for the possible advent of large-scale quantum com-
puters, standards organizations have begun examining candidates for public-key
cryptosystems that withstand attacks by quantum computers (see [58]). Public-
key cryptosystems based on R-LWE are considered to be one of the leading can-
didates for these quantum-safe standards. Initial deployment of quantum-safe
cryptosystems will likely be for the protection of highly sensitive data whose
confidentiality needs to be assured for several decades. For these applications,
long-term security guarantees will be more important than short-term concerns
of efficiency. Thus, it would be prudent to select parameters for R-LWE cryp-
tosystems in such a way that the worst-case to average-case reductions provide
meaningful concrete security guarantees. As mentioned above, the degradation
in performance that results from larger lattice parameters might not be of great
concern for high-security applications.

Remark 10. NTRU is a lattice-based public-key encryption scheme that was first
presented in 1996 (see [46,47]) and has been standardized by several accredited
organizations including ANSI [6] and IEEE [48]. NTRU uses lattices that arise
from certain polynomial rings. The algebraic structure of these lattices facil-
itate implementations that are significantly faster than public-key encryption
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schemes based on LWE and R-LWE. Despite its longevity, NTRU is routinely
disparaged in the theoretical cryptography literature because, unlike the case of
public-key encryption schemes based on LWE or R-LWE (including some vari-
ants of NTRU that were proposed more recently [75]), there are no worst-case
to average-case reductions to support the security of its underlying lattice prob-
lems. However, as we have noted, whether or not these asymptotic worst-case to
average-case reductions provide meaningful concrete security assurances is far
from being understood. Thus, the claim that, because of worst-case/average-
case reductions, the more recent lattice-based encryption schemes have better
security than classical NTRU rests on a flimsy scientific foundation.

In [68] Peikert describes asymptotic analyses of the security of lattice-based
systems, and concludes:

...worst-case reductions give a hard-and-fast guarantee that the cryptosys-
tem is at least as hard to break as the hardest instances of some underlying
problem. This gives a true lower bound on security, and prevents the kind
of unexpected weaknesses that have so often been exposed in schemes that
lack such reductions.

This would be true in a meaningful sense if the reductions were tight and if the
underlying problem were SIVPγ for a small γ (small enough so that SIVPγ is
NP-hard or so that there is reason to have confidence that there are no efficient
algorithms for SIVPγ). However, neither is the case. When discussing asymptotic
results and writing for a broad readership interested in practical cryptography,
the use of such terms as “hard-and-fast guarantee” and “true lower bound on
security” is inappropriate and misleading, because in real-world cryptography
the normal interpretation of these terms is that one has concrete practical secu-
rity assurances.

6 Tightness in Identity-Based Encryption

By way of counterpoint to the main theme of this paper—the potential dangers
in ignoring tightness gaps in security reductions—we now discuss the case of
Boneh-Franklin Identity-Based Encryption (IBE), where a large tightness gap
is, we believe, of no concern. The evidence for this belief is that an informal (but
convincing) argument allows one to reduce to the case where the adversary is
not allowed any key-extraction queries.

An identity-based encryption scheme offers the flexibility of using any string
— in particular, the identity of an individual or entity—as a public key. There
is an authority called the Private Key Generator which publishes its own public
parameters, including a public key, and maintains a master secret key. To obtain
a decryption key corresponding to her identity, a user in the system applies to
the Private Key Generator, which performs appropriate checks (possibly includ-
ing physical checks) to ascertain the identity. Then the Private Key Generator
uses its public parameters and master secret key to generate the decryption key
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corresponding to the identity. This decryption key is transmitted to the user
through a secure channel. Anybody who wishes to securely send a message uses
the identity of the recipient and the public parameters to perform the encryption.
The recipient can decrypt using her decryption key.

Security of an IBE scheme is modeled using a game between a simulator
and an adversary [24]. The game models security against an attack by a set of
colluding users attempting to decrypt a ciphertext intended for a user outside
the set.

In the initial phase, the simulator sets up an instance of the scheme based on
the security parameter. The simulator generates the public parameters, which
are given to the adversary, and the master secret key. The adversary is allowed to
adaptively make key-extraction queries to the simulator, who must provide the
decryption keys corresponding to identities of the adversary’s choosing. At some
point, the adversary provides the simulator with an identity id� (called the target
identity) and two messages M0 and M1 of equal length. The simulator randomly
chooses a bit b and provides the adversary with C�, which is an encryption of
Mb for the identity id�. The adversary continues making key-extraction queries
in an adaptive manner. Finally, the adversary outputs its guess b′; its advantage
in winning the game is defined to be |Pr[b = b′] − 1/2|. The adversary may not
make more than one key-extraction query for the same id; and of course it must
not have queried the simulator for the decryption key of id�, as otherwise the
game becomes trivial to win. The adversary’s resources are measured by the
time that it takes and the number of key-extraction queries that it makes.

The model that we have described provides what is called IND-ID-CPA secu-
rity (indistinguishability for ID-based encryption under key-extraction9 attack).
This model does not allow the adversary to make decryption queries. The model
where such queries are also allowed is said to provide IND-ID-CCA (chosen
ciphertext) security.

The first efficient IBE construction is due to Boneh and Franklin [24]. Their
scheme—and in fact all subsequent efficient IBE constructions—uses bilinear
pairings. A (symmetric) bilinear pairing is a map e : G × G → GT , where
G = 〈P 〉 and GT are groups of some prime order p, that satisfies the following
conditions: e(aP, bP ) = e(P, P )ab, e(P, P ) �= 1, and e is efficiently computable.
Practical bilinear pairings are obtained from elliptic curves where G is a subgroup
of points on an appropriately chosen elliptic curve and GT is a subgroup of the
multiplicative group of a finite field.

Identity-based encryption schemes are proved secure under various compu-
tational hardness assumptions. We mention the basic bilinear Diffie-Hellman
(BDH) assumption and two of its derivatives. The bilinear Diffie-Hellman (BDH)
assumption is that computing e(P, P )abc given (P, aP, bP, cP ) is infeasible. The
decisional bilinear Diffie-Hellman (DBDH) assumption is that distinguishing
between the distributions (P, aP, bP, cP, e(P, P )abc) and (P, aP, bP, cP, e(P, P )z),
where a, b, c and z are independent and uniform random choices from Zp, is

9 In the IBE setting “CP” does not stand for chosen plaintext but rather for clave
pedida, which means “requested key” in Spanish.
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infeasible. The gap bilinear Diffie-Hellman (GBDH) assumption is that comput-
ing e(P, P )abc given (P, aP, bP, cP ) and access to a DBDH oracle is infeasible.

We now briefly describe the basic Boneh-Franklin IBE scheme. The Private
Key Generator sets up the scheme by selecting a generator P of the group G;
choosing a random s from Zp and setting Q = sP ; and selecting two hash
functions H1 : {0, 1}∗ → G, H2 : GT → {0, 1}n. The public parameters are
(P,Q,H1,H2) while the master secret key is s. Given an identity id ∈ {0, 1}∗,
let Qid = H1(id); the decryption key is defined to be did = sQid. Encryption of an
n-bit message M for the user with identity id is done by first choosing a random
r in Zp and then computing the ciphertext (C1, C2) = (rP,M ⊕H2(e(Q,Qid)r)).
Decryption is made possible from the relation e(Q,Qid)r = e(rP, did).

Note that the basic Boneh-Franklin scheme does not provide chosen-
ciphertext security, because the message occurs in the ciphertext only in the last
XOR step. This means that a plaintext M can be determined from its ciphertext
(C1, C2) by asking for the decryption of the ciphertext (C1, C

′
2), where C ′

2 is C2

with the first bit flipped. One can, however, obtain IND-ID-CPA security results
for the basic Boneh-Franklin scheme under the assumption that H1 and H2 are
random oracles.

Using the Fujisaki-Okamoto transformation [36], the basic Boneh-Franklin
IBE scheme can be converted into a scheme, called FullIdent (see [24]), that
provides IND-ID-CCA security. To get FullIdent the basic scheme is modified as
follows. First, a random ρ ∈ {0, 1}n is chosen and r is set equal to H3(ρ,M),
where H3 is a hash function that maps bitstrings to integers mod p; we then
define C1 = rP as before. The second component C2 of the ciphertext is defined
by C2 = ρ⊕H2(e(Q,Qid)r) (that is, the hash value is XORed with ρ rather than
with M), and we also need a third component C3 defined by C3 = M ⊕ H4(ρ),
where H4 is a hash function that maps {0, 1}n to {0, 1}n. The decryption pro-
ceeds by first computing ρ = C2 ⊕ H2(e(C1, did)) and then M = C3 ⊕ H4(ρ).
But the decryption rejects the ciphertext unless it is validated by checking that
H3(ρ,M)P = C1. This last check is very important, since it prevents an adver-
sary from generating a valid ciphertext for an unknown message M .

Boneh and Franklin [24] argued for the IND-ID-CCA security of their con-
struction using a three stage reduction based on BDH; the reduction turned
out to be flawed. Galindo [38] provided a corrected reduction which resulted in
a tightness gap of q3

H , where qH is the maximum number of queries made to
any of the random oracles H1,H2,H3 or H4. Zhang and Imai [78] provided a
direct reduction based on the same BDH assumption with a tightness gap of
qD · qE · qH , where qD bounds the number of decryption queries and qE bounds
the number of key-extraction queries made by the adversary.10 The tightness
gap can be reduced to qE · qH by making the following change to the simulation
of the H3 random oracle in the proof of Theorem 1 in [78]: when the simulator

10 In Table 1 of [78], Zhang and Imai claim that their security reduction has a tightness
gap of qE · qH ; this assertion is repeated in Table 4 of [8]. However, they neglected to
account for the tightness gap arising from the running times in Theorem 1 of their
paper.
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responds to a query (σi,Mi) with ri, it stores gri in addition to (σi,Mi, ri) in
its “H3-list” (here we’re using the notation of the proof in [78] rather than our
own notation, in which σ would be ρ and gr would be rP ). With this change,
the simulator can respond to all qD decryption queries in time qD instead of
qD · qH (we are ignoring the time to sort and search the H3-list). As a result,
the lower bound for the BDH-time now has order equal to the sum of the query
bounds qD + qH2 + qH4 + qE , which is essentially the adversary’s running time.
In other words, in this way we can remove the tightness gap in the running
times, and we’re left with the tightness gap qE · qH2 that comes from the success
probabilities in Theorem 1 of [78].

As noted in [8], the tightness gap reduces further to qE if one is willing to
base the security on the presumably stronger DBDH or GBDH assumptions.
In practice, the hash functions in the IBE constructions are publicly known
functions. Thus, the number of queries made to these functions by the adversary
can be quite high—qH could be 264 or even 280 for powerful adversaries. The
number of key-extraction queries qE , on the other hand, will be lower.

An informal argument can be used to show why the tightness gaps in the
reductions for Boneh-Franklin IBE are inconsequential for real-world security.
Namely, we claim that key-extraction queries give no useful information to the
adversary, and so without loss of generality we may take qE = 0; in that case,
as mentioned above, there is a tight reduction based on the DBDH or GBDH
assumption. Recall that in response to a queried id, the Private Key Generator
returns Qid = H1(id), where H1 is a random oracle, and did = sQid. This can
be simulated by the adversary itself, who chooses k mod p at random and sets
Qid = kP and did = kQ. Note that this does not give a valid formal reduction
from the case when qE > 0 to the case when qE = 0, because the adversary does
not get the “true” key pair of the user, whose public point is produced by the
random oracle H1. However, it is hard to conceive of any difference this could
possibly make in the adversary’s effectiveness against the IND-ID-CCA security
of FullIdent.

Remark 11. In Sect. 3.1 of [53] Koblitz and Menezes made an analogous informal
argument in order to conclude that the tightness gap in the security reduction for
RSA Full Domain Hash should not be a cause of concern. These examples show,
as remarked in [52], that “whether or not a cryptographic protocol lends itself to
a tight security reduction argument is not necessarily related to the true secu-
rity of the protocol . . . the question of how to interpret a nontight reductionist
security argument has no easy answer.”

7 Conclusions

Reductionist arguments can contribute to our understanding of the real-world
security of a protocol by providing an ironclad guarantee that certain types
of attacks are infeasible as long as certain hardness assumptions remain valid.
However, even this limited kind of assurance may, as we have seen, turn out
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to be meaningless in practice if the reduction is nontight and the parameters
have not been increased to account for the tightness gap. In order to properly
evaluate provable security claims, one needs to study the tightness issue. In this
paper we have given examples of the type of analysis of tightness that should be
performed, but much work remains to be done. Among the open problems are
the following:

1. Examine all uses of complexity leveraging to see whether or not the concrete
adaptive security results are meaningful.

2. Evaluate the effect on the required parameter sizes of nontightness in security
proofs for HMAC and adjust standards accordingly, particularly in applica-
tions that require the pseudorandom function property; also study whether
or not the commonly used hash compression functions are likely to satisfy the
PRF assumption.

3. Carefully evaluate all lattice-based protocols that have worst-case-to-average-
case reductions to see what meaningful concrete bounds, if any, follow from
these reductions.

4. For protocols whose security reductions lose tightness in the multi-user setting
or the multi-challenge setting (or both), determine how parameter sizes should
be increased to account for this.
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A Concrete Analysis of Regev’s Worst-Case/
Average-Case Reduction

Let q = q(n) and m = m(n) be integers, and let α = α(n) ∈ (0, 1) be such that
αq > 2

√
n. Let χ be the probability distribution on Zq obtained by sampling from

a Gaussian distribution with mean 0 and variance α2/2π, and then multiplying
by q and rounding to the closest integer modulo q. Then the (search version of
the) LWE problem is the following: Let s be a secret vector selected uniformly
at random from Z

n
q . Given m samples (ai, ai · s + ei), where each ai is selected

independently and uniformly at random from Z
n
q , and where each ei is selected

independently from Zq according to χ, determine s. The decisional version of
LWE, called DLWE, asks us to determine whether we have been given m LWE
samples (ai, ai · s + ei) or m random samples (ai, ui), where each ui is selected
independently and uniformly at random from Zq.

Regev [71] proved that the existence of an efficient algorithm that solves
DLWE in the average case implies the existence of an efficient quantum algorithm
that solves SIVPγ in the worst case where γ = Õ(n/α). In the remainder of this
section we provide justification for the following refinement of Regev’s theorem:
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Claim. Let q = n2 and α = 1/(
√

n log2 n), whence γ = Õ(n1.5). Suppose
that there is an algorithm W that, given m = nc samples, solves DLWE for
a fraction 1/nd1 of all s ∈ Z

n
q with advantage at least 1/nd2 . Then there is a

polynomial-time algorithm W ′ for solving SIVPγ that calls the W oracle a total
of O(n11+c+d1+2d2) times.

A.1 Gaussian Distributions

Recall that the Gaussian distribution with mean 0 and variance σ2 is the distri-
bution on R given by the probability density function

1√
2π · σ

exp
(−x2

2σ2

)
.

For x ∈ R
n and s > 0, define the Gaussian function scaled by s:

ρs(x) = exp
(−π‖x‖2

s2

)
.

The Gaussian distribution Ds of parameter s over Rn is given by the probability
density function

Ds(x) =
ρs(x)
sn

.

Note that Ds is indeed a probability distribution since
∫

x∈Rn ρs(x) dx = sn.
If L is a lattice, we can define

ρs(L) =
∑
x∈L

ρs(x).

Then the discrete Gaussian probability distribution DL,s of width s for x ∈ L is

DL,s(x) =
ρs(x)
ρs(L)

.

Let L be a (full-rank integer) lattice of dimension n.

A.2 Concrete Analysis

In this section the tightness gap of a reduction algorithm from problem A to
problem B is the number of calls to the oracle for B that are made by the
reduction algorithm.

Regev’s worst-case/average-case reduction has two main components:

1. The reduction of (search-)LWE to average-case DLWE (denoted DLWEac).
2. The reduction of worst-case SIVPγ to LWE.

Reduction of LWE to DLWEac. This reduction has three parts.

Part I. Worst-Case to Average-Case. DLWEwc denotes the worst-case DLWE
problem. Lemma 4.1 in [71] shows that an algorithm W1 that solves DLWEac
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for a fraction 1
nd1

of all s ∈ Z
n
q with acceptance probabilities differing by at

least 1
nd2

can be used to construct an algorithm W2 that solves DLWEwc with
probability essentially 1 for all s ∈ Z

n
q . The algorithm W2 invokes W1 a total of

O(nd1+2d2+2) times.

Part II. Search to Decision. Lemma 4.2 in [71] shows that an algorithm W2

which solves DLWEwc for all s ∈ Z
n
q with probability essentially 1 can be used

to construct an algorithm W3 that solves (search-)LWE for all s ∈ Z
n
q with

probability essentially 1. Algorithm W3 invokes W2 a total of nq times, so this
reduction has a tightness gap of nq.

Part III. Continuous to Discrete. Lemma 4.3 in [71] shows that an algorithm W3

that solves LWE can be used to construct an algorithm W5 that solves LWEq,Ψα
.

(See [71] for the definition of the LWEq,Ψα
problem.) This reduction is tight.

Reduction of SIVPγ to LWE. This reduction has tightness gap 6n6+c. The
reduction has two parts.

Part I. DGS to LWE. Let ε = ε(n) be some negligible function of n. Theorem 3.1
of [71] shows that an algorithm W4 that solves LWEq,Ψα

given m samples can be
used to construct a quantum algorithm W9 for DGS√

2n·ηε(L)/α. Here, ηε(L) is the
“smoothing parameter with accuracy ε”, and DGSr′ (discrete Gaussian sampling
problem) is the problem of computing a sample from the discrete Gaussian
probability distribution DL,r′ where r′ ≥ √

2n · ηε(L)/α.
Let r =

√
2n · ηε(L)/α. Let ri = r · (αq/

√
n)i for i ∈ [0, 3n]. Algorithm W9

begins by producing nc samples from DL,r3n
(Lemma 3.2 in [71]); the W4 oracle

is not used in this step. Next, by repeatedly applying the ‘iterative step,’ it uses
the nc samples from DL,ri

to produce nc samples from DL,ri−1 for i = 3n, 3n −
1, . . . , 1. Since r0 = r, the last step produces the desired sample from DL,r.

The iterative step (Lemma 3.3 in [71]) uses nc samples from DL,ri
to produce

one sample from DL,ri−1 ; this step is then repeated to produce nc samples from
DL,ri−1 . Thus, the iterative step is executed a total of 3n · nc = 3n1+c times.

Each iterative step has two parts.

1. The first part invokes W4 a total of n2 times:
– Lemma 3.7 in [71] uses W4 to construct an algorithm W5 that solves

LWEq,Ψβ
; W5 invokes W4 n times.

– Lemma 3.11 in [71] uses W5 and the nc samples from DL,ri
to construct

an algorithm W6 that solves the CVP(q)

L∗,αq/
√

2ri
problem. The reduction

is tight.
– Lemma 3.5 in [71] uses W6 to construct an algorithm W7 that solves the

CVPL∗,αq/
√

2ri
problem. Algorithm W7 invokes W6 n times.

2. The second part (Lemma 3.14 in [71]) uses W7 to construct a quantum algo-
rithm W8 that produces a sample from DL,ri−1 . This reduction is tight.

Since each iterative step has tightness gap n2, the total tightness gap for the
reduction of DGS to LWE is 3n3+c.
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Part II. SIVPγ to DGS Lemma 3.17 in [71] uses W9 to construct an algorithm
W10 that solves SIVP2

√
2nηε(L)/α. Algorithm W10 invokes W9 2n3 times.

Lemma 2.12 in [71] states that ηε(L) ≤ √
ω(log n) · λn(L) for some negligible

function ε(n). Thus

γ =
2
√

2nηε(L)
α · λn(L)

=
2
√

2n
√

ω(log n)
α

= Õ
(n

α

)
= Õ(n1.5).

Summary. Regev’s reduction of SIVPγ to DLWEac has tightness gap

nd1+2d2+2 · nq · 3n3+c · 2n3 = 6n11+c+d1+2d2 .

B Nontightness and Multi-user Attacks

In an important paper that has been all but ignored by the cryptographic
research community, Zaverucha [77] showed that “provably secure” hybrid
encryption, as described in several standards, is insecure in the multi-user set-
ting if certain permitted (and even recommended) choices are made in the imple-
mentation. Because this work should be much better known than it is, we shall
devote this section to explaining and summarizing [77]. We shall focus on hybrid
encryption schemes in the comprehensive ISO/IEC 18033-2 standard [74].

We first recall the definition in [16] of IND-CCA security (Indistinguisha-
bility under Chosen-Ciphertext Attack) of encryption in the multi-user setting.
Suppose there are n users. The adversary is given n public keys, a decryption
oracle for each public key, and an LR (left-or-right encryption) oracle for each
public key. The adversary can query each decryption oracle up to qD times and
each LR oracle up to qLR times. A decryption query simply asks for a chosen
ciphertext to be decrypted under the corresponding public key. An LR query
works differently. The n LR-oracles all have a hidden random bit b in common.
The adversary chooses two equal-length messages M0 and M1 to query to one
of the LR-oracles, which then returns an encryption C∗ of Mb. The adversary
is not permitted to query C∗ to the decryption oracle for the same public key.
The adversary’s task is to guess b with success probability significantly greater
than 1/2.

Remark 12. This “multi-challenge” security model (that is, qLR > 1) can also be
used in the single-user setting, but almost never is ([22] is a rare exception); in the
standard IND-CCA security model qLR = 1. We shall later give a simple attack
that shows that the standard IND-CCA is deficient and should be replaced by
the multi-challenge model.

Remark 13. In [16] the authors give a generic reduction with tightness gap n·qLR

between the multi-user and single-user settings. In the full version of [16] they
also give a construction that shows that this tightness bound is optimal; that is,
they describe a protocol that can be attacked with n · qLR times the advantage
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in the multi-user setting than in the single-challenge single-user setting. Their
construction is contrived and impractical; later we shall describe a simple attack
on hybrid encryption that shows that in practice as well as in theory the generic
tightness bound in [16] is best possible. That is, the attack described below
reduces security by a factor equal to n times the number of messages sent to
each user (see Remark 16). (In specific cases tighter reductions are sometimes
possible—for example, the paper [16] contains a reduction with tightness gap
qLR in the case of the Cramer–Shoup public-key encryption scheme [31].)

We now recall the setup and terminology of hybrid encryption. The encryp-
tion has two stages: a key-encapsulation mechanism (KEM) using a public-key
cryptosystem (with the recipient’s public/secret key pair denoted PK/SK), and
a data-encapsulation mechanism (DEM) using a symmetric-key cryptosystem
that encrypts the data by means of the shared key K that is produced by the
KEM. The KEM takes PK as input and produces both the key material K by
means of a key-derivation function (KDF) and also a ciphertext C1 that will
enable the recipient to compute K; the DEM takes K and the message M as
input and produces a ciphertext C2. The recipient decrypts by first using C1 and
SK to find K and then using C2 and the symmetric key K to find M .

Among the public-key systems commonly used for KEM are Cramer-Shoup
[31] and ECIES (ElGamal encryption using elliptic curves, see [74]); symmetric-
key systems commonly used for DEM are AES in cipher block chaining (CBC)
mode and XOR-Encrypt using a hash function with a counter. (We will describe
this in more detail shortly.) The KDF is a publicly known way to produce key
material of a desired length L from a shared secret that’s computed using the
public-key system.

Suppose, following [74], that we use 128-bit AES in CBC-mode with zero
initialization vector for DEM. Let MAC denote a message authentication code
that depends on a 128-bit key. Our KDF produces two 128-bit keys K = (k1, k2).
To send a 128m-bit message M , we set C2 equal to a pair (C ′, t), where C ′ is
the 128m-bit ciphertext computed below and t =MACk2(C

′) is its tag. The
ciphertext C ′ = (C ′

1, . . . , C
′
m) is given by: C ′

1 =AESk1(M1), C ′
i =AESk1(C

′
i−1 ⊕

Mi) for i = 2, . . . , m.
After receiving (C1, C2) = (C1, C

′, t), the recipient first uses C1, SK, and the
KDF to find (k1, k2), and then uses the shared key k2 to verify that t is in fact
the tag of C ′; otherwise she rejects the message. Then she decrypts using k1.

Alternatively, for DEM we could use XOR-Encrypt with a hash function H
as follows. To send a message M consisting of m 256-bit blocks, we have the
KDF generate a 256m-bit key k1 = (k1,1, . . . , k1,m) by setting k1,i = H(z0‖i),
where z0 is a shared secret produced by KEM, and also a MAC-ing key k2. The
MAC works as before, but now C ′ is determined by setting C ′

i = Mi ⊕k1,i. This
is the hash function with counter (CTR) mode mentioned above.

In [32] Cramer and Shoup gave a tight proof that hybrid encryption has
IND-CCA security under quite weak assumptions. The MAC-scheme need only
be “one-time secure” (because it receives a new key k2 for each message), and
the symmetric encryption function need only be one-time secure against passive
adversaries—in particular, there is no need for randomization (again the reason
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is that it gets a new key k1 for each message). In accordance with the general
principle that standards should not require extra features that are not needed in
the security reductions, the standards for hybrid encryption [74] do not require
randomization in the symmetric encryption; nor do they impose very stringent
conditions on the KDF. In addition, in [74] Shoup comments that if KEM is
implemented using the Cramer–Shoup construction [31], which has a security
proof without random oracles, and if DEM is implemented using AES-CBC,
then it is possible to prove a tight security reduction for the hybrid encryption
scheme without the random oracle assumption. Thus, anyone who mistrusts
random oracle proofs should use AES-CBC rather than XOR-Encrypt. All of
these security proofs are given in the single-user setting.

B.1 Attacks in the Multi-user Setting

We now describe some of the attacks of Zaverucha [77] in the multi-user setting,
which of course is the most common setting in practice. Let n = 2a be the
number of users. First suppose that the DEM is implemented using AES128 in
CBC-mode. Suppose that Bob sends all of the users messages that all have the
same first two blocks (M1,M2) (that is, they start with the same 256-bit header).
The rest of the message blocks may be the same (i.e., broadcast encryption), or
they may be different. The adversary Cynthia’s goal is to read at least one of
the 2a messages. She guesses a key k that she hopes is the k1-key for one of
the messages. She computes C ′′

1 =AESk(M1) and C ′′
2 = AESk(C ′′

1 ⊕ M2) and
compares the pair (C ′′

1 , C ′′
2 ) with the first two blocks of ciphertext sent to the

different users.11 If there’s a match, then it is almost certain that she has guessed
the key k1 = k for the corresponding message. That is because there are 2128

possible keys k1 and 2256 possible pairs (C ′
1, C

′
2), so it is highly unlikely that

distinct keys would give the same (C ′
1, C

′
2). Once Cynthia knows k1—each guess

has a 2−(128−a) chance of producing a match—she can quickly compute the rest
of the plaintext. This means that even though the hybrid encryption scheme
might have a tight security reduction in the single-user setting that proves 128
bits of security, in the multi-user setting it has only 128 − a bits of security.
Commenting on how dropping randomization in DEM made his attack possible,
Zaverucha [77] calls this “an example of a provable security analysis leading to
decreased practical security.”

Remark 14. In modern cryptography—ever since the seminal Goldwasser-Micali
paper [44]—it has been assumed that encryption must always be probabilistic.
In [74] this principle is violated in the interest of greater efficiency because the
security proof in [32] does not require randomization. This decision was bold,
but also rash, as Zaverucha’s attack shows.
11 We can suppose that the 2a ciphertexts are sorted according to their first two blocks

(or perhaps stored using a conventional hash function). Then one iteration of the
attack takes essentially unit time, since it just requires computing (C′′

1 , C′′
2 ) and look-

ing for it in the sorted table. Since the expected number of iterations is 2128−a, the
running time of the attack is T = 2128−a (and the success probability is essentially 1).
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Remark 15. A time–memory–data tradeoff can be applied to speed up the on-
line portion of the attack; see Remark 7 in [27]. Namely, at a cost of precompu-
tation time 2128−a and storage size 22(128−a)/3, the secret key k of one of the 2a

users can be determined in time 22(128−a)/3.

Remark 16. The above attack can also be carried out in the single-user setting
if we suppose that Bob is sending Alice 2a′

different messages that all have the
same header (M1,M2). Since different keys are generated for different messages
(even to the same user), there is no need for the recipients of the messages
to be different. This gives a reduction of the number of bits of security by a′.
This attack shows the need for the multi-challenge security model even in the
single-user setting. Thus, even in the single-user setting the standard security
model for encryption is deficient because it fails to account for the very realistic
possibility that Bob uses hybrid encryption as standardized in [74] to send Alice
many messages that have the same header.

Remark 17. Note that if the 2a′
messages are broadcast to 2a users, then obvi-

ously the reduction in security is by a′ + a bits. In some circumstances a′ + a
could be large enough to reduce the security well below acceptable levels. For
example, if a′ + a > 32, it follows that what was thought to have 128 bits of
security now has fewer than 96, which, as remarked in Sect. 1, is not enough. It
should be emphasized that the security is reduced because of actual practical
attacks, not because of a tightness gap that could conceivably be removed if one
finds a different proof.

We note that the above attack does not in general work if DEM is imple-
mented using XOR-Encrypt. (Of course, someone who does not trust security
proofs that use random oracles would not be using XOR-Encrypt, and so would
be vulnerable.) But Zaverucha has a different attack on hybrid encryption with
XOR-Encrypt that works for certain KDF constructions.

B.2 Attacks on Extract-then-Expand with XOR-Encrypt

The most commonly used KDF takes the shared secret z0 produced in KEM
and derives a key of the desired length by concatenating H(z0‖i) for i = 1, . . ..
However, at Crypto 2010, as Zaverucha [77] explains,

Krawczyk argues that cryptographic applications should move to a single,
well-studied, rigorously analyzed family of KDFs. To this end, he formally
defines security for KDFs, presents a general construction that uses any
keyed pseudorandom function (PRF), and proves the security of his con-
struction in the new model. The approach espoused by the construction is
called extract-then-expand. [...] The HKDF scheme is a concrete instantia-
tion of this general construction when HMAC is used for both extraction
and expansion.
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The Extract-then-Expand key derivation mechanism was soon standardized [28,
29,59]. In particular, RFC 5869 describes HKDF, which instantiates the Extract-
then-Expand mechanism with HMAC, and states that HKDF is intended for use
in a variety of KDF applications including hybrid encryption.

Extract-then-Expand works in hybrid encryption as follows. Suppose that z0

is the shared secret produced in KEM. The Extract phase produces a bitstring
z1 = Extract(z0), perhaps of only 128 bits, which is much shorter than z0. (The
Extract phase may also depend on a “salt,” but this is optional, and we shall
omit it.) Then the key material K is obtained by a function that expands z1,
i.e., K = Expand(z1, L), where L as before is the bitlength of K. (There is also
the option of putting some contextual information inside the Expand-function,
but we shall not do this.)

We now describe Zaverucha’s attack on hybrid encryption when Extract-
then-Expand with 128-bit z1 values is used as the KDF and XOR-Encrypt is
used for message encryption. Suppose that Bob sends messages to 2a users that
all have the same header (M1,M2) and the same bitlength L. Cynthia’s goal
is to recover at least one of the plaintexts. Rather than guessing a key, she
now guesses the bitstring z1. For each guess she computes K = Expand(z1, L)
and C ′′

i = Mi ⊕ k1,i, i = 1, 2. When she gets a match with (C ′
1, C

′
2) for one

of the users, she can then recover the rest of the plaintext sent to that user:
Mi = C ′

i ⊕ k1,i, i > 2.
Note that this attack does not work for XOR-Encrypt with the KDF using

H(z0‖i) described above. Once again the “provably secure” choice of Extract-
then-Expand turns out to be vulnerable, whereas the traditional choice of KDF
is not. Zaverucha comments that “In this example, replacing a commonly used
KDF in favor of a provably secure one causes a decrease in practical security.”

As discussed in [77], Zaverucha’s attacks can be avoided in practice by putting
in features that are not required in the standard single-user single-challenge
security proofs. It would be worthwhile to give proofs of this.

Open Problem. Give a tight security reduction for hybrid encryption in
the multi-user multi-challenge security model (random oracles are permitted)
if DEM uses either: (1) randomized encryption rather than one-time-secure
encryption (for example, AES-CBC with random IV that is different for each
message and each recipient), (2) XOR-Encrypt using H(z0‖i) for the KDF,
(3) XOR-Encrypt using HKDF with a recipient- and message-dependent salt
in the Extract phase and/or recipient- and message-dependent contextual infor-
mation in the Expand phase.

We conclude this section by noting a curious irony. As we remarked in Sect. 1,
it is very rare for a standards body to pay much attention to tightness gaps in the
security reductions that are used to support a proposed standard or to whether
those security reductions were proved in the multi-user or single-user setting.
However, recently the IETF decided that the standard for Schnorr signatures
[72] should require that the public key be included in the hash function. The
reason was that Bernstein [20] had found a flaw in the tight reduction from an
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adversary in the single-user setting to an adversary in the multi-user setting that
had been given by Galbraith et al. [37], and he had proved that a tight security
reduction could be restored if the public key is included in the hash function.
(Later Kiltz et al. [50] gave a tight security reduction without needing to include
the public key in the hash function; however, their assumptions are stronger
than in [37], and it is not yet clear whether their result will cause the IETF to
go back to dropping the public key from the hash input.)

The peculiar thing is that the tightness gap between single-user and multi-
user settings is only a small part of the tightness problem for Schnorr signatures.

Lemma 5.7 in [50] gives a security proof in the random oracle model for the
Schnorr signature scheme in the single-user setting. The proof has a tightness
gap equal to the number of random oracle queries, which can be very large—in
particular, much larger than the number of users in the multi-user setting. Even a
tight single-user/multi-user equivalence leaves untouched the large tightness gap
between Schnorr security and hardness of the underlying Discrete Log Problem.
It should also be noted that the IETF was responding to the error Bernstein
found in a proof, not to any actual attack that exploited the tightness gap (we
now know that such an attack is probably impossible, because of the recent proof
in [50] that under a certain reasonable assumption there is no single-user/multi-
user tightness gap).

In the meantime, standards bodies have done nothing to address Zaverucha’s
critique of the standardized version [74] of hybrid encryption, which allows imple-
mentations that have far less security than previously thought, as shown by
actual attacks.
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