
Raphael C.-W. Phan
Moti Yung (Eds.)

 123

LN
CS

 1
03

11

Second International Conference, Mycrypt 2016
Kuala Lumpur, Malaysia, December 1–2, 2016
Revised Selected Papers

Paradigms in Cryptology –
Mycrypt 2016
Malicious and Exploratory Cryptology

Lecture Notes in Computer Science 10311

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Raphael C.-W. Phan • Moti Yung (Eds.)

Paradigms in Cryptology –

Mycrypt 2016
Malicious and Exploratory Cryptology

Second International Conference, Mycrypt 2016
Kuala Lumpur, Malaysia, December 1–2, 2016
Revised Selected Papers

123

Editors
Raphael C.-W. Phan
Multimedia University, MMU
Cyberjaya
Malaysia

Moti Yung
Snap and Columbia University
New York, NY
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-61272-0 ISBN 978-3-319-61273-7 (eBook)
DOI 10.1007/978-3-319-61273-7

Library of Congress Control Number: 2017944355

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The first and only Mycrypt up to 2015 was Mycrypt 2005, wherein an unconventional
cryptography session featured papers with ideas that were beyond the norm. Since
Mycrypt 2005, substantial breakthroughs have been made in crypto and security in the
past decade, including notions pertaining to malicious security, i.e., where security is
no longer simply against bad guys but where good guys who are conventionally viewed
as mostly defensive can equally be adversarial. These align well with recent trends
wherein trusted parties need not necessarily be trustworthy, and where insiders can
potentially be malicious.

Mycrypt 2016 was a rejuvenation of the Mycrypt series with a particular focus on
paradigm-shifting crypto research and thinking outside the current box. Jointly orga-
nized by the Multimedia University and Cyber Security Malaysia in cooperation with
the International Association for Cryptologic Research (IACR), it was held in Kuala
Lumpur, Malaysia, during December 1–2, 2016, at the Pullman Kuala Lumpur City
Centre Hotel, just before Asiacrypt 2016 took place in Hanoi.

The technical Program Committee (PC) comprised 41 experts from 19 countries
with an additional 51 external reviewers. We adopted a hybrid journal-like style where
there were two separate and independent calls each with its own review process. Each
submission was put through two stages, where after stage one some papers without
major issues were accepted or those without scientific merit rejected, while others were
put through to stage two for a further review after obtaining rebuttals from authors.
Every worthwhile submission was reviewed by at least two reviewers, and up to six
reviewers for some submissions requiring substantial deliberations. The server han-
dling the submissions, reviews, and discussions was hosted by Microsoft via its
Conference Management Toolkit (CMT). We thank all the PC members and external
reviewers for their passion and commitment to see this through. Note that in defying
convention, we have listed the PC and external reviewers in alphabetical order based on
first name first! This is not a new paradigm, but is somewhat unusual in the West.

A total of 51 complete submissions were processed through the review phases after
filtering checks, from which 21 papers were finally accepted for inclusion in the
technical program, with authors spanning 14 countries. Of these submissions, three
paradigm-revisiting papers that garnered a significant number of positive comments
and interest from PC members and external reviewers are listed in these proceedings
under the “Revisiting Tradition” category. Papers under “Different Paradigms” touch
on alternative or new perspectives on doing cryptography, while the “Cryptofication”
papers aim to bridge the gap between the physical world and the cryptographic world.
“Malicious Crypto” papers deal with the issues of backdoors, malware, and leakages,
while papers under “Advances in Cryptanalysis” aim to revisit existing cryptanalytic
techniques toward new formulations or measures. The “Primitives and Features” papers
are those that propose new variants of cryptographic primitives or new features.
Finally, the “Cryptanalysis Correspondence” section presents two concise papers that

had the unique feature of being able to obtain rebuttals from the authors of the attacked
schemes as part of an extended review process.

After much deliberation and considering the points made by PC members and
external reviewers, the paper “Another Look at Tightness II: Practical Issues in
Cryptography” by Sanjit Chatterjee, Neal Koblitz, Alfred Menezes and Palash Sarkar
was awarded Best Paper.

Mycrypt 2016 had the pleasure of two keynote talks, namely, Xavier Boyen of QUT
speaking on human primacy in crypto and Neal Koblitz of the University of Wash-
ington discussing paradigm shifts in our disciplinary culture. There was also an IEICE
invited talk sponsored by the IEICE Malaysia Section, by Goichiro Hanaoka on
user-friendly crypto.

As an additional twist to an otherwise conventionally structured program, several
Insight Papers were solicited for presentation at Mycrypt 2016 and/or inclusion in the
proceedings. Insight Papers were invited from researchers on their celebrated or recent
breakthrough results: these were notably on multi-prover interactive proofs, human
encryption, algebraic cryptanalysis, watermarking programs, polytopic cryptanalysis,
and the division property. Authors of such papers had the option of presenting at
Mycrypt 2016 physically or pre-recording a video clip to be shown during Mycrypt
2016 to the audience.

We thank the general chairs, Wei-Chuen Yau and Geong-Sen Poh, as well as the
local secretariat led by Cyber Security Malaysia for supporting the venue logistics and
outreach. We are also grateful to Tourism Malaysia for sponsoring the cultural dance
performance during the banquet dinner.

Starting with Mycrypt 2016, the Mycrypt series will continue to focus on
beyond-norm, paradigm-shifting, unconventional cryptography as we firmly believe
that a field can only advance if its research community revisits conventional paradigms,
rocks the crypto boat, questions the status quo, and raises controversial issues. Mycrypt
will thus henceforth be known as the International Conference on Malicious and
Exploratory Cryptology, and be co-located with major crypto/security conferences to
maximize the impact of its frontier-stretching theme.

April 2017 Raphaël C.-W. Phan
Moti Yung

VI Preface

Organization

Program Chairs

Raphaël C.-W. Phan MMU, Malaysia
Moti Yung Snap and Columbia University, USA

General Chairs

Wei-Chuen Yau Xiamen University, Malaysia
Geong-Sen Poh MIMOS, Malaysia

Program Committee

Adam Young Cryptovirology Labs, USA
Aggelos Kiayas National and Kapodistrian University of Athens,

Greece
Ahmad-Reza Sadeghi Technische Universität (TU) Darmstadt, Germany
Alfred Menezes University of Waterloo, Canada
Andrew Odlyzko University of Minnesota, USA
Angela Sasse University College London (UCL), UK
Arjen Lenstra EPFL, Switzerland
Bart Preneel University of Leuven (KU Leuven), Belgium
Catherine Meadows Naval Research Lab, USA
Chris Mitchell Royal Holloway, University of London (RHUL), UK
David Naccache Université Paris II, France
Ed Dawson Queensland University of Technology (QUT),

Australia
Elisa Bertino Purdue University, USA
Graham Steel Inria, France
Gregory Neven IBM Research–Zurich, Switzerland
Helena Handschuh Cryptography Research Inc., USA
Ivan Visconti Università degli Studi di Salerno, Italy
Jean-Philippe Aumasson Kudelski Security, Switzerland
Jonathan Katz University of Maryland, USA
Josef Pieprzyk QUT, Australia
Kaoru Kurosawa Ibaraki University, Japan
Kristian Gjøsteen NTNU, Norway
Lars Knudsen Danmarks Tekniske Universitet (DTU), Denmark
Marine Minier LORIA, France
Markus Dürmuth Ruhr-Universität Bochum (RUB), Germany
Markus Jakobsson Agari and ZapFraud, USA
Moti Yung (Chair) Snap and Columbia University, USA

Nasir Memon New York University, USA
Neal Koblitz University of Washington, USA
Orr Dunkelman University of Haifa, Israel
Peter Y.A. Ryan Université du Luxembourg
Phillip Rogaway University of California (UC) Davis, USA
Raphaël C.-W. Phan (Chair) Multimedia University (MMU), Malaysia
Reihaneh Safavi-Naini University of Calgary, Canada
Ronald Cramer CWI and Universiteit Leiden, The Netherlands
San Ling Nanyang Technological University (NTU), Singapore
Sherman S.M. Chow Chinese University of Hong Kong
Shiho Moriai NICT, Japan
Tatsuaki Okamoto Nippon Telegraph and Telephone (NTT), Japan
Vincent Rijmen KU Leuven and iMinds, Belgium
Yvo Desmedt University of Texas at Dallas, USA and UCL, UK

External Reviewers

Alexander Koch
Alfredo Rial Duran
Anton Stiglic
Benjamin Wesolowski
Cristina Onete
Daniel Masny
Duane Wilson
Edoardo Persichetti
Frédérique Elise Oggier
Gäetan Leurent
Guomin Yang
Hossein Siadati
Huaxiong Wang
Hyung Tae Lee
Irene Giacomelli
Jae Hong Seo
Jean-Pierre Tillich

Jens Zumbrägel
John Chan
Jonathan Bootle
Jong Hwan Park
Kazuki Yoneyama
Keita Emura
Khoa Nguyen
Koutarou Suzuki
Laura Luzzi
Luisa Siniscalchi
Mark Marson
Michele Ciampi
Nicolas Sendrier
Palash Sarkar
Peng Jiang
Peter B. Rønne
Pierre-Louis Cayrel

Rafael Misoczki
Robert Granger
Russell W.F. Lai
Scott Ruoti
Sébastien Canard
Shiwei Zhang
Sigurd Eskeland
Subhamoy Maitra
Sylvain Ruhault
Tom Ristenpart
Vanishree Rao
Viet Tung Hoang
Wakaha Ogata
Yannick Seurin
Yu Sasaki
Yu Yu
Yusi James Zhang

In Cooperation with

The International Association for Cryptologic Research (IACR)

Sponsoring Institutions

Cyber Security Malaysia
IEICE Malaysia Section
Multimedia University (MMU)
Tourism Malaysia

VIII Organization

Contents

Keynotes

The Case For Human Primacy in Cryptography (Summary from
the Keynote Lecture) . 3

X. Boyen

Time for a Paradigm Shift in Our Disciplinary Culture?. 11
Neal Koblitz

Revisiting Tradition

Another Look at Tightness II: Practical Issues in Cryptography 21
Sanjit Chatterjee, Neal Koblitz, Alfred Menezes, and Palash Sarkar

Another Look at Anonymous Communication: Security and Modular
Constructions . 56

Russell W.F. Lai, Henry K.F. Cheung, Sherman S.M. Chow,
and Anthony Man-Cho So

Challenges with Assessing the Impact of NFS Advances on the Security
of Pairing-Based Cryptography . 83

Alfred Menezes, Palash Sarkar, and Shashank Singh

Different Paradigms

Key Recovery: Inert and Public . 111
Colin Boyd, Xavier Boyen, Christopher Carr, and Thomas Haines

Honey Encryption for Language: Robbing Shannon to Pay Turing?. 127
Marc Beunardeau, Houda Ferradi, Rémi Géraud, and David Naccache

Randomized Stopping Times and Provably Secure Pseudorandom
Permutation Generators . 145

Michal Kulis, Pawel Lorek, and Filip Zagorski

Cryptofication

A Virtual Wiretap Channel for Secure Message Transmission. 171
Setareh Sharifian, Reihaneh Safavi-Naini, and Fuchun Lin

http://dx.doi.org/10.1007/978-3-319-61273-7_1
http://dx.doi.org/10.1007/978-3-319-61273-7_1
http://dx.doi.org/10.1007/978-3-319-61273-7_2
http://dx.doi.org/10.1007/978-3-319-61273-7_3
http://dx.doi.org/10.1007/978-3-319-61273-7_4
http://dx.doi.org/10.1007/978-3-319-61273-7_4
http://dx.doi.org/10.1007/978-3-319-61273-7_5
http://dx.doi.org/10.1007/978-3-319-61273-7_5
http://dx.doi.org/10.1007/978-3-319-61273-7_6
http://dx.doi.org/10.1007/978-3-319-61273-7_7
http://dx.doi.org/10.1007/978-3-319-61273-7_8
http://dx.doi.org/10.1007/978-3-319-61273-7_8
http://dx.doi.org/10.1007/978-3-319-61273-7_9

Necessary and Sufficient Numbers of Cards for Securely Computing
Two-Bit Output Functions . 193

Danny Francis, Syarifah Ruqayyah Aljunid, Takuya Nishida,
Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone

Malicious Cryptography

Controlled Randomness – A Defense Against Backdoors
in Cryptographic Devices . 215

Lucjan Hanzlik, Kamil Kluczniak, and Mirosław Kutyłowski

Malware, Encryption, and Rerandomization – Everything Is Under Attack . . . 233
Herman Galteland and Kristian Gjøsteen

Protecting Electronic Signatures in Case of Key Leakage 252
Mirosław Kutyłowski, Jacek Cichoń, Lucjan Hanzlik, Kamil Kluczniak,
Xiaofeng Chen, and Jianfeng Wang

Advances in Cryptanalysis

A New Test Statistic for Key Recovery Attacks Using Multiple Linear
Approximations . 277

Subhabrata Samajder and Palash Sarkar

Tuple Cryptanalysis: Slicing and Fusing Multisets. 294
Marine Minier and Raphaël C.-W. Phan

Improvements of Attacks on Various Feistel Schemes 321
Emmanuel Volte, Valérie Nachef, and Nicolas Marrière

Primitives and Features

Updatable Functional Encryption. 347
Afonso Arriaga, Vincenzo Iovino, and Qiang Tang

Linking-Based Revocation for Group Signatures: A Pragmatic Approach
for Efficient Revocation Checks . 364

Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer

CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control . . . 389
Britta Hale, Christopher Carr, and Danilo Gligoroski

Multi-authority Distributed Attribute-Based Encryption with Application
to Searchable Encryption on Lattices . 409

Veronika Kuchta and Olivier Markowitch

X Contents

http://dx.doi.org/10.1007/978-3-319-61273-7_10
http://dx.doi.org/10.1007/978-3-319-61273-7_10
http://dx.doi.org/10.1007/978-3-319-61273-7_11
http://dx.doi.org/10.1007/978-3-319-61273-7_11
http://dx.doi.org/10.1007/978-3-319-61273-7_12
http://dx.doi.org/10.1007/978-3-319-61273-7_13
http://dx.doi.org/10.1007/978-3-319-61273-7_14
http://dx.doi.org/10.1007/978-3-319-61273-7_14
http://dx.doi.org/10.1007/978-3-319-61273-7_15
http://dx.doi.org/10.1007/978-3-319-61273-7_16
http://dx.doi.org/10.1007/978-3-319-61273-7_17
http://dx.doi.org/10.1007/978-3-319-61273-7_18
http://dx.doi.org/10.1007/978-3-319-61273-7_18
http://dx.doi.org/10.1007/978-3-319-61273-7_19
http://dx.doi.org/10.1007/978-3-319-61273-7_20
http://dx.doi.org/10.1007/978-3-319-61273-7_20

One-Round Exposure-Resilient Identity-Based Authenticated Key
Agreement with Multiple Private Key Generators . 436

Atsushi Fujioka

Cryptanalysis Correspondence

Attacks on the Basic cMix Design: On the Necessity of Commitments
and Randomized Partial Checking . 463

Herman Galteland, Stig F. Mjølsnes, and Ruxandra F. Olimid

Cryptanalysis of an Identity-Based Convertible Undeniable
Signature Scheme . 474

Rouzbeh Behnia, Syh-Yuan Tan, and Swee-Huay Heng

Invited and Insight Papers

Towards User-Friendly Cryptography . 481
Goichiro Hanaoka

Multi-prover Interactive Proofs: Unsound Foundations 485
Claude Crépeau and Nan Yang

Human Public-Key Encryption . 494
Houda Ferradi, Rémi Géraud, and David Naccache

Two Philosophies for Solving Non-linear Equations
in Algebraic Cryptanalysis . 506

Nicolas T. Courtois

Watermarking Cryptographic Programs . 521
Ryo Nishimaki

From Higher-Order Differentials to Polytopic Cryptyanalysis 544
Tyge Tiessen

Division Property: Efficient Method to Estimate Upper Bound
of Algebraic Degree . 553

Yosuke Todo

Author Index . 573

Contents XI

http://dx.doi.org/10.1007/978-3-319-61273-7_21
http://dx.doi.org/10.1007/978-3-319-61273-7_21
http://dx.doi.org/10.1007/978-3-319-61273-7_22
http://dx.doi.org/10.1007/978-3-319-61273-7_22
http://dx.doi.org/10.1007/978-3-319-61273-7_23
http://dx.doi.org/10.1007/978-3-319-61273-7_23
http://dx.doi.org/10.1007/978-3-319-61273-7_24
http://dx.doi.org/10.1007/978-3-319-61273-7_25
http://dx.doi.org/10.1007/978-3-319-61273-7_26
http://dx.doi.org/10.1007/978-3-319-61273-7_27
http://dx.doi.org/10.1007/978-3-319-61273-7_27
http://dx.doi.org/10.1007/978-3-319-61273-7_28
http://dx.doi.org/10.1007/978-3-319-61273-7_29
http://dx.doi.org/10.1007/978-3-319-61273-7_30
http://dx.doi.org/10.1007/978-3-319-61273-7_30

Keynotes

The Case For Human Primacy in Cryptography

(Summary from the Keynote Lecture)

X. Boyen(B)

QUT, Brisbane, Australia

Abstract. In the history of “adversarial” technologies, cryptology has
the unique distinction of offering an exponential advantage to the defence
over the offence, as long as it is implemented correctly and, crucially, the
defence platform is not otherwise compromised. Sadly, the ubiquitous
devices wherein people increasingly confide their life stories and secrets,
have dubious allegiances, and appear hardly worthy of any trust.

This lecture is concerned with the “clouds” that gather over the
integrity of our global computing landscape, from an individual, not
institutional, perspective. We argue on the basis of the ongoing disap-
pearance of user-accessible honest computing, that the cryptographic
research community should strive for security and privacy models that
give absolute primacy to human principals, rather than their electronic
surrogates.

We advocate a human-centric agenda as the core of a broader research
programme to build trustworthy systems on top of untrusted platforms.
A promising approach is through (strong) human-powered cryptography.

It is customary when designing or analysing a security protocol, to consider
and even name human protagonists, such as Alice and Bob, as if they were truly
in charge of the protocol’s execution: dutifully discharging all of the specified
cryptographic operations whereby some designated security goal can be achieved
(e.g., key exchange to create secure communication over an unsafe channel, etc.).

In this merry Wonderland, Alice is a model modular exponentiation expert.
She races through the twists of serpentine elliptic curves, pedal-to-the-metal,
while snacking on a side of AES by the mega-bite. Her cryptic dance abides by a
flawless choreography. . . But in reality, outside of the Rabbit Hole, the truth is
that Alice is quite helpless without Hal, the proxy computing device that does
all of the heavy lifting, for her and on her behalf (or so she thinks).

Typically unacknowledged in this picture, is that Hal may be unreliable or
even treacherous. Bugs happen, and they tend to be the norm rather than the
exception, even in the stern and buttoned-down security industry. In a not-too-
distant future, as machine learning takes over many traditional areas of computer
programming, perhaps Hal might one day have its own unpredictable agenda?
More prosaically, but with far greater contemporary relevance, what if computing
tools and other “smart devices” sold to the unsuspecting public were already less
than honest, being beholden to other masters? As we shall see, such questions

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 3–10, 2017.
DOI: 10.1007/978-3-319-61273-7 1

4 X. Boyen

underscore the reality that security cannot be credibly outsourced; it needs to be
rooted in the very entity for which it is sought, without intermediary, which for
human security/privacy means the human itself being their own root of trust.

1 Clouded Computing

The explosive allegations by whistle-blowers Binney and Snowden of (then-)
unlawful and anti-constitutional surveillance that their national security agency
had engaged on its own citizens (among others), undoubtedly mark a defining
turn in the storied history of personal computing.

It was alleged that tracking and monitoring of ordinary people on a huge
scale was being conducted, through highly sophisticated electronic means, e.g.,
by hooking into private interactions that private individuals had with personal
devices privately owned and paid for. Such massive and indiscriminate electronic
mass surveillance on a scale commensurate to an entire country, required implicit
or explicit industry complicity, in the hardware, software, telecommunication,
and internet sectors, which were relentlessly sought, subverted, and exploited.

Of course, surveillance of citizenry by their government is nothing new, but
its execution through consumer electronics with industry involvement is a novel
phenomenon that is seemingly affecting people’s attitudes. Not only are much
of the deeds exposed by Binney and Snowden being banalised by retroactive
legislation (whose constitutionality many are doubting), the general apathy from
the media appears to have emboldened the private sector to follow suit.

The past couple of years in particular have seen a veritable recrudescence
of documented cases of deceptive “clouded” computing, marketed at the public.
The seeds have been planted for decades, but it is only recently that the industry
has drastically ramped up the invasiveness of their own for-profit “user data
collection” programmes, while being defiantly unapologetic about it. Part of
the problem is also a pattern of legal quasi-immunity afforded to the software
industry in the relevant country, while the media distracts with outside threats.

Indeed, much of the press, albeit with highly laudable exceptions, takes little
issue with either government or corporate mass surveillance. On the contrary,
it likes to focus on “hackers”, especially foreign ones, for the “foreign” political
bogeyman du jour. Of course, hacking is a real threat, but only one side of the
equation. The other is the sorry state of commercial software stewing a first-to-
market rush culture of quantity over quality, even ignoring the basic question of
trust when that culture self-servingly propagandises the death of privacy.

The “Internet-of-Things” fad epitomises both attitudes, infamous for nanny
home appliances morphing from Matrix minders to botnets of zombies. In both
cases the user is being watched; only the watcher is changing. The actual harm
is thankfully limited by the paucity of stealable data from the typical IoT fridge
(but beware those “personal assistant” camera/microphone-laden Trojan horses
that people are lured to invite in their homes). Hacks directed at phones and
actual computers are potentially much more serious, with consequences ranging
from data destruction (via ransomware) to identity fraud (via spyware).

The Case for Human Primacy in Cryptography 5

At the extreme end of the spectrum, hacking can be state-sponsored and
wielded as a weapon (remember Stuxnet, with its alleged collateral damage).
The lines are blurred between those and the new civil cyber-warfare of the sort
that Binney and Snowden were blowing the whistle about, who, lest we forget,
ultimately depended on a military chain of command.

2 Rain Men

We now turn to the role played by certain corporations in undermining the
personal sanctity of computing, though we really cannot give justice to all such
astonishing case studies of electronic voyeurism funded by their own victims.

It all starts with a business model that can be said to have arisen about two
decades ago: the business of stalking unsuspecting members of the public on
the then-nascent World-Wide Web, to uncover, record, and monetise their every
digital footprints.

Around that time was founded a certain advertising-through-technology com-
pany whose bold research and development ambitions revolved (and still revolve)
on the collection and monetisation of every bit of datum about every last man,
woman, and possibly child, starting with the very patrons of its marquee internet
search engine. (That is not to say that it remains the king of online indiscreet-
ness; that crown now likely belongs to internet social networks, whose model it
is to entice people to gossip on-the-record about others, tracking their relations
and interests, while also offering an illusion of private messaging for confidences.)

Relevant to our matter, the advertiser has now become a dominant software
integrator for mobile devices, which happen to make extraordinarily piercing and
intrusive ogling platforms. Indeed, smart phones with their multiple radios and
redundant network gateways provide an unsquelchable path for the exfiltration
of a trove of personal data, collected in part through the vast array of sensors that
the hardware device manufacturers are all but seemingly mandated to provide.
This collection and exfiltration is secured and obscured by the convenient excuse
of regulatory compliance for radio transmitters, invoked as the reason for locking
both the hardware and software against modifications (this contrasts with the
personal computer market, where, until recently, proprietary software could be
substituted for open-source alternatives of the computer owner’s choosing).

Evidently, such “data oriented” business models must be successful, for pri-
vacy-abiding personal devices are hardly ever to be found any more.

On the traditional personal-computer front, also, does invasive data collection
appear sharply on the rise. Perhaps the most blatant example of such, performed
by a corporation on a massive scale, is to be found in the current version of a
dominant legacy personal computer operating system, used by millions all over
the world. Said OS has reportedly been laden with a euphemistically called array
of “telemetry” activated by default, including a full key logger transmitting
key strokes to the corporate watcher. Now ponder: keyboard and pointer are
the primary and sometimes only conduits by which humans enter information
into personal computers. Clearly, no private message, business secret, nor user

6 X. Boyen

password could possibly stay safe for very long on such a platform, no matter
how strong the cryptography of any security software installed on top of it.

As an indicator of this vendor’s motivations, and harbinger of its controlling
intentions, many paying customers of prior versions have complained to have
had the update forced upon them against their consent. Reportedly, lawsuits are
presently unfolding (despite the uphill battle of overcoming a jurisprudence that
often seems to excuse software vendors from warranty and liability).

3 Umbrellas

Despite what looks (or is portrayed by the press) as public apathy, the foregoing
manoeuvres by governments and corporations alike are not going on without
stern opposition. Communities of advocates, from ethicists to computer and
legal professionals, have been and continue to be highly vocal to denounce new
cases of mass surveillance and “user data collection” as they are being exposed,
and work to steer this ship in the courts of law and public opinion.

On the technical side, a massive and increasingly growing counter-current
of top-quality “free and open-source software” (FOSS), e.g., in the Linux and
BSD ecosystems, is gained mainstream exposure as a suitable alternative to
many commercial offerings. As part and parcel of treating patrons with respect,
software libre provides unique benefits, such as the freedom to implement and
distribute improvements, and a long-term viability owing to immunity to vendor
lock-in. Open software also more naturally espouses basic security principles and
honours people’s rights to privacy, enforced partly by reputation and partly by
the technical difficulty of hiding spyware and malware in fully open source code.

Regarding open-source, the movement far predates the rise of electronic sur-
veillance, but it is fair to say that it is boosted by it, as a predictable “immune
system” defence reaction. Similar justifications have been advanced to explain
the rise of cryptocurrencies and their appeal with a segment of the population.
Cryptography itself is enjoying a spike of interest in the public discourse, as it
did twenty-five years ago during the first War on (civilian) Cryptography.

As a testament to the resilience of high-profile open-source projects, a number
of attempts by suspected state-sponsored saboteurs to plant malware into the
Linux kernel have seemingly been caught and repelled over the years. A new
controversial system daemon is now aggressively pushed into Linux distributions;
if one were to attribute to malice its overarching anti-features, one might grin
it could betray a shift to a softer target, likely as it is to be shunned by experts
who would otherwise hunt for bugs and backdoors as they do in the kernel itself.

Whether this turns out to be benign or malign, the point is that large-scale
subversion attempts appear harder to pull off in an open-source ecosystem.

4 Perfect Storm

Unfortunately, despite the indisputable success of open-source software, neither
end-users nor hobbyist communities have been able yet to eschew closed-course

The Case for Human Primacy in Cryptography 7

hardware with the obvious associated risks. (Although, just as affordable 3D
printers are currently revolutionising hobbyist desktop manufacturing, printable
integrated circuits might one day allow people to build their own open-source
trusted devices at home from the ground up, but we are not there yet.)

On the war against secure personal computing, OEM manufacturers appear
mostly neutral at the moment. Yet, there are unmistakable signs of their being
subjected to substantial pressure to alter that stance, and not in the favour of
the individual customer’s rights. Much of that pressure seems to come from the
aforementioned dominant legacy PC OS vendor. OEMs are made to implement
an ostensibly “secure” boot mechanism for all desktop and laptop retail PCs
running that OS. By all discernable accounts, this initiative has little to do with
actual security (the interminable litany of incidents incurred by said OS would
quickly disabuse anyone of that notion) but it effectively cements the proprietary
OS by locking out bespoke open-source alternatives (lip service is being paid by
permitting a few “open-but-unmodifiable-source” pre-compiled kernels).

The push for such locked bootloaders in (not-so)-general-purpose personal
computers mimics the bold trail “blazed” by the mobile phone industry, but
here without the ostensible excuse of radio transmitters for locking it all down.
The exclusion mechanism involves digital signatures; this is one example of insti-
tutional use of cryptography against the end-user and customer. As we have seen
earlier, the particular OS that such use of cryptography is meant to cement, is
also the one whereupon the deployment of secure cryptography, outside of the
vendor’s purview, might just be a fool’s errand.

5 Hurricane’s Eye

Equally alarming, but much less obvious, is the threat of nearly incontrovertible
surveillance and “private cryptography minders”, in hardware, that loom on the
horizon. At the moment, we can only speculate as to what form this might take;
the following scenarios are at best speculative educated guesswork.

Our first hint comes from reports, by security and industry observers, that
for the past decade a premier maker of branded CPUs for PCs has laden its
chips with a sophisticated self-contained secondary computer subsystem.1 Such
“management engine” embeds a powerful CPU (allegedly a competitor’s arm
core, in delightful irony) that runs opaque firmware that has resisted all reverse-
engineering attempts disclosed so far. The subsystem is autonomous and totally
invisible (hence useless) to the paying customer. It nevertheless has full hard-
ware access, including to memory, input devices, and wired/wireless networks.
The subsystem is being acknowledged as “enterprise-class”; nevertheless, it has
reportedly been present across the board in all of the maker’s CPUs, including
crippled models destined for the entry-level consumer market, for the last decade.
Recall that high-volume chip lithography costs increase super-linearly with area.
That the designer would opt to devote precious die space for such complex yet
1 Cf. eg.: Joanna Rutkowska (2015) https://blog.invisiblethings.org/papers/2015/x86

harmful.pdf.

https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf

8 X. Boyen

ostensibly pointless subsystem (outside of the “enterprise-class” market), makes
so little economic sense to us that it begs for a hidden agenda explanation.

Our second clue comes from the very technical documents leaked by Edward
Snowden in 2013, which, inter alia, mention technically credible methods for
the exfiltration of data by virtually undetectable semi-passive radio, based on a
modicum of software and some integratable tiny hardware on the target machine.

Our third hunch comes from the CPU architecture’s instruction set itself,
which leads us to imagine how hypothetical hardware moles speculatively buried
deep within an off-the-shelf computer, and operating only at a very low level (e.g.,
at the machine level itself, merely tapping the seemingly meaningless stream of
“text” and “data” words being fed to the main CPU for execution) might acquire
sensitive information worthy of and suitable for exfiltration, such as keys.

Further connecting the dots, one might arrive at the rather sobering epiphany
that there is no imperative reason, other than a quaint sense of obligation of
decency, why virtually all laptop and desktop computers in the hands of the
public, would not already be irremediably bugged, in hardware, today.

To speak in the abstract, it would not be a stretch to ascribe to some nations’
security agencies the desire to plant undetectable hardware moles at manufacture
in general-purpose computers sold to the public, to serve as beach heads for mass
surveillance or targetted spying, or to bypass unsanctioned cryptography. Were
this ever to happen, hypothetically speaking of course, the personal threats to
security would be nearly impossible to counter merely by software substitution,
notwithstanding the heroics of the FOSS community.

6 Looking for Sunshine

As cryptography and security researchers, it is our duty not only to respond
to present dangers, but also to anticipate and parry future threats, even as far
fetched as the ones imagined in the previous sections. The picture being dressed
up is quite gloomy indeed, as it concerns the denial of individual command of
computing and of personal privacy and security for the rest of us, mere humans.
(This does not concern institutional computing, as large entities undoubtfully
have the clout to procure solutions that meet their specifications.)

Trustworthy computing over untrusted platforms is the name of the game,
and the house has the upper hand. How should one go about to play it?

Open-source auditable software will certainly continue to play a key role, but
it is highly unlikely that software by itself could defeat hardware subversion.

Open-source desktop micro-manufacturing of bespoke integrated electronics
may one day bring some bright sunshine to clear up the field, but the technology
is in its infancy, and there is no doubt that vested interests will unleash tricks,
laws, and regulations to stymie or delay its popularisation.

Until such day, or as part of a multi-pronged strategy, cryptography may
provide a credible approach to creating trust out of mistrust. The difficulty here
is that trust and mistrust are to live very close to each other: the former to be
gained by a human interacting with a device only worthy of the latter. Carefully

The Case for Human Primacy in Cryptography 9

bridging this gap will require models that give primacy to humans (and primacy
specifically to the designated first-person human principal beneficiary) while
viewing any proxy device as a separate entity and potential adversary.

Bringing such models to fruition will involve the bootstrapping of entirely
new cryptographic protocols, in whose execution humans must take an active
and essential role, complete with (humanly feasible) cryptographic calculations
and (humanly memorable) secrets. It is clear that with obvious human cognitive
limitations, achieving strong security under human primacy models will not be
an easy task. Nevertheless, we believe that it is feasible: At the lecture was
demonstrated a candidate public-key cryptosystem allowing human decryption
of short messages, without any device or even a scratch pad.2

Whichever path is taken, personal security will necessitate personal effort.

7 Conclusion

Peddlers of tied systems would like us to believe in Privacy’s untimely demise.
Governments all too often seem to condone or even foster surveillance-enabling
behaviours, rather than stand for their constituents’ security and privacy rights.
These actions seriously undermine the computer and data security that matters:
not theirs, but ours—private individuals’ held captive to such devices.

The take-home message is that trustworthiness is increasingly scarce in the
computer world. If safety in computing is ever to obtain, it has to be rooted
in inherently trustworthy foundations, i.e., self-referential or very close thereto.
Top-to-bottom design or vetting of private computing devices is one possible
approach, for those with the technical wherewithal to do such things. Another
path is through the potent trust-leveraging tools offered by cryptography, but
the necessary computations are keeping its benefits out of direct human reach.

Regardless of the direction taken, there is no free lunch with data security and
privacy. For those whose seek them, one’s direct involvement in trust assurance
or establishment is critical (or at the very least, the ability to rely on trusted
experts for the same). This will be true in all the proposed solutions, whether
trust arises from the hand-assembly of a clean hardware and software stack, or
from the direct human execution of sound cryptographic algorithms.

Cryptography indeed provides very potent weapons in the war for privacy,
drawing on immaterial mathematical truths resistant to censorship and embargo.
Cryptography is unfortunately not very human-friendly, which has impeded its
development for direct human benefit. If true human cryptography is ever to
become a reality, for human privacy or security, it will have to involve new
formal models and protocols constructed with and for humans as executors and
beneficiaries. The feasibility of such a research programme is still largely open-
ended, but there are promising leads, and the implications could be profound.

2 An upcoming paper focuses on the technical details, which go far beyond the scope
of this piece.

10 X. Boyen

Acknowledgements. The author thanks the Programme Chairs and Programme
Committee for the kind invitation to speak at MyCrypt “Paradigm-Shifting Cryptog-
raphy” 2016. The author is supported by ARC Future Fellowship grant FT140101145.

Disclaimer

All claims made in this piece are opinions or speculations of the author only, intended
to be thought provoking, editorialised from past and present public records and testi-
monials too numerous and disparate to be enumerated.

Time for a Paradigm Shift in Our
Disciplinary Culture?

Neal Koblitz(B)

Department of Mathematics, University of Washington, Seattle, USA
koblitz@uw.edu

1 Introduction

The well-known KISS principle of engineering — Keep It Simple, Stupid! — is
also of value in cryptography. In certain subfields, such as lattice-based crypto
and indistinguishability obfuscation, the proposed constructions pay little heed
to the KISS principle. Even the descriptions of the proper functioning of the
protocols are frightfully complicated (by comparison with RSA or ECC, for
example), and the security analyses and guidelines for parameter selection are
even more problematic.

But even something as wonderful as the KISS principle can be taken too far,
as I learned to my chagrin during my early years of work in cryptography. In
the late 1980s, when I wrote or spoke about ECC, I wanted to use the simplest
possible examples, and these were the supersingular curves. For instance, just
take the equation y2 = x3 − x over a field of p elements with p ≡ 3 (mod 4)
or else y2 = x3 − 1 with p ≡ 2 (mod 3), where p is chosen so that respectively
(p+ 1)/4 or (p+ 1)/6 is prime. As long as log2 p ≥ 163 we would have 80 bits of
security, which at the time was enough.

A few years later, Menezes et al. [14] showed that the discrete log problem
(DLP) on such a curve can be reduced to the DLP in the finite field of p2

elements, and even in the early 1990s this was insecure.
A short time later, when I proposed Hyperelliptic Curve Cryptography

(HCC), I again made a very erroneous judgment about parameter selection.
My favorite example was a genus-191 hyperelliptic curve over the field of 2 ele-
ments whose jacobian has group order divisible by a prime of more than 160
bits. So I was confident in its security. In fact, I thought that a high-genus curve
would be more secure than a low-genus one. I couldn’t have been more wrong!
Although the genus is a measure of the topological complexity of the curve, it was
a rookie mistake for me to confuse that with the computational complexity of
the corresponding DLP. In 1994, Adleman et al. [1] found a subexponential-time
algorithm for the DLP on high-genus curves. As a result, my genus-191 example
was totally insecure, even in 1994. At present, based on work of Gaudry, Diem,
and others, we believe that HCC with g ≥ 3 is less secure than ECC (which is
the g = 1 case of HCC); the case g = 2 is the only one that seems to be as secure
as ECC.

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 11–18, 2017.
DOI: 10.1007/978-3-319-61273-7 2

12 N. Koblitz

In this way I learned early on how easy it is to make serious mistakes in
cryptography. Making mistakes is not necessarily a bad thing if we learn from
them, and one lesson to be learned is to exercise caution in giving assurances to
each other and to the general public. We should present our results with care and
humility. The pressures on us — characteristic of a modern capitalist, consumer
society — to act like salespeople, advertisers, and hypesters, should be resisted.

One expects to encounter giant egos among entrepreneurs, professional ath-
letes, media celebrities, and (especially in the U.S.) politicians. In contrast, a
long historical tradition in the intellectual professions, including science and
mathematics, has been to discourage

• extreme competitiveness;
• boastfulness and self-promotion;
• aggressive marketing of one’s own work;
• angry, intemperate responses to criticism;
• arrogance.

However, the disciplinary culture of our community has become remarkably
tolerant of aberrant behavior by researchers — and the worst conduct is some-
times by very prominent people. We have strayed far from the standards that
one would expect from scientists. With alarming frequency we see

• abstracts and introductions to papers that exaggerate the authors’ contribu-
tions with misleading and inaccurate claims;

• shameless self-promotion in invited talks;
• arrogance toward those who belong to different subdisciplines or social groups;
• anger and retaliation in response to criticism, or simply ignoring work that

questions the prevailing notions.

2 Important Work Gets Dismissed or Ignored

I will give two examples. First, in the late 1990s, Blake-Wilson and Menezes [4]
showed that certain standardized signature protocols (but not all) are vulnerable
to an attack that they named the Duplicate Signature Key Selection (DSKS)
attack. To illustrate how such an attack works, let’s take the example of an
online lottery. Alice chooses her number N and sends it in with her signature
sAlice(N). If her number wins, she claims her winnings by showing her certified
public key to the officials, who verify that the signature on the winning number
was hers.

But before Alice gets around to doing this, a thief named Bob computes a
key pair that satisfies the condition that the same signature on N verifies as his,
that is, sBob(N) = sAlice(N). He quickly gets it certified and claims the money
before Alice shows up.

DSKS attacks have never attracted the interest of people working in prov-
able security. They’ve been mentioned briefly by Canetti and Dodis, but only

Time for a Paradigm Shift in Our Disciplinary Culture? 13

in order to dismiss them as unimportant. It is true that DSKS does not vio-
late security of signature schemes under the standard Goldwasser–Micali–Rivest
(GMR) security model [6]. But the GMR definition was formulated in 1984, way
before anyone was thinking of online lotteries as an application of a signature
scheme. It seems a little imprudent to rigidly adhere to a 1/3-century old defini-
tion even after it has been shown to be inadequate in certain settings. For more
details, see [10].

A second example of work that deserves to be much better known than
it is concerns hybrid encryption schemes. Five years ago Zaverucha posted an
important analysis [16] of the security of such schemes in the multi-user setting,
which, obviously, is where they are normally deployed. He found practical attacks
on certain implementations that had been developed by H. Krawczyk and others
and had been “proved secure” by them — but of course only in the single-
user setting. Zaverucha’s work has been all but ignored by provable security
researchers. For more details see [16] and Appendix B to the article [5] in this
volume.

3 Exaggerated Advertising of One’s Own Work

I’ll give two examples, both from leading members of our profession. First, here’s
an excerpt from the introduction to a widely-cited Micali and Reyzin paper [15]
on leakage resilience:

We focus on the strongest possible adversary, so as to capture what is cryp-
tographically possible in the worst possible, physically observable setting.
In particular, we
• consider an adversary that has full (and indeed adaptive) access to any
leaked information; . . .
• construct pseudorandom generators that are provably secure against all
physical-observation attacks.
Our model makes it easy to meaningfully restrict the power of our general
physically observing adversary.

Reading these paragraphs could give the practical cryptographer false hopes.
Despite the extravagant promises, the paper contains no concrete construction of
any pseudorandom generator, let alone one that resists side-channel attacks. Nor
do the authors give any techniques that “make it easy to meaningfully restrict
the power” of the side-channel attacker.

A second example is from Hugo Krawczyk’s invited talk at Asiacrypt 2010.
In it Krawczyk described how his work (along with Bellare and Canetti) in devel-
oping HMAC in the 1990s had to satisfy both the engineers and theoreticians
and achieve a balance between practicality and theoretical soundness. His slide
concluded: “Balance regained, and the rest is history.”

This was the first time I saw the expression “the rest is history” used about
the speaker’s own work! Normally one uses that expression about what someone
else did. For instance, one can say, “In the 17th century Leibniz and Newton

14 N. Koblitz

invented calculus, and the rest is history.” Or, “In 1939 Einstein signed a letter
to U.S. President Roosevelt urging him to start a nuclear weapons program, and
the rest is history.”

In the mathematical world, I could not imagine someone saying, “In the
1990s I did such-and-such, and the rest is history.” That level of boastfulness
would be considered socially unacceptable among mathematicians and, I believe,
scientists in most fields. But in our community no one bats an eyelash.

And HMAC is not beyond controversy, although the words “the rest is his-
tory” would imply that it is.

In 2012 Menezes and I showed that the main concrete security guarantee for
the pseudorandom-function property of HMAC that was claimed by Bellare [2]
at Crypto 2006 was based on flawed reasoning. It now seems that no practically
meaningful prf-property of the sort in Bellare’s paper can be proved for HMAC
if it is implemented with MD5 or SHA-1.

In addition, in a recent paper on 1-key nested MACs [11] Menezes and
I showed that the same security theorems (the tight reduction for the secure-
MAC property and the nontight reduction for the prf-property) can be proved
for a broad class of MACs, and there’s no good reason to believe that the HMAC
construction is the best in this class for either security or efficiency.

4 Responses to Criticism

One way to distinguish a healthy disciplinary culture from an unhealthy one is
to examine the way leaders of the field respond to criticism. How did Bellare
react to our critique [9] of his Crypto 2006 paper, which we posted in February
2012? He wrote me [3]:

I find your current manuscript insulting to me personally and also wrongful
in the way it represents the field. I had in the past been supportive of the
goals of the Another Look series, [unlike] most cryptographers I know, who
have reacted violently to every paper in the series. . .

This is amazing — “reacted violently to every paper in the series”! Is this a
rational response?

Bellare has never responded publicly to the specific criticism of the fallacy in
his concrete security analysis for HMAC. Rather, he has simply accused Menezes
and me of being ignorant of the basics of modern cryptography. His failure to
deal seriously with this issue is especially regrettable because the security of
HMAC is not just a theoretical question — HMAC is one of the most popular
and widely-used message authentication codes.

My second example concerns a prominent researcher’s reaction to criticism
of a flaw in his Crypto 2005 paper [12]. In that paper Krawczyk described his
modified version of the Menezes–Qu–Vanstone key agreement protocols, which
he called HMQV. He claimed that by supplying a proof of security that did not
require a certain step of the original MQV protocol, he could increase efficiency

Time for a Paradigm Shift in Our Disciplinary Culture? 15

at the same time as he proved security. Astoundingly, the Crypto program com-
mittee had accepted the paper after a superficial reading without asking any of
the designers of MQV for comment.

The omitted MQV step was a public key validation that had been intro-
duced to prevent known attacks. When Menezes finally got to see the paper,
he immediately saw that some of Krawczyk’s protocols fell victim to the same
attacks. How could this be, if they’re “provably secure” without the public key
validation?

Menezes started reading the proof carefully, and soon found a glaring flaw
(see [13] for details). Krawczyk — and the Program Committee — had been so
mesmerized by the (fallacious) proof that they had failed to see the vulnerability.

How did Krawczyk react to this embarrassing setback to HMQV? He denied
that it was of any importance, and responded angrily when I described this
episode in a 2007 article [8] in the Notices of the Amer. Math. Society. In a
letter to the Notices he wrote:

Contrary to what Koblitz claims, the HMQV work represents a prime
example of the success of theoretical cryptography, not only in laying rig-
orous mathematical foundations for cryptography at large, but also in its
ability to guide us in the design of truly practical solutions to real-world
problems.

Part of what provable security researchers mean by the last phrase (as explained,
for example, in [7]) is that they can improve efficiency by dropping unneces-
sary steps, where “unnecessary” means that the proof of security doesn’t require
them. Never mind that HMQV as published in Crypto 2005 was insecure, because
of the omitted step. Never mind that its “rigorous mathematical” proof of secu-
rity was fallacious.

Why do prominent researchers react so angrily to criticism? Why do they
expect everyone to think that they are perfect and never make mistakes? Is
it because of their personalities? Do they behave this way in the non-crypto
world with their families and friends? My guess is they don’t. They probably
have pleasant, normal personalities in the outside world, and the reason for their
behavior in the crypto world is that our disciplinary culture tolerates and even
encourages bad behavior.

5 Harmful Effects

Have Menezes and I suffered reprisals for our “Another Look” series of papers?
For example, have Bellare’s colleagues who “reacted violently to every paper in
the series” sometimes blocked (or attempted to block) publication of our work?
Of course. But that does us no harm really, because we can easily find ways
around it — and in any case we’re established old guys with secure jobs in
university math departments. So there’s not much they can do except wallow in
impotent rage.

16 N. Koblitz

The harmful effects of the aggressive behavior and angry reaction to criticism
are felt most of all in the younger generation of recent PhDs who are starting
out and have no job security. They are pressured to conform, are socialized
into a sycophantic attitude toward the old guys, and are less likely to challenge
reigning paradigms and go in radically new directions. The message to young
people is a new KISS principle: Kiss up to the establishment, flatter your elders,
do what they say, and never, never criticize them. This is not the way that
science progresses.

There’s another harmful effect of our disciplinary culture that concerns me: it
discourages most women. In almost all cultures of the world, women from a young
age are socialized into thinking that aggressive competitiveness and excessive
boasting are improper behavior for women. Even when they see men behaving
that way, they grow up with the understanding that such male behavior is wrong
for them. Plenty of men also find a hyper-competitive, egotistical disciplinary
culture to be unpleasant. But on average women are even more likely to find it
disagreeable.

In the U.S., this is reflected in the statistics about female participation in
computer science (from which we inherited our disciplinary culture) versus math-
ematics (which has a less competitive disciplinary culture). In the 1970s and
1980s, when the young field of computer science had a very different disciplinary
culture from what it has now, there was a higher percentage of women study-
ing at an advanced level in computer science than in mathematics. However,
at present roughly 30% of math PhDs go to women, whereas women get only
about 20% of computer science PhDs. Although no one intended to discriminate
against women, our disciplinary culture in effect does precisely that.

6 Conclusion

In our time — especially since January 2017 — irrational and vindictive behav-
ior, unrestrained boastfulness, and rejection of well-established norms of scientific
inquiry are being more and more associated with American national character.
When certain prominent U.S.-based cryptographers react angrily to technical
criticisms of their work, retaliate against their critics, and continue to hype their
work without mentioning the flaws or weaknesses that have been discovered,
they are conforming to this unfortunate stereotype of Americans.

It is time for our community to return to the scholarly values that were
articulated in the ancient world, for example, by the great leader of Islam of the
7th century, Ali Ibn Abi Talib, who said

The most harmful disaster for the intellect is arrogance.

And also:

When proven wrong, the wise man will correct himself and the ignorant
will keep arguing.

Time for a Paradigm Shift in Our Disciplinary Culture? 17

We need to make a paradigm shift in our disciplinary culture before we can
claim that our field deserves to be called a “science.” We should agree to use
words like “scientist” and “scholar” only for those who

• present their results modestly and honestly, highlighting the limitations and
never overstating their accomplishments; and

• respond to criticism by thanking the critics and withdrawing any claims that
are shown to be fallacious or questionable.

We should use words like “marketer” and “hypester” for those who

• make exaggerated or misleading claims in their abstract or introduction;
• engage in aggressive self-promotion; or
• respond to critics with anger and retaliation, rather than carefully addressing

the technical issues that the critics have raised.

References

1. Adleman, L.M., DeMarrais, J., Huang, M.-D.: A subexponential algorithm for
discrete logarithms over the rational subgroup of the Jacobians of large genus
hyperelliptic curves over finite fields. In: Adleman, L.M., Huang, M.-D. (eds.)
ANTS 1994. LNCS, vol. 877, pp. 28–40. Springer, Heidelberg (1994). doi:10.1007/
3-540-58691-1 39

2. Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Hei-
delberg (2006). doi:10.1007/11818175 36

3. Bellare, M.: Email to Koblitz, N., 24 February 2012
4. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-

station (STS) protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (1999). doi:10.1007/3-540-49162-7 12

5. Chatterjee, S., Koblitz, N., Menezes, A., Sarkar, P.: Another look at tightness II.
In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 21–55.
Springer, Cham (2017)

6. Goldwasser, S., Micali, S., Rivest, R.: A “paradoxical” solution to the signature
problem. In: Proceedings of the 25th Annual IEEE Symposium on the Foundations
of Computer Science, pp. 441–448 (1984)

7. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC, London (2007)

8. Koblitz, N.: The uneasy relationship between mathematics and cryptography. Not.
Amer. Math. Soc. 54, 972–979 (2007)

9. Koblitz, N., Menezes, A.: Another look at HMAC. J. Math. Cryptol. 7, 225–251
(2013)

10. Koblitz, N., Menezes, A.: Another look at security definitions. Adv. Math. Com-
mun. 7, 1–38 (2013)

11. Koblitz, N., Menezes, A.: Another look at security theorems for 1-key nested MACs.
In: Koç, Ç. (ed.) Open Problems in Mathematics and Computational Science, pp.
69–89. Springer, Cham (2014)

http://dx.doi.org/10.1007/3-540-58691-1_39
http://dx.doi.org/10.1007/3-540-58691-1_39
http://dx.doi.org/10.1007/11818175_36
http://dx.doi.org/10.1007/3-540-49162-7_12

18 N. Koblitz

12. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). doi:10.1007/11535218 33

13. Menezes, A.: Another look at HMQV. J. Math. Cryptol. 1, 47–64 (2007)
14. Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to

logarithms in a finite field. IEEE Trans. Inf. Theory 39, 1639–1646 (1993)
15. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC

2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24638-1 16

16. Zaverucha, G.M.: Hybrid encryption in the multi-user setting. http://eprint.iacr.
org/2012/159.pdf

http://dx.doi.org/10.1007/11535218_33
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://eprint.iacr.org/2012/159.pdf
http://eprint.iacr.org/2012/159.pdf

Revisiting Tradition

Another Look at Tightness II:
Practical Issues in Cryptography

Sanjit Chatterjee1, Neal Koblitz2, Alfred Menezes3(B), and Palash Sarkar4

1 Department of Computer Science and Automation,
Indian Institute of Science, Bengaluru, India

sanjit@csa.iisc.ernet.in
2 Department of Mathematics, University of Washington, Seattle, USA

koblitz@uw.edu
3 Department of Combinatorics and Optimization, University of Waterloo,

Waterloo, Canada
ajmeneze@uwaterloo.ca

4 Applied Statistics Unit, Indian Statistical Institute, Kolkata, India
palash@isical.ac.in

Abstract. How to deal with large tightness gaps in security proofs is a
vexing issue in cryptography. Even when analyzing protocols that are of
practical importance, leading researchers often fail to treat this question
with the seriousness that it deserves. We discuss nontightness in con-
nection with complexity leveraging, HMAC, lattice-based cryptography,
identity-based encryption, and hybrid encryption.

1 Introduction

The purpose of this paper is to address practicality issues in cryptography that
are related to nontight security reductions. A typical security reduction (often
called a “proof of security”) for a protocol has the following form: A certain
mathematical task P reduces to the task Q of successfully mounting a certain
class of attacks on the protocol—that is, of being a successful adversary in a
certain security model. More precisely, the security reduction is an algorithm R
for solving the mathematical problem P that has access to a hypothetical oracle
for Q. If the oracle takes time at most T and is successful with probability at
least ε (here T and ε are functions of the security parameter k), then R solves
P in time at most T ′ with probability at least ε′ (where again T ′ and ε′ are
functions of k). We call (T ′ε)/(Tε′) the tightness gap. The reduction R is said
to be tight if the tightness gap is 1 (or is small); otherwise it is nontight. Usually
T ′ ≈ T and ε′ ≈ ε in a tight reduction.

A tight security reduction is often very useful in establishing confidence in a
protocol. As long as one is not worried about attacks that lie outside the security
model (such as side-channel attacks, duplicate-signature key selection attacks,
or multi-user attacks [56]), one is guaranteed that the adversary’s task is at least
as hard as solving a certain well-studied mathematical problem (such as integer

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 21–55, 2017.
DOI: 10.1007/978-3-319-61273-7 3

22 S. Chatterjee et al.

factorization) or finding a better-than-random way to predict output bits from
a standardized primitive (such as AES).

The usefulness of a nontight security reduction is more controversial. If, for
example, the tightness gap is 240, then one is guaranteed that the adversary’s
task is at least 2−40 times as hard as solving the mathematical problem or
compromising AES. Opinions about whether nontightness is a cause of concern
depend on how much importance one attaches to quantitative guarantees. In his
paper [11] explaining practice-oriented provable security, Bellare writes:

Practice-oriented provable security attempts to explicitly capture the
inherently quantitative nature of security, via a concrete or exact treat-
ment of security.... This enables a protocol designer to know exactly how
much security he/she gets. (emphasis in original)

In contrast, some researchers minimize the importance of quantitative security
and object strongly when someone criticizes a practice-oriented provable security
result for giving a useless concrete security bound. For example, an anonymous
reviewer of [54] defended the nonuniform proof in [12], acknowledging that its
nonuniformity “reduces the quantitative guarantees” but then stating:

Many proofs do not yield tight bounds, but they still are powerful quali-
tative indicators of security.

This reviewer characterized the use of the word “flaw” in [54] in reference to a
fallacious analysis and erroneous statement of quantitative guarantees as “mis-
leading” and “offensive,” presumably because the “qualitative indicators” in [12]
were still valid.

What makes the nontightness question particularly sensitive is that cryptog-
raphers are supposed to be cautious and conservative in their recommendations,
and sources of uncertainty and vulnerability are not supposed to be swept under
the rug. In particular, one should always keep in mind the possibility of what
Menezes in [64] calls the nightmare scenario—that there actually is an attack
on the protocol that is reflected in the tightness gap.

In [27] the authors presented attacks on MAC schemes in the multi-user
setting—attacks that are possible because the natural security reduction relat-
ing the multi-user setting to the single-user setting is nontight. Similar attacks on
protocols in the multi-user setting were given for a network authentication proto-
col, aggregate MAC schemes, authenticated encryption schemes, disk encryption
schemes, and stream ciphers.

In AppendixB we describe the attacks of Zaverucha [77] on hybrid encryption
in the multi-user setting. In Sect. 4 we describe another situation where the
tightness gap reflects the fact that there’s an actual attack, in this case due to
Pietrzak [40,70].

A practical issue that is closely related to the nontightness question is the
matter of safety margins. There are at least two kinds of safety margins: (1)
parameter sizes that give significantly more bits of security than are currently
needed, and (2) “optional” features in a protocol that are believed (sometimes

Another Look at Tightness II 23

because of tradition and “instinct” rather than any rigorous security argument)
to help prevent new attacks or attacks that are outside the commonly used
security models.

At present it is widely agreed that it is prudent to have at least 128 bits of
security.1 Why not 96? In the near future it is unlikely that anyone (even the
N.S.A.) will expend 296 operations to break a protocol. The reason for insisting
on 128 bits of security is that one should anticipate incremental improvements in
cryptanalytic attacks on the underlying mathematical problem that will knock
several bits off the security level. If nontightness has already reduced the security
assurance provided by the proof from 128 to 96 bits (and if the parameter sizes
have not been increased so as to restore 128 bits of security), then even relatively
small advances in attacking the mathematical problem will bring the security
assurance further down to a level where a successful attack on the protocol is
feasible in principle.

A common explanation of the value of security proofs is that features that are
not needed in the proof can be dropped from the protocol. For instance, Katz and
Lindell make this point in the introduction to [49]. However, in AppendixB (see
also Sect. 5 of [56]) we shall find that optional features included in protocols often
thwart attacks that would otherwise reduce the true security level considerably.

On the one hand, there is widespread agreement that tight proofs are prefer-
able to nontight ones, many authors have worked hard to replace nontight proofs
with tighter proofs when possible, and most published security reductions duly
inform the reader when there is a large tightness gap. On the other hand, authors
of papers that analyze protocols that are of practical importance almost never
suggest larger parameters that compensate for the tightness gap. Presumably
the reason is that they would have to sacrifice efficiency. As Bellare says [11],

A weak reduction means that to get the same level of security in our
protocol we must use larger keys for the underlying atomic primitive, and
this means slower protocols.

Indeed, many standardized protocols were chosen in part because of security
“proofs” involving highly nontight security reductions. Nevertheless, we are not
aware of a single protocol that has been standardized or deployed with larger
parameters that properly account for the tightness gaps. Thus, acknowledgment
of the nontightness problem remains on the level of lip service.

In Sects. 2–6 we discuss nontightness in connection with complexity lever-
aging, HMAC, lattice-based cryptography, and identity-based encryption; in
AppendixB we discuss Zaverucha’s results on nontightness in security proofs
for hybrid encryption in the multi-user setting. In the case of HMAC, in view of
the recent work [40,54] on the huge tightness gaps in pseudorandomness results,
in Sect. 4 we recommend that standards bodies reexamine the security of HMAC
when used for non-MAC purposes (such as key derivation or passwords) or with
MD5 or SHA1.
1 By “k bits of security” we mean that there is good reason to believe that, if a

successful attack (of a specified type) takes time T and has success probability ε,
then T/ε > 2k.

24 S. Chatterjee et al.

2 Complexity Leveraging

“Complexity leveraging” is a general technique for proving that a cryptographic
protocol that has been shown to be selectively secure is also adaptively secure.
Here “selectively secure” means that the adversary has to select its target before
it is presented with its inputs (e.g., public keys, signing oracles, etc.), whereas
“adaptive security” means that the adversary is free to select its target at any
time during its attack. The second type of adversary is in general much stronger
than the first type. Thus, selective security is in principle a much weaker result
than adaptive security, and so is not usually relevant to practice. Because selec-
tive security is often easier to prove than adaptive security, researchers devised
the method of complexity leveraging to convert any selective security theorem
into an adaptive security theorem.

Complexity leveraging has been used to prove the adaptive security of many
kinds of cryptographic protocols including identity-based encryption [23], func-
tional encryption [39], constrained pseudorandom functions [25], and constrained
verifiable random functions [35]. In Sect. 2.1 we illustrate the problems with com-
plexity leveraging in the context of signature schemes. In Sect. 2.2 we consider
the case of identity-based encryption.

2.1 Signature Schemes

The most widely accepted definition of security of a signature scheme is against
an existential forger under chosen-message attack. This means that the forger is
given a user’s public key and is allowed ≤q queries, in response to which she is
given a valid signature on each queried message. The forger is successful if she
then forges a signature for any message M other than one that was queried.

A much weaker property is security against a selective forger. In that case
the adversary is required to choose the message M for which she will forge a
signature before she even knows the user’s public key. She cannot modify M
in response to the public key or the signature queries, and to be successful she
must forge a signature on the original M . Selective security is obviously much
weaker than existential security. A theorem that gives only selective security is
not generally regarded as satisfactory for practice.

Complexity leveraging works by converting an arbitrary existential forger
into a selective forger, as follows. The selective forger Cynthia guesses a message
M , which she desperately hopes will be the message on which the existential
forger eventually forges a signature. She then runs the existential forger. She is
successful if the message forged is M ; otherwise she simply tries again with a
different guess. Her probability of success in each run is ε = 2−m, where m is
the allowed bitlength of messages. The bound m on the message length could be
large, such as one gigabyte.

Fortunately for Cynthia, in practice messages are normally hashed, say by
SHA256, and it is the hash value that is signed. Thus, Cynthia needs to guess
the 256-bit hash value of the message on which the existential forger forges a

Another Look at Tightness II 25

signature, not the message itself. Her probability of success is then 2−256, and
so the tightness gap in going from selective to existential security is 2256.

Suppose, for example, that we have an integer-factorization-based signature
protocol for which selective security has been shown to be tightly equivalent to
factoring. How large does the modulus N have to be so that the corresponding
existential security theorem gives us a guarantee of 128 bits of security? If only
3072-bit N is used, then the protocol will have 128 bits of selective security,
but complexity leveraging gives us no existential security, because of the 2256

tightness gap. In order to have 128 bits of existential security, we need to have
128 + 256 = 384 bits of security against factoring N , and this means roughly
40,000-bit N . Even though this is what we must do if we want complexity lever-
aging to give us the desired security, no one would ever seriously recommend
deploying 40,000-bit moduli. Thus, from a practical standpoint complexity lever-
aging gives us nothing useful here.

2.2 Identity-Based Encryption

Boneh and Boyen [23] used bilinear pairings on elliptic curves to design an
identity-based encryption scheme. They proved that their scheme is selectively
secure in the sense that the adversary has to select the target before she gets
the public parameters and access to the appropriate oracles (see Sect. 6 for back-
ground on identity-based encryption). The highlight of the proof is that it does
not invoke the random oracle assumption.

Boneh and Boyen [23, Theorem 7.1] then used complexity leveraging to prove
that a generic identity-based encryption scheme that is selectively secure is also
adaptively secure. The proof has a tightness gap of 22�, where � is the desired
security level and 2� is the output length of a collision-resistant hash function
(the hash function is applied to the identifiers of parties). Boneh and Boyen
remarked that the reductionist proof is “somewhat inefficient” and explained
that the desired level of security can be attained by increasing the parameters
of the underlying pairing.

Suppose now that one desires 128 bits of security. Suppose also that the proof
of selective security for the identity-based encryption scheme is tight. Then one
can achieve 128 bits of selective security by using an (asymmetric) bilinear pair-
ing e : G1 ×G2 → GT derived from a prime-order Barreto-Naehrig (BN) elliptic
curve E over a finite field Fp [10]. Here, p is a 256-bit prime, G1 = E(Fp),G2 is
a certain order-n subgroup of E(Fp12), and GT is the order-n subgroup of F∗

p12 ,
where n = #E(Fp). This pairing is ideally suited for the 128-bit security level
since the fastest attacks known on the discrete logarithm problems in G1,G2 and
GT all take time approximately 2128.2 If resistance to adaptive attacks is desired,
then to account for the tightness gap of 2256 a pairing e : G1 ×G2 → GT should
be selected so that the fastest attacks known on the discrete logarithm problems

2 We are not accounting for recent progress by Kim and Barbulescu [51] in algorithms
for computing discrete logarithms in GT . This will lead to working with even larger
parameters.

26 S. Chatterjee et al.

in G1,G2 and GT take time at least 2384. If the protocol is implemented using
BN curves, then one now needs p12 ≈ 240000 and thus p ≈ 23300. Consequently,
computations in G1 and GT will be over 3300- and 40000-bit fields, instead of
256- and 3072-bit fields had the reduction been tight. Hence, the tightness gap
that arises from complexity leveraging has a very large impact on efficiency.

3 Nonuniformity to Achieve Better Tightness

Informally speaking, the difference between a nonuniform algorithm to solve a
problem P and the more familiar notion (due to Turing) of a uniform algorithm
is that the former is given an “advice string,” depending on the input length
(and usually assumed to be of polynomial size in the input length). In general,
a nonuniform algorithm is more powerful than a uniform one because the advice
string may be very helpful in solving P. Several prominent researchers have
repeatedly claimed that security theorems that are proved in the nonuniform
model of computation are stronger than theorems proved in the uniform model,
because they provide assurances against successful attacks by nonuniform as well
as uniform adversaries. In their lecture notes for their 2008 course at MIT [42],
Bellare and Goldwasser state:

Clearly, the nonuniform adversary is stronger than the uniform one. Thus
to prove that “something” is “secure” even in presence of a nonuniform
adversary is a better result than only proving it is secure in presence of a
uniform adversary. (p. 254)

In an email explaining why his paper [12] did not inform the reader that the
security reduction was being given in the nonuniform model, Bellare wrote [13]:

I had no idea my paper would be read by anyone not familiar with the
fact that concrete security is nonuniform.

What these researchers are failing to take into account is that the use of
the nonuniform model makes the hypothesis as well as the conclusion of the
theorem stronger. Thus, the theorem’s assumption that a certain mathematical
task is hard or that a certain compression function cannot be distinguished
from a random function has to allow nonuniform algorithms. It is usually very
difficult to get any idea of the strength of the commonly-used primitives against
nonuniform attacks, and in practice they are not designed to withstand such
attacks. See [55] for a discussion of the history of confusion about this issue in
the literature and a detailed rebuttal of the arguments in favor of the nonuniform
model in cryptography.

Whether or not nonuniform algorithms for a problem P are known that are
much faster than uniform ones depends very much on the problem P.

Example 1 (No known difference between uniform and nonuniform). There is no
known nonuniform algorithm for the general integer factorization problem that
is faster than the fastest known uniform algorithms.

Another Look at Tightness II 27

In the next two examples, let Hk be a fixed family of hash functions, one
for each security level k. In both examples, suppose that the input is k writ-
ten in unary (this is a trick used to allow the input length to be different for
different k).

Example 2 (Trivial in the nonuniform model). For a well-constructed family Hk,
by definition one knows no efficient uniform algorithm for finding a collision. In
contrast, one has a trivial nonuniform algorithm, since the advice string can
consist of two messages whose hash values are equal.

Example 3 (Between these two extremes). Consider the problem of distinguish-
ing a hash function Hk in a family of keyed hash functions from a random
function; a function for which this cannot be done with non-negligible success
probability is said to have the pseudorandom function property (PRF). More
precisely, an attack on the PRF property is an algorithm that queries an oracle
that with equal probability is either the hash function with hidden key or else
a random function and, based on the responses, can determine which it is with
probability ε+1/2 of being correct, where the advantage ε is significantly greater
than 0. For a well-constructed hash function no uniform algorithm is known that
is faster than simply guessing the key, and this has advantage roughly T/2�,
where � is the key-length and T is the time (here we are assuming that each
query takes unit time). However, there is a simple nonuniform algorithm that
runs in unit time and distinguishes a hash function with hidden key from a ran-
dom function with advantage roughly 2−�/2—an advantage that would take the
uniform algorithm time T ≈ 2�/2 to achieve. Our advice string is a message M
that has a very special property with respect to Hk when averaged over all pos-
sible keys. For example, let M be a message that maximizes the probability that
the 29th output bit is 1 rather than 0. The nonuniform algorithm then queries M
to the oracle; if the oracle’s response has 29th bit equal to 1, it guesses that the
oracle is the hash function with hidden key, but if the 29th bit is 0, it guesses that
the oracle is a random function. It follows by an easy argument from the theory
of random walks that the expected advantage of this nonuniform algorithm is
roughly 2−�/2.

As pointed out in [55], almost all security proofs in the literature are valid
in the uniform model of complexity, and only a few use what’s sometimes called
coin-fixing to get a proof that is valid only in the nonuniform model. As far as
we are aware, none of the nonuniform theorems in the literature have hypotheses
of the sort in Examples 1 and 2; all are like Example 3, that is, the task whose
hardness is being assumed is easier in the nonuniform model, but not trivial. The
authors’ main purpose in using coin-fixing in these cases is to achieve a tighter
security reduction than they could have achieved in the uniform model.

Unfortunately, it is easy to get tripped up if one attempts to use coin-fixing
to get a stronger result—authors fool themselves (and others) into thinking that
their result is much stronger than it actually is. The most important example of
a researcher who was led astray by his belief in the nonuniform model is Bellare

28 S. Chatterjee et al.

in his Crypto 2006 paper [12] on HMAC. We will summarize this story and carry
it up to the present by discussing some errors in his revised version [14], which
was recently published in the Journal of Cryptology.

4 The HMAC Saga

HMAC [17,19] is a popular hash-function-based message authentication code
(MAC). The controversy about nonuniform reductions concerns security proofs
of the PRF property (see Example 3 of Sect. 3) of NMAC, which is a MAC that is
closely related to HMAC. We shall discuss NMAC rather than HMAC, because
the extension of results from NMAC to HMAC has generated relatively little
controversy (see [57] for an analysis of 1-key variants of NMAC).

By a compression function we mean a function z = f(x, y), where y ∈ {0, 1}b

and x, z ∈ {0, 1}c; typically b = 512 and c is equal to either 128 (for MD5), 160
(for SHA1), or 256 (for SHA256).

Given a compression function f , to construct an iterated hash function H
one starts with an initialization vector IV, which is a publicly known bitstring
of length c that is fixed once and for all. Suppose that M = (M1, . . . ,Mm)
is a message consisting of m ≤ m b-bit blocks (where m is the bound on the
block-length of messages; for simplicity we suppose that all message lengths are
multiples of b). Then we set x0 = IV, and for i = 1, . . . , m we recursively set
xi = f(xi−1,Mi); finally, we set H(M) = HIV(M) = xm, which is the c-bit hash
value of M .3

Suppose that Alice shares two secret c-bit keys K1 and K2 with Bob, and
wants to create an NMAC-tag of a message M so that Bob can verify that the
message came from Alice. She first uses K1 as the IV and computes HK1(M).
She pads this with b−c zeros (denoted by a 0-superscript) and sets her tag t(M)
equal to HK2(HK1(M)0).

The purpose of finding a security reduction for NMAC is to show that if one
has confidence that the compression function f enjoys a certain security property,
then one can be sure that NMAC has the same property. Two decades ago
HMAC was first proposed by Bellare et al. [17,19]. In [17] they proved (assuming
weak collision-resistance of H) that if f has the secure-MAC property, then so
does NMAC. (The secure-MAC property is analogous to existential security of
signatures, see Sect. 2.) The proof in [17] was tight. It was also short and well-
written; anyone who was considering using HMAC could readily verify that the
proof was tight and correct.

In 2006 Bellare [12] published a different security reduction for NMAC. First,
he dispensed with the collision-resistance assumption on H, which is a rela-
tively strong assumption that has turned out to be incorrect for some real-
world iterated hash functions. Second, he replaced the secure-MAC property
with the stronger PRF property, that is, he showed that if f(x, y) (with x serv-
ing as the hidden key) has the PRF property, then so does NMAC. This was
3 In iterated hash functions one also appends a “length block” to the message M

before hashing. We are omitting the length block for simplicity.

Another Look at Tightness II 29

important in order to justify the use of HMAC for purposes other than mes-
sage authentication—in applications where the PRF property is desired, such as
key-derivation protocols [34,45,60] and password-systems [66].

Remark 1. A third advantage (not mentioned in [12,14]) of assuming the PRF
property rather than collision-resistance arises if one derives a concrete security
assurance using the best known generic attacks on the property that the com-
pression function is assumed to have. As far as we know the best generic attack
on the PRF property using classical (i.e., uniform and non-quantum) algorithms
has running time ≈2c (it amounts to guessing the hidden key), whereas the
birthday-paradox attack on collision-resistance only takes time ≈2c/2. Other
things being equal, one expects that c must be twice as great if one is assuming
collision-resistance than if one is assuming the PRF property.

However, in 2012 Koblitz and Menezes found a flaw in [12]. For Bellare,
who along with Rogaway popularized the concept of “practice-oriented prov-
able security” [11], his theorem was not merely a theoretical result, but rather
was intended to provide some concrete assurance to practitioners. Thus, it was
important for him to determine in real-world terms what guarantee his theorem
provided. To do this, Bellare’s approach was to take the fastest known generic
attack on the PRF property of a compression function, and evaluate what his
theorem then implied for the security of NMAC. In his analysis he took the key-
guessing attack (see Example 3 of Sect. 3) as the best generic attack on f , and
concluded that NMAC is secure “up to roughly 2c/2/m queries.” For instance,
for a bound of m = 220 on the block-length of messages Bellare was claiming that
NMAC-MD5 is secure up to 244 queries and NMAC-SHA1 up to 260 queries. (In
2006, MD5 and SHA1 were common choices for hash functions.)

Bellare failed to account for the fact that, because of his “coin-fixing,” i.e.,
nonuniform security reduction, he was logically required to examine security of
f against nonuniform attacks, not just uniform attacks. As we saw in Sect. 3,
there are simple generic nonuniform attacks on the PRF property that have
a much higher success probability than the key-guessing attack. If one repeats
Bellare’s analysis using the nonuniform attack described in Sect. 3, one finds
that NMAC’s security is guaranteed only up to at most 2c/4/

√
m queries, that

is, 222 for NMAC-MD5 and 230 for NMAC-SHA1. That level of security is of
little value in practice.

When we say that Bellare’s paper had a basic flaw, we have in mind the
definition of the f-word that was given by Stern et al. [76], who said:

The use of provable security is more subtle than it appears, and flaws in
security proofs themselves might have a devastating effect on the trust-
worthiness of cryptography. By flaws, we do not mean plain mathematical
errors but rather ambiguities or misconceptions in the security model.

Now let us bring this story up to the present. In an effort to determine what
can be said about the relation between the PRF property of the compression
function f and the PRF property of NMAC, Koblitz and Menezes [54] gave a

30 S. Chatterjee et al.

uniform security reduction that had tightness gap m · max(2, q2/(2cε)), where ε
is a measure of the PRF-security of f and q is a bound on the number of queries.
They had to use a stronger version of the PRF property of f (a version that’s
similar to the property used in [18]); a corollary of their theorem then gave a
tightness gap of 2mq if one assumes only standard PRF-security of f .4

The interpretation in [54] of the authors’ Theorem 10.1 and Corollary 10.3 on
NMAC security is pessimistic. Those results assume the single-user setting and
strong properties of f ; moreover, they have large tightness gaps. The authors
conclude:

We would not want to go out on a limb and say that our Theorem 10.1
is totally worthless. However, its value as a source of assurance about the
real-world security of HMAC is questionable at best.

Specifically, they caution that “In our opinion none of the provable security
theorems for HMAC with MD5 or SHA1 [...] by themselves provide a useful
guarantee of security.” For instance, suppose that the query bound q is 230, the
block-length bound m is 225, and the number of users n is 225. (As we shall
see in AppendixB, the step from single-user to multi-user setting introduces an
additional factor of n in the tightness gap.) Then the number of bits of security
drops by 30 + 25 + 25 = 80 due to these tightness gaps. In other words, the
guarantees drop to 48 bits and 80 bits in the case of MD5 and SHA1, respectively.

Remark 2. If SHA256 is used in order to have at least 128 bits of HMAC security,
then there is such a huge safety margin that even these tightness gaps do not
lower the security to an undesirable level, at least if one assumes that there
is no attack on the PRF property of the SHA256 compression function that is
faster than the generic key-guessing one. This is because key-guessing takes time
≈2256, leaving a safety margin of 128 bits. One reason SHA256 might be used for
HMAC even if only 128 bits of security are required is that the user might need
SHA256 for other protocols that require collision-resistance and so she cannot
allow fewer than 256 bits of hash-output; in the interest of simplicity she might
decide to use a single hash function everywhere rather than switching to SHA1
for HMAC.

Remark 3. The above comment about a huge safety margin when SHA256 is
used in HMAC applies only if a 256-bit key and 256-bit message tags are used.
Not all standards specify this. For example, the NIST standard [33] recommends
128-bit HMAC keys for 128 bits of security and allows 64-bit tags. The recom-
mendations in [33] are supported by an ad hoc analysis, but are not supported
by any provable security theorem.
4 The early posted versions of [54] contained a serious error that was pointed out to the

authors by Pietrzak, namely, the theorem is given assuming only the PRF property
rather than the strong PRF property that is needed in the proof. This error was
explained and corrected in the posted versions and the published version. Soon after
the corrected version was posted, Pietrzak posted a paper [70] containing a different
proof of essentially the same result as in Corollary 10.3 of Theorem 10.1 of [54] (see
also [40]).

Another Look at Tightness II 31

Aside from the issue of the tightness gaps, there is another fundamental rea-
son why the theorems in [12,14,54] about security of NMAC and HMAC under
the PRF assumption offer little practical assurance. To the best of our knowl-
edge, the PRF assumption has never been seriously studied for the compression
functions used in MD5, SHA1, or SHA256; in fact, we are not aware of a sin-
gle paper that treats this question. Moreover, when those compression functions
were constructed, the PRF property was not regarded as something that had to
be satisfied – rather, they were constructed for the purpose of collision-resistance
and pre-image resistance. Thus, in the case of the concrete hash functions used
in practice, we have no evidence that could rule out attacks on the PRF prop-
erty that are much better than the generic ones. It would be very worthwhile for
people to study how resistant the concrete compression functions are to attacks
on the PRF property; in the meantime it would be prudent not to rely heavily
on theorems that make the PRF assumption.

Remark 4. The situation was quite different for AES, since a longstanding cri-
terion for a good block cipher has been to have the pseudorandom permutation
(PRP) property with respect to the secret (hidden) key. That is, an adversary
should not be able to distinguish between the output of a block cipher with
hidden key and that of a random permutation. The PRF property is close to the
PRP property as formalized by the PRP/PRF switching lemma (see Sect. 5 of
[73]), and so it is reasonable to assume that AES has the PRF property. On the
other hand, the criteria for judging hash constructions have been very different
from those for judging encryption.

Remark 5. In [15] the authors prove security of a MAC scheme called AMAC,
which is a prefix-MAC in which the output of the hash function is truncated so
as to thwart the extension attacks to which prefix-MACs are susceptible. As in
the case of the HMAC papers discussed above, the authors of [15] assume that
the underlying compression function is a PRF. Their proof has the remarkable
feature that it does not lose tightness in the multi-user setting. On the other
hand, the tightness gap in the single-user setting is much larger than in the
above security reductions for HMAC—namely, roughly q2m2. With, for instance,
q ≈ 230 and m ≈ 225 one has a tightness gap of 110 bits. The paper [15] does
recommend the use of SHA512, and if one assumes 512 bits of PRF-security for
its compression function, then we have such a large safety margin that a 2110

tightness gap is not worrisome. Nevertheless, it should be stressed that the PRF
assumption is a very strong one that, to the best of our knowledge, has never
been studied or tested for the SHA512 compression function.

Remark 6. In [43], Goldwasser and Kalai propose a notion of what it means
for a complexity assumption to be reasonable in the context of reductionist
security proofs. Among other things, the assumption should be falsifiable and
non-interactive. Since the assumption that the compression function in a hash
function such as MD5, SHA1, SHA256 or SHA512 has the PRF property is an
interactive one, it does not meet the Goldwasser-Kalai standard for a reasonable
cryptographic assumption. Rather, in the words of Goldwasser and Kalai, such
an assumption “can be harmful to the credibility of our field.”

32 S. Chatterjee et al.

Returning to our narrative, in 2015 Bellare [14] published a revised version
of [12] in J. Cryptology that, regrettably, just muddied the waters because of
errors and unclarities in his abstract and introduction that could easily mislead
practitioners. First of all, the first sentence of the abstract states that the 1996
paper [17] proved “HMAC . . . to be a PRF assuming that (1) the underlying
compression function is a PRF, and (2) the iterated hash function is weakly
collision resistant.” In fact, only the secure-MAC property, not the PRF property,
was proved in [17].5

In the second place, in the concluding paragraph of the introduction of [14]
Bellare gives the impression that Pietrzak in [70] proved tight bounds for the
PRF-security of NMAC:6 “Tightness estimates [in the present paper] are now
based on the blackbox version of our reductions and indicate that our bounds
are not as tight as we had thought. The gap has been filled by Pietrzak [70], who
gives blackbox reduction proofs for NMAC that he shows via matching attack
to be tight.”7 A practitioner who reads the abstract and introduction of [14] but
not the technical sections would probably go away believing that PRF-security of
NMAC has been proved to be tightly related to PRF-security of the compression
function. This is false. In fact, it is the opposite of what Pietrzak proved.

What Pietrzak showed in [40,70] was that the mq tightness gap cannot be
reduced in the general case (although the possibility that better tightness might
conceivably be achieved for a special class of compression functions wasn’t ruled
out). He found a simple attack on NMAC that shows this. This is far from
reassuring—it’s what Menezes in [64] called the “nightmare scenario.” To put it
another way, Pietrzak’s attack shows a huge separation in PRF-security between
the compression function and NMAC. The desired interpretation of a security
reduction of the sort in [14,54] or [40] is that it should tell you that the study of a
certain security property of a complicated protocol is unnecessary if one studies
the corresponding property of a standard primitive. In this case the tightness
gap along with Pietrzak’s attack show that this is not the case.

It is unfortunate that neither of Bellare’s papers [12,14] discuss the prac-
tical implications of the large tightness gap. It would be interesting to know

5 The abstract to [40] also erroneously states that “NMAC was introduced by Bel-
lare, Canetti and Krawczyk [Crypto96], who proved it to be a secure pseudorandom
function (PRF), and thus also a MAC, assuming that (1) f is a PRF and (2) the
function we get when cascading f is weakly collision-resistant”.

6 In this quotation Bellare uses the word “blackbox” in a non-standard way. Later in
his paper he defines a “blackbox” reduction to be one that is constructible and a
“non-blackbox” reduction to be one that is non-constructible. However, when com-
paring a proof as in [12] that uses “coin-fixing” with more recent proofs that do not,
the standard terms are nonuniform/uniform rather than non-blackbox/blackbox.

7 The section “Our Contributions” in [40] starts out: “Our first contribution is a
simpler, uniform, and as we will show, basically tight proof for the PRF-security
of NMACf assuming only that f is a PRF.” The authors apparently meant to say
that their tightness gap is best possible, i.e., cannot be improved. Their proof is
not tight, however—far from it. Their tightness gap is nq, essentially the same as in
Corollary 10.3 of [54].

Another Look at Tightness II 33

why he disagrees with the conclusion of Koblitz–Menezes that the tightness
gaps and other weaknesses render the security reductions (proved by them in
Theorems 10.1 and Corollary 10.3 of [54]) “questionable at best” as a source of
real-world assurance. In view of Pietrzak’s recent work, which shows that the
tightness gap cannot be removed and reflects an actual attack, it is particularly
puzzling that even the revised paper [14] has nothing to say about the practical
implications of this weakness in the security reductions for HMAC.

We conclude this section with a recommendation. Standards bodies should
reexamine—taking into account tightness gaps—the security of all standardized
protocols that use HMAC for non-MAC purposes such as key derivation or pass-
words. The same should be done for HMAC-protocols using hash functions such
as MD5 or SHA1 that are not believed to have weak collision-resistance in the
sense of [17].

In some cases adjustments should be made, such as mandating a feature that
is currently optional (such as a nonce or a randomization) in order to prevent
known attacks; in other cases the recommended parameters or choices of hash
function may need to be changed in order to account for the tightness gaps.
Protocols that use HMAC as a MAC and use a collision-resistant hash function
do not have to be reexamined, because in that case [17] has a tight security
reduction. (However, in view of the multi-user attacks discussed in AppendixB,
the standards for any protocol that is used in a setting with a large number of
users should be modified if necessary to account for the multi-user/single-user
tightness gap.)

5 Lattice-Based Quantum-Safe Crypto

The reason for intense interest in lattice-based cryptography can be traced back
to the early years of public key, when Merkle–Hellman proposed the knapsack
public-key encryption system. It aroused a lot of interest both because of its
superior efficiency (compared to RSA) and the supposedly high level of confi-
dence in its security, since it was based on an NP-hard problem. Within a few
years Shamir, Brickell and others completely broke both the original knapsack
and modified versions of it. It turned out that the knapsack was based on an
easy subproblem of the NP-hard subset sum problem, not on hard instances.
This was a traumatic experience for researchers in the nascent field of public-
key cryptography. The lesson learned was that it would be good to base systems
on hardness of a problem for which the average case is provably equivalent to
the hardest case (possibly of a different problem).

There was a lot of excitement (even in the popular press) when Ajtai–Dwork
announced a lattice-based encryption scheme based on such a problem [2,3].
Since that time much of the motivation for working on lattice-based systems
(especially now that standards bodies are looking for quantum-safe crypto-
graphic protocols that have provable security guarantees) is that many of them
can be proved to have worst-case/average-case equivalence. (For a comprehensive
overview of research on lattice-based cryptography in the last ten years, see [69].)

34 S. Chatterjee et al.

In this section we shall look at the worst-case to average case reductions from
the standpoint of tightness.

First, though, it is important to recognize that equivalence between average
and worst cases is not the Holy Grail for cryptographers that some might think.
As Dan Bernstein has noted (quoted in [43]), long before Ajtai-Dwork we had
discrete-log cryptosystems over characteristic-two fields. For each k the Discrete
Log Problem (DLP) in the group F

∗
2k is random self-reducible, meaning that

instances can be randomized. This gives a tight equivalence between hardest
instances and average instances. However, the DLP in those groups has long
been known to be weaker than the DLP in the multiplicative group of prime-
order fields [30], and recently it was completely broken [9].

Meanwhile the general DLP in the multiplicative group of prime fields F
∗
p

does not have this nice self-reducibility property, since for a given bitlength of
p one has vastly different levels of difficulty of the DLP. Yet as far as we know
these groups are secure for suitably chosen p of bitlength >1024.

5.1 Lattices

A (full rank) lattice L in R
n is the set of all integer linear combinations of n

linearly independent vectors B = {v1, v2, . . . , vn}. The set B is called a basis of
L, and the dimension of L is n. If the vi are in Z

n, then L is said to be an integer
lattice; all lattices in this section are integer lattices. The length of a vector is
its Euclidean norm. For each 1 ≤ i ≤ n, the ith successive minimum λi(L) is
the smallest real number r such that L has i linearly independent vectors the
longest of which has length r. Thus, λ1(L) is the length of a shortest nonzero
vector in L.

5.2 Lattice Problems

Let L be an n-dimensional lattice. When we say that we are “given a lattice” L,
we mean that we are given some arbitrary basis for L.

A well-studied lattice problem is the Shortest Vector Problem (SVP): Given
L, find a lattice vector of length λ1(L). The SVP problem is NP-hard. The fastest
classical algorithms known for solving it have provable running time 2n+o(n)

[1] and heuristic running time 20.337n+o(n) [61]. The fastest quantum algorithm
known for solving SVP has heuristic running time 20.286n+o(n) [61]. More gen-
erally, one can consider the Approximate-SVP Problem (SVPγ), which is the
problem of finding a nonzero lattice vector of length at most γ ·λ1(L). If γ >

√
n,

then SVPγ is unlikely to be NP-hard [41]. In fact, if γ > 2n log log n/ log n, then
SVPγ can be solved in polynomial time using the LLL algorithm. For γ = 2k,
the fastest algorithm known for SVPγ has running time 2Θ̃(n/k), where the Θ̃
term hides a constant factor and a factor of a power of log n (see [69]).

A related problem to SVPγ is the Approximate Shortest Independent Vectors
Problem (SIVPγ): Given L, find n linearly independent lattice vectors all of
which have length at most γ · λn(L). The hardness of SIVPγ is similar to that
of SVPγ [21]; in fact, SIVP√

nγ polynomial-time reduces to SVPγ [65].

Another Look at Tightness II 35

5.3 Learning with Errors

The Learning With Errors (LWE) problem was introduced by Regev in 2005 [71].
The LWE problem and the related R-LWE problem (see [63]) have been exten-
sively used to design many cryptographic protocols including public-key encryp-
tion, identity-based encryption, and fully homomorphic encryption. Public-key
encryption schemes based on LWE (and R-LWE) are also attractive because
no quantum algorithms for solving LWE are known that perform better than
the fastest known classical algorithms. Thus, LWE-based public-key encryption
schemes are viable candidates for post-quantum cryptography.

Let q = q(n) and m = m(n) be integers, and let α = α(n) ∈ (0, 1) be
such that αq > 2

√
n. Let χ be the probability distribution on Zq obtained by

sampling from a Gaussian distribution with mean 0 and variance α2/2π, and
then multiplying by q and rounding to the closest integer modulo q; for more
details see [71]. Then the (search version of the) LWE problem is the following:
Let s be a secret vector selected uniformly at random from Z

n
q . Given m samples

(ai, ai · s+ ei), where each ai is selected independently and uniformly at random
from Z

n
q , and where each ei is selected independently from Z

n
q according to χ,

determine s. Intuitively, in LWE you are asked to solve a linear system modulo
q, except that the constants on the right of the system are given to you with
random errors according to a Gaussian distribution.

The decisional version of LWE, called DLWE, asks us to determine whether
we have been given m LWE samples (ai, ai ·s+ei) or m random samples (ai, ui),
where each ui is selected independently and uniformly at random from Zq.

5.4 Regev’s Reduction

Regev [71] proved the following remarkable result8.

Theorem 1. If there exists an efficient algorithm that solves DLWE (in the
average case), then there exists an efficient quantum algorithm that solves SIVPγ

in the worst case where γ = Õ(n/α).

Suppose now that a lattice-based cryptosystem has been designed with a
reductionist security proof with respect to the hardness of average-case DLWE.
By Theorem 1, this cryptosystem also has a reductionist security proof with
respect to the hardness of SIVPγ in the worst case. This is widely interpreted
as providing ironclad assurance for the security of the cryptosystem since there
is compelling evidence that the well-studied SIVPγ problem is hard in the worst
case when γ is small.

However, Regev’s theorem and similar results are asymptotic. Although
results of this type are interesting from a qualitative point of view, it is sur-
prising that in the literature there are virtually no attempts to determine the
8 Regev’s theorem can also be stated with the GapSVPγ problem instead of SIVPγ .

Given an n-dimensional lattice L and a number r > 0, GapSVPγ requires that one
output “yes” if λ1(L) ≤ r and “no” if λ1(L) > γr (either “yes” or “no” is allowed if
r < λ1 ≤ γr).

36 S. Chatterjee et al.

concrete security assurances that worst-case to average-case results such as
Theorem 1 provide for lattice-based cryptosystems. That is, in the lattice-based
cryptography literature concerning worst-case/average-case results, practice-
oriented provable security in the sense of Bellare-Rogaway (as explained in the
quote from [11] in the Introduction) is conspicuous by its absence.

Remark 7. Suppose that one has a polynomial-time reduction of a well-studied
worst-case problem Π1 to an average-case problem Π2. Then, if one assumes
that the worst-case instances of Π1 are not polytime solvable, then the reduc-
tion provides the assurance that no polynomial-time algorithm can solve Π2 on
average. This asymptotic assurance is viewed by some as ruling out “structural
weaknesses” in Π2; for example, see Sect. 5.1 of [62]. However, in the absence of
a concrete analysis, the reduction by itself does not guarantee the hardness of
fixed-sized instances of Π2.

A closer examination of Theorem 1 reveals several obstacles to using it to
obtain concrete security assurances for DLWE-based cryptosystems. We list five
such difficulties. Whereas the first and second are widely acknowledged in the
literature, there is scant mention of the remaining three difficulties.

1. One needs to assess the hardness of SIVPγ under quantum attacks and not
just under attacks on classical computers.

2. For parameters n, q and α that arise in DLWE-based cryptosystems, the
SIVPγ problem is likely not NP-hard. Thus, the evidence for worst-case hard-
ness of SIVPγ instances that arise in lattice-based cryptography is not as com-
pelling as the evidence for the worst-case hardness of an NP-hard problem.

3. Very little work has been done on concretely assessing the hardness of SIVPγ .
As mentioned in Sect. 5.2, the fastest attack on SIVPγ where γ = 2k has
running time 2Θ̃(n/k); however this expression for the running time is far
from concrete.

4. The statement of Theorem 1 uses “efficient” to mean “polynomial time in n”.
However, the exact tightness gap in the reduction of worst-case SIVPγ to
average-case DLWE has to the best of our knowledge never been stated.

5. A more precise formulation of DLWE involves several parameters including
the number of available samples and the adversary’s advantage in distin-
guishing between LWE and random samples. In practice, these parameters
have to be chosen based on the security needs of the DLWE-based cryptosys-
tem. However, there is little discussion in the literature of concrete values
for these parameters in the context of specific protocols. All the reductionist
security claims that we examined for DLWE-based cryptosystems are stated
in asymptotic terms and make liberal use of the phrases “polynomial time,”
“polynomial number,” and “non-negligible.”

Section 5.5 elaborates on (4) and (5).

5.5 Analysis of Regev’s Reduction

A careful examination of Regev’s proof of Theorem1 (see Appendix A for details)
reveals the following refined statement. For concreteness, we will take q = n2

Another Look at Tightness II 37

and α = 1/(
√

n log2 n), whence γ = Õ(n1.5); these are the parameters proposed
by Regev for his DLWE-based public-key encryption scheme [71]. Suppose that
there is an algorithm W1 that, given m = nc samples, solves DLWE for a fraction
1/nd1 of all s ∈ Z

n
q with advantage at least 1/nd2 . Then there is a polynomial-

time algorithm W2 for solving SIVPγ that calls the W1 oracle a total of

O(n11+c+d1+2d2) (1)

times. The tightness gap is thus O(n11+c+d1+2d2). While this is polynomial in
n, it can be massive for concrete values of n, c, d1 and d2.

Suppose, for example, that one takes n = 1024 (n = 1024 is used in
[5,26] for implementations of an R-LWE based cryptosystem). In a DLWE-
based encryption scheme such as Regev’s [71], the public key is a collection
of m = n1+ε LWE samples and the secret key is s; for simplicity we take m = n
whence c = 1. The encryption scheme is considered to be insecure if an attacker
can distinguish between encryptions of 0 and 1 with advantage at least 1/nd for
some d > 0 depending on the security parameter. This advantage is assessed
over choices of public-private key pairs and the randomness in the encryption
algorithm. Regev showed that such an adversary can be used to solve DLWE for
a fraction 1/4nd of all s ∈ Z

n
q with advantage at least 1/8nd; thus d1 ≈ d and

d2 ≈ d. If one is aiming for the 128-bit security level, then a reasonable choice for
d might be 12.8. Then, ignoring the hidden constant in the expression (1), the
tightness gap is n50.4 ≈ 2504. Thus, if average-case DLWE can be solved in time
T , then Theorem 1 shows that SIVPγ can be solved by a quantum algorithm in
time 2504T . As mentioned above, the fastest quantum algorithm known for solv-
ing SVP has running time 20.286n+o(n). If we assume that this is also the fastest
quantum algorithm for solving SIVPγ and ignore the o(n) term in the exponent,
then the algorithm has running time approximately 2293 � 2504T . Thus, for
our choice of parameters Theorem 1 provides no assurances whatsoever for the
hardness of average-case DLWE or for the security of the encryption scheme. In
other words, even though Theorem1 is viewed by many as providing “power-
ful qualitative indicators of security” (in the words of the anonymous reviewer
quoted in Sect. 1), the quantitative security assurance it provides is vacuous.

Remark 8. The condition αq > 2
√

n is needed for Regev’s proof of Theorem 1
to go through. It was later discovered that this condition is indeed necessary for
security. In 2011, Arora and Ge [7] showed that if αq = nt, where t < 1/2 is
a constant and q � n2t log2 n, then there is a subexponential 2Õ(n2t) algorithm
that solves LWE. This attack is touted as a demonstration of the importance
of security proofs—Theorem 1 anticipated the Arora-Ge attack which was dis-
covered 6 years after Theorem 1 was proven. In the same vein, one can wonder
about the implications of the large tightness gap in Theorem1 for the concrete
hardness of DLWE. One needs to ask: Is the tightness gap anticipating yet-to-
be-discovered algorithms for solving DLWE that are considerably faster than the
fastest algorithms for solving SIVPn1.5? The answer to this question has major
consequences for the security of DLWE-based protocols.

38 S. Chatterjee et al.

On the other hand, if one were to select a larger value for n while still
targeting the 128-bit security level, then the large tightness gap in (1) might
not be a concern if there is a very large safety margin—large enough so that
the fastest quantum algorithm for solving the corresponding SIVPγ is believed
to have running time 2k for k � 128. While this necessitates selecting a larger
value of n, the impact on the cryptosystem’s performance might not be too
large. Thus, there remains the possibility that Theorem1 can indeed provide
meaningful security assurances for DLWE-based cryptosystems in practice. In
order for this to occur, the following problems should be further investigated:

1. Determine concrete lower bounds for the worst-case quantum hardness of
SIVPγ (or GapSVPγ) in terms of n and γ.

2. Determine whether the tightness gap in Regev’s worst-case to average-case
reduction (see the estimate (1)) can be improved. Such improvements might
be achieved either through a closer analysis of Regev’s reduction, or else by
formulating new reductions.

3. Determine appropriate values of c, d1 and d2.
4. Assess the tightness gap in the reductionist security proof for the cryptosys-

tem (with respect to average-case DLWE).

Similarly, it would be very worthwhile to assess whether the analogue of
Theorem 1 for the R-LWE problem provides any meaningful assurances for cryp-
tosystems based on R-LWE using parameters that have been proposed in recent
work [4,5,26,67]. We note that the worst-case to average-case reduction for R-
LWE [63] is with respect to SVPγ in so-called ideal lattices (that is, lattices
that come from ideals in rings). Deriving concrete bounds on the hardness of
SVPγ for these lattices is more challenging than deriving concrete bounds on
the hardness of SIVPγ for arbitrary lattices.

Remark 9. In preparation for the possible advent of large-scale quantum com-
puters, standards organizations have begun examining candidates for public-key
cryptosystems that withstand attacks by quantum computers (see [58]). Public-
key cryptosystems based on R-LWE are considered to be one of the leading can-
didates for these quantum-safe standards. Initial deployment of quantum-safe
cryptosystems will likely be for the protection of highly sensitive data whose
confidentiality needs to be assured for several decades. For these applications,
long-term security guarantees will be more important than short-term concerns
of efficiency. Thus, it would be prudent to select parameters for R-LWE cryp-
tosystems in such a way that the worst-case to average-case reductions provide
meaningful concrete security guarantees. As mentioned above, the degradation
in performance that results from larger lattice parameters might not be of great
concern for high-security applications.

Remark 10. NTRU is a lattice-based public-key encryption scheme that was first
presented in 1996 (see [46,47]) and has been standardized by several accredited
organizations including ANSI [6] and IEEE [48]. NTRU uses lattices that arise
from certain polynomial rings. The algebraic structure of these lattices facil-
itate implementations that are significantly faster than public-key encryption

Another Look at Tightness II 39

schemes based on LWE and R-LWE. Despite its longevity, NTRU is routinely
disparaged in the theoretical cryptography literature because, unlike the case of
public-key encryption schemes based on LWE or R-LWE (including some vari-
ants of NTRU that were proposed more recently [75]), there are no worst-case
to average-case reductions to support the security of its underlying lattice prob-
lems. However, as we have noted, whether or not these asymptotic worst-case to
average-case reductions provide meaningful concrete security assurances is far
from being understood. Thus, the claim that, because of worst-case/average-
case reductions, the more recent lattice-based encryption schemes have better
security than classical NTRU rests on a flimsy scientific foundation.

In [68] Peikert describes asymptotic analyses of the security of lattice-based
systems, and concludes:

...worst-case reductions give a hard-and-fast guarantee that the cryptosys-
tem is at least as hard to break as the hardest instances of some underlying
problem. This gives a true lower bound on security, and prevents the kind
of unexpected weaknesses that have so often been exposed in schemes that
lack such reductions.

This would be true in a meaningful sense if the reductions were tight and if the
underlying problem were SIVPγ for a small γ (small enough so that SIVPγ is
NP-hard or so that there is reason to have confidence that there are no efficient
algorithms for SIVPγ). However, neither is the case. When discussing asymptotic
results and writing for a broad readership interested in practical cryptography,
the use of such terms as “hard-and-fast guarantee” and “true lower bound on
security” is inappropriate and misleading, because in real-world cryptography
the normal interpretation of these terms is that one has concrete practical secu-
rity assurances.

6 Tightness in Identity-Based Encryption

By way of counterpoint to the main theme of this paper—the potential dangers
in ignoring tightness gaps in security reductions—we now discuss the case of
Boneh-Franklin Identity-Based Encryption (IBE), where a large tightness gap
is, we believe, of no concern. The evidence for this belief is that an informal (but
convincing) argument allows one to reduce to the case where the adversary is
not allowed any key-extraction queries.

An identity-based encryption scheme offers the flexibility of using any string
— in particular, the identity of an individual or entity—as a public key. There
is an authority called the Private Key Generator which publishes its own public
parameters, including a public key, and maintains a master secret key. To obtain
a decryption key corresponding to her identity, a user in the system applies to
the Private Key Generator, which performs appropriate checks (possibly includ-
ing physical checks) to ascertain the identity. Then the Private Key Generator
uses its public parameters and master secret key to generate the decryption key

40 S. Chatterjee et al.

corresponding to the identity. This decryption key is transmitted to the user
through a secure channel. Anybody who wishes to securely send a message uses
the identity of the recipient and the public parameters to perform the encryption.
The recipient can decrypt using her decryption key.

Security of an IBE scheme is modeled using a game between a simulator
and an adversary [24]. The game models security against an attack by a set of
colluding users attempting to decrypt a ciphertext intended for a user outside
the set.

In the initial phase, the simulator sets up an instance of the scheme based on
the security parameter. The simulator generates the public parameters, which
are given to the adversary, and the master secret key. The adversary is allowed to
adaptively make key-extraction queries to the simulator, who must provide the
decryption keys corresponding to identities of the adversary’s choosing. At some
point, the adversary provides the simulator with an identity id� (called the target
identity) and two messages M0 and M1 of equal length. The simulator randomly
chooses a bit b and provides the adversary with C�, which is an encryption of
Mb for the identity id�. The adversary continues making key-extraction queries
in an adaptive manner. Finally, the adversary outputs its guess b′; its advantage
in winning the game is defined to be |Pr[b = b′] − 1/2|. The adversary may not
make more than one key-extraction query for the same id; and of course it must
not have queried the simulator for the decryption key of id�, as otherwise the
game becomes trivial to win. The adversary’s resources are measured by the
time that it takes and the number of key-extraction queries that it makes.

The model that we have described provides what is called IND-ID-CPA secu-
rity (indistinguishability for ID-based encryption under key-extraction9 attack).
This model does not allow the adversary to make decryption queries. The model
where such queries are also allowed is said to provide IND-ID-CCA (chosen
ciphertext) security.

The first efficient IBE construction is due to Boneh and Franklin [24]. Their
scheme—and in fact all subsequent efficient IBE constructions—uses bilinear
pairings. A (symmetric) bilinear pairing is a map e : G × G → GT , where
G = 〈P 〉 and GT are groups of some prime order p, that satisfies the following
conditions: e(aP, bP) = e(P, P)ab, e(P, P) �= 1, and e is efficiently computable.
Practical bilinear pairings are obtained from elliptic curves where G is a subgroup
of points on an appropriately chosen elliptic curve and GT is a subgroup of the
multiplicative group of a finite field.

Identity-based encryption schemes are proved secure under various compu-
tational hardness assumptions. We mention the basic bilinear Diffie-Hellman
(BDH) assumption and two of its derivatives. The bilinear Diffie-Hellman (BDH)
assumption is that computing e(P, P)abc given (P, aP, bP, cP) is infeasible. The
decisional bilinear Diffie-Hellman (DBDH) assumption is that distinguishing
between the distributions (P, aP, bP, cP, e(P, P)abc) and (P, aP, bP, cP, e(P, P)z),
where a, b, c and z are independent and uniform random choices from Zp, is

9 In the IBE setting “CP” does not stand for chosen plaintext but rather for clave
pedida, which means “requested key” in Spanish.

Another Look at Tightness II 41

infeasible. The gap bilinear Diffie-Hellman (GBDH) assumption is that comput-
ing e(P, P)abc given (P, aP, bP, cP) and access to a DBDH oracle is infeasible.

We now briefly describe the basic Boneh-Franklin IBE scheme. The Private
Key Generator sets up the scheme by selecting a generator P of the group G;
choosing a random s from Zp and setting Q = sP ; and selecting two hash
functions H1 : {0, 1}∗ → G, H2 : GT → {0, 1}n. The public parameters are
(P,Q,H1,H2) while the master secret key is s. Given an identity id ∈ {0, 1}∗,
let Qid = H1(id); the decryption key is defined to be did = sQid. Encryption of an
n-bit message M for the user with identity id is done by first choosing a random
r in Zp and then computing the ciphertext (C1, C2) = (rP,M ⊕H2(e(Q,Qid)r)).
Decryption is made possible from the relation e(Q,Qid)r = e(rP, did).

Note that the basic Boneh-Franklin scheme does not provide chosen-
ciphertext security, because the message occurs in the ciphertext only in the last
XOR step. This means that a plaintext M can be determined from its ciphertext
(C1, C2) by asking for the decryption of the ciphertext (C1, C

′
2), where C ′

2 is C2

with the first bit flipped. One can, however, obtain IND-ID-CPA security results
for the basic Boneh-Franklin scheme under the assumption that H1 and H2 are
random oracles.

Using the Fujisaki-Okamoto transformation [36], the basic Boneh-Franklin
IBE scheme can be converted into a scheme, called FullIdent (see [24]), that
provides IND-ID-CCA security. To get FullIdent the basic scheme is modified as
follows. First, a random ρ ∈ {0, 1}n is chosen and r is set equal to H3(ρ,M),
where H3 is a hash function that maps bitstrings to integers mod p; we then
define C1 = rP as before. The second component C2 of the ciphertext is defined
by C2 = ρ⊕H2(e(Q,Qid)r) (that is, the hash value is XORed with ρ rather than
with M), and we also need a third component C3 defined by C3 = M ⊕ H4(ρ),
where H4 is a hash function that maps {0, 1}n to {0, 1}n. The decryption pro-
ceeds by first computing ρ = C2 ⊕ H2(e(C1, did)) and then M = C3 ⊕ H4(ρ).
But the decryption rejects the ciphertext unless it is validated by checking that
H3(ρ,M)P = C1. This last check is very important, since it prevents an adver-
sary from generating a valid ciphertext for an unknown message M .

Boneh and Franklin [24] argued for the IND-ID-CCA security of their con-
struction using a three stage reduction based on BDH; the reduction turned
out to be flawed. Galindo [38] provided a corrected reduction which resulted in
a tightness gap of q3

H , where qH is the maximum number of queries made to
any of the random oracles H1,H2,H3 or H4. Zhang and Imai [78] provided a
direct reduction based on the same BDH assumption with a tightness gap of
qD · qE · qH , where qD bounds the number of decryption queries and qE bounds
the number of key-extraction queries made by the adversary.10 The tightness
gap can be reduced to qE · qH by making the following change to the simulation
of the H3 random oracle in the proof of Theorem 1 in [78]: when the simulator

10 In Table 1 of [78], Zhang and Imai claim that their security reduction has a tightness
gap of qE · qH ; this assertion is repeated in Table 4 of [8]. However, they neglected to
account for the tightness gap arising from the running times in Theorem 1 of their
paper.

42 S. Chatterjee et al.

responds to a query (σi,Mi) with ri, it stores gri in addition to (σi,Mi, ri) in
its “H3-list” (here we’re using the notation of the proof in [78] rather than our
own notation, in which σ would be ρ and gr would be rP). With this change,
the simulator can respond to all qD decryption queries in time qD instead of
qD · qH (we are ignoring the time to sort and search the H3-list). As a result,
the lower bound for the BDH-time now has order equal to the sum of the query
bounds qD + qH2 + qH4 + qE , which is essentially the adversary’s running time.
In other words, in this way we can remove the tightness gap in the running
times, and we’re left with the tightness gap qE · qH2 that comes from the success
probabilities in Theorem 1 of [78].

As noted in [8], the tightness gap reduces further to qE if one is willing to
base the security on the presumably stronger DBDH or GBDH assumptions.
In practice, the hash functions in the IBE constructions are publicly known
functions. Thus, the number of queries made to these functions by the adversary
can be quite high—qH could be 264 or even 280 for powerful adversaries. The
number of key-extraction queries qE , on the other hand, will be lower.

An informal argument can be used to show why the tightness gaps in the
reductions for Boneh-Franklin IBE are inconsequential for real-world security.
Namely, we claim that key-extraction queries give no useful information to the
adversary, and so without loss of generality we may take qE = 0; in that case,
as mentioned above, there is a tight reduction based on the DBDH or GBDH
assumption. Recall that in response to a queried id, the Private Key Generator
returns Qid = H1(id), where H1 is a random oracle, and did = sQid. This can
be simulated by the adversary itself, who chooses k mod p at random and sets
Qid = kP and did = kQ. Note that this does not give a valid formal reduction
from the case when qE > 0 to the case when qE = 0, because the adversary does
not get the “true” key pair of the user, whose public point is produced by the
random oracle H1. However, it is hard to conceive of any difference this could
possibly make in the adversary’s effectiveness against the IND-ID-CCA security
of FullIdent.

Remark 11. In Sect. 3.1 of [53] Koblitz and Menezes made an analogous informal
argument in order to conclude that the tightness gap in the security reduction for
RSA Full Domain Hash should not be a cause of concern. These examples show,
as remarked in [52], that “whether or not a cryptographic protocol lends itself to
a tight security reduction argument is not necessarily related to the true secu-
rity of the protocol . . . the question of how to interpret a nontight reductionist
security argument has no easy answer.”

7 Conclusions

Reductionist arguments can contribute to our understanding of the real-world
security of a protocol by providing an ironclad guarantee that certain types
of attacks are infeasible as long as certain hardness assumptions remain valid.
However, even this limited kind of assurance may, as we have seen, turn out

Another Look at Tightness II 43

to be meaningless in practice if the reduction is nontight and the parameters
have not been increased to account for the tightness gap. In order to properly
evaluate provable security claims, one needs to study the tightness issue. In this
paper we have given examples of the type of analysis of tightness that should be
performed, but much work remains to be done. Among the open problems are
the following:

1. Examine all uses of complexity leveraging to see whether or not the concrete
adaptive security results are meaningful.

2. Evaluate the effect on the required parameter sizes of nontightness in security
proofs for HMAC and adjust standards accordingly, particularly in applica-
tions that require the pseudorandom function property; also study whether
or not the commonly used hash compression functions are likely to satisfy the
PRF assumption.

3. Carefully evaluate all lattice-based protocols that have worst-case-to-average-
case reductions to see what meaningful concrete bounds, if any, follow from
these reductions.

4. For protocols whose security reductions lose tightness in the multi-user setting
or the multi-challenge setting (or both), determine how parameter sizes should
be increased to account for this.

Acknowledgments. We wish to thank Greg Zaverucha for extensive help with
Appendix B as well as useful comments on the other sections, Michael Naehrig for
reviewing and commenting on Sect. 5, Somindu C. Ramanna for providing helpful com-
ments on an earlier draft of Sect. 6, Ann Hibner Koblitz for editorial suggestions, and
Ian Blake, Eike Kiltz, and Chris Peikert for helpful feedback and suggestions. Of course,
none of them is responsible for any of the opinions expressed in this article.

A Concrete Analysis of Regev’s Worst-Case/
Average-Case Reduction

Let q = q(n) and m = m(n) be integers, and let α = α(n) ∈ (0, 1) be such that
αq > 2

√
n. Let χ be the probability distribution on Zq obtained by sampling from

a Gaussian distribution with mean 0 and variance α2/2π, and then multiplying
by q and rounding to the closest integer modulo q. Then the (search version of
the) LWE problem is the following: Let s be a secret vector selected uniformly
at random from Z

n
q . Given m samples (ai, ai · s + ei), where each ai is selected

independently and uniformly at random from Z
n
q , and where each ei is selected

independently from Zq according to χ, determine s. The decisional version of
LWE, called DLWE, asks us to determine whether we have been given m LWE
samples (ai, ai · s + ei) or m random samples (ai, ui), where each ui is selected
independently and uniformly at random from Zq.

Regev [71] proved that the existence of an efficient algorithm that solves
DLWE in the average case implies the existence of an efficient quantum algorithm
that solves SIVPγ in the worst case where γ = Õ(n/α). In the remainder of this
section we provide justification for the following refinement of Regev’s theorem:

44 S. Chatterjee et al.

Claim. Let q = n2 and α = 1/(
√

n log2 n), whence γ = Õ(n1.5). Suppose
that there is an algorithm W that, given m = nc samples, solves DLWE for
a fraction 1/nd1 of all s ∈ Z

n
q with advantage at least 1/nd2 . Then there is a

polynomial-time algorithm W ′ for solving SIVPγ that calls the W oracle a total
of O(n11+c+d1+2d2) times.

A.1 Gaussian Distributions

Recall that the Gaussian distribution with mean 0 and variance σ2 is the distri-
bution on R given by the probability density function

1√
2π · σ

exp
(−x2

2σ2

)
.

For x ∈ R
n and s > 0, define the Gaussian function scaled by s:

ρs(x) = exp
(−π‖x‖2

s2

)
.

The Gaussian distribution Ds of parameter s over Rn is given by the probability
density function

Ds(x) =
ρs(x)
sn

.

Note that Ds is indeed a probability distribution since
∫

x∈Rn ρs(x) dx = sn.
If L is a lattice, we can define

ρs(L) =
∑
x∈L

ρs(x).

Then the discrete Gaussian probability distribution DL,s of width s for x ∈ L is

DL,s(x) =
ρs(x)
ρs(L)

.

Let L be a (full-rank integer) lattice of dimension n.

A.2 Concrete Analysis

In this section the tightness gap of a reduction algorithm from problem A to
problem B is the number of calls to the oracle for B that are made by the
reduction algorithm.

Regev’s worst-case/average-case reduction has two main components:

1. The reduction of (search-)LWE to average-case DLWE (denoted DLWEac).
2. The reduction of worst-case SIVPγ to LWE.

Reduction of LWE to DLWEac. This reduction has three parts.

Part I. Worst-Case to Average-Case. DLWEwc denotes the worst-case DLWE
problem. Lemma 4.1 in [71] shows that an algorithm W1 that solves DLWEac

Another Look at Tightness II 45

for a fraction 1
nd1

of all s ∈ Z
n
q with acceptance probabilities differing by at

least 1
nd2

can be used to construct an algorithm W2 that solves DLWEwc with
probability essentially 1 for all s ∈ Z

n
q . The algorithm W2 invokes W1 a total of

O(nd1+2d2+2) times.

Part II. Search to Decision. Lemma 4.2 in [71] shows that an algorithm W2

which solves DLWEwc for all s ∈ Z
n
q with probability essentially 1 can be used

to construct an algorithm W3 that solves (search-)LWE for all s ∈ Z
n
q with

probability essentially 1. Algorithm W3 invokes W2 a total of nq times, so this
reduction has a tightness gap of nq.

Part III. Continuous to Discrete. Lemma 4.3 in [71] shows that an algorithm W3

that solves LWE can be used to construct an algorithm W5 that solves LWEq,Ψα
.

(See [71] for the definition of the LWEq,Ψα
problem.) This reduction is tight.

Reduction of SIVPγ to LWE. This reduction has tightness gap 6n6+c. The
reduction has two parts.

Part I. DGS to LWE. Let ε = ε(n) be some negligible function of n. Theorem 3.1
of [71] shows that an algorithm W4 that solves LWEq,Ψα

given m samples can be
used to construct a quantum algorithm W9 for DGS√

2n·ηε(L)/α. Here, ηε(L) is the
“smoothing parameter with accuracy ε”, and DGSr′ (discrete Gaussian sampling
problem) is the problem of computing a sample from the discrete Gaussian
probability distribution DL,r′ where r′ ≥ √

2n · ηε(L)/α.
Let r =

√
2n · ηε(L)/α. Let ri = r · (αq/

√
n)i for i ∈ [0, 3n]. Algorithm W9

begins by producing nc samples from DL,r3n
(Lemma 3.2 in [71]); the W4 oracle

is not used in this step. Next, by repeatedly applying the ‘iterative step,’ it uses
the nc samples from DL,ri

to produce nc samples from DL,ri−1 for i = 3n, 3n −
1, . . . , 1. Since r0 = r, the last step produces the desired sample from DL,r.

The iterative step (Lemma 3.3 in [71]) uses nc samples from DL,ri
to produce

one sample from DL,ri−1 ; this step is then repeated to produce nc samples from
DL,ri−1 . Thus, the iterative step is executed a total of 3n · nc = 3n1+c times.

Each iterative step has two parts.

1. The first part invokes W4 a total of n2 times:
– Lemma 3.7 in [71] uses W4 to construct an algorithm W5 that solves

LWEq,Ψβ
; W5 invokes W4 n times.

– Lemma 3.11 in [71] uses W5 and the nc samples from DL,ri
to construct

an algorithm W6 that solves the CVP(q)

L∗,αq/
√

2ri
problem. The reduction

is tight.
– Lemma 3.5 in [71] uses W6 to construct an algorithm W7 that solves the

CVPL∗,αq/
√

2ri
problem. Algorithm W7 invokes W6 n times.

2. The second part (Lemma 3.14 in [71]) uses W7 to construct a quantum algo-
rithm W8 that produces a sample from DL,ri−1 . This reduction is tight.

Since each iterative step has tightness gap n2, the total tightness gap for the
reduction of DGS to LWE is 3n3+c.

46 S. Chatterjee et al.

Part II. SIVPγ to DGS Lemma 3.17 in [71] uses W9 to construct an algorithm
W10 that solves SIVP2

√
2nηε(L)/α. Algorithm W10 invokes W9 2n3 times.

Lemma 2.12 in [71] states that ηε(L) ≤ √
ω(log n) · λn(L) for some negligible

function ε(n). Thus

γ =
2
√

2nηε(L)
α · λn(L)

=
2
√

2n
√

ω(log n)
α

= Õ
(n

α

)
= Õ(n1.5).

Summary. Regev’s reduction of SIVPγ to DLWEac has tightness gap

nd1+2d2+2 · nq · 3n3+c · 2n3 = 6n11+c+d1+2d2 .

B Nontightness and Multi-user Attacks

In an important paper that has been all but ignored by the cryptographic
research community, Zaverucha [77] showed that “provably secure” hybrid
encryption, as described in several standards, is insecure in the multi-user set-
ting if certain permitted (and even recommended) choices are made in the imple-
mentation. Because this work should be much better known than it is, we shall
devote this section to explaining and summarizing [77]. We shall focus on hybrid
encryption schemes in the comprehensive ISO/IEC 18033-2 standard [74].

We first recall the definition in [16] of IND-CCA security (Indistinguisha-
bility under Chosen-Ciphertext Attack) of encryption in the multi-user setting.
Suppose there are n users. The adversary is given n public keys, a decryption
oracle for each public key, and an LR (left-or-right encryption) oracle for each
public key. The adversary can query each decryption oracle up to qD times and
each LR oracle up to qLR times. A decryption query simply asks for a chosen
ciphertext to be decrypted under the corresponding public key. An LR query
works differently. The n LR-oracles all have a hidden random bit b in common.
The adversary chooses two equal-length messages M0 and M1 to query to one
of the LR-oracles, which then returns an encryption C∗ of Mb. The adversary
is not permitted to query C∗ to the decryption oracle for the same public key.
The adversary’s task is to guess b with success probability significantly greater
than 1/2.

Remark 12. This “multi-challenge” security model (that is, qLR > 1) can also be
used in the single-user setting, but almost never is ([22] is a rare exception); in the
standard IND-CCA security model qLR = 1. We shall later give a simple attack
that shows that the standard IND-CCA is deficient and should be replaced by
the multi-challenge model.

Remark 13. In [16] the authors give a generic reduction with tightness gap n·qLR

between the multi-user and single-user settings. In the full version of [16] they
also give a construction that shows that this tightness bound is optimal; that is,
they describe a protocol that can be attacked with n · qLR times the advantage

Another Look at Tightness II 47

in the multi-user setting than in the single-challenge single-user setting. Their
construction is contrived and impractical; later we shall describe a simple attack
on hybrid encryption that shows that in practice as well as in theory the generic
tightness bound in [16] is best possible. That is, the attack described below
reduces security by a factor equal to n times the number of messages sent to
each user (see Remark 16). (In specific cases tighter reductions are sometimes
possible—for example, the paper [16] contains a reduction with tightness gap
qLR in the case of the Cramer–Shoup public-key encryption scheme [31].)

We now recall the setup and terminology of hybrid encryption. The encryp-
tion has two stages: a key-encapsulation mechanism (KEM) using a public-key
cryptosystem (with the recipient’s public/secret key pair denoted PK/SK), and
a data-encapsulation mechanism (DEM) using a symmetric-key cryptosystem
that encrypts the data by means of the shared key K that is produced by the
KEM. The KEM takes PK as input and produces both the key material K by
means of a key-derivation function (KDF) and also a ciphertext C1 that will
enable the recipient to compute K; the DEM takes K and the message M as
input and produces a ciphertext C2. The recipient decrypts by first using C1 and
SK to find K and then using C2 and the symmetric key K to find M .

Among the public-key systems commonly used for KEM are Cramer-Shoup
[31] and ECIES (ElGamal encryption using elliptic curves, see [74]); symmetric-
key systems commonly used for DEM are AES in cipher block chaining (CBC)
mode and XOR-Encrypt using a hash function with a counter. (We will describe
this in more detail shortly.) The KDF is a publicly known way to produce key
material of a desired length L from a shared secret that’s computed using the
public-key system.

Suppose, following [74], that we use 128-bit AES in CBC-mode with zero
initialization vector for DEM. Let MAC denote a message authentication code
that depends on a 128-bit key. Our KDF produces two 128-bit keys K = (k1, k2).
To send a 128m-bit message M , we set C2 equal to a pair (C ′, t), where C ′ is
the 128m-bit ciphertext computed below and t =MACk2(C

′) is its tag. The
ciphertext C ′ = (C ′

1, . . . , C
′
m) is given by: C ′

1 =AESk1(M1), C ′
i =AESk1(C

′
i−1 ⊕

Mi) for i = 2, . . . , m.
After receiving (C1, C2) = (C1, C

′, t), the recipient first uses C1, SK, and the
KDF to find (k1, k2), and then uses the shared key k2 to verify that t is in fact
the tag of C ′; otherwise she rejects the message. Then she decrypts using k1.

Alternatively, for DEM we could use XOR-Encrypt with a hash function H
as follows. To send a message M consisting of m 256-bit blocks, we have the
KDF generate a 256m-bit key k1 = (k1,1, . . . , k1,m) by setting k1,i = H(z0‖i),
where z0 is a shared secret produced by KEM, and also a MAC-ing key k2. The
MAC works as before, but now C ′ is determined by setting C ′

i = Mi ⊕k1,i. This
is the hash function with counter (CTR) mode mentioned above.

In [32] Cramer and Shoup gave a tight proof that hybrid encryption has
IND-CCA security under quite weak assumptions. The MAC-scheme need only
be “one-time secure” (because it receives a new key k2 for each message), and
the symmetric encryption function need only be one-time secure against passive
adversaries—in particular, there is no need for randomization (again the reason

48 S. Chatterjee et al.

is that it gets a new key k1 for each message). In accordance with the general
principle that standards should not require extra features that are not needed in
the security reductions, the standards for hybrid encryption [74] do not require
randomization in the symmetric encryption; nor do they impose very stringent
conditions on the KDF. In addition, in [74] Shoup comments that if KEM is
implemented using the Cramer–Shoup construction [31], which has a security
proof without random oracles, and if DEM is implemented using AES-CBC,
then it is possible to prove a tight security reduction for the hybrid encryption
scheme without the random oracle assumption. Thus, anyone who mistrusts
random oracle proofs should use AES-CBC rather than XOR-Encrypt. All of
these security proofs are given in the single-user setting.

B.1 Attacks in the Multi-user Setting

We now describe some of the attacks of Zaverucha [77] in the multi-user setting,
which of course is the most common setting in practice. Let n = 2a be the
number of users. First suppose that the DEM is implemented using AES128 in
CBC-mode. Suppose that Bob sends all of the users messages that all have the
same first two blocks (M1,M2) (that is, they start with the same 256-bit header).
The rest of the message blocks may be the same (i.e., broadcast encryption), or
they may be different. The adversary Cynthia’s goal is to read at least one of
the 2a messages. She guesses a key k that she hopes is the k1-key for one of
the messages. She computes C ′′

1 =AESk(M1) and C ′′
2 = AESk(C ′′

1 ⊕ M2) and
compares the pair (C ′′

1 , C ′′
2) with the first two blocks of ciphertext sent to the

different users.11 If there’s a match, then it is almost certain that she has guessed
the key k1 = k for the corresponding message. That is because there are 2128

possible keys k1 and 2256 possible pairs (C ′
1, C

′
2), so it is highly unlikely that

distinct keys would give the same (C ′
1, C

′
2). Once Cynthia knows k1—each guess

has a 2−(128−a) chance of producing a match—she can quickly compute the rest
of the plaintext. This means that even though the hybrid encryption scheme
might have a tight security reduction in the single-user setting that proves 128
bits of security, in the multi-user setting it has only 128 − a bits of security.
Commenting on how dropping randomization in DEM made his attack possible,
Zaverucha [77] calls this “an example of a provable security analysis leading to
decreased practical security.”

Remark 14. In modern cryptography—ever since the seminal Goldwasser-Micali
paper [44]—it has been assumed that encryption must always be probabilistic.
In [74] this principle is violated in the interest of greater efficiency because the
security proof in [32] does not require randomization. This decision was bold,
but also rash, as Zaverucha’s attack shows.
11 We can suppose that the 2a ciphertexts are sorted according to their first two blocks

(or perhaps stored using a conventional hash function). Then one iteration of the
attack takes essentially unit time, since it just requires computing (C′′

1 , C′′
2) and look-

ing for it in the sorted table. Since the expected number of iterations is 2128−a, the
running time of the attack is T = 2128−a (and the success probability is essentially 1).

Another Look at Tightness II 49

Remark 15. A time–memory–data tradeoff can be applied to speed up the on-
line portion of the attack; see Remark 7 in [27]. Namely, at a cost of precompu-
tation time 2128−a and storage size 22(128−a)/3, the secret key k of one of the 2a

users can be determined in time 22(128−a)/3.

Remark 16. The above attack can also be carried out in the single-user setting
if we suppose that Bob is sending Alice 2a′

different messages that all have the
same header (M1,M2). Since different keys are generated for different messages
(even to the same user), there is no need for the recipients of the messages
to be different. This gives a reduction of the number of bits of security by a′.
This attack shows the need for the multi-challenge security model even in the
single-user setting. Thus, even in the single-user setting the standard security
model for encryption is deficient because it fails to account for the very realistic
possibility that Bob uses hybrid encryption as standardized in [74] to send Alice
many messages that have the same header.

Remark 17. Note that if the 2a′
messages are broadcast to 2a users, then obvi-

ously the reduction in security is by a′ + a bits. In some circumstances a′ + a
could be large enough to reduce the security well below acceptable levels. For
example, if a′ + a > 32, it follows that what was thought to have 128 bits of
security now has fewer than 96, which, as remarked in Sect. 1, is not enough. It
should be emphasized that the security is reduced because of actual practical
attacks, not because of a tightness gap that could conceivably be removed if one
finds a different proof.

We note that the above attack does not in general work if DEM is imple-
mented using XOR-Encrypt. (Of course, someone who does not trust security
proofs that use random oracles would not be using XOR-Encrypt, and so would
be vulnerable.) But Zaverucha has a different attack on hybrid encryption with
XOR-Encrypt that works for certain KDF constructions.

B.2 Attacks on Extract-then-Expand with XOR-Encrypt

The most commonly used KDF takes the shared secret z0 produced in KEM
and derives a key of the desired length by concatenating H(z0‖i) for i = 1,
However, at Crypto 2010, as Zaverucha [77] explains,

Krawczyk argues that cryptographic applications should move to a single,
well-studied, rigorously analyzed family of KDFs. To this end, he formally
defines security for KDFs, presents a general construction that uses any
keyed pseudorandom function (PRF), and proves the security of his con-
struction in the new model. The approach espoused by the construction is
called extract-then-expand. [...] The HKDF scheme is a concrete instantia-
tion of this general construction when HMAC is used for both extraction
and expansion.

50 S. Chatterjee et al.

The Extract-then-Expand key derivation mechanism was soon standardized [28,
29,59]. In particular, RFC 5869 describes HKDF, which instantiates the Extract-
then-Expand mechanism with HMAC, and states that HKDF is intended for use
in a variety of KDF applications including hybrid encryption.

Extract-then-Expand works in hybrid encryption as follows. Suppose that z0

is the shared secret produced in KEM. The Extract phase produces a bitstring
z1 = Extract(z0), perhaps of only 128 bits, which is much shorter than z0. (The
Extract phase may also depend on a “salt,” but this is optional, and we shall
omit it.) Then the key material K is obtained by a function that expands z1,
i.e., K = Expand(z1, L), where L as before is the bitlength of K. (There is also
the option of putting some contextual information inside the Expand-function,
but we shall not do this.)

We now describe Zaverucha’s attack on hybrid encryption when Extract-
then-Expand with 128-bit z1 values is used as the KDF and XOR-Encrypt is
used for message encryption. Suppose that Bob sends messages to 2a users that
all have the same header (M1,M2) and the same bitlength L. Cynthia’s goal
is to recover at least one of the plaintexts. Rather than guessing a key, she
now guesses the bitstring z1. For each guess she computes K = Expand(z1, L)
and C ′′

i = Mi ⊕ k1,i, i = 1, 2. When she gets a match with (C ′
1, C

′
2) for one

of the users, she can then recover the rest of the plaintext sent to that user:
Mi = C ′

i ⊕ k1,i, i > 2.
Note that this attack does not work for XOR-Encrypt with the KDF using

H(z0‖i) described above. Once again the “provably secure” choice of Extract-
then-Expand turns out to be vulnerable, whereas the traditional choice of KDF
is not. Zaverucha comments that “In this example, replacing a commonly used
KDF in favor of a provably secure one causes a decrease in practical security.”

As discussed in [77], Zaverucha’s attacks can be avoided in practice by putting
in features that are not required in the standard single-user single-challenge
security proofs. It would be worthwhile to give proofs of this.

Open Problem. Give a tight security reduction for hybrid encryption in
the multi-user multi-challenge security model (random oracles are permitted)
if DEM uses either: (1) randomized encryption rather than one-time-secure
encryption (for example, AES-CBC with random IV that is different for each
message and each recipient), (2) XOR-Encrypt using H(z0‖i) for the KDF,
(3) XOR-Encrypt using HKDF with a recipient- and message-dependent salt
in the Extract phase and/or recipient- and message-dependent contextual infor-
mation in the Expand phase.

We conclude this section by noting a curious irony. As we remarked in Sect. 1,
it is very rare for a standards body to pay much attention to tightness gaps in the
security reductions that are used to support a proposed standard or to whether
those security reductions were proved in the multi-user or single-user setting.
However, recently the IETF decided that the standard for Schnorr signatures
[72] should require that the public key be included in the hash function. The
reason was that Bernstein [20] had found a flaw in the tight reduction from an

Another Look at Tightness II 51

adversary in the single-user setting to an adversary in the multi-user setting that
had been given by Galbraith et al. [37], and he had proved that a tight security
reduction could be restored if the public key is included in the hash function.
(Later Kiltz et al. [50] gave a tight security reduction without needing to include
the public key in the hash function; however, their assumptions are stronger
than in [37], and it is not yet clear whether their result will cause the IETF to
go back to dropping the public key from the hash input.)

The peculiar thing is that the tightness gap between single-user and multi-
user settings is only a small part of the tightness problem for Schnorr signatures.

Lemma 5.7 in [50] gives a security proof in the random oracle model for the
Schnorr signature scheme in the single-user setting. The proof has a tightness
gap equal to the number of random oracle queries, which can be very large—in
particular, much larger than the number of users in the multi-user setting. Even a
tight single-user/multi-user equivalence leaves untouched the large tightness gap
between Schnorr security and hardness of the underlying Discrete Log Problem.
It should also be noted that the IETF was responding to the error Bernstein
found in a proof, not to any actual attack that exploited the tightness gap (we
now know that such an attack is probably impossible, because of the recent proof
in [50] that under a certain reasonable assumption there is no single-user/multi-
user tightness gap).

In the meantime, standards bodies have done nothing to address Zaverucha’s
critique of the standardized version [74] of hybrid encryption, which allows imple-
mentations that have far less security than previously thought, as shown by
actual attacks.

References

1. Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the short-
est vector problem in 2n time via discrete Gaussian sampling. In: Proceedings of
the 47th Annual Symposium Foundations of Computer Science, pp. 733–742 (2015)

2. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
28th Annual ACM Symposium on Theory of Computing, pp. 99–108. ACM (1996)

3. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pp. 284–293. ACM (1997)

4. Albrecht, M., Player, R., Scott, S.: On the concrete hardness of learning with errors.
J. Math. Cryptol. 9, 169–203 (2015)

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
a new hope. In: Proceeding of the 25th USENIX Security Symposium, pp. 327–343
(2016)

6. ANSI X9.98: Lattice-Based Polynomial Public Key Establishment Algorithm for
the Financial Services Industry, Part 1: Key Establishment, Part 2: Data Encryp-
tion (2010)

7. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22006-7 34

http://dx.doi.org/10.1007/978-3-642-22006-7_34

52 S. Chatterjee et al.

8. Attrapadung, N., Furukawa, J., Gomi, T., Hanaoka, G., Imai, H., Zhang, R.:
Efficient identity-based encryption with tight security reduction. In: Pointcheval,
D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 19–36. Springer,
Heidelberg (2006). doi:10.1007/11935070 2

9. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-55220-5 1

10. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). doi:10.1007/11693383 22

11. Bellare, M.: Practice-oriented provable-security. In: Damg̊ard, I.B. (ed.) EEF
School 1998. LNCS, vol. 1561, pp. 1–15. Springer, Heidelberg (1999). doi:10.1007/
3-540-48969-X 1

12. Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer,
Heidelberg (2006). doi:10.1007/11818175 36

13. Bellare, M.: email to N. Koblitz, 24 February 2012
14. Bellare, M.: New proofs for NMAC and HMAC: security without collision-

resistance. J. Cryptol. 28, 844–878 (2015)
15. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC

and its multi-user security. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 566–595. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49890-3 22

16. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 18.
https://cseweb.ucsd.edu/ mihir/papers/musu.html

17. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). doi:10.1007/3-540-68697-5 1

18. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the
cascade construction and its concrete security. In: Proceedings of the 37th Annual
Symposium Foundations of Computer Science, pp. 514–523 (1996). http://cseweb.
ucsd.edu/users/mihir/papers/cascade.pdf

19. Bellare, M., Canetti, R., Krawczyk, H.: HMAC: keyed-hashing for message authen-
tication, Internet RFC 2104 (1997)

20. Bernstein, D.: Multi-user Schnorr security, revisited. http://eprint.iacr.org/2015/
996.pdf

21. Blömer, J., Seifert, J.: On the complexity of computing short linearly independent
vectors and short bases in a lattice. In: Proceedings of the 31st Annual ACM
Symposium on Theory of Computing, pp. 711–720. ACM (1999)

22. Boldyreva, A.: Strengthening security of RSA-OAEP. In: Fischlin, M. (ed.) CT-
RSA 2009. LNCS, vol. 5473, pp. 399–413. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00862-7 27

23. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. http://eprint.iacr.org/2004/172.pdf

24. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32, 586–615 (2003)

http://dx.doi.org/10.1007/11935070_2
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/3-540-48969-X_1
http://dx.doi.org/10.1007/3-540-48969-X_1
http://dx.doi.org/10.1007/11818175_36
http://dx.doi.org/10.1007/978-3-662-49890-3_22
http://dx.doi.org/10.1007/978-3-662-49890-3_22
http://dx.doi.org/10.1007/3-540-45539-6_18
https://cseweb.ucsd.edu/~mihir/papers/musu.html
http://dx.doi.org/10.1007/3-540-68697-5_1
http://cseweb.ucsd.edu/users/mihir/papers/cascade.pdf
http://cseweb.ucsd.edu/users/mihir/papers/cascade.pdf
http://eprint.iacr.org/2015/996.pdf
http://eprint.iacr.org/2015/996.pdf
http://dx.doi.org/10.1007/978-3-642-00862-7_27
http://dx.doi.org/10.1007/978-3-642-00862-7_27
http://eprint.iacr.org/2004/172.pdf

Another Look at Tightness II 53

25. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 15

26. Bos, J., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the
TLS protocol from the ring learning with errors problem. In: Proceedings of the
2015 IEEE Symposium on Security and Privacy, pp. 553–570 (2015)

27. Chatterjee, S., Menezes, A., Sarkar, P.: Another look at tightness. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 293–319. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28496-0 18

28. Chen, L.: Recommendation for key derivation using pseudorandom functions
(revised), NIST SP 800–108 (2009)

29. Chen, L.: Recommendation for key derivation through extraction-then-expansion,
NIST SP 800–56C (2011)

30. Coppersmith, D.: Fast evaluation of logarithms in fields of characteristic two. IEEE
Trans. Inf. Theory 30, 587–594 (1984)

31. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

32. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33,
167–226 (2003)

33. Dang, Q.: Recommendation for applications using approved hash algorithms, NIST
SP 800–107 (2012)

34. Dierks, T., Allen, C.: The TLS protocol, Internet RFC 2246 (1999)
35. Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M., Prisco,

R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Cham (2014). doi:10.
1007/978-3-319-10879-7 7

36. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 34

37. Galbraith, S., Malone-Lee, J., Smart, N.: Public key signatures in the multi-user
setting. Inf. Process. Lett. 83, 263–266 (2002)

38. Galindo, D.: Boneh-Franklin identity based encryption revisited. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 791–802. Springer, Heidelberg (2005). doi:10.1007/11523468 64

39. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. http://
eprint.iacr.org/2013/451.pdf

40. Gaži, P., Pietrzak, K., Rybár, M.: The exact PRF-security of NMAC and HMAC.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 113–130.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 7

41. Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of lattice prob-
lems. J. Comput. Syst. Sci. 60, 540–563 (2000)

42. Goldwasser, S., Bellare, M.: Lecture Notes on Cryptography, July 2008. http://
cseweb.ucsd.edu/mihir/papers/gb.pdf

43. Goldwasser, S., Kalai, Y.: Cryptographic assumptions: a position paper. http://
eprint.iacr.org/2015/907.pdf

44. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28, 270–
299 (1984)

45. Harkins, D., Carrel, D.: The internet key exchange (IKE), Internet RFC 2409
(1998)

http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-642-28496-0_18
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/978-3-319-10879-7_7
http://dx.doi.org/10.1007/978-3-319-10879-7_7
http://dx.doi.org/10.1007/3-540-48405-1_34
http://dx.doi.org/10.1007/11523468_64
http://eprint.iacr.org/2013/451.pdf
http://eprint.iacr.org/2013/451.pdf
http://dx.doi.org/10.1007/978-3-662-44371-2_7
http://cseweb.ucsd.edu/mihir/papers/gb.pdf
http://cseweb.ucsd.edu/mihir/papers/gb.pdf
http://eprint.iacr.org/2015/907.pdf
http://eprint.iacr.org/2015/907.pdf

54 S. Chatterjee et al.

46. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Whyte, W.: Practical lattice-
based cryptography: NTRUEncrypt and NTRUSign. In: Vallée, B., Nguyen, P.Q.
(eds.) The LLL Algorithm, pp. 349–390. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-02295-1 11

47. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). doi:10.1007/BFb0054868

48. IEEE 1363.1: Standard Specification for Public Key Cryptographic Techniques
Based on Hard Problems over Lattices (2008)

49. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC, London (2007)

50. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 2

51. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complex-
ity for the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53018-4 20

52. Koblitz, N., Menezes, A.: Another look at “provable security”. II. In: Barua, R.,
Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 148–175. Springer,
Heidelberg (2006). doi:10.1007/11941378 12

53. Koblitz, N., Menezes, A.: Another look at ‘provable security’. J. Cryptol. 20, 3–37
(2007)

54. Koblitz, N., Menezes, A.: Another look at HMAC. J. Math. Cryptol. 7, 225–251
(2013)

55. Koblitz, N., Menezes, A.: Another look at non-uniformity. Groups Complex. Cryp-
tol. 5, 117–139 (2013)

56. Koblitz, N., Menezes, A.: Another look at security definitions. Adv. Math. Com-
mun. 7, 1–38 (2013)

57. Koblitz, N., Menezes, A.: Another look at security theorems for 1-key nested MACs.
In: Koç, Ç.K. (ed.) Open Problems in Mathematics and Computational Science,
pp. 69–89. Springer, Cham (2014). doi:10.1007/978-3-319-10683-0 4

58. Koblitz, N., Menezes, A.: A riddle wrapped in an enigma. IEEE Secur. Priv. 14,
34–42 (2016)

59. Krawczyk, H., Eronen, P.: HMAC-based extract-and-expand key derivation func-
tion (HKDF), Internet RFC 5869 (2010)

60. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14623-7 34

61. Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster
using quantum search. Des. Codes Crypt. 77, 375–400 (2015)

62. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest pro-
posal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-71039-4 4

63. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices, learning with errors
over rings. J. ACM 60, 43:1–43:35 (2013)

64. Menezes, A.: Another look at provable security, Invited talk at Eurocrypt 2012.
http://www.cs.bris.ac.uk/eurocrypt2012/Program/Weds/Menezes.pdf

65. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic
Perspective. Springer, New York (2002). doi:10.1007/978-1-4615-0897-7

http://dx.doi.org/10.1007/978-3-642-02295-1_11
http://dx.doi.org/10.1007/978-3-642-02295-1_11
http://dx.doi.org/10.1007/BFb0054868
http://dx.doi.org/10.1007/978-3-662-53008-5_2
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://dx.doi.org/10.1007/11941378_12
http://dx.doi.org/10.1007/978-3-319-10683-0_4
http://dx.doi.org/10.1007/978-3-642-14623-7_34
http://dx.doi.org/10.1007/978-3-540-71039-4_4
http://www.cs.bris.ac.uk/eurocrypt2012/Program/Weds/Menezes.pdf
http://dx.doi.org/10.1007/978-1-4615-0897-7

Another Look at Tightness II 55

66. M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., Ranen, O.: HOTP: an
HMAC-based one time password algorithm, Internet RFC 4226 (2005)

67. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). doi:10.1007/
978-3-319-11659-4 12

68. Peikert, C.: 19 February 2015 blog posting. http://web.eecs.umich.edu/∼cpeikert/
soliloquy.html

69. Peikert, C.: A decade of lattice cryptography. http://eprint.iacr.org/2015/939
70. Pietrzak, K.: A closer look at HMAC. http://eprint.iacr.org/2013/212.pdf
71. Regev, O.: On lattices, learning with errors, random linear codes, cryptography. J.

ACM 56, 34:1–34:40 (2009)
72. Schnorr, C.P.: Efficient identification and signatures for smart cards. In:

Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
688–689. Springer, Heidelberg (1990). doi:10.1007/3-540-46885-4 68

73. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
http://eprint.iacr.org/2004/332.pdf

74. Shoup, V.: ISO/IEC 18033–2:2006, Information Technology – Security Techniques
– Encryption Algorithms – Part 2: Asymmetric Ciphers (2006). http://www.shoup.
net/iso/std6.pdf

75. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 4

76. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof
methodologies to signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 93–110. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 7

77. Zaverucha, G.M.: Hybrid encryption in the multi-user setting. http://eprint.iacr.
org/2012/159.pdf

78. Zhang, R., Imai, H.: Improvements on security proofs of some identity based
encryption schemes. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS,
vol. 3822, pp. 28–41. Springer, Heidelberg (2005). doi:10.1007/11599548 3

http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://web.eecs.umich.edu/~cpeikert/soliloquy.html
http://web.eecs.umich.edu/~cpeikert/soliloquy.html
http://eprint.iacr.org/2015/939
http://eprint.iacr.org/2013/212.pdf
http://dx.doi.org/10.1007/3-540-46885-4_68
http://eprint.iacr.org/2004/332.pdf
http://www.shoup.net/iso/std6.pdf
http://www.shoup.net/iso/std6.pdf
http://dx.doi.org/10.1007/978-3-642-20465-4_4
http://dx.doi.org/10.1007/3-540-45708-9_7
http://eprint.iacr.org/2012/159.pdf
http://eprint.iacr.org/2012/159.pdf
http://dx.doi.org/10.1007/11599548_3

Another Look at Anonymous Communication

Security and Modular Constructions

Russell W.F. Lai1, Henry K.F. Cheung2, Sherman S.M. Chow1(B),
and Anthony Man-Cho So2

1 Department of Information Engineering, The Chinese University of Hong Kong,
Sha Tin, N.T., Hong Kong

{wflai,sherman}@ie.cuhk.edu.hk
2 Department of Systems Engineering and Engineering Management,

The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
{kfcheung,manchoso}@se.cuhk.edu.hk

Abstract. Anonymous communication is desirable for personal, finan-
cial, and political reasons. Despite the abundance of frameworks and
constructions, anonymity definitions are usually either not well-defined
or too complicated to use. In between are ad-hoc definitions for specific
protocols which sometimes only provide weakened anonymity guaran-
tees. This paper addresses this situation from the perspectives of syntax,
security definition, and construction. We propose simple yet expressive
syntax and security definition for anonymous communication. Our syn-
tax covers protocols with different operational characteristics. We give a
hierarchy of anonymity definitions, starting from the strongest possible
to several relaxations. We also propose a modular construction from any
key-private public-key encryption scheme, and a new primitive – oblivi-
ous forwarding protocols, of which we give two constructions. The first
is a generic construction from any random walk over graphs, while the
second is optimized for the probability of successful delivery, with exper-
imental validation for our optimization. Anonymity is guaranteed even
when the adversary can observe and control all traffic in the network and
corrupt most nodes, in contrast to some efficient yet not-so-anonymous
protocols. We hope this work suggests an easier way to design and ana-
lyze efficient anonymous communication protocols in the future.

Keywords: Anonymous communication · Key-privacy · Oblivious
forwarding · Global adversary

1 Introduction

Since the seminal work of Chaum [9], the notion of anonymous communication
has been extensively studied in the past decades. The goal of anonymous commu-
nication is to hide the correspondence between senders and receivers of messages.

S.S.M. Chow is supported by the Early Career Scheme and the Early Career Award
of the Research Grants Council, Hong Kong SAR (CUHK 439713).

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 56–82, 2017.
DOI: 10.1007/978-3-319-61273-7 4

Another Look at Anonymous Communication 57

In a stricter sense, the identities of the senders and/or receivers may also need
to be hidden. There are plentiful reasons for having anonymous communication,
such as to act against censorship and mass surveillance, to protect the privacy
of personal preferences, and to express minority opinions. The use of anonymous
communication has become increasingly popular among the general public, as
indicated by the success of the Tor network [14].

1.1 Anonymity Against a Global Adversary

Very often, research on anonymous communication focuses on achieving low
latency, while the anonymity guarantee is not well defined. Pfitzmann and
Hansen [24] consolidated informally a collection of terminologies (e.g., unlinka-
bility, anonymity, unobservability) which are commonly used in the literature.
Hevia and Micciancio [17] formally gave indistinguishability-based definitions of
many of these terminologies, and showed that unobservability is the strongest
notion against passive eavesdroppers, yet all the definitions are actually equiv-
alent under efficient transformations. Gelernter and Herzberg [16] extended the
work of Hevia and Micciancio [17] to the setting with adaptive adversaries
including malicious receivers. In particular, sender anonymity against malicious
receivers is considered the strongest anonymity possible in this setting. Unfortu-
nately, not many of the recent works used these formal definitions: They are too
complicated, as admitted by Gelernter and Herzberg [16], or not that well-known
to the practical community. It is desirable to have a more accessible security
definition, as simple as the indistinguishability definition (IND-CPA/CCA) for
public-key encryption, yet expressive enough to capture the security properties
desired by anonymous communication protocols.

A particular class of anonymous communication systems aims to provide
provable anonymity (under corresponding ad-hoc definitions) with the presence
of adversaries which globally observe all traffic of the network. Perhaps the most
basic protocol within this class is the buses [5], which circulates a large array of
ciphertexts (the bus) along a fixed route covering all nodes in the network. The
reduced-seats buses [18] and the taxis [19] have improved efficiency upon the
buses by reducing the size of the ciphertext carrier. At its extreme, Young and
Yung [29] recently proposed the Drunk Motorcyclist (DM) where each ciphertext
carrier (the motorcycle) only carries a single ciphertext. The ciphertext only
travels to a random neighboring node upon arriving each node, hence the name
Drunk Motorcyclist. Young and Yung [29] also fixed a flaw in the previous buses,
reduced-seats buses, and taxis protocols by pointing out that key-private public-
key encryption schemes should be used instead of ordinary ones. In a nutshell,
this class of protocols initiated by the buses protocol [5] works by routing packets
in a way that is independent to the intended receivers. Note that whether this
routing strategy is deterministic (e.g., buses) or probabilistic (e.g., DM) does
not matter in terms of anonymity.

For simplicity, we consider a communication network as a strongly connected
(i.e., each node is reachable from any other node) directed graph with N nodes,

58 R.W.F. Lai et al.

where packets can only travel along the edges. For other graphs, we can always
consider the subgraphs containing the nodes connected from each sender node1.

1.2 Our Results

In view of the existing complicated definitions of anonymity, we make mainly
theoretical but also technical contributions. Theoretically, we present a simple
algorithmic syntax which aims to capture a wide class of anonymous communi-
cation protocols. We also propose a simple indistinguishability-based definition
which captures the strongest possible anonymity known in the literature, namely,
unobservability and sender anonymity against malicious receivers [16], simulta-
neously. The simple formulation can hopefully make analyzing anonymous com-
munication protocols an easier job. We further provide several relaxations of the
anonymity notion so that the level of anonymity is still reasonably strong, yet
finding efficient constructions is plausible.

Next, we show that the confidentiality of messages and the routing mecha-
nisms can be decoupled, formalizing the idea of Young and Yung [29]. Specifi-
cally, we construct anonymous communication (AC) protocols generically from
a key-private public-key encryption scheme and a new primitive called oblivi-
ous forwarding (OF) protocol. With this generic approach, we can now focus on
constructing the conceptually simpler building block, namely, oblivious forward-
ing protocols. We then propose a generic construction of oblivious forwarding
protocols from any random walk algorithm over graphs.

Our main technical contribution lies in our second construction of oblivious
forwarding protocols, which is specially designed for optimizing the probability
of successful delivery (psuccess). This construction ensures that the most “unfor-
tunate” nodes, i.e., those located in the most isolated areas of the network,
receive packets intended for it with at least a fair probability.

We evaluate the optimality by testing our constructions over randomly gen-
erated strongly connected graphs. Our test records psuccess and the number of
hops traveled for each sender-receiver pair. The test results show that our opti-
mized protocol performs much better in terms of psuccess in realistic networks.
Due to page constraint, we refer the readers to the full version for the experiment
results.

1.3 Technical Overview

We briefly introduce the design of our second construction. Consider a network
represented by a strongly connected directed graph, such that packets are routed
deterministically according to the routing table stored in each node. Each sender
node in the network may not have the complete view of the network. Specifically,
it only knows a partial list of intermediate nodes between itself and each receiver
node. These partial paths form a tree rooted at the sender node.

1 Also see Sect. 7 for a discussion on the network environment and deploying our
protocols on the internet.

Another Look at Anonymous Communication 59

Suppose that node i has a packet for node j. Instead of the non-anonymous
approach of always sending this packet to the real receiver j directly, it picks a
dummy receiver j′ according to a distribution independent of the real receiver,
and forwards the packet to the dummy according to the routing table. The hope
is that the real receiver j is located along the path to the node j′.

The question is then what the distribution of the dummy receivers should be.
Intuitively, the nodes which are the least likely to receive the packet are those
located at the leaves of the tree. Thus, it is natural to assign the uniform dis-
tribution over the set of leaf nodes. Indeed, we show that this distribution is in
some sense optimal using standard arguments in linear programming.

2 Related Work

2.1 Anonymous Communication Protocols

Anonymous communication protocols can be classified roughly into two cate-
gories. One class (which is also our focus) provides strong anonymity. Another
class features low latency and scalability, which often rely on trusted partici-
pants, servers, or other third parties. Examples in this class include the classical
Crowds [26], mix networks (Mixnets) [9], and onion routing [25] (e.g., Tor [14]).

Crowds provides sender anonymity by having the sender randomly forward
requests to crowd members until the request eventually reaches the receiver.
Hordes [21] replaces the reply mechanism of Crowds and onion routing by mul-
ticast to improve efficiency.

Mixnets collect packets from different sources, shuffle and forward them to
the next hop in a random order. Multiple layers of encryption are used. The
message is in the inner-most layer.

The idea of layered encryption is also applied in onion-routing, where a sender
randomly selects a path of “somewhat trusted” routers and encrypts its packet
to the routers along this path in layers, so that the last router can send the
inner-most content to the intended receiver. The Tor network [14] is the most
widely deployed anonymous communication network which uses onion routing
as its underlying routing mechanism.

A common problem in most of these schemes (in the case of Mixnets, we
consider the efficient variants which do not use zero-knowledge proofs) is that,
anonymity is not guaranteed against adversaries which can observe or even con-
trol the traffic. In particular, the sender and receiver will be known to the first
and last relay respectively for Tor.

While our work focuses on a highly distributed setting where each user in
the network sends and forwards packets individually, some recent work utilize
cooperation among users to achieve strong anonymity and efficiency at the same
time (e.g., Dissent [12,28] and Riposte [11]).

Dissent introduces semi-trusted servers to make dining cryptographers net-
works (DC-nets) [10] practical in a decent scale. It provides anonymity if at least
one of the servers is honest. Dissent provides also accountability which is not con-
sidered in most anonymous communication protocols. However, Dissent ideally

60 R.W.F. Lai et al.

assumes that all members remain connected and send correct signed messages
during one round. It takes a long (O(N)) time to exclude a single disruptor.

Riposte works on a slightly different setting where a huge number of users
wish to post on a shared bulletin board anonymously. Compared to Dissent,
Riposte provides similar privacy guarantee, and is able to identify malicious
users faster.

2.2 Frameworks for Anonymity Analysis

While we focus on giving a simple definition for the strongest possible anonymity,
where leakage of anonymity is negligible, Backes et al. [3,4] formulated a frame-
work AnoA to qualitatively and quantitatively analyze abstract anonymous com-
munication protocols. Their definition is similar to ours in the sense that they
also consider a security game played between a powerful adversary and a chal-
lenger. Similar to our relaxations, they also introduce adversary classes as wrap-
pers of the powerful adversary to capture realistic attacks. There are several
differences:

First, instead of an indistinguishability-style definition which quantifies
anonymity leakage additively, they give a differential-privacy-style definition,
which quantifies anonymity leakage both multiplicatively and additively. This
is helpful for analyzing imperfect anonymous communication protocols which
provide weak anonymity. However, we remark that we can easily add the multi-
plicative factor to our definition as well if desired.

Second, the anonymous communication protocols in AnoA are modeled
abstractly as general interactive Turing machines, whereas in our work we give
a simple syntax to capture a wide range of anonymous protocols. We think this
makes our anonymity definition easier to use.

Lastly, AnoA considers static corruption, i.e., the set of corrupted entities
is chosen at the beginning of the anonymity game, while we consider adaptive
corruption.

Besides the general framework, much effort has been made over the decades to
analyze various anonymous communication protocols under different anonymity
definitions and adversarial capabilities. Recent examples include a probabilis-
tic analysis to onion routing [15], the analysis of Tor in the UC framework [2,
15], fingerprinting attacks on onion routing [23], and accountable anonymous
communication [1,12,13,27,28].

3 Preliminary

3.1 Notations

Let λ be the security parameter. All algorithms take 1λ as input implicitly. Let
φ be the empty set. Let [N] be the set {1, 2, . . . , N}. P = (pij)N

i,j=1 denotes
an N -by-N matrix with the (i, j)-th entry given by pij . x = (xi)N

i=1 denotes
an N -dimensional (column) vector with the i-th entry given by xi. Let A be a

Another Look at Anonymous Communication 61

probabilistic algorithm. x ← A(·) denotes the computation of x output from A.
Let S be a set and X,Y ∼ S be distributions over S. x ← S denotes the sampling
of a uniformly random x ∈ S, and x ← X denotes the sampling of x ∈ S
according to the distribution X. We denote by X ≈ Y that the distributions are
identical. x := y denotes assigning the value of y to the variable x. “⊕” denotes
the XOR operation.

3.2 Key-Private Public-Key Encryption

Syntax. A public-key encryption scheme is a tuple of PPT algorithms PKE =
(Setup, KGen, Enc, Dec) defined below.
pp ← Setup(1λ) is a probabilistic algorithm which inputs the security parameter
λ, and outputs a public parameter pp.
(pk, sk) ← KGen(pp) is a probabilistic algorithm which inputs the public para-
meter pp, and outputs a public key pk and a secret key sk.
c ← Enc(pk,m) is a probabilistic algorithm which inputs the public key pk and
a message m, and outputs a ciphertext c.
m ← Dec(sk, c) is a deterministic algorithm which inputs the secret key sk and
a ciphertext c, and outputs a message m.

Correctness. We say PKE is correct if it holds that

Pr[m′ = m : pp ← KGen(1λ); (pk, sk) ← KGen(pp);
c ← Enc(pk,m);m′ ← Dec(sk, c)] ≥ 1 − negl (λ).

Key-Privacy. Key-privacy of PKE is introduced by Bellare et al. [6], which
requires that no PPT adversary can distinguish between ciphertexts produced
from two public keys chosen by the challenger.

In this work, we consider a slightly modified definition, where the adversary is
given access to a corruption oracle which returns the secret key of the requested
party. PKE is key-private under chosen ciphertext attack (IK-CCA2) if, for any
PPT adversary A,

|2Pr[IK-CCA2A
PKE(1

λ) = 1] − 1| ≤ negl (λ)

where the probability is taken over the random coins of the adversary and the
experiment IK-CCA2A

PKE as defined in Fig. 1 (with N = poly (λ) being an inte-
ger). One can also define a corresponding security notion for chosen plaintext
attack (IK-CPA) by removing the decryption oracle.

4 Formulation of AC and OF

4.1 Anonymous Communication (AC) Protocols

We present a simple yet expressive formulation of anonymous communication
protocols. An anonymous communication protocol is run within a network of

62 R.W.F. Lai et al.

Fig. 1. Experiment for IK-CCA2 security of public-key encryption (modified from
Bellare et al. [6])

an arbitrary number of nodes. We consider a dynamic environment where the
network topology can change over time, i.e., both nodes and edges may be added
or removed. We assume that this network is equipped with a (most likely non-
anonymous) routing protocol, so that our anonymous protocol does not need
to deal with the changes to the network topology, yet will work regardless of
the changes. We model this by letting each participating node k in the protocol
possess some auxiliary information auxk (e.g., routing tables) maintained by
some external mechanisms such as the underlying routing protocol.

Overview. To participate in the anonymous communication protocol, a node
runs the key generation algorithm, without any coordination with any other
node, to set up its public and secret keys. It then publishes its public key. We
assume that the nodes maintain their auxiliary information (e.g., routing table)
and learn the public keys of each other through external mechanisms. For exam-
ple, they can obtain public keys while learning the network topology using the
underlying routing protocol. Alternatively, they might use private information
retrieval (PIR) along with a public-key infrastructure to retrieve public keys on-
demand yet anonymously (similar to using PIR to retrieve a few IP-addresses
of onion-routers in the Tor network on-demand [22]). The participating nodes
form a graph G of N = poly(λ) nodes.

Each sender node in the network can encapsulate a message, using its aux-
iliary information and the public key of the receiver, into a packet ready for
forwarding. The creator of the packet or any intermediate node receiving the
packet forwards it by running a forwarding algorithm. It takes as input a secret
key and some auxiliary information, attempts to decrypt the packet, and out-
puts an outgoing packet and the index of the next hop regardless of whether
the decryption is successful. Hopefully, the intended receiver will be one of the
intermediate nodes to receive the packet. For anonymity, the packets and the

Another Look at Anonymous Communication 63

forwarding pattern must not leak any information about the sender and the
receiver. It is important to forward the packet regardless of whether the inter-
mediate node happens to be the actual receiver. Otherwise, an adversary observ-
ing all traffic can notice the disappearance of the packet and discover the real
receiver.

Syntax. An anonymous communication protocol AC = (Setup,KGen, Enc, Fwd)
is a tuple of PPT algorithms:

pp ← Setup(1λ): The probabilistic setup algorithm is run by a trusted party
which initiates the network environment. It takes as input the security para-
meter 1λ, and outputs a public parameter pp. We note that this is the only
algorithm run by a trusted party, and is run once only for setting up the system.
Standard practices such as distributed parameter generation can be adopted to
reduce trust.

(pk, sk) ← KGen(pp): The probabilistic key generation algorithm is run by each
node joining the network individually. It takes as input the public parameter pp,
and outputs a public key pk and a secret key sk. The participating nodes form
a graph G of N = poly (λ) nodes.

p ← Enc(j, pkj ,PK,m, auxi): The probabilistic encapsulation algorithm is run
by a sender node i. It takes as input a receiver j, its public key pkj along with
some other public keys PK, a message m, and some auxiliary information auxi

of node i, and outputs a packet p.

({p′
k′ , k′}k′ ,M) ← Fwd(skk,PK, P, auxk): The probabilistic forwarding algorithm

is run by a sender node or any intermediate node k. It takes as input a secret
key skk of node k, a sequence of public keys PK, a sequence of input packets P ,
and some auxiliary information auxk of node k. It outputs a sequence of packets
p′

k′ with next hops k′, and a sequence of messages M (or ⊥). If p′
k′
= ⊥, it

is forwarded to next hop k′ regardless of whether a valid message m ∈ M is
obtained. If the node declines to forward the packet, it outputs (⊥,⊥,M).

In general, the packet encapsulation algorithm takes multiple public keys
as input, while the packet-forwarding algorithm takes multiple public keys and
multiple incoming packets as input. The former captures onion routing protocol
and its variants which encrypt messages to a pre-defined route of intermediate
routers in layers, while the latter captures, for example, Mixnets and its variants
which shuffle and forward packets in batches. Moreover, the algorithm generates
different outgoing packets to multiple next hops. This captures, for example,
some anonymous communication protocols based on broadcasting. Yet, for our
purpose, the rest of this paper will stick to the setting where the packet encap-
sulation algorithm does not take any extra public keys PK as input, i.e.,

p ← Enc(j, pkj ,m, auxi),

while the packet-forwarding algorithm does not take any public keys as input,
but only a single incoming packet, and outputs a single outgoing packet and a
single next hop, i.e.,

64 R.W.F. Lai et al.

(p′, k′,m) ← Fwd(skk, p, auxk).

We note that all the discussions and definitions in the rest of the paper can be
naturally extended to the more general syntax.

Correctness. Informally, AC is said to be correct if, for any packet generated
under an honest execution of the protocol, the packet reaches the intended desti-
nation after a reasonable delay with a reasonably high probability. Furthermore,
the Fwd algorithm always recovers the message encapsulated in the packet when
it reached the intended destination.

The idea is tricky to formalize. An anonymous communication protocol could
have a low probability of successful delivery (psuccess) but a short expected deliv-
ery time when successful, while another could have a high psuccess but a long
expected delivery time. For the first case, the sender can always intentionally
repeat or re-transmit periodically to make up for the low success probability2.
Another tricky part is that a protocol might be efficient over some types of
graphs but inapplicable to some others. For instance, the buses protocol only
works on graphs with a circular path connecting all nodes.

We model this formally by lower-bounding psuccess after T forwardings by ρ.
For any graph G with N = poly(λ) nodes, let {auxk}N

k=1 be a set of auxiliary
information of the nodes. AC is said to be (T, ρ)-correct on G if, for security
parameter λ ∈ N, all sender i, all receiver j, all message m, all public parameter
generated by pp ← Setup(1λ), all key pairs generated by (pkk, skk) ← KGen(pp),

psuccess := Pr[CorrectT
AC(1λ, i, j,m, {auxk, pkk, skk}N

k=1) = 1] ≥ ρ > 0

where the probability is taken over the randomness of the experiment CorrectT
AC

defined in Fig. 2.
We can observe that if AC is (T, ρ)-correct on G, then we must have T ≥ l,

where l is the longest of all shortest hop-length between any sender-receiver pair,
and that AC must be also (T ′, ρ′)-correct on G for any T ′ ≥ T and 0 < ρ′ ≤ ρ. As
baselines for comparison, the buses protocol is (N, 1)-correct while the broadcast
protocol is (l, 1)-correct.

Anonymity. We aim to capture both sender and receiver anonymity in the
most hostile environment. For receiver anonymity, we require that a packet leaks
nothing about the receiver, neither from the encapsulated message nor the traffic
pattern. This implies that a packet encapsulating any message is indistinguish-
able from each other, so that a sender can safely re-transmit a message or switch
to a different message for whatever reasons. Note that the indistinguishability
should hold even if the correspondence between messages and senders are known.

For sender anonymity, notice that an adversary observing all traffic must be
able to tell the original sender of any packet. Thus, we instead require that when
2 Re-transmission triggered by events depending on the protocol, e.g., transmission

failure or time-out (albeit it is unclear how to define or discover them), might com-
promise anonymity.

Another Look at Anonymous Communication 65

Fig. 2. Correctness experiments of AC and OF

multiple senders send out a set of messages to multiple receivers, no one can tell
which message originates from which sender, even if the correspondence between
messages and receivers are known.

In technical terms, we consider a security game played between a challenger
and a powerful adversary which is able to observe all traffic, corrupt at most
all but two of the nodes, and obtain decrypted messages even from non-corrupt
nodes. The security game consists of three phases.

In the first phase, the adversary corrupts as many nodes as it wishes, controls
and learns from how packets are routed. These are modeled by the corruption
and forwarding oracles respectively.

In the second phase, the adversary produces two distinct tuples (i.e., at least
one component is different) each consisting of a receiver, a message, and the
auxiliary input of a sender. Eventually, the challenger is going to create packets
according to some parts of the specifications (in the form of sender-message-
receiver pairs) of the adversary. So, we also require the adversary to produce
a bit to choose that either the sender-message correspondence or the message-
receiver correspondence is fixed. This can be thought of as a slot machine with
two slots such that the adversary can control the outcome of either one of the
slots. If the adversary chose to fix the sender-message correspondence, an extra
restriction is imposed that both of the challenged receivers are not corrupted.

The challenger then picks a random bit to determine the remaining slot of
the slot machine: To decide whether the challenge packets should be created
according to the specification by the adversary, or the remaining part of the
sender-message-receiver pairs should be flipped. For example, if the adversary
chose to fix the sender-message correspondence, then the random bit picked by
the challenger decides whether the message-receiver correspondence should be
flipped, as depicted in Fig. 3. The challenger then returns both challenge packets
to the adversary.

66 R.W.F. Lai et al.

Sender 0 Message 0 Receiver 0

Sender 1 Message 1 Receiver 1

Fixed by adversary Picked by challenger
Receiver
Anonymity

Sender 0 Message 0 Receiver 0

Sender 1 Message 1 Receiver 1

Fixed by adversaryPicked by challenger
Sender
Anonymity

Fig. 3. An illustration of the IND-ANONA
AC game

In the third phase, the adversary is again given access to the corruption and
forwarding oracles. Naturally, if the adversary chose to fix the sender-message
pairs, it is still not allowed to corrupt the challenge receivers. Also, when the
forwarding oracle is queried with the challenge packets and receivers, no message
will be decrypted (but the packet is still forwarded). These ensure that the
adversary cannot win trivially. Finally, the adversary outputs a bit as a guess of
whether the other part of the specification is flipped.

For any graph G with N = poly(λ) nodes, let {auxk}N
k=1 be a set of auxiliary

information of the nodes. AC is said to have indistinguishability of packets under
anonymity attack (IND-ANON) if, for any security parameter λ ∈ N, any PPT
adversary A it holds that

|2Pr[IND-ANONA
AC(1λ, {auxk}N

k=1) = 1] − 1| ≤ negl (λ)

where the probability is taken over the random coins of the experiment
IND-ANONA

AC defined in Fig. 4 and the adversary.

Remark. One can fit an onion routing protocol into our definition (by defining an
Enc algorithm which encrypts a message to the routers along a random path in
layers, and a Fwd algorithm which decrypts the outer-most layer and forwards
the inner-layers to the next router). Yet, the routes always terminate at the
receiver. An IND-ANON adversary can use the forwarding oracle to figure out
the real receiver. So, an onion routing protocol would not satisfy our anonymity
requirement.

Relaxations. The above definition takes away almost all quantitative infor-
mation about the level of anonymity achieved. In practical scenarios, a more
efficient protocol with weaker anonymity might be desirable. In this case, we
need to know how weak the anonymity guaranteed actually is. To this end, we
consider the following reasonable relaxations:

– q-bounded Collusion: The above definition essentially bounds the number of
corrupted users by N − 2. In general, consider an adversary which only cor-
rupts at most q users. The level of anonymity may depend on q. For example,
one might consider q as a fraction N .

Another Look at Anonymous Communication 67

Fig. 4. Experiment for IND-ANON security of AC protocols

– 1-out-of-n Anonymity: The above definition models anonymity as a deci-
sion problem. Alternatively, we can model it as a search problem to capture
anonymity of hiding within a group of n (≤ N) users: In the second phase,
the adversary chooses to break either the receiver anonymity or the sender
anonymity. For receiver anonymity, it outputs a set of n potential receivers
{j∗

k}n
k=1, a message m∗, and some auxiliary information of a sender aux∗. For

sender anonymity, it outputs a target receiver j∗, a message m∗, and a set
of auxiliary information for n potential senders {aux∗

k}n
k=1. The challenger

then picks randomly one of the n senders or receivers and outputs a challenge
packet. The adversary wins if it guesses the choice of the challenger correctly.

– CPA-Anonymity: Our definition captures “CCA1-anonymity” since the for-
warding oracle decrypts of the queried packet except for the challenge

68 R.W.F. Lai et al.

receivers after they are specified. We can relax this by letting the forwarding
oracle always return m = ⊥.

– Secret Auxiliary Information: The above definition considers an adversary
with knowledge of the auxiliary information (e.g., routing table) of all users.
In practical setting, one might assume this auxiliary information to be hidden
from the adversary.

Relations to Other Notions of Anonymity. We first recall the structure of
the definitions by Hevia and Micciancio [17], and those extended by Gelernter
and Herzberg [16]. They define a hybrid experiment consisting of a polynomial
number of rounds. The experiment is indexed by the type of anonymity attack
and a bit b. In each round, the adversary produces two N -by-N matrices M (0)

and M (1) where the (i, j)-th entry of the matrices specifies the message sent from
node i to node j. The challenger then executes the anonymous communication
protocol on messages contained in M (b). The adversary can choose to continue
the experiment, or terminate it by outputting a bit b′ as a guess of b. The
types of anonymity attacks are captured by imposing different restrictions to the
matrices M (0) and M (1). For instance, the unobservability notion is captured by
not imposing any restriction on the matrices.

Although their definitions are rigorous and expressive, they are considerably
more complex than typical security definitions for other cryptographic primi-
tives, such as IND-CPA/CCA security for public-key encryption. The two major
complicated aspects are the round-based nature and the unnatural restrictions
to the matrices.

Focusing on these two aspects, our definition uses oracles to replace their
round-based structure. Our definition also does not restrict the choice of senders,
messages and receivers of the adversary. This corresponds to the notion of unob-
servability. Moreover, we allow the adversary to corrupt the challenged receivers
if it chose to fix the message-receiver correspondence. This corresponds to sender
anonymity against malicious receivers. We are thus able to capture the two
strongest anonymity properties considered in the literature [16].

As our later constructions are inspired by the Drunk Motorcyclist protocol,
it is also worth comparing our anonymity definition with that by Young and
Yung [29]. They defined (receiver) anonymity and a rather unusual “blocking
anonymity”, for their DM protocol. While the adversary in the former is passive,
the latter is able to block an arbitrary number of nodes in the network. Both
types of adversaries can observe all traffic within the network. However, they
are unable to maliciously inject, remove, or modify packets. The goal of the
adversary against anonymity is to guess the identity of the real receiver out of
all N possible choices, while the goal of the adversary against blocking anonymity
is to block any subset of the N nodes so that the real receiver is in this subset.

We make the following observations. From the first glance, blocking
anonymity appears to be a generalization of the receiver anonymity. Yet, we
observe that their two anonymity notions are somewhat equivalent, up to the
size of the blocking set. Suppose there exists an adversary against blocking

Another Look at Anonymous Communication 69

anonymity, who outputs a set of nodes covering the target receiver with non-
negligible probability, we can pick a random member of this set and break
anonymity with non-negligible probability as well. Next, we observe that their
anonymity definition actually corresponds to our 1-out-of-n anonymity defin-
ition. Finally, we remark that Young and Yung [29] did not consider sender
anonymity.

4.2 Oblivious Forwarding (OF) Protocols

The forwarding pattern of a packet should not depend on the message content
but rather the intended receiver. It is natural to separate the routing part of
anonymous communication as an independent primitive. We formulate this idea
as (receiver-)oblivious forwarding protocols3.

Overview. An oblivious forwarding protocol is similar to an anonymous com-
munication protocol, except that it only deals with the headers of the packets
for routing. Given an intended receiver and some auxiliary information, the Enc
algorithm creates a header containing the routing information. The Fwd algo-
rithm creates headers for outgoing packets given an incoming header.

We emphasize again that, as in anonymous communication protocols, regard-
less of whether the actual receiver is an intermediate node or not, it always
forwards the packet to the next hop.

Syntax. An oblivious forwarding protocol OF = (Enc,Fwd) is a tuple of PPT
algorithms defined as follows:

h ← Enc(j, auxi): The probabilistic encapsulation algorithm is run by a sender
node i. It takes as input a receiver j and some auxiliary information auxi of node
i, and outputs a header h.

(h′, k′) ← Fwd(h, auxk): The probabilistic forwarding algorithm is run by a
sender node or any intermediate node k. It takes as input an incoming header h
and some auxiliary information auxk of node k, and outputs an outgoing header
h′ and a next hop k′. If the node declines to forward the header, it outputs
(⊥,⊥).

Correctness. The correctness requirement of oblivious forwarding protocols is
essentially the same as that of anonymous communication protocols, except that
the former focuses only on the routing aspect.

For any graph G with N = poly(λ) nodes, let {auxk}N
k=1 be a set of auxiliary

information of the nodes. OF is said to be (T, ρ)-correct on G if, for security
parameter λ ∈ N, all sender i, all receiver j, it holds that

Pr[CorrectT
OF(1

λ, i, j, {auxk}N
k=1) = 1] ≥ ρ > 0

where the probability is taken over the random coins of the experiment CorrectT
OF

defined in Fig. 2.
3 Not to be confused with packet-oblivious forwarding in the network community.

70 R.W.F. Lai et al.

Obliviousness. OF is said to be oblivious if, for any security parameter λ ∈ N,
any pair of receivers j0 and j1, and any auxiliary information aux0 and aux1, the
distributions of the created headers from the Enc algorithm are identical, i.e.,
Enc(j0, aux0) ≈ Enc(j1, aux1).

Although we consider perfect obliviousness in this work, one can relax it
to statistical or computational obliviousness. We are however unaware of any
possible construction, or the potential of efficiency benefits of such construc-
tions. Alternative definitions, such as a game-based one similar to IND-ANON
of anonymous communication protocols, are also possible.

4.3 Remarks on Dynamic Network Environments

In our formulation of anonymous communication and oblivious forwarding pro-
tocols, the network topology is assumed to be changing over time. In the syntax,
it is captured by letting the encapsulation and forwarding algorithms take as
input extra auxiliary information representing the view of the network topology.
The security definitions also allow dynamic environments. In the anonymity defi-
nition, the adversary is allowed to submit any auxiliary information of its choice,
both to the forwarding oracle and as challenges. In the obliviousness definition,
this is captured by requiring the headers created with respect to any receivers
and any auxiliary information have identical distributions.

Unfortunately, in the correctness definitions we fix the set of auxiliary infor-
mation in advance, meaning that correctness is only guaranteed when the net-
work is unchanged in T consecutive time steps. We could have extended the
definition to allow a dynamic network, considering all possible combinations
of auxiliary information per node per time step, as long as the corresponding
graphs are still strongly connected in their respective time steps, but it would
be difficult to prove a scheme to be correct under such a definition.

5 Generic Construction of AC

In this section, we show that anonymous communication protocols can be generi-
cally constructed from key-private public-key encryption and oblivious forward-
ing protocols. Recall that Young and Yung [29] pointed out the need of key-
private public-key encryption in several existing anonymous communication pro-
tocols, our work here can be seen as formalizing and extending their idea. We
also show that the Drunk Motorcyclist protocol is a special case of this generic
construction. Since the obliviousness guaranteed by the oblivious forwarding pro-
tocols is information-theoretic, by plugging in an existing key-private public-key
encryption secure under some intractability assumption into the generic con-
struction, we obtain an anonymous communication protocol secure under the
same assumption.

Intuitively, our construction works as follows. It encrypts the message to
be encapsulated by key-private public-key encryption, and then precedes the
ciphertext with the header produced by the oblivious forwarding protocol.

Another Look at Anonymous Communication 71

To forward a packet, a node attempts to decrypt the ciphertext, and forward
the packet using the oblivious forwarding protocol regardless of the decryption
result.

5.1 Formal Description

Let PKE = (Setup,KGen,Enc,Dec) be a public-key encryption scheme as defined
in Sect. 3. Let OF = (Enc,Fwd) be an oblivious forwarding protocol as defined
in Sect. 4. Figure 5 presents a generic construction of anonymous communication
protocols.

The correctness of this generic construction follows directly from the correct-
ness of the underlying building blocks. The key-privacy of PKE and obliviousness
of OF provides anonymity.

Theorem 1. Assume that PKE is correct and OF is (T, ρ)-correct. Then AC
constructed in Fig. 5 is (T, ρ)-correct.

Proving the above theorem is straightforward.

Theorem 2. Assume that PKE is (IK-CCA2)-secure and OF is oblivious. Then
AC constructed in Fig. 5 is (IND-ANON)-secure.

To see the intuition behind Theorem2, the key-private PKE hides the mes-
sages and their receivers encapsulated in the packets, so that no adversary can
deduce any information compromising anonymity from ciphertexts. Thus, the
only way to break anonymity is to observe or control the routing pattern. How-
ever, as the headers produced by OF is independent of its senders and receivers,
the headers do not help the adversary in any way either. On the other hand, it
is interesting that the seemingly complicated anonymity requirement of AC can
be met by the one-line obliviousness requirement of OF.

Proof. (Theorem 2). Suppose A is a PPT adversary against the IND-ANON-
security of the anonymous communication protocol. We wish to construct a PPT

Fig. 5. A generic construction of anonymous communication protocols

72 R.W.F. Lai et al.

adversary B against the key-privacy of PKE. For this, we define the hybrids Hybb′

for b′ = 0 and 1 as follows:

– B setups the network environment as a graph G with N nodes. Let
{auxk}N

k=1 be a set of auxiliary information of the nodes. It receives
pp and pkk for k ∈ [N] from the key-privacy challenger. It sends
{pkk, auxk}N

k=1 to A.
– B answers queries to the CorrO oracle of IND-ANON by redirecting

the request to the CorrO oracle of IK-CCA2. For queries (k, p, aux)
to FwdO, B parses p = (h, c), redirects (k, c) to the DecO oracle of
IK-CCA2 to obtain m. B also runs (h′, k′) ← OF.Fwd(h, aux) and
returns ((h′, c), k′,m) to A.

– Eventually, A outputs bfix and {(j∗
b ,m∗

b , aux
∗
b}1b=0. B picks a bit η ←

{0, 1}. The bits b′ (index of the hybrid) and η determine whether the
specifications of A should be flipped.

– B reacts differently for the cases bfix = 0 and bfix = 1:
• If bfix = 0, meaning that A chooses to attack the receiver

anonymity, B sends (j0, j1,mη) to the key-privacy challenger and
receives from it a ciphertext c∗

η. Recall that b′ is the index of the
hybrid. To simulate the header, it runs h∗

η ← OF.Enc(j∗
η⊕b′ , aux∗

η).
To simulate the other packet, it runs c∗

1⊕η ← PKE.Enc(pkj1⊕η⊕b′ ,

m1⊕η) and h∗
1⊕η ← OF.Enc(j∗

1⊕η⊕b′ , aux∗
1⊕η).

• If bfix = 1, meaning that A chooses to attack the sender anonymity,
B computes c∗

b ← PKE.Enc(pkj∗
b
,m∗

b) for b = 0, 1. It runs h∗
b ←

OF.Enc(j∗
b , aux∗

b⊕η⊕b′) for b = 0, 1.
– Finally, B sends (p∗

0, p
∗
1) where p∗

b = (h∗
b , c

∗
b) to the adversary A. B

answers queries to CorrO and FwdO as before.
– The game terminates as the adversary A outputs a guess ξ. The adver-

sary A wins if ξ = η.

We differentiate the cases between bfix = 0 and bfix = 1.

Case 1: bfix = 0. There are two differences between Hyb0 and Hyb1.
The first difference is that, B computes h∗

b⊕η from jb⊕η in Hyb0 and from
j1⊕b⊕η in Hyb1. By the obliviousness of OF, the two methods of generating h∗

b⊕η

are indistinguishable in the view of A.
The second difference is that, B computes c∗

1⊕η from pkj1⊕η
in Hyb0 and from

pkjη
in Hyb1. Since η is chosen at random, the choice of mη which is directed

to the encryption oracle of the key-privacy challenger is random in the view of
A. Suppose A can distinguish between the two methods of generating c∗

1⊕η with
non-negligible advantage, then it has the same advantage in distinguishing the
two methods of generating c∗

η, which breaks the IK-CCA2-security of PKE.

Case 2: bfix = 1. The only difference between Hyb0 and Hyb1 is that, B computes
h∗

b from aux∗
b⊕η in Hyb0 while it computes h∗

b from aux∗
1⊕b⊕η in Hyb1. By the

obliviousness of OF, the two methods of generating h∗
b are indistinguishable in

the view of A.

Another Look at Anonymous Communication 73

Therefore, in either case, Hyb0 and Hyb1 are indistinguishable in the view
of A. Moreover, in case 2, the bit b′ is information theoretically hidden from A
by the obliviousness of OF. Thus the advantage of A is zero. Suppose that A
chooses bfix = 0. Denote the random bit chosen by the key-privacy challenger by
bPKE. When b′ = bPKE ⊕ η, which occurs with probability 1

2 , Hybb′ is a perfect
simulation of the IND-ANON security game. Conditioned on the above, suppose
A breaks the IND-ANON security of AC with advantage ε, then B also has
advantage ε in breaking the key-privacy of PKE. ��

5.2 Recasting the DM Protocol

Recall that in the DM protocol [29], a node encrypts its message to the intended
receiver using a key-private public-key encryption scheme, and forwards the
ciphertext to a random neighboring node. Upon receipt of a packet, a node
copies the packet to a decryption queue and forwards the packet again to a ran-
dom neighboring node. For each packet, this process is repeated until its time-
to-live (TTL) value vanishes. Straightforwardly, the DM protocol can be seen
as an anonymous communication protocol constructed from the above generic
approach using an oblivious forwarding protocol DM-OF = (Enc,Fwd) defined
in Fig. 6a. The executions of the DM-OF.Fwd represent a simple random walk
over a graph, at which a packet travels to each neighboring node with equal
probability.

We consider two important parameters for random walk algorithms—the
hitting time, which is the maximum of the expected time for traveling from any

Fig. 6. Constructions of OF protocols (L denotes a constant TTL value)

74 R.W.F. Lai et al.

starting node to any destination), and cover time, which is the maximum of the
expected time for traveling from any starting node to all other nodes at least
once. It is well known that the hitting time and cover time of the simple random
walk algorithm on general graphs, without using any topological information of
the graph, are both O(N3) [8].

In the context of anonymous communication, there seems to be no reason
to avoid using any topological information of the graph. Contrarily, the sender
node should exploit this information as much as possible to improve the expected
hitting time or probability of successful delivery given a fixed TTL value, as long
as its routing strategy remains oblivious.

Intuitively, using a simple random walk algorithm and a fixed TTL value, it is
less likely for a node in a more isolated area of a network to receive packets. This
motivates us to design new routing strategies that make use of the topological
information to improve efficiency.

6 Constructions of OF

In this section, we aim to construct oblivious forwarding protocols which exploit
the topological information to improve efficiency. We first state a generic con-
struction defined upon any transition probability matrix and routing tables of
the network. From this generic construction, we can plug in the transition prob-
ability matrices of any random walk algorithms over graphs to obtain a class
of oblivious forwarding protocols. For demonstration, we use the simple ran-
dom walk algorithm and the β-random walk algorithm by Ikeda et al. [20] as
examples.

Next, by introducing a convenient representation of the routing paths from
a node as a “connectivity matrix” which is computed using partial topological
information, we present our construction which maximizes the minimum prob-
ability of successful delivery (psuccess) over all potential receivers for each fixed
TTL value in one round, i.e., during the transmission from one dummy receiver
to another.

6.1 Generic Construction

Consider a network represented by a strongly connected directed graph. Typi-
cally, routing in such a network is performed in a distributed manner: Each node
k maintains its routing table T k mapping each destination to a next hop. Our
strategy works as follows. Regardless of the intended destination, the sender node
i chooses a dummy destination j′ according to some distribution independent of
the intended destination. The sender node and all intermediate nodes then just
route the packet as a normal (non-anonymous) packet to the dummy destination
j′. When the packet reaches the dummy destination j′, node j′ chooses another
dummy destination as long as the TTL value is still positive.

Formally, let P = (pkj)N
k,j=1 where pkj ≥ 0,

∑
j pkj = 1, k, j ∈ [N] be any

transition probability matrix, and T = {T k}N
k=1. Figure 6b defines the oblivi-

ous forwarding protocol (P,T)-OF = (Enc,Fwd), which is clearly oblivious as

Another Look at Anonymous Communication 75

the header h output by Enc and the routing pattern (h′, k′) output by Fwd is
independent of the receiver j. For correctness, we defer the analysis to specific
constructions.

6.2 Construction from Any Random Walks

For a node k, deg(k) and N (k) are the out-degree and set of neighboring nodes
of k respectively. It is obvious that the Drunk Motorcyclist protocol is a special
case of the above generic construction, as stated in Lemma 1.

Lemma 1. Let Psim = (pkj)N
k,j=1 and Tsim = {T k}N

k=1 be defined as pkj =
deg−1(k) if j ∈ N (k), and pkj = 0 otherwise, and T k[j] = j ∀j respectively.
Then DM-OF = (Psim,Tsim)-OF.

Alternatively, the transition probabilities may depend on the local topolog-
ical information, e.g., the degrees of the neighboring nodes. We consider the
β-random walk algorithm designed by Ikeda et al. [20].

Definition 1. The transition probability matrix Pβ = (pkj)N
k,j=1 of the

β-random walk algorithm is defined as pkj = deg−β(j)(
∑

u∈N (k) deg
−β(u))−1

if j ∈ N (k), and pkj = 0 otherwise.

The β-random walk algorithm has hitting time and cover time equal to O(N2)
and O(N2 log N) respectively on general graphs when β = 1

2 [20]. Therefore,
in theory, β-OF := (Pβ ,Tsim)-OF is asymptotically more efficient than DM-OF.

For random walks with transition probability matrix P = (pkj)N
k,j=1, the

(k, j)-th entry of P � gives the probability of reaching j from k in exactly 	 steps.
Thus, the (k, j)-th entry of

∑T
�=1 P � gives the probability of reaching j from k

in no more than T steps. We therefore formulate the correctness of (P,T)-OF
as follows.

Theorem 3. Let T > 0 be a positive integer. Let ρ := mink,j

∑T
�=1 P � where

P = (pkj)N
k,j=1 is a transition probability matrix. Let T = {T k}N

k=1 where
T k[j] = j ∀j. Then (P,T)-OF is (T, ρ)-correct.

6.3 Optimizing psuccess

Representation of the Routing Paths. To facilitate our discussion, we con-
sider a typical network in which nodes route packets according to routing tables
Topt built using some distributed shortest path algorithm. Suppose the node k
has a partial view of how packets will be routed to different destinations. More
specifically, it has knowledge of some of the intermediate nodes along the path
to each destination. These paths form a tree rooted at node k connecting all
other nodes. Using this tree, we construct an N -by-N connectivity matrix Ak

as follows: If node i is on the path from k to j, set Ak(i, j) = 1; Otherwise, set
Ak(i, j) = 0.

76 R.W.F. Lai et al.

The connectivity matrix Ak features an interesting structure. First, since
node j must be on the path from k to j, Ak(j, j) = 1 for all j. Second, if node
i is a leaf node of the tree, there is only one path from node k to node i. Thus,
row i of Ak has only a single ‘1’ which is Ak(i, i). In other words, the 1-norm of
row i is 1. Lastly, if node j is a neighbor of node k, there are no intermediate
nodes along the path from node k to node j. Thus, column j of Ak has only a
single ‘1’ which is Ak(j, j). In other words, the 1-norm of column j is 1.

For conciseness, we will drop the superscript k from Ak and simply write A
when the context is clear.

The Construction. We aim to design a routing strategy which is independent
of the intended receiver, and maximizes the probability that the most unfor-
tunate node receiving its packets in one round. A node is considered the most
unfortunate if, given a routing strategy, the node receives the packet with the
lowest probability.

Formally, consider a sender node with transition probability x = (xi)N
i=1.

Let A be the connectivity matrix of the node defined in Sect. 6.3. Then the i-th
entry of Ax indicates the probability that node i belongs to the path from the
sender to the dummy destination. Our task is to maximize the minimum of these
probabilities, or

max (min
i

(Ax)i) s.t. x ≥ 0 ∧ ‖x‖1 = 1

where x ≥ 0 means xi ≥ 0 ∀i ∈ [N].
Intuitively, the optimal solution can be computed as follows. Consider the

tree represented by A. Let x̂ be the uniform distribution over the set of all leaf
nodes. This can be computed by assigning equal weights to the i-th entry of x̂
where the i-th row of A contains only a single 1, which is A(i, i) (i.e., node i is
a leaf node). This ensures that the most unfortunate nodes (i.e., the leaf nodes)
receive their packets with a fair chance. We claim that x̂ is an optimal solution
to the problem.

Formally, the proposed solution x̂ is given by x̂i = 1
|I| if i ∈ I, and x̂i = 0

otherwise, where I = {i : ‖Ai‖1 = 1} and Ai is the i-th row of A.

Remark 1. Interestingly, simple random walk corresponds to assigning equal
weights to x̂j where the j-th column (instead of row) of A contains only a single 1,
which is A(j, j) (i.e., node j is a neighboring node).

Proof of Optimality. The optimality of x̂ is proven via standard arguments
in linear optimization. Instead of proving the optimality of x̂ directly, which is
rather difficult, we construct a dual certificate for the primal solution x̂. Then,
by the LP Strong Duality Theorem [7, Theorem 4.4], x̂ is an optimal solution
to (2).

Another Look at Anonymous Communication 77

Lemma 2. The optimal solution to

max (min
i

(Ax)i) s.t. x ≥ 0 ∧ ‖x‖1 = 1

where x ≥ 0 means xi ≥ 0 ∀i ∈ [N], is given by x̂i = 1
|I| if i ∈ I, and x̂i = 0

otherwise, where I = {i : ‖Ai‖1 = 1} and Ai is the i-th row of A.

Proof. (Lemma 2) The equivalent model of (2) is

min −p s.t. (Ax ≥ pe) ∧ (eT x = 1) ∧ (x ≥ 0) ∧ (p ≥ 0) (1)

where e = (1, 1, . . . , 1)T ∈ R
N .

To prove such x̂ is an optimal solution to (2), we need to find a dual certificate
for (1). That is, we need to find an optimal solution for the dual problem. The
dual of the primal problem (1) is

max d s.t. (AT y ≤ −de) ∧ (eT y ≥ 1) ∧ (y ≥ 0) (2)

Since eT x = 1 ≥ 1 and x ≥ 0, let y = x̂, we have

AT x̂ =
N∑

i=1

AT
i x̂i =

∑

xi �=0

1
|I|A

T
i +

∑

xi=0

0 · AT
i =

∑

xi �=0

1
|I|ei ≤ 1

|I|e

where Ai is the i-th row of A, ei is the i-th standard basis vector in R
N .

From the calculation above, we can take d = − 1
|I| . It is trivial that Ax ≥ 1

|I|e
and the objective value of (1) is −p = − 1

|I| . Thus, we have found a feasible
solution, y = x̂, for the dual problem (2) such that the duality gap is zero, i.e.,
d = −p = − 1

|I| . By the LP Strong Duality Theorem [7, Theorem 4.4], x̂ is an
optimal solution to (1) and (2). ��

Finally, we define a transition probability matrix Popt = (pkj)N
k,j=1 where

pkj = x̂k
j ∀k, j, and obtain our optimized scheme Opt-OF = (Popt,Topt)-OF.

It is not easy to formulate the correctness of this construction, at least not
in a clean equation form as in the construction induced from random walks. The
difficulties arise from that the dummy receiver which was chosen according to
the transition probability matrix is not a neighbor of the sender. The packet
may be forwarded multiple times by intermediate nodes until it reaches the
dummy receiver. These intermediate nodes are not captured in the transition
probability matrix. Moreover, the hop length to each dummy receiver may be
different. Thus, a packet might reach several dummy receivers in an instance,
while still not reaching the first dummy receiver in another. We would therefore
only give a loose bound about the correctness of this construction.

Theorem 4. Let l be the hop length of the longest shortest path in the graph
G. Let I be the set of leaf nodes in the shortest path tree containing the longest
shortest path. Then Opt-OF is (l, 1

|I|)-correct.

78 R.W.F. Lai et al.

6.4 Discussions

Optimality. We do not claim that the construction above is optimal over all
possible oblivious forwarding protocols. Rather, it optimizes psuccess in one round,
i.e., during the transmission from one dummy receiver to another. Indeed, the
optimal construction is arguably the one where a packet travels each of the nodes
at least once with the minimal distance. Unfortunately, finding such a path is
an NP-hard problem known as the traveling salesman problem.

On the other hand, optimizing the probability during the entire life span of a
packet is undesirable for the following reasons: (1) The system to be optimized
becomes too complicated to analyze, as it involves tensor product of L transition
probability matrices, where L is the TTL value; (2) The sender might not trust
the others to pick dummy receivers honestly. Thus it has the motivation to do
the best it can.

Auxiliary Information. A sender might not have complete knowledge of the
paths to all destinations, so some leaf nodes in the tree representing its routing
paths may actually be intermediate nodes lying on other paths. Thus, assigning
positive weight on these nodes would be a waste of effort. However, as the sender
learns more about the paths, its strategy will only become better regarding
psuccess. We remark that the sender should only use side-channel information
independent of the real receivers to update its auxiliary information. Otherwise,
an adversary may be able to infer information about the real receivers from the
auxiliary information. Note that the side-channel information can be tampered
by the adversary without losing anonymity. This is captured in our anonymity
game (Fig. 4) by allowing the adversary to query with and submit for challenge
any auxiliary information of its choice.

7 How to Use Our AC Protocols?

As a quick summary, we have proposed a new formulation of anonymous commu-
nication protocols and provided several generic constructions. The functionality
of an anonymous communication protocol itself is rather limited: It forwards
packets randomly without guaranteeing delivery. We thus provide some guide-
lines about how to make the best use of these anonymous communication pro-
tocols below.

7.1 Network Environment

In the previous sections, we focus on strongly connected directed graphs, assum-
ing each node in the graph to be both potential sender and receiver, and is
willing to forward packets according to the anonymous communication protocol.
This setting suffices for networks formed for specific uses (e.g., P2P networks).

In the case of the internet, end users are connected to their local autonomous
systems (AS), which are then interconnected to form the internet. While the end

Another Look at Anonymous Communication 79

users are the potential senders and receivers, they are not supposed to forward
packets to neighboring nodes. Instead, the majority of the routing tasks are
performed between different ASes. Thus, it is reasonable to think of each AS as
a node in an anonymous communication protocol. In this setting, an end user
simply sends ordinary packets to its local AS, which then encapsulates the entire
packet as a message using an anonymous communication protocol. Anonymity
of the two end users at either side of a communication channel is guaranteed
assuming only trusted local ASes of the senders and receivers. We think that this
minimal level of trust is acceptable as the end users pay the ASes to subscribe
for internet services.

7.2 How to Guarantee Successful Delivery?

Recall that a packet sent through an anonymous communication protocol is
guaranteed to reach its intended destination only with a positive probability.
Moreover, since the anonymous communication protocol is sender-anonymous
even against malicious receivers, even the intended receiver itself does not know
the sender. Thus, there is no indication of success delivery such as the acknowl-
edgement (ACK) response. The sender can at best send out the message mul-
tiple times, using independent randomness for anonymity, so that hopefully the
intended receiver can receive the message.

For reliable communication, the sender needs to concatenate its identity to
the message, and send out the same message repeatedly, again using independent
randomness for anonymity, until receiving an ACK from the receiver. This ACK
response is again concatenated with the receiver identity, and is sent multiple
times so that hopefully the sender can receive it. In short, we can imagine an
anonymized TCP connection where each message is sent using an anonymous
communication protocol.

7.3 Anonymity-Efficiency Trade-Off

It is of little doubt that anonymous communication protocols with the strongest
possible anonymity are inefficient, which is shown under a more complex defin-
ition [16]. To benefit from the strong anonymity guarantee, one can consider a
hybrid approach in practice: We still use low-latency anonymous communication
protocols (e.g., Tor) to setup a fixed route between the sender and the receiver.
However, at somewhere in the middle of the route, we use strong anonymous
communication protocols within a small subgraph to “cut off” the link. We note
that it requires a careful analysis of this approach, perhaps under relaxed defi-
nitions, to examine the actual gain of anonymity. We leave it as a future work.

8 Concluding Remark

We have presented simple yet expressive syntax and security definitions of
anonymous communication protocols and oblivious forwarding protocols. For the

80 R.W.F. Lai et al.

former, we have proposed a generic construction from key-private public-key
encryption and oblivious forwarding protocols. For the latter, we have proposed
a generic construction from any random walk algorithm over graphs. Our work
provides a modular way of constructing anonymous communication protocols
and a simple way to analyze their anonymity.

Furthermore, we have specially designed a construction of oblivious forward-
ing protocols which optimizes the probability of successful delivery. Our experi-
ment results suggest that our optimized construction performs significantly bet-
ter in terms of the probability of successful delivery in graphs capturing the
characteristics of real world networks. In contrast to some efficient yet not-so-
anonymous communication protocols, our constructions provide anonymity even
in the presence of a powerful adversary, which can observe and control all traffic
in the network and corrupt all but two nodes. The strong anonymity comes at
an efficiency cost due to the obliviousness of the routing strategy. We leave the
study of the trade-off between anonymity and efficiency as a future work.

References

1. Backes, M., Clark, J., Kate, A., Simeonovski, M., Druschel, P.: BackRef: account-
ability in anonymous communication networks. In: Boureanu, I., Owesarski, P.,
Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 380–400. Springer, Cham
(2014). doi:10.1007/978-3-319-07536-5 23

2. Backes, M., Goldberg, I., Kate, A., Mohammadi, E.: Provably secure and prac-
tical onion routing. In: 25th IEEE Computer Security Foundations Symposium,
Cambridge, MA, USA, 25–27 June 2012, pp. 369–385 (2012)

3. Backes, M., Kate, A., Manoharan, P., Meiser, S., Mohammadi, E.: AnoA: a frame-
work for analyzing anonymous communication protocols. In: 2013 IEEE 26th Com-
puter Security Foundations Symposium, New Orleans, LA, USA, 26–28 June 2013,
pp. 163–178 (2013)

4. Backes, M., Kate, A., Meiser, S., Mohammadi, E.: (Nothing else) MATor(s): mon-
itoring the anonymity of Tor’s path selection. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, 3–7 November 2014, pp. 513–524 (2014)

5. Beimel, A., Dolev, S.: Buses for anonymous message delivery. J. Cryptol. 16(1),
25–39 (2003)

6. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1 33

7. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization, 1st edn. Athena
Scientific, Belmont (1997)

8. Brightwell, G., Winkler, P.: Maximum hitting time for random walks on graphs.
Random Struct. Algorithms 1(3), 263–276 (1990)

9. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

10. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)

11. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging
system handling millions of users. In: 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015, pp. 321–338 (2015)

http://dx.doi.org/10.1007/978-3-319-07536-5_23
http://dx.doi.org/10.1007/3-540-45682-1_33

Another Look at Anonymous Communication 81

12. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: Proceedings of the 17th ACM Conference on Computer and Communications
Security, Chicago, Illinois, USA, 4–8 October 2010, pp. 340–350 (2010)

13. Corrigan-Gibbs, H., Wolinsky, D.I., Ford, B.: Proactively accountable anonymous
messaging in verdict. In: Proceedings of the 22th USENIX Security, Washington,
DC, USA, 14–16 August 2013, pp. 147–162 (2013)

14. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, 9–13 August
2004, San Diego, CA, USA, pp. 303–320 (2004)

15. Feigenbaum, J., Johnson, A., Syverson, P.F.: Probabilistic analysis of onion routing
in a black-box model. ACM Trans. Inf. Syst. Secur. 15(3), 14 (2012)

16. Gelernter, N., Herzberg, A.: On the limits of provable anonymity. In: Proceedings
of the 12th Annual ACM Workshop on Privacy in the Electronic Society, WPES
2013, Berlin, Germany, 4 November 2013, pp. 225–236 (2013)

17. Hevia, A., Micciancio, D.: An indistinguishability-based characterization of anony-
mous channels. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134,
pp. 24–43. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70630-4 3

18. Hirt, A., Jacobson Jr., M.J., Williamson, C.L.: A practical buses protocol for
anonymous internet communication. In: Proceedings of the Third Annual Confer-
ence on Privacy, Security and Trust, 12–14 October 2005, The Fairmont Algonquin,
St. Andrews, New Brunswick, Canada (2005)

19. Hirt, A., Jacobson Jr., M.J., Williamson, C.L.: Taxis: scalable strong anonymous
communication. In: 16th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, Baltimore, Maryland,
USA, 8–10 September 2008, pp. 269–278 (2008)

20. Ikeda, S., Kubo, I., Yamashita, M.: The hitting and cover times of random walks on
finite graphs using local degree information. Theor. Comput. Sci. 410(1), 94–100
(2009)

21. Levine, B.N., Shields, C.: Hordes: a multicast-based protocol for anonymity. J.
Comput. Secur. 10(3), 213–240 (2002)

22. Mittal, P., Olumofin, F.G., Troncoso, C., Borisov, N., Goldberg, I.: PIR-Tor:
scalable anonymous communication using private information retrieval. In: Pro-
ceedings of the 20th USENIX Security Symposium, San Francisco, CA, USA,
8–12 August 2011

23. Panchenko, A., Niessen, L., Zinnen, A., Engel, T.: Website fingerprinting in onion
routing based anonymization networks. In: Proceedings of the 10th Annual ACM
Workshop on Privacy in the Electronic Society, WPES 2011, Chicago, IL, USA,
17 October 2011, pp. 103–114 (2011)

24. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data mini-
mization: anonymity, unlinkability, undetectability, unobservability, pseudonymity,
and identity management, v0.34, August 2010. http://dud.inf.tu-dresden.de/litera
tur/Anon Terminology v0.34.pdf

25. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections and onion
routing. IEEE J. Sel. Areas Commun. 16(4), 482–494 (1998)

26. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. 1(1), 66–92 (1998)

27. Syta, E., Corrigan-Gibbs, H., Weng, S.-C., Wolinsky, D., Ford, B., Johnson, A.:
Security analysis of accountable anonymity in dissent. ACM Trans. Inf. Syst. Secur.
17(1), 4:1–4:35 (2014)

http://dx.doi.org/10.1007/978-3-540-70630-4_3
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

82 R.W.F. Lai et al.

28. Wolinsky, D.I., Corrigan-Gibbs, H., Ford, B., Johnson, A.: Dissent in numbers:
making strong anonymity scale. In: 10th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2012, Hollywood, CA, USA, 8–10 October
2012, pp. 179–182 (2012)

29. Young, A.L., Yung, M.: The drunk motorcyclist protocol for anonymous communi-
cation. In: IEEE Conference on Communications and Network Security, CNS 2014,
San Francisco, CA, USA, 29–31 October 2014, pp. 157–165 (2014)

Challenges with Assessing the Impact
of NFS Advances on the Security
of Pairing-Based Cryptography

Alfred Menezes1(B), Palash Sarkar2, and Shashank Singh3

1 Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Canada

ajmeneze@uwaterloo.ca
2 Applied Statistics Unit, Indian Statistical Institute, Kolkata, India

palash@isical.ac.in
3 Inria, Nancy, France

sha2nk.singh@gmail.com

Abstract. In the past two years there have been several advances in
Number Field Sieve (NFS) algorithms for computing discrete logarithms
in finite fields Fpn where p is prime and n > 1 is a small integer. This
article presents a concise overview of these algorithms and discusses some
of the challenges with assessing their impact on keylengths for pairing-
based cryptosystems.

1 Introduction

A cryptographic pairing is a non-degenerate bilinear map ê : G1 × G2 → GT ,
where G1, G2, GT are groups of the same prime order r. The pairing is sym-
metric if G1 = G2; otherwise it is asymmetric. Such pairings are generally con-
structed from elliptic curves E defined over a finite field Fq and having low
embedding degree n. For symmetric pairings, Fq is either a characteristic-two or
characteristic-three field (with n = 4 or n = 6) or a prime field (with n = 2). For
asymmetric pairings, Fp is a prime field and n is small, e.g., n ∈ {2, 6, 12, 18, 24}.
Here, G1 and G2 are order-r groups of Fqn-rational points on E, GT is the order-r
subgroup of F∗

qn , and the map ê is derived from the Weil or Tate pairings.
Beginning in 2001 when Boneh and Franklin proposed their identity-based

encryption scheme [11], pairings have become an indispensable instrument in
the cryptographer’s toolbox. Hundreds (if not thousands) of research papers
have been written that use pairings to design protocols that achieve certain
cryptographic or efficiency objectives that do not seem attainable with con-
ventional cryptosystems such as RSA and elliptic curve cryptography (ECC).
Among these applications are aggregate signature schemes, non-interactive zero-
knowledge proof systems, certificateless encryption, attribute-based encryption,
and searchable encryption.

A vast majority of research papers on pairing-based protocols treat the under-
lying pairing ê as a black box, and emphasize reductionist security proofs for the
c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 83–108, 2017.
DOI: 10.1007/978-3-319-61273-7 5

84 A. Menezes et al.

protocols with respect to some hardness assumption on ê. An unfortunate con-
sequence of this predominant point of view is that issues with functionality,
efficiency and security of the pairing-based protocols have not been given the
attention they deserve sometimes leading to misleading or incorrect claims. For
example, beginning with the BLS signature scheme [12], many papers described
protocols using so-called Type-2 asymmetric pairings whereby G1 �= G2 and an
efficiently-computable isomorphism ψ from G2 to G1 is known. However, a con-
crete analysis subsequently revealed that Type 2 pairings are inferior to their
Type 3 counterparts with respect to functionality, efficiency and security, and
therefore there is no reason to use them [14] (see also [15]). As a second example,
consider the Boneh-Shacham group signature scheme with asymmetric pairings
ê : G1 × G2 → GT in which one needs to hash onto G2 and thereafter apply ψ
to the resulting hash value [13]. This protocol, although ‘provably secure’, is not
implementable since no construction of such a pairing is known. As a third exam-
ple, we mention the bewildering array of contrived hardness assumptions that
have been proposed in the literature in order to attain a reductionist security
proof (see [32]). It is typically easy to prove that these assumptions are valid
in the generic group model. However, their validity in practice is much more
difficult to ascertain. Indeed, Cheon [16] showed that the so-called Strong Diffie-
Hellman (SDH) problem that had been formulated by Boneh and Boyen [10]
can be solved significantly faster than previous believed. Shortly after, Jao and
Yoshida [24] showed that Cheon’s SDH solver could be used to forge signatures
for the Boneh-Boyen signature scheme.

More recently, confidence in the security of pairing-based protocols has been
shaken because of spectacular advances in algorithms for solving the discrete
logarithm problem (DLP) in GT , a problem whose intractability is necessary
for the security of all pairing-based protocols. Most astonishingly, the DLP in
small-characteristic finite fields can now be solved in quasi-polynomial time [3],
thereby rendering insecure all protocols that use symmetric pairings derived
from elliptic and hyperelliptic curves over small-characteristic fields. Moreover,
numerous improvements to the Number Field Sieve for computing discrete log-
arithms in fields Fpn where p is prime and n > 1 is small have been proposed
[4,31], thereby appearing to decrease the security of popular asymmetric pairings
including those derived from Barreto-Naehrig (BN) elliptic curves [8].

The purpose of this paper is to initiate an examination of the impact of
the aforementioned NFS improvements on keylengths for protocols that employ
asymmetric pairings. Of special interest are parameters for BN [8], BLS12 [7],
KSS [30] and BLS24 [7] pairings that achieve the 128-bit and 192-bit security
levels in light of the new DLP attacks. Table 1 lists the important parameters
for these families of elliptic curves. All elliptic curves E are defined over a prime
field Fp. The group order #E(Fp) = p+1−t is divisible by a prime r, and we set
ρ = log p/ log r. In order to achieve the �-bit security level, one must select the
parameter z so that the bitlength of r is at least 2� (in order to resist Pollard’s
rho attack [36] on the DLP in G1), and so that the bitlength of pn is sufficiently
large to resist NFS attacks on the DLP in F

∗
pn .

Challenges with Assessing the Impact of NFS Advances on the Security 85

Table 1. Parameters for the BN, BLS12, KSS and BLS24 families of elliptic curves.

BN curves: n = 12, ρ ≈ 1

p(z) = 36z4 + 36z3 + 24z2 + 6z + 1

r(z) = 36z4 + 36z3 + 18z2 + 6z + 1, t(z) = 6z2 + 1

BLS12 curves: n = 12, ρ ≈ 1.5

p(z) = (z − 1)2(z4 − z2 + 1)/3 + z, r(z) = z4 − z2 + 1, t(z) = z + 1

KSS curves: n = 18, ρ ≈ 4/3

p(z) = (z8 + 5z7 + 7z6 + 37z5 + 188z4 + 259z3 + 343z2 + 1763z + 2401)/21

r(z) = (z6 + 37z3 + 343)/343, t(z) = (z4 + 16z + 7)/7

BLS24 curves: n = 24, ρ ≈ 1.25

p(z) = (z − 1)2(z8 − z4 + 1)/3 + z, r(z) = z8 − z4 + 1, t(z) = z + 1

We find that the published analyses of the NFS algorithms are inherently
asymptotic in nature, and that much more work remains to be done before the
impact on keylengths can be determined with full confidence. In the meantime,
implementers who wish to deploy pairing-based protocols are advised to make
conservative parameter choices that ignore hidden constants in the running times
of the NFS algorithms. Note that these hidden constants (most likely) have the
effect of multiplying the running time by at least 1, so ignoring them results in
an underestimation of the NFS running times.

The remainder of this paper is organized as follows. In Sect. 2 we give some
examples of the difficulties and limitations of interpreting asymptotic results
in practice. Concise overviews of the NFS and the Tower Number Field Sieve
(TNFS) and their derivatives are presented in Sects. 3 and 4. In Sect. 5, we
identify some hidden constants in the asymptotic analysis of the TNFS. The
combined effect of these hidden constants is difficult to ascertain but can have
a significant impact on the concrete running time of the algorithm. In Sect. 6,
we consider the effect of one such constant, namely the constant that arises in
the expression for the upper bound of the norm. Translating the effect of this
constant into concrete running times yields several interesting observations on
the practical efficiency of the algorithms. We make some concluding remarks in
Sect. 7.

2 Pitfalls in Asymptotic Analysis

This section gives some examples of the difficulties and limitations of interpreting
asymptotic results in practice.

2.1 Integer Factorization

The NFS for factoring integers N has running time LN (13 , 1.923) [33]. Here,
LN (a, c) with 0 < a < 1 and c > 0 denotes the expression

O
(
exp

(
(c + o(1))(log N)a(log log N)1−a

))
(1)

86 A. Menezes et al.

that is subexponential in log N1. This running time expression hides a multi-
plicative constant. Moreover, an exact formula for the o(1) term in the exponent
is not known.

In the 1990’s, there was considerable debate in standards forums about the
RSA keylengths that were needed to ensure long-term security against NFS
attacks. While experiments with factoring medium-sized N were being con-
ducted, there was no consensus on how to scale the experimental results to
large-sized N . In addition, the NFS has large storage needs and requires a large
amount of RAM in order to perform sieving efficiently. Thus, since it is difficult
to predict the cost and speed of hardware many years into the future, it was dif-
ficult to assess the true cost of running the NFS on large-sized N . Nonetheless,
consensus was reached that the conservative approach to determining security
levels for RSA would be to use the running time of the NFS as the sole measure.
RSA keylength estimates that were made 15 years ago have survived with no
changes. In particular, it has become widely accepted that RSA with moduli of
bitlengths 1024, 2048, 3072, 7680, 15360, offers security levels of 80, 112, 128,
192, 256 bits, respectively [6].

2.2 Elliptic Curve Discrete Logarithm Problem

For any fixed n ≥ 4, the Gaudry-Hess-Smart (GHS) Weil descent attack [21] for
solving the elliptic curve discrete logarithm problem (ECDLP) in elliptic curves
over characteristic-two finite fields Fqn has running time

O(q2+ε) as q → ∞. (2)

Consider the case of elliptic curves E over F2163 where #E(F2163) is twice a
prime. Pollard’s rho attack takes time 281 to compute logarithms in E(F2163).
One would expect that the GHS attack is not applicable since q = 2 is small. On
the other hand, if one ignores the hidden constant and the ε term in (2) then one
might conclude that by embedding F2163 in F225·163 (where we now have q = 225

and n = 163), the GHS attack would take time approximately 250 and thus
would be significantly faster than Pollard’s rho method. However, the running
time expression (2) hides a very bad dependency on n, namely a multiplicative
constant 2n!. For n = 163, 2n! ≈ 22

170
which makes it clear that the GHS attack

is completely impractical for computing logarithms in elliptic curves over F2163 .
As another example, we mention Diem’s striking result [18] (see also [19]).

Let a and b be fixed positive real numbers with a < b. Then Diem proved that
discrete logarithms in the group of rational points on any elliptic curve defined
over Fqn with a · √

log q ≤ n ≤ b · √log q can be solved in subexponential time

eO((log qn)2/3).

Now, a subexponential-time algorithm for solving the ECDLP could have dev-
astating consequences for the security of conventional ECC whose raison d’être
1 In this paper, log N and lg N are the logarithms of N to the base e and 2, respectively.

Challenges with Assessing the Impact of NFS Advances on the Security 87

is the belief that the fastest algorithm for solving the ECDLP is Pollard’s rho
method which takes fully exponential time. However, Diem’s algorithm is inher-
ently asymptotic and it is generally accepted that it does not pose a threat to
the security of ECC in practice where elliptic curves over prime fields or over
prime-degree extensions of the field of two elements are employed.

2.3 Indistinguishability Obfuscation

In 2013, Garg et al. [20] gave the first provably-secure construction for a poly-
time indistinguishability obfuscator. The security proof was for all polytime
adversaries under certain assumptions on the underlying cryptographic prim-
itives. However, a concrete analysis undertaken by Mayo [34] highlighted the
asymptotic nature of the scheme and its impracticality. Mayo considered the
obfuscation of a circuit of depth �3 and size �5, where � denotes the security
parameter. When the Coron-Lepoint-Tibouchi multilinear map [17] is employed
in the Garg et al. obfuscator, the size of the obfuscated circuit for � = 128 was
estimated to be at least 21357 bits. Thus, even though the Garg et al. obfuscator
was provably secure and efficient within the “polynomial-time” paradigm, it is
hopelessly impractical.

3 Overview of the Number Field Sieve

Let p be a prime, n ≥ 1, and Q = pn. Suppose that p is written as p = LQ(a, cp)
for real numbers a, cp > 0. Depending on the value of a, finite fields FQ are
classified into the following types: small characteristic if a ≤ 1/3; medium char-
acteristic if 1/3 < a < 2/3; boundary if a = 2/3; and large characteristic if
a > 2/3.

For small-characteristic finite fields, there has been tremendous progress in
the discrete logarithm computation. The approach has been based on the func-
tion field sieve algorithm and asymptotically the fastest known algorithm runs
in quasi-polynomial time [3].

For the other classes of finite fields, i.e., those with medium to large char-
acteristic, the Number Field Sieve is presently the state-of-the-art. The NFS
was initially proposed for integer factorization [33]. Application of the NFS to
DLP computation was first proposed by Gordon [22] who considered prime-order
fields. Extensions to composite-order fields were made by Schirokauer [40]. For
the case of prime-order fields, improvements were made by Joux and Lercier [27].
Joux, Lercier, Smart and Vercauteren [28] showed that the NFS is applicable to
all finite fields. For fields where the prime p is of a special form, Joux and
Pierrot [29] applied the special NFS to obtain improved complexity.

The NFS is an index-calculus algorithm having three main phases: (i) relation
collection, (ii) linear algebra, and (iii) individual logarithm. Asymptotically, the
times for the relation collection and the linear algebra phases dominate the time
for the individual logarithm phase. The parameters are tuned so that the time

88 A. Menezes et al.

for the relation collection phase is equal to the time for the linear algebra phase
and this time is the asymptotic run time of the NFS.

Two number fields Kf = Q[x]/(f) and Kg = Q[x]/(g) are defined by choosing
irreducible polynomials f(x) and g(x) over the integers. The required condition
on f(x) and g(x) is that modulo p they have a common irreducible factor ϕ(x)
of degree n over Fp. The field Fpn is represented by ϕ(x). Let γ be a generator
of the multiplicative group of Fpn .

Let α, β ∈ C and m ∈ Fpn be roots of f(x), g(x) and ϕ(x) respectively. The
commutative diagram given in Fig. 1 shows two homomorphisms Kf → Fpn and
Kg → Fpn given by α
→ m and β
→ m respectively. This diagram explains the
basic working of the NFS.

Z[x]

Z(α) Z(β)

Fp(m)

α
�→x x �→

β

α �→
m

m

�→β

Fig. 1. The basic principle of NFS.

Instead of working over the whole number fields Kf and Kg, one works over
the corresponding rings of integers Of and Og. The notion of norm of ideals
allows one to define a suitable factor base, namely the prime ideals of Of and
Og whose norms are at most some pre-specified smoothness bound B. The size
of the factor base is B1+o(1), where B is chosen so as to balance the times for
relation collection and linear algebra.

To generate relations, polynomials φ ∈ Z[x] of degree at most t − 1 are
considered. If the principal ideals φ(α)Of and φ(β)Og are B-smooth, then such
a φ yields a relation among the factor base elements. Formally, a relation is
actually a linear relation between the discrete logarithms of certain elements of
the field Fpn . Such discrete logarithms are called virtual logarithms2. The number
of relations collected is a little more than B. This allows carrying out the linear
algebra phase to compute the virtual logarithms of the factor base elements. The
individual logarithm phase consists of finding the discrete logarithm of some
element h ∈ Fpn . The task in this phase is to find an element of the form
hiγj such that the principal ideal generated by the preimage of hiγj in Of

factors into prime ideals of degrees at most t − 1 and bounded norms. Then the

2 The details are complicated and involve using the homomorphisms α �→ m and
β �→ m along with the class numbers and the torsion-free ranks of Of and Og. We
skip these details.

Challenges with Assessing the Impact of NFS Advances on the Security 89

special-q technique is used to express the desired discrete logarithm in terms
of the virtual discrete logarithms of factor base elements. Since these virtual
discrete logarithms have already been computed, it is possible to finally obtain
the desired discrete logarithm. We refer to [2] for more details on the relation
collection phase and to [23] for the individual discrete logarithm phase.

3.1 Polynomial Selection and Sizes of Norms

The crucial step in relation collection is to obtain φ ∈ Z[x] such that the ideals
φ(α)Of and φ(β)Og are both smooth. For ensuring this smoothness, it is suffi-
cient to ensure that their norms, i.e., Res(f, φ) and Res(g, φ), are both B-smooth,
where Res denotes the resultant. Let E be such that the coefficients of φ are in[− 1

2E2/t, 1
2E2/t

)
, whence ‖φ‖∞ ≈ E2/t and the number of polynomials φ that

are considered for sieving is E2. Here, the �∞ norm ‖φ‖∞ of the polynomial φ
is the maximum of the absolute values of the coefficients of φ. For p = LQ(a, cp)
with a > 1

3 , the following can be shown (a more precise bound is provided later
in the context of the TNFS):

|Res(f, φ)| = O
((‖f‖∞

)t−1
E2(deg f)/t

)
and

|Res(g, φ)| = O
((‖g‖∞

)t−1
E2(deg g)/t

)
, (3)

yielding the norm bound

|Res(f, φ) × Res(g, φ)| = O
((‖f‖∞‖g‖∞

)t−1
E(deg f+deg g)2/t

)
. (4)

The probability of B-smoothness of the product of norms (4) determines the cost
of obtaining a single relation and hence the cost of relation collection. A suitable
choice of B is made to balance this cost with the cost of the linear algebra step.
Thus the value of the product of norms in (4) is crucial for determining the
overall run time of the algorithm.

Note that the norm bound is determined by the degrees of f and g and
their �∞ norms. So, to ensure that the norm bound is small, it is required that
the degrees and �∞ norms of f and g are small. Ensuring both of these is a
very difficult problem. In the literature several methods for polynomial selection
have been proposed which provide polynomials with different trade-offs between
degrees and �∞ norms. We briefly describe some of the important ones next.

JLSV1 [28]. Choose random polynomials f0(x) and f1(x) having small coeffi-
cients with deg(f1) < deg(f0) = n. Choose a random positive integer δ which is
slightly greater than �√p and let (u, v) be a rational reconstruction of δ modulo
p, i.e., δ ≡ u/v (mod p). More precisely, (u, v) is obtained as the first row on
applying the LLL-reduction algorithm to the matrix

[
p 0
δ 1

]
.

90 A. Menezes et al.

Let f(x) = f0(x) + δf1(x) and g(x) = vf0(x) + uf1(x) and ϕ(x) = f(x) mod
p. Repeat the above procedure until f and g are irreducible over Z and ϕ is
irreducible over Fp. For this method, the bound (4) is O

(
E4n/tQ(t−1)/n

)
.

GJL [2]. The basic Joux-Lercier method [27] works for prime fields. In [2], it was
generalized to work over composite-order fields. Let ϕ(x) = xn + ϕn−1x

n−1 +
· · · + ϕ1x + ϕ0 and r ≥ n. Define an (r + 1) × (r + 1) matrix Mϕ,r whose rows
are obtained from the coefficients of the polynomials p, px, . . . , pxn−1, ϕ(x),
xϕ(x), . . . , xr−nϕ(x). The LLL algorithm is applied to Mϕ,r. Let the first row of
the resulting LLL-reduced matrix be [g0, g1, . . . , gr−1, gr] and let g = LLL (Mϕ,r)
denote the corresponding polynomial g(x) = g0 + g1x + · · · + gr−1x

r−1 + grx
r.

By construction, ϕ(x) is a factor of g(x) modulo p.
The GJL procedure for polynomial selection is the following. Let r ≥ n and

randomly choose a degree-(r+1) polynomial f(x) that is irreducible over Z, has
coefficients of size O(log p), and has a degree-n factor ϕ(x) modulo p which is
both monic and irreducible. The procedure is repeated until g = LLL (Mϕ,r) is
irreducible over Z. In this case, the norm bound (4) is O

(
E2(2r+1)/tQ(t−1)/(r+1)

)
.

Conjugation [2]. Choose a random monic quadratic polynomial μ(x) having
coefficients of size O(log p), and which is irreducible over Z but has a root t
modulo p. Let (u, v) be a rational reconstruction of t modulo p. Choose random
polynomials g0(x) and g1(x) with small coefficients with deg g1 < deg g0 = n.
Let g(x) = vg0(x)+ug1(x) and f(x) = Resy

(
μ(y), g0(x)+y ·g1(x)

)
. Repeat this

until f and g are irreducible over Z and ϕ is irreducible over Fp. In this case,
the norm bound (4) is O

(
E6n/tQ(t−1)/(2n)

)
.

SS [37]. A general method (called Algorithm-A) for polynomial selection was
given in [37]. This method has two parameters d and r, where d is a divisor of n
and r ≥ n/d. The method uses the LLL algorithm in a more general manner than
the GJL method. The norm bound (4) is O

(
E2d(2r+1)/tQ(t−1)/(d(r+1))

)
. Putting

d = n and r = 1 gives the Conjugation method, whereas putting d = 1 gives the
GJL method. For 1 < d < n and also for d = n, r > 1, this method provides
trade-offs which cannot be obtained using either the GJL or the Conjugation
method.

3.2 Asymptotic Complexity

For each polynomial selection method, the norm bound (4) can be used to obtain
a rough estimate of the efficiency of the resulting DLP computation. It is also
possible to convert the norm bound into an asymptotic estimate of the run time.
The details of how this can be done are a bit messy and so we skip the details.
Instead, we just mention the final results.

Medium characteristic case: For p = LQ(a, cp) with a > 1/3, the run time
of the NFS with the Conjugation method is LQ(1/3, (96/9)1/3).

Boundary case: For p = LQ(2/3, cp), the run time of the NFS with Algorithm-
A is LQ(1/3, 2cb), where

Challenges with Assessing the Impact of NFS Advances on the Security 91

cb =
2r + 1
3cpkt

+

√(
2r + 1
3cpkt

)2

+
kcp(t − 1)
3(r + 1)

(5)

with k = n/d. For d = n and r = k = 1, this reduces to the complexity
obtained by the Conjugation method. The best complexity that is obtained
is LQ(1/3, (48/9)1/3). This complexity, however, is attained for only one par-
ticular value of cp, namely cp = 121/3 ≈ 2.3. As cp → ∞, the minimum
complexity (taken over r, k and t) approaches LQ(1/3, (64/9)1/3) from below.

Large characteristic case: For p = LQ(a, cp) with a > 2/3, the run time of
the NFS with the GJL method is LQ(1/3, (64/9)1/3).3

Among the three cases, the best complexity is achieved in the boundary case for
a specific cp value.

Remark 1. The sharp distinction between the run times for the medium charac-
teristic, boundary (with cp = 121/3), and large characteristic cases highlights the
inherent asymptotic nature of the analysis and the difficulty in deriving concrete
run time estimates. In particular, without the benefit of extensive experimenta-
tion, it is not clear whether a concrete problem instance, e.g., with p ≈ 2256 and
n = 12, falls within the medium characteristic, boundary, or large characteristic
cases.

3.3 Multiple Number Field Sieve Algorithm

Using multiple number fields to obtain faster asymptotic complexity was sug-
gested in [5,35]. Pierrot [35] provided a detailed analysis of the GJL and the Con-
jugation methods using multiple number fields. The MNFS variant of Algorithm-
A was analyzed in [37]. The complexities of the MNFS algorithms for the dif-
ferent cases of p = LQ(a, cp) are as follows: LQ(1/3, 2.156) for the medium
characteristic case, LQ(1/3, 1.71) for the boundary case, and LQ(1/3, 1.90) for
the large characteristic case. The complexity for the boundary case is obtained
for only one value of cp, namely cp ≈ 2.12.

3.4 Special Number Field Sieve Algorithm

Suppose that p can be written as p = Γ (u) for some polynomial Γ of degree
λ and having small coefficients so that u = O(p1/λ). Note that the primes p in
Table 1 are in this special form. Joux and Pierrot [29] showed how to modify the
polynomial selection algorithm from [28] to obtain improved complexity. Choose
an irreducible polynomial f of the form f(x) = xn + R(x) − u where R(x) is a
polynomial of small degree with coefficients from {0,±1}. Let g = Γ (xn +R(x)).
Then g(x) = Γ (f(x) + u) ≡ Γ (u) = p (mod f(x)) and so g(x) − p is a multiple
of f(x) implying that g(x) is a multiple of f(x) modulo p. This choice of f and g
ensures that deg f = n, ‖f‖∞ = O(p1/λ), deg g = λn, and ‖g‖∞ = O((log n)λ).

3 For comparisons with other run times, it is useful to note that (96/9)1/3 ≈ 2.201,
(64/9)1/3 ≈ 1.923, (48/9)1/3 ≈ 1.747, and (32/9)1/3 ≈ 1.526.

92 A. Menezes et al.

The asymptotic complexities reported in [29] are the following. As before, let
p = LQ(a, cp).

Medium characteristic case: LQ

(
1/3, ((64/9) · (λ + 1)/λ)1/3

)
for 1/3 ≤

a < 2/3.
Boundary case: LQ

(
1/3, ((32/9) · (λ + 1)/λ)1/3

)
for a = 2/3;

Large characteristic case: LQ

(
1/3, (32/9)1/3

)
for 2/3 < a < 1.

Unlike the NFS, for SNFS the best complexity is achieved for the large charac-
teristic case.

4 Overview of the Tower Number Field Sieve

The Tower Number Field Sieve (TNFS) algorithm was initially considered by
Schirokauer [40] and was revisited by Barbulescu et al. [4]. The implications
of this algorithm for improving the complexity of the medium prime case were
pointed out by Kim and Barbulescu [31] which has led to several follow-up
works [38,39]. Following [31] we denote these algorithms by ‘extended TNFS’
(exTNFS).

As we saw in Sect. 3.2, the Conjugation method from [2] resulted in the
NFS complexity of the boundary case being smaller than the complexity of the
medium prime case. Suppose that the extension degree n is composite and n = ηκ
is a non-trivial factorization of n. Then Fpn has a tower field representation Fqκ ,
where q = pη. The main idea behind the complexity reduction for the medium
prime case using a tower field representation is the following. If p and Q = pn are
such that p = LQ(a, cp) for 1/3 < a < 2/3, then one can translate the problem
to that of computing DLP in Fqκ where q = LQ(2/3, cq). This corresponds to the
boundary case and so one benefits from the lower complexity of the boundary
case for the medium prime case.

Here q is not prime and the characteristic of the field FQ remains p irrespec-
tive of how the field is represented. Hence, strictly speaking, it is not correct to
say that the medium characteristic case transforms to the boundary case. On
the other hand, from the complexity point of view what matters are the norms
of the polynomials and in that sense it is possible to obtain smaller norm bounds
with the tower field representation than what could be done directly.

The basic idea of the exTNFS algorithm is the following. One starts with
a monic polynomial h(z) of degree η which is irreducible over Fp and hence is
also irreducible over Z. Let Fpη = Fp[z]/(h(z)) and R = Z[z]/(h(z)). Suppose
f and g are polynomials in R[x] whose leading coefficients are from Z. It is
required that both f and g are irreducible over R (this can be verified by testing
irreducibility over Q[z]/(h(z))) and over Fpη , and that f and g have a degree-κ
common factor ϕ(x) that is irreducible over Fpη . The field Fpn is then realized
as Fpη [x]/(ϕ(x)) = (R/pR)[x]/(ϕ(x)).

Let Kf and Kg be the number fields defined by f and g respectively. As
in the case of the NFS (see Fig. 1), the above set-up provides two different
decompositions of a homomorphism from R[x] to Fpn . One of these goes through

Challenges with Assessing the Impact of NFS Advances on the Security 93

R[x]/(f(x)) and the other goes through R[x]/(g(x)). Using this set-up it is pos-
sible to define a factor base and carry out the three main phases of NFS. Here
also, the factor base consists of B1+o(1) elements for some smoothness bound B.

Sieving for relation collection is done using polynomials φ ∈ R[x] of degrees
at most t − 1 with ‖φ‖∞ = E2/ηt so that the number of sieving polynomials is
E2. A sieving polynomial φ ∈ R[x] generates a relation if both the norms

N(φ, f) = Resz(Resx(φ(x), f(x)), h(z)) and
N(φ, g) = Resz(Resx(φ(x), g(x)), h(z)) (6)

are B-smooth. Note that in this case, f and g can be viewed as bivariate poly-
nomials in x and z and hence the norm is obtained by taking resultants twice.
Bounds on the norm are obtained from the bounds on resultants of bivariate
polynomials [9].

The polynomial selection methods for NFS (see Sect. 3.1) translate to the
exTNFS setting. Instead of providing the details of these methods, we provide
a summary of recent work with a focus on the medium prime case.

Kim and Barbulescu [31]. This work chooses f, g ∈ Z[x], whence the degree-
κ polynomial ϕ(x) = gcd(f(x), g(x)) is over Fp. The requirement that ϕ(x) is
irreducible over Fpη imposes the condition that gcd(η, κ) = 1. Hence, the Kim-
Barbulescu method works only for composite non prime-power values of n. The
actual polynomial selection is done using a translated version of the Conjugation
method, resulting in the best achievable complexity for p = LQ(a, cp), 1/3 < a <
2/3 to be LQ(1/3, (48/9)1/3). This complexity, however, is not achieved for all
values of p.

Sarkar and Singh [38]. This work described a polynomial selection method
(called Algorithm-C) in which the coefficients f and g are in R (and not neces-
sarily in Z), with the restriction that f is monic and the leading coefficient of g is
in Z. As a result, the restriction that ϕ(x) has coefficients in Fp is also removed
resulting in the removal of the gcd(η, κ) = 1 constraint. This leads to a variant of
the TNFS algorithm for the medium characteristic case with improved complex-
ity for all composite n. For prime-power n, however, the minimum complexity
obtained in [38] is larger than LQ(1/3, (48/9)1/3).

Jeong and Kim [25]. The Conjugation method was extended to the TNFS
setting where the condition gcd(η, κ) = 1 was not required. The best achievable
complexity for p = LQ(a, cp), 1/3 < a < 2/3 was shown to be LQ(1/3, (48/9)1/3).
For prime-power n, this improves upon the complexity achieved in [38].

Sarkar and Singh [39]. A polynomial selection algorithm, called Algorithm-D,
was described. This provides another translation of Algorithm-A to the TNFS
setting without requiring the condition gcd(η, κ) = 1. Special cases of Algorithm-
D lead to the GJL and the Conjugation methods in both classical NFS and
TNFS. As a result, Algorithm-D subsumes the Jeong-Kim polynomial selection
method. The asymptotic complexity for the medium prime case can be described
as follows. Let p = LQ(a, cp) with 1/3 ≤ a < 2/3 and suppose that q = pη can

94 A. Menezes et al.

be written as q = LQ(2/3, cθ). Then the asymptotic complexity is LQ(1/3, 2cb)
where cb is given by (5) with cp replaced by cθ. The minimum complexity is
still LQ(1/3, (48/9)1/3) which is the same as that of the Jeong-Kim method and
this complexity is attained for cθ = 121/3. However, improvements in asymptotic
complexity are obtained for certain ranges of values of cθ.

4.1 Multiple Number Field Sieve Algorithm

Multiple number fields can also be used with the TNFS [31]. As in the case of the
NFS, this reduces the asymptotic complexity. The best achievable complexity for
the medium prime case is LQ(1/3, 1.71).

4.2 Special Number Field Sieve Algorithm

As explained above, the main advantage of the TNFS method is to transform the
problem for the medium characteristic case to that of the boundary characteristic
for which the complexity is lower. In fact, it is also possible to transform to the
large characteristic case. Carrying out this exercise for the SNFS (yielding the
SexTNFS algorithm) leads to an asymptotic complexity of LQ(1/3, (32/9)1/3)
for the medium prime case; this complexity is achieved for all medium primes
unlike the case of TNFS. This works for composite n; in the case where n has
a non-trivial factorization as n = ηκ with gcd(η, κ) = 1, this complexity was
reported in [31], whereas the same complexity was reported in [25] without the
restriction gcd(η, κ) = 1.

5 Asymptotic Analysis

In summary, the asymptotic run times of the NFS variants for computing discrete
logarithms in FQ in the medium characteristic case are LQ(1/3, c) where:

– c = 2.201 for the NFS (Sect. 3.2);
– c = 2.156 for the multiple NFS (Sect. 3.3);
– c = 2.072 for the special NFS with λ = 4 (Sect. 3.4);
– c = 1.747 for the exTNFS for some p (Sect. 4);
– c = 1.71 for the multiple exTNFS for some p (Sect. 4.1); and
– c = 1.526 for the SexTNFS (Sect. 4.2).

Asymptotic complexity analysis proceeds by ignoring various factors that do
not have significant effect on the run time as Q = pn goes to infinity. In this
section, we take a look at the different steps of this analysis with a view towards
assessing whether the ignored factors can have a noticeable effect on the run time
for concrete values of Q. At the same time, we consider issues of storage and
observe that different operations which are assumed to asymptotically require
O(1) time, in practice have noticeable difference in their times.

We consider the TNFS setting where Q = pn and n = ηκ is a non-trivial
factorization of n.

Challenges with Assessing the Impact of NFS Advances on the Security 95

5.1 Bounds on Norms of Polynomials

The number fields Kf and Kg are defined using two polynomials f(x) and g(x)
over R = Z[z]/(h(z)) where h(z) is a degree-η irreducible polynomial over Z.
The degrees and �∞ norms of f and g are the main factors that influence the
running time. These quantities are determined based on the actual polynomial
selection method that is employed. To make the ideas concrete, we work with
a special case of Algorithm-D [37]. This special case is important since it is the
TNFS variant of the Conjugation method proposed by Kim and Barbulescu [31].

Using random trials, one chooses a monic quadratic polynomial A1 ∈ Z[y]
having O(log p)-size coefficients such that A1 is irreducible over Z and has a fac-
tor A2(y) = y + δ over Fp. Further, using random trials, one chooses monic
polynomials C0(x) and C1(x) over R with ‖Ci‖∞ = O(1), deg C0(x) = κ,
deg C1(x) < κ, and such that f(x) and g(x) are irreducible over R and ϕ(x) is
irreducible over Fpη = Fp[z]/(h(z)) where f(x) = Resx(A1(y), C0(x) + yC1(x)),
ϕ(x) = Resy(A2(y), C0(x) + yC1(x)) mod p, ψ(x) = ψ1x + ψ0, and g(x) =
Resx(ψ(y), C0(x) + yC1(x)). The integer coefficients ψ1 and ψ0 of ψ(x) are
obtained by a rational reconstruction of δ modulo p. From the bound on the
first vector of an LLL-reduced basis and the bound on the shortest vector of a
lattice, one obtains ‖ψ‖∞ ≤ 2p1/2.

Asymptotically, the above method for selecting f and g yields ‖f‖∞ =
O(log p) and ‖g‖∞ = O(Q1/2n). The contribution to ‖f‖∞ and ‖g‖∞ from
the coefficients of C0(x) and C1(x) arising from the resultant computation are
absorbed in the big-O notation.

5.2 Size of the Factor Base

The polynomials f and g define the two (tower) number fields Kf and Kg having
ring of integers Of and Og respectively. The factor base consists of all prime
ideals of Of and Og whose norms are at most B. From this, the factor base size
is asymptotically B1+o(1). For concrete polynomials f and g, the actual number
of prime ideals could have a small but noticeable difference from B.

5.3 Bounds on Norms of Ideals

Sieving is done using polynomials of degrees at most t−1. Consider the simplest
and the most important case of t = 2. Then the sieving polynomials are linear
polynomials φ ∈ R[x] with ‖φ‖∞ = E1/η. There are a total of E2 sieving poly-
nomials. A relation is obtained if the principal ideals generated by the images of
φ in Of and Og are smooth over the factor base. This smoothness depends on
the norms N(f, φ) and N(g, φ) whose bounds are given by (6).

Let H = ‖h‖∞ and

C(η, s,H) = ((η − 1)(1 + s) + 1)η/2·(η+1)(η−1)(1+s)/2·H(η−1)(1+s)·((s + 1)!ηs)η
.

96 A. Menezes et al.

The following bounds on the norms can be obtained:

N(f, φ) ≤ C(η, 2κ,H) · E2κ · O ((log p)η) and

N(g, φ) ≤ C(η, κ,H) · Eκ · O
(
Q1/(2κ)

)
; (7)

see Appendix A for details of the resultant calculations. In the asymptotic
analysis these are written as N(f, φ) = E2κ · LQ(2/3, o(1)) and N(g, φ) =
EκQ1/(2κ) ·LQ(2/3, o(1)). In other words, one takes C(η, 2κ,H) = LQ(2/3, o(1))
and C(η, κ,H) = LQ(2/3, o(1)), and consequently their contribution to the over-
all running time LQ(1/3, c) is absorbed by the o(1) term in the latter.

For concrete values, the factors that get absorbed in the LQ(2/3, o(1)) expres-
sion can be very large. For n = 12, let η = 4 and κ = 3 and suppose that H = 5.
Then C(4, 3, 5) ≈ 291.5 and C(4, 6, 5) ≈ 2179.3. On the other hand, suppose we
choose η = 1 and κ = 12 and H = 5 as before. These values of η and κ cor-
respond to the usual NFS, i.e., we are not exploiting the tower structure. Then
C(1, 12, 5) ≈ 232.5 and C(1, 24, 5) ≈ 283.7. While these are still large numbers,
they are significantly smaller than the numbers obtained in the case of the tower
representation.

5.4 Smoothness Probability from the Canfield-Erdös-Pomerance
Theorem

The bounds obtained on the norms N(f, φ) and N(g, φ) are used to estimate
the probability that a random sieving polynomial will provide a relation. The
required condition is that the principal ideals generated by the images of φ in the
two integer rings are smooth over the factor base. Two assumptions are used,
which means that the entire analysis is heuristic.

1. It is assumed that the probability that the principal ideal generated by the
image of φ in Of factors over the factor base is the same as the probability
that a random integer of size N(f, φ) is B-smooth. Similarly for Og.

2. The events that the two principal ideals generated by the images of φ are
smooth over the factor base are independent.

The probability that a random integer of size N(f, φ) is B-smooth is obtained
from the L-notation version of a theorem due to Canfield, Erdös and Pomerance.
(See Theorem 15.2 of [26] for the statement of the theorem.) The smoothness
probability can also be expressed in concrete terms. Let Ψ(N,B) be the number
of positive integers ≤ N which are B-smooth. Ignoring lower order terms, it can
be shown that

log
(

Ψ(N,B)
N

)
≈ − log N

log B
log

(
log N

log B

)
. (8)

Let Π(N,B) = Ψ(N,B)/N be the probability that a random integer ≤ N is
B-smooth. We are interested in

Π(N(f, φ), B) · Π(N(g, φ), B). (9)

Challenges with Assessing the Impact of NFS Advances on the Security 97

The number of trials (i.e., the number of sieving polynomials to consider) to
obtain a single relation is about

n = (Π(N(f, φ), B) · Π(N(g, φ), B))−1
.

Since about B relations are required, the total number of trials to obtain all the
relations is about Bn. This is how the bounds on the norms determine the run
time of the relation collection phase.

5.5 Balancing Costs

For the asymptotic analysis, the costs of the relation collection and the linear
algebra phases are balanced. This balancing proceeds by imposing two condi-
tions. Recall that the number of sieving polynomials is E2 and the size of the
factor base is B1+o(1). Sparse linear algebra requires time B2+o(1). Hence, the
costs of the relation collection and linear algebra phases are balanced by setting
E = B.

Note that this assumes that the total time for sieving with E2 polynomials is
equal to the time required for completing the linear algebra phase. While this is
true in an asymptotic sense, in concrete terms the two costs can be significantly
different. We note the following differences between these two tasks.

1. For both sieving and linear algebra, the basic operations are field operations
in Fp. However, the number of such field operations are different for the two
tasks.

2. For linear algebra, it is required to perform read and write operations on
a very large matrix. In practice, these read/write operations will incur a
significant overhead.

3. The sieving step is parallelizable up to any extent. This is not true for the
linear algebra step. The block Wiedemann algorithm can be parallelized, but
this comes at the cost of additional memory requirements.

6 Concrete Analysis

We take some concrete values to get an idea of the effect of the constants in
the norm bounds on the smoothness probability. Suppose Q ≈ 23000, n = 12,
η = 4, κ = 3, H = 5, whence p ≈ 2250. Assume that the factor base size is
B = 264 so that the linear algebra phase requires approximately 2128 operations.
As discussed in Sect. 5.5, E is taken to be equal to B so that E is also 264. Then
taking the upper bounds in (7) to be the norm values and the hidden constants
in the big-O notation to be 1, we obtain

N(f, φ) ≈ C(4, 6, 5)E2κ(log p)η ≈ 2593,
N(g, φ) ≈ C(4, 3, 5)EκQ1/(2κ) ≈ 2783,

Π(N(f, φ), B) ≈ Π(2593, 264) ≈ 2−29.8,

Π(N(g, φ), B) ≈ Π(2783, 264) ≈ 2−44.2,

n = (Π(N(f, φ), B) · Π(N(g, φ), B))−1 ≈ 274.

98 A. Menezes et al.

Table 2. Approximate run times of exTNFS and SexTNFS for Q = pn ≈ 23000 for
several different values of n, with and without the constants. These constants are
C(η, κ, H) and C(η, 2κ, H) for exTNFS, and C(η, κ, H) and C(η, κλ, H) for SexTNFS.

n Algorithm (η, κ, λ) With constants Without constants

12 exTNFS (4, 3, −) 2138 2116

SexTNFS (6, 2, 4) 2155 2108

18 exTNFS (6, 3, −) 2154 2118

SexTNFS (9, 2, 8) 2279 2160

24 exTNFS (8, 3, −) 2169 2118

SexTNFS (12, 2, 10) 2369 2186

Hence a single relation will be obtained after trying about 274 sieving polyno-
mials. On the other hand, if we ignore the factors C(4, 6, 5) and C(4, 3, 5), then
n ≈ 254. So, in this case the effect of the constants in the norm bounds is to
increase the number of iterations for finding a single relation by a factor of
about 220.

The number of iterations required to find a single relation affects the overall
cost of the algorithm. The total number of iterations required to find the B
required relations determines the cost of the relation collection phase. If we take
the constants into account, the relation collection phase will have cost about
274B = 2138 for B = 264. On the other hand, if the constants are ignored, then
the relation collection phase will have cost about 254B = 2118. In both cases,
the linear algebra phase will have cost approximately B2 = 2128.

The above choice of B does not balance the costs of the relation collection
and linear algebra phases. We have redone the calculations with Q ≈ 23000 so as
to balance these costs. The overall approximate costs of the algorithm are given
by the values in the fourth column (if the constants are taken into consideration)
and fifth column (if the constants are ignored) of the first row of Table 2. The
size of the factor base is the square root of the overall cost.

A similar calculation can be done for SexTNFS; cf. Remark 2. In this case,
however, the minimum complexity is not achieved for η = 4 and κ = 3. Instead
the minimum is achieved for η = 6 and κ = 2. Since in this case η and κ are not
coprime, this choice would not be allowed by the Kim-Barbulescu work [31], but
would be permitted by [25]. The run times considering and ignoring constants
are respectively given in the second row of Table 2.

We have performed similar calculations for n = 18 and n = 24. It turns out
that the factorization of n that minimizes the exTNFS complexity is not the
same as the factorization of n that minimizes the SexTNFS complexity. Table 2
provides the run times of exTNFS and SexTNFS both when the constants in
the norm bound are taken into consideration and also when they are ignored.
We observe the following from the values in Table 2.

Challenges with Assessing the Impact of NFS Advances on the Security 99

1. If the constants are taken into consideration, then in each case the run time is
significantly greater than if the constants are ignored. In particular, a 3000-bit
Q does seem to provide at least 128-bit security for n = 12.

2. The concrete run time for exTNFS is smaller than that of SexTNFS. (The
only exception to this is for n = 12 and when the constants in the norm
bounds are ignored.) This is contrary to what one would expect from the
asymptotic analysis in which the run time of SexTNFS is smaller than that
of exTNFS; cf. Remark 2.

3. The asymptotic expression for the run time does not have any dependence
on n and depends only on Q. This means that for a given Q, the run times
will asymptotically be the same for all n. However, concrete values show a
significant dependence on the value of n. For a fixed Q, as n increases there
is a significant increase in the run time. This is because the constants in the
norm bound depend on n and increase quite rapidly as n increases.

4. For exTNFS without constants, the run time does not vary much as n
increases. This behaviour is not observed for SexTNFS.

Remark 2. For SexTNFS, the upper bounds on the norms are

N(f, φ) ≤ C(η, κ,H) ·Eκ · pη/λ and N(g, φ) ≤ C(η, κλ,H) ·Eκλ · ‖Γ‖n
∞. (10)

These values should be compared with the norm bounds for exTNFS-Conj given
by (7). The values of λ are 4, 6, 8 and 10 respectively for BN, BLS12, KSS and
BLS24 curves. In the asymptotic complexity analysis, λ is treated as a constant
and does not have a noticeable influence on the run time. On the other hand, in
the concrete analysis, the actual value of λ has a noticeable effect on the upper
bound on N(g, φ). This effect is present even if the constants C(η, κ,H) and
C(η, κλ,H) are ignored. Since a higher value of the norm bound implies a lower
smoothness probability and hence a higher overall run time, the concrete run
time for SexTNFS turns out to be greater than that of exTNFS.

Remark 3. Consider an asymmetric pairing derived from an ordinary elliptic
curve over Fp with embedding degree n, whereby the target group is GT = F

∗
Q

with Q = pn. For a fixed Q, as n increases, p decreases. Since the elliptic curve
group is of size roughly p, the size of the elliptic curve group also decreases.
Considering the 128-bit security level, the size of p going below 256 will violate
Pollard-rho security. Hence, 128-bit security cannot be achieved by keeping Q
at the 3000-bit level and simply increasing n beyond 12.

6.1 On the Tightness of the Norm Bounds

The norms N(f, φ) and N(g, φ) are expressed in terms of resultants. Upper
bounds on these norms are known bounds on resultants [9] and are given
by (7); let Uf and Ug be the upper bounds on N(f, φ) and N(g, φ). Let
Vf = E2κ · O ((log p)η) and Vg = Eκ · O

(
Q1/(2κ)

)
. Note that Vf and Vg are not

necessarily upper bounds on N(f, φ) and N(g, φ) since the constants C(η, 2κ,H)
and C(η, κ,H) are absent.

100 A. Menezes et al.

Table 3. Upper bound and average values of norms for the 128-bit security level.

Method n η κ lg p lg B lg Vf lg Nf lg Uf lg Vg lg Ng lg Ug − lg ν − lg π − lg μ

exTNFS-gConj 12 4 3 384 70 452 458 603 978 992 1053 70 70 85

exTNFS-gConj 18 6 3 256 70 464 495 731 978 996 1113 71 72 98

exTNFS-gConj 24 8 3 256 81 545 617 937 1267 1302 1467 80 84 116

SexTNFS 12 6 2 384 64 543 717 902 711 655 806 64 70 99

Let μ = Π(Uf , B) · Π(Ug, B) and ν = Π(Vf , B) · Π(Vg, B) where B is the
factor base size. Then μ is a lower bound on the probability of obtaining a single
relation and μ−1 is an upper bound on the number of iterations required to
obtain a single relation. The quantity ν is similar to that of μ except that Vf

and Vg are used instead of Uf and Ug.
In [9], an example is provided to show that the resultant bounds are tight

and in general cannot be improved. On the other hand, the question of whether
the bounds are tight for the kinds of polynomials arising in the context of NFS
algorithms deserves an answer. To determine this, we conducted some experi-
ments. The generalized Conjugate method (gConj) [25] was implemented and
the polynomials h(z), f(x) and g(x) computed. This determines H = ‖h‖∞,
‖f‖∞ and ‖g‖∞. Now choose a value for B and set E = B so that the number
of sieving polynomials φ(x) is B2. We further set t = 2, i.e., only linear siev-
ing polynomials were considered. Then the coefficients of a sieving polynomial
φ(x) (considered as a bivariate polynomial in z and x) can take B1/η values. We
chose 1000 random sieving polynomials and in each case computed the actual
values of N(f, φ) and N(g, φ). From these two values, the smoothness prob-
ability π = Π(N(f, φ), B) · Π(N(g, φ), B) was computed. Let Nf , Ng and π
be the average of N(f, φ), N(g, φ) and π computed over the 1000 random φ’s.
A summary of these values is given in Table 3. The table also shows the results
of a similar experiment conducted for the SexTNFS algorithm where BN curves
were used.

In each case considered in Table 3, it turned out that taking H = 2 is suf-
ficient. We have previously considered H = 5 and the reduced value of H = 2
results in slightly lower values for Uf and Ug. There are several points to note
from the results in Table 3.

1. The average value lg Nf is closer to lg Vf than to the known upper bound
lg Uf . Similarly for lg Ng and π.

2. Consider lg Nf . The average has been computed over 1000 iterations. The
value of lg Nf being substantially less than lg Uf indicates that polynomials
φ such that N(f, φ) is close to Uf are not very common. On the other hand,
this does not indicate that such polynomials do not occur at all. A total of
B2 sieving polynomials φ have to be considered. It is possible that a non-
negligible fraction of these do have norms close to the upper bound. Our
experiments only indicate that the fraction is less than 1/1000. Thus, in the
absence of further experimental data, one cannot completely disregard the
role of the constants in the analysis.

Challenges with Assessing the Impact of NFS Advances on the Security 101

3. In each case, B has been chosen so that lg B is roughly equal to μ. Further,
in each case it turns out that π is at least μ. So, even if the actual norms
behave like Nf and Ng, choosing lg p as given provides at least 128 bits of
security.

6.2 Deriving Group Sizes from the Asymptotic Run Time
Expressions

In this subsection, we consider the question of deriving concrete group sizes
from the asymptotic run time expressions. Following the ECRYPT recommen-
dation [41, p. 26], consider a constant A and write the run time of an NFS
algorithm as

A · exp
(
(c + o(1))(log Q)1/3(log log Q)2/3

)
. (11)

Again following [41], assume o(1) = 0. In [41], the constant A is determined in
the following manner. It is mentioned that experience from available data points
suggests that the resistance of RSA-512 is about 4 to 6 bits lower than that of
DES. Plugging in Q = 2512 and c = (64/9)1/3 into (11) and setting the resulting
expression equal to 250, one obtains A ≈ 2−14.

More generally, let A = 2−d and denote by s(Q, c, d) the base-two logarithm
of the expression in (11) with o(1) = 0. Then, we have

s(Q, c, d) = c(lg e)(log Q)1/3(log log Q)2/3 − d. (12)

Here Q is pn and c is the second argument in the L-notation. As described above,
the ECRYPT recommendation takes d = 14.

The task of deriving group sizes is the following. Given c, d, n and a tar-
get security level �, find the minimum Q such that both (lg Q)/n ≥ 2� and
s(Q, c, d) ≥ � hold. The first condition ensures Pollard-rho security while the
second condition ensures security against (exT)NFS attack. In the case where
ρ > 1 (see Table 1), the Pollard-rho condition (lg Q)/n ≥ 2� should be replaced
with the condition (lg Q)/n ≥ 2�ρ.

Taking c = (64/9)1/3 and d = 14, yields lg Q values of 3247, 7958, 15447 for
� = 128, 192, 256, respectively. These values of lg Q are close to the ECRYPT
recommendations of 3248, 7936, 15424. We note that taking c = (64/9)1/3 and
d = 10 yields lg Q values of 3034, 7587, 14889 for � = 128, 192, 256, respectively.
Rounding up these lg Q values to the nearest integer multiple of 512 yields 3072,
7680, 15360, which are the NIST recommendations for prime-order fields at the
128, 192, 256-bit security levels [6].

Remark 4 (On the choice of d). As we have described earlier, the LQ(1/3, c)
run time expression for exTNFS is obtained from the bounds C(η, 2κ,H) · E2κ ·
O((log p)η) and C(η, κ,H) · Eκ · O(Q1/(2κ)) respectively on the norms N(f, φ)
and N(g, φ). The asymptotic analysis considers C(η, 2κ,H) and C(η, κ,H) to

102 A. Menezes et al.

be LQ(2/3, o(1)) and ultimately the effect of these constants get absorbed in
the o(1) term in (11). At a later point, when we set o(1) to be 0, we are in
effect replacing the constants by 1. The values in Table 3 show that replacing
the constants by 1 actually results in underestimates of the run time compared
to what would be obtained from the actual values of the norms.

Choosing a positive value of d amounts to considering the actual run time
to be lower than the run time predicted by values obtained from the asymptotic
expression LQ(1/3, c) (with o(1) assumed to be 0). Since the values obtained
from the asymptotic run time expression are already lower than what would be
obtained from the actual value of the norms, reducing these values further by
choosing a value of d greater than 0 seems to be over-engineering. So, we suggest
that the value of d be taken as 0 which would mean choosing A = 1 in (11).

6.3 The 128-Bit and 192-Bit Security Levels

In this section, we provide estimates of group sizes required to achieve a desired
security level. These estimates depend on the values of the norms N(f, φ) and
N(g, φ). One can work with the upper bounds on these norms. The upper bounds
involve the constant terms which can be quite large. The experiments reported
in Sect. 6.1 show that the actual values of the norms appear to be closer to the
expressions for the upper bounds without the constants. So, we report group
size estimates both with and without the constants in the norm bounds. The
estimates obtained without considering the constants can be considered to be
conservative estimates. The actual methodology for obtaining the estimates is
described below.

For each choice of security level � ∈ {128, 192}, the value of n, the choice
of curve, the choice of the algorithm (exTNFS or SexTNFS), and the choice of
whether or not to use constants in the bounds, the following was done. For each
possible non-trivial factor η of n, let lgp(η) denote the minimum value of lg p
required to achieve security level �. The maximum of lgp(η) over all possible
non-trivial factors η of n is reported.

The values lgp(η) were determined as follows. The initial value of lg p was
taken to be 2ρ� and the size B of the factor base was fixed to 2
/2. The joint
smoothness probability (9) was computed and the value of lg p was incremented
until for the first time the joint smoothness probability became lower than 2−
/2.
This value was returned as lgp(η).

Once lg p was calculated, the complexity of each stage was determined as
follows. With all other parameters fixed, the value of B was incremented until
the smoothness probability became approximately equal to 1/B. This balances
the costs of the relation collection and the linear algebra stages.

The final results are given in Tables 4 and 5. Note that all estimates were
generated using H = 2.

A reasonable conclusion is that BN curves with lg p = 383 and lg Q = 4596
offer (at least) 128 bits of security. With these parameters, there is a mismatch
in security levels with BN curves (λ = 4) for G1 and GT —the former offers 191
bits of security, whereas the latter offers 128 bits. On the other hand, BLS12

Challenges with Assessing the Impact of NFS Advances on the Security 103

Table 4. Approximate run times of exTNFS and SexTNFS for values of Q and n
that achieve the 128-bit security level. The constants are C(η, κ, H) and C(η, 2κ, H) for
exTNFS, and C(η, κ, H) and C(η, κλ, H) for SexTNFS.

BN curves: n = 12, ρ = 1, λ = 4, ‖Γ‖∞ = 36

Algorithm Constants η κ lg p lg Q lg(run time)

exTNFS without 4 3 311 3732 128

exTNFS with 4 3 256 3072 136

SexTNFS without 6 2 383 4596 128

SexTNFS with 6 2 256 3072 150

BLS12 curves: n = 12, ρ ≈ 1.5, λ = 6, ‖Γ‖∞ ≈ 1

Algorithm Constants η κ lg p lg Q lg(run time)

exTNFS without 4 3 384 4608 140

exTNFS with 4 3 384 4608 156

SexTNFS without 6 2 384 4608 132

SexTNFS with 6 2 384 4608 189

KSS curves: n = 18, ρ ≈ 4/3, λ = 8, ‖Γ‖∞ ≈ 2401/21

Algorithm Constants η κ lg p lg Q lg(run time)

exTNFS without 6 3 342 6156 160

exTNFS with 6 3 342 6156 184

SexTNFS without 9 2 342 6156 170

SexTNFS with 9 2 342 6156 274

BLS24 curves: n = 24, ρ ≈ 1.25, λ = 10, ‖Γ‖∞ ≈ 1

Algorithm Constants η κ lg p lg Q lg(run time)

exTNFS without 6 4 320 7680 172

exTNFS with 6 4 320 7680 204

SexTNFS without 12 2 320 7680 202

SexTNFS with 12 2 320 7680 360

curves (λ = 6) with lg p = 384 and lg Q = 4608 do not have this mismatch—G1

and GT both offer 128 bits of security (the former since the bitlength of r is
approximately 256). Since KSS curves have ρ ≈ 4/3 and BLS24 curves have
ρ ≈ 1.25, these curves with lg p = 342 and lg p = 320, respectively, offer (at
least) 128 bits of security. In summary, if one is aiming for the 128-bit security
level, then the bitlength of p should be at least 383, 384, 342 and 320 for BN,
BLS12, KSS and BLS24 pairings.

For the 192-bit security level, the bitlength of p should be at least 1031, 1147,
597 and 480 for BLS, BLS12, KSS and BLS24 pairings. This should be contrasted
with the pre-TNFS recommendations of 640, 640, 512 and 480 bits [1].

104 A. Menezes et al.

Table 5. Approximate run times of exTNFS and SexTNFS for values of Q and n
that achieve the 192-bit security level. The constants are C(η, κ, H) and C(η, 2κ, H) for
exTNFS, and C(η, κ, H) and C(η, κλ, H) for SexTNFS.

BN curves: n = 12, ρ = 1, λ = 4, ‖Γ‖∞ = 36

Algorithm Constants η κ lg p lg Q lg(run time)

exTNFS without 3 4 847 10164 192

exTNFS with 3 4 728 8736 192

SexTNFS without 6 2 1031 12372 192

SexTNFS with 6 2 697 8364 192

BLS12 curves: n = 12, ρ ≈ 1.5, λ = 6, ‖Γ‖∞ ≈ 1

Algorithm Constants η κ lg p lg Q lg(run time)

exTNFS without 3 4 847 10164 192

exTNFS with 3 4 728 8736 192

SexTNFS without 6 2 1147 13764 192

SexTNFS with 6 2 576 6912 200

KSS curves: n = 18, ρ ≈ 4/3, λ = 8, ‖Γ‖∞ ≈ 2401/21

Algorithm Constants η κ lg p lg Q lg(run time)

exTNFS without 3 6 512 9216 194

exTNFS with 6 3 512 9216 214

SexTNFS without 9 2 597 10746 192

SexTNFS with 9 2 512 9216 281

BLS24 curves: n = 24, ρ ≈ 1.25, λ = 10, ‖Γ‖∞ ≈ 1

Algorithm Constants η κ lg p lg Q lg(run time)

exTNFS without 6 4 480 11520 203

exTNFS with 6 4 480 11520 231

SexTNFS without 12 2 480 11520 214

SexTNFS with 12 2 480 11520 366

Remark 5. We have reported group size estimates for several families of curves
for the 128-bit and the 192-bit security levels. The methodology for obtaining
these estimates is more general. It can be applied to other curve families and
also the 256-bit security level.

Remark 6. Prior to the recent developments of the TNFS algorithm, BN curves
with a 256-bit p (and consequently a 3072-bit Q) was considered to provide
128-bit security. Applying our methodology to such curves, we find the runtime
estimates of exTNFS are 2136 and 2118 with and without constants respectively;
and the runtime estimates of SexTNFS are 2150 and 2110 with and without
constants respectively. So, a conservative estimate of the security of BN curves
with a 256-bit prime is 110 bits.

Challenges with Assessing the Impact of NFS Advances on the Security 105

7 Concluding Remarks

Our examination of the run times of recently-proposed improvements to the
TNFS highlights their asymptotic nature. Much work remains to be done before
the impact of these new algorithms on concrete keylengths for pairing-based
cryptography can be determined with full confidence. Before this concrete analy-
sis is completed, a conservative choice for BN pairings would be to increase the
bitlength of p from 256 to 383 if one is aiming for the 128-bit security level. For
BLS12, KSS and BLS24 pairings, there is no change in the pre-TNFS recom-
mendations to use primes p of bitlength 384, 342 and 320, respectively, at the
128-bit security level. At the 192-bit security level, conservative choices for the
bitlength p are 1031, 1147, 597 and 480 for BN, BLS12, KSS and BL24 pairings,
respectively.

Acknowledgements. We thank the referees for their comments which helped improve
the presentation of the paper.

A Calculations of Bounds on Resultants

Consider the setting of the TNFS with Q = pn, n = ηκ, h a degree-η irre-
ducible polynomial in Z[z], R = Z[z]/(h(z)), and f, φ ∈ R[x]. Note that
degz f = degz φ = η − 1.

Let f(z, x) be a bivariate polynomial with integer coefficients where fi,j is the
coefficient of xizj . Then ‖f‖∞ = max |fi,j |. Bounds on resultants of univariate
and bivariate polynomials have been given in [9]. We summarize these below.

Let a(u) and b(u) be polynomials with integer coefficients. From [9], we have

|Resu(a(u), b(u))|
≤ (deg(a) + 1)deg(b)/2 · (deg(b) + 1)deg(a)/2 · ‖a‖deg(b)∞ · ‖b‖deg(a)∞ .

(13)

Let a(u, v) and b(u, v) be polynomials with integer coefficients. Let c(u) =
Resv(a(u, v), b(u, v)). Then

‖c‖∞ ≤(degv(a) + degv(b))!

· (max(degu(a),degu(b)) + 1)degva+degvb−1 · ‖a‖degvb
∞ · ‖b‖degva

∞ .
(14)

Bounds on Resz(Resx(φ(x), f(x)), h(z)) can be derived by combining the bounds
given by (13) and (14). Let c(z) = Resx(φ(x), f(x)). The degree of c(z) is given
in [9] and from (14) we obtain ‖c‖∞. These quantities are as follows:

deg c(z) = (degx φ + degx f) · max(degz φ + degz f) = (η − 1)(degx φ + degx f),
‖c‖∞ ≤ (degx φ + degx f)! · (max(degz φ,degz f) + 1)degx φ+degx f−1

· ‖φ‖degx f
∞ · ‖f‖degx φ

∞
= (degx φ + degx f)! · ηdegx φ+degx f−1 · ‖φ‖degx f

∞ · ‖f‖degx φ
∞ .

106 A. Menezes et al.

Using these values we obtain

|Resz(Resx(φ(x), f(x)), h(z))| = |Resz(c(z), h(z))|
≤ ((η − 1)(degx φ + degx f) + 1)η/2 · (η + 1)(η−1)(degx φ+degx f)/2 (15)

· ‖c‖η
∞ · ‖h‖(η−1)(degx φ+degx f)

∞
≤ ((η − 1)(degx φ + degx f) + 1)η/2 · (η + 1)(η−1)(degx φ+degx f)/2 (16)

· ‖h‖(η−1)(degx φ+degx f)
∞ · (

(degx φ + degx f)! · ηdegx φ+degx f−1
)η

· ‖φ‖η degx f
∞ · ×‖f‖η degx φ

∞ .

References

1. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodŕıguez-
Henŕıquez, F.: Implementing pairings at the 192-bit security level. In: Abdalla,
M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 177–195. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-36334-4 11

2. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving NFS for the dis-
crete logarithm problem in non-prime finite fields. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 129–155. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46800-5 6

3. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-55220-5 1

4. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 31–55. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48800-3 2

5. Barbulescu, R., Pierrot, C.: The multiple number field sieve for medium and high
characteristic finite fields. LMS J. Comput. Math. 17, 230–246 (2014)

6. Barker, E.: Recommendation for key management, Part 1: General. NIST Special
Publication 800–57, Part 1, Revision 4, January 2016

7. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). doi:10.1007/3-540-36413-7 19

8. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). doi:10.1007/11693383 22

9. Bistritz, Y., Lifshitz, A.: Bounds for resultants of univariate and bivariate polyno-
mials. Linear Algebra Appl. 432, 1995–2005 (2010)

10. Boneh, D., Boyen, X.: Strong signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21, 149–177 (2008)

11. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

12. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17, 297–319 (2004)

13. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: 11th
ACM Conference on Computer and Communications Security - CCS 2004, pp.
168–177 (2004)

http://dx.doi.org/10.1007/978-3-642-36334-4_11
http://dx.doi.org/10.1007/978-3-662-46800-5_6
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/978-3-662-48800-3_2
http://dx.doi.org/10.1007/3-540-36413-7_19
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/3-540-44647-8_13

Challenges with Assessing the Impact of NFS Advances on the Security 107

14. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of ψ revisited. Discrete Appl. Math. 159, 1311–1322 (2011)

15. Chatterjee, S., Menezes, A.: Type 2 structure-preserving signature schemes revis-
ited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp.
286–310. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 13

16. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006). doi:10.1007/11761679 1

17. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 26

18. Diem, C.: On the discrete logarithm problem in elliptic curves. Compositio Math.
147, 75–104 (2011)

19. Diem, C.: On the discrete logarithm problem in elliptic curves II. Algebra Number
Theory 7, 1281–1323 (2013)

20. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, S., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: IEEE
54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 40–49
(2013)

21. Gaudry, P., Hess, F., Smart, N.: Constructive and destructive facets of Weil descent
on elliptic curves. J. Cryptol. 15, 19–34 (2002)

22. Gordon, D.: Discrete logarithms in GF (p) using the number field sieve. SIAM J.
Discrete Math. 6, 124–138 (1993)

23. Guillevic, A.: Computing individual discrete logarithms faster in GF (pn)
with the NFS-DL algorithm. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 149–173. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 7

24. Jao, D., Yoshida, K.: Boneh-Boyen signatures and the strong Diffie-Hellman prob-
lem. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 1–16.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03298-1 1

25. Jeong, J., Kim, T.: Extended tower number field sieve with application to finite
fields of arbitrary composite extension degree. Cryptology ePrint Archive: Report
2016/526 (2016)

26. Joux, A.: Algorithmic Cryptanalysis. Chapman & Hall/CRC, Boca Raton (2009)
27. Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete

logarithms in prime fields. A comparison with the Gaussian integer method. Math.
Comput. 72, 953–967 (2003)

28. Joux, A., Lercier, R., Smart, N., Vercauteren, F.: The number field sieve in the
medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
326–344. Springer, Heidelberg (2006). doi:10.1007/11818175 19

29. Joux, A., Pierrot, C.: The special number field sieve in Fpn – application to pairing-
friendly construction. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365,
pp. 45–61. Springer, Cham (2014). doi:10.1007/978-3-319-04873-4 3

30. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Hei-
delberg (2008). doi:10.1007/978-3-540-85538-5 9

31. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complex-
ity for the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53018-4 20

http://dx.doi.org/10.1007/978-3-662-48797-6_13
http://dx.doi.org/10.1007/11761679_1
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-662-48797-6_7
http://dx.doi.org/10.1007/978-3-662-48797-6_7
http://dx.doi.org/10.1007/978-3-642-03298-1_1
http://dx.doi.org/10.1007/11818175_19
http://dx.doi.org/10.1007/978-3-319-04873-4_3
http://dx.doi.org/10.1007/978-3-540-85538-5_9
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://dx.doi.org/10.1007/978-3-662-53018-4_20

108 A. Menezes et al.

32. Koblitz, N., Menezes, A.: The brave new world of bodacious assumptions in cryp-
tography. Not. AMS 57, 357–365 (2010)

33. Lenstra, A.K., Lenstra, H.W., Manasse, M.S., Pollard, J.M.: The number field
sieve. In: Lenstra, A.K., Lenstra, H.W. (eds.) The Development of the Number
Field Sieve. LNM, vol. 1554, pp. 11–42. Springer, Heidelberg (1993). doi:10.1007/
BFb0091537

34. Mayo, K.: A primer on cryptographic multilinear maps and code obfuscation.
M.Math. thesis, University of Waterloo (2015). http://hdl.handle.net/10012/9698

35. Pierrot, C.: The multiple number field sieve with conjugation and general-
ized Joux-Lercier methods. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 156–170. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 7

36. Pollard, J.: Monte Carlo methods for index computation mod p. Math. Comput.
32, 918–924 (1978)

37. Sarkar, P., Singh, S.: New complexity trade-offs for the (multiple) number field sieve
algorithm in non-prime fields. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 429–458. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49890-3 17

38. Sarkar, P., Singh, S.: A general polynomial selection method and new asymptotic
complexities for the tower number field sieve algorithm. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 37–62. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53887-6 2

39. Sarkar, P., Singh, S.: A generalisation of the conjugation method for polynomial
selection for the extended tower number field sieve algorithm. IACR Cryptology
ePrint Archive: Report 2016/537 (2016)

40. Schirokauer, O.: Using number fields to compute logarithms in finite fields. Math.
Comput. 69, 1267–1283 (2000)

41. Smart, N. (ed.): ECRYPT II Yearly Report on Algorithms and Keysizes (2011–
2012), 30 September 2012

http://dx.doi.org/10.1007/BFb0091537
http://dx.doi.org/10.1007/BFb0091537
http://hdl.handle.net/10012/9698
http://dx.doi.org/10.1007/978-3-662-46800-5_7
http://dx.doi.org/10.1007/978-3-662-46800-5_7
http://dx.doi.org/10.1007/978-3-662-49890-3_17
http://dx.doi.org/10.1007/978-3-662-49890-3_17
http://dx.doi.org/10.1007/978-3-662-53887-6_2

Different Paradigms

Key Recovery: Inert and Public

Colin Boyd1, Xavier Boyen2, Christopher Carr1,2(B), and Thomas Haines2

1 Norwegian University of Science and Technology, NTNU, Trondheim, Norway
ccarr@ntnu.no

2 Queensland University of Technology, QUT, Brisbane, Australia

Abstract. We propose a public key infrastructure framework, inspired
by modern distributed cryptocurrencies, that allows for tunable key
escrow, where the availability of key escrow is only provided under strict
conditions and enforced through cryptographic measures. We argue that
any key escrow scheme designed for the global scale must be both inert—
requiring considerable effort to recover a key—and public—everybody
should be aware of all key recovery attempts. To this end, one of the
contributions of this work is an abstract design of a proof-of-work scheme
that demonstrates the ability to recover a private key for some generic
public key scheme. Our framework represents a new direction for key
escrow, seeking an acceptable compromise between the demands for con-
trol of cryptography on the Internet and the fundamental rights of pri-
vacy, which we seek to align by drawing parallels to the physical world.

1 Introduction

Key escrow was a popular research topic, and subject of contention, during the
1990s [2]—the era of the so-called crypto wars [12]. Recently, the crypto wars
seem to have resumed, principally due to the “Snowden revelations” of global
mass surveillance. Whilst security advocates and technical experts have spoken
out against demands from government agencies to weaken, or even prevent, the
use of cryptography, governments make an opposing case, demanding greater
powers of surveillance in pursuit of terrorists and organised crime.

Pros and cons of key escrow. Allowing a third party to hold unlimited
escrow over cryptographic keys comes with serious security concerns. Indeed,
even if the party holding the escrow is trustworthy, confidence that this party
is completely secure against forms of malicious compromise, such as subversion
or hacking may not be achievable, rendering the cryptographic keys vulnerable.
Consequently, accepting key escrow amounts to placing broad and considerable
trust in both the character and abilities of the party holding escrow.

Concerns surrounding the level of trust are not unfounded, as shown by recent
examples of security breaches, directly compromising keys used by members of
the public. For example, in 2015, the SIM card manufacturer Gemalto reportedly
had the keys to millions of SIM cards compromised in a breach conducted by
GCHQ and supported by the NSA [11].

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 111–126, 2017.
DOI: 10.1007/978-3-319-61273-7 6

112 C. Boyd et al.

In a widely publicised study in 2015 [1], a group of 15 eminent cryptogra-
phers and technologists re-examined governmental access to data and commu-
nications, comparing the situation now with that in the 1990s. They concluded
that law enforcement access “will open doors through which criminals and mali-
cious nation-states can attack the very individuals law enforcement seeks to
defend”. They further argued that it would require unreasonable costs and lead
to economic loss.

Arguably, governments have had far too much power over, and knowledge
of, the communications of its average citizens. This has been recognised previ-
ously. In 2013, the United States President’s Review Group on Intelligence and
Communications Technologies [15] recommended that “. . . the US Government
should:

1. Fully support and not undermine efforts to create encryption standards;
2. Not in any way subvert, undermine, weaken, or make vulnerable generally

available commercial software; and
3. Increase the use of encryption and urge US companies to do so, in order to

better protect data in transit, at rest, in the cloud, and in other storage.”

On the other hand, there is an opinion that reasonable controls on cryp-
tography are desirable. The oft presented motivation is the need to reveal the
communications of those involved with, or suspected to be involved in, major
criminal or terrorist activities. The same President’s Review Group on Intelli-
gence and Communications Technologies [15] also stated (Recommendation 20):
“. . . the US Government should examine the feasibility of creating software that
would allow the National Security Agency and other intelligence agencies more
easily to conduct targeted information acquisition rather than bulk-data collec-
tion.”

Bart Preneel in his 2016 IACR Distinguished Lecture, The Future of Cryptog-
raphy [16], asked: What about the balance? He points out that privacy has both
individual and collective dimensions. While intelligence agencies have arguably
gone too far in their usage of technology, they may lose out in some scenarios.
Preneel challenges the community to design better solutions.

Compromise solutions. During the first crypto-wars in the 1990s, cryptog-
raphers contributed a number of compromise key escrow solutions, aimed at
balancing the power of law-enforcement agencies with various constraints. One
such example was partial key escrow [4,5] which allows escrow agents to recover
keys with moderate effort but makes the computational requirements of mass
surveillance prohibitively costly. Another example was oblivious key escrow [6]
in which users share their keys among a large number of unknown escrow agents
who must cooperate in order to recover a key. Our proposal takes inspiration
from both of these ideas.

During the current crypto-wars there has been little interest from the crypto-
graphic community to explore compromise solutions. One exception is the cMix
proposal of Chaum et al. [7], part of a practical project known as Privategrity.

Key Recovery: Inert and Public 113

Although the proposed system efficiently provides high level security and pri-
vacy properties, it relies on users sharing long-term keys with a fixed set of
servers so that compromise of all servers reveals all user information. Such a
level of trust, even if extensively distributed, has received widespread criticism.
Note that compromise of all trusted nodes, and subsequent compromise of user
secrets, if it should happen, can be undetectable. Importantly, we have already
seen a willingness for international cooperation to record communications, and
so it is not immediately obvious that this approach would achieve the desired
results.

Our aim is to explore some ideas for better compromise solutions to key
escrow. We are motivated by the observation that extraordinary access to per-
sonal property in the physical world does not receive the same debate and contro-
versy as extraordinary access in the virtual world. By examining the differences
between the virtual and physical world, we are led to propose some principles for
key escrow which we believe can defuse much of the controversy behind earlier
key recovery proposals. Furthermore, we observe that modern techniques, specif-
ically based on ideas from decentralised cryptocurrencies, allow these principles
to be realised in practice.

Contribution. The main aim of this work is to focus the attention of the com-
munity in an area that is politically difficult, with an aim of offering responsible
solutions to these problems. The technical contributions can be summarised as
follows.

– New principles for the design of large scale escrow systems are proposed.
– Possible methods for implementing these principles are described.
– A generic method for creating a proof-of-work system based on a public key

scheme is proposed.

2 Background

This section focuses on the building blocks of our proposal. The first two of these
originate from the original crypto wars: oblivious key escrow and partial key
escrow. The third element we introduce is a decentralised consensus mechanism
conceived with modern cryptocurrencies.

2.1 Oblivious Key Escrow

The first of our three proposals described later has its roots in the notion of obliv-
ious key escrow [6]. Blaze suggests a form of escrow in which keys are widely
distributed amongst a large pool of escrow servers numbering thousands or mil-
lions. Key recovery can be performed by a threshold of escrow servers (perhaps
numbering hundreds or thousands) following some pre-agreed policy. The key-
sharing is oblivious in that the key owner does not know which subset of possible
share holders were selected.

114 C. Boyd et al.

The system also allows for extraordinary access following a process which
Blaze calls angry mob cryptanalysis: if enough servers of the system agree, they
can ignore the policy and recover the secret key for other member of the scheme.
The idea is that such a mob would only choose to do so if there was some mass
consensus that key recovery is justified. This brings to mind the recent case
where Apple and the FBI were in conflict over access to data in a convicted
terrorist’s iPhone [10]. With angry mob cryptanalysis, the decision in such cases
could be made by wide consensus.

The principle behind Blaze’s idea is that a party’s secret key can be recovered
when a large enough proportion of people demand it. The argument for this
kind of key escrow is that in order to apply it, a vast number of people must be
committed to finding a secret key that corresponds to a published public key. To
get such a large body of people on board, it would be necessary to perform this
process in the public eye. The argument is that even powerful agencies would
have to announce their intentions in order to recover a key in reasonable time.
The advantage here is removing the ability of a rogue state to simply recover the
key through: ulterior means or coercion; via a legal process; or through simply
amassing the power to do so. Crucial to this design is that the parameters are
chosen so that coercion of such a large population of users is infeasible.

2.2 Partial Key Escrow

Shamir seems to have been the first to suggest the idea to escrow only part of the
private key.1 The principle is that law enforcement agencies with considerable
computational power will be able to obtain some targeted keys, but will not have
the resources available to perform mass surveillance, provided enough entropy
remains in the unescrowed part of the key.

Using weaker than usual keys is another proposal that has been suggested for
key escrow, with the argument that while there is less security on an individual
level, by selecting appropriate parameters, it is infeasible to extract the keys for
all.

However, partial and weaker than usual key escrow has seen a lot of criticism,
with arguments against this approach reasonably stating arguments such as the
following:

– One cannot make accurate assumptions on the computational resources of
powerful agencies who may wish to undermine a key escrow system using
weaker keys such as the NSA/FSB/MSS/GCHQ/ASD;

– Breakthroughs in cryptanalysis are unpredictable;
– Cryptanalysis techniques may not be made public, and there is little incen-

tive to do so, as greater reward can be garnered through the private sale of
cryptanalytic breakthroughs; and

– By the power of Moore’s law, over time there will be a considerable reduction
in the cost of recovering a key.

1 Unpublished, but widely attributed [4,8].

Key Recovery: Inert and Public 115

2.3 Ensuring a Distributed User Base

One of the main achievements of Bitcoin, is enforcement of the principle first
described in the original Bitcoin proposal [13], namely one CPU, one vote. Tradi-
tionally, peer-to-peer systems could be vulnerable to what are popularly referred
to as Sybil vulnerabilities [9]. Sybil vulnerabilities often arise when a single party
can easily and quickly create multiple pseudonymous identities. Malicious parties
can perform a Sybil style attack in a threshold key escrow scheme by creating
multiple pseudonymous identities—in order that they stand a greater chance of
receiving more key shares.

Employing the one CPU, one vote principle attempts to solve the Sybil prob-
lem. In this scenario, it does not matter how many pseudonyms any participant
in the scheme can create, what matters instead is how much work they can pro-
duce. Thus, any party wishing to pose as two entities, must provide the work
of two entities, and so on linearly in the number of users one wishes to pose
as. Inevitably, while one individual is able to pretend to be multiple entities,
they cannot trivially increase their computational power beyond some reason-
able margin.

In a distributed environment where there are multiple machines, all attempt-
ing to outpace the others, it soon becomes hard to implement any form of Sybil
attack.

3 Design Principles

We are motivated by comparison between the process of cryptographic key
recovery and the process of obtaining access to physical premises. This extends
an analogy that is made between allowing extraordinary access to personal
encrypted communications and giving access to personal property [1]. We observe
that there are at least two important differences between the physical world and
the cryptographic world which are not usually considered in such analogies.

1. Obtaining access to physical premises requires significant resources. This typ-
ically includes the presence of people and the use of physical equipment, both
over a significant time.

2. Instances of access are difficult to hide from public view. Often they involve
forced entry with multiple actors, and a form of recorded process.

Our thesis is that these two properties are inhibitors to abuse of extraordinary
access, whether committed by law enforcement agencies or by legitimate property
owners. Use of significant resources makes mass abuse without a valid target
impossible. Public observation and records of access instances prevents covert
abuse. Our aim, therefore, is to mimic these properties in the cryptographic world
so that a more acceptable compromise can be reached. This leads us neatly to
two design principles.

116 C. Boyd et al.

3.1 Inert and Public

Inert. Key recovery should cost something to those seeking to recover the key.
Moreover, this cost should be measurable and increase with the number of
keys to be recovered.

Public. The only viable way to recover keys should be with a publicly recorded
process. Every instance of a key recovery attempt should be publicly known,
and the record of key recovery instances should be infeasible to alter, hide or
falsify.

As we have seen in recent years, both the properties of inertia and pub-
lic accountability are almost nonexistent in online communication. With unen-
crypted communication, the effort required does not grow with the number of
keys required to compromise. For example, consider the tapping of deep sea
cables. The hard work required to intercept the communication happens once,
and from then on the cost of interception is tiny for all new communications using
that line. In contrast we advocate a fair cost for each communication recovery.

This example also shows how the public aspect is defeated. Tapping of com-
munications can be achieved in a covert and undetectable fashion. At it stands,
our knowledge of compromises comes mostly from whistle-blowers within the
system who are often legally required to remain silent, and may have to break
laws with heavy penalties in order to bring the activities to public attention.

Creating a system that is both public and inert is not easily achievable in the
current Internet, but there are emerging technologies that are resolving some of
the constraints. In order to describe the system we propose, we next define a
space where certificates for escrowed keys can be placed.

3.2 Blockchains, Decentralised Ledgers and PKI

Traditional public key infrastructure (PKI) has been shown wanting for the end
user, and we are still in a situation where, for the most part, secure online
communication between two parties is “off” by default. This is especially true
in email, where the difficulty of both obtaining and using public keys helps
to prevent its widespread use [17,18]. Linking an identity with a public key is
still a difficult problem, due to the methods for distribution and ways to assert
key ownership. The web of trust model, while innovative, presents too great a
challenge to the user to be effective as a world wide tool. On the other hand,
over-reliance on centralised architecture is itself a major issue.

The emergence of decentralised ledger systems (or Bitcoin like systems), on
the other hand, seems to provide a natural and, most importantly, a practical way
to achieve the design goals since such systems are decentralised and inherently
satisfy the properties of inertia and public verifiability. Indeed, using blockchains
to construct public ledgers in which to store credentials or certificates for use in
public key cryptography has been previously considered [19], along with alter-
native proposals for certified credentials within the Bitcoin system itself [3].

Key Recovery: Inert and Public 117

Our direction complements this work, considering the further requirement for
key recovery under certain circumstances, whilst still maintaining strong levels
of security for the majority of the system.

We have identified the following four properties as the main challenges in
achieving a practical systems satisfying our goals.

Strong Keys. Generating keys that are currently strong does not prevent them
from becoming weak in the (near) future. One problem is to create an escrow
system that can hold up for an extended period.

Resistance to Sybil Vulnerability. Are the keys vulnerable to Sybil like
attacks? In a key sharing mechanism, it is important that the vulnerability
threshold to a Sybil attack is suitably measured.

Public. Attempted recovery of the key must be made public in order to be
acceptable.

Inert. All mechanisms used to recover the keys require at least some amount of
effort.

To satisfy the third property, we need to devise a way to allow for the users
of the system to recover the secret keys for the public keys that are posted in the
system. To do this, we devise a blockchain like public key infrastructure layer
for users and devices, that acts in the middle ground, as well as allowing market
forces to try their best. Blockchains have been proposed as a distributed public
ledger before, and there are plenty of applications to choose from [13]. All we
require is that the ledger is append only, and available to all members.

A central advantage of using a distributed decentralised ledger is that cer-
tificates can be uploaded to the system in a manner that resembles distributed
public key infrastructure. A user asserting a key to the system will have it verified
if it follows the rules of the system. The design is decentralised and traceable,
so altering and faking certificates is difficult. Unlike the more centralised server
storage approach, where compromising the key server gives control of the key
server and allows revoking and creation of false keys, there is a much greater
resistance in a proof–of–work based ledger model.

We propose two layers of infrastructure, a top layer, where authorities such as
nation state, and perhaps well audited companies, remain, which we call trusted
roots. The second layer is the key management layer, where the signed keys are
appended to, and stored on, the global record.

For example, a user may want to claim their email address, sally@uni.gov
along with registering their name Sally F and other supplementary information.
This certificate is appended together and signed by the relevant authority that
agrees that Sally is in fact the legitimate owner of the email address. By this
method, there is a global consensus on trusted roots and their intermediate
authorities across all platforms.

Assumption 1 (Trusted Roots). All parties maintain an identical list of
trusted root authorities, containing the root authorities, their corresponding pub-
lic key, and some auxiliary information such as description and location.

118 C. Boyd et al.

This design is similar to traditional public key infrastructure. However, this
design incorporates both PKI and the assertion of certificates for individual
users. These top layer authorities are axiom authorities of the system, designed
to represent governmental bodies or trusted corporations, without which there
would be no place to start. Notably, we make no judgement on whether this is
ideal, however we seek to mimic the real world as closely as possible.

Assumption 2 (Certificate ledger). The certificate ledger is append only and
available to all parties. Specifically, all participants can write and read accurately
to the certificate ledger. After some known period of time t, records within the
ledger cannot be removed.

4 Our Framework

We propose a framework that uses either one of, or a combination of, the obliv-
ious key escrow method and the secret sharing of moderately weak keys. This
leads to two alternative proposals and a third which combined the first two.

4.1 Proposal 1: Decentralised Oblivious Key Escrow

Our first proposal is to build a key escrow scheme using a distributed smart
contract system. Specifically, the policy to enable release of keys, as described by
Blaze [6], is embedded in a smart contract. Release of keys can then only occur
when the policy is satisfied, as guaranteed by the integrity of the blockchain.
This allows building oblivious key escrow into a transaction that can act as a
credential. However, this requires an oblivious key escrow protocol to be secure
in a form of white box execution. Users of the system would then be able to
verify that the oblivious key escrow took place correctly and if so include the
transaction in the system.

Using a Turing complete language, available in modern crypto-currencies
like Ethereum [14], it is possible to programatically enforce a random choice of
escrow servers. We note that, in the original oblivious key escrow paper [6], it
is possible, without any risk of detection, for the sender to collaborate with the
receivers to select only the receivers of their choice.

Proposal 1 is a method of oblivious escrow where key recovery is available
according to some agreed and publicly checkable policy. The use of a distributed
ledger enables the property of public accountability. However, this method does
not require computational effort in order to effect key recovery.

4.2 Proposal 2: Partial Key Escrow

Our second proposal is to escrow parts of a key, and record them on a distributed
ledger. The system therefore should act as a form of PKI, so that anyone can
verify the correct association between a user and a public key.

We desire an efficient way to include a secret within a system such that the
verifiers of the distributed ledger can quickly check that credentials are included.

Key Recovery: Inert and Public 119

In order to do that, we require that users select a public key of a specified length,
such that it is short enough to recover the secret key if a considerable effort
is applied for some length of time, yet strong enough to prevent recovery by
reasonable computational resources.

Creating a good metric for the security of a public key cryptosystem of dif-
ferent lengths is challenging. Therefore we introduce a feedback loop mechanism
between the security of the public key scheme used for key escrow and the proof–
of–work system. This requires building an alternate proof-of-work system from a
public key system in such a way that recovering the secret key for a given public
key can be accurately quantified. The idea is to build a proof-of-work system
that relies on the speed of finding secret keys to corresponding to registered
public keys.

Quantifying Strength of Public Keys. This approach comes with another interest-
ing feature. Since users are rewarded for their work on the proof-of-work system,
there is an incentive for them to find the best algorithms and obtain the best
hardware to recover the secret keys. This will be useful for determining the long
term strength of any scheme deployed in this manner. If it is valuable to find
weaknesses in a specific scheme, then weaknesses may be found more readily,
and the absence of weaknesses being found indicates the security of that specific
public key scheme. This creates a financial incentive to find weaknesses in keys,
and increases the level of scrutiny of a public key scheme, from just a few inter-
ested parties, such as those interested in covert surveillance, and ones developing
algorithms and software to sell to those agencies. It increases the scope to the
general public, bringing the cryptanalysis of a public key scheme out into the
open.

A solution to this problem is to create a public key based proof–of–work
system. This means that a certain level of computational work has to be applied
to a target credential in order to retrieve the secret key. This gives us a metric
on the security of a public key scheme. Say, on average, every minute a secret
key is found for a public key scheme with a certain level of security, then we
can feed that back into the key generation process for the credential. If the key
should be secure for a greater length of time, then this the key size should be
scaled with respect to size of keys actually being recovered in the system.

4.3 Proposal 3: Decentralised Oblivious Partial Key Escrow

Proposals 1 and 2 each have certain benefits, but individually fall short of solving
the full problem. However, by combining both proposals, we can eliminate the
drawbacks of each approach.

Our third proposal is a system where to recover the secret for a user, both
effort must be made and consensus must be reached. To recover a key, such that,
a large population of users must agree to release a reduced key which in turn
must be the target of significant computational resources. This guarantees both:

– public accountability since the oblivious key escrow is inherently public, and
weak keys will not be publicly available; and

120 C. Boyd et al.

– inertia since all keys released are current in their security parameters and the
oblivious key escrow can have security levels tuned for ongoing security.

This means that in the future the keys will not be trivially breakable unless
one has previously mounted a Sybil attack on all keys. Therefore, it is necessary
to mount the attack beforehand on all users in order to compromise the public
property of the system. We summarise the proposals, and their advantages in
Table 1.

Table 1. Comparison of main properties of the three proposals

Partial
escrow

Oblivious
escrow

Prop. 1 Prop. 2 Prop. 3

Public ✗ ✗ ✓ ✓ ✓

Inert ✓ ✓ ✓ ✓ ✓

Future secure ✗ ✓ ✓ ✗ ✓

Sign up not required ✓ ✗ ✗ ✓ ✓a

Sybil resistant ✓ ✗ ✗ ✓ ✓

Traffic analysis resistant ✓ ✗ ✗ ✓ ✓
a There is a requirement for pre-registration for the oblivious part of the
key escrow.

5 Methods for Implementation

Here we sketch ways to implement each of the three proposals. At present we are
only in a position to outline a proof of concept. Detailed designs and experimental
systems will require further work.

5.1 Implementing Proposal 1

Implementing oblivious key escrow as a smart contract requires working within
the white box execution environment, where all execution is public. Doing any
cryptography in this environment is hard since all keys used would be public.
So, all values need to be encrypted by the relevant parties before submitting to
the contract.

Implementing this first proposal can be done in solidity, the programming
language for the distributed smart contract system Ethereum [14], using the
code and protocol shown below. Note, that for simplicity, we have replaced the
blind signatures and anonymous channel (as specified in the design of Blaze [6])
with the pseudo-anonymity of the block chain. It should however, be easy to
reintroduce them.

Key Recovery: Inert and Public 121

pragma s o l i d i t y ˆ 0 . 4 . 0 ;
cont rac t ObliviousKeyEscrow {

f unc t i on randomGen(u int seed , u int max) constant r e tu rn s (
↪→ uint randomNumber) {
return (u int (sha3 (block . blockhash (block . number−1) , seed

↪→))%max) ;
} //More s ecure randomness i s p r e f e r a b l e

s t r u c t Rece iver {
uint publicKey ; // Pre f e rab ly new
bool j o i n ed ;
bool chosen ;

}

address sender ; //The person wanting to escrow
mapping (address => Rece iver) r e c e i v e r s ;
mapping (u int => address) receiverNumbers ;
u int [] sha re s ; // People who should hold share s
u int [] enc rypted share s ; //Encrypted share s o f the key
u int numReceivers ;

/// Create a new Obl iv ious Key Escrow
func t i on ObliviousKeyEscrow () {

sender = msg . sender ;
}

/// Join as a po t e n t i a l sender
func t i on Send (u int8 publicKey) {

Rece iver r e c e i v e r = r e c e i v e r s [msg . sender] ;
i f (r e c e i v e r . j o i n ed) return ;
receiverNumbers [numReceivers] = msg . sender ;
r e c e i v e r . j o i n ed = true ;
r e c e i v e r . publicKey = publicKey ;
numReceivers++;

}

/// Choose the r e c e i v e r s to r e c e i v e key share s
func t i on ChooseRece ivers (u int numShares) {

i f (msg . sender != sender) throw ;
i f (numReceivers < numShares) return ;
u int seed = 0 ;
for (u int i = 0 ; i < numReceivers ; i++){

seed += r e c e i v e r s [receiverNumbers [i]] . publicKey ;
}// Ca lcu la te a seed
for (i = 0 ; i < numShares ; i++){

uint randomNumber = randomGen(seed , numReceivers) ;
seed += randomNumber ;
sha re s [i] = randomNumber ;

122 C. Boyd et al.

}
}

///Send the key share s to the r e l e van t p a r t i e s
func t i on SendShares (u int [] tempEncryptedShares) {

enc rypted share s = tempEncryptedShares ;
}

}

A person choosing to escrow their key would put the contract on the block
chain. They would then wait for senders to join by calling Send, after which they
would call ChooseReceivers to securely, and publicly, choose random receivers.
Once the receivers are chosen, the sender calls SendShares with the key shares
encrypted to the relevant party’s public key.

5.2 Implementing Proposal 2

First, we define general public key encryption and signature schemes.

Definition 1 (Public Key Encryption Scheme). A public key encryption
scheme is made up of a tuple of probabilistic polynomial–time algorithms (Key-
Gen, Enc, Dec) such that:

KeyGen(1λ) is the key generation algorithm, taking security parameter
λ as input and producing a public key, secret key key tuple
(pk, sk) respectively.

Enc(pk,m) takes the public key pk and a message m, and outputs
a ciphertext c.

Dec(sk, c) takes the secret key sk and a ciphertext c, and outputs
a plaintext m.

Definition 2 (Signature Scheme). A signature scheme is made up of a tuple
of probabilistic polynomial–time algorithms (KeyGen, Sign, Ver) such that:

KeyGen(1λ) is the key generation algorithm, taking security parameter
λ as input and producing a public key, secret key key tuple
(pk, sk) respectively.

Sign(sk,m) takes the secret key sk and some message m, and outputs
a tag s.

Ver(pk, s,m) takes the public key pk, the message m, and the tag s

and returns either accept or reject.

Providing correctness requirements, informally, for a public key scheme such that
(pk, sk) ←r KeyGen(1λ) for some security parameter λ, then the probability that

Key Recovery: Inert and Public 123

Dec(sk,Enc(pk,m)) �= m is a negligible of λ. Similarly for the signature aspect,
for any m, the probability that Ver(pk,Sign(sk,m),m) returns reject is also a
negligible function of λ.

Remark 1 (Public Key Scheme). We call any overarching scheme that supports
both signatures and encryption a public Key Scheme.

Definition 3 (Proof-of-Work Adaptable). Let P be a public key scheme.
For every pki, pkj ←r KeyGen(1λ) such that |pki| = |pkj | = n and for all adver-
saries, the difference in expected computational steps between recovering a secret
key for pki and recovering a secret key for pkj is negligible in the security para-
meter λ.

Furthermore, for any pki ←r KeyGen(1λ′
) and pkj ←r KeyGen(1λ′′

), where
d = |pkj | − |pki|, for any adversary A that can reliably recover a secret key for
pki in t computational steps, then A can reliably recover a secret key for pkj in
t + f(d) ≥ t steps, for some monotonically increasing function f .

In other words, keys of equal size can be recovered in roughly the same number
of steps, and that there is not some selection of weaker keys within the scheme
that are easier to recover. It also ensures that the difficulty increases by a known
factor on the length of the key, meaning we are able to extrapolate the security
of larger keys, based on that of smaller keys.

Definition 4 (Full key space). Let P be a public key scheme. We say that P
has full key space in [i, j] if for every binary string of length between and including
i and j, then each public key is uniquely representable as such a string, and has
a unique corresponding secret key, for some choice of security parameter λ.

With the groundwork in place, it is possible to build a proof–of–work scheme
based on a public keys scheme, providing it satisfies Definitions 1, 2, 3, and 4.
The process for building this PoW system is described as follows:

1. Collect broadcast transactions (or credentials), and label them as xi.
2. Take a unique reward value y, which is the information used to claim a reward.
3. Using a suitable hash function H, apply ci = H(xi, ci−1, y) and let pk be the

first d bits of ci, where ci−1 represents the previous state.
4. The challenge is to find a secret key sk corresponding to pk for the given

public key scheme, such that Ver(pk,Sign(sk, ci), ci) returns true.

Once such an sk is found, it can then be broadcast to claim the reward.
This creates a chain-like consensus mechanism to be used as the backbone for
the system. Now, when credentials (or transactions) are created, we insist that
they are created using the same public key scheme for the consensus ledger
mechanism, but with a higher level of security than creating the difficulty. With
the properties defined for the public key scheme, we can pick a key that we
know is quantifiably more challenging to recover than the amount of work on
the system at a given time. Now, if a key ever needs to be recovered, the same
amount of energy can be expended on the recovery of a key. However, with a

124 C. Boyd et al.

large enough system it is necessary to engage with the community and have
them recover the key in order to achieve recovery in a timely fashion.

There must be a way of adjusting the difficulty of the system depending on
the rate at which keys are being recovered. This is possible in this framework as
we can simply adjust the pk = c[0, . . . , d] for some maximum difficulty d, which
can vary depending on the rate at which solutions are made available.

5.3 Implementing Proposal 3

Proposal three can be implemented by combining the implementations of pro-
posal one and two. An important aspect here is the method used for the creation
of credentials, as the corresponding secret key used in the credential creation
must only be recoverable if both the instance of oblivious key escrow and the
instance of scheme two is satisfied. Clearly these requirements are contradictory,
as the secret keys chosen in scheme two are purposefully designed to be recover-
able when a concerted computational effort is applied, whereas in scheme one,
they are not. To solve this, we simply include two separate keys when creating
a credential, where each key is implemented under either scheme. While this
is not entirely elegant, we believe the extra burden on the key generator and
the extra space requirement for storing the key are sufficiently small to allow
for such a solution. Notably, this choice will double the number of authentica-
tion rounds, which may detract from applicability, but we consider to be a price
worth paying for a PKI system which seeks to achieve simultaneous goals such as
these.

6 Conclusion

The aim of this paper is to explore future directions in key escrow. We have pre-
sented three outline solutions, constructable in the no-man’s-land between com-
plete surveillance and complete security. There remain interesting open problems
in this line of enquiry. From an applications perspective, a concrete proposal for
a public key scheme that matches the criteria laid out in Definitions 1, 2, 3, and 4
is needed. Utilising quantum resistant public key schemes may be necessary for
long term use. While we have no candidate construction, we note that for classi-
cal cryptography, there may be scope for schemes built on the discrete logarithm
problem.

Of course, making the scheme truly public and inert requires a large user
base, and wide adoption. For that reason, research into scale and usability of
such a system would complement this work.

Leveraging Existing Technology. A slightly different, but otherwise parallel app-
roach, would be to overlay the escrow credential management from proposal
2 directly on top of the pre-existing, and popular, Bitcoin system. The major
advantage of doing this is that the inherent security of the system would come
packaged with it. In principle, there is nothing stopping a system that utilises

Key Recovery: Inert and Public 125

Bitcoin’s blockchain as the decentralised append-only ledger. This can allow any-
one to announce their credential, along with a signature from a trusted axiom
authority within a transaction. This is trivially possible on Bitcoin, and you
could do this within a transaction to announce your public key. The open prob-
lem is how to store the secret key within the transaction, so that it could be
recovered by finding a preimage of an output form the SHA-256 algorithm.

References

1. Abelson, H., Anderson, R.J., Bellovin, S.M., Benaloh, J., Blaze, M., Diffie, W.,
Gilmore, J., Green, M., Landau, S., Neumann, P.G., Rivest, R.L., Schiller, J.I.,
Schneier, B., Specter, M.A., Weitzner, D.J.: Keys under doormats. Commun. ACM
58(10), 24–26 (2015)

2. Abelson, H., Anderson, R.J., Bellovin, S.M., Benaloh, J., Blaze, M., Diffie, W.,
Gilmore, J., Neumann, P.G., Rivest, R.L., Schiller, J.I., Schneier, B.: The risks of
key recovery, key escrow, and trusted third-party encryption (1997)

3. Ateniese, G., Faonio, A., Magri, B., Medeiros, B.: Certified bitcoins. In: Boureanu,
I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 80–96.
Springer, Cham (2014). doi:10.1007/978-3-319-07536-5 6

4. Bellare, M., Goldwasser, S.:. Verifiable partial key escrow. In: Richard Graveman
et al. (ed) Proceedings of the 4th ACM Conference on Computer and Communi-
cations Security CCS 1997, pp. 78–91. ACM (1997)

5. Bellare, M., Rivest, R.L.: Translucent cryptography - an alternative to key escrow,
and its implementation via fractional oblivious transfer. J. Cryptology 12(2), 117–
139 (1999)

6. Blaze, M.: Oblivious key escrow. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174,
pp. 335–343. Springer, Heidelberg (1996). doi:10.1007/3-540-61996-8 50

7. Chaum, D., Javani, F., Kate, A., Krasnova, A., de Ruiter, J., Sherman, A.T.: cMix:
Anonymization by high-performance scalable mixing. IACR Cryptology ePrint
Archive, 2016:8 (2016)

8. Denning, D.E., Branstad, D.K.: A taxonomy for key escrow encryption systems.
Commun. ACM 39(3), 34–40 (1996)

9. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). doi:10.
1007/3-540-45748-8 24

10. Hack, M.: The implications of Apple’s battle with the FBI. Netw. Secur. 2016(7),
8–10 (2016)

11. The Intercept: The great SIM heist (2015). https://theintercept.com/2015/02/19/
great-sim-heist

12. WIRED: Todd Lappin. Winning the crypto wars (1997). www.wired.com/1997/
05/cyber-rights-10/

13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

14. Ethereum Network: Ethereum: smart contract and decentralized application plat-
form (2016). https://github.com/ethereum/wiki/wiki/White-Paper

15. President’s Review Group on Intelligence, Communications Technologies, Clarke,
R.A., Morell, M.J., Stone, G.R., Sunstein, C.R., Swire, P.P.: Liberty, security in
a changing world: report and recommendations of the president’s review group
on intelligence and communications technologies (2013). http://www.whitehouse.
gov/sites/default/files/docs/2013-12-12 rg final report.pdf

http://dx.doi.org/10.1007/978-3-319-07536-5_6
http://dx.doi.org/10.1007/3-540-61996-8_50
http://dx.doi.org/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1007/3-540-45748-8_24
https://theintercept.com/2015/02/19/great-sim-heist
https://theintercept.com/2015/02/19/great-sim-heist
www.wired.com/1997/05/cyber-rights-10/
www.wired.com/1997/05/cyber-rights-10/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.whitehouse.gov/sites/default/files/docs/2013-12-12_rg_final_report.pdf
http://www.whitehouse.gov/sites/default/files/docs/2013-12-12_rg_final_report.pdf

126 C. Boyd et al.

16. Bart Preneel: IACR distinguished lecture: the future of cryptography (2016).
http://homes.esat.kuleuven.be/∼preneel/preneel iacr dl vienna2016.pdf

17. Ruoti, S., Andersen, J., Zappala, D., Seamons, K.E.: Why Johnny still, still can’t
encrypt: evaluating the usability of a modern PGP client. CoRR (2015)

18. Whitten, A., Tygar, J.D.: Why johnny can’t encrypt: a usability evaluation of PGP
5.0. In: Treese, G.W. (ed) 8th USENIX. USENIX (1999)

19. Wilson, D., Ateniese, G.: From pretty good to great: enhancing PGP using bitcoin
and the blockchain. In: Qiu, M., Xu, S., Yung, M., Zhang, H. (eds.) Network and
System Security. LNCS, vol. 9408, pp. 368–375. Springer, Cham (2015). doi:10.
1007/978-3-319-25645-0 25

http://homes.esat.kuleuven.be/~preneel/preneel_iacr_dl_vienna2016.pdf
http://dx.doi.org/10.1007/978-3-319-25645-0_25
http://dx.doi.org/10.1007/978-3-319-25645-0_25

Honey Encryption for Language

Robbing Shannon to Pay Turing?

Marc Beunardeau, Houda Ferradi, Rémi Géraud(B), and David Naccache

École Normale Supérieure, Information Security Group, Paris, France
{marc.beunardeau,houda.ferradi,remi.geraud,david.naccache}@ens.fr

Abstract. Honey Encryption (HE), introduced by Juels and Ristenpart
(Eurocrypt 2014, [12]), is an encryption paradigm designed to produce
ciphertexts yielding plausible-looking but bogus plaintexts upon decryp-
tion with wrong keys. Thus brute-force attackers need to use additional
information to determine whether they indeed found the correct key.

At the end of their paper, Juels and Ristenpart leave as an open ques-
tion the adaptation of honey encryption to natural language messages. A
recent paper by Chatterjee et al. [5] takes a mild attempt at the challenge
and constructs a natural language honey encryption scheme relying on
simple models for passwords.

In this position paper we explain why this approach cannot be
extended to reasonable-size human-written documents e.g. e-mails. We
propose an alternative solution and evaluate its security.

1 Introduction

Cryptography assumes that keys and passwords can be kept private. Should
such secrets be revealed, any guarantee of confidentiality or authenticity would
be lost. To that end, the set of possible secrets – the keyspace K – is designed
to be very large, so that an adversary cannot possibly exhaust it during the
system’s lifetime.

In some applications however, the keyspace is purposely limited – for
instance, passwords. In addition to the limited keyspace size, secret selection
has a fundamental limitation: keys should be chosen uniformly at random – yet
users routinely pick (the same) poor passwords. Consequently, key guessing is a
guided process in which the adversary does not need to exhaust all possibilities.
The deadly combination of low-entropy key generation and small keyspace make
password-based encryption (PBE) particularly vulnerable [16].

The best security measure of a PBE is the min-entropy of the key distribution
over K:

μ = − log2 max
k∈K

pk(k).

where pk is the probability distribution of keys. The min-entropy captures how
probable is the most probable guess. Conventional PBE schemes such as [24]
can be broken with constant effort with probability O(2−µ), but μ is in practice

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 127–144, 2017.
DOI: 10.1007/978-3-319-61273-7 7

128 M. Beunardeau et al.

very small: [2] reports μ < 7 for passwords observed in a population of about
69 million users. If a message m were to be protected by such passwords, an
adversary could easily recover m by trying the most probable passwords1.

But how would the adversary know that the key she is trying is the correct
one? A message has often some structure—documents, images, audio files for
instance—and an attempt at decrypting with an incorrect key would produce
something that, with high probability, does not feature or comply with this
structure. The adversary can therefore tell apart a correct key from the incorrect
ones, judging by how appropriate the decryption’s output is. Mathematically, the
adversary uses her ability to distinguish between the distribution of outputs for
her candidate key k′ and the distribution pm of inputs she is expecting to recover.

Using such a distinguisher enables the attacker to try many keys, then select
only the best key candidates. If there are not many possible candidates, the
adversary can recover the plaintext (and possibly the key as well). In the typical
case of password vaults, when one “master password” is used to encrypt a list
of passwords, such an attack leads to a complete security collapse.

Example 1. Assume that we wish to AES-decrypt what we know is an English
word protected with a small 4 digits key: c ← Enck(m). An efficient distinguisher
is whether mk′ ← Deck′(c) is made of letters belonging to the English alphabet.
For instance, if

c = 0f 89 7d 66 8b 4c 27 d7 50 fa 99 0c 5a d6 11 eb

Then the adversary can distinguish between two candidate keys 5171 and 1431:

m5171 = 48 6f 6e 65 79 00 00 00 00 00 00 00 00 00 00 00

m1431 = bd 94 11 05 a2 e5 a7 c8 48 57 87 2a 88 52 bc 7e

Indeed, m5171 spells out ‘Honey’ in ASCII while m1431 has many characters
that do not correspond to any letters. Exhausting all 4 digit keys yields only one
message completely made of letters, hence k = 5171 and the adversary succeeded
in recovering the plaintext m5171.

To thwart such attacks, Juels and Ristenpart introduced Honey Encryp-
tion (HE) [12]. HE is an encryption paradigm designed to produce ciphertexts
which, upon decryption with wrong keys, yields plausible-looking plaintexts.
Thus brute-force attackers need to use additional information to decide whether
they indeed found the correct key.

Mathematically, the decoding procedure in HE outputs candidate plaintexts
distributed according to a distribution pd close to the distribution pm of real
messages. This renders distinguishing attacks inoperant. The advantages of HE
are discussed at length in [12] where the concept is applied to password-based
encryption of RSA secret keys, credit card PINs and CVVs. In particular, HE
does not reduce the security level of the underlying encryption scheme, but may
act as an additional protection layer.
1 Such passwords may be learnt from password leaks [11,21,22].

Honey Encryption for Language 129

However, the applications of HE highlighted in [12] are very specific: Pass-
words protecting passwords (or passwords protecting keys). More precisely, low
min-entropy keys protecting high min-entropy keys. The authors are wary not
to extend HE to other settings and note that designing HE

“...for human-generated messages (password vaults, e-mail, etc.) (...) is
interesting as a natural language processing problem.” [12]

To give a taste of the challenge, realizing HE as Juels and Ristenpart defined
it is equivalent to modelling the probability distribution of human language itself.
A more modest goal is to restrict to subsets of human activity where choices are
more limited, such as passwords—this is indeed the target of a recent paper
by Chatterjee, Bonneau, Juels and Ristenpart [5], which introduces encoders
for human-generated passwords they call “natural language encoders” (NLE).
Chatterjee et al.’s approach to language is to model the distribution of messages
using either a 4-gram generative Markov model or a custom-trained probabilistic
grammar model. This works reasonably well for passwords.

A natural question is therefore: Could the same techniques be extended or
generalized to human-generated documents in general? Chatterjee et al. hint at
it several times, but never actually take a leap: The core reason is that these
approaches do not scale well and fail to model even simple sentences – let alone
entire documents.

In this paper we give arguments why the approach of Chatterjee et al. does
not extends, and give an alternative approach based on a corpus quotation dis-
tribution transforming encoding.

2 Preliminaries

Notations. We write x
D←− X to denote the sampling of x from X according to

a distribution D, and x
$←− X when D is the uniform distribution.

Message Recovery Attacks. Let M be a message space and let K be a key
space. We denote by pm the message distribution over M, and by pk the key
distribution over K. Let Enc be any encryption scheme. The message-recovery
advantage of an adversary A against Enc is defined as

AdvMR
Enc,pm,pk

(A) = Pr
[
MRA

Enc,pm,pk
= True

]

where the MR security game is described in Game 1. A may run for an
unbounded amount of time, and make an unbounded number of queries to a
random oracle.

This advantage captures the ability of an adversary knowing the distributions
pm, pk to recover a message encrypted with Enc.

When key and message entropy are low, this advantage might not be neg-
ligible. However, using Honey Encryption, Juels and Ristempart show that A’s
advantage is bounded by 2−µ, where μ = − log maxk∈K pk(k) is the min-entropy
of the key distribution.

130 M. Beunardeau et al.

Game 1. Message recovery (MR) security game MRA
Enc,pm,pk

.

K′ pk←− K
M ′ pm←−− M
C′ $←− Enc(K′, M ′)
M ← A(C′)
return M == M ′

Distribution Transforming Encoding. HE relies on a primitive called the
distribution transforming encoding (DTE). The DTE is really the central object
of HE, which is then used to encrypt or decrypt messages. A DTE is composed
of two algorithms, DTEncode and DTDecode which map messages into numbers
in the interval [0, 1] and back, i.e. such that

∀M ∈ M, DTDecode(DTEncode(M)) = M.

More precisely, DTEncode : M → [0, 1] is designed such that the output distri-
bution of DTEncode is uniform over [0, 1] when the input distribution over M
is specified and known — in other terms, DTDecode samples messages in M
according to a distribution pd close to pm, with

pd(M) = Pr
[
M ′ = M | x

$←− [0, 1] and M ′ ← DTDecode(S)
]

As such, DTEs cannot be arbitrary: They need to mimic the behaviour of the
cumulative distribution function and its inverse. More precisely, the closeness of
pd and pm is determined by the advantage of an adversary A in distinguishing
the games of Figs. 1 and 2:

AdvA
DTE,pm

=
∣
∣Pr

[
SAMP1A

DTE,pm
= 1

] − Pr
[
SAMP0A

DTE = 0
]∣∣

A is provided with either a real message and its encoding, or a fake encoding and
its decoding. A outputs 1 or 0 depending on whether it bets on the former or
the latter. A perfectly secure DTE is a scheme for which the indistinguishability
advantage is zero even for unbounded adversaries (this is equivalent to pd = pm).

Fig. 1. SAMP0B
DTE Fig. 2. SAMP1B

DTE,pm

Having good DTEs is the central aspect of building a Honey Encryption
scheme as well as the main technical challenge. Given a good DTE, the honey
encryption and decryption of messages is provided by a variation of the “DTE-
then-encrypt” construction described in Figs. 3 and 4 where some symmetric

Honey Encryption for Language 131

encryption scheme (ESEncode,ESDecode) is used. In the “DTE-then-encrypt”
paradigm, a message is first transformed by the DTE into an integer x in some
range, and x (or rather, some binary representation of x) is then encrypted
with the key. Decryption proceeds by decrypting with the key, then reversing
the DTE.

Fig. 3. Algorithm HEncES Fig. 4. Algorithm HDecES

2.1 Natural Language Encoding

Chaterjee et al. [5] developed an approach to generating DTEs based on two
natural language models: an n-gram Markov model, and a custom probabilistic
grammar tree.

Markov Model. The n-gram model is a local description of letters whereby
the probability of the next letter is determined by the n − 1 last letters:

Pr[w1 · · · wk] =
k∏

i=1

Pr
[
wi | wi−(n−1) · · · wi−1

]

It is assumed that these probabilities have been learnt from a large, consistent
corpus.

Such models are language-independent, yet produce strings that mimic the
local correlations of a training corpus — but, as Chomsky pointed out [6–8],
the output of such models lacks the long-range correlations typical of natural
language. The latter is not an issue though, as Chatterjee et al. train this model
on passwords.

The model can be understood as a directed graph where vertices are labelled
with n-grams, and edges are labelled with the cumulative probability from some
distinguished root node. To encode a string it suffices to encode the correspond-
ing path through this graph from the root — and decoding uses the input as
random choices in the walk. Encoding and decoding can be achieved in time
linear in message size.

Grammar Model. Probabilistic context-free grammars (PCFG) are language-
dependent models that learn from a tagged corpus a set of grammatical rules,
and then use these rules to generate syntactically possible sentences. PCFGs are
a compact way of representing a distribution of strings in a language.

132 M. Beunardeau et al.

Although it is known that context-free grammars do not capture the whole
breadth of natural language, PCFGs are a good starting point, for such gram-
mars are easy to understand, and from a given probabilistic context-free gram-
mar, one can construct compact and efficient parsers [15]. The Stanford Statis-
tical Parser, for instance, has been used by the authors to generate parse trees
in this paper.

Mathematically, a probabilistic context-free grammar G is a tuple of the form
(N,T,R, P,Root) where N are non-terminal symbols, T are terminal symbols
(disjoint from N), R are production rules, P is the set of probabilities on pro-
duction rules and Root is the start symbol. Every production rule is of the form
A → b, where A ∈ N and b ∈ (T ∪ N)∗.

Figure 5 shows a parse tree aligned with a sentence. Some grammatical
rules can be read at every branching: s → np vp,np → dt vbn nn,np →
dt nn, etc.

ROOT

S

VP

SBAR

S

VP

VP

VP

PP

NP

NN

message

DT

the

IN

about

VBN

inferred

VB

be

MD

can

SBAR

S

VP

VP

ADVP

RB

little

VBN

revealed

VBZ

is

NP

PP

NP

PP

NP

NN

message

DT

a

IN

of

NP

NN

tree

JJ

syntactic

DT

the

IN

of

NP

NN

part

IN

if

IN

that

PP

NP

NN

assumption

DT

the

IN

on

VBZ

relies

NP

NN

scheme

VBN

proposed

DT

The

Fig. 5. Syntactic tree of an example sentence.

Chaterjee et al. [5] rely on a password-specific PCFGs [11,14,17,21,22] where
grammatical roles are replaced by ad hoc roles.

The DTE encoding of a string is the sequence of probabilities defining a
parse tree that is uniformly selected from all parse trees generating the same
string (see e.g. Fig. 6, which provides an example of two parse trees for a same
sentence, amongst more than 10 other possibilities). Decoding just emits the
string indicated by the encoded parse tree.

In the probabilistic context, the probability of each parse tree can be esti-
mated. A standard algorithm for doing so is due to Cocke, Younger, and Kasami
(CYK) [9,13,23].

Honey Encryption for Language 133

ROOT

S

VP

NP

PP

NP

NN

cheese

DT

some

IN

with

NP

NN

sandwich

DT

a

VT

had

NP

NN

student

DT

the

ROOT

S

VP

PP

NP

NN

cheese

DT

some

IN

with

VP

NP

NN

sandwich

DT

a

VT

had

NP

NN

student

DT

the

Fig. 6. Two possible derivations of the same sentence. Note that these derivations
correspond to two possible meanings which are not identical.

Generalized Grammar Model. The generalized idea relies on the assumption
that if part of the syntactic tree of a message is revealed, little can be inferred
about the message. To understand the intuition, consider the syntactic tree of
the previous sentence (clause) shown in Fig. 7.

As we can see, words are tagged using the clause level, phrase level and word
level labels listed in Appendix A.

The idea underlying syntactic honey encryption consists in revealing a rewrit-
ten syntactic tree’s word layer while encrypting words2. The process starts by
a syntactic analysis of the message allowing to extract the plaintext’s syntac-
tic tree. This is followed by a projection at the word level. When applied to the
previous example, we get the projection denoted by S (hereafter called skeleton):

2 We stress that unlike e.g. Kamouflage [1] which deals with passwords, syntactic
honey encyrption applies to natural language.

134 M. Beunardeau et al.

ROOT

S

VP

SBAR

S

VP

VP

VP

PP

NP

NN

message

DT

the

IN

about

VBN

inferred

VB

be

MD

can

SBAR

S

VP

VP

ADVP

RB

little

VBN

revealed

VBZ

is

NP

PP

NP

PP

NP

NN

message

DT

a

IN

of

NP

NN

tree

JJ

syntactic

DT

the

IN

of

NP

NN

part

IN

if

IN

that

PP

NP

NN

assumption

DT

the

IN

on

VBZ

relies

NP

NN

idea

VBN

generalized

DT

The

Fig. 7. Syntactic tree of an example sentence.

S = dt vbn nn vbz in dt nn in in nn in dt jj

nn in dt nn vbz vbn rb md vb vbn in dt nn

Given a clause, we can automatically associate each word si to a label Li
3. For

instance, if the third word of the clause is “relies”, then L3 ← vbz. We denote
by Ri the rank of the skeleton’s i-th word in the dictionary of the category Li.
Finally we denote by |X| the cardinality of the set X.

To map our ordered wordlist into a single integer, we note that because in
the above example there are 5 dts, 3 vbns, 6 nns, 2 vbzs, 6 ins, and 1 jj, rb,
md and 1 vb, our specific clause is one amongst exactly B syntactically correct
messages where:

B = |dt|5|vbn|3|nn|6|vbz|2|in|6|jj||rb||md||vb|

We can thus map a clause skeleton into N by writing:

e ←
k−1∑

i=0

Ri

i−1∏

j=0

|Lj |

where, by typographic convention, L−1 = 1.
To get back the original clause, given e and the skeleton, we use the algorithm

of Fig. 8.

3 Note that such a skeleton might be ambiguous in certain constructions, for instance
in sentences such as “Time flies like an arrow; fruit flies like a banana”.

Honey Encryption for Language 135

Fig. 8. Decoding algorithm.

The skeleton is transferred in clear:

s = dt vbn nn vbz in dt nn in in nn in dt jj nn

in dt nn vbz vbn rb md vb vbn in dt nn

Note that there is no need to tune precisely the plaintext size of the under-
lying block cipher because the decoding process for e stops automatically when
i reaches k − 1. In other words, we can randomize encryption at little cost by
replacing e by e + μB for some random integer μ.

The number e is then honey encrypted, thus attempting to protect the actual
content of the plaintext sentence.

3 Limitations of Honey Encryption

As observed by [12], HE security is threatened when A has some side information
about the target message. This puts strong constraints on HE’s applicability to
situations such as protecting RSA or HTTPS private keys. A second limitation
is that the HE construction assumes that the key and message distributions are
independent. When these distributions are correlated, A can identify a correct
message by comparing that message with the decryption key that produced it.
Similarly, encrypting two correlated messages under the same key enables A to
identify correct messages.

Finally, constructing a DTE requires knowing the distribution pm of messages
in M. As we will argue, this turns out to be extremely difficult to evaluate when
M becomes a large enough space, such as human-generated messages (emails,
etc.). In those cases, it might even turn out that adversaries know pm better than
users.

The methods described in Sect. 2.1 apply reasonably well to short passwords,
but as we will now argue they cannot scale to deal with natural language as used
in real-world scenarios such as: e-mails and written documents. The reason is
threefold: First the methods require a huge amount of context-relevant infor-
mation; Second, even when this information is available, the methods of [5] fail
to produce convincing honey messages, i.e. messages that fool automated tools
in telling them apart from real messages with high probability; Third, natural
language HE may actually leak information about the underlying message.

136 M. Beunardeau et al.

Scaling NLE. The models developed for passwords in [5] can be extended:
Markov models for instance can be configured to generate arbitrary-length mes-
sages. Instead of letters, such models can be trained to produce words, in accor-
dance with some known distribution of n-grams. But while there are only a few
English letters, a recent study of the English language [19] counts more than a
million individual words in usage.

As a result assuming we use one hundredth of the English language, the
memory required to store an n-gram database is of the order of 104n ≈ 213n.
That becomes a problem not only in terms of storage, but also when access
latency is taken into account. Applying directly the method of [5] to words
(using n = 5) would require knowing, storing, and sharing 265 bytes of data4.
The real issue however is that measuring accurately 5-grams usage is extremely
difficult in practice, so that most of this impossibly large database is essentially
unknown5.

Using grammars is one way to avoid this combinatorial explosion by keeping
a simple and compact model of language. To that end, a sentence is parsed to
reveal its grammatical structure as in Figs. 5 and 6. Each word is labelled with
an indication of its grammatical role (see Appendix A).

A sentence is therefore uniquely represented by a list of grammatical tags,
and a list of integers denoting which word is used. The idea behind syntactic
honey encryption consists in revealing the tags but honey encrypting the words.
By construction, generated honey messages have the same syntax as the original
message, which makes decryption with a wrong key yield an often plausible
plaintext. For instance, a sentence such as s1 = “Secure honey encryption is
hard” could be honey decrypted as Chomsky’s famous sentence s2 =“Colorless
green ideas sleep furiously” [6], illustrating a sentence that is grammatically
correct while being semantically void. Here s1 and s2 share the same syntax. To
use this algorithm the communicating parties must agree on a dictionary that
includes a set of labels and a parsing algorithm.

There are however two structural limitations to this grammatical approach.
First, revealing the syntactic structure of a message leaks information. This is a
very big deviation from classical cryptography, since it has always been taken for
granted -for obvious reasons- that a ciphertext should not leak anything but the
length of the underlying plaintext. On a more practical note unless the message
is long enough, there might be only very few possible sentences with that given
syntax. Second, a grammar is language-dependent — and furthermore, to some
extent, there is variability within a given language6. The consequence of an
inaccurate or incorrect tagging is that upon honey decoding, the sentence might
be noticeably incorrect from the suitable linguistic standpoint.

4 This is conceptually similar to Borges’ famous library [3,4].
5 See for instance http://www.ngrams.info/.
6 An extreme example is William Shakespeare’s use of inversion as a poetic device:

“If ’t be so, For Banquo’s issue have I fil’d my mind,/ For them the gracious Duncan
have I murther’d,/Put rancors in the vessel of my peace” (MacBeth, III.1.8).

http://www.ngrams.info/

Honey Encryption for Language 137

This opens yet another research avenue. Automatically translate the sentence
into an artificially created language where syntactic honey encryption would
be very efficient. For instance translate French to Hindi, then perform honey
encryption on the Hindi sentence.

Quality of NLE. The question of whether a honey message is “correct” in a
given linguistic context can be rephrased: Is it possible, to an adversary having
access to a large corpus (written in the same language), to distinguish honey
messages from the legitimate plaintext?

It turns out that the two approaches to modelling natural language provide
two ways to construct a distinguisher: We can compare a candidate to a reference,
either statistically or syntactically. But we can actually do both simultaneously :
We can use Web search engines to assess how often a given sentence or word is
used7. This empirical measure of probability is interesting in two respects: First,
an adversary may query many candidates and prune those that score badly;
Second, the sender cannot learn enough about the distribution of all messages
using that “oracle” to perform honey encryption.

The situation is that there is a measurable distance between the model (used
by the sender) of language, and language itself (as can be measured by e.g. a
search engine). Mathematically, the sender assumes an approximate distribution
pm on messages which is different from the real-world distribution p̂m. Because
of that, a good DTE in the sense of Figs. 1 and 2 would, in essence, yield honey
messages that follow pm and not p̂m. An adversary capable of distinguishing
between these distributions can effectively tell honey messages apart.

What is the discrepancy between pm and p̂m? Since p̂m measures real-world
usage, we can make the hypothesis that such messages correspond to human
concerns, i.e. that they carry some meaning — in one word, what distinguishes
pm from p̂m is semantics.

Leaking Information. Another inherent limitation of HE is precisely that
decryption of uniformly random ciphertexts produces in general the most prob-
able messages. There are many situations in which linguistic constraints force a
certain structure on messages, e.g. the position of a verb in a German sentence.
Consequently, there might be enough landmarks for a meaningful reconstruction
(see also [20]).

To thwart such reconstruction attacks, it is possible to consider phrase-level
defences. Such defences imply modifying the syntactic tree in a way which is both
reversible and indistinguishable from other sentences of the language. Phrase-
level defences heavily depend on the language used. For instance the grammar
of Latin, like that of other ancient Indo-European languages, is highly inflected;
consequently, it allows for a large degree of flexibility in choosing word order. For
example, femina togam texuit, is strictly equivalent to texuit togam femina or

7 We may assume that communication with such services is secure, i.e. confidential
and non-malleable, for the sake of argument.

138 M. Beunardeau et al.

togam texuit femina. In each word the desinence (also called ending or suffix): -a,
-am and -uit, and not the position in the sentence, marks the word’s grammatical
function. This specific example shows that even if the target language allows flex-
ibility in word order, this flexibility does not necessarily imply additional security.
Semitic languages, such as Arabic or Hebrew, would on the contrary offer very
interesting phrase-level defences. In semitic languages, words are usually formed
by associating three, four or five-consonant verbs to structures. In Hebrew for
example the structure mi��a�a corresponds to the place where action takes
place. Because the verb drš means to teach (or preach), and because the verb zrk
means to throw (or project), the words midraša8 and mizraka respectively mean
“school” and “water fountain” (the place that projects (water)). This structure
which allows, in theory, to build O(ab) terms using O(a) verbs and O(b) and
thus turns out to be HE-friendly.

4 Corpus Quotation DTE

We now describe an alternative approach which is interesting in its own right.
Instead of targeting the whole breadth of human language, we restrict users to
only quote from a known public document9.

The underlying intuition is that, since models fail to capture with enough
detail the empirical properties of language, we should think the other way around
and start from an empirical source directly. As such, the corpus quotation DTE
addresses the three main limitations of HE highlighted in Sect. 3: It scales, it
produces realistic sentences (because they are actual sentences), and it does not
leak structural information.

Consider a known public string M (the “corpus”). We assume that M con-
sists in contiguous sequence of words sampled from M, i.e. from the set of sub-
strings of M. To build a DTE we consider the problem of mapping a substring
m ∈ M to [0, 1].

Interval Encoding of Substrings. Let M be the size of M, there are |M| =
M(M − 1)/2 substrings denoted mi,j , where i is the starting position and j is
the ending position, with i ≤ j. Substrings of the form mi,i are 1-letter long.

The DTE encoding of m ∈ M is a point in a sub-interval of [0, 1], whose
length is proportional to the probability pm(m) of choosing m. If pm is uniform
over M, then all intervals have the same length and are of the form

Ik =
]

2k

M(M − 1)
,

2(k + 1)
M(M − 1)

]
.

where k is the index of m ∈ M for some ordering on M. Decoding determines
which Ik contains the input and returns k, from which the original substring can
be retrieved. For more general distributions pm, each substring mi,j is mapped
to an interval whose size depends on pm(m).
8 The Arabic equivalent is madrasa.
9 The way some characters do in Umberto Eco’s novel, Il pendolo di Foucault [10].

Honey Encryption for Language 139

Length-Dependent Distributions. Let’s consider the special case where
pm(m) depends only on the length of m. We will therefore consider the func-
tion p : [1,M] −→ [0, 1] giving the probability of a substring of a given length.
This captures some properties of natural languages such as Zipf’s law [18]: Short
expressions and words are used much more often than longer ones. Note that part
of this is captured by the fact that there are fewer long substrings than short ones.

m0,0

m0,M-1 mM-1,M-1

Fig. 9. Triangle representation T of the substrings M ⊆ M. Substrings along right
diagonals have equal length. The top-left point represents the entire corpus M.

Thus the encoding of a message mi,j is a random point in an interval of size
�(j − i) proportional to pm(mi,j) = p(j − i):

�(k) =
p(k)
L

, L =
M∑

k=1

(M − k)p(k).

This ensures that
M∑

k=1

(M − k)�(k) = 1.

The intervals associated to each substring are defined as follows. First, substrings
mi,j are mapped via the map τ : mi,j 	→ (i, j) to a triangle (see Fig. 9):

T = {(i, j) | j ≥ i ∈ [0,M − 1]} ⊂ N
2.

Then points in T are mapped to [0, 1] using the function:

Φ : (i, j) 	→ (i − 1)�(diag(i, j)) +
diag(i,j)−1∑

k=1

k�(k)

where diag(i, j) = M − 1 − (j − i) indicates on which upright diagonal (i, j) is.
All in all, a substring mi,j is encoded using the following algorithm:

DTEncode : mi,j 	→ (Φ + ε� ◦ diag) (τ(mi,j))

where ε is sampled uniformly at random from [0, 1].
Encoding can be understood as follows: Substrings of equal length k are

mapped by τ to points along a diagonal of constant k = j − i. The first diagonal

140 M. Beunardeau et al.

is the whole corpus M and the only substring of length M . The (M − 1 − k)-
th diagonal is the set of substrings {mi,i+k | i ∈ [0,M − 1 − k]} of length k.
Decoding is achieved by Algorithm 1, which takes a number x ∈ [0, 1] and returns
the position (i, j) = Φ−1(x) of the corresponding substring by determining the
position in T . The idea is to count the segment length before x. At each iteration
we update the segment length and the current position in the diagonal.

Algorithm 1. Position of Φ−1(x)
Input: x ∈ [0, 1]
Output: (a, b) ∈ [|0, M |]2 such that Φ(a, b) = x

i ← 0
j ← 0
k ← M
while i < x do

i ← i + �(k)
j ← j + 1
if j ≥ M − k + 1 then

j ← 0
k ← k − 1

end if
return (j − 1, M + j − k − 1)

end while

This decryption algorithm is linear in the number of substrings, i.e. it runs
in time O(M2). We can speed things up using pre-computations, Algorithms 2
and 3 run in O(M) time and memory.

Algorithm 2. Pre-computation
Output: vector V such that intervals in [V [i], V [i+1]] are the intervals of length �(i)

let V [1..M] be a vector of length M
for i ← 1 to M do

V [i] ← V [i − 1] + (M − i + 1)�(i)
end for
return V

Algorithm 3. Fast Decryption
Input: x ∈ [0, 1], V the result of Algorithm 2.
Output: (a, b) ∈ [|0, M |]2 such that Φ(a, b) = x

i ← 1
while V [i] < x do

i + +
end while
j ← (x − V [i])/�(i)
return (j − 1, M − i − 1)

Honey Encryption for Language 141

5 Further Research

This work opens a number of interesting research directions:

Machine to Human HE: Search engines, and more generally computational
knowledge engines and answer engines such as Wolfram Alpha10 provide users
with structured answers that mimic human language. These algorithms generate
messages using well-defined algorithmic process having a precise probability dis-
tribution which DTEs can be better modelled. Such sentences are hence likely
to be safer to honey encrypt.

Automated Plaintext Pre-Processing: A more advanced, yet not that unre-
alistic option consists in having a machine understand a natural language sen-
tence m and re-encode m as a humanly understandable yet grammatically and
syntactically simplified sentence m′ having the same meaning for a human.
Such an ontology-preserving simplification process will not modify the message’s
meaning while allowing the construction better DTEs.

Adding Syntactic Defenses: This work was mostly concerned by protect-
ing messages at the word level. It is however possible to imagine the adding of
defenses at the clause and at the phrase levels. Two simple clause-level protec-
tions consist in adding decoy clauses to the message, and shuffling the order of
clauses in the message. Both transforms can be easily encoded in the ciphertext
by adding an integer field interpreted as the rank of a permutation and a binary
strong whose bits indicate which clauses should be discarded. Decryption with
a wrong key will yield a wrong permutation and will remove useful skeletons
from the message. It should be noted that whilst the permutation has very little
cost, the addition of decoy skeletons impacts message length. It is important to
use decoy skeletons that are indistinguishable from plausible skeletons. To that
end the program can either pick skeletons in a huge database (e.g. the web) or
generate them artificially.

Adding Phrase-Level Defenses: Adding phrase-level defenses is also a very
interesting research direction. A simple way to implement phrase-level defenses
consists in adding outgrowths to the clause. An outgrowth is a collection of fake
elements added using a specific rewriting rule. Note that information cannot be
removed from the sentence. Here is an example of scrambling using outgrowths:
the original clause m0 is the sentence “During his youth Alex was tutored by a
skilled architect until the age of 16”. The syntactic tree of m0 is:

10 www.wolframalpha.com.

www.wolframalpha.com

142 M. Beunardeau et al.

The skeleton of m0 is in prp$ nn nnp vbd vbn in dt jj nn in dt nn
in cd.

Now consider the following rewriting rules:

prp$ nn → prp$ jj nn

dt nn → dt jj nn

in dt jj nn → in dt nn cc in dt jj nn

We can apply these rules to m0 to obtain:

m0 in prp$ nn nnp vbd vbn in dt jj nn in dt nn in cd

m1 ← r1(m0) in prp$ jj nn nnp vbd vbn in dt jj nn in dt nn in cd

m2 ← r2(m1) in prp$ jj nn nnp vbd vbn in dt jj nn in dt jj nn in cd

m3 ← r3(m2) in prp$ jj nn nnp vbd vbn in dt nn cc in dt jj nn in dt jj nn in cd

m3 is a plausible skeleton that could have corresponded to the clause: “During
his early youth Alex was tutored by a linguist and by a skilled architect until
the approximate age of 16”:

It remains to show how to reverse the process to recover the original skeleton
m0. To that end, we include in the ciphertext a binary string indicating which
outgrowths should be removed. Removal consists in scanning m0 and identifying
what could have been the result of rewriting. Scanning reveals one potential

Honey Encryption for Language 143

application of rule 1 (namely “his early youth”), two potential applications of rule
2 (“a skilled architect” and “the approximate age”) and one potential application
of rule 2 (“by a linguist and by a skilled architect”). Hence 4 bits suffice to
identify and remove the outgrowths.

A Grammatical tags for English

See Table 1.

Table 1. Partial list of grammatical roles.

Clause Level

s Simple declarative clause

sbar Clause introduced by a (possibly empty) subordinating conjunction.

Phrase Level

advp Adverb phrase

np Noun phrase

pp Prepositional phrase

vp Verb phrase

Word Level

cc Conjunction, coordinating

dt Determiner

in Preposition or subordinating conjunction

jj Adjective

md Modal

nn Noun, singular or mass

prp Pronoun, personal

prp$ Pronoun, possessive

rb Adverb

vb Verb, base form

vbn Verb, past participle

vbz Verb, third person singular present

References

1. Bojinov, H., Bursztein, E., Boyen, X., Boneh, D.: Kamouflage: Loss-Resistant Pass-
word Management. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 286–302. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15497-3 18

2. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords, pp. 538–552 (2012)

http://dx.doi.org/10.1007/978-3-642-15497-3_18
http://dx.doi.org/10.1007/978-3-642-15497-3_18

144 M. Beunardeau et al.

3. Borges, J.L.: El Jard́ın de senderos que se bifurcan. Editorial Sur (1941)
4. Borges, J.L.: Ficcione. Editorial Sur (1944)
5. Chatterjee, R., Bonneau, J., Juels, A., Ristenpart, T.: Cracking-resistant password

vaults using natural language encoders, pp. 481–498 (2015)
6. Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory

2(3), 113–124 (1956)
7. Chomsky, N.: On certain formal properties of grammars. Inf. Control 2(2), 137–167

(1959)
8. Chomsky, N.: Syntactic structures. Walter de Gruyter, Berlin (2002)
9. Cocke, J.: Programming languages and their compilers: preliminary notes (1969)

10. Eco, U.: Il pendolo di Foucault. Bompiani (2011)
11. Jakobsson, M., Dhiman, M.: The benefits of understanding passwords. In: Traynor,

P. (ed.) 7th USENIX Workshop on Hot Topics in Security, HotSec 2012, Bellevue,
WA, USA, 7. USENIX Association (2012)., August 2012

12. Juels, A., Ristenpart, T.: Honey encryption: security beyond the brute-force bound,
pp. 293–310 (2014)

13. Kasami, T.: An efficient recognition and syntax analysis algorithm for context-free
languages. Technical report, DTIC Document (1965)

14. Kelley, P.G., Komanduri, S., Mazurek, M.L., Shay, R., Vidas, T., Bauer, L.,
Christin, N., Cranor, L.F., Lopez, J.: Guess again (and again and again): measuring
password strength by simulating password-cracking algorithms, pp. 523–537

15. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the
41st Annual Meeting on Association for Computational Linguistics, vol. 1, pp.
423–430. Association for Computational Linguistics (2003)

16. Li, Z., He, W., Akhawe, D., Song, D.: The emperor’s new password manager:
security analysis of web-based password managers. In: Fu, K., Jung, J. (eds.) Pro-
ceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, 20–22
August, pp. 465–479. USENIX Association (2014)

17. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA,
18–21 May, pp. 689–704. IEEE Computer Society (2014)

18. Manning, C.D., Schütze, H.: Foundations of statistical natural language processing.
MIT Press, Cambridge (2001)

19. Michel, J.B., Shen, Y.K., Aiden, A.P., Veres, A., Gray, M.K., Pickett, J.P., Hoiberg,
D., Clancy, D., Norvig, P., Orwant, J.: Quantitative analysis of culture using mil-
lions of digitized books. Science 331(6014), 176–182 (2011)

20. Rayner, K., White, S.J., Johnson, R.L., Liversedge, S.P.: Reading wrods with jubm-
led lettres there is a cost. Psychol. Sci. 17(3), 192–193 (2006)

21. Veras, R., Collins, C., Thorpe, J.: On semantic patterns of passwords and their
security impact. In: The 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, 23–26 February 2014 (2014)

22. Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars, pp. 391–405 (2009)

23. Younger, D.H.: Recognition and parsing of context-free languages in time n3. Inf.
Control 10(2), 189–208 (1967)

24. Kaliski, B.: PKCS #5: Password-based cryptography specification version 2.0. RFC
2898 (Informational). Internet Engineering Task Force, September 2000. http://
www.ietf.org/rfc/rfc2898.txt

http://www.ietf.org/rfc/rfc2898.txt
http://www.ietf.org/rfc/rfc2898.txt

Randomized Stopping Times and Provably
Secure Pseudorandom Permutation Generators

Michal Kulis1, Pawel Lorek2, and Filip Zagorski1(B)

1 Department of Computer Science,
Faculty of Fundamental Problems of Technology,

Wroclaw University of Science and Technology, Wroclaw, Poland
filip.zagorski@pwr.edu.pl

2 Faculty of Mathematics and Computer Science, Mathematical Institute,

Wroclaw University, Wroclaw, Poland

Abstract. Conventionally, key-scheduling algorithm (KSA) of a cryp-
tographic scheme runs for predefined number of steps. We suggest a
different approach by utilization of randomized stopping rules to gen-
erate permutations which are indistinguishable from uniform ones. We
explain that if the stopping time of such a shuffle is a Strong Stationary
Time and bits of the secret key are not reused then these algorithms are
immune against timing attacks.

We also revisit the well known paper of Mironov [15] which analyses
a card shuffle which models KSA of RC4. Mironov states that expected
time till reaching uniform distribution is 2nHn − n while we prove that
nHn + n steps are enough (by finding a new strong stationary time for
the shuffle).

Nevertheless, both cases require O(n log2 n) bits of randomness while
one can replace the shuffle used in RC4 (and in Spritz) with a better
shuffle which is optimal and needs only O(n log n) bits.

Keywords: Pseudo-random permutation generator · Markov chains ·
Mixing time · Stream cipher · Timing-attacks

1 Introduction

The applicability of card shuffles to cryptography was noticed many years ago by
e.g., Naor [17] for Thorp shuffle. The shuffles can be categorized into two groups.
The first one are the oblivious shuffles, meaning that the trajectory of a card
during the shuffle can be traced without tracing trajectories of other cards. Thus
oblivious shuffles can be seen as block ciphers. The other group of card shuffles
– non-oblivious shuffles require tracing all the cards in order to trace a single
one. Since one needs to trace each of the n cards, straightforward application
of non-oblivious shuffles as block ciphers would be inefficient. But non-oblivious

Authors were supported by Polish National Science Centre contract number DEC-
2013/10/E/ST1/00359.

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 145–167, 2017.
DOI: 10.1007/978-3-319-61273-7 8

146 M. Kulis et al.

shuffles are used in cryptographic schemes anyway, just in a slightly different
role – often as a building block of a stream cipher.

Let us use the naming convention used by RC4 – a stream cipher designed in
1987 by Ronald Rivest. There is also a long line of stream ciphers: RC4A [23],
Spritz [20], RC4+ [21], VMPC [25] – all of them are very similar – they are
composed from two algorithms:

1. KSA (Key Scheduling Algorithm) uses a secret key to transform identity per-
mutation of n cards into some other permutation (one can model KSA as a
card shuffle).

2. PRGA (Pseudo Random Generation Algorithm) starts with a permutation
generated by KSA and outputs random bits from it updating permutation at
the same time.

Thus, KSAs of all aforementioned algorithms (RC4, RC4A, Spritz, RC4+,
VMPC) can be seen as performing some card shuffling, where a secret key
corresponds to/replaces randomness. If we consider a version of the algorithm
with purely random secret key of infinite length then we indeed consider a card
shuffling procedure. Following [15], we call such a version of the algorithm an
idealized version. In the case of KSA used by RC4 the idealized version (math-
ematical model) of the card shuffle is called Cyclic-to-Random Transpositions
shuffle which indeed is an example of non-oblivious shuffle. Recently, in 2013,
Rivest and Schuldt presented a new version of an RC4-like cipher (Spritz [20])
which has a new sponge-like KSA which performs more complicated shuffle: 6N
steps of Cyclic-to-Random Transpositions (as part of Whip procedure, see Fig. 7;
compared to only N steps of in RC4) and in between, partial sorting (so called
Crush) of elements in the internal state is performed twice (after 2-nd and 4-th
shuffling).

The KSAs of mentioned ciphers perform shuffling for some predefined num-
ber of steps. The security of such a scheme is mainly based on analyzing ide-
alized version of the algorithm and corresponds to the “quality of a shuffling”.
Roughly speaking, shuffling is considered as a Markov chain on permutations,
all of them converge to uniform distribution (perfectly shuffled cards). Then we
should perform as many steps as needed to be close to this uniform distribution,
what is directly related to the so-called mixing time. This is one of the main
drawbacks of RC4: it performs Cyclic-to-Random Transpositions for n steps,
whereas the mixing time is of order n log n.

There is a long list of papers which point out weaknesses of the RC4 algo-
rithm. Attacks exploited both weaknesses of PRGA and KSA or the way RC4 was
used in specific systems [4,9,10,12,13]. As a result, in 2015 RC4 was prohibited
in TLS by IETF, Microsoft and Mozilla.

In the paper we use so-called Strong Stationary Times (SST) for Markov
chains. The main area of application of SSTs is studying the rate of convergence
of a chain to its stationary distribution. However, they may also be used for
perfect sampling from stationary distribution of a Markov chain, consult [19]
(on Coupling From The Past algorithm) and [8] (on algorithms involving Strong
Stationary Times and Strong Stationary Duality).

Randomized Stopping Times and Provably Secure Pseudorandom 147

1.1 Our Contribution

(1) Strong stationary time based KSA algorithm(s). Instead of running
a KSA algorithm (i.e., performing the shuffle) for some pre-defined number of
steps, we make it randomized (Las Vegas algorithm). To be more specific we
suggest utilization of so-called Strong Stationary Times (SST) for Markov
chains. We use SST to obtain samples from uniform distribution on all per-
mutations (we actually perform perfect sampling). We show benefits of such
approach:

1. Use of SST may allow to close the gap between theoretical models and prac-
tice. As a result of Mironov’s [15] work, one knows that idealized version of
RC4’s KSA would need keys of length ≈23 037 in order to meet the math-
ematical model. In fact one may use a better shuffling than the one that is
used in RC4 i.e., time-reversed riffle shuffle which requires (on average) 4096
bits – not much more than 2048 bits which are allowed for RC4 (see Sect. 4.1).

2. Coupling methods are most commonly used tool for studying the rate of
convergence to stationarity for Markov chains. They allow to bound so-called
total variation distance between the distribution of given chain at time instant
k and its stationary distribution. However, the (traditional) security defini-
tions require something “stronger”. It turns out that bounding separation
distance is what one actually needs. It fits perfectly in the notion of Strong
Stationary Times we are using (see Sect. 4.2).

3. By construction, the running time of our model is key dependent. In extreme
cases (very unlikely) it may leak some information about the key but it does
not leak any information about the resulting permutation to an adversary.
We also discuss how one can mask such a leakage (see Sect. 4.3).

(2) Better SST for RC4’s KSA. Our complementary contribution (Sect. 5.2)
is the analysis of RC4 showing a new upper bound on number of steps the algo-
rithm should perform. Similarly as in [15], we propose SST which is valid for
Cyclic-to-Random Transpositions and Random-to-Random Transpositions, for
the latter one we calculate the mixing time, which is however “faster” than the
one given in [15]. It is known that Random-to-Random Transpositions card shuf-
fling needs 1

2n log n steps to mix. It is worth mentioning that although Random-
to-Random Transpositions and Cyclic-to-Random Transpositions are similar in
the spirit it does not transfer automatically that the latter one also needs 1

2n log n
steps to mix. Mironov [15] states that expected time till reaching uniform distri-
bution is upper bounded by 2nHn − n, we show in Lemma 3 that the expected
running time for this SST in Random-to-Random Transpositions is equal to:

E[T] = nHn + n + O(Hn)

and empirically check that the result is similar for Cyclic-to-Random Transposi-
tions. This directly translates into the required steps that should be performed
by RC4’s KSA.

148 M. Kulis et al.

(3) Note on Spritz construction. We also have a look at Spritz (Sect. 6),
a newer sponge-like construction. We explain why the Sign distinguisher attack
cannot be successful and provide arguments why the KSA algorithm in Spritz
may not perform enough steps.

2 Preliminary

Throughout the paper, let Sn denote a set of all permutations of a set
{1, . . . , n} =: [n].

2.1 Markov Chains and Rate of Convergence

Consider ergodic Markov chain X = {Xk, k ≥ 0} on finite state space E =
{0, . . . , M − 1} with stationary distribution ψ. Let L(Xk) denote the distrib-
ution of a chain at time instant k. By the rate of convergence we understand
the knowledge on how fast a distribution of a chain converges to its stationary
distribution. We have to measure it according to some distance dist. Define

τdist
mix(ε) = inf{k : dist(L(Xk), ψ) ≤ ε},

which is called mixing time (w.r.t. given distance dist). In our case the state space
is the set of all permutations of [n], i.e., E := Sn. The stationary distribution is
the uniform distribution over E, i.e., ψ(σ) = 1

n! for all σ ∈ E. In most applications
the mixing time is defined w.r.t. total variation distance:

dTV (L(Xk), ψ) =
1
2

∑

σ∈Sn

∣∣∣∣Pr(Xk = σ) − 1
n!

∣∣∣∣ .

The separation distance is defined by

sep(L(Xk), ψ) := max
σ∈E

(1 − n! · Pr(Xk = σ)) .

It is relatively easy to check that dTV (L(Xk), ψ) ≤ sep(L(Xk), ψ).

Strong Stationary Times. The definition of separation distance fits perfectly
into notion of Strong Stationary Time (SST) for Markov chains. This is a prob-
abilistic tool for studying the rate of convergence of Markov chains allowing
also perfect sampling. We can think of stopping time as of a running time of
algorithm which observes Markov chain X and which stops according to some
stopping rule (depending only on the past).

Definition 1. Random variable T is a randomized stopping time if it is a run-
ning time of the Randomized Stopping Time algorithm.

Randomized Stopping Times and Provably Secure Pseudorandom 149

Algorithm. Randomized Stopping Time

1: k := 0
2: coin := Tail

3: while coin == Tail do
4: At time k, (X0, . . . , Xk) was observed
5: Calculate fk(X), where fk : (X0, . . . , Xk) → [0, 1]
6: Let p = fk(X0, . . . , Xk). Flip the coin resulting in Head with probability p and

in Tail with probability 1 − p. Save result as coin.
7: k := k + 1
8: end while

Definition 2. Random variable T is Strong Stationary Time (SST) if it is
a randomized stopping time for chain X such that:

∀(i ∈ E) Pr(Xk = i|T = k) = ψ(i).

Having SST T for chain with uniform stationary distribution lets us bound the
following (see [3])

sep(L(Xk), ψ) ≤ Pr(T > k). (1)

We say that T is an optimal SST if sep(L(Xk), ψ) = Pr(T > k).

2.2 Distinguishers and Security Definition

We consider three distinguishers: Sign distinguisher and Position distinguisher
which are exactly the same as defined in [15], we also consider Permutation
distinguisher – we consider his advantage in a traditional cryptographic security
definition. That is, Permutation distinguisher is given a permutation π and needs
to decide whether π is a result of a shuffle or if it is a permutation selected uni-
formly at random from the set of all permutations of a given size. The important
difference is that the upper bound on Permutation distinguisher’s advantage is an
upper bound on any possible distinguisher – even those which are not bounded
computationally.

Position distinguisher Sign distinguisher

Input: S, t, table
(p(t)i,j), threshold A
Output: b
p:=0
for i:=0 to n − 1 do

p:=p + log(np)(t)i,S[i]

if p < A
then return false
else return true

Input: S, t
Output: b
if sign(S)=(−1)t

then return false
else return true

150 M. Kulis et al.

Position Distinguisher. Because of the nature of the process (in fact both:
Random-to-Random Transpositions and Cyclic-to-Random Transpositions), the
probability that ith card is at jth position depends on t: p

(t)
i,j = P (S[j] = i at

time t) which can be pre-computed according to recursion: p
(0)
i,j =

{
1 if i = j
0 otherwise

and for t > 0 :

p
(t)
i,j =

{
p
(t−1)
i,j

(
1 − 1

n

)
+ 1

np
(t−1)
t0,j if i �= t0,

1
n otherwise,

where t0 = t mod n. The advantage of Position distinguisher dissolves in time –
we will upper bound the time needed for this distinguisher to lose his advantage.

Sign Distinguisher. For a permutation π which has a representation of
non-trivial transpositions π = (a1b1)(a2b2) . . . (ambm) the sign is defined as:
sign(π) = (−1)m. So the value of the sign is +1 whenever m is even and is equal
to −1 whenever m is odd.

Permutation Distinguisher. The distinguishability game for the adversary is
as follows:

Definition 3. The permutation indistinguishability ShuffleS,A(n, r) experiment.

Algorithm. ShuffleS,A(n, r)
Let S be a shuffling algorithm which in each round requires m bits.

1. S is initialized with:
(a) a key generated uniformly at random K ∼ U({0, 1}rm),
(b) S0 = π0 (identity permutation)

2. S is run for r rounds: Sr := S(K) and produces a permutation πr.
3. We set:

• c0 := πrand a random permutation from uniform distribution is chosen,
• c1 := πr.

4. A challenge bit b ∈ {0, 1} is chosen at random, permutation cb is sent to the
Adversary.

5. Adversary replies with b′

6. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

In the case when adversary wins the game (if b = b′) we say that A succeeded.
Adversary wins the game if she can distinguish the random permutation from
the permutation being a result of the PRPG algorithm.

Definition 4. A shuffling algorithm S generates indistinguishable permutations
if for all adversaries A there exists a negligible function negl such that

Pr [ShuffleS,A(n, r) = 1] ≤ 1
2

+ negl(n).

Randomized Stopping Times and Provably Secure Pseudorandom 151

The above translates into:

Definition 5. A shuffling algorithm S generates indistinguishable permutations
if for any adversary A there exists a negligible function negl such that:

∣∣∣∣ Pr
K←{0,1}KeyLen

[A(S(K)) = 1] − Pr
R←U(Sn)

[A(R) = 1]
∣∣∣∣ ≤ negl(n)

3 Related Work

3.1 RC4 Algorithm

RC4 is a stream cipher, its so-called internal state is (S, i, j), where S is a per-
mutation of [n] and i, j are some two indices. As input it takes L−byte message
m1, . . . ,mL and a secret key K and returns ciphertext c1, . . . , cL. The initial
state is the output of KSA. Based on this state PRGA is used to output bits
which are XORed with the message. The actual KSA algorithm used in RC4
is presented in Fig. 1 together with its idealized version KSA∗ (where a secret
key-based randomness is replaced with pure randomness) and our version of
the algorithm KSA∗∗ (where, in addition to KSA∗, it does not run pre-defined
number of steps, but the number depends on a key and is determined by some
stopping procedure ST). The details on KSA∗∗ will be given in Sect. 4.1.

Fig. 1. KSA of RC4 algorithm and its idealized version KSA∗. The KSA∗∗ has some
additional procedure ST (stopping time) which is computed during the execution of the
algorithm (for original RC4 simply ST is: stop after n steps).

A closer look at KSA∗ reveals that it is actually so-called Cyclic-to-Random
Transpositions. If we identify elements [n] with cards then we do the following:
at step t exchange card t mod n with randomly chosen one. Throughout the
paper, let Z = {Z}t≥0 denote the chain corresponding to this shuffling and let
L(Zt) denote the distribution of the chain at time t.

152 M. Kulis et al.

3.2 Sign Distinguisher for RC4’s KSA

It was observed in [15] that the sign of the permutation at the end of KSA
algorithm is not uniform. And as a conclusion it was noticed that the number of
discarded shuffles (by PRGA) must grow at least linearly in n. Below we present
this result obtained in a different way than in [15], giving the exact formula for
advantage at any step t. This form will be used by us to draw conclusions about
Spritz algorithm in Sect. 6.1.

One can look at the sign-change process for the Cyclic-to-Random Transposi-
tions as follows: after the table is initialized, sign of the permutation is +1 since it
is identity so the initial distribution is concentrated in v0 = (Pr(sign(Z0) = +1),
P r(sign(Z0) = −1)) = (1, 0).

Then in each step the sign is unchanged if and only if i = j which hap-
pens with probability 1/n. So the transition matrix Mn of a sign-change process
induced by the shuffling process is equal to:

Mn :=
(

1
n 1 − 1

n
1 − 1

n
1
n

)
.

This conclusion corresponds to looking at the distribution of the sign-change
process after t steps: v0 · M t

n, where v0 is the initial distribution. The eigenval-
ues and eigenvectors of Mn are (1, 2−n

n) and (1, 1)T , (−1, 1)T respectively. The
spectral decomposition yields

v0 · Mt
n = (1, 0)

⎛
⎝

1 −1

1 1

⎞
⎠
⎛
⎝

1 0

0 2−n
n

⎞
⎠

t⎛
⎝

1
2 − 1

2

− 1
2

1
2

⎞
⎠ =

(
1

2
+

1

2

(
2

n
− 1

)t

,
1

2
− 1

2

(
2

n
− 1

)t)
.

For n = 256 (which corresponds to the value of n used in RC4) and initial
distribution being identity permutation after t = n = 256 steps one gets: v0 ·
M256

256 = (0.567138, 0.432862).
In [13] it was suggested that the first 512 bytes of output should be dropped.

The Fig. 3 in AppendixA presents the advantage ε of a sign-adversary after
dropping k bytes of the output (so after n + k steps of the shuffle, for the
mathematical model).

3.3 Position Distinguisher for RC4’s KSA

Mironov suggested analysis of idealized version of KSA algorithm. Being in per-
mutation S ∈ Sn at step i, the idealized version swaps element S[i] with purely
random S[j]. Treating the permutation as a permutation of a deck of cards,
this is exactly a known Cyclic-to-Random Transpositions card shuffling. On the
other hand if both, S[i] and S[j] are chosen uniformly at random, the procedure
is called Random-to-Random Transpositions card shuffling. It is known that
Random Transposition requires around 1

2n log n to reach uniform distribution,
see [7]. Moreover, authors showed that “most of the action” actually happens
at this step – the process exhibit so called cut-off phenomena. The analysis of
Position distinguisher uses Strong Stationary Time (called Strong Uniform Times

Randomized Stopping Times and Provably Secure Pseudorandom 153

in [15]), based on Broder’s construction for Random-to-Random Transpositions.
Unfortunately Mironov’s “estimate of the rate of growth of the strong uniform
time T is quite loose” and results “are a far cry both from the provable upper
and lower bounds on the convergence rate”. He:

• proved an upper bound O(n log n). More precisely Mironov showed that there
exists some positive constant c such that P [T > cn log n] → 0 when n → ∞.
Author experimentally checked that P [T > 2n lg n] < 1/n for n = 256 which
corresponds to P [T > 4096] < 1/256.

• experimentally showed that E[T] ≈ 11.16n ≈ 1.4n lg n ≈ 2857 (for n = 256)
– which translates into: on average one needs to drop ≈ 2601 initial bytes.

Later Mosel et al. [16] proved a matching lower bound establishing mixing
time to be of order Θ(n log n). However, the constant was not determined.

4 Randomized Stopping Times and Cryptographic
Schemes

4.1 Strong Stationary Time Based KSA Algrorithms

We propose to use the KSA∗∗
Shuffle,ST(n) algorithm which works as follows. It

starts with identity permutation. Then at each step it performs some card shuf-
fling procedure Shuffle. Instead of running it for a pre-defined number of steps,
it runs until an event defined by a procedure ST occurs. The procedure ST is
designed in such a way that it guarantees that the event is a Strong Stationary
Time. At each step the algorithm uses new randomness – one can think about
that as of an idealized version but when the length of a key is greater than the
number of random bits required by the algorithm then we end up with a per-
mutation which cannot be distinguished from a random (uniform) one (even by
a computationally unbounded adversary).

Algorithm. KSA∗∗
Shuffle,ST(n)

Require: Card shuffling Shuffle procedure, stopping rule ST which is a Strong Sta-
tionary Time for Shuffle.

for i := 0 to n − 1 do
S[i] := i

end for

while (¬ ST) do
Shuffle(S)

end while

Notational convention: in KSA∗∗
Shuffle,ST(n) we omit parameter n. Moreover,

if Shuffle and ST are omitted it means that we use Cyclic-to-Random Trans-
positions as shuffling procedure and stopping rule is clear from the context

154 M. Kulis et al.

(as in KSA∗∗ given earlier in Fig. 1). Note that if we use for stopping rule ST
“stop after n steps” (which of course is not SST), it is equivalent to RC4’s KSA∗

(also in Fig. 1).
Given a shuffling procedure Shuffle one wants to have a “fast” stopping rule

ST (perfectly one wants an optimal SST which is stochastically the smallest). The
stopping rule ST is a parameter, since for a given shuffling scheme one can come
up with a better stopping rule(s). This is exactly the case with Cyclic-to-Random
Transpositions and Random-to-Random Transpositions, we recall Mironov’s [15]
stopping rule as well as new “faster” rule called StoppingRuleKLZ is given (in
Sect. 5.2).

4.2 RST and Security Guarantees

Coupling method is a commonly used tool for bounding the rate of conver-
gence of Markov chains. Roughly speaking, a coupling of a Markov chain X
with transition matrix P is a bivariate chain (X′,X′′) such that marginally X′

and X′′ are Markov chains with transition matrix P and once the chains meet
they stay together (in some definitions this condition can be relaxed). Let then
Tc = infk{X ′

k = X ′′
k } i.e., the first time chains meet, called coupling time. The

coupling inequality states that dTV (L(Xk), ψ) ≤ Pr(Tc > k).
On the other hand separation distance is an upper bound on total vari-

ation distance, i.e., dTV (L(Xk), ψ) ≤ sep(L(Xk), ψ). At first glance it seems
that it is better to directly bound dTV , since we can have dTV very small,
whereas sep is (still) large. However, knowing that sep is small gives us much
more than just knowing that dTV is small, what turns out to be crucial
for proving security guarantees (i.e., Definition 5). In our case (E = Sn and
ψ is a uniform distribution on E) having dTV small, i.e., dTV (L(Xk), ψ) =
1
2

∑
σ∈Sn

∣∣Pr(Xk = σ) − 1
n!

∣∣ ≤ ε does not imply that |Pr(Xk = σ) − 1
n! | is

uniformly small (i.e., of order 1
n!). Knowing however that sep(L(Xk), ψ) ≤ ε

implies

∀(σ ∈ E)
∣∣∣∣Pr(Xk = σ) − 1

n!

∣∣∣∣ ≤ ε

n!
. (2)

Above inequality is what we need in our security definitions and shows that the
notion of separation distance is an adequate measure of mixing time for our
applications.

It is worth noting that dTV (L(Xk),U(E)) ≤ ε implies (see Theorem 7 in [2])
that sep(L(X2k),U(E)) ≤ ε. This means that proof of security which bounds
directly total variation distance by ε would require twice as many bits of random-
ness compared to the result which guarantees ε bound on separation distance.

4.3 RST and Timing-Attacks

One of the most serious threats to any cryptographic scheme are side-channel
attacks. One type of such attacks are timing-attacks where an attacker by

Randomized Stopping Times and Provably Secure Pseudorandom 155

observing the running time of the execution of a cryptosystem derives infor-
mation about the key used. Timing attacks are especially powerful [1,22] since
an attacker may perform them remotely, over the network (while most of other
types of side-channel attacks can be performed only when an attacker is nearby).
In order to limit threat of timing-attacks, attempts to implement constant-time
cryptographic schemes are made. The problem is that such attempts are usu-
ally unsuccessful [18] even if the underlying architecture (“claims”) allows for
that [11,24].

The running time of an SST-based algorithm strictly depends on the secret
key. However, in this section we explain why algorithms using randomized stop-
ping times are immune to timing-attacks, we discuss separately security of two
assets: (1) resulting permutation, (2) secret key.

Timing-Attacks and the Security of the Resulting Permutation. We
already defined SST (Definition 2) in Sect. 2.1 but one can define SST differently.

Definition 6. Random variable T is Strong Stationary Time (SST) if it is
a randomized stopping time for chain X such that:

XT has distribution ψ and is independent of T.

Corrolary 1. The information about the number of rounds that an SST-
algorithm performs does not reveal any information about the resulting permu-
tation.

Corollary 1 comes from the fact that the Definition 2 which defines SST as a
certain randomized stopping time is equivalent to the Definition 6 which defines
SST as a variable independent of the resulting distribution. For the proof of the
equivalence see [3].

Timing Attacks and the Security of the Secret Key. Unfortunately,
although no information about the resulting permutation leaks, some informa-
tion about the secret key may leak. Shuffling may reveal randomness through
the running time (see Example 2 in AppendixD). In practical implementations,
one may use some function of a key instead of pure randomness in each step.
Then (at least) two following cases may happen:

1. Bits of the keystream are re-used: the running time of the algorithm (SST)
may leak both: information about key and the information about permutation
(compare with Example 1 in AppendixD).

2. Bits of the keystream are “fresh” (never re-used): the running time of the
algorithm (SST) may leak information about the key but it does not leak any
information about the produced permutation! (compare with the Example 2
in AppendixD).

Masking SST. One can prevent obtaining information about the secret key
by timing-attacks by performing a simple masking. For a stopping rule ST that

156 M. Kulis et al.

results in expected running time ET one runs the algorithm for at least ET
steps even if the ST occurred earlier.

This eliminates very short executions which could reveal information about
the key.

On the other hand, for practical implementation one may want to eliminate
the extremely long executions. This can be done by letting the algorithm run
for e.g., ET + c · √

V arT (where c is a parameter and V arT is the variance for
the ST).

5 (Not So) Random Shuffles of RC4 – Revisited

5.1 Mironov’s Stopping Rule – Details

The goal of KSA of original RC4 is to produce a pseudorandom permutation of
n = 256 cards. The original algorithm performs 256 steps of Cyclic-to-Random
Transpositions. However it is known that the mixing time of Cyclic-to-Random
Transpositions is Θ(n log n). Then performing only 256 (i.e., n) steps seems
much too less. In fact, it is recommended to perform at least 3072 steps, see
Mironov [15]. Generally, the more steps are performed, the closer to uniformity
the final permutation is. Mironov considered idealized version of the algorithm
together with the following marking rule:

“At the beginning all cards numbered 0, . . . , n − 2 are unchecked, the
(n−1)th card is checked. Whenever the shuffling algorithm exchanges two
cards, S[i] and S[j], one of the two rules may apply before the swap takes
place:

a. If S[i] is unchecked and i = j, check S[i].
b. If S[i] is unchecked and S[j] is checked, check S[i].

The event T happens when all cards become checked.”

Then the author proves that this is a SST for Cyclic-to-Random Transpositions
and shows that there exists constant c (can be chosen less than 30) such that
Pr[T > cn log n] → 0 when n → ∞. Empirically, for n = 256 he shows that
Pr[T > 2n log n] < 1/n. Note that this marking scheme is also valid for Random-
to-Random Transpositions shuffling.

Lemma 1. The expected running time of Random-to-Random Transpositions
shuffling with Mironov stopping rule is:

ET = 2nHn − n + O(Hn).

Proof. We start with one card checked. When k cards are checked, then prob-
ability of checking another one is equal to pk = (n−k)(k+1)

n2 . Thus, the time to
check all the cards is distributed as a sum of geometric random variables and its
expectation is equal to:

n−1∑

k=1

1
pk

= 2
n2

n + 1
Hn − n = 2nHn − n + O(Hn).

Randomized Stopping Times and Provably Secure Pseudorandom 157

5.2 Better Stopping Rule

We suggest another “faster” SST which is valid for both Cyclic-to-Random
Transpositions and Random-to-Random Transpositions. We will calculate its
expectation and variance for Random-to-Random Transpositions and check
experimentally (see Appendix C) that it is similar if the stopping rule is applied
to Cyclic-to-Random Transpositions. As a result (proof given at the end of this
Section) we have:

Theorem 1. Let A be an adversary. Let K ∈ {0, 1}rn be a secret key. Let S(K)
be KSA∗

RTRT (i.e., with Random-to-Random Transpositions shuffling) which runs
for

r = n(Hn + 1) +
πn

2
1√
n!ε

steps with 0 < ε < 1
n! . Then

∣∣∣∣ Pr
K←{0,1}rm

[A(S(K)) = 1] − Pr
R←U(Sn)

[A(R) = 1]
∣∣∣∣ ≤ ε

The stopping rule is given in StoppingRuleKLZ algorithm.

Algorithm. StoppingRuleKLZ
Input set of already marked cards M ⊆ {1, . . . , n}, round r, Bits
Output {YES,NO}

j = n-value(Bits)
if there are less than �(n − 1)/2� marked cards then

if both π[r] and π[j] are unmarked then
mark card π[r]

end if
else

if (π[r] is unmarked and π[j] is marked) OR (π[r] is unmarked and r = j) then
mark card π[r]

end if
end if

if all cards are marked then
STOP

else
CONTINUE

end if

Lemma 2. The resulting permutation of KSA∗∗ with ST =StoppingRuleKLZ

has a uniform distribution over Sn.

158 M. Kulis et al.

Proof. We will show that the running time of the algorithm is a SST, i.e., that
the card marking procedure specified in StoppingRuleKLZ is a SST for Cyclic-to-
Random Transpositions. First phase of the procedure (i.e., the case when there
are less than �(n − 1)/2� cards marked) is constructing a random permutation
of marked cards by placing unmarked cards on randomly chosen unoccupied
positions, this is actually first part of Matthews’s marking [14] scheme. Second
phase is simply a Broder’s construction. Theorem 9 of [15] shows that this is a
valid SST for Cyclic-to-Random Transpositions. Both phases combined produce
a random permutation of all cards.

Remark 1. One important remark should be pointed. Full Matthews’s marking
[14] scheme is “faster” than ours. However, although it is a SST for Random-to-
Random Transpositions, this is not SST for Cyclic-to-Random Transpositions.

Calculating ET or V arT seems to be a challenging task. But note that mark-
ing scheme StoppingRuleKLZ also yields a valid SST for Random-to-Random
Transpositions. In next Lemma we calculate ET and V arT for this shuffle, later
we experimentally show that ET is very similar for both marking schemes.

Lemma 3. Let T be the running time of KSA∗∗ with Random-to-Random
Transpositions shuffling and ST=StoppingRuleKLZ. Then we have

E[T] = nHn + n + O(Hn),

V ar[T] ∼ π2

4 n2,
(3)

where Hn is the n−th harmonic number and f(k) ∼ g(k) means that
limk→∞

f(k)
g(k) = 1.

The details of the proof of the Lemma3 are in AppendixB.

Proof. Define Tk to be the first time when k cards are marked (thus T ≡ Tn).
Let d = �(n−1)/2�. Then Td is the running time of the first phase and (Tn − Td)
is the running time of the second phase. Denote Yk := Tk+1 − Tk.

Assume that there are k < d marked cards at a certain step. Then the new
card will be marked in next step if we choose two unmarked cards what happens
with probability: pa(k) = (n−k)2

n2 . Thus Yk is a geometric random variable with
parameter pa(k) and

E[Td] = n2
(
H(2)

n − H
(2)
n−d

)
.

Now assume that there are k ≥ d cards marked at a certain step. Then, the new
card will be marked in next step with probability:

pb(k) =
(n − k)(k + 1)

n2

and Yk is a geometric random variable with parameter pa(k). Thus:

E[Tn − Td] = nHn − n

n + 1
Hn +

n2

n + 1
(Hn−d − Hd) .

Randomized Stopping Times and Provably Secure Pseudorandom 159

For variance we have:

V ar[Tn] = V ar[Td] + V ar[Tn − Td] ∼ π2

4
n2.

�
From Lemma 3 and Chebyshev’s inequality we immediately have the following:

Corrolary 2. Consider the chain corresponding to KSA∗∗ with Random-to-
Random Transpositions shuffling and ST=StoppingRuleKLZ. Then we have

τsep
mix(ε) ≤ n(Hn + 1) +

πn

2
1√
ε
.

Proof (of Theorem 1). In Theorem 1 we perform Random-to-Random Transpo-
sitions for r = τsep

mix(n!ε) steps, i.e., sep(L(Xr), ψ) ≤ n!ε Inequality (2) implies
that |Pr(Xr = σ) − 1

n! | ≤ ε for any permutation σ and thus completes the
proof. �

5.3 Predefined Number of Steps vs SST-based Algorithms

There is a subtle difference between the randomized stopping time (like the one
suggested in the paper) and an algorithm that performs a predefined number of
steps. If one wants to achieve security level of e.g., ε = O(1/nk), k > 2 then the
number of steps that would assure that the advantage is smaller than ε would
need to be equal to: τmix(ε) ≤ n(Hn + 1) + πn

2 nk/2 = O
(
n1+k/2

)
.

As we can see the estimated running time of Cyclic-to-Random Transposi-
tions with both stopping rules is similar to the theoretical results for Random-to-
Random Transpositions. Recall that for Cyclic-to-Random Transpositions it is
known that the mixing time is of order Θ(n log n), see [16], however the constant
was not determined. Based on our new SST and simulations (see AppendixC)
one can conjecture the following

Conjecture 1. The mixing time τsep
mix for Cyclic-to-Random Transpositions con-

verges to n log n as n → ∞.

6 A Note on Spritz

Spritz [20] is a new stream cipher that was proposed in 2014 by Rivest and
Schuldt as a possible replacement for RC4.

The first cryptanalytic results were already achieved: inefficient state recovery
attack [5] (with 21400 complexity) later improved by [6] (with 21247 steps). The
second paper presents also a devastating distinguishing attacks of complexity
244.8 (multiple key-IV setting) and 260.8 (single key-IV setting).

Here we analyze the distribution of the internal state of Spritz after the
main part of the scheme (procedure Shuffle()) is run. Similarly to the previous
approach we replace the deterministic part of Update() function: j := k+S[j +
S[i]], with its idealized version: j := random(n)).

The definitions of Spritz’ procedures that are of our interest are presented in
AppendixE.

160 M. Kulis et al.

6.1 Sign Distinguisher

Although we did not find strong stationary time for “KSA” part of Spritz algo-
rithm, one can easily notice that the Sign Distinguisher has no advantage at all.
This property is achieved thanks to Crush procedure. During this procedure,
the table S is partially sorted i.e., elements at positions v and n − 1 − v (for
v = 0 . . . �N/2�−1) are swapped whenever S[v] > S[n−1−v]. So this corresponds
to multiplying the sign process by:

Mcrush :=

(1
2

1
2

1
2

1
2

)
.

If Spritz is used as stream cipher, as part of Squeeze procedure, at least one call
to Shuffle is made. So the distribution of sign can be described as

v0 · M2n
n M

n/2
crushM2n

n M
n/2
crushM2n

n =
(

1
2
,
1
2

)
.

This means that advantage of Sign Distinguisher for Spritz equals to 0.

6.2 Position Distinguisher

Let us recall what was one of the main drawbacks of the original RC4: it per-
formed n steps instead of cn log n. The underlying mathematical model is simply
a Cyclic-to-Random Transpositions card shuffling. This is somehow similar to
Random-to-Random Transpositions for which it takes of order of n log n steps.
More exactly, there is so-called cutoff phenomena at 1

2n log n. Roughly speak-
ing, lower and upper bounds are of this order. Analysis of Cyclic-to-Random
Transpositions seemed to be harder, recently [16] the matching lower bound was
established showing that mixing time is of order Θ(n log n).

Recall that Spritz performs: in total 6n steps of Cyclic-to-Random Trans-
positions (as part of Whip procedure) and partial sorting of elements (Crush
procedure) in the internal state is performed twice (after 2-nd and 4-th shuf-
fling). This is of course more complicated shuffling than just repeating Cyclic-
to-Random Transpositions.

Clever use of Crush lets Spritz to get rid of the Sign Distinguisher but at the
same time it seems that it may badly influence the mixing time.

Imagine that there exists some SST which during the Spritz execution per-
forms marking of the elements. Marked elements satisfy property that their
mutual position is equally distributed. Now, take a look at the step when Crush
is performed and there are two marked elements at positions v and N − 1 − v.
Then after Crush their relative position will be uniquely determined! This obser-
vation suggests that mixing time for Spritz would be greater than n log n.

7 A Note on Optimal Shuffling

Cyclic-to-Random Transpositions is the shuffle used in RC4 and in Spritz. To
reach stationarity (i.e., produce random permutation), as we shown, one needs

Randomized Stopping Times and Provably Secure Pseudorandom 161

to perform O(n log n) steps. In each step we use a random number from interval
[0, . . . , n − 1], thus this shuffling requires O(n log2 n) random bits.

One can ask the following question: Is this shuffling optimal in terms of
required bits? The answer is no. The entropy of the uniform distribution on [n]
is O(n log n) (since there are n! permutations of [n]), thus one could expect that
optimal shuffling would require this number of bits.

We will shortly describe (time reversal of) Riffle Shuffle, for details see [2].
For a given permutation σ ∈ Sn we assign each element a random bit. Then we
put all the elements (cards) with assigned bit 0 to the top keeping their relative
ordering. The following is a known SST for this shuffle: At the beginning all

(
n
2

)

pairs of cards are unmarked. At each step one marks a pair (i, j) if elements i
and j were assigned different bits. Let T be the first time all pairs are marked.

The above SST of Riffle Shuffle has ET = 2 lg n, at each step n random
bits are used, thus this shuffling requires 2n lg n random bits, matching the
requirement of optimal shuffle (up to a constant).

In this paper we mainly focused on RC4 and thus on Cyclic-to-Random Trans-
positions shuffle. However, we wanted to point out that using Riffle Shuffle (or
other shuffling schemes) can result in better efficiency of the whole scheme.

8 Conclusions

We presented the benefits of using Strong Stationary Times in cryptographic
schemes (pseudo random permutation generators). These algorithms have a
“health-check” built-in and guarantee the best possible properties (when it comes
to the quality of randomness of the resulting permutation). We showed that use
of SST does not lead to timing attacks. We showed that algorithms using SST
achieve better security guarantees than any algorithm which runs predefined
number of steps.

Fig. 2. Comparison between number of bits used by RC4 (40 to 2048) and required
by mathematical models (Mironov [15] and ours) versus length of the key for the
time-reversed riffle shuffle. Bits asymptotics approximates the number of fresh bits
required by the mathematical model (number of bits required by the underlying Markov
chain to converge to stationary distribution). Bits required is (rounded) value of # bits
asymptotics when n = 256.

Complementarily, we proved better bound for the mixing-time of the Cyclic-
to-Random Transpositions shuffling process which is used in RC4 and showed
that different, more efficient shuffling methods (i.e., time reversal of Riffle
Shuffle) may be used as KSA. This last observation shows that the gap between

162 M. Kulis et al.

mathematical model (4096 bits required) and reality (2048 allowed as maxi-
mum length of RC4) is not that big as previously thought (bound of 23037 by
Mironov [15]).

Appendix

A Sign Distinguisher Advantage

Fig. 3. The advantage (ε) of Sign distinguisher of RC4 after discarding initial k bytes.

B Detailed Proof of Lemma3

Proof. Define Tk to be the first time when k cards are marked (thus T ≡ Tn).
Let d = �(n−1)/2�. Then Td is the running time of the first phase and (Tn − Td)
is the running time of the second phase. Denote Yk := Tk+1 − Tk.

Assume that there are k < d marked cards at a certain step. Then the new
card will be marked in next step if we choose two unmarked cards what happens
with probability:

pa(k) =
(n − k)2

n2
.

Thus Yk is a geometric random variable with parameter pa(k) and

E[Td] =
d−1∑

k=0

E[Yk] =
d−1∑

k=0

1
pa(k)

=
d−1∑

k=0

n2

(n − k)2
= n2

n∑

k=n−d+1

1
k2

= n2
(
H(2)

n − H
(2)
n−d

)
= n2

(
1
n

+ O

(
1
n2

))
= n + O(1).

Now assume that there are k ≥ d cards marked at a certain step. Then, the new
card will be marked in next step with probability:

pb(k) =
(n − k)(k + 1)

n2

Randomized Stopping Times and Provably Secure Pseudorandom 163

and Yk is a geometric random variable with parameter pa(k). Thus:

E[Tn − Td] =

d−1∑

k=0

E[Yk] =

n−1∑

k=d

1

pb(k)
=

n−1∑

k=d

n2

(n − k)(k + 1)

=
n2

n + 1

n−1∑

k=d

(
1

n − k
+

1

k + 1

)
=

n2

n + 1

⎛

⎝
n−d∑

k=1

1

k
+

n∑

k=d+1

1

k

⎞

⎠

=
n2

n + 1
(Hn−d + Hn − Hd) =

n2

n + 1
Hn +

n2

n + 1
(Hn−d − Hd)

= nHn − n
n+1

Hn + n2

n+1
(Hn−d − Hd)=nHn + O(Hn) + O(1) = nHn + O(Hn).

For variance we have:

V ar[Td] =

d−1∑

k=0

V ar[Yk] =

d−1∑

k=0

1 − pa(k)

(pa(k))
2

=

d−1∑

k=0

1 − (n−k)2

n2
(

(n−k)2

n2

)2 ≈
∫ n

2

0

1 − (n−x)2

n2
(

(n−x)2

n2

)2 dx =
4

3
n.

V ar[Tn − Td] =

n−1∑

k=d

V ar[Yk] =

n−1∑

k=d

1 − pb(k)

(pb(k))
2

=

n−1∑

k=d

1 − (n−k)(k+1)

n2

(n−k)2(k+1)2

n4

= n2
n−1∑

k=d

n(n − 1) + k(1 − n) + k2

(n − k)2(k + 1)2
≈ n2 · 1

2

n−1∑

k=0

n(n − 1) + k(1 − n) + k2

(n − k)2(k + 1)2

≈ n2

2

[(
2

n
− 4

n2

)
Hn + 3H

(2)
n

]
∼ π2

4
n2.

Finally

V ar[Tn] = V ar[Td] + V ar[Tn − Td] ∼ π2

4
n2.

�

C Experimental Results

The expected running time of KSA∗∗
RTRT (i.e., with Random-to-Random Transpo-

sitions shuffling) is known:

• with ST=StoppingRuleKLZ it is n(Hn + 1)
• with stopping rule used in [15] it is 2nHn − n

For both stopping rules applied to Cyclic-to-Random Transpositions no precise
results on expected running times are known. Instead we estimated them via
simulations, simply running 10.000 of them. The results are given in Fig. 4.

164 M. Kulis et al.

Fig. 4. Simulations’ results for Mironov’s and StoppingRuleKLZ stopping rules.

D Timing-Attacks and KSA∗∗

Example 1 (Top to random shuffle T2R – timing attack – re-used randomness).
Consider algorithm KSA∗∗

T2R,ST with shuffling procedure corresponding to Top-
To-Random card shuffling (put the card S[1] which is currently on top to the
position j defined by the randomness in the current round) and following stop-
ping time ST:

step: 1 step: 2 step: 3 step: 4 step: 5 step: 6 step: 7 step: 8

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

1

K[1] 111

3

4

5

6

7

8

2

1

K[2]
110

111

4

5

6

7

8

2

1

3

K[3]

101

110

111

5

6

7

8

2

1

3

4

K[4] = K[1]

6

7

8

2

1

3

5

4

K[5] = K[2]

7

8

2

1

3

5

4

6

K[6] = K[3]

8

2

1

3

5

4

6

7

K[7] = K[1]

2

1

3

5

4

6

8

7

K[8] = K[2]

Fig. 5. Example run of top-to-random shuffle with “reused randomness” which is taken
from the key K of the length equal to three 8-value bytes (9-bits). Let us assume that
the running time of SST was exactly 8. Conditioning on the number of steps one can
figure out that the first word of the key must be equal to 111 while the second part
K[2] ∈ {110, 111} with the same probability. Finally K[3] ∈ {101, 110, 111} and for the
step i: K[i] = K[i mod 3]. So now, instead of possible 29 = 512 permutations which
can be generated from 9 bits of key, only 6 are possible (based on the fact that SST
has stopped exactly after 8 steps).

Randomized Stopping Times and Provably Secure Pseudorandom 165

• before the start of the algorithm, mark the last card (i.e., the card n is
marked1),

• stop one step after the marked card reaches the top of the deck.

The sample execution of the algorithm is given in Fig. 5.

Example 2 (Top-to-random – timing attack – fresh randomness). Let us now
consider a very similar situation with one important difference. Now no portion
of the key is re-used. An example run of the algorithm is presented on the Fig. 6.
Based on the knowledge on the number of performed steps, one can learn some
information about the secret key (i.e., K[1] = 000, K[2] is either 110 or 111) but
still no adversary can learn anything about the resulting permutation because
any information is generated with exactly the same probability.

step: 1 step: 2 step: 3 step: 4 step: 5 step: 6 step: 7 step: 8

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

1

K[1] ∈ {000}
= [8] \ [7]

3

4

5

6

7

8

2

1

K[2]
110

111

4

5

6

7

8

2

1

3

K[3]

101

110

111

5

6

7

8

2

1

4

3

K[4] ∈ [8] \ [4]

6

7

8

2

5

1

4

3

K[5] ∈ [8] \ [3]

7

8

6

2

5

1

4

3

K[6] ∈ [8] \ [2]

8

6

2

5

1

7

4

3

K[7] ∈ [8] \ {000}

6

8

2

5

1

7

4

3

K[8] ∈ [8]

Fig. 6. Example run of top-to-random shuffle with “fresh randomness” taken from the
key K of the length equal to 8 8-value bytes (24-bits). Conditioning on the number of
steps of the SST (in this case 8) one can find out that: out of the possible 224 keys only
(exactly) 8! keys are possible (due to the fact that SST stopped after 8 steps) and every
of 8! permutations are possible (based on the fact that SST has stopped exactly after
8 steps) – moreover each permutation with exactly the same probability. SST leaks
bits of the key i.e., K[1] = 111 but does not leak any information about the produced
permutation.

1 It is known [2] that optimal SST for top to random initially marks second from the
bottom card.

166 M. Kulis et al.

E Spritz Definition

for v := 0 to �N/2	 − 1 do
if S[v] > S[N − 1 − v] then

swap(S[v], S[N − 1 − v])
end if

end for

i = i + w
j = k + S[j + S[i]]
k = i + k + S[j]
swap(S[i], S[j])

for v := 0 to r − 1 do
Update()

end for

repeat
w = w + 1

until GCD(w,N) = 1

Whip(2N)
Crush()
Whip(2N)
Crush()
Whip(2N)

Fig. 7. Building blocks of Spritz

References

1. Albrecht, M.R., Paterson, K.G.: Lucky microseconds: a timing attack on Amazon’s
s2n implementation of TLS. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 622–643. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49890-3 24

2. Aldous, D., Diaconis, P.: Shuffling cards and stopping times. Am. Math. Mon.
93(5), 333–348 (1986)

3. Aldous, D., Diaconis, P.: Strong uniform times and finite random walks. Adv. Appl.
Math. 8, 69–97 (1987)

4. AlFardan, N., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.: On
the security of RC4 in TLS. In: Presented as Part of the 22nd USENIX Secu-
rity Symposium (USENIX Security 13), Washington, D.C., pp. 305–320. USENIX
(2013)

5. Ankele, R., Kölbl, S., Rechberger, C.: State-recovery analysis of spritz. In: Lauter,
K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 204–
221. Springer, Cham (2015). doi:10.1007/978-3-319-22174-8 12

6. Banik, S., Isobe, T.: Cryptanalysis of the full spritz stream cipher. In: Peyrin, T.
(ed.) FSE 2016. LNCS, vol. 9783, pp. 63–77. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-52993-5 4

7. Diaconis, P., Shahshahani, M.: Generating a random permutation with random
transpositions. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete
57(2), 159–179 (1981)

8. Fill, J.A.: An interruptible algorithm for perfect sampling via Markov chains. Ann.
Appl. Probab. 8(1), 131–162 (1998)

http://dx.doi.org/10.1007/978-3-662-49890-3_24
http://dx.doi.org/10.1007/978-3-662-49890-3_24
http://dx.doi.org/10.1007/978-3-319-22174-8_12
http://dx.doi.org/10.1007/978-3-662-52993-5_4
http://dx.doi.org/10.1007/978-3-662-52993-5_4

Randomized Stopping Times and Provably Secure Pseudorandom 167

9. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm of
RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 1–24.
Springer, Heidelberg (2001). doi:10.1007/3-540-45537-X 1

10. Fluhrer, S.R., McGrew, D.A.: Statistical analysis of the alleged RC4 keystream
generator. In: Goos, G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 19–30. Springer, Heidelberg (2001). doi:10.1007/
3-540-44706-7 2

11. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A Survey of Microarchitectural Timing
Attacks and Countermeasures on Contemporary Hardware. IACR Eprint (2016)

12. Golić, J.D.: Linear statistical weakness of alleged RC4 keystream generator. In:
Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238. Springer,
Heidelberg (1997). doi:10.1007/3-540-69053-0 16

13. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002). doi:10.1007/
3-540-45473-X 13

14. Matthews, P.: A strong uniform time for random transpositions. J. Theoret.
Probab. 1(4), 411–423 (1988)

15. Mironov, I.: (Not so) random shuffles of RC4. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002). doi:10.1007/
3-540-45708-9 20

16. Mossel, E., Peres, Y., Sinclair, A.: Shuffling by semi-random transpositions. In:
Foundations of Computer Science, pp. 572–581 (2004)

17. Naor, M., Reingold, O.: On the construction of pseudo-random permutations. In:
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Com-
puting - STOC 1997, pp. 189–199. ACM Press, New York (1997)

18. Pereida Garćıa, C., Brumley, B.B., Yarom, Y.: Make sure DSA signing exponenti-
ations really are constant-time

19. Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and appli-
cations to statistical mechanics. Random Struct. Algorithms 9, 223–252 (1996)

20. Schuldt, J.C.N., Rivest, R.L.: Spritz–a spongy RC4-like stream cipher and hash
function (2014)

21. Paul, S., Preneel, B.: A new weakness in the RC4 keystream generator and an
approach to improve the security of the cipher. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25937-4 16

22. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. In: Sadeghi, A.-R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security, pp. 99–134. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14452-3 5

23. Maitra, S., Paul, G.: Analysis of RC4 and proposal of additional layers for better
security margin. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT
2008. LNCS, vol. 5365, pp. 27–39. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89754-5 3

24. Yarom, Y., Genkin, D., Heninger, N.: CacheBleed: a timing attack on OpenSSL
constant time RSA. CHES (2016)

25. Zoltak, B.: VMPC one-way function and stream cipher. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 210–225. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-25937-4 14

http://dx.doi.org/10.1007/3-540-45537-X_1
http://dx.doi.org/10.1007/3-540-44706-7_2
http://dx.doi.org/10.1007/3-540-44706-7_2
http://dx.doi.org/10.1007/3-540-69053-0_16
http://dx.doi.org/10.1007/3-540-45473-X_13
http://dx.doi.org/10.1007/3-540-45473-X_13
http://dx.doi.org/10.1007/3-540-45708-9_20
http://dx.doi.org/10.1007/3-540-45708-9_20
http://dx.doi.org/10.1007/978-3-540-25937-4_16
http://dx.doi.org/10.1007/978-3-540-25937-4_16
http://dx.doi.org/10.1007/978-3-642-14452-3_5
http://dx.doi.org/10.1007/978-3-540-89754-5_3
http://dx.doi.org/10.1007/978-3-540-89754-5_3
http://dx.doi.org/10.1007/978-3-540-25937-4_14
http://dx.doi.org/10.1007/978-3-540-25937-4_14

Cryptofication

A Virtual Wiretap Channel for Secure Message
Transmission

Setareh Sharifian(B), Reihaneh Safavi-Naini, and Fuchun Lin

Department of Computer Science, University of Calgary, Calgary, Canada
ssharifi@ucalgary.ca

Abstract. In the Wyner wiretap channel a sender is connected to a
receiver and an eavesdropper through two noisy channels. It has been
shown that if the noise in the eavesdropper channel is higher than the
receiver’s channel, information theoretically secure communication from
Alice to Bob, without requiring a shared key, is possible. The approach
is particularly attractive noting the rise of quantum computers and pos-
sibility of the complete collapse of todays’ cryptographic infrastructure.
If the eavesdropper’s channel is noise free however, no secrecy can be
obtained. The iJam protocol, proposed by Gollakota and Katabi, is an
interactive protocol over noise free channels that uses friendly jamming
by the receiver to establish an information theoretically secure shared
key between the sender and the receiver. The protocol relies on the
Basic iJam Transmission protocol (BiT protocol) that uses properties of
OFDM (Orthogonal Frequency-Division Multiplexing) to create uncer-
tainty for Eve (hence noisy view) in receiving the sent information, and
use this uncertainty to construct a secure key agreement protocol. The
protocol has been implemented and evaluated using extensive experi-
ments that examines the best eavesdropper’s reception strategy. In this
paper we develop an abstract model for BiT protocol as a wiretap chan-
nel and refer to it as a virtual wiretap channel. We estimate parameters of
this virtual wiretap channel, derive the secrecy capacity of this channel,
and design a secure message transmission protocol with provable seman-
tic security using the channel. Our analysis and protocol gives a physical
layer security protocol, with provable security, that is implementable in
practice (BiT protocol has already been implemented).

1 Introduction

Wireless communication provides flexible communication for mobile users, and
with the increasing number of sensors and growth of the Internet of Things
(IoT), will soon become the dominant form of communication. Wireless com-
munication is vulnerable to passive eavesdropping. Wired Equivalent Privacy
(WEP) is a security algorithm that was introduced in mid nineties to provide
security for wireless access points, and was later replaced by Wi-Fi Protected
Access (WPA) protocol [1]. Other communication security protocols such as
Secure Socket Layer (SSL) [2] and Secure Shell (SSH) [3] are used for providing

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 171–192, 2017.
DOI: 10.1007/978-3-319-61273-7 9

172 S. Sharifian et al.

secure services over network. All these protocols rely on public key infrastruc-
ture to establish secure shared key between the sender and the receiver. Shor [23]
proposed a quantum algorithm that efficiently solves the discrete logarithm and
integer factorization problems, rendering today’s public key infrastructure com-
pletely insecure if a quantum computer is invented. With advances in quantum
technologies and projection of 10 years [9] to the development of such comput-
ers, the need and interest in the development of quantum-resistant cryptographic
systems is rapidly growing.

In this paper we consider information theoretically secure communication sys-
tems that is secure against an adversary with unlimited computational power.
Information theoretic security against a passive eavesdropper can be achieved
using one-time-pad. This assumes sender and receiver share a secret key that is
uniformly random and is of the same length as the message. The key must be
chosen afresh for every message. These requirements severely limit the applica-
tion of one-time-pad in practice. Wyner [33] proposed an ingenious model for
information theoretically secure communication that is particularly suited for
securing wireless communication. In Wyner wiretap model, a sender Alice is
connected to a receiver Bob over a main channel. The eavesdropper, called Eve,
receives the communication from the sender through a second channel referred to
as the wiretapper channel. Wyner proved that as long as the wiretapper channel
a degraded version of the main channel (or more generally noisier than the main
channel), there exists an encoding method that provides information theoretic
security for the receiver against Eve. A wiretap code is a randomized code that
is used by the sender to encode the message. Wiretap channel allows quantum-
resistant security using physical layer properties of the communication channels,
complementing security that is provided at the higher layers of protocol stack
layers using traditional cryptographic protocols. Security definition of wiretap
channels has been strengthened over time with the latest security notion being
semantic security: the strongest security notion for message confidentiality. Wire-
tap channels, however, rely on noise in the channel and need a correct estimate
of noise in the wiretapper channel.

In [13], an innovative interactive physical layer protocol for key establish-
ment over noiseless channel with security against a passive eavesdropper was
introduced. The protocol was implemented and shown to provide security in
practice, by measuring the received signal at Eve, and using the best decoding
strategies to recover the sent information at Eve. The protocol uses cooperative
jamming where the receiver sends a jamming signal that is combined with the
sender’s signal at Eve and creates an uncertain view of the communication for
Eve, and uses that for providing security. One can see the approach as the sender
and the receiver cooperatively creating a virtual wiretap channel and use that to
establish a shared key.

In this paper we follow this intuition and model the main building block
of iJam, referred to as Basic iJam Transmission protocol (BiT protocol), as a
virtual wiretap channel, and use it to provide efficient quantum-resistant secure
message transmission with provable security.

A Virtual Wiretap Channel for Secure Message Transmission 173

1.1 Our Work

BiT protocol uses a coordinated jamming signal of the receiver to construct a
noisy view of transmission for Eve. This is achieved by the sender repeating its
transmitted information block in two consecutive subintervals, and the receiver
randomly jamming one of the time samples of the two subintervals. Coordinated
jamming ensures that the receiver is able to perfectly receive time samples that
allow them to reconstruct a complete copy of the sent information block, while
Eve will have a combination of jammed and unjammed samples which results in
an uncertain view. This is shown to be achievable using appropriate choices of
modulation and transmission technique (OFDM and 2q-QAM modulation - See
Sect. 2 for description).

We analyze BiT and show how it can be modelled as a virtual wiretap chan-
nel. Since the receiver is able to perfectly recover the transmitted information
block, the virtual wiretap channel has a noiseless main channel. We estimate
parameters of this channel and use them to compute the secrecy capacity of the
virtual wiretap channel, that gives the best asymptotic efficiency for message
transmission over this channel.

The modelling also allows us to adapt existing constructions of wiretap codes
for providing message secrecy. We show how to use the wiretap encoding (seeded
encryption) scheme of [6] to encode messages and then transmit the codeword
using information block coding of the BiT protocol. The BiT protocol creation
of a virtual wiretap channel ensures the seeded encryption will result in message
transmission with information theoretic semantic security. The protocol achieves
optimal efficiency asymptotically. The system thus provides provable quantum-
resistant security, and is implementable in practice (thanks to starting from an
already implemented protocol).

In Sect. 6 we show how this interpretation of BiT (a mechanism to add uncer-
tainty in Eve’s view) can be used to extend application of physical layer secu-
rity protocols that use wiretap model. In particular we consider a setting where
transmission in the physical channel from the sender to the receiver, is corrupted
by Additive White Gaussian Noise (AWGN), but Eve has a noise free channel
to Eve. Using known results for wiretap channels, secure communication using
wiretap codes in this setting, is impossible. Using BiT protocol in this setting
however, introduces uncertainty in Eve’s view and so can enable secure com-
munication. Figure 3 shows how to effectively use the BiT protocol to create a
virtual wiretap channel when both the main channel and the wiretapper chan-
nel are noisy. The noise in the main channel is the physical noise, while the
noise in the wiretapper channel is the result of the BiT protocol. Alice can send
secret messages to Bob as long as the virtual wiretap channel is a stochastically
degraded broadcast channel.

1.2 Related Work

Wiretap channel model was proposed by Wyner [33]. The model has attracted
the attention of theoreticians and practitioners, resulting in a large body of
work on the topic. A number of generalization of the mode has been proposed

174 S. Sharifian et al.

[8,18,19], and the notion of security has been strengthened [6,21] over years,
bringing it on par with the the strongest notion of security in cryptography.
It has been proved that secure communication is possible if the eavesdropper’s
channel (signal reception ability) is worse than the receiver’s [8]. There are effi-
cient constructions of wiretap codes [6,20,31], with the more recent ones using
a modular approach that can be used with any error correcting code.

Physical layer security protocols constructed by injecting jamming signal
in the eavesdropper’s view [11,17,27]. Showed that cooperative jamming can
increase secrecy capacity [28–30]. In a general cooperative jamming setting, a
trusted helper jams the transmitted signal. The legitimate receiver has some
information about the jamming signal which is their advantage over the eaves-
dropper who is entirely oblivious to the jamming signal. This results in an inferior
channel for the eavesdropper and so allows secure communication in presence of
the eavesdropper. This type of jamming has also been referred to as, “help-
ing” [26], or “friendly” [15] jamming. BiT protocol uses a variation of friendly
jamming in which the receiver plays the role of the trusted helper.

BiT protocol [13] was used to construct a secret key agreement protocol
(called iJam). The iJam key agreement uses multiple invocations of BiT proto-
col to establish a secret key that is generated as the XOR of multiple random
strings, each transmitted in one invocation of BiT. The security of iJam has been
experimentally evaluated.

Organization. Section 2 gives background and an outline of the BiT protocol.
Section 3 is an example that motivates our approach, to modeling BiT as a virtual
wiretap channel. In Sect. 4, we give our model of BiT as a virtual wiretap channel
when the transmission from the sender to the receiver is noise free. Section 5 is a
physical layer protocol for message transmission using a known seeded encryp-
tion algorithm and the BiT protocol. In Sect. 6, we study the case when the
transmission from sender to receiver is corrupted by AWGN. Conclusion and
future works are given in Sect. 7. In AppendixA, we provide approximation data
and graphs of the information rate for the message transmission protocol in
Sect. 5. In AppendixB, we provide an example of the noisy virtual main channel
and virtual wiretapper channel of Sect. 6.

2 Preliminaries and Notations

We use uppercase letters X to denote random variables and bold lowercase letters
to denote their corresponding realization. By Pr[X = x] we mean the probability
that X takes the value x. This is also shown as PX(x). Calligraphic letters
X denote sets, and |X | denotes the cardinality (number of elements) of a set.
For two random variables X and Y, PXY denotes their joint distribution, PX|Y
denotes their conditional distribution, and PX denotes X’s marginal distribution.
All logs are in base 2 and ‖ is used to denote concatenation of two binary
strings. For a random variable X ∈ X , Shannon entropy is given by H(X) =
−∑

x∈X PX(x) log PX(x). For two random variables X ∈ X and Y ∈ Y with

A Virtual Wiretap Channel for Secure Message Transmission 175

joint probability distribution PXY (x,y) and conditional probability distribution
PX|Y (x|y), the conditional entropy H(X|Y) is defined as

H(X|Y) = −∑
x∈X

∑
y∈Y PXY (x,y) log PX|Y (x|y),

and the mutual information between the two is given by I(X;Y) = H(X) −
H(X|Y). The min-entropy of a random variable X ∈ X , denoted by H∞(X),
is given by H∞(X) = − log(max

x
(PX(x))). The statistical distance between two

random variables X,Y ∈ X is defined by,

SD(X,Y) � 1
2

∑

x∈X
|Pr(X = x) − Pr(Y = x)|.

A communication channel is modelled as a probabilistic function that maps
an input alphabet X to an output alphabet Y. The channel W(X) = Y takes
input X ∈ X , and outputs Y ∈ Y. The probability distribution of Y depends on
the distributions of X and the probabilistic function W (·). In many communica-
tion systems input and/or output of the channel take values from real numbers.
These are called continuous channels. An AWGN channel is a continuous channel
in which the random variables X and Y corresponding to the input and output
of the channel respectively, are related as Y = X + N , where N is the noise
and is a random variable that is drawn from a zero-mean Gaussian distribution
with variance N0

2 ; that is, N (0, N0
2). If the noise variance is zero or the input is

unconstrained, there exist an infinite subset of inputs that are distinguishable
at the output with arbitrarily small error probability. However, in practice the
variance is always non-zero and the input is always power limited. The input
signal energy for each bit of the transmitted information block is denoted by
Eb. This constrains the input signal energy and power. In a discrete channel W
the input and output alphabets are discrete sets. The channel is specified by a
transition probability matrix PW, where rows and columns are labelled by the
input and output alphabets, respectively, and entries are conditional probabili-
ties, PW[x,y] = pxy = Pr(Y = y|X = x). A channel is called strongly symmetric
if the rows of the transition matrix are permutations of one another, and so is
the case for the columns. The channel W(·) is symmetric if there exists a par-
tition of the output set Y = Y1 ∪ · · · ∪ Yn, such that for all i, the sub-matrix
PWi

= PW[X ,Yi] is strongly symmetric.

Wiretap Channel Model. In the general wiretap model, also called broadcast
model [8], a sender is connected to the receiver through the main channel W1 :
X → Y, and to the eavesdropper through a second channel W2 : X → Z,
called the wiretapper channel. Thus, WT : X → Y × Z. In the Wyner’s original
model, the wiretapper channel is a degraded version of the main channel, and
the Markov chain X → Y → Z holds. We consider the original Wyner wiretap
model. The goal of wiretap channel coding is to provide communication secrecy
and reliability. Efficiency of wiretap codes is measured by the information rate,
which is the number of information bits that can be transmitted reliably and

176 S. Sharifian et al.

secretly, per usage of the wiretap channel (One can also use a normalized form
R/ log |Σ| of the communication rate (cf [14]), where Σ is the code alphabet. For
example, the information rate of linear codes is usually defined as the ratio of
the code dimension to the block length.) The information rate of wiretap codes
is upper bounded by the secrecy capacity Cs of the wiretap channel.

Theorem 1 [18]. The secrecy capacity of Wyner wiretap channel when W1 and
W2 are symmetric is given by,

Cs = CW1 − CW2 ,

where CW1 and CW2 are (reliability) channel capacities of W1 and W2.

Since the capacity of a broadcast channel depends on the conditional marginal
distributions only [7], the above capacity result also holds for a stochastically
degraded broadcast channel, which is defined below.

Definition 1. A broadcast channel X → Y ×Z with conditional marginals W1 :
X → Y and W2 : X → Z is said to be stochastically degraded if there exists a
third channel W3 : Y → Z such that,

PW2 [x, z] =
∑

y∈Y
PW3 [y, z]PW1 [x,y], (1)

or equivalently
PW2 = PW3 × PW1 .

2.1 QAM and OFDM

OFDM is a multicarrier modulation scheme which is widely used in modern wire-
less technologies and standards such as 4G mobile communications, WiMax, LTE
and 802.11 a/g/n [22]. In OFDM many narrowband signals at different frequen-
cies, each carry a small amount of information (number of bits). The narrowband
signals may use modulations such as Quadrature Amplitude Modulation (QAM)
which can be expressed as,

s(t) = AIcos2πfct − AJsin2πfct, 0 < t < T,

where AI and AJ are the amplitude for in-phase and quadrature phase compo-
nents, fc is the carrier frequency, and T is the symbol time duration. The OFDM
signal is constructed at the transmitter by, (i) taking N (for example N = 64 in
802.11) QAM modulated signals, and (ii) applying Inverse Fast Fourier Trans-
form (IFFT) to obtain OFDM time samples that will be sent over the channel.
For N carrier frequencies, let ak denote the OFDM time sample in the k-th time
interval and obtained using IFFT:

ak =
N−1∑

n=0

Anei2πkn/N k = 0, 1, . . . , N − 1, (2)

A Virtual Wiretap Channel for Secure Message Transmission 177

where An is a complex number. Each OFDM symbol consists of N time samples
(a0,a1, . . . ,aN−1). The transmitted signal is a sequence of OFDM time samples,
each with Gaussian distribution. This is because each OFDM sample is a linear
combination of N modulated signals, which because of central limit theorem
results in a Gaussian distribution.

2.2 iJam and Basic iJam Transmission Protocol

iJam [13] is a protocol for key agreement between two parties, and uses Basic
iJam Transmission (BiT) protocol as a subprotocol. Our focus is on BiT protocol.
BiT protocol is a protocol between a sender and a receiver who also takes the
role of a jammer, resulting in outputs for the receiver and the eavesdropper.
The sender sends each OFDM symbol twice (the symbol and its identical copy)
in two consecutive subintervals. Thus the time interval for sending an OFDM
symbol twice of a subinterval (effectively doubling the sending time). An OFDM
symbol is received as a sequence of time samples. The receiver randomly jams
a time sample in the original symbol in the first subinterval, or its copy in
the second subinterval. Jamming is by sending a Gaussian distributed jamming
signal with the same distribution as the sent time samples, over the channel. The
receiver will receive unjammed (clean) time samples of the two subintervals, and
reconstructs the OFDM symbol with perfect fidelity.

2.3 Eavesdropper Strategies

In BiT, the sent time sample and the jamming signal will be combined at Eve’s
receiver. Thus for each OFDM symbol, Eve will receive two copies, each con-
sisting of some jammed and some clean time samples. The eavesdropper can use
different decoding strategies. They may treat the jamming signal as noise and
try to decode in presence of jamming; or they can implement interference can-
cellation or joint decoding in an attempt to simultaneously decode the jamming
signal and the original transmission. In [13] authors discuss strategies that can
be used for the receiver’s jamming signal to reduce detectability of the jammed
samples. For example the jammer can transmit at an excessively high rate in an
attempt to remove the possibility of joint decoding. This is because according to
multiuser information theory, decoding multiple signals is impossible if the total
information rate is outside the capacity region [32].

3 BiT as a Virtual Wiretap Channel – An Example

BiT is an interactive physical layer protocol between Alice and Bob, that takes
input from Alice and Bob, and generates outputs for Bob and Eve. Alice’s input
is an information signal consisting of two copies of an input block of information
bits; Bob’s input is a coordinated jamming signal. The output of Bob is a block
of information bits sent by Alice, and Eve’s output is an element of Alice’s space
of block of information bits. We use a small example to provide intuition for our

178 S. Sharifian et al.

approach. In Example 1, we consider a scenario where Alice wants to send a 2-bit
information block x. Let xs denote a 4-QAM modulated signal that carries the
information block x. For this small example, the OFDM symbol consists of only
one signal (N = 1) and there is only a single time sample. Alice’s input to the
BiT protocol is two copies of the OFDM symbol (in this case xs), i.e. (xs,xs),
that are sent in two consecutive time subintervals. Bob’s coordinated jamming
signal is sent coordinated with Alice’s transmission: Bob randomly chooses one
of the two subintervals, corresponding to the two copies, and send their jamming
signal in that time slot. For example, when Bob jams the second time slot, their
jamming signal is (-, J′

s).
Bob will receive the signal corresponding to the unjammed time slot and will

obtain the information block x. Continuing with the above example, if Bob’s
input to the BiT protocol is (-, J′

s), he receives (xs, -).
Eve will receive a combination of the signals sent by Alice and Bob, Vs =

(xs,xs+Js) where Js is the jamming signal that is received by the Eve’s antenna.
If Eve cannot sufficiently distinguish the jammed signal from the unjammed one,
the result will likely to cause an error in decoding. We denote Eve’s decoder
output by z.

The above protocol can be seen as creating a wiretap (broadcast) channel
from Alice to Bob and Eve, that can be described by the probability distribution
Pr(y, z|x) where x,y, and z are the input of Alice, and outputs of Bob and Eve,
respectively, as information blocks. Since y = x, the channel is characterized
by Pr(z|x) which represents the cumulative effect of detection of jamming, and
decoding error caused by the received signal Js.

Example 1. Let x be a 2-bit information block that is sent using BiT protocol
and 4-QAM modulation with frequency f1. Figure 1 shows the transmission of
information block x = 00 using BiT protocol. The process of Eve constructing
their view of the channel is represented using a graph. In the graph, the physical
output of the BiT protocol at Eve’s side is a pair of signals denoted by Vs. One
of the two signals is jammed and Eve tries to figure out which one. If Eve fails to
distinguish the jammed signal from the clean one, Vs is decoded across one of the
two edges labelled by V = (x⊕J)‖x and V = x‖(x⊕J), respectively. The list of
4-tuples following these edges, represent Eve’s decoder’s outputs after receiving
the signal pairs and assuming the jammed subinterval is not detected. The next
set of edges represent Eve’s decision of information block based on the decoder’s
output. Note that when the decoder output is (0000), Eve decides correctly.
In all other cases, Eve might make an error. For simplicity we assumed if the
decoder’s output of the two subintervals are different, Eve randomly chooses one
of the two (they know one of the two are correct). The receiver, who is also
the jammer, can always perfectly locate the unjammed subinterval and hence
have perfect reception y = x = 00. In the following we provide more details on
how the probability of Eve’s outputting a particular information block can be
obtained.

Eve receives two copies of the OFDM (here a 4-QAM) symbol denoted by
Vs. Eve may use various decoding approaches to distinguish the jammed signal
from the unjammed one. If Eve can detect the jammed subinterval (e.g. high

A Virtual Wiretap Channel for Secure Message Transmission 179

Alice
x = 00

BiT
y = x = 00

Bob

Eve
Vs

P (Jamming is detected)=δ

P
(J

a
m

m
in

g
is

n
o
t

d
et

ec
te

d
)

=
1

−
δ

Z = x = 00

V = x‖(x ⊕ J)

V = (x ⊕ J)‖x

1
2

1
2

0001p1

0010p2

0011p3

0000p4

0000p4

1100p3

1000p2

0100p1

10

01

11

00

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

V Z ∈ {0, 1}2

Fig. 1. BiT when a single 4-QAM (OFDM with N = 1) is used.

reception power), she can distinguish the jammed subinterval and can correctly
receive the sent information block: they will simply discard the jammed subin-
terval and decode the unjammed one. Suppose Eve detects the correct jammed
signal with probability 0 < δ < 1 (the dashed arrow in Fig. 1). This will create
output Z = x = 00 for Eve. If Eve’s decoder cannot detect the jammed signal,
the best thing she can do is to decode each OFDM symbol and then use the
information about BiT protocol (repeated symbol) to find the sent information
block. Eve’s OFDM symbol decoder takes Vs and outputs either V = x‖(x⊕ J)
or V = (x⊕J)‖x, depending on the receiver’s choice of the jammed subinterval.
Here J is a 2-bit random variable capturing the effect of the jamming on Eve’s
OFDM symbol decoding. The random variable J depends on the jamming signal
power, the location of the adversary, and Eve’s decoding capabilities, and does
not depend on the sent OFDM symbol. Let P [J = α] denote the probability that
jamming creates an offset α to the original information block. In our example,
we set P [J = 01] = p1, P [J = 10] = p2, P [J = 11] = p3 and P [J = 00] = p4. To
find the original transmitted information block, the adversary maps V ∈ {0, 1}4
to Z ∈ {0, 1}2. When J = 00, V consists of two identical information blocks and
so is correctly mapped to the transmitted information block, x (dotted arrows
in Fig. 1). When J �= 00, Eve randomly chooses the decoded OFDM symbol
of one of the two subintervals for Z = z. One can use other distributions to
choose the output OFDM symbol that better models the adversary’s receiver.

180 S. Sharifian et al.

To summarise, the probability that Eve correctly outputs the correct sent infor-
mation block x = 00 consists of, (i) the probability of Eve correctly detecting
the jammed subinterval with probability δ, (ii) the probability that Eve cannot
successfully detect the jammed interval, but J = 00 with probability (1 − δ)p4
and, (iii) the probability of jamming is not detected, J �= 00 but Eve’s guess of
the sent information block is correct with probability (1 − δ)1−p4

2). Therefore:

P [Z = 00|X = 00] = δ + (1 − δ)p4 + (1 − δ)
1 − p4

2
= δ + (1 − δ)

1 + p4
2

.

Next we study the probability of Eve having an incorrect output. To simplify
the discussion, let p1 = p2 = p3 = (1−p4)

3 . Then for any x′ ∈ {0, 1}2 such that
x′ �= x, we have P [Z = x′|X = 00] = (1 − δ) 1−p4

6 .
For any x ∈ {0, 1}2, the probability that the adversary obtains the correct

information block is calculated similar to x = 00. Let η = δ + (1 − δ)1+p4
2 . The

result of the above process specifies the probabilities of the wiretapper channel
as follows:

P [Z = x|X = x] = η,

P [Z = x|X �= x] =
1 − η

3
.

Thus the transition matrix of the virtual wiretapper channel W is as follows.

PW =

⎡

⎢
⎢
⎣

η 1−η
3

1−η
3

1−η
3

1−η
3 η 1−η

3
1−η
3

1−η
3

1−η
3 η 1−η

3
1−η
3

1−η
3

1−η
3 η

⎤

⎥
⎥
⎦ ,

In summary, using BiT results in Eve receiving the information block x through a
probabilistic channel with output Z ∈ {0, 1}2, resulting in a wiretapper channel
that is noisier than the main channel (which is noiseless), hence enabling secure
communication.

Remark 1. According to [13], when the three conditions described in Sects. 2.1,
2.2 and 2.3 are met, we can have η < 1 (the above example does not satisfy
Sect. 2.1, so η = 1). We use the above example for the purpose of illustrating
ideas.

4 Virtual Wiretap Channel Model

In the following we extend the above ideas to the general case where a complex
OFDM signal is used.
Eavesdropper’s View. Consider an OFDM signal with N frequencies where
each signal uses 2q-QAM modulation. Let X ∈ {0, 1}Nq denote the information
block that is transmitted using an OFDM symbol (a0,a1, · · · ,aN−1). By invok-
ing BiT protocol, for each information block, 2N time samples are generated

A Virtual Wiretap Channel for Secure Message Transmission 181

and sent over 2N consecutive time intervals. Eve receives 2N time samples. For
two corresponding samples, one is a clean sample and the other is the jammed
one. Let Vs ∈ C

2N be the random variable representing the 2N time samples.
The received signal is mapped into an Nq-bit information block using the fol-
lowing eavesdropper decision unit (the includes their jamming detection, OFDM
decoder and information block decision).

E : C2N → {0, 1}Nq.

There are two cases.

1. Recovery of the information block is successful. The adversary can correctly
detect all N jammed samples, for example by examining the received signal
power [24]. Using all the correct time samples, the adversary correctly recovers
the OFDM symbol and the information block respectively. There are two
other cases in which information block recovery is successful. One is when
the jamming signal does not change any of the time samples and the other
case is when the adversary’s random guess for the clean sample is correct
for all the clean samples. Let η, 0 < η < 1 denote the probability that the
adversary recovers the information block correctly.

2. Recovery of the information block fails. If the adversary cannot correctly
detect even one of the jammed time samples, because of the use of FFT
on the time samples, all the recovered frequency samples will be affected and
the recovered information block will be incorrect. We simplicity of calcula-
tions, we assume Eve outputs any of the incorrect information blocks from
the set {0, 1}Nq\{X}, with the same probability. That is each possible incor-
rect 2Nq − 1 string occurs with probability 1−η

2Nq−1
. As noted earlier this can

be replaced by other distributions that better estimates Eve’s reception.

Let the random variable Z ∈ {0, 1}Nq denote the information block that is
output by Eve’s decision unit E; that is, Z = E(V). We refer to Z as Eve’s view.
The conditional distribution of the Eve’s view of the sent information block X
is denoted by Z|X and is given as follows.

P [Z = x|X = x] � η,

P [Z = x|X �= x] � 1 − η

2Nq − 1
.

Thus we have a virtual noisy channel W : {0, 1}Nq → {0, 1}Nq with transition
matrix,

PW =

⎡

⎢
⎢
⎢
⎣

η 1−η
2Nq−1

. . . 1−η
2Nq−1

1−η
2Nq−1

η . . . 1−η
2Nq−1

...
...

. . .
...

1−η
2Nq−1

1−η
2Nq−1

. . . η

⎤

⎥
⎥
⎥
⎦

. (3)

We call this channel a virtual wiretapper channel from the sender to Eve, repre-
sented by Z = W(X).

182 S. Sharifian et al.

Receiver’s View. The receiver always knows the unjammed time sample and
so is effectively connected to the sender via a noiseless main channel.

Definition 2. Let η denote the probability that Eve correctly recovers an infor-
mation block that is sent using a Basic iJam Transmission (BiT) that uses
OFDM with N -frequencies, each using 2q-QAM. We define a virtual wiretap
channel and denote it by BiTN

η,q. This wiretap channel has noiseless main chan-
nel and the transition probability matrix of the wiretapper channel given in (3).

Theorem 2. The secrecy capacity of BiTN
η,q wiretap channel is given by:

Cs(BiTN
η,q) = −{η log η + (1 − η) log

1 − η

(2Nq − 1)
}.

Proof. According to Definition 5, channel W(·) is symmetric and degraded with
respect to the noiseless main channel.

The secrecy capacity of the wiretap channel is given by Theorem 1.

Cs = H(X|Z) − H(X|Y) = H(X|Z),

where X is uniform, and Y and Z are the output of the main channel and the
wiretapper channel, respectively. Note that in the above equation H(X|Y) = 0
because the main channel is noiseless. Using the transition probability matrix in
Definition 5, we have,

H(X|Z) =
∑

z∈{0,1}Nq

P [Z = z]H(X|Z = z)

= −{η log η + (1 − η) log
1 − η

(2Nq − 1)
}.

(4)

�

5 Secure Message Transmission Using BiT

BiT had been introduced [13] to construct a key agreement protocol. Using the
above model we construct a secure message transmission protocol with provable
security. We will use capacity-achieving wiretap coding construction in [4] that
provides semantic security, and has efficient encryption and decryption functions.
The wiretap construction in [6] is for binary input symmetric channels. The q-ary
channel alphabet is from [4, Sect. 5.5] and its extension [5].

5.1 A Semantically Secure Wiretap Code

The construction is a seeded encryption and uses an invertible extractor.

Definition 3 [10]. A function EXT : Sds × {0, 1}n → {0, 1}� is a (d, ε)-strong,
average-case extractor if, SD((EXT(S,X), Z, S); (U,Z, S)) ≤ ε for all pairs of cor-
related random variables (X,Z) over {0, 1}n × {0, 1}∗, assuming H̃∞(X|Z) ≥ d.

A Virtual Wiretap Channel for Secure Message Transmission 183

Seeded Encryption. For a public uniformly distributed random variable S ∈
Sds and an arbitrarily distributed message M ∈ {0, 1}b, the seeded encryption
function SE : Sds × {0, 1}b → {0, 1}nNq, outputs a ciphertext SE(S,M). The
corresponding seeded decryption function is SDE : Sds × {0, 1}nNq → {0, 1}b

such that for all S ∈ Sds and M ∈ {0, 1}b we have SDE(S,SE(S,M)) = M .

Inverting Extractors. The function INV : {0, 1}r × Sds × {0, 1}b → {0, 1}nNq

is an inverter for the extractor EXT(·, ·) in Definition 3, if for a uniform R ∈
{0, 1}r and for all S ∈ Sds and Y ∈ {0, 1}b, the random variable INV : (S,R, Y)
is uniformly distributed over all preimages of Y under EXT(S, ·).

Let Sds = {0, 1}nNq\0nNq. For inputs S ∈ Sds and X ∈ {0, 1}nNq and
nNq > b, the function EXT : Sds × {0, 1}nNq → {0, 1}b is defined as follows.

EXT(S,X) = (S � X)|b,

where � denotes multiplication over F
nNq
2 = {0, 1}nNq, and X|b denotes the

first n bits of X. An efficient inverter for EXT(S,X) is given by INV(S,R,M) =
S−1 � (M‖R), where S−1 denotes the multiplicative inverse of S in F

nNq
2 and

R is a uniformly distributed variable over {0, 1}n−b. For the message block M ∈
{0, 1}b, S ∈ Sds, and R

$← {0, 1}r, the seeded encryption function SE(S,M) is
defined as follows.

X = SE(S,M) = INV(S,R,M) = S−1 � (M‖R).

5.2 Using the Wiretap Construction with BiTN
η,q

Let ENC denote the construction that uses wiretap coding for BiTN
η,q.

M ∈ {0, 1}b

SE(S, M)
X ∈ {0, 1}nNq

BiT N
η,q

ENC

Fig. 2. Secure message transmission based on BiT protocol

As illustrated in Fig. 2, the encryption block ENC consists of two sub-blocks:

1. A seeded wiretap encryption code SE : Sds × {0, 1}b → {0, 1}nNq that
encrypts each information block of size b bits into a codeword of size nNq
bits.

184 S. Sharifian et al.

2. The BiTN
η,q block that breaks the codeword into Nq-bit units, and sends it

using BiT protocol.

To capture efficiency of the proposed message transmission protocol, we define
the communication rate R of the system as the number of transmitted bits that
are sent with security and reliability, in each application of BiTN

η,q. This is similar
to the definition of rate in wiretap channel literature (cf [8]).

Definition 4. The rate of the message transmission protocol over BiTN
η,q in

Fig. 2 is R = b
n .

The rate of the ENC block in Fig. 2 asymptotically approaches the secrecy
capacity of the virtual wiretap channel BiTN

η,q. The construction provides seman-
tic security and reliability. The codeword length from SE(S,M) is nNq = b + r,
where b is the total length of the message and r is the length of the concate-
nated random string. For σ bit semantic security, the length of r is given in [25]
as recalled below.

r =
⌈
2(σ + 1) +

√
n log(2Nq + 3)

√
2(σ + 3) + (n)ψ(W)

⌉
,

where ψ(W) = | log Z| − H(W) = Nq − H(X|Z) in the above equation. Secrecy
capacity of BiTN

η,q for N = 64 and various values of η and q, are given in the
AppendixA.

6 BiT Over Noisy Receiver Channel

In Wyner wiretap model the secrecy capacity is zero when the main channel is
noisy while the eavesdropper’s channel is noise free. That is one cannot expect
any secure communication from Alice to Bob. BiT creates a virtual wiretap
channel for Eve when the physical channel between Alice and Bob is noise free.
In the following we will show that when receiver’s physical channel is corrupted
by Additive White Gaussian Noise (AWGN) (while the eavesdropper’s physical
channel remains noise free), BiT can be used to introduce noise in the Eve’s
channel and so make secure communication possible. Figure 3 shows application
of BiT when the main channel is corrupted by AWGN.

Eavesdropper’s View. The eavesdropper’s channel is the same as in Sect. 4,
created by the BiT protocol. This is because the noise only affects transmission
in the main channel. Eve receives Vs = (xs ⊕ Js)‖xs or Vs = xs‖(xs ⊕ Js), and
the eavesdropper channel transition probability is given by (3).

Receiver’s View. The receiver channel, however, is corrupted by AWGN. We
first consider the effect of AWGN on a single 2q-QAM signal (i.e., OFDM with
a single frequency) and then generalize it to an OFDM with N frequencies.

A Virtual Wiretap Channel for Secure Message Transmission 185

Fig. 3. BiT protocol when Bob’s physical channel is noisy

Let AWGN(·) denote the AWGN channel where a noise is added to the input.
Bob knows which subinterval is jammed. Therefore, his reception is one OFDM
symbol corrupted by the AWGN noise, that is

AWGN(xs) = xs + Ns,

where Ns denotes the random signal corresponding to the white Gaussian noise.
Let B(·) be the function that maps Bob’s received signal to an Nq-bit string.
The virtual main channel from Alice to Bob is defined as,

Y = M(X) = B(AWGN(xs)).

Let the transition probability matrix of a 2q-QAM signal that is corrupted
by AWGN be denoted by PM,q. Using the error probability calculation of BPSK
in [12] Chap. 6.1.2, the 4-QAM transition probability matrix will be given as:

PM,2 =

⎡

⎢
⎢
⎣

(1 − Pb)(1 − Pb) Pb(1 − Pb) Pb(1 − Pb) P 2
b

Pb(1 − Pb) (1 − Pb)(1 − Pb) P 2
b Pb(1 − Pb)

Pb(1 − Pb) P 2
b (1 − Pb)(1 − Pb) Pb(1 − Pb)

P 2
b Pb(1 − Pb) Pb(1 − Pb) (1 − Pb)(1 − Pb)

⎤

⎥
⎥
⎦ ,

where the probability Pb is computed as follows.

Pb = Q(
√

Eb

N0
),

where Eb is the energy-per-bit of the input signal, N0
2 is the variance of the

AWGN, and Q(z) is the probability that a Gaussian random variable x with
mean 0 and variance 1 takes a value larger than z, namely,

Q(z) = P[x > z] =
∫ ∞

z

1
2π

e−x2/2dx.

The function Q(·) can be efficiently computed using approximations such as the
one in [16].

186 S. Sharifian et al.

For OFDM signal with N frequencies, assuming noise independently corrupts
each frequency the transition probability matrix, PM will be given as,

PM = P⊗N
M,q . (5)

We thus have a virtual wiretap channel for BiT protocol in the setting where
the receiver’s physical channel is an AWGN (and the eavesdropper has noise free
physical channel).

Definition 5. Let η denote the probability that Eve correctly recovers an infor-
mation block that is sent using a Basic iJam Transmission (BiT) that uses
OFDM with N -frequencies, each using 2q-QAM. We define a virtual wiretap
channel for the setting where the receiver’s physical channel is an AWGN and
denote it by AWGN-BiTN

η,q. This wiretap channel has a noisy main channel with
transition probability matrix given by (5) and a wiretapper channel with transi-
tion probability matrix given by (3).

Theorem 3. The secrecy capacity of AWGN-BiTN
η,q is given by,

Cs = CM − CW,

if the matrix R = PW × P−1
M is the transition probability matrix of a channel,

namely, R satisfies the following two conditions,

1. R does not have any negative component,
2. The sum of the components in each row of R is equal to 1.

Remark 2. Condition 1 in Theorem3 can be satisfied by imposing a relation
between η (the parameter characterizing the virtual wiretapper channel W) and
Pb (the parameter characterizing the virtual main channel M). Condition 2
can be verified directly by computation. We provide more details by giving an
example for N = 1 case in AppendixB.

Proof. From R = PW × P−1
M , we have

R × PM = PW.

Conditions 1 and 2 are sufficient to ensure that R is a transition probability
matrix for a channel and so using Definition 1, PW is a stochastically degraded
channel with respect to PM. The rest of the proof follows from Theorem1. �

7 Conclusion and Future Works

BiT uses an innovative way of coordinated jamming to construct a virtual wire-
tap channel and enable information theoretically secure communication without
a shared key. We showed how to model BiT as a virtual wiretap channel, esti-
mate its parameters, and use the model to design a provably secure message
transmission protocol.

A Virtual Wiretap Channel for Secure Message Transmission 187

BiT is a subprotocol of iJam protocol that had been implemented and exper-
imentally analyzed. By formal modelling of BiT protocol and developing a prov-
ably secure message transmission scheme based on that, we have effectively con-
structed a keyless information theoretically secure message transmission system
that can be used in practice.

Our scheme asymptotically achieves the secrecy capacity of the virtual wire-
tap channel. The primary assumption underlying our modelling is that the
decoding error probability of Eve can be estimated. This probability depends
on factors such as sender and receiver (jamming) signal power, the location and
receiving equipments of the eavesdropper. An interesting direction for future
work would be to design protocols that are more robust to correct estimation
of the error probability. Extending our analysis and approach to other physical
layer security protocols is also an interesting direction for future work.

Appendix A: Achievable Transmission Rate Using BiTN
q,η

For a noise free main channel, the secrecy capacity of BiTN
q,η is given by:

Cs(BiTN
η,q) = −{η log η + (1 − η) log

1 − η

(2Nq − 1)
}.

Figure 4 shows the rate of communication when, the information block length
is Nq bits, q = 2, 3 and 4, and N = 64. The graphs show the achievable rates for
σ = 128 semantic security, and η = 0.2 (upper graph) and η = 0.4 (lower graph).
The figures show that the achievable secrecy rate and secrecy capacity decreases
as η grows. This is expected because higher η means that the adversary has a
better chance of correctly decoding the jammed signal.

Appendix B: BiT over Noisy Receiver Channel—An
Example

In this section we derive a sufficient relation between Pb and η so that the virtual
wiretap channel is a stochastically degraded broadcast channel. Following Sect. 3,
the transition matrix of the virtual wiretapper channel W for q = 2 is given by:

PW =

⎡

⎢
⎢
⎣

η 1−η
3

1−η
3

1−η
3

1−η
3 η 1−η

3
1−η
3

1−η
3

1−η
3 η 1−η

3
1−η
3

1−η
3

1−η
3 η

⎤

⎥
⎥
⎦ ,

where u = 1−η
3 , and v = η − 1−η

3 = 4η−1
3 . Note that the sum of each row is

4u + v = 1. On the other hand, we can compute:

P−1
M = 1

(1−2Pb)2
·

⎛

⎜
⎜
⎝

(1 − Pb)(1 − Pb) −Pb(1 − Pb) −Pb(1 − Pb) P 2
b

−Pb(1 − Pb) (1 − Pb)(1 − Pb) P 2
b −Pb(1 − Pb)

−Pb(1 − Pb) P 2
b (1 − Pb)(1 − Pb) −Pb(1 − Pb)

P 2
b −Pb(1 − Pb) −Pb(1 − Pb) (1 − Pb)(1 − Pb)

⎞

⎟
⎟
⎠ .

188 S. Sharifian et al.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Message Block Length (KiB)

0

50

100

150

R
at

e

Achievable rate for q=2
Achievable rate for q=3
Achievable rate for q=4
Capacity for q=2
Capacity for q=3
Capacity for q=4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Message Block Length (KiB)

0

50

100

150

R
at

e

Achievable rate for q=2
Achievable rate for q=3
Achievable rate for q=4
Capacity for q=2
Capacity for q=3
Capacity for q=4

Fig. 4. The secrecy rate and capacity (bits per channel use) for N = 64 and different
values of q for η = 0.2 (upper graph) and η = 0.4 (lower graph).

Let a = 1 − Pb and b = Pb. The above matrix can be written as:

P−1
M =

1
(a − b)2

·

⎛

⎜
⎜
⎝

a2 −ab −ab b2

−ab a2 b2 −ab
−ab b2 a2 −ab
b2 −ab −ab a2

⎞

⎟
⎟
⎠ .

The sum of entries of each row is given by, 1
(a−b)2 (a2 − 2ab + b2) = 1. The

following is used to prove the required relation.

Lemma 1. Let there be two matrices

A =

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann

⎤

⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎣

b11 b12 . . . b1n

b21 b22 . . . b2n

...
...

...
bn1 bn2 . . . bnn

⎤

⎥
⎥
⎥
⎦

.

If
∑n

j=1 aij = 1 and
∑n

j=1 bij = 1 for any i ∈ [n], then
∑n

j=1(AB)ij = 1, for
any i ∈ [n].

A Virtual Wiretap Channel for Secure Message Transmission 189

Proof. For any i ∈ [n],
∑n

j=1(AB)ij =
∑n

j=1 (
∑n

k=1 aikbkj)

=
∑n

k=1 aik ·
(∑n

j=1 bkj

)

=
∑n

k=1 aik

= 1.

�

Lemma 2. The virtual wiretap channel is a stochastically degraded broadcast

channel if Pb ≤ 1−
√

4η−1
3

2 and η > 1
4 .

Proof. The virtual wiretap channel is a stochastically degraded broadcast chan-
nel if there exists a matrix R such that PW = PM × R, and R is a channel
transition matrix; that is, has non-negative entries and each row sums to 1.
Using the matrices PM and PW above, we have:

R = PW × P−1
M

= 1
(a−b)2

⎡

⎢
⎢
⎣

u(a − b)2 + va2 u(a − b)2 − vab u(a − b)2 − vab u(a − b)2 + vb2

u(a − b)2 − vab u(a − b)2 + va2 u(a − b)2 + vb2 u(a − b)2 − vab
u(a − b)2 − vab u(a − b)2 + vb2 u(a − b)2 + va2 u(a − b)2 − vab
u(a − b)2 + vb2 u(a − b)2 − vab u(a − b)2 − vab u(a − b)2 + va2

⎤

⎥
⎥
⎦ .

Using Lemma 1, entries in each row of R sum to 1.
To ensure entries ofR are all non-negative, we first note that u(a−b)2+va2 > 0

and u(a−b)2+vb2 > 0. So the virtual wiretap channel is a stochastically degraded
broadcast channel if u(a − b)2 − vab ≥ 0 and so:

u(a − b)2 − vab ≥ 0 ⇔ ua2 + ub2 − (2u + v)ab ≥ 0
⇔ ua2 + ub2 − (2u + 1 − 4u)ab ≥ 0
⇔ ua2 + ub2 − (1 − 2u)ab ≥ 0
⇔ u(a + b)2 − ab ≥ 0
⇔ u − ab ≥ 0
⇔ P 2

b − Pb + u ≥ 0,

where 4u+v = 1 and a+b = 1 are repeatedly invoked to simplify the expressions.
The solution to the above inequality depends on the determinant 1 − 4u. When
1 − 4u > 0, we have

P 2
b − Pb + u ≥ 0 ⇔

(
Pb − 1−√

1−4u
2

) (
Pb − 1+

√
1−4u
2

)
≥ 0

⇔
(
Pb − 1−√

v
2

) (
Pb − 1+

√
v

2

)
≥ 0

⇔
(

Pb − 1−
√

4η−1
3

2

)(

Pb − 1+
√

4η−1
3

2

)

≥ 0

⇔ Pb ≤ 1−
√

4η−1
3

2 or Pb ≥ 1+
√

4η−1
3

2 .

By assumption, Pb ∈ [0, 1
2] and so Pb ≤ 1−

√
4η−1

3
2 = 1

2 −
√

4η−1
12 . �

190 S. Sharifian et al.

Example 2. Let Pb = 0.1 and Let η = 0.55. Therefore,

PM =

⎡

⎢
⎢
⎣

0.81 0.09 0.09 0.01
0.09 0.81 0.01 0.09
0.09 0.01 0.81 0.09
0.01 0.09 0.09 0.81

⎤

⎥
⎥
⎦

and

PW =

⎡

⎢
⎢
⎣

0.55 0.15 0.15 0.15
0.15 0.55 0.15 0.15
0.15 0.15 0.55 0.15
0.15 0.15 0.15 0.55

⎤

⎥
⎥
⎦ .

Therefore

R = PW × P−1
M =

⎡

⎢
⎢
⎣

0.66 0.094 0.094 0.156
0.094 0.66 0.156 0.094
0.094 0.156 0.66 0.094
0.156 0.094 0.094 0.66

⎤

⎥
⎥
⎦ .

R is the transition probability matrix of a virtual channel that confirms PW

is degraded with respect to PM. The secrecy capacity in this example is

Cs = CM − CW = (2 − 0.7624) − (2 − 1.1515) = 0.3891.

References

1. 802.1x & WPA settings. https://www.ietf.org/mail-archive/web/ietf/current/
msg32026.html

2. The secure sockets layer (SSL) protocol version 3.0. https://tools.ietf.org/html/
rfc6101

3. SSH protocol architecture. https://www.ietf.org/proceedings/52/I-D/draft-ietf-
secsh-architecture-11.txt

4. Bellare, M., Tessaro, S.: Polynomial-time, semantically-secure encryption achieving
the secrecy capacity. arXiv preprint arXiv:1201.3160 (2012)

5. Bellare, M., Tessaro, S., Vardy, A.: A cryptographic treatment of the wiretap chan-
nel. arXiv preprint arXiv: 1201.2205 (2012)

6. Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 294–311.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 18

7. Bergmans, P.: Random coding theorem for broadcast channels with degraded com-
ponents. IEEE Trans. Inf. Theory 19(2), 197–207 (1973)

8. Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans.
Inf. Theory 24(3), 339–348 (1978)

9. Dickerson, K.: Microsoft lab predicts we’ll have a working ‘hybrid’ quantum
computer in 10 years, October 2015. http://www.techinsider.io/microsoft-hybrid-
quantum-computer-2015-10

https://www.ietf.org/mail-archive/web/ietf/current/msg32026.html
https://www.ietf.org/mail-archive/web/ietf/current/msg32026.html
https://tools.ietf.org/html/rfc6101
https://tools.ietf.org/html/rfc6101
https://www.ietf.org/proceedings/52/I-D/draft-ietf-secsh-architecture-11.txt
https://www.ietf.org/proceedings/52/I-D/draft-ietf-secsh-architecture-11.txt
http://arxiv.org/abs/1201.3160
http://arxiv.org/abs/1201.2205
http://dx.doi.org/10.1007/978-3-642-32009-5_18
http://www.techinsider.io/microsoft-hybrid-quantum-computer-2015-10
http://www.techinsider.io/microsoft-hybrid-quantum-computer-2015-10

A Virtual Wiretap Channel for Secure Message Transmission 191

10. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24676-3 31

11. Dong, L., Han, Z., Petropulu, A.P., Poor, H.V.: Cooperative jamming for wireless
physical layer security. In: 2009 IEEE/SP 15th Workshop on Statistical Signal
Processing, pp. 417–420. IEEE (2009)

12. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge
(2005)

13. Gollakota, S., Katabi, D.: Physical layer wireless security made fast and channel
independent. In: 2011 Proceedings IEEE INFOCOM, pp. 1125–1133. IEEE (2011)

14. Guruswami, V.: Bridging Shannon and Hamming: list error-correction with optimal
rate (2010)

15. Han, Z., Marina, N., Debbah, M., Hjørungnes, A.: Physical layer security game:
interaction between source, eavesdropper, and friendly jammer. EURASIP J.
Wirel. Commun. Netw. 2009(1), 1 (2010)

16. Karagiannidis, G.K., Lioumpas, A.S.: An improved approximation for the Gaussian
Q-function. IEEE Commun. Lett. 11(8) (2007)

17. Lai, L., El Gamal, H.: The relay-eavesdropper channel: cooperation for secrecy.
IEEE Trans. Inf. Theory 54(9), 4005–4019 (2008)

18. Leung-Yan-Cheong, S.: On a special class of wiretap channels (Corresp.). IEEE
Trans. Inf. Theory 23(5), 625–627 (1977)

19. Leung-Yan-Cheong, S., Hellman, M.: The Gaussian wire-tap channel. IEEE Trans.
Inf. Theory 24(4), 451–456 (1978)

20. Mahdavifar, H., Vardy, A.: Achieving the secrecy capacity of wiretap channels
using polar codes. IEEE Trans. Inf. Theory 57(10), 6428–6443 (2011)

21. Muramatsu, J., Miyake, S.: Construction of wiretap channel codes by using sparse
matrices. In: 2009 IEEE Information Theory Workshop (2009)

22. Schulze, H., Lüders, C.: Theory and Applications of OFDM and CDMA: Wideband
Wireless Communications. Wiley, Hoboken (2005)

23. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

24. Strasser, M., Danev, B., Čapkun, S.: Detection of reactive jamming in sensor net-
works. ACM Trans. Sens. Netw. (TOSN) 7(2), 16 (2010)

25. Tal, I., Vardy, A.: Channel upgrading for semantically-secure encryption on wiretap
channels. In: 2013 IEEE International Symposium on Information Theory Proceed-
ings (ISIT), pp. 1561–1565. IEEE (2013)

26. Tang, X., Liu, R., Spasojevic, P., Poor, H.V.: The Gaussian wiretap channel with a
helping interferer. In: 2008 IEEE International Symposium on Information Theory,
pp. 389–393. IEEE (2008)

27. Tang, X., Liu, R., Spasojevic, P., Poor, H.V.: Interference assisted secret commu-
nication. IEEE Trans. Inf. Theory 57(5), 3153–3167 (2011)

28. Tekin, E., Yener, A.: Achievable rates for the general Gaussian multiple access
wire-tap channel with collective secrecy. arXiv preprint cs/0612084 (2006)

29. Tekin, E., Yener, A.: The Gaussian multiple access wire-tap channel: wireless
secrecy and cooperative jamming. In: 2007 Information Theory and Applications
Workshop, pp. 404–413. IEEE (2007)

30. Tekin, E., Yener, A.: The general Gaussian multiple-access and two-way wire-
tap channels: achievable rates and cooperative jamming. IEEE Trans. Inf. Theory
54(6), 2735–2751 (2008)

http://dx.doi.org/10.1007/978-3-540-24676-3_31
https://arxiv.org/abs/cs/0612084

192 S. Sharifian et al.

31. Thangaraj, A., Dihidar, S., Calderbank, A.R., McLaughlin, S.W., Merolla, J.-M.:
Applications of LDPC codes to the wiretap channel. IEEE Trans. Inf. Theory
53(8), 2933–2945 (2007)

32. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge
University Press, Cambridge (2005)

33. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

Necessary and Sufficient Numbers of Cards for
Securely Computing Two-Bit Output Functions

Danny Francis1, Syarifah Ruqayyah Aljunid1, Takuya Nishida1,
Yu-ichi Hayashi2, Takaaki Mizuki3(B), and Hideaki Sone3

1 Graduate School of Information Sciences, Tohoku University,
6-3-09 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan

2 Faculty of Engineering, Tohoku Gakuin University,
1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan
3 Cyberscience Center, Tohoku University,

6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
tm-paper+card2out@g-mail.tohoku-university.jp

Abstract. In 2015, Koch et al. proposed a five-card finite-runtime com-
mitted protocol to compute securely the AND function, showing that
their protocol was optimal: there is no protocol computing the AND
function with four cards in finite-runtime fashion and committed format.
Thus, necessary and sufficient numbers of cards for computing single-bit
output functions are known. However, as for two-bit output functions,
such an exact characterization is unknown. This paper gives a six-card
(or less) protocol for each of all two-bit output functions and proves that
our finite-runtime committed protocols are optimal by providing a lower
bound. In other words, we give the necessary and sufficient number of
cards for any two-bit output function to be computed by a finite-runtime
committed protocol. Our lower bound can also be applied to any function
which outputs more than two bits.

1 Introduction

Card-based cryptographic protocols perform secure multi-party computations
based on simple playing cards. They are interesting because they can be imple-
mented with physical objects, and also have been practically used for pedagogical
purpose [3]. Such a protocol was described for the first time in 1989 at EURO-
CRYPT ’89, that is, den Boer [1] described a protocol based on a deck of five
cards computing securely the AND Boolean function (a, b) �→ a∧b. Let us intro-
duce this protocol. Each of two players is given two cards: one ♥ and one ♣.
These two cards allow each player to encode a bit: 0 is encoded by ♣♥ and 1
is encoded by ♥♣. Each player chooses an input. According to his input bit b,
Player 2 arranges his two cards, and puts them on the table face down after he
reverses the order of these two cards. Next, a ♣ card is put on the stack, and
then Player 1 puts his own cards in the right order on the stack according to his
input bit a. Now, we have a stack

? ?
︸ ︷︷ ︸

a

?
♣

? ?
︸ ︷︷ ︸

b̄
c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 193–211, 2017.
DOI: 10.1007/978-3-319-61273-7 10

194 D. Francis et al.

from top to bottom, and Table 1 sums up what the possible stacks are. One can
see easily that stacks leading to a zero output (a∧b = 0) are cyclic permutations
of one another. If each player cuts the stack randomly, the final result a ∧ b
can be deduced by revealing the cards, and no one can know which inputs the
players chose.

Table 1. Possible input sequences for den Boer’s protocol

Player 1 Player 2 Stack from top to bottom

0 0 ♣♥♣♥♣
0 1 ♣♥♣♣♥
1 0 ♥♣♣♥♣
1 1 ♥♣♣♣♥

This first protocol was improved by Mizuki et al. at ASIACRYPT 2012 [4].
They proposed a protocol using only four cards to compute securely the AND
function. This protocol is optimal because we need four cards to describe two
input bits as

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

and hence it uses the minimal number of cards.
The problem with these two protocols is that the final result is revealed at

the end of the computation. Therefore, researches have been made on committed
protocols that would not need to reveal anything at the end of the computation:
the output is a commitment encoding the desired result, say

? ?
︸ ︷︷ ︸

a∧b

.

Committed protocols are quite useful because we can use output commitments
as inputs for another computation without seeing intermediate results. In terms
of the number of required cards, the best finite-runtime committed protocol
was given by Koch et al. at ASIACRYPT 2015 [2]. They proposed a finite-
runtime committed protocol for the AND function using five cards, and proved
that no finite-runtime committed protocol could use fewer cards. Therefore, the
necessary and sufficient number of cards for producing a commitment to a ∧ b
in finite-runtime fashion is five. We write this as

MinDeckFC((a, b) �→ a ∧ b) = 5,

the formal definition of which will be given in Sect. 3.
How about other functions such as the OR and XOR functions? As we will

show in Sect. 3, we can easily characterize classes of two-bit input one-bit output

Necessary and Sufficient Numbers of Cards 195

functions based on the minimal numbers of required cards to compute them
securely in finite-runtime fashion. That is, it is not much difficult for us to specify
the number MinDeckFC(f) for every two-bit input one-bit output function f :
{0, 1}2 → {0, 1} by applying known results. More specifically, there are two such
classes:

B4 = {f : {0, 1}2 → {0, 1} | MinDeckFC(f) = 4}
and

B5 = {f : {0, 1}2 → {0, 1} | MinDeckFC(f) = 5},

as we will present in Sect. 3.
Then, how about two-bit output functions such as the half-adder (a, b) �→

(a ∧ b, a ⊕ b)? Unfortunately, no exact characterization of necessary and suffi-
cient numbers of cards is known for two-bit output functions. More precisely,
as for sufficient numbers, Nishida et al. [7] gave six-card finite-runtime commit-
ted protocols for the functions (a, b) �→ (a ∧ b, ā ∧ b), (a, b) �→ (a ∧ b, b) and
(a, b) �→ (a ∧ b, a ⊕ b), but it is open to determine whether the number six is
necessary or not.

In this paper, we will give a complete and comprehensive answer to this
question: we give a finite-runtime committed protocol for each of all functions
{0, 1}2 → {0, 1}2 with six cards or less and show that our protocols are optimal
by providing a lower bound. For example, for the above three functions, six is a
necessary number of cards1: we will prove that for every “non-trivial” and “non-
degenerate” two-bit output function f , MinDeckFC(f) = 6. For all trivial or
degenerate functions f , we will also specify the numbers MinDeckFC(f), which
are either 4 or 5.

Let us give a practical use of a two-bit output function. Four friends, Alice,
Bob, Charlie and Dave, want to create a company, but both Charlie and Dave
want to be the CEO. They decide to vote. Obviously, Charlie and Dave will
vote for themselves. Therefore, one of them must get the votes of both Alice
and Bob to become the CEO. However, neither Alice nor Bob want their votes
to be revealed if they choose a different person. They decide to vote secretly
with cards. Alice and Bob choose a secret input bit: 0 if they want to vote for
Charlie and 1 if they want to vote for Dave. Then, they just need to perform a
secure protocol to compute the result of the function (a, b) �→ (a∧ b, ā∧ b̄). If the
result is (0, 1), then Charlie becomes the CEO. If the result is (1, 0), then Dave
becomes the CEO. If the result is (0, 0), then nobody is elected. We will show
in this paper that they only need a deck of six cards to vote in finite-runtime
committed fashion.

The remainder of this paper is organized as follows. In Sect. 2, we will define
the model we use to represent card-based cryptographic protocols. In Sect. 3,
we will give some preliminary observations that will be useful for the under-
standing of our results: we will deal with one-bit output functions and notably

1 This paper completes the work of [7] proving that what has been suggested is optimal.

196 D. Francis et al.

define “trivial” functions2 and “degenerate” functions. In Sect. 4, we will give six-
card protocols computing any “non-trivial non-degenerate” two-bit input two-
bit output function. Eventually in Sect. 5, we will prove that for “non-trivial
non-degenerate” functions, our protocols are optimal. We conclude the paper in
Sect. 6.

2 Definitions

In this section, we will define the mathematical objects that we will use to
model card-based cryptographic protocols. All the definitions that we give in
this section come from previous papers.

2.1 Abstract Machine Based Model

Mizuki et al. [5] proposed a formalization of card-based protocols based on
abstract machine. We will first introduce this model, as it will be widely used in
this paper.

Let S = {?,♥,♣} be a set of symbols. The ♥ actually corresponds to a red
card, the ♣ corresponds to a black card, and the ? corresponds to a back-side of
any card.

Definition 1. Let u and v be two symbols of S such that exactly one of them
is equal to ? The expression u

v denotes a lying card. If u =? (resp. v =?) then it
is called a face-down (resp. face-up) card. For a lying card u

v , swap(u
v) def.= v

u and
top(u

v) def.= u. An element of S \ {?} is called an atomic card. If α is an atomic
card, then atom(α

?) def.= α and atom(?
α) def.= α.

Definition 2. A deck is a multiset of atomic cards. We call a d-tuple of lying
cards s = (s1, . . . , sd) a sequence from a deck D if D = [atom(s1), . . . , atom(sd)].
An atomic sequence is a sequence of atomic cards. An atomic sequence from a
deck D is an atomic sequence α = (α1, . . . , αd) such that D = [α1, . . . , αd]. The
expression AtSeqD (or just AtSeq if there is no ambiguity) denotes the set of
all the atomic sequences from a deck D. We call a sequence v = (v1, . . . , vd) a
possible visible sequence of D if there is a sequence (s1, . . . , sd) from D such that
(v1, . . . , vd) = (top(s1), . . . , top(sd)). The expression VisD (or just Vis if there
is no ambiguity) denotes the set of all the possible visible sequences from D.

Let us now define which actions can be made on a sequence of cards. Kinds
of actions were introduced in [5] but we will use the definitions that are given in
[2] and we will adapt them to our needs.

In the following, Sd denotes the symmetric group on a set of d elements.

2 Throughout the paper, we call a Boolean function such as f : {0, 1}n → {0, 1}k

simply a function, except for an “action function” that will appear in Definition 5 in
Sect. 2.1.

Necessary and Sufficient Numbers of Cards 197

Definition 3 (Shuffling). Let D be a deck with |D| = d. Let Π ⊆ Sd, and F
a probability distribution on Π. Let s be a sequence from D. Let shuffleΠ,F (s) def.=
π (s) with π drawn from Π according to distribution F . This action is called a
shuffle. If there is π in Π such that Pr(shuffleΠ,F = π) = 1 then the shuffle is
called a deterministic shuffle3. Otherwise it is called a random shuffle.

Definition 4 (Turn). Let D be a deck with |D| = d. Let T ⊆ {1, . . . , d} and
s = (s1, . . . , sd) be a sequence of lying cards. Let turnT (s) def.= (s′

1, . . . , s
′
d) where

s′
i = swap(si) if i ∈ T and s′

i = si otherwise. This action is called a turn action.
If s′

i is a face-up card for all i ∈ T , then it is called a turn-up action. If s′
i is a

face-down card for all i ∈ T , then it is called a turn-down action.

These are the two actions that we will use. Let us now define what a protocol is.

Definition 5 (Protocol). Let D be a deck, U a set of sequences (U is the set
of input sequences), Q a set of states containing one initial state and one final
state qf . Let A be an action function

A : (Q \ {qf}) × Vis → Q × Action

where Action is a set of tuples containing:

– (shuffle,Π,F) with Π ∈ S|D| and a probability distribution F on Π;
– (turn, T) with T ⊆ {1, . . . , |D|};
– (result, p1, . . . , pl), which occurs if and only if the first component of A’s out-

put is the final state qf , specifies that (sp1 , . . . , spl
) is the final result given by

the protocol, where (s1, . . . , s|D|) is the current sequence.

We say that P = (D, U,Q,A) is a |D|-card protocol.

This paper aims at giving finite-runtime committed protocols. Finite-runtime
means that the length of the executions of the protocol is bounded, as in the
following definition. Let us extend the definition of a protocol for a one-bit output
function given in [2] to multi-output functions.

Definition 6 (Finite-runtime committed protocol for a function). Let
f : {0, 1}n → {0, 1}k be a function. Then we say that P = (D, U,Q,A) is a
finite-runtime committed protocol for f if the following holds:

– the deck D contains at least max({n, k}) cards of each symbol;
– there is a one-to-one correspondence U → {0, 1}n and there is σ ∈ S|D|

such that for every input sequence (s1, . . . , s|D|) whose corresponding input is
b ∈ {0, 1}n,

(sσ(2i−1), sσ(2i)) =

⎧

⎨

⎩

(

?
♣ , ?

♥
)

if b[i] = 0
(

?
♥ , ?

♣
)

otherwise

for all i ∈ {1, . . . , n};
3 A deterministic shuffle is just a permutation of a sequence.

198 D. Francis et al.

– the last action is always (result, p1, . . . , p2k) such that, for every b ∈ {0, 1}n,

(rp2i−1 , rp2i) =

⎧

⎨

⎩

(

?
♣ , ?

♥
)

if f(b)[i] = 0
(

?
♥ , ?

♣
)

otherwise

for all i ∈ {1, . . . , k}, where (r1, . . . , r|D|) is the final sequence;
– it terminates after a bounded number of actions;
– it is secure according to the following Definition 7.

Koch et al. [2] gave a definition of a secure protocol.

Definition 7 (Secure protocol [2]). Let P = (D, U,Q,A) be a protocol. Let
Γ0 be a random variable with values in the set of input sequences U . Let V be
a random variable for the visible sequence trace of the protocol execution. The
protocol P is said to be secure if Γ0 and V are stochastically independent.

2.2 Koch’s Graphs

Koch et al. [2] also came up with an elegant mathematical object that we will
use in this paper. We will call it a status and define it as below. The following
definition is the same as the definition of a “state” in [2]. We changed the name
to avoid any confusion with the states that are mentioned in Definition 5.

Definition 8 (Status [2]). Let P be a finite-runtime committed protocol for
f : {0, 1}n → {0, 1}k and V be a visible sequence trace of P. The status S of P
belonging to V is the map S : AtSeq → Xn,α �→ Pr[α|V] where:

– Xn denotes the set of polynomials over the variables Xb for b ∈ {0, 1}n of
the form

∑

b∈{0,1}n βbXb for βb ∈ [0, 1]. We interpret these polynomials as
probabilities which depend on the probabilities of the inputs b, symbolized by
the variables Xb for b ∈ {0, 1}n.

– for α ∈ AtSeq, Pr[α|V] denotes the probability that the current atomic
sequence is α given that the current visible sequence trace is V .

This definition will be useful because it allows us to draw graphs thanks to
which protocols can be easily understood, as will be seen in Sect. 4.1. We will
refer to these graphs as Koch’s graphs in the rest of the paper.

3 Preliminary Observations

In this section, we will first give necessary and sufficient numbers of cards for
one-bit output functions {0, 1}2 → {0, 1}. Then, we will define “trivial” functions
and “degenerate” functions, and deal with necessary and sufficient numbers of
cards for computing these functions.

Necessary and Sufficient Numbers of Cards 199

3.1 Necessary and Sufficient Numbers of Cards for One-Bit Output
Functions

First of all, let us introduce a notation about necessary and sufficient numbers
of cards, as follows.

Definition 9. Let f : {0, 1}n → {0, 1}k be a function. If d is the minimal
number for which there exists a d-card finite-runtime committed protocol for f ,
then we write MinDeckFC(f) def.= d.

This subsection deals with two-bit input one-bit output functions {0, 1}2 →
{0, 1}; the number of these functions is equal to 24 = 16. We give necessary and
sufficient numbers of cards for all these functions as follows.

As mentioned in Sect. 1, Koch et al. [2] provided a five-card finite-runtime
committed protocol for the AND function and proved that this protocol was
optimal, i.e. MinDeckFC((a, b) �→ a ∧ b) = 5. Because negating a commitment
can be easily done (just by swapping the two cards), all functions in the set B5

defined in Table 2, including the OR function, can be optimally computed with
five cards.

For the constant functions and the functions outputting one input or its
negation (such as (a, b) �→ a or (a, b) �→ b̄), the computation is trivial: these six
functions (see the first six functions in B4 defined in Table 2) can be computed
with four cards, which is the minimal number. The remaining two functions
(a, b) �→ a ⊕ b and (a, b) �→ a ⊕ b can also be computed with four cards, because
Mizuki et al. [6] gave a four-card finite-runtime committed protocol for the XOR
function.

Thus, we have immediately the following proposition on two-bit input one-bit
output functions.

Proposition 10. For any function f in B4, we have MinDeckFC(f) = 4. For
any function f in B5, we have MinDeckFC(f) = 5.

Table 2. Sets B4 and B5

Set B4 Set B5

(a, b) �→ 0 (a, b) �→ a ∧ b

(a, b) �→ 1 (a, b) �→ a ∨ b

(a, b) �→ a (a, b) �→ a ∧ b̄

(a, b) �→ ā (a, b) �→ a ∨ b̄

(a, b) �→ b (a, b) �→ ā ∧ b

(a, b) �→ b̄ (a, b) �→ ā ∨ b

(a, b) �→ a ⊕ b (a, b) �→ ā ∧ b̄

(a, b) �→ a ⊕ b (a, b) �→ ā ∨ b̄

200 D. Francis et al.

3.2 Trivial and Degenerate Cases for Two-Bit Output Functions

Let us bring our attention to two-bit output functions. We will show later that
most of two-bit input two-bit output functions cannot be computed with less
than six cards. However, some functions that we will call “trivial” functions and
“degenerate” functions can be computed with four or five cards.

First, we name functions such as (a, b) �→ (b, ā) as follows.

Definition 11 (Trivial function). Let f : {0, 1}n → {0, 1}k with n ≥ k be
a function. We say that the function f is trivial if there are σ ∈ Sn and εi ∈
{id, b �→ b̄}, 1 ≤ i ≤ k, such that f(x1, . . . , xn) = (ε1(xσ−1(1)), . . . , εk(xσ−1(k))).

Note that one can easily construct a four-card finite-runtime committed pro-
tocol for the trivial function (a, b) �→ (b, ā) above (because it suffices to exchange
the input commitments and apply the negation to the second one). Thus, gen-
erally, we have the following lemma.

Lemma 12. Let f : {0, 1}n → {0, 1}k with n ≥ k be trivial. Then, MinDeckFC

(f) = 2n.

Next, we consider “degenerate” functions.

Definition 13 (Degenerate function). Let f : {0, 1}n → {0, 1}k be a func-
tion. We say that the function f is degenerate if at least one of its output bits
is constant.

If a two-bit input two-bit output function is degenerate, then we can regard
it as a one-bit output function (because any constant commitment can be easily
created after main computations). Thus, we have the following lemma (according
to Table 2).

Lemma 14. Let f : {0, 1}2 → {0, 1}2 be a degenerate function. If f has
a non-constant output belonging to B5 then MinDeckFC(f) = 5. Otherwise,
MinDeckFC(f) = 4.

The goal of this paper will be to prove that MinDeckFC(f) = 6 for any non-
trivial non-degenerate function f : {0, 1}2 → {0, 1}2. Section 4 will show the
sufficiency and Sect. 5 will show the necessity.

4 Sufficient Numbers of Cards for Two-Bit Output
Functions

In this section, we design a six-card finite-runtime committed protocol for any
non-trivial non-degenerate two-bit output function. That is, six is an upper
bound on the number of required cards for two-bit output functions. We will
prove in Sect. 5 that the sufficient condition is actually a necessary one by pro-
viding a lower bound.

Necessary and Sufficient Numbers of Cards 201

4.1 Existing Protocols Used to Obtain Upper Bounds

First of all, let us define some basic functions we will use later. Let g1 : {0, 1}2 →
{0, 1}2 be the function such that g1(a, b) = (a, a ⊕ b). Let g2 : {0, 1}2 → {0, 1}2

be the function such that g2(a, b) = (a ∧ b, a ∧ b). We will also use g3 = g1 ◦ g2,
g4 = g3 ◦ g1, and g5 : {0, 1} → {0, 1}2 such that g5(a) = g1(a, 0). Note that
g3(a, b) = (a ∧ b, b) and g4(a, b) = (a ∧ b̄, a ⊕ b). Also, g5(a) = (a, a) corresponds
to making two identical copied commitments to a.

Each of these five functions can be computed securely thanks to the protocols
introduced in some previous papers [6,7], as will be see later. For each of these
existing protocols, we give its Koch’s graph as follows.

The first protocol we will use is the COPY protocol coming from [6] and
described in Fig. 1. It produces one copy of a single input commitment with six
cards:

? ?
︸ ︷︷ ︸

a

♣ ♥ ♣ ♥ COPY−→ ♣ ♥ ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

a

.

Its possible inputs are listed in Table 3, and hence the input set is

U =
{(

?
♣ ,

?
♥ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♥

)

,

(

?
♥ ,

?
♣ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♥

)}

.

Table 3. Possible input sequences for Mizuki et al. COPY protocol [6]

Input a Sequence from left to right

0 ♣♥♣♥♣♥
1 ♥♣♣♥♣♥

This is a finite-runtime committed protocol for the function g5 that we defined
above.

The second protocol we will use is the AND protocol from [6]. This protocol
is supposed to compute the AND function, but as it will be easy to see on its
Koch’s graph, it also provides a commitment to ā ∧ b:

? ?
︸ ︷︷ ︸

a

♣ ♥ ? ?
︸ ︷︷ ︸

b

AND−→ ♣ ♥ ? ?
︸ ︷︷ ︸

a∧b

? ?
︸ ︷︷ ︸

ā∧b

.

Thus, its possible inputs are listed in Table 4. The Koch’s graph of that protocol
is represented on Fig. 2. This protocol computes the function g2 that we defined
above.

The third protocol we will use is actually the COPY protocol proposed in
[7]. The difference is that we add a second input commitment, which makes the
input sequences set differ from the real COPY protocol. Therefore, the possible

202 D. Francis et al.

Fig. 1. Koch’s graph of COPY protocol [6]

input sequences are the same as for the AND protocol we discussed above. The
Koch’s graph of that protocol is represented on Fig. 3.

This protocol provides commitments to a and a ⊕ b:

? ?
︸ ︷︷ ︸

a

♣ ♥ ? ?
︸ ︷︷ ︸

b

COPY−→ ♣ ♥ ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

a⊕b

.

Therefore it computes the function g1.
As a result, we have six-card finite-runtime committed protocols for all func-

tions from g1 to g5:

Necessary and Sufficient Numbers of Cards 203

Table 4. Possible input sequences for Mizuki et al. [6] AND protocol

Input (a, b) Sequence from left to right

(0, 0) ♣♥♣♥♣♥
(0, 1) ♣♥♣♥♥♣
(1, 0) ♥♣♣♥♣♥
(1, 1) ♥♣♣♥♥♣

Fig. 2. Koch’s graph of Mizuki et al. AND protocol [6]

204 D. Francis et al.

Fig. 3. Koch’s graph of enhanced COPY protocol [7]

– g1 can be computed thanks to the COPY protocol shown in Fig. 3;
– g2 can be computed thanks to the AND protocol shown in Fig. 2;
– g3 can be computed thanks to functions g1 and g2 (it corresponds to the

improved AND from [7]);

Necessary and Sufficient Numbers of Cards 205

– g4 can be computed thanks to functions g1 and g3 (it corresponds to the
improved half-adder from [7]);

– g5 can be computed thanks to the COPY protocol shown in Fig. 3.

We will show in the following subsection that these protocols help us to make a
six-card protocol for any function {0, 1}2 → {0, 1}2.

4.2 Protocol

Any non-trivial non-degenerate function f : {0, 1}2 → {0, 1}2 can be defined by
choosing two functions among the following ones:

– Case 1: (a, b) �→ a ∧ b and (a, b) �→ ā ∨ b̄;
– Case 2: (a, b) �→ a ∧ b̄ and (a, b) �→ ā ∨ b;
– Case 3: (a, b) �→ ā ∧ b and (a, b) �→ a ∨ b̄;
– Case 4: (a, b) �→ ā ∧ b̄ and (a, b) �→ a ∨ b;
– Case 5a: (a, b) �→ a and (a, b) �→ ā;
– Case 5b: (a, b) �→ b and (a, b) �→ b̄;
– Case 6: (a, b) �→ a ⊕ b and (a, b) �→ a ⊕ b.

Each function of a case is the negation of the other function of the same case:
therefore one can be easily obtained from the other by reverting the order of
the cards constituting commitments. Moreover, the computation of functions
with two equal output bits is straightforward: we just compute one output bit
and apply the COPY protocol to the commitment we obtained. Therefore, there
are only fifteen non-trivial non-degenerate two-bit output functions to examine,
as all other non-trivial non-degenerate two-bit output functions either have a
straightforward six-card finite-runtime committed protocol or are deducible from
these fifteen cases. Table 5 gives explicitly the computation of all these fifteen
functions based on the above protocols for g1, g2, g3 and g4.

Table 5. Computations of two-bit output functions

Output 1 Output 2

Case 2
a ∧ b̄

Case 3
ā ∧ b

Case 4
ā ∧ b̄

Case 5
a

Case 6
a ⊕ b

Case 1
a ∧ b

g2(b, a) =
(a∧b, a∧b̄)

g2(a, b) =
(a ∧ b, ā ∧ b)

g2 ◦g1(a, b̄) =
(a ∧ b, ā ∧ b̄)

g3(b, a) =
(a ∧ b, a)

g4(a, b̄) =
(a∧b, a ⊕ b)

Case 2
a ∧ b̄

g2 ◦g1(a, b) =
(a ∧ b̄, ā ∧ b)

g2(a, b̄) =
(a ∧ b̄, ā ∧ b̄)

g3(b̄, a) =
(a ∧ b̄, a)

g4(a, b) =
(a∧ b̄, a⊕ b)

Case 3
ā ∧ b

g2(b, ā) =
(ā ∧ b, ā ∧ b̄)

g3(b, ā) =
(ā ∧ b, ā)

g4(ā, b̄) =
(ā∧ b, a⊕ b)

Case 4
ā ∧ b̄

g3(b̄, ā) =
(ā ∧ b̄, ā)

g4(ā, b) =
(ā∧ b̄, a ⊕ b)

Case 5
a

g1(a, b) =
(a, a ⊕ b)

206 D. Francis et al.

Thus, we have constructed finite-runtime committed protocols for any two-
bit output functions with six cards.

Lemma 15. Let f : {0, 1}2 → {0, 1}2 be a non-trivial non-degenerate function.
Then MinDeckFC(f) ≤ 6.

We will show in the next section that our protocols are optimal.

5 Optimality of Six-Card Protocols

In this section, we give a lower bound on the number of required cards: we prove
that six is a necessary number of cards for non-trivial non-degenerate two-bit
output functions.

5.1 Definitions

First of all, let us give some definitions that will be useful for our proof.

Definition 16 (Extension of [2]). Let P be a finite-runtime committed pro-
tocol for a function f : {0, 1}n → {0, 1}k. Let α be an atomic sequence, S a
status of P belonging to a visible sequence trace and P = S(α) the polynomial
representing the probability of α in S. Let ω be a possible output of f . If P
contains only variables Xb with f(b) = ω, then α is called an ω-sequence. If it
contains at least two variables Xb1 and Xb2 with f(b1) �= f(b2), then α is called
a ⊥-sequence.

Note that any finite-runtime committed protocol never produces a ⊥-sequence [2].
The difference between Definition 16 and the definition of [2] is that instead

of considering only one-bit outputs, we consider k-bit outputs. If we replace k
by 1 in our definition, we get back to the definition that can be found in [2].

Definition 17 (Execution of a protocol). Let P = (D, U,Q,A) be a finite-
runtime protocol. An execution EP of P is a sequence (ξ1, . . . , ξp) with ξi =
(Si, acti), 1 ≤ i ≤ p, such that:

– S1 is the initial status of P;
– for all i < p, status Si+1 comes from Si based on action acti;
– Sp is the final status.

Definition 18 (Equivalent protocols). Let P1 = (D1, U1, Q1, A1) and P2 =
(D2, U2, Q2, A2) be two finite-runtime committed protocols for a function f .
Then, we say that P1 and P2 are equivalent if D1 = D2 and U1 = U2.

Definition 19 (Last meaningful action). Let P be a finite-runtime protocol,
and

EP = ((S1, act1), . . . , (Sp, actp))

an execution of P with p ≥ 2. The action actp−1 is called the last meaningful
action.

Necessary and Sufficient Numbers of Cards 207

5.2 Proof

The most important idea behind our proof is, roughly speaking, that the last
meaningful action of every execution of a finite-runtime committed protocol
for a non-trivial function must be a turn action, and is stated in Lemma27.
The theorem we are going to prove states that there is no (2k + 1)-card
finite-runtime committed protocol for all non-trivial non-degenerate functions
f : {0, 1}n → {0, 1}k with n ≤ k. This theorem with the case of n = k = 2
implies MinDeckFC(f) ≥ 6.

To prove the theorem, we first show several lemmas. Lemma 20 derives a
necessary condition for a status to be final. The Lemmas 21, 22, and 24 lead
to Lemma 25, that derives equivalent protocols to obtain lower bounds. Note
that these equivalent protocols do not violate the security notion defined in
Defnition 7.

Lemma 20. Let P be a (2k + 1)-card finite-runtime committed protocol for a
function f : {0, 1}n → {0, 1}k with n ≤ k. Let EP = ((S1, act1), . . . , (Sp, actp))
be an execution of P. Then, every status Si, 1 ≤ i ≤ p, must contain at least
one ω-sequence for each ω in f({0, 1}n); in particular, the final status Sp must
contain exactly one ω-sequence for each ω in f({0, 1}n).

Proof. If there is b ∈ {0, 1}n such that

∂

∂Xb

∑

α∈AtSeq

S(α) �= 1

for a status S, then the protocol is not secure: it contradicts the definition
of a secure protocol, that states that the visible sequence traces and the input
sequences must be independent. Therefore, every Xb for b ∈ {0, 1}n must appear
in all statuses, and hence, there is at least one ω-sequence for all ω ∈ f({0, 1}n) ⊆
{0, 1}k in every possible status.

Assume now that α1 = (α(1)
1 , α

(2)
1 , . . . , α

(2k+1)
1) and α2 = (α(1)

2 , α
(2)
2 , . . . ,

α
(2k+1)
2) are two ω-sequences belonging to the final status Sp with ω ∈ {0, 1}k.

The action actp produces k commitments, whose values are the same regardless
of the atomic sequence. Without loss of generality, we can assume that actp =
(result, 1, 2, . . . , 2k). As the commitments are the same for α1 and α2, we have
α

(i)
1 = α

(i)
2 for all i in {1, . . . , 2k}. Moreover, because α1 and α2 are atomic

sequences from the same deck, we have α
(2k+1)
1 = α

(2k+1)
2 and consequently

α1 = α2. Thus, Sp must contain exactly one ω-sequence for each ω in f({0, 1}n).
��

Lemma 21. Let f : {0, 1}n → {0, 1}k be a function and P be a finite-
runtime committed protocol for f . Then, there is an equivalent protocol to P that
never uses a turn-up action such that the number of atomic sequences remain
unchanged.

Proof. If a turn-up action leaves the numbers of atomic sequences unchanged, it
means that the card that was revealed was the same for every possible sequence.
Therefore, this action can be skipped. ��

208 D. Francis et al.

Lemma 22. Let f : {0, 1}n → {0, 1}k be a function and P be a finite-runtime
committed protocol for f . Then, there is an equivalent protocol for f using no
deterministic shuffle.

Before proving the lemma, let us introduce some additional notations.

Definition 23. For an action act on a sequence of size d and σ ∈ Sd, we define
the action σ(act) as follows:

– if act = (shuffle,Π,F), then σ(act) def.= (shuffle,Πσ,F ′) with F ′ such that for
all random variable π ∈ Π ′ verifying π ∼ F ′, πσ−1 ∼ F ;

– if act = (turn, T), then σ(act) def.= (turn, σ−1(T));
– if act = (result, p1, . . . , pi), then σ(act) def.= (result, σ−1(p1), . . . , σ−1(pi)).

Proof (Proof of Lemma 22). Let P = (D, U,Q,A) be a finite-runtime committed
protocol. Let us assume that there exist a visible sequence v1 ∈ Vis, a permu-
tation π ∈ S|D| and states q1, q2 ∈ Q such that A(q1,v1) = (q2, (shuffle, {π})).
Then, we can define an equivalent protocol P ′ = (D, U,Q,A′) such that:

– A′(q1,v1) = (q3, π(act)) with (q3, act) = A(q2, π(v1));
– A′(q,v) = A(q,v) if (q,v) �= (q1,v1).

Therefore, it is always possible to build an equivalent protocol containing no
deterministic shuffle. ��
Lemma 24. Let f : {0, 1}n → {0, 1}k be a function and P be a finite-runtime
committed protocol for f . Then, there is an equivalent protocol for f using no
random shuffle leaving the number of atomic sequences equal to |f({0, 1}n)|.
Proof. Assume that an execution of a protocol contains a random shuffle
(shuffle,Π,F) leaving the numbers of atomic sequences equal to |f({0, 1}n)| for
a given status. Then, by Lemma 20, the status must have exactly one ω-sequence
for each ω ∈ f({0, 1}n), and hence the shuffle can be replaced by the determin-
istic shuffle (shuffle, {π}) with π ∈ Π. We conclude thanks to Lemma 22. ��

Lemmas 21, 22 and 24 immediately imply the following one.

Lemma 25. Let f : {0, 1}n → {0, 1}k be a function. If P is a finite-runtime
committed protocol for f , then there exists an equivalent protocol P ′ such that
for any execution EP′ = ((S1, act1), . . . , (Sp, actp)) of P ′:

– if there is i ∈ {1, . . . , p − 1} such that acti is a turn up, then the number of
atomic sequences in Si+1 is strictly lower than the number of atomic sequences
in Si;

– if there is i ∈ {1, . . . , p − 1} such that acti is a shuffle, then acti is not
deterministic and the number of atomic sequences in Si+1 is strictly bigger
than |f({0, 1}n)|.

We will call such a protocol a strictly random protocol.

Necessary and Sufficient Numbers of Cards 209

Lemma 26. Let f : {0, 1}n → {0, 1}k be a function. If there is a (2k + 1)-card
strictly random finite-runtime committed protocol P for f such that at least one
execution of P contains no random shuffle, then f is either trivial or degenerate.

Proof. Note that if an execution of a protocol computing a function {0, 1}n →
{0, 1}k contains no random shuffle, then it means that the protocol, from the
initial state to the final state, is deterministic, as a turn cannot reveal an input
commitment. Therefore, it means that no execution of P contains a random
shuffle.

Let us assume now that there is such a protocol P for a function f : {0, 1}n →
{0, 1}k. Let fi : {0, 1}n → {0, 1}, 1 ≤ i ≤ k be functions such that for all
x ∈ {0, 1}n, (f1(x), . . . , fk(x)) = f(x). Let us assume that there is i ∈ {1, . . . , k}
such that fi is non-constant. Let (s1, . . . , s2n+1) be the input sequence corre-
sponding to an input x = (x1, . . . , xn). Then, as the executions of P contain no
shuffle, there are p, q ∈ {1, . . . , 2k + 1} such that (sp, sq) is a commitment to
an input xm and either (sp, sq) or (sq, sp) is a commitment to fi(x). Moreover,
all commitments to inputs x1, . . . , xn must remain at the end of the protocol.
Therefore, if n = k, then f is a trivial function. Otherwise, i.e. n < k, there is a
permutation σ ∈ Sk such that x �→ (fσ(1)(x), . . . , fσ(n)(x)) is a trivial function
and x �→ (fσ(n+1)(x), . . . , fσ(k)(x)) is a constant function. ��
Lemma 27. Let P be a (2k + 1)-card strictly random finite-runtime committed
protocol for a non-trivial non-degenerate function f : {0, 1}n → {0, 1}k with
n ≤ k. For every execution of P, the last meaningful action is a turn.

Proof. Let P be a (2k + 1)-card strictly random finite-runtime committed pro-
tocol for a non-trivial non-degenerate function f : {0, 1}n → {0, 1}k with n ≤ k.
Then, at least one random shuffle exists and hence, Lemma 26 allows us to say
that the last meaningful action exists for every execution. By Lemma 20, we have
|f({0, 1}n)| atomic sequences in the last status. According to Lemma 25, and as
P is strictly random, the last meaningful action cannot be a shuffle. It means
that it must be a turn. ��
Theorem 28. There is no (2k + 1)-card finite-runtime committed protocol for
any non-trivial non-degenerate function f : {0, 1}n → {0, 1}k, with n ≤ k.

Proof. Suppose for a contradiction that there exists a (2k+1)-card finite-runtime
committed protocol P = (D, U,Q,A) for a non-trivial non-degenerate function
f : {0, 1}n → {0, 1}k, with n ≤ k. Without loss of generality, we may assume
that D contains k ♥ and k+1 ♣, and P is strictly random. Then, by Lemma 27,
the last meaningful action of any execution of our protocol is a turn. Consider
last two statuses (Sp−1, actp−1) and (Sp, actp) during an execution of P. If the
last turn reveals a ♥, then Sp cannot be a final status one because the pro-
tocol could not produce k commitments. Therefore, that turn must reveal a
♣ with probability 1, which is contrary to the assumption that P is strictly
random. ��

Theorem 28 along with Lemma 15 implies the following corollary.

210 D. Francis et al.

Corollary 29. Let f : {0, 1}2 → {0, 1}2 be a non-trivial non-degenerate func-
tion. Then, MinDeckFC(f) = 6.

All protocols for non-degenerate non-trivial functions presented in Sect. 4 use
only uniform shuffles: for a given shuffle, every possible permutation is drawn
with the same probability. Moreover, if Π is the set of permutations of a shuffle
of such a protocol and π1, π2 ∈ Π, then π1 ◦ π2 ∈ Π and π2 ◦ π1 ∈ Π. It means
that all shuffles are also closed. Koch et al. explained in [2] that uniform closed
shuffles were easy to implement practically. It means that our result is still true
if we restrict to simple uniform closed shuffles.

6 Conclusion

In this paper we gave a six-card finite-runtime committed protocol for every
non-trivial non-degenerate two-bit output function, and we gave a proof that our
protocols were optimal. We also gave optimal protocols for trivial or degenerate
functions. Therefore, we gave the necessary and sufficient numbers of cards for
any two-bit input two-bit output function. As the proof we presented in Sect. 5
covers more than only proving the optimality of our protocols, we hope that
it will be useful to prove the optimality of other multi-output protocols. More-
over, this paper addressed only finite-runtime protocols. As there is a four-card
Las Vegas committed AND protocol [2], it is an interesting open problem to
characterize necessary and sufficient numbers of cards for Las Vegas committed
protocols for multi-output functions. Another intriguing direction is to consider
encoding schemes other than the two-card encoding as in [8]. It would also be
interesting to use decks containing more than two colors.

Acknowledgment. We thank the anonymous referees, whose comments have helped
us to improve the presentation of the paper. This work was supported by JSPS KAK-
ENHI Grant Number 26330001.

References

1. den Boer, B.: More efficient match-making and satisfiability: the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). doi:10.1007/3-540-46885-4 23

2. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using
a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 32

3. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. Cryptology
ePrint Archive, Report 2015/1031 (2015)

4. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with
four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 598–606. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 36

5. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via
abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2014)

http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/978-3-662-48797-6_32
http://dx.doi.org/10.1007/978-3-662-48797-6_32
http://dx.doi.org/10.1007/978-3-642-34961-4_36

Necessary and Sufficient Numbers of Cards 211

6. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02270-8 36

7. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any boolean
function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076,
pp. 110–121. Springer, Cham (2015). doi:10.1007/978-3-319-17142-5 11

8. Shinagawa, K., Mizuki, T., Schuldt, J.C.N., Nuida, K., Kanayama, N., Nishide, T.,
Hanaoka, G., Okamoto, E.: Multi-party computation with small shuffle complexity
using regular polygon cards. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS,
vol. 9451, pp. 127–146. Springer, Cham (2015). doi:10.1007/978-3-319-26059-4 7

http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-319-26059-4_7

Malicious Cryptography

Controlled Randomness – A Defense Against
Backdoors in Cryptographic Devices

Lucjan Hanzlik, Kamil Kluczniak, and Miros�law Kuty�lowski(B)

Faculty of Fundamental Problems of Technology,
Wroc�law University of Science and Technology, Wroc�law, Poland

{Lucjan.Hanzlik,Kamil.Kluczniak,Miroslaw.Kutylowski}@pwr.edu.pl

Abstract. Security of many cryptographic protocols is conditioned by
quality of the random elements generated in the course of the proto-
col execution. On the other hand, cryptographic devices implementing
these protocols are designed given technical limitations, usability require-
ments and cost constraints. This frequently results in black box solutions.
Unfortunately, the black box random number generators enable creating
backdoors. So effectively the signing keys may be stolen, authentica-
tion protocol can be broken enabling impersonation, confidentiality of
encrypted communication is not guaranteed anymore.

In this paper we deal with this problem. The solution proposed is a
generation of random parameters such that: (a) the protocols are back-
wards compatible (a protocol participant gets additional data that can
be ignored), (b) verification of randomness might be executed any time
without any notice, so a device is forced to behave honestly, (c) the
solution makes almost no change in the existing protocols and therefore
is easy to implement, (d) the owner of a cryptographic device becomes
secured against its designer and manufacturer that otherwise might be
able to predict the output of the generator and break the protocol. We
give a few application examples of this technique for standard schemes.

Keywords: Cryptographic device · Pseudorandom number generator ·
Backdoor · Discrete logarithm · Signature · Audit · Provable security

1 Introduction

Secure Devices and Provable Security Requirements. During the last
decade a number of provably secure schemes have been introduced, following
a growing demand for strong security guarantees. However, the real impact on
security of cryptographic products is somewhat limited, as many issues are just
disregarded or replaced by assumptions declaring unconditional security and
trustworthiness of some key components.

This research has been supported by the Polish National Science Centre, project
HARMONIA, DEC-2013/08/M/ST6/00928.

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 215–232, 2017.
DOI: 10.1007/978-3-319-61273-7 11

216 L. Hanzlik et al.

One of the crucial components of cryptographic systems are so-called secure
devices. Indeed, most of the operations of cryptographic protocols (in particular
those involving secret keys) are performed not by the users themselves (as it
would follow from a standard description of cryptographic protocols with Alice,
Bob, etc.), but by black box devices entrusted by the users. Without trustworthy
devices the whole security of cryptographic systems is a myth – at least for most
schemes used in practice today.

Generation of (pseudo)random numbers (frequently never shown in clear) is a
major Achilles heel of many cryptographic protocols. Devices executing protocols
take these numbers from sources like physical randomness (RNG), Pseudoran-
dom Number Generators (PRNG) or from hybrid systems. Their quality can be
checked via statistical tests (such as those recommended by NIST [18]). A nega-
tive test result indicates that the statistical properties of random parameters are
far from being uniformly random. Then, as the assumptions of a cryptographic
scheme are not fulfilled, the device should not be used anymore. However, a pos-
itive result of a statistical test has not much to do with a “provable security”, as
it is merely an anomaly detection procedure. Moreover, it is easy to construct a
weak cryptographic random generator that passes these tests [21].

Kleptography. A manipulated PRNG might be installed on purpose as a back-
door. The kleptographic techniques (see [23] for a survey) enable leaking secret
keys to passive observers by malicious modification of the procedure of generating
random parameters. Moreover, the device neither uses any extra communication
channel, nor creates an output that would differ from the not-manipulated one
in a way detectable for anyone but the adversary holding a special secret key.
Moreover, this is not stored by the PRNG, as it would be the case for sim-
ple subliminal channels. Notably, the design of Dual EC DRBG enables direct
installation of such a backdoor [7,14,20].

Typically, a kleptographic attack is undetectable in a cryptanalytic way
unless some cryptographic assumptions get broken. However, the failure of cryp-
tographic assumptions would presumably mean also the collapse of the underly-
ing cryptographic protocol. So in the cryptanalytic sense we have to do with a
perfect attack. There have been some efforts to create methods detecting klep-
tographic manipulations by side channel information from the devices [15], how-
ever with more sophisticated solutions one can make kleptography resilient to
this kind of analysis [24].

Real Randomness. In this situation the sources of real randomness coming
from reliable physical sources might be regarded as a proper solution. Unfortu-
nately, there are problems with this approach as well. First, due to price con-
straints one might be forced to deploy low quality solutions. This concerns in
particular smart cards, electronic ID documents [3] (like biometric passports)
and other mobile solutions. Another threat are hardware Trojans – hardware
random number generators manufactured in a way that enables the attacker to
predict the generator’s output [22]. The bad news is that the attacked devices
do not contain malicious code or any changes in electronic design that could be

Controlled Randomness – A Defense Against Backdoors 217

revealed during an audit of the device including destructive inspection of the
layout. So in fact, the situation is even worse than for PRNGs, where audit
procedures may have a real impact (even if they are evasive in some cases).

Initializing PRNGs and Related Security Problems. Now let us consider
in more detail the options for initializing a PRNG:

Option 1: the manufacturer installs the seed,
Option 2: the user creates the seed by starting an initialization procedure exe-

cuted internally by a PRNG device,
Option 3: the user uploads the seed to the PRNG device,
Option 4: the user uploads a part of the seed while the second part of the seed

is installed by the manufacturer,
Option 5: the user and/or the manufacturer uploads the seed, however, dur-

ing its operation the PRNG modifies its state according to some number of
entropy bits.

Unfortunately, the manufacturer can gain full control over the PRNG in a
way unobservable for the device users, regardless which option has been used:

Option 1: the manufacturer may retain a copy of the seed of the PRNG. Note
that it is easy to hide the seeds so that no inspection of digital data stored by
the manufacturer would reveal their presence. One of the tricks is to derive the
seeds from digital signatures – the inspectors cannot force the manufacturer
to create such signatures.

Option 2: initializing the seed might be a fake operation— whatever the user
does the result is anyway the seed predetermined by the manufacturer.

Option 3: this option is not acceptable since now the user himself can retrieve
the private signing key in case of standard schemes like DSA. One of the very
basic requirements for a secure device is that nobody, even the owner, can
derive the secrets stored in the device. On the other hand, if the user behaves
correctly and immediately destroys the copy of the seed existing outside the
device, then the black box device can cheat and retreat to the state known
by the manufacturer.

Option 4: the device can cheat and use the whole seed known to the manufac-
turer. The attack will be undetectable, if the PRNG is properly designed and
therefore immune against partial seed leakage.

Option 5: the device can cheat and gradually change its internal state convert-
ing it to a state which can be guessed by the manufacturer.

1.1 Previous Attempts to Prevent PRNG Backdoors

The problems of PRNG backdoors have not been covered yet in the literature
in the way corresponding to the critical importance of the problem. In fact, the
research in this area has been started from a different angle. The fail-stop [19]
signatures have been designed to provide an undeniable cryptographic proof in
case of signature forgery resulting from cryptanalytic attacks. However, fail-stop

218 L. Hanzlik et al.

schemes do not protect at all against the seizure of a particular private key from
a signature creation device.

The concept of forward security (see e.g. [1]) is to protect the private key by
limiting the period of its usage without changing the public key. So a cryptan-
alytic attack or leaking the signing key has effects for signatures from a limited
signing period. Again, this does not protect against attacks, where all secret
material from the signature creation device falls into the hands of an adversary,
unless the device updates the private key in cooperation with an external trusted
party.

Intrusion resilience of cryptographic devices may be achieved by introducing
multiple (independent) devices executing the same protocol. The idea is that
when the devices come from different vendors, it is less likely that an attack
succeeds, as it is more difficult to take control over both devices at the same time.
The solution examples are home base techniques [12] and mediated signatures
[5,17].

The approach from [4] attempts to guard against a secret key usage by the
adversary: any attempt to use it results in a secret key exposure with a substan-
tial probability. Yet another approach is to enforce a fair generation of random
keys by imposing a kind of randomness verification. For example, [13] proposes
a protocol KEGVER for generation of RSA keys where the modulus belongs to
a small interval determined jointly by the protocol participants. This thwarts
many attack scenarios for weakening the key during a black box generation
process. On the other hand, this approach is useless for controlling devices such
as smart cards, since a complicated two-party protocol is executed, where both
parties are generating random numbers. As it is hard to assume that the user
could choose such numbers manually, we retreat to the scenarios with a protocol
executed by two devices owned by the user. However, in this case the solutions
like [5,17] seem to be easier from the practical point of view. An approach to
secure a Diffie-Hellman based authentication protocol against devices colluding
with passive adversaries has been proposed in [9]. This method can be used only,
when the randomness used can be later exposed to other parties of the protocol
– just like for Diffie-Hellman key exchange protocol. It cannot be used to control
the process of creating standard digital signatures where random parameters are
involved.

A partial solution for the problem has been proposed in [16]. However, the
major difference is that the user has no chance to check that the system is
implemented in this way. Moreover, separation of hardware components for digi-
tal signatures is problematic, if the random exponent occurs both as an exponent
and in a linear expression (like for the DSA signatures).

Our Contribution. In this paper we present a security mechanism against
PRNG backdoors called controlled randomness. The idea is to add certain pro-
cedures to standard cryptographic primitives that allow the device owner to
control the randomness without revealing the secret key used by the device.
What is more, our mechanism limits the capabilities of the malicious manufac-
turer to reveal the output of the PRNG. The only way the adversary can reveal

Controlled Randomness – A Defense Against Backdoors 219

any information about the output of the PRNG is by using generic kleptographic
attacks, e.g. execute parts of the protocol repeatedly, until the message generated
reveals in some way a certain secret key bit.

In more details, the proposed security mechanism fulfills the following
properties:

Backwards Compatibility: The new protocol should make minimal changes
in the sense that after ignoring some messages or their certain parts we get
the original scheme.

Immunity Against the Manufacturer: no effective attack can be performed
by a device manufacturer knowing the internal state of the PRNG.

Immunity Against the User: The new mechanisms prevents the owner of
the device to attack his own device.

Verifiability: The device owner can check that the security mechanism has
been really deployed. For this purpose, only the standard device output should
be used.

There are several scenarios of using a PRNG in cryptographic protocols:

Case 1: the output r of the PRNG is presented to other protocol participants.
For example, r might be a challenge in a challenge-response protocol.

Case 2: the output k of the PRNG is used to compute r = gk for a known g,
and r is presented to other protocol participants.
In this scenario g is a generator of a group where Discrete Logarithm Problem
is hard. The most prominent examples are Diffie-Hellman Key Exchange and
signature schemes based on ElGamal.

Case 3: the output k of the PRNG is used to compute r = hk, and r is presented
to other protocol participants, but h is not known to the adversary.
This case occurs for Generic Mapping PACE algorithm [2] – a standard
scheme developed for password authentication.

Case 4: the output r of PRNG is used to generate key pairs in a deterministic
way.
An example of this situation is the RSA key generation procedure, where we
first determine at random a starting point for the search and then continue
testing in a deterministic way.

Case 1 has been considered in the literature without directly referring to the
general problem. A typical solution is to use Hash(U), where U is some data
shared by the device and the user controlling the device. If Hash behaves like a
random function, then the challenge has the desired properties.

Case 4 seems to be a hard challenge. If we proceed similarly as in Case 1,
then we reveal the starting point for searching for p for a RSA number that is
finally constructed as n = pq. Then, however, the verifier could redo the search
and factorize n.

In this paper we focus on solutions for Case 2, i.e. we apply our mechanism
to discrete logarithm based signatures, ElGamal encryption and Diffie-Hellman
key agreement. Of course, real applicability of any solution depends on its

220 L. Hanzlik et al.

simplicity – even a moderately complicated solution may be hard to deploy
in practice. Fortunately, it turns out that it is possible to achieve the stated
goals using simple and standard operations.

Case 3 is more involved technically and is postponed to the follow up work.

Paper Organization. The rest of the paper is organized as follows: in Sect. 2
we describe the idea of the solution, in Sect. 3 we show how to use it for securing
signature creation devices, in Sect. 4 we present its application to Diffie-Hellman
Key Exchange, in Sect. 5 we focus on public key encryption.

2 Idea of Controlled Randomness

In this section we present our controlled randomness mechanism. We focus on
the case, where the device outputs, as part of the cryptographic primitive, a
pseudorandom parameter r = gk, where k is the output of a PRNG, r is one of
the device outputs, and g is a generator of a group G of a prime order q. Such
parameter is used by many discrete logarithm based schemes and for most of
them k must remain secret and should never leave a secure device (there are a
few exceptions, see e.g. [9]).

We commence by presenting a way to redesign generation of r, so that the
discrete logarithm of r cannot be derived by the adversary even if the output of
the PRNG is known to him. On the other hand, there must exist some procedure
that assures the user that the outputted r was in fact computed in this way.

Then, we make the first informal attempt to model our controlled randomness
(CR) idea. We describe actors in the system, potential adversaries and attack
scenarios. As it turned out a more formal but universal definition is a challenge.
Thus, in this paper we opted to an informal definition and leave the formalization
to future work.

2.1 Controlled Randomness

We begin our description by assuming that a cryptographic device contains the
following components:

– a PRNG P with a seed y installed by the manufacturer (or any generator
with the output that may be guessed by an adversary with a non-negligible
probability),

– a blinding factor U = gu installed in the device by its owner, where u is a
secret of the owner never exposed to the device.

Generating r . Instead of taking k from the generator P , the device proceeds
as follows:

– k0 is taken as the output of P ,
– k1 := Hash(Uk0), where Hash is a cryptographic hash function that returns

the results in the range [0, q − 1],
– r′ := gk0 , r := (r′)k1 .

Controlled Randomness – A Defense Against Backdoors 221

(Alternatively, we may define r := r′ · gk1 .) Then, instead of outputting r alone,
the device presents both r and so called control data r′.

In cases when we would like to prevent generation of the same r by just
repeating the same output from P , we modify slightly the definition of k1:

k1 := Hash(Uk0 , i)

where i is the counter value incremented by one at every protocol execution. In
this case the value of the counter is one of the control parameters, which now
take the form (r′, i).

Verification of Pseudorandom Parameters. The verification procedure can
be performed by the user holding the secret exponent u. On input r and control
parameters (r′, i), he performs the following steps:

– λ := Hash((r′)u, i)
– if r �= (r′)λ, then consider the device as faulty or malicious.

Setup. We may assume that the PRNG is out of control of the user of the device
- it comes to the user ready to use. On the other hand, the blinding factor U is
installed by the user in the device after getting it from the vendor. The user first
generates u at random, computes U := gu and installs U in the device. The key
u must be retained for verification purposes and must not be uploaded to the
device. Also, U must be chosen so that the device cannot derive u (e.g. the range
of u must be big enough to prevent computing the discrete logarithm of U).

Presumably, U is generated with another device. The exponent u must be
kept secret from the controlled device and the manufacturer, but leaking it to
other parties does not create a security threat. In order to achieve dynamic
protection, the owner of the device can always change the blinding factor. So,
after loosing the secret u, the best choice is to install a new blinding factor.

2.2 Outline of the Security Model

While the formal security model depends very much on a concrete application
case, we discuss here an informal definition.

Actors of the Scheme. We consider the following actors of the protocols
concerned:

device: it is a secure device implementing a cryptographic protocol, and acting
on behalf of its owner. The device implements some secrets (according to the
protocol description) as well as the blinding factor U .

Alice, the device Owner: she holds the device and controls its output/input
– possibly using other devices (e.g. a PC equipped with a smart card reader).
She is responsible for:
– setting the blinding factor U of the device,

222 L. Hanzlik et al.

– filtering the output of the device and removing the control parameters
before forwarding them to other protocol participants,

– running the verification procedure of the device using secret key u and
the control parameters.

Manufacturer Mallet: Mallet is a party that has access to all inputs and
outputs of the device after filtering them by Alice as well as its initial state.
Mallet knows the output of the PRNG of the device at each moment.

We skip considering the other protocol participants (e.g. verifiers of electronic
signatures or partners in authentication protocols) as from their point of view the
protocol execution is exactly the same as for the same scheme executed without
CR. Moreover, we may assume that such participants are controlled by Mallet.

Protocol Lifecycle. There are the following events in the lifecycle of a device
implementing CR:

device initialization: Mallet creates the device including all internal data
except for the private data generated by the user – e.g. private signing keys.
The blinding factor U is not initialized.

blinding factor update: Alice asks the device to perform an update and sends
the update parameters of her choice. The device performs the update.

protocol execution: the original protocol is executed using the device. The
only difference is that the implementation of the protocol by the device is
modified and that the output of the device is filtered by Alice.

device verification: Alice, the device holder, takes the device output created
during a protocol execution and executes the offline control procedure. Note
that the controlled device is not aware about the verification.

Note that we assume that the only party interacting with the device is its owner.
There is no direct interaction between Mallet and the device.

Adversaries. There are the following types of adversaries:

device: it may attempt to circumvent the protection offered by CR and break
the protocol in cooperation with Mallet. However, no direct communication
with Mallet is possible – only truncated output of the device is available for
Mallet.

Alice: she may herself attempt to break security of the device (e.g. learn the
secret signing key implemented in the device in order to create clone devices
or to deny former signatures by leaking secret keys). Note that potentially
the control parameters may ease the attack as they are not included in the
original (allegedly secure) protocols.

Mallet: he may control and manipulate PRNG, however, he has no access to the
blinding factor entered by the user. He may observe the protocol execution
except for the control data filtered out by Alice.

Observe that an external observer has less knowledge than Mallet, so it suffices
to show protocol security against Mallet.

Controlled Randomness – A Defense Against Backdoors 223

3 Signatures with Controlled Randomness

In this section we present how to use our controlled randomness mechanism with
standard signature schemes. We begin with the observation that many signature
schemes based on difficulty of the discrete logarithm problem follow a common
approach. Namely, the following steps are executed:

– a number k is chosen at random, r := gk for a fixed group generator g,
– the signature is computed as F(r, k,m, x), where m is a message to be signed,

x is the signing key, and F is a deterministic function.

This concerns in particular ElGamal signatures, Schnorr signatures and DSA.
We shall modify the first part of the scheme – generation of r – and add certain
control parameters. As a case study we describe the use of CR with Schnorr
signatures.

Schnorr Signature

Recall that for a private key x and public key y = gx, the signature for a message
m is created as follows:

k := PRNG()
r := gk

e := Hash(m||r)
s := (k − x · e) mod q

(g is an element of a prime order q).
The signature (s, e) is verified as follows:

1. r is reconstructed as rv = gsye,
2. the signature verifies positively, if e = Hash(m||rv).

The Schnorr signature with CR for a message m and for a blinding factor U is
created as follows:

k0 := PRNG()
r′ := gk0

k1 := Hash(Uk0 , i)
k := k0 · k1
r := gk

e := Hash(m||r)
s := (k − x · e) mod q

For the signature (s, e), the control data are (r′, i). The verification procedure
follows the generic idea for randomness of the form r = gk, described in Sect. 2
The only additional step is reconstruction of r as gsye (which is a part of the
standard verification of Schnorr signatures). We now show that this construction
is secure against the attacks described in Sect. 2.2.

224 L. Hanzlik et al.

3.1 Security Against Mallet

Here we show that our main goal is achieved - the adversary knowing the output
of PRNG cannot forge a signature, even if before he can request a number of
signatures for messages of his choice. Our security argument is based on a subcase
of the Correlated-input Secure Hash Function assumption [10]. Now let us recall
its full version:

Definition 1. A hash function Hash is called correlated-input secure, if for arbi-
trary Boolean circuits C1, . . . , Cn which satisfy:

– each Ci has high min-entropy output distribution for uniform random input
distribution,

– for i �= j, and r chosen uniformly at random, Ci(r) = Cj(r) happens with
a negligible probability.

there is no efficient distinguisher that can distinguish with a non-negligible proba-
bility between Hash(Cn(r)) and an R chosen uniformly at random from sequences
of the same length as the hash values given the input consisting of Hash(C1(r)),
. . . , Hash(Cn−1(r)) computed for r chosen at random.

Let us observe that if Hash is correlated-input secure, then in particular
no efficient algorithm can distinguish between the inputs consisting of values
(Hash(C1(r)), . . . , Hash(Cn(r))) for a randomly chosen r from the inputs con-
sisting of n random strings of the same length. This is the main property required
for our security argument. We also confine ourselves to very specific functions
Ci. Namely, we consider the following game:

Special Correlated Hash Values Game
choose s1, . . . , sn ≤ q
choose j
choose U at random
for i = 1 to n, put h

(0)
i := Hash(Usi , j + i)

for i = 1 to n, choose h
(1)
i at random

choose b ∈ {0, 1} at random
b̂ := A(s1, . . . , sn, j, h

(b)
1 , . . . , h

(b)
n)

The adversary A wins the game if b = b̂. The advantage of A is measured as
|p − 1

2 |, where p is the probability to win the game by A.
Note that in the above game almost all values are known to A, only U remains

hidden. Moreover, we know the relationship between the first arguments of the
Hash function in terms of the exponents s1, . . . , sn.

Assumption 1. The advantage of the adversary A in the Special Correlated
Hash Values Game is negligible.

Theorem 2. For the Schnorr signature scheme, Mallet cannot distinguish
between signatures created by a device implementing CR from the signatures
created with the same signing key by a device with the standard implementation
(without CR). In the first case Mallet is given the output of the PRNG, in the
second case Mallet is given a random output.

Controlled Randomness – A Defense Against Backdoors 225

Proof. In order to prove Theorem2 we have to observe that the adversary has
a negligible advantage in the following game:

Game 0
M chooses k

(1)
0 , . . . , k

(n)
0 ≤ q

M chooses chooses j
choose U at random
for i = 1 to n, put k

(i)
1 := Hash(Uk

(i)
0 , j + i)

choose b ∈ {0, 1} at random
for i = 1 to n, put

k(i) := k
(i)
0 · k

(i)
1 if b = 0

choose k(i) at random, if b = 1
create signatures sign1, . . . , signn using parameters k(1), . . . , k(n)

for messages chosen by M
b̂ := M(sign1, . . . , signn, j, k

(1)
0 , . . . , k

(n)
0)

M wins the game, if b = b̂.

We can rewrite this game as follows:

Game 1
M chooses k

(1)
0 , . . . , k

(n)
0 ≤ q

M chooses j
choose U at random
for i = 1 to n, k

(i)
1 := Hash(Uk

(i)
0 , j + i) choose k

(1)
1 , . . . , k

(n)
1 ≤ q at

random
choose b ∈ {0, 1} at random
for i = 1 to n, put

k(i) := k
(i)
0 · k

(i)
1 if b = 0

choose k(i) at random, if b = 1
create signatures sign1, . . . , signn using parameters k(1), . . . , k(n)

for messages chosen by M
b̂ := M(sign1, . . . , signn, j, k

(1)
0 , . . . , k

(n)
0)

Of course, any non-negligible difference between advantage of the adversary
in Game 0 and Game 1 could be used to construct a distinguisher breaking
Assumption 1. On the other hand, in Game 1 the probability distribution of
k(1), . . . , k(n) is uniform regardless of the value of b. Therefore for Game 1 the
advantage of the adversary is 0. ��

In principle, the control parameters might ease forging a signature by an
adversary holding a device. (In this case by forging we mean creating a signature
outside the device.) Fortunately, it follows directly from Theorem2 that this is
not the case: if there is an effective forgery algorithm, then we can feed it with
random control data and the forgery should work in exactly the same way.

Corollary 1. If Mallet can forge a new signature based on signatures created by
a device implementing CR, where he has access to the output of the PRNG, then
he can forge a signature in case of the signatures created by a device implementing
the standard scheme without CR and without access to the randomness created
by PRNG in the device.

226 L. Hanzlik et al.

More generally, by Theorem 2, there is no attack against Schnorr signature
with CR that would not work for the regular Schnorr signature, as such an attack
could be used as an distinguisher contradicting the statement of Theorem2.

3.2 Security Against the User

In case of CR, the signer holding a signing device should be regarded as an
adversary aiming, for instance, to extract the private signing key from the device.
This has to be considered separately, since the signer gets control data that are
not available for a recipient of his signatures. There may be different kinds of
the attack, but what we really would like to protect is the ability to create valid
signatures solely by the signing device. Therefore we define the following game:

User Forgery Game:

Phase 1. Alice interacts with the device asking for signatures of the message
of her choice. If the signature scheme implements CR, then Alice can update the
blinding factor arbitrarily and receives signatures together with the correspond-
ing control data.

Phase 2. Alice has to present a signature s that has not been created by the
device.

Alice wins the User Forgery Game, if the signature s yields a positive verifi-
cation result. We show the following result:

Theorem 3. If there is an adversary that wins the User Forgery Game for a
signature scheme with CR with a non negligible probability in the Random Oracle
Model, then there is an adversary that wins the User Forgery Game for the same
signature scheme without CR also with a non negligible probability.

Proof. Given an input for the User Forgery Game in the standard setting, we
expand the input in order to provide the control data. We will show that for a
signature that uses a random element r, the control data can be simulated by
programming the random oracle. Namely, the simulation can be done as follows:

1. choose U = gu as a blinding factor for this step,
2. choose k1 < q at random,
3. put r′ := rk−1

1 mod q as the control data,
4. in the hash oracle table put k1 = Hash(r′u, i), where i is the signature sequen-

tial number.

Note that there is no chance for a conflict while inserting the hash values in the
hash table, as each sequential number is used exactly once. ��

3.3 Security Against the device

The device may deviate from the protocol and in this way attempt to cheat the
user in cooperation with Mallet. First, let us note that the value obtained from
PRNG can be set freely by the device and that this value is shared with Mallet.

Controlled Randomness – A Defense Against Backdoors 227

In the standard setting the device can deviate from the protocol and create
a kleptographic channel. This channel enables to leak the signing key with just
two signatures. Thereby, any security claims are illusory as long as we do not
have real control over the manufacturer and over the delivery chain (the honest
devices of the manufacturer can be exchanged by the malicious ones – as the
devices are black boxes, it is hard to see the difference unless an additional
protection level is implemented).

The standard kleptographic construction cannot be repeated for the signa-
tures with CR, however – as presumably for all randomized signature schemes –
there is a possibility to create a channel that leaks a few bits. The device shares
a “public” key Z with Mallet, where Z = gz. Then the value r leaking a string
ω is determined as follows:

repeat until ω is the suffix of Zk represented in binary
k0 is taken as the output of PRNG()
k1 := Hash(Uk0 , i)
k := k0 · k1
r′ := gk0

r := gk

Mallet can reconstruct ω from rz. Of course, the string ω cannot be too long,
as it would increase the signature creation time. Practically, it is possible for
just a few bits (if any), as it is very hard to hide the increased computation time
(and other stochastic properties of the computation time). In order to prevent
any precomputations on the side of the device we may introduce an additional
parameter c set by the user together with the signature request. Then, we would
modify the computation of k1 in the following way:

k1 := Hash(Uk0 , c, i)

Even a short c would help very much as generally the memory on a signing
device is very limited.

Below we show that the above method is essentially all the device can do
in order to deviate from the protocol. The proof is based on KEA1 assumption
[8], which informally states that: if there exists an algorithm that takes as input
(g, ga) and outputs (gr, (ga)r), then there exists an extractor that on the same
input returns r with a non-negligible probability.

Proposition 1. In the random oracle model, assuming KEA1, while computing
r′ and r the device must derive k0 before k1 with probability 1 − ε, where ε is
negligible.

Proof. According to the definition of k1 and the Random Oracle Model, the
device must first compute all arguments before computing the value k1 satisfy-
ing the equality k1 = Hash(J, i), where J should be equal to Uk0 . Otherwise the
value k1 may appear in the device with a negligible probability only. Note that
the signer recomputes k1 as Hash((r′)u, i), it follows that the device has to use
J = (r′)u. If we denote, r′ = gk0 , then it follows that J = Uk0 .

228 L. Hanzlik et al.

By KEA1 assumption, if the device can create the values r′ = gk0 and
J = Uk0 , then it must know k0 (as there exists an extractor) at the moment
of creation of these values. So, indeed k0 is known before Uk0 and thereby
before k1. ��

Proposition 1 in fact says that whatever the device tries to do, essentially it
must follow the protocol: first determine k0 (maybe in some malicious way) and
then derive the remaining values in a deterministic way.

Now assume that the device wishes to create r having some particular prop-
erty P in order to leak some information. For this purpose the device may
attempt to choose the value k0 accordingly. However, in the Random Oracle
Model the only way to learn whether P (r) holds is via derivation of the pseudo-
random value k1 = Hash(Uk0 , i). So, for each k0 the probability that P (r) holds
can be treated as a random experiment with the success probability equal to
the probability that a randomly chosen r satisfies the property P . Thereby, the
device has to follow the procedure described above for creating a few leakage bits.

4 Diffie-Hellman Key Exchange

Just as for signature schemes, CR can be directly implemented in case of Diffie-
Hellman key exchange protocol and ElGamal encryption scheme. This is quite
important, since the Diffie-Hellman protocol is a key component of many other
complex schemes.

This concerns some protocols for significant practical importance such
as Extended Access Control (EAC) and Password Authenticated Connection
Establishment (PACE) securing data exchange with biometric passports and
electronic identity documents [6,11]1. Both protocols utilize the Diffie-Hellman
protocol as subroutines. For instance, PACE v2 is based on double execution of
Diffie-Hellman key exchange.

4.1 Diffie-Hellman Protocol

Recall that during Diffie-Hellman protocol (DH) the device A of Alice sends to
(the device of) Bob a value YA = gyA , where yA is chosen at random. If the
random exponent yA can be guessed or derived by the adversary, then the whole
security of the key exchange collapses, as the adversary can compute the shared
key. In the DH protocol with CR the device A of Alice executes the following
operations:

1. choose k at random (take the output from the PRNG),
2. preYA := gk,
1 EAC and PACE are protocols of high importance for the security of biometric pass-

ports and electronic identity documents. EAC is a standardized authenticated key
exchange protocol, which goal is to authenticate the identity document and the ter-
minal against each other. PACE is a password authenticated key exchange protocol
which secures the transmission between an identity document and the reader.

Controlled Randomness – A Defense Against Backdoors 229

3. k′ := Hash(Uk, i),
4. YA := (preYA)k′

,
5. yA := k ·k′ mod q, where q is the order of the group where the Diffie-Hellman

protocol is executed.

Afterwards, the value YA is presented by the device A together with the control
value preYA and the sequential number i.

Alice (or more precisely her another device) standing in between device A
and Bob executes the control step by checking that

YA = (preYA)Hash((preYA)u,i),

where u is the secret key for the blinding factor. Neither preYA nor i is needed
for the device of Bob, so only YA is forwarded to Bob.

Note that Bob need not to implement CR, in order for Alice to be able to run
CR. Moreover, Bob even will not be able to recognize whether Alice is running
CR or not.

4.2 Security Sketch for DH with CR

Session Key Secrecy Against Alice. Alice may attempt to compute the
session key K and to continue the connection without the device A. There are
attack scenarios where such hijacking attack would make sense. Note that apart
from YA Alice knows U, preYA and can compute k′.

Deriving the session key K means deriving (YB)k·k′
, so it is equivalent to

getting (YB)k by Alice. We claim that an algorithm deriving (YB)k could be
used to solve the Computational Diffie-Hellman (CDH) problem. Indeed, if we
have an instance (g, h1, h2) of the CDH problem, then we may treat h1 as preYA,
h2 as YB, set the key u at random and create the case for the adversary by setting
k′ := Hash((preYA)u) and YA := preY k′

A .

Session Key Secrecy Against Malicious Manufacturer. In this case the
adversary knows YA, YB, and k as the output of PRNG (hence he knows also
preYA = gk). He has no access to k′, u and U . The adversary’s goal is to compute
K = (YB)k·k′

.
In order to argue that this is impossible we again have to use hash functions

that are correlated-input secure - as discussed in Sect. 3.1. We may assume that
an adversary can analyze the data from multiple sessions where the device uses
the same blinding factor U of CR. Nevertheless, we claim that it is infeasible
to distinguish between the correct session key K and a random key, even if the
adversary knows the values of k′ from all previous sessions.

Assume conversely that there is such a distinguisher D. We build a case for
the distinguisher where Ci(U) = Uki – so U plays the role of r from Definition 1,
where the values ki are generated at random. For i < n the elements k′

i are equal
to Hash(Uki). The number k′

n is a candidate for Hash(Ukn). Given ki and k′
i for

i ≤ n, the elements (preYA)i, (YA)i, Ki = (YB)ki·k′
i

i are created according to the
definition.

230 L. Hanzlik et al.

Now, these data are given to the distinguisher D (of course except for U and
the values k′

i). If k′
n was random, then so is the key Kn and the distinguisher

would indicate that the key k′
n is incorrect.

5 ElGamal Public Key Encryption

Controlled randomness can be directly applied to enhance security level of
ElGamal Encryption. As an example let us consider ElGamal Key Encapsu-
lation mechanism. Let us assume that Alice has to encrypt a message for Bob
holding a private key x and the public key y = gx. As before, the device of Alice
contains the blinding factor U = gu and Alice holds u. The modified encryption
procedure executed by the device looks as follows:

Encrypting M for Bob

1. choose k at random using a PRNG
2. r′ := gk

3. compute k′ := Hash(Uk),
4. r := (r′)k′

5. encrypt M with symmetric key K := Hash0(yk·k′
), where H0 maps the ele-

ments of the group to the key space of the symmetric encryption scheme,
6. output r, the ciphertext EncK(M) and the control element r′.

The decryption procedure is standard and uses the key K = Hash0(rx)
obtained via deencapsulation. The control mechanism follows the same steps
as described in Sect. 3 for the Schnorr signature scheme.

Security of the modified scheme has to be considered for the scenario in which
the malicious manufacturer can reconstruct the output of the PRNG of Alice
and wants to break the ciphertext EncK(M). We follow the same argument as
in case of the Diffie-Hellman protocol.

6 Final Remarks and Future Work

The most important property of the proposed mechanism is its relative simplic-
ity. With almost no alternations in the existing schemes we can provide a sig-
nificant improvement of the security level. The major advantage is that a device
attempting to cheat never knows whether its user is performing the checks or
not. Therefore it is hard to imagine that any vendor would dare to enable the
device to deviate from the protocol. An interesting feature of our method is
that it is based on techniques borrowed from kleptography. Now, the trick used
previously for malicious purposes is applied to improve security.

In this paper, we have presented applications of controlled randomness to very
basic cryptographic protocols. In reality, these schemes are used as components
in more complicated schemes. Our security arguments do not immediately apply
to those schemes, as we need a property analogous to universal composability.

Controlled Randomness – A Defense Against Backdoors 231

There are also other complications. For example, the password authentication
protocol PACE with generic mapping (as adopted by ICAO organization for
biometric passports) executes Diffie-Hellman key exchange twice. However, for
the second key exchange the base element is unknown even for the owner of the
device. Therefore a more sophisticated solution has to be applied. However,
the most significant practical problem is the effort necessary to redo the formal
security proof for such a modified scheme.

References

1. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
doi:10.1007/3-540-48405-1 28

2. Bender, J., Fischlin, M., Kügler, D.: The PACE—CA protocol for machine readable
travel documents. In: Bloem, R., Lipp, P. (eds.) INTRUST 2013. LNCS, vol. 8292,
pp. 17–35. Springer, Cham (2013). doi:10.1007/978-3-319-03491-1 2

3. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange,
T., Someren, N.: Factoring RSA keys from certified smart cards: coppersmith in
the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
341–360. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 18

4. B�laśkiewicz, P., Kubiak, P., Kuty�lowski, M.: Two-head dragon protocol: preventing
cloning of signature keys. In: Chen, L., Yung, M. (eds.) INTRUST 2010. LNCS, vol.
6802, pp. 173–188. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25283-9 12

5. Boneh, D., Ding, X., Tsudik, G., Wong, C.M.: Instantenous revocation of security
capabilities. In: USENIX Security Symposium (2001)

6. BSI. Advanced Security Mechanisms for Machine Readable Travel Documents 2.11.
Technische Richtlinie TR-03110-3 (2013)

7. Checkoway, S., Fredrikson, M., Niederhagen, R., Green, M., Lange, T., Ristenpart,
T., Bernstein, D.J., Maskiewicz, J., Shacham, H.: On the practical exploitability
of Dual EC DRBG in TLS implementations (2014)

8. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 36

9. Go�lȩbiewski, Z., Kuty�lowski, M., Zagórski, F.: Stealing secrets with SSL/TLS and
SSH – kleptographic attacks. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS
2006. LNCS, vol. 4301, pp. 191–202. Springer, Heidelberg (2006). doi:10.1007/
11935070 13

10. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19571-6 12

11. ISO/IEC JTC1 SC17 WG3/TF5 for the International Civil Aviation Organiza-
tion. Supplemental access control for machine readable travel documents. Technical
report, 2014. version 1.1, April 2014

12. Itkis, G., Reyzin, L.: SiBIR: signer-base intrusion-resilient signatures. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499–514. Springer, Heidelberg (2002).
doi:10.1007/3-540-45708-9 32

13. Juels, A., Guajardo, J.: RSA key generation with verifiable randomness. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 357–374. Springer,
Heidelberg (2002). doi:10.1007/3-540-45664-3 26

http://dx.doi.org/10.1007/3-540-48405-1_28
http://dx.doi.org/10.1007/978-3-319-03491-1_2
http://dx.doi.org/10.1007/978-3-642-42045-0_18
http://dx.doi.org/10.1007/978-3-642-25283-9_12
http://dx.doi.org/10.1007/3-540-46766-1_36
http://dx.doi.org/10.1007/11935070_13
http://dx.doi.org/10.1007/11935070_13
http://dx.doi.org/10.1007/978-3-642-19571-6_12
http://dx.doi.org/10.1007/3-540-45708-9_32
http://dx.doi.org/10.1007/3-540-45664-3_26

232 L. Hanzlik et al.

14. King, C.: Dual EC DRBG output using untrusted curve constants may be pre-
dictable (2013). http://www.kb.cert.org/vuls/id/274923

15. Kucner, D., Kuty�lowski, M.: Stochastic kleptography detection. In: Alster, K.,
Urbanowicz, J., Williams, H.C. (eds.) Public-Key Cryptography and Computa-
tional Number Theory (Warsaw 2000), pp. 137–149. Walter de Gruyter Inc.,
Birmingham (2001)

16. Kuty�lowski, M., Hanzlik, L., Kluczniak, K., Kubiak, P., Krzywiecki, �L.: Forbidden
city model – towards a practice relevant framework for designing cryptographic
protocols. In: Huang, X., Zhou, J. (eds.) ISPEC 2014. LNCS, vol. 8434, pp. 42–59.
Springer, Cham (2014). doi:10.1007/978-3-319-06320-1 5

17. Nicolosi, A., Krohn, M.N., Dodis, Y., Mazières, D.: Proactive two-party signatures
for user authentication. In: Proceedings of the Network and Distributed System
Security Symposium, NDSS 2003, San Diego, California, USA. The Internet Society
(2003)

18. NIST. Random Number Generation (2010)
19. Pfitzmann, B.: Digital Signature Schemes, General Framework and Fail-Stop Sig-

natures, vol. 1100. Springer, Heidelberg (1996)
20. Shumow, D., Ferguson, N.: On the possibility of a back door in the NIST SP800-90

Dual EC PRNG. In: CRYPTO Rump Session Presentation (2007)
21. Wang, Y., Nicol, T.: Statistical properties of pseudo random sequences and exper-

iments with PHP and Debian OpenSSL. In: Kuty�lowski, M., Vaidya, J. (eds.)
ESORICS 2014. LNCS, vol. 8712, pp. 454–471. Springer, Cham (2014). doi:10.
1007/978-3-319-11203-9 26

22. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys
are public: results from the 2008 Debian OpenSSL vulnerability. In: Proceedings of
the 9th ACM SIGCOMM Conference on Internet Measurement Conference, IMC
2009, pp. 15–27. ACM, New York (2009)

23. Young, A.L., Yung, M.: Malicious Cryptography - Exposing Cryptovirology. Wiley,
Hoboken (2004)

24. Young, A.L., Yung, M.: A timing-resistant elliptic curve backdoor in RSA. In: Pei,
D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 427–441.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-79499-8 33

http://www.kb.cert.org/vuls/id/274923
http://dx.doi.org/10.1007/978-3-319-06320-1_5
http://dx.doi.org/10.1007/978-3-319-11203-9_26
http://dx.doi.org/10.1007/978-3-319-11203-9_26
http://dx.doi.org/10.1007/978-3-540-79499-8_33

Malware, Encryption, and Rerandomization –
Everything Is Under Attack

Herman Galteland(B) and Kristian Gjøsteen

Department of Mathematical Sciences,
NTNU – Norwegian University of Science and Technology, Trondheim, Norway

{herman.galteland,kristian.gjosteen}@math.ntnu.no

Abstract. A malware author constructing malware wishes to infect a
specific location in the network. The author will then infect n initial
nodes with n different variations of his malicious code. The malware
continues to infect subsequent nodes in the network by making similar
copies of itself. An analyst defending M nodes in the network observes
N infected nodes with some malware and wants to know if any sample is
targeting any of his nodes. To reduce his work, the analyst need only look
at unique malware samples. We show that by encrypting the malware
payload and using rerandomization to replicate malware, we can make
the N observed malware samples distinct and increase the analyst’s work
factor substantially.

Keywords: Malicious cryptography · Environmental keys · Rerandom-
ization · Provable security

1 Introduction

Malware is software maliciously installed on a computer designed to give func-
tionality and behavior desired by the malware author, but not by the legitimate
computer owner.

Our goal is to study malware propagation and how to protect propagating
malware from analysis. We will not study the construction of computer viruses
or other types of malware, but rather how to construct a scheme designed to
encrypt malware such that we can hide the intentions of the malware author.

1.1 Real World Examples

BurnEye [11] is a tool designed to protect binary files and is an example on how
to protect malware. The tool adds three protective layers to a file: obfuscation,
encryption, and a fingerprint layer. The latter layer ensures that the file can only
be run on a specific computer that has the specifications stated by the fingerprint

K. Gjøsteen—This work is funded by Nasjonal sikkerhetsmyndighet (NSM), www.
nsm.stat.no.

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 233–251, 2017.
DOI: 10.1007/978-3-319-61273-7 12

www.nsm.stat.no
www.nsm.stat.no

234 H. Galteland and K. Gjøsteen

layer. The encryption layer uses a user-chosen password as the encryption key
such that the file can only be executed (or analyzed) by someone with the proper
password.

Gauss [8] is an example of sophisticated malware that uses encryption to
protect certain payloads. Gauss uses environmental keys to decrypt the payload,
where an environmental key is a key that is generated from locally available
data. The malware gathers local data on the infected computer and hashes it
to create decryption keys, where the string of data that results in the correct
key is selected by the malware author. The malicious code can only be executed
when the correct key is produced, that is, when the malware infects the intended
target. To our knowledge, the contents of the encrypted payloads of Gauss are
still unknown.

1.2 Malware Propagation

Consider a malware author whose objective is to attack some specific location(s).
The malware author’s goals is to hide his intentions and identity. The malware
author’s adversary is an analyst observing and defending some network contain-
ing one or more of the malware author’s target(s). The goal of the analyst is
to detect malware targeting any part of the network he is protecting. He also
wants to discover the intentions and the identity of the malware author. Hiding
the mere existence of malware from the analyst is a distinct problem and not
one we consider in the current work.

We use the following model to describe malware propagation (see also Fig. 1).
The source S, the malware author, infects n initial nodes with (different vari-
ations of) his malware and they, in turn, will infect subsequent nodes in the
network by making similar copies of themselves. Every direct link to the mal-
ware author increases the analyst’s chances of discovering the malware author’s
identity, so to avoid identification, the malware author should perform as few
initial infections as possible and use indirect paths to his intended target.

The analyst’s job is to defend M nodes in the network from any possible
malware threat and he has full knowledge of the environment he is protecting.
By observing the wider network the analyst can find N malware samples.

The malware author will encrypt the malware payload to make the analyst’s
job harder. Encrypting the payload prevents reverse engineering of the malware
code [4] and hides the intentions of the author. Since obfuscation is hard, we use
encryption keys derived from environmental parameters, network triggers, or a
combination of these [9]. Thus, the malware will have an encrypted payload, con-
taining the malicious code, and a cleartext loader which gathers environmental
parameters to generate decryption keys.

To generate the malware the author chooses environmental data correspond-
ing to the intended target computer, hashes that data to create a secret key, and
encrypts the payload using the key. The malware is then ready to be released.
When the malware arrives on a new computer, the cleartext loader will deter-
mine the environmental data of the infected computer, hash the data to derive
L > 1 keys, and try to decrypt the payload using the L derived keys. If the

Malware, Encryption, and Rerandomization – Everything Is Under Attack 235

S

. . .

.
...

...
...

...
...

...
...

...
...

.

n
N

Fig. 1. Illustration of the malware infection paths

decryption is a success under one of the derived keys, the code will be executed.
The cleartext loader makes copies of the malware and infect subsequent nodes.

Since only the malware author knows the secret key, only the malware author
can create encryptions of the payload. This means that under our propagation
model, there are at most n distinct encrypted payloads among the samples col-
lected by the analyst. Each sample is encrypted and has a unknown target. If the
analyst wants to be sure that none of these samples would attack the analyst’s
network, the analyst needs to do roughly L trial decryptions for each of his M
nodes, which means that his work factor is nML.

Instead of making exact copies of the malware to replicate it, we want the
loader to rerandomize [2,6] the encrypted payload using techniques from asym-
metric cryptography. The rerandomization process takes as input an encrypted
payload and some random numbers and produces a new encrypted payload
that encrypts the same malicious code. Hence, the loader can produce several
different-looking malware payloads to infect subsequent nodes, without knowl-
edge of the secret key. This process is described in Fig. 2.

To fully utilize the rerandomization process, we want it to produce the pay-
loads such that any two malware samples are indistinguishable. If the analyst
is unable to distinguish between malware samples then, essentially, there are N
unique variations of the malware in the network. This means that the analyst
need to do L trial decryptions of N samples for M different nodes to ensure that
none of the malware samples are targeting any of his nodes. This will increase the
workload to NML. Since the malware creates new different variations of itself,
the malware author can now choose n to be small and possibly significantly
reducing the risk of detection.

Now, imagine a world filled with hundreds of different types of malware: all
are encrypted, use rerandomization, are of the same size, use the same loader, and
otherwise look the same. Every new malware sample an analyst would discover

236 H. Galteland and K. Gjøsteen

When the malware, in the form of a cleartext loader and an encrypted payload, arrives
on a new host, the cleartext loader is executed and performs the following steps:

1. The encrypted payload is rerandomized before it is stored on the host.
2. The loader scans the host environment and determines the environmental data.
3. The loader hashes the environmental data to produce one or more keys.
4. The loader tries to decrypt the encrypted payload with each key.
5. If the decryption succeeds, the decrypted payload is executed.
6. The malware may also attempt to infect some other host, in which case the en-

crypted payload is rerandomized before it is transmitted to the new host.

Note that the malware will certainly use some polymorphic engine and other standard
malware techniques in order to provide a basic level of protection for the cleartext
loader and the encrypted payload.

Fig. 2. The malware attack process.

needs to be analyzed. The analyst cannot be certain of whether a new sample
corresponds to one he has previously determined is no threat, or a genuinely
new piece of malware. Note that this requires the various malware authors to
agree on standard payload sizes and a standard loader. If they do not, then the
analyst can use these pieces of information to classify samples.

The limitations with our scheme is that the analyst can always guess, or
predict, the target of the malware author. Also, if the malware reaches its target,
the payload will be decrypted and executed. If the analyst notices the attack,
he will be able to deduce the environmental key and thus be able to decrypt the
payload. This seems impossible to avoid.

Another limitation is that once an analyst discovers the key used for one sam-
ple, he can easily discover all other samples corresponding to that key. However,
the malware author will hope that different analysts are unwilling to reveal that
they are under attack (they somehow consider this fact sensitive) and that they
therefore do not share discovered keys. This means that one analyst’s success
may not make all the other analyst’s work easier.

1.3 Related Work

Traditionally, cryptography has been developed and used as a defense against
attackers. However, it is clear that cryptography can also be of use to the
attackers.

Young and Yung where the first to raise the concern about malicious use of
cryptography (cryptovirology) [13] and have several works related to malware
construction and propagation: A virus capable of encrypting files on the vic-
tim’s computer and hold them for ransom [12]. A mobile program that carries
a rerandomizable ciphertext, which enables anonymous communication, where
the program takes random walks through a network in a system called Feralcore,
and, at each node, the ciphertext is rerandomized [14]. Utilizing a mix network
to mix programs and propagate malware [13].

Malware, Encryption, and Rerandomization – Everything Is Under Attack 237

The mix network and the mobile program mentioned use the idea of uni-
versal re-encryption, by Golle et al. [6], to re-encrypt ciphertexts. The process
transforms the ciphertexts into a new ciphertext that encrypts the same mes-
sage and do not require knowledge about the public key. Similar to universal
re-encryption is the notion of rerandomization by Canetti et al. [2].

Filiol showed that by encrypting malware payload [3,4] one can prevent any-
one from analyzing the code and reverse engineer it, possibly using the environ-
mental keys of Riordan and Schneier [9] as the encryption key. Similar to Riordan
and Schneier, secure triggers [5,7] are used to keep certain content private until
some particular event occurs.

1.4 Overview

In Sect. 2.1 we describe the cryptosystem designed to encrypt and rerandomize
malware payload. In Sect. 2.2 we construct a basic scheme based on ElGamal.
In Sect. 2.3 we show that the basic scheme is secure by using games, where
the adversary is asked to distinguish between ciphertexts encrypting the same
message and ciphertexts encrypting two different messages. That is, we will
simulate whether the analyst is able to distinguish malware samples. In Sect. 2.4
we construct an extended scheme based on the basic scheme, which is capable
of encrypting longer messages. In Sect. 2.5 we show that the extended scheme is
secure using games. The procedure is similar to the security proof of the basic
scheme.

2 Rerandomizable Encryption

We will in this section describe and construct the encryption scheme designed
to encrypt and rerandomize malware payload. We will construct two (similar)
example schemes, as proofs of concept, and show that it is hard to distinguish
between encrypted payload samples.

As a simplification we will denote payload as messages, encrypted payload
as ciphertexts, replication of malware as rerandomization of ciphertexts, and
environmental derived keys as keys.

2.1 Preliminary

In our scheme we have an algorithm E encrypting messages, an algorithm D
decrypting ciphertexts, and an algorithm R rerandomizing ciphertexts.

Encryption. For a message m and a key k the encryption algorithm E(k,m)
outputs a ciphertext c.

Decryption. For a ciphertext c and a key k the decryption algorithm D(k, c)
either outputs a message m or a special symbol indicating decryption failure.

Rerandomization. For a ciphertext c, encrypting a message m, the rerandom-
ize algorithm R(c) outputs a ciphertext c′, encrypting the same message m.

238 H. Galteland and K. Gjøsteen

We want the output distribution of the rerandomize algorithm to be com-
putationally indistinguishable from the output distribution of the encryption
algorithm. That is, it should be hard to determine if two different ciphertexts
encrypts the same message or not. We also want the system to be correct, that
is, we should almost always be able to decrypt all ciphertexts output by the
encryption algorithm. Since the output distribution of the encryption and reran-
domize algorithms are computationally indistinguishable, ciphertexts output by
the rerandomize algorithm will also almost always be correct.

Correctness. If c was output from E(k,m) then D(k, c) will always output m
except with negligible probability.

Rerandomization. If c was output by E(k,m) then the output distribution of
R(c) should be computationally indistinguishable from the output distribu-
tion of E(k,m).

We will not always be able to apply an arbitrary number of rerandomizations
to a ciphertext without getting decryption errors, which we will see is the case
in Sect. 2.4.

The security requirements of our cryptosystem reflects the intentions of the
malware author. It should be difficult to guess the malware author’s target, and
it should be hard to determine if two ciphertexts are the encryption of the same
message or not.

Key Indistinguishability. It should be hard to say something about which
key a ciphertext has been encrypted under.

Indistinguishability. It should be hard to decide if two ciphertexts, encrypted
under the same key, decrypts to the same message or not.

2.2 Basic Scheme

We will construct a basic scheme based on the ElGamal cryptosystem over a
group G of prime order p generated by g. The basic scheme is essentially the
same as the encryption scheme proposed by Golle et al. [6]. The algorithms of
the scheme is the following.

Encryption. For a message m ∈ G and a key k ∈ {1, . . . , p − 1} pick r, s ∈
{1, . . . , p − 1} uniformly and output

c = (x, y, z, w) = (gr, gkr, gs, gksm).

Decryption. For a ciphertext c = (x, y, z, w) and a key k ∈ {1, . . . , p−1} check
if xk = y. If not, output a symbol indicating decryption failure. If it is, output

m = z−kw.

Rerandomize. For a ciphertext c = (x, y, z, w) pick r′, s′ ∈ {1, . . . , p − 1}
uniformly and output

c′ = (x′, y′, z′, w′) = (xr′
, yr′

, zxs′
, wys′

).

Malware, Encryption, and Rerandomization – Everything Is Under Attack 239

Note that if c = (x, y, z, w) was output by the encryption algorithm then
there exists parameters r, s, and k, and a message m such that

c = (x, y, z, w) = (gr, gkr, gs, gksm).

With input c the rerandomize algorithm will output a c′ = (x′, y′, z′, w′) where

x′ = xr′
= grr′

,

y′ = yr′
= gkrr′

,

z′ = zxs′
= gsgrs′

= gs+rs′
,

w′ = wys′
= gksgkrs′

m = gk(s+rs′)m.

That is, c′ = (grr′
, gkrr′

, gs+rs′
, gk(s+rs′)m). Since r �= 0, we get that s + rs′ can

take any value modulo p except s and all values are equally probable. Hence,
we get that the output distribution of the encryption and rerandomize algo-
rithms are computationally indistinguishable. Note that the ciphertext c′ has
the same form as a ciphertext output by the encryption algorithm, that is,
(gr̂, gk̂r̂, gŝ, gk̂ŝm), for some parameters r̂, ŝ, and k̂, and message m.

We can now show the correctness of the decryption algorithm. Note that for
all ciphertexts c = (x, y, z, w) we have that xk = (gr)k = gkr = y, which is true
for ciphertexts output by both the encryption and rerandomize algorithms. We
can therefore retrieve the message m by computing

z−kw = (gs)−kgksm = g−ks+ksm = m.

Thus the decryption algorithm is correct.
It is possible to extend the basic scheme by encrypting several messages under

the same key. For a set of messages m1,m2, . . . ,mn, we can encrypt them as

(gr, gkr, gs1 , gks1m1, g
s2 , gks2m2, . . . , g

sn , gksnmn)

for a key k, and variables s1, s2, . . . , sn, and r. This is not a very efficient method,
and we will in Sect. 2.4 construct a different extended scheme by using techniques
from symmetric cryptography. In the next section we will show that the basic
scheme is secure.

2.3 Security of the Basic Scheme

We will in this section use games to show that the basic scheme is secure given that
it is hard to guess which environmental key the ciphertexts are encrypted under.

The key encrypting the malware payload is derived from environmental para-
meters sampled by the loader. From the adversary’s perspective, the collection
of sampled parameter types can be considered as a probability space of possible
decryption keys. We will denote this space by D. If the size of D is large then
the adversary is less likely to guess the correct decryption key, where the size of
D is determined by, most notably, the number of different parameters the loader
is gathering.

240 H. Galteland and K. Gjøsteen

We want to show that the adversary is unable to distinguish between cipher-
texts and that his advantage is determined by D, that is, the probability of the
adversary guessing the correct key. To do so, we will use a sequence of games
[10]. In our games we will start with simulating an experiment where we ask the
adversary to differentiate between two cases; ciphertexts encrypting different
messages, and ciphertexts encrypting the same message.

Experiment. Given two ciphertext c1, and c2, decide either

c1 = E(k1,m1)
c2 = E(k2,m2)

or
c1 = E(k1,m1)
c2 = R(c1)

for some messages m1,m2 and keys k1, k2.

We can show that the security of the scheme can be based on the hardness
of the Decisional Diffie-Hellman (DDH) problem [1] in the random oracle model.
The DDH problem is to distinguish between tuples of the form (g, ga, gb, gab)
and tuples of the form (g, ga, gb, gc), for some a, b, c ∈ {1, . . . , p − 1}. Where the
DDH assumption states that the DDH problem is hard to solve.

To create the encryption keys, we will use a hashing oracle to hash elements
drawn from the probability space D. We will denote the hashing oracle by H,
where it should be impossible to get any information about the input by looking
that the output of the oracle.

Game 0. In the first game we will follow the experiment. If b = 0, we will encrypt
the two given messages under two different keys. If b = 1, we will encrypt only
one of the messages and rerandomize the resulting ciphertext. In both cases, we
send the ciphertexts to the adversary, who replies with a bit b′ and the game
ends. The full procedure of Game 0 can be seen in Fig. 3.

Let E0 denote the event that b = b′ in Game 0.

Game 1. We will stop the game if the adversary guesses one of the keys correctly.
If the adversary gives either u1 or u2 in one of its queries the oracle will: flip a
coin, b′ r←− {0, 1}, output b′, and stop the game. We will denote this event by F1.

Let E1 denote the event that b = b′ in Game 1. Unless the event F1 occurs
Game 1 behaves just like Game 0. Thus we have that E0 ∧ ¬F1 ⇐⇒ E1 ∧ ¬F1

and by the difference lemma we get that

|Pr[E0] − Pr[E1]| ≤ Pr[F1].

Game 2. Since the adversary can no longer use the oracle to get any information
about the keys without stopping the game, we are essentially drawing our keys
randomly from a set. That is, we draw k1, k2

r←− {1, . . . , p − 1} uniformly and
we will no longer query the hashing oracle. Note that since the adversary can
still query the hashing oracle, we still need to draw samples from the space D
to check if the adversary is guessing the keys correctly.

Let E2 denote the event that b = b′ in Game 2. Since the adversary can
no longer get any information about the environmental keys from the hashing

Malware, Encryption, and Rerandomization – Everything Is Under Attack 241

Game 0:
u1, u2 ← D, k1 ← H(u1), k2 ← H(u2), b

r←− {0, 1}
Get m1, m2 from A

If b = 0 do:
r, r′, s, s′ r←− {1, . . . , p − 1},
c1 ← (x, y, z, w) = (gr, gk1r, gs, gk1sm1)

c2 ← (x′, y′, z′, w′) = (gr′
, gk2r′

, gs′
, gk2s′

m2)
Send c1, c2 to A

If b = 1 do:
r, r′, s, s′ r←− {1, . . . , p − 1},
c1 ← (x, y, z, w) = (gr, gk1r, gs, gk1sm1)

c2 ← (x′, y′, z′, w′) = (xr′
, yr′

, zxs′
, wys′

)
Send c1, c2 to A

Get b′ from A

Fig. 3. Game 0 of the basic scheme

oracle without stopping the game, the keys used are, essentially, some random
group elements. Hence, Pr[E2] = Pr[E1].

Game 3. We change how we compute the tuples such that we the encryption
algorithm do not require the keys as input. To do so we will precompute the
tuples before we receive the messages. That is, for some uniform s, s′ ∈ {1, . . . ,
p − 1} and keys k1, k2, we will compute

(x, y, z, w) = (g, gk1 , gs, gk1s)

(x′, y′, z′, w′) = (g, gk2 , gs′
, gk2s′

)

before we receive the messages m1 and m2.
In the case b = 0, we will encrypt the two messages using the precomputed

tuples. That is, we will pick a random element per message, r and r′, and compute

c1 = (xr, yr, z, wm1) = (gr, gk1r, gs, gk1sm1),

c2 = (x′ r′
, y′ r′

, z′, w′m2) = (gr′
, gk2r′

, gs′
, gk2s′

m2).

In the case b = 1, we will encrypt one message and rerandomize the computed
ciphertext. To encrypt m1 we pick a random element r and compute

c1 = (xr, yr, z, wm1) = (gr, gk1r, gs, gk1sm1).

To rerandomize c1 = (x̂, ŷ, ẑ, ŵ) we draw some uniform element r′ and s′, as
usual, and compute

c2 = (x̂r′
, ŷr′

, ẑx̂s′
, ŵŷs′

) = (xrr′
, yrr′

, zxrs′
, wyrs′

m1)

= (grr′
, gk1rr′

, gs+rs′
, gk1(s+rs′)m1).

242 H. Galteland and K. Gjøsteen

Let E3 denote the event that b = b′ in Game 3. The output distribution of the
encryption algorithm in Game 2 and in Game 3 are exactly the same, similarly
for the rerandomization algorithm. Therefore, we have that Pr[E3] = Pr[E2].

Game 4. We will change the way we create the second tuple, which we use to
encrypt the second message in the case b = 0. Now we will only make one tuple
for the first key k1 and use the first tuple to create the second. Let (x, y, z, w) =
(g, gk1 , gs, gk1s) be the first tuple, the second tuple will then be

(x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)

= (g, ga+ck1 , gb+s, g(a+ck1)(b+s))

for some uniformly sampled a, b, c ∈ {1, . . . , p − 1}. Note that the second tuple
will still be computed before we receive the messages.

Let E4 be the event that b = b′ in Game 4. Since the new tuple results
in the same output space when it is used for encrypting messages we get that
Pr[E4] = Pr[E3].

Game 5. We will in this game change the rerandomize algorithm. The output
of the encryption and the rerandomize algorithm can be seen as two vectors,
(x, y) and (z, w). For the encryption algorithm the first vector will always stay
in the subgroup of G×G generated by (g, gk1), for a key k1, and the second will
always stay in the same coset of this subgroup. The first vector in the output of
the rerandomize algorithm also stay the subgroup G × G generated by (g, gk1),
however the second does not stay in the same coset. That is, the output of the
rerandomize algorithm looks like

(grr′
, gk1rr′

, gs+rs′
, gk1(s+rs′)m)

for some r, r′, s and s′, where the sum of s+rs′ cannot be equal to s since none of
the variables used in the algorithm can be zero. Therefore, there is a statistical
difference of 1/p between the output distributions. We will instead compute the
rerandomization of the first ciphertext (in the case b = 1) as

(grr′
, gk1rr′

, gs+rs′+s̃, gk1(s+rs′+s̃)m1),

where s̃ is a uniform element in {1, . . . , p− 1}. The new sum s+ rs′ + s̃ can now
be any value in {1, . . . , p − 1}, and all values are equally probable.

Let F5 be the event that s + rs′ + s̃ = s, and let E5 be the event that b = b′

in Game 5. Unless F5 occurs, Game 4 and Game 5 behaves the same, that is,
E4 ∧ ¬F5 ⇐⇒ E5 ∧ ¬F5 and by the difference lemma we get that

|Pr[E4] − Pr[E5]| ≤ Pr[F5] =
1
p
.

Game 6. In the last game, we will turn the first tuple into the form (g, ga′
, gb′

,
gc′

), for some uniform elements a′, b′, c′ ∈ {1, . . . , p − 1}. The second tuple will
then look like

(g, ga+a′c, gb+b′
, gab+ab′+a′bc+cc′

).

Malware, Encryption, and Rerandomization – Everything Is Under Attack 243

Algorithm B((x, y, z, w)):
u1, u2

r←− D, b
r←− {0, 1}

a, b, c
r←− {1, . . . , p − 1}

(x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)
Get m1, m2 from A

If b = 0 do:
r, r′ r←− {1, . . . , p − 1}
c1 ← (xr, yr, z, wm1)

c2 ← (x′ r′
, y′ r′

, z′, w′m2)
Send c1, c2 to A

If b = 1 do:
r, r′, s′, s̃ r←− {1, . . . , p − 1}
c1 ← (xr, yr, z, wm1)

c2 ← (xrr′
, yrr′

, zxrs′+s̃, wyrs′+s̃m1)
Send c1, c2 to A

Get b′ from A

Fig. 4. Algorithm B

Both the encryption and rerandomization algorithms will output ciphertexts
which can result in any group element when decrypted.

Let E6 be the event that b = b′ in Game 6. Since we are using uniform vari-
ables in the tuples the encryption and rerandomization algorithms are, essen-
tially, one-time pads. Hence, we get that Pr[E6] = 1/2.

To show the connection to the previous game we will use algorithm B, see
Fig. 4. We claim that |Pr[E5] − Pr[E6]| = Advind-cpa

ddh , the DDH-advantage (with
respect to indistinguishably under chosen plaintext attack, that is, semantic
security). The input to the algorithm B is a tuple (x, y, z, w) which looks like
(g, ga, gb, gc), for some a, b, and c, where c can be equal to ab. Therefore, the
algorithm will simulate Game 5 and Game 6 depending on its input. When the
input is on the form (g, ga, gb, gab), the algorithm will proceed just as in Game 5,
and therefore

Pr[B(g, ga, gb, gab) = 1 | a, b
r←− {1, . . . , p − 1}] = Pr[E5].

If the input is on the form (g, ga, gb, gc) the algorithm proceed as in Game 6 and
we get that

Pr[B(g, ga, gb, gc) = 1 | a, b, c
r←− {1, . . . , p − 1}] = Pr[E6],

where the DDH-advantage of B is equal to |Pr[E5] − Pr[E6]|.

Recap. We can now use the results from the games to bound the advantage of
the adversary.

244 H. Galteland and K. Gjøsteen

Adv(A) = |Pr[E0] − 1/2|
= |Pr[E0] − Pr[E1] + Pr[E1] − Pr[E2] + Pr[E2]

− Pr[E3] + Pr[E3] − Pr[E4] + Pr[E4]
− Pr[E5] + Pr[E5] − Pr[E6] + Pr[E6] − 1/2|

≤ |Pr[E0] − Pr[E1]| + |Pr[E4] − Pr[E5]| + |Pr[E5] − Pr[E6]|
≤ Pr[F1] +

1
p

+ Advind-cpa
ddh .

By the DDH assumption the DDH advantage is negligible. Therefore, for a large
enough p, we get that the advantage of our adversary is determined by the
probability that A guesses or predicts the correct key, that is, determined by the
probability space D.

2.4 Extended Scheme

We will extend the basic scheme to longer messages by representing them as
bit strings. This change will also reduce the number of rerandomizations we
can perform on a ciphertext. Therefore, we need to relax the requirements of
the cryptosystem slightly. The construction in this section is very similar to the
hybrid scheme by Golle et al. [6].

Correctness. If c was produced by iteratively applying R to the output of
E(k,m) at most n times, then D(k, c) will never output the failure symbol
and output m except with negligible probability.

We will require a pseudorandom function f : G → {0, 1}N mapping group
elements to bit strings of length N , for some large N ∈ N. We let fL denote
the truncation of the output to L bits, for L < N . We will assume that group
elements can be encoded as bit strings of length l/2.

Encryption. For a message m ∈ {0, 1}L and a key k ∈ {1, . . . , p − 1} pick
r, s ∈ {1, . . . , p − 1} and γ ∈ G uniformly, output

c = gr||gkr||gs||gksγ||
(
fL+l(n+1)+1(γ) ⊕ (m||1||0l(n+1))

)
.

Decryption. For a ciphertext c = x||y||b′
0 and a key k ∈ {1, . . . , p − 1} check

if xk = y. If not, output a symbol representing decryption failure. If it is, let
b′
0 = z0||w0||b0 and compute

b′
1 = f|b0|(z−k

0 w0) ⊕ b0.

If the result b′
1 ends in l′ ≥ l zeros, then the message is the result minus

the tail of zeros and exactly one 1. If the result does not end with a tail
of l′ zeros, then interpret b′

1 as z1||w1||b1 and repeat the procedure. If the
decryption algorithm is repeated n + 1 times, output a symbol representing
decryption failure.

Malware, Encryption, and Rerandomization – Everything Is Under Attack 245

Rerandomization. For a ciphertext c = x||y||bα||bβ , where bβ is the last l bits,
pick r′, s′ ∈ {1, . . . , p − 1} and γ′ ∈ G uniformly, output

c′ = xr′ ||yr′ ||xs′ ||ys′
γ′|| (f|bα|(γ′) ⊕ bα

)
.

Note that, before applying the rerandomize algorithm, bα looks like

gs||gksγ|| (fL+ln+1(γ) ⊕ (m||1||0ln)
)

for some s ∈ {1, . . . , p− 1}, key k, and γ ∈ G. The l last bits we discard, i.e., bβ ,
is an “encryption” of l zeros. We can therefore only perform n rerandomizations
on a ciphertext before we get decryption failure, that is, there are no tail of zeros
left for the decryption algorithm to detect. However, we get that the length of
the ciphertext is preserved.

We will now show the correctness of the decryption algorithm. If c = x||y||b′
0

was output from the encryption algorithm, we have that xk = gkr = y. Hence,
we can write b′

0 as z||w||b0, and compute

f|b0|(z−kw) ⊕ b0 = fL+l(n+1)+1(g−ksgksγ) ⊕ fL+l(n+1)+1(γ)

⊕ (m||1||0l(n+1))

= (m||1||0l(n+1)).

Since the result ends with a tail of l′ ≥ l zeros the output message is m.
Let c be a ciphertext that was produced by iteratively applying the reran-

domize algorithm to the output of E(k,m) t times, where 1 ≤ t ≤ n. Write c as
x||y||b′

t, where x = gr1···rt+1 , y = gk(r1···rt+1), and b′
t looks like

(gr1···rt)s′ ||(gk(r1···rt))s′
γt||

(
fL+l(n+1−t)+1(γt) ⊕ b′

t−1

)

for some s′, r1, . . . , rt+1 ∈ {1, . . . , p − 1}, key k, and group element γt ∈ G.
Observe that for all 1 ≤ t ≤ n, we have that xk = y. Hence, we can write
b′
t = zt||wt||bt and compute

f|bt|(z
−k
t wt) ⊕ bt = fL+l(n+1−t)+1(g−ks′(r1···rt)gks′(r1···rt)γt)

⊕ fL+l(n+1−t)+1(γt) ⊕ b′
t−1

= b′
t−1

where b′
t−1 does not end with a tail of l′ ≥ l zeros (except with negligi-

ble probability), since the ciphertext is also encrypted once using with the
encryption algorithm (in addition to the t rerandomizations). Therefore, let
b′
t−1 = zt−1||wt−1||bt−1 and repeat the process t more times. In the last iter-

ation, we will perform the decryption on a bit string which looks like z0||w0||b0,
where we now have that b0 looks like

fL+l(n+1−t)+1(γ0) ⊕ (m||1||0l(n+1−t))

which we know decrypts to the message m. That is, the decryption algorithm is
correct.

246 H. Galteland and K. Gjøsteen

2.5 Security of the Extended Scheme

We will in this section show that the adversary is unable to distinguish between
encrypted ciphertexts and that his advantage is determined by D, that is, the
probability of the adversary guessing the correct key. As in the proof of the
basic scheme, we will use games to simulate the same experiment. Since the two
example schemes are similar the games will be too.

Game 0. In the first game we will simulate the experiment. We ask the adver-
sary to differentiate between ciphertexts encrypting two different messages and
ciphertexts encrypting the same message. The full procedure of the game can be
seen in Fig. 5.

Let E0 be the event that b = b′ in Game 0.

Game 1. We will stop the game if the adversary guesses one of the keys correctly.
If the adversary sends either u0 or u1 in one of its queries, the oracle will flip a
coin, b′ r←− {0, 1}, output b′, and stop the game. We will denote this event by F1.

Let E1 denote the event that b = b′ in Game 1. If the event F1 does not
occur then Game 0 and Game 1 are equal. That is, E0 ∧ ¬F1 ⇐⇒ E1 ∧ ¬F1

and by the difference lemma we get that

|Pr[E0] − Pr[E1]| ≤ Pr[F1].

Game 2. Since the adversary can no longer use the oracle to get any information
about the keys without stopping the game, we are essentially drawing our keys

Game 0:
u1, u2

r←− D, k1 ← H(u1), k2 ← H(u2), b
r←− {0, 1}

Get m1, m2 from A

If b = 0 do:
r, r′, s, s′, γ, γ′ r←− {1, . . . , p − 1}
c1 ← gr||gk1r||gs||gk1sγ||

(
fL+l(n+1)+1(γ) ⊕ (m1||1||0l(n+1))

)

c2 ← gr′ ||gk2r′ ||gs′ ||gk2s′
γ′||

(
fL+l(n+1)+1(γ

′) ⊕ (m2||1||0l(n+1))
)

Send c1, c2 to A

If b = 1 do:
r, r′, s, s′, γ, γ′ r←− {1, . . . , p − 1}
c1 ← gr||gk1r||gs||gk1sγ||

(
fL+l(n+1)+1(γ) ⊕ (m1||1||0l(n+1))

)

Write c1 as x||y||bα||bβ , where bβ is the last l bits

c2 ← xr′ ||yr′ ||xs′ ||ys′
γ′|| f|bα|(γ

′) ⊕ bα

)
Send c1, c2 to A

Get b′ from A

Fig. 5. Game 0 of the extended scheme

Malware, Encryption, and Rerandomization – Everything Is Under Attack 247

at random from a set. That is, we draw k1, k2
r←− {1, . . . , p − 1} uniformly, and

we will no longer query the hashing oracle. Note that since the adversary can
still query the hashing oracle, we still need to draw samples from the space D
to check if the adversary is guessing the correct keys.

Let E2 denote the event that b = b′ in Game 2. Since the adversary can
no longer get any information about the environmental keys from the hashing
oracle without stopping the game, the keys used are, essentially, some random
group elements. Hence, Pr[E2] = Pr[E1].

Game 3. We change how we compute the tuples such that we the encryption
algorithm do not require the keys as input. We will therefore precompute the
tuples before we receive the messages. That is, for some uniform s, s′ ∈ {1, . . . ,
p − 1} and key k1, k2, we will compute

(x, y, z, w) = (g, gk1 , gs, gk1s)

(x′, y′, z′, w′) = (g, gk2 , gs′
, gk2s′

)

before we receive the messages m1 and m2.
In the case b = 0, we will encrypt the two messages using the precomputed

tuples. That is, we will pick r, r′, γ and γ′ uniformly, and compute

c1 = xr||yr||z||wγ||
(
fL+l(n+1)+1(γ) ⊕ (m1||1||0l(n+1))

)

= gr||gk1r||gs||gk1sγ||
(
fL+l(n+1)+1(γ) ⊕ (m1||1||0l(n+1))

)
,

c2 = x′ r′ ||y′ r′ ||z′||w′γ′||
(
fL+l(n+1)+1(γ′) ⊕ (m2||1||0l(n+1))

)

= gr′ ||gk2r′ ||gs′ ||gk2s′
γ′||

(
fL+l(n+1)+1(γ′) ⊕ (m2||1||0l(n+1))

)
.

In the case b = 1, we will encrypt one message and rerandomize the computed
ciphertext. That is, to encrypt, we pick r and γ uniformly, and compute

c1 = xr||yr||z||wγ||
(
fL+l(n+1)+1(γ) ⊕ (m1||1||0l(n+1))

)

= gr||gk1r||gs||gk1sγ||
(
fL+l(n+1)+1(γ) ⊕ (m1||1||0l(n+1))

)
.

To rerandomize let c1 = xr||yr||bα||bβ , where bβ is the last l bits, pick two
element r′, s′ and a group element γ′, as usual, and compute

c2 = xrr′ ||yrr′ ||xrs′ ||yrs′
γ′|| (f|bα|(γ′) ⊕ bα

)

= grr′ ||gk1rr′ ||grs′ ||gk1rs′
γ′|| (f|bα|(γ′) ⊕ bα

)
.

Let E3 denote the event that b = b′ in Game 3. The output distribution of the
encryption algorithm in Game 2 and in Game 3 are exactly the same, similarly
for the rerandomization algorithm. Therefore, we have that Pr[E3] = Pr[E2].

Game 4. We will only make one tuple and use it to create the second one. The
first tuple will be (x, y, z, w) = (g, gk1 , gs, gk1s) and the second tuple looks will
then be

248 H. Galteland and K. Gjøsteen

(x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)

= (g, ga+ck1 , gb+s, g(a+ck1)(b+s))

for some uniformly sampled a, b, c ∈ {1, . . . , p − 1}.
Let E4 be the event b = b′ in Game 4. Since the new tuple results in the

same output space when it is used for encrypting messages we get that Pr[E4] =
Pr[E3].

Game 5. We will now make the first tuple to have the form (g, ga′
, gb′

, gc′
), for

some uniform a′, b′, c′ ∈ {1, . . . , p − 1}, where the second tuple will look like

(g, ga+a′c, gb+b′
, gab+ab′+a′bc+cc′

).

Let E5 be the event b = b′ in Game 5. We will use algorithm B, see Fig. 6, to
show that |Pr[E4] − Pr[E5]| is equal to the DDH-advantage. If the input of the
algorithm is a tuple on the form (g, ga, gb, gab), then the algorithm proceed as
in Game 4. If the tuple is on the form (g, ga, gb, gc), then the algorithm proceed
as in Game 5. Therefore, the DDH-advantage is equal to |Pr[E4] − Pr[E5]|.
Game 6. In the last game, we will sample a function h from a family Γ of all
functions from G to {0, 1}N instead of using the function f . We want to show that
the pseudorandom function (PRF) f can reliably hide the message. The PRF-
advantage of an efficient adversary is defined by his ability to distinguishing the

Algorithm B((x, y, z, w)):
u1, u2

r←− D, b
r←− {0, 1}

a, b, c
r←− {1, . . . , p − 1}

(x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)
Get m1, m2 from A

If b = 0 do:
r, r′γ, γ′ r←− {1, . . . , p − 1}
c1 ← xr||yr||z||wγ||

(
fL+l(n+1)+1(γ) ⊕ (m1||1||0l(n+1))

)

c2 ← x′ r′ ||y′ r′ ||z′||w′γ′||
(
fL+l(n+1)+1(γ

′) ⊕ (m2||1||0l(n+1))
)

Send c1, c2 to A

If b = 1 do:
r, r′s′, γ, γ′ r←− {1, . . . , p − 1}
c1 ← xr||yr||z||wγ||

(
fL+l(n+1)+1(γ) ⊕ (m1||1||0l(n+1))

)

Write c1 as xr||yr||bα||bβ , where bβ is the last l bits

c2 ← xrr′ ||yrr′ ||xrs′ ||yrs′
γ′|| f|bα|(γ

′) ⊕ bα

)
Send c1, c2 to A

Get b′ from A

Fig. 6. Algorithm B

Malware, Encryption, and Rerandomization – Everything Is Under Attack 249

Algorithm B′((x, y, z, w)):
u1, u2

r←− D, b
r←− {0, 1}, h ← Γ

a, b, c
r←− {1, . . . , p − 1}

(x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)
Get m1, m2 from A

If b = 0 do:
r, r′, γ, γ′ r←− {1, . . . , p − 1}
c1 ← xr||yr||z||wγ||

(
hL+l(n+1)+1(γ) ⊕ (m1||1||0l(n+1))

)

c2 ← x′ r′ ||y′ r′ ||z′||w′γ′||
(
hL+l(n+1)+1(γ

′) ⊕ (m2||1||0l(n+1))
)

Send c1, c2 to A

If b = 1 do:
r, r′, s′, γ, γ′ r←− {1, . . . , p − 1}
c1 ← xr||yr||z||wγ||

(
hL+l(n+1)+1(γ) ⊕ (m1||1||0l(n+1))

)

Write c1 as xr||yr||bα||bβ , where bβ is the last l bits

c2 ← xrr′ ||yrr′ ||xrs′ ||yrs′
γ′|| h|bα|(γ

′) ⊕ bα

)
Send c1, c2 to A

Get b′ from A

Fig. 7. Algorithm B′

function f from any function h sampled from Γ . The PRF-advantage of the
adversary is negligible assuming the function f is pseudorandom. Just like for
f , we will denote hL as the truncation of the output to L bits.

Let E6 be the event b = b′ in Game 6. From Game 5 we have that the
new tuples looks like (g, ga′

, gb′
, gc′

), for some random variables a′, b′, and c′.
Hence, we will not be able to retrieve γ when we try to decrypt the ciphertext
encrypting it. Since we are now using any function h, with the random group
element γ, to encrypt the message m we are essentially XOR-ing a random
bit string to the message. Therefore, the output ciphertexts of the encryption
and rerandomization algorithms can be any random bit string and we get that
Pr[E6] = 1/2.

By using the algorithm B′, as seen in Fig. 7, we can show that the difference
between Game 5 and Game 6 is equal to the PRF-advantage. The algorithm
draws a function h from the family Γ , which may be equal to f . Hence, we get
that the PRF-advantage is

|Pr[B′((x, y, z, w)) = 1 | f ← Γ] − Pr[B′((x, y, z, w)) = 1 | h ← Γ]|

which is equal to |Pr[E5] − Pr[E6]|.

Recap. We can now use the results from the games to bound the advantage of
the adversary.

250 H. Galteland and K. Gjøsteen

Adv(A) = |Pr[E0] − 1/2|
= |Pr[E0] − Pr[E1] + Pr[E1] − Pr[E2] + Pr[E2]

− Pr[E3] + Pr[E3] − Pr[E4] + Pr[E4]
− Pr[E5] + Pr[E5] − Pr[E6] + Pr[E6] − 1/2|

≤ |Pr[E0] − Pr[E1]| + |Pr[E4] − Pr[E5]| + |Pr[E5] − Pr[E6]|
≤ Pr[F1] + Advind-cpa

ddh (A) + Advprf(A).

Assuming that f is pseudorandom the PRF advantage is negligible, and the DDH
assumption states that the DDH-advantage is negligible. Therefore, the advan-
tage of the adversary is determined by the probability that the adversary guesses
or predicts the correct key, that is, determined by the probability space D.

Acknowledgments. We would like to thank Adam Young for helpful discussions
and comments. We would also like to thank the anonymous reviewers for helpful
comments.

References

1. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). doi:10.1007/BFb0054851

2. Canetti, R., Krawczyk, H., Nielsen, J.: Relaxing chosen-ciphertext security. Cryp-
tology ePrint Archive, Report 2003/174 (2003). http://eprint.iacr.org/

3. Filiol, E.: Strong cryptography armoured computer viruses forbidding code analy-
sis: the bradley virus. Research Report RR-5250, INRIA (2004)

4. Filiol, E.: Malicious cryptography techniques for unreversable (malicious or not)
binaries. CoRR, abs/1009.4000 (2010)

5. Futoransky, A., Kargieman, E., Sarraute, C., Waissbein, A.: Foundations and appli-
cations for secure triggers. Cryptology ePrint Archive, Report 2005/284 (2005).
http://eprint.iacr.org/

6. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption for
mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24660-2 14

7. Hohl, F.: Time limited blackbox security: protecting mobile agents from malicious
hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 92–113.
Springer, Heidelberg (1998). doi:10.1007/3-540-68671-1 6

8. Kaspersky Lab Global Research and Analysis Team. Gauss: Abnormal distribution.
In-depth research analysis report, KasperSky Lab, 9 August 2012. http://www.
securelist.com/en/analysis/204792238/gauss abnormal distribution

9. Riordan, J., Schneier, B.: Environmental key generation towards clueless agents. In:
Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 15–24. Springer,
Heidelberg (1998). doi:10.1007/3-540-68671-1 2

10. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

11. Skoudis, E., Zeltser, L.: Malware: Fighting Malicious Code. Prentice Hall PTR,
Upper Saddle River (2003)

http://dx.doi.org/10.1007/BFb0054851
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-540-24660-2_14
http://dx.doi.org/10.1007/3-540-68671-1_6
http://www.securelist.com/en/analysis/204792238/gauss_abnormal_distribution
http://www.securelist.com/en/analysis/204792238/gauss_abnormal_distribution
http://dx.doi.org/10.1007/3-540-68671-1_2

Malware, Encryption, and Rerandomization – Everything Is Under Attack 251

12. Young, A., Yung, M.: Cryptovirology: extortion-based security threats and coun-
termeasures. In: Proceedings of the IEEE Symposium on Security and Privacy, pp.
129–140, May 1996

13. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. Wiley,
Hoboken (2004)

14. Young, A., Yung, M.: The drunk motorcyclist protocol for anonymous communica-
tion. In: 2014 IEEE Conference on, Communications and Network Security (CNS),
pp. 157–165, October 2014

Protecting Electronic Signatures in Case
of Key Leakage

Miros�law Kuty�lowski1(B), Jacek Cichoń1, Lucjan Hanzlik1,
Kamil Kluczniak1, Xiaofeng Chen2, and Jianfeng Wang2

1 Faculty of Fundamental Problems of Technology,
Wroc�law University of Science and Technology, Wroclaw, Poland

{miroslaw.kutylowski,jacek.cichon,lucjan.hanzlik,
kamil.kluczniak}@pwr.edu.pl

2 State Key Laboratory of Integrated Service Networks (ISN),
Xidian University, Xi’an, People’s Republic of China

{xfchen,jfwang}@xidian.edu.cn

Abstract. We present a protection mechanism against forgery of elec-
tronic signatures with the original signing keys. It works for standard
signatures based on discrete logarithm problem such as DSA. It requires
only a slight modification of the signing device – an implementation of
an additional hidden evidence functionality.

We assume that neither verification mechanism can be altered nor
extra fields can be added to the signature (both as signed and unsigned
fields). Therefore, the old software for signature verification can be
used without any change. On the other hand, if a forged signature
emerges, the signatory may prove its inconsistency with a probability
close to 1.

Unlike fail-stop signatures, our method works not only against crypt-
analytic attacks, but it is primarily designed for the case when the adver-
sary gets the original signing key stored by the signing device of the user.

Unlike cliptographic constructions designed to defend against mali-
cious implementations, we consider catastrophic situation when the key
has been already compromised.

The technical idea we propose is an application of kleptography for
good purposes. It is simple enough, efficient and almost self-evident to
be ready for implementation of cryptographic smart cards of moderate
storage and computational capabilities.

Unfortunately, we have also to bring into attention that our scheme
has a dark side and it can be used for leaking the keys via the recent
subversion-resistant signatures by A. Russell, Q. Tang, M. Yung and
H.-Sh.Zhou.

This research has been supported by the Polish National Science Centre grant
OPUS, no 2014/15/B/ST6/02837 and Polish-Chinese cooperation venture of
Xidian University and Wroc�law University of Science and Technology on Secure
Data Outsourcing in Cloud Computing.

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 252–274, 2017.
DOI: 10.1007/978-3-319-61273-7 13

Protecting Signatures from Key Leakage 253

1 Introduction

In practice, undeniability of electronic signatures is based on the following
assumptions:

1. Creation of a valid signature is possible only with the secret key corresponding
to the public key used during the verification procedure,

2. The private key is stored only in a so called signature creation device which
is under a sole control of the signatory,

3. The link between the public key and the signatory is reliably confirmed by
means of a public key infrastructure.

Violation of any of these assumptions means that a signature cannot be trusted.
Note that the sole control condition has to indicate that no one but the sig-

natory can activate the device for signing. This does not mean that the signatory
has open access to the device memory, its secret keys etc. Indeed, such an access
would mean that the signatory can export the key from the device and therefore
we could not assume that the private signing key is stored on the device only.

Unfortunately, testing whether the above mentioned conditions are fulfilled
might be far beyond the possibilities of a normal user entrusting the signatures:

1. Validity of the first condition depends on the state of the art of cryptanalysis.
However, one cannot expect that a user can evaluate state-of-the-art of the
research in this area and exclude possibility of a forgery. Note that we are
not talking only about the academic research with publicly available results,
but also about cyber war research.

2. The second condition is very hard to check, even for the signatory himself.
First, the hardware manufacturer may include trapdoors enabling to reveal
the private key stored in the signature creation device. There is a wide range
of methods that can be applied for this purpose: kleptographic code (see
e.g. [16] and its bibliography list), weaknesses of (pseudo)random number
generators, hardware Trojans (see e.g. [1]), side channel information leakage
(see e.g. [7]). Such trapdoors can be also created by simple implementation
errors. However, even the signatory has no access to the internal state of the
device, so such trapdoors cannot be detected by a direct device inspection.
Certification and audit procedures aim to prevent existence of such trapdoors
in certified products, but it has been pointed out that certification authorities
might be coerced by state authorities to install certain trapdoors for the sake
of national security. However, these trapdoors can be used without any control
and even endanger public security.
Some defense against these threats is possible – e.g. cliptographic techniques
[19] aim to protect against malicious software implementations, including the
key generation process.

3. Creating a reliable, efficient and cheap PKI infrastructure is a problem itself.
Last not least, one has to be sure that the most advanced players cannot
create rogue certificates. From the past experience (see [12]), we know that
this cannot be completely excluded.

254 M. Kuty�lowski et al.

In this paper we focus on the second condition. One line of R&D work is
to provide secure hardware so that there are neither trapdoors nor malicious
ways to extract the signing secret keys against the will of the signatory and
the manufacturer. However, it is extremely hard to evaluate effectiveness of the
current solutions for the sheer reason that the most dangerous and powerful
adversaries may treat their capabilities as top secrets.

Key Generation Process. One of the Achilles heels of the signature schemes
currently implemented on the smart cards is secret key generation. There are a
few options, each of them involves critical threats:

1. Key generated by a service provider and installed on the signature
creation device: one cannot prove that the service provider does not retain
a copy of the key for malicious purposes. If they are later used only in a
few cases, then this does not even endanger the reputation of the service as
forgery might be hard to prove.
Unfortunately, the current legal regulations do not ease the situation: e.g. the
recent eIDAS framework of European Union [14] admits creation and keeping
backup copies of secret signing keys as a service. It is required that appropri-
ate security level is assured, however it does not mean that a rogue service
provider cannot break these rules. Even worse, the current state-of-the-art of
cryptographic research provides tools to erase all traces of misbehavior.

2. Key generated by the user and installed on the signature creation
device: this option is frequently forbidden by legal rules: the device must
not enable existence of the secret key outside of it. The only exception is
generating key by a trusted service provider as mentioned by the first option.
Note that admitting the user to install the key creates plenty of opportunities
to steal this key by rogue software on the computer used to generate and
upload the key. The user is likely to be unaware of this fact.

3. Key generated itself by the signature creation device: the proce-
dure to create cryptographic keys on the signing device might be a fake one.
A rogue device might “generate” the key that already has been stored on the
device or is predictable by the manufacturer. As in response the device owner
obtains only a public key, it is infeasible to detect such misbehavior.

We may conclude that the provider of the signature creation devices has
quite realistic ways to gain access to the signing keys contained in these devices
and thereby has a real opportunity to forge signatures.

Of course, there are some relatively simple solutions that would make such
forgeries much harder or even impossible. For example, a multi-party key genera-
tion protocol executed by the signature creation device and another independent
device of this user would help a lot (by “independent” we mean in particular
“coming from a different manufacturer that cannot be coerced by the same
authority”). Also using two different signature creation devices and a certificate
stating that a signature is valid only when co-signed by the second device would
provide more security in the practical sense.

Protecting Signatures from Key Leakage 255

Unfortunately, these simple solutions are not really pragmatic. Our experi-
ence is that in practice all solutions that require major changes in the already
deployed systems have no or very low chances to be accepted by the industry and
decision makers. As a reaction to such proposals we expect rather arguments to
ignore “theoretical and purely academic threats not justified by a realistic risk
analysis”. If a new method is fully compatible with the already available and
deployed products, then the chances to be accepted increase a lot.

Our Goal. We aim to create security mechanisms against forging signatures by
an adversary having access to the private signing keys. Such an adversary can
create signatures that cannot be distinguished by the standard means from the
signatures created by the private key owner. As it seems to be hard to change
the verification process already described in the standards, our goal is to

– detect signatures created with stolen signing keys,
– create an evidence that can be used to convince a judge about the forgery

without invalidating the remaining signatures.

We aim to address the situation where:

– the manufacturer provides a device with a signing key already installed, or
– the key generation procedure is executed by the (black box) device, but we

have no insight into this process, or
– some components are ill implemented (e.g. the (pseudo)random number gen-

erator has low entropy output), and therefore the signing key is weak by
design.

For this purpose we enable the user to install an auxiliary parameter on the sig-
nature creation device after he gets the device to his hands. An important feature
is that this parameter is not known to the manufacturer or the party delivering
the device. As the signing device is usually supposed only to create signatures,
it might be hard in practice to create a secret channel to the manufacturer that
would enable to leak the signing key.

A näıve way to implement this idea would be to use an extra secret as a
seed for a PRNG creating random exponent k i.e. in case of DSA signatures.
Revealing the seed would immediately enable to distinguish the forged signatures
from the signatures created by the card. Unfortunately, the user himself would be
able to derive the secret key installed by the device, which contradicts the basic
requirements e.g. from [14]. Indeed, in case of the signature creation devices
the legitimate user of the device should be considered as an adversary, since
in practice he might be tempted to find an evidence that his device has been
tampered and therefore to claim that some of his past signatures have been
forged.

One might hope that fail-stop signatures [11] solve the stated problem. Unfor-
tunately, this is not true, as fail-stop signatures protect solely against cryptana-
lytic attacks. They are useless against an adversary holding the original signing
keys.

256 M. Kuty�lowski et al.

Assumptions. We aim to provide a solution that would be relatively easy to
deploy. Therefore we assume that:

1. The current signature standards should be used in an essentially unchanged
form; only details of implementation should provide additional features for
the device holder. Nothing should change for a verifier of electronic signatures.

2. The solution does not require any additional interaction during device delivery
from the manufacturer to the end user. We are focused on the situation that
the signature creation device is delivered ready to use with the signing key
and a certificate for this key already preinstalled.

3. The solution should be implementable on devices such as smart cards with
moderate resources (computing speed and memory size). These devices are
assumed to be tamper proof (if they are not, then they cannot be used as
signature creation devices for the general reasons).

4. For the signatory, creating a signature should be as convenient as in case of
the standard signature creation devices.

5. In case of a forgery with original keys, detection probability should be high
enough to discourage such behavior.

Example Application Scenario. A typical application case we have in mind is the
following. A financial institution or an organization of financial institutions issues
electronic ID cards for their customers. The ID cards enable creation of electronic
signatures used to authenticate documents provided by the customers. In order
to ease the card usage and simplify the logistics, the ID cards are delivered
ready to use. As the card issuer holds the most relevant data about the customer
enabling him to monitor card usage, it does not make sense to delegate the cards
management chores (such as keeping revocation lists) to a third party Certificate
Authority. However, if there is a dispute between the customer and the financial
institution, the customer may challenge the signatures created by himself and
claim that the institution has retained his signing key and used it to forge these
documents. This is a crucial issue and the solution proposed in this paper aims
to prevent such a situation.

Our Contribution and Paper Overview. We present a generic solution for ran-
domized signature schemes based on the Discrete Logarithm Problem, including
in particular ElGamal, DSA, ECDSA, and Schnorr signatures. The mechanism
is based on a pair of hidden keys that enable to fish out the signatures created
by the legitimate signature creation device (this device stores the public control
key for signature creation). Our solution enables separation of trust: the hidden
keys might be uploaded by the owner of the device.

In Sect. 2 we present our generic construction. In Sect. 3 we provide argu-
ments showing that the modified schemes are secure just as the underlying sig-
nature schemes. Section 4 shows a dark side of the scheme – usage for leaking
the key without using random numbers generated on the smart card. In Sect. 5.1
we discuss the implementation problems and in particular time complexity for
signature creation on a smart card. In Sect. 5.2 we present and discuss a proof
of concept implementation. Section 6 is devoted to the related previous work.

Protecting Signatures from Key Leakage 257

2 Scheme Description

2.1 Outline of the Solution

In our scheme we redesign the life cycle of secure signature creation devices. The
following parties are involved:

Manufacturer: he creates a signature creation device - both the hardware and
the software installed there. In particular, he either personalizes the device
and installs there the private signing keys on behalf of the final user, or installs
software responsible for key generation by the device.

Signatory: the person that holds the signature creation device and controls
the physical access to it after getting it from the manufacturer. Apart from
the signing activities, he is involved in interactions with his signature cre-
ation device aiming to protect against an adversary, who may potentially
gain access to his signing key. In particular, the signatory holds an additional
private hidden control key assigned to the signature creation device. He ini-
tializes the device by installing the corresponding hidden public key on his
signing device. He keeps this key confidential and shows it to nobody but to
the judge1.
In case of a fraud with the original signing keys, the signatory interacts with
the judge and proves forgery.

Verifier: a recipient of digitally signed documents. He runs the standard signa-
ture verification procedure to check validity of a signature.

Adversary: a party attempting to create a signature that would be attributed
to the device of the attacked signatory. After delivering the device to the sig-
natory, the adversary cannot directly interact with the device, but we assume
that he holds the signing key stored in this device. He may also see the sig-
natures created by the device and even request signatures under messages of
his choice.

Judge: is a party that resolves disputes about claimed signature forgeries. For
this purpose he interacts with the signatory.

In fact, unlike in the standard cryptographic literature, the signature creation
device should be regarded as a scheme participant. In particular, it interacts with
the signatory in a strictly defined way. So in particular, it should be tamper
resistant. Its life cycle consists of the following phases:

Phase 1: device creation and delivery. The signature creation device is
produced and delivered to the signatory. We assume that its whole memory
contents at that time is known to the adversary and that the device might
be personalized for the signatory.

Phase 2: hidden keys initialization. A fresh signature creation device gets
the hidden public key installed by the signatory. (In Sect. 6, we indicate that
it is possible to change the hidden keys, however this cannot be done com-
pletely freely.) The signatory does not certify the hidden public key, however

1 Or even not to the judge, if he is only semi-trusted.

258 M. Kuty�lowski et al.

it might be helpful to register the signature creation device. According to our
scheme, for this purpose he deposits a number of signatures created by the
so initialized device.

Phase 3: regular usage. During this phase the signatory uses the device and
creates digitally signed documents. At the same time the adversary may forge
signatures using for this purpose the original signing keys of the signatory.
Such forged signatures are used by the adversary for presumably malicious
purposes.

Phase 4: forgery detection and proof. This phase may occur, when the sig-
natory becomes aware of valid signatures that are attributed to him, but
which have not been created by using his signature creation device. In this
case the signatory interacts with a judge. (The adversary is not involved in
this phase, since in general neither the signatory nor the judge can indicate
who is the adversary.) Based on the undeniable cryptographic proof the judge
can declare the challenged signature(s) as not created by the device of the
signatory and therefore attributed to an unknown adversary.

Phase 5: termination of use. In this phase device usage is terminated; pos-
sibly all already existing signatures or some of them get revoked. This phase
normally follows Phase 4, when the judge decides that the presented signa-
ture has been forged. In a standard situation, termination is due to aging of
the signature creation device.

2.2 Preliminaries

First let us discuss a few components used by the proposed scheme.

Signature schemes involved: Our method will apply to signature schemes
based on Discrete Logarithm Problem for a cyclic group G of a prime order
q. For G we shall use the multiplicative notation, however the scheme can
be applied for elliptic curve signatures in exactly the same way. The solution
works for signature schemes such as ElGamal, DSA, Schnorr, where one of
the signature parameters available for the verifier is an element r = gk, where
k is created at random.

Hidden control keys: The main feature of signature creation devices executing
our scheme is that they contain an extra public key V = gv ∈ G. Each
signature creation device implementing the scheme must have its own key
V installed after handling the device to the signatory. The link between the
device and V should be verifiable by a judge. Moreover, the hidden private
key v should be known to the signatory, whose responsibility is to prove in
the court that certain signatures have been forged, if this unfortunate case
occurs. The hidden key v should not be installed on the signing device.

Data signed: the signature schemes concerned apply a hash function together
with the core signing operations. According to the common practice, legal
requirements and industrial standards, the hash function is applied not to
a raw document M , but to M encoded together with some meta-data. The
meta-data contain in particular the time of creating the signature (see for

Protecting Signatures from Key Leakage 259

instance the popular XAdES standard and its QualifyingProperties: Signed-
Properties: SigningTime). Following RFC 2985 [9] we assume that the sign-
ing time is given according to the ISO/IEC 9594-8 standard UTC Time, and
according to RFC 2630 [6] MUST include seconds. The following issues are
important for our scheme:

– For a signing time T , we utilize the field denoting the seconds, say t. For
simplicity we assume that 0 ≤ t ≤ 59 and ignore the rare cases when a
minute has 61 s.

– The signature creation device can adjust a signing time by causing a delay
of, say, two seconds.

– Before the secret key is used by the signing procedure, a small preprocess-
ing takes place, allowing to adjust the parameter r to the signing time in
a hidden way.

Truncated hash function TruncHash: Our scheme uses a hash function

TruncHash : G → {0, . . . , 59}

For the sake of security proof we have to assume that TruncHash is a pseudo-
random function that can be modelled by a random oracle.
Note that for TruncHash we do not aim to achieve collision freeness or any
property of this kind. What we really need is that a fair advantage in guessing
the value of TruncHash(x) indicates that its argument x has been presented
first.
For the sake of a practical implementation, TruncHash could be taken as
a truncated value of a hash function implemented on the smart card (e.g.
SHA-256).2

2.3 Signing Scheme Procedures

In order to focus attention of the reader, we describe a scheme based on Schnorr
signatures. We also skip most of the details that do not differ our solution from
the standard one. Let SignDev stand for a signing device.

I. Generating a key pair for a user. We do not alter the way of generating
the signing keys. We assume that after this phase:

– SignDev contains a private signing key x < q chosen at random,
– the public key Y = gx ∈ G has been exported outside SignDev,
– SignDev is in the state requiring installing the hidden control keys.

II. Installing the hidden control keys. This procedure is executed by the
signatory interacting with his device SignDev with already instantiated private
signing key x.

2 There are some low level implementation issues, since hash function is typically hard-
ware supported, but truncation presumably cannot be executed on the cryptographic
co-processor and therefore might be relatively slow.

260 M. Kuty�lowski et al.

1. The signatory chooses the hidden secret key v, v < q, at random and computes
V := gv ∈ G.

2. The signatory uploads V to SignDev3. The device SignDev stores V as its
hidden key.

3. SignDev enters the state in which it can be used only for creating signatures.
4. The signatory creates a few signatures (as described below) and deposits them

by a third trusted party.

Remark 1. In practice, the signatory uses another (independent) device (pre-
sumably his PC) to create v and V . Insecurity of this auxiliary device may
challenge the effectiveness of the forgery detection mechanism, however it does
not endanger the underlying signature scheme. Involving a PC does not create
an additional risk, as an adversary that controls it may replace the documents
to be signed by the documents of his choice at the moment when the signatory
authorizes SignDev to create a signature.

III. Signing procedure. Creating a signature consists of two phases. The first
phase can be executed in advance before the data to be signed (or its hash) are
transmitted to the signature creation device. The second phase corresponds to
the standard signing procedure.

First, for the reader’s convenience we recall the Schnorr signing algorithm
for a signing key x and a message M (note that M is the original document
appended with the signature’s meta-data, including in particular the signing
time):

Creation of Schnorr signatures

1. choose k at random
2. r := gk

3. e := Hash(M ||r)
4. s := (k + x · e) mod q
5. output (s, e) as a signature of M .

Creation of Schnorr signatures - Forgery evident version

This procedure is executed by the device SignDev in interaction with (the com-
puter of) the signatory. (Of course, a signing request has to be authorized by
the signatory – providing the correct PIN is a minimum requirement.)

Phase 1 (preprocessing):
1. create an empty array A[0 . . . 59]
2. choose k at random
3. U := V k

4. i := 0
5. repeat Δ times: // Δ is a constant discussed later

5.1. z := TruncHash(U,M)
3 In order to secure the logistic chain, the smart card may require presenting a one-

time initialization PIN by the signatory.

Protecting Signatures from Key Leakage 261

5.2. A[z] := i
5.3. i := i + 1
5.4. U := U · V

After Phase 1 the array A and the value k are retained for Phase 2.
Phase 2 (the main signing part):

1. let T be the signing time (in the UTC format), let t be the value of the
seconds field of T

2. wait until A[t] is nonempty
3. r := gk+A[t]

4. having r already computed (see e.g. the first two steps of the Schnorr
algorithm), proceed with the signature creation algorithm for the message
to be signed appended with meta-data containing the signing time T .4

Remark 2. The choice of the parameter Δ will be discussed in Sect. 5.1. It must
be large enough to fill majority of positions in the array A and thereby reduce
the waiting time in the second step of Phase 2.

Remark 3. Note that if A[t] is nonempty and contains j < Δ, then the entry j
has been inserted for U = V k+j and t = TruncHash(U,M). Of course, during
the first phase A[t] might be overwritten many times, but it does not change the
just mentioned property.

IV. Verification procedure. The verification procedure is unchanged and
executed according to the standard version of the underlying signature.

Remark 4. Note that our signature creation process yields signatures in exactly
the same format as in case of the underlying scheme. So, we do not need any
modification of the verification software. In fact, we shall show that the verifier
cannot recognize whether the signing procedure has been modified.

V. Forgery detection procedure. The test concerning a signature of M
with the creation time T (as stated in the signed meta-data) is as follows:

1. reconstruct the value r, e.g. for a Schnorr signature (s, e), compute r := gs/Y e

2. check
TruncHash(rv,M) ?= t (1)

where t denotes the value of the seconds field in T .
3. output forgery, if the equality (1) does not hold.

Remark 5. The detection procedure requires knowledge of v – the hidden con-
trol key. It must be kept secret by the signatory. Therefore there are two pro-
cedures: one concerning forgery detection and the second concerning proving
forgery against a judge.

4 In the cryptographic standards the signing time T is treated as meta-data and not
a part of the message to be signed, in the cryptographic literature there is no such
distinction and the message is understood as a message together with the meta-data.

262 M. Kuty�lowski et al.

Remark 6. There is a possibility of a false positive result – by pure luck the
adversary creating a signature may use r such that equality (1) holds. This
happens with probability ≈ 1

60 for each single signature. This probability is high
from the point of view of cryptography, however in this case we are talking about
disclosure of malicious behavior of the system provider, who gets into criminal
charges with probability 59

60 , if he dares to use a stolen key even once! Note
also that we are not talking about general probability to forge a signature, but
about the probability to use a forged signature, when the private signing key
has already been exposed to the adversary.

VI. Forgery proof procedure. This procedure is executed by the signatory
and the judge. First we describe the general framework and later describe the
details of the core Proof Procedure:

1. The signatory presents the judge the hidden public key V .
2. The signatory presents the judge the registered signatures created right after

installing the hidden control keys.
3. The judge and the signatory run interactively the Proof Procedure for these

signatures and V . If the result is negative, then the signatory’s claim gets
rejected and the procedure terminates.

4. The signatory presents the judge the alleged forged signature S with the
signature creation time T .

5. The judge and the signatory run the Proof Procedure for S. If the result is
negative, then the signatory’s claim gets rejected and the procedure termi-
nates. Otherwise the judge declares S as forged.

Proof Procedure
Consider a signature S of a message M with a signing time T , with t denoting
the seconds field, for the hidden public key V and the hidden private key v:

1. The judge and the signatory reconstruct the value r from the signature cre-
ation process of S – just as in case of a regular signature verification.

2. The signatory computes u := rv and presents u to the judge.
3. The judge rejects the forgery claim if TruncHash(u,M) = t.
4. The signatory and the judge perform an interactive zero knowledge proof of

equality of discrete logarithms for the pairs (g, V) and (r, u). For instance,
one may run a number of times the following standard procedure:
(a) the signatory chooses σ at random and presents

v1 = gvσ, v2 = rvσ

(b) the judge chooses a bit b at random,
(c) if b = 0, then the signatory reveals σ and the judge checks that v1 = V σ,

v2 = uσ,
(d) if b = 1, then the signatory reveals δ = vσ and the judge checks that

v1 = gδ, v2 = rδ.
5. If the equality of discrete logarithms test fails, then the judge rejects the

forgery claim.

Protecting Signatures from Key Leakage 263

Remark 7. The above procedure can be modified so that V is not presented to
the judge (this approach should be applied, if the judge is only semi-trusted.)
In this case the signatory does not create a proof of equality of discrete log-
arithms for (g, V) and (r, u) as described above, but for (r0, u0),. . . , (rm, um)
and (r, u), where (r0, u0),. . . , (rm, um) come from the signatures registered right
after the personalization of the SignDev device with the hidden keys or from
the signatures created in front of the judge with SignDev.

Remark 8. One may speculate that the signatory might himself break into his
signing device SignDev. Then having the secret signing key and the hidden
key, the signatory would be able to create signatures that would be recognized
as forged by the judge. However, according to the manufacturer’s declaration
SignDev is tamper resistant.

3 Security of the Scheme

3.1 Resilience to Forgeries

Potentially, the special properties of the signatures created according to the
scheme proposed in Sect. 2 might ease forging signatures by the third parties.
Namely, we can consider the following game:

Game A

1. The adversary may request signatures of the messages of his choice at time of
his choice. They have to be created by a device implementing the algorithm
from Sect. 2.

2. The adversary presents a message and its signature S.

The adversary wins the game if S has not been created during step 1 and the
standard verification of S yields a positive result.

Note that we do not demand that S would pass the forgery detection proce-
dure. Moreover, the signature S may concern a message that has already been
signed during Step 1 (re-signing an old message).

We can also define an analogous game for standard signature creation:

Game B

1. The adversary may request signatures of the messages of his choice at time
of his choice.

2. The adversary presents a message and its signature S.

The adversary wins the game if S has not been created during step 1 and the
standard verification of S yields a positive result.

Assume that an adversary A can win Game A. We use it to win Game B.
Namely, we choose v at random and set V = gv. Then we create the input for
Game A. If the adversary of Game A asks for a signature over M at time T with t
being the number of seconds, we use the oracle from Game B. When it returns a
signature (r, . . .), then we compute TruncHash(rv,M). If it equals t, then we pass
the signature (r, . . .) to Game A. If not, then we repeat the request for the oracle

264 M. Kuty�lowski et al.

of Game B, until this property is fulfilled. Since there are only 60 possible values
of TruncHash, after a short time we get a signature that can be passed to Game A.

Obviously, the signature returned by the adversary A from Game A can be
used as a response of the adversary in Game B. Thereby we get the following
result:

Theorem 1. If an adversary can win Game A (forge a signature based on a
collection of signatures created according to the mechanism from Sect. 2), then
an adversary can win Game B (forge a signature in the regular case).

Remark 9. Note that the opposite direction is not immediate and may require
extra assumptions: in the attack for Game A we create signatures that come
from a subset of the set of all signatures. In theory, a successful attack from
Game B could fail, if we are limited to such a subset.

3.2 Indistinguishability

Our second goal is to show that an adversary not knowing the control key V = gv

cannot distinguish between the signatures passing the forgery detection test and
signatures that would be found as forged. (This notion is basically the same as
indistinguishability against Subversion Attacks from [18].) Namely, we consider
the following game:

Game C

1. The adversary may request signatures of the messages of his choice at time of
his choice. For each signature (ri, . . .) over Mi, he gets additionally zi, where

zi = TruncHash(rv
i ,Mi)

2. The challenger chooses a bit b at random.
3. The challenger presents a signature (r, . . .) over M that has not been created

during the first stage and a value z, which equals TruncHash(rv,M), if b = 0,
and a random value z �= TruncHash(rv,M), if b = 1.

4. The adversary returns a bit b̄.

The adversary wins the game if b = b̄.
In our proof we refer to Correlated-Input Secure Hash Function introduced in

[5]. This model seems to better reflect the required properties than the Random
Oracle Model and addresses directly the threats occurring in practice - including
in particular our case. Moreover, for our purposes it suffices to use only a limited
version of Correlated-Input Hash Function Assumption. Namely, we consider the
following game:

Correlated TruncHash Values Game
choose pairwise different elements k1, . . . , kn ≤ q

(an arbitrary strategy may be applied)
choose M1, . . . ,Mn ∈ G

(an arbitrary strategy may be applied)

Protecting Signatures from Key Leakage 265

choose V at random
hi := TruncHash(V ki ,Mi) for i = 1 to n,
choose M and k �= k1, . . . , kn

h
(0)
n+1 := TruncHash(V k,M)

choose h
(1)
n+1 ∈ {0, . . . , 59} \ {h

(0)
n+1} at random

choose b ∈ {0, 1} at random
b̂ := A(k1, . . . , kn, k,M1, . . . ,Mn,M, h1, . . . , hn, h

(b)
n+1).

A wins the game if b = b̂. The advantage of A is defined as p − 1
2 | where p is the

probability to win the game by A.
Note that in the above game the only value not available to A is V . We know

exactly the relationship between the first arguments of TruncHash due to the
knowledge of the exponents k1, . . . , kn, k. However, the hash function TruncHash
hides the arguments used, so we cannot derive V k. The game describes the
chances of the adversary to deduce the control value for r, given the correct
values for some other r1, . . . , rn.

Assumption 2. (reduced version of Correlated-Input Hash Function
Assumption). The advantage of the adversary A in the Correlated Hash Values
Game is negligible.

Note that the adversary can win the Correlated TruncHash Values Game,
if he can win Game C. Indeed, the adversary may choose at random a signing
key x. Then, knowing the exponents k1, . . . , kn, k he may create the correspond-
ing signatures for M1, . . . ,Mn,M . Therefore we may immediately conclude as
follows:

Theorem 3. Each adversary has a negligible advantage in Game C, if the
(reduced) Correlated-Input Hash Function Assumption holds for the function
TruncHash.

4 The Dark Side of the Scheme

In this section we remark that the core mechanism of the scheme presented
in Sect. 2 can be used for evil purposes as well. Jumping ahead to the related
work (Sect. 6), let us recall that there have been attempts to eliminate software
subversion attacks on signature schemes [18,19]. Their general recommendation
is to use deterministic signature schemes and to involve in certain way a hashing
function during key generation process. In this way we defend ourselves against
choosing the keys that are advantageous for the adversary.

Unfortunately, the proposed approach does not fully implement the concept
“nothing up my sleeve” and the security claims from [19] turn out to be incom-
plete. Let us sketch shortly how to leak the key with their scheme:

– There is no room for randomness during execution of the protocol, however
the user cannot fully control the time of signature creation. A malicious soft-
ware can postpone signature creation by, say, 1 or 2 s. This cannot be really

266 M. Kuty�lowski et al.

observed by the user and can be attributed to many hardware issues. (For
instance, a smart card may suffer from communication errors and attribute
the delays to them).

– The time delay may be aimed to create a subliminal channel: the device tries
to adjust some number of bits to leak a key. Say, it takes the signature s
(created honestly according to the protocol) and computes D := Hash(S,K),
where K is a trapdoor key. Then it takes, say, the last 8 bits of D and treats
them as an 8-bit address a. If the 9-th bit of S is the same as the ath bit of
the 256-bit signing key, then the signature S is called good.

– The signing procedure is adjusted as follows:
(1) the device creates a signature S taking into account the current time T .

If S is good, then it releases S. Otherwise it waits one second and goes to
step 2.

(2) the device creates the next signature S′ and releases it no matter whether
it is good or not.

– The adversary collects a number of signatures created by the device. Each sig-
nature indicates the value of one bit of the signing key – but of course only the
values coming from good signatures are true. Therefore for each key position
the adversary gathers the values indicated by the signatures. As at average
75% of all signatures are good, with enough signatures it is possible to recover
the signing key taking into account relevant statistics and enhancing them by
brute force at positions where the statistics do not deliver a firm answer.

Note that if the signature creation device has to implement the scheme
presented in Sect. 2, then installing the key leaking procedure described above
becomes more problematic. Indeed, leaking the key bits requires adjusting the
signing time and thereby creates some delays. However, this must be imple-
mented on top of the procedure described in Sect. 2 which already causes some
delays. So together the delay might be too high and easily observable.

5 Implementation Issues

When electronic signatures for real world applications are concerned, we have
to take care about practical feasibility of the proposed solution. For instance, a
protocol using non-standard cryptographic operations not implemented on the
smart cards available on the market has almost no chance to be deployed in
practice due to high costs of redesign of the card’s cryptographic coprocessors.

For this reason we discuss the problems of a time delay introduced by the
scheme from Sect. 2. This is a crucial issue, since there is a strict limit for a
signature creation process – it should not exceed 2–3 s. Otherwise, the users get
annoyed by the long processing time and generally do not accept the solution.
(Interestingly, reducing the processing time does not make sense either, since the
user should observe that the smart card is performing some computations.)

In order to check computational complexity in reality, we have also imple-
mented our solution on MULTOS smart cards (the cards where the operating
system enables access to low level operations for the programmer). The results
show that no technical problems emerge for our scheme.

Protecting Signatures from Key Leakage 267

5.1 Empty Places in Array A

Creating a signature according to the procedure described in Sect. 2 at time t
fails, if A[t] is empty. In this case, the signature creation process gets postponed
1 s and the next attempt occurs at time t + 1.

From the mathematical point of view we have the following problem. There
are n bins and k balls. Each ball is placed in one of the bins, the target bin is
chosen uniformly at random, independently of other balls. We define the event
E(n,k)

i meaning that the bin i mod n is empty after inserting all balls. Then let
pn,k,a denote the probability

Pr[E(n,k)
i+1 ∧ E(n,k)

i+2 ∧ . . . ∧ E(n,k)
i+a] =

(
1 − a

n

)k

The probability of hitting a non-empty position in the first trial is therefore
Pr[¬E(n,k)

i] = 1 − (1 − 1
n)k. For n = 60 and k = 120 this equals approximately

1 − 1/e2 ≈ 0.864665. The concrete values for p60,120,a are as follows:

a 1 2 3 4 5

p60,120,a 0.133 1.7 · 10−2 2.1 · 10−3 2.5 · 10−4 2.92 · 10−5

Let us also consider

Li,n,k = min
{

a : ¬
(
E(n,k)

i+1 ∧ E(n,k)
i+2 ∧ . . . ∧ E(n,k)

i+a

)}

That is, Li,n,k corresponds to the number of steps required to find a nonempty
position in the array A starting at position i + 1. The probability distribution
of Li,n,k does not depend on i, so we will write Ln,k instead of Li,n,k. Then

Pr[Ln,k > a] = Pr[E(n,k)
1 ∧ E(n,k)

2 ∧ . . . ∧ E(n,k)
a]

Then the expected value of Ln,k can be computed as follows:

E[Ln,k] = 1 +
∑n

a=1 Pr[Ln,k > a] = 1 +
∑n−1

a=1

(
1 − a

n

)k

= 1 + 1
nk

∑n−1
a=1 (n − a)k = 1 + 1

nk

∑n−1
a=1 ak

Obviously, if k1 < k2, then E[Ln,k1] > E[Ln,k2]. Moreover, limk→∞ E[Ln,k] = 1.
The expression 1 + 60

k+1 is a quite good upper approximation of E[L60,k] (see
Fig. 1).

For n = 60 and k = 1, . . . , 240 we may derive the following concrete values:

k 10 60 120 240 500

E[L60,k] 5.96.. 1.56.. 1.15.. 1.01.. 1.00022..

268 M. Kuty�lowski et al.

Fig. 1. The expected value E[L60,k] (black points) and its approximation by 1 + 60
k+1

(red points). The value of k is on the x-axis. (Color figure online)

In particular it means that for k = 120 the array A is almost filled and the
expected position of the first nonempty entry is in most cases the starting
position.

We have executed a number of trial executions of the preprocessing stage
(implemented in Python) for Δ = 100. We have ran three series of 50 executions
of the preprocessing stage and we have counted the number of blocks of empty
entries of a given length in the array A. (For this purpose we assume that the
entries A[59], A[0] are the neighboring ones.)

– In the first series of 50 executions we have observed:
• 360 blocks of length 1 (i.e. empty entries preceded and followed by non-

empty entries),
• 64 blocks of 2 empty entries,
• 10 blocks of 3 empty entries,
• 1 block of 4 empty entries,
• 2 blocks of 5 empty entries.

The average number of empty blocks in a single execution therefore equals
7.2 blocks of length 1, 1.28 blocks of length 2, 0.2 blocks of length 3, 0.02
blocks of length 4, 0.04 blocks of length 5.

– In the second series of 50 executions we have observed: 375, 68, 17, 3 empty
blocks of the length, respectively, 1, 2, 3, 4.

– In the third series of 50 executions we have observed: 376, 75, 11, none, 2
empty blocks of the length, respectively, 1, 2, 3, 4, 5.

Protecting Signatures from Key Leakage 269

5.2 MULTOS Trial Implementation

In order to estimate complexity of the proposed scheme in a real environment
we have implemented the most critical part – the preprocessing phase – on the
standard MULTOS smart cards. Note that this is the only potential bottleneck
of the scheme. Indeed, the verification procedure is exactly the same as in the
standard case, while forgery detection and proof are executed only occasionally
(anyway, they are quite efficient). We have used the 2048-bit MODP group with
a 224-bit prime order subgroup defined in RFC 5114. Below we include the source
code of this implementation.

Note that this implementation uses only the high level API of the MULTOS
standard. So in some sense we perform the worst case experiment, as we use
modular arithmetic instead of more efficient elliptic curves. This influences both
the time complexity of standard operations used for signature generation, as well
as auxiliary operations such as an implementation of TruncHash (in the code
presented below this is SHA-1 followed by reduction modulo 60). Of course, a
low level implementation should be much more efficient.

#include"main.h"

#define FIELD_LEN 256

#define MESS_LEN 256

#define EXP_LEN 28

#define ARR_LEN 60

#pragma melpublic

BYTE tmp[FIELD_LEN+MESS_LEN];

BYTE k[EXP_LEN];

BYTE zb[20];

BYTE kk[8];

struct

{

BYTE buffer[ARR_LEN];

} apdu;

#pragma melstatic

BYTE p[] = {0xAD,0x10,0x7E,0x1E,0x91,...};

BYTE g[] = {0xAC,0x40,0x32,0xEF,0x4F,...};

BYTE V[] = {0x88,0x31,0x1a,0xf3,0x91,..};

BYTE v[] = {0x80,0x1C,0x0D,0x34,0xC5,..};

BYTE mess[] = {0x01,0x02,0x03,0x04,0x05,..};

void main(void) {

int i=0,j=0;

int delta = 100;

DWORD z;

BYTE t;

multosGetRandomNumber(kk);

270 M. Kuty�lowski et al.

memcpy(k,kk,8);

multosGetRandomNumber(kk);

memcpy(k+8,kk,8);

multosGetRandomNumber(kk);

memcpy(k+16,kk,8);

multosGetRandomNumber(kk);

memcpy(k+24,kk,4);

multosModularExponentiation(EXP_LEN,FIELD_LEN,

k,p,V,tmp);

memcpy(tmp+FIELD_LEN,mess,MESS_LEN);

for(i=0;i<delta;i++){

multosSHA1(FIELD_LEN+MESS_LEN,tmp,zb);

t = zb[0];

__push(t);

t = zb[1];

__push(t);

t = zb[2];

__push(t);

t = zb[3];

__push(t);

__code (__STORE, &z, 4);

z = z

apdu.buffer[z] = i;

multosModularMultiplication(FIELD_LEN,p,tmp,V);

}

multosExitLa(ARR_LEN);

}

The detailed results regarding the time required to execute Phase 1 for the
above code on MULTOS are given in Table 1. Note that the time lower than 2 s is
acceptable in a standard setting (the total signature creation time presumably
below 3 s). We have to note that the preprocessing phase can be executed in
parallel when the user is asked to confirm his will to create a signature – in this
case the time overhead is zero, as the user needs a few econds to push the button.
The most important message from the experiment is that there is no memory
bottleneck on the card to execute the scheme.

Table 1. Timing details for particular steps of the preprocessing phase, the results
are given as average over 50 trial executions. For the experiment, each trial involves
Δ = 100 (the smart card inserts data in the table A 100 times)

Preprocessing step Execution time in ms (average over 50 trials)

2 5

3 401

5.1–5.3 1025

5.4 293

Total 1724

Protecting Signatures from Key Leakage 271

6 Related Work

Probably the first attempt to protect the signatories against powerful adversaries
capable of deriving signing keys from the public keys are fail-stop signatures [11].
In case of a forgery, the legitimate owner of a signing device can break a hard
cryptographic problem (that he normally is unable to do) thereby providing an
evidence of a forgery. The fail-stop signature schemes are based on the idea that
for one public key there is a large number of corresponding secret keys and a
cryptanalyst cannot say which of them is kept by the signature creation device
of the legitimate signatory. Failure to guess this key and attempt to sign with a
different key leads to an evidence mentioned above.

Unfortunately, as far as we know this idea has never been deployed in business
practice. One of the reasons might be its target: fail-stop signatures aim to reveal
successful cryptanalytic attacks, but do not address the case when the adversary
has access to the original signing key (when for instance he retains the keys
after generating them for the user). Even if the description of a scheme states
that the private key is generated by the user (see e.g. [13]), this is done by the
signature creation card, and the card may choose in a way predetermined by the
card manufacturer. On the other hand, some of the solutions proposed assume
existence of a party that indirectly gets access to the private keys of the users
(see e.g. [15]). In our opinion this defers on threat but creates a new one, even
more serious. Many of the proposed fail-stop signature schemes are one-time
signatures, which makes them useless for standard applications. Last not least,
according to the third law of Adi Shamir: “Cryptography is typically bypassed,
not penetrated.”

A somewhat similar, but simpler idea has been presented in [3]. The idea
is to provide exactly two options for creating the ith signature, namely with
either ri = gki or r′

i = gk′
i . Which option is used depends on the user. In case of

device cloning the same random parameter k for computing r = gk can be used
in two different signatures: one created by the legitimate device and one by the
cloned device. This leads immediately to revealing the signing key and thereby
invalidates all signatures created with this key, including the ones created by
the clone. Thereby the cloned devices are of little use. Invalidating all signatures
seems to be a drastic measure, however the adversary holding a copy of the
private key can always do it by leaking somewhere this key.

An alternative approach based on monitoring creation of electronic signa-
tures has been proposed in [4] as mediated signatures. The idea is that in an
online environment we need not to rely solely on the signing device: for signa-
ture creation it is necessary to involve another party, called mediator, that holds
a supplementary key for each user. Therefore, the mediator may monitor the
activities of the signing device and may inform the user about each signature
created by the device. The paper [4] describes a simple implementation based on
the RSA signatures, while [10] provides a solution based on Schnorr signatures.
This approach has been further extended in [2] by the concept of key evolu-
tion. This enables the mediator to detect that it is interacting with two different
signing devices attributed to the same user.

272 M. Kuty�lowski et al.

Technically, the most related design has been proposed in [8], where the
authors aim to detect omissions on the list of electronic signatures correspond-
ing to a single device. This scheme aims to cope with the problem of hiding
documents created by a given device leading to cases such as Enron bookkeep-
ing frauds.

Recently, there have been a growing interest on protecting signature schemes
against attacks based on malicious software. In [18] a general model for subver-
sion attacks is considered – the one that enables the adversary to replace the
original algorithm creating the signature by a malicious one. A general method
to leak the key bits is presented (following well-known kleptographic attacks [17]
and the algorithm from [8]). An important point is that the change should not
detectable by the user not knowing the trapdoor information. The general rec-
ommendation of this paper is to use deterministic signature algorithms in order
to remove any room for malicious substitution. While this is an convincing argu-
ment, it also provides a perfect framework for the adversary holding the signing
key – in such a setting no cryptographic procedure can help the owner of the
signing key to prove the forgery with stolen original keys.

The paper [19] extends [18] by considering the model where also key gener-
ation software may be subverted. The key invention is to design a subversion
resilient one-way permutation with a trapdoor. It is based on the idea that first
an index r is chosen at random – but instead of using r as an index to one-way
permutation, the scheme takes the hash value r′ := hSPEC(r) for computing the
index of a permutation in the family of one-way trapdoor permutations. Hav-
ing a trapdoor permutation it becomes relatively straightforward to construct
a subversion resistant signature scheme. However, we again have to stress that
while this construction protects against malicious implementations and leaking
the signing key via the signatures, it provides no defense against an adversary
that gets the private key in a different way – e.g. via retaining r by the service
provider. Also, there is a long way from the idea to a real deployment, since
widely used standard solutions tend to persist even when facing serious security
problems.

Final Remarks

The method presented in this paper is simple enough to be easily incorporated in
signing devices as an optional mechanism against frauds concerning electronic
signatures. It requires changing neither signature standards nor the software
used for signature verification. This is a major practical advantage since oth-
erwise necessity of modifications could prohibit deployment of countermeasures
for years.

Deployment of the proposed security measures would substantially improve
real reliability and undeniability of digital signatures and should be considered
for next generation of cryptographic smart cards. In our opinion, a potential
threat of forging signatures by a dishonest technology provider is one of the
barriers for widespread use of electronic signatures for legal purposes. In the
current situation we feel that it is quite controversial to recommend usage of
legally binding electronic signatures.

Protecting Signatures from Key Leakage 273

Even if the probability 59
60 of detecting a forgery with the original signing

keys in a single signature may be viewed as relatively low, this is significantly
better than the current state-of-the art. Indeed, today the owner of the signing
key is in a legally hopeless situation, if the original keys are used by the forger.
Note that for transactions of a high value the security policy may require signing
the document several times. If for instance 10 signatures are required, then the
probability of a successful attack performed by an adversary holding the original
signing key is reduced to ≈ 2−59.

A nice feature of the method proposed is that it partially defends against
weaknesses of (pseudo)random number generators used for signature creation
by standard schemes. It does not prohibit an adversary to learn the signing key,
however according to Theorem 3 it does not enable the adversary to learn the
key V and therefore to create signatures that would pass the forgery detection
test.

Of course, the proposed method has also some limitations. If an adversary
gets full access to the memory of a signing device SignDev, including the hidden
control key V installed there, then he will be able to mimic the operation of
SignDev and create signatures that are indistinguishable from the signatures
created by SignDev. A potential solution to this problem would be to use a
chain of the hidden control keys similar to the Lamport’s chain of hash values.
Namely, instead of a single (v, V) one could use (vi, Vi) for i = k, k − 1, . . . , 1,
where vi+1 = vi · Hash(Vi). The signatory would have to keep v1 only and
from time to time to update the hidden public key V by replacing V = Vj by
V = Vj−1.

Finally, we have to warn the user that the proposed solution does not protect
against an adversary who has gained control over his PC (or the browser). The
problem is that the smart card has no display and the user cannot be sure which
document has been signed following his request.

References

1. Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hard-
ware Trojans: extended version. J. Cryptogr. Eng. 4(1), 19–31 (2014)

2. B�laśkiewicz, P., Kubiak, P., Kuty�lowski, M.: Digital signatures for e-government
- a long-term security architecture. In: Lai, X., Gu, D., Jin, B., Wang, Y., Li, H.
(eds.) e-Forensics 2010. LNICSSITE, vol. 56, pp. 256–270. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23602-0 24

3. B�laśkiewicz, P., Kubiak, P., Kuty�lowski, M.: Two-head dragon protocol: preventing
cloning of signature keys. In: Chen, L., Yung, M. (eds.) INTRUST 2010. LNCS, vol.
6802, pp. 173–188. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25283-9 12

4. Boneh, D., Ding, X., Tsudik, G., Wong, C.M.: Instantenous revocation of security
capabilities. In: USENIX Security Symposium (2001)

5. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19571-6 12

6. Housley, R.: RFC 2630: cryptographic message syntax. ftp://ftp.rfc-editor.org/
in-notes/rfc2630.txt (1999)

http://dx.doi.org/10.1007/978-3-642-23602-0_24
http://dx.doi.org/10.1007/978-3-642-25283-9_12
http://dx.doi.org/10.1007/978-3-642-19571-6_12
ftp://ftp.rfc-editor.org/in-notes/rfc2630.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2630.txt

274 M. Kuty�lowski et al.

7. Kocher, P.C.: Timing attacks on Implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

8. Kubiak, P., Kuty�lowski, M.: Supervised usage of signature creation devices. In: Lin,
D., Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS, vol. 8567, pp. 132–149. Springer,
Cham (2014). doi:10.1007/978-3-319-12087-4 9

9. Nystrom, M., Kaliski, B.: RFC 2985: PKCS #9: selected object classes and
attribute types version 2.0. ftp://ftp.rfc-editor.org/in-notes/rfc2985.txt (2000)

10. Nicolosi, A., Krohn, M.N., Dodis, Y., Mazières, D.: Proactive two-party signatures
for user authentication. In: NDSS 2003, The Internet Society (2003)

11. Pedersen, T.P., Pfitzmann, B.: Fail-stop signatures. SIAM J. Comput. 26(2), 291–
330 (1997)

12. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,
Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 55–69.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 4

13. Susilo, W., Safavi-Naini, R., Gysin, M., Seberry, J.: A new and efficient fail-stop
signature scheme. Comput. J. 43(5), 430–437 (2000)

14. The European Parliament and European Council. Regulation (EU) no 910/2014 of
the European Parliament and of the Council on electronic identification and trust
services for electronic transactions in the internal market and repealing directive
1999/93/EC. Official Journal of the European Union L 257/73 (2014)

15. Yamakawa, T., Kitajima, N., Nishide, T., Hanaoka, G., Okamoto, E.: A short fail-
stop signature scheme from factoring. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K.,
Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 309–316. Springer, Cham
(2014). doi:10.1007/978-3-319-12475-9 22

16. Young, A., Yung, M.: Kleptography from standard assumptions and applications.
In: Garay, J.A., Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 271–290. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15317-4 18

17. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). doi:10.1007/3-540-69053-0 6

18. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
Ray, I., Li, N., Kruegel, C. (eds.) CCS 2015, pp. 364–375. ACM, New York (2015)

19. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. IACR Cryptology ePrint Archive vol. 2015, p. 695 (2015)

http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/978-3-319-12087-4_9
ftp://ftp.rfc-editor.org/in-notes/rfc2985.txt
http://dx.doi.org/10.1007/978-3-642-03356-8_4
http://dx.doi.org/10.1007/978-3-319-12475-9_22
http://dx.doi.org/10.1007/978-3-642-15317-4_18
http://dx.doi.org/10.1007/3-540-69053-0_6

Advances in Cryptanalysis

A New Test Statistic for Key Recovery Attacks
Using Multiple Linear Approximations

Subhabrata Samajder(B) and Palash Sarkar

Applied Statistics Unit, Indian Statistical Institute,
203, B.T.Road, Kolkata 700108, India
{subhabrata r,palash}@isical.ac.in

Abstract. The log-likelihood ratio (LLR) and the chi-squared distri-
bution based test statistics have been proposed in the literature for
performing statistical analysis of key recovery attacks on block ciphers.
A limitation of the LLR test statistic is that its application requires the
full knowledge of the corresponding distribution. Previous work using the
chi-squared approach required approximating the distribution of the rel-
evant test statistic by chi-squared and normal distributions. Problematic
issues regarding such approximations have been reported in the litera-
ture. Perhaps more importantly, both the LLR and the chi-squared based
methods are applicable only if the success probability PS is greater than
0.5. On the other hand, an attack with success probability less than 0.5
is also of considerable interest. This work proposes a new test statistic
for key recovery attacks which has the following features. Its application
does not require the full knowledge of the underlying distribution; it is
possible to carry out an analysis using this test statistic without using
any approximations; the method applies for all values of the success
probability. The statistical analysis of the new test statistic follows the
hypothesis testing framework and uses Hoeffding’s inequalities to bound
the probabilities of Type-I and Type-II errors.

Keywords: Multiple linear cryptanalyis · LLR statistic · Chi-squared
statistic · Hoeffding inequality

1 Introduction

Consider the setting of multiple linear cryptanalysis of block ciphers. Statistical
analyses of such attacks proceed by identifying a suitable test statistic. In purely
statistical terms, the setting is as follows. Let X1, . . . , XN be independent and
identically distributed random variables taking values from the set {0, 1}�. The
distribution of the Xj ’s is either a distribution p̃ = (p0, . . . , p2�−1) or it is the
uniform distribution on {0, 1}�. For η ∈ {0, 1}�, let Qη be the random variable
which counts the number of j’s such that Xj = η. The following test statistics
have been used in the literature on block cipher cryptanalysis. Assume � > 1.

LLR =
2�−1∑

η=0

Qη ln(2�pη); Λ = 2�N
2�−1∑

η=0

(Qη/N − 2−�)2.

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 277–293, 2017.
DOI: 10.1007/978-3-319-61273-7 14

278 S. Samajder and P. Sarkar

The LLR test statistic arises from the log-likelihood ratio while the distribution
of Λ can be approximated by a chi-squared distribution. By the chi-squared test
statistic, we will mean Λ. Approximate expressions for data complexities of key
recovery attacks using the LLR and the chi-squared test statistics have been
obtained in [14]. Both the LLR and the chi-squared test statistics have some
limitations which are mentioned below.

Knowledge of the Distribution: To apply the LLR test statistic, it is required
to have full knowledge of the probability distribution p̃. In many situations, this
information may be difficult to obtain. The distribution p̃ is uncovered by a
detailed analysis of the block cipher and for � > 1, obtaining the full distribution
p̃ may not be possible. In such situations, it is not possible to apply the LLR
test statistic.

To apply the chi-squared test statistic, the knowledge of p̃ is not required. The
analysis needs to only unearth the expected value of the test statistic which is one
of the factors that determine the number of plaintext-ciphertext pairs required
to mount the attack. So, to apply an analysis based on the chi-squared test
statistic, the requirement from the analysis of the block cipher is substantially
lower than that required from the LLR test statistic.

Approximation Issues: For both the LLR and the chi-squared test statistics,
the analysis in [14] approximates the corresponding distributions by normal.
This involves an error in approximation which has not been studied in details.
For the chi-squared based test statistic, this issue has been briefly noted in
the literature [14,15]. For detailed analysis of problems arising from normal
approximations we refer to [27].

Works Only for High Success Probability: The success probability of a
key recovery attack is the probability that the target sub-key is indeed recov-
ered by the algorithm. While it is good to have high success probabilities, from
a cryptanalytic point of view, low success probabilities are also meaningful. For
example, an attack with success probability 0.1 has a 10% chance of success. Such
an attack should be considered to be a valid attack. It is helpful for a cryptan-
alyst to determine the amount of plaintext-ciphertext pairs required to achieve
a certain success probability. The LLR and the chi-squared based approaches
have serious limitations with respect to this requirement. Both the approaches
are applicable only for success probabilities greater than 0.5. So, if one wishes to
obtain an estimate of data complexity for an attack with 10% chance of success,
then there is nothing in the literature which allows doing this.

Our Contributions. In this work, we propose to perform a statistical analysis
which overcomes the previously mentioned limitations. This requires a suitable
test statistic.

Our first choice is the chi-squared test statistic. For this, we considered the
possibility of performing an analysis without making any approximations. We fol-
low the hypothesis testing framework. An approach for avoiding approximations
in this framework has been outlined in [26]. The idea is to apply the Hoeffding

A New Test Statistic for Key Recovery Attacks 279

bounds to upper bound the probabilities of Type-I and Type-II errors. This
requires expressing the test statistic as a sum of independent random variables.
Unfortunately, for the chi-squared test statistic, this does not seem to be possible.

Since neither the LLR nor the chi-squared test statistics seem to apply, we
propose a new test statistic. For η ∈ {0, 1}�, let η denote the integer whose
binary representation is η. Let d be a positive real number. We propose the
test statistic T =

∑
η∈{0,1}� ηdQη. The computation of this statistic does not

require information about p̃. Let μ0 (resp. μ1) be the expectation of T when the
Xj ’s follow p̃ (resp. the uniform distribution). If μ0 �= μ1, then T can be used
to carry out a key recovery attack. The requirement from the analysis of the
internal structure of the block cipher is to obtain (an estimate of) μ0. Given the
value of μ0, it is possible to obtain an expression for the data complexity (i.e.,
the number of plaintext-ciphertext pairs) required to attain the parameters of a
successful attack.

The statistical analysis that we perform does not require us to make any
approximations. It is possible to express T as a sum of independent random
variables. So, the Hoeffding bounds can be used to bound the probabilities of
the Type-I and Type-II errors.

The theoretical analysis holds for any positive d. The question that arises is
what value of d should be used in practice. An important point to keep in mind
is that for the chosen value of d, it should be possible to estimate the value of μ0.
Based on experiments, we suggest that the value of d should be taken to be 1.

We have evaluated the obtained bound using known linear approximations
for the block cipher SERPENT. For success probabilities at most 0.5, there is
no prior result in the literature to which we can compare. For success probabil-
ities greater than 0.5, the values of the bounds turn out to be higher than the
approximate values obtained using the chi-squared test statistic.

Note that the minimum required data complexity to achieve a certain value
of the success probability is not known. Our method provides an upper bound
on this minimum data complexity while the chi-squared method provides an
approximate value where the error in approximation is not known. So, the data
complexity of the chi-squared method cannot be taken to be the correct value
and then the bound obtained by our method is criticised for being an over-
estimate. It is possible that the chi-squared method grossly under-estimates the
minimum required data complexity.

A work of independent interest would be to simulate an attack on some par-
ticular (toy) cipher to determine the required data complexity and then compare
it to the bound that we obtain and the approximate value obtained from the
chi-squared method. If done in a comprehensive manner this could be an inter-
esting exercise, but, one that we feel is not directly related to the contribution
of the paper. We have obtained a theoretical bound which holds for all ciphers.
This in itself should be of some intrinsic interest. Note that the upper bound
on the data complexity obtained in this paper depends only on the value of μ0,
provided such an estimate exists and that the estimate is an accurate one.

280 S. Samajder and P. Sarkar

While we do not make any claims that the bound is tight, we do note that
carrying out an experiment for one particular cipher will not establish the bound
to be loose. There may be ciphers for which the bound is loose while there could
be other ciphers for which the bound is tight. Further, it is difficult to extrapolate
results on data complexity obtained from simulation of an attack on some toy
cipher to results about much higher data complexity on more complex and real-
life ciphers. More work is required to establish the tightness (or not) of the
bounds obtained here. We refer to [28] for a discussion on this issue. Another
equally important issue is to be able to propose another test statistic which
shares the advantages of the one that we use and for which it is possible to
obtain lower values of the data complexity.

Previous and Related Work. Linear cryptanalysis was proposed by Mat-
sui in [21] as an attack on DES and involved a single linear approximation of
the cipher. Later, in [22], Matsui used two linear approximations (which were
assumed to be independent) to improve the attack. Independently, Kaliski and
Robshaw [20] extended Matsui’s attack involving single linear approximations to
multiple linear cryptanalysis using � ≥ 1 independent linear approximations. The
approximations that were considered had certain restrictions. It was assumed
that the � linear approximations have a common data mask (i.e., plaintext and
ciphertext mask) but different key masks.

In [3], Biryukov et al. gave a more general method for multiple linear crypt-
analysis without any assumption on the corresponding linear approximations.
Their analysis, though, still assumed the linear approximations to be indepen-
dent. Analysis under the independence assumption was also done independently
by Junod and Vaudenay in [19] in the context of distinguishing attacks. Further
work on distinguishing attacks without the independence assumption was car-
ried out in [1,2,10,18]. Murphy [24] argued that the independence assumption
need not be valid.

Junod [17] gave a detailed analysis of Matsui’s ranking method [21,22]. This
work introduced the notion of ordered statistics in linear cryptanalysis. This
was further developed by Selçuk in [29], where he used a well known asymptotic
result from the theory of ordered statistic to arrive at the expression for success
probability for both single linear and differential cryptanalysis.

The test statistic used in [1,2,18] was the log-likelihood ratio (LLR). The
chi-squared test statistic was initially used by Handschuh and Gilbert [11] for
the cryptanalysis of the SEAL encryption algorithm. Later Johansson and Max-
imov [16] gave an explicit analysis of the success and the error probabilities in
the context of their attack on the stream cipher Scream. The idea of Selçuk’s
order statistics based approach has been combined with the LLR and the chi-
squared test statistics to obtain expressions for data complexities of multiple
linear cryptanalysis [14].

A related line of work considered the situation where the correlation for a
linear approximation depends on the key. This line of research originates from

A New Test Statistic for Key Recovery Attacks 281

the work of Daemen and Rijmen [9] and was explicitly put in the context of linear
cryptanalysis in [6] for single linear cryptanalysis and in [5] for multi-dimensional
linear cryptanalysis.

In this paper, we have not considered the issue of key-dependent correlations.
The problems with the use of normal approximations for linear cryptanalysis
without key-dependent behaviour (reported in [27]) also extend to the case of
key-dependent correlations. Further, there are several additional subtleties which
need to be properly handled. Carefully analysing the setting of key-dependent
correlations without approximations requires a separate comprehensive treat-
ment. The goal of the present paper, on the other hand, is primarily to show how
several limitations of previous statistical methods for analysing multiple linear
cryptanalysis can be overcome. We believe that the usefulness of this contribu-
tion can be assessed independently of the issue of key-dependent correlations.

2 Multiple Linear Cryptanalysis

Let E : {0, 1}k×{0, 1}n �→ {0, 1}n be a block cipher, and so for each K ∈ {0, 1}k,
EK(·) Δ= E(K, ·) is a bijection from {0, 1}n to itself. Here, K is called the secret
key, the n-bit input to EK is called the plaintext and the n-bit output of EK is
called the ciphertext.

Usual constructions of block ciphers involve a simple round function para-
meterised by a round key which is iterated over several rounds. The round keys
are produced by applying an expansion function, called the key scheduling algo-
rithm, to the secret key K. Denote the round keys by k(0), k(1), . . . and round
functions by R

(0)

k(0) , R
(1)

k(1) , Also, let K(i) denote the concatenation of the first

i round keys, i.e., K(i) = k(0) || · · · || k(i−1) and E
(i)

K(i) denote the composition of
the first i round functions, i.e.,

E
(0)

K(0) = R
(0)

k(0) ; E
(i)

K(i) = R
(i−1)

k(i−1) ◦ · · · ◦ R
(0)

k(0) = R
(i−1)

k(i−1) ◦ E
(i−1)

k(i−1) ; i ≥ 1.

Suppose that an attack targets r + 1 rounds. For a plaintext P , we denote by B

the output after r rounds, i.e., B = E
(r)

K(r)(P) and we denote by C the output

after r + 1 rounds, i.e., C = E
(r+1)

K(r+1)(P) = R
(r)

k(r)(B).
Block cipher cryptanalysis starts off with a detailed analysis of the block

cipher. This results in one or possibly more relations between the plaintext P ,
the input to the last round B and possibly the expanded key K(r). In case of
linear cryptanalysis these relations are linear in nature and are of the following
form:

〈Γ (i)
P , P 〉 ⊕ 〈Γ (i)

B , B〉 = 〈Γ (i)
K ,K(r)〉; i = 1, 2, . . . , �;

where Γ
(i)
P , Γ

(i)
B ∈ {0, 1}n and Γ

(i)

K(r) ∈ {0, 1}nr denotes the plaintext mask, the
mask to the input of the last round and the key mask respectively. A linear
relation of the above form is called a linear approximation of the block cipher.
Such linear approximations usually hold with some probability which is taken
over the uniform random choices of the plaintext P . Obtaining such relations

282 S. Samajder and P. Sarkar

and their joint distribution is not a trivial task and requires a lot of ingenuity
and experience. They form the basis on which the statistical analysis of block
ciphers are built. If � > 1, the attack is called a multiple linear cryptanalysis
and if � = 1, we call the attack single linear cryptanalysis, or simply, linear
cryptanalysis. Define Li

Δ= 〈Γ (i)
P , P 〉 ⊕ 〈Γ (i)

B , B〉; for i = 1, 2, . . . , �.

Inner Key Bits: Let zi = 〈Γ (i)
K ,K(r)〉; i = 1, . . . , �. Note that for a fixed

but unknown key K(r), zi represents a single unknown bit. Denote by z =
(z1, . . . , z�) the collection of the bits arising in this manner. Since, the � key
masks Γ

(1)
K , . . . , Γ

(�)
K are known, the tuple z is determined only by the unknown

but fixed K(r). Hence, there is no randomness either of K(r) or z. The bits of z
are called the inner key bits.

Target Sub-key Bits: Any linear relation of the form above, between P and
B, usually involves only a subset of the bits of B. When � > 1, several (or
multiple) relations between P and B are known. In such cases, it is required
to consider the subset of the bits of B which covers all the relations. In order
to obtain these bits from the ciphertext C it is required to partially decrypt C
by one round. This involves a subset of the bits of the last round key k(r). We
call this the target sub-key. The goal of linear cryptanalysis is then to find the
correct value of the target sub-key using the � linear approximations and their
joint distributions. We denote the number of bits in the target sub-key by m. In
other words, these m key bits are sufficient to partially decrypt C by one round
and obtain the bits of B involved in any of the � linear approximations. Notice
that there are 2m possible choices of the target sub-key out of which only one is
correct. The purpose of the attack is to identify the correct key. For convenience
of notation, we will denote the correct choice of the target sub-key as κ∗.

Setting of the Attack: The block cipher is instantiated with an unknown, but,
fixed key. It is assumed that N independent and uniform random plaintexts are
chosen and the corresponding ciphertexts under fixed key are obtained. Denote
the plaintext-ciphertext pairs as (Pj , Cj); j = 1, 2, . . . , N . For each choice κ of
the target sub-key, it is possible for the attacker to partially decrypt each Cj by
one round to obtain Bκ,j ; j = 1, 2, . . . , N . Note that Bκ,j is dependent on κ even
though Cj may not. Clearly, if the choice of κ is correct, then the Cj ’s depend
on κ. On the other hand, for an incorrect choice of κ, Cj has no relation with κ.

Statistical analysis proceeds by defining a test statistic Tκ for each choice
κ of the target sub-key. This provides 2m random variables of the type Tκ.
The distribution of Tκ depends on whether κ is the correct choice or, it is an
incorrect choice. Under the usual wrong key hypothesis [12], it is assumed that
the distributions of all the Tκ’s for incorrect choices of κ’s are the same.

Suppose that the plaintext P is uniformly distributed. Since, each round
function is a bijection, the uniform distribution of P also induces a uniform
distribution on B. By definition, Li is a binary random variable taking values
from the set {0, 1}. Also from the discussion above it is clear that the source of
randomness of Li comes from the randomness of P . Define the random variable
X as X = (L1, . . . , L�). Then X is a random variable distributed over {0, 1}�.

A New Test Statistic for Key Recovery Attacks 283

Joint Distribution Parameterised by Inner Key Bits: The distribution
of the random variable X = (L1, . . . , L�) is the following. For η ∈ {0, 1}� and
z ∈ {0, 1}�,

pz(η) = Pr[L1 = η1 ⊕ z1, . . . , L� = η� ⊕ z�] =
1
2�

+ εη(z); (1)

where −1/2� ≤ εη(z) ≤ 1 − 1/2�. Denote by p̃z = (pz(0), pz(1), . . . , pz(2� − 1))
the corresponding probability distribution, where the integers {0, 1, . . . , 2� − 1}
are identified with the set {0, 1}�. For each choice of z, we obtain a different but
related distribution. Let, z′ = z ⊕β for some β ∈ {0, 1}�, then it is easy to verify
that εη(z′) = εη⊕β(z), which implies that pz⊕β(η) = pz(η ⊕β). Let, p̃ denote the

probability distribution p̃0� , i.e., p̃
Δ= p̃0� . Write p̃ = (p0, . . . , p2�−1), so that for

all η ∈ {0, 1}�, pη
Δ= p(η) = 1/2� + εη.

For κ ∈ {0, 1, . . . , 2m − 1}, j = 1, . . . , N and i = 1, . . . , �, define Lκ,j,i =
〈Γ (i)

P , Pj〉 ⊕ 〈Γ (i)
B , Bκ,j〉; Xκ,j = (Lκ,j,1, . . . , Lκ,j,�); and

Qκ,η = #{j ∈ {1, 2, . . . , N} : Xκ,j = η}. (2)

Note that Qκ,η is the number of times η appears among the random variables
Xκ,1, . . . , Xκ,N . Suppose z is the correct choice of the inner key bits. Then
for the correct choice of the target sub-key (i.e., κ = κ∗) the random variable
Qκ,η follows Bin(N, pz(η)), whereas for the incorrect choice of the target sub-key
(i.e., κ �= κ∗) the random variable Qκ,η follows Bin(N, 2−�). Denote the uniform
distribution over the set {0, 1}� by p$ = (2−�, . . . , 2−�).

Success Probability and Advantage of An Attack: Two important para-
meters which are relevant to a key recovery attack are the success probability
and the (expected) advantage. The success probability is the probability that
the correct value of the target sub-key is recovered in the attack. The advantage
of an attack is a, if a fraction 2−a of all possible 2m values of the target sub-key
are reported as candidate values. So, for an attack with advantage a, the size of
the list of candidate keys is 2m−a.

3 Drawbacks of Previously Proposed Statistics

As mentioned in the introduction, two test statistics have been proposed ear-
lier [14] for performing statistical analysis of key recovery attacks on block
ciphers. In this section, we briefly review these statistics and point out certain
drawbacks.

Log-Likelihood Ratio Test Statistic: The LLR test statistic has been used
for key recovery attacks as well as distinguishing attacks in several works in
the literature [1,4,14,26]. One drawback of this statistics is that to compute it,
the full knowledge of p̃ is required. This is evident from the expression of the
LLR test statistic. In many situations, such complete knowledge of the joint

284 S. Samajder and P. Sarkar

distribution of the multiple linear approximations may not be available. In such
cases, it will not be possible to compute the value of LLRκ.

The analysis in [14] provides an expression for the data complexity in terms
of the success probability and the advantage. This expression is stated to be
valid only for success probability greater than 0.5.

Chi-Squared Test Statistic: Recall from (2) that for a choice κ of the tar-
get sub-key and for η ∈ {0, 1}�, Qκ,η is the number of times η occurs among
the random variables Xκ,1, . . . , Xκ,N . Define a test statistic Λκ in the following
manner:

Λκ = 2�N

2�−1∑

η=0

(Qκ,η/N − 2−�)2. (3)

For the correct choice κ∗ of the target sub-key bits, the right hand side of (3)
involves Qκ∗,η whose distribution depends on the inner key bits z. Due to the
relation pz⊕β(η) = pz(η ⊕ β), the distribution of Λκ∗ , however, does not depend
on z.

To apply the chi-squared test statistic, it is not required to know the full
distribution of the underlying probability distribution. Statistical analysis using
this test statistic has been carried out in [14] in the following manner. The dis-
tribution of Qκ,η follows a binomial for both correct and incorrect choices of κ.
The binomial can be approximated using a normal distribution and then the dis-
tribution of Λκ approximately follows a chi-squared distribution for both correct
and incorrect choices of κ. There is, however, the issue of error in approximation
which has not been properly analysed. This issue of error in approximation has
been briefly mentioned in [14,15,27] and has been analysed in details in [27]
where several shortcomings have been pointed out.

The data complexity for the chi-squared test statistic was given by Hermelin
et al. in [14]. It was shown that for “large” values of a and PS > 0.5, the data
complexity, which we denote by NΛ, is approximately

NΛ =
2
√

2� − 1Φ−1(1 − 2−a) + 4
(
Φ−1(2PS − 1)

)2

C(p̃)
; (4)

where C(p̃) =
∑2�−1

η=0 (pη − 2−�)/2−�.
A reduced round linear cryptanalysis of SERPENT was earlier reported in [8]

using a set of linear approximations [7]. Out of these, a subset of 64 linear
approximations was later used in [13,14] to perform multidimensional linear
cryptanalysis on SERPENT using the LLR and the chi-squared test statistics.
It happens so that this subset can be generated by 10 linear approximations
called the basis linear approximations and can be used to recover 10 bits of the
last round key. Thus, for this particular experiment, � = 10 and m = 10.

It was pointed out in [27], that for a χ2 approximation of the distribution of
the test statistic Λ to be valid, the corresponding distributions under both the
null and the alternate hypotheses need to satisfy the following two conditions for

A New Test Statistic for Key Recovery Attacks 285

all η ∈ {0, 1}�: | pη(1−pη)− qη(1− qη) |< pη(1−pη); and pη(1−pη)−qη(1−qη)
pη(1−pη)

≈ 0.
We checked whether these conditions hold for the linear approximations of the
reduced round block cipher SERPENT reported in [7]. The total number of
linear approximation required to generate the full probability distribution for
the correct key is 210 − 1 = 1023. Out of these, only 64 are given in [7]. To
find the full probability distribution for the correct key, two methods were sug-
gested in [13]. We have used the second method, where the correlations of the
remaining 1023 − 64 = 959 approximations are assumed to be zero. The Walsh
transform method of [25] was then used on these approximations to get the joint
distribution.

For the joint distribution of the reduced round SERPENT it was found that
for all η, | pη(1 − pη) − qη(1 − qη) | is indeed less than pη(1 − pη). The maximum
value of the ratio | (pη(1 − pη) − qη(1 − qη)) | /(pη(1 − pη)) is 0.0049. So,
the χ2 approximation is valid provided that the value 0.0049 is assumed to be
sufficiently close to zero. The effect of this assumption on the final expression
for the data complexity is not known. This is one of the several approximations
that is required to obtain the chi-squared based data complexity expression. We
refer to [27] for more details.

A question then arises as to whether it is possible to use the chi-squared
test statistic to obtain an expression for the data complexity without using any
approximation. Such an approach has been shown to be successful for the LLR
test statistic [26] through the application of the Hoeffding bounds. This requires
expressing the test statistic as a sum of independent random variables. However,
Λκ is the sum of 2� random variables where these individual random variables are
determined by Qκ,η, η∈{0, 1}�. The Qκ,η’s are dependent as

∑
η∈{0,1}� Qκ,η =N .

So, the Hoeffding bound does not apply directly. Further, there does not seem
any other way to write Λκ as the sum of independent random variables.

4 A New Test Statistic

Let d be a positive integer and consider the following test statistic.

Tκ =
∑

η∈{0,1}�

ηdQκ,η. (5)

Let μ0 be the expectation of Tκ for the correct choice of κ and let μ1 be the
expectation of Tκ for an incorrect choice of κ. Then

μ1 = E[Tκ] =
∑

η∈{0,1}�

ηdE[Qκ,η] = N2−�
∑

η∈{0,1}�

ηd; (6)

μ0 = E[Tκ∗] =
∑

η∈{0,1}�

ηdE[Qκ∗,η] = μ1 + N
∑

η∈{0,1}�

ηdεη. (7)

So, μ0 − μ1 = N
∑

η∈0,1� ηdεη. One can now aim to design a statistical analysis
which attempts to recover κ∗ by exploiting the difference in the two expectations.

286 S. Samajder and P. Sarkar

While doing this, we would like to avoid making any approximations. We next
show how both of these aims can be achieved.

Recall that for a fixed κ, the random variables Xκ,1, . . . , Xκ,N are indepen-
dent. The test statistic given by (5) can be rewritten in the following manner.

Tκ =
∑

η∈{0,1}�

ηdQκ,η =
N∑

j=1

Xd
κ,j . (8)

This enables writing Tκ as the sum of independent random variables. The com-
putation of Tκ can be done in O(N) time using any one of the two expressions.
This computation does not require the knowledge of the εη’s.

Consider the following test of hypothesis:

Hypothesis Test-1:
H0: “κ is correct” versus H1: “κ is incorrect.”
Decision rule:

Case μ0 > μ1: Reject H0 if Tκ ≤ t,∀z ∈ {0, 1}�; where t ∈ (μ1, μ0);
Case μ0 < μ1: Reject H0 if Tκ ≥ t,∀z ∈ {0, 1}�; where t ∈ (μ0, μ1).

Proposition 1. Let 0 < α, β < 1. In Hypothesis Test-1, it is possible to choose
t such that for

N ≥ (2� − 1)2d(
√

ln(1/α) +
√

ln(1/β))2

2
(∑2�−1

η=0 ηdεη

)2 (9)

the probabilities of the Type-I and Type-II errors are upper bounded by α and β
respectively.

The proof follows by applying Hoeffding’s bound (see AppendixA) to upper
bound the probabilities of the type-I and type-II errors, and thereafter eliminat-
ing the threshold parameter t. The proof is given in AppendixB.

Let μ′
1 = 2−�

∑
η∈{0,1}n ηd and μ′

0 =
∑

η∈{0,1}n ηd(2−� + εη). Then μ′
0 −μ′

1 =∑
η∈{0,1}n ηdεη and so (9) can be written as

N ≥ (2� − 1)2d(
√

ln(1/α) +
√

ln(1/β))2

2 (μ′
0 − μ′

1)
2 .

Thus, although (9) suggests that it is necessary to know all the εη’s to get a
lower bound of N , it is actually not the case. It suffices to have a good estimate
of μ′

0 which is just the expected value of the random variable Xd
κ∗,1. (Note that

Xd
κ∗,1, . . . , X

d
κ∗,N are identically distributed.)

Relating to Success Probability and Expected Advantage: By definition,
the success probability is 1−Pr[Type-I error]. So, if α is an upper bound on the
probability of the type-I error, then PS = 1 − α is a lower bound on the success
probability.

A New Test Statistic for Key Recovery Attacks 287

An incorrect value of κ is reported as a candidate key if a Type-II error
occurs. Since there are a total of 2m − 1 incorrect values of the target sub-key,
the expected number of wrong values reported as candidate keys is β(2m − 1).
Equating to 2m−a gives β = 2−a × 2m/(2m − 1).

In the expression for the data complexity N , we may replace α by 1−PS and
β by 2−a × 2m/(2m − 1). This provides an expression for the data complexity
required to attain success probability at least PS and advantage at least a.

Nature of the Bound: Proposition 1 shows a lower bound on the data com-
plexity required for ensuring a certain minimum success probability and a cer-
tain minimum advantage. This lower bound is with respect to Hypothesis Test-1
which in particular means that the test statistic Tκ is used. We note, on the other
hand, that there is a possibility of using some other test statistic for which the
required data complexity is lower. This means that taken over all possible test
statistics, the data complexity expression in Proposition 1 is actually an upper
bound on the minimum data complexity that is required to achieve given values
of success probability and advantage.

Attack Procedure: The actual application of the attack will be as follows.
Given PS and a, determine α (= 1 − PS) and β (= 2−a × 2m/(2m − 1)); then
determine N as given by the right hand side of (9). From α and N determine t
(given by (13) or (14) of AppendixB). Once t is determined, Hypothesis Test-1
can be performed. Suppose that μ0 > μ1, the other case being similar. Initialise
a list L to be empty. For each choice κ of the target sub-key, compute Tκ; if
Tκ > t, append κ to L. At the end, L contains the set of candidate keys.

The above procedure does not require knowledge of p̃ to apply the test. Only
the knowledge of μ0 is required to obtain an estimate of the data complexity N .

Choice of d: The theory described above works for all positive d. We suggest
the use of d = 1. The rationale behind such a choice is given in AppendixC.

5 Experimental Results for SERPENT

We compare the bound on the data complexity given by (9) to that of the
approximate data complexity of the Λ-test statistic given by [14, Eq. (18)] and
reproduced in (4) for the reduced round block cipher SERPENT. The distribu-
tion used for all the computations in this section is the one discussed in Sect. 3.
The comparison presented in this section has been broadly classified into two
groups, one where PS has been fixed to 0.95 and the other where experiments
have been conducted for different values of PS .

Fixed PS: For this experiment, the value of PS was fixed to 0.95. The bound
given by (9) with d = 1 and the approximate value given by (4) were then
computed for a = 1, 2, . . . , 10. Table 1 summarises the output of the experiment.
The last column of the Table gives the ratio of the two data complexities. From
the Table, it is clear that approximate estimate obtained from the Λ test statistic
is lower than the upper bound obtained from the new method.

288 S. Samajder and P. Sarkar

We note that the minimum data complexity required to achieve success prob-
ability 0.95 and advantage a is not known. While NX is an upper bound, NΛ is
an approximation where the error in approximation is not known. At present, it
is not possible to say anything more than this.

Table 1. Values of NX and NΛ for the
joint distribution of SERPENT with a
ranging from 1 to 10 and PS = 0.95.

a NX (9) NΛ (4) NX/NΛ

1 2.79×1010 1.25×106 22246.87

2 3.59×1010 9.48×106 3783.91

3 4.27×1010 1.53×107 2793.44

4 4.89×1010 2.0×107 2449.77

5 5.47×1010 2.4×107 2283.17

6 6.03×1010 2.75×107 2190.17

7 6.56×1010 3.07×107 2134.69

8 7.08×1010 3.37×107 2100.80

9 7.58×1010 3.64×107 2080.41

10 8.07×1010 3.90×107 2068.96

Table 2. Values of NX and NΛ for the
joint distribution of SERPENT with
PS = 0.1, 0.2, . . . , 0.9 and a = 5. In the
table, n.a. denotes “not applicable.”

PS NX (9) NΛ (4)

0.10 2.03×1010 n.a.

0.20 2.31×1010 n.a.

0.30 2.56×1010 n.a.

0.40 2.81×1010 n.a.

0.50 3.08×1010 n.a.

0.60 3.37×1010 2.33×107

0.70 3.71×1010 2.28×107

0.80 4.16×1010 2.28×107

0.90 4.84×1010 2.33×107

Varying PS: We computed the value of NX for different values of PS =
0.1, 0.2, . . . , 0.9 for the same joint distribution of SERPENT. For this experiment
we fixed a = 5. Table 2 reports the results of the experiment. From the table, it
can be seen that the data complexity NX increases as PS increases, which is what
one would expect. But, the data complexity NΛ first increases then decreases
even for PS > 0.5. This anomalous behaviour is due to the approximations used
in deriving the expression for NΛ.

6 Conclusion

The paper considered the problem of statistical analysis of attacks on block
ciphers in the situation where the LLR test statistic cannot be applied. The
other aspect considered was to follow the approach in [26] towards a rigorous
analysis without using any approximations. We first considered the chi-squared
based test statistic and argued that this test statistic is not amenable to analysis
using our approach.

To resolve the problem, we introduced a new test statistic using which an
attack can be applied without the full knowledge of the underlying probability
distribution. Also, the resulting statistical framework can be analysed rigorously
without making any approximations. The obtained expression for data complex-
ity was compared to the approximate expression for data complexity for the
chi-squared test statistic using known linear approximations for the block cipher
SERPENT. As expected, the data complexity of the new test statistic turns

A New Test Statistic for Key Recovery Attacks 289

out to be higher. This shows that if one wishes to follow a rigorous approach,
then one would have to be satisfied with a conservative estimate of the data
complexity.

An important aspect of our analysis is that it allows obtaining estimates of
the data complexity for all possible values of the success probability. This is in
contrast to previous work which required the success probability to be greater
than half.

A Hoeffding Inequality

We briefly recall Hoeffding’s inequality for sum of independent random variables.
The result can be found in standard texts such as [23].

Theorem 1 (Hoeffding Inequality). Let, X1,X2, . . . , Xλ be a finite sequence
of independent random variables, such that for all i = 1, . . . , λ, there exists real
numbers ai, bi ∈ R, with ai < bi and ai ≤ Xi ≤ bi. Let X =

∑λ
i=1 Xi. Then for

any positive t > 0,

Pr[X − E[X] ≥ t] ≤ exp
(

−2t2

Dλ

)
(10)

Pr[X − E[X] ≤ −t] ≤ exp
(

−2t2

Dλ

)
(11)

Pr[| X − E[X] |≥ t] ≤ 2 exp
(

−2t2

Dλ

)
; (12)

where Dλ =
∑λ

i=1(bi − ai)2.

B Proof of Propositon 1

We provide the proof for the case μ0 > μ1 with the other case being similar.
Recall that Xd

κ,1, . . . , X
d
κ,N are N independently and identically distributed ran-

dom variables such that for all j = 1, . . . , N

υmin = 0 ≤ Xd
κ,j ≤ (2� − 1)d = υmax.

Let, υ = υmax − υmin = (2� − 1)d. Thus Hoeffding bounds (see Sect. A) can be
used on the sum of independently and identically distributed random variables
Tκ =

∑N
j=1 Xd

κ,j ; where DN = Nυ2.
The probabilities of Type-I and Type-II errors are then given by

Pr[Type-I Error] = Pr[Tκ ≤ t | H0 holds] = Pr[Tκ − μ0 ≤ −(μ0 − t)|H0 holds]

≤ exp
(

−2(μ0 − t)2

Nυ2

)
; [By 11].

Pr[Type-II Error] = Pr[Tκ > t | H1 holds] = Pr[Tκ − μ1 > t − μ1] | H1 holds]

≤ exp
(

−2(t − μ1)2

Nυ2

)
; [By 10].

290 S. Samajder and P. Sarkar

Let,

α = exp
(

−2(μ0 − t)2

Nυ2

)
; β = exp

(
−2(t − Nμ1)2

Nυ2

)
.

Then, using the fact that μ1 < t < μ0, we get
√

2t =
√

2μ0 − υ
√

2N ln(1/α) (13)√
2t =

√
2μ1 + υ

√
N ln(1/β). (14)

Eliminating t from the above two equations and using the expressions for μ0,
μ1 and υ, we get the expression given by the right hand side of (9). For any N
greater than this value, the probabilities of Type-I and Type-II errors will be at
most α and β respectively. ��

C Choice of d

There are two factors that need to be kept in mind while choosing a appropriate
value of d.

1. The value of d has an effect on the data complexity. So, one should try to
choose a value of d which minimises the data complexity.

2. For the chosen value of d, it should be possible to obtain an estimate of μ0

through the analysis of the block cipher.

Regarding the first point, there does not seem to be a way to formally prove that
one particular value of d will minimise the data complexity. Instead, we provide
intuitive explanations and experimental evidence.

The statistic Tκ =
∑N

j=1 Xd
κ,j . As d goes to zero, Xd

κ,j goes to 1 and so the
effect of Xκ,j diminishes. Further, as d → 0, (2� − 1)d → 1 and ηd → 1 for all
η ∈ {0, 1}�. So, the numerator of the data complexity expression given by (9)
goes to a constant and the denominator goes to

∑
η∈{0,1}� εη. By definition, the

later sum is 0. So, as d → 0, the data complexity expression given by (9) goes
to infinity. Experiments confirm this behaviour.

Based on the above, we do not consider values of d < 1. For values of d =
1, . . . , 100, we have run experiments with the known linear approximations of
SERPENT and have observed that the minimum data complexity is attained
for d = 1 and d = 2. The values are shown in Table 3. To decide between these
two values, we consider the second point mentioned above. Intuitively, it is easier
to obtain the value of μ0 for d = 1 than for d = 2. So, we suggest using d = 1
for defining the test statistic Tκ.

Negative Values of d: Most of the theory that has been developed also works
for negative values of d. The only problem is that for η = 0, the value of ηd is
undefined. This defect can be rectified by defining Tκ to be

∑N
j=1(1 + Xκ,j)

d.
Working out the details of this test statistic leads to υ = |2�d −1| and |μ0−μ1| =∑

η∈{0,1}�(1 + η)dεη. The value of υ does not depend on the sign of d. Suppose

A New Test Statistic for Key Recovery Attacks 291

Table 3. Table showing the minimum data complexity over different values of d for
the linear approximations of SERPENT with a ranging from 1 to 10.

a Minimum data complexity

Value of d Data complexity

1 1, 2 2.79×1010

2 1, 2 3.59×1010

3 1, 2 4.27×1010

4 1, 2 4.89×1010

5 1, 2 5.47×1010

6 1, 2 6.03×1010

7 1, 2 6.56×1010

8 1, 2 7.08×1010

9 1, 2 7.58×1010

10 1, 2 8.07×1010

d > 0, then the value of |μ0 − μ1| with d is greater than the value of |μ0 − μ1|
with −d. As a result, the data complexity with d is lesser compared to the data
complexity for −d. Due to this reason, we have not considered negative values
of d.

References

1. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2 31

2. Baignères, T., Sepehrdad, P., Vaudenay, S.: Distinguishing distributions using cher-
noff information. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol.
6402, pp. 144–165. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16280-0 10

3. Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28628-8 1

4. Blondeau, C., Gérard, B., Nyberg, K.: Multiple differential cryptanalysis using,
and X2 statistics. In: Visconti, I., Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485,
pp. 343–360. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32928-9 19

5. Blondeau, C., Nyberg, K.: Joint data and key distribution of simple, multiple,
and multidimensional linear cryptanalysis test statistic and its impact to data
complexity. Des. Codes Crypt. 1–31 (2016). doi:10.1007/s10623-016-0268-6, ISSN:
1573-7586

6. Bogdanov, A., Tischhauser, E.: On the wrong key randomisation and key equiva-
lence hypotheses in Matsui’s algorithm 2. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 19–38. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43933-3 2

7. Collard, B., Standaert, F.-X., Quisquater, J.-J.: (2008). http://www.dice.ucl.ac.
be/fstandae/PUBLIS/50b.zip. Accessed 30 July 2014

http://dx.doi.org/10.1007/978-3-540-30539-2_31
http://dx.doi.org/10.1007/978-3-642-16280-0_10
http://dx.doi.org/10.1007/978-3-540-28628-8_1
http://dx.doi.org/10.1007/978-3-642-32928-9_19
http://dx.doi.org/10.1007/s10623-016-0268-6
http://dx.doi.org/10.1007/978-3-662-43933-3_2
http://www.dice.ucl.ac.be/fstandae/PUBLIS/50b.zip
http://www.dice.ucl.ac.be/fstandae/PUBLIS/50b.zip

292 S. Samajder and P. Sarkar

8. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Experiments on the multiple linear
cryptanalysis of reduced round serpent. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol.
5086, pp. 382–397. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71039-4 24

9. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Math. Crypt. JMC 1(3), 221–242 (2007)

10. Gérard, B., Tillich, J.-P.: On linear cryptanalysis with many linear approximations.
In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 112–132. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10868-6 8

11. Handschuh, H., Gilbert, H.: χ2 cryptanalysis of the SEAL encryption algorithm.
In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 1–12. Springer, Heidelberg
(1997). doi:10.1007/BFb0052330

12. Harpes, C., Kramer, G.G., Massey, J.L.: A generalization of linear cryptanalysis
and the applicability of Matsui’s piling-up lemma. In: Guillou, L.C., Quisquater,
J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg
(1995). doi:10.1007/3-540-49264-X 3

13. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis
of reduced round serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-70500-0 15

14. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s
Algorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03317-9 13

15. Hermelin, M., Cho, J.Y., Nyberg, K.: Statistical tests for key recovery using multi-
dimensional extension of Matsui’s Algorithm 1. In: Handschuh, H., Lucks, S., Pre-
neel, B., Rogaway, P. (ed.) Symmetric Cryptography, number 09031 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany (2009). http://drops.dagstuhl.de/opus/volltexte/2009/1954,
ISSN: 1862–4405

16. Johansson, T., Maximov, A.: A linear distinguishing attack on scream. In: Proceed-
ings 2003 IEEE International Symposium on Information Theory, p. 164. IEEE
(2003)

17. Junod, P.: On the complexity of Matsui’s attack. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 199–211. Springer, Heidelberg (2001). doi:10.
1007/3-540-45537-X 16

18. Junod, P.: On the Optimality of linear, differential, and sequential distinguishers.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 17–32. Springer,
Heidelberg (2003). doi:10.1007/3-540-39200-9 2

19. Junod, P., Vaudenay, S.: Optimal key ranking procedures in a statistical crypt-
analysis. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 235–246. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-39887-5 18

20. Kaliski, B.S., Robshaw, M.J.B.: Linear cryptanalysis using multiple approxima-
tions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer,
Heidelberg (1994). doi:10.1007/3-540-48658-5 4

21. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
doi:10.1007/3-540-48285-7 33

22. Matsui, M.: The first experimental cryptanalysis of the data encryption standard.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Hei-
delberg (1994). doi:10.1007/3-540-48658-5 1

23. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

http://dx.doi.org/10.1007/978-3-540-71039-4_24
http://dx.doi.org/10.1007/978-3-642-10868-6_8
http://dx.doi.org/10.1007/BFb0052330
http://dx.doi.org/10.1007/3-540-49264-X_3
http://dx.doi.org/10.1007/978-3-540-70500-0_15
http://dx.doi.org/10.1007/978-3-540-70500-0_15
http://dx.doi.org/10.1007/978-3-642-03317-9_13
http://drops.dagstuhl.de/opus/volltexte/2009/1954
http://dx.doi.org/10.1007/3-540-45537-X_16
http://dx.doi.org/10.1007/3-540-45537-X_16
http://dx.doi.org/10.1007/3-540-39200-9_2
http://dx.doi.org/10.1007/978-3-540-39887-5_18
http://dx.doi.org/10.1007/3-540-48658-5_4
http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1007/3-540-48658-5_1

A New Test Statistic for Key Recovery Attacks 293

24. Murphy, S.: The independence of linear approximations in symmetric cryptanaly-
sis. IEEE Trans. Inform. Theory 52(12), 5510–5518 (2006)

25. Nyberg, K., Hermelin, M.: Multidimensional walsh transform and a characteri-
zation of bent functions. In: Proceedings of the 2007 IEEE Information Theory
Workshop on Information Theory for Wireless Networks, pp. 83–86 (2007)

26. Samajder, S., Sarkar, P.: Rigorous upper bounds on data complexities of block
cipher cryptanalysis. IACR Cryptology ePrint Archive, 2015:916 (2015). http://
eprint.iacr.org/2015/916

27. Samajder, S., Sarkar, P.: Another Look at Normal Approximations in Cryptanaly-
sis. J. Math. Crypt. (2016). doi:10.1515/jmc-2016-0006

28. Samajder, S., Sarkar, P.: Can large deviation theory be used for estimating data
complexity? Cryptology ePrint Archive, Report 2016/465 (2016). http://eprint.
iacr.org/

29. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptol. 21(1), 131–147 (2008)

http://eprint.iacr.org/2015/916
http://eprint.iacr.org/2015/916
http://dx.doi.org/10.1515/jmc-2016-0006
http://eprint.iacr.org/
http://eprint.iacr.org/

Tuple Cryptanalysis: Slicing and Fusing
Multisets

Marine Minier1,2,3 and Raphaël C.-W. Phan4(B)

1 Université de Lorraine LORIA, UMR 7503, 54506 Vandoeuvre-lès-Nancy, France
2 Inria, 54600 Villers-lès-Nancy, France

3 CNRS, LORIA, UMR 7503, 54506 Villers-lès-Nancy, France
4 Faculty of Engineering, Multimedia University (MMU), Cyberjaya, Malaysia

raphael@mmu.edu.my

Abstract. In this paper, we revisit the notions of Square, saturation,
integrals, multisets, bit patterns and tuples, and propose a new Slice &
Fuse paradigm to better exploit multiset type properties of block ciphers,
as well as relations between multisets and constituent bitslice tuples.
With this refined analysis, we are able to improve the best bounds pro-
posed in such contexts against the following block ciphers: Threefish,
Prince, Present and Rectangle.

Keywords: Block ciphers · Square · Saturation · Integrals · Multi-
sets · Bit patterns · Tuples · Bitslice · Slice & Fuse paradigm · Division
property

1 Introduction

Cryptanalysis based on a multiset of related texts aims for some property of
the multiset to pass through cipher components with a probability that is fur-
thest away as possible from the uniform distribution. Given a bijective func-
tion S : {0, 1}w → {0, 1}w, then with a multiset M of 2w elements such that
∀xj , xj′ ∈ M, xj �= xj′ (so-called a multiset with the permutation property P,
or called an active set), we have that ∀xj , xj′ ∈ M, S(xj) �= S(xj′), i.e. such a
P multiset passes through S without having its property changed. Given such
a P, its presence can be detected by checking if the exclusive-OR (

⊕
) sum of

all elements of this multiset equals zero. This was first observed by Knudsen in
1997 [3] as part of the analysis of the Square cipher, hence subsequently it was
de facto known in the cryptographic community as the Square attack.

The term multiset was in fact first used for this cryptanalysis context by
Lucks [9], within a so-called saturation attack framework. This naming conven-
tion makes sense, because essentially, only the active set (only later known as the
permutation P set) is a proper set, other types e.g. the even (E) set, the passive
(also called constant C) set, are actually multisets because any distinct value
could appear more than once in such sets. The saturation term is named after
the so-called saturated property, which is used to denote a dth-order P multiset.
c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 294–320, 2017.
DOI: 10.1007/978-3-319-61273-7 15

Tuple Cryptanalysis: Slicing and Fusing Multisets 295

Furthermore, the semi-saturated property was used to refer to a multiset with
2w−1 unique values instead of 2w. Lucks noted that when viewed in terms of
separate bit positions, one such bit position is fixed to a constant value while
the other w−1 are allowed to vary. To our knowledge, this was the first mention
of viewing multisets in terms of their bitwise channels.

Knudsen and Wagner later proposed a formalisation of this type of crypt-
analysis within the group theoretic setting as the Integral cryptanalysis [11],
focussing on how the

⊕
sum of a P multiset could propagate through different

cipher components; presenting ways to determine such an integral sum for mul-
tisets of different types i.e. C, P and those whose integral sum equals some fixed
value.

Meanwhile, Biryukov and Shamir [10] initiated a formal study of multiset
calculus by considering how multiple words of multisets propagate through the
substitution and affine layers of a cipher, i.e. the notion of multiple multiset
words M1 . . . M� composing to a multi-word multiset. This type of analysis is
crucial as a multiset input in any word of a block eventually spreads to other
words through the diffusing properties of the affine layers. Nakahara et al. [13] at
Mycrypt 2005 built on this notion by focussing on how an n-bit P word multiset
M can be decomposed into its constituent subword multisets Vi each of length
w < n. Z’aba et al. [17] took this decomposition notion further by focussing
on constituent bitslice multisets i.e. w = 1. Indeed, when the cardinality of a
bitslice multiset V is more than two, i.e. |V| > 2, the elements of the bitslice
multiset are then seen to form a bit pattern. Using such bit patterns that are
either constant c, regularly alternating ai or non-alternating bi, they were able
to trace how such patterns behave through the exclusive-OR (XOR) operation
and through the Sbox layer.

Aumasson et al. [22] emphasized on the internal ordering of the elements
within a multiset, therefore such ordered multisets are better known as tuples.
Keeping track of ordered tuple elements is useful in order to better trace the
effects of operations among elements of different multisets, as well as be exploited
to cancel out differences among elements of different tuples.

More recently, Todo [34,35] generalized the integral cryptanalysis approach
by taking the integral sum on the low-order polynomial subsets of all the ele-
ments in the output multisets, such that due to the higher-order differential
type property linked to the algebraic normal form (ANF) representation of the
cipher component, a zero sum is obtained; so-called the division property. The
approach was then formalised by Boura and Canteaut [46] in relation to Reed-
Muller codes, based on parity computation across different multiple bits of each
multiset element, which is related to the ANF representation of functions and
the algebraic degree. In contrast, our proposed approach considers each bitslice
channel independently and the focus is on the internal ordering of such bitslice
elements rather than on their integral sum.

The Slice-&-Fuse Paradigm. In this paper, we put forth a refined multiset calculus,
wherein we propose new types of bitslice tuples to better represent the rich
internal structures of multiset constituents, analyse the behaviour of such tuples
through different cipher components including exclusive-OR, addition, AND and

296 M. Minier and R.C.-W. Phan

Sboxes, and discuss how these constituent bitslice tuples can be recomposed
(fused) to form structured multisets.

We demonstrate such tuple formulations on the ciphers Threefish, Prince,
Present and Rectangle. For Threefish, more structured multiset properties
are detected analytically in contrast to best-known results in [22], while for
Prince we are able to extend the multiset tracking by one more round compared
to previous work [44]. For Present and Rectangle, we need much smaller
multisets (thus less data complexity) and/or are able to detect a sum property
in more number of output bits compared to the literature. Moreover, as side
results, in Appendix A we also improve the previous integral attacks against
Crypton and mCrypton.

2 Multiset Calculus

2.1 Multiset and Bitslice Channels

A w-bit multiset
M = {xj}2

w−1
j=0 = βw−1 . . . β0

is a collection of 2w w-bit word elements. The multiset can also collectively be
viewed as a concatenation of w bitslice channels βi, i = 0, . . . , w−1, one for each
bit position within the word; and where each channel comprises 2w bit elements.
The bit elements within these bitslice channels will follow some internal ordering,
and thus for the rest of this paper, we will use the term bit tuples (these have
also been called bit patterns [17]) to refer to such ordered bitslice channels.

By definition, the elements {xj} within a multiset can take the same w-bit
values, therefore it is at times useful to explicitly denote, using the multiset
notation, the multiplicity/frequency m(xj) of element values. Thus a multiset
can alternatively be expressed as a set of unordered pairs of the form {xj ,m(xj)},
where each distinct value of xj is taken from a so-called root set R. Obviously,
|M| ≥ |R|.
Definition 1 (Multiset Properties): Depending on the values of its elements,
a multiset is said to have (one or more of) any of the following properties:

• P: ∀xj , xj′ ∈ M, xj �= xj′ ; thus m(xj) = m(xj′) = 1.
This is known as a permutation multiset, where all elements are distinct.

• C: ∀xj ∈ M, xj = c for some constant value c; thus m(c) = 2w.
This is called a constant multiset, where all elements equal some constant c.

• Ek: ∀xj ∈ M, m(xj) mod k = 0, where k is of the form 2n.
For simplicity reasons, E2 will be denoted by E. This is an even multiset,
where each element value from R appears an even number of times in M.

• B:
⊕2w−1

j=0 xj = 0.
Multisets with this property are said to be balanced. Essentially, this property
is detected by the existence of a zero integral

⊕
sum.

• A:
∑2w−1

j=0 xj = 0.
This is the additive variant of the

⊕
zero sum.

Tuple Cryptanalysis: Slicing and Fusing Multisets 297

• F:
∑2w−1

j=0 xj = 2w−1.
This is similar to A except that the sum is non-zero.

• Q: ∀xj ∈ M,∀x′
j ∈ M′,

⊕2w−1
j=0 xj =

⊕2w−1
j=0 x′

j .
This equality property exists for two multisets when their respective sums are
equal.

It has been observed [22] that these multiset properties are essentially of two
categories:

• those characterized by the multiplicity of the elements: P,C,E
• those characterized by relations among the elements: B,A,F,Q

Definition 2 (Bit Tuples): A bitslice channel β can be (one or more of) any
of the following bit tuples:

• c: a contiguous sequence of all ‘0’ or all ‘1’ bits, i.e. c ∈ {00 . . . 00, 11 . . . 11}.
• ai: alternating segments of length 2i.

e.g. a1 = 〈00 11 00 11 . . . 00 11〉.
• âi: the segment dual of ai such that their segment boundaries are out of sync

by half of the segment length.
e.g. â1 = 〈01 10 01 10 01 10 . . . 10〉 or 〈10 01 10 01 10 01 . . . 01〉.
Note. For any ai where i �= 0, its segment dual âi is palindromic.

• ãi: the cyclic variant(s) of ai such that their segment boundaries are out of
sync. Note that âi is a special case of ãi.
e.g. Given a2 = 〈0000 1111 0000 1111 . . . 0000 1111〉, then we could have
ã2 = 〈000 1111 0000 1111 . . . 0000 1111 0〉 or ã2 = 〈0 1111 0000 1111 . . .
0000 1111 000〉.

• pij : palindromic dual to ai with alternating flipped pattern segments of length
2j . See Example 1(a).

• p̂ij : the segment dual of pij such that their segment boundaries are out of
sync by half of the segment length. See Example 1(a).

• cij : complement dual to âi with alternating flipped pattern segments of
length 2j .
Note. Observe that cij is to âi what pij is to ai. See Example 1(b).

• mij (resp. sij): masked dual of ai where every other contiguous sequence of
2j bits is masked to ‘0’ (resp. set to ‘1’).
e.g. m02 = 〈0000 0101 0000 0101 . . . 〉 and s02 = 〈1111 0101 1111 0101 . . . 〉.

• zj : a bit tuple of pattern cycle length 2j+1, that begins with contiguous ‘0’
bits followed by 2j−1 ‘1’ bit(s).
e.g. z2 = 〈00000011 00000011 . . . 00000011〉.

• fj : a bit tuple with alternating flipped pattern segments each of length 2j .
e.g. f3 = 〈00101011 11010100 . . . 00101011 11010100〉.

• lj : a bit tuple with alternating pattern segments each of length 2j comprising
contiguous runlengths of ‘0’s and ‘1’s.
e.g. l2 = 〈0111 0111 . . . 0111〉 or l2 = 〈0001 0001 . . . 0001〉.

• e: unlike the above tuples where bit elements within the tuple conform to
some defined ordering, the e is just used to denote the property of a bit tuple
such that its bit elements appear an even number of times.

298 M. Minier and R.C.-W. Phan

Note that ai and c were defined in [17]. The other bit tuple definitions are new
and will be useful later when we trace how different bit tuples are changed by
the various cipher operations e.g. ARX (addition, rotation, exclusive-OR) and
AND.

Example 1(a): For bit tuple a0 = 〈01010101 . . . 01〉, its palindromic duals p0j

include:

• p01 = 〈01 10 01 10 . . . 01 10〉
• p02 = 〈0101 1010 0101 1010 . . . 0101 1010〉
• p03 = 〈01010101 10101010 01010101 10101010 . . . 01010101 10101010〉
• p04 = 〈0101010101010101 1010101010101010 . . . 0101010101010101 1010101010101010〉.
• . . .

and the corresponding segment duals p̂0j of these p0j , j �= 1 are:

• p̂02 = 〈01 1010 0101 1010 . . . 0101 1010 01〉.
• p̂03 = 〈0101 10101010 01010101 10101010 . . . 01010101 10101010 0101〉.
• p̂04 = 〈01010101 1010101010101010 . . . 0101010101010101 1010101010101010 01010101〉.
• . . .

Example 1(b): For the bit tuple â1 = 〈0 11 00 11 00 . . . 00 11 00 11 0〉, then its
complement duals can be:

• c12 = 〈0110 1001 0110 1001 . . . 0110 1001 0110 1001〉
• c13 = 〈01100110 10011001 01100110 10011001 . . . 01100110 10011001〉
• c14 = 〈0110011001100110 1001100110011001 0110011001100110 1001100110011001 . . .

0110011001100110 1001100110011001〉
• . . .

Note. An ai and any of its palindromic duals pij differ in half of their bits.
Similarly, an âi and any of its complement duals cij also differ in half of their
bits. Since ai and âi are e (even), therefore their respective duals pij and cij are
also e.

Definition 3 (Segment Length): The length �s of a segment within a multiset
or bit tuple is defined as the number of times that a unique element value is
repeated contiguously within the defined ordering of the multiset/tuple. Note
that for a multiset to have property P, its �s needs to be 1.

Definition 4 (Pattern Cycle): The cycle of a multiset or bit tuple is defined
as the point when a pattern of elements repeats. The number of elements tra-
versed before this occurs is known as the cycle length �c. Note that for a multiset
M to have property P, its �c needs to equal |M|.
Note. A w-bit multiset M is said to have property P if its segment length �s = 1
and its cycle length �c = |M|. 	

Tuple Cryptanalysis: Slicing and Fusing Multisets 299

Example 2: Consider a 3-bit multiset, thus comprising 8 elements:

M = 〈000, 001, 010, 011, 100, 101, 110, 111〉

The above multiset is said to have the permutation property P as all elements
are distinct, each of multiplicity 1. M has segment length �s = 1 and cycle length
�s = |M| = 8. Observe that the multiset also has property B and F.

Denote M = β2β1β0. The bitslice channel β0 of M corresponding to the
least significant bit (LSB) position of any element of M is an a0 bit tuple, while
β1 and β2 are respectively of the form a1 and a2. The segment and cycle lengths
of these bitslice channels are:

• �s(a0) = �s(〈01010101〉) = 1, �c(a0) = �c(〈01 01 01 01〉) = 2,
• �s(a1) = �s(〈00 11 00 11〉) = 2, �c(a1) = �c(〈0011 0011〉) = 4,
• �s(a2) = �s(〈0000 1111〉) = 4, �c(a2) = �c(〈00001111〉) = 8. 	

Multiset Equivalence. Note that our definition of the bit tuple is cyclic. For
instance, if the elements in the multiset of Example 2 were permuted to be:

M′ = 〈001, 010, 011, 100, 101, 110, 111, 000〉

the bit tuples are still considered to be of the form a2a1a0. We say that two
multisets are equivalent if they have the same property, up to cyclic shift as in
the previous example. For two multisets that are not equivalent in this sense,
there is a need to distinguish between them. For this purpose, we can define
more precisely the P property as it could be mapped into two different bit tuples
that are not equivalent.

Definition 5: (Refined P Property): We refine the P property as follows:

• Pord: the property Pord corresponds to a multiset that could be written as
the composition of bit tuples of the form . . . a2a1a0.

• Pnord: the property Pnord corresponds to a multiset that could not be written
as the composition of bit tuples of the form . . . a2a1a0.

When required, we precise if P is of the form Pord or Pnord.

Slicing a Multiset. To our knowledge, Nakahara et al. [13] at Mycrypt 2005
were the first to consider viewing a w-bit multiset in terms of the properties of
its constituent v-bit (v < w) channels; i.e. slicing a multiset. This may allow to
better trace how multiset properties propagate through cipher components.

For instance, removing any bitslice channel from the 3-bit P multiset M of
Example 2 results in a 2-bit multiset that is no longer P but rather is E. Thus,
we could directly state that any v-bit (v < w) subset V of a w-bit P multiset M
cannot be P but must be E.

300 M. Minier and R.C.-W. Phan

2.2 Fusing the Slices of a Multiset

Decomposing a w-bit multiset M into its constituent bitslice channels or some
v-bit (v < w) subset V could allow to better track the changes in its prop-
erties through cipher round operations. After going through round operations,
it is helpful to evaluate if the multiset retains its original properties e.g. P is
preserved. For this, we need to recompose the subset V, i.e. fuse some concate-
nation of bitslice channels back into the w-bit multiset M and to infer if a
multiset property at the w-bit level is preserved or if a new multiset property is
obtained.

The most structured property that has the ability to go through round oper-
ations is the property P, thus it is interesting to study its constituent bitslice
channel tuples.

From Example 2, we see that bit tuples of the form ai1ai2 . . . aiw , for any
pairwise indices ij �= ik (j, k ∈ {1, . . . , w}), compose to a word multiset of
property P. We are interested in other constituent bit tuples that compose to
a P.

Example 3: To motivate the idea, consider the multiset M as below:

M = 〈011, 111, 101, 010, 001, 100, 000, 110〉

At first glance, such a multiset has no obvious bit tuple form. To facilitate
extracting its bit tuples, some prior reordering is helpful before bitslicing. We
introduce some notation to keep track of the elementwise permutations ρ, to
enable subsequent unwinding to the element ordering of the original, i.e. ρ(M).
For instance, permute M according to (1 3 4) and we get a multiset ρ(M) with
property P, of the form a0a2a2:

ρ(M) = 〈010, 111, 011, 101, 001, 100, 000, 110〉

This example highlights that a P can be formed by ai’s that may have the same
index, e.g. in this case, there are two a2s. However, from closer inspection, these
two a2s are not identical in form, in fact their segment boundaries are out of
sync.

We define a pair of ais whose segment boundaries are out of sync by half
of the segment length, as segment duals of each other, denoted as 〈ai, âi〉. Note
that such pairwise duals are equal in half of their elements. In fact, when con-
catenated, these two bitslice channels form 2-bit elements that occur an even
number of times.

With this in place, the above permuted multiset ρ(M) is actually of the form
a0a2â2.

It is worth to investigate what property is obtained when fusing (recompos-
ing) two dual bit tuples to form a 2-bit multiset V. Continuing from the above
example, V = a2â2 gives:

〈10, 11, 11, 01, 01, 00, 00, 10〉

Tuple Cryptanalysis: Slicing and Fusing Multisets 301

which is a 2-bit multiset with elements of segment length �s = 2, and cycle length
�c = 8.

Since its cycle length is already 8, what remains is to cause its segment
length to reduce to 1, in order for this multiset V to be used to form a multiset
M of property P. To do this, we append another bitslice channel such that the
resultant segment length �s reduces to 1.

Consider appending a bit tuple a0 (note that this has segment length �s = 1)
to V, thus we can get either a0a2â2, a2a0â2 or a2â2a0, as follows:

010 100 100
111 111 111
011 101 110
101 011 011
001 001 010
100 010 001
000 000 000
110 110 101,

all of which are multisets of property P. Notice that appending such a bit tuple
a0 has caused the resultant segment length �s to become 1.

Consider instead, to append the bit tuple â1 (note that this has segment
length �s = 2) to V, but such that its segment boundary is out of sync with the
segment boundary of V. Thus we get either â1a2â2, a2â1â2 or a2â2â1:

110 110 101
111 111 111
011 101 110
001 001 010
101 011 011
100 010 001
000 000 000
010 100 100,

all of which are multisets of property P. Notice that appending such a bit
tuple, though of segment length �s = 2, yet due to the out of sync in segment
boundaries, causes the resultant segment length �s to be halved, i.e. reduces
to 1. 	

Example 4: Consider another example 3-bit P multiset:

M′ = 〈011, 111, 110, 010, 001, 101, 100, 000〉
which has the form â1a2a1. Focussing on the concatenation of the two dual bit
tuples â1a1 gives:

〈01, 11, 10, 00, 01, 11, 10, 00〉

302 M. Minier and R.C.-W. Phan

which is a 2-bit multiset with elements of segment length �s = 1, and cycle length
�c = 4. As the segment length �s is already 1, what remains is to cause the cycle
length �c to increase to |M′| = 8, in order for the resultant multiset to have the
P property. Therefore, the only appropriate bit tuple to append to this would
be of the form a2 which has cycle length �c = 8. This is why the example M′,
which is of the form â1a2a1, is a P. 	

We now have the notations, definitions and criteria for representing, slicing
(decomposing) and fusing (recomposing) multisets. These are crucial in order to
facilitate the tracking of multiset & bit tuple properties through cipher rounds.

2.3 Tuples Through Cipher Operations

In this section, we analyze the propagation of bitslice tuples through some main
primitive operations commonly used in block ciphers and hash functions; notably
the exclusive-OR (XOR), the AND operation, and substitution boxes (Sboxes).

Tuples Through XOR. The emphasis we place here is on constituent tuples
obtained from slicing the multisets that have property P, since this has the richest
structure that can survive through round operations better than multisets of
other properties. Therefore it is vital that we understand what happens to P
inputs after going through XOR; the most complex being P ⊕ P.

As a P multiset comprises bitslice tuples of the form aj , then any P ⊕ P
will cause the following types of XOR between its aj (or cyclic variants âj , ãj)
bitslice tuples:

• aj ⊕ aj = c
• aj ⊕ âj; j �=0 = aj−1

• aj ⊕ aj−1 = âj

• ai ⊕ aj; j>i+1 = pij

• ai ⊕ âj; j>i+1 = p̂ij

• âi ⊕ aj; j>i+1 = cij

• aj ⊕ âj−1 = p̂(j−2) j

• aj ⊕ ãj; j �=0,1 = �j

• ai ⊕ ãj; j>i = fj

• ãi ⊕ aj; j>i = fj

• ãi ⊕ ãj; j>i = fj

• âi ⊕ ãj; j>i = fj

• ãi ⊕ âj; j>i = fj

Note that these properties are more refined than the ones observed in [17], and
better allow to retain the internal rich structures within a P.

Furthermore, the following XOR relations can also be observed between other
types of bitslice tuples:

• aj ⊕ p(j−2)(j−1) = p̂(j−2) j

Tuple Cryptanalysis: Slicing and Fusing Multisets 303

• aj ⊕ pik; i,k<j : this leads to the complement dual of pik, i.e. pik but with
alternating flipped pattern segments of length 2j

Note. All the above bit tuples have the bit tuple property e.

Tuples Through AND. As the AND operation serves as one of the primitives in
recent ciphers such as Prince, Simon, and Simeck, as well as when Sbox output
bits are expressed in ANF representation, we consider bit tuple propagations
through this AND operation.

In more detail, we analyze the bit tuple interactions involving one or two aj :

• c ∧ aj = aj or 0 . . . 0 (i.e. the all ‘0’ sequence)
• aj ∧ aj = aj

• aj ∧ aj−1 = zj

• ai ∧ aj;j>i+1 = mij

Intuitively, this leads to a bit tuple that equals ai except that every other
contiguous sequence of length 2j corresponding to ‘0’ bits in aj contains bits
masked to ‘0’.

Note. All the above output bit tuples have even parity. Furthermore, their seg-
ment and/or pattern cycles are based on ai, therefore their pattern boundaries
are aligned with the segment boundaries (if any) of the ai’s.

Tuples Through Sboxes. Any output bit of an Sbox can be viewed as the out-
put of a coordinate Boolean function constituting the Sbox, and can be expressed
in ANF representation, thereby relating each output bit as a function of input
bits.

While the ANF representation of Sboxes has been exploited in the literature
to track the development of the algebraic degrees of Sbox outputs, in this paper
we propose the novel approach of using the ANF to enable the tracking of how
bit tuples propagate through an Sbox. Essentially, from the ANF, it can be
observed that any Sbox output bit is the result of ANDing and then XORing
the input bits. Therefore, the problem of tracking how bit tuples behave as they
pass through an Sbox can be reduced to the problem of tracking how bit tuples
propagate through AND and XOR operations.

Details of this approach of tracking bit tuples through Sboxes appear in the
later subsections Sects. 3.3 and 3.4 on the Present and Rectangle ciphers.

3 Multiset Properties Through Ciphers

3.1 Threefish and ARX

To concisely exemplify our approaches, notably in terms of the slicing of multisets
and analysing their constituent bitslice tuples, we will first consider here the MIX
operation within the round function of the Threefish block cipher [21], before
moving on the other ciphers. MIX is defined as follows:

MIX(x, y) = 〈x + y, (x + y) ⊕ (y ≫ r)〉.

304 M. Minier and R.C.-W. Phan

Note that this MIX function is essentially of the ARX form, i.e. addition (ADD),
rotation (ROT), and exclusive-OR (XOR).

The multisets’ behaviours as they propagate through the Addition, XOR and
Rotation operations are shown in Table 1 as reported in [22]. Our aim here is to
derive more internal structures and corresponding properties within these output
multisets, based on our formulations of multisets and their bitslice channels.

Table 1. Truth tables of Addition (ADD), XOR, and Rotation (ROT) on multisets as
reported in [22].

Multisets Through Rotation (ROT). We commence by looking at the sim-
plest operation in terms of influence on multiset properties, i.e. the rotation
(ROT), also denoted by ≫.

To see why (≫P) still gives P, consider its bitslice channels, e.g. for a P =
a2a1a0, then we have: (≫ a2a1a0) → a0a2a1 = P.

Multisets Through Addition (ADD). In [22] it was shown that P + P → A
based on detecting a zero sum with respect to modulo addition. Alternatively,
using bitslice tuples enables to show why we get the property: P + P = a2a1a0

+ a2a1a0 → a1a0c = E.
More importantly, crucial to the analysis of multisets through MIX is the

behaviour of C + P. W.l.o.g. consider a multiset P1 comprising the bit tuples
a2a1a0, e.g. whose elements are ordered ascendingly. It is known that when added
to a C, this results in a P2 where the same ordering is preserved. However, if we
focus on the constituent bitslice tuples, we see that these tuples may no longer
have segment boundaries aligned with those of a2, a1, a0, i.e. its bitslice tuples
would be from the set ∈ {aj , âj;j �=0, ãj;j �=0,1}.

Multisets Through Exclusive-OR (XOR). We consider the XOR of different
types of P, or with A, as typically encountered when propagating multisets
through ARX constructions, e.g. the MIX function of Threefish; in terms of the
constituent bitslice channels of such multiset types. Without loss of generality,
we describe the analysis with respect to 3-bit multisets for better clarity.

• P ⊕ P: a2a1a0 ⊕ a2a1a0 → ccc = C.
This case considers the XOR of P multisets comprising the same bitslice

Tuple Cryptanalysis: Slicing and Fusing Multisets 305

tuples. The next case considers the XOR of P multisets comprising differ-
ent orderings of bitslice tuples caused by rotation of P.

• P ⊕ (≫P): a2a1a0 ⊕ a0a2a1 = 〈a2 ⊕ a0, a1 ⊕ a2, a0 ⊕ a1〉 → p02â2â1 = E. It
could be generalized to Ek for larger P sets.

• P1 ⊕ P2: here we utilize the tuples formulation of this paper to show why
in some cases, where different types of P structures can be precise in their
bitslice tuples, that the XOR of two P can still produce a P. It remains an open
problem whether all types of P can be similarly defined, including Pnord which
is not captured in our tuples formulation. In our earlier work i.e. [22] Sect. 2.2,
it was stated with an example that this was possible for non-trivial cases of
P, though no detailed analysis could be provided as to why this behaviour
exists because we lacked the formulations to precisely detail different types of
P. It was also mentioned in Sect. 3.2 that properties observed from empirical
results were stronger than analytical predictions because tracking analytically
was difficult. By using the tuples formulation, one can answer the question as
to why a P could be empirically detected after P1 ⊕P2 although state-of-the-
art integral and multiset analysis techniques were to date not able to explain
why it is a P. To show that we can get a P, consider Pord,1 = a2a1a0 and
P2 = a0â2a1, then Pord,1⊕P2 = a2a1a0⊕a0â2a1 = 〈a2⊕a0, a1⊕â2, a0⊕a1〉 =
p02a2â1 = P3. This results in a permutation P multiset because the segment
length �s of the multiset is 1 due to the tuple p02 while the cycle pattern
length �c = 8 due to the tuples a2 and p02.

• A ⊕ P: a1a0c ⊕ a2a1a0 = 〈a1 ⊕ a2, a0 ⊕ a1, c ⊕ a0〉 → â2â1a0 = P, for the
specific type of A that can be formulated as a1a0c e.g. when it is produced
from P + P. Note that such an A is also an E. To see this why this XOR
results in a P, we can recall our discussions on fusing in Subsect. 2.2, notably
the segment length �s of this multiset is 1, while its cycle length �c is 8 equaling
the size of this multiset.

Table 2 summarizes the revised truth table for XOR based on our analysis in this
subsection.

Multisets Through MIX. With the enriched multiset properties based on bit-
slice tuples as discussed above, we can more precisely trace the following multiset

Table 2. Revised truth table of XOR on multisets based on tuple formulations.

⊕ A B C E F P

A X X X X X P/X

B X B B B X B

C X B C E X P

E X B B B X P/B

F X X X X X X

P P/X B P P/B X P/E/C

306 M. Minier and R.C.-W. Phan

propagations through the MIX function of Threefish, w.l.o.g. consider 3-bit mul-
tisets for simplicity of description:

MIX(C,P) = 〈C + P, (C + P) ⊕ (≫ P)〉 = 〈P, β2β1β0〉
Consider a P multiset of the form a2a1a0, thus (≫ P) = a0a2a1. From our above
discussion in the subsection for the case of multisets through ADD, we see that
C + P → P = α2α1a0 where α2 ∈ {a2, â2, ã2}, α1 ∈ {a1, â1}. Therefore, we can
see that the output bit tuples β2β1β0 would form the multiset (C+P) ⊕ (≫ P)
as follows:

• β2 = α2 ⊕ a0 =
· a2 ⊕ a0 = p02, or
· â2 ⊕ a0 = p̂02, or
· ã2 ⊕ a0 = f2.

• β1 = α1 ⊕ a2 =
· a1 ⊕ a2 = â2, or
· â1 ⊕ a2 = p̂02.

• β0 = a0 ⊕ a1 = â1.

These results have been corroborated by experiments on up to 8-bit multisets.
Examples of an output multiset (C+P)⊕ (≫ P) = β2β1β0 with such properties
are as follows:

• β2 = p02 = 0101 1010 or p̂02 = 01 1010 01 or f2 = 1011 0100
• β1 = â2 = 00 1111 00 or p̂02 = 01 1010 01
• β0 = â1 = 01100110

Thus, we can deduce more structure through MIX at its output, answering the
question left partially open in previous work i.e. [22] where it was stated that
dependencies between tuples of words were difficult to track analytically, after
having remarked that there was a difference in precision between what could be
empirically observed and what could be analytically predicted.

In addition, for the cases where the input multiset going into MIX is 〈P,P〉,
e.g. when via chosen-ciphertext attacks such structures are input to MIX, we can
obtain:

MIX(P,P) = 〈P + P, (P + P) ⊕ (≫ P)〉 = 〈E,P/E〉
rather than the 〈A,B〉 previously observed. To see this, first note that for the
left half of the output multiset, as per the subsection discussion in the case of
multisets through Addition (ADD), we have (P+ P) → E = a1a0c. For the right
half (P+P)⊕ (≫ P) of the multiset, recall that (≫ P) = a0a2a1. Thus we have
the right output multiset as:

〈a1 ⊕ a0, a0 ⊕ a2, c ⊕ a1〉 = 〈â1, p02, a1〉 = P.

An example of when the right half of the output multiset becomes E is where
P = a3a2a1a0, such that (P + P) ⊕ (≫ P) = (a2a1a0c) ⊕ (a0a3a2a1) = 〈a2 ⊕

Tuple Cryptanalysis: Slicing and Fusing Multisets 307

a0, a1 ⊕ a3, a0 ⊕ a2, c ⊕ a1〉 = 〈p02p13p02â1〉 = E, since the same bit tuple p02 is
present twice in the multiset, with the same boundary alignment. Alternatively,
one could obtain a P multiset for other parameters, e.g. for different rotation
amounts, for instance (P + P) ⊕ (≫2 P) = (a2a1a0c) ⊕ (a1a0a3a2) = 〈a2 ⊕
a1, a1 ⊕ a0, a0 ⊕ a3, c ⊕ a2〉 = 〈â2â1p03a2〉 = P, where ≫r denotes rotation to
the right by r amounts.

These examples show that one could analytically deduce better properties
for MIX(P,P), filling the gap between what could be observed via analysis and
what was actually observed via experiments.

3.2 PRINCE

Prince is an SPN block cipher with a particular involutive structure for low
latency [25]. Its 64-bit block can be represented as a 4×4 state of nibbles, which
goes through initial keying, 5 forward SPN rounds, an unkeyed middle layer,
and then 5 more backward SPN rounds before final keying.

A forward SPN round mainly consists of an Sbox layer S acting on nibbles
and a diffusion layer M = SR◦M ′, before a typical keyed XOR operation; where
SR is the AES ShiftRows operation and M ′ is an involutive operation acting on
independent columns at a time. [44] observed that M ′ can be expressed in terms
of bitwise equations as follows. For the leftmost and rightmost columns, the
output nibbles (one in each row below, and each row comprising its constituent
four bits) are of the form:

y0
0 = x0

1 ⊕ x0
2 ⊕ x0

3 y1
0 = x1

0 ⊕ x1
2 ⊕ x1

3 y2
0 = x2

0 ⊕ x2
1 ⊕ x2

3 y3
0 = x3

0 ⊕ x3
1 ⊕ x3

2

y0
1 = x0

0 ⊕ x0
1 ⊕ x0

2 y1
1 = x1

1 ⊕ x1
2 ⊕ x1

3 y2
1 = x2

0 ⊕ x2
2 ⊕ x2

3 y3
1 = x3

0 ⊕ x3
1 ⊕ x3

3

y0
2 = x0

0 ⊕ x0
1 ⊕ x0

3 y1
2 = x1

0 ⊕ x1
1 ⊕ x1

2 y2
2 = x2

1 ⊕ x2
2 ⊕ x2

3 y3
2 = x3

0 ⊕ x3
2 ⊕ x3

3

y0
3 = x0

0 ⊕ x0
2 ⊕ x0

3 y1
3 = x1

0 ⊕ x1
1 ⊕ x1

3 y2
3 = x2

0 ⊕ x2
1 ⊕ x2

2 y3
3 = x3

1 ⊕ x3
2 ⊕ x3

3

On the other hand, the output nibbles of the inner two columns are:

y0
0 = x0

0 ⊕ x0
1 ⊕ x0

2 y1
0 = x1

1 ⊕ x1
2 ⊕ x1

3 y2
0 = x2

0 ⊕ x2
2 ⊕ x2

3 y3
0 = x3

0 ⊕ x3
1 ⊕ x3

3

y0
1 = x0

0 ⊕ x0
1 ⊕ x0

3 y1
1 = x1

0 ⊕ x1
1 ⊕ x1

2 y2
1 = x2

1 ⊕ x2
2 ⊕ x2

3 y3
1 = x3

0 ⊕ x3
2 ⊕ x3

3

y0
2 = x0

0 ⊕ x0
2 ⊕ x0

3 y1
2 = x1

0 ⊕ x1
1 ⊕ x1

3 y3
2 = x2

0 ⊕ x2
1 ⊕ x2

2 y3
2 = x3

1 ⊕ x3
2 ⊕ x3

3

y0
3 = x0

1 ⊕ x0
2 ⊕ x0

3 y1
3 = x1

0 ⊕ x1
2 ⊕ x1

3 y2
3 = x2

0 ⊕ x2
1 ⊕ x2

3 y3
3 = x3

0 ⊕ x3
1 ⊕ x3

2

The middle layer is of the form: S−1 ◦ M ′ ◦ S, while a backward SPN round
comprises the functions M−1 and S−1.

Since Prince rounds essentially comprise the Sbox layer and the diffusion
layer M , the entire cipher consists of only AND and exclusive-OR (XOR) oper-
ations, thus it is an AND-XOR structured cipher.

Some previous results on integral and bitslice tuple tracking through Prince
have been proposed in [28,44]. More precisely, in [28,44] a classical integral prop-
erty was presented as follows: with one active nibble (i.e. 24 chosen plaintexts)

308 M. Minier and R.C.-W. Phan

is transformed into a balanced property on each nibble after rounds of the form
SM , SM , SR−1M ′SR, M−1S−1 � SM , SM , SR−1, S−1, which is seen effec-
tively as 2.5 rounds since SR−1 offers little diffusion. This first-order integral
property could be extended by one additional round SM at the beginning
using a 4th-order integral property requiring 216 chosen plaintexts. Another
1st-order integral was presented in [44] needing 24 texts, covering the rounds
SM ,SM ′,S−1M−1, which can be considered effectively as 2.5 rounds since M ′

does not provide full diffusion compared to M . Moreover, a bitslice tuple prop-
erty with three particular active bits (i.e. requiring 23 chosen plaintexts) was
also proposed for the rounds of the form SM , SM ′ in [44], which is effectively
at most seen to be 2 rounds of Prince.

In fact, we found the following bitslice tuple property on 3 rounds of the form
SM , SM and SM :

cccc cccc cccc ccca2

cccc cccc cccc ccca1

cccc cccc cccc cccc

cccc cccc cccc ccca0

gives after three rounds of SM , SM and SM :

eeee eeee eeee eeee

eeee eeee eeee eeee

eeee eeee eeee eeee

eeee eeee eeee eeee

This property stays true for triplets of bits placed on the 3 least significant
bits of the Sbox output.

In more detail, this property starts with an input multiset as follows:

c c c c c c c c c c c c c c c a2

c c c c c c c c c c c c c c c a1

c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c a0

• S in R1: →
c c c c c c c c c c c c α2 α2 α2 α2

c c c c c c c c c c c c α1 α1 α1 α1

c c c c c c c c c c c c c c c c
c c c c c c c c c c c c α0 α0 α0 α0

After the S in round 1 (R1), all output bits of the nibble for which one of the
inputs received an aj tuple become the αj tuple, where αj ∈ {aj , c}.

Tuple Cryptanalysis: Slicing and Fusing Multisets 309

• M ′ in R1: →
c c c c c c c c c c c c α01 α02 α012 α12

c c c c c c c c c c c c α12 α01 α02 α012

c c c c c c c c c c c c α012 α12 α01 α02

c c c c c c c c c c c c α02 α012 α12 α01

where αijk is shorthand for αi ⊕ αj ⊕ αk.

• SR in R1: →
c c c c c c c c c c c c α01 α02 α012 α12

c c c c c c c c α12 α01 α02 α012 c c c c
c c c c α012 α12 α01 α02 c c c c c c c c

α02 α012 α12 α01 c c c c c c c c c c c c

• S in R2: →

c c c c c c c c c c c c v42
c c c c c c c c v42 c c c c
c c c c v42 c c c c c c c c

v42 c c c c c c c c c c c c

where vij denotes a nibble of i bits taking only j values.

• M ′ in R2: →

c α0 α0 α0 α1 c α1 α1 α2 c α2 α2 c α3 α3 α3

α0 c α0 α0 α1 α1 c α1 α2 α2 c α2 α3 c α3 α3

α0 α0 c α0 α1 α1 α1 c α2 α2 α2 c α3 α3 c α3

α0 α0 α0 c c α1 α1 α1 c α2 α2 α2 α3 α3 α3 c

• SR in R2: →
c α0 α0 α0 α1 c α1 α1 α2 c α2 α2 c α3 α3 α3

α1 α1 c α1 α2 α2 c α2 α3 c α3 α3 α0 c α0 α0

α2 α2 α2 c α3 α3 c α3 α0 α0 c α0 α1 α1 α1 c
c α1 α1 α1 c α2 α2 α2 α3 α3 α3 c α0 α0 α0 c

• S in R3: →
e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e

To see this, note from our previous discussion of tuple propagations through
the XOR operation, that the above bit tuples input to the Sbox S are of the
form:
◦ α01 = α0 ⊕ α1 ∈ {c ⊕ c, a0 ⊕ c, c ⊕ a1, a0 ⊕ a1} = {c, a0, a1, â1}

310 M. Minier and R.C.-W. Phan

◦ α12 = α1 ⊕ α2 ∈ {c ⊕ c, a1 ⊕ c, c ⊕ a2, a1 ⊕ a2} = {c, a1, a2, â2}
◦ α02 = α0 ⊕ α2 ∈ {c ⊕ c, a0 ⊕ c, c ⊕ a2, a0 ⊕ a2} = {c, a0, a2, p02}
◦ α012 = α0 ⊕ α1 ⊕ α2 ∈ {c, a0, a1, a2, â1, â2, p02, p̂02}.

All these possible bit tuples are even (e) tuples. Therefore, as S is bijective,
the output bit tuples will also be e. These will remain as e after the subsequent
M layer.

• M in R3: →

e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e

Therefore, after 3 rounds of Prince, we have that all the output bits give a
zero integral

⊕
sum.

Note that there exist many such properties positioned at different places of
the block with the three bits aligned in a column and for different combinations
of three rounds. Note that this property leads to be able to build a distinguisher
with only 23 plaintexts on 3 rounds SM , SM and SM .

Moreover, and due to the structure of the Prince matrix, we could transform
the 4-th order integral property on 4 rounds described in [28] requiring 216 chosen
plaintexts into a 3-th order integral property on 4 rounds requiring only 212

chosen plaintexts as noticed in [45]. Indeed:

C C C C

C C C C

C C C C

C C C A4

is computed, inverting one round, from:

C C C A12

C C C A12

C C C C

C C C A12

Thus, this Integral property on 4 rounds could be extended by one more round
at the beginning leading to a 5 rounds distinguisher with 248 chosen plaintexts
remarking that

C C C A12 A48 C A48 A48

C C C A12 is obtained from A48 C A48 A48

C C C C A48 C A48 A48

C C C A12 A48 C A48 A48

Tuple Cryptanalysis: Slicing and Fusing Multisets 311

and do not required the whole codebook but only 248 chosen plaintexts. Thus,
we are able to construct an Integral attack on 7 rounds with a time complexity
of about 248 encryptions to recover half of the key improving the state-of-the-art
concerning the best Integral attack on Prince.

3.3 PRESENT

Present [15] is a popularly analysed lightweight cipher, published in 2007 and
having been cited for over 1000 times by the end of 2015. Present has a block
size of 64 bits, and consists of 31 rounds, where each round is simply involving
an XOR with a round key, a layer S comprising 16 parallel applications of a
4×4 Sbox and a bit permutation layer L such that the output bits of each Sbox
spread uniformly to bit locations which are 16 bits apart. We can thus view
Present as being an NX structured cipher, similar to Prince.

For our purpose, we will exploit the ANF of the Sbox outputs of Present,
which is listed as follows [30]:

y3 = 1 ⊕ x0 ⊕ x1 ⊕ x3 ⊕ x1x2 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3 (1)
y2 = 1 ⊕ x2 ⊕ x3 ⊕ x0x1 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3 (2)
y1 = x1 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3 (3)
y0 = x0 ⊕ x2 ⊕ x3 ⊕ x1x2 (4)

Note that from the above, the algebraic degree of the coordinate Boolean func-
tions of the Present Sbox is 2 for the LSB y0 and 3 for the rest.

We begin with a multiset of 24 elements such that the 4 rightmost bitslices
collectively form a 4-bit P word, which the other bitslices are c. For compactness
of notation, we denote by cs the contiguous sequence of s bitslices each of which
is a bit tuple of the form c.

• Input: c16, c16, c16, c12a3a2a1a0

• S in R1: → c16, c16, c16, c12a3a2a1a0

The bit tuples propagate unchanged through the Sbox layer in Round 1.
• L in R1: → c15a3, c15a2, c15a1, c15a0

The linear layer L in Round 1 moves the ai bit tuples (i ∈ {0, . . . , 3}) to other
bitslice positions, such that there is one ai bit tuple in each 16-bit word state
of Present.

• S in R2: → c12α3
3a3, c12α3

2a2, c12α3
1a1, c12α3

0a0

where αi ∈ {c, ai}
Remark. On input c3ai, the output from the Sbox is α3

i ai, where each αi is
either a c tuple (all constant ‘0’s or constant ‘1’s), or ai including its bitwise
complement. This can be seen by analyzing the ANF of the Sbox, noting that
in this case only the input bit x0 varies as per the bit tuple sequence, while
the other bits x1x2x3 are constants. Therefore y0 will be x0 or its complement
x0, thus will be an ai tuple.

• L in R2: → (c3α3 c3α2 c3α1 c3α0)3 c3a3 c3a2 c3a1 c3a0

The linear layer causes each 4-bit input to the Sbox in the next layer to be
of the form ciαi or c3ai.

312 M. Minier and R.C.-W. Phan

• S in R3: → (α4
3 α4

2 α4
1 α4

0)3 α3
3a3 α3

2a2 α3
1a1 α3

0a0

As per the above analysis for S in R2, we have discussed how an input c3ai

propagates through the Sbox. What remains is to analyze the propagation of
the input c3αi through the Sbox. Recall that αi ∈ {c, ai}, thus an input c3αi

is in fact the union of two types of inputs, i.e. c3ai ∪ c3c. The output will
therefore be α3

i ai or c4.
• L in R3: → (α3α2α1α0)15 a3a2a1a0

The linear layer permutes the bit tuples such that every Sbox input in the
next layer is of the form α3α2α1α0 except for the rightmost Sbox whose input
is a3a2a1a0.

• S in R4: → (e4)15 a3a2a1a0

An α3α2α1α0 input to an Sbox comprises four bitslices αi, each of which
could be a c or ai tuple. This means that each bitslice is either (in the case
that it is c) a bit multiset with one unique element of multiplicity 24, or (in
the case that it is ai) a bit multiset with two unique elements (’0’ and ’1’)
each of multiplicty 23. In either case, the bit multiset exhibits even parity,
i.e. its elements have even multiplicity. Composing the four bitslices back
into the 4-bit word, the 4-bit input α3α2α1α0 to the Sbox is therefore also a
multiset of property E. Since the Sbox is bijective, therefore this E property
is preserved through to the output. Denote its output by e4 with each e to
represent a bit tuple of even parity.

• L in R4: → e15a3, e15a2, e15a1, e15a0 The linear layer causes the 4-bit inputs
to the Sbox in the next layer to be of the form e4.

• S in R5: → (?3e)16

All four input bit tuples going into any Sbox have even parity (note that the
same is also true for ai).
We focus on the LSB output y0 of any Sbox, whose expression is given in
Eq. (4). Notably, the only nonlinear term is the AND (x1 ∧ x2) term between
x1 and x2, which is in this case (e ∧ e), leading to an output bit tuple that is
also e, preserving the segment/pattern boundaries.
As each of the other terms in y0 i.e. x0, x2, x3 to be XORed to x1x2 also has
even parity, therefore the output bit y0 of the Sbox would have even parity.

• L in R5: → ?48(e)16

The linear layer moves all the LSB output bits y0 of all 16 Sboxes to the right-
most 16 bit positions, therefore at the end of Round 5, all the 16 rightmost
bit tuples have even parity, and thus are balanced, i.e.

⊕
= 0.

We have empirically tested this for several runs, each time with 216 random
structures of plaintext multisets and keys: it is verified that the rightmost 16
bits after 5 rounds of Present have zero integral

⊕
sum with probability 1.

This result contrasts with the best-known integrals for Present reported in
[30], where a 5-round and a 7-round integral were demonstrated such that a zero
integral sum is detected only in the single rightmost bit after five (resp. seven)
rounds.

Tuple Cryptanalysis: Slicing and Fusing Multisets 313

On the contrary, our tuple integral based on a multiset of size 24, has 16
times more checkable bits that provide more bit filtering conditions, thus better
filtration power during the key recovery stage.

Furthermore, the single-bit integrals in [30] were tracked based on the max-
imal algebraic degree d of the coordinate Boolean function producing the right-
most LSB at the final output. This is done by collecting enough different texts
within a multiset such that there are more than 2d texts in order to exploit the
higher-order derivative property [2], which basically tests for a zero sum.

In contrast, our integral is tracked by bitslice tuples through the round oper-
ations, notably through the Sbox’s output bits, and within the Sboxes through
the AND and XOR operations that make up the ANF expressions of an Sbox’s
coordinate Boolean functions. Such a bit tuple approach thus enables to observe
richer internal structures within the multisets and bitslice tuples.

3.4 RECTANGLE

Rectangle [42] is a bit-sliced lightweight cipher, such that in each round it
comprises an XOR based key addition, and then just an Sbox layer S followed
by bitwise rotation layer R, thus Rectangle can be viewed as an NRX cipher,
i.e. involving the primitive operations AND, rotation (ROT) and exclusive-OR
(XOR). It has a 64-bit block size and 25 number of rounds.

Zhang et al. [38] reported a 7-round integral distinguisher needing a multiset
of 236 elements. Kosuge et al. [39] reported an 8-round integral distinguisher
requiring a huge multiset of 260 elements. Both these integrals track that the
integral

⊕
sum equals zero in some output bits.

In contrast, we demonstrate how tuples can apply to Rectangle by using
much smaller multisets, and track more structures in the output bits in contrast
to zero sums, i.e. we track the bitslice tuples.

The Sbox S of Rectangle can be represented in terms of its ANF as:

y3 = x1 ⊕ x3 ⊕ x0x2 ⊕ x0x3 ⊕ x1x2 ⊕ x1x2x3 (5)
y2 = 1 ⊕ x2 ⊕ x3 ⊕ x0x1 ⊕ x0x2 ⊕ x1x2 ⊕ x2x3 ⊕ x0x1x2 (6)
y1 = 1 ⊕ x0 ⊕ x1 ⊕ x2 ⊕ x1x3 (7)
y0 = x0 ⊕ x2 ⊕ x3 ⊕ x0x1 (8)

As an aside, note that the algebraic degree of the coordinate Boolean functions
producing two of its output bits i.e. y0 and y1 is 2, versus degree of 3 for the
other two output bits.

Rectangle’s state can be represented as a rectangle of 4×16 bits as follows:

x15x14x13x12 x11x10x9x8 x7x6x5x4 x3x2x1x0

x31x30x29x28 x27x26x25x24 x23x22x21x20 x19x18x17x16

x47x46x45x44 x43x42x41x40 x39x38x37x36 x35x34x33x32

x63x62x61x60 x59x58x57x56 x55x54x53x52 x51x50x49x48

314 M. Minier and R.C.-W. Phan

Consider if we had an input multiset of 24 elements of the following form:

a0ccc cccc cccc cccc

a1ccc cccc cccc cccc

a2ccc cccc cccc cccc

a3ccc cccc cccc cccc

We then observe its progagation as detailed below:

• S in R1: This propagates essentially unchanged through the Sbox layer in
round 1, because we have four bit tuples a3a2a1a0 forming the leftmost col-
umn, entering one Sbox, and constant bit tuples entering the other Sboxes.
Alternatively, viewed as 4-bit column-words, we have: PCCC CCCC CCCC
CCCC

• R in R1: After bitwise rotation in round 1, we have:

a0 c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c a1

c c c c a2 c c c c c c c c c c c
c c c a3 c c c c c c c c c c c c

• S in R2: At the leftmost column, we have ccca0 entering the Sbox. Analyzing
the Sbox’s ANF, we see that the following bit tuples will be obtained at the
output:

y0 : α0 ∈ {a0, c}; y1 : a0; y2 : α0 ∈ {a0, c}; y3 : α0 ∈ {a0, c}
Similarly, for the other input tuples with one aj entering the Sbox, we have:

x3x2x1x0 = cca1c →

⎧
⎪⎪⎨

⎪⎪⎩

y0 : α1 ∈ {a1, c}
y1 : α1 ∈ {a1, c}
y2 : α1 ∈ {a1, c}
y3 : α1 ∈ {a1, c}

x3x2x1x0 = ca2cc →

⎧
⎪⎪⎨

⎪⎪⎩

y0 : a2

y1 : a2

y2 : α2 ∈ {a2, c}
y3 : α2 ∈ {a2, c}

x3x2x1x0 = a3ccc →

⎧
⎪⎪⎨

⎪⎪⎩

y0 : a3

y1 : α3 ∈ {a3, c}
y2 : α3 ∈ {a3, c}
y3 : α3 ∈ {a3, c}

• R in R2: Therefore, after going through rotation, we have:

α0 c c a3 a2 c c c c c c c c c c α1

c c α3 a2 c c c c c c c c c c α1 a0

c c c α1 α0 c c α3 α2 c c c c c c c
c c α1 α0 c c α3 α2 c c c c c c c c

Tuple Cryptanalysis: Slicing and Fusing Multisets 315

• S in R3: Passing through a subsequent Sbox layer gives:
α0 c α1 ⊕ α3 e α0 ⊕ α2 c α3 α2 ⊕ α3 α2 c c c c c α1 a0α1

α0 c α1α3 e α0 ⊕ a2 c α3 α2 ⊕ α3 α2 c c c c c α1 α0 ⊕ α1

α0 c α1 ⊕ α3 e α0α2 c α3 α2α3 α2 c c c c c α1 α0α1

α0 c α1α3 e α0α2 c α3 α2α3 α2 c c c c c α1 α0 ⊕ α1

• R in R3: After rotation, we have:
α0 c α1 ⊕ α3 e α0 ⊕ α2 c α3 α2 ⊕ α3 α2 c c c c c α1 a0α1

c α1α3 e α0 ⊕ a2 c α3 α2 ⊕ α3 α2 c c c c c α1 α0 ⊕ α1 α0

c c α1 α0α1 α0 c α1 ⊕ α3 e α0α2 c α3 α2α3 α2 c c c
c α1 α0 ⊕ α1 α0 c α1α3 e α0α2 c α3 α2α3 α2 c c c c

• S in R4: Going through another Sbox layer results in the following:
α0 α1α3 ∗ ∗ α0 ⊕ α2 α1α3 ∗ ∗ α0α2 α3 α2α3 α2α3 α2 α1 α0α1 α0α1

α0 α1α3 ∗ ∗ α0 ⊕ α2 α1α3 ∗ ∗ α0α2 α3 α2α3 α2α3 α2 α1 α0 ⊕ α1 α0 ⊕ a0α1

α0 α1α3 ∗ ∗ α0α2 α1α3 ∗ ∗ α0α2 α3 α2α3 α2α3 α2 α1 α0α1 α0α1

α0 α1α3 ∗ ∗ α0α2 α1α3 ∗ ∗ α0α2 α3 α2α3 α2α3 α2 α1 α0 ⊕ α1 α0 ⊕ a0α1

• R in R4: After rotation, we have:
α0 α1α3 ∗ ∗ α0 ⊕ α2 α1α3 ∗ ∗ α0α2 α3 α2α3 α2α3 α2 α1 α0α1 α0α1

α1α3 ∗ ∗ α0 ⊕ α2 α1α3 ∗ ∗ α0α2 α3 α2α3 α2α3 α2 α1 α0 ⊕ α1 α0 ⊕ a0α1 α0

α2 α1 α0α1 α0α1 α0 α1α3 ∗ ∗ α0α2 α1α3 ∗ ∗ α0α2 α3 α2α3 α2α3

α1 α0 ⊕ α1 ∗ α0 α1α3 ∗ ∗ α0α2 α1α3 ∗ ∗ α0α2 α3 α2α3 α2α3 α2

• S in R5: In Round 5, passing through the Sbox layer obtains:
e ∗ ∗ ∗ α0 ⊕ α2 ∗ ∗ ∗ α0α2 ∗ ∗ ∗ e α1 α0α1 α0α1

e ∗ ∗ ∗ α1α3 ∗ ∗ ∗ α3 ∗ ∗ ∗ e α0 ⊕ α1 α0 ⊕ a0α1 α0

∗ ∗ ∗ ∗ α0 ∗ ∗ ∗ α0α2 ∗ ∗ ∗ e α3 α2α3 α2α3

e ∗ ∗ ∗ α1α3 ∗ ∗ ∗ α1α3 ∗ ∗ ∗ ∗ α2α3 α2α3 α2

To see why e tuples are obtained at the output of the Sbox in the leftmost
column, note that the input tuples are of the form (α1, α2, α1α3, α0), and
recall that αi ∈ {ai, c}. Therefore, the possible input tuples to the Sbox are:
◦ (csa4−s), s ∈ {0, . . . , 3} where the composition of c and a tuples are in any

order. This forms an E word into the Sbox, therefore the output will also
be an E.

◦ (a1, a2, a3, a0): This is a P word into the Sbox, therefore the output will
also be a P.

◦ (a1, a2, a1, a0): This is actually an E word, thus the output will be an E.
◦ (a1, a2, a1a3, a0) = (a1, a2,m13, a0): Note from our previous discussion that

a1a3 gives m13 i.e. a tuple as like a1 but where every other contiguous
sequence of 23 bits is 0. Given such an input, then the output tuple from
the Sbox is of the form: (e ∗ ee).

Similar arguments apply to the fourth rightmost column whose input tuple
is (α2, α1, α0α1, α3). The crucial analysis is for the case where the input is
(a3, a0a2, a1, a2) = (a3,m02, a1, a2), which gives an output of (∗eee).

• R in R5: After another rotation, we obtain:

e ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ e ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ e ∗ ∗ ∗ e
e ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ e ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

316 M. Minier and R.C.-W. Phan

Thus, we have a 5-round integral distinguisher for Rectangle that requires only
24 texts, and the integral

⊕
zero sum can be detected in at least 6 bits. This

has been corroborated by experiments, repeated for several runs. In fact, there is
more structure existing in other bits that require much in-depth analysis, indeed
empirical results show that the zero sum is detected in 22 bits after 5 rounds.

Analysing the rounds via tuples enables us to precisely track the evolution
of multisets through more rounds than previously possible, because tuples allow
to represent much richer structure than conventional integral/multiset analy-
sis. This is why using only much smaller amounts of text (24 in our case for
Rectangle) we can track at the bit level granularity for up to five rounds.

4 Concluding Remarks

The Slice-&-Fuse paradigm considered in this paper enables to move between
word and bitslice granularities when tracking the evolution of multisets and their
constituent tuples through cipher rounds. Towards that aim, our proposed new
types of tuples capture more structures than previously known, that are inherent
in multisets and yet which have largely remained unexplored until now. Open
questions include whether much richer types of tuples exist as constituents of
multisets, and developing advanced approaches to track the propagation of tuples
through other cipher component operations including modulo multiplications
that make up exotic ciphers such as Xmx [4] as well as the more celebrated Idea
cipher [1].

Acknowledgements. We thank the anonymous Mycrypt 2016 reviewers and Ana
Sălăgean for constructive and critical comments that have improved this paper. RP’s
work is supported in part by the Malaysian Ministry of Education’s Fundamental
Research Grant Scheme (FRGS) under the project ProvAdverse.

A Integrals of Crypton and mCrypton

Crypton v1.0 and mCrypton are two block ciphers proposed by Lim et al.
[7,14]. Crypton was one of the candidates of the AES competition, acting on
128-bit blocks under keys of length 128, 192 or 256 bits whereas mCrypton is its
equivalent lightweight version acting on 64-bit blocks under keys of length 64,
96 or 128 bits. Both have the same design principle based on an SPN structure
with an Sbox layer and a linear layer composed of a bit permutation and a
matrix transposition. The bit permutation could be represented by a matrix
multiplication where the MDS bound is not reached (few column elements have
an input/output weight of 4 instead of 5 in the case of an MDS transformation).
For the rest of this subsection, we will denote the block size as 16n with n = 8
for Crypton and n = 4 for mCrypton.

We are not able to directly exhibit bitslice properties in the cases of Crypton
and mCrypton. We conjecture that this fact is linked with the inherent design of
the ciphers: the Sbox layer and the bit permutation act on different word sizes

Tuple Cryptanalysis: Slicing and Fusing Multisets 317

leading to impeding the possible properties at bit level. However, we are able
to improve the classical integral property used in [6] on Crypton and that also
works on mCrypton: we start with one active word at the beginning (whereas the
other words are constant) and that gives a zero integral

⊕
sum in each word after

three rounds. As the linear layer does not have the MDS property, we are able
to construct a new four-round integral property that works for both Crypton
and mCrypton. More precisely, the following 3rd-order integral property holds
on 4 rounds requiring only 23n chosen plaintexts. Indeed:

A3n C C C

A3n C C C

A3n C C C

C C C C

gives after 4 rounds

B B B B

B B B B

B B B B

B B B B

Thus, we could improve in the case of Crypton the data/time complexity
of the 6-round attack presented in [6] by a factor 216 for the time complexity
and by a factor 28 for the data complexity. Indeed, we add two rounds at the
end of the previous 4-round integral property leading to guess 5 key words of
the subkeys K5 and K6 for a cost of 240 tests whereas to discard false alarms
we need to test 5 · 224 chosen plaintexts. This attack could be easily adapted to
mCrypton leading to an attack on 6 rounds using 5 · 212 chosen plaintexts with
a time complexity of about 220 tests.

References

1. Lai, X., Massey, J.L.: A proposal for a new block encryption standard. In: Damg̊ard,
I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg
(1991). doi:10.1007/3-540-46877-3 35

2. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). doi:10.1007/
3-540-60590-8 16

3. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). doi:10.1007/
BFb0052343

4. M’Räıhi, D., Naccache, D., Stern, J., Vaudenay, S.: XMX: a firmware-oriented block
cipher based on modular multiplications. In: Biham, E. (ed.) FSE 1997. LNCS, vol.
1267, pp. 166–171. Springer, Heidelberg (1997). doi:10.1007/BFb0052344

5. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Appli-
cations, vol. 20. Cambridge University Press, Cambridge (1997)

http://dx.doi.org/10.1007/3-540-46877-3_35
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/BFb0052344

318 M. Minier and R.C.-W. Phan

6. D’Halluin, C., Bijnens, G., Rijmen, V., Preneel, B.: Attack on Six Rounds of CRYP-
TON. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 46–59. Springer,
Heidelberg (1999). doi:10.1007/3-540-48519-8 4

7. Lim, C.H.: A revised version of CRYPTON: CRYPTON V1.0. In: Knudsen, L.
(ed.) FSE 1999. LNCS, vol. 1636, pp. 31–45. Springer, Heidelberg (1999). doi:10.
1007/3-540-48519-8 3

8. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.:
Improvedcryptanalysis of rijndael. In:Goos,G.,Hartmanis, J.,Leeuwen,J., Schneier,
B. (eds.)FSE2000.LNCS,vol. 1978,pp. 213–230.Springer,Heidelberg (2001).doi:10.
1007/3-540-44706-7 15

9. Lucks, S.: The saturation attack — a bait for twofish. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002). doi:10.1007/
3-540-45473-X 1

10. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 395–405. Springer, Heidelberg
(2001). doi:10.1007/3-540-44987-6 24

11. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). doi:10.1007/
3-540-45661-9 9

12. Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: ICE-
BERG: An involutional cipher efficient for block encryption in reconfigurable hard-
ware. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 279–298.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-25937-4 18

13. Nakahara, J., de Freitas, D.S., Phan, R.C.-W.: New multiset attacks on rijndael
with large blocks. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol.
3715, pp. 277–295. Springer, Heidelberg (2005). doi:10.1007/11554868 20

14. Lim, C.H., Korkishko, T.: mCrypton – a lightweight block cipher for security of
low-cost RFID tags and sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006). doi:10.1007/
11604938 19

15. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

16. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-76900-2 19

17. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral
attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-71039-4 23

18. Sun, B., Qu, L., Li, C.: New cryptanalysis of block ciphers with low algebraic
degree. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 180–192. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03317-9 11

19. Wei, Y., Sun, B., Li, C.: New integral distinguisher for rijndael-256. In: IACR
ePrint Archive. Report 559 (2009). http://eprint.iacr.org/2009/559

20. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. J. Cryptol. 23(4),
505–518 (2010)

21. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J.,
Walker, J.: The Skein Hash Function Family, version 1.3. Submitted to NIST SHA-3
Competition Round 3 (2010)

http://dx.doi.org/10.1007/3-540-48519-8_4
http://dx.doi.org/10.1007/3-540-48519-8_3
http://dx.doi.org/10.1007/3-540-48519-8_3
http://dx.doi.org/10.1007/3-540-44706-7_15
http://dx.doi.org/10.1007/3-540-44706-7_15
http://dx.doi.org/10.1007/3-540-45473-X_1
http://dx.doi.org/10.1007/3-540-45473-X_1
http://dx.doi.org/10.1007/3-540-44987-6_24
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/978-3-540-25937-4_18
http://dx.doi.org/10.1007/11554868_20
http://dx.doi.org/10.1007/11604938_19
http://dx.doi.org/10.1007/11604938_19
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-540-76900-2_19
http://dx.doi.org/10.1007/978-3-540-71039-4_23
http://dx.doi.org/10.1007/978-3-642-03317-9_11
http://eprint.iacr.org/2009/559

Tuple Cryptanalysis: Slicing and Fusing Multisets 319

22. Aumasson, J.-P., Leurent, G., Meier, W., Mendel, F., Mouha, N., Phan, R.C.-W.,
Sasaki, Y., Susil, P.: Tuple cryptanalysis of ARX with application to BLAKE and
Skein. In: ECRYPT II Hash Workshop (Hash 2011) (2011)

23. Zhang, W., Su, B., Wu, W., Feng, D., Wu, C.: Extending higher-order integral: an
efficient unified algorithm of constructing integral distinguishers for block ciphers.
In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 117–134.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31284-7 8

24. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against
feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
234–251. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35999-6 16

25. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R.,
Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S.,
Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing applica-
tions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–
225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

26. Lu, J., Wei, Y., Kim, J., Pasalic, E.: The higher-order meet-in-the-middle attack
and its application to the camellia block cipher. In: Galbraith, S., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 244–264. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-34931-7 15

27. Peng, C., Zhu, C., Zhu, Y., Kang, F.: Practical symbolic computation in block
cipher with application to present. In: IACR ePrint Archive. Report 587 (2012).
http://eprint.iacr.org/2012/587

28. Jean, J., Nikolić, I., Peyrin, T., Wang, L., Wu, S.: Security analysis of PRINCE.
In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 92–111. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-43933-3 6

29. Sasaki, Y., Wang, L.: Bitwise partial-sum on HIGHT: a new tool for integral analy-
sis against ARX designs. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol.
8565, pp. 189–202. Springer, Cham (2014). doi:10.1007/978-3-319-12160-4 12

30. Wu, S., Wang, M.: Integral attacks on reduced-round PRESENT. In: Qing, S.,
Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 331–345. Springer, Cham
(2013). doi:10.1007/978-3-319-02726-5 24

31. Todo, Y., Aoki, K.: FFT key recovery for integral attack. In: Gritzalis, D., Kiayias,
A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 64–81. Springer, Cham
(2014). doi:10.1007/978-3-319-12280-9 5

32. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of
reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014). doi:10.
1007/978-3-319-13039-2 9

33. Lu, J., Wei, Y., Kim, J., Pasalic, E.: The higher-order meet-in-the-middle attck
and its application to the camellia block cipher. Inf. Process. Lett. 527, 102–122
(2014)

34. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 12

35. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47989-6 20

36. Blondeau, C., Peyrin, T., Wang, L.: Known-key distinguisher on full PRESENT. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 455–474.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 22

http://dx.doi.org/10.1007/978-3-642-31284-7_8
http://dx.doi.org/10.1007/978-3-642-35999-6_16
http://dx.doi.org/10.1007/978-3-642-34961-4_14
http://dx.doi.org/10.1007/978-3-642-34931-7_15
http://eprint.iacr.org/2012/587
http://dx.doi.org/10.1007/978-3-662-43933-3_6
http://dx.doi.org/10.1007/978-3-319-12160-4_12
http://dx.doi.org/10.1007/978-3-319-02726-5_24
http://dx.doi.org/10.1007/978-3-319-12280-9_5
http://dx.doi.org/10.1007/978-3-319-13039-2_9
http://dx.doi.org/10.1007/978-3-319-13039-2_9
http://dx.doi.org/10.1007/978-3-662-46800-5_12
http://dx.doi.org/10.1007/978-3-662-47989-6_20
http://dx.doi.org/10.1007/978-3-662-47989-6_22

320 M. Minier and R.C.-W. Phan

37. Akshima, C.D., Ghosh, M., Goel, A., Sanadhya, S.K.: Improved meet-in-the-middle
attacks on 7 and 8-round ARIA-192 and ARIA-256. In: Biryukov, A., Goyal, V.
(eds.) Progress in Cryptology – INDOCRYPT 2015. LNCS, vol. 9462, pp. 198–217.
Springer, Cham (2015). doi:10.1007/978-3-319-26617-6 11

38. Zhang, H., Wu, W., Wang, Y.: Integral attack against bit-oriented block ciphers.
In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 102–118. Springer,
Cham (2016). doi:10.1007/978-3-319-30840-1 7

39. Kosuge, H., Tanaka, H., Iwai, K., Kurokawa, T.: Integral attack on reduced-round
Rectangle. In: IEEE CSCloud 2015, pp. 68–73 (2015)

40. Wei, Y.: Bit-pattern based integral attack on Iceberg. In: INCOS 2015, pp. 370–373
(2015)

41. Sasaki, Y., Wang, L.: Bitwise partial-sum on HIGHT: a new tool for integral analy-
sis against ARX designs. IEICE Trans. Fundam. E98A(1), 49–60 (2015)

42. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: Rectangle:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf.
Sci. 58(12), 1–15 (2015)

43. Dinur, I., Dunkelman, O., Kranz, T., Leander, G.: Decomposing the ASASA block
cipher construction. In: IACR ePrint Archive. Report 507 (2015). http://eprint.
iacr.org/2015/507

44. Morawiecki, P.: Practical attacks on the round-reduced PRINCE. In: IACR ePrint
Archive. Report 245. (2015). http://eprint.iacr.org/2015/245

45. Posteuca, R., Negara, G.: Integral cryptanalysis of round-reduced PRINCE cipher.
Proc. Rom. Acad. Ser. A 16, 265–269 (2015)

46. Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53018-4 24

http://dx.doi.org/10.1007/978-3-319-26617-6_11
http://dx.doi.org/10.1007/978-3-319-30840-1_7
http://eprint.iacr.org/2015/507
http://eprint.iacr.org/2015/507
http://eprint.iacr.org/2015/245
http://dx.doi.org/10.1007/978-3-662-53018-4_24

Improvements of Attacks on Various
Feistel Schemes

Emmanuel Volte, Valérie Nachef(B), and Nicolas Marrière

Department of Mathematics, University of Cergy-Pontoise,
CNRS UMR 8088, 2 Avenue Adolphe Chauvin, 95011 Cergy-Pontoise Cedex, France

{emmanuel.volte,valerie.nachef,nicolas.marriere}@u-cergy.fr

Abstract. In this paper, we use a tool that computes exact values for
expectations and standard deviations of random variables involved in
generic attacks on various Feistel-type schemes in order to get a bet-
ter study of these attacks. This leads to the improvement of previous
attacks complexities: either we need less messages than expected or we
can attack more rounds. These improvements are given for different sizes
of the inputs. We also show that for rectangle attacks, there are more
differential paths than presented in previous attacks and this strengthens
the attacks.

Keywords: Generic attacks on Feistel type schemes · Pseudo-random
permutations · Differential cryptanalysis

1 Introduction

The DES cipher [1,2] is based on Classical Feistel constructions studied by Luby
and Rackoff [13]. Although AES [8] has replaced DES, Feistel type structures
are still widely used to design many block ciphers like GOST [20] or SIMON [5].
These constructions are based on the repetition of two elementary operations:
the Xor between one part of the plaintext and the result of another part through
a nonlinear function F , and a permutation layer. Depending on the choice of the
permutation layer and the internal functions, it is possible to obtain different
kinds of block ciphers. The concrete ciphers based on Feistel network have a
public function F and often use a Xor between the input of F and a round key
which is derived from a master key by a key schedule. For example, MARS [7]
is based on unbalanced Feistel schemes with expanding functions [11,19,22,25],
and SMS4 [12] on unbalanced Feistel schemes with contracting functions [16,18].
Alternating Feistel schemes alternate contracting and expanding rounds and they
are used in the BEAR/LION block cipher [4]. There are also type-1, type-2 and
type-3 Feistel schemes [9,10,15,27]. Type-1 Feistel schemes are used in CAST-
256 [3] and type-2 Feistel schemes in RC-6 [21] and CLEFIA [23] for example.

Different kinds of attacks can be mounted on block ciphers: linear, differential,
impossible differential, impossible boomerang, Meet-in-the-middle attacks. The
key schedule can also be a way to attack a cipher. The most common attacks
c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 321–344, 2017.
DOI: 10.1007/978-3-319-61273-7 16

322 E. Volte et al.

on Feistel schemes are differential attacks [6] based on the Xor operation. The
cryptanalysis of such attacks examines how a difference between inputs can be
detected on the outputs. In a classical differential attack, one has to distinguish
a permutation computed by the studied scheme from a random permutation.
There are some conditions which are more often verified with the cipher than
the random permutation due to the structure of the cipher. We will provide a
further analysis of this point that leads to the improvement of some attacks. The
overall results are given in Table 1.

Let us call a pair of (plaintext, ciphertext) a point. According to the structure
of the scheme, it is possible to choose equalities and non equalities (based on the
Xor operation) that must be satisfied by ϕ points1. All these conditions together
form what we call a mirror system. Depending on the conditions, a mirror system
can represent a differential attack, an impossible one or even a boomerang one
for ϕ = 4 for example. In a known plaintext attack (KPA) model with m points,
we look for the number of points satisfying the mirror system. If the current
scheme is chosen randomly in an uniform distribution of schemes from the same
family and if the m points are chosen randomly in an uniform distribution of
all set which contains m points, we obtain a random variable Ñ . If the points
are randomly chosen and the same system is studied under the assumption that
we have a random permutation instead of a permutation produced by a scheme,
the corresponding variable is denoted by N . Then, we can try to distinguish
Ñ from N .

We can mount a distinguishing attack if either Ñ is significantly greater than
N , or |E(N) − E(Ñ)| ≥ σ(N), where E denotes the expectation function and σ
stands for the standard deviation. The attacks work thanks to the Chebychev
formula, which states that for any random variable X, and any α > 0, we
have P (|X − E(X)| ≥ ασ(X)) ≤ 1

α2 . Using this formula, it is then possible to
construct a prediction interval for Ñ for example, in which future computations
will fall, with a good probability.

Computing expectations and variances of these variables is most of the time
very tedious and it is hard to obtain exact values. In most papers, only esti-
mations are given with the use of a O() function. Generally, it is possible to
obtain the beginning of the Taylor expansion of the value of the expectations
and standard deviations, and we assume that the remainder is negligible.

We have built a tool that allows to compute these exact values. It provides
a rational fraction in N (the number of values taken by a branch) and m. We
have verified our tool with an external computation of the exact value by hand
for N equal to 2 or 4. This tool is available on the Internet2 and can be used to
verify the results and to have all the details.

In this paper, we will use this tool without giving all the details of the com-
putations, in order to show that once we are able to obtain the exact values

1 ϕ = 2 most of the time, but there are some rectangle attacks with ϕ = 4. There can
be many values for ϕ even odd ones [14,17].

2 The project is at this link: https://github.com/CryptoCergy/project.

https://github.com/CryptoCergy/project

Improvements of Attacks on Various Feistel Schemes 323

for expectations and standard deviation, most of the time, we can improve the
results obtained through theoretical studies. More specifically, for small values
of the parameters, like the bit size of a branch, we can get a better complex-
ity or attack more rounds. We focus on the improvements of previous attacks.
All the details for the computations are provided in an extended version of this
paper [24].

The paper is organized as follows. In Sect. 2, we introduce our notations
and give definitions. Section 3 provides general formulas for expectations and
standard deviations. In Sect. 4, we give results presented in previous parers and
precise the limitations of the attacks performed in those papers. We also explain
how we use the values obtained by the computer program to improve previous
attacks. In Sect. 5, we use the tool to improve previous attacks on several ciphers:
generalized Feistel schemes of type 1, 2 and 3, unbalanced Feistel schemes with
contracting or expanding functions. We have also made simulations of some
attacks. We obtained values that confirm the results given by the program.
These simulations are presented in Appendix B.

Table 1. Overall improvements on some KPA attacks on Feistel type schemes with
4 branches.

Scheme Round Size of a branch Messages needed

Previous attack New attack

Type-1 22 8 232 [15] 228

23 6 (×) 223

4 (×) 214

Type-2 10 8 232 [15] 228

12 5 (×) 220

Type-3 7 8 228 [15] 225

8 8 232 [15] 229

9 5 (×) 220

4 (×) 216

Contracting Feistel 6 8 216 [18] (*) 217

7 8 220 [18] (*) 221

Expanding Feistel 11 16 262.4 [25] 262

8 231.2 [25] 230

12 7 (×) 228

6 (×) 224

4 (×) 215

(×) means nothing was known from the theoretical study
(*) Theoretical study is not accurate enough on this attack

324 E. Volte et al.

2 Notation

In the improved attacks that we will present in this paper, we want to distinguish
a random permutation from kn bits to kn bits from a permutation produced by
a Feistel-type scheme using random internal functions. We will use the following
notations:

– k is the number of branches. We have k ≥ 2.
– m is the number of messages known by the attacker.
– n is the number of bits for each branch. n ≥ 1.
– N = 2n is the number of values a branch can take.
– J = {0, 1}kn is the set of all messages. J is ordered in a natural way. card(J) =

|J | = Nk.
– (a1, a2, . . . , ap) �=∈ Ep means that the ai values are pairwise distinct elements

of E.
– Bkn denotes the set of bijections from J to J .
– Ψr is the set of the Feistel schemes (for a certain type: balanced Feistel scheme,

unbalanced Feistel scheme with expanding or contracting functions, general-
ized Feistel scheme of type 1, 2 or 3) with r rounds.

– When a bijection f is given, a couple (I, S) ∈ J × J (input/output) where
S = f(I), is called a point. When we have ϕ points, they are denoted by(
I(1), S(1)

)
, . . . ,

(
I(ϕ), S(ϕ)

)
.

– I and S are divided in k branches of n bits. We set I = [I1, I2, . . . , Ik] and
S = [S1, S2, . . . , Sk].

– The internal functions are denoted by F 1, F 2, . . . , F r.
– Jm is the set of all the subsets of J with a cardinal equal to m. If M ∈ Jm,

we have |M | = m. We say that M(i) is the i-the element of M (for the same
order as J). With M and a given bijection f , we can define a set of points:
Mf = {(I, f(I)) | I ∈ M}.

– A ϕ-condition is an equality or a non-equality between Xor of branches of
two (or more) points

(
I(1), S(1)

)
,
(
I(2), S(2)

)
, . . . ,

(
I(ϕ), S(ϕ)

)
. The general

form can be defined as follows:

⊕i∈Φ

(
⊕p∈C1 Ip(i) ⊕q∈C2 Sq(i)

)=
�=0

where Φ is a subset of {1, 2, . . . , ϕ}, C1 and C2 are subsets of {1, . . . , k}. Most
often C1 and C2 have zero or one element.

– A ϕ-attack (A) is a finite set of ϕ-conditions.
– For an ϕ-attack (A), we define the random variable N :

N =
∑

(i1,...,iϕ)
�=∈[1,m]ϕ

Ni1,i2,...,iϕ

where Ni1,i2,...,iϕ
= 1 if the ϕ-attack works (all the conditions are realized) on

points
(
I(i1), S(i1)

)
,
(
I(i2), S(i2)

)
, . . . ,

(
I(iϕ), S(iϕ)

)
in Mf where M ∈R Jm

and f ∈R Bkn. Ni1,i2,...,iϕ
= 0 if the ϕ-attack does not work. In the same way

we use the notations n, n′ and n′′ that are equal to 1 if the ϕ-attack works
for the given points (each time we will precise the points) and 0 otherwise.

Improvements of Attacks on Various Feistel Schemes 325

– For X, Y ∈ J , δXY is the Kronecker symbol equal to 1 if X = Y and 0
otherwise.

– We write I = (I(1), . . . , I(ϕ))∈Jϕ. The same notation applies for the outputs.
– In the same way, we define Ñ by choosing again M ∈R Jm and f ∈R Ψd.
– We say that a ϕ-attack works if |E(N) − E(Ñ)| ≥ σ(N) (as explained in

Sect. 1).

In order to make the notations more familiar, we provide a toy example.

Example:
n = 1, k = 2, N = 2, Nk = 4, ϕ = 2, m = 2, so |Jm| =

(
4
2

)
= 6.

J = {00, 01, 10, 11}. Jm =
{

{00, 01}; {00, 10}; {00, 11}; {01, 10}; {01, 11};

{10, 11}
}

. We consider a classical Feistel scheme with r = 1:

ψF 1([I1, I2]) = [S1, S2] = [I2 ⊕ F 1(I1), I1] where F 1 is one of the four possible
functions from a set of 2 elements to a set of 2 elements.
We consider the following ϕ-attack A : I1(i) ⊕ I1(j) ⊕ S1(i) ⊕ S1(j) = 0. Then
E(N) = 10

9 , V (N) = 80
81 , E(Ñ) = 4

3 , V (Ñ) = 8
9 .

In the general case, we found with our tool that E(N) = (1−2N+N3)m(m−1)
(N2−1)2 and

E(Ñ) = 2m(m−1)
N+1 . For the variances, the general formula is very long, about

thirty terms.

V (N) =
2(12m − 24N + 142N4 − 102N5 . . . − 16N5m + N12)Nm(m − 1)

(N2 − 3)2(N2 − 2)2(N + 1)2(N2 − 1)2

3 General Formulas for the Expectations and Standard
Deviations

3.1 Computation of E(N)

It is possible to obtain general formulas for expectations and standard deviations.
Let (A) be a ϕ-attack and N the random variable: N =

∑
(i1,...,iϕ)
�=∈[1,m]ϕ

Ni1,i2,...,iϕ
.

Proposition 1. Let P (N) = card{I,S �=∈ Jϕ satisfying (A)}. Then E(N) =
(

(Nk − ϕ)!
Nk!

)2
m!

(m − ϕ)!
P (N)

Remark 1. P (N) will be the value returned by our computer program that gives
the number of solutions of system (A).

Proof. We have: E(N) =

∑

f∈Bnk

∑

M∈Jm

∑

(i1,...,iϕ)
�=∈[1,m]ϕ

ni1,...,iϕ,f,M

|Bkn| × |Jm| where ni1,...,iϕ,f,M is

equal to 1 or 0 for the given f , M and i1, . . . , iϕ whether or not the ϕ-attack is

326 E. Volte et al.

verified for the points
(
M(i1), f(M(i1))

)
, . . .

(
M(iϕ), f(M(iϕ))

)
. When f ∈ Bkn

is given, we have:

∑

M∈Jm

∑

(i1,...,iϕ)
�=∈[1,m]ϕ

ni1,...,iϕ,f,M =
∑

M∈Jm

∑

(i1,...,iϕ)
�=∈[1,m]ϕ

∑

I�=∈Jϕ

n′
ϕ∏

u=1

δI(u)M(iu)

=
∑

I�=∈Jϕ

n′ ∑

M∈Jm

∑

(i1,...,iϕ)
�=∈[1,m]ϕ

ϕ∏

u=1

δI(u)M(iu)

where n′ = n′
I(1),...,I(ϕ),f is equal to 1 or 0 for the given I and f . And,

∑

M∈Jm

∑

(i1,...,iϕ)
�=∈[1,m]ϕ

ϕ∏

u=1

δI(u)M(iu) = card{M ∈ Jm | {I(1), . . . , I(ϕ)} ⊂ M}

=

(
Nk−ϕ
m−ϕ

)

|Jm| |Jm| =

(
Nk−ϕ
m−ϕ

)

(
Nk

m

) |Jm|

=
(Nk − ϕ)!

(m − ϕ)!(Nk − m)!
× m!(Nk − m)!

Nk!
|Jm|

=
(Nk − ϕ)!

Nk!
m!

(m − ϕ)!
|Jm|

Thus,

E(N) =
m!(Nk − ϕ)!

|Bnk|(m − ϕ)!Nk!

∑

f∈Bnk

∑

I�=∈Jϕ

n′
I(1),...,I(ϕ),f

Furthermore:

n′ =
∑

S �=∈Jϕ

n′′
I(1),...,I(ϕ),S(1),...,S(ϕ)

ϕ∏

u=1

δS(u)f(I(u))

where n′′
I(1),...,I(ϕ),S(1),...,S(ϕ) equal 1 or 0 for the given I and S. So:

∑

f∈Bnk

∑

I�=∈Jϕ

S�=∈Jϕ

n′′
ϕ∏

u=1

δS(u)f(I(u)) =
∑

I�=∈Jϕ

S�=∈Jϕ

n′′ ∑

f∈Bnk

ϕ∏

u=1

δS(u)f(I(u))

And,

∑

f∈Bkn

ϕ∏

u=1

δS(u)f(I(u)) = card{f ∈ Bnk | ∀u ∈ {1, . . . , ϕ}, f(I(u)) = S(u)}

= (Nk − ϕ)!

Improvements of Attacks on Various Feistel Schemes 327

Finally,

E(N) =
(

(Nk − ϕ)!
Nk!

)2
m!

(m − ϕ)!

∑

I�=∈Jϕ

S�=∈Jϕ

n′′
I,S

=
(

(Nk − ϕ)!
Nk!

)2
m!

(m − ϕ)!
card{I,S �=∈ Jϕ satisfying (A)}

=
(

(Nk − ϕ)!
Nk!

)2
m!

(m − ϕ)!
P (N)

as claimed. 	

3.2 Computation of E(Ñ)

As previously, we have 1 ≤ u ≤ ϕ.
The same computation for E(Ñ) gives:

E(Ñ) =
(Nk − ϕ)!

Nk!

m!
(m−ϕ)!

|Ψd|
∑

I�=∈Jϕ

S�=∈Jϕ

n′′
I,S × card{f ∈ Ψd | ∀u, f(I(u)) = S(u)}

If I(u) are distinct and f is a bijection with f(I(u)) = S(u) for all u, then we
have necessary S(u) distinct, so we do not need to add this condition, and:

E(Ñ) =
(Nk − ϕ)!

Nk!

m!
(m−ϕ)!

|Ψd|
∑

I�=∈Jϕ

S∈Jϕ

n′′
I,S × card{f ∈ Ψd | ∀u, f(I(u)) = S(u)}

︸ ︷︷ ︸
Σ1

For the Feistel scheme used to go from I(u) to S(u), we only have to know some
information from the internal functions f1,. . . , fd. For this, we need to introduce
new variables that are the outputs of the internal functions.

Definition 1. For all u ∈ {1, . . . , ϕ} and all turn r ∈ {1, . . . , d} Kr(u) =
fr(Ir−1

1 (u)), with the following rule: Ir
1 (i) = Ir

1 (j) ⇐⇒ Kr+1(i) = Kr+1(j).
We define K = Kr(u)1≤u≤ϕ, 1≤r≤d.

Taking into account this rule, how many different cases do we have to
consider?

For each turn r, we consider the equalities between Ir−1
1 (1), . . . , Ir−1

1 (ϕ).
This corresponds to the number of partition of a set of ϕ elements. The number
of partition of a set of ϕ elements is the Bell number Bϕ, and the number of
partitions with p subsets is the second type number of Stirling S(ϕ, p). Moreover,
we have the formula:

Bϕ =
ϕ∑

p=1

S(ϕ, p)

328 E. Volte et al.

When we want to compute S(ϕ, p), there exist several kinds of partitions.
For example, if ϕ = 5 and p = 3, we have

(
5
3

)
= 10 ways to have a group of

3 and two groups of 1, and 5 × 3 = 15 ways to have two groups of 2 and one
group of 1. So S(5, 3) = 25. In that case, there are 2 kinds of partitions. Thus,
in computing S(ϕ, p), the number t will denote the chosen kind of partition. We
obtain:

Σ1 =
ϕ∑

p1=1

· · ·
ϕ∑

pd=1

S(ϕ,p1)∑

t1=1

· · ·
S(ϕ,pd)∑

td=1

card{I �=∈ Jϕ, f ∈ Ψd satisfying (A)

and induced equalities and non-equalities from t1, . . . , td}
Let (A′) be the system derived from (A) where we have added the equalities
and non-equalities induced by the choice of p1, . . . , pd, and t1, . . . , td, and where
we have replaced the values of S in function of I and K. For this system, the
variables are only Ii(u) and Kr(u) (in total kϕ + dϕ variables).

Σ1 =
∑

(p1,...,pd)

∑

(t1,...,td)

|Ψd|
Np1+p2+...pd

card{I �=∈ Jϕ,K satisfying (A′)}

=
|Ψd|
Nϕd

∑

p1,...,pd

∑

t1,...,td

card{I �=∈ Jϕ,K,K ′
1, . . . ,K

′
ϕd−p satisfying (A′)}

where K ′
i are (artificial) other values taken by the round functions that enabled

us to simplify the computation (we just increase by one the number of variables
each time we have an equality between the variables Ir

1 (u)). We can now state
the result:

Proposition 2. Let Q be the polynomial defined by:

Q(N) =
∑

(p1,...,pd)

∑

(t1,...,td)

card{I �=∈ Jϕ,K,K ′
1 . . . K ′

ϕd−p satisfying (A′)}.

Then: E(Ñ) =
(Nk − ϕ)!

Nk!

m!
(m−ϕ)!

Nϕd
Q(N).

Remark 2. Q(N) will be returned by our computer program that gives the num-
ber of solutions of the systems. Here d is the number of internal functions involved
in the attacks. For the special case of the expanding schemes, we consider that
each round function counts as k − 1 internal functions, so d = r × (k − 1), where
r is the number of rounds.

3.3 Computing V (N)

Proposition 3. Let X =
∑n

i=1 Xi be a random variable, where each Xi follow
a Bernoulli distribution. Then, V (X) = −E(X)2 +

∑

i,j

E(XiXj)

Improvements of Attacks on Various Feistel Schemes 329

Proof.

V (X) = E(X2) − E(X)2 = E

⎛

⎝
n∑

i=1

X2
i +

∑

i�=j

XiXj

⎞

⎠ − E(X)2

= E(X) − E(X)2 +
∑

i�=j

E(XiXj) = −E(X)2 +
∑

i,j

E(XiXj)

	

Since N =

∑
i�=∈{1,...,m}ϕ Ni, we have the corollary:

Corollary 1.

V (N) = −E(N)2 +
∑

i,j E(NiNj) and V (Ñ) = −E(Ñ)2 +
∑

i,j E(ÑiÑj)

We now continue with the computation of
∑

i,j E(NiNj).

Proposition 4. Let P (N,m) be defined by:

P (N,m) =
ϕ∑

h=0

h∏

i=1

(Nk −2ϕ+ i)2
ϕ∏

i=h+1

(m−2ϕ+ i)
∑

I,I′ �=∈Jϕ

|I∩I′|=h

∑

S,S′ �=∈Jϕ

S(i)=S′(i)⇐⇒
I(i)=I′(i)

n′′
I,Sn′′

I′,S′ (1)

Then,

∑

i,j

E(NiNj) =

ϕ∏

i=1

(m − i + 1)

2ϕ∏

i=1

(Nk − i + 1)2
P (N,m) (2)

Remark 3. P (N,m) will be returned by the computer program.

Proof. See Appendix A. 	

Corollary 2. We have: V (N) = −E(N)2 +

ϕ∏

i=1

(m − i + 1)

2ϕ∏

i=1

(Nk − i + 1)2
P (N,m).

Table 2 shows how many internal functions are used for r rounds, according
to the type of the scheme, and the number of branches.

330 E. Volte et al.

Table 2. Number d of internal functions involved in different schemes.

Scheme Rounds Branches Internal functions

Classical r 2 d = r

Type 1/contracting r k d = r

Type 2 r k (even) d = k
2
r

Type 3/expanding r k d = (k − 1)r

4 Previous Attacks and Their Limitations: Contribution
of the Tool

4.1 Distinguishing Attacks

As mentioned in the introduction, the attacks considered here are successful
when either Ñ is significantly greater than N or when these quantities are of
the same order but |E(N) − E(Ñ)| ≥ σ(N). We now precise this point.

More generally, we suppose X and X ′ are random independent variables that
verify: E(X) − E(X ′) ≈ σ(X) and σ(X) ≈ σ(X ′).

We suppose also that X and X ′ follow a Gaussian distribution.
Let Z = X − X ′. We have Z ↪→ N (σ(X),

√
2σ(X)) since V (X − X ′) =

V (X) + V (X ′) ≈ 2V (X). The attacks works when Z ≥ 0. We can compute that
P (Z ≥ 0) is equal to 76%. If we generalize with E(X) − E(X ′) ≈ ασ(X), then
we have

α 0, 1 0, 5 1 3, 3
P (Z ≥ 0) ≈ 52, 8% 63, 8% 76% 99%
Advantage 5, 6% 27, 6% 52% 98%

Thus asking for the condition |E(N) − E(Ñ)| ≥ σ(N) gives a successful attack.
We point out that all our attacks, by hand, we obtain that σ(N) and σ(Ñ) are
of the same order. We have the algorithm to compute the standard deviation of
σ(Ñ), but the program takes a lot of time, since we have to consider many more
systems. However, if σ(N) and σ(Ñ) are not of the same order, this will lead to
an attack by the variance.

4.2 Previous Attacks and Their Limitations

All the attacks done previously [15,18,25] can be studied using the tool. This
what is done in this paper for Feistel schemes of type 1, 2 and 3, unbalanced Feis-
tel schemes with either expanding or contracting functions on several examples.
By hand, it is tedious to compute E(N), E(Ñ) and σ(N). This comes from the
fact that we have to compute the number of solutions of the so-called Mirror sys-
tems, i.e. systems of linear equalities and linear non-equalities. Most of the time,
we look at the most significant equations, where we have the number of equali-
ties as small a possible. This means that we can add one or two more equalities
to the set on equalities imposed by the conditions of the attacks. This is why

Improvements of Attacks on Various Feistel Schemes 331

Table 3. Complexities obtained from previous works.

Scheme Complexity for r rounds Max number of rounds - complexity Reference

Type 1 r ≤ 21, 2(r−6
4)n 22 → 24n [15]

Type 2 7 ≤ r ≤ 9, 2(r−2
2)n 10 → 24n [15]

Type 3 r = 5, 6, 2(r−3)n 7 → 24n [15]

Contracting r = 5, 6, 2(r−2
2)n 7 → 25n [18]

Expanding r ≤ 10, 2(r+4
2)n 11 → 2

39
10 n [25]

the values of E(N), E(Ñ) and σ(N) are given with a O() function. In Table 3,
we give examples of complexities obtained in previous studies. We omit the O()
function. The values are given for schemes with k = 4 branches, since in Sect. 5,
we will study this case. In Sect. 5, we give examples of attacks for which we get
a better complexity or we can attack more rounds. It is not possible, due to the
lack of space, to provide an exhaustive list of all the attacks, but it is most likely
that thanks to the tool, we can obtain better complexities for some values of n.

4.3 Use of the Tool

As already explained, the exact computation of expectations and standard devi-
ation, allows to know the O() function and then to improve the attack, since we
have a precise value of all quantities. Indeed, the conditions to have a successful
attack are more accurate and according to the number of rounds, we obtain the
number of messages needed to distinguish a random permutation from a per-
mutation produced by the scheme. For attacks that use couples of input/output
pairs (2-point attacks as defined in the next section), generally, the situation is
as follows, we have |E(N)−E(Ñ)| = O(m2

4αn) where α decreases when r increases
since the differential path is longer. But σ(N) = O(m

2βn) and β does not change.
This shows that for a given number of rounds, the attack is better for small
values of n. The knowledge of the O() functions is important in order to tighten
the bounds.

5 Improvements of Previous Attacks on Different Types
of Feistel Schemes

Most of concrete block ciphers have four branches (CLEFIA [23], SMS4 [12],
MARS [7], RC6 [21]). This is why, in this section, we choose k = 4 and we will
give examples of attacks that can be improved on several kind of Feistel schemes
by using the exact values for expectations and standard deviations.

5.1 Notation for Feistel-Type Schemes

With Feistel type schemes, according to the structure of the scheme, internal
variables are defined at each round. Specific equalities on these internal variables
will allow the differential path to propagate. Thus, once equlities on the input
variables are settled, the wanted conditions on the output variables will appear

332 E. Volte et al.

either at random or due to equalities satisfied by some internal variables. We
consider two types of attacks: 2-point attacks, where we use plaintext/cipher-text
pairs and ϕ-point attacks, where we use ϕ-tuples of plaintext/ciphertexts. These
last attacks allow more possibilities of conditions on the inputs, the outputs and
the internal variables. They were first introduced in [11] and then generalized
in [19,25]. Since k = 4, the input and output are denoted by [I1, I2, I3, I4] and
[S1, S2, S3, S4]. For the message i, the input and the output are denoted by
[I1(i), I2(i), I3(i), I4(i)] and [S1(i), S2(i), S3(i), S4(i)].

5.2 Examples of 2-Point Attacks

Differential Notation for 2-Point Attacks. We use plaintext/ciphertext
pairs. In KPA, on the input variables, the notation [0,0,Δ0

3,Δ
0
4] means that the

pair of messages (i, j) satisfies I1(i) = I1(j), I2(i) = I2(j), and Is(i)⊕Is(j) = Δ0
s,

3 ≤ s ≤ 4. The differential of the outputs i and j after round t is denoted by
[Δt

1,Δ
t
2,Δ

t
3,Δ

t
4]. At each round, internal variables are defined by the structure

of the scheme. In our attacks, we determine equalities that have to be satisfied
by the inputs and the outputs. With a scheme, some equalites on the internal
variables on some rounds will allow the differential path to propagates. On an
intermediate round, when equalities on the internal variables are needed in order
to get a differential characteristic, we use the notation 0 to mean that the
corresponding internal variables are equal in messages i and j. When we write 0,
this means that the differential path propagates without any constraint on the
internal functions, i.e. with probability 1.

Type-1 Feistel Schemes with k = 4 and r = 22, 23: “2-Point Attack”.
In Fig. 1, one round of a type-1 Feistel scheme is represented with k = 4. The
theoretical study of [15] shows that, for k = 4, KPA can be mounted up to
22 rounds, where the maximal number of messages is needed, i.e. 24n messages.
The attack for 22 rounds is given by

S2(i) = S2(j) and I1(i) ⊕ I1(j) = S3(i) ⊕ S3(j)

I1 I2 I3 I4

n bits

F 1

I3

Type-1

I4 I1

I1 I2 I3 I4

n bits

F 1
1 F 1

2

I3

Type-2

I1

Fig. 1. One round of type-1 and type-2 Feistel schemes with k = 4

Improvements of Attacks on Various Feistel Schemes 333

Table 4. Improvements on the attacks for type-1 Feistel schemes.

Round n m E(N) E(Ñ) σ(N) D(*)

14 10 219 (220 [15]) 262 143 263 426 724 552

14 8 215 (216 [15]) 16 383 16 700 181 135

22 8 228 (232 [15]) 10 995 115 · 105 10 995 137 · 105 1 482 503 704 854

23 6 223 (×) 10 995 114 · 105 10 995 135 · 105 1 471 279 597 578

23 4 214 (×) 16 776 192 16 782 642 5 608 842

(*) D = |E(N) − E(Ñ)| − σ(N)

We obtain P (N) = N8 − N10 − N11 + N14,
Q(N) = −N37 +5N38 −5N39 −29N40 +134N41 −301N42 +449N43 −476N44 +
351N45 − 161N46 + 33N47 + N50, and
P (N,m) = −36N8m + 36N8m2 + · · · − 2N27 − 2N28 − N28m + N28m2 + 2N30.
If we use the exact values for P (N), Q(N) and P (N,m), we obtain that this
attack on 22 rounds may have a complexity better than 24n for some values of n.
Moreover, depending on n, it is also possible to obtain a KPA on 23 rounds with
the following attack: I1(i) ⊕ I1(j) = S2(i) ⊕ S2(j) (the values of P (N), Q(N)
and P (N,m) are again computed with the tool). The results are summarized in
Table 4. We write in parenthesis the value obtained from the theoretical study.
The notation (×) means that nothing was known from the theoretical study.

Type-2 Feistel Schemes With k = 4 and r = 10, 12: “2-Point Attack”.
In Fig. 1, one round of a type-2 Feistel scheme is represented with k = 4.

The attack on 10 rounds is given by

I1(i) = I1(j) and S4(i) ⊕ S4(j) = I2(i) ⊕ I2(j)

We have P (N) = N8 − N10 − N11 + N14 and
P (N,m) = −36N8m + 36N8m2 − 180N9 + 150N9m− 30N9m2 + 246N10 . . .

− 22N26 − 2N27 − 2N28 − N28m + N28m2 + 2N30

In order to have a better understanding of the attack, we provide in Table 5
an example of differential path, found by hand. However, the computer takes
into account all the possibilities.

We obtain Q(N) = −N33 + 5N34 − 4N35 − 35N36 + 149N37 − 321N38 +
464N39 − 482N40 + 352N41 − 161N42 + 33N43 + N46

The theoretical study of [15] showed that the attack on 10 rounds requires the
maximal number of messages, i.e. 24n and that is was not possible to go further.
However, for small values of n, by using the exact values, we obtained that it is
possible to have a better complexity for 10 rounds and to attack 12 rounds. The
attack for 12 rounds is given by I1(i) = I1(j) and I2(i) ⊕ I2(j) = S2(i) ⊕ S2(j).
The results are shown in Table 6.

Type-3 Feistel schemes with k = 4 and r=7, 8, 9: “2-point attack”. In
Fig. 2, one round of a type-3 Feistel scheme is represented with k = 4.

334 E. Volte et al.

Table 5. Attack on a type-2 Feistel scheme with k = 4 and 10 rounds.

Round 0 Δ0
2 Δ0

3 Δ0
4

1 Δ0
2 Δ0

3 Δ1
3 0

2 Δ2
1 Δ1

3 0 Δ0
2

3 Δ3
1 0 Δ0

2 Δ2
1

4 0 Δ0
2 Δ4

3 Δ3
1

5 Δ0
2 Δ4

3 Δ5
3 0

6 Δ6
1 Δ5

3 0 Δ0
2

7 Δ7
1 0 Δ0

2 Δ6
1

8 0 Δ0
2 Δ8

3 Δ7
1

9 Δ0
2 Δ8

3 Δ9
3 0

10 Δ10
1 Δ9

3 Δ10
3 Δ0

2

Table 6. Improvements on the attacks for type-2 Feistel schemes.

Round n m E(N) E(Ñ) σ(N) D(*)

8 10 227 (230 [15]) 17 179 869 · 103 181 800 081 · 103 185 363 26 861

8 8 221 (224 [15]) 67 108 828 67 121 949 11 585 1 536

10 8 228 (232 [15]) 10 995 115 · 105 10 995 137 · 105 1 482 559 704 799

12 5 220 (×) 107 370 905 1 073 785 154 45 610 30 488

(*) D = |E(N) − E(Ñ)| − σ(N)

For k = 4, theoretical results in [15] (see also Table 3) show that for 6 rounds,
the complexity of the attacks is in O(23n), for 7 rounds, it is in O(2

7n
2), and for

8 rounds, the complexity is 24n. We reach the maximal number of messages
and it is not possible to attack more rounds. We will show that once we are
able to compute the exact values for the expectations and standard deviation,
we can get improvements. As in previous attacks, P (N), Q(N) and P (N,m)
are returned by the computer program. We only state the values obtained for
the expectations and standard deviations corresponding to specific values of n
and m.

Attack on 6 Rounds. The attack is described by the following conditions:
{

I1(i) = I1(j) and I2(i) = I2(j) and I3(i) = I3(j)
I4(i) ⊕ I4(j) = S1(i) ⊕ S1(j)

For n = 8, 10, the results are given in Table 7. The complexities are better than
the theoretical ones obtained from Table 3.

Improvements of Attacks on Various Feistel Schemes 335

I1 I2 I3 I4

n bits

F 1
1 F 1

2 F 1
3

I1

Fig. 2. First round for a type-3 Feistel scheme

Table 7. Attacks on 6 rounds for type-3 Feistel schemes.

Round n m E(N) E(Ñ) σ(N) |E(N) − E(Ñ)| − σ(N)

6 10 228 (230 [15]) 65 471 65 982 361 148

6 8 225 (228 [15]) 16 318 16 824 186 323

Attack on 7 rounds. The attack is described by the following conditions:
⎧
⎨

⎩

I1(i) = I1(j) and I2(i) = I2(j) and I3(i) = I3(j)
S4(i) = S4(j)
I4(i) ⊕ I4(j) = S1(i) ⊕ S1(j)

For n = 8, the results are given in Table 8. The complexity is better than
expected: 225 instead of 228 (that was the theoretical value).

Table 8. Attacks on 7 rounds for type-3 Feistel schemes.

Round n m E(N) E(Ñ) σ(N) |E(N) − E(Ñ)| − σ(N)

7 8 225 (228 [15]) 1 019 1 102 45 37

Attack on 8 rounds. The attack is described by the following conditions:
{

I1(i) = I1(j) and I2(i) = I2(j) and I3(i) = I3(j)
I4(i) ⊕ I4(j) = S4(i) ⊕ S4(j)

For n = 8, the results are given in Table 9. The complexity is better than
expected: 229 instead of 232, which is the maximal number of messages.

Table 9. Attacks on 8 rounds for type-3 Feistel schemes.

Round n m E(N) E(Ñ) σ(N) |E(N) − E(Ñ)| − σ(N)

8 8 229 (232 [15]) 66 846 719 66 867 827 11557 9549

336 E. Volte et al.

Table 10. Attacks on 9 rounds for type-3 Feistel schemes.

Round n m E(N) E(Ñ) σ(N) |E(N) − E(Ñ)| − σ(N)

9 4 216 (×) 61 440 62 055 339 274

9 5 220 (×) 1 015 808 1 017 281 1 402 69

I1 I2 I3 I4

n bits

I2 I3 I4

F 1

Fig. 3. One round of an unbalanced Feistel scheme with contracting functions

Attack on 9 rounds. The attack is described by the following conditions:
{

I1(i) = I1(j) and I2(i) = I2(j) and I3(i) = I3(j)
I4(i) ⊕ I4(j) = S3(i) ⊕ S3(j)

For n = 4, 5, the results are given in Table 10.
Here for small values of n, we can attack one more round than with the

theoretical study of [15].

Unbalanced Feistel Schemes with Contracting Functions. In Fig. 3 one
round of an unbalanced Feistel scheme with contracting functions is represented
with k = 4. Here we show on an example how the knowledge of the O functions
determines the complexity of the attack. We take n = 8. As in previous attacks,
P (N), Q(N) and P (N,m) are returned by the computer program. We only state
the value obtained for the expectations and standard deviations corresponding
to specific values of n and m.

Attack on 6 Rounds. The attack is given by I4(i) = I4(j) and I3(i) ⊕ I3(j) =
S1(i) ⊕ S1(j). The theoretical study of [18] shows that the complexity of the
attack is O(22n). In fact, this O function is about

√
2. This factor is important

since it shows that the complexity is not 22n as expected but a bit worse, as we
can see in Table 11, where the first line shows that the theoretical study is not
accurate enough:

Attack on 7 rounds. The attack is given by I4(i) ⊕ I4(j) = S1(i) ⊕ S1(j). Again,
the theoretical study of [18] shows that the complexity of the attack is O(2

5n
2).

But this O function is about
√

2. Again this factor shows that the attack as

Improvements of Attacks on Various Feistel Schemes 337

Table 11. Attacks on 6 rounds for unbalanced Feistel schemes with contracting
functions.

Round n m E(N) E(Ñ) σ(N) |E(N) − E(Ñ)| − σ(N) Comment

6 8 216 65 534 65 788 362 −108 [18]

6 8 217 262 141 263 157 724 291 This paper

a complexity greater than expected by the theoretical study. The values are
provided in Table 12, where the first line shows that the theoretical study is not
accurate enough:

Table 12. Attacks on 7 rounds for unbalanced Feistel schemes with contracting
functions.

Round n m E(N) E(Ñ) σ(N) D (*) Comment

7 8 220 4 294 963 200 4 295 028 224 92500 −27475 [18]

7 8 221 17 179 860 992 17 180 121 091 185001 75098 This paper

(*) D = |E(N) − E(Ñ)| − σ(N)

Remark 4. In [18], the condition is O(22n) for 6 rounds as shown in Table 3, but
the O() function is not evaluated. If we test 22n = 216 messages when n = 8,
we can see that the attack is not valid. The computation of the exact value of
expectations and standard deviations shows that there is a factor of

√
2. Thus

if we choose 217 messages, then the attack is successful. The same phenomena
appears for seven rounds. In [18], it is shown that it is possible to attack up to
2k − 1 rounds and with a complexity in O(25n/2), but again 220 messages is not
successful and we need to take 221 messages.

5.3 Example of a 4-Point Attack (Rectangle Attack)

Introduction to 4-Point Attacks. In [11,19,25], rectangle attacks (i.e.
attacks that use ϕ-tuples of points, ϕ even) were investigated in order to get
more efficient attacks on unbalanced Feistel scheme with expanding functions.
These attacks allow to attack more rounds and there are more possibilities for
differential paths than 2-point attacks. We now explain the notation for 4-point
attacks, since these are the only attacks involved here. In 4-point attacks, there
is a set of equalities (a mirror system) that have to be satisfied by 4-tuples of
points (inputs/outputs). As explained before, the number of this 4-tuples will be
different for a random permutation and for permutation produced by a scheme.
This is due to the fact, that with a scheme, equalities on the internal variables
produced during intermediate rounds will help the equalities to propagate. Thus,
the equalities on the outputs will appear more frequently. We now explain what
kind of equalities may be satisfy either by the inputs, or by the internal variables,
or by the outputs in the case of 4-point attacks. We give them on the inputs.
The same definition applies for the internal variables and the outputs.

338 E. Volte et al.

1. “Horizontal equalities” on Ii: Ii(1) = Ii(3), Ii(2) = Ii(4).
2. “Vertical equalities” on Ii: Ii(1) = Ii(2), Ii(3) = Ii(4).
3. “Differential equalities” on Ii: Ii(1) ⊕ Ii(2) = Ii(3) ⊕ Ii(4).

We notice that if we have Ii(1) ⊕ Ii(2) = Ii(3) ⊕ Ii(4), then Ii(1) = Ii(3) will
imply Ii(2) = Ii(4) and Ii(1) = Ii(2) will imply Ii(3) = Ii(4). Figure 4 shows
why we choose the terms of “vertical” and “horizontal” equalities.

I(1) S(1)

I(2) S(2)

I(3) S(3)

I(4) S(4)

Vertical

conditions

Horizontal conditions

S3(1)=S3(2)
I2(1)=I2(2)

S3(3)=S3(4)
I2(3)=I2(4)

I1(1) = I1(3)

Fig. 4. Example of differential equalities

Unbalanced Feistel schemes with expanding functions with k = 4 and
r = 10, 11, 12: “4-point attack”. We provide in Fig. 5, the first round of an
unbalanced Feistel scheme with expanding functions when k = 4.

I1 I2 I3 I4

4n bits

n 3n

I1

Fig. 5. One round of an unbalanced Feistel scheme with expanding functions

Better results on the differential paths when r = 10. We have m messages and
we want to compute the expectation of the number N of 4-tuples (i, j, , p) of
points satisfying the following relations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1(i) = I1(j)
I1() = I1(p) �= I1(i)
I2(i) = I2(j)
I2() = I2(p) �= I2(i)
I3(i) = I3(j)
I3() = I3(p) �= I3(i)
I4(i) ⊕ I4(j) = I4() ⊕ I4(p) �= 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1(i) ⊕ S1(j) = S1() ⊕ S1(p) �= 0
S2(i) = S2()
S2(j) = S2(p) �= S2(i)
S3(i) = S3()
S3(j) = S3(p) �= S3(i)
S4(i) = S4()
S4(j) = S4(p) �= S4(i)

Improvements of Attacks on Various Feistel Schemes 339

Here we have vertical equalities on the inputs, horizontal equalities on the out-
puts and differential equalities on both outputs and inputs.

We obtain: P (N) = 4N8−8N9+4N10−4N12+8N13−4N14+N16−2N17+
N18. With a scheme, the conditions on the outputs may appear at random or due
to equalities satisfied by the internal variables (this is related to the behavior
of the round functions). If we want to keep the differential equalities inside
the path, we need to have either vertical or horizontal equalities satisfied by the
internal variables. In Table 13, we show two differential paths that use horizontal
and vertical equalities. To be more specific, when we write [0, .Δ0

2,Δ
0
3,Δ

0
4], this

means that, on the input variables, vertical equalities on the first coordinate and
horizontal equalities on the second coordinate. The same notation applies to the
internal variables and the output variables. The differential path is constructed
such that we always keep the differential equalities. In the differential path,
when a vertical equality is needed for the propagation of the differential path we
indicate this by 0 . For a horizontal equality, we use •. We will write 0 and .,
when these equalities propagate without any constraint on the internal functions.

Table 13. Example of two differential paths.

Path 1

round 0 0 0 Δ0
4

1 0 0 Δ0
4 0

2 0 Δ0
4 0 0

3 •Δ0
4 0 0 0

4 •Δ4
1 Δ4

2 Δ4
3 .Δ0

4

5 •Δ5
1 Δ5

2 .Δ5
3 .Δ4

1

6 0 .Δ6
2 .Δ6

5 .Δ5
1

7 •Δ6
2 Δ6

3 Δ5
1 0

8 •Δ8
1 Δ8

2 Δ8
3 .Δ6

2

9 •Δ9
1 Δ9

2 .Δ9
3 .Δ8

1

10 Δ10
1 .Δ10

2 .Δ10
3 .Δ9

1

Path 2

round 0 0 0 Δ0
4

1 0 0 Δ0
4 0

2 0 Δ0
4 0 0

3 •Δ0
4 0 0 0

4 •Δ4
1 Δ4

2 Δ4
3 .Δ0

4

5 0 Δ5
2 .Δ5

3 .Δ4
1

6 0 Δ5
3 Δ4

1 0
7 •Δ5

3 Δ4
1 0 0

8 •Δ8
1 Δ8

2 Δ8
3 .Δ5

3

9 •Δ9
1 Δ9

2 .Δ9
3 .Δ8

1

10 Δ10
1 .Δ10

2 .Δ10
3 .Δ9

1

However, the study of all different paths obtained by our computer program
shows that there are also another kind of equalities that we can call “diagonal
equalities”. This definition is taken according to Fig. 4. For example, on the
inputs diagonal equalities are defined by: Ii(1) = Ii(4) and Ii(2) = Ii(3) on
points numbered 1, 2 3 and 4. These kind of equalities were not used in the
attacks of [25]. Diagonal equalities are denoted by � in the tables.

If we use these diagonal equalitites, we can modify the previous paths in the
following way and obtain new paths. In Table 14, we give examples of differential
paths obtained from the previous path 1 by introducing diagonal equalities.

Thanks to the computer program, it is possible to obtain all the possible
differential paths, and this shows that all these attacks will succeed with high
probability since for the same input and output equalitites, we get much more
paths than expected.

340 E. Volte et al.

Table 14. Path 1 with one, two or three � equalities.

round 0 0 0 Δ0
4

1 0 0 Δ0
4 0

2 0 Δ0
4 0 0

3 �Δ0
4 0 0 0

4 �Δ4
1 Δ4

2 Δ4
3 �Δ0

4

5 •Δ5
1 Δ5

2 �Δ5
3 �Δ4

1

6 0 Δ6
2 Δ6

5 .Δ5
1

7 •Δ6
2 Δ6

3 Δ5
1 0

8 •Δ8
1 Δ8

2 Δ8
3 .Δ6

2

9 •Δ9
1 Δ9

2 .Δ9
3 .Δ8

1

10 Δ10
1 .Δ10

2 .Δ10
3 .Δ9

1

round 0 0 0 Δ0
4

1 0 0 Δ0
4 0

2 0 Δ0
4 0 0

3 •Δ0
4 0 0 0

4 �Δ4
1 Δ4

2 Δ4
3 .Δ0

4

5 •Δ5
1 Δ5

2 Δ5
3 �Δ4

1

6 0 Δ6
2 Δ6

5 .Δ5
1

7 •Δ6
2 Δ6

3 Δ5
1 0

8 •Δ8
1 Δ8

2 Δ8
3 .Δ6

2

9 •Δ9
1 Δ9

2 .Δ9
3 .Δ8

1

10 Δ10
1 .Δ10

2 .Δ10
3 .Δ9

1

round 0 0 0 Δ0
4

1 0 0 Δ0
4 0

2 0 Δ0
4 0 0

3 �Δ0
4 0 0 0

4 �Δ4
1 Δ4

2 Δ4
3 �Δ0

4

5 �Δ5
1 Δ5

2 �Δ5
3 �Δ4

1

6 0 �Δ6
2 �Δ6

5 �Δ5
1

7 •Δ6
2 Δ6

3 Δ5
1 0

8 •Δ8
1 Δ8

2 Δ8
3 .Δ6

2

9 •Δ9
1 Δ9

2 .Δ9
3 .Δ8

1

10 Δ10
1 .Δ10

2 .Δ10
3 .Δ9

1

Moreover, these diagonal equalities can also be set on the input and output
variables. Thus for the same scheme, there are many attacks with the same
complexity and for each attack, there are more paths than shown in previous
studies. For example, for this attack on 10 rounds, we obtain 35 differential
paths besides the random one. We have: Q(N) = 48N114 − 320N115 + 876N116

− 1252N117 + 992N118 − 468N119 + 208N120 − 120N121 + 36N122. Here we will
obtain that the expectation for a scheme is 36 times the expectation for a random
permutation. Thus if m ∼ N7/2, i.e. m ∼ 27n/2, then E(N) is close to 1 and
E(Ñ) is close to 36. Thus we can distinguish a permutation generated by F 10

4

from a random permutation and attack is successful. Here there is no need to
compute the standard deviation.

Better results for small values of n when r = 11, 12. The theoretical study
of [25] shows that, for any k, it is possible to get KPA up to 3k − 1 rounds, with
a 2k + 2-point attacks. This attack needs 2(k− 1

2k+2)n messages. When k = 4, the
exact computation allows to show that for small values of n, it is possible to
obtain, for 11 rounds, a 4-point attack that has a better complexity than the
10-point attack of [25], and also that it is possible to attack 12 rounds instead
of 11 rounds. For the 4-point attacks on 11 and 12 rounds, we choose the same
relations as those for the attack on 10 rounds, but here we need to compute
the standard deviation. Again, P (N), Q(N) and P (N,m) are returned by the
computer program. Results are summarized in Table 15.

Table 15. Improvements on the attacks for unbalanced Feistel schemes with expanding
functions.

Round n m E(N) E(Ñ) σ(N) |E(N) − E(Ñ)| − σ(N)

11 16 262 (262.4 [25]) 16 776 704 16 802 558 8191 17662

11 8 230 (231.2 [25]) 254 353 31 67

12 7 228 (×) 16 129 16 414 254 31

12 6 224 (×) 3 969 4 243 126 148

12 4 215 (×) 14 27 7 6

Improvements of Attacks on Various Feistel Schemes 341

6 Conclusion

In this paper, we showed that it is possible to improve some attacks on Feistel
type schemes. We used a tool that allows to compute the exact value of the
expectations and standard deviations. This could open a new way to an accu-
rate investigation of attacks on concrete ciphers. Also, the “diagonal equalities”
obtained for unbalanced Feistel schemes with expanding functions can be used
for the more general rectangle attacks as studied in [25]. Moreover this tool can
also be used to count the number of solutions of Mirror systems which can be
also useful to get security bounds. However, there are still gaps between bounds
obtained from security results (for example from [9,26]) and bounds given from
the attacks.

A Proof of Proposition 4

Proof. We have:
∑

i,j

E(NiNj) = E(
∑

i,j

NiNj)

=

∑

f∈Bkn

∑

M∈Jm

∑

i,j

ni,f,Mnj,f,M

|Bkn| × |Jm|

∑

M∈Jm

∑

i,j

ni,f,Mnj,f,M =
∑

M∈Jm

∑

i,j

∑

I �=∈Jϕ

∑

I′ �=∈Jϕ

ni,f,Mnj,f,M

ϕ∏

u=1

δI(u)M(iu)δI′(u)M(ju)

=
∑

M∈Jm

∑

i,j

∑

I �=∈Jϕ

∑

I′ �=∈Jϕ

n′
I,fn′

I′,f

ϕ∏

u=1

δI(u)M(iu)δI′(u)M(ju)

=
∑

I �=∈Jϕ

∑

I′ �=∈Jϕ

n′
I,fn′

I′,f
∑

M∈Jm

∑

i,j

ϕ∏

u=1

δI(u)M(iu)δI′(u)M(ju)

︸ ︷︷ ︸
1 iff I⊂M and I′⊂M,0 otherwise

=
∑

I �=∈Jϕ

∑

I′ �=∈Jϕ

n′
I,fn′

I′,fcard{M ∈ Jm | I ⊂ M and I ′ ⊂ M}

=

ϕ∑

h=0

∑

I,I′ �=∈Jϕ

|I∩I′|=h

n′
I,fn′

I′,f

(
Nk − 2ϕ + h

m − 2ϕ + h

)

︸ ︷︷ ︸
Λ

=

ϕ∑

h=0

Λ
∑

I,I′ �=∈Jϕ

|I∩I′|=h

∑

S,S′ �=∈Jϕ

S(i)=S′(i)⇐⇒
I(i)=I′(i)

n′′
I,Sn′′

I′,S′

ϕ∏

u=1

δS(u)f(I(u))δS′(u)f(I′(u))

342 E. Volte et al.

So,
∑

f∈Bkn

∑

M∈Jm

∑

i,j

ni,f,Mnj,f,M =

=
ϕ∑

h=0

Λ
∑

I,I′ �=∈Jϕ

|I∩I′|=h

∑

S,S′ �=∈Jϕ

S(i)=S′(i)⇐⇒
I(i)=I′(i)

n′′
I,Sn′′

I′,S′card{f ∈ Bkn | f(I) = S, f(I ′) = S′}

=
ϕ∑

h=0

Λ
∑

I,I′ �=∈Jϕ

|I∩I′|=h

∑

S,S′ �=∈Jϕ

S(i)=S′(i)⇐⇒
I(i)=I′(i)

n′′
I,Sn′′

I′,S′(Nk − 2ϕ + h)!

=
ϕ∑

h=0

(Nk − 2ϕ + h)!2

(Nk − m)!(m − 2ϕ + h)!

∑

I,I′ �=∈Jϕ

|I∩I′|=h

∑

S,S′ �=∈Jϕ

S(i)=S′(i)⇐⇒
I(i)=I′(i)

n′′
I,Sn′′

I′,S′

So,
∑

i,j

E(NiNj) =
m!

(Nk!)2

ϕ∑

h=0

(Nk − 2ϕ + h)!2

(m − 2ϕ + h)!

∑

I,I′ �=∈Jϕ

|I∩I′|=h

∑

S,S′ �=∈Jϕ

S(i)=S′(i)⇐⇒
I(i)=I′(i)

n′′
I,Sn′′

I′,S′

=

ϕ∏

i=1

(m − i + 1)

2ϕ∏

i=1

(Nk − i + 1)2

ϕ∑

h=0

h∏

i=1

(Nk − 2ϕ + i)2
ϕ∏

i=h+1

(m − 2ϕ + i)
∑

I,I′ �=∈Jϕ

|I∩I′|=h

∑

S,S′ �=∈Jϕ

S(i)=S′(i)⇐⇒
I(i)=I′(i)

n′′
I,Sn′′

I′,S′

Thus

∑

i,j

E(NiNj) =

ϕ∏

i=1

(m − i + 1)

2ϕ∏

i=1

(Nk − i + 1)2
P (N,m)

as claimed 	

B Simulation of Some KPA Attacks

We have made simulations of several attacks for small values of n in order to con-
firm our main results (Table 16). The results of these simulations are consistent
with the theoretical study. The process of the simulations is as follow: we choose
a random instance of the studied scheme (a Feistel type scheme) and a random
permutation (generated by a classical Feisel scheme with 20 rounds). Then we
start the attack for m messages and we count the number of plaintext/ciphertext
pairs that verify the relations involved for the studied scheme and for the per-
mutation. Finally, we repeat these steps 50 times in order to compute the mean
value for the studied Feistel scheme and for the permutation and the standard
deviation for the permutation.

Improvements of Attacks on Various Feistel Schemes 343

Table 16. Simulation 50 times.

Feistel type r n m E(N) E(Ñ) σ(N) D(*) Detection(%)

1 in Table 4 23 4 214 16776899 16783946 4583 2461 68

2 in Table 6 12 5 220 1073699658 1073787202 46537 41007 84

3 in Table 10 9 4 216 61532 61968 367 69 82

(*) D = |E(N) − E(Ñ)| − σ(N)

References

1. Encryption algorithm for computer data protection. Technical report Federal Reg-
ister 40(52) 12134. National Bureau of Standards, March 1975

2. Notice of a proposed federal information processing data encryption. Technical
report Federal Register, vol. 40(149), p. 12607. National Bureau of Standards,
August 1975

3. Adams, C., Heys, H., Tavares, S., Wiener, M.: The CAST-256 encryption algo-
rithm. Technical report. AES Submission (1998)

4. Anderson, R., Biham, E.: Two practical and provably secure block ciphers: BEAR
and LION. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113–120.
Springer, Heidelberg (1996). doi:10.1007/3-540-60865-6 48

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive: 2013/404: Listing for 2013

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

7. Burwick, C., Coppersmith, D., D’ Avignon, E., Gennaro, R., Halevi, S., Jutla, C.,
Matyas Jr., S.M., O’ Connor, L., Peyravian, M., Safford, D., Zunic, N.: MARS - a
candidate cipher for AES. Technical report. AES Submission (1998)

8. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag, New York (2002)
9. Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.)

CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14623-7 33

10. Ibrahim, S., Mararof, M.A.: Diffusion analysis of scalable Feistel networks. World
Acad. Sci. Eng. Technol. 5, 98–101 (2005)

11. Jutla, C.S.: Generalized birthday attacks on unbalanced Feistel networks. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 186–199. Springer,
Heidelberg (1998). doi:10.1007/BFb0055728

12. Lu, S.-W.: SMS4 encryption algorithm for wireless networks. Cryptology ePrint
Archive: 2008/329: Listing for 2008, Translated from Chinese by Whitfield Diffie
and George Ledin

13. Luby, M., Rackoff, C.: How to construct Pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

14. Nachef, V., Patarin, J., Treger, J.: Generic attacks on Misty schemes. In: Abdalla,
M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 222–240.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14712-8 14

15. Nachef, V., Volte, E., Patarin, J.: Differential attacks on generalized Feistel
schemes. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS,
vol. 8257, pp. 1–19. Springer, Cham (2013). doi:10.1007/978-3-319-02937-5 1

http://dx.doi.org/10.1007/3-540-60865-6_48
http://dx.doi.org/10.1007/978-3-642-14623-7_33
http://dx.doi.org/10.1007/978-3-642-14623-7_33
http://dx.doi.org/10.1007/BFb0055728
http://dx.doi.org/10.1007/978-3-642-14712-8_14
http://dx.doi.org/10.1007/978-3-319-02937-5_1

344 E. Volte et al.

16. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

17. Patarin, J.: Generic attacks on Feistel schemes. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 222–238. Springer, Heidelberg (2001). doi:10.1007/
3-540-45682-1 14

18. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced feistel schemes
with contracting functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 396–411. Springer, Heidelberg (2006). doi:10.1007/11935230 26

19. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced feistel schemes
with expanding functions. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol.
4833, pp. 325–341. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76900-2 20

20. Poschmann, A., Ling, S., Wang, H.: 256 Bit standardized crypto for 650 GE –
GOST revisited. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 219–233. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9 15

21. Rivest, R.L., Robshaw, M., Sidney, R., Yin, Y.L.: The RC6 Block Cipher. Technical
report. AES Submission (1998)

22. Schneier, B., Kelsey, J.: Unbalanced Feistel networks and block cipher design. In:
Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg
(1996). doi:10.1007/3-540-60865-6 49

23. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74619-5 12

24. Volte, E., Nachef, V., Marriere, N.: Automatic expectation and variance computing
for attacks on Feistel schemes. Cryptology ePrint Archive: 2016/136: Listing for
2016

25. Volte, E., Nachef, V., Patarin, J.: Improved generic attacks on unbalanced
feistel schemes with expanding functions. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 94–111. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17373-8 6

26. Yun, A., Park, J.H., Lee, J.: Lai-Massey scheme and Quasi-Feistel networks. Cryp-
tology ePrint Archive: 2007/347: Listing for 2007

27. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, New York (1990). doi:10.
1007/0-387-34805-0 42

http://dx.doi.org/10.1007/3-540-45682-1_14
http://dx.doi.org/10.1007/3-540-45682-1_14
http://dx.doi.org/10.1007/11935230_26
http://dx.doi.org/10.1007/978-3-540-76900-2_20
http://dx.doi.org/10.1007/978-3-642-15031-9_15
http://dx.doi.org/10.1007/3-540-60865-6_49
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/978-3-642-17373-8_6
http://dx.doi.org/10.1007/978-3-642-17373-8_6
http://dx.doi.org/10.1007/0-387-34805-0_42
http://dx.doi.org/10.1007/0-387-34805-0_42

Primitives and Features

Updatable Functional Encryption

Afonso Arriaga(B), Vincenzo Iovino, and Qiang Tang

SnT, University of Luxembourg, Luxembourg, Luxembourg
{afonso.delerue,vincenzo.iovino}@uni.lu, tonyrhul@gmail.com

Abstract. Functional encryption (FE) allows an authority to issue
tokens associated with various functions, allowing the holder of some
token for function f to learn only f(D) from a ciphertext that encrypts
D. The standard approach is to model f as a circuit, which yields inef-
ficient evaluations over large inputs. Here, we propose a new primitive
that we call updatable functional encryption (UFE), where instead of cir-
cuits we deal with RAM programs, which are closer to how programs
are expressed in von Neumann architecture. We impose strict efficiency
constrains in that the run-time of a token P on ciphertext CT is pro-
portional to the run-time of its clear-form counterpart (program P on
memory D) up to a polylogarithmic factor in the size of D, and we envi-
sion tokens that are capable to update the ciphertext, over which other
tokens can be subsequently executed. We define a security notion for
our primitive and propose a candidate construction from obfuscation,
which serves as a starting point towards the realization of other schemes
and contributes to the study on how to compute RAM programs over
public-key encrypted data.

Keywords: Updatable functional encryption · RAM model · Persistent
memory

1 Introduction

The concept of functional encryption (FE), a generalization of identity-based
encryption, attribute-based encryption, inner-product encryption and other
forms of public-key encryption, was independently formalized by Boneh, Sahai
and Waters [8] and O’Neil [21]. In an FE scheme, the holder of a master secret
key can issue tokens associated with functions of its choice. Possessing a token
for f allows one to recover f(D), given an encryption of D. Informally, security
dictates that only f(D) is revealed about D and nothing else.

Garg et al. [14] put forth the first candidate construction of an FE scheme
supporting all polynomial-size circuits based on indistinguishability obfuscation
(iO), which is now known as a central hub for the realization of many crypto-
graphic primitives [22].

The most common approach is to model functions as circuits. In some works,
however, functions are modeled as Turing machines (TM) or random-access
machines (RAM). Recently, Ananth and Sahai [3] constructed an adaptively
c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 347–363, 2017.
DOI: 10.1007/978-3-319-61273-7 17

348 A. Arriaga et al.

secure functional encryption scheme for TM, based on indistinguishability obfus-
cation. Nonetheless, their work does not tackle the problem of having the token
update the encrypted message, over which other tokens can be subsequently
executed.

In the symmetric setting, the notion of garbled RAM, introduced by Lu
and Ostrovsky [19] and revisited by Gentry et al. [15], addresses this important
use-case where garbled memory data can be reused across multiple program exe-
cutions. Garbled RAM can be seen as an analogue of Yao’s garbled circuits [23]
(see also [6] for an abstract generalization) that allows a user to garble a RAM
program without having to compile it into a circuit first. As a result, the time it
takes to evaluate a garbled program is only proportional to the running time of
the program on a random-access machine. Several other candidate constructions
were also proposed in [10–12,16].

Desmedt et al. [13] proposed an FE with controlled homomorphic properties.
However, their scheme updates and re-encrypts the entire data, which carries a
highly inefficient evaluation-time.

Our Contribution. We propose a new primitive that we call updatable func-
tional encryption (UFE). It bears resemblance to functional encryption in that
encryption is carried out in the public-key setting and the owner of the master
secret key can issue tokens for functions—here, modeled as RAM programs—
of its choice that allow learning the outcome of the function on the message
underneath a ciphertext. We envision tokens that are also capable to update the
ciphertext, over which other tokens can be subsequently executed. We impose
strict efficiency constrains in that the run-time of a token P on ciphertext CT is
proportional to the run-time of its clear-form counterpart (program P on mem-
ory D) up to a polylogarithmic factor in the size of D. We define a security notion
for our primitive and propose a candidate construction based on an instance of
distributional indistinguishability (DI) obfuscation, a notion introduced by [5]
in the context of point function obfuscation and later generalized by [2]. Recent
results put differing-inputs obfuscation (diO) [1] with auxiliary information in
contention with other assumptions [7]; one might question if similar attacks
apply to the obfuscation notion we require in our reduction. As far as we can
tell, the answer is negative. However, we view our construction as a starting
point towards the realization of other updatable functional encryption schemes
from milder forms of obfuscation.

2 Preliminaries

Notation. We denote the security parameter by λ ∈ N and assume it is implic-
itly given to all algorithms in unary representation 1λ. We denote the set of all
bit strings of length � by {0, 1}� and the length of a string a by |a|. We write
a ← b to denote the algorithmic action of assigning the value of b to the variable
a. We use ⊥/∈ {0, 1}� to denote a special failure symbol and ε for the empty
string. A vector of strings x is written in boldface, and x[i] denotes its ith entry.
The number of entries of x is denoted by |x|. For a finite set X, we denote its

Updatable Functional Encryption 349

cardinality by |X| and the action of sampling a uniformly random element a from
X by a ←$ X. If A is a probabilistic algorithm we write a ←$ A(i1, i2, . . . , in; r) for
the action of running A on inputs i1, i2, . . . , in with random coins r, and assigning
the result to a. For a circuit C we denote its size by |C|. We call a real-valued
function μ(λ) negligible if μ(λ) ∈ O(λ−ω(1)) and denote the set of all negligible
functions by Negl. We adopt the code-based game-playing framework [4]. As
usual “ppt” stands for probabilistic polynomial time.

Circuit families. Let MSp := {MSpλ}λ∈N and OSp := {OSpλ}λ∈N be two
families of finite sets parametrized by a security parameter λ ∈ N. A circuit
family CSp := {CSpλ}λ∈N is a sequence of circuit sets indexed by the security
parameter. We assume that for all λ ∈ N, all circuits in CSpλ share a common
input domain MSpλ and output space OSpλ. We also assume that membership
in sets can be efficiently decided. For a vector of circuits C = [C1, . . . ,Cn] and a
message m we define C(m) to be the vector whose ith entry is Ci(m).

Trees. We associate a tree T with the set of its nodes {nodei,j}. Each node is
indexed by a pair of non-negative integers representing the position (level and
branch) of the node on the tree. The root of the tree is indexed by (0, 0), its
children have indices (1, 0), (1, 1), etc. A binary tree is perfectly balanced if every
leaf is at the same level.

2.1 Public-Key Encryption

Syntax.Apublic-key encryption schemePKE :=(PKE.Setup,PKE.Enc,PKE.Dec)
with message space MSp := {MSpλ}λ∈N and randomness space RSp :=
{RSpλ}λ∈N is specified by three ppt algorithms as follows. (1) PKE.Setup(1λ)
is the probabilistic key-generation algorithm, taking as input the security para-
meter and returning a secret key sk and a public key pk. (2) PKE.Enc(pk,m; r)
is the probabilistic encryption algorithm. On input a public key pk, a message
m ∈ MSpλ and possibly some random coins r ∈ RSpλ, this algorithm outputs
a ciphertext c. (3) PKE.Dec(sk, c) is the deterministic decryption algorithm. On
input of a secret key sk and a ciphertext c, this algorithm outputs a message
m ∈ MSpλ or failure symbol ⊥.

Correctness. The correctness of a public-key encryption scheme requires that
for any λ ∈ N, any (sk, pk) ∈ [PKE.Setup(1λ)], any m ∈ MSpλ and any random
coins r ∈ RSpλ, we have that PKE.Dec(sk,PKE.Enc(pk,m; r)) = m.

Security. We recall the standard security notions of indistinguishability under
chosen ciphertext attacks (IND-CCA) and its weaker variant known as indistin-
guishability under chosen plaintext attacks (IND-CPA). A public-key encryption
scheme PKE is IND-CCA secure if for every legitimate ppt adversary A,

Advind-cca
PKE,A (λ) := 2 · Pr[IND-CCAA

PKE(λ)] − 1 ∈ Negl,

where game IND-CCAA
PKE described in Fig. 1, in which the adversary has access

to a left-or-right challenge oracle (LR) and a decryption oracle (Dec). We say that

350 A. Arriaga et al.

IND-CCAA
PKE(λ):

(sk, pk) ←$ PKE.Setup(1λ)
b ←$ {0, 1}
b′ ←$ ALR,Dec(1λ, pk)
return (b = b′)

LR(m0,m1):
c ←$ PKE.Enc(pk,mb)
List ← c : List
return c

Dec(c):
m ← PKE.Dec(sk, c)
return m

Fig. 1. Game defining IND-CCA security of a public-key encryption scheme PKE.

A is legitimate if: (1) |m0| = |m1| whenever the left-or-right oracle is queried;
and (2) the adversary does not call the decryption oracle with c ∈ List. We
obtain the weaker IND-CPA notion if the adversary is not allowed to place any
decryption query.

2.2 NIZK Proof Systems

Syntax. A non-interactive zero-knowledge proof system for an NP language L
with an efficiently computable binary relation R consists of three ppt algorithms
as follows. (1) NIZK.Setup(1λ) is the setup algorithm and on input a security
parameter 1λ it outputs a common reference string crs; (2) NIZK.Prove(crs, x, w)
is the proving algorithm and on input a common reference string crs, a state-
ment x and a witness w it outputs a proof π or a failure symbol ⊥; (3)
NIZK.Verify(crs, x, π) is the verification algorithm and on input a common refer-
ence string crs, a statement x and a proof π it outputs either true or false.

Perfect Completeness. Completeness imposes that an honest prover can
always convince an honest verifier that a statement belongs to L, provided that
it holds a witness testifying to this fact. We say a NIZK proof is perfectly complete
if for every (possibly unbounded) adversary A

Advcomplete
NIZK,A (λ) := Pr

[
CompleteA

NIZK(λ)
]

= 0,

where game CompleteA
NIZK(λ) is shown in Fig. 2 on the left.

Computational Zero Knowledge. The zero-knowledge property guarantees
that proofs do not leak information about the witnesses that originated them.
Technically, this is formalized by requiring the existence of a ppt simulator Sim :=
(Sim0,Sim1) where Sim0 takes the security parameter 1λ as input and outputs
a simulated common reference string crs together with a trapdoor tp, and Sim1

takes the trapdoor as input tp together with a statement x for which it must
forge a proof π. We say a proof system is computationally zero knowledge if, for
every ppt adversary A, there exists a ppt simulator Sim such that

Advzk
NIZK,A,Sim(λ) :=

∣∣∣Pr
[
ZK−RealANIZK(λ)

]
−

[
ZK−IdealA,Sim

NIZK (λ)
]∣∣∣ ∈ Negl ,

where games ZK−RealANIZK(λ) and ZK−IdealA,Sim
NIZK (λ) are shown in Fig. 3.

Updatable Functional Encryption 351

Statistical simulation soundness. Soundness imposes that a malicious
prover cannot convince an honest verifier of a false statement. This should be
true even when the adversary itself is provided with simulated proofs. We say
NIZK is statistically simulation sound with respect to simulator Sim if, for every
(possibly unbounded) adversary A

Advsound
NIZK,A(λ) := Pr

[
SoundA,Sim

NIZK (λ)
]

∈ Negl,

where game SoundA
NIZK(λ) is shown in Fig. 2 on the right.

CompleteA
NIZK(λ):

crs ←$ NIZK.Setup(1λ)
(x, w) ←$ A(1λ, crs)
if (x, w) /∈ R return 0
π ←$ NIZK.Prove(crs, x, w)
return ¬(NIZK.Verify(crs, x, π))

SoundA
NIZK(λ):

crs ←$ NIZK.Setup(1λ)
(x, π) ←$ A(1λ, crs)
return (x /∈ L ∧
NIZK.Verify(crs, x, π))

Fig. 2. Games defining the completeness and soundness properties of a non-interactive
zero-knowledge proof system NIZK.

ZK-RealANIZK(λ):

crs ←$ NIZK.Setup(1λ)
b ←$ AProve(1λ, crs)

Prove(x, w):
if (x, w) /∈ R return ⊥
π ←$ NIZK.Prove(crs, x, w)
return π

ZK-IdealA,Sim
NIZK (λ):

(crs, tp) ←$ Sim1(1
λ)

b ←$ AProve(1λ, crs)

Prove(x, w):
if (x, w) /∈ R return ⊥
π ←$ Sim2(crs, tp, x)
return π

Fig. 3. Games defining the zero-knowledge property of a non-interactive zero-knowledge
proof system NIZK.

2.3 Collision-Resistant Hash Functions

A hash function family H := {Hλ}λ∈N is a set parametrized by a security parame-
ter λ ∈ N, where each Hλ is a collection of functions mapping {0, 1}m to {0, 1}n

such that m > n. The hash function family H is said to be collision-resistant if no
ppt adversary A can find a pair of colliding inputs, with noticeable probability,
given a function picked uniformly from Hλ. More precisely, we require that

Advcr
H,A(λ) := Pr[CRA

H (λ)] ∈ Negl,

where game CRA
H (λ) is defined in Fig. 4.

352 A. Arriaga et al.

CRA
H (λ):

h ←$ Hλ

(x0, x1) ←$ A(1λ, h)
return (x0 �= x1 ∧ h(x0) = h(x1))

Fig. 4. Game defining collision-resistance of a hash function family H.

2.4 Puncturable Pseudorandom Functions

A puncturable pseudorandom function family PPRF := (PPRF.Gen,PPRF.Eval,
PPRF.Punc) is a triple of ppt algorithms as follows. (1) PPRF.Gen on input
the security parameter 1λ outputs a uniform element in Kλ; (2) PPRF.Eval is
deterministic and on input a key k ∈ Kλ and a point x ∈ Xλ outputs a point
y ∈ Yλ; (3) PPRF.Punc is probabilistic and on input a k ∈ Kλ and a polynomial-
size set of points S ⊆ Xλ outputs a punctured key kS. As per [22], we require the
PPRF to satisfy the following two properties:

Functionality preservation under puncturing: For every λ ∈ N, every
polynomial-size set S ⊆ Xλ and every x ∈ Xλ \ S, it holds that

Pr
[
PPRF.Eval(k, x) = PPRF.Eval(kS, x)

∣∣∣∣
k ←$ PPRF.Gen(1λ)
kS ←$ PPRF.Punc(k,S)

]
= 1.

Pseudorandomness at punctured points: For every ppt adversary A,

Advpprf
PPRF,A(λ) := 2 · Pr[PPRFA

PPRF(λ)] − 1 ∈ Negl,

where game PPRFA
PPRF(λ) is defined in Fig. 5.

PPRFA
PPRF(λ):

(S, st) ←$ A0(1
λ)

k ←$ PPRF.Gen(1λ)
kS ←$ PPRF.Punc(k, S)
b ←$ {0, 1}
b′ ←$ AFn

1 (1λ, kS, st)
return (b = b′)

Fn(x):
if x /∈ S return PPRF.Eval(kS, x)
if T [x] = ⊥ then

T [x] ←$ Yλ

if b = 1 return T [x]
else return PPRF.Eval(k, x)

Fig. 5. Game defining pseudorandomness at punctured points of PPRF.

2.5 Obfuscators

Syntax. An obfuscator for a circuit family CSp is a uniform ppt algorithm Obf
that on input the security parameter 1λ and the description of a circuit C ∈ CSpλ

outputs the description of another circuit C. We require any obfuscator to satisfy
the following two requirements.

Updatable Functional Encryption 353

Functionality preservation: For any λ ∈ N, any C ∈ CSpλ and any m ∈
MSpλ, with overwhelming probability over the choice of C ←$ Obf(1λ,C) we
have that C(m) = C(m).

Polynomial slowdown: There is a polynomial poly such that for any λ ∈ N,
any C ∈ CSpλ and any C ←$ Obf(1λ,C) we have that |C| ≤ poly(|C|).

In this paper we rely on the security definitions of indistinguishability obfus-
cation (iO) [14] and distributional indistinguishability (DI). The latter definition
was first introduced by [5] in the context of point function obfuscation and later
generalized by [2] to cover samplers that output not only point circuits. We note
that the work of [2] considers only statistically unpredictable samplers, which
is a more restricted class of samplers, and therefore is a more amenable form
of obfuscation. Unfortunately, for the purpose of proving the construction we
present in Sect. 3.2 secure, we rely on a DI obfuscator against a computationally
unpredictable sampler.

Indistinguishability Obfuscation (iO). This property requires that given
any two functionally equivalent circuits C0 and C1 of equal size, the obfuscations
of C0 and C1 should be computationally indistinguishable. More precisely, for any
ppt adversary A and for any sampler S that outputs two circuits C0,C1 ∈ CSpλ

such that C0(m) = C1(m) for all inputs m and |C0| = |C1|, we have that

Advio
Obf,S,A(λ) := 2 · Pr[iOS,A

Obf (λ)] − 1 ∈ Negl,

where game iOS,A
Obf (λ) is defined in Fig. 6 on the left.

Distributional Indistinguishability (DI). We define this property with
respect to some class of unpredictable samplers S. A sampler is an algorithm
S that on input the security parameter 1λ and possibly some state information
st outputs a pair of vectors of CSpλ circuits (C0,C1) of equal dimension and
possibly some auxiliary information z. We require the components of the two
circuit vectors to be encoded as bit strings of equal length. S is said to be
unpredictable if no ppt predictor with oracle access to the circuits can find a
differing input m such that C0(m) �= C1(m). An obfuscator Obf is DI secure with
respect to a class of unpredictable samplers S if for all S ∈ S the obfuscations of
C0 and C1 output by S are computationally indistinguishable. More precisely,
for every S ∈ S and every ppt adversary A we have that

Advdi
Obf,S,A(λ) := 2 · Pr[DIS,A

Obf (λ)] − 1 ∈ Negl,

where game DIS,A
Obf (1λ) is defined in Fig. 6 (middle). Furthermore, we say sampler

S is computationally unpredictable if for any ppt predictor P

Advpred
S,P (λ) := Pr

[
PredP

S (λ)
]

∈ Negl,

where game PredP
S (λ) is shown in Fig. 6 on the right.

354 A. Arriaga et al.

iOS,A
Obf (λ):

(C0,C1, z) ←$ S(1λ)
b ←$ {0, 1}
C ←$ Obf(1λ,Cb)
b′ ←$ A1(1

λ, z,C)
return (b = b′)

DIS,A
Obf (λ):

(st, st′) ←$ A0(1
λ)

(C0,C1, z) ←$ S(1λ, st)
b ←$ {0, 1}
C ←$ Obf(1λ,Cb)
b′ ←$ A1(1

λ, z, st′,C)
return (b = b′)

PredP
S (λ):

(st, st′) ←$ P0(1
λ)

(C0,C1, z) ←$ S(st)
m ←$ PFn

1 (1λ, z, st′)
return (C0(m) �= C1(m))

Fn(m):
return (C0(m))

Fig. 6. Games defining iO and DI security of an obfuscator Obf, and unpredictability
of a sampler S.

2.6 RAM Programs

In the RAM model of computation, a program P has random-access to some
initial memory data D, comprised of |D| memory cells. At each CPU step of its
execution, P reads from and writes to a single memory cell address, which is
determined by the previous step, and updates its internal state. By convention,
the address in the first step is set to the first memory cell of D, and the ini-
tial internal state is empty. Only when P reaches the final step of its execution,
it outputs a result y and terminates. We use the notation y←PD→D�

to indi-
cate this process, where D� is the resulting memory data when P terminates, or
simply y←PD if we don’t care about the resulting memory data. We also con-
sider the case where the memory data persists between a sequential execution
of n programs, and use the notation (y1, . . . , yn)←(P1, . . . ,Pn)D→D�

as short for
(y1←PD→D1

1 ; . . . ; yn←P
Dn−1→D�

n). In more detail, a RAM program description
is a 4-tuple P := (Q, T ,Y, δ), where:

– Q is the set of all possible states, which always includes the empty state ε.
– T is the set of all possible contents of a memory cell. If each cell contains a

single bit, T = {0, 1}.
– Y is the output space of P, which always includes the empty output ε.
– δ is the transition function, modeled as a circuit, which maps (Q × T) to

(T × Q × N × Y). On input an internal state sti ∈ Q and a content of a
memory cell readi ∈ T , it outputs a (possibly different) content of a memory
cell writei ∈ T , an internal state sti+1 ∈ Q, an address of a memory cell
addri+1 ∈ N and an output y ∈ Y.

In Fig. 7 we show how program P is executed on a random-access machine with
initial memory data D.

To conveniently specify the efficiency and security properties of the prim-
itive we propose in the following section, we define functions runTime and
accessPattern that on input a program P and some initial memory data D return
the number of steps required for P to complete its execution on D and the list
of addresses accessed during the execution, respectively. In other words, as per

Updatable Functional Encryption 355

description in Fig. 7, runTime returns the value i when P terminates, whereas
accessPattern returns List. More generally, we also allow these functions to receive
as input a set of programs (P1, . . . ,Pn) to be executed sequentially on persistent
memory, initially set to D.

Execute PD:
i ← 0; addri ← 0; sti ← ε; y ← ε; List ← []
while (y = ε)

// step i
List ← addri : List // record the access pattern
readi ← D[addri] // read from memory
(writei, sti+1, addri+1, y) ← δ(sti, readi)
D[addri] ← writei // write to memory
i ← i + 1

return (y)

Fig. 7. Execution of program P on a RAM machine with memory D.

3 Updatable Functional Encryption

We propose a new primitive that we call updatable functional encryption. It
bears resemblance to functional encryption in that encryption is carried out in
the public-key setting and the owner of the master secret key can issue tokens for
functions of its choice that allows the holder of the token to learn the outcome of
the function on the message underneath a ciphertext. Here, we model functions as
RAM programs instead of circuits, which is closer to how programs are expressed
in von Neumann architecture and avoids the RAM-to-circuit compilation. Not
only that, we envision tokens that are capable to update the ciphertext, over
which other tokens can be subsequently executed. Because the ciphertext evolves
every time a token is executed and for better control over what information is
revealed, each token is numbered sequentially so that it can only be executed once
and after all previous extracted tokens have been executed on that ciphertext.
Informally, the security requires that the ciphertext should not reveal more than
what can be learned by applying the extracted tokens in order. As for efficiency,
we want the run-time of a token to be proportional to the run-time of the program
up to a polylogarithmic factor in the length of the encrypted message.

3.1 Definitions

Syntax. An updatable functional encryption scheme UFE for program family
P := {Pλ}λ∈N with message space MSp := {MSpλ}λ∈N is specified by three ppt
algorithms as follows.

– UFE.Setup(1λ) is the setup algorithm and on input a security parameter 1λ

it outputs a master secret key msk and a master public key mpk;

356 A. Arriaga et al.

– UFE.TokenGen(msk,P, tid) is the token-generation algorithm and on input a
master secret key msk, a program description P ∈ Pλ and a token-id tid ∈ N,
outputs a token (i.e. another program description) Ptid;

– UFE.Enc(mpk,D) is the encryption algorithm and on input a master public
key mpk and memory data D ∈ MSpλ outputs a ciphertext CT.

We do not explicitly consider an evaluation algorithm. Instead, the RAM pro-
gram P output by UFE.TokenGen executes directly on memory data CT, a cipher-
text resulting from the UFE.Enc algorithm. Note that this brings us close to the
syntax of Garbled RAM, but in contrast encryption is carried out in the public-
key setting.

Correctness. We say that UFE is correct if for every security parameter λ ∈ N,
for every memory data D ∈ MSpλ and for every sequence of polynomial length
in λ of programs (P1, . . . ,Pn), it holds that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣
y1 = y′

1 ∧ . . . ∧ yn = y′
n

∣∣∣∣∣∣∣∣∣∣∣∣

(msk,mpk) ←$ UFE.Setup(1λ)
CT ←$ UFE.Enc(mpk,D)
for i ∈ [n]
Pi ←$ UFE.TokenGen(msk,Pi, i)

(y1, . . . , yn)←(P1, . . . ,Pn)D

(y′
1, . . . , y

′
n)←(P1, . . . ,Pn)CT

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1.

Efficiency. Besides the obvious requirement that all algorithms run in poly-
nomial-time in the length of their inputs, we also require that the run-time
of token P on ciphertext CT is proportional to the run-time of its clear-form
counterpart (program P on memory D) up to a polynomial factor in λ and
up to a polylogarithmic factor in the length of D. More precisely, we require
that for every λ ∈ N, for every sequence of polynomial length in λ of programs
(P1, . . . ,Pn) and every memory data D ∈ MSpλ, there exists a fixed polynomial
function poly and a fixed polylogarithmic function polylog such that

Pr

⎡
⎢⎢⎣
runTime((P1, . . . ,Pn),CT) ≤
runTime((P1, . . . ,Pn),D)·

poly(λ) · polylog(|D|)

∣∣∣∣∣∣∣∣

(msk,mpk) ←$ UFE.Setup(1λ)
CT ←$ UFE.Enc(mpk,D)
for i ∈ [n]
Pi ←$ UFE.TokenGen(msk,Pi)

⎤
⎥⎥⎦ = 1.

In particular, this means that for a program P running in sublinear-time in |D|,
the run-time of P over the encrypted data remains sublinear.

Security. Let UFE be an updatable functional encryption scheme. We say UFE
is selectively secure if for any legitimate ppt adversary A

Advsel
UFE,A(λ) := 2 · Pr

[
SELA

UFE(λ)
]
− 1 ∈ Negl,

where game SELA
UFE(λ) is defined in Fig. 8. We say A is legitimate if the following

two conditions are satisfied:

1. (P1, . . . ,Pn)D0 = (P1, . . . ,Pn)D1

2. accessPattern((P1, . . . ,Pn),D0) = accessPattern((P1, . . . ,Pn),D1)

Updatable Functional Encryption 357

These conditions avoid that the adversary trivially wins the game by requesting
tokens whose output differ on left and right challenge messages or have different
access patterns.

SELA
UFE(λ):

(D0,D1, (P1, ...,Pn), st) ←$ A0(1
λ)

(msk,mpk) ←$ UFE.Setup(1λ)
b ←$ {0, 1}
CT ←$ UFE.Enc(mpk,Db)
for i ∈ [n]
Pi ←$ UFE.TokenGen(msk,Pi)

b′ ←$ A1(CT, (P1, ...,Pn), st)
return (b = b′)

Fig. 8. Selective security of an updatable FE scheme UFE.

3.2 Our Construction

The idea of our construction is the following. Before encryption we append to
the cleartext the token-id of the first token to be issued, the address of the first
position to be read and the initial state of the program. These values are all
pre-defined at the beginning. We then split the data into bits and label each
of them with a common random tag, their position on the array and a counter
that keeps track of how many times that bit was updated (initially 0). Then, we
build a Merkle tree over the labeled bits. Later, this will allow us to check the
consistency of the data without having to read through all of it. It also binds a
token-id, a read-position and a state to the data at a particular stage. Finally,
we encrypt each node of the tree, twice, and attach a NIZK proof attesting that
they encrypt the same content. Tokens include the decryption key inside their
transition circuit in order to perform the computation over the clear data and re-
encrypt the nodes at the end of each CPU step. These circuits are obfuscated to
protect the decryption key, and the random coins necessary to re-encrypt come
from a puncturable PRF. The proof then follows a mix of different strategies
seen in [2,14,17,18,20].

• UFE.Setup(1λ) samples two public-key encryption key pairs
(sk0, pk0) ←$ PKE.Setup(1λ) and (sk1, pk1) ←$ PKE.Setup(1λ), a common
reference string crs ←$ NIZK.Setup(1λ) and a collision-resistant hash func-
tion H ←$ Hλ. It then sets constants (l1, l2, l3) as the maximum length of
token-ids, addresses and possible states induced by the supported program
set Pλ, respectively, encoded as bit-strings. Finally, it sets msk ← sk0 and
mpk ← (pk0, pk1, crs,H, (l1, l2, l3)) and outputs the key pair (msk,mpk).

• UFE.Enc(mpk,D) parses mpk as (pk0, pk1, crs,H, (l1, l2, l3)) and appends to the
memory data D the token-id 1, address 0 and the empty state ε, encoded as
bit-stings of length l1, l2 and l3, respectively: D←(D, 1, 0, ε). (We assume from

358 A. Arriaga et al.

now on that |D| is a power of 2. This is without loss of generality since D can
be padded.) UFE.Enc sets z← log(|D|), samples a random string tag ←$ {0, 1}λ

and constructs a perfectly balanced binary tree T := {node(i,j)}, where leafs
are set as

∀j ∈ {0, . . . , (|D| − 1)}, node(z,j) ← (D[j], tag, (z, j), 0)

and intermediate nodes are computed as

∀i ∈ {(z − 1), . . . , 0}, ∀j ∈ {0, . . . , (2i − 1)},

node(i,j) ← (H(node(i+1,2j), node(i+1,2j+1))).

UFE.Enc then encrypts each node independently under pk0 and pk1, i.e.

∀i ∈ {0, . . . , z}, ∀j ∈ {0, . . . , (2i − 1)},

r
(i,j)
0 ←$ RSpλ ; r

(i,j)
1 ←$ RSpλ

CT
(i,j)
0 ←PKE.Enc(pk0, node

(i,j); r(i,j)0)

CT
(i,j)
1 ←PKE.Enc(pk1, node

(i,j); r(i,j)1)

and computes NIZK proofs that CT(i,j)
0 and CT

(i,j)
1 encrypt the same content.

More precisely,

∀i ∈ {0, . . . , z}, ∀j ∈ {0, . . . , (2i − 1)},

π(i,j) ←$ NIZK.Prove(crs, x(i,j), (node(i,j), r(i,j)0 , r
(i,j)
1)),

where x(i,j) is the NP statement

∃(m, r0, r1) : CT(i,j)
0 = PKE.Enc(pk0,m; r0) ∧ CT

(i,j)
1 = PKE.Enc(pk1,m; r1).

Finally, UFE.Enc lets

CT := {(CT(i,j)
0 ,CT

(i,j)
1 , π(i,j))},

which encodes a perfectly balanced tree, and outputs it as a ciphertext of
memory data D under mpk.

• UFE.TokenGen(msk,mpk,P, tid) parses (pk0, pk1, crs,H, (l1, l2, l3))←mpk, (Q,
T ,Y, δ)←P and sk0←msk. It then samples a new puncturable PRF key
k ←$ PPRF.Gen(1λ). Next, it sets a circuit δ̂ as described in Fig. 9, using the
parsed values as the appropriate hardcoded constants with the same nam-
ing. UFE.TokenGen then obfuscates this circuit by computing δ ←$ Obf(δ̂).
Finally, for simplicity in order to avoid having to explicitly deal with the
data structure in the ciphertext, and following a similar approach as in [9],
we define token P not by its transition function, but by pseudocode, as the
RAM program that executes on CT the following:
1. Set initial state st←ε, initial address addr←0 and empty output y←ε.

Updatable Functional Encryption 359

2. While (y = ε)
(a) Construct a tree T by selecting from CT the leaf at address addr and

the last (l1 + l2 + l3) leafs (that should encode tid, addr and st if CT is
valid), as well as all the necessary nodes to compute the hash values
of their path up to the root.

(b) Evaluate (T, addr, y)←δ(T).
(c) Update CT by writing the resulting T to it.

3. Output y.

Theorem 1. Let PKE be an IND-CCA secure public-key encryption scheme, let
NIZK be a non-interactive zero knowledge proof system with perfect completeness,
computational zero knowledge and statistical simulation soundness, let H be a
collision-resistant hash function family, let PPRF be a puncturable pseudorandom
function and let Obf be an iO-secure obfuscator that is also DI-secure w.r.t. the
class of samplers described in Game4. Then, the updatable functional encryption
scheme UFE[PKE,NIZK,H,PPRF,Obf] detailed in Sect. 3.2 is selectively secure
(as per definition in Fig. 8).

Proof (Outline). The proof proceeds via a sequence of games as follows.

Game0: This game is identical to the real SEL game when the challenge bit
b = 0, i.e. the challenger encrypts D0 in the challenge ciphertext.

Game1: In this game, the common reference string and NIZK proofs are simu-
lated. More precisely, at the beginning of the game, the challenger executes
(crs, tp) ←$ Sim0(1λ) to produce the crs that is included in the mpk, and
proofs in the challenge ciphertext are computed with Sim1 and tp. The dis-
tance to the previous game can be bounded by the zero-knowledge property
of NIZK.

Game2 : Let T0 := {node(i,j)0 } be the perfectly balanced tree resulting from the
encoding of D0 with tag0, and T1 := {node(i,j)1 } the one resulting from the
encoding of D1 with tag1, where (D0,D1) are the challenge messages queried
by the adversary and (tag0, tag1) are independently sampled random tags. In
this game, CT

(i,j)
1 in the challenge ciphertext encrypts node

(i,j)
1 ; the NIZK

proofs are still simulated. This transition is negligible down to the IND-CPA
security of PKE.

Game3: In this game we hardwire a pre-computed lookup table to each circuit
δ̂l, containing fixed inputs/outputs that allow to bypass the steps described
in Fig. 9. If the input to the circuit is on the lookup table, it will immediately
return the corresponding output. The lookup tables are computed such that
executing the tokens in sequence starting on the challenge ciphertext will
propagate the execution over D0 in the left branch and D1 in the right branch.
Because the challenge ciphertext evolves over time as tokens are executed, to
argue this game hop we must proceed by hardwiring one input/output at the
time, as follows: (1) We hardwire the input/output of the regular execution
[iO property of Obf]; (2) we puncture the PPRF key of δ̂l on the new hardwired

360 A. Arriaga et al.

Hardcoded: Transition circuit δ, token-id tid∗, secret key sk0, puncturable PRF key k,
public keys pk0 and pk1, common reference string crs, hash function H and bit-length
constants (l1, l2, l3). Input: Tree T.

1. Verify the NIZK proof in each node of tree T, and decrypt the first ciphertext of
each node with sk0. Let T be the resulting decrypted tree.

∀(i, j) ∈ N
2 : node

(i,j) ∈ T,

parse node
(i,j)

as (CT
(i,j)
0 ,CT

(i,j)
1 , π(i,j)) or return ⊥

if NIZK.Verify(crs, x(i,j), π(i,j)) = false return ⊥
node(i,j) ← PKE.Dec(sk0,CT

(i,j)
0)

let T := {node(i,j)}

2. On the decrypted tree T, verify the path of each leaf up to the root (i.e. intermediate
nodes must be equal to the hash of their children) and check that all leafs are
marked with the same random tag.

z ← max{i ∈ N : node(i,j) ∈ T, ∃j ∈ N}
∀j ∈ N : node(z,j) ∈ T,

∀i ∈ {(z − 1), ..., 0}
if node

(i,� j

2(z−i) �) �= H(node
((i+1),2� j

2(z−i) �)
, node

((i+1),(2� j

2(z−i) �+1))
) return ⊥

parse node(z,j) as (value(z,j), tag(z,j), position(z,j), counter(z,j)) or return ⊥
if ∃(j, j′) ∈ N

2 : node(z,j) ∈ T ∧ node(z,j
′) ∈ T ∧ tag(z,j) �= tag(z,j

′) return ⊥

3. Read the token-id, address and state of the current step encoded in tree T. Check
that the token-id matches the one hardcoded in this token. Then, evaluate the
transition circuit δ.

read (tid, addr, st) with fixed bit-length (l1, l2, l3) from T or return ⊥
if tid �= tid∗ return ⊥
(value(z,addr), st, addr, y) ← δ(st, value(z,addr))

4. If the transition circuit δ outputs some result y then increase the token-id and reset
the internal state and address.

if y �= ε then tid ← tid + 1 ; st ← 0 ; addr ← 0

5. Write the (possibly new) token-id, address and state to tree T, update the counters
of leaf nodes and recompute the path of each leaf up to the root.

write (tid, addr, st) with fixed bit-length (l1, l2, l3) to T
∀j ∈ N : node(z,j) ∈ T, counter(z,j) ← counter(z,j) + 1
∀j ∈ N : node(z,j) ∈ T, ∀i ∈ {(z − 1), ..., 0},

node
(i,� j

2(z−i) �) ← H(node
((i+1),2� j

2(z−i) �)
, node

((i+1),(2� j

2(z−i) �+1))
)

6. Re-encrypt all nodes of T (as before, encrypt under pk0 and pk1 and add NIZK
proofs under crs). To extract the necessary random coins, we use the puncturable
PRF under key k, providing as input the input of this circuit, i.e. T.

∀(i, j) ∈ N
2 : node(i,j) ∈ T, (r

(i,j)
0 , r

(i,j)
1 , r

(i,j)
π) ← PPRF.Eval(k, (T, (i, j)))

∀(i, j) ∈ N
2 : node(i,j) ∈ T,

CT
(i,j)
0 ← PKE.Enc(pk0, node

(i,j); r
(i,j)
0); CT

(i,j)
1 ← PKE.Enc(pk1, node

(i,j); r
(i,j)
1)

π(i,j) ← NIZK.Prove(crs, x(i,j), (node(i,j), r
(i,j)
0 , r

(i,j)
1); r

(i,j)
π)

7. Finally, output the updated (encrypted) tree T, the address for next iteration and
possibly the outcome of the token.

return (T, addr, y)

Fig. 9. Specification of circuit ̂δ, as part of our updatable functional encryption scheme.

Updatable Functional Encryption 361

input [functionality preservation under puncturing of PPRF + iO property of
Obf]; (3) we replace the pseudorandom coins used to produce the hardwired
output with real random coins [pseudorandomness at punctured points of
PPRF]; (4) we use simulated NIZK proofs in the new hardwired output [zero-
knowledge property of NIZK]; (5) we compute circuit δl independently on the
right branch before encrypting the hardwired output [IND-CPA security of
PKE].

Game4: In all circuits δ̂l, we switch the decryption key sk0 with sk1 and per-
form the operations based on the right branch, i.e. we modify the circuits
such that node(i,j)←PKE.Dec(sk1,CT

(i,j)
1). This hop can be upper-bounded

by the distributional indistinguishability of Obf. To show this, we construct
an adversary (S,B) against the DI game that runs adversary A as follows.
Sampler S runs A0 to get the challenge messages (D0,D1) and circuits δl.
Then, it produces the challenge ciphertext (same rules apply on Game3 and
Game4), and compute circuits δ̂l according to rules of Game3 (with decryp-
tion key sk0) on one hand and according to rules of Game4 (with decryption
key sk1) on the other. Finally, it outputs the two vectors of circuits and the
challenge ciphertext as auxiliary information.
Adversary B receives the obfuscated circuits δl either containing sk0 or sk1
and the challenge ciphertext. With those, it runs adversary A1 perfectly sim-
ulating Game3 or Game4. B outputs whatever A1 outputs.
It remains to show that sampler S is computationally unpredictable. Suppose
there is a predictor Pred that finds a differing input for the circuits output by
sampler S. It must be because either the output contains a NIZK proof for a
false statement (which contradicts the soundness property of NIZK), or there
is a collision in the Merkle tree (which contradicts the collision-resistance of
H), or the predictor was able to guess the random tag in one of the cipher-
texts (which contradicts the IND-CCA security of PKE). Note that (1) the
random tag is high-entropy, so lucky guesses can be discarded; (2) we cannot
rely only on IND-CPA security of PKE because we need the decryption oracle
to check which random tag the predictor was able to guess to win the indis-
tinguishability game against PKE. We also rely on the fact that adversary A0

is legitimate in its own game, so the outputs in clear of the tokens are the
same in Game3 and Game4.

Game5: In this game, we remove the lookup tables introduced in Game3. We
remove one input/output at the time, from the last input/output pair added
to the first, following the reverse strategy of that introduced in Game3.

Game6: Here, the challenge ciphertext is computed exclusively from D1 (with
the same random tag on both branches). This transition is negligible down
to the IND-CPA security of PKE.

Game7: In this game, we move back to regular (non-simulated) NIZK proofs in
the challenge ciphertext. The distance to the previous game can be bounded
by the zero-knowledge property of NIZK.

Game8: We now switch back the decryption key to sk0 and perform the decryp-
tion operation on the left branch. Since NIZK is statistically sound, the circuits
are functionally equivalent. We move from sk1 to sk0 one token at the time.

362 A. Arriaga et al.

This transition is down to the iO property of Obf. This game is identical
to the real SEL game when the challenge bit b = 1, which concludes our
proof. ��

It is easy to check that the proposed scheme meets the correctness and efficiency
properties as we defined in Sect. 3.1 for our primitive. The size of the ciphertext
is proportional to the size of the cleartext. The size expansion of the token is
however proportional to the number of steps of its execution, as the circuit δ
must be appropriately padded for the security proof.

4 Future Work

The problem at hand is quite challenging to realize even when taking strong
cryptographic primitives as building blocks. Still, one might wish to strengthen
the security model by allowing the adversary to obtain tokens adaptively, or by
relaxing the legitimacy condition that imposes equal access patterns of extracted
programs on left and right challenge messages using known results on Oblivious
RAM. We view our construction as a starting point towards the realization of
other updatable functional encryption schemes from milder forms of obfuscation.

Acknowledgements. The authors would like to thank Karol Zebrowski for his contri-
bution to an earlier version of this work. Afonso Arriaga is supported by the National
Research Fund, Luxembourg, under AFR Grant No. 5107187, and by the Doctoral
School of Computer Science & Computer Engineering of the University of Luxem-
bourg. Vincenzo Iovino is supported by the National Research Fund, Luxembourg.
Qiang Tang is supported by a CORE (junior track) grant from the National Research
Fund, Luxembourg.

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. IACR Cryptology ePrint Archive, Report 2013/689 (2013)

2. Arriaga, A., Barbosa, M., Farshim, P.: Private functional encryption:
indistinguishability-based definitions and constructions from obfuscation. In:
Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp.
227–247. Springer, Cham (2016). doi:10.1007/978-3-319-49890-4 13

3. Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49096-9 6

4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi:10.1007/11761679 25

5. Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation.
J. Cryptol. 27(2), 317–357 (2014)

6. Bellare, M., Hoang, V., Rogaway, P.: Foundations of garbled circuits. In: CCS 2012,
pp. 784–796. ACM (2012)

http://dx.doi.org/10.1007/978-3-319-49890-4_13
http://dx.doi.org/10.1007/978-3-662-49096-9_6
http://dx.doi.org/10.1007/11761679_25

Updatable Functional Encryption 363

7. Bellare, M., Stepanovs, I., Tessaro, S.: Contention in cryptoland: obfuscation, leak-
age and UCE. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563,
pp. 542–564. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 20

8. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

9. Canetti, R., Chen, Y., Holmgren, J., Raykova, M.: Succinct adaptive garbled RAM.
IACR Cryptology ePrint Archive, Report 2015/1074 (2015)

10. Canetti, R., Holmgren, J.: Fully succinct garbled RAM. In: ITCS 2016, pp. 169–
178. ACM (2016)

11. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-
cation of iterated circuits and RAM programs. IACR Cryptology ePrint Archive,
Report 2014/769 (2014)

12. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and
indistinguishability obfuscation for RAM programs. In: STOC 2015, pp. 429–437.
ACM (2015)

13. Desmedt, Y., Iovino, V., Persiano, G., Visconti, I.: Controlled homomorphic
encryption: definition and construction. IACR Cryptology ePrint Archive, Report
2014/989 (2014)

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
2013, pp. 40–49. IEEE Computer Society (2013)

15. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM
revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 405–422. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 23

16. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM compu-
tation. In: FOCS 2014, pp. 404–4013. IEEE Computer Society (2014)

17. Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized
functionalities. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
325–351. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 13

18. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
668–697. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 26

19. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-38348-9 42

20. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990, pp. 427–437. ACM (1990)

21. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, Report 2010/556 (2010)

22. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC 2014, pp. 475–484. ACM (2014)

23. Yao, A.: How to generate and exchange secrets. In: FOCS 1986, pp. 162–167. IEEE
Computer Society (1986)

http://dx.doi.org/10.1007/978-3-662-49099-0_20
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-642-55220-5_23
http://dx.doi.org/10.1007/978-3-662-46497-7_13
http://dx.doi.org/10.1007/978-3-662-46497-7_26
http://dx.doi.org/10.1007/978-3-642-38348-9_42

Linking-Based Revocation for Group Signatures:
A Pragmatic Approach for Efficient

Revocation Checks

Daniel Slamanig, Raphael Spreitzer(B), and Thomas Unterluggauer

IAIK, Graz University of Technology, Graz, Austria
{daniel.slamanig,raphael.spreitzer,thomas.unterluggauerg}@iaik.tugraz.at

Abstract. Group signature schemes (GSS) represent an important
privacy-enhancing technology. However, their practical applicability is
restricted due to inefficiencies of existing membership revocation mech-
anisms that often place a too large computational burden and commu-
nication overhead on the involved parties. Moreover, it seems that the
general belief (or unwritten law) of avoiding online authorities by all
means artificially and unnecessarily restricts the efficiency and practi-
cality of revocation mechanisms in GSSs. While a mindset of preventing
online authorities might have been appropriate more than 10 years ago,
today the availability of highly reliable cloud computing infrastructures
could be used to solve open challenges. More specifically, in order to
overcome the inefficiencies of existing revocation mechanisms, we pro-
pose an alternative approach denoted as linking-based revocation (LBR)
which is based on the concept of controllable linkability. The novelty of
LBR is its transparency for signers and verifiers that spares additional
computations as well as updates. We therefore introduce dedicated revo-
cation authorities (RAs) that can be contacted for efficient (constant
time) revocation checks. In order to protect these RAs and to reduce the
trust in involved online authorities, we additionally introduce distrib-
uted controllable linkability. Using latter, RAs cooperate with multiple
authorities to compute the required linking information, thus reducing
the required trust. Besides efficiency, an appealing benefit of LBR is
its generic applicability to pairing-based GSSs secure in the BSZ model
as well as GSSs with controllable linkability. This includes the XSGS
scheme, and the GSSs proposed by Hwang et al., one of which has been
standardized in the recent ISO 20008-2 standard.

1 Introduction

Group signature schemes (GSSs) [17] represent an important privacy-enhancing
technology. Such schemes allow users to anonymously prove affiliation to a man-
aged group by issuing so called group signatures. Although such signatures do
not reveal the identity of the users, in case of dispute a dedicated opening author-
ity is able to identify a signer. GSSs are especially attractive in scenarios like

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 364–388, 2017.
DOI: 10.1007/978-3-319-61273-7 18

Linking-Based Revocation for Group Signatures 365

public transport or subscription-based services, where there is no need for ser-
vice providers to uniquely identify single users, but only to ensure that they
are allowed to use the respective services. Nevertheless, service providers typ-
ically want to ensure that group membership can be efficiently revoked. How-
ever, membership revocation is a non-trivial task as (1) users are anonymous
and their privacy should be protected even in case of revocation, and (2) the
revocation of one user should not affect the signing capabilities of other users.
Even though membership revocation has gained increasing attention in the last
decade [2,8,9,23,24,38,44], existing mechanisms place a computational burden
and communication overhead on signers and verifiers.

While it seems that existing concepts aim to prevent online authorities by all
means, we show that a paradigm shift towards online authorities—which we will
protect by means of threshold cryptography—allows for the most efficient (con-
stant time), and most generic revocation mechanism for existing GSSs. Given
a signature in question and a revocation list, a revocation authority determines
the revocation status of a signer by using a dedicated trapdoor to (anonymously)
link the signature against a list of revoked members. Hence, this authority still
preserves the signer’s anonymity as it is strictly less powerful than an opening
authority who can determine the actual identity of the signer. Our somewhat
unconventional proposal of using an online revocation authority overcomes many
issues of existing revocation mechanisms and, thus, we believe that our revoca-
tion mechanism represents a valuable addendum to the portfolio of revocation
mechanisms.

Online Requirement. Although our approach relies on an online authority for
revocation checks, we argue that today many devices are already connected to the
Internet permanently and rely on the availability of cloud computing infrastruc-
tures. The establishment of the Internet of Things (IoT) requires devices being
connected to the Internet, either via WiFi or even embedded SIM cards, for
various (sometimes dubious) reasons. Nevertheless, irrespective of whether exist-
ing IoT devices provide any useful features, the point is that many devices are
already interconnected among each other and also extensively use Internet ser-
vices based on cloud computing infrastructures. Thus, we consider an online RA
as absolutely reasonable. In cases where network connectivity and availability are
not an issue, our proposed revocation mechanism provides significant advantages
compared to other revocation mechanisms. Further, since signature verification
is decoupled from the online revocation checks, these revocation checks can also
be postponed in case the revocation authority might not be available. Besides,
as we will discuss later, we protect the required trapdoor information by means
of threshold cryptography in order to reduce the risk of its exposure.

Contributions. The contributions of this work can be summarized as follows.

– We suggest a paradigm shift towards online revocation checks for group sig-
natures by relying on online revocation authorities (RAs). Although currently
this seems to be prevented by all means, it, however, allows us to come up

366 D. Slamanig et al.

with a privacy-respecting constant-time revocation mechanism that can be
generically applied to a large class of pairing-based GSSs. In doing so, we use
the concept of controllable linkability for group signatures.

– We introduce the concept of distributed controllable linkability. This is a
threshold variant of controllable linkability, which requires a predefined num-
ber t of linking authorities to cooperate in order to link signatures. Using this
concept, we can reduce the trust in and also improve the robustness of RAs.
Besides, it may be of independent interest as a feature on its own.

– We demonstrate the ease of applicability of the linking-based revocation
mechanism using the well-known XSGS group signature scheme [21].

2 State-of-the-Art in Revocation and Motivation

Below we discuss efficiency considerations of existing revocation mechanisms
using the metric of additional computations and updates required for signers as
well as verifiers. Subsequently, R denotes the number of revoked members and
N the number of group members.

Basic Approaches. The most basic approach is reissuance-based revocation [1]
which requires all non-revoked members to receive new group signing keys. Sim-
ilarly, credential-update revocation (CUR) [7] requires non-revoked members to
update their group signing key on every revocation. Both mechanisms suffer
from additional communication and computation overhead in case of frequent
revocations. In particular, O(R) (multi-)exponentiations for signers.

Blacklist Revocation. Certificate-based blacklist revocation (BR-C) [10]
requires signers to provide a zero-knowledge proof that they are not listed on a
revocation list (RL), which means that signers/verifiers need to perform O(R)
computations for every sign/verify operation and the signature size also increases
linearly in R. Similar revocation mechanisms relying on revocation lists of pri-
vate keys or signatures have been proposed for direct anonymous attestation
(DAA) settings [11,12]. Again, the computational effort as well as the signa-
ture size increases linearly with the revocation list. Accumulator-based blacklist
revocation (BR-A) [3,13,24] applies (universal) cryptographic accumulators to
allow for a compact and constant-size representation of RL as well as constant-
size proofs to prove (non-)membership. Blacklists of ordered credential-identifier
pairs [42] also lead to constant costs for signers and verifiers. But signers need
to fetch an updated RL in the size of O(R) (and O(N) in predecessor schemes
[46,47]) on each revocation, and the public key size is O(N) (or O(

√
N) with

significantly higher signing costs).

Verifier-Local Revocation. In verifier-local revocation (VLR) [8,44,45,62],
verifiers when given a signature in question test if a certain relation holds for
the signature and each entry on RL. The validity of the relation indicates that
the signer has been revoked. Consequently, verifiers need to update RL on every

Linking-Based Revocation for Group Signatures 367

revocation and a check during verification costs O(R) (typically group operations
or even pairing evaluations). Although [8] proposes a constant-time revocation
check, it only works if the same message and the same randomness is used for all
signatures. This, however, is only reasonable for specific applications like DAA.
Other disadvantages of VLR are that signatures of revoked members become
linkable for all verifiers, i.e., it lacks backward unlinkability, and that anyone
in possession of RL can link signatures of revoked users. Although this can be
fixed and backward unlinkability can be added, e.g., by introducing time inter-
vals [44], this still adds additional non-trivial overhead. Besides, [22] proposed
time-token dependent linking which can also be applied for VLR. However, sig-
natures become publicly linkable (without any trapdoor information) if users
sign more than once per time period, a separate RL must be maintained for
each time period, and RLs need to be recomputed entirely for each time period
since the revocation tokens of users change in each time period. While one could
simply encrypt these revocation tokens to be decryptable by revocation authori-
ties only, i.e., to prevent public linkability, this would increase the signature size
in part due to additional zero-knowledge proofs. In contrast, our approach pre-
serves the privacy of signers and does not increase the signature size as it relies
on the information already available in standard group signature schemes. Chow
et al. [18] proposed a similar concept for membership revocation in ID-based ring
signatures, a related but different concept. Group signatures with probabilistic
revocation (GSPR) [38] allow for constant-time revocation checks at the expense
of probabilistic revocation guarantees. However, in contrast to VLR the signer
has to perform O(m) expensive operations, where m is a fixed value represent-
ing the number of signatures that can be issued by a signer before signatures
become publicly linkable. Consequently, there is a trade-off between the stor-
age/computational requirements for signers and the requirement for performing
the group setup phase again. Moreover, the size of the group public key is O(m)
and the GM needs to process O(m) user-specific tokens in order to update RL.

Revocation Mechanisms for Standard Model GS. For the sake of com-
pleteness we want to mention that there are also various revocation mechanisms
designed to be compatible with the Groth-Sahai proof system [28] (instead of
relying on Σ-protocols and the random oracle model). State-of-the-art mech-
anisms are due to Libert, Peters, and Yung (LPY) [40], which rely on the
ciphertext of a broadcast encryption scheme as a RL. Later, LPY [39] has
been improved to achieve constant size group signing keys. Attrapadung et al.
(AEHS) [2] further reduced the revocation list to a constant size. However, signa-
ture sizes for LPY are about 100 and 144 group elements respectively, and AEHS
produces even larger signatures. Thus, we exclude these revocation mechanisms
from our comparison below, since we put a focus on group signature schemes
that allow signers to be executed in resource-constrained environments as will
be discussed in our motivating example later in this section.

Our Proposal (LBR). Existing revocation mechanisms are either inefficient
or, in the worst case, even impossible to be implemented in resource-constrained

368 D. Slamanig et al.

environments, which is why revocation has been identified as the major bot-
tleneck of state-of-the-art GSSs [41]. We address this problem by introduc-
ing linking-based revocation (LBR). LBR allows for a constant-time revoca-
tion mechanism that can be generically applied to existing GSSs, and in par-
ticular PB-GSSs [21,29–32,49] following the sign-and-encrypt-and-prove (SEP)
paradigm [14,36]. Essentially, we rely on the feature of controllable linkability
[6,29–31,56] that allows a dedicated entity to determine whether two signa-
tures have been produced by the same (anonymous) signer. By replacing the
used public key encryption scheme of a GSS with its AoN-PKEET∗ variant
(cf. Sect. 3.1), this feature can be added to GSSs following the SEP paradigm
generically. The idea of LBR is that, in analogy to the online certificate status
protocol (OCSP) [54] which is widely used for certificate revocation checks in
the PKIX [19] setting1, an online party can be contacted for revocation checks.
To obtain robustness against compromise of online authorities, we introduce the
feature of distributed controllable linkability, which may be of independent inter-
est. When applying distributed controllable linkability to revocation, it allows
RAs to anonymously link a given signature—with the cooperation of at least two
linking authorities—against anonymous revocation tokens on RL. An additional
optimization even allows for constant-time revocation checks.

In contrast to existing revocation mechanisms, our mechanism is transparent
for signers and verifiers. Most importantly, LBR is efficient in the sense that
(1) no key updates or additional computations are required for signers, (2) no
expensive local revocation checks are required for verifiers, and (3) neither the
signature size nor the key size increases. While all existing revocation approaches
require signers and/or verifiers to fetch (possibly large) RLs from time to time,
our mechanism relies on an always-online authority that is available for revoca-
tion checks. Although an online authority for such tasks might be considered
as being unconventional or impractical at first, we believe that such an always-
online requirement for specific authorities is absolutely reasonable.2 In order to
protect these RAs against attacks, we distribute the linking trapdoor required
for the revocation checks to multiple entities. Consequently, an attacker would
have to corrupt multiple entities to recover the linking trapdoor.

Comparison. Table 1 compares existing revocation mechanisms for practical
group signature schemes in the random oracle model regarding their efficiency
and practicality. For each mechanism, we compare the memory overhead for the
group public key (GPK) and the signature as well as the computational overhead
for updating keys/credentials, signature generation, and signature verification.
Furthermore, we indicate the amount of information that needs to be fetched by
signers and verifiers in case of revocation. As some schemes require both signers
and verifiers to fetch updates, we also indicate whether these updates must be

1 A recent study [51] even states that OCSP is the most popular approach for revo-
cation checks in the PKIX setting.

2 An approach similar in spirit to our approach has recently also been discussed in the
context of anonymous credential systems (cf. [60]).

Linking-Based Revocation for Group Signatures 369

synchronized, i.e., whether both parties need to have the same update-version
as otherwise valid signatures cannot be computed and verified. Last but not
least, we indicate whether signers and verifiers must be online for the revocation
mechanism to work, where ♦ means semi-online, i.e., signers and verifiers can
decide when to go online to fetch the necessary updates.

Table 1. Comparison of revocation mechanisms.

Type
Overhead memory Overhead time Updates

Synchronized
Online

GPK Signature Update (signer) Sign Verify Signers Verifiers Signers Verifiers

CUR [7,30] − − O(R) − − O(R) O(1) ♦ ♦
BR-C [10] − O(R) − O(R) O(R) O(R) O(R) ♦ ♦
BR-ID [42] O(

√
N) O(1) − O(1) O(1) O(R) O(1) ♦ ♦

BR-A [3,13,24] − O(1) − O(1) O(1) O(1) O(1) ♦ ♦
VLR [8] − − − − O(R) − O(R) − ♦
GSPR [38] O(m) O(1) − O(m) O(1) − O(1) − ♦
LBR − − − − O(1) − − −

Although VLR seems to provide similar advantages and features as LBR, our
approach of LBR only allows RAs to link signatures, which is not the case within
VLR as users can link signatures themselves. Thus, LBR overcomes the deli-
cate issue of revoked members losing their anonymity. In addition, our proposed
revocation mechanism can be generically applied to many PB-GSSs following
the SEP paradigm, which covers a large class of state-of-the-art and practically
efficient GSSs. As we will see below, our approach of LBR provides dedicated
advantages and superior features for specific scenarios.

Motivating Example. As pairing-based cryptography has been optimized for
resource-constrained devices [15,16,27,33,52,59], PB-GSSs have become entirely
practical, at least when considering the performance of signature generation
only. For instance, GSSs have been proposed as a privacy-preserving mecha-
nism for public transport systems [34]. Their application allows passengers to
anonymously prove possession of a valid ticket, but the service provider cannot
identify passengers. Still, revocation of misbehaving passengers by invalidating
tickets must be possible and these revocations should not affect other tickets in
any way. Clearly, frequent updates through authenticated channels between the
tickets and the service provider are impractical, as they would affect the valid
tickets. Besides, performance is a crucial issue and, hence, the invalidation of
one ticket should not lead to additional computations for the remaining (valid)
tickets. While VLR might be a possible solution to overcome these problems,
public transport systems usually support tickets with a limited validity, i.e., 1-h
tickets, daily tickets, monthly tickets, and yearly tickets. Such tickets must be
immediately revoked as soon as their validity ends and, thus, immediate revoca-
tion of tickets must be efficiently possible. Hence, VLR still faces the following
problems. (1) RLs lead to O(R) computational effort for verifiers which is espe-
cially daunting in case of large RLs, and (2) RLs change frequently and must

370 D. Slamanig et al.

be distributed in a timely manner, i.e., immediately after the revocation of one
ticket, to many verifiers. Clearly, LBR overcomes these issues as it gets rid of
the computational overhead for signers as well as verifiers and the need to com-
municate any revocation updates to signers and verifiers. Applying LBR allows
the service provider to implement an existing PB-GSS (e.g. [21,29–31,49]) as a
means to prove possession of a valid ticket. Turnstiles and gates that check the
validity of a ticket are connected to the revocation authority. For each ticket
to be verified, turnstiles request the revocation check via specifically deployed
RAs and depending on the returned decision, access is either granted or denied.
Considering some of the biggest metro systems around the world with several
hundred millions of served passengers per year, e.g., Beijing, Moscow, and NY
City, the efficiency of the used revocation mechanism is of utmost importance.
Besides, also the European Union demands for privacy protection of individuals
and the principle of data minimization in transportation systems within the EU
Directive 2010/40. Hence, GSSs will likely play an important role in the future
and efficient revocation mechanisms will be required.

3 Preliminaries

Let G1 = 〈g1〉, G2 = 〈ĝ2〉, and GT be cyclic groups of prime order p. We write
elements in G2 as ĝ, v̂, etc. A bilinear map e : G1 × G2 → GT is a map, such
that e(ua, v̂b) = e(u, v̂)ab for all u ∈ G1, v̂ ∈ G2, and a, b ∈ Zp. Additionally, we
require e(g1, ĝ2) �= 1 and e to be efficiently computable. If G1 = G2, then e is
called symmetric (Type 1) and asymmetric (Type 2 or Type 3) otherwise. For
Type 2 pairings there is an efficiently computable isomorphism ψ : G2 → G1,
whereas for Type 3 pairings no such efficient isomorphism is known. We (infor-
mally) state the used assumptions below.

DDH. Let G be a cyclic group of prime order p and g a generator. The DDH
assumption states that given (g, ga, gb, gc) it is hard to decide whether ab = c.

(S)XDH. Let G1, G2, and GT be three cyclic groups of prime order p and
e : G1 × G2 → GT a pairing. The (S)XDH assumption states that the DDH
assumption holds in G1 (and G2).

A function ε : N → R
+ is called negligible if for all c > 0 there is a k0 such that

ε(k) < 1/kc for all k > k0. We use ε to denote such a negligible function.

3.1 All-or-Nothing Public Key Encryption with Equality Tests

All-or-nothing public key encryption with equality tests (AoN-PKEET) [57]
allows entities in possession of a trapdoor to perform equality tests on cipher-
texts without learning the underlying plaintexts. A modification denoted as AoN-
PKEET∗ [56] allows IND-CPA security against outsiders and requires compati-
bility with efficient zero-knowledge proofs of knowledge (ZKPoK) of plaintexts.
Such an AoN-PKEET∗ scheme (KeyGen, Enc, Dec, Aut, Com) is a conventional
(at least IND-CPA secure) public key encryption scheme (KeyGen, Enc, Dec)
(compatible with efficient ZKPoK) augmented by two algorithms Aut and Com.

Linking-Based Revocation for Group Signatures 371

KeyGen(1λ): The key generation algorithm takes a security parameter λ, and
generates a public-private key pair (pk, sk) used for encryption and decryption
operations.

Enc(pk,m): The encryption algorithm takes the public key pk, and a message
m, and returns the encryption c of m under pk.

Dec(sk, c): The decryption algorithm takes the private key sk, and a ciphertext
c, and returns the message m.

Aut(sk): Takes the private decryption key sk of the public key encryption scheme
and returns the trapdoor tk used for equality tests.

Com(T, T ′, tk): Takes two ciphertexts (T , T ′) and a trapdoor tk and returns true
if T and T ′ encrypt the same (unknown) message and false otherwise.

Definition 1 [56]. An AoN-PKEET∗ scheme is secure if it is sound, provides
OW-CPA security against Type-I adversaries (trapdoor holders) and if the under-
lying encryption scheme provides IND-CPA/IND-CCA2 security against Type-II
adversaries (outsiders).

Soundness requires correctness of the public key encryption scheme and for
all (pk, sk) ← KeyGen(1λ) one requires that Com(Enc(pk,m), Enc(pk,m′),
Aut(sk)) = true if and only if m = m′. Subsequently, we provide definitions
for OW-CPA as well as IND-CPA/IND-CCA2 security, where M denotes the mes-
sage space of a scheme.

Definition 2 (OW-CPA security). An AoN-PKEET∗ scheme is OW-CPA
secure against Type-I adversaries, if for all PPT adversaries A and security
parameters λ there is a negligible function ε such that:

Pr

[
(pk, sk) ← KeyGen(1λ), tk ← Aut(sk),m ←R M,
c ← Enc(pk,m),m∗ ← A(pk, tk, c) : m∗ = m

]
≤ ε(λ).

Definition 3 (IND-CPA/IND-CCA2 security). An AoN-PKEET∗ scheme is
IND-CPA/IND-CCA2 secure against Type-II adversaries, if for all PPT adver-
saries A and security parameters λ there is a negligible function ε such that:

Pr

⎡
⎣ (pk, sk) ← KeyGen(1λ), tk ← Aut(sk),

(m0,m1, s) ← AO1(pk), b ←R {0, 1}, c ← Enc(pk,mb)
b∗ ← AO2(pk, c, s)

: b∗ = b

⎤
⎦ ≤ 1/2 + ε(λ)

where m0,m1 ∈ M, and

O1(·) = ⊥ and O2(·) = ⊥ for IND − CPA
O1(·) = ODec and O2(·) = ODec for IND − CCA2

and ODec represents the decryption oracle, and A is not allowed to query the
decryption oracle for the challenge ciphertext c.

Instantiation Based on ElGamal Encryption. For reasons of simplicity we
will demonstrate our approach based on ElGamal encryption (instead of its twin

372 D. Slamanig et al.

variants [25,48,53] as demonstrated in Sect. 6), but we stress that it also works for
other encryption schemes used in the pairing setting like linear ElGamal [7] (and
its corresponding twin variant) or Cramer-Shoup encryption [20]. Nevertheless, if
AoN-PKEET∗ is instantiated with ElGamal encryption and assuming the private
decryption key to be ξ ∈ Zp and the corresponding public key h = gξ ∈ G1, the
resulting ciphertext is (T1 = gα, T2 = m · hα) ∈ G

2
1 for a random α ∈ Zp. Given

two ciphertexts T and T ′, and the trapdoor key tk = (r̂, ŝ = r̂ξ) ← Aut(ξ) for a
random r̂ ∈ G2, the equality test on the encrypted messages can be performed via
the Com(T, T ′, tk) algorithm of the AoN-PKEET∗ scheme by evaluating whether
the following holds: e(T2, r̂) · e(T1, ŝ)−1 = e(T ′

2, r̂) · e(T ′
1, ŝ)

−1.

3.2 Sign-and-Encrypt-and-Prove Paradigm

GSSs following the SEP paradigm consist of the following three building blocks:
(1) a secure signature scheme DS = (KeyGens,Sign,Verify); (2) an at least IND-
CPA secure public key encryption scheme AE = (KeyGene,Enc,Dec); and (3) non-
interactive zero-knowledge proofs of knowledge (NIZKPKs). For schemes in the
ROM latter are honest-verifier zero-knowledge proofs of knowledge made non-
interactive using the Fiat-Shamir transform (denoted as signatures of knowledge
(SoK) subsequently).

The group public key gpk consists of the public encryption key pke, and the
signature verification key pks. The master opening key mok is the decryption
key ske and the master issuing key mik is the signing key sks. During the joining
procedure a user i sends f(xi) to the issuer, where f(·) is a one-way function
applied to a secret xi. The issuer returns a signature cert ← Sign(sks, f(xi)) as
the user’s certificate. A group signature σ = (T, π) for a message M consists of
a ciphertext T ← Enc(pke, cert) and the following SoK π:

π ← SoK{(xi, cert) : cert = Sign(sks, f(xi)) ∧ T = Enc(pke, cert)}(M).

The above description provides an intuition for the SEP approach and there
exist different variations, e.g., sometimes cert is computed for xi instead of f(xi)
(which, however, does not yield constructions providing non-frameability), or T
may represent an encryption of f(xi) or g(xi) for some one-way function g(·).
This, however, is not important in the context of controllable linkability, where
it is only required that T contains the encryption of a constant, per-user unique
value cert.

3.3 Threshold Secret Sharing

A (t, n)-threshold secret sharing scheme allows to distribute a secret s to n parties
in a way such that it requires the cooperation of at least t parties to recover s,
while any set of up to t−1 parties learns nothing about s. An elegant and famous
(t, n)-threshold scheme based on polynomial interpolation has been proposed
by Shamir [55]. Here, to share a secret s, one chooses a random polynomial
F (x) = s +

∑t−1
�=1 a� · x� of degree t − 1 such that F (0) = s over some finite field.

Linking-Based Revocation for Group Signatures 373

Shares are of the form (i, F (i)) and any subset of size at most t− 1 will learn no
information about s. Given shares (i, F (i)) ∈ I such that |I| ≥ t, s can however
be efficiently recovered via s = F (0) =

∑
i∈I ci · F (i), where ci =

∏
j∈I,j �=i

j
j−i

are the corresponding Lagrange coefficients. We will use this scheme to share a
group element from a prime order group (cf. [4]).

3.4 Group Signatures with Controllable Linkability

Hwang et al. [29–31] introduced a model for GSSs with controllable linkability
that builds upon the well-established BSZ model [5] (although, Hwang et al. use
a weaker notion of anonymity). The group manager is logically split into (1) an
opening authority capable of opening signatures, (2) an issuing authority capable
of issuing signing keys to group members, and (3) a linking authority capable
of linking signatures, i.e., an authority that can determine whether or not two
signatures have been issued by the same anonymous signer. However, the linking
key does not allow to actually identify the signer, which means that the linking
authority is strictly less powerful than the opening authority. We denote the
keys of these authorities as master opening key (mok), master issuing key (mik),
and master linking key (mlk), respectively. A GSS with controllable linkability
is a tuple GS-CL = (GkGen, UkGen, Join, Issue, GSig, GVf, Open, Judge, Link) of
PPT algorithms as defined in [5,29–31] and recalled subsequently.

GkGen(1λ): On input a security parameter λ, this algorithm generates the public
parameters and outputs a tuple (gpk, mok, mik, mlk), representing the group
public key, the master opening key, the master issuing key, and the master
linking key.

UkGen(1λ): On input a security parameter λ, this algorithm generates a user key
pair (uski, upki).

Join(uski, upki): On input the user’s key pair (uski, upki), this algorithm interacts
with Issue and outputs the group signing key gski of user i.

Issue(gpk,mik, reg): On input the group public key gpk, the master issuing key
mik, and the registration table reg, this algorithm interacts with Join to add
user i to the group.

GSig(gpk,M, gski): On input the group public key gpk, a message M , and a
user’s secret key gski, this algorithm outputs a group signature σ.

GVf(gpk,M, σ): On input the group public key gpk, a message M , and a signature
σ, this algorithm verifies whether the signature σ is valid with respect to the
message M and the group public key gpk and outputs true if the verification
succeeds and false otherwise.

Open(gpk, reg,M, σ,mok): On input the group public key gpk, the registration
table reg, a message M and a valid signature σ corresponding to this message,
and the master opening key mok, this algorithm returns the signer i together
with a publicly verifiable proof τ attesting the validity of the claim and ⊥
otherwise.

Judge(gpk,M, σ, i, upki, τ): On input the group public key gpk, a message M , a
valid signature σ, the claimed signer i, the user’s public key upki as well as

374 D. Slamanig et al.

a proof τ , this algorithm returns true if τ is a valid proof that i produced σ
and false otherwise.

Link(gpk,M, σ,M ′, σ′,mlk): On input the group public key gpk, a message M
and valid signature σ as well as a message M ′ and valid signature σ′, and the
master linking key mlk, this algorithm returns true if both signatures stem
from the same signer and false otherwise.

Security Properties for GSs with Controllable Linkability. For a GSS
with controllable linkability to be secure it needs to satisfy the following prop-
erties (cf. [5,29,30] for a formal description).

Anonymity: The identity of the signer can only be determined by the authority
in possession of the master opening key.

Traceability: The opening authority must be able to open a valid signature
and to prove the corresponding claim.

Non-frameability: An adversary should not be able to prove that an honest
user generated a signature unless this user indeed produced this signature.

Linkability: The master linking key should neither be useful to gain any infor-
mation for opening a signature nor for generating opening proofs. Further-
more, colluding parties—including users, the linker, and/or the opener—
should not be able to generate pairs of messages and signatures with con-
tradicting open and link decisions.

3.5 Concepts Related to Controllable Linkability

The following two concepts are related to controllable linkability and thus we
discuss their suitability to implement linking-based revocation (LBR) subse-
quently. The first concept does not qualify for LBR due to privacy concerns
(public linkability of signatures). The second concept qualifies for LBR, but the
underlying linking mechanisms always requires computations linear in the num-
ber of revoked members. We briefly discuss both approaches below. For a more
detailed comparison of these concepts we refer the interested reader to [56].

Linkable Group Signatures. Constructions of GSSs relying on tracing-by-
linking [58,61] do not employ the SEP paradigm and, hence, no authority can
open a given signature. Only if a member signs more than k times, signatures of
this member become publicly traceable. Similarly, link-but-not-trace GSSs [43]
allow to publicly link signatures, while opening requires all users to prove that
a signature has not been produced by them (disavowing), which is clearly not
possible for the member who actually produced this message. Both of these
approaches allow to publicly link signatures and are thus not appropriate can-
didates for a revocation mechanism we are envisioning.

Traceable Signatures. Traceable signatures [35] are a variant of group signa-
tures that allow the group manager to publish a tracing trapdoor for any group
member that can be used to trace signatures of the respective member. Conse-
quently, they could be used in a similar manner for revocation as controllable

Linking-Based Revocation for Group Signatures 375

linkability. Namely, on revocation one could call the Reveal algorithm for the
revoked user and provide the respective tracing trapdoor to the RA. Given a
signature, the RA uses all the tracing trapdoors (representing the revocation
list) and runs the Trace algorithm on the given signature and every tracing trap-
door from the list. However, while we achieve a constant-time revocation check,
traceable signatures would always require a linear check.

4 Building Blocks for GSs with Linking-Based Revocation

Subsequently, we briefly outline the high-level idea of our proposed revocation
mechanism. Afterwards, we introduce the necessary building blocks and modi-
fications, i.e., we show how to achieve constant-time revocation checks and we
also introduce the feature of distributed controllable linkability.

4.1 High-Level Idea of GSs with Linking-Based Revocation

We recall that the generic compiler in [56] allows to add controllable linkability
to PB-GSSs following the SEP paradigm that are secure in the BSZ [5] model.
Essentially, this generic compiler replaces the used encryption scheme (used to
encrypt membership certificates) with its AoN-PKEET∗ variant, which allows to
determine whether two ciphertexts encrypt the same plaintext, without learning
the plaintexts. Thereby, controllable linkability allows a dedicated authority to
determine whether two signatures have been issued by the same unknown signer
by performing an equality test on the encrypted membership certificates. We
stress that the dedicated approaches to construct group signatures with control-
lable linkability in [29–31] implicitly use the same idea and thus can also be used
in combination with our revocation approach. Technically, they do not directly
apply AoN-PKEET∗ to the membership certificate, but another user-related
value. Nevertheless, one can apply our subsequently discussed ideas analogously.

Based on the concept of controllable linkability, the idea of linking-based
revocation is as follows. A verifier first verifies a given signature before contacting
a dedicated RA for the revocation check. Note that this also means that the
signature verification is decoupled from the actual revocation check and, thus,
revocation checks can also be postponed as in case of OCSP requests in the PKIX
setting. The RA is given the master linking key, a revocation list, e.g., a list of
signatures of revoked members, and a signature in question. For the revocation
check, the RA links the given signature against all entries on RL. If any of these
signatures links, the corresponding signer has been revoked. Figure 1 illustrates
this basic approach, which is, however, rather naive for the following reasons.

1. The revocation check is linear in the size of RL, i.e., has cost O(R).
2. If an attacker compromises the RA and steals the linking key, she would be

able to link any two signatures, which is clearly not desired.

Subsequently, we deal with these issues and gradually introduce the necessary
modifications to achieve (1) constant-time revocation checks, and (2) to remove
the single point of attack by distributing the linking key among multiple entities.

376 D. Slamanig et al.

RA1 (mlk, RL) ... RAn (mlk, RL)

Verifier1 Verifier2 Verifier3 Verifier4 Verifier5

σ

0/
1

Link(gpk, ·, σ, ·, σi,mlk) for 0 ≤ i < |RL|

Fig. 1. Naive (insecure) instantiation of linking-based revocation: an attacker can steal
the linking key mlk by compromising a single revocation authority.

4.2 Constant-Time Revocation Checks

To obtain constant-time revocation checks, we modify the Com(T, T ′, tk) algo-
rithm of the AoN-PKEET∗ scheme in a way that it does no longer decide whether
two ciphertexts encrypt the same message, but instead returns a value—the revo-
cation token—that is computed from a given ciphertext T and the trapdoor tk.
We stress that we cannot generically decide for any AoN-PKEET∗ whether this
is possible, but it is in fact possible for all natural ElGamal-style AoN-PKEET∗

schemes in the pairing setting. For instance, for conventional ElGamal encryp-
tion this yields revocation tokens of the form e(T2, r̂) · e(T1, ŝ)−1 = e(m, r̂).
Subsequently we denote such an invocation as t ← Com(T,⊥, tk).

Security Definition. In order to reason about the security of such a mechanism
when applied to revocation, we introduce the notion of token indistinguishabil-
ity. Token indistinguishability considers an adversary that does not know the
trapdoor tk but for a ciphertext T = (T1, T2) on any message m observes tokens
t of the form e(T2, r̂) · e(T1, t̂)−1 = e(m, r̂). This information, however, does not
allow the adversary to reason about any tokens seen in the future.

Definition 4 (Token Indistinguishability). An AoN-PKEET∗ scheme is
T-IND, if for all PPT adversaries A and security parameters λ there is a negli-
gible function ε such that:

Pr

⎡
⎢⎢⎣

(pk, sk) ← KeyGen(1λ), tk ← Aut(sk),
s ← AORMsg(pk),m ←R M, c ← Enc(pk,m),
b ←R {0, 1}, t0 ← Com(c,⊥, tk), t1 ←R T
b∗ ← AORMsg(pk,m, tb, s)

: b∗ = b

⎤
⎥⎥⎦ ≤ 1/2 + ε(λ)

where M represents the message space, T represents the token space, and ORMsg

represents the oracle to generate random messages and corresponding tokens
(mi, ti), such that mi ←R M and ti ← Com(Enc(pk,mi),⊥, tk).

Lemma 1. Under the DDH assumption, AoN-PKEET∗ based on ElGamal in
G1 in an XDH setting is T-IND.

Linking-Based Revocation for Group Signatures 377

Proof (Lemma 1). Given an adversary A that breaks the T-IND of AoN-
PKEET∗, we show how to construct an adversary B against DDH. Let
(g, ga, gb, gc) be a DDH instance given to B. B randomly generates a private key
sk and a corresponding public key pk, and sets tk ← Aut(sk), i.e., B implicitly sets
r̂ = ĝb. A is now allowed to query ORMsg, which B answers as (gmi , e((gb)mi , ĝ))
for a random mi ∈ Zp. Eventually, A receives the challenge (ga, e(gc, ĝ)) and
outputs its guess. It is clear that if the DDH instance is valid, then the challenge
represents a valid message-token tuple and is an independent and random ele-
ment otherwise. Thus, we perfectly simulate the T-IND game for A and it is clear
that whenever A breaks T-IND we can break DDH with the same probability. �

4.3 Distributed Controllable Linkability

Due to the fact that our proposed revocation mechanism relies on an always-
online revocation authority, the attack surface is significantly larger than in case
of an offline authority. Essentially, we want to ensure that an attacker cannot
steal the master linking key mlk by compromising such an authority. In order to
prevent such a single point of failure, we thus introduce threshold AoN-PKEET∗

which then enables us to realize distributed controllable linkability. Thereby, we
reduce the trust in the linking authority and also obtain more robustness. In a
similar manner Ghadafi [26] introduced distributed tracing, such that multiple
opening authorities must cooperate in order to open a signature.

The basic idea is to distribute the trapdoor tk ← Aut(sk) of an AoN-PKEET∗

primitive among n entities using a (t, n)-secret sharing scheme. Then, the coop-
eration of at least t authorities is required to recover the trapdoor tk or to employ
the trapdoor to perform equality tests on encrypted data.

Formal Model. We define threshold AoN-PKEET∗ as a tuple of algorithms
T -PKEQ∗ = (KeyGen,Enc,Dec,Aut,DKAut,TShare,TSCom), where DKAut is
an algorithm that computes the shares for the trapdoor key, TShare is an algo-
rithm to compute the corresponding trapdoor shares for given ciphertexts, and
TSCom is an algorithm to perform the plaintext equality test based on a given
set of shares.

DKAut(tk, t, n): Takes a trapdoor key tk, a threshold t, and a number of total
shares n, and returns trapdoor shares (tki)n

i=1, such that a subset of at least
t entities is required to perform equality tests.

TShare(T, T ′, tki): Takes two ciphertexts (T , T ′) and a trapdoor share tki, and
returns corresponding shares Ci and C ′

i for the equality test.
TSCom({Ci, C

′
i}i∈I): Given a set of shares {Ci, C

′
i}i∈I with |I| ≥ t, the algo-

rithm combines the shares to perform the plaintext equality test and returns
true if T and T ′ encrypt the same (unknown) message and false otherwise.

Similarly to how the Com(T,⊥, tk) algorithm has been adapted to return an
anonymous revocation token t for a given ciphertext T , the TShare and TSCom
algorithms can be adapted to return appropriate shares and the corresponding

378 D. Slamanig et al.

revocation token, respectively. We denote an invocation that returns the cor-
responding shares as TShare(T,⊥, tki) and an invocation that combines these
shares to compute the revocation token as TSCom({Ci,⊥}).

Instantiation Based on ElGamal and Shamir’s Secret Sharing. Again,
we assume a conventional ElGamal-based AoN-PKEET∗ in a bilinear map set-
ting, where the private key is sk = ξ ∈ Zp and the trapdoor for plaintext equality
tests is tk = (r̂, ŝ = r̂ξ) ∈ G

2
2. We omit the KeyGen, Enc, Dec algorithms for the

sake of brevity and only present the relevant algorithms below.

DKAut(tk, t, n): Given a trapdoor key tk = (r̂, ŝ = r̂ξ), a threshold t, and a total
number of shares n, it computes the shares (tki)n

i=1. Therefore, it computes a
polynomial F (x) = r̂ ·

∏t−1
�=1 f̂x�

� for random f̂� ∈ G2, e.g., f̂� = ĝr for random
r ∈ Zp. Similarly, it computes a polynomial G(x) = ŝ ·

∏t−1
�=1 ĝx�

� for random
ĝ� ∈ G2. Finally, it returns the shares (tki = (i, r̂i ← F (i), ŝi ← G(i)))n

i=1.
TShare(T, T ′, tki): Given two ciphertexts (T, T ′) = ((T1, T2), (T ′

1, T
′
2)) as well as

a share of the trapdoor tki, it computes and returns the comparison shares
Ci = e(T2, r̂i) and Di = e(T1, ŝi) and C ′

i = e(T ′
2, r̂i) and D′

i = e(T ′
1, ŝi).

TSCom({Ci,Di, C
′
i,D

′
i}i∈I): Given a set of comparison shares {Ci,Di, C

′
i,

D′
i}i∈I with |I| ≥ t, the algorithm combines the shares to perform the plain-

text equality test. Therefore, it computes S and S′ as follows:

S =
∏
i∈I

CLi
i ·

(∏
i∈I

DLi
i

)−1

S′ =
∏
i∈I

C ′Li
i ·

(∏
i∈I

D′Li
i

)−1

where Li =
∏

j∈I
j

j−i for j �= i are the Lagrange coefficients. Finally, it
returns true if S = S′ and false otherwise.

The correctness of the above construction can be seen by inspection. Further-
more, the notion of token indistinguishability (T-IND) as defined in Sect. 4.2 also
holds for the threshold variant of AoN-PKEET∗.

5 GSs with Linking-Based Revocation

We now specify a GSS with linking-based revocation as a tuple GS-LBR =
(GkGen, UkGen, Join, Issue, GSig, GVf, Open, Judge, CheckStatus, Revoke). Next,
we outline the algorithms that change due to our modifications as well as the
additional algorithms CheckStatus and Revoke.

GkGen(1λ, t, n): On input a security parameter λ, a threshold t, and a total num-
ber of shares n, the algorithm outputs a tuple (gpk,mok,mik,mlk, (mlki)n

i=1).
First, it runs (pke, ske) ← KeyGen(1λ) of the (t, n)-threshold AoN-PKEET∗

scheme, sets mok = ske, and integrates pke into gpk. Then it runs
(tkpub, tkpriv) ← Aut(mok), sets the master linking key mlk = (tkpub, tkpriv),
and integrates tkpub into mik. Furthermore, it generates the shares mlki ←
DKAut(mlk, t, n) for the n distributed linking authorities. The rest remains
unchanged.

Linking-Based Revocation for Group Signatures 379

GVf(gpk,M, σ): On input the group public key gpk, a message M , and a signature
σ, the algorithm determines whether the signature σ is valid with respect to
the message M and the group public key gpk. It returns true if the signature
is valid and false otherwise.

CheckStatus(RL,L, σ): On input a revocation list RL containing anonymous revo-
cation tokens, a set of existing linking authorities L, and a signature σ, this
algorithm determines the revocation status of the signer corresponding to
signature σ. In order to determine the revocation status, it interacts with t
linking authorities Li ∈ L via the TShare algorithm and retrieves the corre-
sponding shares for the computation of the revocation token. Afterwards, it
uses the TSCom algorithm to combine these shares and to retrieve the final
revocation token. If the revocation token exists on the RL, the signer has
been revoked and it returns true. Otherwise, it has not been revoked and it
returns false.

Revoke(gpk,mik, reg,RL, i): On input of the group public key gpk, the master
issuing key mik, the registration table reg, the current revocation list RL, and
a user i to be revoked3, the algorithm computes the anonymous revocation
token ti corresponding to user i and adds it to the revocation list. It returns
the updated revocation list RL = RL ∪ {ti}.

5.1 Discussion and Security

Computation of Revocation Tokens. Staying with our conventional
ElGamal example and considering revocation tokens which are of the form
e(T2, r̂) · e(T1, ŝ)−1 = e(m, r̂), we observe that these tokens can be computed
in two different ways.

Given m and r̂: Given a message m, e.g., a user’s certificate, and r̂ allows to
compute revocation tokens t = e(m, r̂). Thus, if the issuer is given access to r̂,
the revocation token t can be computed with the information available during
the Issue algorithm and added to the registration table reg.

Given σ = (T, π) andmlk = (r̂, r̂ξ): Given a signature σ = (T, π) and the master
linking key mlk, such a revocation token t can also be computed on the fly,
i.e., t ← Com(T,⊥,mlk). Thus, such a token can be computed directly from a
given signature which allows for anonymous revocation of users as signatures
need not be opened before revocation.

Note that if the revocation tokens are precomputed and stored in the reg-
istration table reg, then an attacker who manages to get in possession of the
registration table reg and RL (but not necessarily the mlk) can conceptually
identify (open) all signers on RL as the same tokens can be found in reg. This
is not possible in case the revocation tokens are computed on the fly as in this
case the attacker cannot link entries on RL to entries in the registration table
reg since the revocation tokens do not yield any useful information (cf. T-IND).

3 Note that revocation can also be done based on a user’s signature by means of mlk
in which case the user’s identity will not be required.

380 D. Slamanig et al.

Revocation and Revocation Check. Eventually, in case of a revocation, the
token—that can either be computed (1) by opening a signature first or (2) from
the signature directly—is added to RL. The actual revocation check for a signa-
ture σ = (T, π) then requires the computation of the token t ← Com(T,⊥,mlk)
and a simple look-up operation, i.e., checking whether or not t ∈ RL, and con-
sequently can be performed in time O(1).4 Also note that, except for the party
in possession of mlk, the anonymous revocation token does not yield any useful
information and also does not endanger the privacy of signers.

Revocation Check with Threshold AoN-PKEET∗. We point out that a RA
in our setting does not hold the linking key mlk but always needs to contact a set
of at least t linking authorities (over authenticated and confidential channels) to
compute the required tokens. Thereby, we assume that no t linking authorities
can be compromised. Consequently, in contrast to the naive approach, breaking
into the (always-online) RA does not reveal the linking key. The only information
that an attacker gains by compromising RAs is a list of revocation tokens ti (and
possibly the corresponding messages mi and ciphertexts ci). However, as already
argued in Sect. 4.2, this does not allow the attacker to compromise the overall
anonymity of the scheme as this information does not allow her to distinguish
other tokens t from random. Although we only cover passive attacks, this is a
reasonable model because in case a RA gets compromised, the corresponding
authentication key will be revoked and replaced and the adversary can only
behave passive.

Figure 2 illustrates the basic idea of our secure instantiation of linking-
based revocation. A verifier first verifiers a given signature σ = (T, π) via
the GVf algorithm and afterwards wants to learn about the revocation status
of this signature. Therefore, it interacts with a RA by means of CheckStatus.
The RA interacts with t LAs in order to retrieve the corresponding shares
by means of {Ci,⊥} ← TShare(T,⊥,mlki) and, afterwards, RA employs the

LA1 (mlk1) LA2 (mlk2) LA3 (mlk3) ... LAn (mlkn)

RA1 (RL) ... RAn (RL)

Verifier1 Verifier2 Verifier3 Verifier4 Verifier5

Ch
ec
kS
ta
tu
s

T
Share T

Sh
ar
e

TSCom

Fig. 2. Schematic of our secure instantiation of linking-based revocation.

4 Hash tables allow to check whether or not t ∈ RL in constant time. For instance,
employing cuckoo hashing [50] allows for a worst-case complexity of O(1).

Linking-Based Revocation for Group Signatures 381

t ← TSCom({Ci,⊥}i∈I) algorithm to combine these shares, which yields the
revocation token t. After checking whether or not t exists on RL, the RA returns
the corresponding decision via CheckStatus.

As the RL as well as the learned tokens t do not endanger the privacy of group
members (cf. T-IND), the role of RAs can be distributed over multiple cloud ser-
vices. Besides, we assume that no t LAs can be compromised at once and since
the trapdoor shares mlki do not endanger the privacy of group members, these
trapdoor shares mlki can also be safely distributed over multiple cloud services.
Similar to traditional OCSP responses, the response from RAs must be signed.
Although one could also employ the feature of verifiable controllable linkabil-
ity [6] in order to prove that a given signature has or has not been revoked, this
would add an additional overhead for the verifier, especially in case the signer
has not been revoked. More specifically, if the signer is already revoked, the RA
needs to perform a proof that the given signature can be linked to one specific
entry on RL. In contrast, if the signer has not been revoked, the RA needs to
prove that the given signature has not been produced by any entity on RL and,
hence, a naive instantiation of verifiable controllable linkability means that the
proof increases linearly with the size of RL. In addition, such a naive instantia-
tion of verifiable controllable linkability would break backward unlinkability as
verifiers would receive a proof that a specific signature links to a specific entry
on RL (that must be publicly available in this case), which means that verifiers
could link all signatures of revoked members. Although backward unlinkability
can be achieved by using disjunctive zero-knowledge proofs (i.e., OR proofs),
such proofs also introduce non-trivial overhead for the involved entities. Thus,
we suggest that RAs sign the returned response, similar to traditional OCSP
responses. In order to reduce the communication and computational costs one
could additionally employ distributed OCSP (D-OCSP) as proposed by Koga
and Sakurai [37], such that all RAs have a different signing key although they
share the same public key.

Security Model. In contrast to other revocation mechanisms, the RA in our
setting only returns a boolean decision, i.e., whether or not the signer has been
revoked. Thus, unlike other revocation mechanisms, the RA does not reveal
additional revocation-related information which would require to integrate the
revocation feature into the formal security model of the GSS. Basically, LBR is
an application of the feature of controllable linkability and, thus, we do not need
to formally model our revocation mechanism in the security model. In fact, the
role of the RA is already covered by the security model of group signatures with
controllable linkability and our revocation mechanism is already considered in
the original model (although this functionality is now implemented by the RA).
Consequently, we also do not modify the security properties listed in Sect. 3.4.
In addition, correctness of revocation follows from correctness of the GSS with
controllable linkability.

382 D. Slamanig et al.

6 Applying Linking-Based Revocation

For illustration purposes, we show how linking-based revocation can be applied
to the eXtremely Short Group Signature scheme (XSGS) [21]. By means of the
generic compiler [56], XSGS can be turned into a GSS with controllable link-
ability for free (without any overhead). Since LBR is transparent for signers,
we only need to modify the GkGen algorithm. GkGen generates the additional
linking key, which allows the revocation authority (in cooperation with multi-
ple linking authorities) to perform the revocation check. Furthermore, we add
the algorithms CheckStatus and Revoke according to the model for GSs with
controllable linkability. The scheme is as follows (cf. [21] for more details):

GkGen(1λ, t, n): The master opening key is mok = (ξ1, ξ2) for two randomly cho-
sen elements ξ1, ξ2 ∈ Zp. The master linking key is mlk = (r̂, ŝ = r̂ξ1) for a ran-
domly chosen element r̂ ∈ G2. The master issuing key consists of mik = (γ, r̂)
for a randomly chosen element γ ∈ Zp. The master linking key mlk is distrib-
uted among n linking authorities via mlki = (r̂i, ŝi) ← DKAut(mlk, t, n). The
group public key is gpk = (g1, k, h = kξ1 , g = kξ2 , ĝ2, ŵ = ĝγ

2) ∈ G
4
1 × G

2
2.

Issue(gpk,mik, reg): The Issue algorithm interacts with the Join algorithm to
add a user to the group. Thereby, a user receives a membership certificate
(Ai, x, y), such that Ax+γ

i = g1h
y, where y ∈ Zp is known to the user only.

The issuing authority adds all the relevant information to the registration
table reg.

GSig(gpk,M, gski): Given the group public key gpk, a message M , and a user’s
signing key gski = (A, x, y) ∈ G1 × Z

2
p, a signature is computed as follows. It

randomly selects α, β ∈ Zp and encrypts the membership certificate:

T1 = kα T2 = Ahα T3 = kβ T4 = Agβ

Then it sets z = xα + y and computes the non-interactive zero-
knowledge proof of knowledge (α, β, x, z) as follows. It picks blinding values
rα, rβ , rx, rz ∈ Zp and computes the following values:

R1 = krα R3 = krβ R4 = hrα/grβ

R2 = e(T2, ĝ2)rx · e(h, ŵ)−rα · e(h, ĝ2)−rz

c = H(M,T1, T2, T3, T4, R1, R2, R3, R4)

sα = rα + cα sβ = rβ + cβ

sx = rx + cx sz = rz + cz

Finally, output the signature σ = (T1, T2, T3, T4, c, sα, sβ , sx, sz).
GVf(gpk,M, σ): Given the group public key gpk, a message M and a correspond-

ing signature σ, verification is performed by checking the following relations:

ksα = R1 · T c
1 ksβ = R3 · T c

3 hsα/gsβ = R4 ·
(

T2
T4

)c

e(T2, ĝ2)sx · e(h, ŵ)−sα · e(h, ĝ2)−sz = R2 ·
(

e(g1,ĝ2)
e(T2,ŵ)

)c

Linking-Based Revocation for Group Signatures 383

If all of the above relations hold, the algorithm returns true and false
otherwise.

CheckStatus(RL,L, σ): Given a revocation list RL consisting of revocation tokens
of revoked members, a list of available linking authorities L, and a signa-
ture σ, it determines the revocation status of the signer corresponding to
the signature σ in question. Therefore, it interacts with a subset of at least
t linking authorities I ⊆ L, i.e., |I| ≥ t, to retrieve t comparison shares
{Ci,Di,⊥,⊥} ← TShare((T1, T2),⊥,mlki) as follows:

Ci = e(T2, r̂i) Di = e(T1, ŝi).

Based on these comparison shares, it computes the revocation token t via
t = TSCom({Ci,Di,⊥,⊥}i∈I) as follows:

Li =
∏

j∈I,j �=i

j

j − i
t =

∏
i∈I

CLi
i ·

(∏
i∈I

DLi
i

)−1

Return true (revoked) if t ∈ RL and false (not revoked) otherwise.
Revoke(gpk,mik, reg,RL, i): Given the group public key gpk, the master issuing

key mik, the registration table reg, the current revocation list RL, and a user
i to be revoked5, the algorithm computes the revocation token ti = e(Ai, r̂)
for user i and adds it to the revocation list, i.e., RL = RL ∪ {ti}.

Security Analysis. We know that XSGS scheme is secure in the BSZ model (as
shown in [21]) and in particular uses twin ElGamal encryption. We simply use
its AoN-PKEET∗ version (according to the generic compiler [56]), which yields
a secure group signature with controllable linkability. Token indistinguishabil-
ity, as defined and shown for standard ElGamal in Sect. 4.2, also holds for twin
ElGamal and consequently an adversary cannot learn anything from the anony-
mous revocation tokens on RL.

7 Conclusion

It is well known that revocation mechanisms represent the major bottleneck in
group signature schemes (see e.g., [41]). However, the general belief that any
online authority must be prevented unnecessarily restricts the efficiency and
practicality of revocation in group signature schemes. In this paper, we showed
that the major drawbacks of existing revocation mechanisms, e.g., additional
computations/updates for signers and verifiers, can be overcome by a paradigm-
shift towards the incorporation of an online revocation authority. Since many
applications and services already rely on always-connected devices that perma-
nently interact with cloud computing infrastructures, the introduction of such an

5 Again, revocation can also be done based on a user’s signature σ = (T, π) by means
of mlk in which case the user’s identity will not be required.

384 D. Slamanig et al.

online revocation authority is absolutely reasonable. Considering (1) the signif-
icant performance gain (constant-time revocation checks), (2) the transparency
for signers as well as verifiers, and (3) the general applicability to well-established
PB-GSSs, we claim that our approach advances the open issue of efficient mem-
bership revocation in the context of GSSs. Hence, linking-based revocation repre-
sents a valuable contribution to the existing portfolio of revocation mechanisms.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions. Daniel Slamanig has been supported by the
H2020 project Prismacloud, grant agreement number 644962. Raphael Spreitzer and
Thomas Unterluggauer have been supported by the European Commission through the
FP7 program under project number 610436 (project MATTHEW).

References

1. Ateniese, G., Song, D.X., Tsudik, G.: Quasi-efficient revocation of group signatures.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg
(2003). doi:10.1007/3-540-36504-4 14

2. Attrapadung, N., Emura, K., Hanaoka, G., Sakai, Y.: A revocable group signature
scheme from identity-based revocation techniques: achieving constant-size revoca-
tion list. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS,
vol. 8479, pp. 419–437. Springer, Cham (2014). doi:10.1007/978-3-319-07536-5 25

3. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00862-7 20

4. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24632-9 19

5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30574-3 11

6. Blazy, O., Derler, D., Slamanig, D., Spreitzer, R.: Non-interactive plaintext (in-
)equality proofs and group signatures with verifiable controllable linkability. In:
Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 127–143. Springer, Cham
(2016). doi:10.1007/978-3-319-29485-8 8

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

8. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Com-
puter and Communications Security - CCS, pp. 168–177 (2004)

9. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). doi:10.1007/
978-3-319-39555-5 7

10. Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim, K. (ed.)
PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001). doi:10.
1007/3-540-44586-2 15

http://dx.doi.org/10.1007/3-540-36504-4_14
http://dx.doi.org/10.1007/978-3-319-07536-5_25
http://dx.doi.org/10.1007/978-3-642-00862-7_20
http://dx.doi.org/10.1007/978-3-540-24632-9_19
http://dx.doi.org/10.1007/978-3-540-30574-3_11
http://dx.doi.org/10.1007/978-3-319-29485-8_8
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-319-39555-5_7
http://dx.doi.org/10.1007/978-3-319-39555-5_7
http://dx.doi.org/10.1007/3-540-44586-2_15
http://dx.doi.org/10.1007/3-540-44586-2_15

Linking-Based Revocation for Group Signatures 385

11. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authen-
tication and attestation. In: Social Computing - SocialCom/Privacy, Security, Risk
and Trust - PASSAT 2010, pp. 768–775 (2010)

12. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme
with enhanced revocation capabilities. IEEE Trans. Dependable Secure Comput.
9, 345–360 (2012)

13. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 5

14. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). doi:10.1007/BFb0052252

15. Canard, S., Coisel, I., de Meulenaer, G., Pereira, O.: Group signatures are suitable
for constrained devices. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol.
6829, pp. 133–150. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24209-0 9

16. Canard, S., Desmoulins, N., Devigne, J., Traoré, J.: On the implementation of
a pairing-based cryptographic protocol in a constrained device. In: Abdalla, M.,
Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 210–217. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-36334-4 14

17. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EURO-
CRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). doi:10.
1007/3-540-46416-6 22

18. Chow, S.S.M., Susilo, W., Yuen, T.H.: Escrowed linkability of ring signatures and
its applications. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp.
175–192. Springer, Heidelberg (2006). doi:10.1007/11958239 12

19. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280, RFC Editor, May 2008. http://www.rfc-editor.org/rfc/rfc5280.
txt

20. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

21. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer,
Heidelberg (2006). doi:10.1007/11958239 13

22. Emura, K., Hayashi, T.: A light-weight group signature scheme with time-
token dependent linking. In: Güneysu, T., Leander, G., Moradi, A. (eds.) Light-
Sec 2015. LNCS, vol. 9542, pp. 37–57. Springer, Cham (2016). doi:10.1007/
978-3-319-29078-2 3

23. Emura, K., Miyaji, A., Omote, K.: An r-hiding revocable group signature scheme:
group signatures with the property of hiding the number of revoked users. J. Appl.
Math. 2014, 983040:1–983040:14 (2014)

24. Fan, C.-I., Hsu, R.-H., Manulis, M.: Group signature with constant revocation
costs for signers and verifiers. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS
2011. LNCS, vol. 7092, pp. 214–233. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25513-7 16

25. Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-
ciphertext attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
351–368. Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1 21

http://dx.doi.org/10.1007/3-540-45708-9_5
http://dx.doi.org/10.1007/BFb0052252
http://dx.doi.org/10.1007/978-3-642-24209-0_9
http://dx.doi.org/10.1007/978-3-642-36334-4_14
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/11958239_12
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/11958239_13
http://dx.doi.org/10.1007/978-3-319-29078-2_3
http://dx.doi.org/10.1007/978-3-319-29078-2_3
http://dx.doi.org/10.1007/978-3-642-25513-7_16
http://dx.doi.org/10.1007/978-3-642-25513-7_16
http://dx.doi.org/10.1007/3-540-45682-1_21

386 D. Slamanig et al.

26. Ghadafi, E.: Efficient distributed tag-based encryption and its application to group
signatures with efficient distributed traceability. In: Aranha, D.F., Menezes, A.
(eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 327–347. Springer, Cham (2015).
doi:10.1007/978-3-319-16295-9 18

27. Grewal, G., Azarderakhsh, R., Longa, P., Hu, S., Jao, D.: Efficient implementation
of bilinear pairings on ARM processors. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 149–165. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35999-6 11

28. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78967-3 24

29. Hwang, J.Y., Chen, L., Cho, H.S., Nyang, D.: Short dynamic group signature
scheme supporting controllable linkability. IEEE Trans. Inf. Forensics Secur. 10,
1109–1124 (2015)

30. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Short group signatures
with controllable linkability. In: LightSec, pp. 44–52. IEEE (2011)

31. Hwang, J.Y., Lee, S., Chung, B., Cho, H.S., Nyang, D.: Group signatures with
controllable linkability for dynamic membership. Inf. Sci. 222, 761–778 (2013)

32. International Organization for Standardization (ISO): ISO/IEC 20008–2: Infor-
mation technology - Security techniques - Anonymous digital signatures - Part 2:
Mechanisms using a group public key, November 2013

33. Isern-Deyà, A.P., Huguet-Rotger, L., Payeras-Capellà, M., Mut-Puigserver, M.:
On the practicability of using group signatures on mobile devices: implementation
and performance analysis on the android platform. Int. J. Inf. Secur. 14, 335–345
(2015)

34. Isern-Deyà, A.P., Vives-Guasch, A., Puigserver, M.M., Payeras-Capellà, M.,
Castellà-Roca, J.: A secure automatic fare collection system for time-based or
distance-based services with revocable anonymity for users. Comput. J. 56, 1198–
1215 (2013)

35. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 34

36. Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg
(2005). doi:10.1007/11426639 12

37. Koga, S., Sakurai, K.: A distributed online certificate status protocol with a single
public key. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
389–401. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24632-9 28

38. Kumar, V., Li, H., Park, J.J., Bian, K., Yang, Y.: Group signatures with prob-
abilistic revocation: a computationally-scalable approach for providing privacy-
preserving authentication. In: Computer and Communications Security - CCS
2015, pp. 1334–1345 (2015)

39. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–
589. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 34

40. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 36

41. Manulis, M., Fleischhacker, N., Felix Günther, F.K., Poettering, B.: Group sig-
natures: authentication with privacy. Technical report, BSI - Federal Office for
Information Security (2012)

http://dx.doi.org/10.1007/978-3-319-16295-9_18
http://dx.doi.org/10.1007/978-3-642-35999-6_11
http://dx.doi.org/10.1007/978-3-642-35999-6_11
http://dx.doi.org/10.1007/978-3-540-78967-3_24
http://dx.doi.org/10.1007/978-3-540-24676-3_34
http://dx.doi.org/10.1007/11426639_12
http://dx.doi.org/10.1007/978-3-540-24632-9_28
http://dx.doi.org/10.1007/978-3-642-32009-5_34
http://dx.doi.org/10.1007/978-3-642-29011-4_36

Linking-Based Revocation for Group Signatures 387

42. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00468-1 26

43. Nakanishi, T., Fujiwara, T., Watanabe, H.: A linkable group signature and its
application to secret voting. Trans. Inf. Process. Soc. Jpn. 40(7), 3085–3096 (1999)

44. Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes
with backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005). doi:10.1007/
11593447 29

45. Nakanishi, T., Funabiki, N.: A short verifier-local revocation group signature
scheme with backward unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg,
K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 17–
32. Springer, Heidelberg (2006). doi:10.1007/11908739 2

46. Nakanishi, T., Kubooka, F., Hamada, N., Funabiki, N.: Group signature schemes
with membership revocation for large groups. In: Boyd, C., González Nieto, J.M.
(eds.) ACISP 2005. LNCS, vol. 3574, pp. 443–454. Springer, Heidelberg (2005).
doi:10.1007/11506157 37

47. Nakanishi, T., Sugiyama, Y.: A group signature scheme with efficient membership
revocation for reasonable groups. In: Wang, H., Pieprzyk, J., Varadharajan, V.
(eds.) ACISP 2004. LNCS, vol. 3108, pp. 336–347. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-27800-9 29

48. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Symposium on the Theory of Computing - STOC, pp. 427–
437 (1990)

49. Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group
signature schemes from bilinear pairings. In: Lee, P.J. (ed.) ASIACRYPT
2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30539-2 26

50. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51, 122–144 (2004)
51. Ponemon Institute LLC: 2015 PKI Global Trends Study (2015)
52. Potzmader, K., Winter, J., Hein, D.M., Hanser, C., Teufl, P., Chen, L.: Group sig-

natures on mobile devices: practical experiences. In: Huth, M., Asokan, N., Čapkun,
S., Flechais, I., Coles-Kemp, L. (eds.) Trust 2013. LNCS, vol. 7904, pp. 47–64.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38908-5 4

53. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 35

54. Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509
internet public key infrastructure online certificate status protocol - OCSP. RFC
6960, Internet Engineering Task Force (IETF), June 2013. https://www.ietf.org/
rfc/rfc6960.txt

55. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
56. Slamanig, D., Spreitzer, R., Unterluggauer, T.: Adding controllable linkability to

pairing-based group signatures for free. In: Chow, S.S.M., Camenisch, J., Hui,
L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 388–400. Springer, Cham
(2014). doi:10.1007/978-3-319-13257-0 23

57. Tang, Q.: Public key encryption supporting plaintext equality test and user-
specified authorization. Secur. Commun. Netw. 5, 1351–1362 (2012)

http://dx.doi.org/10.1007/978-3-642-00468-1_26
http://dx.doi.org/10.1007/978-3-642-00468-1_26
http://dx.doi.org/10.1007/11593447_29
http://dx.doi.org/10.1007/11593447_29
http://dx.doi.org/10.1007/11908739_2
http://dx.doi.org/10.1007/11506157_37
http://dx.doi.org/10.1007/978-3-540-27800-9_29
http://dx.doi.org/10.1007/978-3-540-30539-2_26
http://dx.doi.org/10.1007/978-3-540-30539-2_26
http://dx.doi.org/10.1007/978-3-642-38908-5_4
http://dx.doi.org/10.1007/3-540-46766-1_35
https://www.ietf.org/rfc/rfc6960.txt
https://www.ietf.org/rfc/rfc6960.txt
http://dx.doi.org/10.1007/978-3-319-13257-0_23

388 D. Slamanig et al.

58. Teranishi, I., Furukawa, J., Sako, K.: k -times anonymous authentication (extended
abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2 22

59. Unterluggauer, T., Wenger, E.: Efficient pairings and ECC for embedded systems.
In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 298–315.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3 17

60. Verheul, E.R.: Practical backward unlinkable revocation in FIDO, German e-ID,
Idemix and U-Prove. IACR Cryptology ePrint Archive 2016/217 (2016)

61. Wei, V.K.: Tracing-by-linking group signatures. In: Zhou, J., Lopez, J., Deng, R.H.,
Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 149–163. Springer, Heidelberg (2005).
doi:10.1007/11556992 11

62. Zhou, S., Lin, D.: Shorter verifier-local revocation group signatures from bilinear
maps. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301,
pp. 126–143. Springer, Heidelberg (2006). doi:10.1007/11935070 8

http://dx.doi.org/10.1007/978-3-540-30539-2_22
http://dx.doi.org/10.1007/978-3-662-44709-3_17
http://dx.doi.org/10.1007/11556992_11
http://dx.doi.org/10.1007/11935070_8

CARIBE: Cascaded IBE for Maximum
Flexibility and User-Side Control

Britta Hale(B), Christopher Carr, and Danilo Gligoroski

Department of Information Security and Communication Technology,
Norwegian University of Science and Technology, Trondheim, Norway

{britta.hale,christopher.carr,danilo.gligoroski}@ntnu.no

Abstract. Mass surveillance and a lack of end-user encryption, cou-
pled with a growing demand for key escrow under legal oversight and
certificate authority security concerns, raise the question of the appro-
priateness of continued general dependency on PKI. Under this context,
we examine Identity-Based Encryption (IBE) as an alternative to public-
key encryption. Cascade encryption, or sequential multiple encryption,
is the concept of layering encryption such that the ciphertext from one
encryption step is the plaintext of the next. We describe CARIBE, a cas-
caded IBE scheme, for which we also provide a cascaded CCA security
experiment, IND-ID-C.CCA, and prove its security in the computational
model. CARIBE combines the ease-of-use of IBE with key escrow, limited
to the case when the entire set of participating PKGs collaborate. Fur-
thermore, we describe a particular CARIBE scheme, CARIBE-S, where
the receiver is a self-PKG – one of the several PKGs included in the cas-
cade. CARIBE-S inherits IND-ID-C.CCA from CARIBE, and avoids key
escrow entirely. In essence, CARIBE-S offers the maximum flexibility of
the IBE paradigm and gives the users complete control without the key
escrow problem.

1 Introduction

Mass surveillance has undoubtedly formed one of the most contentious turning
points in modern Internet history. Fueled by the revelation of the PRISM sur-
veillance program in 2013 [19], which collected Internet data from some of the
biggest operators, including MicrosoftTM, GoogleTM, and YahooTM, and subse-
quent knowledge of programs such as xkeyscore [18] for collecting data en-mass
as it is transferred, the essential need for encryption has never been more salient.
Simultaneously, the case for backdoored encryption is also being argued, as gov-
ernments fight for control of, potentially vital, information for stanching terrorist
threats. Under this context we raise the question of optimal key management
infrastructure, comparing identity-based encryption (IBE) as an alternative to
the current public key infrastructure (PKI) to increase the ease of encryption
use, while also presenting a new prospective on IBE – CARIBE – which provides
limited key escrow and allows for end-user control of encryption.

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 389–408, 2017.
DOI: 10.1007/978-3-319-61273-7 19

390 B. Hale et al.

Fundamentally, a PKI system relies upon the receiver’s precaution; whether
or not they have set up a public/private key pair with the public key listed
securely online for access by others who wish to communicate with them. Since
powerful organizations can subvert these secure key directories [27] and most end
users demonstrate a general apathy for establishing such keys to begin with [41],
there is a clear need for a change to the conventional method. What the exigency
of the situation demands is a system that provides secure ease-of-use encryption,
does not rely upon a trusted third party, and yet allows for limited key escrow
subject to the constraints of law. Notably, the need for limited key escrow is
an axiomatically oblique path from the hither-to performed mass surveillance
and pressure for backdoored products. As was recently stated in an open letter
by U.S. congressmen Hurd and Lieu to the James Comey, Director of the FBI,
“There is a difference between private companies assisting law enforcement and
the government compelling companies to weaken their products...” [21].

Historically, IBE has been proposed and discussed as a means of encryption
that is particularly user-friendly, as it is not necessary to have public or private
keys established [37], yet it traditionally demands a trusted third party, namely
a private-key generator (PKG). As with a CA in PKI, it is necessary to establish
trusted parameters for the PKG, although it has been argued that this should
not be as formidable a task as in PKI [17]. Developments in IBE have allowed
for some preventative measures against a malicious PKG by distributing the
key generation duties among multiple PKGs [25], but these designs demand
that all involved PKGs must use the same IBE scheme which in turn could
lead to a monopoly of the system. Realistically, it is even possible for groups
of PKGs with the same IBE schemes in common to form coalitions, making
collusion between PKGs easier and consequently increasing the risk of exposure
for encrypted data. To our knowledge, no existing adaptation realizes the IBE
ease-of-use, eliminates the demand for trust in a single third party, allows free
choice in the combination of PKGs and thereby encryption schemes, and only
provides key escrow under collaboration of the entire set of PKGs involved – all of
which we address with CARIBE. Furthermore, if any receiver entity has offered
itself as a PKG, a message sender may select that entity as one of the chosen
PKGs, thereby bypassing escrow entirely on the message (CARIBE-S). Thus,
for example, if various governments with sufficient resources offer themselves as
PKGs under CARIBE-S, they also allow the option for communication partners
to send escrow-prohibited messages to the selected government PKG entities;
meanwhile messages to third parties can only be accessed under the combined
agreement of all PKGs (for example, when legally required).

In order to address cogent issues in key management for data encryption, we
propose applying IBE through the interface of cascade encryption, galvanizing
it into a realistic scheme for response to modern issues. Even while allowing
key escrow in the most extreme circumstances, and demanding no less than
the participation of all key generators to achieve it, the freshly-interfaced IBE
provides far greater power to the end user for selecting a trust model than has

CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control 391

been previously proposed. Merging such varied cryptographic areas precisely
reflects the spirit of the IACR Copenhagen Resolution [22]:

Population-wide surveillance threatens democracy and human dignity. We
call for expediting research and deployment of effective techniques to pro-
tect personal privacy against governmental and corporate overreach.

Markedly other, similar, infrastructures also exist, such as attribute-based
encryption (anyone in possession of the correct set of attributes can decrypt)
and, more generally, predicate-based encryption (anyone in possession of the
correct set of attributes and a decryption key corresponding to a certain predicate
can decrypt). While these are certainly interesting, we focus on IBE due to its
resemblance to PKI, with encryption based upon fixed identities. However, it is
straightforward to envisage that our results can be adapted for both attribute-
based encryption and predicate-based encryption, with the same freedom-of-
choice benefit of the trust model maintained for the end user.

1.1 Related Work

Identity-Based Cryptography. Identity-based cryptography has seen a con-
siderable amount of development since it was first envisaged by Shamir in the
mid 1980’s [37]. Initial examples of schemes for identity-based cryptography are
due to Cocks [11], Boneh and Franklin [5], and Sakai, Ohgishi and Kasahara
[35]. Today, there are entire books devoted to the subject [8,24], as well as an
extensive amount of research in various aspects of the field (for example, [5–
7,11,12,17,20,25,35,37,42]).

Shamir argued for a public key encryption system conceptually similar to the
postal system, albeit idealized, where a sender needs only the name and address
of the recipient [37]. “IBE is a kind of public key encryption scheme where the
public key of a user can be any arbitrary string – typically the e-mail address”
[8], i.e. the recipient’s identity, such as name, location, etc., becomes their public
key. Enticingly, this approach offers some substantial advantages over the tradi-
tional PKI. One of the attributes that make IBE advantageous is its suitability
for situations where network access is not continuous. Furthermore, and per-
haps one of the more notable advantages of identity-based cryptography, is the
nullification of the need for certificates and thereby the instantaneousness with
which encryption can be performed without the requirement to obtain such a
certificate. Joux [23] provides a broad, non-specific introduction to identity-based
cryptography, relating it with other common public key practices. Examples of
current IBE frameworks for scheme proposals include Full-Domain-Hash IBE,
Exponent-Inversion IBE, and Commutative-Blinding IBE [6].

In 2008, some research was performed into the security of IBE when decryp-
tion keys are generated under the same ID from multiple PKGs [33]. Those
security results are highly relevant to this work, and support the security analy-
sis of our schemes. However, we do not limit our cascades to the use of one
encryption scheme.

392 B. Hale et al.

While the wider field of identity-based cryptography is of great interest,
throughout this paper our focus will be on key management in the context
and, in particular, identity-based encryption. Thus, we will generically refer to
IBE and key management for IBE schemes. Identity-based signatures and the
problem with the key escrow have been addressed in [43].

Cascade Encryption. Cascade encryption, or sequential multiple encryption,
is the concept of layering encryption such that the ciphertext from one encryption
step is the plaintext of the next. Essentially, an n-fold cipher cascade of Encrypt
algorithms takes in a message m and outputs

(Encryptkn
◦ · · · ◦ Encryptk1

)(m).

Ways of realizing a cascade cipher include increasing the number of rounds of a
cipher, cascading encryption under different keys, and cascading actual ciphers.
In the context of IBE in this paper, the latter is of particular interest due to the
potential benefits of employing various PKGs. Essentially, while multiple cipher
rounds may be generally beneficial for security, it is the benefit of key escrow
without mandatory trust in one PKG that makes cascade encryption attractive
in the context of IBE.

Previous work focusing on cascade encryption includes that of Even and
Goldreich [15] which proved that in a 2-fold block-cipher cascade, the security
of the cascade was reducible to the security of either of the component ciphers.
Later work showed that the security of an n-cipher cascade was reducible to
that of the first cipher in the cascade [30] (using weaker security assumptions
about the individual ciphers than [15]), that triple-encryption (3-fold cipher
cascade) for block ciphers provides a security improvement over single- or double-
encryption [4,16], and describe generic CCA security for multiple encryption [13].
Furthermore, it has been information-theoretically demonstrated that an n-fold
cascade of pseudo-random permutations (PRPs), for which the computational
distinguishing advantage is bounded by ε < 1 (ε-PRP), yields a ((n− (n−1)ε)εn

+ ν)-PRP for negligible function ν [39].
Despite the extensive research on multiple and cascade encryption, the appli-

cation of an n-fold IBE-cipher cascade has not been addressed, nor have security
considerations (CCA, etc.) been considered in this context. Since IBE already
presents a possible alternative to PKI with some alluring benefits, the secu-
rity of cascade encryption composed of IBE schemes, and the exact manner in
which such a cascade can be realized, is particularly interesting. Moreover, cas-
cade encryption with IBE goes beyond the encryption itself – in such a context,
it is essential to consider collusion among the private key generators (PKGs)
involved.

1.2 Our Contributions

We propose CARIBE, an IBE scheme that addresses the ease-of-use, eliminates
the demand for trust in a single third party, allows free choice in the combination

CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control 393

of PKGs and thereby encryption schemes, and only provides key escrow under
collaboration of the entire set of PKGs involved. CARIBE addresses the cogent
issues in key management for data encryption by applying IBE through the
interface of cascade encryption. Even while allowing key escrow in the most
extreme circumstances, and demanding no less than the participation of all key
generators to achieve it, CARIBE provides far greater power to the end user for
selecting a trust model than has been previously proposed.

Furthermore, we define IND-ID-CCA security, IND-ID-C.CCA, for the
CARIBE environment. The experiment game for IND-ID-C.CCA expands on
IND-ID-CCA by allowing for scheme cascades. Handling of the ID-based indis-
tinguishability experiment presents special challenges in a cascade, and is there-
fore presented in formalized pseudo-code, as opposed to the ad-hoc discussion
definitions historically presented for IND-ID-CCA.

We highlight a special instance of CARIBE, CARIBE-S, which inherits secu-
rity from CARIBE but completely avoids key escrow. This is accomplished with
a simple addition that was present in some earlier schemes [12, Sect. 1.1.2]:
namely, that recipients of encrypted messages are themselves one of several cas-
caded PKGs. However, in contrast to previous proposals where recipients are
also PKGs, our proposal argues that there is no need for involvement of any
part of a public key infrastructure.

All CARIBE schemes apply a cascade of encryptions via multiple PKGs to
eliminate the single point of failure that is inherent in traditional IBE. However,
while generally with CARIBE there is a possibility for the principle of the key
escrow to be realized under the assumption that all PKGs collude, in CARIBE-S
that possibility is void due to the fact that one of the PKGs is the recipient itself.
CARIBE schemes are not limited by the selection choice of concrete schemes
involved. Unlike distributed IBE where all PKGs must operate under the same
scheme, CARIBEs allow for the interaction of multiple IBE schemes. Notably, the
benefit of this should not be under-estimated in the modern real-world context.
Even as each PKG has freedom to use whatever IBE scheme it desires, a sender
may either select PKGs based upon the combination of options given or upon a
trust (or mutual distrust) foundation without regard to the corresponding IBE
schemes being used. Thus, a sender may feasibly select rival PKGs to reduce the
chances of collusion; for instance, PKGs implemented by, and operating under,
the standards of competitive world powers [32,34].

2 Background and Preliminaries

Identity-based cryptography falls within the scope of public key cryptography.
Currently, public key systems rely almost completely on certificate authorities
(CAs), employing certificate chaining to distribute, assert, and prove ownership
of public keys. Popularly, this system is referred to as PKI [26]. Mao [29], as well
as Katz and Lindell [26], offers a good foundational overview of PKI.

Structurally, identity-based cryptography diverges considerably from PKI
and, as such, comes with certain advantages and disadvantages, particularly
relating to key management. For a good introduction, Joux, via Joye and Neven

394 B. Hale et al.

Table 1. Comparison of properties between PKI and IBE.

Architecture PKI IBE

Key management authority CA PKG

Key escrow No Yes

Certificate management Yes No

Non-interactive authentication No Yes

Always encrypt No Yes

Compromise of management authority is fatal No Yes

[24], gives a clean and concise introduction to identity-based cryptography, relat-
ing it with the certificated system encompassed within public key infrastructure.
Table 1 compares the properties of PKI and IBE.

2.1 IBE Schemes with More Than One PKG

This section examines current proposals for IBE schemes employing more than
one PKG, providing an overview of these architectures and highlighting the
properties they possess.

Hierarchical IBE. Originally envisaged by Horwitz and Lynn, HIBE has par-
allels with the hierarchical nature of current PKI [20]. Like PKI it is comprised
of root nodes, intermediate nodes, and users. Informally, the root PKG holds the
master secret key masterkey, while an intermediate PKG holds its own identity
(IDPKG.i) and must request their own secret key from the root PKG. Similarly,
the user has an identity (IDuser) and requests its secret key from the interme-
diate node. Keys at each stage are derived from functions on the keys at the
higher level, as demonstrated in the following generalization for a hierarchy of n
PKGs [20].

Root : f1(masterkey, IDPKG.2) = dkey2 → PKG.2
PKG.2 : f2(dkey2, IDPKG.3) = dkey3 → PKG.3
...
PKG.n : fn(dkeyn, IDUser) = dkeyUser → User

It is worth noting that the functions fi, for i ∈ {1, n}, are known and that every
intermediate PKGi in the hierarchy, excepting the user, may have multiple
descendants.

Gentry and Silverberg offered an improved HIBE scheme, presenting an
instantiation of HIBE that is CCA-secure under the Bilinear Diffie-Hellman
Problem and collusion resistant [17].

Other extensions of hierarchical IBE schemes exist, such as Multi-HIBE
and Anonymous-HIBE. Multi-hierarchical offers forward security [42] and
anonymous-hierarchical offers anonymous communication between sender and
receiver [7].

CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control 395

Certificateless Public Key Cryptography. Certificateless public key cryp-
tography (CL-PKC) (see [1,10]), was developed with the aim of finding public
key schemes that are not dependent on certificates and do not have the key
escrow property. As CL-PKC is claimed as an intermediate between standard
PKI and the identity-based variant, we describe how it works on a high level.

CL-PKC requires two parties to generate public and private keys, where one
is the end user. The PKG in this instance has a known public key IDPKG and a
master secret key. The user U has an identity IDUser and some secret information
SecInfo−U known only to themselves, with the public key and the secret key
generated from these parameters.

PKG : f1(masterkey, IDUser) = dkeyŨ → User
User : f2(dkeyŨ ,SecInfo-U) = dkeyU

User : f3(SecInfo-U, IDPKG) = pkeyU

Again, the functions fi are assumed to be known for all i, and dkeyŨ represents
the partial decryption key for user U , which must be combined with the users
secret information to form the decryption key.

Generation of the public key can still be done prior to generation of the
private key. Note that the public key is not computable from the identity of
the user and therefore must also be pre-computed and made available publicly
(though verification of the public key is no longer required). Consequently, due
to the nature of this public key derivation, CL-PKC is no longer identity-based
[1] and lacks the major advantage of the identity-based paradigm which allows
any-time encryption without the receiver having to preform any set up.

Distributed IBE. Joux [23] advocates for a system with many, independent
PKGs for nullifying the issue of compromise of a single PKG: “Such a scheme
could mitigate the trust issues, at the cost of making the private key generation
step heavier . . . ” Distributed IBE, as formally defined by Kate and Goldberg [25]
does precisely that, with a form of threshold trust. Informally, an IBE scheme
of n PKGs is (n, t)-distributed if no collusion of x ≤ t of the PKGs can compute
the master key, for some threshold value t ≤ n, where all n PKGs contain a
share of a user’s private key. In the distribution model, the n PKGs share parts
of one master secret key.

An approach that is complementary to the distributed IBE approach was
proposed by Chow in [9].

2.2 Identity-Based Encryption

Formally, we present the definition of an IBE scheme which serves as a grounding
point for the work in this section. From IBE schemes, we build CARIBE – the
scheme contribution of this paper – using generic, yet unspecified, number of n
PKG.

396 B. Hale et al.

Definition 1 (Identity-Based Encryption [12]). Under a Private Key Gen-
erator (PKG), an identity-based encryption scheme IBE.E is a tuple of
algorithms:

– Setup(λ) $→ (params,masterkey): A probabilistic setup generation algorithm
that takes as input a security parameter λ and outputs parameters params
and a PKG master key masterkey.

– Extract(params,masterkey, ID) $→ dkey: A probabilistic extraction algorithm
that takes as input system parameters params, a PKG master key masterkey,
and a public identity string ID, and outputs a decryption key dkey.

– Encrypt(params, ID,m) $→ c: A probabilistic encryption algorithm that takes
as input system parameters params, a public identity string ID, and a message
m ∈ M, and outputs a ciphertext c ∈ C.

– Decrypt(params, c, dkey) $→ m: A possibly probabilistic decryption algorithm
that takes as input system parameters params, a ciphertext c ∈ C, and a
private decryption key dkey, and outputs either a message m ∈ M or an
error symbol ⊥.

In addition, it is required that if dkey ← Extract(params,masterkey, ID), then

∀m ∈ M : Decrypt(params,Encrypt(params, ID,m), dkey) = m.

As an accepted assessment of security for public key encryption schemes,
IND-CCA is also the criterion for security in the layered PKG setting. While
IND-CCA security has been extensively handled before [3], and even the par-
ticular case of IND-ID-CCA for IBE described [12], a clear, formalized, pseudo-
code definition for IND-ID-CCA has been lacking. Consequently, we unambigu-
ously delineate the IND-ID-CCA experiment and adversary win conditions, cor-
responding to Definition 2, in Fig. 1. Notationally, we let Π denote the protocol
employed by the PKG.

Definition 2. Let Π be an identity-based encryption scheme according to Defi-
nition 1 and let A be an adversary algorithm. Then, for the IND-ID-CCA exper-
iment given in Fig. 1,

AdvIND-ID-CCA
Π,A = |Pr[b = b′] − 1/2|.

3 Cascade-Realized IBE – CARIBE

Employing a generic, finite number of n IBE schemes, as defined above, we
describe Cascade-realized Identity-Based Encryption (CARIBE), an n-fold IBE-
cipher cascade, in Definition 3. Saliently, the CARIBE definition does not restrict
the type of encryption schemes being used. As a result, a CARIBE scheme
CARIBE.E could literally consist of PKGs using n distinct IBE schemes, if such
variation is desired or deemed necessary. Essentially, a CARIBE scheme works

CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control 397

Fig. 1. IND-ID-CCA experiment for IBE.E .

with cascaded encryption; however, unlike general cascade encryption schemes,
multiple PKGs are involved and encryption is sequentially performed using the
parameters params generated by each of them.

In the following definition it is required that each generated ciphertext is in
the plaintext space of the next cipher in the encryption cascade. We make the
practical assumption that the selected IBE schemes are compatible in this man-
ner, either directly using the plaintext space as ciphertext space, or indirectly,
by applying some transformation before encryption, which is known to all par-
ties. Note that, as the outputs of all schemes can be interpreted as a sequence
of bits, the composition of IBE schemes defined on different algebraic domains
is possible.

398 B. Hale et al.

Definition 3 (Cascade-Realized Identity-Based Encryption). Under n
Private Key Generators (PKG), a cascade-realized identity-based encryption
scheme CARIBE.E is a tuple of algorithms that takes n IBE encryption schemes
Πi, for i ∈ {1, . . . n} where n ≥ 2, with the restriction that Ci ⊆ Mi+1 for
i ∈ {1, . . . n − 1}, i.e. that the ciphertext of each IBE scheme is in the plaintext
space of the next IBE scheme in the cascade. Algorithms for CARIBE.E :=
C(Π1, . . . ,Πn) are as follows:

– SetupS(λ1, . . . , λn) :
1: for i ∈ {1, . . . , n} do
2: (paramsi,masterkeyi) ← Setupi(λi)
3: return ({paramsi}, {masterkeyi})

A probabilistic setup generation algorithm that takes as input an ordered
sequence of n security parameters λi and outputs an ordered set of n parame-
ters {paramsi} and an ordered set of n PKG master keys {masterkeyi}, for
i ∈ {1, . . . n}.

– ExtractS(({paramsi}, {masterkeyi}), ID) :
1: for i ∈ {1, . . . , n} do
2: dkeyi ← Extracti(paramsi,masterkeyi, ID)
3: return {dkeyi}

A probabilistic extraction algorithm that takes as input a set of n system
parameters {paramsi}, a set of n PKG master keys {masterkeyi}, and a public
identity string ID, and outputs a set of n decryption keys {dkeyi}, for i ∈
{1, . . . n}.

– EncryptS({paramsi}, ID,m) :
1: c2 ← Encrypt1(params1, ID,m)
2: for i ∈ {2, . . . , n} do
3: ci+1 ← Encrypti(paramsi, ID, ci)
4: c ← cn+1

5: return c

A probabilistic encryption algorithm that takes as input an ordered set of n
system parameters {paramsi}, for i ∈ {1, . . . n}, a public identity string ID,
and a message m ∈ M, and outputs a ciphertext c ∈ C. The plaintext space of
EncryptS is M := M1, the plaintext space of Encrypt1, while the ciphertext
space of EncryptS is C := Cn, the ciphertext space of Encryptn.

– DecryptS({paramsi}, c, {dkeyi}) :
1: cn ← c
2: i ← n
3: while i > 0 do
4: ci−1 ← Decrypti(paramsi, ci, dkeyi)
5: i ← i − 1
6: m ← c0
7: return m

A possibly probabilistic decryption algorithm that takes as input an ordered
set of n system parameters {paramsi}, a ciphertext c ∈ C, and an ordered set

CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control 399

of n private decryption keys {dkeyi}, and outputs either a message m ∈ M
or an error symbol ⊥.

In addition, it is required that if {dkeyi} ← ExtractS({paramsi},
{masterkeyi}, ID), then

∀m ∈ M : DecryptS({paramsi},Encrypt({paramsi}, ID,m), {dkeyi}) = m.

Remark 1. Note that while we require at least two PKGs (n ≥ 2), we do not
require unique encryption schemes. Indeed, it is possible for any two PKGs, PKGi

and PKGj with encryption schemes Πi and Πj , respectively, that Πi = Πj .

3.1 Security of CARIBE

CARIBE is essentially a type of cascade encryption scheme and as such presents
a challenge in the context of CCA security. As noted in [13], any encryption
cascade fails to provide CCA security, since an adversary that is in possession of
the key of the outermost encryption layer could simply decrypt that layer and
re-encrypt, yielding a new ciphertext to call the decryption oracle on, trivially
breaking the CCA security. However, this is based upon the assumption that
an adversary already has the key for the outermost encryption, and assuming
such key possession is generally non-standard when considering CCA security.
To avoid this fairly trivial break, we propose the following assumption when
analyzing the CCA security of cascade schemes; a CCA security game based
upon this assumption will be termed Cascade CCA (C.CCA):

C.CCA Assumption for Cascaded Encryption. For a cascaded encryption
scheme, with ciphertexts generated as c := EKn

(. . . (EK2(EK1(m)))), and an
adversary A, CCA security is analyzed under the assumption that A does not
possess Kn.
Note that if A possesses the encryption keys for the outermost r layers, and can
win a CCA security game on an encryption scheme cascade of the remaining
n − r layers, then A can certainly win the CCA game on the entire scheme.
Thus, the layers can be “peeled back” until A does not possess the outermost
decryption key. While making this assumption is not ideal for security analysis,
it is necessary to avoid the trivial break mentioned above and allows for realistic
analyses to still be performed for cascaded schemes.

In addition to the CARIBE scheme description, we present the tailored IND-
ID-C.CCA experiment in Fig. 2. While most schemes are analyzed under a gen-
eral security experiment, an experiment for CARIBE itself is required as any
CARIBE scheme is in fact a particular cascade selection of other IBE schemes.
Adversarial advantage for the experiment is described in Definition 4.

Definition 4. Let C be an algorithm taking as input n identity-based encryption
schemes Πj, for j ∈ {1, . . . , n} where n ≥ 2, according to Definition 1 and yield-
ing a cascade-realized identity-based encryption scheme C(Π1, . . . , Πn), per Def-
inition 3, comprised of a new tuple of algorithms (SetupS ,ExtractS ,EncryptS ,

400 B. Hale et al.

DecryptS). Let A be an adversary algorithm. Then, for the IND-ID-C.CCA
experiment given in Fig. 2,

AdvIND-ID-C.CCA
C(Π1,...,Πn),A = |Pr[b = b′] − 1/2|.

As noted in Remark 1, we do not require unique encryption schemes Π,
although at least two PKGs (n ≥ 2) are required for the cascaded IND-ID-
C.CCA definition.

Security for CARIBE depends upon the constituent IBE schemes involved, as
each contributes to the security of the final ciphertext. As previously mentioned,
it has been shown that the encryption security of a 2-fold cascade is reducible to
the security of either of the composite ciphers [14,15]. Consequently, not only do
we focus on the expanded n-fold case, but take into consideration the possibility
of collusion. On a logical level, the ciphertext cannot be decrypted even if n − 1
of the n PKGs collude, so long as one PKG is honest. Essentially, this worst-case
scenario would then be precisely equivalent to a basic, secure IBE scheme under
an honest PKG. Thus, the distinction between a CARIBE and IBE scheme
becomes one of existence; for IBE we demand that the IBE scheme in use is
secure with an honest PKG, while for CARIBE it is only required that one such
IBE scheme exists in the cascade. Succinctly, Theorem 1 provides a proof of this
analysis, similar to that of [15] yet given in detail for IBE.

To enable the analysis, we operate in an execution environment with the
following standard list of allowed adversarial queries:

– ExtractS(IDi, {1, . . . , n}): Operates as in Fig. 2.
– EncryptS(ID,m0,m1, {1, . . . , n}): Operates as in Fig. 2.
– DecryptS(IDi, ci, {1, . . . , n}): Operates as in Fig. 2.
– CorruptS(Πj): This query returns masterkeyj . As an adversary A already has

access to paramsj , corrupting Πj allows A to extract decryption keys dkeyj

for any IDi. This query models A’s ability to request the collusion of the PKG
operating Πj .

Note that we prove Theorem 1 for a static adversary which, although it may
adaptively corrupt nodes at will, must commit to at least one honest PKG before
the protocol run. Notably, this follows similarly to the chain of past IBE work,
where a static adversarial model is common [25]. Our theorem, and its accompa-
nying proof, are IBE-specific adaptions of a more general approach by Dodis and
Katz for cascade encryption [13]. The proof is given in detail here to elucidate
the adversarial power in the inter-workings of IBE, and how a challenger answers
adversarial queries.

Theorem 1. If IBE.E protocols Πj, for j ∈ {0, . . . , n}, are combined to form
CARIBE.E = C(Π1, . . . , Πn), the resulting CARIBE.E protocol will be IND-
ID-C.CCA provided that there exists Πt ∈ {Πj} that is IND-ID-CCA secure.

Specifically, for any efficient adversary A that runs in time t and asks q =
qext + qenc + qdec queries, where qext are extraction queries, qenc are encryption

CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control 401

Fig. 2. IND-ID-C.CCA experiment for CARIBE.E .

queries, and qdec are decryption queries, there exists adversaries Bj that run in
time tB ≈ t and asks qB queries, such that

AdvIND-ID-C.CCA
C(Π1,...,Πn) (A) ≤ AdvIND-ID-CCA

Πt
(Bt).

402 B. Hale et al.

Proof. Let A be an challenger against the IND-ID-C.CCA security of
CARIBE.E = C(Π1, . . . , Πn) and let B be an adversary against the IND-ID-
C.CCA of IBE.E for Πt, with Extractt, Encryptt, and Decryptt oracles running on
paramst and masterkeyt, corresponding to Πt, as well as Extractj , Encryptj , and
Decryptj algorithms running on paramsj and masterkeyj for j ∈ {1, . . . , n}/{t}
which he uses to answer A’s queries. Let SB be a list of pairs (ID, c) which B
sends back to A in response to EncryptS queries, maintained by B and initialized
to ⊥. If at any time A makes a Corrupt(Πt) query, B gives up.

When A asks an ExtractS query on (IDi, {1, . . . , n}), B calls his Extractt oracle
and Extractj algorithms, and sends the agglomerated responses {dkeyj} to A.

When A asks a DecryptS query on a ciphertext c, B sequentially uses his
Decryptj algorithms – starting with Decryptn on c, followed with Decryptn−1

on the output of Decryptn, and so forth for t < j. B then call Decryptt on the
output of Decryptt+1. Thereafter, B continues with his Decryptj calculations,
starting with Decryptt−1 on the output of Decryptt, for j < t. Finally, the result
of Decrypt1 is returned to A.

Should A query EncryptS on (ID,m0,m1, {1, . . . , n}), B behaves as follows:
B calculates Encrypt1(params1, ID,m0) = c

(0)
1 and Encrypt1(params1, ID,m1) =

c
(1)
1 , then Encryptj(paramsj , ID, c

(0)
j−1) = c

(0)
j and Encryptj(paramsj , ID, c

(1)
j−1) =

c
(1)
j for 1 < j < t. Then, B calls Encryptt(ID, c

(0)
t−1, c

(1)
t−1) to get ct. Thereafter B

continues calculating Encryptj(paramsj , ID, cj−1) = ci for t < j ≤ n. Finally, B
sets c := cn, S ← S ∪ (ID, c), and passes c back to A.

By the IND-ID-C.CCA success of A against CARIBE.E , at some point A
returns a correct bit guess b′. Hence, B also wins the IND-ID-CCA game against
the IBE.E protocol Πt with b′. �

From Theorem 1 it can be observed that the CARIBE scheme is at least as
secure as the strongest IBE protocol in the cascade. As mentioned before, should
multiple PKG collude to determine the decryption key or plaintext, this implies
that a CARIBE scheme is secure as long as at most n−1 of the n PKGs collude.

4 Cascade-Realized IBE with Self-PKG – CARIBE-S

While the PKGs used in CARIBE would naturally be expected to be separate
from the users, special security considerations arise when we consider the pos-
sibility of a self-PKG, where a receiver also acts in the role of a PKG. This
could be desirable in real-world implementation, for example, if the receiver is
a government organisation with both the capabilities and legal authority to be
a self-PKG. Although the receiver may trust its PKG, and even demand its
use for all in-coming messages, the sender may not. In response to this situ-
ation, the sender may include the receiver’s PKG along with other (trusted)
PKGs under CARIBE-S, creating a mutually satisfactory trust relationship.
Thus, while avoiding key escrow, CARIBE-S allows for a trust balance between
sender and receiver.

CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control 403

Definition 5 (CARIBE-S). We say that an entity is a member of a CARIBE-
S scheme if it is one of n PKGs in the Definition 3.

Naturally, a receiver cannot force a self-selection as a PKG under CARIBE.
This is to be expected. As in CARIBE, the decision to use a CARIBE-S and avoid
key-escrow is completely the sender’s choice. However, it is dependent on the a
priori action on a receiver’s part to arrange PKG functionality. Consequently,
the option of a CARIBE-S is also restricted to those receivers with the resources
and forethought to form self-PKGs.

4.1 Security of CARIBE-S

From the security of CARIBE we have the following theorem.

Theorem 2 (Security of CARIBE-S). If IBE.E protocols Πj, for j ∈{0, . . . ,
n}, are combined to form CARIBE.E = C(Π1, . . . , Πn), the resulting
CARIBE.E protocol will be IND-ID-C.CCA provided that there exists Πt ∈{Πj}
that is IND-ID-CCA secure.

Specifically, for any efficient adversary A that runs in time t and asks q =
qext + qenc + qdec queries, where qext are extraction queries, qenc are encryption
queries, and qdec are decryption queries, there exists adversaries Bj that run in
time tB ≈ t and asks qB queries, such that

AdvIND-ID-C.CCA
C(Π1,...,Πn) (A) ≤ AdvIND-ID-CCA

Πt
(Bt).

Whilst a CARIBE scheme is secure as long as at most n − 1 of the n PKGs
collude, in CARIBE-S, one of the PKGs which has joined the infrastructure, hav-
ing provided its PKG parameters, is also the intended recipient of the encrypted
messages. Thus, Corollary 1 follows directly from Theorem 2.

Corollary 1 (Security Against Collusion of CARIBE-S). A CARIBE-S
scheme is secure against collusion and thus is not a key escrow scheme.

Table 3 in AppendixA presents a comparison of CARIBE and CARIBE-S
with other IBE-composite schemes discussed in Sect. 2.1, under standard struc-
ture. Both CARIBE and CARIBE-S allow for composition across multiple IBE
platforms – namely, each PKG can use a different IBE scheme for extraction,
encryption, etc. In the interest of security, this yields logical real-world benefits
in the case where preferred PKGs, known to be adverse to mutual collusion,
insist on utilizing different IBE schemes.

4.2 Ciphertext Expansion in CARIBE/CARIBE-S

One natural consequence of cascaded encryption is the amplification of cipher-
text expansion. Historically, ciphertext expansion would be a concern under
slow transmission rates, and since it is already common in IBE schemes, fur-
ther expansion from cascades would hardly have been welcomed. However, with

404 B. Hale et al.

increasing improvements in IBE scheme developments involving less expansion,
as well as faster transmission rates than were previously available, this issue is
not as imposing as it once was. Moreover, in the context of modern internet
privacy concerns, it is more likely that users will be willing to trade factors like
the convenience of fast transmission times, for increased privacy and security.

Since CARIBE is a composition of ciphers of the sender’s choice, it is not
possible to predict the relative ciphertext expansion in advance without knowing
which ciphers, and in what order, the sender will select. Still, some basic obser-
vations can be noted. Unquestionably, the expansion involved in a CARIBE of
several compositions of Cocks’ IBE schemes [11] would be enormous, as cipher-
text length in under single encryption is already several times larger than the
plaintext length. Yet the ciphertext expansion for a regular, single Cocks scheme
is daunting enough at the outset to be naturally prohibitive in practice. Mean-
while, in a CARIBE of n Boneh–Franklin [12] ciphers, a plaintext length |m|
would expand to n · |P |+ |m|, where |P | is the length of a pre-selected element of
a group G, of large prime order q, which is part of a bilinear map. Markedly, such
a linear expansion is hardly imposing. Aside from classic IBE ciphers, ciphertext
expansion in modern IBE proposals lie spread on the scale between these exam-
ples, yet far closer to Boneh–Franklin efficiency than Cocks. With simultaneously
increasing efficiency and security awareness, it is reasonable that expansion for
CARIBE will be of limited concern.

5 Software Libraries for Implementation of CARIBE
and CARIBE-S

Our proposals for CARIBE and CARIBE-S collect widely known and tested
concepts and combine them in a novel way, expanding the horizons of IBE. This
is not a new approach. We can refer to the well known concept of Bitcoin that
had a similar approach [31] in the beginning.

In the modern Internet era, the crucial moment for a collection of concepts
to become a widely used paradigm is linked to the existence of publicly avail-
able (preferably free) software tools and libraries. We argue that these types of
conditions are maturing for CARIBE and CARIBE-S. In Table 2 we give a list
of tools, packages or libraries that can perform the operations for Pairing-Based
Cryptography – these are described in more detail below.

– The Pairing-Based Cryptography Library [28] is a free portable C library for
rapid prototyping of pairing-based cryptosystems. It provides an interface to
a cyclic group with a bilinear pairing. It has also Perl, Python, Java and C++
wrappers and bindings.

– MIRACL [36] is a C/C++ library that provides pairing-based cryptography
primitives. It runs on different OS and CPU platforms but is especially effi-
cient on x86 platforms due to hand-optimized assembly code for low-level
arithmetic. It is free for noncommercial use.

CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control 405

Table 2. Software libraries and packages for Pairing-Based Cryptography

Name License Language

PBCl GNU GPL C

MIRACL Free non noncommercial C/C++

SAGE GNU GPL Python

PARI/GP GNU GPL C/GP

RELIC GNU Lesser GPL C

HP IBE Yes C/C++

– SAGE [38] is a powerful open-source computer algebra system. Its interface is
Python based. It has huge number of cryptographic functions including some
of the worlds fastest implementations of operations with elliptical curves.

– PARI/GP [40] is a computer algebra system designed for fast computations
in number theory. It is implemented in C but it has also a script language
called GP.

– RELIC [2] is a modern cryptographic meta-toolkit with emphasis on efficiency
and flexibility. RELIC implements Elliptic curves over prime and binary fields
(NIST curves and pairing-friendly curves), Bilinear maps and related exten-
sion fields. Its portable C produces very efficient codes in a range from tiny
micro-controllers to powerful modern 64-bit CPUs.

– In February 2015, HP announced that they will acquire Voltage Security Inc.
that previously offered the IBE Toolkit. Now that toolkit is commercially
available as HP Identity-Based Encryption.

6 Conclusion

CARIBE-S is a completely key escrow-free variant of a CARIBE, combining IBE
and cascade encryption. It synthesizes diverse ideas to provide more benefits and
a higher level of security than have been achieved in other schemes.

Even though there is an inherent time-cost in multiple encryptions for
CARIBE and CARIBE-S, the added security coupled with ever-increasing
computing power, and publicly available open source or commercial software
libraries, dilutes this drawback. Additionally, while the onus is on the receiver to
obtain decryption keys from multiple authorities, the sender’s ability to virtually
select a security level for encryption through the PKGs of their choice – possibly
based on the encryption type provided by the PKG – may commonly be seen as
a sufficient time/security trade-off.

In comparison with other multi-PKG IBE variations, this end-user security
selection power provides the catalyst for re-visiting cascade encryption in a pre-
vious un-investigated context. In terms of the modern world, where desire to
legally access encrypted messages is paired with hostility among internet pow-
ers, the consolidation or avoidance of key escrow and leveraged distrust makes
CARIBE – and therefore CARIBE-S – a viable option.

406 B. Hale et al.

Acknowledgements. We would like to thank the anonymous reviewers of Mycrypt
2016 for their valuable comments and suggestions.

A Scheme Comparison

Table 3. Comparison of properties among composition IBE schemes including
CARIBE and CARIBE-S.

Topic H-IBE D-IBE CARIBE CARIBE-S

Key management
authority

n PKGs,
hierarchy

n PKGs,
t-threshold

n PKGs n PKGs

Key escrow Yes Limited to
t + 1
collusions

Limited n
collusions

No

Certificates No No No No

Ciphertext expansion Yes Yes Yes Yes

Management authority
has access to private keys

Yes for all
PKGs

Under
t + 1 ≤ n
collusions

Under n
collusions

No

Compromise of
management authority is
fatal

Yes for any
PKG in
hierarchy

Under
t + 1 ≤ n
collusions

Under n
collusions

No

Incorporation of various
encryption methods across
PKGs possible

No No Yes Yes

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-40061-5 29

2. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography.
http://code.google.com/p/relic-toolkit/

3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). doi:10.1007/BFb0055718

4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi:10.1007/11761679 25

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J.
Comput. 32(3), 586–615 (2003)

6. Boyen, X.: A tapestry of identity-based encryption: practical frameworks com-
pared. Int. J. Appl. Cryptogr. 1(1), 3–21 (2008)

http://dx.doi.org/10.1007/978-3-540-40061-5_29
http://code.google.com/p/relic-toolkit/
http://dx.doi.org/10.1007/BFb0055718
http://dx.doi.org/10.1007/11761679_25

CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control 407

7. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006). doi:10.1007/11818175 17

8. Chatterjee, S., Sarkar, P.: Identity-Based Encryption. Springer Science & Business
Media, Berlin (2011)

9. Chow, S.S.M.: Removing escrow from identity-based encryption. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 256–276. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00468-1 15

10. Chow, S.S.M., Boyd, C., Nieto, J.M.G.: Security-mediated certificateless cryptog-
raphy. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 508–524. Springer, Heidelberg (2006). doi:10.1007/11745853 33

11. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). doi:10.1007/3-540-45325-3 32

12. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J.
Comput. 32(3), 586–615 (2003). Society for Industrial and Applied Mathematics

13. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-30576-7 11

14. Even, S., Goldreich, O.: On the power of cascade ciphers. Technical report no. 275,
Computer Science Department, Technion, Haifa, Israel, May 1983

15. Even, S., Goldreich, O.: On the power of cascade ciphers. In: Chaum, D. (ed.)
Advances in Cryptology: Proceedings of CRYPTO 1983, pp. 43–50. Springer US,
New York (1984)

16. Gaži, P., Maurer, U.: Cascade encryption revisited. In: Matsui, M. (ed.) ASI-
ACRYPT 2009. LNCS, vol. 5912, pp. 37–51. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-10366-7 3

17. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
doi:10.1007/3-540-36178-2 34

18. Greenwald, G.: XKeyscore: NSA tool collects nearly everything a user does
on the internet, 31 July 2013. http://www.theguardian.com/world/2013/jul/31/
nsa-top-secret-program-online-data. Accessed 2 June 2015

19. Greenwald, G., MacAskill, E.: NSA Prism program taps in to user data of Apple,
Google and others, 7 June 2013. http://www.theguardian.com/world/2013/jun/
06/us-tech-giants-nsa-data. Accessed 2 June 2015

20. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002). doi:10.1007/3-540-46035-7 31

21. Hurd, W., Lieu, T.W.: Congressman Lieu Letter to FBI Director Comey on Encryp-
tion “Backdoor” Proposal, 1 June 2015. https://lieu.house.gov/media-center/.
Accessed 2 June 2015

22. IACR: IACR Statement on Mass Surveillance: Copenhagen Resolution, 14 May
2014. http://www.iacr.org/misc/statement-May2014.html. Accessed 2 June 2015

23. Joux, A.: Introduction to Identity-Based Cryptography. Identity- Based Cryptog-
raphy (2009)

24. Joye, M., Neven, G.: Identity-Based Cryptography, vol. 2. IOS Press, Amsterdam
(2009)

25. Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryp-
tography. In: Garay, J.A., Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 436–
453. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15317-4 27

http://dx.doi.org/10.1007/11818175_17
http://dx.doi.org/10.1007/978-3-642-00468-1_15
http://dx.doi.org/10.1007/11745853_33
http://dx.doi.org/10.1007/3-540-45325-3_32
http://dx.doi.org/10.1007/978-3-540-30576-7_11
http://dx.doi.org/10.1007/978-3-642-10366-7_3
http://dx.doi.org/10.1007/978-3-642-10366-7_3
http://dx.doi.org/10.1007/3-540-36178-2_34
http://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
http://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://dx.doi.org/10.1007/3-540-46035-7_31
https://lieu.house.gov/media-center/
http://www.iacr.org/misc/statement-May2014.html
http://dx.doi.org/10.1007/978-3-642-15317-4_27

408 B. Hale et al.

26. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2014)

27. Leavitt, N.: Internet security under attack: the undermining of digital certificates.
Computer 44(12), 17–20 (2011)

28. Lynn, B.: PBC library manual 0.5.11 (2006)
29. Mao, W.: Modern Cryptography: Theory and Practice. Prentice Hall PTR, Upper

Saddle River (2004)
30. Maurer, M., Massey, J.: Cascade ciphers: the importance of being first. J. Cryptol.

6(1), 55–61 (1993). Springer
31. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1(2012),

28 (2008)
32. National Institute of Standards and Technology. http://www.nist.gov/. Accessed

2 June 2015
33. Paterson, K.G., Srinivasan, S.: Security and anonymity of identity-based encryp-

tion with multiple trusted authorities. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 354–375. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85538-5 23

34. Popov, V., Kurepkin, I., Leontiev, S.: RFC 4357: Additional Cryptographic Algo-
rithms for Use with GOST 28147–89, GOST R 34.10-94, GOST R 34.10-2001, and
GOST R 34.11-94 Algorithms, January 2006

35. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The
2000 Symposium on Cryptography and Information Security, Okinawa, Japan, pp.
135–148 (2000)

36. Scott, M.; MIRACL - Multiprecision Integer and Rational Arithmetic C/C++
Library (2007)

37. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). doi:10.1007/3-540-39568-7 5

38. Stein, W., Joyner, D.; Sage: system for algebra and geometry experimentation.
Commun. Comput. Algebra (SIGSAM Bull.) (2005). http://sage.sourceforge.net

39. Tessaro, S.: Security amplification for the cascade of arbitrarily weak PRPs: tight
bounds via the interactive hardcore lemma. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 37–54. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 3

40. The PARI Group: Bordeaux. PARI/GP version 2.7.0 (2014). http://pari.math.
u-bordeaux.fr/

41. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: a usability evaluation of
PGP 5.0. In: Usenix Security, vol. 1999 (1999)

42. Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: ID-based encryption for complex
hierarchies with applications to forward security and broadcast encryption. In: Pro-
ceedings of the 11th ACM conference on Computer and communications security,
pp. 354–363. ACM (2004)

43. Yuen, T.H., Susilo, W., Mu, Y.: How to construct identity-based signatures without
the key escrow problem. Int. J. Inf. Secur. 9(4), 297–311 (2010)

http://www.nist.gov/
http://dx.doi.org/10.1007/978-3-540-85538-5_23
http://dx.doi.org/10.1007/978-3-540-85538-5_23
http://dx.doi.org/10.1007/3-540-39568-7_5
http://sage.sourceforge.net
http://dx.doi.org/10.1007/978-3-642-19571-6_3
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

Multi-authority Distributed Attribute-Based
Encryption with Application to Searchable

Encryption on Lattices

Veronika Kuchta(B) and Olivier Markowitch

Department of Computer Science, Université Libre de Bruxelles, Brussels, Belgium
{veronika.kuchta,olivier.markowitch}@ulb.ac.be

Abstract. Many Internet users deploy several cloud services for storing
sensitive data. Cloud services provide the opportunity to perform cheap
and efficient storage techniques. In order to guarantee secrecy of uploaded
data, users need first to encrypt it before uploading it to the cloud servers.
There are also certain services which allow user to perform search oper-
ations according to certain attributes without revealing any information
about the encrypted content. In the cryptographic community this ser-
vice is known as the public key encryption with keyword search. In order
to enable user control during performed search operations there exists
an attribute-based encryption scheme that provides the required func-
tionality. We introduce the first Key-Policy Multi-Authority Attribute-
Based Encryption (KP-MABE) on lattices assuming existence of mul-
tiple servers, where each of these servers contributes to the decryption
process by computing decryption shares using its own secret share. Fur-
thermore we construct a Key-Policy Distributed Attribute-Based Search-
able Encryption (DABSE) which is based on lattices and use the intro-
duced KP-MABE as a building block for the transformation to DABSE.
We prove our scheme secure against chosen ciphertext attacks under the
assumption that the underlying KP-MABE is secure under the hardness
of learning with errors (LWE) problem.

1 Introduction

Searchable Encryption. Cloud computing allows users to use big data stor-
age and computation capabilities at a very low price. Cloud security became
an appealing research topic for recent cryptographic community. Storing data
on a cloud enables users to reduce purchase and maintaining cost of comput-
ing and storage tools which attracted a lot of attention from computer users.
When personal and confidential data is outsourced to the public cloud the cus-
tomers require a guarantee that their data is securely stored and is not vulner-
able against adversaries who are interested in getting any information of cus-
tomer’s private data. Therefore several cryptographic encryption schemes are
gaining interest for distinct applications in cloud security. One of such encryp-
tion schemes is searchable public key encryption that has been introduced by
Boneh et al. [9]. Many further systems supporting keyword search have been
c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 409–435, 2017.
DOI: 10.1007/978-3-319-61273-7 20

410 V. Kuchta and O. Markowitch

developed to enable users to perform search operations over encrypted data
without leaking any information about encrypted content. We distinguish
between symmetric encryption [14,17,19,39]) and public-key encryption (e.g.,
[9,10,20,25]) techniques. Searchable encryption applied to the cloud setting
allows an user to upload encrypted data together with encrypted keywords of
this data such that the user can later perform any search operations using special
trapdoors for the required keywords. Apart from offering search techniques over
encrypted data there is a motivation to guarantee access control for cloud users.
This functionality is given by the attribute-based encryption schemes which is
the subject of our next paragraph.

Attribute-Based Encryption. Sahai and Waters [36] introduced the first con-
struction of an attribute-based encryption (ABE), which allows fine-grained
access control of encrypted data. Their idea was to associate ciphertexts and
private keys with sets of descriptive attributes such that the decryption is pos-
sible only if the overlap of these two sets is sufficient. There are two flavors of
attribute-based encryption, key-policy ABE (KP-ABE) and ciphertext-policy
ABE (CP-ABE). The former handles ciphertexts which are annotated with
attributes and private keys which are associated with access structures that
specify which ciphertexts can be chosen to be decrypted by an user. A ciphertext-
policy ABE was first introduced by Bethencourt et al. [8] and by Cheung et al.
[16], which handled AND gates only. Publication that analyzes the first expres-
sive construction was presented by Goyal et al. [22] in the standard model. Fur-
ther standard model CP-ABE constructions were provided by Waters [41] and
Lewko et al. [26]. In CP-ABE attribute sets are assigned to private keys, where
the sender specifies an access policy such that receiver’s attribute set can comply
with it. Attrapadung et al. [5] constructed the first ABE scheme with constant-
size ciphertexts. They also designed a CP-ABE system for threshold policies,
where ciphertext and receivers private key have at least t attributes in common
and t is specified by the sender. The ciphertext in their scheme is constant and
the private key size is linear in the number of attributes. Goyal et al. [23] gener-
alized those techniques from [36] and introduced a new technique where user’s
key is associated with a tree-access structure and the leaves are associated with
attributes. A user is only able to decrypt a ciphertext if attributes associated
with ciphertext satisfy key’s access structure. This technique differs from secret-
sharing schemes by the fact that any communication between different parties
is forbidden. An ABE scheme which allows a group of authorities to distrib-
ute attributes was developed by Chase [15]. This multi-authority construction
allows to corrupt any number of attribute authorities but guarantees security
of encryption as long as not all required attributes can be obtained from those
corrupted authorities. Boyen [12] introduced the first ABE construction based
on lattices. Lattice is a mathematical construct that represents an important
part of post-quantum cryptography because of its assumed resistance against
quantum attacks as described in the following paragraph.

Multi-authority Distributed Attribute-Based Encryption 411

Lattice-Based Cryptosystems. Cryptographic schemes based on lattices have
especially attractive features as stated in [30]. The best attacks of lattice-based
schemes require exponential time in security parameter, even for a quantum
adversary, where the classic factoring-based cryptographic schemes can be bro-
ken in subexponential time or even in polynomial time using quantum algo-
rithms. In contrast to the latter, lattice-based schemes are especially efficient
and simple in their implementation. Lattices were introduced to cryptography
by the work of Ajtai [3] and became a valuable tool for quantum-resistant
cryptography. A deep research has been made in lattice-based cryptosystem
[18,31,34]. Recently, many lattice-based applications have been provided, such
as identity-based encryption schemes [2,13,18], public-key encryption [4,32,33],
signatures [11,29], attribute-based encryption [12], public-key encryption with
keyword search [24]. Miccianchio and Peikert [30] provided new methods for
trapdoor generation which make the constructions simple, efficient and easy in
the implementation. We are going to use this very efficient technique in the
construction of our schemes.

Our Contribution and Application. Searchable attribute-based encryption
has significant relevance for cloud systems and their security. Attribute-based
encryption allows an additional option for many applications of searchable
encryption in cloud computing. It enables a data owner to control the search
function of outsourced cloud data. Our main contribution is the construction of
a key-policy attribute based encryption for multiple authorities (KP-MABE).
It is the first lattice-based construction of this type involving both a distrib-
uted server setting and multiple authorities. In our construction we refer to the
technique of Boyen [12] which we amend to the multi-authority and multi-server
setting. Furthermore we achieve higher efficiency of our scheme than that one
in [12] using the more efficient lattice trapdoors introduced by Micciancio and
Peikert [30]. In contrast to [12], our construction works in multi-authority set-
ting where the role of one attribute authority is distributed among N parties.
Additionally, we distribute the role of one decryption server among n servers
in order to distribute the only point of failure during the decryption process.
Finally, we provide security definitions of our KP-MABE construction against
chosen ciphertext attack. Besides indistinguishability property, our scheme also
achieves anonymity of users. Zheng [42] introduced the first attribute-based key-
word search scheme which is based on bilinear maps and is defined in a single
server setting that can also be applied to cloud systems. Their construction
guarantees the user that the search operation has been executed correctly by
the cloud server. This functionality is enabled by designing a search result verifi-
cation algorithm which makes the whole search process verifiable. Sun et al. [38]
presented another attribute-based searchable encryption which enables authen-
ticity check over the search results considering multiple users and a multiple-
data-contributor search scenario involving only one cloud server which executes
the search operation. Further solutions for searchable attribute-based encryption
schemes have been provided in [27,40] which are all defined in a single server set-
ting and are secure under number-theoretic assumptions. Whereas there exists

412 V. Kuchta and O. Markowitch

other lattice-based scheme, known as “Attribute-Based Encryption for Circuits”
introduced by [21] which supports larger class of policies containing the ones
captured by Boolean formula - and it also uses most efficient lattice-trapdoor
generation algorithm introduced in [30]. In contrast to their construction our
scheme enjoys further useful improvements such as employing multiple attribute
authorities and using distributed setting in order to improve the security of the
construction.

A useful application to personal health records in cloud computing based
on multi-authorities and multi-users attribute-based encryption presented by Li
et al. [28] can profit by providing the users with an additional function enabling
authorized search of uploaded data which uses the search operation of search-
able public key encryption. The shortcoming of Li et al. [28] construction is
the single point of failure which is represented by the one cloud server that
stores the encrypted data containing personal health records and performs the
required decryption process. Applying our KP-MABE construction to the health
record system we are able to solve two shortcomings of the recent scheme in [28].
Regarding this application, our construction involves a search function, such that
each authorized user, who wants to download or read outsourced health records,
can first conduct a search operation on stored data according to some special
keywords. The other solution of aforementioned shortcomings is the distribution
of the single server role among a certain number of servers. Encrypted health
records are uploaded together with encrypted keywords to each of the cloud
servers. Once the user wants to read or download his or her encrypted health
records, he prepares trapdoor shares of keywords and sends them to the servers.
Using access control function of attribute-based encryption the servers first check
whether the user is allowed to read and/or download the data and upon success-
fully passed control each server executes the search function using the trapdoor
shares and encrypted keywords. The user is able to download required data
upon receiving a certain threshold of valid search results from cloud servers. As
another possible application of our scheme is an investigation cloud system that
would allow a closer and more effective collaboration between distinct intelligence
agencies. For example, Interpol is highly interested in developing more efficient
investigation services which can serve all member countries using “Interpol cloud
system”.

2 Preliminaries

Lattices. Let B = {b1, . . . , bn} ⊂ R
n be a basis of a lattice L which consists

of n linearly independent vectors. The n−dimensional lattice L is then defined

as L =
n∑

i=1

Zbi. The i-th minimum of lattice Λ, denoted by λi(L) is the small-

est radius r such that L contains i linearly independent vectors of norms ≤ r.

(The norm of vector bi is defined as ‖bi‖ =

√
n∑

j=1

c2i,j , where ci,j , j ∈ {1, . . . , n}

Multi-authority Distributed Attribute-Based Encryption 413

are coefficients of vector bi. We denote by λ∞
1 (L) the minimum distance mea-

sured in the infinity norm, which is defined as ‖bi‖∞ := max(|ci,1| , . . . , |ci,n|).
Additionally we recall ‖B‖ = max ‖bi‖ and its fundamental parallelepiped

is given by P (B) =
{

n∑

i=1

aibi | a ∈ [0, 1)n

}

. Given a basis B for a lattice

L and a vector a ∈ R
n we define a mod L as the unique vector in P (B)

such that a − (a mod L) ∈ L. If L is a lattice, its dual L∗ is the lattice{
b̂ ∈ R

n | ∀b ∈ L,
〈
b̂,b
〉

∈ Z

}
.

Integer Lattices. The following specific lattices contain qZm as a sub-lattice
for a prime q. For A ∈ Z

n×m
q and s ∈ Z

n
q , define:

Λq(A) := {e ∈ Z
m|∃s ∈ Z

n
q , where AT s = e mod q},

Λ⊥
q (A) := {e ∈ Z

m|Ae = 0 mod q},

Many lattice-based works rely on Gaussian-like distributions called Discrete
Gaussians. In the following paragraph we recall the main notations of this
distribution.

Discrete Gaussians. Let L be a subset of Z
m. For a vector c ∈ R

m and a
positive σ ∈ R, define

ρσ,c(x) = exp

(

−π
‖x − c‖2

σ2

)

and ρσ,c(L) =
∑

x∈L

ρσ,c(x).

The discrete Gaussian distribution over L with center c and parameter σ is given
by DL,σ,c(y) = ρσ,c(y)

ρσ,c(L) , ∀y ∈ L. The distribution DL,σ,c is usually defined over
the lattice L = Λ⊥

q (A) for A ∈ Z
n×m
q . Gentry et al. [18] defined an algorithm

for sampling from the introduced discrete Gaussian DΛ,σ,c for a given basis B
of the n dimensional lattice Λ with a Gaussian parameter σ ≥ ‖B‖ · ω(

√
log m),

where B̃ is the orthonormal basis of B, defined as follows:

The Gram-Schmidt Norm of a Basis [2]. Let B be a set of n vectors B =
{b1, . . . , bn} ∈ R

n with the following functionalities:

– ‖B‖ denotes the norm of the longest vector in B, i.e. ‖B‖ := maxi ‖bi‖ for
1 ≤ i ≤ m.

– B̃ := {b̃1, . . . , b̃m} ⊂ R
m is the Gram-Schmidt orthogonalization of the vec-

tors b1, . . . , bm.

The Gram-Schmidt norm is denoted by
∥
∥
∥B̃
∥
∥
∥.

Ajtai [3] showed how to sample an uniform matrix A ∈ Z
n×m
q with a basis

BA of Λ⊥
q (A) with low Gram-Schmidt norm.

Learning With Errors (LWE). The LWE problem, first introduced by Regev
[33], relies on the Gaussian error distribution χ, which is given as χ = DZ,s over

414 V. Kuchta and O. Markowitch

integers. The LWE problem instance consists of access to a challenge oracle O,
which is either a purely random sampler Or or a noisy pseudo-random sampler
Os, with some random secret key s ∈ Z

s
q. For positive integers n and q ≥ 2,

a vector s ∈ Z
n
q and error term e ← χ, the LWE distribution As,χ is sampled

over Z
n
q × Zq. Chosen a vector a ∈ Z

n
q uniformly at random it outputs the pair

(a, t = 〈a, s〉 + e mod q) ∈ Z
n
q × Zq. A more detailed description of χ can be

found in [33]. The sampling oracles work in the following way:

Os: outputs samples of the form (a, t) = (a,as+ e) ∈ Z
n
q ×Zq, where s ∈ Z

n
q is

uniformly distributed value across all invocations and e ∈ Zq is a fresh sample
from χ.

Or: outputs truly random samples from Z
n
q × Zq.

Definition 1 (LWE-Problem). For an integer q and error distribution χ, the
goal of LWEq,χ in n dimensions is to find s ∈ Z

n
q with overwhelming probability,

given access to any arbitrary poly(n) number of samples from As,χ for random s.

Trapdoor Generation. Micciancio and Peikert [30] defined the new notion or
trapdoor and the new method of trapdoor generation, which is simple, efficient
and easy to implement. The standard notion of a strong trapdoor for strong
lattices Λ⊥(A) is a short basis S ∈ Z

m×m, where the lattice is defined by a
uniformly random matrix A ∈ Z

n×m
q . The main results of [30] are formulated in

the following theorem:

Definition 2 (TrapGen Algorithm:). Efficient trapdoor generation algorithm
TrapGen proposed in [30] uses a matrix G ∈ Z

n×w
q that admits efficient inversion

and preimage sampling algorithms. We recall this algorithm in the following
algorithm:

Input: A matrix Ā ∈ Z
n×m̄
q for some m̄ ≥ 1, invertible matrix H ∈ Z

n×n
q , and

a distribution D over Z
m̄×w
q . (If no particular Ā,H are given as input, then

the algorithm may choose them itself, i.e. Ā
r← Z

n×m̄
q and H = I.

Output: A parity-check matrix A = [Ā|A1] ∈ Z
n×m
q , m = m̄ + w, trapdoor R

with tag H.
1. Choose a matrix R ∈ Z

m̄×w
q from distribution D.

2. Output A = [Ā|HG − ĀR] ∈ Z
n×m
q and trapdoor R ∈ Z

m̄×w
q .

Definition 3 (Invert Algorithm:). For our construction we need to learn how
to use the trapdoor from above to solve LWE problem relative to A. As before,
we recall the inversion algorithm [30] Invert, which on a given trapdoor R for
A ∈ Z

n×m
q and an LWE instance bt = stA + et mod q for a short error vector

e ∈ Z
m, recovers s and e.

Input: An oracle O for inverting the function gG(ŝ, ŝ) when ê ∈ Z
w is suitably

small.
1. parity-check matrix A ∈ Z

n×m
q ,

2. G-trapdoor R ∈ Z
m̄×kn
q for A with invertible tag H ∈ Z

n×n
q ,

3. bt = gA(s,e) = stA + et for any s ∈ Z
n
q and suitably small e ∈ Z

m.

Multi-authority Distributed Attribute-Based Encryption 415

Output: The vectors s and e.

1. Compute b̂
t
= bt

[
R
I

]

.

2. Get (ŝ, ŝ) ← O(b̂).
3. Return s = H−tŝ and e = b − Ats.

In the following Definition 4 we provide a description of access policy.

Definition 4 (Access Structure [6]). Let P = {P1, . . . , Pn} be a set of parties.
A collection A ⊆ 2P is monotone if for all ω, ω′ holds: if ω ∈ A and ω′ ⊆ ω,
then ω ∈ A. An access structure (resp., monotone access structure) is a collection
(resp. monotone collection) A ⊆ 2P−{∅}. The sets in A are called the authorized
sets and the sets not in A are called the unauthorized sets.

We assume that the mentioned parties {P1, . . . , Pn} play the role of attributes
and the access structure A contains authorized sets of attributes. In the following
Definition 5 we recall the threshold version of access structure and linear secret
sharing scheme (LSSS). In LSSS there is a trusted party, who knows a secret
x and distributes it among n parties such that the secret can be reconstructed
using linear combination of the shares and Lagrange coefficients.

Definition 5 (Linear Secret Sharing Scheme). A linear secret sharing
scheme Π over a set of parties P consists of an index map ρ and a share-
generating matrix L ∈ Z

l×θ
q where l is the number of shares specified by the

scheme, and θ depends on the structure of the scheme. For all i ∈ 1, . . . , n, the
function ρ maps the i−th row of L to the corresponding party. For the matrix
L maps an input θ-vector v = (s, r1, . . . , rθ), where s ∈ Zq is the secret to be
shared and r2, . . . , rθ ∈ Zq are random, into an output l-vector Lv = (s1, . . . , sl)
containing the shares of the secret s according to Π. The share si = (Lv)i is
assigned to party ρ(i).

3 Attribute-Based Encryption for Multiple Authorities
Based on Lattices

In this section we present the first construction of a key-policy attribute-based
encryption which employs multiple authorities (KP-MABE) and is defined on the
aforementioned mathematical construct - lattices. The lattice-based construc-
tion of our scheme enjoys especial efficiency and is even assumed to be secure
against quantum attacks. While the secret keys of our scheme are associated
with access policies, the ciphertext is associated with attributes. As aforemen-
tioned in the introduction of this paper, we assume for our scheme existence of
N attribute authorities and n decryption servers. We amend the technique by
Boyen [12] to let the muliple attribute authorities collectively generate secret key
for an user. Furthermore we modify Boyen’s construction using the new trap-
doors from [30] making our scheme more effective. The technique in [12] relies on

416 V. Kuchta and O. Markowitch

ephemeral lattices for all secret key extractions, which means that the lattice is
high-dimensional and allows encoding of key-policy attributes. In the following
paragraph we the main idea and syntax of our construction.

The Scheme (Intuition). A key-policy MABE scheme consists of the following
algorithms ABE.Setup, ABE.Extract, ABE.KeyDistr, ABE.Encrypt, ABE.ShareDec,
ABE.Decrypt. We begin with the ABE.Setup algorithm which generates public key
and master secret key for each attribute authority i ∈ [N], such that the public
key consists of a random Ajtai matrix Āi and a random vector ui, where the
secret key is associated with the corresponding trapdoor Ri (we define the dimen-
sions of these keys in the detailed construction of the scheme, Sect. 3.1). The
ABE.Extract algorithm generates for each of N attribute authorities a private
key {skAi

}i∈[N] and a public key {pkAi
}i∈[N] amending the technique from [12]

and using trapdoor generation technique introduced by Micciancio and Peikert
[30]. Upon applying secret sharing to these authority’s secret keys, an user runs
ABE.KeyDistr algorithm in order to generate secret shares {skAi,Sι

}i∈[N],ι∈[n]

corresponding to each attribute authority and each server. It means that this
algorithm computes in total N × n secret shares, where each secret share key
tuple is ordered by ι ∈ [n], i.e. (skA1,S1 , skA1,S2 , . . . , skA1,Sn

) and corresponding
to authority one, and so on until N authorities. The ABE.Encrypt algorithm
computes a ciphertext of a message for a given set of attributes Ai. The user
sends generated secret shares to the decryption servers, where each of these
servers runs the ABE.ShareDec algorithm taking as input previously generated
ciphertext in order to generate N decryption shares in total, using those secret
shares received from user. Afterwards, upon receiving these decryption shares
from the decryption server, an user runs the ABE.Decrypt algorithm taking as
input at least t valid and previously computed decryption shares, a public key
and finally decrypts the ciphertext. The above mentioned secret shares of each
attribute authority are computed considering decryption policy which is rep-
resented by an LSSS and referring to technique in [12] it considers the given
attributes of each user. We assert that there is a problem if different users col-
lude and use their secret shares from different authorities in order to reconstruct
the decryption keys. To prevent this collusion we use the idea from [15] introduc-
ing a global identifier GIDκ for each user κ, such that a user needs to present
the same identifier to each attribute authority in order to receive the required
number of authorities’ secret shares. The shortcoming of this technique is that
it hinders the users to keep their anonymity, which wouldn’t make the scheme
applicable to searchable encryption. Therefore, in order to enable the application
to searchable encryption, we make an especially strong assumption that there is
no collusion of users possible. We emphasize that it is still an open question to
achieve all of the highly required properties such like avoiding collusion of users
and achieving anonymity of the construction.

Definition 6 (Multi-authority Distributed Attribute-Based Encryp-
tion). The multi-authority distributed attribute-based encryption consists of the
following algorithms:

Multi-authority Distributed Attribute-Based Encryption 417

ABE.Setup(1λ, N, n, t): On input security parameter 1λ, number of authori-
ties, N , number of servers n and threshold parameters t it computes mas-
ter public key mpki and master secret key mski for each authority i ∈ [N].

ABE.Extract(mpki,mski, policy): On input authority i’s master keys mpki,
mski, user’s policy, each authority Ai computes a policy embed secret key skAi

.
ABE.KeyDistr(mpki, skAi

, t, n): On input authorities master public key mpk, the
policy embed secret key skAi

, the number of servers n and threshold parameter t
it outputs n secret shares skAi,Sι

, where t-out-of-n secret shares are required to
reconstruct skAi

, for ι ∈ [n].

ABE.Encrypt({mpki}i∈[N], {Ai}i∈[N],m): On input each authority’s master pub-
lic key {mpki}i∈[N], attribute sets {Ai∈[N]} and a message m it computes a
ciphertext Ci.

ABE.ShareDec({mpki}i∈[N], skAi,Sι
, policy, Ci): On input each authority’s mas-

ter public key {mpki}i∈[N], secret share according to each attribute authority
skAi,Si

, known policy, and ciphertext Ci it computes decryption shares δi,ι.

ABE.Decrypt({mpki}i∈[N], {δi,ι}ι∈Ω , {Ci}i∈[N]): On input {mpki}i, at least t
valid decryption shares {δi}i∈Ω, and ciphertext {Ci}i∈[N], where |Ω| ≥ t is a
set of indices, it decrypts and outputs m or 0.

We prove our scheme secure against chosen-ciphertext attacks in chosen attribute
model. It means that an adversary has to provide the index of an authority it
wishes to attack and a target attribute set it wants to be challenged on. Unlike
the already existing ABE schemes, we provide an additional property for our
construction, which addresses the user’s identity privacy. The latter becomes
one of the main concerns in the cloud security nowadays. The users want the
authorities not to learn anything about those identities, in other words they
want to stay anonymous. In our scheme we approach anonymity during the
secret key generation protecting the attribute set in encryption. This is a novelty
which together with the multy-authority and distributed server setting makes
our scheme advantageous in contrast to the already existing attribute-based
encryptions.

Rouselakis [35] handled in his thesis the security definition of a ciphertext-
policy multi-authority attribute-based encryption. We provide a definition of a
key-policy multi-authority ABE with an extension to a multi-server setting. We
assume an adversary who is able to corrupt up to t− 1 attribute authorities and
additionally up to t − 1 decryption servers.

Remark 1. We note that our scheme requires decryption server which is not
required by previous multi-authority ABE schemes [35]. The purpose of decryp-
tion server is to enable a transformation from multi-authority ABE scheme to
the searchable encryption where the decryption server takes the role of a test
server, as will be showed later in Definition 10.

Definition 7 (Indistinguishability and Anonymity Against CCA).
The KP-MABE scheme is indistinguishable and anonymous against chosen-
ciphertext attacks (IND/ANO − MABE − CCA) if all probabilistic polynomial time

418 V. Kuchta and O. Markowitch

adversaries have at most a negligible advantage probability in winning the fol-
lowing game:

Init: The adversary chooses a set J of t − 1 decryption servers and a set I of
t − 1 attribute authorities that it wants to corrupt. Let J = {ι1, . . . , ιt−1} ⊂
{1, . . . , n}, I = {i1, . . . , it−1} ⊂ {1, . . . , N}.

Setup: An adversary Aind/ano generates a list of attribute sets for each authority
AAi, where i ∈ [N] the index of N authorities. Additionally, he provides a
list of corrupted authorities and servers. The challenger computes public key
of each authority and secret keys of corrupted authorities and sends them to
Aind/ano.

Secret Key Queries: On input (policyκ, ·) the adversary Aind/ano can issue as
many secret key queries as he wants to the attribute authorities. We assume
that there is at least one honest attribute authority, such that the adversary
cannot recover all secret keys and combine them into one, which he can use
during the decryption process. Furthermore we assume, that the secret key
queries corresponding to certain policyj do not satisfy the challenge policy∗

κ

of user κ. We also restrict the adversary to query the same authority twice.
Secret Key Share Queries: Aind/ano issues secret key share queries on input

(policyκ, ι) according to chosen policies for ι ∈ [n], i ∈ [N] and κ denotes
the index of an user. We note that policyκ has not been input of secret
key query, such that the adversary cannot recover the missing secret share
using the previously received secret key. That means that an adversary issues
queries for an user κ and chosen policyκ. We assume existence of a list K
which consists of the entries (policyκ, {skAi,Sι

}i∈[N],ι∈[n]). The oracle checks
if (policyκ, ·) ∈ K, if so it returns the corresponding secret share tuple
{skAi,Sι

}i∈[N],ι∈[n] to the adversary. Otherwise it invokes the ABE.Extract
algorithm to compute a secret key skAi

and on this input it invokes the
ABE.KeyDistr algorithm to generate secret shares of the given secret key.
Finally it outputs {skAi,Sι

}i∈[N],ι∈[n] to adversary. We allow up to t−1 secret
key queries on the same global identity, i.e. the oracle can return secret share
tuple {skAi,Sι

}ι∈[N],ι∈[n] for at most t − 1 attribute authorities i ∈ [N]. If the
number of queries exceeds t − 1, the oracle returns ⊥.

Decryption Queries: The adversary is allowed to issue queries for decryption
for certain policies which do not satisfy the target list of attributes. On input
(C,Ak) the decryption oracle checks if (policyκ, ·) ∈ K. If so, the oracle takes
t-out-of-N secret share tuples {skAi,Sι

}ι∈[n] for i ∈ [N], combines them, i.e.
(skA1,Sι

, . . . , skAt,Sι
) for each ι ∈ [n] in order to compute secret shares for the

decryption servers. The oracle takes these keys to compute decryption shares
upon running the ABE.ShareDec algorithm. Finally it runs the ABE.Decrypt
algorithm and outputs a message m. Otherwise if (policyκ, ·) ∈ K it invokes
the ABE.Extract algorithm to compute a secret key skAi

and on this input
it invokes the ABE.KeyDistr algorithm to generate secret shares of the given
secret key. Taking the values {skAi,Sι

}ι∈[n] as input it runs the ABE.ShareDec
algorithm to compute the decryption shares. Upon running the ABE.Decrypt
algorithm it returns either a message m or ⊥ to the adversary.

Multi-authority Distributed Attribute-Based Encryption 419

Challenge: The adversary outputs two messages m0,m1 and two attribute uni-
verses {A(0)

i }i∈[N] and {A(1)
i }i∈[N]. The challenger chooses random bits b, b′

and encrypts mb for an attribute set {A(b′)
i }i∈[N] and sends the encryption to

Aind/ano.
Queries: The adversary continues to issue more queries in the same manner as

earlier.
Guess: Aind/ano outputs a guess β, β′ that a message mβ has been encrypted by

challenger using {A(β′)
i }i∈[N].

The advantage of Aind/ano is given by
AdvMABE,Aind/ano

(1λ) = |Pr[β = b ∧ β′ = b′] − 1/4|.
A KP-MABE scheme is secure against key policy attacks if this advantage is
negligible.

In the following definition we formulate another important property of our
scheme, called robustness, which prevents to decrypt to a valid ciphertext under
different decryption keys for two different access policies. The property was ini-
tially defined by Abdalla et al. [1] and discussed in later work [35].

Definition 8 (Robustness). Let Arob be a probabilistic polynomial-time adver-
sary against the ROB−CCA security of the KP-MABE scheme.

Init: The adversary chooses a set J of t − 1 decryption servers and a set I of
t − 1 attribute authorities that it wants to corrupt. Let J = {ι1, . . . , ιt−1} ⊂
{1, . . . , n}, I = {i1, . . . , it−1} ⊂ {1, . . . , N}. It outputs a target policy∗.

Setup: The challenger runs Setup(1λ, 1l, N, n, t), and outputs authorities mas-
ter public key mpki and a master secret key mski.

Secret Key Queries: On input (policy′
κ, ·) the adversary Arob can issue as

many secret key queries as he wants to the attribute authorities. We assume
that there is at least one honest attribute authority, such that the adversary
cannot recover all secret keys and combine them into one, which he can use
during the decryption process. Furthermore we assume, that the secret key
queries corresponding to certain policyκ do not satisfy another policy

′
κ. We

also restrict the adversary to query the same authority twice.
Secret Share Queries: On input (policyκ, ι). We note that policyκ has not

been the input of secret key query. We assume existence of a list K consisting
of the entries (policyκ, {skAi,Sι

}i∈[N],ι∈[n]). The oracle checks if (policyκ, ·) ∈
K, if so it returns the corresponding secret share tuple {skAi,Sι

}ι∈[n] to the
adversary.
Otherwise it invokes the ABE.Extract algorithm and outputs {skAi,Sι

}ι∈[n] to
Arob. Let I and J denote the lists of queried authorities and servers. Initially
the lists K, I, J are empty.

Decryption Queries: On input (C, {Aκ,i}i∈[N]), the decryption oracle checks
if (policyκ, ·) ∈ K. If so, the oracle takes t-out-of-N secret share tuples
{skAi,Sι

}ι∈[n] for i ∈ [N], combines them, i.e. (skA1,Sι
, . . . , skAt,Sι

) for each
ι ∈ [n] in order to compute secret shares for the decryption servers. The oracle

420 V. Kuchta and O. Markowitch

takes these keys to compute decryption shares upon running the ABE.ShareDec
algorithm. Finally it runs the ABE.Decrypt algorithm and outputs a mes-
sage m.
Otherwise if (policyκ, ·) ∈ K it invokes the ABE.Extract algorithm to com-
pute a secret key skAi

and on this input it invokes the ABE.KeyDistr algo-
rithm to generate secret shares of the given secret key. Taking the values
{skAi,Sι

}ι∈[n] as input it runs the ABE.ShareDec algorithm to compute the
decryption shares. Upon running the ABE.Decrypt algorithm it returns either
m or ⊥ to adversary.

Challenge: The adversary Arob outputs (policy0, policy1, C
∗). The challenger

takes {mpki}i∈[N] and computes C ← Encrypt({mpki}i∈[N], {Ai}i∈[N],m).
Arob outputs policy0, policy1 and a ciphertext C∗ on challenge policy∗.

Output:
(i) If policy0 = policy1, challenger returns 0.
(ii) If (policy0, ·) /∈ K or (policy1, ·) /∈ K, it returns 0.
(iii) If |I0| ≥ t or |I1| ≥ t and |J0| ≥ tor|J0| ≥ t, return 0. Else

compute decryption shares δ0,ι
r← ABE.ShareDec({mpki}i∈[N],

sk
(0)
Ai,ι

, C), and decrypt m0
r← ABE.Decrypt({mpki}i∈[N], {δ0,ι}i∈Ω);

δ1,ιSDe({mpki}i∈[N], (ι, sk
(1)
Ai,Sι

), C), m1
r← ABE.Decrypt({mpki}i∈[N],

{δ1,ι}ι∈Ω).
If m0 �= ⊥ and m1 �= ⊥ returns 1.

An KP-MABE scheme is ROB−CCA secure if AdvROB−CCA
KP−MABE,Arob

(1λ) is
negligible.

3.1 Construction

ABE.Setup(1λ, 1l, N, n, t): On input a security parameter 1λ and attribute bound
1λ, number of attribute authorities N and the number of servers n with the cor-
responding threshold t, the algorithm generates master public key and master
secret key for each of the N attribute authorities AA. Each attribute authority
is in possession of an attribute universe {Ai}i∈[N], where Ai = {a1, . . . , ali}.
Considering a distribution D over Z

m̄×w
q chooses a matrix for each attribute

authority i: Āi ∈ Z
ν×m̄
q , where m = m̄ + w. For each i choose � uni-

formly random ui,j ∈ Z
ν
q , where j ∈ [�] and set mpki = ({Ai,j}j∈[], Āi,ui,j)

where Ai,j = [Āi| − ĀiRi,j] ∈ Z
ν×m
q , with corresponding master secret key

mski = {Ri,j}j∈[l] ∈ Z
m̄×w
q which is generated according to the TrapGen algo-

rithm from Definition 2.
ABE.Extract(mpki,mski, policyκ): On input a master public key mpki =
({Ai,j}, {Āi},ui,j), master secret key mski of authority i, and the correspond-
ing policy policyκ of user κ it generates in the first stage the secret key share
for each attribute authority. In the second stage it applies secret sharing
technique.

Multi-authority Distributed Attribute-Based Encryption 421

1. According to an access policy of an user k it generates a matrix L ∈ Z
×(1+θ)
q ,

where κ−th row is assigned to the binary attribute of index κ ∈ [�]. The
columns μ ∈ [0, θ] describe a function of policyκ, where θ ≤ � and κ denote
the user.

2. For each authority i ∈ [N], select θ ephemeral uniform random matrices
Zi,μ ∈ Z

ν×w
q .

Let L = (lrs)r∈[],s∈[1+θ]. The attribute list is given in binary mode, i.e.
lrs ∈ {0, 1}. It holds that the access policy is satisfied if the rows of matrix
L contain in their span the row-vector (1, 0, . . . , 0) ∈ Z

1+θ
q . In order to sim-

plify the notations of the following computations we set for simplification
ξ := (m(� + 1) + w(θ − 1)). Take the master public key mpki and construct
a virtual encryption matrix:

Mi =

⎡

⎢
⎢
⎢
⎣

Ai,1 l1,0Āi l1,1Zi,1 · · · l1,θZi,θ

Ai,2 l2,0Āi l2,1Zi,1 · · · l2,θZi,θ

. . .
...

...
...

Ai,l l,0Āi l,1Zi,1 · · · l,θZi,θ

⎤

⎥
⎥
⎥
⎦

mod q ∈ Z
ν×ξ
q ,

3. Using the new trapdoor generation technique from [7,30] and Definition 2.
the well known mathematical constructs - tensor product and direct sum (see
Definitions 11 and 12) - we take as input Mi ∈ Z

νl×ξ
q , which can be written as

Mi =

⎡

⎣
⊕

j=1

Aj |l0 ⊗ Ā|l1 ⊗ Z1| . . . |lθ ⊗ Zθ|
⎤

⎦ , where lj = (l1,j , . . . , l,j).

According to the new trapdoor generation technique in [30] we modify Mi by
subtracting ĀRj from each ljZj matrix and receive M̃i ∈ Z

νl×ξ
q i.e.

M̃i =

⎡

⎢
⎢
⎢
⎣

Ai,1 l1,0Āi l1,1Zi,1 − ĀiRi,1 · · · l1,θZi,θ − ĀiRi,1

Ai,2 l2,0Āi l2,1Zi,1 − ĀiRi,2 · · · l2,θZi,θ − ĀiRi,2

. . .
...

...
...

Ai,l l,0Āi l,1Zi,1 − ĀiRi, · · · l,θZi,θ − ĀiRi,

⎤

⎥
⎥
⎥
⎦

,

where all the entries belong to Zq. If we set Z̃i,j,μ = ljZi,μ − ĀiRi,j for
μ ∈ {0, θ}, we obtain:

M̃i =

⎡

⎣
l⊕

j=1

Ai,j |l0 ⊗ Āi|Z̃i,j,1| . . . |Z̃i,j,θ|
⎤

⎦

The intermediate secret key generated by attribute authority i is given by
skAi

= f−1

M̃i
(ûi) = xi ∈ Z

ξ
q, for an f : M̃ixi = ûi and f−1 the corresponding

inverse, i.e. f−1 : M̃−1
i xi = ûi, where ûi =

l⊕

j=1

ui,j = (u1, . . . ,ul)
t
i is the

vector consisting of l vectors ui,j . We note that (·)t is a transpose of a column
vector (·) transforming a column to a row.

422 V. Kuchta and O. Markowitch

ABE.KeyDistr(mpki, skAi
, t, n): On input authority’s master public key mpki,

authority’s secret key skAi
= xi and threshold parameters t, n it distributes the

secret key using secret sharing technique from Shamir [37] among n servers for
additive groups as follows: Choose a set of values U = {r0 = 0, r1, . . . , rξ} ∈
Zq, such that ri − rj is invertible in Zq for every i �= j. Make U public. Let

x = (x1, . . . , xξ). Then choose ξ formal t-degree polynomials hk(z) =
t∑

j=0

hj,kzj ,

k ∈ {1, . . . , ξ} and h0,k = xk, are the ξ secret components of vectors xi which was
recently generated by an attribute authority i ∈ [N]. The chosen polynomials are
uniformly random and independent. Server ι is publicly associated with value
ri,ι ∈ Zq, for ι ∈ [n] and n is the number of servers. The corresponding secret
share is skAi,Sι

= xi,ι = hk(ri,ι), where hk(ri,ι) = (h1(ri,ι), . . . , hξ(ri,ι)), where
ι ∈ [n], i ∈ [N] and Sι denotes the server with index ι.
ABE.Encrypt

({mpki}i∈[N], {Ai}i∈[N],m
)
: On input master public key mpki =

({Ai,j}i∈[N],j∈[], Ā, {ui,j}j∈[]), an attribute list {Ai}i∈[N] and a message m ∈
{0, 1}, where i ∈ [N], j ∈ [�] the algorithm performs the following computations:

1. Construct an encryption matrix as follows: It is a direct sum of {Ai,j}j∈[] if
the j ∈ Ai, i.e. an attribute in the the attribute list of authority i. Otherwise
it is 0 if j /∈ Ai.

Fi =

⎡

⎢
⎢
⎢
⎣

Ai,1 Āi 0
Ai,2 Āi 0

. . .
...

...
Ai,l Āi 0

⎤

⎥
⎥
⎥
⎦

mod q ∈ Z
ν×ξ
q .

2. Select a random vector s ∈ Z
ν
q .

3. Select Gaussian noise vectors ε0 ∈ Zq and ε1,i ∈ Z
ξ
q to some parametric

distribution as described in [12]. For each i ∈ [N] compute ciphertext: c0,i =
stûi+ε0+

⌊
q
2m
⌋

mod q, c1,i = (stFi + ε1,i) mod q, where ûi is a �-multiple
concatenation of ui. Output Ci = (c0,i, c1,i) ∈ Zq × Z

ξ
q.

ABE.ShareDec({mpki}i∈[N], skAi,Sι
, policyκ, {Ci}i∈Ω): On input public and

secret keys mpki, skAi,Sι
, x̂, t-out-of-N ciphertexts Ci, and known policyκ of

a user with index κ it computes: Generate a decryption share by using secret
shares skAi,Sι

, namely compute c1,i,ι = c1,i · xi,ι = stFixi,ι + ε1,ixi,ι and keep
c0,i as it is. Output decryption share δi,ι = (c0,i, c1,i,ι)

ABE.Decrypt({mpki}i∈[N], {δi,ι}ι∈Ω , {Ci}i∈[N]): On input {mpki}i∈[N], decryp-
tion shares {δi,ι}ι∈Ω , where Ω is a set with indices i1, . . . , it, and ciphertext C
compute the decryption via following steps:

1. Compute Lagrange coefficients λi,ι for ι ∈ [n] as follows λi,ι =∏
k∈Ω,k �=ι

−k
(ι−k) , where Ω is a set of indices with |Ω| = t. Using these val-

ues, compute c1,i =
n∑

i=1

λic1,i,ι = st
n∑

i=1

Fiλixi,ι +εt
1,ixi,ι = stûi +εt

1,i

n∑

i=1

xi,ι.

Multi-authority Distributed Attribute-Based Encryption 423

2. Do: c0 − c1,i = stûi + ε0 +
⌊

q
2

⌋
m−sûi −εt

1,i

n∑

i=1

x̃i,ι =
⌊

q
2

⌋
m mod q+‘error’,

where εt
1,i

n∑

i=1

x̃i,ι is an error value limited by Gaussian error distribution

parameters multiplied by a factor at most q, since the entries of xi,ι are all
mod q.

Fig. 1. Multi-authority distributed ABE scheme

3.2 Security Reduction

Theorem 1. Our KP-MABE scheme is secure against chosen-ciphertext attack
assuming that the LWE problem as given in Definition 1 is hard.

Proof. Let Aind/ano be a probabilistic polynomial-time adversary in a chosen-
ciphertext attack against our KP-MABE scheme. We construct an adver-
sary B against LWE problem which simulates the outputs for Aind/ano. The
instance of LWE problem is given as a sampling oracle O. This oracle can
be either purely random Or or pseudo-random Os for some secret s ∈ Z

ν
q . B

queries from his sampling oracle O and receives for each request i a fresh pair
(ai, ti) ∈ Z

ν
q × Zq. Additionally B request from its oracle LWE samples and

obtains (αij , βij)i∈{0,...,N},j∈{0,...,}. Before the adversary Aind/ano can start to
play the security game with a challenger, it announces a target attribute vector,
it wants to be challenged on. We proceed the proof via a sequence of hybrid
games. The Game0 is exactly the same game as described in the security game
above. In Game1 we change the generation of public key, challenge ciphertext
and the way on how secret key queries are answered. The changes should result
in a minimal negligible difference with Game0. To simulate vector ui,j ∈ Z

ν
q it

picks an LWE sample α00 and computes Ai,j = [Āi|A1] = [Āi| − ĀiRi,j], where
Ri,j are chosen in the same way as in Game0.

Secret Key Generation Queries: KP-MABE adversary Aind/ano can issue
adaptive key queries on input (policyκ, ·), which do not satisfy the previously
chosen target attribute set. We assume that A∗

κ,i = {a∗
κ,1, . . . , a

∗
κ,ξ} is the target

424 V. Kuchta and O. Markowitch

attribute set for user κ and attribute authority i ∈ [N], ξ = |Aκ,i|. Simulator B
changes the linear span program matrix L to L′ which consists only of those rows
of index j such that j ∈ Ai and accordingly changes L′ to L′′ which skips the
column with index 0. Invoking TrapGen algorithm, generates ξ random matrices
Zi ∈ Z

ν×m
q for all attribute i ∈ [ξ]. It is required that the challenge attribute

set does not satisfy the query on policyκ. Build a virtual encryption matrix and
generate the secret keys of attribute authorities in the same way as in the real
construction. That means first to sample ξ′ random matrices Zi,j ∈ Z

ν×m
q using

the TrapGen algorithm from Definition 2, where i ∈ [N] and j ∈ [ξ′]. We assume
that those matrices have short bases Bi,j ∈ Z

m×m
q for all attributes from the

challenge attribute set A∗
κ,i. The simulated encryption matrix is given as follows:

Mi =

⎡

⎢
⎢
⎢
⎣

Ai,1 l1,0Āi l1,1Zi,1 · · · l1,θZi,ξ′

Ai,2 l2,0Āi l2,1Zi,1 · · · l2,θZi,ξ′

. . .
...

...
...

Ai,ξ′ lξ′,0Āi lξ′,1Zi,1 · · · lξ′,ξ′Zi,ξ′

⎤

⎥
⎥
⎥
⎦

mod q ∈ Z
νξ′×ξ̃
q

where x̃i := (m(ξ′ + 1) + w(ξ′ − 1)) Let Z̃i denote the right part of the simulated
Mi consisting of lj,kZi,j , where k ∈ [ξ′] another index from 1 to ξ′. The diagonal
matrix B̃i consisting of Bi,j in the diagonal. Then holds: Z̃iB̃i = 0 mod q,
i.e. B̃i is a basis for Λ⊥

q (Z̃i). Using the Inverse algorithm from Definition 3 the
challenger B can simulate skAi

= f−1
Mi

(û).

Secret Share Queries: Assuming that KP-MABE adversary Aind/ano corrupts
up to t − 1 decryption servers, he obtains t − 1 secret shares skAi,Sι

which we
give to B. Using Lagrange coefficients λk,j for j ∈ [t−1] and choosing χ random

polynomials hk(z) ∈ Zq[z] the simulator can compute hk(j) = λk,0 +
t−1∑

i=1

λk,jj
i,

the secret share of server j. The simulator gives the generated secret key shares
to the adversary Aind/ano.

Decryption Queries: Aind/ano also makes decryption queries. To respond to
such a query B first prepares the secret keys and secret shares as above. It then
computes the decryption shares by first generating Lagrange coefficients and
then taking linear combinations of t-out-of-n valid decryption shares and those
Lagrange coefficients it decrypts the message m.

Challenge: Aind/ano outputs two messages m0,m1 and two attribute universes
{A(

i0)}i∈[N] and {A(
i1)}i∈[N]. B simulates the ciphertext c0, c1 using the out-

puts from LWE instance. If the samples come from a purely random oracle, the
ciphertext is indistinguishable from random, if it comes from a pseudo-random
oracle, the ciphertext is independent of the message, since c0 is independently
distributed.

Continuation: The adversary is allowed to issue additional secret share queries
and decryption queries after having seen the challenge ciphertext.

Multi-authority Distributed Attribute-Based Encryption 425

Guess: Aind/ano finally outputs a guess, whether the ciphertext C was a valid
encryption or not. Thereon, B decides, whether the LWE oracle was purely
random not. If A’s output is “valid”, then Aind/ano decides random, other-
wise B outputs “pseudorandom”. We also consider that B guesses the correct
indices of corrupted servers with probability 1

(n
t−1)

. If the algorithm Aind/ano

succeeds to guess the correct message and policy with a minimal probabil-
ity of 1

(n
t−1)

(1/4 + ε/4), then the algorithm B guesses correctly the behavior

of the LWE oracle with a minimal probability of 1/4 + ε/4 such that holds
AdvB,LWE ≥ 1

(n
t−1)

AdvA,MABE . ��

Theorem 2. Our KP-MABE scheme is KP-MABE-ROB-CCA secure.

Proof. (Sketch) For the more detailes of this proof we refer to the full version
of this paper and provide only a short sketch here. Since the access policy is
implemented in the encryption matrix Fi, it means that for two different policies,
policy0, policy1, the encryption matrices Fi,0, Fi,1 are different. From this fact
follows, that the ciphertexts which depend to these matrices are also different
from each other.

4 Application: Distributed Attribute-Based Searchable
Encryption

In this section we use our KP-MABE scheme in order to construct a distrib-
uted attribute-based searchable encryption on lattices (DABSE). We observe a
cloud scenario, which allows data owner to upload encrypted data together with
encrypted keywords, such that an authorized user can later perform particular
search operations and download data upon a successful cloud search. Addition-
ally we provide an improvement of the single server public key encryption with
keyword search (PEKS) schemes by distributing the role of one server among n
cloud servers and thus splitting the single point of failure among these multiple
servers. We also assume existence of multiple attribute authorities whose role is
to compute secret keys for the user using the corresponding access policy of that
user. In order to enable the search operation without revealing any information
of the data, the user computes trapdoor shares on certain keywords using the
obtained secret keys from attribute authorities. Upon receiving a set of those
shares the user sends each trapdoor share to one of the n cloud servers. In our
scheme, trapdoors and their corresponding shares are encrypted according to an
access control policy.

A distributed attribute-based searchable encryption scheme consists of the
following six algorithms (Setup, KeyGen, DABSE, ShareTrpd, ShareTest, Test).
The Setup algorithm generates a secret and a public key pair (ski, pki). The
KeyGen algorithm computes authorities secret keys skAi

according to the corre-
sponding access policies of an user. Via DABSE algorithm, data owner encrypts
certain keywords using certain attributes which allow access control during the
search process. The ShareTrpd algorithm takes as inputs the authorities secret
key skAi

and a keyword algorithm and generates a trapdoor for some keywords.

426 V. Kuchta and O. Markowitch

Then it distributes the trapdoor among n servers, such that each server for ι ∈ [n]
obtaines a trapdoor share Tw,ι. The ShareTest algorithm is run by servers where
each of them takes a trapdoor share and attribute credentials, a DABSE cipher-
text Φ and computes the corresponding test shares which are sent back to the
user. The user takes at least t-out-of-n valid test shares and runs the Test algo-
rithm, to check whether DABSE ciphertext encrypts the same keywords used
for generating trapdoor shares. The output of Test is a message m or ⊥.

Intuition. We present first an intuition for our construction. We note that the
ABE.Setup algorithm includes the Setup algorithm of KP-MABE scheme, which
first outputs master public key and master secret key mpk,msk. The attributes
from KP-MABE correspond to a keyword set in a DABSE scheme. Algorithm
KeyGen takes these keys and runs the ABE.Extract algorithm of KP-MABE to
generate secret and public keys of each attribute authority. The data owner runs
ABE.Encrypt algorithm of KP-MABE scheme to compute the ciphertext of a
keyword w using an attribute set A of each attribute authority. This ciphertext
corresponds to DABSE ciphertext Φ. The ShareTrpd algorithm takes as input
secret and public key from each authority and a keyword w which is equal
to an id of KP-MABE scheme and runs ABE.KeyDistr algorithm of KP-MABE
scheme in order to generate trapdoor shares. Algorithm ShareTest takes as input
attribute credentials and trapdoor shares and runs ABE.ShareDec algorithm to
generate test shares. The Test algorithm takes as input test shares, a public key
and runs Decrypt algorithm of KP-MABE and if the decryption is successful,
Test algorithm outputs 1.

Definition 9 (Indistinguishability/Consistency). We formalize the secu-
rity property of our DABSE scheme, called indistinguishability and consistency
against chosen ciphertext attacks (IND/CONS − DABSE − CCA).

Init: The adversary Aind/con chooses a set I of t−1 decryption servers and a set
J of t−1 attribute authorities that it wants to corrupt. Let I = {i1, . . . , it−1} ⊂
{1, . . . , N}, J = {j1, . . . , jt−1}.

Setup: The challenger runs Setup(1λ) and gives the adversary the master public
key mpk to the adversary. It keeps the master secret key to itself.

Phase1: The adversary issues queries q1, . . . , qd, where qi is one of the following
queries:

Secret Key Queries: On input (policy′
κ, ·) the adversary Aind/con can issue as

many secret key queries as he wants to the attribute authorities. We assume
that there is at least one honest attribute authority, such that the adversary
cannot recover all secret keys and combine them into one, which he can use
during the decryption process. Furthermore we assume, that the secret key
queries corresponding to certain policyj do not satisfy the challenge policy∗

κ

of user κ. We also restrict the adversary to query the same authority twice.
Trapdoor Share Query on Input (policyκ, w, ι): We assume existence of a

list T which consists of the entries (policyκ, {Tw,ι}ι∈[n]). We note that policyκ

has not been the input of secret key query. The oracle checks if (policyκ, ·) ∈ T ,
if so it returns the required trapdoor share (ι, Tw,ι) to the adversary.

Multi-authority Distributed Attribute-Based Encryption 427

Otherwise if (policyκ, ·) ∈ T it runs the ShareTrpd algorithm and generates
{Tw,ι}ι∈[n]. Finally it sends a trapdoor share (ι, Tw,ι) to the adversary. We
allow an adversary to make adaptive queries, that means, he may issue a query
on qi with knowledge of q1, . . . , qi−1, but with the constraint, that w �= w∗ and
the number of credential queries is at most t − 1.

Test Queries on Input (Φ,w): The challenger runs ShareTrpd on w to obtain
a set of n trapdoor shares T := {Tw,1, . . . , Tw,n}. We assume existence of a
list T which consists of the entries (policyκ, {Tw,ι}ι∈[n]). The oracle checks
if (policyκ, ·) ∈ T , if so it takes the trapdoor shares {Tw,ι}ι∈[n] and runs
ShareTest algorithm in order to generate the required test shares. Upon taking
t-out-of-n valid test shares it runs Test and outputs either 1 or 0 to the
adversary.
Otherwise if (policyκ, ·) ∈ T it first runs ShareTrpd algorithm and generates
{Tw,ι}ι∈[n]. Afterward it takes these trapdoor shares and runs ShareTest in
order to obtain test shares δi1 , . . . , δit

, where ij ∈ [n]. On input these test
shares it runs Test to check, whether Φ encrypts the same keywords which
were also used in trapdoor generation algorithm ShareTrpd. If the test process
is successful, the challenger sends the result of Test to the Aind/con. Otherwise
it returns 0.

Challenge: The adversary outputs identities w0, w1 which it wants to be chal-
lenged on. The challenger picks a random bit b ∈ {0, 1} and computes Φ ←
DABSE({pki}i∈[N], wb). He sends Φ∗ as challenge ciphertext to the adversary A.

Phase2: The adversary and the challenger interact as in Phase1.
Guess: The adversary outputs a guess b′ ∈ {0, 1}. It wins the game if b = b′

and trapdoor was computed on w1−b.

4.1 Construction

In this section we provide the general construction of an DABSE scheme from a
secure KP-MABE scheme.

Definition 10 (KP-MABE-to-DABSE Transform).
Setup(1λ): On input a security parameter 1λ, it runs the Setup algorithm of the
KP-MABE scheme (mski,mpki)

r← Setup(N, t, 1λ) and outputs ski = mski and
pki = mpki.

KeyGen(pki, ski, policyκ): On input public and secret key pair pki, ski, and
policyκ of the user κ it runs the ABE.Extract algorithm of KP-MABE scheme
and outputs authorities secret key skAi

which corresponds to the provided access
policy.

DABSE({pki}i∈[N], w): On input authorities public keys {pki}i∈[N], keyword w
which corresponds to an attribute set Ā = {A1, . . . ,AN} of KP-MABE scheme,
it runs the encryption algorithm of KP-MABE scheme in order to compute
C

r← ABE.Encrypt(pk,w,R), where R
r← {0, 1} is picked randomly. It returns

the DABSE ciphertext Φ = (C,R).

428 V. Kuchta and O. Markowitch

ShareTrpd(pki, skAi
, w, t, n): On input authority’s public key pki and policy-

related secret key skAi
, where i ∈ [N] is the index of corresponding author-

ity Ai, threshold parameters t, n, keyword w it runs the ABE.Extract algo-
rithm of KP-MABE scheme to output secret key shares {skAi,Sι

}i∈[N],ι∈[n] of
each authority i. It sets these secret shares equal to trapdoor shares (ι, Tw,ι) =
(ι, {skAi,Sι

}i∈[N],ι∈[n]).

ShareTest(pki, {ι, Tw,ι}ι∈Ω, Φ): On input a public key pki of authority i ∈ [N],
trapdoor shares {ι, Tw,ι}ι∈[Ω] and a DABSE ciphertext Φ = (C,R), it runs the
ShareDecrypt algorithm of KP-MABE scheme and outputs decryption shares
δι

r← ShareDecrypt(pki, (ι, Tw,ι), Φ). It outputs test shares τι = (δι).

Test({pki}i∈[N], {τι}ι∈Ω): On input a public key, at least t-out-of-n test shares
τι, ι ∈ Ω with |Ω| = t, it runs ABE.Decrypt algorithm of KP-MABE on input δι.
The algorithm outputs m if ABE.Decrypt algorithm was successful and R′ = R.
Otherwise outputs ⊥.

Note on Verifiability: Some users of cloud services require confidentiality in
the search process, especially if we assume that the storage function of the cloud
is corrupted or there is a malfunction in the whole storage system. Therefore
there are users which would like to get guarantee about the authenticity of con-
ducted search operations and received search results. We can adapt our scheme
to those requirements by adding a verification operation to our construction.
Similar to [42], the verification can be done using a digital signature scheme as
an additional building block. A signature is prepared for each DABSE ciphertext
and for a trapdoor where the trapdoor signature is distributed into n shares in
such a way that each signature share represents a signature for a trapdoor share.
After completing the search function, the cloud servers output the search result,
which is either 1 or 0, and a proof which includes signatures on DABSE cipher-
text and trapdoor shares. After receiving proof shares from each cloud server,
the user can reconstruct the signature of a trapdoor using at least t-out-of-n
signature shares from each proof share. The verification succeeds if the both
signatures, one of a DABSE ciphertext and one of the trapdoor can be verified
using a public key of the signature scheme.

4.2 Security Reduction

Theorem 3. If KP-MABE scheme is IND/ANO − MABE − CCA and ROB−CCA
secure, the obtained DABSE scheme in Definition 10 is IND/CONS − DABSE − CCA
secure.

Proof. We use a IND/CONS − DABSE − CCA adversary Bind/con against DABSE
scheme to construct a simulator of a chosen-ciphertext attack against KP-MABE
scheme. That is, the simulator acts as Aind/ano against chosen-ciphertext attack
and as Arob against ROB−CCA attack. The simulation of the view of Bind/con

distinguishes by two cases C �= C∗ and C = C∗. We start to describe the
simulation using game hopping technique.

Multi-authority Distributed Attribute-Based Encryption 429

Game0: The initial game is the Game0 which describes the real attack. First
the challenger runs the Setup of the DABSE scheme on input a security parame-
ter λ, threshold parameter t, number of servers n and N attribute authorities.
The challenger gives Bind/con the master public keys of N attribute authori-
ties {mpki}i∈[N]. Bind/con issues also the required queries on authority’s secret
key belonging to the attribute authority i ∈ [N]. Upon receiving the secret keys
skAi,Sι

, challenger Bind/con issues trapdoor share query on a keyword w and test
queries on the DABSE ciphertext Φ and an attribute set {Ai}i∈[N]. The chal-
lenger responds with the challenge DABSE ciphertext Φ∗(w). In the challenge
phase Bind/con outputs two challenge keywords w,w′. The challenger computes
the corresponding DABSE ciphertext Φ(pk,w) on w. Bind/con issues more trap-
door share and decryption queries to which the OShareTrpd and OTest respond
as in the first phase. Bind/con also issues up to t − 1 trapdoor share queries on
w and on w′, where w �= w′ but no decryption queries on these challenge key-
words. Finally Bind/con outputs a random bit b′ ∈ {0, 1} which is a guess for b.
We denote by E0 the event b = b′. Since Game0 is the same as the real attack,
we have

Pr[E0] = AdvIND/CONS−DABSE−CCA
DABSE,Bind/con

(1λ)

Game1: The first game (Game1) differs from the previous one by simulation of
secret key, trapdoor share and test queries. If these shares are involved in com-
puting the DABSE ciphertext, the simulator modifies the challenge ciphertext
appropriately. Aind/ano is given as input the attribute authorities master pub-
lic key mpki of KP-MABE scheme which gives it to Bind/con. When Aind/ano

issues queries on the authorities secret keys, Bind/con forwards those queries
to its secret key generation oracle on input a randomly chosen access policy,
which is not equal to the target policyκ of user κ. B′

ind/cons oracle runs the
ABE.Extract algorithm and returns the corresponding secret key to Aind/ano,
which is to be forwarded to Bind/con by the simulator. We assume that Bind/con

corrupts a set of t − 1 servers. Therefore, challenger Aind/ano also chooses a
random set of t − 1 servers with probability of 1/

(
n

t−1

)
to match the same

servers as chosen by Bind/con. In the first phase the attacker Bind/con issues
queries on (w, ι), where ι ∈ [n]. It invokes Aind/ano which runs the simulation
of received queries. It needs to simulate the corresponding trapdoor share for
index ι, which is (ι, Tw,ι). In order to do so, it queries its own key distribution
oracle OABE.KeyDistr on input (policykappa, ι). The oracle returns (ι, skAi,ι)
to Aind/ano. The KP-MABE attacker Aind/ano sets skAi,ι equal to a trapdoor
share Tw,ι and returns (ι, Tw,ι) to Bind/con. When Bind/con issues test queries on
input (w,Φ), the KP-MABE adversary Aind/ano chooses random R ∈ {0, 1}, sets
w = {Ai}i∈[N],b := Āb, such that Āb satisfies policyκ,b for b ∈ {0, 1} and com-
putes C = Encrypt(pk, Āb, R||0λ), where R||0λ is the challenge message. Then
it queries its decryption oracle ODecrypt on input (Āb, C) to obtain either R or
0. In case that Aind/ano receives R, it returns 1 to Bind/con, otherwise it returns
0. The algorithm Aind/ano returns id as a challenge and R0, R1

r← {0, 1} as the
challenge messages. The Aind/ano oracle forwards the queries to its decryption

430 V. Kuchta and O. Markowitch

oracle and returns a message m to Bind/con. When Bind/con issues test queries
on Φ∗, Aind/ano aborts the simulation.

In the second phase, Bind/con issues additional queries to the trapdoor share
and test oracle, given challenge ciphertext C �= C∗ that encrypts Rb under
attribute set Ā = {Ai}i∈[N] (which is set equal to w), Aind/ano responds to the
issued queries as before. Bind/con is allowed to issue secret key queries to his
secret key generation oracle and up to t − 1 trapdoor share queries but no test
queries on challenge keywords w,w′. Attacker Aind/ano simulates these queries
by first querying his key generation oracle which runs the ABE.Extract algorithm
in order to generate the secret key for authority i ∈ [N]. Upon receiving the cor-
responding secret key skAi

, the simulator forwards it to the adversary Bind/con.
Then the simulator Aind/ano issues up to t − 1 queries to his secret share oracle
OABE.KeyDistr on input an authority’s secret key skAi

. Further simulation is
as before. Finally Bind/con outputs a guess b′ ∈ {0, 1}. The simulator outputs a
guess as follows: If b = b′ then Aind/ano outputs 1, which means that Aind/ano

succeeded in its attack to distinguish between R0 and R1. Otherwise it outputs
0 meaning that Aind/ano didn’t succeed attacking the IND/ANO − MABE − CCA
security of KP-MABE scheme. As shown above, Aind/ano answers any secret
key, trapdoor share queries and test queries using its own secret key generation,
key distribution and decryption oracles. Additionally, considering the probabil-
ity of correct matching corrupt servers, it is easy to see that the lower bound of
success probability of Aind/ano, which always returns bit b = β = 1, is at least
the same or higher as Bind/con’s success probability. The upper bound of success
probability of Aind/ano, whose output is always bit 0 is limited related to the
size of the message space of messages R0, R1 ∈ {0, 1}λ.

Pr[ExpIND/ANO−MABE−CCA
MABE,Aind/ano

(λ) = 1]

≥ 1
(

n
t−1

)Pr[ExpIND/CONS−DABSE−CCA
DABSE,Bind/con

(1λ) = 1],

P r[ExpIND/ANO−MABE−CCA
MABE,Aind/ano

(λ) = 1] ≤ 2−λ.

Game2: This game differs from previous one by the simulation of queries on
the challenge ciphertext Φ∗. Arob is given as input the master public key mpk of
KP-MABE scheme which it gives to Bind/con. We assume that Bind/con corrupts
a set of t − 1 servers. Arob also chooses a set of t − 1 servers and matches
the correct server with a probability of 1/

(
n

t−1

)
. In contrast to Case 1 we have

here only one phase where the attacker Bind/con issues queries on (policyκ, ·)
to the secret key generation oracle and queries on (w, ι) to the trapdoor share
oracle OShareTrpd and to the test oracle OTest. It invokes Arob which runs
the simulation of received queries. It needs to simulate the corresponding secret
key query and the corresponding trapdoor share for index ι, which is (ι, Tw,ι).
First Arob approaches his secret key generation oracle on input (policyκ, ·) and
receives the corresponding secret key skAi

. In order to simulate trapdoor share
queries, Arob approaches his key distribution oracle OABE.KeyDistr, i.e. for a
w �= w∗ it takes w and queries its own key derivation oracle OABE.KeyDistr on

Multi-authority Distributed Attribute-Based Encryption 431

input (skAi,ι, ι). The oracle returns (ι, skAi
, ι) to Arob. The KP-MABE attacker

Arob sets skAi,ι equal to a trapdoor share Tw,ι and returns (ι, Tw,ι) to Bind/con.
If w = w∗ the adversary Bind/con is allowed to issue up to t−1 queries to the key
distribution oracle. Arob simulates the queries as before. When Bind/con issues
test queries on input (w,Φ), where w �= w∗ and Φ = Φ∗ the KP-MABE adversary
Arob chooses a random R ∈ {0, 1}λ, a keyword w = {Ai}i∈[N] := Ā and computes
C = Encrypt(mpki, w,R||0λ), where R||0λ is the challenge message. Then it
queries its decryption oracle ODecrypt on input (Āb, C) in order to obtain either
R or 0, such that Āb satisfies either policy0 or policy1. In case that Arob receives
R, it returns 1 to Bind/con, otherwise it returns 0. The Aind/ano adversary queries
its own decryption oracle and returns m to Bind/con. If w = w∗ and we have
Φ = Φ∗, the simulator Arob sets w = policy0 and w′ = policy1, sets R = 0 and
Φ∗ = C∗. It issues then decryption queries on policy0, policy1 to its decryption
oracle which returns m0 and m1. If m0 = ⊥ and m1 = ⊥ then Arob returns 1 to
Bind/con.

Finally Bind/con outputs a guess b′ ∈ {0, 1}. Arob outputs a guess as follows: If
b = b′ then Arob outputs 1, which means that Arob succeeded in its attack. Oth-
erwise it outputs 0 meaning that Arob didn’t succeed attacking the ROB−CCA
security of KP-MABE scheme. As shown above, A answers any trapdoor-share
queries and test queries using its own key derivation and decryption oracles.
Additionally, considering the matching probability of corrupt servers it is easy
to see that for B′s advantage holds:

Pr[ExpROB−CCA
MABE,Arob

(1λ) = 1] ≥
1
(

n
t−1

)
(
Pr[ExpIND/CONS−DABSE−CCA

DABSE,Aind/con
(1λ) = 1]

)
.

Now combining the results of the two cases follows that

1
(

n
t−1

)
(
AdvIND/CONS−DABSE−CCA

DABSE,Bind/con

)
≤ AdvROB−CCA

MABE,Arob
(1λ) + 2−λ

+ AdvIND/ANO−MABE−CCA
MABE,Aind/ano

(1λ)

5 Conclusion

In this paper we provided the first lattice-based attribute-based threshold
decryption which involves multiple attribute authorities. We proved the scheme
indistinguishable and anonymous against chosen ciphertext attacks. Furthermore
we presented an application of our construction to the searchable encryption by
providing the first lattice-based distributed attribute-based searchable encryp-
tion with multiple attribute authorities. This scheme is usually used in cloud
storage schemes in order to allow data users to perform searching operations on
the stored cloud data.

432 V. Kuchta and O. Markowitch

Appendix

Definition 11 (Tensor Product). For vectors v, w ∈ Z
n
q , where v =

(v1, . . . , vn),w = (w1, . . . , wn) the tensor product is given by
⎛

⎜
⎜
⎜
⎝

v1
v2
...

vn

⎞

⎟
⎟
⎟
⎠

⊗

⎛

⎜
⎜
⎜
⎝

w1

w2

...
wn

⎞

⎟
⎟
⎟
⎠

= (v1w1, . . . , v1wn, . . . , vnw1, . . . , wn)t

For a matrix V ∈ Z
m×m
q and vectors v1, . . . ,vn ∈ Z

m
q a tensor product has the

following property:

V (v1 ⊗ . . . ⊗ vn) = V v1 ⊗ v2 ⊗ . . . ⊗ vn = (V ⊗ Imn−1)(v1 ⊗ . . . ⊗ vn).

Note that v1 ⊗ . . . ⊗ vn ∈ Z
mn

q and

V ⊗ Imn−1 =

⎛

⎜
⎝

v11 . . . v1m

...
. . .

...
vm1 . . . vmm

⎞

⎟
⎠⊗

⎛

⎜
⎜
⎜
⎝

111 0 . . . 01mn−1

0 1 . . . 0
...

.
...

0mn−11 . . . 0 1mn−1mn−1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎝

v11Imn−1 . . . v1mImn−1

...
. . .

...
vm1Imn−1 . . . vmmImn−1

⎞

⎟
⎠ ∈ Z

mn×mn

q

We note that in our scheme the vectors v1, . . . , vn associates with the different
public keys, which are used to decrypt an evaluated ciphertext that associates
with the vector space V .

In the following definition we recall the construct of direct sums. We pro-
pose this tool in order to provide an optimization during evaluation of different
ciphertexts. On the one hand it improves the dimension of evaluated ciphertexts
while on the other hand it involves additional rounds of communication between
the parties during the decryption process.

Definition 12 (Direct Sum). Let V ∈ Z
n
q and W ∈ Z

m
q . The vector space

V ⊕ W which is spanned by the basis vectors of these two vector spaces, has
dimension n + m and is called the direct sum of V and W . The vectors
from each vector space V or W can be seen as vectors of the direct sum,
just by filling zeros to the full dimension n + m. Let v = (v1, . . . , vn) ∈ V
and w = (w1, . . . , wm) ∈ W . Vector v is an element of direct sum, e.g.
v = (v1, . . . , vn, 01, . . . , 0m) and w = (01, . . . , 0n, w1, . . . , wm). Then the direct
sum of v ⊗ w = (v1, . . . , vn, w1, . . . , wm), which is a vector of dimension n + m.

Multi-authority Distributed Attribute-Based Encryption 433

The direct sum of two matrices A ∈ Z
n×n
q , B ∈ Z

m×m
q is given by:

A ⊕ B =
(

A 0
0 B

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 . . . a1n 0 . . . 0
...

. . .
...

...
. . .

...
an1 . . . ann 0 . . . 0
0 . . . 0 b11 . . . b1m

...
. . .

...
...

. . .
...

0 . . . 0 bm1 . . . bmm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

In general a direct sum of n matrices of dimensions n1, . . . , nn is given by

A1 ⊕ A2 ⊕ . . . ⊕ An =

⎛

⎜
⎜
⎜
⎝

A1 0 . . . 0
0 A2 . . . 0
... . . .

. . .
...

0 . . . 0 An

⎞

⎟
⎟
⎟
⎠

The dimension of this direct sum is n1 + . . . + nn. Furthermore, (A1 ⊕ . . . ⊕
An)(v1 ⊕ . . . ⊕ vn) = Av1 ⊕ . . . ⊕ Anvn.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-11799-2 28

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13190-5 28

3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC 1996, pp. 99–108. ACM (1996)

4. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: STOC 1997, pp. 284–293. ACM (1997)

5. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., de Panafieu, E., Ràfols,
C.: Attribute-based encryption schemes with constant-size ciphertexts. Theor.
Comput. Sci. 422, 15–38 (2012)

6. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel, Institute of Technology, Technion, Haifa (1996)

7. Bendlin, R., Krehbiel, S., Peikert, C.: How to share a lattice trapdoor: threshold
protocols for signatures and (H)IBE. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 218–236. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38980-1 14

8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), pp. 321–334.
IEEE Computer Society (2007)

9. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 30

http://dx.doi.org/10.1007/978-3-642-11799-2_28
http://dx.doi.org/10.1007/978-3-642-11799-2_28
http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-642-38980-1_14
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30

434 V. Kuchta and O. Markowitch

10. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-70936-7 29

11. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully
secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13013-7 29

12. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36594-2 8

13. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 27

14. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on
remote encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). doi:10.1007/
11496137 30

15. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-70936-7 28

16. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: Proceed-
ings of the 2007 ACM Conference on Computer and Communications Security,
CCS 2007, pp. 456–465. ACM (2007)

17. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. J. Comput. Secur.
19(5), 895–934 (2011)

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206. ACM (2008)

19. Goh, E.: Secure indexes. IACR Cryptol. ePrint Arch. 2003, 216 (2003)
20. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over

encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24852-1 3

21. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Symposium on Theory of Computing Conference, STOC 2013, pp. 545–
554. ACM (2013)

22. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3 47

23. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM (2006)

24. Hou, C., Liu, F., Bai, H., Ren, L.: Public-key encryption with keyword search from
lattice. In: P2P, Parallel, Grid, Cloud and Internet Computing (2013)

25. Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search and
its extension to a multi-user system. In: Takagi, T., Okamoto, E., Okamoto, T.,
Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73489-5 2

26. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-642-13013-7_29
http://dx.doi.org/10.1007/978-3-642-13013-7_29
http://dx.doi.org/10.1007/978-3-642-36594-2_8
http://dx.doi.org/10.1007/978-3-642-36594-2_8
http://dx.doi.org/10.1007/978-3-642-13190-5_27
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/978-3-540-70936-7_28
http://dx.doi.org/10.1007/978-3-540-70936-7_28
http://dx.doi.org/10.1007/978-3-540-24852-1_3
http://dx.doi.org/10.1007/978-3-540-70583-3_47
http://dx.doi.org/10.1007/978-3-540-73489-5_2
http://dx.doi.org/10.1007/978-3-642-13190-5_4

Multi-authority Distributed Attribute-Based Encryption 435

27. Li, J., Zhang, L.: Attribute-based keyword search and data access control in cloud.
In: CIS 2014, pp. 382–386. IEEE Computer Society (2014)

28. Li, M., Yu, S., Ren, K., Lou, W.: Securing personal health records in cloud comput-
ing: patient-centric and fine-grained data access control in multi-owner settings. In:
Jajodia, S., Zhou, J. (eds.) SecureComm 2010. LNICSSITE, vol. 50, pp. 89–106.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16161-2 6

29. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 43

30. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 41

31. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: STOC 2009, pp. 333–342. ACM (2009)

32. Regev, O.: New lattice based cryptographic constructions. In: STOC, 2003, pp.
407–416. ACM (2003)

33. Regev, O.: On lattices, learning with errors, random linear codes and cryptography.
In: STOC 2005, pp. 84–93. ACM (2005)

34. Regev, O.: Lattice-based cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 131–141. Springer, Heidelberg (2006). doi:10.1007/11818175 8

35. Rouselakis, I.: Attribute-based encryption: robust and efficient constructions. In
Thesis

36. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

37. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
38. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: attribute-based

keyword search with fine-grained owner-enforced search authorization in the cloud.
In: 2014 IEEE Conference on Computer Communications, INFOCOM, 2014, pp.
226–234 (2014)

39. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computation-
ally efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.)
SDM 2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15546-8 7

40. Wang, C., Li, W., Li, Y., Xu, X.: A ciphertext-policy attribute-based encryp-
tion scheme supporting keyword search function. In: Wang, G., Ray, I., Feng, D.,
Rajarajan, M. (eds.) CSS 2013. LNCS, vol. 8300, pp. 377–386. Springer, Cham
(2013). doi:10.1007/978-3-319-03584-0 28

41. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19379-8 4

42. Zheng, Q., Xu, S., Ateniese, G.: VABKS: verifiable attribute-based keyword search
over outsourced encrypted data. INFOCOM 2014, 522–530 (2014)

http://dx.doi.org/10.1007/978-3-642-16161-2_6
http://dx.doi.org/10.1007/978-3-642-29011-4_43
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/11818175_8
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-15546-8_7
http://dx.doi.org/10.1007/978-3-642-15546-8_7
http://dx.doi.org/10.1007/978-3-319-03584-0_28
http://dx.doi.org/10.1007/978-3-642-19379-8_4

One-Round Exposure-Resilient
Identity-Based Authenticated Key Agreement

with Multiple Private Key Generators

Atsushi Fujioka(B)

Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku,
Yokohama-shi, Kanagawa 221-8686, Japan

fujioka@kanagawa-u.ac.jp

Abstract. This paper considers identity-based authenticated key agree-
ment (IBAKA) with multiple private key generators (PKGs). In conven-
tional IBAKA scenarios, a single PKG manages all parties in a system,
whereas in a multiple PKG setting, several PKGs exist in a system, and
each party is given a private key by a PKG who manages the party.
IBAKA is expected to maintain security against exposing private infor-
mation such as static or ephemeral private keys even in a multiple PKG
setting. We define a security model for IBAKA with multiple PKGs to
achieve this exposure-resilience property. Based on a security notion,
we propose a one-round secure protocol under the gap bilinear Diffie–
Hellman assumption in the random oracle model. The protocol utilize
the NAXOS approach to embed the gap bilinear Diffie–Hellman instance
even when both ephemeral private keys are exposed.

Keywords: Identity-based authenticated key agreement · Multiple
private key generators · Gap bilinear Diffie–Hellman assumption · Ran-
dom oracle model

1 Introduction

Key establishment (KE) is an important cryptologic research area dealing with
the basic problem of how to establish a shared key between two communicat-
ing parties. This key in turn allows the establishment of secure communication
channels between the two parties.

Identity-based authenticated key agreement (IBAKA) enables two parties to
share a key via an insecure channel and both parties are assured that only their
intended peers can derive the session key, where each party is identified with
information called an identity. Note that IBAKA does not require an authority
to certify public keys, like in a public-key infrastructure (PKI) system, but it is
necessary that an additional party exists (called a private key generator (PKG))
who extracts the private key of each party corresponding to the identity of that
party.

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 436–460, 2017.
DOI: 10.1007/978-3-319-61273-7 21

One-Round Exposure-Resilient IBAKA with Multiple PKGs 437

In an IBAKA protocol, a PKG generates a pair comprising a master public
and secret keys, and extracts the private key of each party corresponding to
the identity of that party. Every party has its own private key generated by
the PKG and uses the identity as its own public information. Then, a party
(referred to as an initiator) who wants to share a key with another party (referred
to as a responder) sends ephemeral public information to the responder, and
the responder sends back other ephemeral public information to the initiator.
After such interactions, each party derives a session key from intermediate values
computed based on the master public key, the private key of the party, private
values related to the ephemeral information of the party, the identity of the peer,
and the received ephemeral information. Here, the identity of the peer is used
to generate the (static) public key of the peer with the master public key. An
IBAKA protocol is said to be secure when no adversary can distinguish between
a random key and the actual session key of the session chosen by the adversary.

1.1 Security Models

Several IBAKA security models have been investigated, and they are influenced
by the security models of PKI-based authenticated key agreement (AKA). The
Bellare–Rogaway (BR) model [1] was the first formal security model for AKA
in a symmetric key setting followed by the work by Blake-Wilson, Johnson, and
Menezes (BJM model) [3] for PKI-based AKA. Then, the Canetti–Krawczyk
(CK) model [6] and the extended Canetti–Krawczyk (eCK) model [22] were pro-
posed. The security notions defined in the above models are given as an indis-
tinguishability game where an adversary is required to differentiate between
a random key and a session key of a session. The session is called a target
session, and is chosen by the adversary. Based on these models, the id-BR
(id-BJM)1 [4,8], id-CK [5], and id-eCK [18] models were defined, respectively.
Note that in IBAKA, although the PKG has much more power than the users,
no session key between users should be revealed even to the PKG. This property
is called forward secrecy against PKG (PKG-FS). The CK security and eCK
security models are stronger than the BR security model [6,9,22]; however, the
CK security and eCK security models are incompatible [10,11]. These relations
also hold in the security definitions for IBAKA.

Maximal exposure attacks (MEX) [20] are powerful attacks against AKE
protocols, and, needless to say, against IBAKA protocols, also. Thus, IBAKA
protocols should be designed to resist MEX. We say that MEX are successful
if an adversary can distinguish the session key from a random value under the
disclosure of the static or ephemeral private key of the initiator and the static or
ephemeral private key of the responder in the session. It is clear that an adversary
who obtains both the static and ephemeral private keys of the initiator (or the
responder) can trivially distinguish the session key. In other words, an IBAKA
protocol is secure against non-trivial exposure of private keys when it resists

1 The model should be called the id-BJM model as the BR model is defined for AKA
in a symmetric key setting.

438 A. Fujioka

MEX. Thus, we say that an IBAKA protocol is exposure resilient when MEX
against the protocol are not successful.

The id-eCK model captures the security against MEX. It is well known that
an IBAKE protocol is exposure resilient when it is id-eCK secure.

1.2 id-eCK Secure IBAKA

The first id-eCK secure IBAKA protocol was proposed by Huang and Cao [18].
They utilize pairings to construct the protocol, and prove its security under
a mathematical assumption referred to as the computational bilinear Diffie–
Hellman (CBDH) assumption.

Fujioka et al. [16] invented efficient protocols but these are id-eCK secure
under a stronger assumption referred to as the gap bilinear Diffie–Hellman
(GBDH) assumption. Later, Fujioka and Suzuki [15] analyzed sufficient con-
ditions to construct IBAKA protocols that are id-eCK secure under the GBDH
assumption. The above protocols are based on symmetric pairings and a con-
struction on asymmetric pairings is discussed in [14].

On the other hand, Zhong and Ma proposed an id-eCK secure IBAKA proto-
col without pairings [29]. They proved its security under another mathematical
assumption referred to as the computational Diffie–Hellman assumption.

We stress that all the above protocols assume that a single PKG exists in a
system.

1.3 Multiple PKG Setting

In the conventional scenarios described above, IBAKA protocols are constructed
based on the premise that a single PKG exists, i.e., the PKG manages all parties
in a system. However, this requirement is somewhat rigid in a realistic scenario.
Some parties belong to a group managed by a PKG but other parties belong
to a different group managed by a different PKG. Therefore, this leads us to a
multiple PKG setting. For example, consider a PKI system. An ideal PKI system
assumes the existence of a single root CA. However, several root CAs exist in a
real PKI system. Thus, it is natural to consider the multi-authority situation.

Chen and Kudla developed an IBAKA protocol with multiple PKGs (mPKG-
IBAKA protocol) using pairings, and proposed a security model for IBAKA in
a multiple PKG setting based on the id-BJM model to discuss its security [7].

After their proposal, many protocols have been investigated [12,21,23,24,27];
however, some of them have already been broken. McCullagh and Barreto
devised an mPKG-IBAKA protocol [24] to improve the efficiency of the Chen–
Kudla protocol. However, this protocol dis not stand up to the cryptanalysis
by Xie [28]. Independently, Lee, Kim, Kim, and Oh proposed a new proto-
col [23] where each PKG generates master keys together with its own parameters
although Oh, Moon, and Ma presented an attack on the protocol [26]. Following
the attack, Kim, Lee, and Oh [21] modified the protocol by Lee et al., but unfor-
tunately the protocol was analyzed considering only individual security notions.

One-Round Exposure-Resilient IBAKA with Multiple PKGs 439

Vallent, Yoon, and Kim proposed a pairing-free mPKG-IBAKA protocol [27]
where each PKG utilizes common parameters and generates its own master keys
based on the parameters. The protocol was evaluated based on heuristic security.
Recently, Farash and Attari proposed a pairing-free protocol2 [12] where each
PKG generates master keys together with its own parameters; however, their
protocol has vulnerabilities that were demonstrated by Mishra and Mukhopad-
hyay [25]. The protocols by Kim et al. and Vallent et al. have survived; however,
both have only been discussed for individual security properties. Moreover, there
has been no discussion on whether or not they are exposure resilient.

Therefore, we have the Chen–Kudla protocol, which has provable security but
its security was only proven in the id-BJM model with multiple PKGs, meaning
that it is unknown whether the protocol is exposure resilient.

On the other hand, Fujioka, Suzuki, Xagawa, and Yoneyama proposed a
generic construction of IBAKA protocols based on an identity-based key encap-
sulation mechanism (IB-KEM) [17]. Because this construction is based on a mod-
ular approach, it can have a different PKG in the underlying IB-KEM scheme.
Therefore, we may have an exposure-resilient IBAKA protocol in a multiple
PKG setting. However, the resultant protocol is less efficient because of the fol-
lowing points. (1) The responder must compute a sending value from a receiving
value, and thus the protocols are not one-round. Here, one-round means that the
initiator and the responder can send their messages independently and simulta-
neously. (2) The responder needs to send two values although it is sufficient for
the initiator to send a single value.

To the best of our knowledge, no one-round exposure-resilient mPKG-IBAKA
protocol has yet been proposed.

1.4 Our Contributions

We define a security model for mPKG-IBAKA to acquire exposure resilience.
Based on the security model, we propose a one-round exposure-resilient protocol
under the GBDH assumption in a random oracle model. The proposed protocol
utilizes the NAXOS approach [22] to avoid a situation where an intermediate
value becomes necessary for the static keys of the initiator and the responder
for different PKGs. Moreover, our protocol is achieved based on exchanging a
single group element.

2 Definitions and Assumptions

2.1 Security Model for mPKG-IBAKA

We define a security model for mPKG-IBAKA based on the id-eCK security
model proposed by Huang and Cao [18] since the id-eCK security model (and
its predecessor, the eCK security model [22]) provides security against MEX.

2 We found the same protocol in [13].

440 A. Fujioka

We denote a party as Ui and the identifier of Ui as id (ι)
i , which means that the

party who has identifier id i is managed by PKG Pι. We outline our model for a
two-pass mPKG-IBAKA protocol where parties UA and UB exchange ephemeral
public keys XA and XB , i.e., UA sends XA to UB and UB sends XB to UA,
and thereafter derive a session key. The session key depends on the exchanged
ephemeral keys, identifiers of the parties, the static keys corresponding to these
identifiers, and the protocol instance that is used.

In the model, each party is a probabilistic polynomial-time Turing machine
in security parameter λ and obtains a static private key corresponding to its
identifier string from its PKG via a secure and authenticated channel.

Session. An invocation of a protocol is called a session. A session is activated
via an incoming message in the form of (Π, I, id (α)

A , id (β)
B) or (Π, R, id (α)

A , id (β)
B ,

XB), where Π is a protocol identifier. If UA is activated with (Π, I, id (α)
A , id (β)

B),
then UA is the session initiator ; otherwise, it is the session responder. After
activation, UA appends ephemeral public key XA to the incoming message and
sends it as an outgoing response. If UA is the responder, UA computes a session
key. If UA is the initiator, UA that has been successfully activated via (Π, I,
id (α)

A , id (β)
B) can be further activated via (Π, I, id (α)

A , id (β)
B , XA, XB) to compute

a session key.
If UA is the initiator of a session, the session is identified by either sid = (Π,

I, id (α)
A , id (β)

B , XA) or sid = (Π, I, id (α)
A , id (β)

B , XA, XB). If UB is the responder
of a session, the session is identified by sid = (Π, R, id (β)

B , id (α)
A , XA, XB). We

say that UA is the owner (resp. peer) of session sid if the third (resp. fourth)
coordinate of session sid is id (α)

A . We say that a session is completed if its owner
computes a session key. The matching session of (Π, I, id (α)

A , id (β)
B , XA, XB) is

session (Π, R, id (β)
B , id (α)

A , XA, XB) and vice versa.

Adversary. Adversary A is modeled as a probabilistic Turing machine that
controls all communications between parties including session activation. Acti-
vation is performed via a Send(message) query. The message has one of the
following forms: (Π, I, id (α)

A , id (β)
B), (Π, R, id (α)

A , id (β)
B , XA), or (Π, I, id (α)

A ,
id (β)

B , XA, XB). Each party submits its responses to adversary A, who decides
the global delivery order. Note that adversary A does not control the communi-
cation between each party and its PKG.

The private information of a party is not accessible to adversary A; however,
leakage of private information is obtained via the following adversary queries.

– SessionKeyReveal(sid): A obtains the session key for session sid, provided
that the session holds a session key.

– EphemeralKeyReveal(sid): A obtains the ephemeral private key (of the session
owner) associated with session sid.

– StaticKeyReveal(id (ι)
i): A learns the static private key of party Ui managed

by PKG Pι.

One-Round Exposure-Resilient IBAKA with Multiple PKGs 441

– MasterKeyReveal(Pι): A learns the master secret key of PKG Pι. For the sake
of convenient queries, when MasterKeyReveal() is called, i.e., called with no
argument, the master secret keys of all PKGs are returned.

– NewParty(id (ι)
i): This query models malicious insiders. If a party is estab-

lished by a NewParty(id (ι)
i) query issued by A, then we refer to the party as

dishonest. If not, the party is referred to as honest.

Freshness. Our security definition requires the following “freshness” notion.

Definition 2.1 (freshness). Let sid∗ be the session identifier of a completed
session owned by honest party UA with peer UB who is also honest. We assume
that UA and UB belong to the domains managed by Pα and Pβ, respectively. If
a matching session exists, then let sid∗ be the session identifier of the matching
session of sid∗. We define sid∗ to be fresh if none of the following conditions
hold.

1. A issues SessionKeyReveal(sid∗) or SessionKeyReveal(sid∗) (if sid∗ exists).
2. sid∗ exists and A makes either of the following queries

– both StaticKeyReveal(id (α)
A) and EphemeralKeyReveal(sid∗), or

– both StaticKeyReveal(id (β)
B) and EphemeralKeyReveal(sid∗).

3. sid∗ does not exist and A makes either of the following queries
– both StaticKeyReveal(id (α)

A) and EphemeralKeyReveal(sid∗), or
– StaticKeyReveal(id (β)

B).

Note that if adversary A issues MasterKeyReveal(), we regard A as having issued
both StaticKeyReveal(id (α)

A) and StaticKeyReveal(id (β)
B). In addition, if A issues

MasterKeyReveal(Pα) (resp. MasterKeyReveal(Pβ)), we regard A as having issued
StaticKeyReveal(id (α)

A) (resp. StaticKeyReveal(id (β)
B)).

Security Experiment. Adversary A starts with common parameters, a set of
master public keys together, and a set of honest parties for whom A adaptively
selects identifiers. Note that each identifier is statically bound with its PKG, and
thus, when A selects an identifier, the PKG who manages the identifier is auto-
matically determined. The adversary makes an arbitrary sequence of the queries
described above. During the experiment, A makes a special query, Test(sid∗),
and is given with equal probability either the session key held by sid∗ or a ran-
dom key. The experiment continues until A makes a guess regarding whether or
not the key is random. The adversary wins the game if the test session, sid∗, is
fresh at the end of execution and if the guess by A was correct.

Definition 2.2 (id(m)-eCK security). The advantage of adversary A in the
experiment with mPKG-IBAKA protocol Π is defined as

AdvmPKG−IBAKA
Π (A) = Pr[A wins] − 1

2
.

We say that Π is a secure mPKG-IBAKA protocol in the id(m)-eCK model if
the following conditions hold.

442 A. Fujioka

1. If two honest parties have a complete matching session, then except with neg-
ligible probability in security parameter λ, they both derive the same session
key.

2. Advantage AdvmPKG−IBAKA
Π (A) is negligible in security parameter λ for any

probabilistic polynomial-time adversary A.

Model Assumptions. We assume that there exists a common parameter gen-
erator (CPG) that is a probabilistic polynomial-time Turing machine in security
parameter λ and the CPG generates common parameters. Note that the CPG
has no secret information. Based on these common parameters, each PKG gener-
ates its master public and private keys. Note that the PKGs are also probabilistic
polynomial-time Turing machines in security parameter λ.

We further assume that any identifier of a user is unique globally, i.e., every
identifier managed by a PKG must differ from an identifier managed by a dif-
ferent PKG. In other words, there is a binding between an identifier and its
PKG.

2.2 Number Theoretic Assumptions on Pairings

As a tool to actualize IBAKA protocols, we have a mathematical function called
pairing. Symmetric pairing function3 e is a polynomial-time computable bilinear
non-degenerate map from two group elements to an element of another group
where e(ga, gb) = gab

T holds when G and GT are two cyclic groups of order q, g
is a generator of G, gT = e(g, g) (∈ GT), and a, b ∈ Zq.

Roughly speaking, the computational bilinear Diffie–Hellman (CBDH) prob-
lem is to compute e(g, g)uvw on input (U, V,W) and the decisional bilinear Diffie–
Hellman (DBDH) problem is to determine whether or not uvw = x mod q holds
on input (U, V,W,X), where U = gu, V = gv, W = gw, and X = e(g, g)x.

The gap bilinear Diffie–Hellman (GBDH) problem is described below.
Assume that a CBDH solver can access a DBDH oracle. The GBDH problem is
to compute e(g, g)uvw on input (U, V,W) with help from the DBDH oracle. Here
U = gu, V = gv, and W = gw. Let A be an adversary who is given inputs U ,
V , and W (∈ G) selected uniformly at random, accesses the DBDH oracle, and
tries to compute e(g, g)uvw. Roughly, speaking, the GBDH assumption is that
the GBDH problem is hard for every polynomial-time adversary A.

We formally state the GBDH assumption as follows. Let G and GT be cyclic
groups of order q where pairing function, e : G2 → GT exists, and G has genera-
tor g. CBDH function CBDH : G3 → GT is a function that takes input (U, V,W)
and returns e(g, g)uvw. DBDH predicate DBDH : G3 × GT → {0, 1} is a func-
tion that takes input (U, V,W,X) and returns bit 1 if uvw = x mod q and bit
0 otherwise, where U = gu, V = gv, W = gw, and X = e(g, g)x. The GBDH

3 Pairing e : G1×G2 → GT is referred to as symmetric when G1 = G2 and asymmetric
when G1 �= G2.

One-Round Exposure-Resilient IBAKA with Multiple PKGs 443

problem is to compute CBDH(U, V,W) allowing access to oracle DBDH(·, ·, ·, ·).
For adversary A, we define advantage

AdvGBDH(A) = Pr
[
U, V,W ∈R G,ADBDH(·,·,·,·)(U, V,W) = CBDH(U, V,W)

]
,

where the probability is taken over the choices of U, V,W and the random tape
of A.

Definition 2.3 (GBDH assumption). We say that G and GT satisfy the
GBDH assumption if, for any adversary A running in a polynomial-time, advan-
tage AdvGBDH (A) is negligible in security parameter λ.

3 Existing Protocols

3.1 Chen–Kudla Protocol

We outline the Chen–Kudla protocol. For the precise description of the protocol,
refer to [7].

PKG Pα (resp. Pβ) publishes Zα (resp. Zβ) as a master public key and keep
zα (resp. zβ) secret as a master secret key.

User UA (resp. UB) with identifier id (α)
A (resp. id (β)

B), which is managed
by Pα (resp. Pβ), is assigned static private key DA (= Qzα

A ∈ G) (resp. DB

(= Q
zβ

B ∈ G)) where QA = H1(id
(α)
A) (∈ G) (resp. QB = H1(id

(β)
B) (∈ G)).

UA chooses a uniformly random ephemeral private key, xA (∈R Zq), computes
the ephemeral public key, XA = gxA , and sends (Π, id (α)

A , id (β)
B , XA) to UB .

Upon receiving (Π, id (α)
A , id (β)

B , XA), UB chooses ephemeral private key xB

(∈R Zq), computes the ephemeral public key, XB = gxB , and responds to UA

with (Π, id (α)
A , id (β)

B , XA, XB).
UB also computes QA = H1(id

(α)
A), the shared secrets,

σ1 = e(DB ,XA) · e(QA, ZxB
α) and σ2 = XxB

A ,

and session key K as K = H(σ1, σ2,Π, id (α)
A , id (β)

B ,XA,XB). Then, UB com-
pletes the session with session key K.

Upon receiving (Π, id (α)
A , id (β)

B , XA, XB), UA computes QB = H1(id
(β)
B),

the shared secrets,

σ1 = e(DA,XB) · e(QB , ZxA

β) and σ2 = XxA

B ,

and session key K as K = H(σ1, σ2,Π, id (α)
A , id (β)

B ,XA,XB). Then, UA com-
pletes the session with session key K (Fig. 1).

The Chen–Kudla protocol is secure in the multiple PKG setting of the id-
BJM model [7]. We discuss exposure resilience of the protocol in Subsect. 4.4.

444 A. Fujioka

Zα = gzα Zβ = gzβ

QA = H1(id
(α)
A) QB = H1(id

(β)
B)

DA = Qzα
A DB = Q

zβ

B

xA ∈R Zq

XA = gxA
XA−→ xB ∈R Zq
XB←− XB = gxB

σ1 = e(DA, XB) · e(QA, ZxB
α) σ1 = e(DB , XA) · e(QB , ZxA

β)

σ2 = XxA
B σ2 = XxB

A

K = H(σ1, σ2, Π, id
(α)
A , id

(β)
B , XA, XB)

Fig. 1. Outline of Chen–Kudla protocol.

3.2 Protocol on FSXY Construction

Fujioka, Suzuki, Xagawa, and Yoneyama proposed a generic construction of
IBAKA protocols based on an identity-based key encapsulation mechanism (IB-
KEM) scheme [17]. We call it FSXY construction.

We outline an IBAKE protocol on the FSXY construction. For the precise
description of the protocol, refer to [17].

The FSXY construction uses an IB-KEM scheme and a KEM scheme. Let
Σ = (KeyDer,KeyDer,EnCap,DeCap) (resp. Σ′ = (wKeyGen,wEnCap,wDeCap))
be the IB-KEM scheme (resp. the KEM scheme) where KeyDer, KeyDer, EnCap,
and DeCap are the key generation algorithm, the key generation algorithm, the
key derivation algorithm, the key encapsulation algorithm, and the key decapsu-
lation algorithm in Σ, respectively, and wKeyGen, wEnCap, and wDeCap are the
key generation algorithm, the key derivation algorithm, the key encapsulation
algorithm, and the key decapsulation algorithm in Σ′, respectively.

PKG Pα (resp. Pβ) publishes mpkα (resp. mpkβ) as a master public key and
keep mskα (resp. mskβ) secret as a master secret key.

User UA (resp. UB) with identifier id (α)
A (resp. id (β)

B), which is managed by
Pα (resp. Pβ), is assigned static private key dkA (= KeyDer(mskα, id (α)

A)) (resp.
dkB (= KeyDer(mskβ , id (β)

B))).
UA runs EnCap with id (β)

B to obtain (ctA, ρ1) where ctA and ρ1 are a cipher-
text and the (encapsulated) key in the IB-KEM scheme, respectively, runs
wKeyGen with security parameter λ to obtain (ekT , dkT) where ekT and ekT

are a encryption key and the decryption key in the KEM scheme, respectively,
and sends (Π, id (α)

A , id (β)
B , ctA, ekT) to UB .

Upon receiving (Π, id (α)
A , id (β)

B , ctA, ekT), UB decrypts the ciphertext, ctA,
to obtain ρ1, runs EnCap with id (α)

A to obtain (ctB , ρ2) where ctB and ρ2 are a
ciphertext and the (encapsulated) key in IB-KEM, respectively, runs wEnCap to
obtain (ctT , ρ3) where ctT and ρ3 are a ciphertext and the (encapsulated) key in
KEM, respectively, and responses to UB with (Π, id (α)

A , id (β)
B , ctA, ekT , ctB , ctT).

One-Round Exposure-Resilient IBAKA with Multiple PKGs 445

UB also computes the shared secrets,

σ1 = KDF(ρ1), σ2 = KDF(ρ2), and σ3 = KDF(ρ3),

session state information st as st = (id (α)
A , id (β)

B , ctA, ekT , ctB , ctT) and session
key K as K = Gσ1(st)⊕Gσ2(st)⊕Gσ3(st). Then, UB completes the session with
session key K.

Upon receiving (Π, id (α)
A , id (β)

B , ctA, ekT , ctB, ctT), UA decrypts ctB and ctT

to obtain ρ2 and ρ3, respectively.
UA also computes the shared secrets,

σ1 = KDF(ρ1), σ2 = KDF(ρ2), and σ3 = KDF(ρ3),

session state information st as st = (id (α)
A , id (β)

B , ctA, ekT , ctB , ctT) and session
key K as K = Gσ1(st)⊕Gσ2(st)⊕Gσ3(st). Then, UA completes the session with
session key K (Fig. 2).

mpkα,mskα mpkβ ,mskβ

dkA = KeyDer(mskα, id
(α)
A) dkB = KeyDer(mskβ , id

(β)
B)

(ctA, ρ1) = EnCap(mpkβ , id
(β)
B)

(ekT , dkT) = wKeyGen(1λ)
ctA,ekT−→ ρ1 = DeCap(dkB , ctA)

(ctB , ρ2) = EnCap(mpkα, id
(α)
A)

ρ2 = DeCap(dkA, ctB)
ctB ,ctT←− (ctT , ρ3) = wEnCap(ekT)

ρ3 = wDeCap(dkT , ctT)

σ1 = KDF(ρ1)
σ2 = KDF(ρ2)
σ3 = KDF(ρ3)

st = (id
(α)
A , id

(β)
B , ctA, ekT , ctB , ctT)

K = Gσ1(st) ⊕ Gσ2(st) ⊕ Gσ3(st)

Fig. 2. Outline of protocol on FSXY construction.

Note that UA computes randomness used in EnCap as FτA
(rA)⊕Fr′

A
(τ ′

A) for
a security reason where F is a hash function, τA, τ ′

A are parts of the secret key,
and rA, r′

A are ephemeral randomness. UB computes as FτB
(rB)⊕Fr′

B
(τ ′

B), also.
It is proved that a protocol on the FSXY construction is exposure resilient in

the standard model [17]. Because this construction is based on a modular app-
roach, it can have a different PKG in the underlying IB-KEM scheme. Therefore,
we may have an exposure-resilient IBAKA protocol in a multiple PKG setting.

However, it is clear that the resultant protocol is not one-round as the respon-
der’s message is computed on the initiator’s message, i.e., encapsulation key ekT .
Here, one-round means that the initiator and the responder can send their mes-
sages independently and simultaneously.

446 A. Fujioka

In addition, the resultant protocol is less efficient as the responder needs to
send two ciphertexts although it is sufficient for the initiator to send a single one.
We compared efficiency of the protocol on the FSXY construction with that of
the proposed protocol in Subsect. 4.4.

4 Exposure-Resilient mPKG-IBAKA Protocol

4.1 Proposed Protocol

In this section, we describe actions required to execute a session.
The proposed IBAKA protocol, Π, is described as follows.
Let λ be the security parameter.
The CPG generates cyclic groups G and GT where their orders are λ-bit

prime q, g is a generator of G, e : G2 → GT is a pairing function, and gT = e(g, g).
Let H : {0, 1}∗ → {0, 1}λ, H1 : {0, 1}∗ −→ G, and H2 : {0, 1}∗ −→ Zq be
cryptographic hash functions modeled as random oracles [2]. The CPG outputs
(G, GT , g, gT , q, e, H, H1, H2) as common parameters.

Based on these common parameters, each PKG Pι randomly selects master
secret key zι (∈R Zq), and publishes master public key Zι (= gzι ∈ G).

User Ui with identifier id (ι)
i , which is managed by Pι, is assigned static private

key Di (= Qzι
i ∈ G) where Qi = H1(id

(ι)
i) (∈ G). We refer to Qi as the static

public key of user Ui, and note that Qi is expressed with some qi (∈ Zq) as
Qi = gqi .

Thus, the identifier and static public (resp. private) key of UA are id (α)
A

and QA = H1(id
(α)
A) = gqA (resp. DA = gzαqA), and the identifier and static

public (resp. private) key of UB are id (β)
B and QB = H1(id

(β)
B) = gqB (resp.

DB = gzβqB), respectively.

Key Agreement. User UA is the session initiator and user UB is the session
responder.

1. UA chooses a uniformly random ephemeral private key, xA (∈R Zq), computes
the ephemeral public key, XA = gx′

A , where x′
A = H2(xA,DA), and sends (Π,

id (α)
A , id (β)

B , XA) to UB .
2. Upon receiving (Π, id (α)

A , id (β)
B , XA), UB chooses ephemeral private key

xB (∈R Zq), computes the ephemeral public key, XB = gx′
B , where x′

B =
H2(xB ,DB), and responds to UA with (Π, id (α)

A , id (β)
B , XA, XB). UB also

computes QA = H1(id
(α)
A), the shared secrets,

σ1 = e(Qx′
B

A , Zα), σ2 = e(DB ,XA), and σ3 = X
x′

B

A ,

and session key K as K = H(σ1, σ2, σ3,Π, id (α)
A , id (β)

B ,XA,XB). Then, UB

completes the session with session key K.

One-Round Exposure-Resilient IBAKA with Multiple PKGs 447

3. Upon receiving (Π, id (α)
A , id (β)

B , XA, XB), UA computes QB = H1(id
(β)
B), the

shared secrets,

σ1 = e(DA,XB), σ2 = e(Qx′
A

B , Zβ), and σ3 = X
x′

A

B ,

and session key K as K = H(σ1, σ2, σ3,Π, id (α)
A , id (β)

B ,XA,XB). Then, UA

completes the session with session key K (Fig. 3).

Zα = gzα Zβ = gzβ

QA = H1(id
(α)
A) QB = H1(id

(β)
B)

DA = Qzα
A DB = Q

zβ

B

xA ∈R Zq

x′
A = H2(xA, DA)

XA = gx′
A

XA−→ xB ∈R Zq

x′
B = H2(xB , DB)

XB←− XB = gx′
B

σ1 = e(DA, XB) σ1 = e(Q
x′

B
A , Zα)

σ2 = e(Q
x′

A
B , Zβ) σ2 = e(DB , XA)

σ3 = X
x′

A
B σ3 = X

x′
B

A

K = H(σ1, σ2, σ3, Π, id
(α)
A , id

(β)
B , XA, XB)

Fig. 3. Outline of proposed protocol.

Both parties compute the shared secrets,

σ1 = g
zαqAx′

B

T , σ2 = g
zβqBx′

A

T , and σ3 = gx′
Ax′

B ,

where qA = logg QA, qB = logg QB . Here, logg U denotes the logarithm of U ,
i.e., U = glogg U . Therefore, they can derive the same session key, K. We may
omit g in logg U as log U if obvious.

Note that our protocol is achieved based on exchanging a single group ele-
ment, and thus, it is the most efficient.

An ordinary strategy to prove that an IBAKA protocol is exposure resilient
under a mathematical assumption in a random oracle model [2] is to embed an
instance of the problem in an intermediate value. In such a situation, the adver-
sary is forced to query the random oracle regarding the intermediate value (or
related value), and therefore, we can construct a problem solver. To accomplish
this, we simply need four types of intermediate values: a value computed based
on the static keys of the initiator and the responder, a value computed based on
the static key of the initiator and the ephemeral key of the responder, a value
computed based on the ephemeral key of the initiator and the static key of the
responder, and a value computed based on the ephemeral keys of the initiator
and the responder.

448 A. Fujioka

As discussed later (in Subsect. 4.4), it is difficult for the initiator and the
responder straightforwardly to share a value computed based on the static keys
of the initiator and the responder in the multiple PKG setting. Thus, we adopt
the NAXOS technique [22] to avoid this situation.

The NAXOS technique, invented to construct the NAXOS protocol, is that
the exponent of the ephemeral public key is generated with the ephemeral and
static private keys using a hash function, i.e., H2 in our protocol. Thus, an adver-
sary cannot obtain any information regarding the exponent since the adversary
cannot access both private keys. This implies that the solver can embed one
of the GBDH instances into this ephemeral public key. We avoid the situation
where the solver needs to embed the GBDH instance into the static public keys.
Therefore, the protocol does not need a shared secret computed from the static
private key and the peer static public key.

4.2 Security

The proposed mPKG-IBAKA protocol is secure based on our security notion
under the GBDH assumption in the random oracle model [2].

Theorem 4.1. If G and GT are groups where the GBDH assumption holds and
H, H1, and H2 are random oracles, the proposed IBAKA protocol, Π, is secure
in the id(m)-eCK model.

In particular, for any IBAKA adversary A against Π that runs in at most t
time, involves at most n honest parties, activates at most s sessions, and makes
at most h queries to the random oracles, there exists a GBDH solver, S, such
that

AdvGBDH(S) ≥ 1
n2s2

AdvmPKG−IBAKA
Π (A),

where S runs in time t plus time to perform O((n + s) log q) group operations
and makes O(h + s) queries to the DBDH oracle.

Proof. We need the GBDH assumption in pairing groups G and GT of prime
order q with generators g and gT , respectively, when trying to compute the
answer, CBDH(U, V,W), from instance (U, V,W), while accessing the DBDH
oracle, CBDH(gu, gv, gw) = guvw

T , and the DBDH oracle on input (gu, gv, gw, gx
T)

returns bit 1 if uvw = x, or bit 0 otherwise.
We show that if a polynomially bounded adversary can distinguish the session

key of a fresh session from a randomly chosen session key, we can solve the GBDH
problem. Let λ denote the security parameter, and let A be a polynomial-time
adversary in security parameter λ. Here, we assume that λ = log q. We use A
to construct the GBDH solver, S, that succeeds in solving a CBDH instance
with non-negligible probability using the DBDH oracle. Adversary A is said to
be successful with non-negligible probability if A wins the distinguishing game
with probability 1

2 + f(λ) where f(λ) is non-negligible, and event M denotes
that A is successful.

Let the test session be sid∗, and sid∗ be either (Π, I, id (α)
A , id (β)

B , XA,
XB) or (Π, R, id (β)

B , id (α)
A , XA, XB), which is a completed session between

One-Round Exposure-Resilient IBAKA with Multiple PKGs 449

honest users UA and UB where users UA and UB are the initiator and the
responder of test session sid∗, respectively. Let H∗ be the event that A queries
(σ1, σ2, σ3,Π, id (α)

A , id (β)
B ,XA,XB) to H. Let H∗ be the complement of event

H∗. Let sid be any completed session owned by an honest user such that
sid �= sid∗ and sid does not match sid∗. Since sid and sid∗ are distinct and
non-matching, the inputs to key derivation function H are different for sid and
sid∗. Since H is a random oracle, adversary A cannot obtain any information
regarding the test session key from the session keys of non-matching sessions.
Hence, Pr[M∧H∗] ≤ 1

2 and Pr[M] = Pr[M∧H∗]+Pr[M∧H∗] ≤ Pr[M∧H∗]+ 1
2 ,

where f(λ) ≤ Pr[M ∧ H∗]. Henceforth, M∗ denotes event M ∧ H∗.
We denote a user as Ui. User Ui and other parties are modeled as probabilistic

polynomial-time Turing machines in security parameter λ. We denote a master
secret (resp. public) key of Pι by zι (resp. Zι). For user Ui, we denote the static
private (resp. public) key as Di (resp. Qi) and an ephemeral private (resp. public)
key as xi (resp. Xi). We also denote the session key as K. We assume that A
succeeds in an environment with n users and at most n PKGs, and activates at
most s sessions within a user.

We consider the non-exclusive classification of all possible events based on the
freshness conditions in Tables 1 and 2, where users UA and UB are the initiator
and the responder of test session sid∗, respectively. For example, when the
matching session of sid∗ does not exist, A is not allowed to access the session
key of the test session and UB ’s static private key but is allowed to access UA’s
static private key. This corresponds to event E1. When the matching session of
sid∗ does not exist, A is not allowed to access the session key of the test session
and UB’s static private key but is allowed to access UA’s ephemeral private key.
This corresponds to event E2. Other freshness conditions correspond to events
E3, . . . , E6, respectively. Table 1 classifies events when identifiers id (α)

A and id (β)
B

Table 1. Classification of attacks when identifiers id
(α)
A and id

(β)
B are distinct and are

managed by different PKGs.

zα zβ DA xA DB xB Instance embedding Suc. Prob.

E1 r ok r ok ok n Zβ = U,XA = V,QB = W p1/n
2s

E2 ok ok ok r ok n Zβ = U,XA = V,QB = W p2/n
2s

E3 r ok r ok ok r Zβ = U,XA = V,QB = W p3/n
2s

E4 ok ok ok r ok r Zβ = U,XA = V,QB = W p4/n
2s

E5 r r r ok r ok XA = V,XB = W p5/n
2s2

E6 ok r ok r r ok Zα = U,QA = V,XB = W p6/n
2s

In the table, “ok” means that the secret/private key is not revealed, “r” means
that the secret/private key may be revealed, and “n” means that no match-
ing session exists. The “Instance Embedding” column shows how the simulator
embeds an instance of the GBDH problem. The “Suc. Prob.” column shows the
probability of success of the simulator where pi = Pr[Ei ∧M∗] and n and s are
the numbers of parties and sessions, respectively.

450 A. Fujioka

Table 2. Classification of attacks when identifiers id
(α)
A and id

(β)
B are distinct but are

managed by the same PKG, Pα (= Pβ). Here, p′
i = Pr[E′

i ∧ M∗].

zα DA xA DB xB Instance embedding Suc. Prob.

E′
1 ok r ok ok n Zα = U,XA = V,QB = W p′

1/n
2s

E′
2 ok ok r ok n Zα = U,XA = V,QB = W p′

2/n
2s

E′
3 ok r ok ok r Zα = U,XA = V,QB = W p′

3/n
2s

E′
4 ok ok r ok r Zα = U,XA = V,QB = W p′

4/n
2s

E′
5 r r ok r ok XA = U,XB = V p′

5/n
2s2

E′
6 ok ok r r ok Zα = U,QA = V,XB = W p′

6/n
2s

are distinct and are managed by different PKGs, Pα and Pβ , respectively. Table 2
classifies events when identifiers id (α)

A and id (β)
B are distinct but are managed by

the same PKG, i.e., Pα = Pβ . Needless to say, we do not consider an event in
which A does not query either StaticKeyReveal() or EphemeralKeyReveal() as we
can embed an instance into the ephemeral and static keys in the test session.

Since the classification covers all possible events, at least one event Ei ∧ M∗

or E′
i ∧ M∗ in the tables occurs with non-negligible probability if event M∗

occurs with non-negligible probability. Thus, the GBDH problem can be solved
with non-negligible probability, which means that the proposed protocol is secure
under the GBDH assumption.

Event Ei (and E′
i). We consider the following events that cover all cases of

behavior of adversary A.

– Let E1 be the event for which test session sid∗ has no matching session sid∗

and A queries StaticKeyReveal(id (α)
A).

– Let E2 be the event for which test session sid∗ has no matching session sid∗

and A queries EphemeralKeyReveal(sid∗).
– Let E3 be the event for which test session sid∗ has matching session sid∗

and A queries StaticKeyReveal(id (α)
A) and EphemeralKeyReveal(sid∗).

– Let E4 be the event for which test session sid∗ has matching session sid∗

and A queries EphemeralKeyReveal(sid∗) and EphemeralKeyReveal(sid∗).
– Let E5 be the event for which test session sid∗ has matching session sid∗

and A queries StaticKeyReveal(id (α)
A) and StaticKeyReveal(id (β)

B).
– Let E6 be the event for which test session sid∗ has matching session sid∗

and A queries EphemeralKeyReveal(sid∗) and StaticKeyReveal(id (β)
B).

Let E′
i (i = 1, . . . , 6) be similar events in the same PKG case.

To finish the proof, hereafter we investigate events Ei ∧ M∗ and E′
i ∧ M∗

(i = 1, . . . , 6) that cover all cases of event M∗.

Event E1 ∧ M∗. In event E1, test session sid∗ has no matching session sid∗,
adversary A obtains DA, and adversary A does not obtain xA and DB from

One-Round Exposure-Resilient IBAKA with Multiple PKGs 451

the condition of freshness. Thus, A does not obtain either x′
A or zβ where x′

A =
H2(xA,DA) and XA = gx′

A . In this case, solver S embeds the instance as Zβ =
U (= gu), XA = V (= gv) and QB = W (= gw), and obtains guvw

T from
shared value σ2 = e(Qx′

A

B , Zβ). Note that solver S can perfectly simulate the
StaticKeyReveal queries for other users except UB by selecting random qi (∈R

Zq) and setting Qi = H1(id
(ι)
i) = gqi and Di = Zqi

ι . In addition, solver S
can perfectly simulate the EphemeralKeyReveal queries for other sessions except
sid∗ and sid∗ by selecting random xi (∈R Zq) and setting x′

i = H2(xi,Di)
and Xi = gx′

i . In event E1 ∧ M∗, solver S performs the following Setup and
Simulation phases.

Setup. GBDH solver S embeds (U, V,W), the instance of the GBDH problem
where U = gu, V = gv, and W = gw as follows. S establishes n honest users,
U1, . . . , Un, and at most n honest PKGs, P1, . . . , Pn. Solver S randomly selects
random zι (∈R Zq, ι = 1, . . . , n) and computes master public keys Zι = gzι .
Solver S randomly selects two users, UA and UB, and integer t ∈R [1, s], which
is a guess of the test session with probability 1/n2s. Here, we assume that UA and
UB are managed by Pα and Pβ , respectively. Solver S sets the master public key
of PKG Pβ , which manages UB, as Zβ = U , sets the ephemeral public key of the
t-th session of user UA as XA = V , and sets the static public key of id (β)

B of user
UB as QB = W . Solver S selects random qi (∈R Zq), sets Qi = H1(id

(ι)
i) = gqi

and Di = Zqi
ι if Ui is managed by Pι, and assigns static private key Di to user

Ui except UB.
Solver S activates adversary A in this set of users (and PKGs), and awaits

actions of A. We next describe actions of S in response to user activation and
oracle queries.

Simulation. Solver S maintains list LH that contains queries and answers of
the H oracle, list LS that contains queries and answers of SessionKeyReveal, and
list LE that contains ephemeral private keys, ephemeral exponents, static private
keys, and ephemeral public keys. For any id (ι)

i , id (κ)
k , Xi, and Xk, solver S keeps

LS with consistency where (Π, I, id (ι)
i , id (κ)

k , Xi, Xk) and (Π, R, id (κ)
k , id (ι)

i ,
Xi, Xk) have the same answer. Solver S simulates oracle queries as follows.

1. Send(Π, I, id (ι)
i , id (κ)

k): Solver S selects uniformly random ephemeral private
key xi (∈R Zq) and ephemeral exponent x′

i (∈R Zq), computes ephemeral
public key Xi (= gx′

i) honestly, records (Π, I, id (ι)
i , id (κ)

k , Xi) in List LS ,
and returns it. Solver S records (xi, x

′
i,Di,Xi) in List LE .

2. Send(Π,R, id (κ)
k , id (ι)

i ,Xi): Solver S selects uniformly random ephemeral
private key xk (∈R Zq) and ephemeral exponent x′

k (∈R Zq), computes
ephemeral public key Xk (= gx′

k) honestly, records (Π, R, id (κ)
k , id (ι)

i , Xi,
Xk) in List LS as completed, and returns it. Solver S records (xk, x′

k,Dk,Xk)
in List LE .

452 A. Fujioka

3. Send(Π, I, id (ι)
i , id (κ)

k ,Xi,Xk): If session (Π, I, id (ι)
i , id (κ)

k , Xi) is not recorded
in List LS , Solver S records session (Π, I, id (ι)

i , id (κ)
k , Xi, Xk) in List LS

as not completed. Otherwise, solver S records the session in List LS as
completed.

4. H(σ1, σ2, σ3,Π, id (ι)
i , id (κ)

k ,Xi,Xk):
(a) If (σ1, σ2, σ3,Π, id (ι)

i , id (κ)
k ,Xi,Xk) is recorded in list LH , then solver S

returns recorded value K.
(b) Else if session (Π, I, id (ι)

i , id (κ)
k , Xi, Xk) or (Π, R, id (κ)

k , id (ι)
i , Xi, Xk)

is recorded in list LS , then solver S checks that shared values σ1, σ2, and
σ3, are correctly formed, i.e., S checks that DBDH(Qi,Xk, Zι, σ1) = 1,
DBDH(Qk,Xi, Zκ, σ2) = 1, and e(Xi,Xk) = e(σ3, g) hold.
If σ1, σ2, and σ3 are correctly formed, then solver S returns recorded
value K in list LS and records it in list LH .

(c) Else if i = A, k = B, and the session is t-th session of user UA, then solver
S checks that the shared values, σ1, σ2, and σ3, are correctly formed, i.e.,
S checks that DBDH(QA,XB , Zα, σ1) = 1, DBDH(QB ,XA, Zβ , σ2) = 1,
and e(XA,XB) = e(σ3, g) hold.
If σ1, σ2, and σ3 are correctly formed, then solver S selects σ2 (= guvw

T),
the answer of the GBDH instance, from the shared values, and is success-
ful by outputting the answer.

(d) Otherwise, solver S returns random value K and records it in list LH .
5. H1(id

(ζ)
Z): If Z = B, solver S returns QB = W . Otherwise, solver S computes

Zζ = gzζ if Zζ does not exist, and responds to the query faithfully.
6. H2(xi,Di): If (xi, x

′
i,Di,Xi) is recorded in List LE , then return x′

i. Oth-
erwise, solver S selects uniformly random ephemeral exponent x′

i (∈R Zq),
computes ephemeral public key Xi (= gx′

i) honestly, returns x′
i, and records

(xi, x
′
i,Di,Xi) in List LE .

7. SessionKeyReveal((Π, I, id (ι)
i , id (κ)

k ,Xi,Xk) or (Π,R, id (κ)
k , id (ι)

i ,Xi,Xk)):
(a) If session (Π, I, id (ι)

i , id (κ)
k , Xi, Xk) or (Π, R, id (κ)

k , id (ι)
i , Xi, Xk)

(= sid) is not completed, solver S returns error.
(b) Else if sid is recorded in list LS , then solver S returns recorded value K.
(c) Else if (σ1, σ2, σ3,Π, id (ι)

i , id (κ)
k ,Xi,Xk) is recorded in list LH , then solver

S checks that σ1, σ2, and σ3, are correctly formed, i.e., S checks that
DBDH(Qi,Xk, Zι, σ1) = 1, DBDH(Qk,Xi, Zκ, σ2) = 1, and e(Xi,Xk) =
e(σ3, g) hold.
If σ1, σ2, and σ3 are correctly formed, then solver S returns recorded
value K in list LH and records it in list LS .

(d) Otherwise, solver S returns random value K and records it in list LS .
8. StaticKeyReveal(id (ι)

i): If static public key Qi of user Ui is W , then solver S
aborts with failure; otherwise, solver S responds to the query faithfully.

9. MasterKeyReveal(): Solver S aborts with failure.
10. MasterKeyReveal(Pι): Pι = Pβ , solver S aborts with failure. Otherwise, solver

S returns zι.
11. Test(sid): If sid is not the t-th session of UA, then solver S aborts with

failure. Otherwise, solver S responds to the query faithfully.

One-Round Exposure-Resilient IBAKA with Multiple PKGs 453

12. EphemeralKeyReveal(sid): If the corresponding ephemeral public key is V ,
then solver S aborts with failure. Else if the corresponding ephemeral public
key is Xi, then solver S selects (xi, x

′
i,Di,Xi) in list LE and returns xi.

Otherwise, solver S aborts with failure.
13. NewParty(id (ι)

i): If id (ι′)
i is queried before, solver S returns error. Otherwise,

solver S responds to the query faithfully.
14. If adversary A outputs guess γ, solver S aborts with failure.

The gap assumption is necessary to keep consistency in the oracle simulation,
i.e., for the H and SessionKeyReveal oracles in Steps 4(b), 4(c), and 7(c).

Analysis. The simulation of the environment for adversary A is perfect except
with negligible probability. The probability that adversary A selects the session
where UA is the initiator, UB is the responder, ephemeral public key XA is V ,
and the test session is sid∗, is at least 1

n2s . Suppose that this is indeed the case,
then solver S does not abort in Step 11.

Suppose that event E1 occurs, then solver S does not abort in Steps 8, 9, 10,
11, and 12.

Suppose that event M∗ occurs, and adversary A queries correctly formed σ1,
σ2, and σ3 to H. Therefore, solver S is successful as described in Step 4c, and
does not abort as in Step 14.

Hence, solver S is successful with probability Pr[S1] ≥ p1
n2s where p1 is the

probability that E1 ∧ M∗ occurs, and S1 is the event in which this solver is
successful.

Event E2 ∧ M∗. In event E2, test session sid∗ has no matching session sid∗,
A obtains xA, and A does not obtain either DA or DB from the condition of
freshness. Thus, A also does not obtain any of x′

A, zα, or zβ . The reduction to
the GBDH assumption is similar to event E1 ∧ M∗. GBDH solver S embeds
(U, V,W), the instance of the GBDH problem, into Zβ = U , XA = V , and
QB = W . Hence, solver S is successful with probability Pr[S2] ≥ p2

n2s where p2
is the probability that E2 ∧ M∗ occurs, and S2 is the event in which this solver
is successful.

Event E3 ∧ M∗. In event E3, test session sid∗ has matching session sid∗, A
obtains DA and xB, and A does not obtain either xA or DB from the condition
of freshness. Thus, A also does not obtain either x′

A or zβ . The reduction to the
GBDH assumption is similar to event E1∧M∗. GBDH solver S embeds (U, V,W),
the instance of the GBDH problem, into Zβ = U , XA = V , and QB = W . Hence,
solver S is successful with probability Pr[S3] ≥ p3

n2s where p3 is the probability
that E3 ∧ M∗ occurs, and S3 is the event in which this solver is successful.

Event E4 ∧ M∗. In event E4, test session sid∗ has matching session sid∗, A
obtains xA and xB , and A does not obtain either DA or DB from the condition of
freshness. Thus, A also does not obtain any of x′

A, zα, or zβ . The reduction to the
GBDH assumption is similar to event E1∧M∗. GBDH solver S embeds (U, V,W),

454 A. Fujioka

the instance of the GBDH problem, into Zβ = U , XA = V , and QB = W . Hence,
solver S is successful with probability Pr[S4] ≥ p4

n2s where p4 is the probability
that E4 ∧ M∗ occurs, and S4 is the event in which this solver is successful.

Event E5 ∧ M∗. In event E5, test session sid∗ has matching session sid∗,
A obtains zα, zβ , DA, and DB , and A does not obtain either xA or xB from
the condition of freshness. Thus, A also does not obtain either x′

A or x′
B. The

reduction to the GBDH assumption is similar to event E1 ∧ M∗, except for the
following points.

In Setup and Simulation, S embeds (U, V,W), the GBDH instance, as
XA = V and XB = W . In Simulation, S obtains glog XA log XB from shared
value σ3 and can compute e(U, glog XA log XB), the answer of the GBDH problem.

Hence, solver S is successful with probability Pr[S5] ≥ p5
n2s2 where p5 is the

probability that E5 ∧ M∗ occurs, and S5 is the event in which this solver is
successful.

Event E6 ∧ M∗. In event E6, test session sid∗ has matching session sid∗, A
obtains xA and DB , and A does not obtain either DA or xB from the condition
of freshness. Thus, A also does not obtain either x′

B or zα. The reduction to the
GBDH assumption is similar to event E1 ∧ M∗, except for the following points.

In Setup and Simulation, S embeds (U, V,W), the GBDH instance, as
Zα = U , QA = V , and XB = W . In Simulation, S obtains glog Xα log QA log XB

T ,
the answer of the GBDH problem, from shared value σ1.

Hence, solver S is successful with probability Pr[S6] ≥ p6
n2s where p6 is the

probability that E6 ∧ M∗ occurs, and S6 is the event in which this solver is
successful.

Same PKG Case. We discuss the case of id (α)
A �= id (β)

B managed by the same
PKG, Pα = Pβ , i.e., α = β.

In events E′
1, E′

2, E′
3, and E′

4, the reductions to the GBDH assumption are
similar to those in events E1, E2, E3, and E4, respectively. In Setup and Sim-
ulation, S embeds (U, V,W), the GBDH instance, as Zα = Zβ = U , XA = V ,
and QB = W . Note that solver S selects random qA (∈R Zq), and sets QA = gqA

and DA = UqA for user UA. In Simulation, S obtains answer glog Zα log XA log QB

T

for the GBDH problem from shared value σ2.
In event E′

5, the reduction to the GBDH assumption is similar to event E5. In
Setup and Simulation, S embeds (U, V,W), the GBDH instance, as XA = U
and XB = V . In Simulation, S extracts glog XA log XB from the shared value,
σ3, and can compute e(W, glog XA log XB), the answer of the GBDH problem.

In event E′
6, the reduction to the GBDH assumption is similar to event E6.

In Setup and Simulation, S embeds (U, V,W), the GBDH instance, as Zα =
Zβ = U , QA = V , and XB = W . Note that solver S selects random qB (∈R Zq),
and sets QB = gqB , and DB = UqB for user UB . In Simulation, S obtains
glog Zα log QA log XB

T , the answer of the GBDH problem, from shared value σ1.

One-Round Exposure-Resilient IBAKA with Multiple PKGs 455

Total Analysis. Combining the success probabilities, we have

AdvGBDH(S) ≥ 1
n2s2

AdvmPKG−IBAKA
Π (A).

During the simulation, solver S performs O(n+s) exponentiations, i.e., O((n+s)
log q) group operations, to assign static and ephemeral keys, and make (at most)
O(h+s) times DBDH oracle queries for simulating SessionKeyReveal and random
oracle H queries. This completes the argument. 	

4.3 Discussions

It is worth to note here that the proposed protocol does not guarantee perfect
forward secrecy (PFS), where PFS holds if an adversary cannot learn the session
keys of past sessions, even when the adversary learns the static private keys of
all the parties. However, the protocol guarantees weak (PFS) [20] and forward
secrecy against PKG (PKG-FS) [18], where weak PFS holds if an adversary
cannot learn the session keys of past sessions in which the adversary did not
actively interfere, even if the adversary learns the static private keys of all the
parties, and PKG-FS holds if no session key between users should be revealed
even to the PKG although the PKG has much more power than the users.

We show that the proposed protocol satisfies the PKG-FS even if some PKGs
conspire. Assume that adversary A corrupts some PKGs. Then, the adversary
clearly knows the static private keys of parties managed by the PKGs; however,
A cannot obtain ephemeral private keys of the test session while still maintaining
freshness. Thus, A does not know the value of σ3 in the session, and this means
that the adversary cannot guess the session key. This implies that the proposed
protocol has the PKG-FS property, and therefore, the weak PFS property, also.

It is clear that the proposed protocol is based on symmetric pairings. When
pairing function e is defined as e : G

2 → GT , e is referred to as symmetric
when G and GT are cyclic groups. When pairing function e is defined as e :
G1 × G2 → GT , e is referred to as asymmetric when G1, G2, and GT are cyclic
groups. The recent trend in cryptography tells us that asymmetric pairings have
been adopted because some symmetric pairing functions have security problems.
To modify the proposed protocol considering asymmetric pairings, the double-
key technique seems applicable. Here the double-key technique, proposed by
Fujioka et al. [14], is as follows. The PKG generates two static private keys for
a party where one is in G1 and the other is in G2. An initiator and a responder
exchange two ephemeral keys where one in G1, the other in G2, and they have the
same exponent. However, we leave analysis for correctness and formal security
as future work.

Note that referring standard documents such as ISO/IEC 15946-1 [19] is
recommended for choosing elliptic curves and hash functions to construct the
proposed protocol.

456 A. Fujioka

4.4 Comparison with Other Protocols

We compare the proposed protocol with others, the Chen–Kudla protocol and a
protocol on FSXY construction.

Comparison with Chen–Kudla Protocol. The proposed protocol is secure
in the id(m)-eCK model under the GBDH assumption and the Chen–Kudla
protocol is secure in the multiple PKG setting of id-BJM model under the CBDH
assumption [7]. In other words, it is proved that our protocol is exposure resilient
but it is not proved that the Chen–Kudla protocol is so.

It seems difficult to prove that the Chen–Kudla protocol is exposure resilient
and the rationale for this is given below. The protocol uses three types of inter-
mediate values, a value computed based on the static key of the initiator and
the ephemeral key of the responder, a value computed based on the ephemeral
key of the initiator and the static key of the responder, and a value computed
based on the ephemeral keys of the initiator and the responder. Thus, we cannot
embed an instance of a problem to a value computed based on the static keys of
the initiator and the responder.

In addition, even when we simply modify the Chen–Kudla protocol to use a
value computed based on the static key of the initiator and the static key of the
responder, it is still not easy to prove the security. To do so, a value computed
based on the static keys of the initiator and the responder must be computed
under different master public keys. Let (Zα, zα) and (Zβ , zβ) be pairs of master
public and secret keys of PKG Pα and PKG Pβ , respectively, where Zα = gzα

and Zβ = gzβ . Let id (α)
A and id (β)

A be identities of parties managed by Pα and
Pβ , respectively. Even when private key DA (resp. DB) of the party is given as
DA = Qzα where QA = H1(id

(α)
A) and H1 is a hash function, we cannot expect

that e(Zα, QA) = e(g,DB) or e(Zβ , QB) = e(g,DA) holds.
The NAXOS technique avoids this situation, and thus, our protocol can be

proved to be exposure resilient.

Comparison with Protocol on FSXY Construction. It is proved that
a protocol on the FSXY construction is exposure resilient in the standard
model [17]. It may be possible to have an exposure-resilient IBAKA protocol
in a multiple PKG setting as the construction is based on a modular approach.

However, it is clear that the resultant protocol on the FSXY construction
is not one-round, namely, two-move as the responder’s message is computed on
the initiator’s message, i.e., encapsulation key ekT .

In addition, the resultant protocol is less efficient as the responder needs to
send two ciphertexts although it is sufficient for the initiator to send a single
one.

We discuss efficiency of a protocol in communication complexity and compu-
tational complexity.

Regarding to communication complexity in a protocol on the FSXY construc-
tion, the initiator sends a ciphertext and a encapsulation key, and the responder
returns two ciphertexts. Thus, communication complexity of the initiator is given

One-Round Exposure-Resilient IBAKA with Multiple PKGs 457

as three group elements and that of the responder is given as four group elements
when we assume that a ciphertext of an (IB-)KEM scheme consists of two group
elements, and a encapsulation key of the KEM scheme consists of a single group
element.

Regarding to computational complexity in a protocol on the FSXY construc-
tion, the initiator runs one EnCap, one wKeyGen, one DeCap, one wDeCap (1),
and six hash functions including KDF, and the responder does one EnCap, one
DeCap one wEnCap, and six hash functions including KDF. Thus, computational
complexity of the initiator is given as four exponentiations, two pairings, and fix
hashings, and that of the responder is given as three exponentiations, two pair-
ings, and fix hashings when we assume that EnCap and DeCap of the IB-KEM
scheme require one exponentiation and one pairing operation, and wEnCap and
wDeCap of the KEM scheme require one exponentiation.

Table 3. Comparison with protocol on FSXY construction.

Proposed FSXY

Communication complexity

Initiator 1 3
Responder 1 4

Computational complexity

Initiator

Exponentiation 3 4
Pairing 2 2
Hashing 3 6

Responder

Exponentiation 3 3
Pairing 2 2
Hashing 3 6

We assume that a ciphertext of an (IB-)KEM scheme consists of two group
elements, and a encapsulation key of the KEM scheme consists of a single
group element. We assume that EnCap and DeCap of the IB-KEM scheme
require one exponentiation and one pairing operation, and wEnCap and
wDeCap of the KEM scheme require one exponentiation, also.

On the other hand, communication complexity of both initiator and respon-
der in the proposed protocol are given as a single group element, and computa-
tional complexity of both initiator and responder in the proposed protocol are
given as three exponentiations, two pairings, and three hashings.

We summarize the numbers of group elements and computations above in
Table 3.

Thus, Table 3 shows that a protocol on the FSXY construction is less efficient
than the proposed protocol in both communication and computational complex-
ity even when efficient IB-KEM and KEM schemes are adopted to construct the
protocol.

458 A. Fujioka

It is worth to note here that the security of our protocol is proved in the
random oracle model however the security of the FSXY construction is done in
the standard model.

4.5 Security in Other Models

As stated in Model Assumptions, we assume that there is a binding between
an identifier and its PKG. We call this static binding model. Thus, it is nat-
ural to consider a stronger adversary who adaptively indicate binding between
an identifier and its PKG. We call this adaptive binding model. We expect that
the proposed protocol is secure in the adaptive binding model but the reduc-
tion ratio is worse to 1

n4s2 from 1
n2s2 as the solver needs to guess PKGs of

the initiator and the responder in the test session. Here, the reduction ratio
is given as the ratio between the probability that a solver, S, breaks the
assumption and the probability that an adversary, A, breaks the protocol, i.e.,
AdvGBDH(S)/AdvmPKG−IBAKA

Π (A).
We can consider another classification of the security model: an adversary

can get the private key of an user only once or it is allowed to obtain several pri-
vate keys from different PKGs. We call the former separated domain model and
the latter overlapped domain model. In the security proof, we use the separated
domain model but we expect that the proposed protocol is secure in the over-
lapped domain model also when we modify Qi = H1(id

(ι)
i) to Qi = H1(id

(ι)
i , Zι).

However, we leave analysis for correctness and formal security as future work.

5 Conclusion

The id(m)-eCK model for identity-based authenticated key agreement in the
multiple private key generator setting was defined to provide security against
the exposure of private information.

Utilizing the NAXOS techinique, we proposed a one-round identity-based
authenticated key agreement protocol with multiple private key generators and
proved that the protocol is exposure resilient under the gap bilinear Diffie–
Hellman assumption in a random oracle model. Moreover, the proposed protocol
is achieved based on exchanging a single group element; therefore, it is the most
efficient.

Acknowledgments. The author would like to thank Tsunekazu Saito, Koutarou
Suzuki, and Tetsutaro Kobayashi for discussing problems in the multiple private key
generator scenario. The author also would like to thank the anonymous reviewers for
their comments and suggestions that helped me to improve this paper.

References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). doi:10.1007/3-540-48329-2 21

http://dx.doi.org/10.1007/3-540-48329-2_21

One-Round Exposure-Resilient IBAKA with Multiple PKGs 459

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) CCS 1993, pp. 62–73. ACM, New York (1993)

3. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol.
1355, pp. 30–45. Springer, Heidelberg (1997). doi:10.1007/BFb0024447

4. Boyd, C., Choo, K.-K.R.: Security of two-party identity-based key agreement. In:
Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 229–243.
Springer, Heidelberg (2005). doi:10.1007/11554868 17

5. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-70500-0 6. http://eprint.iacr.org/2008/007

6. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 28

7. Chen, L., Kudla, C.: Identity based authenticated key agreement protocols from
pairings. In: IEEE CSFW 2016, pp. 219–233. IEEE Computer Society, Washington,
D.C. (2003). http://eprint.iacr.org/2002/184

8. Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from
pairings. Int. J. Inf. Secur. 6(4), 213–241 (2007)

9. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based
proof models for key establishment protocols. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005). doi:10.1007/
11593447 32

10. Cremers, C.J.F.: Session-state Reveal is stronger than Ephemeral Key Reveal: attack-
ing the NAXOS authenticated key exchange protocol. In: Abdalla, M., Pointcheval,
D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 20–33.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01957-9 2

11. Cremers, C.J.F.: Examining indistinguishability-based security models for key
exchange protocols: the case of CK, CK-HMQV, and eCK. In: Chen, Y., Danezis,
G., Shmatikov, V. (eds.) CCS 2011, pp. 80–91. ACM, New York (2011)

12. Farash, M.S., Attari, M.A.: Provably secure and efficient identity-based key agree-
ment protocol for independent PKGs using ECC. ISC Int. J. Inf. Secur. 5(1), 55–70
(2013)

13. Farash, M.S., Attari, M.A.: A pairing-free ID-based key agreement protocol with
different PKGs. Int. J. Netw. Secur. 16(2), 143–148 (2014)

14. Fujioka, A., Hoshino, F., Kobayashi, T., Suzuki, K., Ustaoğlu, B., Yoneyama, K.:
id-eCK secure ID-based authenticated key exchange on symmetric pairing and its
extension to asymmetric case. IEICE Trans. 96-A(6), 1139–1155 (2013)

15. Fujioka, A., Suzuki, K.: Sufficient condition for identity-based authenticated
key exchange resilient to leakage of secret keys. In: Kim, H. (ed.) ICISC
2011. LNCS, vol. 7259, pp. 490–509. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31912-9 32

16. Fujioka, A., Suzuki, K., Ustaoğlu, B.: Ephemeral key leakage resilient and efficient
id-akes that can share identities, private and master keys. In: Joye, M., Miyaji, A.,
Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 187–205. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17455-1 12

http://dx.doi.org/10.1007/BFb0024447
http://dx.doi.org/10.1007/11554868_17
http://dx.doi.org/10.1007/978-3-540-70500-0_6
http://dx.doi.org/10.1007/978-3-540-70500-0_6
http://eprint.iacr.org/2008/007
http://dx.doi.org/10.1007/3-540-44987-6_28
http://eprint.iacr.org/2002/184
http://dx.doi.org/10.1007/11593447_32
http://dx.doi.org/10.1007/11593447_32
http://dx.doi.org/10.1007/978-3-642-01957-9_2
http://dx.doi.org/10.1007/978-3-642-31912-9_32
http://dx.doi.org/10.1007/978-3-642-31912-9_32
http://dx.doi.org/10.1007/978-3-642-17455-1_12

460 A. Fujioka

17. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30057-8 28

18. Huang, H., Cao, Z.: An ID-based authenticated key exchange protocol based on
bilinear Diffie-Hellman problem. In: Li, W., Susilo, W., Tupakula, U.K., Safavi-
Naini, R., Varadharajan, V. (eds.) ASIACCS 2009, pp. 333–342. ACM, New York
(2009)

19. ISO/IEC 15946–1:2016: Information technology – Security techniques – Crypto-
graphic techniques based on elliptic curves - Part 1: General (2016)

20. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer,
Heidelberg (2005). doi:10.1007/11535218 33

21. Kim, S., Lee, H., Oh, H.: Enhanced ID-based authenticated key agreement proto-
cols for a multiple independent PKG environment. In: Qing, S., Mao, W., López, J.,
Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 323–335. Springer, Heidelberg
(2005). doi:10.1007/11602897 28

22. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75670-5 1

23. Lee, H., Kim, D., Kim, S., Oh, H.: Identity-based key agreement protocols in a mul-
tiple PKG environment. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A.,
Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483,
pp. 877–886. Springer, Heidelberg (2005). doi:10.1007/11424925 92

24. McCullagh, N., Barreto, P.S.L.M.: A new two-party identity-based authenticated
key agreement. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–274.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-30574-3 18

25. Mishra, D., Mukhopadhyay, S.: Cryptanalysis of pairing-free identity-based
authenticated key agreement protocols. In: Bagchi, A., Ray, I. (eds.) ICISS
2013. LNCS, vol. 8303, pp. 247–254. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-45204-8 19

26. Oh, J., Moon, S.-J., Ma, J.: An attack on the identity-based key agreement proto-
cols in multiple PKG environment. IEICE Trans. 89-A(3), 826–829 (2006)

27. Vallent, T.F., Yoon, E.-J., Kim, H.: An escrow-free two-party identity-based key
agreement protocol without using pairings for distinct PKGs. IEEK Trans. Smart
Process. Comput. 2(3), 168–175 (2013)

28. Xie, G.: Cryptanalysis of Noel McCullagh and Paulo S.L.M. Barreto’s two-party
identity-based key agreement. IACR Cryptology ePrint Archive. Report 2004/308
(2004). http://eprint.iacr.org/2004/308

29. Zhong, Y., Ma, J.: A highly secure identity-based authenticated key-exchange pro-
tocol for satellite communication. J. Commun. Netw. 12(6), 592–599 (2010)

http://dx.doi.org/10.1007/978-3-642-30057-8_28
http://dx.doi.org/10.1007/11535218_33
http://dx.doi.org/10.1007/11602897_28
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://dx.doi.org/10.1007/11424925_92
http://dx.doi.org/10.1007/978-3-540-30574-3_18
http://dx.doi.org/10.1007/978-3-642-45204-8_19
http://dx.doi.org/10.1007/978-3-642-45204-8_19
http://eprint.iacr.org/2004/308

Cryptanalysis Correspondence

Attacks on the Basic cMix Design:
On the Necessity of Commitments
and Randomized Partial Checking

Herman Galteland1(B), Stig F. Mjølsnes2, and Ruxandra F. Olimid2

1 Department of Mathematical Sciences, NTNU,
Norwegian University of Science and Technology, Trondheim, Norway

herman.galteland@math.ntnu.no
2 Department of Information Security and Communication Technology, NTNU,

Norwegian University of Science and Technology, Trondheim, Norway
{sfm,ruxandra.olimid}@ntnu.no

Abstract. The cMix scheme was proposed by Chaum et al. in 2016
as the first practical set of cryptographic protocols that offer sender-
recipient unlinkability at scale. The claim was that the cMix is secure
unless all nodes collude. We argue that their assertion does not hold
for the basic description of cMix, and we sustain our statement by two
different types of attacks: a tagging attack and an insider attack. For
each one, we discuss the settings that make the attack feasible, and
then possible countermeasures. By this, we highlight the necessity of
implementing additional commitments or mechanisms that have only
been mentioned as additional features.

Keywords: Cryptographic protocols · Sender-recipient unlinkability ·
Anonymity · Mixnets · Attacks

1 Introduction

1.1 cMix

The cMix protocol by Chaum et al. [1] is an improved mixing network [2] which
aims to provide an anonymous communication tool for its users at large scales.
The mixing should be such that no one is able to relate an output message to a
user input message, that is, no one is able to link a sender with a recipient. An
important advantage over its predecessors is that cMix performs expensive com-
putations (like public key encryption) during a precomputation phase, keeping
the real-time phase, which is in charge with actual message delivery, fast. The
protocol is a part of a larger system, called Privategrity, but its authors describe
cMix independently.

The authors of Ref. [1] claim that cMix is the first practical system that
provides sender-recipient unlinkability, unless all nodes collude. We argue that
their assertion does not hold for the basic description of the protocol (as given
c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 463–473, 2017.
DOI: 10.1007/978-3-319-61273-7 22

464 H. Galteland et al.

in [1, Sect. 4] and we sustain our statement by two different types of attacks.
Each of them has its own effect on the design of the original protocol. By this,
we want to highlight the necessity of using additional commitment mechanisms,
whereas Ref. [1] mentions this as additional features.

1.2 Related Work

The cMix system is designed to be resistant to most of the usual mix network
attacks. This paper focuses on the cryptanalysis of cMix, and Subsect. 2.2 intro-
duces in detail the adversarial model from [1]. We present here a very brief survey
of proposed general attacks on anonymous overlay networks.

Tagging attacks are a potential threat to all mix networks [3]. An adversary
can put an identifier tag on an input message to the mix network and attempt to
recognize the tag in the output messages. If successful, the adversary can break
the anonymity of a specific sender. We show in Sect. 3 that cMix is vulnerable
to a tagging attack.

Replay attacks are attacks in which an adversary retransmits a valid mes-
sage several times, making it possible to analyze the outgoing traffic [4]. We do
not analyze replay attacks against cMix system, as they are eliminated by the
adversarial model (see Subsect. 2.2).

Intersection attacks and statistical disclosure attacks use information
acquired by observing mix networks where the users can freely choose the mix
node for their messages (free mix nodes) [4–6]. In such systems different batches
can be distinguished since they come from different mix nodes. If a sender use
the same mix nodes for every message then the adversary can separate the routes
by analyzing the network flow.

Traffic analysis attacks is a family of attacks that observes the network
traffic in order to deduce informational patterns in communication and targets
connection-based systems. Unlike message-based systems like cMix, connection-
based systems use free mix nodes that do not batch and permute messages. By
counting packets [7] and timing communication [8] the adversary is able to dis-
tinguish between different paths in the (free) mix network. Contextual attacks
[9] (or traffic confirmation attacks [10], or intersection attacks [11]) analyze the
traffic when specific users and recipients use a protocol, their communication
pattern, and how many messages they send and receive.

The authors of cMix recognize that their proposal is potentially vulnerable
to attacks that make anonymous systems fail, like the broadband intersection
attacks, contextual attacks, or DoS (Denial of Service) [1].

1.3 Results

We focus on the security analysis of the basic cMix description as described in
[1, Sect. 4], and show that it is susceptible to two attacks, which differ by action
type.

Attacks on the Basic cMix Design 465

Tagging Attack. The cMix paper [1] introduces commitments [12] to overcome
tagging attacks. The paper states that “tagging attacks do not work before the
exit node”, and “if a tagging attack is detected, at least the last node should be
removed from the cascade” [1, Sect. 4.3]. Therefore the authors might be aware of
a possible attack that can be performed by the exit node. However, they do not
consider any prevention for this. We introduce a simple tagging attack launched
by the exit node. Although a prevention mechanism is immediate (by adding an
extra commitment) we consider it for completeness, as an example of a possible
tagging attack against the system. In personal communications, the authors of
cMix acknowledged that the actual design of the system adds the additional
commitment we refer to as a countermeasure [13].

Insider Attack. The cMix paper [1] claims that attacks are unsuccessful unless
all nodes collude. We contradict this by showing that the last node can break the
unlinkability, essentially by creating a mix network consisting of itself only. The
attack will succeed by the last node deviating from the protocol rules and choose
its own output. We argue that this attack remains undetected in the original
version of cMix, and becomes detectable only if additional checks like Random-
ized Integrity Checking (RPC, see Subsect. 2.3) are considered (suggested by the
authors of [1] as a special feature). We show the necessity of using randomized
partial checking (RPC). However, an inappropriate use of RPC could allow a
coalition of nodes (all except one) to link a large fraction of the senders to their
recipients.

1.4 Outline

Section 2 describes the cMix scheme and presents the adversarial model. The two
following sections contain our results: Sect. 3 describes a simple tag attack similar
to the tag attack described in the original cMix paper [1]. Section 4 presents
the insider attack where the adversary controls the last node and makes the
overall mixing process independent of the preceding nodes. Section 5 concludes
and indicates possible future research directions.

2 Preliminaries

2.1 cMix Description

Figure 1 describes the cMix protocol from [1]. We ignore the return steps, since
they are irrelevant for our attacks. Note that this does not restrict the applicabil-
ity of our results, since the same permutation is used for both forward and return
paths. Once the permutation is disclosed both directions of communication are
compromised.

cMix has two phases: a precomputation phase and a real-time phase. By
design, the heavy public key computations are performed in the precomputation
phase, which can be performed on separate hardware (for each node). Since

466 H. Galteland et al.

Precomputation Phase

Step 1 (preprocessing). Each node Ni, 1 ≤ i ≤ n, selects a random ri, computes the
encryption E(r−1

i) and sends it to the network handler. The network handler computes
the product of all the received values, produces E(R−1

n) =
∏n

i=1E(r−1
i) and sends it to

the first node.

Step 2 (mixing). Each node Ni, 1 ≤ i ≤ n, computes πi(E(Πi−1(R
−1
n) × S−1

i−1)) ×
E(s−1

i), where Π0 is the identity permutation and S−1
0 = 1. The last node sends the

vector of random components (i.e. the first component) of the ciphertext (x, c) =
E((Πn(Rn) × Sn)−1) to the other nodes and stores the vector of message components
(i.e. the second component) locally for the real-time phase.

Step 3 (postprocessing). Using the random component x, each node Ni, 1 ≤ i ≤ n,
computes its individual decryption share for (x, c) as Di(x) = x−ei , stores it locally
to use in the real-time phase and publicly commits to it.

Real-Time Phase

Step 0. Each user constructs its message MK−1
j (for slot j) by multiplying the message

Mj with the inverse of the key Kj and it sends it to the network handler, which collects
all messages and combines them to get a vector M × K−1.

Step 1 (preprocessing). Each node Ni, 1 ≤ i ≤ n, sends ki × ri to the network handler,
which uses them to compute M× Rn = M× K−1×∏n

i=1ki × ri and sends the result
to N1.

Step 2 (mixing). Each node Ni, 1 ≤ i ≤ n, computes πi(Πi−1(M × Rn) × Si−1) ×
si, where Π0 is the identity permutation and S0 = 1. The last node Nn sends a
commitment to its message Πn(M × Rn) × Sn to every other node.

Step 3 (postprocessing). Each node Ni, 1 ≤ i ≤ n−1, sends its precomputed decryption
share for (x, c) = E((Πn(Rn) × Sn)−1) to the network handler, while the last node
Nn sends its decryption share multiplied by the value in the previous step and the
message component: Πn(M × Rn) × Sn × Dn(x) × c. Finally, the network handler
retrieves the permuted message as Πn(M) = Πn(M × Rn) × Sn × ∏n

i=1 Di(x) × c.

Fig. 1. The cMix protocol (forward path) [1]

the precomputation phase does not require any input from the users it can be
performed offline and while a batch is being filled up with messages.

The scheme consists of a sequence of n mix nodes that process β messages at
a time (a batch of messages); made simple, each node performs a permutation on
the input and blinds the output by multiplying it with a random value. The last
node Nn makes an exception, as it usually behaves differently from the other
nodes (see Fig. 1).

Besides the last node there is another entity with a special role in the system -
the network handler - that interacts both with the users and the whole set of
nodes. The network handler receives messages from the users and arranges them

Attacks on the Basic cMix Design 467

Table 1. Notations

Uj User j

M A batch of β messages M = (M1, . . . , Mβ), each Mi sent by a distinct user

Ni Node i from the set of n mix nodes {N1, . . . , Nn}
ei The share of node Ni of the secret key e

d The public key of the system, where d =
∏n

i=1 gei

E(·) A multi-party group-homomorphic encryption under the system public key d

πi A random permutation on a batch, applied by node Ni

Πi The composed permutation performed by all nodes from N1 to Ni

ki,j The derived secret key shared between node Ni and the sending user of slot j

ki The vector of derived secret keys shared between node Ni and all users in a batch,
i.e. ki = (ki,1, . . . , ki,β)

Kj The product of all shared keys for the sending user of slot j, i.e. Kj =
∏n

i=1 ki,j

ri, si Random values of node Ni for the batch, where ri = (ri,1, . . . , ri,β), respectively
si = (si,1, . . . , si,β)

Ri,Si The direct product of the first i values, i.e. Ri =
∏i

j=1 rj , respectively

Si =
∏i

j=1 sj

into batches; once a batch is full it is sent to the first node in the mix network.
After the last node performs its mixing it sends the batch back to the network
handler, which can then forward or broadcast the messages to the destination.
The mixing should be such that no one is able to relate an output message to a
user input message, that is, no one is able to link a sender with a recipient.

Before using the system each sender Uj must establish a private symmetric
key with each of the nodes Ni, which they use as a seed in a pseudorandom
generator to derive the secret keys ki,j . To blind a message Mj before it is
sent to the network handler, user Uj multiplies Mj with a key composed by
the derived keys shared with each of the nodes Kj =

∏n
i=1 ki,j . The network

handler arranges messages into a batch and sends it through the mix network.
Each node applies its permutation to the batch and the last node sends it back
to the network handler. The output is a permuted batch of messages.

During the mixing step of the precomputation phase each node performs
encryption under a public key of the system; the related private key is split across
all nodes in the network. The encryption scheme suggested by the authors of [1] is
the multi-party group-homomorphic encryption based on ElGamal [14] described
by Benaloh [15]. Moreover, all computations of the protocol are performed in a
prime order cyclic group G that satisfies the decisional Diffie-Hellman security
assumption. We denote by G∗ the set of nonidentity elements in G.

Refer to Fig. 1 for the detailed self-contained description of the cMix process,
using the notation defined in Table 1.

2.2 Adversarial Model

The adversarial model in [1] assumes authenticated channels among the mix
nodes and between the network handler and each mix node. This implies that

468 H. Galteland et al.

the adversary can read, forward, and delete messages, but not modify, inject,
or replay messages without detection. The adversary can compromise the users
(up to all except two), and the mix nodes (up to all except one). Compromised
nodes can behave malicious but cautious, since the attacker aims to remain
undetected. Within this attacker model, the authors of cMix claim that the
output is unlinkable to the input, even if the adversary knows the set of senders
and the set of recipients for every batch of messages.

The security analysis in the Appendix A of the cMix paper assumes secure
authenticated channels for which the adversary cannot read the content, only
the length of a message. All our attacks hold under these stronger security
assumptions.

2.3 Features and Extensions

The cMix paper [1] dedicates a section to special features and extensions of the
system. It shortly discusses the utility of adding RPC (Randomized Integrity
Checking) to cMix, an integrity check mechanism introduced by Jacobsson et al.
[16], and further analyzed and developed in Refs. [17,18]. The usage of RPC in
the cMix system is that each node commits to a randomly chosen permutation,
publishes its input and output, and validates that it has followed the protocol
correctly by revealing a (large) fraction of its secret input/output pairs, where
these pairs are selected by the other nodes (or by a random oracle). The cMix
system protects the user’s privacy by putting nodes in pairs, such that each node
belongs to only one pair. Nodes in a pair reveal their secret information such
that none of the messages can be followed from the input of the first node to the
output of the second node.

3 The Tagging Attack

Our first attack is similar to the tag attack described in the cMix paper [1], but
it uses a different value to remove the tag. During the precomputation phase
the nodes compute the value (x, c) = E((Πn(Rn)×Sn)−1), where the last node
stores the vector of message components, c, locally and sends the vector of
random components, x, to all other nodes. Each node computes its decryption
share using x and commits to this value. Note that it is uncertain whether c is
being committed to or not in the description of the basic cMix protocol.

The authors of cMix introduce commitments to detect potential tagging
attacks exposing any attempt of using the decryption shares to remove the tag.
However, the commitments are independent of c, so it is possible to perform a
similar attack which uses c instead of Dn(x) to remove the tag. The downside is
that the adversary needs to corrupt the last node (which has access to c) and the
network handler (under the assumption of secure authorized channels). Figure 2
describes the tag attack.

For the tag attack to be successful we need to assume that it is possible
to recognize valid messages in the output. To tag a message Mj the last node

Attacks on the Basic cMix Design 469

Goal: Tag a message Mj belonging to user Uj and recognize it in the permuted batch
of messages, linking the sender Uj to its recipient.

Step 1. The corrupted node Nn creates a tag vector t which consists of β − 1 ones
and one tag t ∈ G∗ in slot j (i.e. t = (1, . . . , 1, t, 1, . . . , 1)), computes kn × rn × t and
sends it to the network handler (Real-time Phase.Step 1).

Step 2. The network handler sends the set of all decryption shares {Di(x)|1 ≤ i < n}
to the last node (Real-time Phase.Step 3). Node Nn can retrieve the permuted messages
as Πn(M × t) = Πn(M × Rn × t) × Sn × ∏n

i=1 Di(x) × c and recognize the tagged
message in slot j′.

Step 3. The corrupted node Nn creates the inverse tag vector t−1, which consists
of β − 1 ones and one tag t−1 ∈ G∗ in slot j′, computes c′ = c × t−1, and sends
Πn(M × Rn) × Sn × Dn(x) × c′ to the network handler.

Fig. 2. The tagging attack

creates a tag vector t = (1, . . . , t, . . . , 1), where t is in position j, multiply it with
the keys and random values kn × rn × t, and sends the result to the network
handler. The tag then goes though the mixnet attached to message Mj and
arrives at the last node as Πn−1(M×Rn × t) × Sn−1. Then the last node can
permute and do the computations according to the protocol, and publish its
commitment to the value Πn(M×Rn × t)×Sn. This triggers all other nodes to
send their decryption share to the network handler, which forwards them to Nn.
The last node can then retrieve the batch of permuted messages and find the
invalid message Mjt in slot j′ of the permuted batch. The last node creates the
inverse tag t−1, which has t−1 in slot j′, and replaces the message components
with the altered value c′ = c× t−1. The network handler then computes

Πn(M×Rn × t) × Sn × c′ ×
n∏

i=1

Di(x) =

Πn(M×Rn × t)×Sn × (Πn(Rn)×Sn)−1 × t−1 = Πn(M× t)× t−1 = Πn(M)

and delivers the permuted batch as normal. That is, the adversary has success-
fully linked a sender with a recipient without being detected.

To make this attack detectable, the last node should publish a commitment
to the vector of message components c in the Precomputation Phase.Step 3, or
the system should implement RPC as an integrity check mechanism. Although
prevention can be simply achieved by natural solutions like the ones mentioned,
we introduce the attack for completeness; it stands as an example of tagging
attack performed by the last node, a type of attack the authors of cMix seem to
be aware of (see [1], Sect. 4.2: “tagging attacks do not work before the exit node”
and “if a tagging attack is detected, at least the last node should be removed from
the cascade”).

470 H. Galteland et al.

At the time of writing, the authors of cMix acknowledged that the actual
design of the system implements the countermeasure we refer to and commits
to the vector of message components c, as explained above [13].

4 The Insider Attack

Our second attack allows the last node to ignore all permutations introduced
by the previous nodes and perform the overall mixing process by itself. Hence,
the output of the real-time phase will be a batch of messages permuted with a
known permutation making it easy to link all senders and recipients. To succeed,
the adversary needs to corrupt the last node (which controls the output of the
mixing process) and the network handler (which knows the content of the values
E(R−1

n) and M×Rn, under the assumption of secure authenticated channels).
Figure 3 describes the insider attack.

During Precomputation Phase.Step 1 the corrupted network handler computes
and sends E(R−1

n) to the first and the last nodes. The honest nodes operates
as normal, where the last, dishonest, node discards the input it receives from
the previous node and chooses its own output. The last node draws a random
vector A = (A1, . . . , Aβ), encrypts the inverted values, E(A−1), and computes
πn(E(R−1

n)×E(A−1)) = πn(E(R−1
n ×A−1)). The last node publishes the random

components, that is x, of πn(E(R−1
n × A−1)) = (x, c) to the other nodes such

that they can prepare their decryption shares.
In Real-Time Phase.Step 1 the network handler sends M×Rn to the first and

the last nodes. In the mixing step the last node discards what it receives from
the previous node, selects its output πn(M×Rn ×A), commits to this batch of
messages, and sends πn(M×Rn ×A) × c×Dn(x) to the network handler. As

Goal: Perform the mixing process with only the last node using only a known per-
mutation to permute the batch of messages.

Step 1. The network handler computes and sends E(R−1
n) to the first and last node

(Precomputation Phase.Step 1). The last node discards the input it is given form the
previous node and publishes the component of random elements of πn(E(R−1

n ×A−1)),
for a random and invertible A (Precomputation Phase.Step 3).

Step 2. The network handler computes and sends M × Rn to the first and last node
(Real-Time Phase.Step 1). The last node discards the input it is given form the previous
node, publishes a commitment to πn(M × Rn × A), and sends πn(M × Rn × A) ×
c × Dn(x) to the network handler (Real-Time Phase.Step 3).

Step 3. The network handler retrieves the permuted batch of messages as πn(M) =
πn(M × Rn × A) × πn(R−1

n × A−1) and publishes it. The adversary can recover M
by applying πn

−1.

Fig. 3. The insider attack

Attacks on the Basic cMix Design 471

Ni

First mixing

Ni+1

Second mixing

Mj

}
� Mj

Fig. 4. RPC: two paired nodes revealing each separate half of their permutation. Con-
tinuous lines means information is revealed and dashed lines means information is not
revealed

the network handler receives the decryption shares from the other nodes it can
retrieve the permuted messages and forward them to the receivers:

πn(M×Rn×A)×c×
n∏

i=1

Di(x) = πn(M×Rn×A)×πn(R−1
n ×A−1) = πn(M).

Note that the output batch is only permuted with the permutation πn, which is
known to the last node. Hence, the adversary can easily deanonymize all of the
senders by applying πn

−1 to the output.
The RPC mechanism ensures with high probability that each node follows

its instructions, hence, this will prevent the last node from deviating from the
protocol. Since our insider attack changes the entire batch, RPC will detect the
attack with overwhelming probability. This shows the necessity of implementing
RPC with cMix.

Notes on the RPC Mechanism. RPC makes the nodes reveal a (large)
fraction of their secret information, which could break the anonymity of the users
[18]. As an example, let us assume that each node performs only one permutation
and proves the correctness of its output for this permutation. Further assume
that an adversary corrupts all except one, honest, node and therefore only needs
the permutation from this node to deanonymize the users. When using RPC,
the honest node would reveal information about its permutation. Hence, the
adversary can easily break the anonymity for a substantial portion of the users
using the information made public by the RPC mechanism.

Even in the scenario where there are two honest nodes that are paired, the
adversary can get some information about the senders and receivers [18]. Nodes
in a pair reveal information such that no messages can be followed from the input
of the first node to the output of the second node in a pair. This means that if
a message, say Mj , is revealed by the first node, then it will not be revealed by
the second node (see Fig. 4). Given enough rounds of cMix, an adversary might
eventually link senders and recipients that are frequently talking with each other.
Therefore, two honest nodes (a single pair) are usually not enough to protect
the anonymity of all users.

472 H. Galteland et al.

5 Conclusions

We demonstrate by examples that the cMix scheme, as it was initially defined in
its basic settings, would allow linkability between senders and recipients, hence
compromising the anonymity of the users. We describe the actions an adversary
could follow to succeed for both types of attacks (the tagging attack and the
insider attack). The attacks succeed in the secure authenticated channels set-
tings, and under the assumption that the adversary can corrupt the network
handler. This is a natural assumption that was also made by that the authors
of cMix.

By discussing the attacks, we highlight the necessity of the use of commit-
ments and the RPC integrity mechanisms, which have only been mentioned as
additional features in cMix scheme, and where these mechanisms are not fully
included in the security proofs. However, the authors of cMix have expressed
that their demonstration software implements the commitment mechanism that
prevents our tagging attack.

This paper is restricted to a theoretical exposure of some attacks against the
cMix standalone set of cryptographic protocols. Future analysis work can include
experimental activities for practical attacks on real-world cMix implementations.
Of course, the scalability of performance, throughput, and latency are key issues.
An enterprising theoretical work would be to analyze the cMix security within
the context of the larger system Privategrity.

Remarks to the Written Rebuttal from the Authors of cMix. Both
our attacks are valid under the basic protocol description given in [1, Sect. 4].
The commitment mechanism required to overcome the first attack is not used or
referred to in the original paper. This has been acknowledged in the authors’
response [19]. Furthermore, the cMix paper describes RPC as an extension,
therefore usage of RPC can hardly be understood as necessary [1]. We claim
the necessity of RPC or an equivalent mechanism. RPC is not included in the
formal analysis, hence it is left outside the security theorems and performance
discussions, while we find that RPC is crucial for the security of the system, and
might introduce a significant performance penalty. The response note informs
us that proper security mechanisms protecting against the attacks we have pre-
sented, are used in their prototype and explained in a new paper, but both of
those are currently unavailable to us for inspection [19].

Acknowledgements. Herman Galteland is funded by Nasjonal sikkerhetsmyndighet
(NSM), www.nsm.stat.no.

References

1. Chaum, D., Das, D., Javani, F., Kate, A., Krasnova, A., de Ruiter, J., Sherman,
A.T.: cMix: anonymization by high-performance scalable mixing. Cryptology
ePrint Archive, Report 2016/008 (2016). http://eprint.iacr.org/, version 20160530:
183553 from 30 May 2016

www.nsm.stat.no
http://eprint.iacr.org/

Attacks on the Basic cMix Design 473

2. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–90 (1981)

3. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg
(1996). doi:10.1007/3-540-61996-8 37

4. Berthold, O., Pfitzmann, A., Standtke, R.: The disadvantages of free MIX routes
and how to overcome them. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 30–45. Springer, Heidelberg (2001). doi:10.
1007/3-540-44702-4 3

5. Danezis, G., Diaz, C., Troncoso, C.: Two-sided statistical disclosure attack. In:
Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 30–44. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-75551-7 3

6. Danezis, G., Serjantov, A.: Statistical disclosure or intersection attacks on
anonymity systems. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 293–308.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30114-1 21

7. Serjantov, A., Sewell, P.: Passive attack analysis for connection-based anonymity
systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
pp. 116–131. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39650-5 7

8. Danezis, G.: The traffic analysis of continuous-time mixes. In: Martin, D.,
Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 35–50. Springer, Heidelberg
(2005). doi:10.1007/11423409 3

9. Raymond, J.-F.: Traffic analysis: protocols, attacks, design issues, and open prob-
lems. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS,
vol. 2009, pp. 10–29. Springer, Heidelberg (2001). doi:10.1007/3-540-44702-4 2

10. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: Proceedings of the 1997 IEEE Symposium on Security and Privacy,
SP 1997, Washington, DC, USA, pp. 44–54. IEEE Computer Society (1997)

11. Berthold, O., Langos, H.: Dummy traffic against long term intersection attacks.
In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 110–128.
Springer, Heidelberg (2003). doi:10.1007/3-540-36467-6 9

12. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

13. de Ruiter, J.: Personal communication in e-mail from 28 July 2016
14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete

logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 2

15. Benaloh, J.: Simple verifiable elections. In: Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop. 2006 on Electronic Voting Technology
Workshop, EVT 2006, Berkeley, CA, USA, p. 5. USENIX Association (2006)

16. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: Proceedings of the 11th USENIX Security
Symposium, Berkeley, CA, USA, pp. 339–353. USENIX Association (2002)

17. Khazaei, S., Wikström, D.: Randomized partial checking revisited. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 115–128. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36095-4 8

18. Küsters, R., Truderung, T., Vogt, A.: Formal analysis of Chaumian mix nets with
randomized partial checking. In: Proceedings of the 2014 IEEE Symposium on
Security and Privacy, SP 2014, Washington, DC, USA, pp. 343–358. IEEE Com-
puter Society (2014)

19. Chaum, D., Das, D., Javani, F., Kate, A., Krasnova, A., de Ruiter, J., Sherman,
A.T.: A response to... (2016)

http://dx.doi.org/10.1007/3-540-61996-8_37
http://dx.doi.org/10.1007/3-540-44702-4_3
http://dx.doi.org/10.1007/3-540-44702-4_3
http://dx.doi.org/10.1007/978-3-540-75551-7_3
http://dx.doi.org/10.1007/978-3-540-30114-1_21
http://dx.doi.org/10.1007/978-3-540-39650-5_7
http://dx.doi.org/10.1007/11423409_3
http://dx.doi.org/10.1007/3-540-44702-4_2
http://dx.doi.org/10.1007/3-540-36467-6_9
http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/978-3-642-36095-4_8

Cryptanalysis of an Identity-Based Convertible
Undeniable Signature Scheme

Rouzbeh Behnia, Syh-Yuan Tan(B), and Swee-Huay Heng

Faculty of Information Science and Technology, Multimedia University,
Melaka, Malaysia

{rouzbeh,sytan,shheng}@mmu.edu.my

Abstract. In this paper, we cryptanalyze an identity-based convertible
undeniable signature scheme which claimed to be secure under the ran-
dom oracle model. Our result shows that the signature leaks information
on signer identity and fails to provide both invisibility and anonymity
under the known message attack. We propose a fix for the vulnerability
by removing some information from the signature with the need for the
signer to keep the record of every signed message.

Keywords: Cryptanalysis · Anonymity · Invisibility · Undeniable
signature

1 Introduction

Chaum and van Antwerpen [2] introduced the notion of undeniable signature
schemes to enable the signer to control the verifiability of her signature. The
verification can only take place with the direct participation of the signer in
the confirmation or disavowal protocol. Boyar et al. [1] introduced a new exten-
sion, namely, convertible undeniable signature (CUS) which enables the signer to
selectively, or universally convert one or all of her undeniable signatures to pub-
licly verifiable ones. If universal conversion is performed, an undeniable signature
scheme turns into an ordinary signature scheme.

The ultimate goal in undeniable signatures and its extensions is to protect
the privacy of the signer. Traditionally, the notion of invisibility [3] was the
main requirement for an undeniable signature scheme. Invisibility implies the
inability of a user to distinguish an undeniable signature from a random element
in the signature space. However, as the main objective of undeniable signature
is to hide the link between the signer’s public key and the signature and as
shown by Galbraith and Mao [4], the notion of anonymity has become the most
relevant security notion for undeniable signatures and its extensions in multiuser
settings. Given an undeniable signature and public keys of two or more possible
signers, the notion of anonymity implies the infeasibility to determine which
user has issued the signature. Galbraith and Mao highlighted that the notions
of invisibility and anonymity are equivalent and proved that if an undeniable

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 474–477, 2017.
DOI: 10.1007/978-3-319-61273-7 23

Cryptanalysis of an Identity-Based CUS Scheme 475

signature scheme has the property of invisibility, then it also has anonymity,
and vice versa. The importance of anonymity in the context of CUS schemes
was further stressed on by Huang et al. [5].

Our Contribution. In this paper, we cryptanalyze the invisibility and
anonymity of the first identity-based convertible undeniable signature (IBCUS)
scheme proposed by Wu et al. [7]. We find that while the scheme was claimed to
be invisible, it is vulnerable to known message attack and does not provide any
sense of invisibility as well as anonymity for the signer and the other involved
users. Subsequently, we propose a workaround for the discovered vulnerability
to resist the known message attack.

The organization of the paper is as follows. In Sect. 2, we briefly review the
construction of the Wu et al.’s IBCUS [7] scheme. In Sect. 3, we demonstrate our
known message attack and discuss the quick fix on the Wu et al. IBCUS scheme.
Finally, we conclude the paper in Sect. 4.

2 Wu et al.’s IBCUS Scheme

In this section, we briefly recall Wu et al.’s IBCUS [7] scheme. We do not describe
the confirmation, disavowal and conversion protocol due to page limit. Reader
can refer to [7] for the full description.

Setup: On the input of security parameters k, generate groups G with the
generator g ∈ G and G1 of prime order q > 2k, and a pairing e : G×G → G1.
Next, randomly select s ∈ Zq as the master secret key, and compute PPub =
gs. Set the master public key as mpk = (G,G1, e, g, Ppub,H1,H2,H3,H4)
where H1,H2 : {0, 1}∗ → G, H3 : G × G1 → G, and H4 : {0, 1}∗ → Zq.

Extract: Given the user’s identity ID and the master secret key s, compute the
user’s private keys as SKID = H1(ID)s and V KID = H1(ID, undeniable)s.
SKID is kept secret while V KID can be published as the universal conversion
token at a later time.

Sign: On the input of (SKIDS
, V KIDS

) and a message m ∈ {0, 1}∗ where
IDS is the signer identity, compute U = e(V KIDS

,H2(m)), V = gv and
W = SKIDS

+ vH3(U, V) for a randomly chosen v ∈ Zq. The undeniable
signature is published as σ = (U, V,W).

Verify: Provided a message-signature pair (m,σ = (U, V,W)), check if
e(W,P) = e(H1(IDS), PPub)e(H3(U, V), V) and reject the corrupted signa-
ture if the equality does not hold. Otherwise, decide on the validity/invalidity
of the pair by checking if U = (H2(m), V KIDS

). If the equality holds, it means
that the signature is indeed generated by the signer herself and is valid.

3 The Known Message Attack

In this section, we mount known message attacks on the invisibility and
anonymity of Wu et al.’s IBCUS scheme. In precise, we construct a distin-
guisher D1 who is given a challenge tuple (m∗, σ∗ = (U, V,W), ID∗

s) which

476 R. Behnia et al.

says the message-signature pair (m∗, σ∗) may or may not be a valid signature
of the random signers ID∗

s . D1 confirms the signature is valid if the equation
e(W,P) = e(H1(ID∗

s), PPub)e(H3(U, V), V) holds. Otherwise, it is not a valid
signature.

Next, we show that the anonymity of Wu et al.’s IBCUS is broken also
by constructing a distinguisher D2 in a similar way. Provided a valid message-
signature pair (m∗, σ∗ = (U, V,W)) and public keys (in this case the mpk and
identities) of two random signers ID∗

0 and ID∗
1 , D2 can decide which user has

generated the signature by checking which identity (i.e. public key) satisfies
the equation e(W,P) = e(H1(IDb), PPub)e(H3(U, V), V) where b ∈ {0, 1}. This
shows that the IBCUS completely violates the privacy that is promised to the
signer.

3.1 Discussion

Although Wu et al.’s IBCUS scheme was claimed to be proven secure as the same
confirmation and disavowal protocols were used in the Libert and Quisquater’s
provably secure IBCUS [6] scheme, the two protocols are not exactly the same.
Moreover, the signing algorithm differs a lot in both schemes where the former
uses two keys while the latter uses one key. Thus, it is not trivial for Wu et al.’s
scheme to enjoy the security assurance from [6].

A direct yet inefficient solution is readily available for the vulnerability shown
in this work. Recall that the signature is composed of three elements (U, V,W) in
which U is actually the undeniable signature of Libert and Quisquater’s IBCUS
scheme. The elements (V,W) were added to provide a universal conversion proof
but accidentally leaked information on the signing key which violates invisibility
and anonymity. A workaorund is to publish (U,W) as the undeniable signature
and keep V for the purpose of verification, confirmation/disavowal and conver-
sions. However, this approach is not practical as it requires a huge storage for
all signed messages and their corresponding V elements.

4 Conclusion

We mounted a known message attack on Wu et al.’s IBCUS scheme and showed
that the main security properties, namely, invisibility and anonymity do not
hold. This finding shows that if we extends a scheme which is provably secure,
the extended scheme may not necessary inherit the provable security.

Acknowledgment. The authors would like to thank the Malaysia govern-
ment’s Fundamental Research Grant Scheme (FRGS/2/2014/ICT04/MMU/03/1) and
(FRGS/1/2015/ICT04/MMU/03/5) for supporting this work.

References

1. Boyar, J., Chaum, D., Damg̊ard, I., Pedersen, T.: Convertible undeniable signatures.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 189–
205. Springer, Heidelberg (1991). doi:10.1007/3-540-38424-3 14

http://dx.doi.org/10.1007/3-540-38424-3_14

Cryptanalysis of an Identity-Based CUS Scheme 477

2. Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, New York (1990). doi:10.
1007/0-387-34805-0 20

3. Chaum, D., Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable sig-
natures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992). doi:10.1007/
3-540-46766-1 38

4. Galbraith, S.D., Mao, W.: Invisibility and anonymity of undeniable and confirmer
signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer,
Heidelberg (2003). doi:10.1007/3-540-36563-X 6

5. Huang, X., Mu, Y., Susilo, W., Wu, W.: Provably secure pairing-based convert-
ible undeniable signature with short signature length. In: Takagi, T., Okamoto,
T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 367–391.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-73489-5 21

6. Libert, B., Quisquater, J.-J.: Identity based undeniable signatures. In: Okamoto,
T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 112–125. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24660-2 9

7. Wu, W., Mu, Y., Susilo, W., Huang, X.: Provably secure identity-based undeniable
signatures with selective and universal convertibility. In: Pei, D., Yung, M., Lin,
D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 25–39. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-79499-8 4

http://dx.doi.org/10.1007/0-387-34805-0_20
http://dx.doi.org/10.1007/0-387-34805-0_20
http://dx.doi.org/10.1007/3-540-46766-1_38
http://dx.doi.org/10.1007/3-540-46766-1_38
http://dx.doi.org/10.1007/3-540-36563-X_6
http://dx.doi.org/10.1007/978-3-540-73489-5_21
http://dx.doi.org/10.1007/978-3-540-24660-2_9
http://dx.doi.org/10.1007/978-3-540-79499-8_4

Invited and Insight Papers

Towards User-Friendly Cryptography

Goichiro Hanaoka(B)

Advanced Cryptosystems Research Group,
Information Technology Research Institute,

National Institute of Advanced Industrial Science and Technology (AIST),
2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan

hanaoka-goichiro@aist.go.jp

Abstract. In this talk, we discuss user-friendliness in cryptography and
its importance. Especially, we reconsider the significance of generic con-
structions of cryptographic tools, using the case of proxy re-encryption
as an example. We then suggest that enjoyable aspects of cryptographic
tools may also be important for technology diffusion. We illustrate this
using the case of card-based protocols as an example.

1 Background

Until now, there have been various proposals of cryptographic tools with addi-
tional functionalities which yield useful properties for securing complicated infor-
mation and communication systems (e.g. Internet of Things). However, despite
their useful properties, it seems that these cryptographic tools are not as widely
used as expected. We suggest that one of the main reasons for this is that the
mathematical structure of such cryptographic tools are generally very compli-
cated (especially when providing highly functional properties), and therefore,
potential users will choose other easy-to-understand solutions even though strong
assumptions, such as the existence of a trusted servers or tamper-resistant hard-
ware, are required. Hence, for technology diffusion, it is required to investigate
easy-to-understand structures of cryptographic tools such that potential users
can easily understand the essential mechanisms.

2 Importance of Generic Constructions

A promising approach to overcoming the above issue is the use of generic con-
struction (modular construction, in other words). Namely, if it is possible to
decompose the required functionality, which may be complicated, into simpler
functionalities, it may also become possible to construct a cryptographic tool
that yields this functionality, by a combination of simpler cryptographic tools.
This may lead to the following two merits: (1) potential users can easily verify
how the required functionality is realized, and (2) the security proof can also
easily be verified.

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 481–484, 2017.
DOI: 10.1007/978-3-319-61273-7 24

482 G. Hanaoka

2.1 Group Signatures

A typical example which shows the effectiveness of this approach is the case of
group signatures. Group signatures were originally proposed by Chaum and van
Heyst in 1991 [9], and following [9], schemes with improved efficiency were pro-
posed [5–7,10]. However, these improved schemes used to be complicated, and
only a limited number of specialized researchers could understand their mech-
anisms. However, in 2003, Bellare, Micciacio, and Warinschi showed a sophisti-
cated design principle for group signatures and presented a generic construction
from ordinary digital signatures, public key encryption, and non-interactive zero
knowledge proofs [2]. It is remarkable that almost all group signatures which were
proposed after their work are based on this generic construction (e.g., [5,10]),
and furthermore, even non-experts of this topic can easily understand function-
ality and security of these schemes. As a result, finally, the international stan-
dardization community accepted group signatures, and ISO/IEC 20008-2 [1], an
international standard for group signatures, was published in 2012.

This example implies that even though a cryptographic tool is actually cor-
rect and secure, potential users may not be immediately convinced of this fact if
the tool and the functionality it provides are complicated. For promoting better
understanding, generic constructions from basic tools may be useful, and this
results in technology diffusion in the real world. Note that generic constructions
of cryptographic tools have already intensively been studied in the literature
from the viewpoint of theoretical relationships among cryptographic primitives,
but such generic constructions are usually not considered in practice due to spe-
cific (i.e. non-generic) constructions being generally more efficient. In contrast
to this, we claim that we should actively use generic constructions in practice,
even if this might be less efficient than specific constructions, to promote under-
standing among potential users.

2.2 Proxy Re-encryption

Proxy re-encryption [3,8] is another cryptographic tool whose functionality is
useful but complicated, and similarly to other cryptographic tools with compli-
cated functionality, it is not widely used so far. A proxy re-encryption scheme is
basically identical to the standard public key encryption except that it is possible
to change the destination (i.e. receiver) of a ciphertext without recovering the
plaintext. More specifically, in addition to the sender and the receiver, another
player proxy is set up, and it can convert a cipheretext for receiver A into that
for another receiver B by using a re-encryption key. Note that this conversion
is carried out without decrypting the original ciphertext. Proxy re-encryption
technology was implemented in a commercial cloud storage system in practice,
but unfortunately this service has been already finished.

In [11], Hanaoka et al. proposed a generic construction of proxy re-encryption
from standard building blocks. More specifically, in this generic construction,
a plaintext is encrypted by using 2-out-of-2 threshold encryption, and a re-
encryption key for receiver A to another receiver B is generated as a pair of a

Towards User-Friendly Cryptography 483

share of A’s decryption key and an encryption of the other share under public
encryption key of B. When converting a ciphertext for A to that for B, the
proxy carries out partial decryption of it by using the share of A’s decryption key
(which is not encrypted), and sets the pair of the partial decryption result and
the encryption of the other share as the converted ciphertext for B. Obviously, B
can recover the plaintext by decrypting the partial decryption result by using the
share of decryption key which can be extracted from the converted ciphertext.
We believe that this generic construction is fairly easy-to-understand and hope
that it can contribute to technology diffusion of proxy re-encryption.

3 Importance of Enjoyable Aspects

For technology diffusion, usefulness alone is not always sufficient, and more
attractive aspects may be required. From this viewpoint, card-based protocols
[4,12] is a good example which shows the importance of enjoyable aspects of
cryptographic tools. In this type of protocol, players can carry out secure multi-
party computation only by using physical cards (like playing cards), and poten-
tial users can not only easily understand the mechanism of multi-party computa-
tion, but also enjoy using it. Due to its enjoyable aspects, card-based protocols
are now considered to be a great tool for introducing multi-party computa-
tion and for encouraging potential users to utilize state-of-the-art cryptographic
tools with complicated functionalities. Some universities have already introduced
card-based protocols in their undergraduate programs.

References

1. Information technology – security techniques – anonymous digital signatures.
ISO/IEC 20008–1

2. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 38

3. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

4. Boer, B.: More efficient match-making and satisfiability The Five Card Trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). doi:10.1007/3-540-46885-4 23

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

6. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006). doi:10.1007/11761679 26

7. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007, pp. 1–15. Springer, LNCS
(2007)

http://dx.doi.org/10.1007/3-540-39200-9_38
http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/11761679_26

484 G. Hanaoka

8. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM Conference on Computer and Communications Secu-
rity, pp. 185–194. ACM, New York (2007)

9. Chaum, D., Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). doi:10.1007/
3-540-46416-6 22

10. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007). doi:10.1007/978-3-540-76900-2 10

11. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao, Y.:
Generic construction of chosen ciphertext secure proxy re-encryption. In: Dunkel-
man, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-27954-6 22

12. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
598–606. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 36

http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/978-3-540-76900-2_10
http://dx.doi.org/10.1007/978-3-642-27954-6_22
http://dx.doi.org/10.1007/978-3-642-34961-4_36

Multi-prover Interactive Proofs:
Unsound Foundations

Claude Crépeau1(B) and Nan Yang2

1 McGill University, Montreal, QC, Canada
crepeau@cs.mcgill.ca

2 Concordia University, Montreal, QC, Canada
na yan@encs.concordia.ca

Abstract. Several Multi-Prover Interactive Proofs (MIPs) found in the
literature contain proofs of soundness that are lacking. This was first
observed [1] in which a notion of Prover isolation is defined to partly
address the issue. Furthermore, some existing Zero-Knowledge MIPs suf-
fer from a catastrophic flaw: they outright allow the Provers to commu-
nicate via the Verifier. Consequently, their soundness claims are now
seriously in doubt, if not plain wrong. This paper outlines the lack of
isolation and numerous other issues found in the (ZK)MIP literature.
A follow-up paper will resolve most of these issues in detail.

1 Introduction

It has been a long-held intuition that if Alice and Bob share an inconsistent set
of beliefs then, if they are questioned individually, one can expose that incon-
sistency. This is the idea behind the theory of Multi-Prover Interactive Proofs
(MIPs): a polynomial-time Verifier who is trying to discern truth from falsity
from a set of all-powerful Provers who cannot signal with each other. This theory
originated from the work of Ben-Or et al. [2], and we denote the class of lan-
guages with such interactive proofs by MIP (and its zero-knowledge counterpart
ZKMIP). In that paper and subsequent work of Babai, Fortnow and Lund [3],
it was claimed that ZKMIP = MIP = NEXP.

The proof of security in [2] and many subsequent MIPs reduces the breaking
of soundness to signalling. However, in the last decade, two major problems with
MIPs/ZKMIPs have emerged. The first is that the Provers do not actually need
to signal in order to break some MIPs, as demonstrated in the work of Cleve,
Høyer, Toner and Watrous [4]; they can perform no-signalling tasks which do not
allow communication (for example, using shared entanglement). That is, there
is a fundamental and yet subtle difference between what is local and what is no-
signalling. The second by Crépeau et al. [1] is that while the Provers are unable to
signal between themselves, the Verifier could inadvertently perform a non-local
task for them; in the extreme case, the Verifier may plainly signal for the Provers.

C. Crépeau—Supported in part by Québec’s FRQNT and Canada’s NSERC.
N. Yang—Supported in part by Prof. David Ford and by Prof. Jeremy Clark.

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 485–493, 2017.
DOI: 10.1007/978-3-319-61273-7 25

486 C. Crépeau and N. Yang

By combining the two problems, a Verifier can perform a no-signalling task
for the Provers, and thus allow them to break soundness of their protocols. In
this case, not only are the Provers perfectly no-signalling, they do not even need
any extra no-signalling resources (such as quantum entanglement).

The role that the Verifier must play in these MIPs was studied in [1]. It
was defined and shown that a Verifier must be isolating, so that it will never
(inadvertently or not) perform a non-local task (no-signalling or signalling). We
show here that many existing MIPs do not satisfy isolation, even in a weak sense.

More recently, the model of Multi-Prover Interactive Proofs was extended
to allow entangled Provers and the class of languages accepted under this new
setting is called MIP� [5]. It was recently shown that NEXP ⊆ MIP� [6] but
we do not know whether equality holds. Similarly, the model of Multi-Prover
Interactive Proofs was extended to allow No-signalling Provers and the class of
languages accepted under this new setting is called MIPns [5]. We now know that
MIPns = EXP [7]. We use some of these results to illustrate our explanation.

2 Terminology: (Non-)local, (No-)signalling
and Entangled

The terms “communicating” and “signalling” are used equivalently throughout
this work and should have the obvious meaning of information transfer between
two or several parties. Signalling Provers are essentially the same as a single
Prover because we put no restriction whatsoever on their communication (poten-
tial interesting sub-cases arise when we restrict the amount of communication
they can actually use, but we do not consider them here). In the context of
several parties, we consider that signalling is taking place even if no individual
communicates with any other individual. In cryptographic terms, if someone uses
secret-sharing to distribute a message to several parties excluding himself (even
if all of them are required to communicate to reconstruct the original secret)
then signalling is considered to have taken place between the sender and the
secret-share-holders.

However, as soon as we restrict communication we would need to define what
non-communication (or no-signalling) actually means. The initial intuition was
that non-communication = locality, meaning that the Provers are allowed to
share arbitrary amount of randomness before being restricted to computations
involving only these local random variables. However, because of entanglement,
it was later understood that certain classes of probability distributions cannot
be shared in a local fashion, but they do not allow communication. The term
no-signalling was coined to define “everything but signalling”. Of course this
includes locality, but also strictly more. Typical examples are the CHSH Game
(on inputs a, b output x, y such that x ⊕ y = a × b) and the Magic Square
Game [4].

This terminology mostly originates from physics. The acclaimed work from
Bell [8] in the 1960s can be summarized thus, “It seems that quantum
entanglement allows for non-local yet no-signalling distributions”. However, it

Multi-prover Interactive Proofs: Unsound Foundations 487

turns out that quantum physics does not allow all no-signalling distributions.
For instance, the CHSH game cannot be achieved from quantum entanglement.
An approximation that succeeds roughly 85.4% of the time can be achieved using
entanglement, whereas any local strategy can only succeed up to 75% of the time
[4]. Winning the CHSH game 100% of the time is impossible even using quantum
entanglement.

It may seem that the only models which make sense are “local” and “entan-
gled” because they are motivated by physical models of reality. Nevertheless,
the no-signalling model turns out to be useful under certain circumstances as
explained in [7] Sect. 1.2: “We show that any MIP that is sound against no-
signalling cheating Provers can be converted into a 1-round delegation scheme,
using a fully homomorphic encryption scheme (FHE), or alternatively, using a
computational private information retrieval (PIR) scheme.”

3 Issues with Existing Protocols

First, we illustrate that MIPs may be sound on their own but not when com-
posed. It was shown in [4] that the Magic Square Game may be turned into a
language which has a MIP that is sound classically but unsound when Provers
share entanglement.

We present a variant of this MIP below (as Fig. 1). Given a string of six
bits r0, r1, r2, c0, c1, c2, the success probability of the classical Provers is one
when there exists such a matrix M and at most 8/9 when no such matrix M
exists. By repeating this protocol many times, V will be able to decide with
high probability whether such a matrix exists or not. However, if P0, P1 can
win the Magic Square Game, they can systematically break the soundness of
this protocol and succeed with probability one whether such a matrix exists
or not.

Fig. 1. A MIP for a language on six bits strings.

488 C. Crépeau and N. Yang

3.1 Issues with Current Proofs of Composability

A problem with prior MIPs’ proofs of soundness is that different protocols (each
of which do not allow communication) can break each other.

For instance, the MIP from [7] is resistant to no-signalling strategies. There-
fore if we change [7] by appending at its end an implementation of the CHSH
box by the Verifier, we would still have provable soundness. However, this new
MIP, when concurrently composed with any MIP vulnerable to no-signalling
strategies will result in a protocol that is unsound.

The same problem exists for protocols which are vulnerable to entanglement.
The MIP from [6] is resistant to entangled Provers. We can modify this protocol
into one which asks the Verifier to implement some Magic Square Games [4]
without affecting soundness. This new protocol, concurrently composed with
the protocol of Fig. 1, breaks the soundness of the latter protocol.

In either of the above two cases, the no-communication assumption of the
composed protocols is not broken. While the above examples illustrate problems
with concurrent composition, we consider that this is indicative of the incom-
pleteness of existing MIPs and their analyses.

3.2 Issues Specific to ZKMIPs

In this section we explain issues with the specific construction found in [2,9]
which transforms an arbitrary MIP for language L into a Zero-Knowledge ver-
sion of the same proof. The technique involves the Provers using commitments
to show the Verifier that “if you were to see the contents of these (committed)
discussions, you would accept that x ∈ L”. In the case where local (or entan-
gled) Provers are involved, it is possible to construct bit (or trit) commitment
schemes that are perfectly concealing and statistically binding [1]. One of these
(Construction 33) rests on the Magic Square game and is binding against classi-
cal Provers but not against entangled Provers, while a second (Construction 32)
rests on the CHSH Game and is binding against classical and entangled Provers
but not against No-signalling Provers.

We summarize the construction of Kilian (and BGKW) as Fig. 2. The purpose
of this protocol is to convert a generic MIP 〈P0, P1, V 〉 into a specific format
given in this figure and then compile it using Bit Commitments to make it Zero-
Knowledge. The issue at hand with this construction is the Steps 1 and 3 of this
protocol where P ′

1 send messages a0 and a1 to V ′.
In those Steps the Prover P ′

1 may send V ′ arbitrary messages as long as V ′

does not reject them and abort in Step 4. Imagine if we had modified the Verifier
V into V ∗ in such a way that it ignores whatever the Provers say unless it starts
with “Simon says” and the Provers P0, P1 accordingly. Clearly, the resulting MIP
〈P ∗

0 , P
∗
1 , V

∗〉 will be as good and sound as the original 〈P0, P1, V 〉. However,
when transformed by the protocol of Fig. 2 the new MIP will allow dishonest
Provers to send arbitrary messages that V ∗ will ignore. In Step 5, V ′ will imbed
these arbitrary messages into Q deterministically (see Fig. 5) and feed it to P ′

2.
This is a communication channel P ′

1 may use to send arbitrary messages to

Multi-prover Interactive Proofs: Unsound Foundations 489

Fig. 2. Figure from [9] Chap. 6, page 207.

P ′
2. The issue here is that nowhere is it verified that any of these Verifiers are

Isolating. The Verifier of this protocol allows P ′
1 to send messages to P ′

2 and
adding Commitments will not fix that.

This issue may be used in several different ways to break soundness of the
protocol. We explain only one here, but will illustrate it with several examples
in the complete version of this paper.

If this protocol is composed with any other one that uses one of the Com-
mitments of Figs. 3 and 4 where P ′

1 receives the string z, he can communicate it
to its partner Prover. Once this has happened, the Commitments are no longer
binding and whatever proof they are using loses its soundness completely.

3.3 Synchronous vs Asynchronous MIPs

In all the MIP literature, it is never clearly specified whether MIPs are syn-
chronous or asynchronous. Can the Verifier interact with the Provers at its own
(chosen) pace independently of any clock or is the whole thing very accurately
clocked? Does it even matter? We argue that being asynchronous is much more
desirable than being synchronous.

In the asynchronous setting, V can interact with the Provers in any order it
likes, at any rate it likes. The Provers will be allowed to communicate only when
both of their respective protocols are finished with V . If the Provers are not
allowed to communicate and if V does not help them in that sense, we expect
this asynchronous property to be satisfied. On the contrary, in the synchronous
setting V must interact with the Provers in the exact order of the protocol. If
the protocol has rounds, V must complete the first round before moving on to
the second round and so on. If V and the Provers have a common clock they can

490 C. Crépeau and N. Yang

Fig. 3. Statistically binding, perfectly concealing bit-commitment protocol.

actually have each step of the protocol happen at a very precise time and abort
if any party is not ready at the expected time or if messages did not arrive by
their prescribed deadline.

Clearly, a protocol that is provably sound in the asynchronous model will also
be sound in the synchronous model, but certainly not the other way around.
For instance, the construction of Kilian in Fig. 2 is clearly not sound in the
asynchronous model because Step 6 requires Steps 1–5 to have been completed
before it can be performed. It is another reason why we became suspicious of
the constructions leading ZKMIPs.

We strongly believe that we should require all MIPs to be sound in the asyn-
chronous model. Moreover, when defining Zero-Knowledge, arbitrary Verifiers
should be asynchronous. This will result in a stronger notion of Zero-Knowledge
as opposed to restricting the participants to be synchronous.

3.4 A Concrete Example

We give a somewhat contrived example in existing literature which is a striking
example of the consequences of lacking isolation. Consider the protocol in Fig. 5.
The first Prover P ′

1 will simulate a number of transcripts of a MIP involving a
simulated Verifier and a number of simulated Provers. The actual Verifier V ′

will then send a random, partial transcript to the second Prover P ′
2. This partial

transcript contains only one of the simulated Provers’ questions and answers
up to a random point. P ′

2 must then be able to complete the transcript in an

Multi-prover Interactive Proofs: Unsound Foundations 491

Fig. 4. Statistically binding, perfectly concealing trit-commitment protocol.

identical way, otherwise the proof is rejected. The simulated Provers and Verifiers
are deterministic, which should allow this consistency check with P ′

2 to succeed.
The first problem we would like to point out is that the simulated answers

from the simulated Provers cannot be authenticated. There is no a priori reason
why the Verifier would suspect these answers to be attempts at communication.
In addition, not only is the Verifier not isolating, in this case the protocol requires
that the Verifier actually courier some messages from one Prover to another.

Suppose that the simulated protocol has a “header” section where the simu-
lated Provers can say anything and it will be ignored by the Verifier, but would
nevertheless be part of a valid transcript. In the compositional form of Kilian’s
protocol, the Verifier has an auxiliary input tape (which is normally used to
model prior knowledge a Verifier might have). The real Provers can use this
auxiliary tape to communicate; in particular, P ′

1 can send to P ′
2 the value of

R, the random coins V ′ is forcing P ′
1 to use. This fixes the simulated Verifier’s

492 C. Crépeau and N. Yang

Fig. 5. Figure from [9] Chap. 6, page 205.

random tape, which allows the real second Prover P ′
2 to break any consistency

checks, and therefore soundness.
Even if there is no auxiliary tape, the simulated Provers’ first question cannot

be in general authenticated by the Verifier as genuine (as the Provers are all-
powerful but the Verifier is only polynomial-time). Therefore P ′

1 can always
produce a transcript where R is disguised as the first question. Soundness breaks
by the same reasoning as above. Luckily, in this case, the cheating Provers would
be detected if V ′ asks P ′

2 to produce the first question from scratch, which it
cannot since it does not know R.

Now the second problem is that in [9], the proof of soundness does not men-
tion this near-miss. This is symptomatic of proofs of soundness of MIPs in the
literature: their proofs are considerably incomplete; fixing these proofs require
proper definitions of many concepts taken for granted in these papers.

Multi-prover Interactive Proofs: Unsound Foundations 493

4 Discussion

Considering the many issues described in the previous sections, we believe that
there is a need to rethink MIPs/ZKIPs with respect to locality, synchronicity,
composability and isolation. The attacks that we have demonstrated may be
somewhat contrived, but they demonstrate the incompleteness of existing work.

In particular, we think that new definitions and proofs are necessary to cap-
ture the counter-intuitiveness of non-locality, including entanglement and other
no-signalling tasks. Existing results must be revalidated under an upgraded
model. We will explore this idea in detail in our follow-up paper.

Acknowledgements. We would like to thank Serge Fehr, Gilles Brassard, Samuel
Ranellucci, Christian Schaffner, and Louis Salvail for various fruitful discussions about
this work. Finally, we are grateful to Raphael C.-W. Phan and Moti Yung for inviting
us to submit our work here.

References

1. Crépeau, C., Salvail, L., Simard, J.-R., Tapp, A.: Two provers in isolation. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 407–430. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25385-0 22

2. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive
proofs: how to remove intractability assumptions. In: Proceedings of the Twenti-
eth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 113–131.
ACM, New York (1988)

3. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover
interactive protocols. Comput. Complex. 2, 374 (1992)

4. Cleve, R., Hoyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal
strategies. In: Proceedings of the 19th IEEE Annual Conference on Computational
Complexity, CCC 2004, pp. 236–249, IEEE Computer Society, Washington, DC
(2004)

5. Ito, T.: Polynomial-space approximation of no-signaling provers. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6198, pp. 140–151. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14165-2 13

6. Ito, T., Vidick, T.: A multi-prover interactive proof for NEXP sound against entan-
gled provers. In: Proceedings of the 2012 IEEE 53rd Annual Symposium on Foun-
dations of Computer Science, FOCS 2012, pp. 243–252. IEEE Computer Society,
Washington, DC (2012)

7. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power
of no-signaling proofs. In: Proceedings of the Forty-Sixth Annual ACM Symposium
on Theory of Computing, STOC 2014, pp. 485–494. ACM, New York (2014)

8. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)
9. Kilian, J.: Uses of Randomness in Algorithms and Protocols. MIT Press, Cambridge

(1990)

http://dx.doi.org/10.1007/978-3-642-25385-0_22
http://dx.doi.org/10.1007/978-3-642-14165-2_13
http://dx.doi.org/10.1007/978-3-642-14165-2_13

Human Public-Key Encryption

Houda Ferradi, Rémi Géraud(B), and David Naccache

Information Security Group, École Normale Supérieure,
45 rue d’Ulm, 75230 Paris Cedex 05, France

{houda.ferradi,remi.geraud,david.naccache}@ens.fr

Abstract. This paper proposes a public-key cryptosystem and a short
password encryption mode, where traditional hardness assumptions are
replaced by specific refinements of the CAPTCHA concept called Deci-
sional and Existential CAPTCHAs.

The public-key encryption method, achieving 128-bit security, typ-
ically requires from the sender to solve one CAPTCHA. The receiver
does not need to resort to any human aid.

A second symmetric encryption method allows to encrypt messages
using very short passwords shared between the sender and the receiver.
Here, a simple 5-character alphanumeric password provides sufficient
security for all practical purposes.

We conjecture that the automatic construction of Decisional and Exis-
tential CAPTCHAs is possible and provide candidate ideas for their
implementation.

1 Introduction

CAPTCHAs1 [1] are problems that are hard to solve by computers, while being
at the reach of most untrained humans. There might be many reasons why, at
a particular time, a given type of CAPTCHA is considered hard for computers.
The automated solving of CAPTCHAs may either require more computational
power than is available, or algorithms have yet to be invented. It might well be
that computers are inherently less efficient, or even incapable, at some tasks than
human beings. Whichever the cause, several candidate CAPTCHAs are widely
used throughout the Internet to keep robots at bay, or at least slow them down
(e.g. [2,7,8,10,16,17]).

Most CAPTCHAs are used as human-interaction proofs [3] but their full
potential as cryptographic primitives has not been leveraged so far despite a
few exploratory papers. Early attempts [1,4,5,9] faced the inherent difficulty
of malleability : given a CAPTCHA Q, an adversary could generate Q′, whose
solution gives a solution to Q. Thus the security of such constructions could
only be evaluated against unrealistic “conservative adversaries” [13]. All in all,
we propose to fill the gap by providing a finer taxonomy of CAPTCHAs as well
as cryptosystems based on them, which can reach real-life security standards.

1 “Completely Automated Public Turing test to Tell Computers and Humans Apart”.

c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 494–505, 2017.
DOI: 10.1007/978-3-319-61273-7 26

Human Public-Key Encryption 495

The organisation of this paper is as follows: Sect. 2 defines the classes of prob-
lems we are interested in, and estimates how many of those problems can be
solved per time unit. We then refine the classical CAPTCHA concept into Deci-
sional and Existential CAPTCHAs. Section 3 describes how to implement public-
key encryption using Decisional CAPTCHAs; Sect. 4 describes a short password-
based encryption mode that uses Existential CAPTCHAs to wrap high-entropy
keys. Section 5 presents Decisional and Existential CAPTCHA candidates.

2 Preliminaries and Definitions

2.1 CAPTCHA Problems

Let Q be a class of problem instances, A a class of answers, and S a relation such
that S(Q,A) expresses the fact that “A ∈ A is a solution of Q ∈ Q”. Solving
an instance Q of problem Q means exhibiting an A ∈ A such that S(Q,A). We
assume that for each problem there is one and only one solution, i.e. that S is
bijective. This formal setting (similar to [5,13]) allows us to provide more precise
definitions.

Because CAPTCHAs involve humans and considerations about the state of
technology, we do not pretend to provide formal mathematical definitions but
rather clarifying definitional statements.

Definition 1 (Informal). A given problem Q ∈ CP (CAPTCHA Problem) if
no known algorithm can solve a generic instance Q ∈ Q with non-negligible
advantage over 1/|A|, which is the probability to answer Q correctly at random;
yet most humans can provide the solution A to a random Q ∈R Q with very high
probability in reasonable time.

In Definition 1, it is worth pointing out that future algorithms might turn out
to solve efficiently some problems that evade today’s computers’ reach. As such,
CP is not so much a complexity class as it is a statement about technology at
any given point in time.

There exist today several approaches to building CAPTCHAs, based for
instance on deformed word recognition, verbal tests, logic tests or image-
based tasks. We are chiefly interested in those tests that can be automatically
generated.

We extend CP in two ways:

Definition 2 (Informal). A given problem Q ∈ DCP (Decisional CP) if Q ∈
CP and, given a random instance Q ∈R Q and a purported solution A to Q, no
known algorithm can decide whether A is a solution to Q, i.e. evaluate S(Q,A),
with non-negligible advantage over 1/|A|; while humans can determine with high
probability S(Q,A) in reasonable time.

Finally, we introduce a further class of problems:

496 H. Ferradi et al.

Definition 3 (Informal). Let Q /∈ CP be a set of “decoy data” which are not
CAPTCHAs. A given problem Q ∈ ECP (Existential CP) if Q ∈ CP and, given
a generic instance Q ∈ Q or a decoy Q ∈ Q, no known algorithm can decide
whether Q ∈ Q with non-negligible advantage over |Q|/|Q ∪ Q|; while humans
can decide correctly if Q ∈ Q or Q ∈ Q in reasonable time with high probability.

Remark 1. Definition 3 depends on the set Q. We silently assume that, for a
given problem Q, an appropriate Q is chosen. This choice makes no difference.

When Q is not exhaustively searchable, Definition 3 means that a computer
cannot decide whether a given Q is a CAPTCHA or not, let alone solve Q if Q
is indeed a CAPTCHA.

Remark 2. Definition 3 can be reformulated similarly to the IND-CPA [15] secu-
rity game: we pick a random bit b and provide the adversary with Qb, where
Q0 ∈ Q and Q1 ∈ Q. The adversary is expected to guess b no better than at
random unless it resorts to human aid.

Remark 3. ECP,DCP ⊆ CP, but there is no inclusion of ECP in DCP or vice
versa. Informally, CP is about finding an answer, DCP is about checking an
answer, and ECP is about recognizing a question.

Remark 4. Solving a problem Q ∈ CP is either done using computers which by
definition provide unreliable answers at best; or by asking a human to solve Q –
effectively an oracle. However, there is a limit on the number of solutions humans
can provide and on the rate at which humans can solve CAPTCHAs.

Consider a given Q ∈ CP whose generic instances can be solved by a human
in reasonable time. Let us estimate an upper bound b on the number of instances
of Q that a human may solve during a lifetime. Assuming a solving rate of 10
instances per minute, and working age of 15–75 years, spent exclusively solving
such problems, we get b–108. Taking into account sleep and minimal life support
activities, b can be brought down to –107.

There should be no measurable difference between solving a problem in CP or
in DCP, however it might be slightly simpler (and therefore quicker) for humans
to identify whether a problem is a CAPTCHA without actually solving it. For
simplicity we can assume that CAPTCHA recognition is ten times faster than
CAPTCHA resolution.

There are various estimations on the cost of having humans solve
CAPTCHAs. Some websites offer to solve 1000 CAPTCHAs for a dollar2. Of
course, the oracle may employ more than one human, and be proportionally
faster, but also proportionally more expensive.

2 At a first glance, the previous figures imply that breaking a public-key (as defined
in the next section) would only cost $104. We make the economic nonlinearity con-
jecture there are no $104 service suppliers allowing the scaling-up of this attack. In
other words, if the solving demand d increases so will the price. We have no data
allowing to quantify price(d).

Human Public-Key Encryption 497

3 Human Public-Key Encryption

We now describe a public-key cryptosystem using problems in DCP. Let Q ∈
DCP. We denote by H(m) a cryptographic hash function (e.g. SHA-3) and by
Ek(m) a block cipher (e.g. AES-128). Here, m is the plaintext sent by Bob to
Alice.

– Key-pair generation: The public key pk is a list of b instances of Q

pk = {Q1, . . . , Qb}

The private key is the set of solutions (in the CP sense) to the Qi:

sk = {A1, . . . , Ab}

i.e. for 1 ≤ i ≤ b, S(Qi, Ai) holds true.
– Encryption: Bob wants to send m to Alice. Bob picks k random problems

{Qi1 , . . . , Qik} from Alice’s pk, and solves them3. Let σ ← {Ai1 , . . . , Aik}
and α ← {i1, . . . , ik}. Bob computes κ ← H(α) and c ← Eκ(m), and sends
(σ, c) to Alice.

– Decryption: Given σ, Alice identifies the set of indices α and computes κ ←
H(α). Alice then uses κ to decrypt c and retrieve m. Decryption does not
require any human help.

The general idea of this cryptosystem is somewhat similar to Merkle’s puzzles
[14], however unlike Merkle’s puzzle here security is not quadratic, thanks to
problems in CP not being automatically solvable. We may assume that the Ais
are pairwise different to simplify analysis.

Remark 5. Indeed if Q ∈ CP it might be the case that a machine could decide if
given A,Q the relation S(A,Q) holds without solving Q. Hence Q must belong
to DCP.

Remark 6. A brute-force attacker will exhaust all
(

b
k

)
possible values of α. Hence(

b
k

)
should be large enough. Given that b–107 or b–108, it appears that k = 6

provides at least 128-bit security.

Remark 7. The main drawback of the proposed protocol is the size of pk. Assum-
ing that each Qi can be stored in 20 bytes, a pk corresponding to b–108 would
require 2 GB. However, given that CAPTCHAs are usually visual problems, it
is reasonable to assume that pk might turn out to be compressible.

Remark 8. Instead of sending back the solutions σ in clear, Bob could hash them
individually. Hashing would only make sense as long as solutions have enough
entropy to resist exhaustive search.

3 Here Bob must resort to human aid to solve {Qi1 , . . . , Qik}.

498 H. Ferradi et al.

Remark 9. It is possible to leverage the DCP nature of the Qis in the following
way: instead of sending a random permutation of solutions, Bob could interleave
into the permutation d random values (decoy answers). Alice would spot the
positions of these decoy answers and both Alice and Bob would generate α =
{i1, . . . , ik, j1, . . . , jd} where jd are the positions of decoys. Subsequently, security
will grow to

(
b

k+d

)
/d!. This is particularly interesting since for b = 107, k = 1

and d = 6 we exceed 128-bit security. In other words, all the sender has to do is
to solve one CAPTCHA.

Entropy can be further increased by allowing d to vary between two small
bounds. In that case the precise (per session) value of d is unknown to the
attacker.

4 Short Password-Based Encryption

In the following scenario Alice and Bob share a short password w. We will show
how a message m can be securely sent from Alice to Bob using only w. This is
particularly suited to mobile devices in which storing keys is risky.

Let Q ∈ ECP ∩ DCP.

– Alice generates a full size4 key R and uses it to encrypt m, yielding c0 ←
E0|R(m). She generates an instance Q ∈ Q, such that S(P,R). Alice computes
c1 ← E1|w(P) and sends (c0, c1) to Bob.

– Bob uses w to decrypt c1, and solves P . He thus gets the key R that
decrypts c0.

An adversary therefore faces the choice of either “attacking Shannon” or
“attacking Turing”, i.e. either automatically exhaust R, or humanly exhaust
w. Each candidate w yields a corresponding P that cannot be computationally
identified as a CAPTCHA. The adversary must hence resort to humans to deal
with every possible candidate password.

Assuming that CAPTCHA identification by humans is ten times faster than
CAPTCHA resolution, it appears that w can be a 5-character alphanumeric
code5.

Remark 10. R must have enough entropy bits to provide an acceptable security
level. R can be generated automatically on the user’s behalf. As we write these
lines we do now know if there exists Q ∈ ECP∩DCP admitting 128-bits answers.
If such Qs do not exist, R could be assembled from several problem instances.

Remark 11. In the above we assume that R is generated first, and then embed-
ded into the solution of a problem instance P . All we require from R is to provide
sufficient entropy for secure block cipher encryption. Hence, it might be easier
to generate P first, and collect R afterwards.

4 E.g. 128-bit.
5 There are 64 alphanumeric characters, and 645 > 10 × b.

Human Public-Key Encryption 499

Remark 12. The main burden resting on Bob’s shoulders might not be the solv-
ing on P but the keying of the answer R. 128 bits are encoded as 22 alphanumeric
characters. Inputting R is hence approximately equivalent to the typing effort
required to input a credit card information into e-commerce website interfaces6.
Alternatively, Bob may as well read the solution R to a speech-to-text interface
that would convert R into digital form.

Remark 13. Q ∈ ECP ∩ DCP is necessary because the adversary may partially
solve Q and continue using exhaustive search. Under such circumstances, c0
serves as a clue helping the attacker to solve Q. If Q ∈ ECP ∩ DCP, such a
scenario is avoided.

5 DCP and ECP Candidate Instances

The above constructions assume that ECP and DCP instances exist and are easy
to generate. Because ECP and DCP depend both on humans and on the status
of technology, it is difficult to “prove” the feasibility of the proposed protocols.

We hence propose a DCP candidate an ECP candidates and submit them to
public scrutiny.

5.1 DCP Candidate

As a simple way to generate DCPs, we propose to start from a standard CP (e.g.
a number recognition problem) and ask a further question about the answer.
The further question should be such that its answer may correspond to numer-
ous potential contents. For instance, the further question could be whether two
sequences of digits recognised in an image Q sum up to A = 91173 or not (see
Fig. 1).

Fig. 1. A DCP candidate constructed from an existing CP.

5.2 ECP Candidates

This section proposes a few candidate Q that we conjecture to belong to ECP.
The first step is to design a task that we think is challenging for computers.

Despite recent progress (see e.g. [11]), computer vision is still expensive and lim-
ited. Most computer vision algorithms have to be trained specifically to recognise
6 PAN (16 characters), expiry date (4 characters) and a CVV (4 characters).

500 H. Ferradi et al.

Fig. 2. An instance of a visual-logical task ECP problem. Recognizing objects in this
image is insufficient to tell whether there is a solution, nor to compute the solution
should there be one.

objects or features of a given kind (dog breeds, handwritten characters, etc.),
and fail whenever the task at hand requires more than mere object identification.
Even in that case, occlusion, distortion and noise cause drastic performance loss
for most techniques. Many CAPTCHAs ideas rely on this to generate problem
instances [6].

Even if image contents can be detected, we can still pose a hard challenge.
Indeed, while computers excel at solving logical reasoning questions when those
questions are encoded manually as logical formulae, state of the art algorithms
fail at even the most basic questions when challenges are presented in visual
form. Therefore, solving for instance a visual-logical task is a problem that is at
least in DCP (see Fig. 2).

Good ECP candidates for cryptographic purposes should be easy to generate,
they should have enough possible solutions to thwart exhaustive search attempts,
and it should be hard to tell automatically whether there is a solution at all.

Temporal Sequence ECP. The intuition for this candidate is that although
computer vision algorithms may reach human accuracy (and even beat it),
humans can make use of external knowledge, which provides additional under-
standing of what is under scrutiny. Here the external knowledge is that real-life
events abide by causality.

We provide k images (e.g. k = 5), each of which is a snapshot of some
situation: buying goods, driving a car, dressing up, etc. The order of images is
scrambled (some random images may be inserted as decoys) and the problem
is to put images back in the correct order. This task, which we call temporal
sequence, requires the contextual knowledge that some events can only happen
after (or before) others. This is illustrated in Fig. 3.

We conjecture that the temporal sequence task is both in DCP and in ECP.
One drawback of this approach is that to reach an 80-bit security level we

need k = 40 images7 which can be unwieldy. This may be solved by using �
collections of κ images, and tune �, κ so that (κ!)� > 280.

7 There are k! combinations, and 40! > 280.

Human Public-Key Encryption 501

Fig. 3. Three instances of the temporal sequence ECP problem. The problem consists
in temporally arranging the pictures.

Temporal sequences may be automatically generated from videos, although
it is not obvious how to ensure that sequences generated like this are always
meaningful to humans.

Visual Letter Recognition ECP. Assume we have a CP problem Q, whose
instances can successfully conceal letters (a “one-letter” CAPTCHA). We pro-
vide k instances of Q1, . . . , Qk corresponding to answer letters A1, . . . , Ak, and
ask for the alphabetically sorted list of these Ai.

As an example, we would generate instances of Q for the letters
{A,M, T,O,B,R}, and ask for the solution ABMORT. Under the assumption
that Q ∈ CP, determining whether a solution exists requires human aid. There-
fore we conjecture that this problem belongs to ECP.

A further variant of this idea is illustrated in Fig. 4. Note that the visual
letter recognition problem is DCP if an only if Q ∈ DCP.

Honey Images ECP. Another candidate problem is inspired by honey encryp-
tion [12,18]. The idea is that any integer 1 ≤ � ≤ k would generate an image,
but that only one value �OK generates a meaningful image8. All values � �= �OK

8 In the specific case of Fig. 5, translation, rotation, mirroring as well as border crop-
ping may also generate the meaningful image corresponding to �OK, but the overall
proportion of such images remains negligible.

502 H. Ferradi et al.

Fig. 4. Visual Letter Recognition ECP: letters are concealed using an existing CP,
and one digit is inserted into each sequence of letters. The ECP problem is to reorder
the CAPTCHAs in increasing digit order, discarding all non-digit symbols. Here the
solution consists in selecting the 4th, 5th, 2nd, 3rd, and 1st images, in that order.

Fig. 5. A honey image ECP. Left: original image; right: Q�OK , the transformed image
for �OK.

generate images in a way that makes them indistinguishable from meaningful
images. The problem would then be to identify �OK, which we conjecture only
humans can do reliably.

The main difficulty is that the notion of indistinguishability is tricky to define
for images, and even harder to enforce: humans and computers alike use very
specific visual cues to try and perform object recognition, which are hard to
capture statistically. Following [18], we may try and learn from a dataset how to

Human Public-Key Encryption 503

Fig. 6. All values of � other than �OK produce decoys whose statistical properties are
conjectured to be indistinguishable from the correct image, with salient features but
no real meaning.

properly encode images, but this is cumbersome in our context, especially when
dealing with a large number of instances.

Our candidate is a simpler embodiment based on the following intuition:
using biased noise (i.e. noise that is not random), we can elicit pareidolia in
computer vision programs. Each candidate value of � would then correspond
to some object being recognised – but only one of those is really relevant. We
conjecture that only humans are able to pick this relevant object apart.

The authors implemented this idea. We start from a black and white picture
of a clearly identifiable object (Fig. 5 left, here A = “rabbit”), turn it into a
collection of black dots9 (1). The picture is then cut into blocks which are shuffled
and rotated (2). Finally, noise is added, under the form of black dots whose size
is distributed as the size of black dots in the original picture (3). The image is
then rotated back in place (Fig. 5 right) to provide the challenge Q�OK .

The motivation for this approach is as follows: (1) guarantees that individ-
ual pixels contain no information on luminance, and geometric features (lines,
gradients and corners) – each dot being circular destroys information about
orientation; the shuffling and rotation of blocks in (2) is encoded as an inte-
ger �; and (3) inserts decoy features, so that any shuffling/rotation would make
geometric features appear (to lure a computer vision algorithm into detecting
something).

Now, many decoys Q� ∈ Q, � �= �OK can be generated easily from this image
by shuffling and rotating blocks (Fig. 6). Each decoy shares the same statistical
properties as the correct (unshuffled) image, but has no recognizable content.

Our conjecture is that the human brain can perceive structures very efficiently
and assign meaning to them. Many such structures are irrelevant and inserted
9 For instance using an iteratively reweighted Voronoi diagram.

504 H. Ferradi et al.

so as to fool computer vision algorithms, but the familiar ones are immediately
and intuitively grasped by humans. Consequently, although the original picture
is severely deteriorated, we conjecture that it should still be possible for humans
to tell noise and signal apart and identify correctly the contents of this image.

6 Further Applications

Beyond their cryptographic interest, DCP and ECP tasks may have interesting
applications in their own right (Fig. 7).

Fig. 7. Credit card PAN and expiry date, stored as a DCP instance.

One such application is the following: users may wish to store sensitive data
as a DCP instance, for instance credit card information, instead of plaintext.
Indeed, attackers often browse their victims’ computers looking for credit card
information, which is easy to recognize automatically. By storing credentials in
an ECP the attacker’s task can be made harder.

References

1. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI
problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 294–311. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 18

2. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: Google
reCAPTCHA: https://developers.google.com/recaptcha (2007)

3. Baird, H.S., Lopresti, D.P. (eds.): HIP 2005. LNCS, vol. 3517. Springer, Heidelberg
(2005). doi:10.1007/b136509

4. Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly verifiable
puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30576-7 2

5. Canetti, R., Halevi, S., Steiner, M.: Mitigating dictionary attacks on password-
protected local storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
160–179. Springer, Heidelberg (2006). doi:10.1007/11818175 10

6. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Designing human
friendly human interaction proofs (HIPs). In: van der Veer, G.C., Gale, C. (eds.)
Proceedings of the 2005 Conference on Human Factors in Computing Systems,
CHI 2005, Portland, Oregon, USA, 2–7 April 2005, pp. 711–720. ACM (2005)

7. Chew, M., Baird, H.S.: Baffletext: a human interactive proof. In: Kanungo, T.,
Smith, E.H.B., Hu, J., Kantor, P.B. (eds.) SPIE Proceedings, Document Recogni-
tion and Retrieval X, Proceedings, Santa Clara, California, USA, 22–23 January
2003, vol. 5010, pp. 305–316. SPIE (2003)

http://dx.doi.org/10.1007/3-540-39200-9_18
https://developers.google.com/recaptcha
http://dx.doi.org/10.1007/b136509
http://dx.doi.org/10.1007/978-3-540-30576-7_2
http://dx.doi.org/10.1007/11818175_10

Human Public-Key Encryption 505

8. Chow, R., Golle, P., Jakobsson, M., Wang, L., Wang, X.: Making captchas clickable.
In: Spasojevic, M., Corner, M.D. (eds.) Proceedings of the 9th Workshop on Mobile
Computing Systems and Applications, HotMobile 2008, Napa Valley, California,
USA, 25–26 February 2008, pp. 91–94. ACM (2008)

9. Dziembowski, S.: How to pair with a human. In: Garay, J.A., Prisco, R. (eds.)
SCN 2010. LNCS, vol. 6280, pp. 200–218. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15317-4 14

10. Elson, J., Douceur, J.R., Howell, J., Saul, J.: Asirra: a CAPTCHA that exploits
interest-aligned manual image categorization. In: Ning, P., di Vimercati, S.D.C.,
Syverson, P.F. (eds.) Proceedings of the 2007 ACM Conference on Computer and
Communications Security, CCS 2007, Alexandria, Virginia, USA, 28–31 October
2007, pp. 366–374. ACM (2007)

11. Goodfellow, I.J., Bulatov, Y., Ibarz, J., Arnoud, S., Shet, V.: Multi-digit number
recognition from street view imagery using deep convolutional neural networks.
CoRR abs/1312.6082 (2013). http://arxiv.org/abs/1312.6082

12. Juels, A., Ristenpart, T.: Honey encryption: security beyond the brute-force bound.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 293–
310. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 17

13. Kumarasubramanian, A., Ostrovsky, R., Pandey, O., Wadia, A.: Cryptography
using captcha puzzles. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 89–106. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 7

14. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM
21(4), 294–299 (1978)

15. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM Sym-
posium on Theory of Computing, Baltimore, Maryland, USA, 13–17 May 1990,
pp. 427–437. ACM (1990)

16. Nayeem, M.T., Akand, M.M.R., Sakib, N., Kabir, M.W.U.: Design of a human
interaction proof (HIP) using human cognition in contextual natural conversation.
In: IEEE 13th International Conference on Cognitive Informatics and Cognitive
Computing, ICCI*CC 2014, London, UK, 18–20 August 2014, pp. 146–154. IEEE
(2014)

17. Sauer, G., Holman, J., Lazar, J., Hochheiser, H., Feng, J.: Accessible privacy and
security: a universally usable human-interaction proof tool. Univ. Access Inf. Soc.
9(3), 239–248 (2010)

18. Yoon, J.W., Kim, H., Jo, H., Lee, H., Lee, K.: Visual honey encryption: application
to steganography. In: Alattar, A.M., Fridrich, J.J., Smith, N.M., Alfaro, P.C. (eds.)
Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia
Security, IH&MMSec 2015, Portland, OR, USA, 17–19 June 2015, pp. 65–74. ACM
(2015)

http://dx.doi.org/10.1007/978-3-642-15317-4_14
http://dx.doi.org/10.1007/978-3-642-15317-4_14
http://arxiv.org/abs/1312.6082
http://dx.doi.org/10.1007/978-3-642-55220-5_17
http://dx.doi.org/10.1007/978-3-642-36362-7_7

Two Philosophies for Solving Non-linear
Equations in Algebraic Cryptanalysis

Nicolas T. Courtois(B)

Computer Science, University College London,
Room 6.18. Gower Street, London WC1E 6BT, UK

n.courtois@ucl.ac.uk

Abstract. Algebraic Cryptanalysis [45] is concerned with solving of
particular systems of multivariate non-linear equations which occur in
cryptanalysis. Many different methods for solving such problems have
been proposed in cryptanalytic literature: XL and XSL method, Gröbner
bases, SAT solvers, as well as many other. In this paper we survey these
methods and point out that the main working principle in all of them
is essentially the same. One quantity grows faster than another quan-
tity which leads to a “phase transition” and the problem becomes effi-
ciently solvable. We illustrate this with examples from both symmetric
and asymmetric cryptanalysis.

In this paper we point out that there exists a second (more) general
way of formulating algebraic attacks through dedicated coding tech-
niques which involve redundancy with addition of new variables. This
opens numerous new possibilities for the attackers and leads to interest-
ing optimization problems where the existence of interesting equations
may be somewhat deliberately engineered by the attacker.

Keywords: Algebraic cryptanalysis · Overdefined systems of equa-
tions · NP-hard problems · Phase transitions · XL algorithm · Gröbner
bases · XSL algorithm · ElimLin · Degree falls · Error correcting codes ·
Algebraic codes · Elliptic curves · ECDL problem · Semaev polynomials ·
Block ciphers · DES · GOST · Simon

1 Two Approaches to Solving Non-linear Equations

There are two major philosophies in algebraic cryptanalysis and for the general
problem of solving large system of non-linear polynomial/algebraic equations.

1. Either we expand the number of monomials.
2. Or we expand the number of variables.

Let us also recall what is the main working principle in both types of techniques:
we make two values grow, yet one grows faster. We will see several examples of
this in this paper. It allows one to understand why both families of techniques
may and will in many cases work.
c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 506–520, 2017.
DOI: 10.1007/978-3-319-61273-7 27

Two Philosophies For Solving NL Equations in Algebraic Cryptanalysis 507

1. When we add new monomials, we grow both the number of monomials
T and the number of new equations R. For any system of equations with a
certain R/T we can easily improve the R/T ratio by increasing the degree.
Then R grows faster because there are several ways to obtain the same
monomial. The number of monomials does typically NOT1 grow as fast as
the number of new equations.

2. When we add new variables we also grow both the number of monomials
T and can generate more equations R. Here it is maybe less obvious that R
can also grow faster and sometimes even asymptotically faster than T , well,
at least and limited to2 a certain interval. One example of this can be found
in Sect. 12.3 in [29] another in [12].

This paper is organized as follows. In Sect. 2 we look briefly at the history
of the tow approaches and discuss some reasons why type 2 methods have not
for a long time attracted a lot of attention. In Sect. 3 we discuss various more
or less standard algorithms of type 1. In Sects. 4 and 5.1 we discuss a number of
existing approaches for coding cryptanalysis problems with a focus on symmetric
cryptanalysis. We discuss one specific strategy for the attacker where the attacker
tries to design a family of problem which becomes progressively easier to solve as
the parameter grows. Finally in Sect. 6 we discuss one major “algebraic coding”
problems in asymmetric cryptanalysis. Public-key cryptanalysis questions are
also discussed in Sect. 4.

2 Historical Developments

Both types of methods already existed and both philosophies worked quite well
in their own (somewhat disjoint) space in algebraic cryptanalysis of DES in
[6]. More generally, both sorts have also been studied for solving systems of
polynomial equations over finite fields at Eurocrypt 2000 [7].

It is important to see that techniques of type 1 which expand monomials
are nowadays standard, well studied, fully automated by software and do not3

require a lot of attention. The second family has not been sufficiently studied.

2.1 Difficulties with Family 2 Techniques

There have been some negative results on techniques of type 2. At Eurocrypt
2000 [7] the authors consider the general problem of solving arbitrary quadratic

1 Identical monomials are generated many times, for example x1x2x3 will be obtained
3 times, when multiplying x1x3 by x2, etc. Cf. also slide 80 of [26].

2 A situation where R grows faster than T permanently must be an illusion. Let
F ≤ R be the number of linearly independent equations. These equations belong to
the linear space of dimension T . Thus F ≤ T and very frequently F ≤ T − 1, cf. [8].

3 Such software methods are sometimes called “plug and pray” attacks, cf. [29] and
the main point in this paper and in [29] is that we would like to develop a richer
galaxy of attacks where the attacker plays a more active role.

508 N.T. Courtois

or low degree equations over a finite fields. We have then the “re-linearization
technique” which adds new variables (type 2) and the XL algorithm which gen-
erates new products of variables (type 1). At Eurocrypt 2000 it was concluded
that re-linearization technique is highly redundant4 and that XL works better
[7]. Then researchers have discovered that at higher degrees XL is also redun-
dant [1,4,8–10,27,28] and modern Gröbner basis techniques are precisely about
removing even more redundancies in XL, cf. [1,38].

One reason why the second family has not been sufficiently studied is that
gives the code breaker a considerable degree of freedom. Hence, it is not clear
how to even start to design5 an attack based on this idea. On the positive
side some success was definitely achieved with methods related to hardware
implementation and multiplicative complexity S-box optimizations [2,6,16,18,
19,36]. Until now there were extremely few attempts to invent new non-trivial
attacks techniques based on 2nd type methods. One exception to this is [29].

It is clear that the type 1 methods always somewhat contain a type 1 method,
new variables can be just monomials, which again however leads to known prob-
lems with redundancy cf. [7]. Until now cryptographic literature knows very few
convincing attacks of the 2nd type. This with exception of SAT solver attacks,
which very clearly greatly benefit from added variables cf. [6,16,18,19].

Combination Attacks. It is also important to note that both approaches 1
and 2 can and should be combined. To put it simply, the second approach may
make the first approach work better, equations become more overdefined and the
so called degree of regularity [38] is expected to decrease, i.e. system is solved by
Gröbner basis software or other software at a lower degree, which implies lower
running time and less memory, cf. also [12,29].

We are now going to review several classical type 1 methods in Algebraic
Cryptanalysis, explain what quantities are expanded, and look at the question
of how quickly these numbers grow.

3 XL Algorithm, F4, F5, and Their Variants, XSL

The XL algorithm [7] was extensively studied and there exist countless variants
of this algorithm. We consider m quadratic equations with n variables over IF2.
The basic XL algorithm consists of multiplying all equations by monomials of
degree D − 2 to create a larger number of R equations of degree D. In this and
similar algorithms the number of linearly independent equations F ≤ R has a
simple and totally predictable behavior, see [4,8]. This under some important

4 Interestingly one could repair the linearization technique by some form of decimation
(erasing a subset of equations) where the redundancies are removed.

5 A related concept is the concept of “Algebraic Complexity Reduction” of [16] which
has been a great success in a restricted case of a block ciphers with a lot of high-level
self-similarity and which is different and stronger. In [16] the attacker also makes
well chosen guesses on special combinations of variables.

Two Philosophies For Solving NL Equations in Algebraic Cryptanalysis 509

technical assumptions such as that our system of equations has only one unique
solution. For larger D the prediction is less accurate and also this is where more
sophisticated algorithms such as F5 emerge and can make a difference. Here we
show a simple example at degree 5 taken from [8].

n 24 24 24

m 16 27 32

D 5 5 5

R 37200 62775 74400

T 55455 55455 55455

F 33800 53325 55454

A ready software tool which allows to run such simulations can be found in
[11]. For small D this sort of experiments can be predicted with 100% accuracy
in practice, cf. [4,8]. We expect that we have always:

For D = 5, F = min
(
T − 1, R − (n + 1)

(
m

2

)
− (n + 1)m

)

We obtain a curve which a collation of two closed formulas with a very
neat and abrupt transition. Although no counter-examples are known, we should
remain sceptical if this will be generally the case, especially at the transition
boundary. The crucial object of study in this paper is precisely this “phase
transition” phenomenon where we shift from one predictable curve to another
equally predictable curve. The very existence of phase transitions indicates the
predictions in algebraic cryptanalysis will never be an exact science and that
rules can eventually be breached. However predictions are (badly) needed in
order to be able to evaluate the complexity of different attacks.

3.1 XSL Algorithm

The XSL algorithm is inspired by the idea that XL algorithm is essentially a
tool for dense equations in which all monomials play a similar role. This is very
rarely the case in cryptanalysis. If the equations are sparse, a peculiar method
was invented where a phase transition is sought by multiplying only by a selection
of monomials for D = 4 and only monomials which are already used. It should
be noted that two different versions of this attack exist, cf. [27,28].

One example of a data series obtained in an application of the XSL attack
to a toy cipher can be found in Appendix C. of [28]. However to the best of
our knowledge until now nobody has yet studied if the behavior of XSL attacks
can be predicted accurately. We consider the data series from Appendix C. of
[28] and used Microsoft Excel to fit a polynomial model for these data which
minimizes the least square error. Let K be the number of rounds in this 6-bit

510 N.T. Courtois

toy cipher. We then observe that in this precise attack we have almost exactly
(high level of accuracy R2 = 1 is reported by the software in all four cases):⎧⎪⎪⎪⎨

⎪⎪⎪⎩

R = 936K2 − 208K + 144
T = 882K2 − 147K + 7
T ′ = 504K + 168
F = 850K2 − 109K + 6

In this attack, the terminating condition is F ≥ T −T ′, cf. [28] and we conclude
that this attack works for up to approximately 16 rounds for this toy cipher.

4 The Algebraiz-ation Challenge

Now in order to make further progress in algebraic cryptanalysis, and both for
type 1/2 methods, two interesting questions are as follows:

1. Can we efficiently generate or discover additional6 equations the existence of
which is maybe not expected or less easily predicted? This is frequently (see
footnote 6) the case and it helps to solve equations with substantially lower
complexity.

2. Can we solve by algebraic cryptanalysis problems which seem unsolvable or
a poor fit for algebraic cryptanalysis? For example, the DES S-box do not
have any strong algebraic structure. Yet algebraic coding and algebraic crypt-
analysis is possible, cf. [6]. A question which is even (a lot) more difficult is a
question of ECDL problem in elliptic curves, cf. [29,31,32,39,44].

These two research directions are related at more than one level. For example
progress in one direction could help the other, and new type 2 methods could
potentially solve both problems. The crucial question is the question “efficient
algebraiz-ation”, and what is the meaning of “efficient”. Several fundamental
definitions which we will study on the following pages will allow to understand
that there is more than one interesting way to approach these problems.

4.1 I/O Equations

Definition 4.1.1 (An I/O relation, [6,22,25]). Consider a function f : IFn
2 →

IFm
2 , f(x) = y, with x = (x0, . . . , xn−1), y = (y0, . . . , ym−1).

We call an I/O relation any polynomial

g(x0, . . . , xn−1; y0, . . . , ym−1) = 0

which hold with certainty, i.e. for every pair (x, y) such that y = f(x).
6 This happens for example in the cryptanalysis of the multivariate public-key cryp-

tosystems with the discovery of so called “implicit equations” [5,37] which we call
“I/O relations” in our Definition 4.1.1, see also [5,33,35]. Similarly some quite unex-
pected equations can be shown to always exist (worst case results) in algebraic
attacks on stream ciphers [14,24,25]. We also have a closely related notion of so
called “degree falls” sometimes also called “mutants” which are for example observed
in ElimLin attacks [6,12,17,42].

Two Philosophies For Solving NL Equations in Algebraic Cryptanalysis 511

This allows to define a very useful notion of:

Definition 4.1.2 (The I/O degree, [6,22,25]). Again consider a function
f : IFn

2 → IFm
2 . The I/O degree of f is the smallest possible degree in the linear

space of existing polynomial I/O relations as defined above.

The concept of I/O can be slightly misleading as it turns out in some special
cases. For example for some DES S-boxes, the I/O degree will be 2, yet these
equations are too few to actually be used in an attack without adding extra
equations of higher degree, cf. [6].

4.2 Describing Strategies

This difficulty leads to the notion of “Describing Degree” which is studied in
[23] which amounts to saying that given the input (or the output) the system of
equations should be large enough to determine the solution uniquely. This may
require to mix equations of different degrees, as it was shown in [6].

4.3 Guessing Strategies

A particularly expert strategy for algebraic attacks is described in [23]. It defines
a notion of [Probabilistic] “Conditional Describing Degree”, see [23] which allows
to split the algebraic description of a non-linear component in two parts, one
is “guessed” by literally guessing some values during the attack, the other is
coded by algebraic equations. This allows to develop sophisticated guess-then-
determine attacks where the attacker after the initial guessing stage (which has
some substantial cost) is able to substantially reduce the degree and the com-
plexity of the algebraic problem to solve. In particular, this can be used as a
“linearization strategy”. For example it is shown in [23] that the “Conditional
Describing Degree” of a non-linear component � which is the addition modulo
2n, can be as low as 1. This component is very frequently used inside ciphers, e.g.
[16,23] and here after the initial (costly) assumption the attacker can produce
a larger number of additional linear equations simultaneously true with high
probability. This makes the last step of the attack easier. Two closely related
notions are the notion of “Algebraic Complexity Reduction” [15,16] and “SAT
Immunity”, cf. [20].

4.4 Type 2 Techniques

All the definitions above are rather meant (not exclusively) to be used with
traditional type 1 techniques. What about type 2 coding techniques? Here is
another very important definition which became popular in the recent years,
and is now considered as one of the four most important measures to evaluate
the security of cipher components, cf. [3].

Definition 4.4.1 (Multiplicative Complexity (MC) [2,19]). MC is the
minimum number of AND gates which are needed if we allow an unlimited
number of NOT and XOR gates.

512 N.T. Courtois

There exist in cryptanalytic literature also many other cases of efficient alge-
braic attacks which use coding techniques related to efficient hardware imple-
mentation, e.g. [16,18,19,36,47].

4.5 Can Algebraiz-ation Be Mandated?

All these notions of I/O relations, their advanced variants, MC and other coding
methods lead to showing that some degree of algebra-ization is always possible
andm in some cases inevitable in algebraic cryptanalysis. They lead to specific
compact algebraic (or multivariate polynomial) encoding methods for various
cryptanalysis problems [18,19,21,36,41,47]. How inevitable it is? In many cases,
there exist “worst case” results which show that any cryptographic component of
certain size can be attacked by an algebraic attack, cf. for example [14] and Theo-
rem 1 below. Many cipher designer claim that they have verified that their cipher
resists to all known attacks in symmetric cryptanalysis. Algebraic cryptanalysts
will frequently insist that in absence of provable security, there is probably no
way to know if a cipher resists to some already known attacks if we do not dis-
pose on a large computing power, or/and that we do not know how well many
known attacks would scale when the parameters grow, cf. [22,25,27,42].

4.6 On Small S-Boxes

If in cryptanalysis of HFE we have specific structural reasons why some algebraic
polynomial “I/O relations” do exist cf. for [33,35]. In symmetric cryptanalysis,
we do not have a strong internal algebraic structure, we however do have specific
structural properties which are consequences of how the cipher is designed.

Any very small S-box (for example up to 4 bits) works with both definitions
above: it leads to I/O relations and to relatively small MC, and therefore to a
rich universe of possible algebraic attacks. For example we have a generic folklore
Courtois Theorem 1 which we will find in many papers [6,14,28]:

Theorem 1 (Courtois). For any n×m S-box, F : (x1, . . . , xn) �→ (y1, . . . , ym),
and for any subset T of t out of 2m+n possible monomials in the xi and yj , if
t > 2n, there are at least t − 2n linearly independent I/O equations (algebraic
relations) g(x, y) involving (only) monomials in T , and that hold with probability
1, i.e. for every (x, y) such that y = F (x).

Examples. Until recently the simplest S-box in cryptanalysis was the 3-bit
box used in CTC2 [9,10] which was a toy cipher designed for experiments with
algebraic cryptanalysis. Then the simplest “real-life” standardized ciphers were
cipher such as PRESENT and GOST with 4-bit S-boxes [16]. Recent trend is to
use inside block ciphers non-linear components which are yet fewer and simpler.
Here the leading example is Simon, a block cipher with excessively small S-
box and truly exceptionally low MC. In Simon the S-box is an AND gate, the
simplest possible non-linear component one can think of. The complexity of

Two Philosophies For Solving NL Equations in Algebraic Cryptanalysis 513

Simon is yet substantially lower than with CTC2, DES or GOST for which
algebraic cryptanalysis were previously studied and implemented [6,10,16]. It
should not therefore be surprise that Simon will be our favorite block cipher to
study.

5 ElimLin Attacks on Simon

Two recent papers consider the ElimLin attacks on Simon [12,42]. ElimLin is a
remarkably simple algebraic attack which to some extent break any cipher, if not
too complex. The study of ElimLin is an excellent case where many interesting
things happen simultaneously: degree falls, generation of extra equations the
existence of which was not initially expected (like in [5]), phase transitions.

ElimLin is a curious sort of attack, cf. slide 126 in [26]. It can be described
informally in 2 simple steps:

1. Find linear equations in the linear span.
2. Eliminate some variables, and iterate (try 1. again).

ElimLin is a stand-alone attack which allows one to recover the secret key of
many block ciphers [9,10,13] and more recently in [30,42].

The main characteristic of ElimLin is that it quietly dissolves non-linear
equations and generates linear equations. This algorithm basically makes pro-
gressively disappear the main and the only thing which makes cryptographic
schemes not broken by simple linear algebra: non-linearity. It is not clear how-
ever why this works and how well the ElimLin attack scales for larger systems
of equations. In recent 2015 work of Raddum we discover that (experimentally)
ElimLin breaks up to 16 rounds of Simon cipher [42] however it is hard to know
exactly what happens for 17 rounds.

5.1 The Overdefined Heuristic

Now ElimLin has something that which renders XL, XSL, T’ method [26,27],
and many other potentially unnecessary because a simpler attack exists and will
work. Actually many methods such as XL and XSL do not work well in block
cipher cryptanalysis [27]. This is primarily because they have been designed to
solve problems with small quantity of data and solving such problems is diffi-
cult. We obtain systems of equations with a large value of the so called “degree
of regularity” [38] which is essentially the maximum degree D of polynomials
manipulated which we mentioned before for XL (however for a better algorithm
this degree can be lower). Here the main observation is something which was
actually known longer, at least since [7]. The fact is that overdefined systems
of equations are substantially easier to solve. Moreover, it could be possible for
the attacker, to try to design an attack which mandates or creates such sys-
tems of equations on purpose, and thus avoid or circumvent the major difficulty
mentioned above. We call this the overdefined strategy, cf. [22,29].

514 N.T. Courtois

Fig. 1. Number of linearly independent equations generated at stage 4 of the ElimLin
algorithm for 8 rounds of Simon 64/128 according to [12].

5.2 ElimLin or How to Make the Overdefined Strategy Work
for a Block Cipher

One simple method to achieve this is to increase the data complexity in the
attack which makes the “degree of regularity” decrease [9,10]. For example we
consider an attack K known plaintexts and study how the complexity of the
attack grows with K. Then we discover a fascinating aspect of ElimLin which
has only recently attracted some attention [12].

The fact is that the number of equations generated can go through several
stages cf. [12] as K grows. Initially there are no non-trivial equations whatsoever.
Then we obtain a curve which grows faster than linear in K.

Our recent7paper show that super-linear growth is indeed possible [12]. Then,
later on, which we do not yet see on our Fig. 1, we will eventually achieve some
sort of “saturation” and the number of linear equations grows just linearly. In
general, in the long run we cannot hope that the growth will be faster than
linear, as the number of monomials in these equations grows linearly with K.

A recent PhD thesis [46] considers enhancements for ElimLin algorithm sim-
ilar to those studied in [30] and shows that the number of equations which could
be added to ElimLin can follow a curve which is a collation of 5 distinct inter-
vals where the result is predictable with up to 100% accuracy, and yet later will
switch to another curve. This suggests that we need to remain sceptical about
prediction techniques however accurate they may seem.

6 Big Challenge - Coding ECC Cryptanalysis Problems

The same quest of trying to construct systems of equations which are very highly
overdefined is also what motivates some recent research on coding ECC crypt-
analysis problems [29,32]. We expect to achieve some sort of happy tradeoff
between increasing the number of variables and lowering the regularity degree of
7 One (older) example which shows that the number of equations grows faster than

linear as a function of the data complexity K in ElimLin can be found at slide 153
in [26] which example is from 2006–2007 and originally comes from [13].

Two Philosophies For Solving NL Equations in Algebraic Cryptanalysis 515

the equations which are then going to become more efficiently solvable. This is
our recent approach which was designed as an alternative to both early and more
recent attempts to design an index calculus algorithm for the ECDL problem
[39,44] based on the so called Semaev Polynomials or Summation Polynomials
[44]. Traditionally, ECC relations of type P1+P2 = P3 will be coded by the S3
polynomial which following [43] is

S3(x1, x2, x3)=(x1−x2)
2x2

3−2 [(x1 + x2)(x1x2 + A) + 2B]x3+(x1x2−A)2−4B(x1+x2)

This polynomial is of degree 6 and it is already quite complex. Can we do better?
In this paper we do not claim to provide a comprehensive treatment of this

question. We will concentrate on the main idea. We want to design new type
2 techniques which work by expanding the number of variables. The principal
objective for the attacker is then to code an ECC cryptanalysis problem in such a
way that the “degree of regularity” and/or other measures of complexity studied
earlier (e.g. MC) would decrease, i.e. system is expected to solved more easily
by various techniques. We refer to [29,32,39] for a more systematic presentation
of this attack strategy. In this paper we just show one concrete example on how
a redundant set of ECC variables can lead to some unusually simple equations
to exist.

6.1 On ECC Codes

The philosophy of adding new variables can be studied in terms of certain types
of ECC codes.

Definition 6.1.1 (ECC Code). We call an ECC Code any injective function

F : E(IFp)L → E(IFp)K

which is defined for all except a small number of special EC points.

Remark: We should note that error correcting codes which are defined or con-
structed using elliptic curves are typically defined as subsets of IFK where IF is
a finite field, cf. for example page 11 in [34]. In this paper and in [29] we find it
more convenient to define ECC Codes as a subset of IEK where IE is an elliptic
curve, even though later we will just look at EC coordinates of these points
which are in IFK . We refer to [34] for additional literature pointers about error
correcting codes and those which use elliptic curves.

Now we are going to exhibit one ECC property which to the best of our
knowledge has not been studied before and which show that redundant sets of
variables can lead to substantial simplification in the complexity of systems of
polynomial equations. Our paper [29] contains more such properties and explains
more in detail the process where the existence of such properties can be seen
as an alternative to (or an enhancement to) some recent attempts to solve the
ECDL problem in [39,40,44], which attempts so far were not a great success and
better methods need precisely to be invented.

516 N.T. Courtois

6.2 D73 - A New Family of Cubic I/O Relations

Theorem 6.2.1 (D73 Theorem). We consider the following special form of
ECC Code with 3 inputs and 7 outputs for any Weierstrass elliptic curve modulo
a large p. It is defined by the following application IE3 → IE7 which transform
three variables which are points on the curve into 7 “related” variables,

(P1, P2, P3) �→ (P1, P2, P3, P1 + P2, P1 + P3, P2 + P3, P1 + P2 + P3)

Now we consider only the x coordinates of these 7 elliptic curve points. We
call them respectively in the same order:

(sx1, sx2, sx3, sx12, sx13, sx23, sx123)

If all the 7 points are distinct from the ECC neutral element ∞ we have:

sx1*sx2*(sx23-sx13) +sx1*sx3*(sx12-sx23) +sx2*sx3*(sx13-sx12)
+sx123[sx1*(sx13-sx12)+sx2*(sx12-sx23)+sx3*(sx23-sx13)] = 0

Remark. Our D73 equation is a homogenous polynomial of degree 3. We chal-
lenge the reader to discover anything comparable in terms of elegance and sim-
plicity for an ECC Code expansion with a similar expansion factor. The main
point in this paper is that having additional redundant variables could be a
good idea. It may allow to greatly simplify8 polynomial equations and effec-
tively replace Semaev polynomials by some simpler and lower degree polynomi-
als. This we have not demonstrated, we just demonstrate the existence of some
simpler polynomials. Additional questions need to be studied in order to design
a cryptanalytic attack on the ECDL problem and for the time being we refrain
from making any conclusions about how our discovery might impact the com-
plexity of such methods, as currently such methods are yet very inefficient cf.
[29,32,39]. First of all, D73 equations will not suffice and we expect to use also
polynomials of other types, cf. [29]. Then the analysis becomes increasingly com-
plex. An interesting question is for example to construct very highly overdefined
encodings of ECDL problem with properties of type limK→∞ F/T = 1 and some
other “density” and “topology” properties. Some early attempts to achieve this
can be found in [29] which paper also shows that there are some very substantial
difficulties to make this sort of approach work.

7 Conclusion

In this paper we compare different known techniques for solving non-linear alge-
braic equations in algebraic cryptanalysis and show that they all can be seen as
a race between two different quantities one of which grows faster. We illustrate
this with examples derived from both symmetric and asymmetric cryptanaly-
sis. The crucial question is the possibility to accurately predict the behavior of
8 In terms of algebraic degree, sparsity, multiplicative complexity, etc.

Two Philosophies For Solving NL Equations in Algebraic Cryptanalysis 517

such attacks and that they will later switch to another curve and a phase tran-
sition may occur. Now the question is can we do better than just contemplate
these transitions? Can we explicitly engineer phase transition to happen? In this
paper we point out that there exist a second somewhat more general way of
formulating algebraic attacks, where the attacker plays a more active role. This
is the question of algebraic coding which did NOT so far have great success
in cryptographic literature, and was frequently ignored as a trivial first step, or
rejected in some inefficient/redundant attack methods.

The main contribution of this paper is to point out that this problem of find-
ing a “good”9 algebraic coding was so far poorly studied. Yet it gives the attacker
a considerable degree of freedom, especially if we allow the coding to be
redundant. We need to pay more attention to specific combinatorial optimization
problems such as finding non-trivial redundant representations [6,16,19,36] lead-
ing to important simplifications in algebraic description complexity. The bottom
line is that we open the possibilities to invent a number of new “out-of-the-box”
attacks with non-trivial à priori coding steps. For example multiplicative com-
plexity and other S-box optimizations lead to some quite competitive attacks
on block ciphers [6,16,19]. The primary challenge for the future remains how
to code and re-code cryptanalysis problems in better ways. The attacker is not
merely hoping that some interesting equations exist [5,37] or will be found by
our attack [12], which approach to software cryptanalysis we called “plug and
pray” in [29], but how to “engineer” an attack where new “interesting” equations
will exist. In terms of classical Gröbner basis attacks, it will be about designing
algebraic attacks where major families of degree falls and other interesting I/O
equations are not something which happens accidentally, but something we con-
struct explicitly. For example many authors have tried to develop an index
calculus or a point splitting attack on the ECDL problem through the use of
so called Semaev/Summation polynomials [39,44] without great success. In this
paper and in [29] we suggest that the degree and complexity of ECC coding
problems can be reduced with redundant coding of variables. However design-
ing a really good working algebraic attack remains a difficult problem. Better
algebraiz-ation through simpler polynomials is probably by far not enough to
solve hard cryptanalysis problems. More attention needs also be paid to ques-
tions such as “densely connected equations topology” cf. Sects. 6 and 6.7 in [29],
and additional “constraints coding” questions, cf. Part VI in [29].

Acknowledgments. I would like to thank the following people who have either
inspired and motivated me for writing this paper, or who provided me with some valu-
able feedback: Moti Yung, David Naccache, Raphael Phan, Christophe Petit, Steven
Galbraith, Jacques Patarin, Louis Goubin, Daniel Augot, Jonathan Bootle and Mary
Maller.

9 See Part 1 on slide 56 and 58 in [26].

518 N.T. Courtois

References

1. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis computa-
tion of semi-regular overdetermined algebraic equations. In: ICPSS, Paris, France,
pp. 71–75 (2004)

2. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
178–189. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13193-6 16. An early
version was published in 2009 http://eprint.iacr.org/2009/191. Accessed 13 Mar
2010

3. Boyar, J., Find, M., Peralta, R.: Four measures of nonlinearity. In: Spirakis, P.G.,
Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 61–72. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38233-8 6

4. Yang, B.-Y., Chen, J.-M., Courtois, N.T.: On asymptotic security estimates in
XL and Gröbner bases-related algebraic cryptanalysis. In: Lopez, J., Qing, S.,
Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30191-2 31

5. Courtois, N.T.: The security of hidden field equations (HFE). In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001).
doi:10.1007/3-540-45353-9 20

6. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77272-9 10

7. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
doi:10.1007/3-540-45539-6 27

8. Courtois, N.T., Patarin, J.: About the XL algorithm over GF (2). In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003). doi:10.
1007/3-540-36563-X 10

9. Courtois, N.T.: How fast can be algebraic attacks on block ciphers? In: Biham,
E., Handschuh, H., Lucks, S., Rijmen, V. (eds.) Online Proceedings of Dagstuhl
Seminar 07021, Symmetric Cryptography 07–12 January 2007 (2007). http://
drops.dagstuhl.de/portals/index.php?semnr=07021. http://eprint.iacr.org/2006/
168/, ISSN 1862 - 4405

10. Courtois, N.T.: CTC2 and fast algebraic attacks on block ciphers revisited. http://
eprint.iacr.org/2007/152/

11. Courtois, N.T.: Some algebraic cryptanalysis software. http://www.cryptosystem.
net/aes/tools.html

12. Courtois, N.T., Papapanagiotakis-Bousy, I., Sepehrdad, P., Song, G.: Predicting
outcomes of ElimLin attack on lightweight block cipher simon. In: Secrypt 2016
Proceedings (2016)

13. Courtois, N.T., Debraize, B.: Specific S-box criteria in algebraic attacks on block
ciphers with several known plaintexts. In: Lucks, S., Sadeghi, A.-R., Wolf, C. (eds.)
WEWoRC 2007. LNCS, vol. 4945, pp. 100–113. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-88353-1 9

14. Courtois, N.T.: Algebraic attacks on combiners with memory and several outputs.
In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 3–20. Springer,
Heidelberg (2005). doi:10.1007/11496618 3. http://eprint.iacr.org/2003/125/

http://dx.doi.org/10.1007/978-3-642-13193-6_16
http://eprint.iacr.org/2009/191
http://dx.doi.org/10.1007/978-3-642-38233-8_6
http://dx.doi.org/10.1007/978-3-540-30191-2_31
http://dx.doi.org/10.1007/3-540-45353-9_20
http://dx.doi.org/10.1007/978-3-540-77272-9_10
http://dx.doi.org/10.1007/3-540-45539-6_27
http://dx.doi.org/10.1007/3-540-36563-X_10
http://dx.doi.org/10.1007/3-540-36563-X_10
http://drops.dagstuhl.de/portals/index.php?semnr=07021
http://drops.dagstuhl.de/portals/index.php?semnr=07021
http://eprint.iacr.org/2006/168/
http://eprint.iacr.org/2006/168/
http://eprint.iacr.org/2007/152/
http://eprint.iacr.org/2007/152/
http://www.cryptosystem.net/aes/tools.html
http://www.cryptosystem.net/aes/tools.html
http://dx.doi.org/10.1007/978-3-540-88353-1_9
http://dx.doi.org/10.1007/978-3-540-88353-1_9
http://dx.doi.org/10.1007/11496618_3
http://eprint.iacr.org/2003/125/

Two Philosophies For Solving NL Equations in Algebraic Cryptanalysis 519

15. Courtois, N.T.: Security evaluation of GOST 28147-89 in view of international
standardisation. Cryptologia 36(1), 2–13 (2012)

16. Courtois, N.T.: Algebraic complexity reduction and cryptanalysis of GOST. Mono-
graph Study of Security of GOST, 2010–2014. http://eprint.iacr.org/2011/626

17. Courtois, N.T., Sepehrdad, P., Sušil, P., Vaudenay, S.: ElimLin algorithm revis-
ited. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 306–325. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34047-5 18

18. Courtois, N.T., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems
in cryptography and cryptanalysis. In: SHARCS 2012, pp. 179–191 (2012). http://
2012.sharcs.org/record.pdf

19. Courtois, N.T., Hulme, D., Mourouzis, T.: Multiplicative complexity and solving
generalized Brent equations with SAT solvers. In: COMPUTATION TOOLS 2012,
pp. 22–27 (2012)

20. Courtois, N.T., Gawinecki, J.A., Song, G.: Contradiction immunity and guess-
then-determine attacks on GOST. Tatra Mt. Math. Publ. 53(3), 65–79 (2012).
http://www.sav.sk/journals/uploads/0114113604CuGaSo.pdf

21. Courtois, N.T., Mourouzis, T., Misztal, M., Quisquater, J.-J., Song, G.: Can GOST
be made secure against differential cryptanalysis? Cryptologia 39(2), 145–156
(2015)

22. Courtois, N.T.: New frontier in symmetric cryptanalysis, invited Talk at Indocrypt
2008, 14–17 December 2008 (2008). http://www.nicolascourtois.com/papers/front
indocrypt08.pdf

23. Courtois, N.T., Debraize, B.: Algebraic description and simultaneous linear approx-
imations of addition in snow 2.0. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS
2008. LNCS, vol. 5308, pp. 328–344. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88625-9 22

24. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidel-
berg (2003). doi:10.1007/978-3-540-45146-4 11

25. Courtois, N.T.: General principles of algebraic attacks and new design criteria
for cipher components. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2004.
LNCS, vol. 3373, pp. 67–83. Springer, Heidelberg (2005). doi:10.1007/11506447 7

26. Courtois, N.T.: Algebraic attacks vs. design of block and stream ciphers. Slides
Used in GA18 Course Cryptanalysis taught at University College London, 2014–
2016. http://www.nicolascourtois.com/papers/algat all teach 2015.pdf

27. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2 17

28. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. http://eprint.iacr.org/2002/044/. Contains two different (ear-
lier) versions of the XSL attack, see also [27]

29. Courtois, N.T.: High Saturation Complete Graph Approach for EC Point Decom-
position and ECDL Problem, preprint July–September 2016 (2016). http://eprint.
iacr.org/2016/704.pdf

30. Susil, P., Sepehrdad, P., Vaudenay, S., Courtois, N.: On selection of samples in
algebraic attacksand a new technique to find hidden low degree equations. Int. J.
Inf. Secur. 15(1), 51–65 (2016). Springer

31. Diem, C.: On the discrete logarithm problem in elliptic curves. Compos. Math.
147, 75–104 (2011)

32. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm
problem, preprint, 22 October 2015 (2015). https://eprint.iacr.org/2015/1022.pdf

http://eprint.iacr.org/2011/626
http://dx.doi.org/10.1007/978-3-642-34047-5_18
http://2012.sharcs.org/record.pdf
http://2012.sharcs.org/record.pdf
http://www.sav.sk/journals/uploads/0114113604CuGaSo.pdf
http://www.nicolascourtois.com/papers/front_indocrypt08.pdf
http://www.nicolascourtois.com/papers/front_indocrypt08.pdf
http://dx.doi.org/10.1007/978-3-540-88625-9_22
http://dx.doi.org/10.1007/978-3-540-88625-9_22
http://dx.doi.org/10.1007/978-3-540-45146-4_11
http://dx.doi.org/10.1007/11506447_7
http://www.nicolascourtois.com/papers/algat_all_teach_2015.pdf
http://dx.doi.org/10.1007/3-540-36178-2_17
http://eprint.iacr.org/2002/044/
http://eprint.iacr.org/2016/704.pdf
http://eprint.iacr.org/2016/704.pdf
https://eprint.iacr.org/2015/1022.pdf

520 N.T. Courtois

33. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 44–60. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 3

34. Minder, L.: Cryptography based on error correcting codes. Ph.D. thesis 3846
(2007). EPFL, 27 July 2007. http://algo.epfl.ch/ media/en/projects/lorenz thesis.
pdf

35. Huang, M.-D.A., Kosters, M., Yeo, S.L.: Last fall degree, HFE, and weil
descent attacks on ECDLP. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 581–600. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 28

36. Mourouzis, T.: Optimizations in algebraic and differential cryptanalysis. Ph.D.
thesis, under superivsion of Dr. Nicolas T. Courtois, University College Lon-
don, January 2015. http://discovery.ucl.ac.uk/1462141/2/PhD Thesis Theodosis
Mourouzis.pdf

37. Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of Euro-
crypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995). doi:10.1007/3-540-44750-4 20

38. Perret, L.: Gröbner bases techniques in cryptography. http://web.stevens.edu/
algebraic/Files/SCPQ/SCPQ-2011-03-30-talk-Perret.pdf

39. Petit, C., Kosters, M., Messeng, A.: Algebraic approaches for the elliptic curve
discrete logarithm problem over prime fields. In: Cheng, C.-M., Chung, K.-M.,
Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 3–18. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49387-8 1

40. Petit, C., Quisquater, J.-J.: On polynomial systems arising from a weil descent.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 451–466.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 28

41. Arabnezhad-Khanoki, H., Sadeghiyan, B., Pieprzyk, J.: Algebraic attack efficiency
versus S-box representation. eprint.iacr.org/2017/007.pdf

42. Raddum, H.: Algebraic analysis of the simon block cipher family. In:
Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol.
9230, pp. 157–169. Springer, Cham (2015). doi:10.1007/978-3-319-22174-8 9.
https://www.simula.no/file/simonpaperrevisedpdf/download

43. Semaev, I.: New algorithm for the discrete logarithm problem on elliptic curves.
Preprint 10 April 2015. eprint.iacr.org/2015/310/

44. Semaev, I.: Summation polynomials and the discrete logarithm problem on elliptic
curves. Preprint. eprint.iacr.org/2004/031/

45. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28,
656–715 (1949). See in particular p. 704

46. Song, G.: Optimization and guess-then-solve attacks in cryptanalysis. Ph.D. thesis,
will be presented at University College London in 2017 (2017)

47. Stoffelen, K.: Optimizing S-box implementations for several criteria using SAT
solvers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 140–160. Springer, Hei-
delberg (2016). doi:10.1007/978-3-662-52993-5 8. https://eprint.iacr.org/2016/198

http://dx.doi.org/10.1007/978-3-540-45146-4_3
http://algo.epfl.ch/_media/en/projects/lorenz_thesis.pdf
http://algo.epfl.ch/_media/en/projects/lorenz_thesis.pdf
http://dx.doi.org/10.1007/978-3-662-47989-6_28
http://dx.doi.org/10.1007/978-3-662-47989-6_28
http://discovery.ucl.ac.uk/1462141/2/PhD_Thesis_Theodosis_Mourouzis.pdf
http://discovery.ucl.ac.uk/1462141/2/PhD_Thesis_Theodosis_Mourouzis.pdf
http://dx.doi.org/10.1007/3-540-44750-4_20
http://web.stevens.edu/algebraic/Files/SCPQ/SCPQ-2011-03-30-talk-Perret.pdf
http://web.stevens.edu/algebraic/Files/SCPQ/SCPQ-2011-03-30-talk-Perret.pdf
http://dx.doi.org/10.1007/978-3-662-49387-8_1
http://dx.doi.org/10.1007/978-3-642-34961-4_28
https://eprint.iacr.org/2017/007.pdf
http://dx.doi.org/10.1007/978-3-319-22174-8_9
https://www.simula.no/file/simonpaperrevisedpdf/download
https://eprint.iacr.org/2015/310/
https://eprint.iacr.org/2004/031/
http://dx.doi.org/10.1007/978-3-662-52993-5_8
https://eprint.iacr.org/2016/198

Watermarking Cryptographic Programs

Ryo Nishimaki(B)

Secure Platform Laboratories, NTT Corporation, Tokyo, Japan
nishimaki.ryo@lab.ntt.co.jp

Abstract. Digital watermarking embeds unremovable information
called a “mark” into digital objects such as images, video, audio files,
and program data without changing their functionalities. This article
provides a brief overview of recent advances in watermarking for crypto-
graphic programs and insights behind them.

Keywords: Program watermarking · Obfuscation

1 Introduction

Background. Digital watermarking enables us to embed special information
called a “mark” into digital objects such as images, video, audio files, or program
data. It is said that an object is marked if a mark is embedded into it.

There are several applications of watermarking. We explain two main appli-
cations. The first is identifying owners. If identification information is embedded
as a mark into digital objects, then it is possible to identify an entity that creates
the objects by verifying the embedded mark. The second application is tracing
users. When a digital object is (illegally) copied, an embedded mark is also
copied. It is possible to specify the owner of the original data by verifying the
embedded mark. For example, consider that a software company sells software
to Alice. The software is marked with Alice’s identity information and she gives
a copy of the software to Bob, who does not buy the software. When we verify
the mark with Alice’s identity in the software that Bob has, we can discover that
Alice gave a copy to Bob.

There are two requirements for secure watermarking. One is preserving func-
tionality. That is, watermarking does not change the functionality of objects.
The other is unremovability. That is, it is impossible to remove a mark without
destroying the functionality of the object.

There have been few studies on formal definitions and rigorous security analy-
sis of watermarking from the cryptographic point of view despite its usefulness.
Most watermarking schemes are heuristic and ad-hoc constructions.

Barak et al. provide the first theoretical treatment of program watermarking
[2]. They provide formal definitions of program watermarking and basic security
requirements. Unfortunately, they show that it is impossible to achieve program
watermarking under a certain definition by using an impossibility result of pro-
gram obfuscation. Program obfuscation converts programs into scrambled ones
c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 521–543, 2017.
DOI: 10.1007/978-3-319-61273-7 28

522 R. Nishimaki

and hides information about the original programs while preserving their func-
tionalities. They leave as an open problem to achieve program watermarking
under some definition.

Hopper, Molnar, and Wagner provide various formal security definitions of
watermarking for perceptual objects such as images and study their relation-
ships. However, they do not give any concrete construction of secure watermark-
ing [10].

As briefly explained above, no positive result on secure program watermark-
ing is known. Thus, the following question is open over the past fifteen years.

Is it possible to construct secure program watermarking under some reasonable
definition?

Recent Advances. Two studies have made progress in this topic.
Nishimaki provide definitions of watermarking for cryptographic functions

and a concrete construction based on a number theoretic assumption [14]. His
construction is secure under a standard number theoretic assumption. However,
the adversary is very restricted in his model. He assumes that the adversary
does not change the format of programs. That is, the adversary tries to remove
a mark from a watermarked program, but it is assumed that the adversary
outputs only a program based on algebraic structure (more concretely, a program
consists of group elements) since his construction is based on number theory.
This is a weak security guarantee and, in fact, his construction can be attacked
using an indistinguishability obfuscator (iO) [2,8], which completely changes the
structure of programs while preserving functionalities. Many iO candidates have
been proposed since 2013.

Cohen et al. provide new formal definitions of watermarking and new nega-
tive and positive results on watermarking for cryptographic programs [6]. They
avoid the impossibility result of Barak et al. by using a relaxed functionality
preserving requirement. They show that it is still impossible to achieve pro-
gram watermarking for some classes of programs even under the (or a more)
relaxed functionality preserving requirement. They also show that we can con-
struct watermarking schemes for (a variant of) pseudo-random functions, which
are keyed functions whose outputs are indistinguishable from outputs of a truly
random function. Their security definition, in which adversaries can use arbitrary
strategies to remove a mark, is stronger than previous ones.

Purposes of this Article. This article is a survey and gives insights behind the
recent advances in program watermarking explained above. It basically consists
of three parts. First, the impossibility result by Barak et al. and how to avoid
it are introduced. Second, a brief overview of the result by Nishimaki is pro-
vided and why his construction works only for restricted adversaries is explained.
Finally, the idea behind the construction by Cohen et al. is explained. We start
with the initial and basic ideas and explain how to extend them to satisfy a
stronger security definition. We stress that all security arguments in this article
are just overviews and many technical details are ignored.

Watermarking Cryptographic Programs 523

2 Preliminaries

Before definitions of watermarking, we introduce standard notations and review
basic cryptographic notions.

Notations. For any n ∈ N\{0}, let [n] be the set {1, . . . , n}. A bold face lower-case
letter denotes a vector such as x = (x1, . . . , xn). For two vectors v and w, 〈v,w〉
denotes the inner-product

∑n
i=1 viwi. For two strings x1 and x2, x1‖x2 denotes

a concatenation of x1 and x2. For program (or circuit) C, C[a, b, c, . . .] denotes
that C contains the values a, b, c, . . . “hardwired” in its description. When D is
a random variable or distribution, y ← D denote that y is randomly selected
from D according to its distribution. If S is a set, then x ← S denotes that x is
uniformly selected from S. The expression y := z denotes that y is set, defined,
or substituted by z. We say that function f : N → R is negligible in λ ∈ N if
f(λ) = λ−ω(1). Hereafter, we use f ≤ negl(λ) to mean that f is negligible in λ.

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote two ensembles of random vari-
ables indexed by λ ∈ N. We define the distinguishing probability between X and
Y to be μ(λ) if for every probabilistic polynomial-time (PPT) algorithm D,

μ(λ) := |Pr[D(Xλ) = 1] − Pr[D(Yλ) = 1]|
When μ is negligible, we write X c≈ Y.

For two circuits C and D, we write C ≡ D if C and D compute exactly the
same function. We define the following notion of approximating a function.

Definition 1 (ε-Approximating a Function). A circuit C is said to ε-
approximate a function f : {0, 1}n → {0, 1}∗, denoted by C ∼=ε f , if Prx←{0,1}n

[C(x) = f(x)] ≥ ε.

Bilinear Maps (a.k.a Pairings). We consider cyclic groups G1, G2, and GT of
prime order p. A bilinear map is an efficient mapping e : G1×G2 → GT satisfying
the following properties.

Bilinearity: For every g ∈ G1, ĝ ∈ G2 and a, b ∈ Zp, e(ga, ĝb) = e(g, ĝ)ab.
Non-degeneracy: If g and ĝ generate G1 and G2 respectively, then e(g, ĝ) = 1.

For simplicity, consider symmetric pairings, that is, G1 := G2 := G, where G is
a cyclic group of prime order p and g is a generator of G. Let Gbmp be a standard
parameter generation algorithm that takes as input a security parameter λ and
outputs parameters (p,G,GT , e, g).

Definition 2 (DLIN Assumption). The decisional linear (DLIN) problem is
to guess β ∈ {0, 1}, given (Γ, g, f, h, fx, hy, Qβ) ← Gdlin

β (1λ), where Gdlin
β (1λ):

Γ := (p,G,GT , e, g) ← Gbmp(1λ), a, b, x, y ← Zp, f := ga, h := gb, Q0 := gx+y,
Q1 ← G, return I := (Γ, g, f, h, fx, hy, Qβ). This advantage AdvdlinA (λ) is defined
as follows.

AdvdlinA (λ) :=
∣
∣Pr

[A(I) = 1 | I ← Gdlin
0 (1λ)

] − Pr
[A(I) = 1 | I ← Gdlin

1 (1λ)
]∣
∣ .

We say that the DLIN assumption holds if for every PPT adversary A,AdvdlinA
(λ) ≤ negl(λ).

524 R. Nishimaki

Definition 3 (Universal One-Way Hash Function). A universal one-way
hash function (UOWHF) family H = {Hλ}λ∈N is a function family in which
each function H ∈ Hλ maps a domain D to a range R and satisfies the following
condition. For all PPT adversaries A := (A1,A2), it holds that

Pr

⎡

⎣x = x∗ ∧ H(x) = H(x∗)

∣
∣
∣
∣
∣
∣

(x, s) ← A1(1λ),
H ← Hλ,
x∗ ← A2(1λ,H, x, s)

⎤

⎦ ≤ negl(λ).

Pseudorandom Functions. We review pseudorandom functions (PRFs).

Definition 4 (Pseudorandom Functions). A PRF F consists of two PPT
algorithms F = (Key,Eval) and a pair of poly-time computable functions n(·)
and m(·) that satisfy the following condition. For all PPT adversaries A and
F ← Key(1λ), it holds that

∣
∣
∣Pr[AEval(F,·) = 1] − Pr[AR(·) = 1]

∣
∣
∣ ≤ negl(λ)

where Eval(F, ·) computes F(·) : {0, 1}n(λ) → {0, 1}m(λ), which is a deterministic
function and a function R is chosen uniformly at random from the set of all
functions with the same domain/range.

The notion of puncturable PRF (pPRF) was proposed by Sahai and Waters
[17].

Definition 5 (Puncturable Pseudorandom Functions). A pPRF F con-
sists of three (probabilistic) algorithms F = (Key,Punc,Eval) and a pair of com-
putable functions n(·) and m(·) that satisfy the following two conditions.

Functionality preserving under puncturing: For every polynomial size set
S ⊆ {0, 1}n(λ) and for every x ∈ {0, 1}n(λ) \ S, it holds that

Pr
[
Eval(F, x) = Eval(F{S}, x) | F ← Key(1λ),F{S} := Punc(F, S)

]
= 1.

Pseudorandom at punctured points: For every polynomial size set S =
{x1, . . . , xk(λ)} ⊆ {0, 1}n(λ) it holds that for every PPT adversary A,
∣
∣Pr[A(F{S}, {Eval(F, xi)}i∈[k]) = 1] − Pr[A(F{S}, Um(λ)·|S|) = 1]

∣
∣ ≤ negl(λ)

where F ← Key(1λ), F{S} := Punc(F, S) and U� denotes the uniform distrib-
ution over � bits.

Hereafter, we write F(x) instead of Eval(F, x) for ease of notations.

Theorem 6 [4,5,9,11]. If one-way functions exits, then for every efficiently
computable n(·) and m(·), there exists a pPRF family whose input is an n-bit
string and output is an m-bit string.

Watermarking Cryptographic Programs 525

Definition 7 (Virtual Black-Box Obfuscation). A PPT algorithm O is a
virtual black-box (VBB) obfuscator for a collection of circuits C := {Cλ}λ∈N if
the following two conditions hold.

Functionality: For every security parameter λ ∈ N, every circuit C ∈ Cλ, and
every input x, it holds that

Pr[C ′(x) = C(x) | C ′ ← O(1λ, C)] = 1.

Virtual Black Box Property: For every PPT adversary A, there exists a
PPT simulator S, for every circuit C ∈ Cλ,

∣
∣
∣Pr[A(O(1λ, C)) = 1] − Pr[SC(1λ) = 1]

∣
∣
∣ ≤ negl(λ).

3 Definitions of Program Watermarking

We introduce definitions of program watermarking and explain the differences
among them in this section.

3.1 Syntax

First, we introduce a syntax of program watermarking by Cohen et al. [6]. They
consider public-key type watermarking in which everybody can extract embed-
ded marks by using a public extraction key.

Definition 8 (Watermarking Syntax [6]). A message-embedding watermark-
ing scheme for a circuit class {Cλ}λ∈N

and amessage spaceM = {Mλ}λ∈N consists
of three probabilistic polynomial-time algorithms (Gen,Mark,Extract).

Key Generation: Gen(1λ) takes as input the security parameter and outputs a
pair of keys (xk,mk), respectively called the extraction key and mark key.

Mark: Mark(mk, C,m) takes as input a mark key, an arbitrary circuit C (not
necessarily in Cλ) and a message m ∈ M and outputs a marked circuit C̃.

Extract: m′ ← Extract(xk, C ′) takes as input an extraction key and an arbitrary
circuit C ′, and outputs m′ ← Extract(xk, C ′) where m′ ∈ M ∪ {unmarked}.
Barak et al. consider a symmetric-key version of this syntax. That is, xk is

equal to mk and it is a secret. Cohen et al. consider a message-less watermarking
scheme, where a embedded message is just “marked”, that is, M = {marked}.

3.2 Security Definitions by Barak et al.

In this section, we introduce the definitions by Barak et al. [2, Definition 8.1].
Although we can consider an asymmetric-key version, we introduce a symmetric-
key version in this section since they consider a symmetric-key watermarking.
We denote a symmetric key as sk in this section.

526 R. Nishimaki

Definition 9 (SoftwareWatermarking [2]).A software watermarking scheme
(Gen,Mark,Extract) is required to satisfy the following properties.

Functionality (a.k.a Perfect Correctness): For every circuit C ∈ Cλ, every
message m ∈ Mλ, every input x in the domain of C, and every sk ← Gen(1λ)
it holds that

Mark(sk, C,m)(x) = C(x).

Extraction Correctness: For every C ∈ Cλ, m ∈ Mλ and sk ← Gen(1λ) it
holds that

Pr[m′ = m | m′ ← Extract(sk,Mark(sk, C,m))] ≤ negl(λ).

Meaningfulness: For every circuit C (not necessarily in Cλ), it holds that

Pr
sk←Gen(1λ)

[Extract(sk, C) = unmarked] ≤ negl(λ).

Fragility: For every PPT A, there exists a PPT S such that for every C and
m, it holds that

Pr[C∗ ≡ C ∧ Extract(sk, C∗) = m | C∗ ← A(Mark(sk, C,m))]

≤ Pr[C∗ ≡ C | C∗ ← SC(1|C|)] + negl(|C|)
Meaningfulness means that circuits are not marked when an extraction key is
randomly chosen after a circuit is fixed. That is, if a circuit is not generated
via an appropriate mark algorithm, then the circuit is not marked except with
negligible probability.

Fragility1 is a simulation-based security and a strong requirement since the
simulator must construct a circuit C ′ that is equivalent to C only with black-box
access to C. The reconstructed circuit C∗ by S is expected to be un-marked due
to the meaningfulness. This means that the success probability of A is negligibly
small. Barak et al. show that it is impossible to achieve Definition 9 if there exists
one-way functions (OWFs). This is due to the impossibility of VBB obfuscation,
which is a simulation-based definition of a program obfuscation [2]. Roughly
speaking, VBB obfuscation means that there exists a simulator that has only
a black-box access to a circuit C and it can output an indistinguishable circuit
C ′ from a real obfuscated circuit of C (See Definition 7). We do not explain the
details of this impossibility result in this article since it is not the main purpose.
However, the intuition is simple. If there exists a simulator for a watermarking
in Definition 9, then the simulator generates C∗ such that C∗ ≡ C and can
perfectly reconstruct O(C) ≡ O(C∗) (i.e., a VBB obfuscated circuit) by using
only the black-box access to C in Definition 7. This contradicts the impossibility
of a VBB obfuscation. See the paper of Barak et al. [2] for details.

Barak et al. also consider a relaxed security requirement. They consider
the following definition (from [2, Definition 8.4]) instead of the fragility in
Definition 9.
1 We introduce the name by Barak et al. [2] as it is.

Watermarking Cryptographic Programs 527

Definition 10 (Occasional Watermarking). For every PPT A, there exists
a circuit C and a message m,

Pr[C ≡ C∗ ∧ Extract(sk, C∗) = m | C∗ ← A(Mark(sk, C,m))] ≤ 1 − 1/poly(|C|)

This type of definition is called a game-based definition, which is formalized as
a game between a challenger and adversary. The challenger (though it is not
explicitly expressed) passes a marked circuit to A as a target and there is no
simulator. Barak et al. show that if there exists an iO then it is impossible to
achieve occasional watermarking. We explain this impossibility result in Sect. 4.

3.3 Security Definitions by Cohen et al.

As we explain in Sect. 4, the impossibility result of occasional watermarking
heavily relies on the perfect correctness. If we consider a relaxed correctness, the
impossibility result does not hold. Cohen et al. consider the following definition
to overcome the impossibility result of Barak et al.

Definition 11 (Watermarking Security). A watermarking scheme (Gen,
Mark,Extract) for circuit family {Cλ}λ∈N

and with message space M = {Mλ} is
required to satisfy the following properties.

Statistical Correctness: There is a negligible function ν(λ) such that for every
circuit C ∈ Cλ, every message m ∈ Mλ and every input x in the domain of
C, it holds that

Pr
[

C̃(x) = C(x)
∣
∣
∣
∣

(xk,mk) ← Gen(1λ)
C̃ ← Mark(mk, C,m)

]

≥ 1 − ν(λ).

Extraction Correctness: Same as in Definition 9 except that xk and mk are
used.

Meaningfulness: Same as in Definition 9 except that xk and mk are used.
ε-Unremovability: For every PPT A, we have

Pr[Expnrmv
A (λ, ε) = 1] ≤ negl(λ),

where ε is a parameter of the scheme called the approximation factor and
Expnrmv

A (λ, ε) is the game defined in Definition 12.

We say a watermarking scheme is ε-secure if it satisfies these properties.

Definition 12 (ε-Unremovability Security Game). The game Expnrmv
A (λ, ε)

is defined as follows.

1. The challenger generates (xk,mk) ← Gen(1λ) and gives xk to the adversary A.
2. A has oracle access to the mark oracle MO. If MO is queried with a cir-

cuit Ci (not necessarily in Cλ) and message mi, then MO answers with
Mark(mk, Ci,mi).

528 R. Nishimaki

3. At some point, the adversary makes a query to the challenge oracle CO. If CO
is queried with a message m ∈ Mλ, it samples a circuit C ← Cλ uniformly
at random and answers C̃ ← Mark(mk, C ,m).

4. Again, A queries many circuit and message pairs to MO.
5. Finally, the adversary outputs a circuit C∗. If it holds that C∗ ∼=ε C and

Extract(xk, C∗) = m then the experiment outputs 1, otherwise 0.

The definition requires the adversary to output C∗ that agrees on an ε frac-
tion of inputs with C. This formalizes that C∗ should be similar to the original
circuit C. In the symmetric key setting, i.e., xk = mk, the adversary is given
access to the extraction oracle XO, which receives a circuit and returns the
embedded mark (or unmarked). In the definition, MO accepts a circuit outside
Cλ (i.e., an arbitrary circuit). This is stronger security than that where MO
accepts only circuits in Cλ.

Lunch-Time Security. In the ε-unremovability game, if the adversary does not
have access to MO after the target circuit C̃ is given, then the security is called
ε-secure against lunch-time attacks2.

The main differences between the definitions by Barak et al. and Cohen et al.
are as follows.

Correctness: Watermarked circuits do not agree on a negligible fraction of
inputs with the original circuits in the definition of Cohen et al. while the
definition of Barak et al. requires perfect correctness.

Security: There exists MO, which gives adversaries many watermarked circuits,
and a public extraction key is given to adversaries in the definition of Cohen
et al.

4 Impossibility Result by Barak et al.

Barak et al. show that it is impossible to achieve secure watermarking in the
sense of Definition 9 by using the impossibility of VBB [2]. It is natural to explore
a more relaxed definition since Definition 9 is very strong.

Although Definition 10 is a relaxed definition, Barak et al. also show that it
is impossible to achieve secure watermarking in the sense of Definition 10 if an
iO exists and a watermarking scheme satisfies perfect correctness. The definition
of an iO is as follows.

Indistinguishability Obfuscation. The notion of iO is proposed by Barak et al. [1,
2] and the first candidate construction is proposed by Garg, Gentry, Halevi,
Raykova, Sahai, and Waters [8].

Definition 13 (Indistinguishability Obfuscation [2,8]). A PPT algorithm
iO is an indistinguishability obfuscator if it satisfies the following two conditions.

2 Or non-adaptive chosen circuit attacks (CCA1).

Watermarking Cryptographic Programs 529

Functionality: For every security parameter λ ∈ N, for every circuit C, and
every input x, it holds that

Pr[C ′(x) = C(x) | C ′ ← iO(1λ, C)] = 1.

Indistinguishability: For every PPT distinguisher D and every circuit ensemble
C0 = {C

(0)
λ }λ∈N and C1 = {C

(1)
λ }λ∈N such that ∀λ, x : C

(0)
λ (x) = C

(1)
λ (x) and

|C(0)
λ | = |C(1)

λ | we have:
∣
∣
∣Pr[D(iO(1λ, C

(0)
λ)) = 1] − Pr[D(iO(1λ, C

(1)
λ)) = 1]

∣
∣
∣ ≤ negl(λ).

For simplicity, we write iO(C) instead of iO(1λ, C) when the security parameter
λ is clear from context.

Removing Marks by iO. An iO can be used as a mark-remover as follows. Con-
sider two non-marked circuits (C0, C1) and a marked circuit C̃0 ← Mark(mk, C0).
Here, C0 and C̃0 are functionally equivalent due to the perfect correctness. That
is, for any input x, C0(x) = C̃0(x). If we apply iO to C̃0 and C1 (these two
obfuscated circuits are functionally equivalent) and the watermarking scheme
satisfies Definition 10, then the following occurs.

Extract(xk, iO(C̃0)) → 1
Extract(xk, iO(C1)) → 0.

The first and second lines of the equations hold due to occasional watermarking
and meaningfulness, respectively. However, this contradicts the indistinguisha-
bility of an iO. If there exists a secure iO, then it scrambles embedded marks and
works as a mark-remover. The key point of this argument is that a watermarking
scheme satisfies perfect correctness since an iO works only for two functionally
equivalent circuits.

Using a relaxed correctness is a simple way to avoid the impossibility since
we can no longer apply an iO to circuits that do not satisfy perfect correctness.
In fact, if we use a relaxed correctness, then the iO might help to achieve secure
program watermarking. Consider the following construction idea. For a negligible
fraction of inputs, a watermarked circuit behaves differently from the original
circuit C. Let X ⊂ D be such a negligible fraction of inputs where D is the set of
all inputs for C. A slightly modified circuit C ′ is defined as follows. For x ∈ D\X ,
C ′(x) computes C(x). For input x ∈ X , circuit C ′(x) does not compute C(x) but
outputs special value y. If we can hide this small change, then (x, y) might work
as a mark and extraction key for watermarking because we can verify whether a
circuit is marked by checking y = C ′(x). Here, an iO might help hide the change
and prevent adversaries from removing the mark. This was already observed by
Barak et al. [2], but they do not give any provably secure construction. This
observation is the starting point of the work by Cohen et al. We discuss the
details of this in Sect. 6.

530 R. Nishimaki

5 Watermarking Based on Number Theory

First, we introduce the bracket notation for ease of notation.3 For a, b, α ∈ Zp,
v = (v1, . . . , vn) ∈ Z

n
p , we let

[a] := ga, [b]T := e(g, g)b,

[v] := ([v1], · · · , [vn]),
[v] ⊕ [w] := [v + w] = ([v1 + w1], . . . , [vn + wn]),

α � [v] := [v]α := [αv] = ([αv1], . . . , [αvn]),

e([v], [w]) :=
n⊕

i=1

e([vi], [wi]) = [〈v,w〉]T .

In this section, we explain the number theoretic watermarking scheme for
cryptographic functions by Nishimaki [14]. The scheme does not rely on strong
cryptographic tools such as an iO and the construction idea itself is interesting
though its security is weak.

5.1 Overview

Nishimaki proposes a watermarking scheme for (a variant of) trapdoor functions
[14]. His construction idea is based on the vector decomposition (VD) problem
defined over bilinear groups [7,20].

Roughly speaking, the VD problem is as follows. Let V be a 2-dimensional
vector space and V1 and V2 two different 1-dimensional subspaces of V. An
element [v] ∈ V can be decomposed into an element generated by a base of
V1, [b1], and an element generated by a base of V2, [b2]. That is, given [v] =
[xb1] ⊕ [yb2] ∈ V where x, y are some scalars, computing [yb2] (or [xb1]) is
the VD problem. It can be generalized to the n-dimensional case. Yoshida and
Fujiwara find that hidden [yb2] is useful to achieve watermarking. If a vector
[b∗] is orthogonal to [b2], then [b∗] can be used to detect a mark since [b1] is
canceled by taking inner-product. Moreover, removing [yb2] from [v] seems to
be hard [19] since it is believed to be hard to decompose [v] into [xb1] and [yb2]
[7,20]. This is a bright observation, but Yoshida and Fujiwara do not give a
provably secure construction. The idea by Yoshida and Fujiwara is the starting
point of the work by Nishimaki. The details are given below.

One way to instantiate a linear vector space defined over bilinear groups is
using the concept of a dual paring vector space (DPVS) [15,16]. In a DPVS, a
vector consists of group elements. By generating n×n matrices B := (b1, . . . , bn)
and B∗ := (b∗

1, . . . , b
∗
n) such that B∗T · B = I, we can generate a pair of dual

orthonormal bases [B] := ([b1], . . . , [bn]) and [B∗] := ([b∗
1], . . . , [b

∗
n]).

One of the notable features of a DPVS is the canceling property. It holds that
e([bi], [b∗

j]) = [1]T for i = j. Consider a hypothetical ciphertext [xb1] that can

3 This notation is used in many papers. In particular, we borrow from the work of Lin
and Vaikuntanathan [13].

Watermarking Cryptographic Programs 531

be decrypted by a pairing operation with [b∗
1]. That is, we find x by computing

e([xb1], [b∗
1]) = [x]T . Note that this is not a real encryption but just a hypothet-

ical encryption for explanation. When we use a ciphertext c̃t := [xb1 + yb2], it is
still possible to recover x by using b∗

1 since it is orthogonal to b2. Moreover, if we
have [b∗

2], then we can verify whether ĉt includes [b2] by checking e(ĉt, [b∗
2]) = 1.

From the definition of B,B∗, e(ĉt, [b∗
2]) = 1 if ĉt is not spanned by [b2]. Thus,

[b2] and [b∗
2] can be used as an embedded mark and a key for detecting the mark,

respectively. That is, the canceling property is useful to achieve the functionality
of watermarking.

Another notable feature of a DPVS is that we can consider hidden linear
subspaces spanned by subsets [B̂] and [B̂

∗
] of [B] and [B∗], respectively. If the

DLIN assumption holds (decisional) subspace assumptions hold, which says it
is hard to distinguish whether a given vector is spanned by [B] (resp. [B∗]) or
[B]\ [B̂] (resp. [B∗ \ [B̂

∗
]]) [12,16]. Roughly speaking, an embedded mark [b2] is

hidden due to a subspace assumption. A toy example of a subspace assumption
is that given ([b∗

1], [xb1 + yb2]), it is hard to distinguish [vb∗
1 + wb∗

2] from [vb∗
1].

Subspace assumptions are useful to show that it is hard for adversaries to remove
marks because if adversaries can decompose [xb1 +yb2] into [xb1] and [yb1] then
[yb2] is used to distinguish [vb∗

1 +wb∗
2] from [vb∗

1] by just computing the pairing.
For readers that are familiar with the dual system encryption methodology,

the two insights above are reminiscent of the concept of semi-functional cipher-
texts and keys introduced by Waters [18]. In fact, the methodology inspires
Nishimaki to come up with the application of a DPVS to watermarking.

5.2 Dual Pairing Vector Space

We review the concept of a DPVS in this section and a related assumption.

Dual Orthonormal Bases. Let Dual(Zn
p) be an algorithm for generating dual

orthonormal bases as follows.

Dual(Zn
p) : chooses bi, b

∗
j ∈ Z

n
p , ψ ← Z

∗
p such that

〈bi, b
∗
j 〉 = 0 mod p for i = j,

〈bi, b
∗
i 〉 = ψ mod p for all i ∈ [n]

outputs B := (b1, . . . , bn) and B∗ := (b∗
1, . . . , b

∗
n).

We now describe a parameter generation algorithm Gdpvs(1λ, n) for a DPVS.

Gdpvs(1λ,n) : (p,G,GT , e, g) ← Gbmp(1λ),V := G
n

params
V

:= (p,V,GT , e, g)
(B,B∗) ← Dual(Zn

p),

[B] := ([b1], . . . , [bn]),
[B∗] := ([b∗

1], . . . , [b
∗
n]),

returns (params
V
, [B], [B∗]).

532 R. Nishimaki

Parameters (params
V
, [B], [B∗]) define a DPVS over a bilinear group.

Definition 14 (Subspace Assumption). First, we define an instance gener-
ation algorithm of the subspace problem as follow.

Gdss
b (1λ) :

Γ ← Gbmp(1λ), (B,B∗) ← Dual(Zn
p),

η, β, τ1, τ2, τ3, μ1, μ2, μ3 ← Zp,

For i ∈ [k]
Ui := [μ1bi + μ2bk+i + μ3b2k+i],
Vi := [τ1ηb∗

i + τ2βb∗
k+i],

Wi := [τ1ηb∗
i + τ2βb∗

k+i + τ3b
∗
2k+i],

END OF For
Q0 := (V1, . . . , Vk), Q1 := (W1, . . . ,Wk),
D := ([b1], . . . , [b2k], [b3k+1], . . . , [bn], [ηb∗

1], . . . , [ηb∗
k], [βb∗

k+1], . . . , [βb∗
2k],

[b∗
2k+1], . . . , [b

∗
n], U1, . . . , Uk, μ3),

return I := (Γ,D,Qb).

The subspace problem is to guess b ∈ {0, 1}, given (Γ,D,Qb). This advantage
AdvdssA (λ) is defined as follows.

AdvdssA (λ) :=
∣
∣Pr

[A(I) = 1 | I ← Gdss
0 (1λ)

] − Pr
[A(I) = 1 | I ← Gdss

1 (1λ)
]∣
∣

We say that the subspace assumption holds if for every PPT adversary
A,AdvdssA (λ) ≤ negl(λ).

This assumption says that it is hard to distinguish vectors spanned by
([b∗

i], [b
∗
k+i]) from vectors spanned by ([b∗

i], [b
∗
k+i], [b

∗
2k+i]) if {[b2k+i]}i, which

trivially break the assumption, are not given.

Theorem 15 [12]. The DLIN assumption implies the subspace assumption.

5.3 Watermarking Based on DPVS

The watermarking scheme proposed by Nishimaki is a bit complicated. Thus,
we introduce a hypothetical construction for ease of understanding.

Consider the following function fC based on dual orthonormal bases
(D,D∗) ← Dual(Z3

p). Given a description of a function C := ([r1d1], [s1d∗
1])

and an input x, fC computes e([r1d1], x� [s1d∗
1]) = [x · r1s1]T . This can be seen

as a one-way function (assuming the hardness of the discrete logarithm problem
over GT). Let mk := ([d∗

2], [d
∗
3]) and xk := ([d2], [d3]). These keys are used to

generate a vector in hidden sub-spaces. A hypothetical watermarking scheme for
fC is as follows.

Gen(1λ): generates (D,D∗) ← Dual(Z3
p) and sets mk := ([d∗

2], [d
∗
3]) and xk :=

([d2], [d3]).

Watermarking Cryptographic Programs 533

Mark(mk, fC): parses C = ([f], [f∗]) ∈ G
3 × G

3, chooses s2, s3 ← Zp, computes
[f∗] ⊕ [s2d∗

2 + s3d
∗
3], and output C̃ := ([f], [f∗ + s2d

∗
2 + s3d

∗
3]).

Extract(xk, fC′): parses C ′ = ([f ′], [f ′∗]), chooses r2, r3 ← Zp, and verifies
whether e([r2d2 + r3d3], [f ′∗]) = [1]T . If the equation holds, then it outputs
unmarked; otherwise, marked.

Note that we need ([d1], [d∗
1]) to generate a function. A non-marked function

does not include a vector in hidden sub-spaces (spanned by [d2], [d3], [d∗
2], and

[d∗
3]). A marked function include a vector spanned by ([d∗

1], [d
∗
2], [d

∗
3]), but this

does not interfere with the functionality of fC since vectors [d∗
2], [d

∗
3] are canceled

via the pairing operation with [d1]. Moreover, if we have ([d2], [d3]), then we can
verify that a vector is spanned by [d∗

2] and [d∗
3]. The pairing operation yields a

non-identity element in GT .

Intuition of Security. If an adversary can remove [d∗
2] and [d∗

3] parts from [s1d∗
1+

s2d
∗
2 + s3d

∗
3], then we can use [s1d∗

1] to distinguish [r′
2d2 + r′

3d3] from [r′
1d1 +

r′
2d2 + r′

3d3]. This contradicts the hardness of the subspace assumption.
More concretely, we can use the subspace assumption for n = 3 and k = 1 for

the security. Given ([b1], [b2], [ηb∗
1], [βb∗

2], [b
∗
3], U1 = [μ1b1+μ2b2+μ3b3], μ3, Qb′),

we simulate a marked function as follows. We set

d1 := b∗
3 d2 := b∗

1 d3 := b∗
2

d∗
1 := b3 d∗

2 := b1 d∗
3 := b2,

choose r1 ← Zp, and construct a marked function C̃ := (r1 � [b∗
3], U1) =

([r1d1], [μ3d
∗
1+μ1d

∗
2+μ2d

∗
3]). If an adversary succeeds in removing [μ1d

∗
1+μ2d

∗
2]

from C̃, then we can obtain [μ3d
∗
1]. We compute v := e(Qb′ , [μ3d

∗
1]). Here,

Q0 = V1 = [τ1ηb∗
1 + τ2βb∗

2] = [τ1ηd2 + τ2βd3]
Q1 = W1 = [τ1ηb∗

1 + τ2βb∗
2 + τ3b

∗
3] = [τ1ηd2 + τ2βd3 + τ3d1].

Thus, it should hold that v = [0]T if b′ = 0; otherwise, v = [0]T . This breaks
the hardness of the subspace assumption. Therefore, the watermarking scheme
satisfies unremovability.

On Limitation of Algebraic Construction. The security argument above works
if the adversary outputs 6 group elements as a function. The construction above
is not unremovable if adversaries take arbitrary strategies. For example, if an
adversary applies an iO to the marked function and completely destroys the alge-
braic structure, then it succeeds in removing [μ1d

∗
1 + μ2d

∗
2] while preserving the

functionality (note that the hypothetical watermarking scheme satisfies perfect
correctness). As long as an adversary outputs 6 group elements, the algebraic
construction is unremovable. Even if adversaries encode an obfuscated circuit
into group elements [0] and [1] in a bit-by-bit manner, the number of group
elements does not match that of the original algebraic function. Therefore, the
watermarking scheme by Nishimaki is secure in a restricted security model [14].
In the next section, we explain how Cohen et al. go beyond the limitation.

534 R. Nishimaki

6 Watermarking for pPRFs

In this section, we explain the construction idea of the watermarking scheme for
pPRFs by Cohen et al. [6].

6.1 More Impossibility Results by Cohen et al.

Before we explain the watermarking for pPRFs, we explain more impossibility
results by Cohen et al. to understand why Cohen et al. focus on pPRFs.

Cohen et al. define the notion of “waterproof” for a function family, which
means it is impossible to achieve a watermarking scheme for the function family.

Definition 16 (ε-Waterproof). Let F = {Fλ}λ∈N
be a circuit ensemble. We

say that F is ε-waterproof if there does not exist a weak ε-unremovable water-
marking scheme for F , where weak ε-unremovable is the same as ε-unremovable
except that the adversary is given access to neither MO, XO, nor xk and cannot
select the message that is embedded in the target circuit.

Cohen et al. introduce not only the statistical correctness in Definition 11 but
also a more relaxed correctness called weak statistical correctness [6].

Definition 17 (Weak Statistical Correctness). There is a negligible func-
tion ν(λ) such that for every circuit C ∈ Cλ and messages m ∈ Mλ and it holds
that

Mark(mk, C,m) ∼=ν C.

Cohen et al. show that non-black-box learnable function families are ε-
waterproof. The parameter ε depends on what kind of learnability is considered.
Roughly speaking, non-black-box learnable means that if an efficient learner is
given a circuit C̃ that approximates a circuit C, then the learner can output a
circuit h whose behavior is (almost) the same as that of C. The approximation
notion for C̃ corresponds to the statistical correctness in Definition 11 (or 17).
Thus, for non-black-box learnable functions, an adversary can reconstruct the
original circuit by using a learning algorithm and remove marks since the orig-
inal circuit is not marked due to the meaningfulness. This is the intuition. In
particular, they show that assuming one-way functions, there exists a (standard)
PRF family F which is ε-waterproof with weak statistical correctness for any
non-negligible ε [6]. See the paper by Cohen et al. [6] for details.

From the impossibility above, even if we consider the relaxed correctness,
there still exists waterproof function families. In particular, it impossible to
watermark standard PRFs. This is why Cohen et al. focus on pPRFs.

6.2 Overview of Construction

As explained in Sect. 4, the impossibility result by Barak et al. is not applicable
to watermarking that satisfies only the statistical correctness in Definition 11.

Watermarking Cryptographic Programs 535

As we see in the previous section, the impossibility still holds for some function
families even if we consider the weak statistical correctness. However, an iO might
be useful to achieve watermarking for pPRFs since the impossibility result is not
applicable to a pPRF, which is an iO-friendly primitive [17]. In fact, Cohen et
al. show a possibility result [6].

Consider the following toy example to understand the initial idea of Cohen
et al. Let CF be a circuit that computes a PRF F : {0, 1}n → {0, 1}m. A circuit
C ′

F is a slight modification of CF as follows.

C ′
F(x) =

{
yi if x = xi

CF(x) for x /∈ X ,

where xi ← {0, 1}n, yi ← {0, 1}m for all i ∈ [�], X := {x1, . . . , x�}, and Y :=
{y1, . . . , y�}. Although a VBB obfuscation for PRFs does not exists and PRFs are
waterproof under the existence of a OWF [2,6], let us assume that it does. This
is just a hypothetical argument to explain the idea of Cohen et al. If we replace
the VBB obfuscation and PRFs with an iO and pPRFs, respectively, then the
construction works. If we apply VBB obfuscation O to C ′

F, then C̃ := O(C ′
F) does

not leak any information except the input-output behavior of C ′
F. Here, (X ,Y)

are seen as mark and extraction keys and X is called marked points. If users
have (X ,Y), then they can detect that a mark is embedded in C̃ by checking
yi = C̃(xi) for some i ∈ [�]. Circuit C̃ is a (message-less) watermarked circuit
of C. It is easy to verify that C̃ satisfies the statistical correctness since � is a
polynomial in λ. Values yi for input xi ∈ X are indistinguishable from CF(xi)
due to the pseudorandomness of F. Intuitively speaking, the slight modification
is hidden from the adversary due to the obfuscation.

A slightly formal security argument is as follows. Consider a set X ′ =
{x′

1, . . . , x
′
�} where x′

i ← {0, 1}n. We stress that X ′ is independent of X . First,
it is shown that

(X , C̃)
c≈ (X ′, C̃)

by pseudorandomness of F and the VBB property of O. What adversaries can
do is only observing the input-output behavior of C̃ since C ′

F is completely
hidden due to the VBB. However, outputs for X and X ′ are indistinguishable
due to pseudorandomness. Next, the indistinguishability above is used to show
unremovability. If the adversary A succeeds in removing the mark in C̃ and
outputs un-marked C∗, then it should hold that C∗(xi) = C̃(xi) for all i ∈ [�].
On the other hand, for X ′ := {x′

1, . . . , x
′
�} where x′

i ← {0, 1}n for all i ∈ [�], it
holds that C∗(x′

i) = C̃(x′
i) with probability ε due to ε-approximation factor and

the independence of X . That is, the probability that there exists i ∈ [�] such
that C∗(x′

i) = C̃(x′
i) is 1 − (1 − ε)�, which is overwhelming if � := Ω(λ/ε). Note

that X ′ is not the marked points of C̃. In summary,

with non-negligible prob. C∗(xi) = C̃(xi) for all xi ∈ X
with overwhelming prob. C∗(x′

i) = C̃(x′
i) for some x′

i ∈ X ′.

536 R. Nishimaki

From this fact, it is easy to see that the adversary of ε-unremovability is used to
distinguish (X , C̃) from (X ′, C̃). Thus, it is difficult to remove the mark.

Attacks on Toy Example. The toy example explained above is ε-unremovable in
the setting where A is given neither MO nor a public extraction key (or the
extraction oracle) in Definition 12. However, the toy example is insecure if A is
given oracle access to either MO or XO. Attack procedures are given below.

Attack by extraction oracle: When A is given C̃, it generates another circuit
C̃P by using some predicate P . For input x, C̃P outputs C̃(x) if P (x) = 1;
otherwise, ⊥. If A queries C̃P to XO for various predicates P (such as P (x) =
1 if x = 0‖, which is all strings whose most significant bit (MSB) is 0), then it
can recover marked points X and remove the mark in C̃. More concretely, let
a predicate Ps as follows. For some string s ∈ {0, 1}≤|x|, Ps(x) = 1 if x = s‖;
otherwise ⊥. When A queries C̃P1 , if the extraction oracle returns marked,
then it means there exists a marked point whose MSB is 1. The adversary A
can try various predicates Ps for s = 1‖, s = 0‖, s = 10‖, s = 01‖, and
so on and conduct the standard binary search. The adversary A can find all
marked points in polynomial time since |X | = poly(λ). This attack crucially
relies on the fact that the size of X is polynomial.

Attack by mark oracle: First, A queries a circuit CF′ that computes another
PRF F′ to MO and receives a marked circuit C̃ ′. When A is given a target
C̃, it generates another circuit C̃∗ by using C̃ and C̃ ′ as follows. For input
x, C̃∗ outputs C̃(x) if C̃(x) = C̃ ′(x); otherwise, ⊥. It is easy to verify that
Extract(xk, C̃∗) = unmarked since for marked points in X it holds that C̃(x) =
C̃ ′(x) and C̃∗(x) outputs ⊥. The point is that all marked circuits use the
same fixed X . The hybrid circuit C̃∗ also satisfies ε-approximation since X
is polynomial-size. This attack works because marked points are static (all
marked circuits have the same marked points X).

Immunizing Toy Construction Against Attacks. To prevent extraction oracle
attacks, we make the set of marked points X ⊆ {0, 1}n super-polynomially large,
but still negligible fraction of the entire domain. The binary search by prefix
predicates no longer works. Moreover, if we can set pseudorandom ciphertexts
under some public-key of encryption as marked points, then we can achieve
public extraction. A public extraction key enables us to sample valid ciphertext
x ← X , which is indistinguishable from uniformly random points.

To prevent mark oracle attacks, we make the set of marked points XFi
depend

on PRF Fi and different for each Fi. However, this idea yields another issue
since the extraction procedure does not have the original PRF F when it is given
marked circuit C̃. To solve this issue, a two-step checking is used. Let z be a
random point, which we call “find point”. For this point, we compute C̃(z) and
use the output for extraction. It is expected that C̃(z) = F(z) since z is random
and unlikely a marked point. We can use C̃(z) = F(z) as a marked point. If the
equation holds, the marked point depends on F.

Watermarking Cryptographic Programs 537

6.3 Idealized Construction

In this section, we introduce an idealized watermarking scheme for PRF which
is secure under the presence of the mark oracle and a public extraction key. The
construction idea is based on the observation in the previous section.

Let PKE = (PKE.Gen,PKE.Enc,PKE.Dec) be a public-key encryption (PKE)
that is secure against adaptive chosen ciphertext attacks (CCA-secure) and has
pseudorandom ciphertext.

Gen(1λ): generates a key pair (pk, sk) ← PKE.Gen(1λ) and sets (xk,mk) :=
(pk, sk).

Mark(mk,F): generates a circuit Fsk, as shown in Fig. 1, computes an obfuscated
circuit C̃ := O(Fsk), and outputs C̃ as a marked circuit. This defines the set
of marked points XF as follows.

XF :=
{
x ∈ {0, 1}n | PKE.Dec(sk, x) = a‖b‖c ∈ {0, 1}3λ ∧ F(PRG(a)) = b

}
.

Fig. 1. Description of Fsk

Extract(xk, C ′): repeats the following � times
– Choose a, c ← {0, 1}λ and set z := PRG(a) and b := C ′(z).
– Choose x ← PKE.Enc(pk, a‖b‖c) and if C ′(x) = c, then output marked.

If marked is not output in all iterations, then output unmarked.

A marked circuit can appropriately check that an input x is made from a
marked point since sk is hard-wired in the marked circuit. Obfuscator O hides
the information about sk. Anyone that has pk can generate an input that consists
of an appropriate marked point if b = C ′(z) = F(z) and z = PRG(a) hold. This
condition holds with high probability since z is random due to PRG.

Intuition of Security. Let view be all variables that A sees in the ε-unremovability
game. That it, view includes the public extraction key, the target marked circuit
C̃, and all marked circuits given by MO. It holds that

(view, z, x)
c≈ (view, z′, x′),

538 R. Nishimaki

where a, c ← {0, 1}λ, z := PRG(a), b := F (z), x ← PKE.Enc(pk, a‖b‖c), z′, x′ ←
{0, 1}n. Roughly speaking, this holds by the pseudorandomness of PRG, cipher-
text pseudo-randomness of the PKE, and the VBB property of O. One notable
difference from the toy example is that a simulator must simulate MO without
the decryption key of the PKE. It is possible to simulate MO since the simulator
has access to the decryption oracle of the PKE. The simulator heavily relies on
the VBB property of O, which enables the simulator to simulate an obfuscated
circuit by using only black-box access to the circuit to be obfuscated. Again, we
can use the indistinguishability above to show unremovability as in the analysis
of the toy example. If there exists a successful adversary in the ε-unremovability
game, then it holds that

C∗(x) = C̃(x) for all x ∈ XF with non-negligible probability.

On the other hand, it holds that

C∗(x′) = C̃(x′)∧C∗(z′) = C̃(z′) for x′, z′ ← {0, 1}n with probability at least ε2.

Thus, when � := Ω(λ/ε2) pairs of random points are checked, the probability
that the extraction algorithm does not output marked is at most 1 − (1 − ε2)�,
which is negligible. Therefore, we can distinguish (view, z, x) from (view, z′, x′)
by using the adversary of the ε-unremovability. This is a contradiction.

Removing VBB Obfuscation. A VBB obfuscation for all polynomial-sized circuits
does not exist (in particular, an unobfuscatable PRF exists [2]). Instead of a
VBB obfuscation, an iO is used in the real construction of Cohen et al. We can
no longer use CCA-secure PKE since the security of an iO is game-based and
we cannot simulate MO by using black-box access to the decryption oracle.
Thus, to prove the security of the real construction, we need some kind of “non-
black-box” version of a CCA-secure PKE. Cohen et al. introduce puncturable
encryption (PE) as such a primitive.

6.4 Puncturable Encryption

Cohen et al. propose the notion of PE [6]. Roughly speaking, PE is a secure
encryption even if adversaries are given a special “punctured” decryption key
that can decrypt all ciphertexts except some target ciphertexts. This punctured
key plays the role of the decryption oracle in a non-black-box way. Thus, PE is
compatible with an iO.

Definition 18 (Puncturable Encryption Syntax). A PE scheme PE for a
message space M = {0, 1}� is a triple of PPT algorithms (Gen,Puncture,Enc)
and a deterministic algorithm Dec. The space of ciphertexts will be {0, 1}n where
n = poly(λ, �).

Key Generation: (pk, sk) ← Gen(1λ) takes the security parameter and outputs
an encryption key pk and a decryption key sk.

Watermarking Cryptographic Programs 539

Puncturing: sk{c0, c1} ← Puncture(sk, c0, c1) takes sk and a set {c0, c1} ⊂
{0, 1}n. Puncture outputs a “punctured” decryption key sk{c0, c1}.

Encryption: c ← Enc(pk,m) takes pk and a message m ∈ {0, 1}� and outputs
a ciphertext c in {0, 1}n.

Decryption: m or ⊥ ← Dec(sk′, c′) takes a possibly punctured decryption key
sk′ and a string c′ ∈ {0, 1}n. It outputs a message m or the special symbol ⊥.

Definition 19 (Puncturable Encryption Security). A PE scheme PE =
(Gen,Puncture,Enc,Dec) with message space M is required to satisfy the follow-
ing properties.

Correctness: We require that for all messages m and (pk, sk) ← Gen(1λ), it
holds that Dec(sk,Enc(pk,m)) = m.

Punctured Correctness: We require the same to hold for punctured keys. For
all possible keys (pk, sk) ← Gen(1λ), all strings c0, c1 ∈ {0, 1}n, all punctured
keys sk′ ← Puncture(sk, c0, c1), and all potential ciphertexts c ∈ {0, 1}n \
{c0, c1}:

Dec(sk, c) = Dec(sk′, c).

Ciphertext Pseudorandomness: We define the following experiment
ExptprcA (λ).
1. A sends a message m∗ to the challenger.
2. The challenger does the following:

– Samples (pk, sk) ← Gen(1λ)
– Computes encryption c∗ ← Enc(pk,m∗).
– Samples r∗ ← {0, 1}n.
– Generates the punctured key sk′ ← Puncture(sk, {c∗, r∗})
– Samples b ← {0, 1} and sends the following to A:

(c∗, r∗, pk, sk′) if b = 0
(r∗, c∗, pk, sk′) if b = 1

3. A outputs b′ and the experiment outputs 1 if b = b′; otherwise 0.
We say that PE has ciphertext pseudorandomness if for every PPT adver-
sary A,

AdvprcA := |2 · Pr[ExptprcA = 1] − 1| ≤ negl(λ).

Sparseness: We also require that most strings are not valid ciphertexts:

Pr
[
Dec(sk, c) = ⊥ ∣

∣ (pk, sk) ← Gen(1λ), c ← {0, 1}n
] ≤ negl(λ).

Theorem 20 [6]. There exists PE if there exists an injective one-way function
and iO for P/poly.

6.5 Real Construction

In this section, a slightly simplified construction is introduced for ease of under-
standing. The construction of Cohen et al. can embed arbitrary length messages.
See the paper of Cohen et al. [6] for full details.

540 R. Nishimaki

Setup. The watermarking scheme by Cohen et al. works for a pPRF family C
with domain {0, 1}n and range {0, 1}m. Let M = {0, 1}m denote the message
space. Let PE be a puncturable encryption scheme with ciphertext length n and
plaintext length �. Let PRG : {0, 1}�/3 → {0, 1}n and PRG′ : {0, 1}�/3 → {0, 1}m

be PRGs, and let H : {0, 1}m → {0, 1}�/3 be a UOWHF.

Construction. For any approximation factor ε(λ) = 1
2 + ρ(λ) where ρ(λ) =

1/poly(λ), let Q := Q(λ) := λ/ρ(λ)2 and R := R(λ) := λ/ρ(λ)2. The construc-
tion is as follows.

Gen(1λ): Sample a key pair (pk, sk) ← PE.Gen(1λ). Output (xk,mk) where xk =
pk and mk = sk.

Mark(mk, C,m): Output an obfuscated circuit of circuit M constructed from C
in Fig. 2, i.e., iO(M).

Fig. 2. Description of M , which is modification of C (pre-obfuscated program)

Extract(xk, C ′): Let m = Extract(xk, C ′), where Extract is defined in Fig. 3. Extract
makes use of a subroutine WeakExtract, which is defined in Fig. 4. Output m.

Fig. 3. Sub-routine algorithm Extract(xk, C′)

Lunch-Time Security. Cohen et al. show the following theorem.

Theorem 21 [6]. The real construction is (12 + 1
poly(λ))-secure against lunch-

time attacks if there exists an injective one-way function and iO for P/poly.

Watermarking Cryptographic Programs 541

Fig. 4. Sub-routine algorithm WeakExtract(xk, C′, a, b)

The formal security proof is not given here. An intuition of security proof is
already given in Sect. 6.3. A PE scheme is used instead of a CCA-secure PKE. We
can use the punctured programming technique [17] and hide information about
M by iO since a pPRF and PE scheme are iO-friendly primitives. An UOWHF
is also used to prevent adversaries querying a circuit that yields a collision with
MO. Note that the construction is secure against lunch-time attacks because
adversaries might find a collision after it is given the target circuit. Even if a
collision-resistant hash function is used, the full security in Definition 12 cannot
be achieved because after the target circuit C̃ is given, the adversary can easily
generate a circuit C∗ that outputs C̃(PRG(ai)) for input PRG(ai) where ai ←
{0, 1}�/3. See the paper of Cohen et al. [6] for details.

Message Embedding. The ideal construction in Sect. 6.3 is a message-less scheme.
The extract algorithm of the real construction is more complicated than that of
the ideal construction due to the message extraction. How to embed a message m
is simple. The mark algorithm just outputs PRG′(c)⊕m instead of PRG′(c). How-
ever, to achieve approximation factor ε = 1/2+ρ(λ), the following naive extrac-
tion algorithm does not work. A naive algorithm chooses ai and ci at the same
time and computes m(i) = PRG′(ci) ⊕ C ′(xi) where xi ← PE.Enc(pk, ai‖bi‖ci)
and bi = H(C ′(PRG(ai))). Consider C ′ ε-approximates C. The naive algorithm
outputs a correct message when C ′(xi) and C ′(PRG(ai)) are equal to C(xi) and
C(PRG(ai)), respectively. The probability is ε2. Thus, simply taking majority
works when ε ≥ 1/

√
2+ρ(λ) holds4. To overcome this issue, the extraction algo-

rithm of Cohen et al. uses “majority-of-majority” as in Figs. 3 and 4. Note that
Cohen et al. also show that the approximation factor ε = 1/2 + ρ(λ) is optimal
[6].

Related Work. Subsequent to the work of Cohen et al., Boneh et al. propose
the notion of private programmable PRF and show that a symmetric-key water-
marking for pPRF can be constructed from a private programmable PRF, which
can be constructed from an iO [3]. However, the security of their watermarking
scheme is weaker than that of Cohen et al. scheme.

4 Otherwise Chernoff bound does not work.

542 R. Nishimaki

7 Open Questions

There are several open questions about program watermarking.

Achieving full security: The construction of Cohen et al. achieves the security
against lunch-time attacks (not the full security in the sense of Definition 12).
In fact, if adversaries query only pPRFs (not arbitrary circuits) to MO and
the pPRFs are “key injective”5, then the construction of Cohen et al. satisfies
the full security. Thus, it is an open question to achieve the full security
without such a restriction and additional assumptions.

More functionalities: Cohen et al. show that it is possible to achieve water-
marking cryptographic capabilities such as pPRF, decryption of PKE, and
signing of digital signature [6]. Cohen et al. also show that it is impossible to
achieve watermarking learnable functions [6] as we see in Sect. 6.1. It is nat-
ural to ask whether it is possible to watermark other useful functionalities.

Achieving watermarking without iO: The connection between program
watermarking and program obfuscation has not been well studied. In par-
ticular, achieving program watermarking without iO is a major concern.

Acknowledgments. The author would like to thank Pooya Farshim for invaluable
and constructive comments.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

3. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
Cryptology ePrint Archive, Report 2015/1167 (2015). http://eprint.iacr.org/2015/
1167

4. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 15

5. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

6. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: Wichs, D., Mansour, Y. (eds.) 48th ACM
STOC, pp. 1115–1127. ACM Press, New York (2016)

7. Galbraith, S.D., Verheul, E.R.: An analysis of the vector decomposition problem.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 308–327. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78440-1 18

5 Such pPRFs are constructed from DDH or LWE assumptions [6].

http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://eprint.iacr.org/2015/1167
http://eprint.iacr.org/2015/1167
http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/978-3-540-78440-1_18

Watermarking Cryptographic Programs 543

8. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

9. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

10. Hopper, N., Molnar, D., Wagner, D.: From weak to strong watermarking. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 362–382. Springer, Heidel-
berg (2007). doi:10.1007/978-3-540-70936-7 20

11. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 2013, pp. 669–684. ACM Press, New York (2013)

12. Lewko, A.: Tools for simulating features of composite order bilinear groups in
the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 20

13. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS,
pp. 11–20. IEEE Computer Society Press, Washington, D.C. (2016)

14. Nishimaki, R.: How to watermark cryptographic functions. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 111–125. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38348-9 7

15. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol.
5209, pp. 57–74. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85538-5 4

16. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 11

17. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
New York (2014)

18. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 36

19. Yoshida, M., Fujiwara, T.: Toward digital watermarking for cryptographic data.
IEICE Trans. 94-A(1), 270–272 (2011)

20. Yoshida, M., Mitsunari, S., Fujiwara, T.: The vector decomposition problem. IEICE
Trans. 93-A(1), 188–193 (2010)

http://dx.doi.org/10.1007/978-3-540-70936-7_20
http://dx.doi.org/10.1007/978-3-642-29011-4_20
http://dx.doi.org/10.1007/978-3-642-29011-4_20
http://dx.doi.org/10.1007/978-3-642-38348-9_7
http://dx.doi.org/10.1007/978-3-540-85538-5_4
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-03356-8_36

From Higher-Order Differentials
to Polytopic Cryptyanalysis

Tyge Tiessen(B)

DTU Compute, Technical University of Denmark,
Kgs. Lyngby, Denmark

tyti@dtu.dk

Abstract. Polytopic cryptanalysis was introduced at EUROCRYPT
2016 as a cryptanalytic technique for low-data-complexity attacks on
block ciphers. In this paper, we give an account of how the technique
was developed, quickly go over the basic ideas and techniques of poly-
topic cryptanalysis, look into how the technique differs from previously
existing cryptographic techniques, and discuss whether the attack angle
can be useful for developing improved cryptanalytic techniques.

1 Introduction

A few years after differential cryptanalysis [2] had been developed and success-
fully applied to a range of ciphers, Xuejia Lai realized that differential crypt-
analysis can be generalized to higher-order differential cryptanalysis using the
concept of higher-order derivatives [7]. He was not able though to give an exam-
ple that demonstrates that higher-order differential attacks can be stronger
than standard differential attacks. Such an example was given shortly there-
after by Knudsen [5] who broke a design proven to be secure against differential
cryptanalysis.

Since and including that attack, successful applications of higher-order differ-
ential cryptanalysis have been relying on deterministic higher-order differentials,
i.e., higher-order differentials of probability one. Those attacks can be put into
two main categories. In the first category, upper bounds on the degree of the
cipher are derived which can then be used to find higher-order derivatives that
evaluate to zero. In the second category, methods of integral cryptanalysis are
used to determine that for some combination of input bits, there are no terms in
the polynomial representation of the output that contain all of those bits simul-
taneously. Such property again results in higher-order derivatives that evaluate
to zero simply by taking the derivative with respect to those input bits.

The problem of working with probabilistic higher-order differentials seems
to be the difficulty to estimate the probability of probabilistic differentials effi-
ciently. While it is usually easy to derive the probability of a higher-order dif-
ferential over one round, there is no straightforward method to iterate these
probabilities to estimate the probability of a multiple-round higher-order differ-
ential. In particular the concept of a trail (or characteristic) does not seem to
exist for higher-order differentials.
c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 544–552, 2017.
DOI: 10.1007/978-3-319-61273-7 29

From Higher-Order Differentials to Polytopic Cryptyanalysis 545

In this paper, we demonstrate how attempting to construct trails for higher-
order differentials leads to polytopic trails in a natural progression. We then
quickly draw an outline of how the polytopic framework is a direct generalization
of the differential cryptanalysis framework that includes higher-order differential
cryptanalysis as a special case.

We subsequently show that attempts to apply this framework in the setting
that corresponds to standard differential cryptanalysis cannot yield better results
than standard differential cryptanalysis due to a large increase in the number
of trails that need to be considered. We continue then by demonstrating that
the upside to the increase in the number of trails is that impossible polytopic
attacks can be successful where standard impossible differential attacks fail. By
following this progression, we follow the development process that lead to the
low-data attacks detailed in the EUROCRYPT 2016 paper [9].

The paper concludes with a comparison of polytopic cryptanalysis with exist-
ing cryptanalytic techniques, a discussion of future research directions and open
problems.

2 Difficulties of Higher-Order Differentials

In differential cryptanalysis, the goal is to find a strong correlation between the
difference of two input messages to a cipher and the difference of the respec-
tive output messages of the cipher. When we let E be the cipher and α and β
be the input and output differences, we are hoping to find many x such that
E(x + α) + E(x) = β. We denote the difference operation here by a + sign
as we assume we are working with binary values where addition and subtrac-
tion correspond to the same operation.1 A differential is then defined as a pair
of an input difference α and an output difference β and the associated prob-
ability PrX (E(X + α) + E(X) = β) where X is uniformly distributed over the
messages.

Lai [7] realized that by writing the output difference as a derivative, we
arrive at a formalism that leads to higher-order differentials. First we define the
derivative of E at x in the direction α as:

ΔαE(x) := E(x + α) + E(x).

This discrete derivative shares many of the properties of continuous derivatives
over the real numbers: both are additive, commutative, and reduce the degree of
the function they are applied to by at least 1. The discrete derivative furthermore
features a variant of the product rule (see [7] for details).

Using this derivative, we can now define a higher-order derivative as a con-
catenation of discrete derivatives as defined above and evaluate it as follows:

Δα1,...,αd
E(x) =

∑

α∈L(α1,...,αd)

E(x + α)

1 To be precise, we assume here that α, x ∈ F
n
2 , β ∈ F

m
2 , and E : Fn

2 → F
m
2 .

546 T. Tiessen

where L(α1, . . . , αd) is the linear space spanned by α1, . . . , αd. In this definition it
is assumed we have the more interesting case where α1, . . . , αd are linearly inde-
pendent as the higher-order derivative always evaluates to zero if they are not.

Similarly to the simple derivative used in standard differential cryptanalysis,
we can try to find input differences and output differences that show a strong
correlation in the higher-order derivative, i.e., we can try to find a set of input
differences α1, . . . , αd and an output difference β such that Δα1,...,αd

E(x) = β
for as many x as possible. A higher-order differential of order d is then defined as
a set of input differences α1, . . . , αd and an output value β with the associated
probability PrX (Δα1,...,αd

E(X) = β) where X is again uniformly distributed
over the messages.

There are two problems that we encounter when trying to find such combina-
tions of input differences and output values, and these problems already exist in
the case of standard differential cryptanalysis. Firstly, it would be computation-
ally too expensive to evaluate the derivative at all possible values x. Secondly,
in applications of differential cryptanalysis the function E is a cipher which is a
function parametrized by a key unknown to the attacker, so it will not even be
possible to take the exact derivative without knowledge of the key.

In standard differential cryptanalysis, both of these difficulties can be over-
come by utilizing the following approach. The cipher is split into a sequence of
rounds (luckily most ciphers are round-based anyhow) where each round by itself
does not depend on the key and the key is only applied in between rounds. For
each round it is then usually easy to determine the probability that an input pair
with a given difference is mapped to a given output difference. The trick is now
to approximate the probability that an input pair follows a trail of intermediate
differences as the product of the probabilities of each round transition. By sum-
ming these approximation for all possible trails, we arrive at an approximation
for the probability that the input difference is mapped to the output difference
irregardless of the differences taken in between rounds, the probability of the
differential.

While this approach is an approximation at best and can fail in certain cir-
cumstances (see for example [4]), it has proven extremely useful in the practical
cryptanalysis of ciphers. It allows us often to efficiently approximate the proba-
bility of differentials (i.e., the probability that a given input difference is mapped
to a given output difference) by summing only those trails that contribute signif-
icantly to its probability. For a discussion of the theoretical framework for this,
we refer to [8].

Why does this approach fail when we try to apply it to higher-order differen-
tials? Unlike a standard differential which has exactly one input difference and
one output difference, a higher-order differential is taken with respect to a basis
of differences (or vectors). But its output is a single value: the sum of the output
messages. If we now try to iterate such a higher-order differential, we run into
the problem of identifying the output value of one rounds with the set of input
differences for the next rounds, or more precisely with the problem of identifying
it with the space that is spanned by those basis vectors.

From Higher-Order Differentials to Polytopic Cryptyanalysis 547

A first guess how to associate the output value with an input space might be
to assume it is uniformly randomly chosen from all spaces of the right dimension
that sum to the value. But clearly this does not work as all spaces sum to zero,
so we cannot associate non-zero output values with a linear (or affine) space.

Ignoring the fact that the messages are summed at the end of a higher-order
derivative and trying to work with affine subspaces as a good representation of
intermediate states fails similarly: the messages will generally be in arbitrary
position to each other after the first round. Thus to adequately represent the
intermediate states of a higher-order differential we need to allow the messages
to be in arbitrary position to each other.

Before we look into constructing trails where the states are sets of messages in
arbitrary position (which is exactly what polytopic trails are), let us mention the
two methods which are used to successfully evaluate higher-order differentials
despite the lack of trails for them. The first one is using degree arguments. As
a higher-order derivative of order d reduces the algebraic degree of function
by at least d, we can determine that certain higher-order derivatives have to
evaluate to zero by finding sufficient lower bounds for the degree of the cipher.
The other method uses structural properties of the cipher to determine that
certain terms will not be present in the algebraic representation of the cipher
which again determines some higher-order derivatives to evaluate to zero (see
for example [6,10]).

3 Overview over the Polytopic Framework

To be able to accurately describe the set of values in between the rounds of the
cipher which we are taking the derivative over we need to describe them as what
they are, tuples of points in the state space. We will call such a tuple a polytope.

In this way, we can describe the higher-order derivative as a polytope that
consists of the values in the input space which is then transformed to other
polytopes while traversing the rounds and finally reduced from a polytope to a
single value by summing all values contained in the polytope.

We can reduce the information that we need to describe polytopes in this
usage scenario by disregarding the absolute position of the messages in the state
space and only caring about their relative positions. Thus we will regard two
tuples of messages that can be translated to each other by shifting in the state
space as equivalent. The relative positions of the messages to each other are
entirely determined by picking one message as an anchor and specifying the
position of all other messages in the polytope with respect to this anchor message.
We can thus reduce the number of values needed to describe the polytope by one.

Such a description of a polytope is called a d-difference where d specifies the
number of differences needed to specify all relative positions, i.e., d is one lower
than the number of values in the polytope. Thus for example for a pair of values,
we only need one difference to describe the pair when disregarding the absolute
position in state space as we know well from standard differential cryptanalysis.
For a set of four messages we would then need a tuple of 3 differences, the
differences of message 2, 3 and 4 with regard to the first message.

548 T. Tiessen

When we want to know the probability that a polytope with a given input d-
difference is mapped to a polytope with a given output d-difference, we encounter
the same two problems that we had in standard differential cryptanalysis. Luckily
now, we can apply the same methodology to counter this. The probability of
a trail of d-differences is determined as the product of the round transition
probabilities, the probability of a transition over the whole cipher with fixed
input and output d-differences is determined as the sum of all trails that have
exactly those input and output d-differences. The analogy to a differential in
standard differential cryptanalysis is a polytopic transition where we fix only
the input and output d-differences but not the intermediate ones. For a rigorous
description of this framework, we refer to the EUROCRYPT paper.

Let us go back to the problem of finding trails for higher-order differentials.
The input to a higher-order differential uniquely corresponds to a d-difference.
The output does not correspond to a single d-difference but to the set of all
d-differences that sum to this output value. We can thus now describe the proba-
bility of the higher-order differential as the sum of all polytopic transitions where
the input d-difference corresponds to the input to the higher-order differential
and where the output d-difference sums to the output value of the higher-order
differential. We can thus principally determine the probability of a higher-order
differential using the same methodology that we use for standard differentials:
we sum the probability of all trails that correspond to the transitions.

Can this approach be used to successfully determine the probability of higher-
order differentials in practice? Unfortunately, as it turns out, this does generally
not seem to be the case. The underlying problem is that the probability of poly-
topic trails is usually much lower than the probability of trails in differential
cryptanalysis. The probabilities are so low that it is not possible to determine a
good lower bound for the probability of a polytopic transition by simply sum-
ming the probabilities of trails. And thus it is not possible to practically deter-
mine a lower bound for the probability of higher-order differentials in typical
cryptanalytic cases.

The fact that the probabilities of polytopic trails are so low not only makes
determination of the probabilities of higher-order differentials impractical, it also
make polytopic transitions uninteresting as a substitute for standard differential
attacks: for any polytopic transition there exists a differential of at least the
same probability. While this restricts usage of polytopic cryptanalysis in the
standard setting, we will see in the next section that the framework nonetheless
has practical applications.

4 Impossible Polytopic Transitions

The setting where polytopic transitions turn out to be useful is the setting
where we consider transitions of probability zero: impossible transitions. The
central property that determines the quality of an impossible transition attack
is the ratio of impossible transitions to possible transitions, i.e., to transitions
of probability strictly greater than one. While using polytopic transitions in the

From Higher-Order Differentials to Polytopic Cryptyanalysis 549

standard attack setting is not particularly useful due to the increased diffusion of
the d-differences, in the impossible setting the diffusion is countered by an expo-
nential increase in the total number of transitions causing the ratio of impossible
to possible transitions to shift in the favor of the impossible transitions.

When we describe a polytope consisting of d+1 messages as a d-difference, we
increase the state size, i.e., the number of possible d-differences by an exponent
of d in comparison to the possible number of single differences. At the same
time, the diffusion will increase by at most a constant factor. This allow us to
choose the number d sufficiently large to ensure a favorable ratio of impossible
to possible transitions: by increasing d we can make the ratio of possible to
impossible transitions arbitrarily small.

While this principally would allow for excellent attacks, the problem now lies
elsewhere: how can we efficiently tell possible from impossible transitions? The
most obvious and straightforward way is to exhaustively compute a set of all
reachable d-differences and use this set to distinguish possible from impossible
transitions. To reduce both the memory and computational cost needed for this,
a meet-in-the-middle approach can be employed. In this approach, two sets of
reachable d-differences in the middle of the cipher are determined while coming
from both ends of the cipher. When depending on whether or not a collision in
these two sets is found, the transition is determined to be possible or impossible.
This is the approach that has been used in the EUROCRYPT paper.

A more efficient way of determining the possibility of transitions is to use
structural properties of the cipher to find large enough sets of impossible tran-
sitions. For standard impossible differential attacks a very successful method is
the so-called miss-in-the-middle approach [1] which directly constructs a suffi-
ciently large set of impossible differentials. An alternative approach could be
to use structural properties of the cipher to determine a sufficiently small, effi-
ciently testable super-set of all possible transitions, again indirectly giving us a
large set of impossible transitions. As we demonstrated, higher-order differen-
tials correspond to a particular collection of polytopic transitions. And indeed,
those methods that use structural properties of the cipher to determine deter-
ministic higher-order differentials can be equivalently seen as methods that effi-
ciently determine properties of reachable output d-differences, thus specifying
a super-set of all possible polytopic transitions. The standard implementation
of higher-order differential attacks using structural properties of the cipher to
determine non-probabilistic higher-order differentials can thus be seen as partic-
ular versions of impossible polytopic transition attacks. Apart from these attack
types, it remains an open question though how structural properties of a cipher
can determine such a superset when the polytopic transition does not correspond
to a higher-order differential.

5 Comparison to Other Attack Vectors

There already exists a larger repertoire of attack vectors that can be wielded
against ciphers. How does polyptopic cryptanalysis differ from those attack vec-
tors? Is it just an existing attack vector in disguise?

550 T. Tiessen

A property that sets polytopic cryptanalysis apart from differential and lin-
ear cryptanalysis is an increased use of the correlation between different input
messages and output messages. In linear cryptanalysis, correlation is only mea-
sured on the input message and the corresponding output message. In differential
cryptanalysis, we measure only the correlation between two input messages and
there corresponding outputs. In polytopic cryptanalysis though by considering
the correlations between inputs and outputs of larger tuples, we make better use
of the data that we use. This is what essentially allows the impossible polytopic
attacks of [9] to have such a low data-complexity.

We already saw that polytopic cryptanalysis can be seen as an extension to
the differential cryptanalysis framework sufficiently general to include higher-
order differentials. To demonstrate how impossible polytopic attacks differ from
differential attacks and other attack vectors, let us consider the following con-
structed toy cipher. Our cipher has an 8-bit block size and a round that consists
of an application of the Rijndael S-box (see [3]) to the state, followed by the
XOR-addition of a round key. All round keys are independent and before the
first round, a whitening key is added to the input message.

Let us assume that the cipher has sixteen rounds and that our goal is a key
recovery attack. Since the Rijndael S-box achieves excellent diffusion, differential
and linear attack are easily be thwarted. This includes impossible differential
attack as only two rounds are needed to achieve full diffusion and thus impossible
differentials seize so exist after only the first few rounds. This is not true though
for impossible polytopic transitions if we choose d sufficiently large.

For any d, after r rounds there are at most 28·r reachable d-differences out of
a total of 2d·8 d-differences. Thus if we set d for example to 9, we can guarantee
that after eight rounds, only a fraction of 1 over 256 d-differences is reachable.
If we thus guess the last eight round keys and decrypt the last eight rounds,
we can filter out 255 out of 256 key guesses using only a set of 10 texts. As
we can precompute the list of reachable d-differences at a time cost of 28·8 and
an equivalent memory cost, the total time complexity also corresponds to this
value.

From the description of this attack, it is clear that the closest related attack
is a meet-in-the-middle attack. And indeed impossible polytopic attacks can be
seen as a meet-in-the-middle attack where the collision is not found on the state
itself, but rather on the d-difference.

6 Discussion

We started out by finding a way to construct trails for higher-order differentials
in the hope to be able to determine the probability of probabilistic higher-order
differentials efficiently. While we succeeded with the former by constructing poly-
topic trails and transitions, we failed with the latter. Interestingly though the
construction of the polytopic framework did not turn out to be a theoretical
dead-end but proved useful when applied to probability zero transitions, impos-
sible transitions.

From Higher-Order Differentials to Polytopic Cryptyanalysis 551

The attacks that were enabled by this framework (as published in [9] were
nonetheless of a somewhat restricted nature: low-data attack on few rounds.
Whether or not polytopic cryptanalysis can be applied in a broader collection
of attack scenarios depends on an number of open issues:

– Is it possible to use structural properties of ciphers to efficiently determine
the possibility of a given polytopic transition? This excludes of course simple
relabeling of the existing techniques of deterministic higher-order differentials.
If such techniques exist they could be used to circumvent the restrictions of
polytopic attacks to few rounds currently imposed by the strong diffusion and
growth of the number of reachable d-differences.

– Are there attack scenarios where determining the probability of higher-order
differentials using the representation as a collection of polytopic trails proves
sufficiently efficient to be useful in an attack? Are there more effective meth-
ods of determining this probability that avoid iterating through the list of
polytopic trails (potentially using structural properties)?

– Are there other efficient attack vectors that make use of the correlation
between larger tuples of texts than pairs? Or are there alternatively strong
theoretical arguments why efficient attacks are restricted to using single texts
or pairs (such as in linear and differential cryptanalysis)?

We hope that this brief article might serve as an example of how sometimes
formalizations that do not directly lead in the direction that one initially hopes
for can still prove valuable when we switch the setting. Potentially some ideas
may serve someone as an inspiration to derive improved, prospective attack
vectors on symmetric ciphers.

References

1. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. J. Cryptol. 18(4), 291–311 (2005)

2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002)

4. Daemen, J., Rijmen, V.: Plateau characteristics. IET Inf. Secur. 1(1), 11–17 (2007)
5. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE

1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). doi:10.1007/
3-540-60590-8 16

6. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). doi:10.1007/
3-540-45661-9 9

7. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptogra-
phy, Two Sides of One Tapestry, pp. 227–233. Kluwer Academic Publishers, Berlin
(1994). doi:10.1007/978-1-4615-2694-0 23

http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/978-1-4615-2694-0_23

552 T. Tiessen

8. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991). doi:10.1007/3-540-46416-6 2

9. Tiessen, T.: Polytopic cryptanalysis. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 214–239. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49890-3 9

10. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 12

http://dx.doi.org/10.1007/3-540-46416-6_2
http://dx.doi.org/10.1007/978-3-662-49890-3_9
http://dx.doi.org/10.1007/978-3-662-49890-3_9
http://dx.doi.org/10.1007/978-3-662-46800-5_12

Division Property: Efficient Method to Estimate
Upper Bound of Algebraic Degree

Yosuke Todo1,2(B)

1 NTT Secure Platform Laboratories, Tokyo, Japan
todo.yosuke@lab.ntt.co.jp

2 Kobe University, Kobe, Japan

Abstract. We proposed the division property, which is a new method
to find integral characteristics, at EUROCRYPT2015. Then, we applied
this technique to analyze the full MISTY1 at CRYPTO2015. After the
proposal of the two papers, many follow-up results have been researched
at major conferences. In this paper, we first expound the integral and
higher-order differential cryptanalyses in detail and focus the similarities
and differences. As a result, we conclude that both cryptanalyses are
the same in practical. Nevertheless, both cryptanalyses use the different
method to find characteristics: the propagation characteristic of integral
properties is evaluated in the integral cryptanalysis and the upper bound
of the algebraic degree is evaluated in the higher-order differential crypt-
analysis. Our first discovery is that each of the two methods has its own
advantages and disadvantages. Moreover, there are some experimental
characteristics that cannot be proven by either of both methods. These
observation causes significant motivation that we developed the division
property. We next expound some important follow-up results, e.g., the
bit-based division property at FSE2016, the parity set at CRYPTO2016,
the MILP-based propagation search at ASIACRYPT2016.

Keywords: Division property · Integral cryptanalysis · Higher-order
differential cryptanalysis

1 Introduction

Higher-Order Differential Cryptanalysis. After the proposal of the differ-
ential cryptanalysis [6], many extended cryptanalyses have been proposed like
the impossible differential [5,20], integral [22], and meet-in-the-middle attacks
[15]. The higher-order differential cryptanalysis is one of such extensions. The
concept was first introduced by Lai [23] and the advantage over the conventional
differential cryptanalysis was studied by Knudsen [21]. Assuming the algebraic
degree of the target block cipher Ek is upper-bounded by d for all k, the dth order
differential is always constant and the (d + 1)th order differential is always zero.
Then, we can distinguish the target cipher Ek as ideal block ciphers because it
is unlikely that ideal block ciphers have this property, and we call this property
the higher-order differential characteristics in this paper.
c© Springer International Publishing AG 2017
R.C.-W. Phan and M. Yung (Eds.): LNCS 10311, Mycrypt 2016, pp. 553–571, 2017.
DOI: 10.1007/978-3-319-61273-7 30

554 Y. Todo

Integral Cryptanalysis. The similar technique to the higher-order differential
cryptanalysis was used as the dedicated attack against the block cipher Square
[13], and the dedicated attack was later referred to the square attack in several
papers [14,18,39]. Then, some extensions of the square attack were proposed
like the multi-set [7], saturation [25], and internal collision cryptanalyses [17].
In 2002, Knudsen and Wagner then formalized the square cryptanalysis as the
integral cryptanalysis [22]. In the integral cryptanalysis, attackers first prepare
N chosen plaintexts. If the XOR of all corresponding ciphertexts is 0, we say that
the cipher has an integral characteristic with N chosen plaintexts. The integral
characteristic is found by evaluating the propagation of four integral properties:
all (A), constant (C), balance (B), and unknown (U).

Division Property. Before the introduction of the division property, it is
important to understand the difference between the higher-order differential
and integral cryptanalyses. Actually, we can regard both cryptanalyses as the
same cryptanalysis. Nevertheless, the higher-order differential and integral char-
acteristics are constructed by completely different methods, and either of both
methods has its own advantages and disadvantages. Moreover, there are some
experimental characteristics that cannot be proven by either of both methods.
These observation causes significant motivation that we developed the division
property.

At EUROCRYPT2015, we proposed the division property, which is a novel
technique to find integral (higher-order differential) characteristics [33]. This
technique is the generalization of the integral property that can also exploit the
algebraic degree at the same time. As a result, the division property can find
integral characteristics that cannot be found by the two conventional methods.
Let X be a subset whose elements take n-bit values, and assume that the set
fulfills the division property Dn

k . Then,
⊕

x∈X
πu(x) is 0 when w(u) < k, and⊕

x∈X
πu(x) is unknown when w(u) ≥ k, where w(u) denotes the Hamming

weight of u ∈ F
n
2 . The division properties Dn

n, Dn
2 , and Dn

1 correspond to the
integral properties A, B, and U , respectively. Clearly, the division properties from
Dn

3 to Dn
n−1 are not used in the integral property. Moreover, let us consider the

set S(X) whose elements are computed by applying the S-box S for n-bit values
in X. Then, if the algebraic degree of the S-box is at most d, the propagation of
the division property is Dn

k → Dn
�k/d�.

Follow-Up Researches. The proposal paper of the division property at
EUROCRYPT2015 only shows the usefulness of generic attacks against Feis-
tel and Substitution-Permutation networks. To insist the usefulness of the
division property, we applied the new technique to the cryptanalysis on
full MISTY1 at CRYPTO2015 [32]. Then, many follow-up results have been
reported: application to generalized Feistel [42], LBlock [37], and TWINE [30]
at INDOCRYPT2015 [41], bit-based division property at FSE2016 [34], parity
set at CRYTPTO2016 [8], and MILP-based evaluation of the propagation of the
division property at ASIACRYPT2016 [38]. Nowadays, new ciphers that discuss

Division Property: Efficient Method to Estimate Upper Bound 555

the security for the analysis using the division property in advance have been
proposed like SKINNY [4], Mysterion [19], and Sparx and LAX [16].

2 Motivations of Division Property

2.1 Block Ciphers and Its Construction

Block ciphers is symmetric-key ciphers whose input and output lengths are fixed,
and n-bit block ciphers denote block ciphers with n-bit input and output. The
claimed security is generally κ bits when block ciphers accept κ-bit secret keys.
Since block ciphers support only fixed-length message, we have to use modes of
operations for block ciphers like ECB, CBC, and CTR to support variable-length
message. Block ciphers are generally designed using iterating structure. First,
round functions, which are high efficient but weak block ciphers, are designed,
and block ciphers are constructed by iterating the round function several times
with different round keys. Here, round keys are generated from the secret key
using the key schedule. When round functions are iterated R times, we call it
R-round block ciphers.

2.2 Higher-Order Differential Cryptanalysis

The concept of the higher-order differential cryptanalysis was first introduced
by Lai [23] and the advantage over the traditional differential cryptanalysis was
studied by Knudsen [21]. Let Ek be an n-bit block cipher, and the traditional
differential cryptanalysis focuses on

ΔαEK(x) = EK(x + α) − EK(x)

and recovers the secret key by analyzing the relationship between α and
ΔαEk(x). On the other hand, the higher-order differential cryptanalysis focuses
on ith order differential as

Δ(i)
α1,α2,...,αi

EK(x) = Δαi
(Δ(i−1)

α1,α2,...,αi−1
EK(x))

and recovers the secret key by analyzing the relationship between (α1, α2, . . . , αi)
and Δ

(i)
α1,α2,...,αiEK(x). For example, the 2nd order differential denotes as

Δ(2)
α1,α2

EK(x) = Δα2(EK(x + α1) − EK(x))

= EK(x + α1 + α2) − EK(x + α2) − EK(x + α1) + EK(x).

Let deg(Ek) be the algebraic degree of Ek, and Lai showed the following rela-
tionship.

deg(ΔαEk) ≥ deg(Ek) − 1.

Therefore, assuming the algebraic degree of Ek is at most d, the dth and (d+1)th
order differentials are constant and zero, respectively. It is obvious that the
algebraic degree has to be at least min(n − 1, κ − 1) if block ciphers accept
κ-bit secret keys. Then, Knudsen showed the advantage over the conventional
differential cryptanalysis by using the toy ciphers [21].

556 Y. Todo

round key

Plaintext set

round key

Ciphertext set

Integral characteristic Key recovery

Fig. 1. Outline of the integral cryptanalysis.

2.3 Integral Cryptanalysis

The similar technique to the higher-order differential cryptanalysis was used as
the dedicated attack against the block cipher Square [13]. Since this dedicated
attack is powerful cryptanalysis, it is widely applied to various block ciphers,
where it was referred to the square attack [14,18,39]. Then, some extensions of
the square attack were proposed like the multi-set [7], saturation [25], and inter-
nal collision cryptanalyses [17]. In 2002, Knudsen and Wagner then formalized
the square cryptanalysis as the integral cryptanalysis. Figure 1 shows the outline
of the integral cryptanalysis. Attackers first prepare N chosen plaintexts. If the
XOR of all corresponding ciphertexts is 0 for all keys, we say that the cipher
has an integral characteristic with N chosen plaintexts. Namely, we prepare the
plaintext set X satisfying

∑

p∈X

T (Erk(p)) = 0 (1)

for all round key rk, where the function T is observing function and the simple
truncation function is often used. The probability that Eq. (1) holds for ideal
ciphers is negligible. Therefore, we can execute a distinguishing attack by con-
struction the integral characteristic.

The integral cryptanalysis additionally append a key recovery step to the
integral characteristic. Assuming that block ciphers has an r-round integral
characteristics, attackers guess round keys used in the last s rounds and attack
(r+s) rounds. If guessed round keys are correct, Eq. (1) always holds. Therefore,
if Eq. (1) does not hold, the guessed round key is incorrect. By repeating this
procedure, attackers recover the correct round keys used in the last s rounds.

2.4 What is Different Between Integral and Higher-Order
Differential Cryptanalyses

The definition of the higher-order differential cryptanalysis is different from that
of the integral cryptanalysis. However, they are often regarded as the same crypt-
analysis. To achieve high performance under computer, almost all operations of

Division Property: Efficient Method to Estimate Upper Bound 557

block ciphers are defined using bit operations like XOR and bit-oriented AND.
Then, both additions of the integral cryptanalysis and differences become XOR.
For example, the 2nd order differential is represented as

Δ(2)
α1,α2

EK(x) = EK(x ⊕ α1 ⊕ α2) ⊕ EK(x ⊕ α1) ⊕ EK(x ⊕ α2) ⊕ EK(x)

=
⊕

p∈V [α1,α2]

EK(p),

where V [α1, α2] is linear subspace whose basis is (α1, α2). Therefore, the 2nd
order differential is the same as the integral characteristic with X = V [α1, α2].

The higher-order differential cryptanalysis uses only a linear subspace as the
input set, but the integral cryptanalysis can use arbitrary input set. However,
since inputs and outputs of all components of block ciphers are represented
as bit strings, almost all previous integral cryptanalyses have never used input
sets that are not linear subspace. Therefore, there is no difference between the
higher-order and integral characteristics once both cryptanalyses are applied to
real ciphers.

2.5 How to Find Integral Characteristics

In the practical use, the distinction between the higher-order and integral crypt-
analyses is not important. It is rather more important to understand how to find
their characteristics. The higher-order differential cryptanalysis focuses on the
algebraic degree to construct the characteristics, while the integral cryptanalysis
evaluates the propagation of the integral property to construct the characteris-
tic. Nowadays, when an analysis mainly exploits the algebraic degree, it is called
“the higher-order differential cryptanalysis.” On the other hand, when an analy-
sis mainly exploits the integral property, it is called “the integral cryptanalysis.”

Degree Estimation. The higher-order differential characteristics is con-
structed by evaluating the upper bound of the algebraic degree, but it is not easy
in general. The most classical method uses the fact that the algebraic degree of
an r-round block cipher is upper-bounded by dr if the algebraic degree of each
round function is at most d. However, this method is too rough evaluation, and
the upper bound is generally more small. Canteaut and Videau showed tighter
bound of the degree of iterated round functions [11], and Boura et al. then
improved the bound in [9]. This improved bound is useful to evaluate the upper
bound on Substitution-Permutation network (SPN).

Theorem 1 [9]. Let S be a function from F
n
2 into F

n
2 corresponding to the

concatenation of m smaller S-boxes, defined over F
n0
2 . Let δk be the maximal

degree of the product of any k bits of anyone of these S-boxes. Then, for any
function G from F

n
2 into F2, we have

deg(G ◦ S) ≤ n − n − deg(G)
γ

,

558 Y. Todo

A C C C
C A C C
C C A C
C C C A

A C C C
C C C C
C C C C
C C C C

A
A
A
A

A A A A
A A A A
A A A A
A A A A

B B B B
B B B B
B B B B
B B B B

224 sets 224 sets 224 sets 224 sets

C C C
C C C
C C C
C C C

Fig. 2. Integral distinguisher on 4-round AES

where

γ = max
1≤i≤n0−1

n0 − i

n0 − δi
.

For example, let us consider SPN ciphers using four 4-bit S-boxes. Since the
algebraic degree of 4-bit S-boxes is at most 3, the algebraic degree of the
2-round cipher is at most 32 = 9. When we use the classical method, the alge-
braic degree of the 3-round cipher is at most min(15, 33 = 27) = 15 but it is not
tight. On the other hand, Theorem1 shows that the algebraic degree is at most
�16 − 16−9

3 	 = 13. Boura et al. showed integral distinguishers on Keccak [12]
and Luffa [10] by using this theorem. We cannot apply Theorem1 to non-SPN
ciphers, and real block ciphers have more complicated round function. Therefore,
this method is still far from the tight lower bound.

Since the theoretical estimation of the algebraic degree is difficult, a brute-
force method is often used [31], i.e., all algebraic equations are resolved. The
accurate algebraic degree is evaluated by using this method, but it generally
requires practically infeasible time complexity. Therefore, the application is very
limited.

Integral Property. The propagation of the integral property is most widely
applied to construct integral characteristics, and many integral characteristics
have been constructed by evaluating the propagation of the integral property
[22,24,37,39,40]. It uses four integral properties as follows:

– ALL (A): Every value appears the same number in the multiset.
– BALANCE (B): The XOR of all texts in the multiset is 0.
– CONSTANT (C): The value is fixed to a constant for all texts in the multiset.
– UNKNOWN (U): The multiset is indistinguishable from one of n-bit random

values.

Knudsen and Wagner showed that AES has the 4-round integral distinguisher
with 232 chosen plaintexts [22] (see Fig. 2).

Unfortunately, the integral property does not find effective characteristics if
block ciphers consist of non-bijective functions, e.g., DES [1] and Simon[3] con-
sist of non-bijection functions. Moreover, since the propagation does not clearly
exploit the algebraic degree of block ciphers, it tends not to construct effective
characteristics on block ciphers with low-degree round functions.

Division Property: Efficient Method to Estimate Upper Bound 559

2.6 Why Division Property is Developed?

The development of the division property is motivated from following two obser-
vations.

Observation 1. Let us consider the integral characteristic of AES. The propa-
gation of the integral property can find 4-round integral characteristics with 232

chosen plaintext, while the algebraic degree of 4-round AES is upper-bounded by
126 even if Theorem1 is used. Therefore, the propagation of the integral property
is superior to the degree estimation.

Observation 2. Let us consider the integral characteristic of a modified AES,
where S-boxes with degree 2 are used instead of the original S-box. Since the
propagation of the integral property is not affected by the algebraic degree of S-
boxes, the found characteristics is the same as the original AES. On the other
hand, the algebraic degree of 7-round modified AES is upper-bounded by 96 when
Theorem1 is used. Therefore, the degree estimation is superior to the propagation
of the integral property.

Observations 1 and 2 implies that each of the two methods has its own advan-
tages and disadvantages. Specifically, S-boxes are regarded as black boxes in the
propagation of the integral property, i.e., it constructs integral characteristics
by mainly exploiting the diffusion part of block ciphers. On the other hand,
the degree estimation can exploit the algebraic degree of S-boxes but is difficult
to well exploit the diffusion part, i.e., it constructs integral characteristics by
mainly exploiting the confusion part of block ciphers. Therefore, it is natural
that the method that can exploit both diffusion and confusion parts of block
ciphers is desirable.

3 Division Property

The division property is a novel technique to find integral (higher-order differ-
ential) characteristics and is the generalization of the integral property that can
also exploit the algebraic degree at the same time. Let us consider the properties
of input and output multisets for one bijective S-box with degree d. If an input
multiset has A, the output multiset also has A. If an input multiset has B, the
output multiset has U . Moreover, we can prepare the set of 2d+1 input texts
that the output multiset has B because the algebraic degree of the S-box is d,
but just using the integral property does not exploit this property. To exploit
useful properties between A and B, we redefine A and B by the same notation
and then introduce the division property by generalizing the redefinition.

Redefinition of A. Let X be a multiset whose elements take an n-bit value. We
first consider features of the multiset X satisfying A. If we choose one bit from
n bits and calculate the XOR of the chosen bit in the multiset, the calculated
value is always 0. Moreover, if we choose at most (n − 1) bits from n bits and
calculate the XOR of the AND of chosen bits in the multiset, the calculated

560 Y. Todo

value is also always 0. However, if we choose all bits from n bits and calculate
the XOR of the AND of n bits in the multiset, the calculated value is unknown1.
These features are summarized as

⊕

x∈X

πu(x) =

{
0 w(u) < n,

unknown w(u) = n,

where πu is the bit product function defined as πu(x) :=
∏n

i=1 x[i]u[i] and w(u)
is the Hamming weight of u ∈ F

n
2 . Assuming the multiset has A, the parity is

always even for any u satisfying w(u) < n. On the other hand, the parity is
unknown for u = 1n.

Redefinition of B. We next consider features of the multiset X satisfying B.
If we choose one bit from n bits and calculate the XOR of the chosen bit in the
multiset, the calculated value is always 0. However, if we choose at least two bits
from n bits and calculate the XOR of the AND of chosen bits in the multiset,
the calculated value becomes unknown. These features are summarized as

⊕

x∈X

πu(x) =

{
0 w(u) < 2,

unknown w(u) ≥ 2,

Assuming the multiset has B, the parity is always even for any u satisfying
w(u) < 2. On the other hand, the parity is unknown for any u satisfying w(u)≥2.

3.1 Definition of Division Property

From the redefinition of the A and B using the bit product function, we define
the division property as follows.

Definition 1 (Division Property). Let X be a multiset whose elements take
a value of Fn

2 , and k takes an integer value between 0 and n. When the multiset
X has the division property Dn

k , it fulfils the following conditions: The parity of
πu(x) for all x ∈ X is always even if w(u) is less than k. Moreover, the parity
becomes unknown if w(u) is greater than or equal to k.

In summary, for the multiset X satisfying Dn
k ,

⊕

x∈X

πu(x) =

{
0 w(u) < k,

unknown w(u) ≥ k.

Namely, the set of u ∈ F
n
2 is divided into the subset that

⊕
x∈X

πu(x) is unknown
and the subset that

⊕
x∈X

πu(x) is 0.

1 If all values appear the same even number in the multiset, the calculated value is
always 0. If all values appear the same odd number in the multiset, the calculated
value is always 1. Thus, we cannot guarantee whether the calculated value is 0 or
not when we consider the multiset satisfying A. In this case, we say the calculated
value is unknown.

Division Property: Efficient Method to Estimate Upper Bound 561

Example 1. Let X be a multiset whose elements take a value of F4
2. As an exam-

ple, we prepare the input multiset X as

X := {0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, 0xE}.

A following table calculates the summation of πu(x).

u
∑

πu(x)
⊕

πu(x) u
∑

πu(x)
⊕

πu(x)

0000 10 0 1000 4 0

0001 6 0 1001 2 0

0010 6 0 1010 2 0

0011 4 0 1011 1 1

0100 4 0 1100 2 0

0101 2 0 1101 1 1

0110 2 0 1110 1 1

0111 0 0 1111 0 0

For all u satisfying wu < 3,
⊕

x∈X
πu(x) is 0. Therefore, the multiset has the

division property D4
3.

Each definition of B and U is essentially the same as that of Dn
2 and Dn

1 ,
respectively. However, the definition of A is different from that of Dn

n. The mul-
tiset satisfying A always has the division property Dn

n but not vice versa. For
instance, the multiset satisfying the EVEN property, which is defined that the
number of occurrences is even for all values [28], does not always have A, but
it has Dn

n. In this paper, we use only Dn
n instead of A because it is sufficient to

use Dn
n from the viewpoint of the construction of integral characteristics.

3.2 Propagation of Division Property

Let s be an S-box whose degree is d. Let X be an input multiset whose elements
take a value of Fn

2 . Let S(X) be an output multiset whose elements are calculated
from s(x) for all x ∈ X. We assume that X has Dn

k , and want to evaluate the
division property of S(X). In the division property, the set of u is divided into
the subset that

⊕
x∈X

πu(x) is unknown and the subset that
⊕

x∈X
πu(x) is

0. Therefore, we divide the set of v into the subset that
⊕

s(x)∈S(X) πv(s(x))
is unknown and the subset that

⊕
s(x)∈S(X) πv(s(x)) is 0. Since the parity of

πv(s(x)) for all s(x) ∈ S(X) is equal to that of (πv ◦ s)(x) for all x ∈ X, we
evaluate

⊕
x∈X

(πv ◦ s)(x).

Proposition 1 (Propagation of Division Property). Let s be an function
(S-box) from n bits to n bits, and the degree is d. Assuming that an input multiset
X has the division property Dn

k , the output multiset S(X) has Dn
� k
d �. In addition,

assuming that the S-box is a permutation, the output multiset S(X) has Dn
n when

the input multiset has Dn
n.

562 Y. Todo

s

D DSet of u Set of u

unknown even parity

Fig. 3. Propagation of division property

Example 2. Let us consider a following 4-bit S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

s(x) 8 C 0 B 9 D E 5 A 1 2 6 4 F 3 7

The S-box is bijective and the algebraic degree is 2. We now prepare the input
multiset X as

X := {0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, 0xE},

which is the same as Example 1 and the division property is D4
3. The output

multiset is calculated as

S(X) := {0x8, 0xB, 0xB, 0xB, 0xD, 0xE, 0xA, 0x6, 0xF, 0x3},

and a following table calculates the summation of πv(y).

v
∑

πv(y)
⊕

πv(y) v
∑

πv(y)
⊕

πv(y)

0000 10 0 1000 8 0

0001 6 0 1001 5 1

0010 8 0 1010 6 0

0011 5 1 1011 4 0

0100 4 0 1100 3 1

0101 2 0 1101 2 0

0110 3 1 1110 2 0

0111 1 1 1111 1 1

For all v satisfying wv < 2,
⊕

y∈Y
πv(y) becomes 0. Therefore, the multiset Y

has the division property D4
2.

Figure 3 shows the outline of the propagation of the division property. Let
X and S(X) be input and output multisets, respectively. First, the size of the
set of u that

⊕
x∈X

πu(x) is unknown is small. However, the size of the set of
u that

⊕
x∈X

πu(s(x)) is unknown expands. If the size expands to the universal
set except for 0n, we regard that the output multiset is indistinguishable from
the multiset of random texts.

Division Property: Efficient Method to Estimate Upper Bound 563

4 Vectorial and Collective Division Property

Section 3 only shows the division property for one S-box. Since practical ciphers
consist of several S-boxes in every round, we cannot apply the division property
for practical ciphers. Therefore, we have to introduce the division property for
more complicating functions.

4.1 Vectorial Division Property

First, we define vectorial division property to accept an S-box layer, where mul-
tiple S-boxes are applied in parallel.

Definition 2 (Vectorial Division Property). Let X be the multiset whose
elements take a value of (Fn

2)m, and k is an m-dimensional vector whose ele-
ments take a integer value between 0 and ni. When the multiset X has the division
property Dn1,n2,...,nm

k , the multiset fulfils the following conditions: The parity of
πu(x) for all x ∈ X is unknown if W (u)
 k, Otherwise, the parity is always 0.

Here, for any two m-dimensional vectors k and k′, we define k
 k′ if ki ≥ k′
i

for all i (1 ≤ i ≤ m). Moreover, the division property for (Fn
2)m is referred to as

Dnm

K
for the simplicity.

Assuming the input multiset of the S-Layer has the division property Dnm

k ,
the output of the S-Layer is calculated as S(x) = (s1(x1), s2(x2), . . . , sm(xm))
for (x1, x2, . . . , xm) ∈ X. We now consider the set of v that

⊕
x∈X

πv(S(x)) is
unknown and the set of v that

⊕
x∈X

πv(S(x)) is 0. Since the output of each
S-box is calculated independently, the propagation of the division property can
also be evaluated independently. Namely, the output multiset has Dnm

k′ , where
k′

i = �ki/d�. Moreover, k′
i = n if the S-box is bijective and ki = n.

4.2 Collective Division Property

Only vectorizing the division property is still insufficient to represent the subset
of u that the parity is unknown. For simplicity, we consider a multiset X whose
elements take a value of (F8

2)
2. Assume that the number of elements in X is 256,

and two elements of x take all values from 0 to 255 independently. Then, we
consider the set of u that the parity of πu(x) for all x ∈ X is unknown.

– The parity is unknown if W (u)
 (8, 0).
– The parity is unknown if W (u)
 (0, 8).
– The parity is unknown if W (u)
 (1, 1).
– Otherwise, the parity is always even.

We can not express this feature by only using the vectorial division property.
Therefore, we collect several vectorial division properties.

564 Y. Todo

Definition 3 (Collective Division Property). Let X be a multiset whose
elements take a value of (Fn1

2 ×F
n2
2 × · · · ×F

nm
2). Let K be a set whose elements

take an m-dimensional vector whose ith element takes an integer value between
0 and ni. When the multiset X has the division property Dn1,n2,...,nm

K
, it fulfils

the following conditions:

⊕

x∈X

πu(x) =

{
unknown if there exist k ∈ K s.t. W (u)
 k,

0 otherwise.

It is obvious that the collective division property with |K| = 1 is the same as
the vectorial division property.

If there are k ∈ K and k′ ∈ K satisfying k
 k′, k can be removed from K

because it is redundant. Assume that the multiset X has the division property
Dn1,n2,...,nm

K
. If there is not an unit vector ej in K, where ej is a vector whose

jth element is 1 and the others are 0,
⊕

x∈X
xj is 0.

4.3 Propagation Rules for Simple Operations

Practical ciphers diffuses outputs of every S-box by using linear functions. To
evaluate the propagation of the division property for linear functions, four prop-
agation rules are defined as follows.

Copy. Let F be a copy function, where the input x takes a value of F
n
2 and

the output is calculated as [y1, y2] = [x, x]. Let X and S(X) be the input
multiset and the output multiset, respectively. Assuming that the multiset
X has the division property Dn

k , the multiset S(X) has the division property
Dn,n

K′ , where K
′ is calculated as follows: First, K′ is initialized to an empty

set φ. Then, for all i (0 ≤ i ≤ k),

K
′ = K

′ ∪ [k − i, i],

is calculated.
Compression by XOR. Let F be a function compressed by an XOR, where

the input [x1, x2] takes a value of (Fn
2 × F

n
2) and the output is calculated as

y = x1 ⊕ x2. Let X and S(X) be the input multiset and the output multiset,
respectively. Assuming that the multiset X has the division property Dn,n

K
,

the division property of the multiset S(X) is Dn
k′ as

k′ = min
[k1,k2]∈K

{k1 + k2}.

Here, if the minimum value of k′ is larger than n, the propagation character-
istic of the division property is aborted. Namely, a value of ⊕y∈S(X)πv(y) is
0 for all v ∈ F

n
2 .

Split. Let F be a split function, where the input x takes a value of Fn
2 and the

output is calculated as y1‖y2 = x, where [y1, y2] takes a value of (Fn1
2 ×F

n−n1
2).

Let X and S(X) be the input multiset and the output multiset, respectively.

Division Property: Efficient Method to Estimate Upper Bound 565

Assuming that the multiset X has the division property Dn
k , the multiset S(X)

has the division property Dn1,n−n1
K′ , where K

′ is calculated as follows: First,
K

′ is initialized to φ. Then, for all i (0 ≤ i ≤ k),

K
′ = K

′ ∪ [k − i, i],

is calculated. Here, (k − i) is less than or equal to n1, and i is less than or
equal to n − n1.

Concatenation. Let F be a concatenation function, where the input [x1, x2]
takes a value of (Fn1

2 × F
n2
2) and the output is calculated as y = x1‖x2.

Let X and S(X) be the input multiset and the output multiset, respectively.
Assuming that the multiset X has the division property Dn1,n2

K
, the division

property of the multiset S(X) is Dn1+n2
k′ as

k′ = min
[k1,k2]∈K

{k1 + k2}.

5 Follow-Up Works

After the proposal of the division property at EUROCRYPT2015 [33], many
follow-up researches have been proposed by both ourself and third party. At
CRYPTO2015, we first applied the division property to the cryptanalysis on full
MISTY1 [32], where we developed an improved technique for the key-XORing
S-box. Then, many follow-up results have been reported: application to general-
ized Feistel [42], LBlock [37], and TWINE [30] at INDOCRYPT2015 [41], appli-
cation to Lilliput at SAC2016 [27], bit-based division property at FSE2016
[34], parity set at CRYTPTO2016 [8], and MILP-based evaluation of the propa-
gation of the division property at ASIACRYPT2016 [38]. Nowadays, new ciphers
that discuss the security for the analysis using the division property in advance
have been proposed like SKINNY [4], Mysterion [19], and Sparx and LAX [16].

5.1 Improving Technique

Key-XORing S-box. At CRYPTO2015, we applied the division property to
cryptanalysis on MISTY1 [32], and we then proposed one extension of the divi-
sion property for the application to MISTY1. The propagation of the division
property, i.e., Dn

k → Dn
�k/d�, holds for all keyed S-box whose degree is d, but many

practical ciphers adopt key-XORing S-box for the efficiency. In the key-XORing
S-box, the round key is first XORed with the input and the public permutation
are then applied. We can sometimes improve the propagation of the division
property by exploiting this structure. In the first step, note that key XORing
does not affect the division property because it is linear function. In the second
step, we evaluate the propagation of the division property for a public function
and the focus is that we can evaluate the algebraic normal form of the public
function accurately. If the algebraic degree of πv ◦ s is smaller than w(v) × d,
it is possible that the propagation is improved. We analyzed two S-boxes S9

566 Y. Todo

and S7 used in MISTY1 and found the propagation for S7 can be improved.
Thanks to this improvement, we can find the 6-round integral characteristic on
MISTY1 and attack full MISTY1 by guessing round keys that are used in last
two rounds. At CRYPTO2016, Bar-On and Keller improved the key recovery
step of the integral cryptanalysis, and the security of full MISTY1 decreases to
about 70 bits [2].

Bit-Based Division Property and Parity Set. At FSE2016, we proposed
two extending variants of the division property: the conventional bit-based divi-
sion property and the bit-based division property using three subsets [34]. To
analyze n-bit block ciphers, the division property D�1,�2,...,�m

K
is used, where 	i

and m are chosen by attackers in the range of n =
∑m

i=1 	i. Using small 	i allows
us to exploit complicating structures of target ciphers, and D1n

K
is the most

accurate. Note that D1n

K
is not against the definition of the conventional divi-

sion property, thus we call it the conventional bit-based division property. We
applied this technique to Simon32 [3], and 14-round integral characteristics are
theoretically proven. Unfortunately, it is doubtful whether the proved 14-round
integral characteristic is tight or not because 15-round integral characteristics
were already reported in the experimental search by Wang et al. [36]. Therefore,
there is still a gap of one round between the proof and experiment. To fill up
with this gap, we then introduced the bit-based division property using three
subsets. The set of u ∈ F

n
2 is divided into two subsets according to whether⊕

x∈X
πu(x) is 0 or unknown in the conventional bit-based division property. On

the other hand, in the bit-based division property using three subsets, the set of
u ∈ F

n
2 is divided into three subsets according to whether

⊕
x∈X

πu(x) is 0, 1,
or unknown. This extension allows us to find more accurate integral character-
istic than the conventional one, and we theoretically proved the existence of the
15-round integral characteristic on Simon32.

Independently of the bit-based division property, Boura and Canteaut also
showed another view of the division property and introduced the concept of the
parity set [8] and the link with the Reed-Muller codes. Actually, the parity set is
regarded as the bit-based division property for an S-box. While the propagation
of the integer-based division property focuses on the Hamming weight of u ∈ F

n
2

that the parity is unknown, the parity set focus on u ∈ F
n
2 itself that the parity is

unknown. They evaluated the propagation for the PRESENT S-box and showed
the low-data distinguishers. Moreover, the relationship between the parity set
and the bit-based division property were discussed in [35].

MILP-Based Propagation Search. The most important and difficult open
problem that we left is to construct efficient algorithm to evaluate the propaga-
tion of the division property. In the application to MISTY1 [33], we implemented
the propagation using C++, but it requires much memory and time complexities.
Moreover, at FSE2016 [34], we could not apply the bit-based division property to
Simon family except for Simon32 because of the high complexity. This problem
was solved by using the state-of-the-art technique using mixed integer linear pro-
gramming by Xiang et al. at ASIACRYPT2016 [38]. The approach using MILP

Division Property: Efficient Method to Estimate Upper Bound 567

was first introduced by Mouha et al. for evaluating the lower bound of the num-
ber of active S-boxes on word-oriented ciphers, [26]. However, several ciphers do
not have word-oriented structure. Therefore, Sun et al. then developed a method
to model all possible differential propagations bit by bit even for the S-box [29].
At ASIACRYPT2016, Xiang et al. first introduced the division trail. To analyze
r-round ciphers, the following propagation of the division property

K0 → K1 → · · · → Kr

is evaluated, where DKi−1 is the division property for the input of ith round
function. Then, for (k0,k1, . . . ,kr) ∈ (K0×K1×· · ·×Kr), if ki−1 can propagate
to ki for all i ∈ {1, 2, . . . , r}, (k0,k1, . . . ,kr) is called r-round division trail.
If there is a division trail that r-round output becomes unknown, the r-round
output is unknown. They developed a method to model the propagation rules for
the division property and showed that all division trails are effectively evaluated
using MILP. As a result, they get new integral characteristics on Simon family,
Simeck family, PRESENT, and RECTANGLE2.

5.2 Summary of Applications

About 1.5 years has passed since the proposal of the division property, and many
applications are already reported. We summarize all results as far as we know
in Table 1.

Integral characteristics on generic structure for symmetric-key ciphers were
evaluated in [33], where (, d,m)-SPN and (, d,m)-AES are defined as follows.

Definition 4 ((, d,m)-SPN). The round function consists of an S-Layer and
P-Layer, where m 	-bit S-boxes are parallelly applied in the S-Layer, and their
outputs are diffused by the P-Layer. (, d,m)-SPN is the set of ciphers that the
algebraic degree of S-boxes in the S-Layer is at most d and the P-Layer is any
linear function.

Definition 5 ((, d,m)-AES). The state is (m×m) matrix whose cell is 	 bits.
The round function has AES-like structure, i.e., m2 	-bit S-boxes are parallelly
applied in SubBytes, each 	-bit values in the ith row is rotated i − 1 cells to
the left in ShiftRows, and m cells in each column are diffused in MixColumns.
Then, (, d,m)-AES is the set of ciphers that the algebraic degree of S-boxes in
SubBytes is at most d and MixColumns is any linear function.

Note that any cipher belonging to (, d,m)-SPN (resp. (, d,m)-AES) is always
has r-round integral characteristics if (, d,m)-SPN (resp. (, d,m)-AES) has
r-round integral characteristics.

2 We also independently evaluated the propagation of the division property on
PRESENT in [35] and get the same integral characteristics. In that paper, we intro-
duced the compact representation for the division property to evaluate the propa-
gation efficiently.

568 Y. Todo

Table 1. Summary of integral characteristics by the division property.

Target #Rounds Data Format of division property Reference Remarks

LED 6 252 416 [33] (4, 3, 4)-AES

Joltik-BC 6 252 416 (4, 3, 4)-AES

PHOTON P100 7 297 425 (4, 3, 5)-AES

PHOTON P144 7 2132 436 (4, 3, 6)-AES

PHOTON P196 8 2192 449 (4, 3, 7)-AES

PHOTON P256 8 2249 464 (4, 3, 8)-AES

Serpent 7 2124 432 (4, 3, 32)-SPN

Noekeon 7 2124 432 (4, 3, 32)-SPN

Keccak-f [800] 14 2798 5160 (5, 2, 160)-SPN

Keccak-f [1600] 15 21595 5320 (5, 2, 320)-SPN

MISTY1 6 w/2FL 263 {7, 2, 7, 7, 2, 7, 7, 2, 7, 7, 2, 7} [32]

LBlock 16 263 416 [41]

TWINE 16 263 416

Simon32 14 231 bit-based [34]

15 231 bit-based using 3 subsets

PRESENT 9 260 bit-based [35] compact

Simon48 16 247 bit-based [38] MILP

Simon64 18 263 bit-based

Simon96 22 295 bit-based

Simon128 26 2127 bit-based

RECTANGLE 9 260 bit-based

PRESENT 9 260 bit-based

6 Conclusion

This paper explained the division property, which is recent technique to find
integral characteristics. The motivation why we introduced the division property
and its concept are explained. After the proposal of the division property at
EUROCRYPT 2015, many follow-up works including technical improvement and
wide applications have been proposed, and we summarized their follow-up works.
We who are the developer of the division property hope that many follow-up
works will be proposed in future.

References

1. Data Encryption Standard (DES). National Bureau of Standards (1977). Federal
Information Processing Standards Publication 46

2. Bar-On, A., Keller, N.: A 270 attack on the full MISTY1. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 435–456. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53018-4 16

http://dx.doi.org/10.1007/978-3-662-53018-4_16

Division Property: Efficient Method to Estimate Upper Bound 569

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK families of lightweight block ciphers (2013). http://eprint.iacr.
org/2013/404

4. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 5

5. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 2

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). doi:10.1007/3-540-38424-3 1

7. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 395–405. Springer, Heidelberg
(2001). doi:10.1007/3-540-44987-6 24

8. Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53018-4 24

9. Boura, C., Canteaut, A., Cannière, C.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21702-9 15

10. Cannière, C.D., Sato, H., Watanabe, D.: Hash function Luffa - a SHA-3 candi-
date (2008). http://hitachi.com/rd/yrl/crypto/luffa/round1archive/Luffa Specifi
cation.pdf

11. Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions
and applications to higher order differential cryptanalysis. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 518–533. Springer, Heidelberg (2002).
doi:10.1007/3-540-46035-7 34

12. Daemen, J., Bertoni, G., Peeters, M., Assche, G.V.: The Keccak reference version
3.0 (2011)

13. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). doi:10.1007/
BFb0052343

14. Demirci, H.: Square-like attacks on reduced rounds of IDEA. In: Nyberg, K., Heys,
H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 147–159. Springer, Heidelberg (2003).
doi:10.1007/3-540-36492-7 11

15. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-71039-4 7

16. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Groschdl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: SPARX and LAX (full version)
(2016). http://eprint.iacr.org/2016/984, (Accepted to ASIACRYPT 2016)

17. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: AES Can-
didate Conference, pp. 230–241 (2000)

18. He, Y., Qing, S.: Square attack on reduced camellia cipher. In: Qing, S., Okamoto,
T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 238–245. Springer, Heidelberg
(2001). doi:10.1007/3-540-45600-7 27

19. Journault, A., Standaert, F.X., Varici, K.: Improving the security and effi-
ciency of block ciphers based on LS-designs. Des. Codes Crypt. 82, 1–15 (2016).
http://dx.doi.org/10.1007/s10623-016-0193-8

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
http://dx.doi.org/10.1007/978-3-662-53008-5_5
http://dx.doi.org/10.1007/3-540-48910-X_2
http://dx.doi.org/10.1007/3-540-38424-3_1
http://dx.doi.org/10.1007/3-540-44987-6_24
http://dx.doi.org/10.1007/978-3-662-53018-4_24
http://dx.doi.org/10.1007/978-3-642-21702-9_15
http://hitachi.com/rd/yrl/crypto/luffa/round1archive/Luffa_Specification.pdf
http://hitachi.com/rd/yrl/crypto/luffa/round1archive/Luffa_Specification.pdf
http://dx.doi.org/10.1007/3-540-46035-7_34
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/3-540-36492-7_11
http://dx.doi.org/10.1007/978-3-540-71039-4_7
http://eprint.iacr.org/2016/984
http://dx.doi.org/10.1007/3-540-45600-7_27
http://dx.doi.org/10.1007/s10623-016-0193-8

570 Y. Todo

20. Knudsen, L.: DEAL - a 128-bit block cipher. Technical report no. 151. Department
of Informatics, University of Bergen, Norway, February 1998

21. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). doi:10.1007/
3-540-60590-8 16

22. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). doi:10.
1007/3-540-45661-9 9

23. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello Jr., D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryp-
tography. The Springer International Series in Engineering and Computer Science,
vol. 276, pp. 227–233. Springer, Heidelberg (1994)

24. Li, Y., Wu, W., Zhang, L.: Improved integral attacks on reduced-round CLEFIA
block cipher. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 28–39.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-27890-7 3

25. Lucks, S.: The saturation attack - a bait for twofish. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002). doi:10.1007/
3-540-45473-X 1

26. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34704-7 5

27. Sasaki, Y., Todo, Y.: New differential bounds and division property of lilliput:
block cipher with extended generalized Feistel network. In: SAC (2016, in press)

28. Shibayama, N., Kaneko, T.: A peculiar higher order differential of CLEFIA. In:
ISITA, pp. 526–530. IEEE (2012)

29. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 9

30. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35999-6 22

31. Tanaka, H., Hisamatsu, K., Kaneko, T.: Strength of ISTY1 without FL function
for higher order differential attack. In: Fossorier, M., Imai, H., Lin, S., Poli, A.
(eds.) AAECC 1999. LNCS, vol. 1719, pp. 221–230. Springer, Heidelberg (1999).
doi:10.1007/3-540-46796-3 22

32. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47989-6 20

33. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 12

34. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-52993-5 18

35. Todo, Y., Morii, M.: Compact representation for division property. In: Foresti,
S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 19–35. Springer, Cham
(2016). doi:10.1007/978-3-319-48965-0 2

http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/978-3-642-27890-7_3
http://dx.doi.org/10.1007/3-540-45473-X_1
http://dx.doi.org/10.1007/3-540-45473-X_1
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/3-540-46796-3_22
http://dx.doi.org/10.1007/978-3-662-47989-6_20
http://dx.doi.org/10.1007/978-3-662-46800-5_12
http://dx.doi.org/10.1007/978-3-662-52993-5_18
http://dx.doi.org/10.1007/978-3-319-48965-0_2

Division Property: Efficient Method to Estimate Upper Bound 571

36. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of
reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014). doi:10.
1007/978-3-319-13039-2 9

37. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21554-4 19

38. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers (2016).
https://eprint.iacr.org/2016/857, (Accepted to ASIACRYPT 2016)

39. Yeom, Y., Park, S., Kim, I.: On the security of CAMELLIA against the square
attack. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 89–99.
Springer, Heidelberg (2002). doi:10.1007/3-540-45661-9 7

40. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral
attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-71039-4 23

41. Zhang, H., Wu, W.: Structural evaluation for generalized feistel structures
and applications to LBlock and TWINE. In: Biryukov, A., Goyal, V. (eds.)
INDOCRYPT 2015. LNCS, vol. 9462, pp. 218–237. Springer, Cham (2015). doi:10.
1007/978-3-319-26617-6 12

42. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, New York (1990). doi:10.
1007/0-387-34805-0 42

http://dx.doi.org/10.1007/978-3-319-13039-2_9
http://dx.doi.org/10.1007/978-3-319-13039-2_9
http://dx.doi.org/10.1007/978-3-642-21554-4_19
https://eprint.iacr.org/2016/857
http://dx.doi.org/10.1007/3-540-45661-9_7
http://dx.doi.org/10.1007/978-3-540-71039-4_23
http://dx.doi.org/10.1007/978-3-319-26617-6_12
http://dx.doi.org/10.1007/978-3-319-26617-6_12
http://dx.doi.org/10.1007/0-387-34805-0_42
http://dx.doi.org/10.1007/0-387-34805-0_42

Author Index

Aljunid, Syarifah Ruqayyah 193
Arriaga, Afonso 347

Behnia, Rouzbeh 474
Beunardeau, Marc 127
Boyd, Colin 111
Boyen, Xavier 3, 111

Carr, Christopher 111, 389
Chatterjee, Sanjit 21
Chen, Xiaofeng 252
Cheung, Henry K.F. 56
Chow, Sherman S.M. 56
Cichoń, Jacek 252
Courtois, Nicolas T. 506
Crépeau, Claude 485

Ferradi, Houda 127, 494
Francis, Danny 193
Fujioka, Atsushi 436

Galteland, Herman 233, 463
Géraud, Rémi 127, 494
Gjøsteen, Kristian 233
Gligoroski, Danilo 389

Haines, Thomas 111
Hale, Britta 389
Hanaoka, Goichiro 481
Hanzlik, Lucjan 215, 252
Hayashi, Yu-ichi 193
Heng, Swee-Huay 474

Iovino, Vincenzo 347

Kluczniak, Kamil 215, 252
Koblitz, Neal 11, 21
Kuchta, Veronika 409
Kulis, Michal 145
Kutyłowski, Mirosław 215, 252

Lai, Russell W.F. 56
Lin, Fuchun 171
Lorek, Pawel 145

Markowitch, Olivier 409
Marrière, Nicolas 321
Menezes, Alfred 21, 83
Minier, Marine 294
Mizuki, Takaaki 193
Mjølsnes, Stig F. 463

Naccache, David 127, 494
Nachef, Valérie 321
Nishida, Takuya 193
Nishimaki, Ryo 521

Olimid, Ruxandra F. 463

Phan, Raphaël C.-W. 294

Safavi-Naini, Reihaneh 171
Samajder, Subhabrata 277
Sarkar, Palash 21, 83, 277
Sharifian, Setareh 171
Singh, Shashank 83
Slamanig, Daniel 364
So, Anthony Man-Cho 56
Sone, Hideaki 193
Spreitzer, Raphael 364

Tan, Syh-Yuan 474
Tang, Qiang 347
Tiessen, Tyge 544
Todo, Yosuke 553

Unterluggauer, Thomas 364

Volte, Emmanuel 321

Wang, Jianfeng 252

Yang, Nan 485

Zagorski, Filip 145

	Preface
	Organization
	Contents
	Keynotes
	The Case For Human Primacy in Cryptography
	1 Clouded Computing
	2 Rain Men
	3 Umbrellas
	4 Perfect Storm
	5 Hurricane's Eye
	6 Looking for Sunshine
	7 Conclusion

	Time for a Paradigm Shift in Our Disciplinary Culture?
	1 Introduction
	2 Important Work Gets Dismissed or Ignored
	3 Exaggerated Advertising of One's Own Work
	4 Responses to Criticism
	5 Harmful Effects
	6 Conclusion
	References

	Revisiting Tradition
	Another Look at Tightness II: Practical Issues in Cryptography
	1 Introduction
	2 Complexity Leveraging
	2.1 Signature Schemes
	2.2 Identity-Based Encryption

	3 Nonuniformity to Achieve Better Tightness
	4 The HMAC Saga
	5 Lattice-Based Quantum-Safe Crypto
	5.1 Lattices
	5.2 Lattice Problems
	5.3 Learning with Errors
	5.4 Regev's Reduction
	5.5 Analysis of Regev's Reduction

	6 Tightness in Identity-Based Encryption
	7 Conclusions
	A Concrete Analysis of Regev's Worst-Case/Average-Case Reduction
	A.1 Gaussian Distributions
	A.2 Concrete Analysis

	B Nontightness and Multi-user Attacks
	B.1 Attacks in the Multi-user Setting
	B.2 Attacks on Extract-then-Expand with XOR-Encrypt

	References

	Another Look at Anonymous Communication
	1 Introduction
	1.1 Anonymity Against a Global Adversary
	1.2 Our Results
	1.3 Technical Overview

	2 Related Work
	2.1 Anonymous Communication Protocols
	2.2 Frameworks for Anonymity Analysis

	3 Preliminary
	3.1 Notations
	3.2 Key-Private Public-Key Encryption

	4 Formulation of AC and OF
	4.1 Anonymous Communication (AC) Protocols
	4.2 Oblivious Forwarding (OF) Protocols
	4.3 Remarks on Dynamic Network Environments

	5 Generic Construction of AC
	5.1 Formal Description
	5.2 Recasting the DM Protocol

	6 Constructions of OF
	6.1 Generic Construction
	6.2 Construction from Any Random Walks
	6.3 Optimizing psuccess
	6.4 Discussions

	7 How to Use Our AC Protocols?
	7.1 Network Environment
	7.2 How to Guarantee Successful Delivery?
	7.3 Anonymity-Efficiency Trade-Off

	8 Concluding Remark
	References

	Challenges with Assessing the Impact of NFS Advances on the Security of Pairing-Based Cryptography
	1 Introduction
	2 Pitfalls in Asymptotic Analysis
	2.1 Integer Factorization
	2.2 Elliptic Curve Discrete Logarithm Problem
	2.3 Indistinguishability Obfuscation

	3 Overview of the Number Field Sieve
	3.1 Polynomial Selection and Sizes of Norms
	3.2 Asymptotic Complexity
	3.3 Multiple Number Field Sieve Algorithm
	3.4 Special Number Field Sieve Algorithm

	4 Overview of the Tower Number Field Sieve
	4.1 Multiple Number Field Sieve Algorithm
	4.2 Special Number Field Sieve Algorithm

	5 Asymptotic Analysis
	5.1 Bounds on Norms of Polynomials
	5.2 Size of the Factor Base
	5.3 Bounds on Norms of Ideals
	5.4 Smoothness Probability from the Canfield-Erdös-Pomerance Theorem
	5.5 Balancing Costs

	6 Concrete Analysis
	6.1 On the Tightness of the Norm Bounds
	6.2 Deriving Group Sizes from the Asymptotic Run Time Expressions
	6.3 The 128-Bit and 192-Bit Security Levels

	7 Concluding Remarks
	A Calculations of Bounds on Resultants
	References

	Different Paradigms
	Key Recovery: Inert and Public
	1 Introduction
	2 Background
	2.1 Oblivious Key Escrow
	2.2 Partial Key Escrow
	2.3 Ensuring a Distributed User Base

	3 Design Principles
	3.1 Inert and Public
	3.2 Blockchains, Decentralised Ledgers and PKI

	4 Our Framework
	4.1 Proposal 1: Decentralised Oblivious Key Escrow
	4.2 Proposal 2: Partial Key Escrow
	4.3 Proposal 3: Decentralised Oblivious Partial Key Escrow

	5 Methods for Implementation
	5.1 Implementing Proposal 1
	5.2 Implementing Proposal 2
	5.3 Implementing Proposal 3

	6 Conclusion
	References

	Honey Encryption for Language
	1 Introduction
	2 Preliminaries
	2.1 Natural Language Encoding

	3 Limitations of Honey Encryption
	4 Corpus Quotation DTE
	5 Further Research
	A Grammatical tags for English
	References

	Randomized Stopping Times and Provably Secure Pseudorandom Permutation Generators
	1 Introduction
	1.1 Our Contribution

	2 Preliminary
	2.1 Markov Chains and Rate of Convergence
	2.2 Distinguishers and Security Definition

	3 Related Work
	3.1 RC4 Algorithm
	3.2 Sign Distinguisher for RC4's KSA
	3.3 Position Distinguisher for RC4's KSA

	4 Randomized Stopping Times and Cryptographic Schemes
	4.1 Strong Stationary Time Based KSA Algrorithms
	4.2 RST and Security Guarantees
	4.3 RST and Timing-Attacks

	5 (Not So) Random Shuffles of RC4 -- Revisited
	5.1 Mironov's Stopping Rule -- Details
	5.2 Better Stopping Rule
	5.3 Predefined Number of Steps vs SST-based Algorithms

	6 A Note on Spritz
	6.1 Sign Distinguisher
	6.2 Position Distinguisher

	7 A Note on Optimal Shuffling
	8 Conclusions
	A Sign Distinguisher Advantage
	B Detailed Proof of Lemma3
	C Experimental Results
	D Timing-Attacks and KSA**
	E Spritz Definition
	References

	Cryptofication
	A Virtual Wiretap Channel for Secure Message Transmission
	1 Introduction
	1.1 Our Work
	1.2 Related Work

	2 Preliminaries and Notations
	2.1 QAM and OFDM
	2.2 iJam and Basic iJam Transmission Protocol
	2.3 Eavesdropper Strategies

	3 BiT as a Virtual Wiretap Channel -- An Example
	4 Virtual Wiretap Channel Model
	5 Secure Message Transmission Using BiT
	5.1 A Semantically Secure Wiretap Code
	5.2 Using the Wiretap Construction with BiT,qN

	6 BiT Over Noisy Receiver Channel
	7 Conclusion and Future Works
	References

	Necessary and Sufficient Numbers of Cards for Securely Computing Two-Bit Output Functions
	1 Introduction
	2 Definitions
	2.1 Abstract Machine Based Model
	2.2 Koch's Graphs

	3 Preliminary Observations
	3.1 Necessary and Sufficient Numbers of Cards for One-Bit Output Functions
	3.2 Trivial and Degenerate Cases for Two-Bit Output Functions

	4 Sufficient Numbers of Cards for Two-Bit Output Functions
	4.1 Existing Protocols Used to Obtain Upper Bounds
	4.2 Protocol

	5 Optimality of Six-Card Protocols
	5.1 Definitions
	5.2 Proof

	6 Conclusion
	References

	Malicious Cryptography
	Controlled Randomness -- A Defense Against Backdoors in Cryptographic Devices
	1 Introduction
	1.1 Previous Attempts to Prevent PRNG Backdoors

	2 Idea of Controlled Randomness
	2.1 Controlled Randomness
	2.2 Outline of the Security Model

	3 Signatures with Controlled Randomness
	3.1 Security Against Mallet
	3.2 Security Against the User
	3.3 Security Against the device

	4 Diffie-Hellman Key Exchange
	4.1 Diffie-Hellman Protocol
	4.2 Security Sketch for DH with CR

	5 ElGamal Public Key Encryption
	6 Final Remarks and Future Work
	References

	Malware, Encryption, and Rerandomization -- Everything Is Under Attack
	1 Introduction
	1.1 Real World Examples
	1.2 Malware Propagation
	1.3 Related Work
	1.4 Overview

	2 Rerandomizable Encryption
	2.1 Preliminary
	2.2 Basic Scheme
	2.3 Security of the Basic Scheme
	2.4 Extended Scheme
	2.5 Security of the Extended Scheme

	References

	Protecting Electronic Signatures in Case of Key Leakage
	1 Introduction
	2 Scheme Description
	2.1 Outline of the Solution
	2.2 Preliminaries
	2.3 Signing Scheme Procedures

	3 Security of the Scheme
	3.1 Resilience to Forgeries
	3.2 Indistinguishability

	4 The Dark Side of the Scheme
	5 Implementation Issues
	5.1 Empty Places in Array A
	5.2 MULTOS Trial Implementation

	6 Related Work
	References

	Advances in Cryptanalysis
	A New Test Statistic for Key Recovery Attacks Using Multiple Linear Approximations
	1 Introduction
	2 Multiple Linear Cryptanalysis
	3 Drawbacks of Previously Proposed Statistics
	4 A New Test Statistic
	5 Experimental Results for SERPENT
	6 Conclusion
	A Hoeffding Inequality
	B Proof of Propositon1
	C Choice of d
	References

	Tuple Cryptanalysis: Slicing and Fusing Multisets
	1 Introduction
	2 Multiset Calculus
	2.1 Multiset and Bitslice Channels
	2.2 Fusing the Slices of a Multiset
	2.3 Tuples Through Cipher Operations

	3 Multiset Properties Through Ciphers
	3.1 Threefish and ARX
	3.2 PRINCE
	3.3 PRESENT
	3.4 RECTANGLE

	4 Concluding Remarks
	A Integrals of Crypton and mCrypton
	References

	Improvements of Attacks on Various Feistel Schemes
	1 Introduction
	2 Notation
	3 General Formulas for the Expectations and Standard Deviations
	3.1 Computation of E(N)
	3.2 Computation of E()
	3.3 Computing V(N)

	4 Previous Attacks and Their Limitations: Contribution of the Tool
	4.1 Distinguishing Attacks
	4.2 Previous Attacks and Their Limitations
	4.3 Use of the Tool

	5 Improvements of Previous Attacks on Different Types of Feistel Schemes
	5.1 Notation for Feistel-Type Schemes
	5.2 Examples of 2-Point Attacks
	5.3 Example of a 4-Point Attack (Rectangle Attack)

	6 Conclusion
	A Proof of Proposition 4
	B Simulation of Some KPA Attacks
	References

	Primitives and Features
	Updatable Functional Encryption
	1 Introduction
	2 Preliminaries
	2.1 Public-Key Encryption
	2.2 NIZK Proof Systems
	2.3 Collision-Resistant Hash Functions
	2.4 Puncturable Pseudorandom Functions
	2.5 Obfuscators
	2.6 RAM Programs

	3 Updatable Functional Encryption
	3.1 Definitions
	3.2 Our Construction

	4 Future Work
	References

	Linking-Based Revocation for Group Signatures: A Pragmatic Approach for Efficient Revocation Checks
	1 Introduction
	2 State-of-the-Art in Revocation and Motivation
	3 Preliminaries
	3.1 All-or-Nothing Public Key Encryption with Equality Tests
	3.2 Sign-and-Encrypt-and-Prove Paradigm
	3.3 Threshold Secret Sharing
	3.4 Group Signatures with Controllable Linkability
	3.5 Concepts Related to Controllable Linkability

	4 Building Blocks for GSs with Linking-Based Revocation
	4.1 High-Level Idea of GSs with Linking-Based Revocation
	4.2 Constant-Time Revocation Checks
	4.3 Distributed Controllable Linkability

	5 GSs with Linking-Based Revocation
	5.1 Discussion and Security

	6 Applying Linking-Based Revocation
	7 Conclusion
	References

	CARIBE: Cascaded IBE for Maximum Flexibility and User-Side Control
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Background and Preliminaries
	2.1 IBE Schemes with More Than One PKG
	2.2 Identity-Based Encryption

	3 Cascade-Realized IBE -- CARIBE
	3.1 Security of CARIBE

	4 Cascade-Realized IBE with Self-PKG -- CARIBE-S
	4.1 Security of CARIBE-S
	4.2 Ciphertext Expansion in CARIBE/CARIBE-S

	5 Software Libraries for Implementation of CARIBE and CARIBE-S
	6 Conclusion
	A Scheme Comparison
	References

	Multi-authority Distributed Attribute-Based Encryption with Application to Searchable Encryption on Lattices
	1 Introduction
	2 Preliminaries
	3 Attribute-Based Encryption for Multiple Authorities Based on Lattices
	3.1 Construction
	3.2 Security Reduction

	4 Application: Distributed Attribute-Based Searchable Encryption
	4.1 Construction
	4.2 Security Reduction

	5 Conclusion
	References

	One-Round Exposure-Resilient Identity-Based Authenticated Key Agreement with Multiple Private Key Generators
	1 Introduction
	1.1 Security Models
	1.2 id-eCK Secure IBAKA
	1.3 Multiple PKG Setting
	1.4 Our Contributions

	2 Definitions and Assumptions
	2.1 Security Model for mPKG-IBAKA
	2.2 Number Theoretic Assumptions on Pairings

	3 Existing Protocols
	3.1 Chen--Kudla Protocol
	3.2 Protocol on FSXY Construction

	4 Exposure-Resilient mPKG-IBAKA Protocol
	4.1 Proposed Protocol
	4.2 Security
	4.3 Discussions
	4.4 Comparison with Other Protocols
	4.5 Security in Other Models

	5 Conclusion
	References

	Cryptanalysis Correspondence
	Attacks on the Basic cMix Design: On the Necessity of Commitments and Randomized Partial Checking
	1 Introduction
	1.1 cMix
	1.2 Related Work
	1.3 Results
	1.4 Outline

	2 Preliminaries
	2.1 cMix Description
	2.2 Adversarial Model
	2.3 Features and Extensions

	3 The Tagging Attack
	4 The Insider Attack
	5 Conclusions
	References

	Cryptanalysis of an Identity-Based Convertible Undeniable Signature Scheme
	1 Introduction
	2 Wu et al.'s IBCUS Scheme
	3 The Known Message Attack
	3.1 Discussion

	4 Conclusion
	References

	Invited and Insight Papers
	Towards User-Friendly Cryptography
	1 Background
	2 Importance of Generic Constructions
	2.1 Group Signatures
	2.2 Proxy Re-encryption

	3 Importance of Enjoyable Aspects
	References

	Multi-prover Interactive Proofs: Unsound Foundations
	1 Introduction
	2 Terminology: (Non-)local, (No-)signalling and Entangled
	3 Issues with Existing Protocols
	3.1 Issues with Current Proofs of Composability
	3.2 Issues Specific to ZKMIPs
	3.3 Synchronous vs Asynchronous MIPs
	3.4 A Concrete Example

	4 Discussion
	References

	Human Public-Key Encryption
	1 Introduction
	2 Preliminaries and Definitions
	2.1 CAPTCHA Problems

	3 Human Public-Key Encryption
	4 Short Password-Based Encryption
	5 DCP and ECP Candidate Instances
	5.1 DCP Candidate
	5.2 ECP Candidates

	6 Further Applications
	References

	Two Philosophies for Solving Non-linear Equations in Algebraic Cryptanalysis
	1 Two Approaches to Solving Non-linear Equations
	2 Historical Developments
	2.1 Difficulties with Family 2 Techniques

	3 XL Algorithm, F4, F5, and Their Variants, XSL
	3.1 XSL Algorithm

	4 The Algebraiz-ation Challenge
	4.1 I/O Equations
	4.2 Describing Strategies
	4.3 Guessing Strategies
	4.4 Type 2 Techniques
	4.5 Can Algebraiz-ation Be Mandated?
	4.6 On Small S-Boxes

	5 ElimLin Attacks on Simon
	5.1 The Overdefined Heuristic
	5.2 ElimLin or How to Make the Overdefined Strategy Work for a Block Cipher

	6 Big Challenge - Coding ECC Cryptanalysis Problems
	6.1 On ECC Codes
	6.2 D73 - A New Family of Cubic I/O Relations

	7 Conclusion
	References

	Watermarking Cryptographic Programs
	1 Introduction
	2 Preliminaries
	3 Definitions of Program Watermarking
	3.1 Syntax
	3.2 Security Definitions by Barak et al.
	3.3 Security Definitions by Cohen et al.

	4 Impossibility Result by Barak et al.
	5 Watermarking Based on Number Theory
	5.1 Overview
	5.2 Dual Pairing Vector Space
	5.3 Watermarking Based on DPVS

	6 Watermarking for pPRFs
	6.1 More Impossibility Results by Cohen et al.
	6.2 Overview of Construction
	6.3 Idealized Construction
	6.4 Puncturable Encryption
	6.5 Real Construction

	7 Open Questions
	References

	From Higher-Order Differentials to Polytopic Cryptyanalysis
	1 Introduction
	2 Difficulties of Higher-Order Differentials
	3 Overview over the Polytopic Framework
	4 Impossible Polytopic Transitions
	5 Comparison to Other Attack Vectors
	6 Discussion
	References

	Division Property: Efficient Method to Estimate Upper Bound of Algebraic Degree
	1 Introduction
	2 Motivations of Division Property
	2.1 Block Ciphers and Its Construction
	2.2 Higher-Order Differential Cryptanalysis
	2.3 Integral Cryptanalysis
	2.4 What is Different Between Integral and Higher-Order Differential Cryptanalyses
	2.5 How to Find Integral Characteristics
	2.6 Why Division Property is Developed?

	3 Division Property
	3.1 Definition of Division Property
	3.2 Propagation of Division Property

	4 Vectorial and Collective Division Property
	4.1 Vectorial Division Property
	4.2 Collective Division Property
	4.3 Propagation Rules for Simple Operations

	5 Follow-Up Works
	5.1 Improving Technique
	5.2 Summary of Applications

	6 Conclusion
	References

	Author Index

