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Abstract. We present a protection mechanism against forgery of elec-
tronic signatures with the original signing keys. It works for standard
signatures based on discrete logarithm problem such as DSA. It requires
only a slight modification of the signing device – an implementation of
an additional hidden evidence functionality.

We assume that neither verification mechanism can be altered nor
extra fields can be added to the signature (both as signed and unsigned
fields). Therefore, the old software for signature verification can be
used without any change. On the other hand, if a forged signature
emerges, the signatory may prove its inconsistency with a probability
close to 1.

Unlike fail-stop signatures, our method works not only against crypt-
analytic attacks, but it is primarily designed for the case when the adver-
sary gets the original signing key stored by the signing device of the user.

Unlike cliptographic constructions designed to defend against mali-
cious implementations, we consider catastrophic situation when the key
has been already compromised.

The technical idea we propose is an application of kleptography for
good purposes. It is simple enough, efficient and almost self-evident to
be ready for implementation of cryptographic smart cards of moderate
storage and computational capabilities.

Unfortunately, we have also to bring into attention that our scheme
has a dark side and it can be used for leaking the keys via the recent
subversion-resistant signatures by A. Russell, Q. Tang, M. Yung and
H.-Sh.Zhou.
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1 Introduction

In practice, undeniability of electronic signatures is based on the following
assumptions:

1. Creation of a valid signature is possible only with the secret key corresponding
to the public key used during the verification procedure,

2. The private key is stored only in a so called signature creation device which
is under a sole control of the signatory,

3. The link between the public key and the signatory is reliably confirmed by
means of a public key infrastructure.

Violation of any of these assumptions means that a signature cannot be trusted.
Note that the sole control condition has to indicate that no one but the sig-

natory can activate the device for signing. This does not mean that the signatory
has open access to the device memory, its secret keys etc. Indeed, such an access
would mean that the signatory can export the key from the device and therefore
we could not assume that the private signing key is stored on the device only.

Unfortunately, testing whether the above mentioned conditions are fulfilled
might be far beyond the possibilities of a normal user entrusting the signatures:

1. Validity of the first condition depends on the state of the art of cryptanalysis.
However, one cannot expect that a user can evaluate state-of-the-art of the
research in this area and exclude possibility of a forgery. Note that we are
not talking only about the academic research with publicly available results,
but also about cyber war research.

2. The second condition is very hard to check, even for the signatory himself.
First, the hardware manufacturer may include trapdoors enabling to reveal
the private key stored in the signature creation device. There is a wide range
of methods that can be applied for this purpose: kleptographic code (see
e.g. [16] and its bibliography list), weaknesses of (pseudo)random number
generators, hardware Trojans (see e.g. [1]), side channel information leakage
(see e.g. [7]). Such trapdoors can be also created by simple implementation
errors. However, even the signatory has no access to the internal state of the
device, so such trapdoors cannot be detected by a direct device inspection.
Certification and audit procedures aim to prevent existence of such trapdoors
in certified products, but it has been pointed out that certification authorities
might be coerced by state authorities to install certain trapdoors for the sake
of national security. However, these trapdoors can be used without any control
and even endanger public security.
Some defense against these threats is possible – e.g. cliptographic techniques
[19] aim to protect against malicious software implementations, including the
key generation process.

3. Creating a reliable, efficient and cheap PKI infrastructure is a problem itself.
Last not least, one has to be sure that the most advanced players cannot
create rogue certificates. From the past experience (see [12]), we know that
this cannot be completely excluded.
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In this paper we focus on the second condition. One line of R&D work is
to provide secure hardware so that there are neither trapdoors nor malicious
ways to extract the signing secret keys against the will of the signatory and
the manufacturer. However, it is extremely hard to evaluate effectiveness of the
current solutions for the sheer reason that the most dangerous and powerful
adversaries may treat their capabilities as top secrets.

Key Generation Process. One of the Achilles heels of the signature schemes
currently implemented on the smart cards is secret key generation. There are a
few options, each of them involves critical threats:

1. Key generated by a service provider and installed on the signature
creation device: one cannot prove that the service provider does not retain
a copy of the key for malicious purposes. If they are later used only in a
few cases, then this does not even endanger the reputation of the service as
forgery might be hard to prove.
Unfortunately, the current legal regulations do not ease the situation: e.g. the
recent eIDAS framework of European Union [14] admits creation and keeping
backup copies of secret signing keys as a service. It is required that appropri-
ate security level is assured, however it does not mean that a rogue service
provider cannot break these rules. Even worse, the current state-of-the-art of
cryptographic research provides tools to erase all traces of misbehavior.

2. Key generated by the user and installed on the signature creation
device: this option is frequently forbidden by legal rules: the device must
not enable existence of the secret key outside of it. The only exception is
generating key by a trusted service provider as mentioned by the first option.
Note that admitting the user to install the key creates plenty of opportunities
to steal this key by rogue software on the computer used to generate and
upload the key. The user is likely to be unaware of this fact.

3. Key generated itself by the signature creation device: the proce-
dure to create cryptographic keys on the signing device might be a fake one.
A rogue device might “generate” the key that already has been stored on the
device or is predictable by the manufacturer. As in response the device owner
obtains only a public key, it is infeasible to detect such misbehavior.

We may conclude that the provider of the signature creation devices has
quite realistic ways to gain access to the signing keys contained in these devices
and thereby has a real opportunity to forge signatures.

Of course, there are some relatively simple solutions that would make such
forgeries much harder or even impossible. For example, a multi-party key genera-
tion protocol executed by the signature creation device and another independent
device of this user would help a lot (by “independent” we mean in particular
“coming from a different manufacturer that cannot be coerced by the same
authority”). Also using two different signature creation devices and a certificate
stating that a signature is valid only when co-signed by the second device would
provide more security in the practical sense.
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Unfortunately, these simple solutions are not really pragmatic. Our experi-
ence is that in practice all solutions that require major changes in the already
deployed systems have no or very low chances to be accepted by the industry and
decision makers. As a reaction to such proposals we expect rather arguments to
ignore “theoretical and purely academic threats not justified by a realistic risk
analysis”. If a new method is fully compatible with the already available and
deployed products, then the chances to be accepted increase a lot.

Our Goal. We aim to create security mechanisms against forging signatures by
an adversary having access to the private signing keys. Such an adversary can
create signatures that cannot be distinguished by the standard means from the
signatures created by the private key owner. As it seems to be hard to change
the verification process already described in the standards, our goal is to

– detect signatures created with stolen signing keys,
– create an evidence that can be used to convince a judge about the forgery

without invalidating the remaining signatures.

We aim to address the situation where:

– the manufacturer provides a device with a signing key already installed, or
– the key generation procedure is executed by the (black box) device, but we

have no insight into this process, or
– some components are ill implemented (e.g. the (pseudo)random number gen-

erator has low entropy output), and therefore the signing key is weak by
design.

For this purpose we enable the user to install an auxiliary parameter on the sig-
nature creation device after he gets the device to his hands. An important feature
is that this parameter is not known to the manufacturer or the party delivering
the device. As the signing device is usually supposed only to create signatures,
it might be hard in practice to create a secret channel to the manufacturer that
would enable to leak the signing key.

A näıve way to implement this idea would be to use an extra secret as a
seed for a PRNG creating random exponent k i.e. in case of DSA signatures.
Revealing the seed would immediately enable to distinguish the forged signatures
from the signatures created by the card. Unfortunately, the user himself would be
able to derive the secret key installed by the device, which contradicts the basic
requirements e.g. from [14]. Indeed, in case of the signature creation devices
the legitimate user of the device should be considered as an adversary, since
in practice he might be tempted to find an evidence that his device has been
tampered and therefore to claim that some of his past signatures have been
forged.

One might hope that fail-stop signatures [11] solve the stated problem. Unfor-
tunately, this is not true, as fail-stop signatures protect solely against cryptana-
lytic attacks. They are useless against an adversary holding the original signing
keys.
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Assumptions. We aim to provide a solution that would be relatively easy to
deploy. Therefore we assume that:

1. The current signature standards should be used in an essentially unchanged
form; only details of implementation should provide additional features for
the device holder. Nothing should change for a verifier of electronic signatures.

2. The solution does not require any additional interaction during device delivery
from the manufacturer to the end user. We are focused on the situation that
the signature creation device is delivered ready to use with the signing key
and a certificate for this key already preinstalled.

3. The solution should be implementable on devices such as smart cards with
moderate resources (computing speed and memory size). These devices are
assumed to be tamper proof (if they are not, then they cannot be used as
signature creation devices for the general reasons).

4. For the signatory, creating a signature should be as convenient as in case of
the standard signature creation devices.

5. In case of a forgery with original keys, detection probability should be high
enough to discourage such behavior.

Example Application Scenario. A typical application case we have in mind is the
following. A financial institution or an organization of financial institutions issues
electronic ID cards for their customers. The ID cards enable creation of electronic
signatures used to authenticate documents provided by the customers. In order
to ease the card usage and simplify the logistics, the ID cards are delivered
ready to use. As the card issuer holds the most relevant data about the customer
enabling him to monitor card usage, it does not make sense to delegate the cards
management chores (such as keeping revocation lists) to a third party Certificate
Authority. However, if there is a dispute between the customer and the financial
institution, the customer may challenge the signatures created by himself and
claim that the institution has retained his signing key and used it to forge these
documents. This is a crucial issue and the solution proposed in this paper aims
to prevent such a situation.

Our Contribution and Paper Overview. We present a generic solution for ran-
domized signature schemes based on the Discrete Logarithm Problem, including
in particular ElGamal, DSA, ECDSA, and Schnorr signatures. The mechanism
is based on a pair of hidden keys that enable to fish out the signatures created
by the legitimate signature creation device (this device stores the public control
key for signature creation). Our solution enables separation of trust: the hidden
keys might be uploaded by the owner of the device.

In Sect. 2 we present our generic construction. In Sect. 3 we provide argu-
ments showing that the modified schemes are secure just as the underlying sig-
nature schemes. Section 4 shows a dark side of the scheme – usage for leaking
the key without using random numbers generated on the smart card. In Sect. 5.1
we discuss the implementation problems and in particular time complexity for
signature creation on a smart card. In Sect. 5.2 we present and discuss a proof
of concept implementation. Section 6 is devoted to the related previous work.
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2 Scheme Description

2.1 Outline of the Solution

In our scheme we redesign the life cycle of secure signature creation devices. The
following parties are involved:

Manufacturer: he creates a signature creation device - both the hardware and
the software installed there. In particular, he either personalizes the device
and installs there the private signing keys on behalf of the final user, or installs
software responsible for key generation by the device.

Signatory: the person that holds the signature creation device and controls
the physical access to it after getting it from the manufacturer. Apart from
the signing activities, he is involved in interactions with his signature cre-
ation device aiming to protect against an adversary, who may potentially
gain access to his signing key. In particular, the signatory holds an additional
private hidden control key assigned to the signature creation device. He ini-
tializes the device by installing the corresponding hidden public key on his
signing device. He keeps this key confidential and shows it to nobody but to
the judge1.
In case of a fraud with the original signing keys, the signatory interacts with
the judge and proves forgery.

Verifier: a recipient of digitally signed documents. He runs the standard signa-
ture verification procedure to check validity of a signature.

Adversary: a party attempting to create a signature that would be attributed
to the device of the attacked signatory. After delivering the device to the sig-
natory, the adversary cannot directly interact with the device, but we assume
that he holds the signing key stored in this device. He may also see the sig-
natures created by the device and even request signatures under messages of
his choice.

Judge: is a party that resolves disputes about claimed signature forgeries. For
this purpose he interacts with the signatory.

In fact, unlike in the standard cryptographic literature, the signature creation
device should be regarded as a scheme participant. In particular, it interacts with
the signatory in a strictly defined way. So in particular, it should be tamper
resistant. Its life cycle consists of the following phases:

Phase 1: device creation and delivery. The signature creation device is
produced and delivered to the signatory. We assume that its whole memory
contents at that time is known to the adversary and that the device might
be personalized for the signatory.

Phase 2: hidden keys initialization. A fresh signature creation device gets
the hidden public key installed by the signatory. (In Sect. 6, we indicate that
it is possible to change the hidden keys, however this cannot be done com-
pletely freely.) The signatory does not certify the hidden public key, however

1 Or even not to the judge, if he is only semi-trusted.
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it might be helpful to register the signature creation device. According to our
scheme, for this purpose he deposits a number of signatures created by the
so initialized device.

Phase 3: regular usage. During this phase the signatory uses the device and
creates digitally signed documents. At the same time the adversary may forge
signatures using for this purpose the original signing keys of the signatory.
Such forged signatures are used by the adversary for presumably malicious
purposes.

Phase 4: forgery detection and proof. This phase may occur, when the sig-
natory becomes aware of valid signatures that are attributed to him, but
which have not been created by using his signature creation device. In this
case the signatory interacts with a judge. (The adversary is not involved in
this phase, since in general neither the signatory nor the judge can indicate
who is the adversary.) Based on the undeniable cryptographic proof the judge
can declare the challenged signature(s) as not created by the device of the
signatory and therefore attributed to an unknown adversary.

Phase 5: termination of use. In this phase device usage is terminated; pos-
sibly all already existing signatures or some of them get revoked. This phase
normally follows Phase 4, when the judge decides that the presented signa-
ture has been forged. In a standard situation, termination is due to aging of
the signature creation device.

2.2 Preliminaries

First let us discuss a few components used by the proposed scheme.

Signature schemes involved: Our method will apply to signature schemes
based on Discrete Logarithm Problem for a cyclic group G of a prime order
q. For G we shall use the multiplicative notation, however the scheme can
be applied for elliptic curve signatures in exactly the same way. The solution
works for signature schemes such as ElGamal, DSA, Schnorr, where one of
the signature parameters available for the verifier is an element r = gk, where
k is created at random.

Hidden control keys: The main feature of signature creation devices executing
our scheme is that they contain an extra public key V = gv ∈ G. Each
signature creation device implementing the scheme must have its own key
V installed after handling the device to the signatory. The link between the
device and V should be verifiable by a judge. Moreover, the hidden private
key v should be known to the signatory, whose responsibility is to prove in
the court that certain signatures have been forged, if this unfortunate case
occurs. The hidden key v should not be installed on the signing device.

Data signed: the signature schemes concerned apply a hash function together
with the core signing operations. According to the common practice, legal
requirements and industrial standards, the hash function is applied not to
a raw document M , but to M encoded together with some meta-data. The
meta-data contain in particular the time of creating the signature (see for
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instance the popular XAdES standard and its QualifyingProperties: Signed-
Properties: SigningTime). Following RFC 2985 [9] we assume that the sign-
ing time is given according to the ISO/IEC 9594-8 standard UTC Time, and
according to RFC 2630 [6] MUST include seconds. The following issues are
important for our scheme:

– For a signing time T , we utilize the field denoting the seconds, say t. For
simplicity we assume that 0 ≤ t ≤ 59 and ignore the rare cases when a
minute has 61 s.

– The signature creation device can adjust a signing time by causing a delay
of, say, two seconds.

– Before the secret key is used by the signing procedure, a small preprocess-
ing takes place, allowing to adjust the parameter r to the signing time in
a hidden way.

Truncated hash function TruncHash: Our scheme uses a hash function

TruncHash : G → {0, . . . , 59}

For the sake of security proof we have to assume that TruncHash is a pseudo-
random function that can be modelled by a random oracle.
Note that for TruncHash we do not aim to achieve collision freeness or any
property of this kind. What we really need is that a fair advantage in guessing
the value of TruncHash(x) indicates that its argument x has been presented
first.
For the sake of a practical implementation, TruncHash could be taken as
a truncated value of a hash function implemented on the smart card (e.g.
SHA-256).2

2.3 Signing Scheme Procedures

In order to focus attention of the reader, we describe a scheme based on Schnorr
signatures. We also skip most of the details that do not differ our solution from
the standard one. Let SignDev stand for a signing device.

I. Generating a key pair for a user. We do not alter the way of generating
the signing keys. We assume that after this phase:

– SignDev contains a private signing key x < q chosen at random,
– the public key Y = gx ∈ G has been exported outside SignDev,
– SignDev is in the state requiring installing the hidden control keys.

II. Installing the hidden control keys. This procedure is executed by the
signatory interacting with his device SignDev with already instantiated private
signing key x.

2 There are some low level implementation issues, since hash function is typically hard-
ware supported, but truncation presumably cannot be executed on the cryptographic
co-processor and therefore might be relatively slow.
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1. The signatory chooses the hidden secret key v, v < q, at random and computes
V := gv ∈ G.

2. The signatory uploads V to SignDev3. The device SignDev stores V as its
hidden key.

3. SignDev enters the state in which it can be used only for creating signatures.
4. The signatory creates a few signatures (as described below) and deposits them

by a third trusted party.

Remark 1. In practice, the signatory uses another (independent) device (pre-
sumably his PC) to create v and V . Insecurity of this auxiliary device may
challenge the effectiveness of the forgery detection mechanism, however it does
not endanger the underlying signature scheme. Involving a PC does not create
an additional risk, as an adversary that controls it may replace the documents
to be signed by the documents of his choice at the moment when the signatory
authorizes SignDev to create a signature.

III. Signing procedure. Creating a signature consists of two phases. The first
phase can be executed in advance before the data to be signed (or its hash) are
transmitted to the signature creation device. The second phase corresponds to
the standard signing procedure.

First, for the reader’s convenience we recall the Schnorr signing algorithm
for a signing key x and a message M (note that M is the original document
appended with the signature’s meta-data, including in particular the signing
time):

Creation of Schnorr signatures

1. choose k at random
2. r := gk

3. e := Hash(M ||r)
4. s := (k + x · e) mod q
5. output (s, e) as a signature of M .

Creation of Schnorr signatures - Forgery evident version

This procedure is executed by the device SignDev in interaction with (the com-
puter of) the signatory. (Of course, a signing request has to be authorized by
the signatory – providing the correct PIN is a minimum requirement.)

Phase 1 (preprocessing):
1. create an empty array A[0 . . . 59]
2. choose k at random
3. U := V k

4. i := 0
5. repeat Δ times: // Δ is a constant discussed later

5.1. z := TruncHash(U,M)
3 In order to secure the logistic chain, the smart card may require presenting a one-

time initialization PIN by the signatory.
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5.2. A[z] := i
5.3. i := i + 1
5.4. U := U · V

After Phase 1 the array A and the value k are retained for Phase 2.
Phase 2 (the main signing part):

1. let T be the signing time (in the UTC format), let t be the value of the
seconds field of T

2. wait until A[t] is nonempty
3. r := gk+A[t]

4. having r already computed (see e.g. the first two steps of the Schnorr
algorithm), proceed with the signature creation algorithm for the message
to be signed appended with meta-data containing the signing time T .4

Remark 2. The choice of the parameter Δ will be discussed in Sect. 5.1. It must
be large enough to fill majority of positions in the array A and thereby reduce
the waiting time in the second step of Phase 2.

Remark 3. Note that if A[t] is nonempty and contains j < Δ, then the entry j
has been inserted for U = V k+j and t = TruncHash(U,M). Of course, during
the first phase A[t] might be overwritten many times, but it does not change the
just mentioned property.

IV. Verification procedure. The verification procedure is unchanged and
executed according to the standard version of the underlying signature.

Remark 4. Note that our signature creation process yields signatures in exactly
the same format as in case of the underlying scheme. So, we do not need any
modification of the verification software. In fact, we shall show that the verifier
cannot recognize whether the signing procedure has been modified.

V. Forgery detection procedure. The test concerning a signature of M
with the creation time T (as stated in the signed meta-data) is as follows:

1. reconstruct the value r, e.g. for a Schnorr signature (s, e), compute r := gs/Y e

2. check
TruncHash(rv,M) ?= t (1)

where t denotes the value of the seconds field in T .
3. output forgery, if the equality (1) does not hold.

Remark 5. The detection procedure requires knowledge of v – the hidden con-
trol key. It must be kept secret by the signatory. Therefore there are two pro-
cedures: one concerning forgery detection and the second concerning proving
forgery against a judge.

4 In the cryptographic standards the signing time T is treated as meta-data and not
a part of the message to be signed, in the cryptographic literature there is no such
distinction and the message is understood as a message together with the meta-data.
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Remark 6. There is a possibility of a false positive result – by pure luck the
adversary creating a signature may use r such that equality (1) holds. This
happens with probability ≈ 1

60 for each single signature. This probability is high
from the point of view of cryptography, however in this case we are talking about
disclosure of malicious behavior of the system provider, who gets into criminal
charges with probability 59

60 , if he dares to use a stolen key even once! Note
also that we are not talking about general probability to forge a signature, but
about the probability to use a forged signature, when the private signing key
has already been exposed to the adversary.

VI. Forgery proof procedure. This procedure is executed by the signatory
and the judge. First we describe the general framework and later describe the
details of the core Proof Procedure:

1. The signatory presents the judge the hidden public key V .
2. The signatory presents the judge the registered signatures created right after

installing the hidden control keys.
3. The judge and the signatory run interactively the Proof Procedure for these

signatures and V . If the result is negative, then the signatory’s claim gets
rejected and the procedure terminates.

4. The signatory presents the judge the alleged forged signature S with the
signature creation time T .

5. The judge and the signatory run the Proof Procedure for S. If the result is
negative, then the signatory’s claim gets rejected and the procedure termi-
nates. Otherwise the judge declares S as forged.

Proof Procedure
Consider a signature S of a message M with a signing time T , with t denoting
the seconds field, for the hidden public key V and the hidden private key v:

1. The judge and the signatory reconstruct the value r from the signature cre-
ation process of S – just as in case of a regular signature verification.

2. The signatory computes u := rv and presents u to the judge.
3. The judge rejects the forgery claim if TruncHash(u,M) = t.
4. The signatory and the judge perform an interactive zero knowledge proof of

equality of discrete logarithms for the pairs (g, V ) and (r, u). For instance,
one may run a number of times the following standard procedure:
(a) the signatory chooses σ at random and presents

v1 = gvσ, v2 = rvσ

(b) the judge chooses a bit b at random,
(c) if b = 0, then the signatory reveals σ and the judge checks that v1 = V σ,

v2 = uσ,
(d) if b = 1, then the signatory reveals δ = vσ and the judge checks that

v1 = gδ, v2 = rδ.
5. If the equality of discrete logarithms test fails, then the judge rejects the

forgery claim.
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Remark 7. The above procedure can be modified so that V is not presented to
the judge (this approach should be applied, if the judge is only semi-trusted.)
In this case the signatory does not create a proof of equality of discrete log-
arithms for (g, V ) and (r, u) as described above, but for (r0, u0),. . . , (rm, um)
and (r, u), where (r0, u0),. . . , (rm, um) come from the signatures registered right
after the personalization of the SignDev device with the hidden keys or from
the signatures created in front of the judge with SignDev.

Remark 8. One may speculate that the signatory might himself break into his
signing device SignDev. Then having the secret signing key and the hidden
key, the signatory would be able to create signatures that would be recognized
as forged by the judge. However, according to the manufacturer’s declaration
SignDev is tamper resistant.

3 Security of the Scheme

3.1 Resilience to Forgeries

Potentially, the special properties of the signatures created according to the
scheme proposed in Sect. 2 might ease forging signatures by the third parties.
Namely, we can consider the following game:

Game A

1. The adversary may request signatures of the messages of his choice at time of
his choice. They have to be created by a device implementing the algorithm
from Sect. 2.

2. The adversary presents a message and its signature S.

The adversary wins the game if S has not been created during step 1 and the
standard verification of S yields a positive result.

Note that we do not demand that S would pass the forgery detection proce-
dure. Moreover, the signature S may concern a message that has already been
signed during Step 1 (re-signing an old message).

We can also define an analogous game for standard signature creation:

Game B

1. The adversary may request signatures of the messages of his choice at time
of his choice.

2. The adversary presents a message and its signature S.

The adversary wins the game if S has not been created during step 1 and the
standard verification of S yields a positive result.

Assume that an adversary A can win Game A. We use it to win Game B.
Namely, we choose v at random and set V = gv. Then we create the input for
Game A. If the adversary of Game A asks for a signature over M at time T with t
being the number of seconds, we use the oracle from Game B. When it returns a
signature (r, . . .), then we compute TruncHash(rv,M). If it equals t, then we pass
the signature (r, . . .) to Game A. If not, then we repeat the request for the oracle
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of Game B, until this property is fulfilled. Since there are only 60 possible values
of TruncHash, after a short time we get a signature that can be passed to Game A.

Obviously, the signature returned by the adversary A from Game A can be
used as a response of the adversary in Game B. Thereby we get the following
result:

Theorem 1. If an adversary can win Game A (forge a signature based on a
collection of signatures created according to the mechanism from Sect. 2), then
an adversary can win Game B (forge a signature in the regular case).

Remark 9. Note that the opposite direction is not immediate and may require
extra assumptions: in the attack for Game A we create signatures that come
from a subset of the set of all signatures. In theory, a successful attack from
Game B could fail, if we are limited to such a subset.

3.2 Indistinguishability

Our second goal is to show that an adversary not knowing the control key V = gv

cannot distinguish between the signatures passing the forgery detection test and
signatures that would be found as forged. (This notion is basically the same as
indistinguishability against Subversion Attacks from [18].) Namely, we consider
the following game:

Game C

1. The adversary may request signatures of the messages of his choice at time of
his choice. For each signature (ri, . . .) over Mi, he gets additionally zi, where

zi = TruncHash(rv
i ,Mi)

2. The challenger chooses a bit b at random.
3. The challenger presents a signature (r, . . .) over M that has not been created

during the first stage and a value z, which equals TruncHash(rv,M), if b = 0,
and a random value z �= TruncHash(rv,M), if b = 1.

4. The adversary returns a bit b̄.

The adversary wins the game if b = b̄.
In our proof we refer to Correlated-Input Secure Hash Function introduced in

[5]. This model seems to better reflect the required properties than the Random
Oracle Model and addresses directly the threats occurring in practice - including
in particular our case. Moreover, for our purposes it suffices to use only a limited
version of Correlated-Input Hash Function Assumption. Namely, we consider the
following game:

Correlated TruncHash Values Game
choose pairwise different elements k1, . . . , kn ≤ q

(an arbitrary strategy may be applied)
choose M1, . . . ,Mn ∈ G

(an arbitrary strategy may be applied)
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choose V at random
hi := TruncHash(V ki ,Mi) for i = 1 to n,
choose M and k �= k1, . . . , kn

h
(0)
n+1 := TruncHash(V k,M)

choose h
(1)
n+1 ∈ {0, . . . , 59} \ {h

(0)
n+1} at random

choose b ∈ {0, 1} at random
b̂ := A(k1, . . . , kn, k,M1, . . . ,Mn,M, h1, . . . , hn, h

(b)
n+1).

A wins the game if b = b̂. The advantage of A is defined as p − 1
2 | where p is the

probability to win the game by A.
Note that in the above game the only value not available to A is V . We know

exactly the relationship between the first arguments of TruncHash due to the
knowledge of the exponents k1, . . . , kn, k. However, the hash function TruncHash
hides the arguments used, so we cannot derive V k. The game describes the
chances of the adversary to deduce the control value for r, given the correct
values for some other r1, . . . , rn.

Assumption 2. (reduced version of Correlated-Input Hash Function
Assumption). The advantage of the adversary A in the Correlated Hash Values
Game is negligible.

Note that the adversary can win the Correlated TruncHash Values Game,
if he can win Game C. Indeed, the adversary may choose at random a signing
key x. Then, knowing the exponents k1, . . . , kn, k he may create the correspond-
ing signatures for M1, . . . ,Mn,M . Therefore we may immediately conclude as
follows:

Theorem 3. Each adversary has a negligible advantage in Game C, if the
(reduced) Correlated-Input Hash Function Assumption holds for the function
TruncHash.

4 The Dark Side of the Scheme

In this section we remark that the core mechanism of the scheme presented
in Sect. 2 can be used for evil purposes as well. Jumping ahead to the related
work (Sect. 6), let us recall that there have been attempts to eliminate software
subversion attacks on signature schemes [18,19]. Their general recommendation
is to use deterministic signature schemes and to involve in certain way a hashing
function during key generation process. In this way we defend ourselves against
choosing the keys that are advantageous for the adversary.

Unfortunately, the proposed approach does not fully implement the concept
“nothing up my sleeve” and the security claims from [19] turn out to be incom-
plete. Let us sketch shortly how to leak the key with their scheme:

– There is no room for randomness during execution of the protocol, however
the user cannot fully control the time of signature creation. A malicious soft-
ware can postpone signature creation by, say, 1 or 2 s. This cannot be really
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observed by the user and can be attributed to many hardware issues. (For
instance, a smart card may suffer from communication errors and attribute
the delays to them).

– The time delay may be aimed to create a subliminal channel: the device tries
to adjust some number of bits to leak a key. Say, it takes the signature s
(created honestly according to the protocol) and computes D := Hash(S,K),
where K is a trapdoor key. Then it takes, say, the last 8 bits of D and treats
them as an 8-bit address a. If the 9-th bit of S is the same as the ath bit of
the 256-bit signing key, then the signature S is called good.

– The signing procedure is adjusted as follows:
(1) the device creates a signature S taking into account the current time T .

If S is good, then it releases S. Otherwise it waits one second and goes to
step 2.

(2) the device creates the next signature S′ and releases it no matter whether
it is good or not.

– The adversary collects a number of signatures created by the device. Each sig-
nature indicates the value of one bit of the signing key – but of course only the
values coming from good signatures are true. Therefore for each key position
the adversary gathers the values indicated by the signatures. As at average
75% of all signatures are good, with enough signatures it is possible to recover
the signing key taking into account relevant statistics and enhancing them by
brute force at positions where the statistics do not deliver a firm answer.

Note that if the signature creation device has to implement the scheme
presented in Sect. 2, then installing the key leaking procedure described above
becomes more problematic. Indeed, leaking the key bits requires adjusting the
signing time and thereby creates some delays. However, this must be imple-
mented on top of the procedure described in Sect. 2 which already causes some
delays. So together the delay might be too high and easily observable.

5 Implementation Issues

When electronic signatures for real world applications are concerned, we have
to take care about practical feasibility of the proposed solution. For instance, a
protocol using non-standard cryptographic operations not implemented on the
smart cards available on the market has almost no chance to be deployed in
practice due to high costs of redesign of the card’s cryptographic coprocessors.

For this reason we discuss the problems of a time delay introduced by the
scheme from Sect. 2. This is a crucial issue, since there is a strict limit for a
signature creation process – it should not exceed 2–3 s. Otherwise, the users get
annoyed by the long processing time and generally do not accept the solution.
(Interestingly, reducing the processing time does not make sense either, since the
user should observe that the smart card is performing some computations.)

In order to check computational complexity in reality, we have also imple-
mented our solution on MULTOS smart cards (the cards where the operating
system enables access to low level operations for the programmer). The results
show that no technical problems emerge for our scheme.
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5.1 Empty Places in Array A

Creating a signature according to the procedure described in Sect. 2 at time t
fails, if A[t] is empty. In this case, the signature creation process gets postponed
1 s and the next attempt occurs at time t + 1.

From the mathematical point of view we have the following problem. There
are n bins and k balls. Each ball is placed in one of the bins, the target bin is
chosen uniformly at random, independently of other balls. We define the event
E(n,k)

i meaning that the bin i mod n is empty after inserting all balls. Then let
pn,k,a denote the probability

Pr[E(n,k)
i+1 ∧ E(n,k)

i+2 ∧ . . . ∧ E(n,k)
i+a ] =

(
1 − a

n

)k

The probability of hitting a non-empty position in the first trial is therefore
Pr[¬E(n,k)

i ] = 1 − (1 − 1
n )k. For n = 60 and k = 120 this equals approximately

1 − 1/e2 ≈ 0.864665. The concrete values for p60,120,a are as follows:

a 1 2 3 4 5

p60,120,a 0.133 1.7 · 10−2 2.1 · 10−3 2.5 · 10−4 2.92 · 10−5

Let us also consider

Li,n,k = min
{

a : ¬
(
E(n,k)

i+1 ∧ E(n,k)
i+2 ∧ . . . ∧ E(n,k)

i+a

)}

That is, Li,n,k corresponds to the number of steps required to find a nonempty
position in the array A starting at position i + 1. The probability distribution
of Li,n,k does not depend on i, so we will write Ln,k instead of Li,n,k. Then

Pr[Ln,k > a] = Pr[E(n,k)
1 ∧ E(n,k)

2 ∧ . . . ∧ E(n,k)
a ]

Then the expected value of Ln,k can be computed as follows:

E[Ln,k] = 1 +
∑n

a=1 Pr[Ln,k > a] = 1 +
∑n−1

a=1

(
1 − a

n

)k

= 1 + 1
nk

∑n−1
a=1 (n − a)k = 1 + 1

nk

∑n−1
a=1 ak

Obviously, if k1 < k2, then E[Ln,k1 ] > E[Ln,k2 ]. Moreover, limk→∞ E[Ln,k] = 1.
The expression 1 + 60

k+1 is a quite good upper approximation of E[L60,k] (see
Fig. 1).

For n = 60 and k = 1, . . . , 240 we may derive the following concrete values:

k 10 60 120 240 500

E[L60,k] 5.96.. 1.56.. 1.15.. 1.01.. 1.00022..
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Fig. 1. The expected value E[L60,k] (black points) and its approximation by 1 + 60
k+1

(red points). The value of k is on the x-axis. (Color figure online)

In particular it means that for k = 120 the array A is almost filled and the
expected position of the first nonempty entry is in most cases the starting
position.

We have executed a number of trial executions of the preprocessing stage
(implemented in Python) for Δ = 100. We have ran three series of 50 executions
of the preprocessing stage and we have counted the number of blocks of empty
entries of a given length in the array A. (For this purpose we assume that the
entries A[59], A[0] are the neighboring ones.)

– In the first series of 50 executions we have observed:
• 360 blocks of length 1 (i.e. empty entries preceded and followed by non-

empty entries),
• 64 blocks of 2 empty entries,
• 10 blocks of 3 empty entries,
• 1 block of 4 empty entries,
• 2 blocks of 5 empty entries.

The average number of empty blocks in a single execution therefore equals
7.2 blocks of length 1, 1.28 blocks of length 2, 0.2 blocks of length 3, 0.02
blocks of length 4, 0.04 blocks of length 5.

– In the second series of 50 executions we have observed: 375, 68, 17, 3 empty
blocks of the length, respectively, 1, 2, 3, 4.

– In the third series of 50 executions we have observed: 376, 75, 11, none, 2
empty blocks of the length, respectively, 1, 2, 3, 4, 5.
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5.2 MULTOS Trial Implementation

In order to estimate complexity of the proposed scheme in a real environment
we have implemented the most critical part – the preprocessing phase – on the
standard MULTOS smart cards. Note that this is the only potential bottleneck
of the scheme. Indeed, the verification procedure is exactly the same as in the
standard case, while forgery detection and proof are executed only occasionally
(anyway, they are quite efficient). We have used the 2048-bit MODP group with
a 224-bit prime order subgroup defined in RFC 5114. Below we include the source
code of this implementation.

Note that this implementation uses only the high level API of the MULTOS
standard. So in some sense we perform the worst case experiment, as we use
modular arithmetic instead of more efficient elliptic curves. This influences both
the time complexity of standard operations used for signature generation, as well
as auxiliary operations such as an implementation of TruncHash (in the code
presented below this is SHA-1 followed by reduction modulo 60). Of course, a
low level implementation should be much more efficient.

#include"main.h"

#define FIELD_LEN 256

#define MESS_LEN 256

#define EXP_LEN 28

#define ARR_LEN 60

#pragma melpublic

BYTE tmp[FIELD_LEN+MESS_LEN];

BYTE k[EXP_LEN];

BYTE zb[20];

BYTE kk[8];

struct

{

BYTE buffer[ARR_LEN];

} apdu;

#pragma melstatic

BYTE p[] = {0xAD,0x10,0x7E,0x1E,0x91,...};

BYTE g[] = {0xAC,0x40,0x32,0xEF,0x4F,...};

BYTE V[] = {0x88,0x31,0x1a,0xf3,0x91,..};

BYTE v[] = {0x80,0x1C,0x0D,0x34,0xC5,..};

BYTE mess[] = {0x01,0x02,0x03,0x04,0x05,..};

void main(void) {

int i=0,j=0;

int delta = 100;

DWORD z;

BYTE t;

multosGetRandomNumber(kk);
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memcpy(k,kk,8);

multosGetRandomNumber(kk);

memcpy(k+8,kk,8);

multosGetRandomNumber(kk);

memcpy(k+16,kk,8);

multosGetRandomNumber(kk);

memcpy(k+24,kk,4);

multosModularExponentiation(EXP_LEN,FIELD_LEN,

k,p,V,tmp);

memcpy(tmp+FIELD_LEN,mess,MESS_LEN);

for(i=0;i<delta;i++){

multosSHA1(FIELD_LEN+MESS_LEN,tmp,zb);

t = zb[0];

__push(t);

t = zb[1];

__push(t);

t = zb[2];

__push(t);

t = zb[3];

__push(t);

__code (__STORE, &z, 4);

z = z

apdu.buffer[z] = i;

multosModularMultiplication(FIELD_LEN,p,tmp,V);

}

multosExitLa(ARR_LEN);

}

The detailed results regarding the time required to execute Phase 1 for the
above code on MULTOS are given in Table 1. Note that the time lower than 2 s is
acceptable in a standard setting (the total signature creation time presumably
below 3 s). We have to note that the preprocessing phase can be executed in
parallel when the user is asked to confirm his will to create a signature – in this
case the time overhead is zero, as the user needs a few econds to push the button.
The most important message from the experiment is that there is no memory
bottleneck on the card to execute the scheme.

Table 1. Timing details for particular steps of the preprocessing phase, the results
are given as average over 50 trial executions. For the experiment, each trial involves
Δ = 100 (the smart card inserts data in the table A 100 times)

Preprocessing step Execution time in ms (average over 50 trials)

2 5

3 401

5.1–5.3 1025

5.4 293

Total 1724
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6 Related Work

Probably the first attempt to protect the signatories against powerful adversaries
capable of deriving signing keys from the public keys are fail-stop signatures [11].
In case of a forgery, the legitimate owner of a signing device can break a hard
cryptographic problem (that he normally is unable to do) thereby providing an
evidence of a forgery. The fail-stop signature schemes are based on the idea that
for one public key there is a large number of corresponding secret keys and a
cryptanalyst cannot say which of them is kept by the signature creation device
of the legitimate signatory. Failure to guess this key and attempt to sign with a
different key leads to an evidence mentioned above.

Unfortunately, as far as we know this idea has never been deployed in business
practice. One of the reasons might be its target: fail-stop signatures aim to reveal
successful cryptanalytic attacks, but do not address the case when the adversary
has access to the original signing key (when for instance he retains the keys
after generating them for the user). Even if the description of a scheme states
that the private key is generated by the user (see e.g. [13]), this is done by the
signature creation card, and the card may choose in a way predetermined by the
card manufacturer. On the other hand, some of the solutions proposed assume
existence of a party that indirectly gets access to the private keys of the users
(see e.g. [15]). In our opinion this defers on threat but creates a new one, even
more serious. Many of the proposed fail-stop signature schemes are one-time
signatures, which makes them useless for standard applications. Last not least,
according to the third law of Adi Shamir: “Cryptography is typically bypassed,
not penetrated.”

A somewhat similar, but simpler idea has been presented in [3]. The idea
is to provide exactly two options for creating the ith signature, namely with
either ri = gki or r′

i = gk′
i . Which option is used depends on the user. In case of

device cloning the same random parameter k for computing r = gk can be used
in two different signatures: one created by the legitimate device and one by the
cloned device. This leads immediately to revealing the signing key and thereby
invalidates all signatures created with this key, including the ones created by
the clone. Thereby the cloned devices are of little use. Invalidating all signatures
seems to be a drastic measure, however the adversary holding a copy of the
private key can always do it by leaking somewhere this key.

An alternative approach based on monitoring creation of electronic signa-
tures has been proposed in [4] as mediated signatures. The idea is that in an
online environment we need not to rely solely on the signing device: for signa-
ture creation it is necessary to involve another party, called mediator, that holds
a supplementary key for each user. Therefore, the mediator may monitor the
activities of the signing device and may inform the user about each signature
created by the device. The paper [4] describes a simple implementation based on
the RSA signatures, while [10] provides a solution based on Schnorr signatures.
This approach has been further extended in [2] by the concept of key evolu-
tion. This enables the mediator to detect that it is interacting with two different
signing devices attributed to the same user.
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Technically, the most related design has been proposed in [8], where the
authors aim to detect omissions on the list of electronic signatures correspond-
ing to a single device. This scheme aims to cope with the problem of hiding
documents created by a given device leading to cases such as Enron bookkeep-
ing frauds.

Recently, there have been a growing interest on protecting signature schemes
against attacks based on malicious software. In [18] a general model for subver-
sion attacks is considered – the one that enables the adversary to replace the
original algorithm creating the signature by a malicious one. A general method
to leak the key bits is presented (following well-known kleptographic attacks [17]
and the algorithm from [8]). An important point is that the change should not
detectable by the user not knowing the trapdoor information. The general rec-
ommendation of this paper is to use deterministic signature algorithms in order
to remove any room for malicious substitution. While this is an convincing argu-
ment, it also provides a perfect framework for the adversary holding the signing
key – in such a setting no cryptographic procedure can help the owner of the
signing key to prove the forgery with stolen original keys.

The paper [19] extends [18] by considering the model where also key gener-
ation software may be subverted. The key invention is to design a subversion
resilient one-way permutation with a trapdoor. It is based on the idea that first
an index r is chosen at random – but instead of using r as an index to one-way
permutation, the scheme takes the hash value r′ := hSPEC(r) for computing the
index of a permutation in the family of one-way trapdoor permutations. Hav-
ing a trapdoor permutation it becomes relatively straightforward to construct
a subversion resistant signature scheme. However, we again have to stress that
while this construction protects against malicious implementations and leaking
the signing key via the signatures, it provides no defense against an adversary
that gets the private key in a different way – e.g. via retaining r by the service
provider. Also, there is a long way from the idea to a real deployment, since
widely used standard solutions tend to persist even when facing serious security
problems.

Final Remarks

The method presented in this paper is simple enough to be easily incorporated in
signing devices as an optional mechanism against frauds concerning electronic
signatures. It requires changing neither signature standards nor the software
used for signature verification. This is a major practical advantage since oth-
erwise necessity of modifications could prohibit deployment of countermeasures
for years.

Deployment of the proposed security measures would substantially improve
real reliability and undeniability of digital signatures and should be considered
for next generation of cryptographic smart cards. In our opinion, a potential
threat of forging signatures by a dishonest technology provider is one of the
barriers for widespread use of electronic signatures for legal purposes. In the
current situation we feel that it is quite controversial to recommend usage of
legally binding electronic signatures.
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Even if the probability 59
60 of detecting a forgery with the original signing

keys in a single signature may be viewed as relatively low, this is significantly
better than the current state-of-the art. Indeed, today the owner of the signing
key is in a legally hopeless situation, if the original keys are used by the forger.
Note that for transactions of a high value the security policy may require signing
the document several times. If for instance 10 signatures are required, then the
probability of a successful attack performed by an adversary holding the original
signing key is reduced to ≈ 2−59.

A nice feature of the method proposed is that it partially defends against
weaknesses of (pseudo)random number generators used for signature creation
by standard schemes. It does not prohibit an adversary to learn the signing key,
however according to Theorem 3 it does not enable the adversary to learn the
key V and therefore to create signatures that would pass the forgery detection
test.

Of course, the proposed method has also some limitations. If an adversary
gets full access to the memory of a signing device SignDev, including the hidden
control key V installed there, then he will be able to mimic the operation of
SignDev and create signatures that are indistinguishable from the signatures
created by SignDev. A potential solution to this problem would be to use a
chain of the hidden control keys similar to the Lamport’s chain of hash values.
Namely, instead of a single (v, V ) one could use (vi, Vi) for i = k, k − 1, . . . , 1,
where vi+1 = vi · Hash(Vi). The signatory would have to keep v1 only and
from time to time to update the hidden public key V by replacing V = Vj by
V = Vj−1.

Finally, we have to warn the user that the proposed solution does not protect
against an adversary who has gained control over his PC (or the browser). The
problem is that the smart card has no display and the user cannot be sure which
document has been signed following his request.
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