
Chapter 7
Simulation-Based Software Engineering

Oryal Tanir

Abstract Software Engineering is the application of methodical principles to the
planning, design, development, testing, implementation, and maintenance of
software-based systems. Each phase of the Software Design Life Cycle (SDLC)
addresses a different set of problems, commencing from an abstract need with the
eventual goal of producing a stable working solution. To accomplish this, many
different tools and techniques may be employed, from project management plan-
ning estimators to automated code testers. However, a specific tool-simulation—has
found its way into almost every phase of the SDLC. As a general-purpose tech-
nique, it can be invaluable for assessing complex multifaceted solution spaces early
on during the planning and design phases in a cost-effective and timely manner
without the need for physically deploying possible design alternatives. A major and
often overlooked element in the design of a new complex solution is the impact on
the business and information technology processes. Simulation can help assess
these impacts along with any process redesign that may be required. This chapter
addressed these and other applications of simulation in Software Engineering.

Keywords Domain driven design � Software engineering � Synthesis �
Governance models � Holistic view � Process simulation

7.1 Introduction

Software engineering, in comparison to other engineering disciplines, is relatively
young. However, the field has matured rapidly as the demands and complexities in
the market have grown. Simulation, in contrast, has a longer history; however, its
use in software engineering was initially limited to ad hoc models. Over time, the
synergy between the two disciplines has improved significantly to the point where

O. Tanir (&)
Office of the CIO, McGill University, Montreal, Canada
e-mail: oryaltanir@gmail.com

© Springer International Publishing AG 2017
S. Mittal et al. (eds.), Guide to Simulation-Based Disciplines,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-61264-5_7

151



simulation is applicable in a systematic fashion and can benefit the software
engineering processes in many ways.

This section will present a brief overview of software engineering and the rational
for applying simulation within the disciple. A holistic view of software engineering
and application of simulation will describe the key uses of simulation. A model-
driven design approach will present another major context for simulation in software
engineering. The conclusions will summarize the major concepts and provide insight
into some of the future directions of simulation and software engineering.

7.2 Software Engineering

Software engineering is a broad discipline, which spans and borrows practices from
multiple areas such as Computer Science, Engineering, Management and
Behavioral Sciences. Many definitions help qualify what software engineering is,
however for the purposes of this chapter we will use the definition:

“Software engineering is that part of systems engineering that deals with the
systematic development, evaluation, and maintenance of software” (Endres and
Rombach 2003).

Intuitively we are dealing with a complex function, which (1) takes as its input
processes, technology and resources, and (2) either optimizes or outputs a “good-
enough” product that is (3) based upon market constraints (time, cost, quality).
Hence, there are many layers and concerns related to software engineering—and
much research has helped evolve the practice.

Some of the major concepts that are presented in this chapter and are dominant
within a software engineering activity are briefly defined below.

7.2.1 The Software Design Life cycle

A key concern for any company is the choice of the software design life cycle
(SDLC) model they will utilize. The SDLC describes how the software is planned,
designed, implemented, and maintained. Numerous SDLCs exists such as waterfall,
iterative design, spiral, agile and others. Based on the particular SDLC that is under
consideration, the use of simulation will vary as it adheres to specific parts of
processes that are part of the SDLC.

7.2.2 Governance Frameworks

Many software engineering activities rely upon established frameworks to ensure
proper governance and oversight of activities. For example, ITIL provides a set of

152 O. Tanir



practices for Information Technology Service Management (ITSM)—which is
broadly applicable for any software engineering organization. Other frameworks
exist for particular industry domains.

7.2.3 Roles

Software engineering is not a purely technology-oriented discipline (see the holistic
section later). It involves many different roles to product the final product and this
aspect needs careful consideration.

7.2.4 Project Management

Project management practices work in parallel to software engineering ones during
the course of a project in alignment to the SDLC. Hence some of the concerns for
software design are attributable to project management ones.

7.3 Rationalization of Simulation and Software
Engineering

Given, the numerous and different type of challenges that can be encountered in
software engineering, it is not surprising that a tool such as simulation can be
leveraged to address many of these problems. However, organizations may often
find themselves in the position of justifying the use of simulation (which can be a
costly affair if the right skills and resources are not available) within a project. This
section reviews some of the fundamental decision points to adopt simulation within
the software engineering domain. Many of these arguments will be seen later in the
chapter as addressed through the application of simulation.

7.3.1 The Cost of Software Defects

One argument frequently seen in industry against the use of simulation within a
software project is cost. There can be a prevailing view that the use of simulation
will significantly add to the cost of a project and possibly hamper the delivery time.
Hence, in this scenario a project manager who would like to avoid cost overruns
and complete the project in a timely manner views simulation as a roadblock. In the
context of large software projects, this argument is flawed. Many studies have

7 Simulation-Based Software Engineering 153



shown the cost effectiveness of tools such as simulation, which can uncover design
flaws early on in a project. In particular, Barry Boehm conducted extensive studies
on multi-industry software projects to understand when they failed (Boehm 1981).
Many other studies confirmed the fundamental finding of the research, which has
since been termed as “Boehm’s law”:

“Errors are most frequent during the requirements and design activities and are the more
expensive the later they are removed.”

Although intuitive, the consequences of this statement are illustrated in Fig. 7.1.
The figure’s basis is data gathered from typical software development projects and
depicts Boehm’s law in action.

The graph, constructed from empirical data, shows that the cost of fixing errors
later in the software cycle (i.e., in the maintenance phase) as compared to early on
(i.e., in specification) is several magnitudes costlier. The magnitude of the cost can
vary dependent upon the type of software, available skill-sets, organizational
maturity and many other factors. Different studies have shown that the cost impact
can vary from a linear to exponential one (Hait 2003; Boehm and Papaccio 1988).
In addition, another problem arises when defects are uncovered later in the project
phase: the may not have enough left in its budget to fix the unforeseen defects
(Saultz 1997).

The important idea here is that it is prudent and cost-effective to resolve design
issues as early on as possible. Software code test tools help address issues related to
coding, but tools such as simulation, which utilize concepts that are more abstract,
can address design level issues early on.

The arguments presented above are not always sufficient to justify the use of
simulation for a given project. There are cases where simpler and more
cost-effective approaches are economically or practically more feasible. For
example, in some cases, mathematical models or heuristics (both of which can be
leveraged through commonly used tools such as spreadsheets), may be applicable.
Mathematical models usually require some basic assumptions or constraints to be in

Cost of software defects

concept specification design implement test maintain
Project Phase

Re
la

tiv
e 

Co
st

Fig. 7.1 Illustration of
Boehm’s law

154 O. Tanir



place before they are applicable to the problem. Such models can be applied to
solve issues around contained, less complex and small software systems in a
timelier manner than simulation. There is however, another reason one may not use
simulation: the organization may not be able to obtain the necessary specialized
resources to create, simulate, and analyze the results. There may be many reasons
for this. For example, the organization may not have the funds or budget to support
the work or the skill-set may not be available in the regional market. These are all
factors that can influence the use of simulation in a software engineering project.

7.3.2 Business Impacts

A frequently overlooked aspect in the engineering of software is the impact on the
business or end user. Software is designed against a set of requirements, however
most of the time the impact on the existing processes is under emphasized or
overlooked which incurs additional costs to the project due to the underestimation
of the cost of change. Areas particularly vulnerable are

• processes (undocumented modification or replacement of existing processes),
• operations (miscalculation of the type of resources needed to manage the new

software),
• training (miscalculation of effort needed to use software),
• and supply chain management (inadequate understanding of the full end-end

integration of the software with the business).

7.3.3 Project Planning

In many cases, projects are not undertaken in isolation. The project may be part of a
program composed of many other projects and understanding the dependencies
between projects and the technologies that are impacted can become an exasper-
ating problem. In addition, the timely scheduling of resources for different phases of
projects is crucial for a successful and cost-effective endeavor. Simulation can be
utilized in this case to evaluate different scenarios and roadmaps.

7.3.4 Time to Market

The application of simulation can also help understand the impact of time to market
of the software product. In many industries, a certain window of opportunity for a
software release exists, after which expected returns from the market begin to

7 Simulation-Based Software Engineering 155



diminish. Simulation can provide indispensable insight to identify these opportu-
nities and the various scenarios, which are both favorable and unfavorable to a
software release.

7.4 Holistic View

At its core, software engineering is the business of creating a software product. This
is not a simple or straightforward task for a typical project. It involves collaboration
and cooperation between many different stakeholders. To accomplish the task,
frameworks have been introduced to ensure the best practices and required func-
tions are engaged at the right times. For example, ITIL provides a set of practices
for ITSM, and TOGAF a framework for architecture practices (TOGAF 2005).

However, software engineering concerns are beyond just the technology of the
final product. There are distinctive issues related to the business, technology,
people, and governance as shown in Fig. 7.2, which play a role in a successful
software practice. In each case, the application of simulation can help to ensure a
successful design. This section will examine the role simulation plays within these
broad categories.

7.4.1 Business Concerns

Business concerns encompass financial- and process-related issues. Within the
scope of finance there are business case (expected value of the software) and
budgetary (total cost of the software) issues. In contrast, process engineering has
broader implications for simulation.

Governance

Business

People

Technology

Fig. 7.2 Software
engineering concerns

156 O. Tanir



7.4.1.1 Financial Models

Within software engineering, financial models justify the direction of the design and
viability of the project. Hence, they are typically applicable in the early planning
stages of a software’s life cycle. A frequently used tool is a Monte Carlo based risk
simulator. Users can gain insight on the impact of design decisions and leverage the
quantitative analysis for decision-making to reduce the overall risk.

For example, Monte Carlo simulation can generate statistical outcomes for
specific design choices for a project and identify the respective cost implications.
Then, the decision makers can make more educated project choices with an
understanding of the risk that they will incur.

Another application is the use of such simulators to justify the business case for a
software project. In this example, possible outcomes are the expected returns on the
investment (revenue, customer satisfaction measures, and market share) to support
the decision of undertaking the design commitment.

The applicability of financial simulations is mostly early in the design life cycle
where access to precise data may be problematic; hence, their usefulness is
dependent upon the accuracy of the available information for the models. If the
margin of error of the input is high, the effectiveness of the simulated results will be
questionable. However, if the model is maintainable and augmentable with new
information, it can also be more useful in latter stages of a project to answer similar
financial concerns.

7.4.1.2 Process Simulation

Process modeling and the subsequent activity of process simulation is a mature and
common practice in software engineering with a substantial history of research and
successful applications (Zhang et al. 2011; Bai et al. 2011). This is due to the fact
that a complex software engineering endeavor will typically affect a multitude of
business process(es). For example, new software may require a different level of
interaction than its predecessor, or if a manual process will undergo some form
of automation, the executable sequence of tasks may require modification (to adapt
to the automated workflow). It is often difficult to make good design decisions
around the process that accompanies a software product. It is also difficult to
persuade the stakeholders of the benefits of a process change. These are areas where
technicians successfully leverage simulation.

Process simulation is a generic enough practice that any general-purpose sim-
ulation language can be utilized. However, there is standard notation available too.
For example, the Business Process Modeling Notation (BPMN) provides a standard
representation for processes (White 2008). Many tools that support modeling using
BPMN also have some form of simulation support. The advantage of using a
standard enables the models to be more widely consumable and understandable by
the business stakeholders. Hence, it can be an effective communication tool when
persuading them of the benefits of a process design. They are intuitive and require

7 Simulation-Based Software Engineering 157



knowledge of BPMN—which is not difficult to acquire in the business analysis
market. However, BPMN tools use simulation in a limited fashion—mostly sup-
porting visualization of flow in a process—that limits the potential benefits that are
usually available in simulators that are more sophisticated. The typical strengths of
general-purpose simulation environments such as powerful animation (visualiza-
tion), statistical analysis and support of experimentation, and a rich set of random
distribution support is rarely available in a BPMN tool. The drawback of such
simulation environments however, is the need for specialized resources and training
to use the environments, which may be beyond the means of restricted budgets.
This tradeoff needs careful consideration when deciding upon the appropriate
toolset to use.

7.4.2 Technology Concerns

Technological concerns relate to how simulation supports users develop the tech-
nical product during a design and implementation phase of a project. The tools
common to this phase have similar characteristics to the target implementation.
Similar to the business concerns, standards do prevail in many cases.

For example, UML (Unified Modeling Language) is widely adopted to model
many software systems—especially in the object-oriented space (Fowler and Scott
2001). UML borrows many concepts prevalent in other areas of computer science
and is amicable to the use of simulation. An example of this is behavioral simu-
lation; where the interactions of various software elements can undergo simulation
before physical code creation or test. In such cases, simulation identifies important
design constraints such as

• The dependencies between different software components based upon their
interactions. Discrete-event simulation can execute the flow between software
objects to determine bottlenecks based upon the message flowing between each.

• Detection of redundancies is possible but often difficult. Simulation models the
flow and specialized test tools detect patterns, which may indicate duplicate
behavior in the design.

• Reachability analysis of behavioral constructs such as methods by simulation or
simulation-based petri-nets. In such cases all-possible execution paths of the
code is simulated which permits detection of code that is not reachable (dead
code) or other problematic code behavior such as infinite loops.

To enable these types of analyses, simulators work in close conjunction with the
design tools. For example, if the design utilizes UML as a model notation, tools
which support this, may incorporate (among others) state-chart simulators. Using a
state based simulator, all possible interactions between states can be exhaustively
generated and virtually tested to ensure that the overall software behavior is
compliant to its specifications.

158 O. Tanir



When software is to be part of an embedded system, it is cost-effective to
simulate its functionality and physical characteristics (such as performance and
latency) before the fabrication process. Simulation is a technique that is an integral
part of the toolsets used in this process as well [such as VHDL or Verilog simu-
lators] (Navabi 2007).

Another standard that is usable at this stage is the Business Process
Executionable Language BPEL. BPEL foundation is XML and web services and is
a process oriented executable language, primarily used in web based integration and
design. It fits well in organizations that have adopted a Service-Oriented
Architecture (SOA) approach to software design and integration. Major software
vendors support BPEL and consequently their tools have BPEL simulators to aid in
the design of web services. A major benefit of simulation at this stage is the ability
to simulate orchestration or choreography

• Orchestration of web services implies the use of a central web service, which
systematically requests services from other web services and then generates
some sort of output or result.

• Choreography of web services does not require a central control. In contrast,
each service accepts and sends messages to a limited set of services—their
combined interaction or “choreography” results in the desired overall behavior.

Constructing and integrating web services in the above manner becomes a dif-
ficult task as the number of webs services increase and the dependencies between
each and existing services becomes difficult to manage. The BPEL process models
define these interactions—since their interactions can readily be described in terms
of processes. Once the BPEL model creation is complete, essentially describing the
overall behavior, the simulation activities will:

• Validate the flow of information between web services, which the BPEL pro-
cesses depict. This validation ensures that the logical flow within each service
contributes the correct sequence of activities that will generate the overall
process behavior.

• Create an impact analysis of all existing and proposed web services. Rather that
detecting interaction problems between services in the field, simulation of their
BPEL counterparts permits design engineers to detect potential design issues in
the lab. The simulation activities can uncover

– performance impacts (some service may be a bottleneck) due to too many
dependencies or poorly designed logical flow in the service,

– logical flaws (a process is not flowing as expected),
– reliability concerns (the failure of certain services may be critical to many

other system processes),
– and inefficient services (too many calls and time spent on a service may

indicate it needs to be decomposed to simpler ones).

7 Simulation-Based Software Engineering 159



7.4.3 People Concerns

People concerns are part of the project management role; however, they affect the
success of a software engineering project significantly. In particular, planning and
estimating the capacity to perform work at different stages in the software life cycle
can be difficult. The main tool used by managers is still spreadsheets and Gantt
charts; however, simulation has made headway in capacity planning and estimation.

General-purpose simulation tools are dominant in this practice space. Some
vendors do provide a combination of project management and simulation capa-
bilities; however, the simulation features are mostly cosmetic or primitive. The
functionality can improve in the future as the market for such features increase.

Current general-purpose simulation techniques use a combination of process
simulation and resource optimization scenarios. Main use cases for this are

• Decision-making for multiple project and resource trade-offs: There can be cases
where different planned projects compete for the same resources at different time
lines. Optimization or near-optimization of timelines and resources across
multiple projects is a difficult task which simulation is well suited to perform.
The constraint is that simulations in this area require specialized skill-sets,
which may be too costly or difficult to acquire.

• Capacity planning within a project: Simulation can produce capacity scenarios
from common constrains such as hourly wages, scheduling rules, resource
availability, skill-set modifiers, and task times (based on heuristics or statistical
data).

• Automation versus manual work: In many cases there may be concerns with the
trade-offs between automation of certain tasks or managing them manually.
Sometimes referred to “people versus technology” scenarios, simulation can
provide insight on cost and time implications.

7.4.4 Governance

Governance, as it relates to simulation use in software engineering, is often an
oversight. Some simulation activities may be dispensable and used only for a
particular decision point in the overall software design and never again. However,
in more mature software teams many of the knowledge acquired through simulation
is retained or reused. BPEL-driven simulation is one example where a rich
knowledgebase of models develops over time. The data and accuracy of the sim-
ulations become better with the addition of new models. Governance of the models
becomes a necessary part of the software design life cycle. Some common concerns
to address are

160 O. Tanir



• Which role is accountable for the model? In cases where the simulation is ad
hoc, then it may be the simulationist or their manager. However, for environ-
ments that reuse simulation objects, then a role is required to ensure model
compliance with the organization’s rules and principles. This is usually part of
an Enterprise Architecture role, but can also be the accountability of a tech-
nology or service manager.

• Which role approves the model? A governance process is required to ensure that
the principles related to the design and output of the model are valid. This is
typically different from the accountable resource above.

• Terms of engagement of simulation or the conditions when simulation is used and
its expected outcomes. It is very important that the expectations of a simulation
exercise are the same for all the stakeholders. If no clear definition and boundaries
are set for the simulation activity, it can grow or not meet expectations.

The above are typical of software engineering governance issues and it makes
sense to utilize similar governance practices for the simulation practice within the
software engineering framework. Some important artifacts that need to be defined
are

• Model design principles: These are basic principles to abide by when con-
structing models. They will represent the adopted notation and basic guidelines
as well as design patterns when constructing a simulation.

• Data principles: These are basic rules to ensure that data that is used in simu-
lation models is vetted properly and it is handled and interpreted correctly by the
modeler. Rules for selecting the correct random distribution which fits a given
data set is an example of this.

• Simulation execution principles: The rules determining how long to run simu-
lations and iterations of experiments are common concerns.

• Requirements for a simulation exercise: There can also be guidelines for
establishing is a certain project is suitable to undergo a simulation exercise.
Concerns such as the quality of the data, complexity of the system under con-
sideration and correct level of expectations are typically addressed.

• Roles and responsibility charts: The expected resources and responsibilities for
the simulation project needs to be defined and allocated.

• Decision-making principles or process: The decision-making principles or “rules
of engagement” solidify when key decisions resulting from simulation outcomes
are made.

• Escalation procedures: A mechanism needs to be in place to resolve issues
quickly (i.e., lack of data, resources, time).

As part of the governance, the validity of the simulation studies also needs close
examination and understanding. Studies in various industrial fields have shown that
the validity of simulation results within a software engineering activity can be
quantified and its risks mitigated (França and Travassos 2015). Hence the body of
research in this area can help support practitioners successfully compete their
simulation ventures.

7 Simulation-Based Software Engineering 161



7.5 Domain-Driven Software Design

Domain-driven software design is a model-based approach in software engineering
and simulation is an intricate component at different stages of the methodology. The
typical previously mentioned software engineering concerns are applicable here as
well. However, the model-driven approach lends itself to model reuse (which
permits the creation of a more permanent simulation expertise) and subsequently
the application of simulation in this case is methodological and systematic.

There are variations of the approach, but the high-level elements (not all of which
need to be used—depending upon the methodology) are illustrated in Fig. 7.3.

The major components are

• Domain model: The starting point is the capture of abstract ideas in a domain
model. Such models provide a domain specific language or notation suitable to
represent the structure and behavior of the design concepts that are of impor-
tance (Erdogmus and Tanir 2002). The model must be familiar and versatile
enough so that the user captures and validates ideas quickly before undertaking
any detailed design decisions. Representations at this level are the high-level
specifications for the conceptual system. Successful environments will have
strong visual user interfaces to improve productivity and reduce the learning
curve. When using simulation, the selection of the appropriate domain model is
important. As a requirement, the model needs to support the simulation lan-
guage or formalism it will be utilizing.

• Model Checker: A domain model often relies on a model checker. Such
functionality is composed of established formal verification techniques to ensure
a sound basis for the model that is developed. A formal verification ensures that
the downstream steps to follow will be less prone to errors due to inconsistent
representation of model elements.

Domain model

Model checker

Design experimenta on Synthesis

Simula on

Concept Product

Fig. 7.3 Domain-driven software design components

162 O. Tanir



While model checkers use formal verification techniques, some may employ
simulation when formal techniques are not feasible. This can occur in cases where
the domain model uses a nonformal language and cannot be validated using such
techniques (Tanir et al. 1996). This is often the case when the language supports
very abstract concepts to allow a versatile user experience. In such instances, model
objects may not bind to a specific behavior or structure early in the design, but
missing details populate and complete the missing pieces as the design progresses.

Simulation can bridge the conceptual gap by using semi-formal notations to
provide statistics-founded analysis. For example, high-level, colored, or statistical
petri-net based formalisms (Haas 2002) are often applicable using a combination of
traceability analysis and token simulations to validate the structure or behavior of
the model (Tanir and Erdogmus 1999).

• Design Experimentation: Experimentation can imply many types of activities.
However, it encapsulates those that permit

– Design space exploration: Tools to support analysis of alternative designs.
– What if analysis: Such tools will let users change parameters and structure

and compare outputs or outcomes.
– Scenario decision-making tools: Statistical support and directed scenario

analysis leverage mathematical techniques to validate scenario outcomes to
guide decisions to optimal or near-optimal design choices (Miranda 2002).

Many of the tools employed at this stage will utilize simulation as the principle
method of execution of models and comparison of multiple designs. The tools are
either specialized or general-purpose and depend upon the design space that is
under consideration.

• Synthesis: The eventual objective of the modeling approach is to produce
executable code from high-level specifications. Synthesis tools accomplish this
task. The high-level model that has been verified and validated through model
checkers and simulation can now be “synthesized” into code. Synthesizers are
technology specific and require a design represented in a formal specification
language particular to a domain. For example, Java code synthesizers may
require a UML (Universal Modeling Language) based model, whereas an
embedded application will use a synthesizable VHDL (Very high-speed inte-
grated circuit Hardware Description Language) model.

The synthesis stage requires a set of different technologies to accomplish the
tasks. While most of these are beyond the scope of this chapter, simulation based
tools are often part of the synthesis package (Tanir 1997). Synthesis implies a
transition from a semi-formal notation that is prevalent during design experimen-
tation to a structured standard one for the target code. The latter is generally not
based on a formal representation, but more on a standard notation. Hence, simu-
lation validates the resulting “synthesized” target model.

7 Simulation-Based Software Engineering 163



There are also new simulation concerns at this stage. For example, simulating
latency, cycle times, and probability of failures are part of the validation practices.
The notation in the simulators in this case are close to the target formalism (i.e.,
VHDL or UML) and therefor part of a synthesis software offering. BPEL, which
was introduced earlier, can also be part of the simulation and synthesis activities
that are related to the design of web services.

• Software Package: The Software package is the resulting product. At the
minimal it is executable software code, but it will typically also contain sup-
porting software by products such as

– Automated test cases that validate the functionality of the code against the
initial (domain language) specifications or business requirements.

– Service level agreements that may be part of the requirements of the
software.

– Self-test code can be included for systems that will be synthesiz-able to
silicon. This will permit the testing of fabricated compo-nents in a
non-intrusive manner.

– Software documentation that describes the functionality of the code and any
changed components (if a history exists).

As can be seen, the use of simulation within software engineering is quite open and
applicable across a broad range of activities and domains.

7.6 Conclusion

Simulation use in software engineering has progressed from ad hoc throwaway
models to reusable ones. This trend will further improve in the future as more
vendors adopt or improve their simulation offerings. General-purpose simulators
will still prevail in many software engineering activities since specialized simulators
do not meet all the needs across a software design life cycle. Many of the concepts
developed in the artificial intelligence domain is now technically and financially
feasible to be applied in certain circumstances to utilize simulation and design
project in new and novel ways (Elzas et al. 1989). For example, models could
potentially adapt to proposed design changes based on design patterns and best
practices to aid the experimentation process.

As with any software tool, standardization of the use of simulation tools and the
way in which they are integrated into the software engineering processes is
important for the success of any software project.

164 O. Tanir



Review Questions

1. What are some strong arguments that can be made to bolster a business case for
adopting simulation within a software engineering project?

2. Under what circumstances would simulation not be a feasible choice within the
context of software engineering?

3. Define and elaborate upon the basic elements of a holistic view of software
engineering.

4. Which area of software engineering has simulation played the most prevalent
role and considered a mature practice?

5. What are key deliverables that should be part of a governance process for
simulation?

References

Bai, X., Zhang, H., & Huang, L. (2011). Empirical Research in Software Process Modeling: A
Systematic Literature Review. 2011 International Symposium on Empirical Software
Engineering and Measurement. doi:10.1109/esem.2011.43.

Boehm, B. W. (1981). Software engineering economics. Englewood Cliffs, NJ: Prentice-Hall.
Boehm, Barry W. & Papaccio, Philip N. “Understanding and Controlling Software Costs,” IEEE

Transactions on Software Engineering 14, 10 (October 1988): 1462–1477.
Elzas, M. S., Ören, T. I., & Zeigler, B. P. (1989). Modelling and simulation methodology:

Knowledge systems’ paradigms. Amsterdam: North-Holland.
Endres, A., & Rombach, H. D. (2003). A handbook of software and systems engineering:

Empirical observations, laws, and theories. Harlow, England: Pearson Addison Wesley.
Erdogmus, H., & Tanir, O. (2002). Advances in software engineering: comprehension, evaluation,

and evolution. New York: Springer.
Fowler, M., & Scott, K. (2001). UML. Paris: Campus Press.
Haas, P. J. (2002). Colored Stochastic Petri Nets. Stochastic Petri Nets, 385–445. doi:10.1007/0-

387-21552-2_9.
Hait, C. (2003). Economic impacts of inadequate infrastructure for software testing: final. Place of

publication not identified: Diane Pub Co.
França, B. B., & Travassos, G. H. (2015). Simulation Based Studies in Software Engineering: A

Matter of Validity. CLEI electronic journal, 18(1). doi:10.19153/cleiej.18.1.4.
Miranda, E. R. (2002). Computer sound design: synthesis techniques and programming. Oxford:

Focal.
Navabi, Z. (2007). VHDL: modular design and synthesis of cores and systems. New York:

McGraw-Hill.
Saultz, J., & Kalathil, B. (n.d.). Rapid prototyping of application-specific signal processors

(RASSP) approach to meeting 4X. Annual Reliability and Maintainability Symposium. doi:10.
1109/rams.1997.570023.

Tanir, O. (1997). Modeling complex computer and communication systems: a domain-oriented
design framework. New York: McGraw-Hill.

Tanir, O., Agarwal, V., & Bhatt, P. (1995). A specification-driven architectural design
environment. Computer, 28(6), 26–35. doi:10.1109/2.386983.

7 Simulation-Based Software Engineering 165

http://dx.doi.org/10.1109/esem.2011.43
http://dx.doi.org/10.1007/0-387-21552-2_9
http://dx.doi.org/10.1007/0-387-21552-2_9
http://dx.doi.org/10.1109/rams.1997.570023
http://dx.doi.org/10.1109/rams.1997.570023
http://dx.doi.org/10.1109/2.386983


Tanir, O., Agarwal, V. K., & Bhatt, P. C. (1996). DASE: An environment for system level
telecommunication design exploration and modelling. Computer Aided Systems Theory—
CAST ‘94 Lecture Notes in Computer Science, 302–318. doi:10.1007/3-540-61478-8_85.

Tanir, O., & Erdogmus, H. (1999). A Framework for Topological Re-use. In M. Fayad, D.
C. Schmidt, & R. E. Johnson (Authors), Implementing application frameworks: object-oriented
frameworks at work. New York: Wiley.

TOGAF: version 8.1, Enterprise Edition. (2005). San Francisco: Open Group.
White, S. A., & M. (2008). BPMN: modeling and reference guide. Florida: Future Strategies,

Incorporated.
Zhang, H., Jeffery, R., Houston, D., Huang, L., & Zhu, L. (2011). Impact of process simulation on

software practice. Proceeding of the 33rd international conference on Software engineering -
ICSE ‘11. doi:10.1145/1985793.1985993.

Author Biography

Oryal Tanir is the Enterprise Architect in the Office of the CIO and professor at McGill
University. He has been involved in simulation since 1984 and has practiced both as a practitioner
and as a researcher in software engineering since 1986. He has worked in different industries such
as telecommunications, travel, and higher education with experience in many facets of IT such as;
Simulation, Software Design, Enterprise Architecture, System engineering, and Business Process
Management. In his current capacity at McGill University, Dr. Tanir influences the strategies and
directions of software engineering within the Higher Education area. His research interests have
been concentrated in various topics in simulation and the automated synthesis of complex systems.
He has numerous publications in software engineering and simulation and has lead or collaborated
in work in this area with McGill University, University of Toronto, Ottawa University, and
University of Waterloo. He is also the author of the novel “The Falcon’s Arrow.” He frequently
contributes to the Canadian Research granting boards in different capacities.

166 O. Tanir

http://dx.doi.org/10.1007/3-540-61478-8_85
http://dx.doi.org/10.1145/1985793.1985993

	7 Simulation-Based Software Engineering
	Abstract
	7.1 Introduction
	7.2 Software Engineering
	7.2.1 The Software Design Life cycle
	7.2.2 Governance Frameworks
	7.2.3 Roles
	7.2.4 Project Management

	7.3 Rationalization of Simulation and Software Engineering
	7.3.1 The Cost of Software Defects
	7.3.2 Business Impacts
	7.3.3 Project Planning
	7.3.4 Time to Market

	7.4 Holistic View
	7.4.1 Business Concerns
	7.4.1.1 Financial Models
	7.4.1.2 Process Simulation

	7.4.2 Technology Concerns
	7.4.3 People Concerns
	7.4.4 Governance

	7.5 Domain-Driven Software Design
	7.6 Conclusion
	References


