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Foreword

Nothing like this book is on the market today. Of course, all books make a similar
claim but there really is no book that offers to guide readers toward anchoring their
disciplines on modeling and simulation (M&S)—in fact, toward a far-reaching
concept of simulation-based disciplines. Why is such a guide needed? Most dis-
ciplines employ models, some to a larger extent than others. Further, today almost
all disciplines employ computers and very often this includes methods that are
referred to as simulation. However, it is less appreciated, that we are witnessing
the development of M&S as a discipline itself. Indeed, M&S is contributing to the
enhancement of many other disciplines and its perspectives and methods are being
absorbed into full-fledged practice. In this light, the editors of this book attest that
“simulation is mature enough to provide a solid basis for advancement in many
disciplines, from life sciences to engineering, from architecture to arts to social
sciences”. So the advance of your discipline, and indeed, the advance of your own
career in it, warrant checking out both the general chapters that bring you up to date
on the current state of M&S as a discipline, as well as the chapters that discuss the
benefits that M&S is bringing to a selected array of disciplines.

This one-of-its-kind book is concerned with how computational methods
embodied in M&S are used and how they push forward science and technology. As
is befitting of a book that spans disciplines, its editors and authors bring a diverse
range of topical, national and global perspectives. Each of these perspectives throws
somewhat different light on the common theme that computers and computation
take central roles in the accelerating advance of human knowledge. On this critical
journey, modeling and its knowledge generation vehicle, simulation, will increas-
ingly drive the advance of disciplines.

Potomac, MD, USA Bernard P. Zeigler
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Preface

Motivation

We live in the information age and every technology in today’s modern world is
based on information technology. Scientific theories—introduced in the last five
decades—are realized with today’s scalable computational infrastructure effectively
characterized by Moore’s Law. Modeling and Simulation (M&S), along with Big
Data technologies, is at the forefront of such exploration and investigation.
Furthermore, simulation has a unique characteristic: Dynamic models associated
with diverse experimental conditions and scenarios (sometimes in extreme and even
at adverse conditions) have the power of generating new knowledge.

M&S is often taken as a single activity but in practice and engineering, are
separate activities. While modeling has been adequately embraced by various
disciplines, leading to many modeling techniques, many times the modeling activity
is not supported by simulation activity. On the other hand, a simulation-based
approach subsumes modeling as an inherent activity. As editors, we believe while
modeling helps in bringing a common understanding across all stakeholders (e.g.,
scientists, engineers, practitioners), it is usually through simulation that a model’s
correctness is evaluated. A validated model must be amenable to simulation.
A model represents a real-world phenomenon using abstractions. A properly vali-
dated and verified and properly computerized model lends itself to experimentation.
Experimentation with a dynamic model as well as gaining experience based on a
dynamic model lies within the domain of simulation-based approaches.

This book has several examples from diverse disciplines demonstrating simu-
lation maturity to provide a solid basis for advancement in many disciplines; from
life sciences to engineering; from architecture to arts to social sciences. As a sign
of the times, we are truly at the crossroads where M&S is becoming a “discipline”.
This book emphasizes the fact that simulation may enhance the power of many
disciplines. Not only is M&S benefiting disciplines like sociology, which has
largely been insulated from such experimentation, but it is also undoubtedly used in
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every aspect of life, whether transportation, finance, economics, biology, and so
forth.

The book’s emphasis is on highlighting the state-of-the-art simulation in the
modern era and how simulation-based approaches across multiple disciplines
advance the very discipline itself.

Overview

The book is organized in Background, Engineering and Architecture, Natural
Sciences, Social Sciences and Management, and Learning, Education and Training
sections. We appreciate very much our eminent colleagues who accepted our
invitations to contribute to this volume.

The Background section endeavors to provide a comprehensive simulation view
in two chapters. In Chap. 1, the editors, Tuncer Ören, Saurabh Mittal and Umut
Durak, try to establish a base for the book by elaborating simulation evolution and
highlighting simulation as vital infrastructure for many disciplines. Ernest H. Page
presents in Chap. 2 the simulation technology landscape in academia, industrial and
government sectors throughout various scientific and engineering disciplines.

The Engineering and Architecture section is composed of six chapters each
drawing attention to a certain technical domain. In Chap. 3, Melih Çakmakcı, Güllü
Kızıltaş Şendur, and Umut Durak address the role of simulation in engineering
design. Andreas Tolk, Christopher G. Glazner, and Robert Pitsko promote simu-
lation in Chap. 4 as an evolution of model-based systems engineering toward an
integrated discipline within systems engineering. Chapter 5 Simulation-Based
Cyber-Physical Systems and Internet of Things by Bo Hu Li, Lin Zhang, Tan Li,
Ting Yu Lin, and Jin Cui explains the relation of simulation with these emerging
fields of technical systems. In Chap. 6, Saurabh Mittal and Jose Luis Risco Martin
accentuate complex and adaptive systems and introduce required simulation
infrastructure for their design. Following that, Chap. 7 is from Oryal Tanir, where
he presents simulation as a means of understanding the impact of a new complex
solution on the business and information technology process in a software design
life cycle. The last chapter of this section is by Rhys Goldstein and Azam Khan.
They introduce the emerging role of simulation in designing model compelling,
functional, sustainable, and cost-effective buildings in Chap. 8.

The Natural Sciences section includes two chapters. First in Chap. 9, Levent
Yilmaz conducts a comprehensive discussion on the position of simulation in
relation to scientific method towards simulation-based science. Then in Chap. 10
Hannes Prescher, Allan H. Hamilton, and Jerzy Rozenblit introduce the contribu-
tion of simulation to health-care as well as health education and training.

The Social Sciences and Management section contains two chapters. It starts
with Chap. 11 where David C. Earnest and Erika Frydenlund introduce simulation
evolution in social sciences and discuss its position in research. In Chap. 12 Greg
Zacharewicz, Amir Pirayesh-Neghab, Marco Seregni, Yves Ducq, and Guy
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Doumeingts present simulation of service systems for simulation-based enterprise
management.

The last two chapters establish the Learning, Education and Training section. In
Chap. 13, Tuncer Ören, Charles Turnitsa, Saurabh Mittal and Saikou Diallo present
the role of simulation in learning and education. Finally, the last chapter by
Agostino Bruzzone and Marina Massei discusses the role of simulation in military
training.

Invitation

The notable contribution of this book is providing a comprehensive collection of
chapters from diverse disciplines with the unique characteristics of simulation.
Authors explore and elaborate the position of simulation within their domain and
note its impact for the advancements of their disciplines. We invite you to a journey
about simulation through various disciplines and anticipate that such a synergistic
approach will provide you an overview of the role of simulation as we are
advancing towards a computational future in the twenty-first century: a computa-
tional future to be enhanced and empowered by simulation-based approaches.

Herndon, VA, USA Saurabh Mittal1

Braunschweig, Germany Umut Durak
Ottawa, ON, Canada Tuncer Ören
February 2017

1The authors affiliation with The MITRE Corporation is provided for identification purposes only,
and is not intended to convey or imply MITRE’s concurrence with, or support for, the positions,
opinions or viewpoints expressed by the author. Approved for public release: Case: 17-0904.
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Chapter 1
The Evolution of Simulation and Its
Contribution to Many Disciplines

Tuncer Ören, Saurabh Mittal and Umut Durak

We often fail to realize how little we know about a thing
until we attempt to simulate it on a computer.

Donald E. Knuth
From: The Art of Computer Programming,
Volume 1—Fundamental Algorithms, 1968

Abstract The aims of this chapter are: (1) To provide a comprehensive view of the
stages of the evolution of simulation. (2) To emphasize the phenomenal develop-
ments in many aspects of simulation which made it an important and even a vital
infrastructure for many disciplines. (3) To underline the fact that the transition from
“model-based” paradigm to “simulation-based” paradigm may be beneficial for
many disciplines. In Sect. 1.2, references for a systematic collection and a critical
review of about 100 definitions of simulation as well as a comprehensive and
integrative definition of simulation are given. In Sect. 1.3, the reasons simulation is
used are clarified. These reasons make simulation very useful for many disciplines.
In Sect. 1.4, nine aspects of the evolution of simulation are clarified including
simulation-based disciplines. In Sect. 1.5, many disciplines for which
simulation-based paradigm would make them much more powerful and efficient are
elaborated.

The authors affiliation with The MITRE Corporation is provided for identification purposes
only, and is not intended to convey or imply MITRE’s concurrence with, or support for, the
positions, opinions or viewpoints expressed by the author. Approved for public release: Case:
SM_001

T. Ören (&)
University of Ottawa, Ottawa, Canada
e-mail: oren@eecs.uOttawa.ca

S. Mittal
The MITRE Corporation, Virginia, USA
e-mail: smittal@mitre.org

U. Durak
German Aerospace Center (DLR), Braunschweig, Germany
e-mail: umut.durak@dlr.de

© Springer International Publishing AG 2017
S. Mittal et al. (eds.), Guide to Simulation-Based Disciplines,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-61264-5_1
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Keywords Agent Simulation � Agent-based simulation � Agent-directed simula-
tion � Agent-monitored simulation � Computerized simulation � Evolution of
simulation � Experience � Experiment � Formal simulation � Non-computerized
simulation � Reasons to use simulation � Similitude � Simulation systems
engineering � Simulation-as-a-service � Simulation-based � Simulation-based
discipline � Soft simulation � Terms related with similitude � Thought experiment

1.1 Introduction

The term “simulation”, derived from Latin similis “like” has existed in the English
language since the mid-fourteenth century. The concept of similarity which is also
related with Latin similis, is very rich. The Appendix gives—in 14 groups—a list of
terms associated with similarity. “Starting with the etymology of simulation, sim-
ulare is a Latin verb originally denoting the act of making one thing be similar to
another. From this fundamental meaning derive connotations such as to pretend, to
falsify, to feign, and to make believe. As Heidegger noted in two of his 1957
lectures (published posthumously under the title Identity and Difference), the
capability to recognize when things are the same and when they are different from
one another is a fundamental precondition for the construction of any ontology”
(Gualeni). The term simulation still represents the original concepts for which it was
coined (ED—simulation), in addition to many powerful contemporary technical
concepts that are pointed out in this chapter.

Since simulation has many aspects, meanings, and associated connotations, it is
appropriate to have a comprehensive and integrative view. For this reason, we offer
a comprehensive view of simulation before the presentation of the stages of the
evolution of simulation. We emphasize the fact that the phenomenal developments
in many aspects of simulation have made it an important and even a vital infras-
tructure for many disciplines. Finally, we share our view that transition from
“model-based” paradigm to “simulation-based” paradigm may be beneficial for
many disciplines.

In Sect. 1.2, references for a systematic collection and a critical review of about
100 definitions of simulation as well as a comprehensive and integrative definition
of simulation are given. In Sect. 1.3, the reasons simulation is used are revised.
These reasons make simulation very useful for many disciplines. In Sect. 1.4, nine
aspects of the evolution of simulation are clarified including simulation-based
disciplines. In Sect. 1.5, many disciplines for which simulation-based paradigm
would make them much more powerful and efficient are elaborated.

4 T. Ören et al.



1.2 Definition(s) of Simulation

Some terms were used in English even before the technical aspects were attributed
to them. An example is the term “computer” which originally denoted, in the
middle of the seventeenth century, a human, “one who computes but now the term
almost universally refers to automated electronic machinery” (Swaine et al. 2017).
With this new meaning, the original connotation was dropped. Similarly, the term
“simulation” has been used in English, since mid-fourteenth century. Contrary to
the term “computer”, the term “simulation” retained its original meanings, in
addition to its technical meanings. Hence, elaboration of the concept of similarity
may cast light even on simulation.

Similarity has basically three meanings. All three aspects cover a plethora of
other meanings.

1. Existence of common characteristics between two entities. This first meaning
covers four basic shades and the shades in between:

1:1 Two entities are (almost) identical
1:2 Two entities do not have any common characteristic
1:3 The (in)ability of perceiving the similarities
1:4 Hiding the similarities

2. Pretention. This meaning covers the following:

2:1 Give the impression of something to (re-)create a situation (e.g., fiction
which can create or recreate a situation.)

2:2 Give the impression of something for faking (e.g., halo effect)

3. Imitation. Depending on the goal, “imitation” and “similarity” can also denote
counterfeit.

3:1 Replication of another person’s behavior (emulation, parroting, counterfeit
appearance: mockery)

3:2 Replication of another object’s characteristics (e.g., simulated leather,
simulated pearl)

3:3 Copying, reproduction, replica (e.g., imitation diamond).

To show the richness of the concept of similarity—some of which are applicable
to several aspects of simulation—the Appendix lists several terms related with the
concept of similarity. The terms are grouped under the following 14 categories:

• simulation concept, model;
• analogy, imitation, behavioral similarity, functional similarity, similarity in

mathematics, similarity in linguistics, similarity in literature, similarity in art, to
be similar; and

• indistinguishableness, disguise similitude under a false appearance, and
non-similarity.

1 The Evolution of Simulation and Its Contribution … 5



This fact and the fact that technical meaning of “simulation” embraces several
concepts create some confusion. For this reason, a clarification may be useful.
A systematic collection of about 100 definitions of simulation (Ören 2011a) shows
that some of the definitions are about some aspects or types of simulation and are
not comprehensive and integrative. A critical review of these definitions is also
available (Ören 2011b). A concise, albeit comprehensive and integrative, definition
of simulation follows:

Simulation is performing goal-directed experimentation or gaining experience
under controlled conditions by using dynamic models; where a dynamic
model denotes a model for which behavior and/or structure is variable on a
time base.

1.3 Reasons to Use Simulation

Simulation is used for many reasons. These reasons are also the essence of the
power of simulation that can be used by any other discipline. As early as 1970s,
Karplus (1977) presented a spectrum of problem types to explain the reasons to use
simulation. The spectrum—which ranges from arousing public opinion to product
design—covers gaining insight, testing theories, experimentation with control
strategies, and prediction for both action and performance. These reasons perfectly
overlap with the experimentation and experience aspects of simulation. Arousing
public opinion is a motivating task from social sciences such as political science or
economics, gaining insights, and testing theories are the typical tasks from life
sciences or physical science that employ simulation. Experimentation with control
strategies, prediction for both action and performance, and product design are the
conventional tasks of engineering that typically require the use of simulation.

Within the Experimentation aspect, simulation is used for:

• behavior prediction and performance analysis;
• analysis of alternatives;
• sensitivity analysis;
• engineering design;
• virtual prototyping;
• planning;
• acquisition; and
• proof of concept.

Within the Experience aspect, simulation (sometimes as virtual reality (VR), and
augmented reality (AR)) is used for:

6 T. Ören et al.



• training to enhance one of the three types of skills, i.e., motor skills (virtual
simulation), decision-making skills (constructive simulation), and operational
skills (live simulation);

• entertainment (simulation games); or
• shared knowledge and emotions, as in art (Dewey 1934) and literature. For the

last category, visual renderings are theatre, movie, and TV.

As seen in Table 1.1, there is also a set of task characteristics that requires the
use of simulation (Ören 2005). In most of the design problems, the real system does
not exist. In some cases, even if it exists, it is not accessible for experimentation
such as in space exploration problems. The dynamics and the response of the
system also play an important role in determining what task could be supported.
Both too slow dynamics, such as economic studies, and too fast dynamics, such as
particle physics, make the observations almost impossible. The safety considera-
tions may also, sometimes, dictate a simulation-based experimentation. Conducting
test for aircrafts out of their flight envelopes is an example of that. In other cases,
experimentation may not be acceptable by populace, such as experimentation with
education systems. The cost of experimentation is also another driver for simulation
use. Conclusively, it is more convenient to use simulation when experimentation
conditions cannot be fulfilled physically, for example, the range of the system
variables cannot be controlled or are unachievable. These characteristics also per-
suade the use of simulation.

Another perspective to use simulation (for teaching) is given by JeLSIM:
“Simulations provide:

• Exploration—learners can explore domains that would otherwise be too
time-consuming, expensive or dangerous.

Table 1.1 Reasons to use simulation [adapted from Ören (2005)]

Aspect Reason

Real
system

The real system does not exist (as in design problems)

The real system is not accessible for experiments (as in deep sea or space
exploration problems)

The dynamics and response of the real system is too slow or too fast for
observation (e.g., geological studies, economic studies; particle physics)

Experiment The experiment is dangerous (e.g., extreme cases in pilot training, study of a
failure in a levee)

The experiments are unacceptable by public (experimenting cases where public
would be affected directly, e.g., experimenting different public transportation
policies)

The experimenting with real system is not cost-effective (e.g., use of physical
prototypes versus computerized simulations)

The proper conditions for the experiment cannot be fulfilled

Variables The variables of the system (as opposed to simulation) cannot be controlled

Process variables cannot be measured on the real system

Measurements of the variables of the real system would be noisy
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• Focus—they facilitate the removal of complexity and detail from a model,
focusing only on the aspects of the model that are most relevant to the learning.

• Visualization—they make it easier to visualize dynamic or complex behavior.
• Motivation—they motivate by providing context and engagement, encourage

active involvement, and arouse interest.
• Control—learners can control timing and detail, they can explore and experi-

ment, hypothesize and test.
• Practice—to address misconceptions and allow learners to learn from their

mistakes.”

1.4 Aspects of the Evolution of Simulation

The concept of simulation has evolved over the ages and with the advent of
computer technologies, it gained importance in every sphere of study. The capa-
bilities provided in experimentation and experience aspects have evolved with the
increasing computing power. The realization of Moore’s Law has provided the
needed catalyst for simulation technology that is now pervasive.

The evolution of simulation can be easily understood in two broad categories

• Noncomputerized simulation
• Computerized simulation.

Evolution of simulation can be studied within nine aspects that are depicted in
Fig. 1.1. The first aspect is noncomputerized simulation which was the answer to
the needs of experimentation and gaining experience, albeit not on the real system.
Addition of “computation” results in computerized simulation which is also called
computational simulation, computer simulation, in silico simulation, or in short,
simulation. Since the term “computer simulation” also means simulation of com-
puter systems, when the term “computer simulation” is used, the meaning is
understood based on the context.

Similarly, each aspect represents the influence of some additional feature. The
identified nine aspects of the evolution of simulation are: noncomputerized simu-
lation, computerized simulation, formal simulation, AI-directed simulation,
agent-directed simulation, soft simulation, simulation systems engineering,
simulation-based disciplines, and simulation-as-a-service. These aspects of the
evolution of simulation should not be interpreted as levels of simulation even
though sometimes they may appear to be. For example, computerized simulation is
a more advanced version of noncomputerized simulation. However, some aspects,
such as formal simulation and agent-directed simulation may exist simultaneously.

1.4.1 Noncomputerized Simulation

Simulation, in the sense of pretending (to make believe, to claim, represent, or
assert falsely), has been used since a long time in relation with both experimentation
and experience.
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Experimentation done by pure thinking is called thought experiment (also,
conceptual experiment or Gedankenexperiment). Thought experiments have been
used mostly in ethics, philosophy, and physics. Some examples are prisoner’s
dilemma and trolley problem (Brown et al. 2014). Physical aids, such as scale
models, were also used for simulation done for experimentation purposes. Another
possibility has been simulation of the real system under controlled experimental
conditions, such as wheel and tire simulators.

Experience aspect of covers three major areas for training, entertainment, and for
shared knowledge and feelings. Training is done to enhance skills. Role playing has
been a use of simulation to gain experience under controlled conditions for training
to enhance necessary skills. For example, training of a junior sales representative
while a senior representative may act as a prospective customer. Some historic
examples to the use of physical aids to gain experience for training purposes include
sand-box simulation, used for military training and mechanical simulators.
Simulation for entertainment purposes has a wide application. Any game where a
pretention about reality is concerned falls in this category. From a philosophical
perspective, the book by John Dewey, titled: “Art as experience” is a classical one

Aspects of simulation Additional feature 

9. Simulation-as-a-service Service

8. Simulation-based disciplines Infrastructure

6. Soft simulation

3. Formal simulation

2. Computerized simulation

7. Simulation systems engineering Systems Engineering

Soft computing

5. Agent-directed simulation Autonomy

4. AI-directed simulation Intelligence

System theories

Computation

1. Non-computerized simulation

Fig. 1.1 Aspects of simulation
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(Dewey 1934). Several references exist about “Literature as experience” (Wallace
and Breen 1959; Howe 1979). Any work of literature is a created reality where the
reader faces a make-believe situation. The source can be pure fiction or reality.
A reference for the relationship of simulation and reality is given by Ören (2010). In
visual renderings of works of literature, such as in theater, movie, or TV, physical
aids are also used as part of the décor and/or environment. It is interesting to note
that, in literature, the author creates a work of art based on fictional (imagined) or
existing reality. In plastic arts, such as sculpture or painting, the artist creates her
work of art based on “reality” that is called a “model” (Table 1.2).

1.4.2 Computerized Simulation

Computerized simulation, or computational simulation is also called computer
simulation to make it shorter. However, the term “computer simulation” also means
simulation of computer systems, like “traffic simulation” which means simulation of
traffic. The distinction of these two meanings is done based on the context within
which the term is used. In this section, the term “computerized simulation” is used
to mean that some of the activities of simulation are performed by computers. As
indicated in Table 1.3, in the early days, computers were used only for behavior
generation (Ören 1982a). Some of the types of computer-aided model processing
were discussed as early as 1980s (Ören 1983). Table 1.4 outlines influence of types
of computers, to the advancement of simulation: some of the types of computers
such as wearable, implantable, and quantum computers, are emerging.

Table 1.2 Non-computerized simulation

Goal Pure thinking Physical aids

Experimentation Thought experiments Simulation with scale models

Experience

– for training (to enhance
skills)

Role playing Sand-box simulation
Mechanical simulators

– for entertainment Games

– for shared knowledge and
emotions

Art (literature, painting,
sculpture)

Visual renderings (theatre,
movie, TV)

Table 1.3 Computerized simulation (computer simulation)—role of computers

Role of computers Implication for simulation

– behavior generation Initially computers are used only for behavior generation

– also, problem specification Computer-aided simulation environments
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1.4.3 Formal Simulation

In the early days of computerized simulation, craftsmanship of simulation was
promoted. See for example, Tocher (1963). Importance and a way to separate
models from experimentation and other aspects of behavior generation were doc-
umented for the first time in 1979 (Ören and Zeigler 1979). A first conference—
supported by NATO—on simulation and model-based methodologies was held
early in the 1980s (Ören et al. 1984; Ören 1984).

Separation of concerns—especially model—in simulation, marked the beginning
of the era of model-based simulation. Later, model-based other activities, such as
model-based systems engineering (Wymore 1993) and model-based software
engineering were also established. System theoretic bases of simulation were the
essence of system theory-based simulation. A first model specification language (as
opposed to simulation programming language) based on a system theory was GEST
(General System Theory implementor (Ören 1971). The history of system theoretic
bases of simulation was elaborated on by Ören and Zeigler (2012). Indeed,
Zeigler’s DEVS (Discrete Event System Specification) (Zeigler 1976)—as an
extension of Moore machine formalism—provides a robust basis for modeling and
simulation of discrete event systems. This work was then later expanded to
incorporate hybrid discrete event and continuous systems (Zeigler et al. 2000).
Having a solid framework for modeling and simulation promoted the concepts of
computer-aided M&S (Ören 1982a), simulation engineering, model-based simula-
tion engineering, and simulation-based problem-solving environments (Ören 1996;
Yilmaz et al. 2006). Table 1.5 summarizes the relationship between modeling,
simulation and their theoretical basis.

Table 1.4 Computerized
simulation (computer
simulation)

Type of computer Type of simulation

Analog computer Analog simulation

Hybrid computer Hybrid simulation

Digital computer Digital simulation

Batch processing computer Noninteractive simulation

Interactive computer Interactive (Online)
simulation

Distributed computing Distributed simulation

Cloud computing Cloud simulation

Wearable computer Wearable simulation

Implantable computer Implantable simulation

High-performance
computer

High-performance simulation

Terascale computer Terascale simulation

Petascale computer Petascale simulation

Exascale computer Exascale simulation

Quantum computer Quantum simulation
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1.4.4 AI-directed Simulation

Synergy of simulation and machine intelligence (or computational intelligence, or
Artificial Intelligence [AI]) has been very fruitful. At the beginning, AI benefited from
the application of simulation; see for example “Simulation of human thinking” by
Simon et al. 1962). Simon posits, “The real power of the simulation technique is that it
provides not only ameans for stating a theory but also a very sharp criterion for testing
whether the statement is adequate.” (Simon et al. 1962, p. 123). Hence,
simulation-based aspect of Artificial Intelligence was very strong even at its begin-
ning. Possible contribution of AI to simulationwas promoted byÖren starting in early
1980s (Ören 1982b, 1995). An outline of AI-directed simulation is given in Table 1.6.

1.4.5 Agent-Directed Simulation (ADS)

Ability of autonomy (or quasi-autonomy) in addition to intelligence results to a very
powerful paradigm of agent-directed simulation (see Table 1.7) (Ören et al. 2000;
Yilmaz and Ören 2009).

Table 1.5 Formal simulation

Issue Implication to simulation

Separation of concerns
(especially model) in simulation

Model-based simulation

Role of system theories System theory-based simulation

Importance of modeling Modeling and simulation (M&S)

Model-based activities other than
behavior generation

Computer-aided M&S: tools, toolkits, and environments
for: modeling, model-base management, symbolic model
processing, post-run and post-study processing (analysis,
display), etc.

Simulation engineering
Model-based simulation engineering
Simulation-based problem-solving environments

Table 1.6 AI-directed simulation

Source of contribution Implication

Contribution of simulation to AI Simulation of intelligent entities

Contribution of AI to simulation AI-supported simulation (for user/system interfaces)
AI-initiated simulation
AI-monitored simulation
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1.4.6 Soft Simulation

Soft computing is involved in approximate reasoning and function approximation,
learning, search, and optimization which are combined in a complementary and
synergetic manner (Abraham and Grosan 2005). Soft computing methods enabled to
incorporate life vagueness and uncertainty to simulations. Table 1.8 categorizes “soft
simulation” where soft computing methods are applied to simulation; and two types
of soft simulation are identified, i.e., neural network simulation and fuzzy simulation.

1.4.7 Simulation Systems Engineering

Simulation Systems Engineering (SSE) is the contemporary practice of modeling
and simulation studies that emerged through the synergy between systems engi-
neering and simulation during the evolution of simulation. The contribution of
simulation to systems engineering has lead us to Simulation-based Systems
Engineering (Mittal and Martin 2013; Zeigler et al. 2013; Gianni et al. 2014; Durak
and Ören 2016). Simulation systems engineering emerged as systems engineering
contribution to simulation studies for large and complex systems. As seen in
Table 1.9, simulation systems engineering can be categorized regarding its relation
with agent technologies and the characteristics of the simulation system. The uti-
lization of distributed computing in simulation leads us to Distributed Simulation
Systems Engineering (DSSE).

Moreover, the synergy between agent technologies, simulation, and systems
engineering (Yilmaz and Ören 2009; Ören and Yilmaz 2012) has brought out
Agent-directed Simulation Systems Engineering (AdSSE). Its distributed simula-
tion variant is then Agent-directed Distributed Simulation Systems Engineering
(AdDSSE).

Table 1.8 Soft simulation

Type of soft computing Implication to simulation

Neural networks Neural network simulation

Fuzzy logic Fuzzy simulation

Table 1.7 Agent-directed simulation

Source of contribution Implication

Contribution of simulation to agents For simulation of agent systems
– Agent simulation

Contribution of agents to simulation For user-system interfaces:
– Agent-supported simulation
For run-time activities:
– Agent-initiated simulation
– Agent-monitored simulation
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1.4.8 Simulation-Based Disciplines

Synergies play an important role in the evolution of disciplines. Contribution of
simulation to a discipline “x” is called “simulation-based x”. Already, simulation-
based science, simulation-based engineering as well as many other simulation-
based disciplines are important examples of contributions of simulation to other
disciplines, making simulation a powerful infrastructure for them. Table 1.10
highlights an extended list of disciplines which benefit tremendously from
simulation-based approaches.

Table 1.9 Simulation systems engineering (for complex systems and systems of systems)

Without agents With agents

Simulation Systems Engineering
(SSE)*

Agent-directed Simulation Systems Engineering
(AdSSE)

Distributed Simulation Systems
Engineering (DSSE)

Agent-directed Distributed Simulation Systems
Engineering (AdDSSE)

*Distinct from simulation-based systems engineering (for all types of systems engineering)

Table 1.10 Simulation-based disciplines (examples)

Areas Disciplines

Engineering Simulation-based (all types of) engineering (Chaps. 3, 4, 7, 8)
Simulation-based cyber-physical systems (Chap. 5)
Simulation-based complex adaptive systems (Chap. 6)

Natural science Simulation-based (all types of) Science (Chap. 9)
Simulation-based cosmology
Simulation-based astronomy

Health science Simulation-based Health Care (Chap. 10)
Simulation-based pharmacology

Social science and
management

Simulation-based Social Science (Chap. 11) (Behavioral science,
psychology, demography,
sociology, public administration, political
science, archeology, environmental studies, …)
Simulation-based economics
Simulation-based enterprise management (Chap. 12)
Simulation-based planning and scheduling
Simulation-based optimization
Simulation-based policy improvement

Information Science Informatics
Artificial intelligence (machine intelligence)
Software agents
Communication
Library science

Education/training Simulation-based Education (Chap. 13)
Simulation-based training (Chaps. 10, 14) (including health care
and military training)

Entertainment Simulation-based games
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In this book, we provide a comprehensive review of these disciplines. The
experts of these disciplines present the use of simulation in their discipline and the
role of it in the evolution of their discipline. While Chap. 3 introduces simulation in
classical engineering process, Chap. 4 presents the role of simulation in systems
engineering. In Chap. 7, readers can find a discussion about the role of simulation is
software engineering and Chap. 8 explores simulation in architecture. Cyber-
Physical Systems (CPS), Internet of Things (IoT), and further complex adaptive
systems as emerging systems architectures that come along with a new set of
challenges. Simulation is being pronounced as a key tool in tackling the upcoming
challenges of engineering. Accordingly, Chap. 5 presents simulation based CPS
and IoT and Chap. 6 explores simulation-based complex adaptive systems.

Natural and health sciences are also benefiting from the contribution of simu-
lation in great extent. Chapter 9 presents simulation-based science and Chap. 10
introduces simulation health care, and health education and training. In the field of
social sciences and management, there are various applications of simulation. This
book includes three chapters that incorporate the social elements in today’s
sociotechnical systems: Chap. 11 for simulation-based social science and Chap. 12
for simulation-based enterprise management. In the direction of learning, education
and training, while Chap. 13 presents simulation-based learning; Chap. 14 presents
simulation in military training.

In addition to the disciplines listed in Table 1.10, some other disciplines are
already using simulation-based approaches. They include: experimental archeology
or simulated dig (Brown) and simulation-based cosmology.

1.4.9 Simulation-as-a-Service

With the computing infrastructures moving to cloud environments, simulation is
increasingly being made available as a service. Technically speaking, it is a service
for doing “computation”—done to perform experiment(s) or to gain experience—
that is invoked through a remote request. However, the computation aspect needs to
be supported by a rich and reliable model as well as scenario bases. This enables the
end-user to leverage high-performance simulation farms at its disposal to conduct
simulation experiments without investing in setting up computing hardware. The
end-user typically subscribes for the computational resources needed to perform the
computation. The subscription can be individual based or group based. Equally

Table 1.11 Simulation-as-a service

Type of service Simulation results to be distributed

Individual subscription On demand
Delivered every time there is an update

Group subscription Individually to members of the group
Broadcasting
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important is the technical infrastructure that is required to run a simulation in a
cloud environment, which is an independent area of research in the current era
(Table 1.11).

1.5 Future of Simulation-Based Disciplines

Many of the disciplines outlined in Sect. 1.4 have already accepted model-based
approaches and methodologies to support the design of new systems, and analyze
the structure and behavior of current systems. However, in some cases,
model-based approaches have not yet find their way to simulation-based approaches
due to either the lack of need for simulation or project time-constraints, for the
simple reason that turning a model-based methodology to a simulation-based
methodology is a nontrivial effort—albeit very profitable for the success of the
project. The advances in model transformation technologies in the last decade are a
step in that direction where abstract models can be turned into concrete models that
can be transformed into executable code, and eventually participate in a simulation
experiment in the final stage.

This book delineates the benefits of computational environments and emphasizes
that modeling and simulation can contribute to future advancements in many dis-
ciplines. Not only M&S is benefitting disciplines like sociology, which has largely
been insulated from such experimentation, it is undoubtedly used in every aspect of
life, whether transportation, finance, economics, biology, and so forth.

Time is ripe for the transition of many disciplines from “model-based” paradigm
to “simulation-based paradigm” to make them even more powerful.

Review Questions

1. Give seven reasons why simulation is used. Are they substantial contributions
in your field? If not, why?

2. How do you keep up with the advancements of simulation?

2:1 Are you a member of at least one simulation society (as listed at http://
www.site.uottawa.ca/*oren/links-MS-AG.htm) to follow developments
of simulation in your field?

2:2 How many simulation conferences do you follow every year?

3. Cite about five possibilities how simulation-based approach may be beneficial
for your field?

4. What makes a discipline simulation-based? Is simulation used in your field? If
not, why?

5. What are the reliability issues of simulation? How can they be assured?
6. Why are ethics important in simulation studies?

16 T. Ören et al.

http://www.site.uottawa.ca/%7eoren/links-MS-AG.htm
http://www.site.uottawa.ca/%7eoren/links-MS-AG.htm


7. What is the difference between agent-based simulation and agent-directed
simulation? Cite some additional advantages of agent-directed simulation over
agent-based simulation.

8. What is the difference between simulation systems engineering and simulation-
based systems engineering? Cite advantages of both.

9. Give some examples of soft simulation? In which cases, they can be benefi-
cially applicable?

10. Why exascale computers are important in simulation? Cite some example areas.

Appendix 1.1—Terms Related with Similitude

Simulation is based on the very rich concept of “similitude” which covers a large
variety of meanings. In this appendix, terms related with similitude are listed under
the following 14 groups: (1) Simulation concept, (2) Model, (3) Analogy,
(4) Imitation, (5) Behavioral similarity, (6) Functional similarity, (7) Similarity in
mathematics, (8) Similarity in linguistics, (9) Similarity in literature, (10) Similarity
in art, (11) To be similar, (12) Indistinguishableness, (13) Disguise similitude under
a false appearance, and (14) Non-similarity.

1.1 Simulation concept

Auto simulatable

Auto simulate (v)

Auto simulated

Auto simulation

Auto simulative

Co-simuland

Co-simulatable

Co-simulate (v)

Co-simulated

Co-simulation

Co-simulationist

Co-simulative

Meta-simuland

Meta-simulatable

Meta-simulate (v)

Meta-simulated

Meta-simulation

Meta-simulationist

Meta-simulative

Multisimulatable

Multisimulate (v)

Multisimulated

Multisimulation
(continued)
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(continued)

Multisimulation-based

Multisimulationist

Multisimulative

Non-simulatable

Non-simulation

Simuland

Simulatable

Simulate (v)

Simulated

Simulating

Simulation

Simulation-based

Simulation-driven

Simulationist

Simulative

Simulator

Simulism

1.2 Model

Model

Model (v)

Model-based

Model-driven

Modeler

Modelled

Modeling

1.3 Analogy

Alike

Analog

Analogical

Analogous

Analogy

Like

Likeness

Pose (v)

Resemblance

Resemble (v)

Resembled

Resembling

Self-similar

Similar

Similarity

Similitude

Simulacra
(continued)
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(continued)

Simulacrum

1.4 Imitation

Copy

Imitate

Imitate (v)

Imitated

Imitation

Imitative

Imitator

1.5 Behavioral similarity

Mimesis

Mimetic

Mimicry

Pantomime

Pretend (v)

Pretention

Role playing

1.6 Functional similarity

Emulate (v)

Emulated

Emulating

Emulation

Emulative

Emulator

1.7 Similarity in mathematics

Automorph

Automorphic

Automorphism

Bisimulatable

Bisimulate (v)

Bisimulated

Bisimulation

Bisimulative

Bisimulator

Congruous

Conjugate

Endomorph

Endomorphic

Endomorphism

Endomorphous

Equivalence

Equivalent

Homolog
(continued)
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(continued)

Homologic

Homology

Homomorph

Homomorphic

Homomorphism

Homomorphous

Homomorphy

Homothecy

Homothetic

Homothetic transformation

Homothetism

Homothety

Isomorph

Isomorphic

Isomorphism

Isomorphous

Map (v)

Noncongruent

Noncongruently

Strong bisimulation

1.8 Similarity in linguistics

Alternative

Equivalence

Equivalent

Homograph

Homographic

Homography

Homonym

Homonymous

Homonymy

Homophon

Homophonous

Homophony

Isomorph

Isomorphism

Synonymous

Synonymy

Tautology

1.9 Similarity in literature

Metaphor

Metaphoric

Pastiche
(continued)
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(continued)

Pataphor

Pataphoric

1.10 Similarity in art

Imitate (v)

Imitation

Pastiche

Replica

1.11 To be similar

Assimilate (v)

Assimilated

Assimilating

Assimilatingly

Assimilation

Assimilationism

Homochromy

Homotypy

Mimesis

Mimetic

Mimetism

Mimicry

1.12 Indistinguishableness

Indistinguishable

Indistinguishableness

Indistinguishably

Indistinguishing

To be mistaken for

1.13 Disguise similitude under a false appearance

Differentiation

Dissimular

Dissimularity

Dissimulate

Dissimulate (v)

Dissimulation

Dissimulative

Dissimulator

1.14 Non-similarity

Dissimilar

Dissimilarity

Dissimilarly

Dissimilate (v)

Dissimilation
(continued)
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(continued)

Dissimilitude

Non-similar

Unalike

Unique

Uniqueness
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Chapter 2
Modeling and Simulation (M&S)
Technology Landscape

Ernest H. Page

Abstract A review of current investment levels in M&S research, development and
application is provided, and a subjective assessment of the “leading” organizations
across various applications of M&S is suggested. In addition, a number of challenge
problems in M&S are identified. Our objective is to provide a starting point for orga-
nizations in their formulation of investment and technology strategies for M&S.

Keywords Analysis � Aviation � Defense � Experimentation � Healthcare �
Immersion � Live-virtual-constructive � Manufacturing � Research and development �
Systems design � Technology landscape � Training

2.1 Introduction

As the Table of Contents for this book suggests, Modeling and Simulation (M&S)
is essentially ubiquitous across the scientific and engineering disciplines. As such,
holistic, comprehensive treatments of the subject are elusive. In this chapter, we
consider the technology investment “landscape” for M&S. Based on publicly
available information, we characterize the interest in, and reliance on, M&S—as
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measured in terms of investment—across various domains of application, across
industries, countries, and so forth. Our treatment is necessarily abbreviated and
approximate, and superficial in many aspects. Certainly, more extensive treatments
of this subject are warranted as the “profession” of modeling and simulation
emerges. Nonetheless the cursory examination here may provide a useful starting
point for business leaders and/or governmental organizations in their formulation of
technology investment and research strategies.

2.2 The Global M&S Landscape

Modeling and simulation pervades science and engineering, with application in
systems design and analysis, training, experimentation, mission rehearsal, test and
evaluation, education and entertainment. It has been suggested (Glotzer et al. 2009)
that:

Today we are at a ‘tipping point’ in computer simulation for engineering and science.
Computer simulation is more pervasive today – and having more impact – than at any other
time in human history. No field of science or engineering exists that has not been advanced
by, and in some cases transformed by, computer simulation. Simulation has today reached a
level of predictive capability that it now firmly complements the traditional pillars of theory
and experimentation/observation. Many critical technologies are on the horizon that cannot
be understood, developed, or utilized without simulation.

Despite, or perhaps because of, this ubiquity, global investment levels in M&S
are difficult to quantify with accuracy. In most circumstances, we can only measure
M&S investments indirectly as a fraction of the total government, industrial, and
academic investments across the scientific and engineering disciplines. In some
areas, though, distinct M&S marketplaces exist, most notably those involving
training simulations/simulators and Product Life-Cycle Management
(PLM) software (a cornerstone of the manufacturing industry). Rigorous market
analysis data is available in a few of the domains associated with these technolo-
gies, including:

• Defense training and simulation (Frost and Sullivan 2014; Visiongain 2015)
• Civil naviatio training and simulation (TechNavio Infiniti Research Ltd 2014)
• Manufacturing (CIMdata 2014)
• Healthcare (Marketsandmarkets 2014; Meticulous Research 2014)
• Emergency Management (Marketsandmarkets 2013).

Although these applications constitute a small fraction of the total M&S land-
scape, collectively they represent an estimated global annual market exceeding
$18B USD. The countries with the highest investment levels in training simulation
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and simulators include: United States, Russia, China, India, and United Kingdom.
The heaviest investors in PLM software are: France, United States, and Germany.
Asia-Pacific and Latin America are expected to have the highest growth in medical
simulation, driven by: India, China, South Korea, Singapore, Brazil, and Mexico.

An important subset of total spending is investments relating to research and
development (R&D). Within the government sector, M&S R&D investments are
typically embedded within the enterprise Science and Technology (S&T) budget, or
as part of the Research, Development, Testing and Experimentation (RDT&E)
budget for new/developing systems. Again, direct measures are elusive, but within
the U.S. alone, annual R&D spending easily exceeds $100B USD (Valvida and
Clark 2015). An informal scan of the programs across the Department of Defense,
Department of Energy, National Science Foundation, National Air and Space
Administration, National Institute of Standards and Technology, National Institutes
of Health, National Labs, and Federally Funded Research and Development Centers
(FFRDCs) suggests that tens of billions (USD) are oriented toward M&S-related
topics annually. Global expenditures may eclipse that value by an order of
magnitude.

With respect to investments by industry, in-depth market surveys for global
industrial R&D funding are available. A 2016 assessment suggests that total global
R&D investments approach $2T USD (Industrial Research Institute 2016). Asian
countries (including China, Japan, India, and South Korea) account for more than
40% of the total investments; North America represents 30%, Europe 20%, and the
rest of the world (Russia, Africa, South America, and the Middle East countries)
account for 10%. Again, we can only estimate M&S as a fraction of this total R&D
spending. However, the 2016 study cited above specifically identifies M&S as a
critical R&D technology.

Given the value and volume of M&S workloads within scientific computing,
another indirect measurement for M&S R&D investment may be the Top500 list of
supercomputing sites. For 2016, countries represented in the top 25 are: China, U.S.,
Japan, Switzerland, Germany, Italy, France, and Saudi Arabia (Top500.org 2016).

From the data in these formal market studies, in combination with less formal
assessments of the scientific literature, and the activities of scientific and profes-
sional societies, we derive a partial (and largely subjective) view of international
leadership in M&S, summarized in Table 2.1. Here, “leadership” is simply an
aggregated function of investment levels, publication volumes, and subjective
measures of influence, notoriety, and so forth. Obviously, many important entries
may be missing from this data. The entries in Table 2.1 merely suggest a starting
point for any rigorous analysis relating to M&S technology investment and research
strategies.
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2.3 The U.S. M&S Landscape

As with global investment levels, quantifying U.S. investments in M&S is also
difficult. The U.S. uses the North American Industry Classification System
(NAICS) to classify business activity in the nation. Despite the notable efforts of
groups like SimSummit (www.sim-summit.org), an international consortium of
M&S entities across government, academia and industry, to facilitate the creation of
a NAICS code(s) for M&S, none has yet been defined. Therefore, M&S activity
must largely be measured indirectly.

A 2012 study established total U.S. expenditures on M&S at $50B USD
annually, including $9B USD within the Department of Defense (DoD) (Old
Dominion University 2012). States with significant activity in M&S, including

Table 2.1 A partial view of international leadership in M&S

Nation Leading govt. organizations Leading academic institutions Industry
leaders

UK DSTL
iDSC

Brunel Univ.
University of Edinburgh
Imperial College
Loughborough University
University of Southampton

Rolls-Royce
QinetiQ
Saker
Solutions
Simul8 Corp

Germany Max Planck Inst. University of Rostock
University of Munich
University of Stuttgart
ASIM

Fraunhofer
Inst.
Siemens
SAP
Volkswagen

France European Space Agency INSEAD
Ecole Normale
Ecole Centrale
Ecole des Mines St-Etienne
Supérieure, Paris

Thales
Dassault
Systems
Renault
Airbus

Russia Lomonosov
Moscow State University

AnyLogic

China Chinese Assoc. for Systems
Simulation

China University of Science
and Technology

Canada McGill University
Carleton University
University of Ottawa
University of Calgary

Lumerical
Bombardier
Thales
CAE
Autodesk
Research

Singapore Defence, Science and
Technology Agency

Nanyang T.U.

Netherlands Tilburg University
TU Delft
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dedicated research centers, include: Virginia, Florida, Arizona, California, and
Alabama. While direct measures of M&S R&D activity are unavailable for this
analysis, the total number of articles associated with the keywords “modeling” or
“simulation” available within the major digital libraries (ACM, IEEE Xplore, etc.)
is increasing. The number of venues for research publication (conferences, work-
shops, journals) also seems to be increasing. And the number of Universities
granting graduate degrees in M&S continues to rise.

M&S is a topic of interest at the highest levels of the U.S. government. In June
2007, the U.S. House of Representatives approved House Resolution 487, which
identifies M&S as a National Critical Technology. This resolution was developed
through the M&S Congressional Caucus under the direction of
Congressman J. Randy Forbes (4th District VA), and establishes the importance of
M&S to the national security.

In a July 14, 2010 statement to the Subcommittee on Commerce, Trade and
Consumer Protection of the Committee on Energy and Commerce, U.S. House of
Representatives, Aneesh Chopra, the Chief Technology Officer and Associate
Director of the Office of Science and Technology Policy, Executive Office of the
President, asserted that M&S can significantly reduce the need for physical pro-
totypes in the manufacturing sector of the U.S. economy. This, he said, would
shorten product development time, reduce costs, and improve quality. Chopra
believes that M&S is capable of providing the country with a crucial manufacturing
edge that will lead its manufacturing renaissance (Old Dominion University 2012).

In fall 2011, the National Modeling and Simulation Coalition (NMSC) was
formed (www.modsimcoalition.org). The mission of the NMSC is to create a
unified national community of individuals and organizations around the M&S
discipline and professional practice and to be the principal advocate for national
investments in M&S.

2.4 Some “Good Challenges” in M&S

Over the past decade and a half there has been significant energy in the identifi-
cation and description of “Grand Challenges” for M&S (Taylor et al. 2013;
Fujimoto et al. 2017). The community has done a great service in collectively
generating and vetting a wide range of thoughtful and impactful fundamental
research challenges. When confronted with a Grand Challenge, you generally know
where to begin to look for the funding and intellectual capacity necessary to attack
it, e.g., NSF, DARPA, major research institutions, etc. But what about the “lesser”
challenges? The semi-formal market assessment described above was undertaken,
in part, to support the development of a research strategy with a distinctly “applied”
focus. We include some of those challenge areas here—which we’ll call “Good
Challenges”—along with their alignment to some of our identified market leaders.
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We consider the application of M&S in three principal areas:

• Systems design and analysis
• Training, experimentation, and mission rehearsal
• Testing and integration.

Collectively, these areas present an interesting spectrum of technical challenges for
M&S including: execution mode (standalone, human-in-the-loop, hardware-in-the-
loop, real time, faster-than-real time), implementation language language(s), data
management approaches, statistical methods, visualization, abstraction, and fidelity,
verificationand validation, and reasoning about uncertainty and risk.

For systems design and analysis, one area of focus is the application of high
performance and ubiquitous computing, multi-model integration, advanced
analytics, and visualization to support strategic-level decision-making in
complex environments. Topics of interest include:

• Simulation-based optimization. Within the government (and also in surpris-
ingly many industrial settings) systems design analyses often find their basis in
small set of “blessed” scenarios, and involve a fairly small number of design
points. An opportunity exists to help decision makers embrace
optimization-based methods—particularly those where automated support is
available. Such methods are essential, for example, to the engineering of agile
systems.

• Metamodeling. Robust analysis, typically supported by long-running experi-
ments using high-fidelity models, is an essential component of good systems
design and analysis. Making the results of such studies understandable to senior
strategic-level decision-makers can be a challenge. One approach, may be
through the use of metamodels generated from high-fidelity models. Allowing
senior decision-makers to interact in realtime with reasonably accurate meta-
models (and their visual representations) may facilitate better understanding of a
system and its responses.

• Immersive visualization. Another approach to the problem of communicating
the results of complicated models to senior-level decision-makers is through
visualization. Can we develop visualization techniques that “immerse” a deci-
sion maker in the model and its results? Does such immersion lead to increased
understanding and better insights? What modes of interaction with the model
results can we provide? What are their relative effectiveness?

• Ensemble modeling. It is sometimes forgotten that a model is simply an
opinion about the way the world works. If you are making critical decisions, you
probably could benefit from having more than just one opinion regarding your
course of action. Budgetary pressures within the government generally result in
a narrowing of the model marketplace—there is generally an appetite for sin-
gular, definitive, models of any given phenomenon. There is an opportunity to
help decision makers understand the value of ensemble modeling. An extension
of this concept is generalized crowd-sourcing (predictive markets) by which
multiple opinions/agendas are synthesized.
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• Prospective analytics. A computer cycle is a terrible thing to waste. How
should an organization take advantage of its intrinsic computing capabilities to
exercise models and analytics in anticipation of questions a customer/sponsor
may ask?

• Merging M&S and big data analytics. A fundamental tenet of M&S is that a
model must be built with a specific purpose in mind (i.e., a specific set of
questions that the model is intended to answer). However, the emergence of big
data analytics may offer a challenge to this old way of thinking. What if we
simply set out to create “models of the world”—representing entities and
relationships as we perceive the need—and use these models to generate
time-series data relating to every entity represented in the model and then apply
big data analytics to the output? Does this add useful flexibility to our analytic
processes?

• Quantifying uncertainty and risk. Computing and accumulating approximate
error is part and parcel of many continuous modeling techniques, but discrete
event methods (to include agent-based methods) are largely silent on this. In
addition, we need better ways of relating these uncertainty measure to under-
lying risk.

For training, experimentation and mission rehearsal, one area of focus is the
application of immersive technologies (virtual reality, augmented reality,
telepresence, visualization, synthetic environments, virtual humans) LVC
integration, and low-overhead, high-automation techniques to produce
low-cost/high-value environments. Topics of interest include:

• Virtual reality. The positive impact on immersion on the effectiveness of
simulation-based training and experimentation is well known (although “how
much immersion is enough?” remains an open question). The contributions of
VR technology to immersion are also well-known. As the commercial VR
marketplace continues to grow, the interest in applying these commercial
technologies in non-gaming contexts increases.

• Augmented reality. A longstanding pursuit within the military simulation
community is the definition and development of architectures and technologies
that enable the integration of Live, Virtual and Constructive (LVC) elements
within a single, concurrent event (for training, experimentation or mission
rehearsal), the effective use of AR to allow Live participants to perceive events
generated by Virtual and Constructive components is needed. Unlike VR
technologies, however, the commercial market for AR is waning—assessed by
(Gartner 2014) to be in the “trough of disillusionment”.

• Virtual humans. Role players are a part of most medium- to large-scale training
and experimentation events. However, their presence can decrease the immer-
sive nature of the experience, and can also introduce errors. The use of virtual
humans—computer-generated characters that use language, have appropriate
gestures, show emotion, react to verbal and nonverbal stimuli—has the potential
to provide a low-cost, highly effective solution to the problems associated with
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Table 2.2 A partial view of leadership in M&S (by selected topic area)

Topic Leading gov.
organizations

Leading academic
institutions

Industry
leaders

Defense TRADOC
NAWC TSD
PMTRASYS
AFAMS
AMSO
SIMAF
RAND
AFRL
ARL
MITRE
Lincoln Labs

UCF/IST
NPS
AFIT
GMU

NTSA
NDIA
Aegis
VT MaK
Boeing
Raytheon
Lockheed
Martin
Roland and
Assoc

Aviation AFSOR
JPL
NASA

MIT
Caltech
Stanford
University of Michigan
Georgia Tech

Boeing
Lockheed
Martin
L3

Networking (cyber) Ga Tech
University Illinois
FIU

Cisco
Riverbed
SNT

ISR Aerospace
LLNL

AFIT
Carnegie Mellon

AGI
Terra Bella
Black Sky
Global

Experimental design RAND
AFRL
ARL

Northwestern,
Cornell,
Georgia Tech,
NCSU,
NPS,
Tilburg Univ

Boeing,
Fraunhofer
Inst,
Phoenix
Integration

Optimization RAND
ORNL

Northwestern
Cornell
Georgia Tech

Boeing
Google

High performance and
ubiquitous computing

ORNL,
LANL,
LLNL,
ANL,
ARL,
Sandia, NASA
Ames,
AFRL

Caltech,
MIT,
University of Illinois
Urbana-Champaign,
University Texas,
Edinburgh University
Georgia Tech,
Virginia Tech

IBM,
Cray,
Google,
Amazon

Immersive technology Training Brain
Ops Center

USC/ICT
USF/IST

Redfish
Occulus

(continued)
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role players (Institute for Creative Technologies 2017). In addition, the use of
such characters can significantly extend the range and scope of a given training
or experimentation event.

• Low-overhead event support. In addition to the overhead associated with role
players, most training and experimentation events have considerable overhead
in “technical support”. The provision for such technical support is a major
impediment to the U.S. DoD’s (among other major institutions) ability to fully
realize its vision for Home Station Training (Perkins 2012).

For integration and testing, one area of focus is the development and appli-
cation of high assurance environments for system evaluation that support
moving from a paradigm of “test-based confidence” to “simulation-based
confidence”. Topics of interest include:

• Large-scale emulation. Many cyber network effects, for example, cannot be
studied at small scales. Further, the network representations much be extremely
high fidelity to be effective.

• Statistics of small samples. A longstanding problem for the Test and
Evaluation (T&E) communities. How can mathematics and statistics be most
usefully applied in environments where the number of experimental trials is
necessarily small? The integration of nonparametric statistics, applied asymp-
totics, etc., within our M&S toolkits is of interest.

• High assurance synthetic environments. Today’s synthetic environments and
virtual worlds, largely driven by the commercial gaming market, do not typi-
cally represent real-world physics in a manner sufficient to provide
engineering-level analysis and evaluation.

As with our table above characterizing global leadership in M&S, Table 2.2,
below presents a partial view of leadership in M&S across a variety of topic areas,
with an obvious bias toward U.S. entities. Once again, “leadership” in this context
is simply an aggregated function of investment levels, publication volumes, and

Table 2.2 (continued)

Topic Leading gov.
organizations

Leading academic
institutions

Industry
leaders

LVC integration PEO STRI,
MITRE

UCF/IST,
Nanyang Technical
University

Raytheon,
Aegis,
VT MaK,
Lockheed
Martin,
NTSA

Embedded systems and
hardware-in-the-loop

JPL,
ARL

T.U. Delft,
Arizona State,
Georgia Tech,
Carnegie Mellon
University

Siemens,
Boeing,
Rolls-Royce,
Intel

2 Modeling and Simulation (M&S) Technology Landscape 33



subjective measures of influence, notoriety, and so forth. The entries in Table 2.2
merely suggest a starting point for any rigorous analysis relating to M&S tech-
nology investment and research strategies; many important entries may be missing
from this data.

2.5 Summary

Due to its pervasiveness across the scientific and engineering disciplines, com-
prehensive treatments of M&S are difficult to construct. Nonetheless, organizations
charged with defining research and technology investment strategies should always
do so with a general sense of the research and technology investment strategies of
both their competitors and partners. In this chapter, we present a necessarily
approximate view of the M&S technology investment landscape. Our survey
methodology is, at best, quasi-scientific. We cite formal market surveys and anal-
ysis where they exist, but note that these surveys only cover certain segments of the
M&S domain space. Other aspects of our treatment are based on informal assess-
ments of the scientific literature and the activities of professional societies, indus-
trial consortia, and so forth. Many of the conclusions here are subjective. Despite
these notable weaknesses, the information provided may prove a useful starting
point for organizations conducting research and technology investment planning.

Review Questions

1. What are the estimated global investment levels in M&S and M&S-related
technologies? How accurate can such estimates be?

2. Which regions spend the most on R&D?
3. What are the major sources of R&D funding by country/region?
4. What topics in M&S might we expect to see increasing investment in over the

near-to-mid-term?
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Chapter 3
Simulation-Based Engineering

Melih Cakmakci, Gullu Kiziltas Sendur and Umut Durak

Abstract Engineers, mathematicians, and scientists were always interested in
numerical solutions of real-world problems. The ultimate objective within nearly all
engineering projects is to reach a functional design without violating any of the
performance, cost, time, and safety constraints while optimizing the design with
respect to one of these metrics. A good mathematical model is at the heart of each
powerful engineering simulation being a key component in the design process. In
this chapter, we review role of simulation in the engineering process, the historical
developments of different approaches, in particular simulation of machinery and
continuum problems which refers basically to the numerical solution of a set of
differential equations with different initial/boundary conditions. Then, an overview
of well-known methods to conduct continuum based simulations within solid
mechanics, fluid mechanics and electromagnetic is given. These methods include
FEM, FDM, FVM, BEM, and meshless methods. Also, a summary of multi-scale
and multi-physics-based approaches are given with various examples. With con-
stantly increasing demands of the modern age challenging the engineering devel-
opment process, the future of simulations in the field hold great promise possibly
with the inclusion of topics from other emerging fields. As technology matures and
the quest for multi-functional systems with much higher performance increases, the
complexity of problems that demand numerical methods also increases. As a result,
large-scale effective computing continues to evolve allowing for efficient and
practical performance evaluation and novel designs, hence the enhancement of our
thorough understanding of the physics within highly complex systems.
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Keywords Engineering design cycle � V-process � Waterfall model � Hardware-
in-the-loop simulations � Feature-in-the-loop simulations � Component-in-the-loop
simulations � Continuum mechanics � Computational electromagnetics � Partial
differential equations (PDE) � Finite element method (FEM) � Finite-difference
method (FDM) � Multi-scale methods � Lumped parameter models � Model-based
control system design � Vehicle dynamics models � Networked control systems �
Discretized systems � Quantization � Observer models � Iterative learning

3.1 Introduction

3.1.1 Overview of the Engineering Design Process

The ultimate objective of all engineering projects is to reach a functional design
without violating any of the performance, cost, time, and safety constraints often
optimizing the design for one of them. Generally, in the beginning of each project
high-level requirements for the system is developed. These high-level requirements
can be as literal as “The fuel consumption of the vehicle shall be 40 mpg or more.”
or comparative such as “The new CNC machine will be as precise as our com-
petitors.” Then, these high-level requirements are cascaded down to the lower
levels of the system design steps to obtain the well-defined engineering design
problems.

Engineering design problems are concrete problem constructs that contain
quantifiable performance and constraint metrics. The inputs to the engineering
problems are the performance constraints, design parameters, external conditions.
The output of the engineering design process is the design communicated in tech-
nical terms such as materials, dimensions, and algorithms. Usually, a lesser focused
output of an engineering project is the operation recommendations, lifecycle
maintenance, and storage instructions. In general, main steps of the engineering
design process can be given as, requirements analysis, design, implementation,
verification, and maintenance.

In Fig. 3.1, inputs and outputs of the engineering development process is given
as discussed previously. It is also important to note that this process can be applied
at the component, the sub-system (i.e., group of interrelated components), and at the
system level.

Over time, two primary approaches emerged to approach the solution of com-
plex engineering design projects.

The early approach also known as the “Waterfall Design Process”, the sub-
problems can be tackled and solved sequentially. Even though, it provides a
structured method to perform design and testing tasks, its sequential nature fails to
catch design-related errors early in the development process.

Inspired from the approaches in development of software intensive systems, as
an extension of “Waterfall Design Process”, a new engineering design approach has
emerged which is called the “V-process” where relations of design and validations
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steps are stressed. Simulations of varying resolution and fidelity become important
tool in the V-process, in order to conduct validations as well as the evaluations of
design decisions before the actual prototype of the system can be build.

In Fig. 3.2, the typical steps of the V-process is given based on (Ulsoy et al.
2012). The essence of the V-process is to cascade from the system level to the
smaller scale such as the component level and the level-based validation of the
work to catch problems at early stages. The different levels of validation and design
work in the V-process increase the importance of effective simulations throughout
the whole process.

Today almost all of the engineering community is using the iteration based
V-diagram process. One of the early hesitation points regarding the engineering
V-process was also its strongest feature, namely the existence of stepwise iterations
and the cost they bring to the overall development. However, the evolution of

Fig. 3.1 Engineering development process

DESIGN VALIDATION 

System

Sub-System

Component

System

Sub-System

Component

Fig. 3.2 Engineering V-process

3 Simulation-Based Engineering 41



advanced simulation techniques made iterations more manageable minimizing the
cost of rework during development.

One of the most important topics in the simulation development process is the
decision of the feature content and their fidelity. Too much content or dynamics and
the simulation will be consuming too much computational resources generally
resulting in time and cost problems. Too little detail in simulations will result in
misguided simulations, missing important modes of the target systems and taking
away the benefit of simulation-based iteration in the development process.

When the engineering V-process is considered, the level of validation increases
as the project progresses in time as shown in Fig. 3.2. The decomposition of the
requirements and development process requires a proof-of-concept simulation first,
which are detailed in physics but abstract at the interface level. When the test phase
starts these component-based simulations are combined to produce sub-system and
system-level simulations that are also advanced in terms of the mechanical
and electronics interactions (the interface) of the system. The sub-system and sys-
tem-level simulations are more detailed than the component-level simulations.

In most engineering development projects, the understanding of the target sys-
tem improves with the progress of the project. Therefore, the resolution and fidelity
of the simulations can also be improved using the new data and understanding of
system of interest.

Generally, in the early stages of the engineering development process a proto-
type of the target system does not exist. However, a concept emulating simulation
of the system can be developed using existing models from the company’s
resources or from the existing technical literature. When these simulations are
functional, the new feature of the system can be included in the model and the
simulations can be used to make early predictions about the performance of the
target system with fairly good confidence. These simulations can be used to verify
the feature-based requirements in the V-process. These simulations are usually
known as feature-in-the-loop simulations.

Figure 3.3 shows a simulation case where a new feature (Feature A) in the
system is simulated with the already validated features (Features B-E). Even though
the system (Features A-E) may have more than one component, in feature-in-the
loop simulations the physical boundaries and interfaces are not considered.

After enough confidence is gained about the feature-in-the-loop simulations for
the new features of the components, component-in-the-loop simulations can be
developed. Component-in-the-loop simulations usually contain all the newly
developed features of the system. Feature-in-the-loop simulations are generally
done separately for easy troubleshooting and for de-coupling of individual
contributions.

Component-in-the-loop simulations contain all the new and carry-over features
as well as the actual electronic and mechanical interface of the system. These
simulations are used in the component-level testing for the engineering develop-
ment process. When prepared properly with the actual system-level interface they
can be directly used in system simulations that include all components of the system
both electric and mechanical.
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In Fig. 3.4, a component-in-the-loop simulation scenario is given. The work is
done all in the simulation environment, however, a notion of the component
physical boundaries exists that forces the interaction of Features A and B through a
common interface as compared to the feature-in-the-loop simulation given in
Fig. 3.3. Generally, this interface is developed as the proposed physical and elec-
trical interface of the component with the rest of the system.

One of the most important challenges of an engineering development process is
to work in a task-based team environment, where different teams are in charge of
different features/components/sub-systems of the project. The development cycle of
different targets can be at different stages at different times, which makes it difficult
to validate functionality with the complete configuration of the system. Testing with
hardware-in-the-loop simulations is an approach developed by engineers to over-
come this problem. In hardware-in-the loop simulations part of the system is

SimulaFig. 3.3 Feature-in-the-loop
simulations

Simula
Fig. 3.4
Component-in-the-loop
simulations
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emulated using computers using simulations and part of the system is the actual
hardware, which already designed or carried over from the previous version of the
system. In many cases the benefit of the HIL simulations are bidirectional in the
sense that they can both be used for improving the quality of the simulations using
it against the actual hardware or testing a specific prototype hardware for func-
tionality while emulating the rest of the system.

Figure 3.5 shows a hardware-in-the-loop scenario for the system and features
given in Figs. 3.3 and 3.4. This time the actual hardware of the component that
includes Features A and B are run against the rest of the system (Features C–E) all
simulated in the computer environment. It is also important to note that the
preparation of the simulations in the earlier stages help to build successive versions
of the feature, component and hardware-in-the-loop simulations. For example the
physical and electrical based build of the interface in the component level increase
the reuse of the component representation in the hardware-in-the-loop simulations.

A good example of the simulation-based V-process development is the so-called
mode-based controller development process (MBCD) in the automotive industry. In
(Ulsoy et al. 2012), a technical requirements development method is shown for a
specific battery control module example. This example shows how the vehicle
100,000-mile requirement affects specific features (control problems) for a partic-
ular vehicle application. The effect of this requirement and others define the feature
control problem to be solved. The solutions obtained from all of the features
represent the control algorithm for a vehicle.

In the design step, first the control design problem is formulated based on the
given performance requirements and developed mathematical formulation. There
will be more than one control design approach, which will provide a solution for the
control problem. By using analytical methods and/or computer simulations, the best
alternative among these candidate algorithms is selected. If the control problem is
similar to an earlier application, development teams often prefer to start with an

Simula

Fig. 3.5
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existing control algorithm and try improve the solution by building upon the
existing (and proven) solution.

Then the design is implemented on the actual hardware. During the imple-
mentation phase the objective is to develop a real-time application, which will be
executed in the control module using the desired control algorithm. While devel-
oping the executable code the real-time constraints of the target hardware (i.e., the
controller module) should also be considered. Software implementation of the
algorithm should be matched to the computing resources available and if there are
overruns during the real-time execution simplifications in the algorithm should be
made, or new target hardware should be selected. In today’s modern vehicles,
controller modules also communicate with other controllers via communication
networks. The effects of the loss of this communication with one or more contacts
or the cases of limited communications should be investigated and necessary
modifications should be made.

Testing in the MBCD process starts as early as in the algorithm development
step. By testing the algorithms open-loop (Fig. 3.6a) developers can feed in simple
test vectors and analyze the test output for expected functionality. These simple
algorithms can also be tested against the simpler conceptual vehicle models, which
are available in the earlier stages of the program (Fig. 3.6b). These models are later

Fig. 3.6 Different types of testing in automotive industry
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fortified with improvements based on component and vehicle testing data, which
makes them suitable for more complex testing procedures such as module, com-
ponent and vehicle in the loop types of testing.

In the later stages of the vehicle development process, a hardware-in-the-loop
simulation can be run to see the proper operation of the vehicle controller using part
real hardware and part simulations run in the computer environment as shown in
Fig. 3.7.

3.1.2 Source of Models

Models are purposeful abstractions of the real world. With abstraction while certain
aspects of the system are explicitly represented, other aspects are omitted that are
not of concern (Topçu et al. 2016). They can be physical, mathematical, and/or
logical (Sokolowski and Banks 2010). The scaled aircrafts that are used in wind
tunnels are very good examples of physical models. When they are not physical,
models are composed of a series of mathematical equations and/or logical
expressions. These models can be physics-based, data-based, or hybrid (combined).

Physics-based models can be defined as the ones which are essentially mathe-
matical and the governing equations are based on physical principles such as
thermodynamics laws or Newton’s law of motion.

The application of physics-based models in engineering domain is so common.
Since early the days of engineering, Newton’s law of motion has been used for
modeling rigid bodies. Dynamics of machinery is an engineering field that deals
with forces and moments and their effects on the motion. The theory of machines
studies the relative motion of machine elements under the effects of external forces
(Khurmi and Gupta 1976).

Modeling the mechanical behavior as a continuous mass is the topic of con-
tinuum mechanics. It is concerned with the stress in the continuous medium (solids,
liquids or gases) and their deformation or flow (Malvern 1969). Continuous as an
adjective is used to express the approximation that assumes the mass without gaps
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Fig. 3.7 Different types of testing in automotive industry (cont’d)
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and empty spaces thereby representing the mathematical functions as well as their
derivatives are continuous. This hypothetical medium is called continuum. The
governing physical laws in this case are conservation of mass, momentum, and
energy. These equations will be summarized in Sect. 3.2.6. The motion of viscous
fluids is mostly computed by applying Navier–Stokes equations which encom-
passes time-dependent equations for conservation of mass, momentum, and energy.
Euler equations are well-employed simplification of Navier–Stokes equations
which neglects the effects of viscosity (Schetz and Fuhs 2013). Computational
Fluid Dynamics (CFD) is the area of study which applies numerical methods like
finite difference or finite volume to solve the approximations of these equations.
Physical model of heat has also been built considering it as a fluid inside the matter.
Heat equation is a partial differential equation that concerns the distribution of heat
in material over time (Widder 1976). Solid mechanics deals with the behavior of
solid materials under load. While elasticity is the study of body that retains its
original state after releasing the load, plasticity governs the nonreversible defor-
mation of solid. Euler–Bernoulli beam equation and plate theory are well-applied
simplifications in modeling and simulation of elastic behavior. They both define the
relations between the applied forces and the resulting deflections (Fung 1965).
Finite Element Method (FEM) as will be discussed later in Sect. 3.2.3., is com-
monly employed for approximating partial differential equations within Navier–
Stokes equations, heat equation and Euler–Bernoulli beam equation (Dhatt et al.
2012). It promotes using simple approximation of unknown variables to transform
partial differential equating to algebraic equations.

Data-based models utilize the data that describes the particular aspects of the
system that is subject to modeling. It is also named as empirical modeling since the
model depends on empirical observations rather than mathematical equations
(Sokolowski and Banks 2010). While the computing power as well as the optimized
implementations of finite element analysis and computational fluid dynamics soft-
ware getting better, engineering design optimization of complex systems like air-
crafts or cars requires long lasting simulations which are sometimes unacceptable in
practice (Wang and Shan 2007). Additionally, sometimes it is required to incor-
porate data from the real world into the simulation. Data-based models, or simply
called metamodels approximate computation-intensive functions or real-world data
to analytical models. The modeling process starts with data collection using sam-
pling methods such as fractional refactoring, or Latin hypercube. Then the model is
constructed is a particular method of choice. Polynomial equations, splines,
Multivariate Adaptive Regression Splines (MARS), artificial neural networks are
some of these methods. Model fitting is done with an appropriate approach like
least squares or backpropagation.

Hybrid modeling combines previously mentioned two modeling paradigms.
While a part of a physical process is approximated using data models, the rest of the
physical process is modeled using equations that represent the law of physics. In
modeling and simulation of air vehicles, it is a common practice to develop data
models for the aerodynamics modeling, where the flight dynamics is modeled using
Newton’s laws of motion (Jategaonkar et al. 2004). The aerodynamics data may be
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collected from the flight experiments, wind tunnel tests or with CFD runs.
Nowadays, the design of complex multidisciplinary systems such as aircrafts,
automobiles and similar is carried out using hybrid models within a Multi-
Disciplinary Design Optimization (MDO) framework (Martins and Lambe 2013).
Such procedures allow designers to incorporate all relevant disciplines simultane-
ously. The optimum of the coupled problem is superior to the design found by
optimally designing each module sequentially, since it can exploit the synergistic
coupling between them. However, this concurrent consideration results in a much
more complex problem. Therefore, systematic structuring, modeling, and approx-
imation tools have to be employed within MDO, which has been applied with
successfully to the design of many commercial products.

3.2 Simulation of Continuum

The term modeling refers to the development of a mathematical representation of a
physical situation whereas simulation refers to the procedure of solving the equa-
tions that resulted from model development (Ashby 1996). With the development
of mathematical models it was possible for scientists to integrate research into
natural phenomena within their investigations. Analysis of these models was only
possible via existing analytical or numerical methods which by then were only
tackled for specific problems. Each of these methods in literature is known by the
great scientist who developed them such as Euler, Newton, and Gauss.

Despite major contributions by various outstanding scientists, the main issues
concerning the theoretical and physical understanding of the equations in contin-
uum mechanics are still being worked on. Continuum mechanics has changed
dramatically since the late nineteenth century, so that theoretical studies are now
coined with numerical experimentation and simulation. Furthermore, progress in
the computational speed and power allowed researchers to develop mathematical
models for much more complex physical problems some of which will be discussed
in the multi-scale and multi-physics sections. After the invention of calculus, many
advanced PDE’s were introduced to describe the physics of systems from different
disciplines such as solid mechanics, fluid mechanics, and elastodynamics.
Important contributions were initially made by Euler, Lagrange, and Cauchy and
these were followed by the application of PDE’s to describe the physics of elec-
tromagnetic (EM) theory by Maxwell, Heaviside, and Hertz, and finally to quantum
mechanics with major theoretical work by Schrodinger. These equations are
descriptive of the time evolution and relationship of various fields in a three
dimensional space. Major efforts of continuum simulation in the areas of Solid
Mechanics, Fluid Mechanics, and Electromagnetics will be described in the next
sections to follow.

The introduction of efficient and powerful platforms enabled researchers to solve
the constitutive laws of continuum in mechanics in combination with the laws of
conservation of mass, energy, and momentum. The same is valid for other fields
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including EM. Some of the most popular methods used for this purpose are the
Finite Element Method (FEM), Finite Volume Methods (FVM), Finite Difference
Methods (FDM), and Boundary Element Methods (BEM). These methods are
applied to the simulation of matter in all forms, i.e., solids, liquid, and gas, based on
a major assumption of continuum media, thus Computational Mechanics of
Continua. Namely, the term continuum describes the nonseparability of the con-
sidered domain and validity of continuity between any points in the domain so that
differentiation is possible. Therefore, continuity between elements in any
continuum-based numerical technique is maintained as well. Unlike analytical exact
solutions of differential equations, which allow the solution at every point, the
numerical solution is only calculated at chosen finite number of nodes, yielding in
turn a reduction in complexity of the system. Well-known methods to conduct
continuum-based simulation are described in the next section.

3.2.1 Finite-Difference Method

One of the earliest and widely used numerical method for solving PDE’s within
continuum mechanics is the Finite-Difference Method (FDM). The main idea of
FDM is based on replacing the differential terms with respective to the spatial
coordinates with the so-called finite differences over small enough distances based
on the Taylor’s series approximation. For that purpose, the domain of interest needs
first to be discretizedinto vertical and horizontally located nodes, on which finite
differences are defined. Several finite difference integration schemes exist known as
forward, backward, and central difference schemes. It is worth noting that the FDM
is equally applicable to time differentiations. As a result of discretizing the domain
into nodes, a system of algebraic equations in terms unknowns at the chosen nodes
are constructed. Each algebraic equation belonging to its corresponding node is
expressed as a combination of function values at its own node and its neighboring
nodes. Next step is to impose boundary conditions, which leads to the solution step
of the equation system using either direct or iterative solution methods. Finally,
unknowns at each node are solved. This solution is only an approximate solution
since the finite differences are first-order approximations of the partial derivatives.
The FDM when compared with the FEM or BEM allows for a direct discretization
of the equations and does not rely on the use of interpolation functions. Therefore, it
is one of the most direct and intuitive techniques that exist for the solution of PDEs.
Moreover, for material nonlinearities, the FDM proves to be favorable as it allows
their simulation without the need of iterative techniques. However, it suffers from
relying on regular noded discretization scheme which makes modeling of irregular
geometries a challenging task. This also results in difficulties when heterogeneous
material compositions and unusual boundary conditions are present. However, the
FDM has been generalized to overcome related shortcomings through methods
based on irregular node/grid structures with methods such as irregular quadrilateral,
triangular, and Voronoi grids.
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3.2.2 Finite Volume Method

The Finite Volume Method is similar to the FDM method and evolved as its
successor to solve PDE’s with one major difference: these differential equations are
expressed in integral form. Its formulation leads to the concept of finite volumes,
which essentially correspond to volumes around and encompassing each node in a
mesh. Similar to the FDM, algebraic equations of unknowns at nodes are built by
replacing the integrals and by considering boundary and initial conditions. Thereby,
the system of equations to be solved is constructed. The FVM, similar to the FDM
has certain advantages such as allowing the usage of irregular unstructured mesh
and modeling capabilities of nonhomogeneous material compositions.

3.2.3 Finite Element Method

The Finite Element Method (FEM) was introduced in the 1960s as an alternative
method to FDM for the numerical solution of stress concentration. More impor-
tantly, it is the first numerical solution method which was capable of dealing with
complexities such as nonlinearities, nonhomogeneous materials, complex geome-
tries, and sophisticated boundary conditions. As a result, FEM was soon recognized
as the most popular numerical method in continuum mechanics, mainly so because
unlike FDM, it allowed for nonuniform discretization. The method was found more
extensive and used a decade later with the theoretical developments made by Bathe
(2006) and Zienkiewicz and Taylor (2005). Many researchers have contributed to
the development of the method which is by far the most favorite method for the
approximate solution of many sophisticated continuum mechanics problems of
dynamic, anisotropic, and inelastic behavior. It is a generic numerical solution
technique for boundary value problems coming from various disciplines. The main
principle rests on the idea of dividing the problem domain into smaller subregions
(areas or volumes) called finite elements. This is followed by typical steps of
defining local element approximations, performing assembly of finite elements and
ultimately solving the resulting global matrix equation. More specifically, the
unknown function (e.g., displacement field, temperature field, electric field, velocity
and pressure fields) is approximated via trial/interpolation functions of the nodal
values (or edge unknowns in EM problems) using polynomial functions. Numerical
integration is performed in each element using Gauss quadrature points. After
assembly, the algebraic global system of equations is obtained. Because of con-
tinuum assumptions, standard FEM methods cannot be directly and efficiently
applied to discontinuum problems involving cracks, damage-induced discontinu-
ities or singularities and failure analysis.

In addition to the well-known superiority of the FEM which is well suited for
complex analysis of systems composed of heterogeneous materials and irregular
geometries owing to the possibility of using an irregular mesh, it also proved to be
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an appropriate tool for modeling various nonlinear geometries and inelastic material
behavior and nowadays material hardening and softening. Moreover, it has the
capability of representing geometric nonlinearities, contact mechanisms,
fluid-structure interaction, multi-scales, etc., as will be discussed in separate sec-
tions below. Therefore, the FEM will stand out as the mostly used and diverse
numerical method in continuum mechanics.

3.2.4 Meshless Methods

The bottleneck in applying FEM to complex engineering problems with intricate
geometries, unusual material properties, and complex boundary conditions is the
mesh generation process, which usually in 3D problems is an extremely challenging
task mostly comparable to the problem solution itself. Another disadvantage of
FEM relates to numerical instability due to a distorted mesh. Both of these problems
can be avoided by another class of methods known as ‘meshless methods’, which as
the name implies does not rely on elements but interpolation functions are gener-
ated from neighboring nodes within a domain of influence. More specifically, nodes
are created across the domain without the need of a fixed element topology defi-
nition. As a result, the interpolation functions obtained are no longer polynomial
functions leading to more difficult numerical integration when compared with the
FEM where Gauss integration points are used. Moreover, meshless methods suffer
from increased computational requirements but do not rely on standard mesh
generators and are able to easily represent more complicated geometries. In liter-
ature, methods such as smoothed particle hydrodynamics, diffuse element method
(DEM), element-free Galerkin method, reproducing kernel particle methods,
moving least squares reproducing kernel method, hp-cloud method, the method of
finite spheres, and finite point method stand out.

3.2.5 Multi-scale Methods

All products whether man-made or natural are composed of multiple scales. Taking
an example from the aeronautical industry, the Airbus A380 consists of many
thousands of structural components and many more sub-structural details.
Similarly, its fuselage consists of 750,000 holes and cutouts with different structural
and material scales. When viewed at the roughest material scale, fuselage com-
posites’ part consists of woven/textile composite and laminate scales; at the inter-
mediate scale, it is composed of a tow or yarn, which consists of a bundle of fibers.
When looked at a more discrete scale, including atomistic and ab initio scales, the
aircraft’s metal part consists of a polycrystalline scale, a single crystal scale, a
discrete dislocation scale, and also time atomistic and ab initio scales.
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Computations and simulations in the aforementioned multi-scales have been
identified as areas of utmost importance to advance the future in nanotechnology.
One of the obvious fundamental challenges associated with such a multi-scale
approach relates to the increased uncertainty and complexity introduced by these
finer scales. However, the application of any multi-scale approach has to be care-
fully evaluated. For instance, considering metal matrix composites with fibers
arranged in a periodic fashion, finer scales could prove useful because the bulk
material typically does not obey normality rules, and the development of a phe-
nomenological coarse-scale constitutive model would be extremely difficult. This
would also allow a better understanding of each phase and the overall material
response could be extracted from its fine-scale constituents via homogenization
techniques. However, for brittle ceramic matrix composites, with microcracks that
exist in a random distribution and complex interface properties, are difficult to
characterize, a multi-scale approach would not be an appropriate alternative.

There are two main categories of multi-scale approaches in literature, namely,
hierarchical or concurrent. In the former approach, the fine-scale response is
idealized/approximated and its overall/average response is integrated into the coarse
scale. In the latter approach, fine and coarse-scale resolutions are simultaneously
employed in different portions of the same problem domain, and the exchange of
information occurs through the interface. The sub-domains which present them-
selves at different scale resolutions can be either overlapping or disjoint.

Various hierarchical multi-scale methods have been labeled by different names,
including upscaling, coarse-graining, homogenization, or simply multi-scale
methods. There are also subcategories of the above definitions, such as system-
atic upscaling, operator upscaling, variational multi-scale, computational homoge-
nization, multigrid homogenization, numerical homogenization, numerical
upscaling, and computational coarse-graining, just to mention a few. Moreover,
different definitions are used to indicate various scales. If the structure exists in two
scales, however, the fine scale is often referred to as a micro-scale, unresolvable
scale, atomistic scale, or discrete scale; the coarse scale is often defined as the
macroscale, resolvable scale, component scale, or continuum scale. For more than
two scales, the additional scales may be termed as mesoscales.

One alternative approach to the homogenization of artificial structures avoiding
the limitations associated with earlier analytical homogenization models (Milton
2002) is the theory of a mathematical homogenization approach. It is based on the
asymptotic expansion also known as two-scale homogenization, which is a well
established concept in the theory of PDEs with rapidly oscillating periodic coeffi-
cients (Bensoussan et al. 1978). Its main advantage is that the method is generalized
enough and unlike analytical techniques, can handle unit cells with inclusions of
arbitrary geometry and any number of phases with no additional computational
cost. Also, instead of formulating the problem as an eigenvalue problem, two-scale
homogenization works directly on the original form of the governing equations and
is therefore able to result in expressions valid for effective constitutive tensors.

In their studies, (El-Kahlout and Kiziltas 2011) further developed this approach
by applying two-scale homogenization method to Maxwell’s equations and
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extracting the effective parameters of periodic dielectric and magnetic materials,
that can be in their most generalized form lossy and are made of inclusions with
arbitrary shapes and multi-phase material constituents. The numerical solution of
the resulting PDE is carried out using a commercial FEA based solver, namely
COMSOL Multiphysics, where the effective tensors are evaluated at a single fre-
quency, for both isotropic and anisotropic effective material tensors with isotropic
constituents. This is the first study where numerical material model based on
two-scale homogenization is used to synthesize the microstructure of EM material
with desired material matrices using formal design techniques such as topology
optimization. Results of this design study are shown in Fig. 3.8 which was also
fabricated (El-Kahlout and Kiziltas 2011) using novel Dry Powder Deposition
techniques as demonstrated in Fig. 3.9.

Similar to EM materials, most heterogeneous materials, such as composites,
polycrystals, and soils consist of constituents/phases with clear-cut boundaries that
display different mechanical and transport properties. The use of homogenization of
continuum allows a better understanding of the physical governing equations of
individual phases, including their geometry and constitutive equations at the
fine-scale phases, or at least a better grasp than at the coarse-scale phases. Put in
other way, the process of homogenization provides a mathematical means by which
coarse-scale equations can be deduced from well-defined fine-scale equations.
Moreover it allows the determination of heterogeneous material behavior, at least
theoretically without the need of testing, which is usually a very expensive
endeavor. Also, through homogenization, one can estimate the full multiaxial
properties and responses of heterogeneous materials, which present themselves as
anisotropic materials and are most of the time extremely difficult to measure
experimentally. In addition to describing the overall behavior of heterogeneous
materials, the act of homogenization leads to local fields via the process known as
downscaling given coarse-scale fields, phase properties, and phase geometries. This
information is of critical importance in understanding and describing material
damage and failure.
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Fig. 3.8 Optimal material distribution (dielectric ranges from 20 to 140) of designed unit cell
(left) and array (right) for a desired permittivity tensor of e = [45.0;’0.70] using mathematical
homogenization and topology optimization.[reproduced courtesy of The Electromagnetics
Academy]
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3.2.6 Solid Mechanics

Two main branches exist within the application of the principles of mechanics to
bulk matter: the mechanics of solids and fluids. When viewed from a global per-
spective, the common subject is that of continuum mechanics. More specifically,
continuum mechanics conceives the useful model of matter as continuously
divisible, and does not make any reference to its discrete structure at microscale,
which is well below those scales of the phenomenon of interest. Solid mechanics is
concerned with stresses, deformation, and failure of structures and solid matter.
A material is called a solid and not a fluid if it is able to support significant amount
of shear force over a certain time period of a natural process or technological
application of interest.

The main equations of continuum physics can be presented by separating them
into global and local laws. The former serve as the foundations of continuous media
theory and are summarized here (Muntean 2015). In all these formulations, X′
(t) denotes arbitrary configuration of partial volume B′ of B. More specifically,
global balance laws for the five major conservation principles are presented here for
mass, linear and angular momentum, energy, and entropy.

Mass:

The conservation of mass is expressed in its most general form as

d
dt
m X0 tð Þ; tð Þ ¼ 0 ð3:1Þ

for all X′(t) � X(t), where m(t) stands for the total mass in X′(t), i.e.,

m X0 tð Þ; tð Þ ¼ Z

X0 tð Þ
dlm ¼ Z

X0 tð Þ
qdx ð3:2Þ

Fig. 3.9 Automated fabrication of design in Fig. 3.8 using dispensing machine within DPD in
action (left) and resulting desired deposited substrate (right). [Reproduced courtesy of The
Electromagnetics Academy]
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with q(t, x) denoting the density. Assuming that there is no internal mass pro-
duction, (3.2) states that the total mass of any material partial volume is conserved.

Linear Momentum:

The conservation of linear momentum or balance of forces is expressed in its
most general form as: For every part X′(t) � X(t) we have

d
dt
‘ X0 tð Þ; tð Þ ¼ F ð3:3Þ

where the linear momentum can be defined via

‘ X0 tð Þ; tð Þ ¼ Z

X0 tð Þ
v qdx ð3:4Þ

More specifically, the time rate of change of total linear momentum of l in B′ is
equal to the force F exerted on B′. The force F consists of the contribution of the
internal body forces per unit of volume qfb and contact or surface forces per unit of
area t acting on the boundary ∂B′ of B′. Here, t is the stress vector or traction.

Angular Momentum and Moment of Momentum:

The conservation of angular momentum or balance of moments is expressed in its
most general form as

For every part X′(t) � X(t), we have

d
dt
a X0 tð Þ; tð Þ ¼ M ð3:5Þ

where the angular momentum can be defined via

a X0 tð Þ; tð Þ ¼ Z

X0 tð Þ
x� v q dx ð3:6Þ

More specifically, the time rate of change of total angular momentum a of B′ is
equal to the moment M of the force F exerted on B′.

Energy:

The conservation of energy balance is expressed in its most general form as: The
time rate of change of the total energy within B′ which is composed of the kinetic
energy K and internal energy E and is equal to the rate of work, say P, done by both
the body force and the contact force, plus the heat supply Q from internal heat
production and heat fluxes across the boundary of B′. So for every part X′(t) �
(t), this can be written as
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d
dt

K tð ÞþE tð Þð Þ ¼ P tð ÞþQ tð Þ ð3:7Þ

where

K tð Þ ¼ Z

X0 tð Þ

vj j2
2

dlm ¼ Z

X0 tð Þ

vj j2
2

q dx; ð3:8Þ

E tð Þ ¼ Z

X0 tð Þ
e dlm ¼ Z

X0 tð Þ
e q dx; ð3:9Þ

P tð Þ ¼ Z

X0 tð Þ
v � Tnð Þdr ¼ Z

X0 tð Þ
~f �~v qdx; ð3:10Þ

Q tð Þ ¼ Z

X0 tð Þ
fHeatq dxþ Z

X0 tð Þ
q � ndr: ð3:11Þ

In Eq. (3.9), e represents the inner energy density. The first term in Q(t) accounts
for the heat source. The measure lm in the equations of K(t) and E(t) corresponds to
the mass measure associated with the material body B.

Entropy:
The entropy increase within B is greater than or equal to the internal entropy
supply, i.e., internal heat source over h, which is the absolute temperature, plus the
entropy flux across the boundary of B′, which can be expressed as follows:

d
dt

Z

X0 tð Þ
s dlm

0
@

1
A� Z

X0 tð Þ

fHeat
h

dlm � Z

@X
0
tð Þ

q � n
h

dr: ð3:12Þ

Here s represents the entropy density. It is explicitly noted that all conservation
laws are in term of extensive quantities. More specifically, global balance laws can
only be written in terms of extensive quantities. However, the intensive quantities
are related to local balance laws expressed in terms of PDEs and inequalities as well
as boundary conditions and can be derived based on global laws of the preceding
section (Muntean 2015).

3.2.7 Fluid Mechanics

Various theories govern the physics of fluid mechanics and different methods are
proposed and used in literature to provide numerical solutions/simulations primarily
depending on the spatial and temporal scale of the phenomenon. Instead of going
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into detail with all methods, these theories and typical numerical methods employed
according to the temporal and spatial scales are summarized in Fig. 3.10. As
depicted in the graph, continuum mechanics prevails for above microscale and
below tens of meters with a time scale between 1 s and hours. When the continuum
assumption breaks down, the fluid has to be described by an atomistic point of
view, such as the molecular dynamics as a microscale method or statistical rules
govern the molecular group behavior, i.e., kinetic theories as mesoscopic methods
for larger scales. On the spatial and time scale limit, if the characteristic length is
smaller than 1 nm or the characteristic time is shorter than 1 fs, the quantum effect
may not be negligible for the system of interest and quantum mechanics has to be
brought into describe the transport. In fact, modeling at a smaller scale may present
a more accurate description of the problem, but is likely to cause a much higher
computational cost. Therefore, as always in numerical simulations, in engineering
an appropriate tradeoff is considered when trying to determine in an accurate and
fast way, the fluid behavior of interest.

Despite the emergence of high-speed platforms and the advances in efficient and
accurate numerical methods, some computational fluid dynamics (CFD) problems
still present themselves as challenging problems for the practical solution via
numerical simulation techniques. For example, NASA has recently modified its
aerospace design codes for earth science applications, thereby speeding up super-
computer simulations of hurricane formation (Kazachkov and Kalion 2002). An
example of such a CFD simulation using a 512-processor supercomputer is referred
to in (Kazachkov and Kalion 2002). More specifically, actual data from a variety of
different sources and climate models were integrated to generate high fidelity
simulations so as to reproduce a hurricane forming in the Gulf of Mexico. As a
result, engineers were able to simulate the formation and movement of a hurricane.
However, the weather forecast of global earth based on CFD atmospheric and ocean

Fig. 3.10 Typical numerical methods used in fluid mechanics based on temporal and spatial scale
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simulation is still a challenging problem, and calls for even larger amount of
computing power and more accurate data. Overall, this is a multi-phase CFD
problem with very complex geometry and dynamic boundary conditions.

3.2.8 Electromagnetics

In electromagnetics (EM), matrix systems with a few millions of unknowns known
as dense matrix systems have been solved numerically for ten years now. Today,
the number of unknowns that can be solved via simulations is on the order of a
billion of unknowns (Gurel and Ergul 2007). This impressive improvement is
attributed to the synergistic progress between hardware and algorithm design. It is
also noted that for sparse matrix systems resulting from specific simple EM
problems within electrostatic and magnetostatics, even larger scale problems can be
addressed such as the World-record algorithm from Jülich calculating over three
trillion particles (World-Record Algorithm from Jülich Calculates Over Three
Trillion Particles—Research in Germany 2011).

As stated earlier, the physical response of many fields including EM, can be
analyzed via differential equations. Therefore, PDE’s were used for more than four
centuries and continue to set the standard for modeling the physics of different
media today. There are three main groups of differential equations, namely
hyperbolic, parabolic, and elliptic, which describe fields with various physics. The
Laplace equation or the Poisson equation given below is a well-known example of a
generalized simple elliptic PDE. These are encountered in the numerical modeling
of EM problems in the static regime and various transport problems. They are
known for characterizing fields or potentials associated with no singularities distant
from the source location, or equivalently these equations are differentiable functions
and therefore do not allow for any singularity propagation.

r2u rð Þ ¼ � q rð Þ
e

: ð3:13Þ

Typical examples of parabolic equations, the second group of PDE’s, are the
Schrodinger and diffusion equations. These equations are characterized by their first
time derivative and second space derivative. These are fundamental equations in
quantum mechanics and heat transfer as well as low-frequency EM propagation in
conductive media, respectively. A diffusion equation in standard form is

r2u rð Þ � 1
c s

@

@t
u rð Þ ¼ 0: ð3:14Þ

The third class PDE’s refers to hyperbolic equations, and an example belonging
to this group is the wave equation. It has second-order space and time derivatives.
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r2u rð Þ � 1
c2

@2

@t2
u rð Þ ¼ 0: ð3:15Þ

Solution of differential equations as earlier denoted are carried out by three major
methods: a subspace projection method (e.g., FEM), the FDM, and the pseudo-
spectral method. Various basis/interpolation functions are introduced to fit the
unknown field (Chew 1995) in the subspace projection method. It covers a sub-
space of the larger space that the field is defined over due to the finite characteristics
of basis functions. Thereby, the PDE is easily converted to a time dependent
ordinary differential equation. For the solution of the equation via time stepping or
marching, the derivatives can further be approximated using finite difference or the
subspace projection method. Or as an alternative, time domain Fourier transform
can be used to remove the time derivatives resulting in a matrix equation to be
solved via iterative or inversion techniques.

A major alternative exists to the numerical solution of the governing Maxwell’s
equations in EM expressed in PDE. Specifically, initially a point source response
called Green’s function can be introduced. Based on linear superposition and as a
result of an arbitrarily distributed source, the unknown field is obtained via spatial
convolution of the distributed source expressed via Green’s function. This corre-
sponds to the equivalence principle (Harrington 2001) which allows the field in a
given region to be expressed as Green’s operator acting on the sources. Hence, the
resulting equations are of integral equation type (IE). When compared with PDE, IE
have an important advantage where the EM unknowns correspond to only surface
unknowns, or to volume unknowns that occupy only a spatial finite region.
Therefore, the number of unknowns in the IE formulation may be much less than
those in the PDE formulation. More importantly, this IE formulation leads to the
automatic satisfaction of the radiation condition if a suitable Green’s function is
chosen. However, in the PDE formulation absorbing boundary conditions or the
so-known boundary integral equations replace the radiation condition. Additionally,
using the subspace projection method (Harrington 2001), these IE can be converted
into matrix equations. Equivalently, operators of the integral are replaced with
matrix operators. However, the matrix representation of Green’s operator corre-
sponds to a matrix system which is dense because of its non-local nature. Hence,
the computational storage and operations such as matrix vector products with that
type of a matrix system can be computationally expensive. In literature, some
methods have been developed to overcome these expensive matrix solutions. These
include fast Fourier transform based methods, fast-multipole-based methods,
rank-reduction methods, the nested equivalence principle algorithm, recursive
algorithms, etc. (Weng et al. 2001).

As a final class of numerical techniques for EM radiation and scattering prob-
lems, hybridized versions of the two main classes combining their advantages have
been developed. The FE-Boundary Integral (BI) method is one of the most pow-
erful techniques belonging to this class. More specifically, it offers the flexibility of
the FEM to analyze structures with highly complex geometrical and material details
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but at the same time imposes a rigorous boundary condition via the use of the BI
formulation. This tool’s efficient and accurate analysis capability has allowed
researchers to conduct numerous designs (Volakis et al. 2006).

It is especially noted that these efficient and accurate codes allowed for the first
metamaterial-based antenna design using topology optimization based techniques
as shown in Fig. 3.11 (Kiziltas et al. 2003). The design developed from scratch as
shown in Fig. 3.11 was based on 5 individually textured layers which were also
fabricated and measured. The agreement between measurements and calculations is
truly impressive for the complex dielectric design. Above all, the threefold
improvement in bandwidth is a clear demonstration of the remarkable potential of
efficient and accurate numerical techniques in delivering novel designs not only in
EM but also in other engineering disciplines.

Multi-scale problems as discussed in Sect. 3.2.5, present themselves in circuits,
packages, and chips at various levels of complexity. Similarly, they exist also in
antennas on complex platforms, in nano-optics and nanolithography applications.
Therefore, multi-scale solutions of problems are critical for many applications.
Similar to other applications, the size evaluation of the EM multi-scale problem is
of great importance. More specifically, one needs to evaluate the multi-scale
structures relative to the wavelength to determine which physics of the three to
apply for their solution: circuit physics, wave physics, or optics physics. Avoidance
or identification of ill-conditioned numerical systems plays a great role in the
effective solution of multi-scale EM problems.

It is finally noted, that one of the biggest challenges today in the numerical
solutions of EM problems is the model size of realistic problems which deems
high-performance computing a vital necessity. Significant speedups have been
achieved by hardware scaling and additional efforts have resulted in three main
types of HPC platforms: (1) supercomputers, (2) computer clusters, and (3) cloud

Fig. 3.11 Design results of novel material distributions of a patch antenna via integration of
FE-BI method and topology optimization (Kiziltas et al. 2003)
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computing. It is quite evident that, computational EM and large-scale computing
will continue to evolve given that these are indispensable tools for EM analysis and
design. Not only will it allow for efficient and practical performance evaluation and
novel designs but it is expected to continue the enhancement of our thorough
understanding of the physics within highly complex systems.

3.2.9 Multi-physics Methods

Many realistic problems present themselves as very complex problems due to their
multi-physics nature. Scientists and engineers from various fields have been
working on the combination of different numerical techniques with the goal of
addressing these elaborate physical processes, such as the transition from contin-
uum to discontinuum (e.g., fracture processes) or the interaction of multi-phases of
matter (e.g., hydrofracture processes). As a result, a new class of numerical methods
called hybrid/multi-physics methods evolved. It is due the developments in
high-performance computing and computational science and computer hardware
that this group of methods evolved. Major examples are: Combined Finite-Discrete
Element Method (F-DEM), Hybrid Lattice Boltzmann-FEM, Lattice
Boltzmann-DEM, etc. Areas of interest include algorithms and novel solutions for:

– Coupling of FEM and DEM simulations
– Coupling of FEM and/or DEM with CFD solvers
– Coupling of different solvers of continuum mechanics, e.g., FEM-FVM.
– Coupling of continuum and discontinuum mechanics solvers, e.g., FEM-DEM,

FEM-MPM, FEM-LBM, etc.
– Coupling of solid and fluid mechanics solvers, e.g., FEM-LBM, FEM-FVM,

etc.
– Coupling of discontinuum mechanics solvers, e.g., DEM-SPH, DEM-LBM, etc.
– Coupling of solvers for different scales, e.g., coupling of FEM-DEM.

3.3 Simulation of Machinery

In many simulation studies developers represent the components of the target
system based on their dominant energy-based properties. Although various linear
and nonlinear extensions exist, basic energy-based properties can fundamentally be
given as inertia, storage (spring), and dissipation (damping). For example, in many
engineering simulations a bearing is represented as a damping element and an axis
slider in a manufacturing system is represented as inertia. It is also noted that a
bearing component brings a negligible rotational inertia to the system as well as a
slider which is somewhat flexible and its dimensions may change very slightly
under heavy operating conditions. But these are not considered as dominant
properties for these components.
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The approach of representing complex and spatially distributed physical systems
based on their dominant energy properties is known as the “lumped parameter
modeling”, implying the dominant energy-based characteristic(s) of a component
are represented by using specific and predetermined elements (Karnopp et al. 2000).
The use of lumped parameter systems approach results in a more structured
approach of developing simulations for complex engineering systems. Using
energy rather than other physical features (force, current, etc.) also makes it possible
to use this approach in multi-domain systems.

3.3.1 Single Degree of Freedom Systems

Generally, in engineering, the classification of lumped parameter systems is given
based on the number of the inertia elements. In many cases especially for
mechanical systems, the freedom of motion of the component represented as inertia
is important. For example, if a component can move in both x and y axis and/or can
also rotate about z axis, these motion properties are all represented as separate
inertial elements and flow variables.

Single degree of freedom systems are systems represented with one inertial
element and have one variable governed by fundamental physical equations.
A good example for a single degree of freedom system is the longitudinal motion
simulation of vehicles as shown in Fig. 3.12.

The system represented in this figure is given in (3.17) as a mathematical
relationship (i.e., model) based on Newton’s second law, where wheel traction
forces, F, are the input and the vehicle acceleration, ax, is the output.

max ¼ W=gð Þax ¼ Fxr þFxf �W sinH� Rxr � Rxf � DA þRhx ð3:17Þ

This mathematical model is straightforward to apply in simulation environments
such as MATLAB/Simulink. The single degree of freedom longitudinal simulation
can be used in basic fuel economy and traction (acceleration/braking) studies as

Fig. 3.12 Longitudinal
motion of a vehicle
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reported in Rajamani et al. (2000), Ulsoy et al. (2012). However for many vehicle
engineering studies such as axle-based traction control (Cakmakci et al. 2011;
Dokuyucu and Cakmakci 2016) more complicated representations (i.e., higher
fidelity simulations) that are also suitable for V-process development model dis-
cussed in Sect. 3.1 is needed.

3.3.2 Multi-Degree of Freedom Systems

One way to improve the fidelity of the simulations is to increase the degree of
freedom of its underlying mathematical model. This can be done by increasing the
number of flow variables representing the inertia element, or adding more inertia
elements to the system simulation. As an example of increasing the fidelity of the
model by adding new flow variables to the inertia representing is the half-car model
for vertical motion given in Fig. 3.13.

In Fig. 3.13, the vertical motion of a vehicle is represented with two degrees of
freedom (translation and rotation about the center of mass) rather than only the
vertical motion of the mass of the vehicle. A detailed mathematical model describing
this system can be found in (“Automotive Suspension—MATLAB Simulink
Example,” n.d.) 2017, using road elevations, q, as input and vertical movement of
the center of mass, z, and body rotation, h as outputs. With this representation in
simulations, the vertical motion of the occupant area can be studied as well as the
wheel based vertical road force, which is critical for traction control studies such as
wheel-based braking, and acceleration with so-called load transfer.

Another way of increasing the content is to increase the number of inertial
elements considered in simulations. In this case, rather than using a single system
boundary, where all of the components were lumped together before, can be broken
into components and their relative interaction can be studied.

A good example for this kind of situation is the quarter car model shown in
Fig. 3.14. In this model, a quarter of vehicle vertical dynamics is studied using
quarter of the mass of the vehicle with the suspension system represented by ks and
cs, f, tire parameters, kus and cus and vertical motion variables, z.

The mathematical equations representing this simulation is given in (3.18) based
on Newton’s second law:

ms€zs þ csð_zs � _zusÞþ ksðzs � zusÞ ¼ �f
mus€zus þ csð_zus � _zsÞþ ksðzus � zsÞþ cusð_zus � _z0Þþ kusðzus � z0Þ ¼ f

ð3:18Þ
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excitation
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Fig. 3.13 Vehicle vertical
dynamics
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It is important to note that by adding a new inertial element representing the
mass of the wheel hub and suspension frame, the stroke motion of the suspension
can be studied including the effects from the tire and the vehicle inertia which is not
possible with the system given previously in Fig. 3.13.

The quarter car model given in (3.18) is an example of a multicomponent
simulation in single axis of motion. More complicated models can be used to study
wheel based multi degree of motion as given in Figs. 3.15 and 3.16 respectively for
vehicle vertical motion (Rajamani and Hedrick 1995) and full vehicle motion.

In engineering simulation studies, as the number of components and the ele-
ments representing these components increase, the number of mathematical equa-
tions representing used in these simulations also increase. Therefore, the
appropriate simulation content should be chosen to do the correct analysis with
optimal computation time. For example, the full car model given in Fig. 3.16 is
executed by solving 18 nonlinear equations per simulation step size as compared to
the longitudinal model given in Fig. 3.12 contains only one ordinary differential
equation. Both of the models can be used for fuel economy studies and both of them
will contain uncertainties in inertia, spring and storage parameters.

Fig. 3.14 Quarter car model
for vertical motion
simulations

Fig. 3.15 Standard half-car
model
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3.4 Simulation of Multi-domain Systems

In modern engineering systems, components that operate primarily in different
domains (such as mechanical, electrical, digital) work together to complete com-
plicated tasks. Therefore, a realistic simulation of the system should include the
elements from different domains such as mechanical parts, power electronics to
energize these mechanical parts, and digital components to monitor and/or control
the operation.

Two representative cases of multi-domain simulations improving the perfor-
mance can be given as the multi-domain simulations of electromechanical systems
with controllers and online simulations to improve smart mechatronic/robotic
systems.

3.4.1 Control Systems

Generally, algorithms in control systems are designed to have a certain dynamic
behavior which can be represented in terms of a transfer function (in Laplace
Domain) or a state space model (Ogata 1990). When these algorithms are actually
implemented in actual systems their performance shows variations (usually degra-
dations) due to the effect of execution in digital medium. These variations are due to
the digitization of the algorithm, lack of realistic representation of the control system
hardware and the effect of a communication in common medium such as networks.

Many control algorithms are developed by using a frequency or a time
domain-based structured method based on their dynamic properties as discussed in
many sources in control literature (Chen 1995; Ogata 1995). Once the development
is finished, the resulting output is a fractional function that represents the
input/output relationship of the control algorithm called controller transfer function,
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Fig. 3.16 Full car (18DOF)
model
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C(s), where s is the Laplace variable. The dynamic controller relationship can also
be represented by a matrix equation pair generally given in the form _x ¼
AxþBu; q ¼ CxþDu where u is the controller input, q is the controller input, and
x is the controller states. These representations both imply a continuous system
where calculations or events take place instantaneously using a specific order.
However, when implemented in a real-time control system, algorithm computations
take certain amount of time to finish before an updated command can be issued. For
many systems with fast dynamics, the effect of implementation generates a defi-
ciency in performance since the optimal performance was designed for a medium
where events take place instantaneously.

More realistic and predictable results can be obtained by using discrete control
systems that take into consideration of the digital timing in their formulation
(Franklin et al. 2009; Ogata 1995). Algorithms can be designed and simulated as
digital controllers using adaptations of the continuous methods. Alternatively,
continuous controller functions can be digitized afterwards using simple methods.
For example by using a direct conversion approach, a controller transfer function C
(s) can be converted to its discrete version by replacing the s operator with
z� 1ð Þ=Tz using a backward difference transformation. In this recipe z is the dis-
crete variable and T is the sampling period.

Another important aspect of implementation of an algorithm in the digital world
is the effect of quantization. Real numbers can have infinitely large digits during
calculations, however for computers, it is more practical and maintainable to do
operations in chunks of bits causing the calculations to take place in limited digits,
which cause round off errors [Franklin et al.]. The effects of digitization and
quantization can both be included in simulations to predict possible controller
performance degradation in engineering systems.

Another important aspect in implementation of the control systemsis to include
the hardware related properties such as un-modeled sensor/actuator dynamics (S
(s) and A(s) respectively) and the effect of sampling as shown in Fig. 3.17.

In many controller development activities, the controller is designed based on
the plant dynamics P(s) only without including the sensor (S(s)) and actuator (A(s))
dynamics. The dynamic response effects provided by actuators and sensors can be
included in simulations by using time delays, noise, and offsets. The effect of digital
to analog conversion in the actuator is modeled as a zero-order hold (ZOH) element
that keeps the value of the actuator output constant for one time step. This element
also represents the fact that the actuator has internal dynamics and cannot change its
output instantaneously. A sampler element is used at the sensor to represent the

T

Sensor S(s) Actuator A(s)

ZOHC(z)r

Plant

S(s)P(s)A(s) ysu

Fig. 3.17 Feedback system
with device boundaries and
sampling
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analog to digital sampling with rate T. This models the behavior of the sensor that it
can only report plant outputs in every T seconds. Adding these effects to the overall
simulation of the system provides more realistic performance studies.

Finally, in today’s engineering applications, a common approach is to use
communication networks instead of dedicated digital communication lines as
shown in Fig. 3.18a, b. In fact, the benefit of this networked structure is being able
to integrate as many components together with the capability of increased resources
and easy maintenance as shown in Fig. 3.18c (Cakmakci and Ulsoy 2009).
However, with the introduction of networks, the communication among system
components can experience delays (or even loss of contact) as reported and studied
by many researchers (Lian et al. 2002; Walsh et al. 2002). To remedy this effect, the
overall system can be simulated using worst communication delays possible to
measure the performance using step size-based delay elements and the controllers
are calibrated accordingly.

3.4.2 Robotics and Cyber-Physical Systems

One of the important use of simulations that predict system performance after the
product design phase is to employ them as observers and/or monitoring threads in
actual systems running in parallel and making predictions/modifications to improve
system performance.

A good example of this type of utilization is the friction observers in robotic
locomotion devices such as the one developed in Ristevski and Cakmakci (2015) as
shown in Fig. 3.19. Many non-wheeled robotic systems observe the friction force
during translation. Inside the controller, a simulation of the whole system based on
the dynamic force balance is run to predict the effective friction force called the
friction observer. The friction predictions from this observer is used to update level

C A Controlled  
System (P) Sr

y

u

A Controlled  
System (P) SC

Network
r,su u y

Dedicated 
Digital Line 

Controlled  
System

Network

A3 S3A2 S2A1 S1

C1 C2 C3

(a) 

(b) 

(c)

Fig. 3.18 Dedicated digital
communications (a) versus
networks (b, c)
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of the actuator force given to the system as an offset in parallel with its feedback
controller so that the response performance can be improved almost 25%.

Another application of after-design simulation work in engineering systems is
the pre-analysis and optimization of inputs embedded in computers of the manu-
facturing systems. Manufacturing of small parts can be costly and cumbersome
since it often requires trial and error of adjustment of the machine settings.
However, a remedy to this can be found by use of virtual iterative learning as
reported in (Türeyen et al. 2016). A simulation of the additive-manufacturing
system can be developed and used in parallel with a learning algorithm on the
dimensional error of the final part before the real production is actually ran as
shown in Fig. 3.20a. Researchers report using this method can improve the
dimensional accuracy of a representative part up to 75% (Fig. 3.20b).

It is finally noted that similar to MDO based efforts for designing multidisci-
plinary systems such as automotive and aerospace products, there has been a con-
tinuous effort to design controlled mechanical systems using co-design strategies
(Patil et al. 2010). The ultimate goal in these studies is to develop design frameworks
that allow to reach system optimal designs from both the control and the mechanical
design perspectives. Toward that goal, one such recent study is performed in
(Kamadan 2016) where co-design strategies are proposed for robotic systems.

(a) Vibration based translational system 

(b) Translation Controller using a Friction Observer 

Fig. 3.19 Translating mechatronic device and friction observer
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Robotic systems designed using domain-specific conventional approaches result in
underperforming systems, i.e., are not system-optimal. This work introduces for the
first time a unified framework of system-optimal designs of nonlinear controlled
robotic systems driven by compliant actuators spanning a range of designs.

3.5 Conclusions and Outlook of the Topic

The ultimate objective within nearly all engineering projects is to reach a functional
design without violating any of the performance, cost, time, and safety constraints
while optimizing the design with respect to one of these metrics. Generally, in the
beginning of each project, wish list like high-level requirements for the msyste

Cure Simulations

First Run 

5th Run 

(a) Algorithm and Simulations

(b) Production Example 

Fig. 3.20 Improving manufacturing quality with preproduction iterations
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performance are specified. Then, high-level requirements are cascaded down to the
lower levels of the system allowing systematic design steps to be applied to these
well-defined engineering design problems. The resulting problems are concrete
problem constructs that contain quantifiable performance and constraint metrics. In
time, two primary approaches emerged for the solution of complex engineering
design projects. With the early approach also known as the “Waterfall Design
Process”, the subproblems can be tackled and solved sequentially. In recent years,
as an extension of “Waterfall Design Process”, a new approach has emerged called
the “V-model” where scalable and varying fidelity simulations plays an important
role before the actual prototype of the system can be build.

A good mathematical model is at the heart of each powerful engineering sim-
ulation being a key component in the design process. These models can be obtained
by using physics-based methods, empirical collections and analysis or a combi-
nation of these two for balanced fidelity and complexity. Another important aspect
of developing simulations is its resolution, or in other words its building blocks. In
the simulation of the continuum, systems can be built from their smallest elements
using the most fundamental forms of the governing equations. Sometimes, a
lumped parameter-based simulation of machinery approach can be taken to simplify
the simulations and the forthcoming engineering work such as in the case of the
model based control system design.

The introduction of efficient and powerful platforms enabled researchers to
solve/simulate the constitutive laws of continuum in mechanics in combination with
the laws of conservation of mass, energy, and momentum. The same is valid for
other fields including fluid mechanics and EM. Some of the most popular methods
used for this purpose are the Finite Element Method (FEM), Finite Volume
Methods (FVM), Finite-Difference Methods (FDM), and Boundary Element
Methods (BEM). These methods are applied to the simulation of matter in all forms,
i.e., solids, liquid, and gas, based on a major assumption of continuum media, thus
Computational Mechanics of Continua. Namely, continuum describes the non-
separability of the considered domain and validity of continuity between any points
in the domain so that differentiation is possible. Therefore, continuity between
elements in any continuum based numerical technique is maintained as well.

Many realistic problems present themselves as very complex problems due to
their multi-physics and multi-scale nature. More specifically, scientists and engi-
neers from various fields have been working on the combination of different
numerical techniques with the goal of addressing these complex and elaborate
physical processes, such as the transition from continuum to discontinuum (e.g.,
fracture processes) or the interaction of multi-phases of matter (e.g., hydrofracture
processes) at micro–macro scales. As a result, new classes of numerical methods
called hybrid or multi-physics and multi-scale methods evolved.

In today’s world, developing multidisciplinary systems such as for instance
cyber-physical systems that consist of both mechanical and electrical components
constitute a key part of the engineering projects. These types of systems contain
software algorithms, digital sampling and power electronics, mechanical compo-
nents as well as communication networks that have to be developed concurrently to
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work coherently. This critical need for coherence has rapidly increased the
importance of developing multi-domain simulations and engineers capable of
supporting multidisciplinary analysis and design methodologies.

Review Questions

1. What are the primary phases of the engineering design cycle and how is sim-
ulation work used in each of them?

2. Name some of the numerical methods that exist to solve continuum problems.
3. Which type of problems can be classified as multi-physics and multi-scale

continuum problems?
4. What challenges exist today when solving continuum problems?
5. What do all numerical methods suited to solve continuum problems have in

common?
6. What are the effects of not-considering supporting hardware (networks, digital

computers, etc.) to simulation performance in engineering systems?
7. What are possible uses for the simulations developed for the design cycle after

product release to improve performance?

References

Ashby, M. F. (1996). Modelling of materials problems. Journal of Computer-Aided Materials
Design, 3(1–3), 95–99.

Automotive Suspension - MATLAB &amp; Simulink Example. (n.d.). Retrieved February 15,
2017, from https://www.mathworks.com/help/simulink/examples/automotive-suspension.
html?requestedDomain=www.mathworks.com.

Bathe, K.-J. (2006). Finite element procedures. Klaus-Jurgen Bathe.
Bensoussan, A., Lions, J.-L., & Papanicolaou, G. (1978). Asymptotic analysis for periodic

structures (Vol. 5). North-Holland Publishing Company Amsterdam.
Cakmakci, M., & Ulsoy, A. G. (2009). Improving Component-Swapping Modularity Using

Bidirectional Communication in Networked Control Systems. IEEE/ASME Transactions on
Mechatronics, 14(3), 307–316. http://doi.org/10.1109/TMECH.2008.2011898

Cakmakci, M., Li, Y., & Liu, S. (2011). Model-in-the-loop Development for a Fuel Cell Vehicle.
In Proceedings of the American Control Conference (pp. 2462–2467).

Chen, C.-T. (1995). Linear system theory and design. Oxford University Press, Inc.
Chew, W. C. (1995). Waves and Fields in Inhomogeneous Media (Vol. 522). New York: IEEE

Press.
Chew, W. C., Michielssen, E., Song, J. M., & Jin, J.-M. (2001). Fast and efficient algorithms in

computational electromagnetics. Artech House, Inc.
Dhatt, G., Lefrançois, E., & Touzot, G. (2012). Finite element method. John Wiley & Sons.
Dokuyucu, H. I. H. I., & Cakmakci, M. (2016). Concurrent Design of Energy Management and

Vehicle Traction Supervisory Control Algorithms for Parallel Hybrid Electric Vehicles. IEEE
Transactions on Vehicular Technology, 65(2), 555–565. http://doi.org/10.1109/TVT.2015.
2405347.

El-Kahlout, Y., & Kiziltas, G. (2011). Inverse synthesis of electromagnetic materials using
homogenization based topology optimization. Progress In Electromagnetics Research, 115,
343–380. doi:10.2528/PIER10081603 http://www.jpier.org/pier/pier.php?paper=10081603.

3 Simulation-Based Engineering 71

https://www.mathworks.com/help/simulink/examples/automotive-suspension.html%3frequestedDomain%3dwww.mathworks.com
https://www.mathworks.com/help/simulink/examples/automotive-suspension.html%3frequestedDomain%3dwww.mathworks.com
http://doi.org/10.1109/TMECH.2008.2011898
http://doi.org/10.1109/TVT.2015.2405347
http://doi.org/10.1109/TVT.2015.2405347
http://www.jpier.org/pier/pier.php?paper=10081603


Franklin, G. F., Powell, J. D., & Emami-Naeini, A. (2009). Feedback Control of Dynamic Systems
(6th ed.). Prentice Hall. Retrieved from http://www.amazon.com/dp/0136019692.

Fung, Y.-C. (1965). Foundations of solid mechanics. Prentice Hall.
Gurel, L., & Ergul, O. (2007). Fast and accurate solutions of extremely large integral-equation

problems discretised with tens of millions of unknowns. Electronics Letters, 43(9), 499–500.
Harrington, R. F. (2001). Time-Harmonic Electromagnetic Fields. New York. IEEE Press.
Jategaonkar, R. V, Fischenberg, D., & Gruenhagen, W. (2004). Aerodynamic modeling and

system identification from flight data-recent applications at dlr. Journal of Aircraft, 41(4),
681–691.

Kamadan, A. (2016). Development of Co-design frameworks for optimal variable compliant
actuation. Sabanci University.

Karnopp, D. C., Margolis, D. L., & Rosenberg, R. C. (2000). System Dynamics- Modeling and
Simulation of Dynamic Systems (Third Edit). Wiley-Interscience.

Kazachkov, I. V, & Kalion, V. A. (2002). Numerical Continuum Mechanics. Lecture notes. KTH.
Khurmi, R. S., & Gupta, J. K. (1976). Theory of machines. Eurasia.
Kiziltas, G., Psychoudakis, D., Volakis, J. L., & Kikuchi, N. (2003). Topology design optimization

of dielectric substrates for bandwidth improvement of a patch antenna. IEEE Transactions on
Antennas and Propagation, 51(10), 2732–2743.

Lian, F., Moyne, J., & Tilbury, D. (2002). Network Design Consideration for Distributed Control
Systems. IEEE Transactions on Control Systems Technology, 10(2), 297–307.

Malvern, L. E. (1969). Introduction to the Mechanics of a Continuous Medium.
Martins, J. R. R. A., & Lambe, A. B. (2013). Multidisciplinary Design Optimization: A Survey of

Architectures. AIAA Journal, 51(9), 2049–2075. http://doi.org/10.2514/1.J051895.
Milton, G. W. (2002). The theory of composites (Cambridge monographs on applied and

computational mathematics).
Muntean, A. (2015). Continuum Modeling: An Approach Through Pratical Examples. Springer.
Ogata, K. (1990). Modern Control Engineering. Prentice Hall.
Ogata, K. (1995). Discrete-Time Control Systems (2nd ed.). Prentice Hall. Retrieved from

http://www.amazon.com/dp/0130342815.
Patil, R., Filipi, Z., & Fathy, H. (2010). Computationally Efficient Combined Design and Control

Optimization using a Coupling Measure. IFAC Proceedings Volumes, 43(18), 144–151.
http://doi.org/10.3182/20100913-3-US-2015.00126.

Rajamani, R., Choi, S. B., Law, B. K., Hedrick, J. K., Prohaska, R., & Kretz, P. (2000). Design
and Experimental Implementation of Longitudinal Control for a Platoon of Automated
Vehicles. Journal of Dynamic Systems, Measurement, and Control, 122(3), 470–476.
http://doi.org/10.1115/1.1286682.

Rajamani, R., & Hedrick, J. K. (1995). Adaptive observers for active automotive suspensions:
theory and experiment. IEEE Transactions on Control Systems Technology, 3(1), 86–93.
http://doi.org/10.1109/87.370713.

Ristevski, S., & Cakmakci, M. (2015). Mechanical design and position control of a modular
mechatronic device (MechaCell). In 2015 IEEE International Conference on Advanced
Intelligent Mechatronics (AIM) (Vol. 2015–August, pp. 725–730). IEEE. http://doi.org/10.
1109/AIM.2015.7222623.

Schetz, J. A., & Fuhs, A. E. (2013). Fundamentals of fluid mechanics. John Wiley & Sons.
Sokolowski, J. A., & Banks, C. M. (2010). Modeling and simulation fundamentals: theoretical

underpinnings and practical domains. John Wiley & Sons.
Topçu, O., Durak, U., Oğuztüzün, H., & Yilmaz, L. (2016). Distributed Simulation. Cham:

Springer International Publishing. http://doi.org/10.1007/978-3-319-03050-0.
Tureyen, E. B., Karpat, Y., & Cakmakci, M. (2016). Development of an iterative learning

controller for polymer based micro-stereolithography prototyping systems. In 2016 American
Control Conference (ACC) (pp. 852–857). IEEE. http://doi.org/10.1109/ACC.2016.7525020

Ulsoy, A. G., Peng, H., & Çakmakci, M. (2012). Automotive Control Systems [Hardcover].
Cambridge University Press. Retrieved from http://www.amazon.com/Automotive-Control-
Systems-Galip-Ulsoy/dp/110701011X.

72 M. Cakmakci et al.

http://www.amazon.com/dp/0136019692
http://doi.org/10.2514/1.J051895
http://www.amazon.com/dp/0130342815
http://doi.org/10.3182/20100913-3-US-2015.00126
http://doi.org/10.1115/1.1286682
http://doi.org/10.1109/87.370713
http://doi.org/10.1109/AIM.2015.7222623
http://doi.org/10.1109/AIM.2015.7222623
http://doi.org/10.1007/978-3-319-03050-0
http://doi.org/10.1109/ACC.2016.7525020
http://www.amazon.com/Automotive-Control-Systems-Galip-Ulsoy/dp/110701011X
http://www.amazon.com/Automotive-Control-Systems-Galip-Ulsoy/dp/110701011X


Volakis, J. L., Mumcu, G., Sertel, K., Chen, C.-C., Lee, M., Kramer, B.,… Kiziltas, G. (2006).
Antenna miniaturization using magnetic-photonic and degenerate band-edge crystals. IEEE
Antennas and Propagation Magazine, 48(5).

Walsh, G. C., Ye, H., & Bushnell, L. (2002). Stability Analysis of Networked Control Systems.
IEEE Transactions on Control Systems Technology, 10(3), 438–446.

Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support of engineering
design optimization. Journal of Mechanical Design, 129(4), 370–380.

Widder, D. V. (1976). The heat equation (Vol. 67). Academic Press.
World-Record Algorithm from Jülich Calculates Over Three Trillion Particles - Research in

Germany. (2011). Retrieved February 15, 2017, from http://www.research-in-germany.org/en/
research-landscape/news/news-archive/2011/08/2011-08-02-world-record-algorithm-from-
j-lich-calculates-over-three-trillion-particles.html.

Zienkiewicz, O. C., & Taylor, R. L. (2005). The finite element method for solid and structural
mechanics. Butterworth-heinemann.

Author Biographies

Melih Cakmakci is Assistant Professor of Mechanical Engineering at Bilkent University in
Ankara, Turkey. He received his B.S. in Mechanical Engineering from M.E.T.U Ankara in 1997.
He received his M.S. and Ph.D. in Mechanical Engineering from University of Michigan in 1999
and 2009 respectively. His research areas include modeling, analysis and control of dynamic
systems. Prior to joining Bilkent University, he was a Senior Engineer at the Ford Scientific
Research Center at Dearborn, Michigan, USA. He is a member of ASME, IEEE, and SAE.

Gullu Kiziltas Sendur is Associate Professor with the Mechatronics Engineering Program,
Sabanci University. She received the B.Sc. and M.Sc. in Mechanical Engineering from the Middle
East Technical University, Ankara, in 1995 and 1998, respectively, and the Ph.D. in mechanical
engineering from the University of Michigan, Ann Arbor, in 2003. She was a Postdoctoral
Researcher with both the Electro-Science Laboratory, Ohio State University and the University of
Michigan. She also coordinated with the Ceramic Research Group, Material Science and
Engineering Department, University of Michigan, on the advanced fabrication of dielectric
composites. Her research efforts center on the design, analysis, and fabrication of complex
engineering systems, such as miniaturized electromagnetic, electromechanical, and biomedical
devices and multidisciplinary design optimization techniques. She has published a book chapter,
numerous journal and conference articles and was honored with Career Award by TUBITAK
(2007) and Young Scientist Award by the Science Academy of Turkey (2008). She is a member of
the IEEE, ASME, and ACerS.

Umut Durak is a research scientist in the Institute of Flight Systems at the German Aerospace
Center. He is also Adjunct Lecturer in the Department of Informatics at Clausthal University of
Technology. His research interests include model-based simulation engineering, simulation-based
systems engineering and ontologies in simulation. He received his BS, MS and Ph.D. degrees in
Mechanical Engineering from Middle East Technical University (METU) in Turkey. He is a
member of the Society for Computer Simulation International (SCS) and Arbeitsgemeinschaft
Simulation (ASIM) and a senior member of the American Institute of Aeronautics and
Astronautics (AIAA). And, he is a part of AIAA Modeling and Simulation Technical Committee
and editorial teams of the Simulation: Transactions of the Society for Modeling and Simulation
International; and the International Journal of Modeling, Simulation, and Scientific Computing.

3 Simulation-Based Engineering 73

http://www.research-in-germany.org/en/research-landscape/news/news-archive/2011/08/2011-08-02-world-record-algorithm-from-j-lich-calculates-over-three-trillion-particles.html
http://www.research-in-germany.org/en/research-landscape/news/news-archive/2011/08/2011-08-02-world-record-algorithm-from-j-lich-calculates-over-three-trillion-particles.html
http://www.research-in-germany.org/en/research-landscape/news/news-archive/2011/08/2011-08-02-world-record-algorithm-from-j-lich-calculates-over-three-trillion-particles.html


Chapter 4
Simulation-Based Systems Engineering

Andreas Tolk, Christopher G. Glazner and Robert Pitsko

Abstract Systems engineering (SE) is understood as an interdisciplinary collabo-
rative approach to derive, evolve, and verify a life cycle balanced system solution.
Satisfying customer expectations has become more complicated and complex, as we
are no longer designing systems optimized for a single point, but instead are focusing
on systems which are sustainable, resilient, flexible, and even antifragile. Simulation
is established to support analysis and testing of systems. Recent developments—the
use of executable architecture concepts allowing for dynamic evaluation of system
concepts, and the use of agent-based implementation to support learning and adaptive
system behavior—allow better support of an agile enterprise. To support these ideas,
simulation must be fully integrated into SE paradigm. We must establish simulation
as an integrated discipline within the SE methodology. Research is needed to support
validation and verification of self-modifying systems, as well as improved heuristics
for computationally complex problems. This chapter proposes detailed visions
and identifies a research agenda needed to realize these visions accordingly.
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4.1 Introduction

Many professional organizations, like the Institute of Electrical and Electronics
Engineers (IEEE) and the International Council on Systems Engineering
(INCOSE), provide slightly different definitions, but generally systems engineering
is understood as an interdisciplinary collaborative approach to derive, evolve, and
verify a life-cycle balanced system solution. Satisfying customer expectations has
become more complicated and complex, as we are no longer designing systems
optimized for a single point, but instead are focusing on systems which are sus-
tainable, resilient, flexible, and even antifragile. These, and other characteristics, are
collectively known as the ‘-ilities.’ Increasing use of Model-based Systems
Engineering (MBSE), as introduced by Wymore (1993), to replace documents with
a common model with many facets has improved aspects of the systems engi-
neering challenge. However, it continues to require a broader understanding of the
system of interest in the context of the larger environment. We need to understand
the behavior of a system in its socio-technical context, extend the ideas of Booher
(2003) and bring them to the next level. The core of this chapter is to highlight how
simulation can support these tasks!

Simulation has long been used as a key tool in domain specific system design
and analysis. The paper of Smith (1962) is an early example. Wymore’s (1967)
ideas influenced the development of the modeling and simulation specification
languages, such as GEST (Ören 1984b), which was, since its beginnings in 1969,
based on system theoretic concepts. The often used Discrete Event Simulation
(DEVS) formalism is based in systems engineering principles (Zeigler et al. 2000).
Only recently, compendia on simulation-based systems engineering were published
(Gianni et al. 2014; Rainey and Tolk 2015). Without doubt, simulation contributes
to successful many systems engineering solutions.

It is therefore surprising that simulation has not made its way into the toolbox of
systems engineers and into the context of model-based systems engineering as a
general solution method, but merely as a set of tools. While engineers do use
simulation methods to gain numerical insight into the dynamic behavior of a sys-
tem, developing and applying this understanding in the context of engineering the
system is generally not supported by systems engineering methods. The multitude
of simulation tools is not yet accompanied by a coherent systems engineering
simulation method that guides their application, such as recommended recently by
D’Ambrogio and Durak (2016). If considering the dynamics of a system occurs
early and throughout the engineering process, undesired behaviors can be identified
and addressed earlier in the life cycle, where changes can be made at favorable cost
points. If this is done following a common method will ensure discovery of
shortcomings and identification of alternative solutions timely. By providing
examples of the state of the art and making observations on what can be accom-
plished in the near future, the authors hope to contribute to closing this gap.
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After a discussion of the prevailing systems engineering practice and the current
incorporation of model-based techniques into the practice, this chapter highlights
system engineering challenges that require something more than a rigorous,
repeatable, verifiable modeling scaffolding. There is a need for a dynamic under-
standing of behaviors and interdependencies within its broader context. Similarly,
simulation is established to support analysis and testing of systems, but has often
been limited to within a single engineering domain or has narrowly defined and
modeled system performance, implemented as tool specific add-ons. Recent
developments—in particular the use of executable architecture concepts allowing
for dynamic evaluation of system concepts and the use of complex adaptive
modeling approaches to support learning and adaptive system behavior—allow
better understanding of system behavior in a much broader context. Related
examples, motivations, and definitions have been introduced by Pawlowski et al.
(2004), Wheeler and Brooks (2007), and Tolk and Hughes (2014).

Related to this topic is the domain of modeling and simulation-based systems
engineering (Gianni et al. 2014) that compiled applications of the simulation-based
discipline on a broader sense, generally showing how model-based approaches can
improve current methods, including all flavors of models, such as business process
modeling, architecture description language, and more. Coping with all these ideas
in this chapter, however, would go far beyond our scope, so that focus on examples
is needed.

To elevate simulation-based systems engineering to the next level, the authors
focus on two topics within this chapter.

• First, the use of situated executable architectures—the execution of a virtual
system directly derived from its systems engineering specification in its oper-
ational context—will not only allow for an element of empirical insight into the
dynamic behavior of the system in various environments, but will also provide
system engineers and potential users a fully immersed experience of the new
system, helping to identify unstated user preferences and requirements earlier in
the engineering process.

• Second, using the research results of agent-based modeling and human-in-the
loop simulation, system engineers will be able to explore and understand how
their systems will behave when given new environmental and operational
constraints, and apply self-organizing and learning algorithms accordingly.

To support these ideas, simulation must be fully integrated into the systems
engineering paradigm. This will require the evolution of MBSE, which is largely
focused on modeling, to rely on simulation. In other words, not only do we need
standards that allow for better collaboration between MBSE and simulation, we
must also establish simulation as an integrated discipline within the systems
engineering methodology. Furthermore, research is needed to support validation
and verification of self-modifying systems, as well as improved heuristics for
computationally complex problems. This chapter proposes detailed visions and
identifies a research agenda needed to realize these visions accordingly.
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4.2 State of the Art in Model-Based Support to Systems
Engineering

Optimistically, the maturing of system engineering into a recognized discipline from its
roots in large aerospace and defense programs has been, and will remain, an enabling factor
in the ability of societies to deal with the macroscale problems facing us in energy, envi-
ronment, and other key areas. Pessimistically, system engineers have some explaining to
do. How is it that we continue to encounter failure of important and complex systems where
everything thought to be necessary in the way of process control was done, and yet despite
these efforts the system failed? Each time this occurs, we as an engineering community vow
to redouble our efforts to control the engineering process, and yet such events continue to
occur. The answer cannot lie in continuing to do more of the same thing while expecting a
different outcome.

Mike Griffin, Recent NASA Administrator. (Griffin 2010)

4.2.1 Integrating Modeling into the Systems Engineering
Methodology

Systems engineering seeks to respond to some ‘market opportunity’ or ‘need’ with
a solution. There is a sense of novelty, in that something new can be envisioned and
built in part because of advances in technology, knowledge and enabling tech-
niques. Often this requires trial and error or experimentation with existing tech-
nology being applied in new ways.

At the turn of the twentieth century, the Wright brothers were searching to
understand the exact action of the propeller. They were pursuing a system for
human controlled flight and intended to combine an engine with a propeller for
propulsion. Understanding the principles and the subsequent design ramifications of
making and spinning a blade in such a manner so as to propel an airplane required
engineering ingenuity. The Wright brothers spent significant time wind tunnel
testing physical models to understand the performance curves of the propeller as
well as significant amounts of physical ‘hands on’ trial and error to understand the
engineering constraints of integrating an engine, propeller and airplane system
together (McCullough 2015).

The Wright brothers were ultimately successful, inspiring the world, and toge-
ther with other aviation pioneers together they catalyzed an industry. The Wright
brothers’ system success provides three themes we explore in this section: (1) scale
of system specification, (2) performance expectation, and (3) trial and error as a
vital part of system success. For the 1903 Wright Flyer, these themes were modest:
the system specification was able to be completely known by two people, the
performance expectation was one of system possibility in a static environment, and
trial and error required could be safely and efficiently conducted by advancing
physical scales during a campaign of experimentation and demonstration.
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However, as the twentieth century progressed in technology, knowledge, and
enabling techniques the corresponding ‘market opportunity’ or ‘need’ required
advancement in Systems Engineering. No longer could the system specification be
completely known by a few people. Such specification had to be expressed via
shareable artifacts. The performance expectation of these systems demanded
increasing precision as well as envelope pushing results in both a knowable and
unknowable environment. The trial and error expected in these system contexts
exceeded what could be expected by a campaign of physical experimentation and
demonstration alone.

4.2.1.1 Systems Engineering of High Performance Systems

At the midpoint of the twentieth century, the world became captivated with space.
A space race among world powers created a ‘market opportunity’ or a ‘need’ for
human spaceflight and exploration. Rapidly advancing technology, knowledge and
enabling techniques required a unifying systems engineering approach to pull it all
together. Brill (1998) points to the NASA Apollo program as among the first
successful applications of such systems engineering.

The Apollo program was one of a series of programs designed to deliver safe
human spaceflight (Kranz 2001). The scale of these programs required NASA to
create procedural regulations to coordinate the efforts of multiple government,
industry, and academic teams working both technical and operational aspects of the
program. This coordination was facilitated by numerous technical requirement
documents and checklists and culminated ultimately in what have become known
as NASA Procedural Regulations. Several independent industry partners would be
required to deliver subsystems for testing and ultimately final assembly leading to
the launch and successful mission accomplishment of one of the most astounding
and high performing systems in the world at that time.

On the way to achieving the performance expectation for human spaceflight,
NASA integrated multiple scientific and engineering disciplines (e.g., materials
science, aerodynamics, mechanical engineering and computer engineering…). Each
of these disciplines relied on independent high fidelity modeling using physical and
synthetic representations of critical aspects of a given subsystem of interest with
corresponding environmental conditions. These models increased understanding of
a specific property under examination, while generally in isolation of the larger
system context. Frequently, computational extension of physical and theoretical
results provided insights into expected subsystem performance; however, the
aggregation of this high fidelity point analysis in the context of the larger system
and environment was left to the senior engineers as a human activity.

Ultimately, NASA successfully delivered astronauts to the moon and back with
the Apollo missions. This scientific and engineering achievement was enabled by
nine years of development, testing, and a campaign of preparatory missions. These
missions incrementally tested technology, procedures and the environmental
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extremes of space. Although this success represented the pinnacle in systems
engineering at that time, the increasing role of software in systems and advances in
computing technology set conditions for improvements.

4.2.1.2 Improving System Engineering with Model-Based Systems
Engineering

While at NASA’s Jet Propulsion Laboratory, Jeff Estefan provided a survey of
Model-Based Systems Engineering (Estefan 2007). In this seminal paper on the
topic, Estefan described Model-Based Engineering as “elevating models in the
engineering process to a central and governing role in the specification, design,
integration, validation, and operation of a system.”

Due in part to increased formalisms in architecture and design as embodied in
Unified Markup Language (UML) and Systems Markup Language (SysML) as well
as the emergence of supporting tooling, modeling has improved Systems
Engineering.

Instead of relying on static requirement documents and independent models of
select aspects of subsystem performance as has been done previously. Model-Based
Systems Engineering integrates and automates requirements, architecture, perfor-
mance, and testing procedures. This can improve communication across distributed
teams (Haskins 2011) as the system of interest becomes more complicated and
requirements or performance objectives change. High fidelity modeling, tradespace
analysis and physics-based performance simulation can inform detailed component
design and corresponding operational enhancements leading to exceedingly high
performing point solutions. In addition, Model-Based Systems Engineering can
incorporate these high fidelity performance results into a larger system context
where multiple stakeholders such as developers, engineers, operators, and managers
can interact with the same model according to their perspective (Wheeler and
Brooks 2007; van Cleave 2010).

4.2.1.3 Improving Model-Based Systems Engineering with Executable
Architectures

Leading edge applications of Model-Based Systems Engineering, frequently
referred to as ‘executable architecture,’ include a simulated and integrated system
environment directly connected to the Model-Based Systems Engineering design
environment (Wheeler and Brooks 2007). This results in a realistic, albeit synthetic,
system environmental context to explore the performance and operational impacts
of various subsystem design alternatives within a mission thread. Several approa-
ches, as described by Wagenhals et al. (2009), often used formal methods, such as
Petri Nets, to support these ideas. Other pioneers started to apply simulation for-
malism, as they will be discussed in the next section of this chapter, to support
systems engineering artifacts (Mittal 2006). Allowing for near real-time system
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level operational performance evaluation based on results from various subsystem
high fidelity ‘physics-based’ simulations improves understanding of anticipated
system behavior in the design phase of the project, as opposed to waiting for
traditional physical testing or integration phases of a project (Campbell et al. 2015).

Executable architectures were used during the redesign of surveillance and
communication systems for the Air Force E-8C Joint Surveillance Target Attack
Radar System (known as Joint STARS) aircraft. By converting static pictures of
system and component architectures “into a programming language that can be
compiled like a regular software program, such an executable model shows us how
the parts interact during the design phase rather than waiting for software to be
built.” Using Model-Based Systems Engineering and executable architectures
allowed the team to rapidly “blend multiple disciplines in a project and collaborate
with multiple organizations.” This resulted in a system-wide context understandable
by systems engineers, developers and ‘non-systems engineers,’ alike allowing for
the execution of mission threads and the evaluation of design options in near real
time. This advancement allowed “the Air Force to determine how and where it
wants to have an operator in the loop and where it feels comfortable letting the
computers make decisions” (van Cleave 2010).

Executable architectures rely on “creating developer-level interface definitions
and encoding business logic to enable component-level integration” (Campbell
et al. 2015) within the larger system modeling environment. In order to faithfully
represent the intended design, the Model-Based Systems Engineering specifies
Application Program Interfaces, detailed message formats, and schemas for com-
ponent level or subsystem integration. This allows the systems engineering teams to
rapidly evaluate proposed design alternatives for performance behavior as well as
verification and validation in the context of the larger integrated system.
“Generating software from [such a] model of the interfaces helps capture the details
of how the resulting implementation will interact with the larger system. This code
can be used in the final product and will assure consistency with design.” (Campbell
et al. 2015) This advancement enables virtual ‘wind tunnel’ testing, where engi-
neers can explore design options at the subsystem or component level in the
modeling environment way before any system is physically constructed.
Additionally, with Model-Based Systems Engineering with executable architectures
engineering teams can now evaluate expected large scale system behaviors based
on the aggregation of high fidelity ‘physics based’ models structured around
expected mission scenarios.

4.2.2 The Limits to Modeling in Systems Engineering

Modeling provides dramatic insights into expected system performance. From the
physical propeller models used by the Wright brothers, to the mathematical models
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of the NASA spaceflight programs, to the integrated and executable architectures of
the E-8C Joint STARS Aircraft, modeling has enabled the design and development
of high performing systems. Integrating modeling in the Systems Engineering
process enables a deeper understanding of a given design element (or set of ele-
ments) in relation to the operational environment.

Consider advanced air superiority systems such as the F-22 (Holder and Wallace
1998). While these systems push the state of the art in fields such as aerodynamics,
propulsion, materials, computing, the result remains a high performing, albeit,
singular point system. The system context is largely static in that the constraints and
expectations regarding flying in earth’s atmosphere are well known and deter-
ministic. Additionally, the operational context and expectations for both the pilot
and the system are constant at the time of design. This aircraft was designed for
multi-role air superiority against a field of near peer adversaries. Including mod-
eling in the System Engineering process for this class of systems continue to enable
efficient, effective and spectacularly high performing systems. This example of a
particular defense system illuminates another general challenge: systems engineers
create systems whose development cycles are so long that by the time they are
fielded, the system’s environment has fundamentally changed. An example is the
political changes in the defense domain after the end of the Cold War. Nonetheless,
systems exquisitely designed for operations in the Cold War era still had been
introduced, and now are used in a context for which they were not designed, likely
leading to subpar performance in a new, often not foreseeable class of new
operations.

There is another class of systems where increasing the fidelity and integration of
modeling within Systems Engineering is not enough to guarantee operational
objectives. The design of these complex systems, as pointed out by NASA’s
Administrator Griffin, do not benefit from increased engineering process. This class
of systems generally has a broader systems engineering context where system
performance and environmental constraints cannot be fully predicted or understood.
Often these systems

• Do not benefit from a point optimal solution or configuration,
• Require contribution from many sources (system and human) to achieve oper-

ational effect,
• Can benefit or suffer from second- or third-order effects stimulated from outside

of their span of control, and
• Are expected to deliver value in environments which are not deterministic or are

evolving faster than the system can be fielded.

Just as integrating high fidelity physics-based models can enable the systems
engineering of the first class of high performing point systems, integrating simu-
lation models into the systems engineering process can also enable the design of
this second class of complex, open, and socio-technical systems.
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4.3 Simulation in Support of Systems Engineering

Simulation, if viewed from the right perspective, can be a discipline central to many others.
Knowledge about existing and conceived systems represented with their static and
dynamic structures and expressed in computer processable forms leads to comprehensive
knowledge processing abilities many of which are germane to computerized simulation.

Tuncer Ören, Simulation Pioneer (Ören 1984a)

While advances in model-based systems engineering have expanded the system
engineering toolbox, such as allowing systems engineers to link to simulation
analyses, we must promote system simulation to an equal footing with system
modeling if we hope to be able to engineer the complex systems of the future. The
gaps in our ability to engineer complex, adaptive systems that we have highlighted
cannot be closed via the application of our current tools. We must expand our
toolset to allow us to analyze the dynamic behavior of our adaptive systems in the
uncertain, evolving environments of the future that we are designing them for. The
simulation-based systems engineering approach addresses these shortcomings by
augmenting our ability to perform high fidelity simulation analysis in a given
context with a spectrum of performance analysis based on a plurality of simulated
states and interactions. To engineer for the -ilities (Ross et al. 2008), we must
develop simulation tools that allow for architectural analysis in environments where
both the system and the environment are adapting.

4.3.1 Integrating Simulation into the Systems Engineering
Methodology

As we have seen, simulation has long been used to help engineers of all disciplines
understand how a component or system may perform in any given environment or
scenario. Simulation, when used as part of a Design of Experiments, is frequently
used to identify ideal, ‘point solution’ designs, explore the design space, and build
an understanding of tradeoffs among design parameters. Such exploration can
identify robust designs, such that if the system is not performing to specification or
if the environment is slightly different than anticipated, system performance
remains acceptable. This approach, however, does not assume complex, adaptive
systems or environments, as many modern systems are. As opposed to an aircraft
that is designed with performance analysis of its flight dynamics, a swarm of
micro-UAVs should be able to respond collectively to unknown, hostile environ-
ments that will try to disrupt the swarm. This is a very different challenge that
requires an updated systems engineering approach. Given the case of a single
aircraft, we may wish to design the aircraft to be highly resilient to an evolving
cyberattack, which may involve cyber elements or attack elements incompletely
understood when the aircraft was specified or designed. To build an understanding
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of complex, adaptive systems’ responses to such environments, we need to integrate
simulation more effectively into the system engineering methodology.

Simulation-based system engineering addresses the shortcoming of the tradi-
tional systems engineering approach by augmenting point performance analysis
with a spectrum of performance analysis based on a plurality of simulated states and
interactions in situated and immersive environments. This approach provides the
analytic and probabilistic framework necessary to explore implications of engi-
neered complex adaptive systems where constituents may adapt their behavior and
interact with the system in unanticipated ways. The objective of this approach is to
extend our current model-based systems engineering analytical methods with richer
analyses of the system’s dynamics and its interactions with the larger, changing
environment. For today’s learning and self-adaptive systems, simulation based
systems engineering provides engineers with a spectrum of analytical capabilities
that are not available with classic or model-based system engineering methods. To
achieve this vision, two critical components are required. First, we must begin to
build better simulations of systems that allow us to understand their dynamics
behavior. The second is that we need to improve how we evaluate those simulations
in the context of their environments, through the use of both situated and immersive
environments.

4.3.1.1 Insight into the Dynamic Behavior of Systems

Even for relatively straightforward and deterministic systems, humans have poor
intuition regarding dynamic system behavior. A model that makes perfect sense
when presented in its static views may reveal significant shortcomings when being
executed or—in the context of this chapter—being simulated. For even simple
feedback processes, people are poor at predicting system performance. Wagenaar
and Timmers (1978, 1979) demonstrated that individuals poorly predict the
behavior of systems with exponential growth. Even when presented with additional
data points and graphs, people tend to linearly extrapolate. For slightly more
complex systems, both Sterman (1989) and Deihl and Sterman (1995) experi-
mentally demonstrated that people given complete information about relatively
simple systems with feedback were poor at predicting system behavior and slow to
learn. Simulation helps us work through these cognitive roadblocks by logically
evaluating executable models of the systems that describe structure and behavior.
As systems become larger, more driven by feedback, and less deterministic, the
need for simulation to gain insight into the dynamic behavior of systems only
increases. To support a vision of simulation-based systems engineering, we must
continue to advance our ability to simulate systems in ways that help us understand
the causal nature of their dynamics through the engineering process.

Our use of computer-based simulation to help us understand engineering sys-
tems goes back to the birth of the digital era, and has continued to advance since
that time. We have seen the application of simulation as far back as the 1950s to
what should be stable, intuitive systems, such as supply chains and industrial
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dynamics. Forrester (1961) demonstrated that even these ‘stable’ systems are
subject to what has become known as the ‘Bullwhip effect,’ where delays and
information asymmetry give rise to highly unstable dynamics. We have seen the
proliferation of physics based simulations, the simulation of nonlinear dynamical
systems, discrete event simulations, and more recently agent-based simulations all
advance in their ability to simulate a system’s behavior over time. Increased fidelity
of simulation, together with improving experimental designs to evaluate a trade-
space, help engineers identify critical performance parameters, stable and unstable
regimes of behavior, the associated tipping points, and most importantly, it helps
them refine their understanding of the aspects of a system’s design that can have the
most impact on the system’s behavior.

The context in which we are designing systems is changing, however.
Increasingly, systems are being asked to perform in missions for which they were
not originally intended to serve, or must be designed to intelligently adapt in the
face of a changing environment. The long lead time to design, build, and acquire
complex systems has meant that a fighter aircraft or a sensor platform may be asked
to serve in environments and in roles that look very different than the ones engi-
neers originally planned for. While we may have developed very useful simulations
of the flight performance characteristics of that aircraft, our current systems engi-
neering processes are not adequate for us to use those simulations to understand
how that aircraft can best be designed to most effectively adapt to changing
requirements. For this, we need to advance how we evaluate simulations of our
systems in more realistic, situated, and immersive environments. This is going to
allow to evaluate the usefulness of the provided system model using simulation
methods as an integrated tool of the systems engineering process.

4.3.1.2 Using Situated Simulation Environments

Situated environments are those that allow a system simulation to be placed in its
operational context to observe of the system responds to that environment. The
intent of a situated simulation environment is to create a realistic representation of a
system and its environment in a given operational context. For example, a simu-
lation of an off-road vehicle may be placed in a simulated desert environment, or
later placed in a temperate rainforest. By placing a simulation in a situated envi-
ronment, engineers can learn more about potential system performance and
behavior than can be understood by looking at simulation output parameters such as
torque, acceleration, and mass devoid of their context. We can move to asking
higher level questions, such as “Can the system execute its mission?” or “Is system
A more adaptable than system B in a certain context?” or “Which design is most
robust to a desert environment?” or “How did the system perceive and adapt to the
environment?”

Another important aspect is the possibility to evaluate the operational effec-
tiveness of a system in the context of the portfolio it is operating in against a set of
potential opponents under different environmental conditions. Garcia and Tolk
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(2015) extend the work of Mittal (2006) by incorporating context from of a situated
operational environment into the executable artifact describing the system behavior.
In their example, they describe a system that fully fulfilled its requirements and
delivered good performance, but in the context of its portfolio, used too many
resources that were no longer accessible to its partner system. This resulted in an
overall decrease of the operational effectiveness of the portfolio in which the system
was supposed to operate. Many of these insights are obvious in the aftermath, but
nonetheless easy overlooked without the support of an operational context.

Such integral use of a simulation environment as part of the systems engineering
process should increase the likelihood that the systems developed will meet users
stated and unstated preferences when fielded and will easily meet those preferences
as future environmental changes occur, unlike many of our systems today. As we
build ever more adaptive and autonomous systems, we must move to using situated
environments to evaluate their rulesets and situation adequate behavior, including
observability of potential emerging behavior (Tolk 2015).

4.3.1.3 Immersive Environments

Immersive simulation environments differ from situated environments in that users
are brought into the analysis loop and directly experience the simulated system.
This can be done in a serious gaming context, or using rapid emerging tools from
virtual and augmented reality. This allows users to develop a deeper, intuitive
understanding of a system’s dynamic behavior in response to differing environ-
ments, and more directly allows them to uncover unstated preferences and system
requirements. Some of these technologies exist in a training context, such as flight
simulators. They are often very high fidelity, but they are used to train pilots, rather
than upstream in the design process to design the aircraft itself and improve its
potential performance before the first aircraft is prototyped.

In an immersive environment, the focus of evaluation is on the experience of the
system in its context. We have seen that people learn best through experiential
learning. For large, complex engineered systems, this can be very expensive or
potentially dangerous. A test pilot is an inherently risky profession, and operational
testing is very expensive. Simulation with immersive environments very early in the
systems engineering life cycle allows the system to be changed while it is still
relatively inexpensive to do so. Once physical prototypes of large complex systems
are built and evaluated, it is often prohibitively expensive to make substantive
design changes. A virtual test pilot can crash thousands of virtual aircraft, learning
from each virtual aircraft’s flaws, far more quickly, safely, and at dramatically less
cost.

The key to immersive environments is experiential learning. How can systems
engineers and future users build a deeper understanding of a complex system’s
emergent behaviors and dependencies in different environments? This must be done
earlier in the system engineering process to have the greatest impact, and ideally
should leverage existing model-based systems engineering artifacts. This requires
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advanced, human-in-the-loop simulation capabilities. These may involve highly
visual approaches, or may derive the immersive nature from the feedback, such as
in a ‘Management Flight Simulator’ (Sterman 1992). Management flight simulators
have been developed to help discover, understand, and manage organizations, but
not yet as an input to designing them. More visually immersive environments are
likely to come from advances in the video gaming community. For example, the
video game ‘America’s Army,’ intended as a recruitment tool, has enough fidelity
in its physics engine to serve as a faithfully situated simulation environment for a
number of defense systems (Zyda 2005). This allows games to be far more than
games. Other experimental capabilities, such as MITRE’s Center for Advanced
Aviation System Development’s ‘Idea Lab,’ allow human-in-the-loop simulations
of air traffic control, aircraft, and airport operations to be quickly combined in
different situated contexts to evaluate new concepts of operation for the Federal
Aviation Administration.

The key to capturing life cycle savings and promoting our ability to explore far
more designs is by incorporating the use of situated and immersive environments
with system simulations earlier in the system engineering process. The technology
exists, or is rapidly evolving; we need to leverage them for system engineering, in
addition to their current use for training and even entertainment. This approach will
allow us to do a better job identifying designs and architectures which meet our
stated and unstated requirements earlier in the systems engineering processes,
increasing our satisfaction with our systems at reduced costs.

4.3.2 Applying Complex Adaptive System Technology
to Improve Systems Engineering

While the first subsection described the benefits and a way forward for a full
integration of simulation to the Systems Engineering methodology, this subsection
will describe how the application of complex adaptive system technology within
system design will improve the results of systems engineering by enabling resilient,
self-healing, and even self-improving systems. At the core of these ideas is the use
of methods as provided to implement capabilities of intelligent software agents, as
defined by Tolk and Uhrmacher (2009), to replace functions of the system. By
doing so, the system will be able to expose the characteristics of complex, adaptive
systems, including learning, adapting, and improving its own capabilities.

4.3.2.1 Agent-Based Metaphor: Self-organization, Learning,
and Social Behavior

In an extensive literature review, Tolk and Uhrmacher (2009) compiled the various
definitions of intelligent software agents, as they are used for agent-based modeling
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approaches. The emergent common understanding has been that of an intelligent,
independent software object, which adds decision layers between the request of
function and its execution: when objects receive the request to execute one of their
functions, they do so; when agents receive the request, they may decide to provide
the functions, or an alternative, or not react at all. That depends on how the agent
perceives its environment, and what internal objective an agent follows. Jennings
et al. (1998) characterized this behavior illustratively as “objects do it for free,
agents do it for money.” Overall, the following characteristics were recognized in a
multitude of evaluated proposed definitions:

• The agent is situated, it perceives its environment, and it acts in its environ-
ment: The environment includes typically other agents, other partly dynamic
objects, and passive ones, that are, e.g., subject of manipulation by the agent.
The communication with other agents is of particular interest systems com-
prising multiple agents, as agents can collaborate and compete for tasks. This
latter characteristic has also been referred to as social ability.

• The agent is autonomous: An agent can operate without the direct intervention
of humans or others. This requires control about its own state and behavior.
Agents are guided by some kind of value system, which is expressed in form of
computable utility functions that are used as metrics to evaluate options.

• The agent is flexible and can learn: To be flexible for an agent means to
mediate between reactive behavior, being able to react to changes in its envi-
ronment, and deliberativeness to pursue its goals. A suitable mediation is one of
the critical aspects for an agent to achieve its tasks in a dynamic environment.
An agent can act upon its knowledge, its rules, beliefs, operators, goals, and
experiences, etc., and adapt to new constraints and requirements —or even new
environments—as required. For example, new situations might ask for new
goals, and new experiences might lead to new behavior rules.

Figure 4.1 demonstrates these agent characteristics.
The agent has a value system describing his goals, beliefs, and desires. This

value system drives all decisions. The decisions are based on the perception the
agent has of its situated environment. This perception may be incomplete and even
wrong, depending on its sensors. To improve the perception, but also for planning
purposes, the agent can communicate with other instances before he acts on ele-
ments of the environment. Finally, an agent may use simulation to support its
perception as well, to add the dynamic evaluation components described earlier in
this chapter.

The principles of machine learning based on model-based principles was
described by Zeigler (1986). It describes how a perception is created, and how this
perception is interpreted.

• An agent has sensors that observe its environment. These sensors do not observe
everything, but have physical and technical constraints (actually, they are sys-
tems themselves). These sensors are purposefully selected by the System
designer to collect relevant data needed to inform potential actions.
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• The observation of the sensors is mapped and fused into a perception. This
perception is limited by what the sensors can observe, the quality of the fusion
algorithm, and the overall perception model: if there is no place in the per-
ception model to map an observation to, the observation data cannot become
part of the perception model.

• The awareness of the system of its environment becomes the intersection of
sensor and perception models, additionally constrained by the quality of the
fusion and mapping algorithms. Gaps may be closed by communication with
other agents, who may have observed additional information.

• A system can only recognize what options are available in a set of meta-models
that combine observable situation and required action. These can be parame-
terized to capture a group of functionality related situations, e.g., combining
speed of a car and required braking force to stop in time before hitting an
obstacle. These can actually be executable meta-models, or simulations of the
recognizable object.

• This perception must be mapped to a set of known situations the system can take
action (this can be called the action model), capturing the observable environ-
ment status to a set of action parameters. If the observed state does not match
any of those possible situations, the default action is chosen (often: do nothing).
Also, a fuzzy interpolation between most similar surrounding situations is
possible, or an extrapolation from the most similar neighbored situations.

Fig. 4.1 Agent characteristics
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Figure 4.2 depicts these principles of machine understanding.
It is worth mentioning explicitly that the meta-models follow the principles of

simulations. Each meta-model is a representation of a recognizable object. If
something is recognized as such, the methods assigned to this object are executable
to provide the observed objects with the dynamics of the recognized object. If
discrepancies are observed between the observed behavior and the recognized
behavior, the mapping may need to be reevaluated, i.e., if something looks like a
known object from the observed attributes but does not behave as expected, it may
either be something different, or the possible behavior patterns may have to be
expanded.

In this context, learning means (1) to find better calibration parameters for
existing meta-models, (2) to create new meta-models if new concepts are needed, or
(3) to expand the meta-models to include new insights. It also means to perpetually
improve the utility functions that represent the value system.

While traditional systems engineering defines systems functionality, incorpo-
rating the ideas described above allows systems to observe, communicate, and
learn. This allows them to improve their function, recover from attacks, and even
learn to recognize new concepts and apply them for sense and decision making.

4.3.2.2 From Stability via Sustainability to Antifragility

The objective of systems engineering is to provide a quality product that responds
to a market opportunity or meets the user needs. However, these user needs have
evolved over time, leading to a collection of ‘ilities’ that have to be exposed as
characteristics by the system, often used to describe the nonfunctional or
system-wide requirements for a system. In the context of this chapter, the focus lies
on stability, sustainability, and antifragility.

Fig. 4.2 Machine understanding
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• Stability, also referred to as robustness, is understood as being able to con-
tinually deliver expected performance across a set of all expected—and in
particular negative—environmental conditions. This may also require some
degree of flexibility allowing the system not to break under slightly different
conditions, still being able to deliver appropriate performance.

• Sustainability is the ability to deliver expected performance over a long period
of time, even under extreme circumstances. Often, this implies resiliency, which
is the ability to recover rapidly from negative influences that may result in a
temporary incapacity of the system, like an attack or a catastrophic event.

• Antifragility is a property of systems that increase in capability, resilience, or
robustness as a result of stressors, shocks, volatility, noise, mistakes, faults,
attacks, or failures, or, as Taleb (2012) defines them: systems that get better
under stress.

Other related ‘ilities’ often required in this contexts are adaptability—being able
to change based on foreseen internal stimuli—and agility—being able to change
within a relevant time horizon. De Weck et al. (2012) give an overview of the most
common used ‘ilities’ and their semantic relations.

Within this chapter we postulate that simulation-based systems engineering can
help move systems from being stable/robust to become sustainable/resilient and
ultimately antifragile.

It is well known and accepted that simulation provides an enduring optimization
capability, where the system of interest, the environment and potential future states
are explored and evaluated. When the environment changes (e.g., due to an
expected or unexpected stressor) the system of interest is positioned within the
simulation to take advantage of this change opportunity and improve its perfor-
mance. This performance improvement can be focused on relevant stakeholder
metrics that captures the utility and preferences.

First, by incorporating simulation into the system engineering process, the long
list of system functional and nonfunctional requirements can be prioritized
according to their ability to deliver stakeholder value at a given time epoch. This
will in turn focus the operational performance (users using the system, adminis-
trators enabling the system) as well as the maintenance performance (maintainers
maintaining the system, logisticians resupplying aspects of the system) of the
system throughout the near term and long-term operational life cycle.

Second, by integrating simulation functionality into the system, the system has
now the ability to apply simulation-based optimization ‘on the fly’ to support
modifications that implement adaptability as well as flexibility, and—as the sim-
ulation functionality is provided where and when it is needed—ultimately agility.

Third, when the traditional system functions are replaced with agent like
methods, and when the system furthermore gets equipped with the necessary
sensor, perception, and communication components as described earlier for intel-
ligent agents, the systems indeed can become antifragile by identifying unforeseen
constellations, planning new options using social concepts augmented with artificial
intelligence, and integrating new solution approaches into its actionable options.
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In summary, the agent-based metaphor complements the simulation-based
approaches to allow for taking full advantage of research results that can be mapped
one to one to allow for the implementation of antifragile systems resulting from
simulation-based systems engineering.

The underlying idea of the proposed efforts in this section can be summarized as
follows: Using modeling and simulation, we can define a system—whether it has a
real world counterpart or not—by its axioms and rules as an executable model and
‘bring it to life’ as a simulation using animation and visualization. Using immersive
virtual environments makes the user part of this creation. This is a powerful
approach to understand things that are, that could be, or that could not be.
Additionally, using established methods of artificial intelligence, as they are applied
to implement intelligent software agents will also enable understanding potential
future complex, adaptive system states and operational environments. These sys-
tems—virtual and real—can observe, communicate, and learn to be not only robust
in preconceived environments and contexts, but to be resilient in hostile environ-
ments, and even become better (as determined by dynamic and learning utility
functions) under stress.

4.4 Topics for a Research Agenda

Methods and tools, based on solid theoretical foundations, will advance to address the
market demands of innovation, productivity, and time to market as well as product quality
and safety by harnessing the power of advancements in modeling, simulation and
knowledge representation, such as domain specific standard vocabularies, thereby meeting
the needs of an increasingly diverse stakeholder community. The methods and tools will
also keep pace with system complexity that continues to be driven by customers
demanding ever increasing system interconnectedness, autonomy, ready access to
information, and other technology advances associated with the digital revolution….

[A World in Motion: Systems Engineering Vision 2025, INCOSE, p. 24]

From the state of the art described in Sect. 4.2 of this chapter and the vision for a
simulation-based systems engineering approach that could improve the current
methods and processes, several topics for a research agenda can be derived. Simply
updating the systems engineering ‘V’ to include simulation in all relevant processes
is a first step, but not sufficient. Nonetheless, research results as captured by Morse
et al. (2010) or D’Ambrogio and Durak (2016), which evaluated to what degree
standard processes as captured by standardization bodies for systems engineering
can be applied to simulation engineering as well, are very valuable and deserve
more attention.

The obvious research topics in the context of these chapters are also addressing
the integration of simulation methods and processes with systems engineering
processes. A subset of related research recommendations will be given in the first
subsection. Although the envisioned goal is a transdisciplinary approach (Tolk and
Hughes 2014) that systematically integrates knowledge components from both
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domains in transcending and transgressing form, a gradual approach may ensure a
smoother transition from the current state towards this ambitious end goal.

A second set of topics targets complex, adaptive solutions needed to utilize
agent-based simulation in better support of systems engineering, including better
support of validation and verification, management of emergence, and computa-
tional support of utility functions, which play not only a pivotal role in machine
learning and decision making, they will also increasingly support human decision
makers in the complex systems engineering tasks.

4.4.1 Standards for Systems Engineering and Simulation

The systems engineering community recognized the power of representation of the
system itself as well as the system in its context, as described in Sect. 4.3 of this
chapter. As an example, two approaches routing in the systems engineering domain
shall be described here.

The Object Management Group (OMG) developed the Foundational Subset For
Executable UML Models (fUML). This effort identifies higher level UML concepts
and the precise definition of their execution semantics. OMG (2016) summarizes
the effort as follows: “In sum, the foundational subset defines a basic virtual
machine for the Unified Modeling Language, and the specific abstractions sup-
ported thereon, enabling compliant models to be transformed into various exe-
cutable forms for verification, integration, and deployment.” The scope of what can
be executed is defined by what is specified in fUML compliant UML artifacts, but
usually the boundaries of the systems define also the boundaries of the executable.
The simulation of the context, as described in Garcia and Tolk (2015), are not part
of the specification. Similar research is conducted for the system markup language
version (SysML), such as described by Kapos et al. (2014).

• The Functional Mockup Interface (FMI) introduced standards that allow model
exchange and co-simulation in support of systems engineering activities in
particular in domains that heavily depend on Computer Assisted Design
(CAD) tools, originally targeting the automotive sector, but today applied in
many industrial and scientific projects with a broader domain as well (Blochwitz
et al. 2012). More than 30 tool providers support the standard that allows not
only to use various simulation tools to simulate the intended behavior of the
system and its components, it also can be used to switch between simulated
components and real components, also known as ‘hardware in the loop.’ Again,
the focus lies on the system and its components. It augments multiple existent de
facto interface standards to tools like SimuLink/MathWorks, Mathematica,
MATLAB, etc.

It could be argued that FMI is a simulation community effort, but a literature
research quickly shows that FMI is developed and used by systems engineers who
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use simulation as a support tool, presenting the research results nearly exclusively
to the manufacturing engineering community.

In contrast, systems engineering principles allowed for the specification of a
theory of modelling and simulation by Bernie Zeigler in 1976, and was extended by
him and in his research team in 2000 to reflect technical and organizational
developments (Zeigler et al. 2000), becoming one of the most referenced textbooks
on simulation:

• The Discrete Event System Specification (DEVS) is a modular and hierarchical
formalism to describe the simulation of systems and its components based on
how they transform a set of input parameters into output parameters. The
transformation depends on the inner structure and parameters of the transforming
systems and is defined as a set of time functions that map input parameters to
inner parameters, inner parameters to themselves, and inner parameters to output
parameters. Conflicts are resolved by an additional set of selection functions.
DEVS is widely applied and considered the most used formalism to address
simulation specifications. Several efforts have been conducted to show how
DEVS can be used to support UML models in their execution, as demonstrated,
among others, by Hong and Kim (2004) and Risco-Martin et al. (2009). Of
particular interest is the work conducted by Aliyu et al. (2016) which extends the
work of Shuman (2011) by defining an integrative framework for model-driven
systems engineering by merging formal methods of simulation, analysis, and
enactment methodologies for discrete event systems.

In the recent years, the need to support systems engineers and engineering
managers with better methods and tools to understand, manage, and govern com-
plex systems or system of systems was recognized (Gorod et al. 2008). This did
lead to many recommendations that are simulation-based. An early example is
Mittal et al. (2008), which is among the first publications evaluating the use of
simulation in the systems of systems domain. Rainey and Tolk (2015) compiled and
edited additional work on the M&S support for systems of systems engineering.
A related topic is the development of net-centric systems, as potential collaboration
partners are not known at the time the systems are defined and implemented. Mittal
and Martin (2013) compiled methods and tools based on the DEVS Unified Process
to support such challenges, highlightening the use ofmodel-driven engineering
technologies, such as domain specific languages.

Unfortunately, despite all these positive cross-applications, many of such
developments are still conducted in stove-pipes of the simulation and the systems
engineering communities, with rare exchange of research results or requirements.
Simulation books on systems engineering support are rarely mentioned in the
systems engineering community and vice versa. A recent workshop conducted by
the National Science Foundation (Fujimoto 2016) hopefully marks a clear next step
to break down these stove-piped approaches and lead to an increase in inter- and
transdisciplinary research. The alignment of data and harmonization of processes
needs to be in the focus of research to establish a common foundation.
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Additional topics requiring research are the technologies allowing for immersive
virtual environments. As high-resolution visualization requires to present data in the
most efficient form in support of minimizing computational resources needed for
the transformation, many immersive visualization solutions use proprietary formats
and methods, that often are the results of intensive and expensive internal research
effort. Nonetheless, the definition of standardized interfaces to seamlessly integrate
systems engineering artifacts, their simulation, and their visualization in the context
of their situated virtual representation of the operational environment must be an
objective to maximize the synergy of inter- and transdisciplinary research.

4.4.2 Improving Complex Adaptive Solutions

The second set of ideas proposed in this chapter, aimed at significantly improving
the contributions of simulation-based systems engineering, considers replacing the
well-defined system functions with self-modifying methods, as motivated by
methods used within intelligent software agents. There are many research topics
perceivable to improve creating a perception, better integration of sensors, efficient
access to memory of important decisions and associated consequences to support
better decision making and learning, etc. However, there are two topics central to
this chapter, and as such require additional evaluation.

• The validation of agent-based solutions is a topic of general interest in the
agent-based simulation community. Validation ensures the accuracy of repre-
sentation of the domain of interest. In other words answering the question: “Did
we model the correct thing?” In particular when the behavior of an agent can
change, due to learning or adaptation to a new set of requirements or a change in
the environment, how can this unforeseeable behavior be validated? If empirical
data are available, at least the comparison of some degree of similarity between
expected and observed behavior is possible, but a scientifically accepted method
has not yet been generally accepted. Of particular interest are systems that
expose some kind of emergent behavior. The work of Szabo and Tao (2013)
provides first ideas on how to use semantic technologies to validate such
emergence in component-based systems. A more traditional approach has been
described by Gore et al. (2016). They are extending the ideas of statistical
debugging for the support of validation of simulation systems, including
agent-based simulation. While their approach does not validate the system, it
traces the behavior of the simulation and protocols if a set of assumptions and
constraints is always satisfied for these observed core parameters.

• Although utility theory is well established in support of rational
decision-making, the free machine-based definition of utility functions to capture
when and which new objectives are needed has not been addressed sufficiently
so far. Afriat’s (1967) foundational work showed how empirical data can be
used to define utility function in hindsight, but can this method be applied to
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agile systems? The data describing such new challenges may not even have been
included into the originally defined data set of important parameters to observe.
The question when and how we decide that a change of decision parameters is
needed is unanswered as well. Even human decision makers have problems in
recognizing that a new paradigm is emerging, so how can this be recognized by
a system? Simple brute-force approaches generating randomly new utility
functions that may better work in a new environment only work in very simple
toy worlds, as the solution space in real world problems is huge and complex,
resulting quickly in computational infeasibility of such approaches. Heuristics
like genetic algorithms showed some promise, but they are limited by the
parameters that describe their solution space, which brings us back to the
problem to understand which parameters are important at the first place. De
Florio (2014) provides related ideas allowing the utilization of machine learning
to enable comparable capabilities.

• The architecting of complex, adaptive systems may require an extension of the
currently applied systems engineering practices, leading to an improved set of
system engineering principles for adaptive and antifragile systems. Pitsko
(2014) already recommends first principles for architecting adaptable complex
systems, and Jones (2014) addresses respective aspects for antifragile systems
engineering. These new ideas have to be aligned and integrated into the body of
knowledge.

As in the earlier observations, research contributions are made in several com-
munities that focus on their domain-specific solutions and do not always share the
results beyond their boundaries. The number of relevant disciplines is even growing
for the research questions proposed here. Autonomous systems have a strong
topological similarity to intelligent software agents, which motivates the use of
agent-based method to test rulesets to be used in autonomous systems (Tolk 2015).
Big data and deep learning has the potential to enhance—or maybe even replace—
utility theory based approach in the traditional sense. How can these results help
research in the context defined in this chapter?

The topics captured in this section are neither complete nor exclusive, but the
authors hope they will help to ignite a multidisciplinary discussion that will lead to
inter- and transdisciplinary research by increased exchange of information, and
ultimately to the definition of a transdisciplinary methods for simulation-based
systems engineering.

4.5 Discussion and Summary

Within this section, the authors showed that the state of the art of systems engi-
neering already uses simulation methods in support of several of their processes.
Organizations well known for their systems engineering expertise are actively
promoting the use of simulation. The National Defense Industrial Association
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(NDIA) established its Simulation Committee within the Systems Engineering
Department. MITRE declares on its websites that “one of our goals is to find ways
to reduce system development time and costs through simulations, which are faster
and less expensive than testing new systems in the field” (MITRE 2017).

However, the integrated use of simulation methods as the standard way to
evaluate numerically the dynamic behavior of systems—internally as well as its
context—is limited to often still to be better aligned activities. The Body of
Knowledge of Systems Engineering (BKCASE 2016) in its last version mentions
simulation as a tool in many of its sections, but without sufficient specifics or
references to the work addressed in this chapter. While the role of modeling and
model-based engineering has own sections to cope with challenges and recom-
mended good practices, a section coping with simulation-based systems engineer-
ing topics is missing. While many application motivations and examples are given,
the step recognition of simulation not only as a tool, but as a main topic that
deserves its own section to provide access to the relevant knowledge within a
section of this archival documentation has not yet been made. A positive example is
the related Body of Knowledge of Engineering Management which recognizes
simulation as its only method, as described by Tolk et al. (2009).

What is generally needed for a real leap in quality and efficiency is to move from
individual multidisciplinary efforts over interdisciplinary alignments to a real new
transdisciplinary reality, as discussed by Stock and Burton (2011), in which sys-
tems engineering and modeling and simulation become a new discipline that not
only systematically integrate the body of knowledge of both domains, but that will
create new knowledge elements of great benefit to the users.

The NDIA Study on model-based engineering (Bergenthal 2011) identifies many
support opportunities and gives examples and use cases, but these examples are not
used yet to established a common view on how to use modeling and simulation
systematically and systemically to transform systems engineering as envisioned in
this chapter. Glazner (2011) describes a framework that allows various simulation
tools to come together to support the dynamic analysis enterprise architectures for
potential performance. The same approach is applicable systems engineering pro-
cesses that are orchestrated by a common system architecture as well. The general
challenges of using hybrid simulation approaches have been recently addressed by
Powell and Mustafee (2014). To ensure the applicability of such results in all
affected communities, the communication and alignment of such results is pivotal.
Transdisciplinary simulation-based systems engineering is already supported by
technical solutions, now the communities must be aligned better in their activities.

Such a transdisciplinary approach will also facilitate the second topic presented
in this chapter that may elevate systems engineering to the next level: Integrating
the research in the domain of intelligent software agents and agent-directed simu-
lation for systems engineering (Yilmaz and Ören 2009) into this domain, allowing
systems to become social, observe their environment, evaluate the effects of their
action, and learn from these experiences. Such efforts promise to increase the
‘ilities‘ of systems significantly, including the development of antifragile systems,
which get better under stress (Taleb 2012).
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Several research topics have been identified that hopefully will allow for
increased interdisciplinary research as the next step to better understand complexity
and emergence in our increasingly interconnected world to ensure that
simulation-based systems engineering will become one of the most influential
disciplines in the near future. The technical framework and many building blocks to
allow for their development already have been developed, but now they need to be
integrated and published and socialized in both communities. The authors hope that
this chapter contributes to make the vision of real synergy between simulation and
systems engineering, as among others described by Ören and Yilmaz (2006) and
Gianni et al. (2014), a reality, not only in theory but also for practitioners in the
field.

Review questions

1. What are the challenges with using traditional simulation and optimization
approaches when analyzing system performance, and when might you want to
optimize around a point solution, and when would you not? What are the
benefits and limitations of high fidelity point analysis in the context of the larger
system and environment?

2. What are the differences between a situated environment and an immersive
environment in their ability to support simulation-based systems engineering?
What role do executive architectures play in this context? How can this be used
to integrate the user early into system specification and testing?

3. How would you suggest incorporating expected and unexpected environmental
dynamics into a systems engineering project? Particularly interesting are
antifragile systems that get better under such stress. How can the use of
agent-based methods help to create such antifragile systems using
simulation-based systems engineering?

4. How can machine learning be implemented when machine understanding is
realized using pre-programmed meta-models that represent the knowledge of the
system environment at the moment of the system installation? How can a sys-
tems engineering environment and approach be designed to allow for the
development of a system, which can intelligently adapt?

5. What role have standards played in advancing simulation? Where are standards
most needed to facilitate the adoption of simulation-based system engineering?
How could the incorporation of standards enable integration of executable
architectures and simulation environments?

6. How can simulation make its way into the toolbox of systems engineers and into
the context of model-based systems engineering as a general solution method, as
opposed to merely as a set of tools?
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Chapter 5
Simulation-Based Cyber-Physical Systems
and Internet-of-Things
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Abstract Based on related research of the authors’ team, this chapter gives a full
picture of simulation-based cyber-physical systems (SB-CPS) and simulation-based
internet-of-things (SB-IoT). Definitions and explanations of the concepts of
CPS/IoT and SB-CPS/SB-IoT are introduced. Technical challenge from CPS and
IoT and challenge of M&S technology in SB-CPS/SB-IoT are analyzed. Body of
knowledge/technology of the SB-CPS/SB-IoT is proposed. Key technologies
enabling the SB-CPS/SB-IoT are described. These technologies include
SB-CPS/SB-IoT modeling theory and method, SB-CPS/SB-IoT simulation system
theory and technology, SB-CPS/SB-IoT simulation application engineering theory
and technology. Furthermore, the impact of SB-CPS/SB-IoT on society and
economy, people’s livelihood and national security are discussed. Some application
cases, e.g., smart cities, smart manufacturing, are illustrated. Finally, some sug-
gestions for future works are given.
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5.1 Introduction

5.1.1 Definitions and Explanations of the Concepts
of CPS/IoT

The continuous evolution of computing and networking technologies is creating a
new world populated by many sensors on physical and social environments. This
emerging new world goes much further than the original visions of ubiquitous
computing and World Wide Web. Aspects of this new world have received various
names such as Cyber-Physical Systems (CPS) and Internet-of-Things (IoT).
Both CPS and IoT are typical complex systems.

(1) CPS

The concept of CPS was first proposed in 2006. However, experts and scholars
from different institutes or countries focus on different emphasis of CPS.
Considering existing research results comprehensively, we defined the existing CPS
as a class of complex systems that realize integration optimization operations under
given objectives as well as temporal and spatial constraints to seamlessly integrate
the cyberspace and physical space for state perception, real-time analysis, scientific
decision-making and accurate execution of human, machine, material, environment
and information sectors autonomously and intelligently, by employing advanced
computing and communication technology, automatic control technology as well as
data-driven technology. Figure 5.1 shows that, CPS consists of three levels,
including unit level, system level and system-of-system (SoS) level.

(2) IoT

The terminology “Internet-of-Things” was originated in 1999. At present, the vision
of the International Telecommunication Union (ITU) is generally accepted. “from
anytime, anyplace connectivity for anyone, we will now have connectivity for
anything”, “Through the exploitation of identification, data capture (by devices of
radio frequency, infrared, optical and galvanic driving), processing and commu-
nication capabilities, the IoT makes full use of things to offer services to all kinds of
applications, whilst ensuring that security and privacy requirements are fulfilled.”
(ITU 2005; ITU-T 2012) The system architecture of IoT is shown in Fig. 5.2.

(3) The relationship between IoT and CPS

IoT and CPS share many core technology elements. Both CPS and IoT are net-
worked systems and likely to involve both aspects of the physical and cyber worlds.
IoT is the basic infrastructure and can be considered as a smart cyberspace pro-
viding ubiquitous connectivity to smart computational devices and mobility via
Internet worldwide. Meanwhile, CPS can be considered as IoT-enabled. CPS links
many physical sensor data to detailed simulation models running on large data
centers. IoT brings together many appliances, making much more environmental
data available and supporting control of these appliances (Pu 2011).
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Human, machine, material, environment and information sectors in IoT systems
have different connection relationships like open-loop connection and closed-loop
connection, serial connection and parallel connection, as well as iteration

Infrared Optical ...

Radio Frequency Galvanic Driving

Wired/
Wireless

Fixed-line/
Mobile

Ground-based/
Space-based

Economy
Application

Processing Layer

Communication
Network Layer

Perception
Execution Layer

Livelihood National Security

Security M
anagem

ent

Standard P
rotocol

Fig. 5.2 System architecture of IoT

Fig. 5.1 System architecture of CPS

5 Simulation-Based Cyber-Physical Systems and Internet-of-Things 105



connection. CPS is a critical type of IoT. Human, machine, material, environment
and information sectors in CPS systems need to form a closed-loop feedback
control connection relationship. Generally speaking, CPS is the evolved form of
IoT and it has the potential to become the next generation intelligent system which
integrating computation, communication, and control.

IoT/CPS is widely used in the fields of economy, society, and national security.
The typical systems of IoT/CPS includes the complex engineering system such as
the aeronautics and astronautics system, the complex social system such as eco-
nomic planning and city system, the complex biological system such as human,
animal and plant system, the complex environment system such as climate and
electromagnetic system, the complex military system such as Command, Control,
Communications, Computers, Intelligence, Surveillance and Reconnaissance
(C4ISR) system, the complex network system such as ubiquitous network system.

5.1.2 Connotation of SB-IoT and SB-CPS

According to the above discussion, IoT/CPS is a complex system composed of
“hardware” (such as sensor and automatic controller), “software” (such as industrial
software), “network” (such as industrial network) and “platform” (such as industrial
cloud platform) (Chinese CPS Development Forum 2017). Especially, the IoT/CPS
of system level and SoS level is a kind of complex system that system composition
and architecture are complex, system mechanism is complex, the interactions and
energy exchanges between subsystems or between the system and its surroundings
are complex, moreover, the overall properties of system are featured with variable-
structured, nonlinear, self-organization, emergence, chaotic and gaming, etc.

Therefore, M&S technology is a very important and effective means. It could not
be limited by time and space to observe and study phenomena that have happened
or have not happened, and the occurrence and development process of these phe-
nomena under various imaginary conditions. It can help people go deep into the
macro or micro-world where science and human could not reach, which provides a
new method and means for the human understanding and transforming the world,
greatly expanding the ability of human to understand the world. This is the back-
ground of the Simulation-based CPS/IoT proposed in this chapter.

Simulation-based CPS/IoT means modeling and simulation technology get
involved through the whole life cycle activities of CPS and IoT systems, including
augmentation, design, experiment, production, operation, management, and service.
In particular, modern modeling and simulation system technology plays an
important role in supporting the operation activity of the whole CPS or IoT system
which could be regarded as embedded simulation, and it is a significant kind of
SB-CPS/SB/IoT. The architectures of SB-CPS and SB-IoT are presented in
Figs. 5.3 and 5.4.
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Fig. 5.3 System architecture of SB-CPS

Infrared Optical ...

Radio Frequency Galvanic Driving

Wired/
Wireless

Fixed-line/
Mobile

Ground-based/
Space-based

Economy
Application

Processing Layer

Communication
Network Layer

Perception
Execution Layer

Livelihood National Security

Modeling and Simulation Supporting Techniques

Security M
anagem

ent

Standard P
rotocol

Fig. 5.4 System architecture of SB-IoT

5 Simulation-Based Cyber-Physical Systems and Internet-of-Things 107



5.1.3 Outline of This Chapter

This chapter gives a full picture of SB-CPS and SB-IoT. Based on the Definitions
and explanations of the concepts of CPS/IoT and SB-CPS/SB-IoT, technological
architectures of the SB-CPS and SB-IoT are proposed. Key technologies enabling
the SB-CPS and SB-IoT are described. These technologies include advanced
modeling theory and techniques, advanced modeling and simulation system tech-
niques, advanced modeling and simulation engineering techniques, etc.
Furthermore, the impact of SB-CPS and SB-IoT on society and economy, people’s
livelihood and national security are discussed. Some application cases, e.g., smart
factory, intelligent traffic and cloud manufacturing, are illustrated. Finally, some
suggestions for future works are given.

5.2 Challenge of the SB-CPS/SB-IoT

5.2.1 Technical Challenge from CPS and IoT

CPS/IoT is a typical complex system, which brings great challenges to technical
research, including, (1) Overall Sensor Technology, which utilizes sensor tech-
nologies to obtain information of things anytime anywhere; (2) Reliable
Transmission Technology, which transmits information of things properly and
precisely; (3) Intelligent Process Technology, which utilizes intelligent science
technology to analysis and process the massive data and information to achieve
intelligent control.

5.2.2 Challenge of M&S Technology in SB-CPS/SB-IoT

SB-CPS/SB-IoT raises great challenges to M&S Technology in modeling theory
and technology, modeling and simulation system technology, and simulation
application engineering technology, including,

5.2.2.1 Challenges in Modeling Theory and Technology

(1) Complex Hybrid Network System Modeling and Simulation. Most CPS/IoT
networks are hybrid networks, which are composed of high-speed stable
industry intranet, low-speed high-delay internet/mobile Internet, as well as the
high-bandwidth low through-put space-based network.
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(2) Quantitative and Qualitative Hybrid System Modeling. The kernel target of
CPS is to realize the fusion of Human-Machine-Things. The existence of
human qualitative process feature, the quantitative and qualitative Hybrid
system modeling is required in SB-CPS/SB-IoT.

(3) Big Data based Modeling. Data generated from CPS/IoT are featured with big
Volume (PB/EB), great variety (structured/unstructured data), high velocity
(fast-generating) and low value intensity. Big Data based Modeling becomes
significant modeling method in SB-CPS/SB-IoT.

(4) Artificial Intelligence (AI) based Mining and Modeling. Most CPS/IoT systems
are featured with uncertainty and high complexity, which result poor ability in
modeling CPS/IoT by analytic methods. AI-based mining and modeling
methods, like Artificial Neural Network, Genetic Algorithm, Deep Learning,
are required.

5.2.2.2 Challenges in Modeling and Simulation System Technology

(1) Hyper-performance real-time simulation computation. Most CPS/IoT equip-
ment are real-time on-board equipment, whose clock period of data generation
and action response is closed to or even faster than the computer clock period,
which requires the hyper-performance real-time computation.

(2) High performance, high bandwidth, and low-latency synchronization/
communication network. Massive (Billions of) sensors and Operational
Technology (OT) equipment are integrated in CPS/IoT, which requires ability
in Massive Network Coding and Location Tracing.

(3) Edge Simulation. Most simulation computation in CPS/IoT is required to
execute in the frontier equipment-end to ensure the real-time ability, as well as
the collaborative simulation ability between high-performance simulation and
low-performance embedded computation.

(4) Cloud Simulation. CPS/IoT is featured with distribution and heterogeneous
nature, which requires effective integration and collaboration with distributed
heterogeneous models.

(5) High-performance Simulation. High-performance Cluster (HPC) has become
important infrastructure for SB-CPS/SB-IoT to accomplish high-speed real-time
simulation. Thus, the specific hardware/software for HPC-based simulation is
required.

5.2.2.3 Challenges in Simulation Application Engineering Technology

(1) Prediction Simulation. In CPS/IoT, simulation-based real-time prediction of
overall system behavior pattern and performance is required.
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(2) VV&A (Verification, Validation and Accreditation). To ensure the correction
of the results of SB-CPS/SB-IoT, VV&A methods are required, including the
VV&A of system models, simulation models/systems and simulation
executions.

(3) VR/AR (Virtual Reality/Augmented Reality) simulation results display. The
results from SB-CPS/SB-IoT are extremely complicated, as well as strong
constrains with on-board equipment. VR/AR can visualize the massive result
data in user-friendly way.

5.3 Body of Knowledge/Technology of the SB-CPS/SB-IoT

The body of knowledge/technology of SB-CPS/SB-IoT includes SB-CPS/SB-IoT
modeling theory and method, simulation system theory and technology, simulation
application engineering theory and technology, shown as follows (Fig. 5.5).
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5.4 Key Technologies Enabling SB-CPS/SB-IoT

5.4.1 SB-CPS/SB-IoT Modeling Theory and Method

5.4.1.1 Big Data-Based Modeling

Big Data based Modeling Method is a type of simulation modeling method which
utilizes the massive observation and application data to setup the model of complex
systems, including,

(1) Big Data based reverse design of data: a kind of modeling method based on a
large number of observation data to the product/system configuration, such as
the scanning of the car shape data, to find the corresponding fitting model to
reverse design.

(2) Big Data based Neural network training and modeling: learning and training of
artificial neural network model through massive application of data, the for-
mation of executable simulation model.

(3) Modeling based on big data clustering analysis: cluster analysis based on the
model of the system behavior, the embedded model has become the system
model parameters.

5.4.1.2 Complex Hybrid Network Modeling Methods

Most CPS/IoT networks are typical hybrid networks, which are composed by
high-speed stable industry intranet, low-speed high-delay internet/mobile internet,
as well as the high bandwidth low through-put sky-based network. Complex Hybrid
Network Modeling Methods mainly research on: (1) topology structure modeling
(mini-world model, no vector model, etc.); (2) statics features modeling (clustering
coefficient and degree distribution modeling); (3) dynamic evolution mechanism
modeling (network synchronization, nonlinear dynamic complex network) (Liu
et al. 2005).

5.4.1.3 Complex System Modeling

Research on simulation modeling method for qualitative and quantitative mixed
system basically includes three aspects

(1) Qualitative and quantitative Unified Modeling Method, including the system
top-level description that is responsible for the top-level description of the static
structure and dynamic behavior of the system, and the domain-oriented
description that is responsible for the description of kinds of domain models
(including quantitative, qualitative models). The research fruit of our team is QR
(quantitative-rule)-QA (quantitative-Agent) modeling method (Fan et al. 2009).
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(2) Modeling the interface of quantitative and qualitative interaction: Converting
the quantitative and qualitative interaction data into specific structure and for-
mat needed by the qualitative model and the quantitative model. The research
fruits of our team in this part are the Quantitative and Qualitative Simulation
Mark-up Language (QQSRML) (Fan et al. 2009), and the Fuzzy Casual
Directed Graph (FuzzyCDG) (Li et al. 2011a).

(3) Qualitative and quantitative time advance mechanism. The research fruit of our
team is a QR (quantitative-rule)-QA (quantitative-Agent) mixed time advancing
method, which realizes qualitative/quantitative mixed, hierarchical computing
control and management of heterogeneous models (Fan et al. 2009).

Simulation modeling method based on meta-modeling framework

(1) Simulation modeling method based on meta-modeling framework mainly
researches on the meta-model-based unified simulation modeling of the com-
plex system features like multi-disciplinary, heterogeneous, and emergence.

(2) The research fruit of our team is Meta-Modeling Framework (M2F) (Li et al.
2011a, b), which proposes a hierarchical meta-model architecture, separating
the continuous, discrete, qualitative mixed heterogeneous system models at the
abstract level theoretically, so as to achieve unified top-level modeling for
complex systems.

Simulation modeling method for variable structure system

(1) Research of simulation modeling method for variable structure system mainly
focuses on the dynamic variability of the simulation model content, interface,
and connection, to support the complete modeling the variable structure system.

(2) The research fruit of our team is CVSDEVS (Yang et al. 2013), a
DEVS-extended description norm for the complex variable structure system,
which improves the ability of DEVS in describing the variability pattern and
execution mode.

5.4.1.4 Time-Critical System Modeling Method

In the physical world, by contrast, processes are rarely procedural. CPS/IoT systems
are composed by enormous physical units, which are highly time-critical and
sensitive about the instruction sequences. The feedback loop between physical
processes and computations encompasses sensors, actuators, physical dynamics,
computation, software scheduling, and networks with contention and communica-
tion delays. To model those time-critical systems like CPS/IoT, research on the
following key methods are required, including modeling of continuous and discrete
hybrid system, the time-step and time-stamping methods, the back-roll methods for
the synchronization error.
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5.4.1.5 Deep Learning Modeling Method

With the rapid development of AI technology, an increasing number of CPS/IoT
units are intelligent machines, which are featured with deep learning and
self-adaptation. The complexities of system are rooted in the adaptability of system
components that is good to model emergent properties. The typical modeling
methods of complex self-adaptive systems are: Multi-Agent System modeling
method, Cellular Automata modeling, and constrained generation process
(CGP) model. Based on M2F and CGP description, we proposed constrained
component model (CGP-EM, CGP-CM) (Li 2016).

5.4.1.6 High-Performance Parallel Algorithm

High-performance simulation algorithm for complex system is a kind of algorithm
to employ high-performance simulation computers to solve complex system
problem. In order to speedup simulation, our team focuses on research of
three-level parallelization methods, including

(1) Task-level parallelization methods for large-scale problems: Research fruits
include: Quantum multi-agent evolutionary algorithm (QMAEA) (Zhang et al.
2009); Cultural genetic algorithm (CGA) (Wu et al. 2012); Multi-group parallel
differential evolution algorithm fusing azalea search (MPDEA);

(2) Federate-level parallelization methods between federates: Research fruits
include: A federate-level parallelization method based on RTI (Li et al. 2012);
An event-list based federate-level parallelization method (based on optimistic
methods);

(3) Model/thread-level parallelization methods:. Research fruits include: Parallel
algorithm of constant differential equations based on SMPS with load balance
of right function; GA-BHTR: genetic algorithm based on transitive reduction
and binary heap maintenance (Qiao et al. 2010).

5.4.2 SB-CPS/SB-IoT Simulation System Theory
and Technology

5.4.2.1 CPS Oriented Multi-disciplinary Virtual Prototype
Simulation System

Multi-disciplinary virtual prototype (MDVP) plays an increasingly important role in
a wide range of engineering applications, especially the design, testing and eval-
uation of complex products, to integrate and optimize staff/organization,
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management and technology in the whole system and life cycle-related of
SB-CPS/SB-IoT. The research focuses on:

(1) Heterogeneous computing environment for heterogeneous domain models,
which would enable M&S of complex distributed systems which consists of
physical system, sensor, controller, network and software (Li et al. 2008).

(2) Run time infrastructure (RTI) with improved time management service to
address the challenge of inherent heterogeneity, distributed concurrency, and
time criticality (Liu et al. 2014).

(3) Optimization framework of MDVP, which consists of the domain models,
optimizer and the distributed interactive environment (Guo 2017).

5.4.2.2 CPS Oriented Complex System M&S Language

Complex system M&S language consists of the modeling environment, which
supports model and experiment statements and syntax which describe the
domain-dependent static and dynamic behavior, the translator/compiler, the
libraries (for example, model libraries, algorithm libraries, function libraries), the
simulation execution engine and the resulting processing software. The research
focuses on

(1) Providing an easy, problem-oriented simulation modeling framework, which
uses the similar descriptive statement of simulated problem (continuous, dis-
crete, qualitative, etc.) with three parts including initialization part, model part
and experiment part (Li et al. 2017b).

(2) Automatically generating programming languages, which would enable gen-
eration of M&S program suited to high-performance computer automatically
(Li et al. 2017a).

(3) Making simulation more efficient to implement, making models easier to be
accessed and modifiable, and automatically checking error. Configurable
intelligent optimization algorithm was present (LaiLi et al. 2016 and Laili et al.
2011).

5.4.2.3 SB-CPS/SB-IoT High-Performance Simulation Computer
System

There are two types of users: high-end users of high-performance SB-CPS/SB-IoT
and massive number of end-users that acquire SB-CPS/SB-IoT cloud services on
demand. These users perform three types of simulation (Digital, Man-in-the-loop,
Hardware-in-the-loop/embedded simulation) with high-performance computer
system that optimize the overall performance of modeling, simulation execution,
and results analysis. The research focuses on
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(1) High-performance simulation support hardware, which includes
CPU + GPU-based heterogeneous high-performance computing systems,
application-oriented high-bandwidth, low-latency interconnection network,
high-capacity scalable global parallel I/O systems (Li 2016).

(2) Interface subsystem of hardware-in-the-loop/embedded simulation, which
would enable simulation and decision support based on the massive,
high-bandwidth, low-latency sensor data (Sato 2016).

(3) Parallel operating system technology to support three levels of parallelization.
The algorithms are shown in Segment 4.1.6. An RTI on high-performance
simulation computer was presented (Xing and Li 2016).

(4) High-performance visualization system, which includes simulation oriented
hardware acceleration components based on GPU/CPU and GPU-based par-
allelization visualization system (Xu et al. 2014).

5.4.2.4 Cloud and Edge Merged Smart Cloud Simulation System

Smart cloud simulation, which adopts and extends the concept of cloud computing,
virtualizes various simulation resources and capabilities (SR/Cs) and builds an
SR/C pool (cloud) to deliver on-demand simulation services for the whole life cycle
activities of SB-CPS/SB-IoT, through network (including internet, IoT, telecom-
munication network, broadcasting network, mobile network, etc.) anytime and
anywhere. The research focuses on

(1) Unified virtualization and management technology for SR/Cs on cloud and
edge, which would enable building ubiquitous networks based, “human,
machines, things, environments, information” integrated Internet of SR/C ser-
vice (Lin et al. 2013).

(2) Operation environment construction technology for SR/Cs on cloud and edge,
which would address the challenges of merging cloud simulation and edge
simulation. The general idea and process were proposed in ASIASIM2011 (Li
et al. 2012).

(3) Collaborative and interoperability technology for SR/Cs on cloud and edge,
which involves object management, connection management, time manage-
ment, load balance management, RTI agent. A layered parallel and discrete
simulator oriented to multi-core clusters (Ivy-DS) was presented in (Yang et al.
2016).

5.4.2.5 CPS Oriented Embedded Simulation System

Embedded simulation system plays an increasingly important role in CPS, which
helps the physical system to simulate the more complicated case online and aids the
decision-making based on the status of the system. The research focuses on
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(1) Pervasive simulation to perceive the status of the physical system and the
requirement of the user smartly, which was presented in (Zhen et al. 2007).

(2) Edge simulation, which would enable digital twins based on prescription to
respond the change of the status in time (Shi and Dustdar 2016).

(3) High-performance simulation to simulate the thousands of the case for
decision-making (Guo 2017), which would address the real-time decision based
on the simulation.

5.4.3 SB-CPS/SB-IoT Simulation Application Engineering
Theory and Technology

5.4.3.1 SB-CPS/SB-IoT VV&A Technology

Verification, Validation and Accreditation (VV&A) technology should be applied
in the whole life cycle activities of simulation system. Validation could ensure that
the system models express the user’s research intentions; verification could ensure
that simulator processes a satisfactory range of accuracy; accreditation could ensure
that the simulation results satisfy user’s specified criteria. The research focuses on:

(1) VV&A of the whole life cycle, the whole system, the whole staff and the full
range of management to ensure the consistency and high credibility of
SB-CPS/SB-IoT (Qian et al. 2016; Fang et al. 2005).

(2) Providing knowledge management, data sharing, and integrated platform with
distributed VV&A tools (Jiao et al. 2012) for SB-CPS/SB-IoT, which would
address the challenges of valuation of complex SB-CPS/SB-IoT system.

5.4.3.2 SB-CPS/SB-IoT Simulation Result Processing Technology

Simulation result processing technology enables the simulation experiment data
collection, visualized processing and analysis, and intelligent evaluation for effec-
tive reuse and value-added use of simulation results in SB-CPS/SB-IoT. The
research focuses on:

(1) Online, dynamic simulation results analysis and processing technology, which
would enable efficiently processing amount of simulation result data for
SB-CPS/SB-IoT (Suzumura 2014).

(2) Open, customized, reusable intelligent analysis model (Li et al. 2011a, b), which
would address the data processing for the full life cycle of all kinds of simulation
(Digital, Man-in-the-loop, Hardware-in-the-loop/embedded simulation).
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5.4.3.3 VR/AR-Based Visualization System

VR/AR-based Visualization system could support the simulation results manage-
ment, analysis, and evaluation, which could effectively enhance the understanding
and application of the result data. The research focuses on

(1) Presence and interaction in mixed reality environments (Egges et al. 2007),
which would address the challenges of using VR/AR in the scene of CPS and
IoT seamlessly.

(2) VR/AR-based Reconstruction of product application environment (Carozza
et al. 2013), which would enable innovative simulation application for
SB-CPS/SB-IoT.

5.5 Some Application Cases, E.G. Simulation of Smart
Cities, Smart Manufacturing, Are Illustrated

SB-CPS/IoT systems can be divided into three different levels in practice:
device/equipment level, system level, and SoS level. Industrial robot is a typical
CPS system in the device/equipment level. In practice, application of industrial
robot is inseparable of the support of simulation technology. In this section, we
present three applications of simulation-based CPS/IoT systems in intelligent
manufacturing and intelligent traffic domains. Cyber-factory and cloud manufac-
turing corresponding to system level and SoS level SB-CPS/IoT systems, and
intelligent traffic is a system level SB-CPS/IoT application.

5.5.1 Intelligent Manufacturing

(1) Cyber-Factory

Success in cyber-physical systems engineering strongly depends on proper appli-
cation of model-based systems engineering (Feeney et al. 2017). The assembly of
CPS, IoT, Big Data technologies has led to the new concept, “Smart Factory”, in
the field of manufacturing and the entire value chain from product design to
delivery is digitalized and integrated.

CPS refers to the convergence of the physical and computing (cyber) systems
over the network. When applied to production, CPS is specialized in Cyber-
Physical Production Systems (CPPS). CPPS consists of autonomous and cooper-
ative elements and subsystems that connect with each other in situation dependent
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ways, on and across all levels of production. Figure 5.6 illustrates the architecture
of CPPS (Jeon et al. 2016).

CPPS architecture refers to that the cyber and the physical factories are syn-
chronized in time by exchanging data and control messages between them. The
simulation in the cyber factory takes data in real-time from the physical factory so
that the accurate model (the physical factory model) can be defined. Once the
simulation is done, the simulator generates control messages and sends back to the
actuators in the physical factory so that the flexible adaptation of the production
chain and the production optimization are possible (Jaeho 2016).

(2) Cloud Manufacturing system

CASICloud (http://www.casicloud.com/) is China’s first independently developed
Internet-based public cloud service system for manufacturing industry. CASICloud
aims at integrating Internet technologies with intelligent manufacturing and facili-
tating resources sharing. It targets industrial enterprises both in China and overseas.
CASICloud focus on helping users with crowd sourcing and industrial products
trade, as well as starting their own business.

Since December 2015, CASICloud has been online for over a year, attracting
more than 230,000 registrations and releasing over 43 billion CNY CASIC business
demands regarding all aspects of the manufacturing industry. Over 1000 innovation
and entrepreneurship projects have been released online, and cooperation with
international intelligent manufacturing and scientific services is underway (Li et al.
2017a).

By virtualizing the manufacturing resources and manufacturing capabilities in
the physical layer, CASICloud can provide services in the whole life cycle of

Cyber Factory

Physical Factory

Enterprise Resource Planning Level

Manufacturing Execution System Level

Human Machine Interface Level

Control Level

Equipment Level

Model Simulation

ControlData

Fig. 5.6 CPPS architecture
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manufacturing on demand. Modeling and simulation technology plays a critical role
in the operation of CASICloud. CASICloud is a typical SB-CPS/IoT system at SoS
level. The system architecture of CASICloud is presented in Fig. 5.7.

5.5.2 Simulation of Intelligent Traffic

Smart Cities are cities enhanced with a technological infrastructure that enables a
more intelligent use and management of its resources. They are currently seen as a
powerful way of improving the quality of life of its citizens (Santana et al. 2016).
Making cities smarter can help optimize resource and infrastructure utilization in a
more sustainable way.

Intelligent traffic is an important aspect of smart cities. In recent years, popularity
of private cars is getting urban traffic more and more crowded. As a result, traffic is
becoming one of the important problems in big cities all over the world. SB-IoT
provides a new solution for this problem.

The IoT is based on the Internet, network wireless sensing, and detection
technologies to realize the intelligent recognition on the tagged traffic object,
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tracking, monitoring, managing, and processed automatically. The simulation-based
approach introduces the use of an active radio-frequency identification (RFID),
wireless sensor technologies, object ad hoc networking, and Internet-based infor-
mation systems in which tagged traffic objects can be automatically represented,
tracked, and queried over a network. The general model of distributed traffic
simulation framework described in Fig. 5.8 (Al-Sakran 2015). The simulation
server disseminates information among the simulator segments, coordinates all
simulators’ segments and provides a predictive model of traffic conditions in
specified traffic areas by analyzing and integrating the results of distributed simu-
lators of those areas. The simulation server maintains state information of current
and future operations of the traffic network such as flow rates, average speed, and
the time when that information was generated (Al-Sakran 2015).

5.6 Conclusion

5.6.1 The Impact of SB-CPS/SB-IoT on Society
and Economy, People’s Livelihood, National Security

5.6.1.1 The Era of “Internet+ Artificial Intelligent+” Is Coming

(1) The network in the era of “Internet+ Artificial Intelligent+” refers to the per-
vasive network including Internet, IoT, Mobile Internet, the Satellite Network,
Space-Ground Integrated Network, Next Generation Internet, etc.

Traffic Prediction/Update Information Communication Layer

Simulator Server

RFID 
Sensor

RFID 
Sensor

RFID 
Sensor

Simulator Segment Simulator Segment

S-Mobile Agent

Traffic Data Traffic Data

S-Mobile Agent

Fig. 5.8 General model of distributed traffic simulation framework
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(2) The key technology in the era of “Internet + Artificial Intelligence” is deeply
integrated with seven types of new technologies shown as follows:

(a) New Internet Technology (Internet, IoT, Mobile Internet, the Satellite
Network, Space-Ground Integrated Network, Next Generation Internet,
etc.);

(b) New Information Technology (Cloud Computing, Big Data, High-
performance Computing, M&S, etc.);

(c) New Artificial Intelligent Technology (Big Data based A.I., Group
Intelligence, Human-machine Intelligence, etc.);

(d) New Power Technology (Solar Power, Wind Power, Bio-energy,
Geothermal Energy, Ocean Energy, Chemical Energy, Nuclear Energy,
etc.);

(e) New Material Technology (Metallic Materials, Inorganic Non-metallic
Materials, Organic Polymer Materials, Advanced Composite Materials,
etc.);

(f) New Biological Technology (New Biological Medicine, Biological
Technology, Green Manufacturing Advanced Biomedical Materials,
Advanced Biotechnology, Common Use of Biological Resources,
Biological Safety, Life Science Instruments, Synthetic Biology, Biological
Data, Regenerative Medicine, 3D Bio Printing, etc.);

(g) New Application Domain Technology (Economy, National Security,
Society, etc.).

(3) The ecosystem of the era of “Internet + Artificial Intelligence” refers to:
“Pervasive Connection, Data-driven, Sharing and Serving, Cross-border
Fusion, Self-intelligence, Mass Innovation”, which depict the ecosystem of
“Internet + Artificial Intelligence”.

5.6.1.2 Simulation-Based CPS/IoT Is Promoting the Changes
in the New Paradigms, New Methods and New Ecosystems
in All CPS/IoT Domains

Modeling and simulation technology has involved through the whole life cycle
activities of CPS and IoT systems, including argumentation, design, experiment,
production, operation, management and service. It is promoting the changes in the
new paradigms, new methods and new ecosystems in all CPS/IoT domains.

For example

(1) New paradigm, new method, and new ecosystem in intelligent manufacturing

(a) New paradigm in intelligent manufacturing: user centered, inter-connected,
service-oriented, collaborative, individualized (customized), flexible and
social intelligent manufacturing and serving.
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(b) New method in intelligent manufacturing: “human, machines, things”
integrated system characterized by “digitalization, things networking, vir-
tualization, service oriented, collaboration, customization, networking, and
intelligence”.

(c) New ecosystem in intelligent manufacturing: characterized by “pervasive
connection, data-driven, sharing and serving, cross-border fusion,
self-intelligence and mass innovation”.

(2) New paradigm, new method, and new ecosystem in smart city

(a) New paradigm in smart city: user centered, “human, machines, things”
integrated, inter-connected, service-oriented, collaborative, individualized,
flexible and social smart city operation.

(b) New method in smart city: Based on the ubiquitous network, using digital
and network, intelligent methods integrated by four technologies (advanced
information and communication technology, intelligent technology, system
engineering technology and city operation and management technology),
building a SR/Cs’ cloud (network) of smart city for the citizen, the gov-
ernment and the enterprises with the synchronous development of the
industrialization, informatization, urbanization, agricultural modernization.

(c) New ecosystem in smart city: characterized by “pervasive connection,
data-driven, sharing and serving, cross-border fusion, self-intelligence and
mass innovation”.

5.6.2 Further Works on SB-CPS/IoT

CPS/IoT is a basic component of various intelligent application systems in the age
of “Internet+ Artificial Intelligence+”. CPS/IoT are typical complex systems in
which human, machine, material, environment and information sectors are intelli-
gently connected in depth. SB-CPS/IoT related technology, industry, and applica-
tion should be further developed coordinately to adapt to the era of “Internet
+ Artificial Intelligent+”:

(1) For development of technology, more attention should be paid to the integra-
tion of simulation science and technology, advanced information and com-
munication science and technology, advanced intelligent science and
technology as well as application technology. Enhance research on heteroge-
neous integration techniques in SB-CPS/SB-IoT system techniques as well as
big data techniques, high-performance simulation/computing techniques,
advanced artificial intelligence techniques and AR/VR techniques in
SB-CPS/SB-IoT platform techniques. Enhance research on new model, new
procedure, new means and new format of modeling and simulation in
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SB-CPS/SB-IoT systems. Enhance research on new business model that in line
with sharing economy model. Pay attention to research on security technology
as well as related standards and evaluation index system. Pay attention to
continuous construction of hierarchical technical innovation system.

(2) For development of industry, enhance the SB-CPS/SB-IoT system toolkit and
platform development industry. Enhance the system construction and operation
industry in SB-CPS/SB-IoT industrial chain.

(3) For development of applications, promote application demonstration of
SB-CPS/SB-IoT system applications. The application and implementation of
SB-CPS/SB-IoT systems are complex system engineering, so emphasis should
be made on (a) domain-oriented, (b) revolutionary new paradigm, new method
and new ecosystem, (c) the integration, optimization and intelligence of system,
(d) the strategic development plan and (e) making phased implementation
schemes properly.

Review questions

1. What is the difference between CPS and IoT?.
2. How can you use the modern M&S technologies, such as complex hybrid

network system modeling, quantitative and qualitative hybrid system modeling,
big data-based modeling, Multi-disciplinary virtual prototype simulation system,
high-performance simulation computer and cloud simulation, to improve the
productivity, quality and cost of the whole life cycle activities of CPS and IoT
systems, including argumentation, design, experiment, and evaluation?

3. How can you use the modern M&S technologies such as high-performance
simulation, cloud, and edge merged simulation as embedded simulation, a basic
component, to support the operation activity of the CPS/IoT system in unit level,
system level and system-of-system level?
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Chapter 6
Simulation-Based Complex Adaptive
Systems

Saurabh Mittal and José L. Risco-Martín

Abstract Complex Adaptive Systems (CAS) are systems that display two primary
characteristics: emergent behavior, and adaptive behavior. Emergent behavior
manifests in a system comprising of large number of components, often considered
as agents, engaged in multi-level interactions. Adaptive behavior manifests at the
agent–environment boundary when the agent situates itself in an environment.
Modeling a CAS has been a challenge due to limitations in bringing these two
aspects together in a single formal specification in a computational environment.
Lack of simulation environment for a CAS model adds further problem in vali-
dation and verification of a CAS model. Computationally, the emergent behavior
can be understood using today’s latest technology of feature engineering, Deep
Learning, and data analytics using Big Data. This would facilitate the identification
of various holistic behaviors and their classification that would aid designing var-
ious observers for detecting the emergent behavior in a computational environment.
This aspect is largely bottom-up. Once various observers are computationally
available, they can be integrated in the agent behavior repertoire so that the
emergent behavior, that is now detectable and perceivable at the agent-environment
boundary, can be used and acted-upon by the agent. This situates the agent in the
environment and manifests as adaptable behavior. This activity is top-down as there
is a conscious design process (done by a human) that is employed for such behavior
refinement. This chapter will discuss the state of the art in computational and
simulation support needed and provides foundation to manifest accurate emergent
behavior in a computational environment as a means to perform CAS engineering.
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agent systems � Evolutionary computing � Emergence complexity cone �
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6.1 Introduction

System complexity continues to grow by leaps and bounds. Multi-level complexity
is a fundamental nature of heterogeneous systems today. To describe this new class
of super complex systems in a man-made world, labels such as system of systems
(SoS), cyber-physical systems (CPS) (Lee 2008), complex adaptive systems
(CAS) (Holland 1992), and cyber CAS (CyCAS) (Mittal 2013b, 2014) are used
interchangeably. All of them are multi-agent systems, i.e., have large number of
agents, are contextualized in the environment and manifest emergent behavior. The
constituting agents are goal-oriented with incomplete information at any given
moment and interact among themselves and with the environment. SoS is charac-
terized by the constituent systems under independent operational and managerial
control. CAS is an SoS where constituent systems can be construed as agents that
interact and adapt to the dynamic environment. Cyber CAS is a CAS that exists in a
netcentric environment (for example, Internet) that incorporates human elements
where distributed communication between the systems and various elements is
facilitated by agreed upon standards and protocols. CPS is an SoS wherein the
constituent physical and embedded systems are remotely controlled through the
constituent cyber components. In modern times, the Internet of Things (IoT) is
beginning to incorporate these characteristics and is becoming a significant con-
tributor to the increase in complexity. However, the IoT phenomenon is still in the
formative stages of an apparently exponential growth. Designing these systems is
equally complex and methodologies available through traditional systems engi-
neering practices fall short of engineering these super complex systems.

CAS is not a new concept. Fifty years ago, in his book, Alexander (1964) drew
the following context:

• “Today more and more design problems are reaching insoluble levels of
complexity”

• “At the same time that problems increase in quantity, complexity and difficulty,
they also change faster than before”

• “Trial-and-error design is an admirable method. But it is just real world trial and
error which we are trying to replace by a symbolic method. Because trial and
error is too expensive and too slow.”

This scenario continues to be applicable even today, and probably will be 50 years
from now as well. The sheer lack of methodologies to do CAS engineering in a
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heterogeneous environment makes it a hard problem. Validation and verification for
CAS engineering is being defined (Mittal and Zeigler 2017). The use of real-world
data and of artificial data to test a hypothetical CAS is still being characterized. Not
only that, the properties of CAS do not belong to a single domain of interest but are
cross-domain and multidisciplinary. Approaches that leverage data analytics, speed
iterations, built in agility, and ensure a holistic view for robust decision-making that
are essential to solve complex engineering programs are in the process of being
incorporated in the CAS engineering process. Consequently, engineering CAS
elements as well the processes to facilitate CAS engineering are being worked out.
Due to the complexity of such systems, these systems exhibit emergent behavior.
Efforts are underway to harness emergent behavior as an essential component of the
CAS engineering process (Mittal and Rainey 2015). To address the growing need
for studying CAS, and develop engineering methodologies for such multidisci-
plinary systems, various scientific journals have recently been launched:

• Journal of Cognitive Systems Research, Elsevier
• Information Sciences, Elsevier
• Complex Adaptive Systems Modeling, Springer
• Complexity, Hindawi, Wiley & Sons.

Traditionally, modeling and simulation has supported the systems engineering
process across all its phases. Paradigms like model-based system engineering
(MBSE), model-based development (MBD), and model-based engineering
(MBE) are often used to describe the usage of modeling practices in systems and
software engineering. Many times, modeling is performed without the simulation.
In that role, modeling acts as a validation mechanism to bring a common under-
standing to all the stakeholders that include the end-users (who use the system), the
engineers (who make the system), and the business holders (who invest in the
system). These validated models serve as architectural blueprint. Such models are
usually static in nature and the verification or correctness of these models rests with
the modeling workbench used to create these models. The metamodels imple-
mented in the modeling editors are the foundation on which the modeling repre-
sentation rests. To evaluate the dynamic behavior of these models, simulation is
warranted.

With CAS, as both the model and the data it is dealing with, are multidisci-
plinary, the CAS model is constantly evolving. The traditional use of M&S in a
multidisciplinary environment is a challenge and needs to be explored in a
cross-disciplinary manner (Mittal and Zeigler 2017). Some of the research centers
are specifically focused on the very subject for a holistic cross-disciplinary
undertaking:

• Center for Comp. Analysis of Social and Org. Systems, Carnegie Mellon
University

• Center for Complex Systems Research, University of Illinois at Urbana-
Champaign

• Center for the Study of Complex Systems, University of Michigan
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• Evolution, Complexity, and Cognition group, Vrije Universiteit Brussel
• Institute for Complex Engineered Systems, Carnegie Mellon University
• New England Complex Systems Institute
• Northwestern Institute on Complex Systems, Northwestern University
• Santa Fe Institute, New Mexico.

Modeling is an integral part of studying complex systems. However, without a
failsafe validation process, the model can fall out-of-sync quickly rendering the
model useless. Much of the model validation depends on the data validation. Data
validation depends on the data exchanged between the actual system and its
environment, in comparison to the data exchanged between the model and the
environment. Acquisition of structured data from natural systems and man-made
systems that can capitalize on various data-driven analyses is a growing challenge.
Data-driven methodologies need to scale up in a multidisciplinary environment as
well. If the modeling workbenches can support agile modeling processes, the
simulation infrastructure needed to validate the dynamical behavior should be made
agile as well.

Emergent behavior, a macro behavior that is irreducible at the micro-level, is a
characteristic property of any CAS, along with many other properties like self-
organization, nonlinearity, and order/chaos dynamics (Mittal 2013a). Reproducing
emergent behavior in an artificial environment, such as through M&S endeavor is a
nontrivial problem. There are two fundamental reasons. By the definition of
emergent behavior by Ashby (1956), the source of emergent behavior of a system
results from an incomplete understanding of the system. So, to model a CAS, do we
have complete understanding of CAS, to begin with? The answer is clearly no
because, emergent behavior is a by-product of all the structural and behavioral
richness in a natural CAS. This emergent behavior results in a dynamic environ-
ment and dynamic agent behavior that adapts to the dynamic environment and
eventually leads to agent learning and adaptation as it survives in that environment.
In a modeling endeavor, much of the low-level detail is deliberately ignored to
manage the model’s complexity. Abstraction results in loss of information at a finer
level. Regardless, a model can be made to produce the same emergent behavior
with the support of a hypothesis or theoretical constructs. To check the hypothesis,
the model must be simulated on a time-base to ensure the correct dynamical
behavior. This leads us to the second reason. Developing a multi-agent
co-simulation platform in a multidisciplinary environment is also a nontrivial
challenge and out-of-order events and computational complexity of the simulator
execution introduce unintended behaviors that contribute to inaccurate emergent
behavior. Validation and verification of agent-based modeling environments is an
active area of research (Yilmaz 2006; Arifin and Madey 2015).

This chapter discusses the complexity inherent in CAS modeling, the multi-
faceted data-driven methodology and the supporting simulation infrastructure using
a co-simulation methodology. Having a robust co-simulation infrastructure is a
must-have to eliminate unintended emergent behaviors arising out of computational
simulation environment (Mittal and Zeigler 2017). Only ensuring that will keep the
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focus of CAS engineers toward modeling the desired and accurate emergent
behaviors.

The chapter is structured as follows. Section 6.2 discusses the complexity in
multidisciplinary CAS engineering. Section 6.3 discusses the adaptive aspect in
CAS engineering. The nature of emergent behavior, its taxonomy and how it is
reproduced in a modeling and simulation environment is discussed in Sect. 6.4. The
data aspect supporting model evolution is discussed in Sect. 6.5. The co-simulation
architecture for simulation-based CAS engineering is described in Sect. 6.6, fol-
lowed by conclusions and future work in Sect. 6.7.

6.2 Complexity in CAS Structure Modeling

A basic definition of CAS was provided by Holland (1992):

CAS are systems that have a large number of components, often called agents that interact
and adapt or learn

More specific definitions appreciating the associated complexity started
appearing after a decade later. The earliest and the most cited definition we could
find is provided by Plesk and Greenhalgh (2001):

A complex adaptive system is a collection of individual agents with freedom to act in ways
that are not always totally predictable, and whose actions are interconnected so that one
agent’s actions change the context for other agents.

Miller and Page (2009) discussed the subject of CAS and the difference between
a complicated and complex system, and how computational models can help
describe a complicated system but hit a boundary when it comes to complex
systems with adaptive behavior. While they describe the CAS components in an
illustrative and computational manner, they did not actually provide a definition of
CAS. A precise definition of an emerging new concept is an important undertaking,
as it will define what it “is” and “is not.” This also hits at the heart of how M&S can
support the concept definition activity and thereby, advance science. Indeed, if a
concept is expressed precisely, it will be reflected accordingly in the created model,
and can be validated. Failure to do so will introduce ambiguity and uncertainty.

System modeling begins with understanding the structure and behavior of the
system. Once sufficient understanding is available, model-based design and anal-
yses can proceed. To understand the structure and behavior of CAS, thereby to
perform MBSE for CAS, Mittal (2013b) stated:

A CAS is a complex, scale-free collectivity of interacting adaptive agents, characterized by
high degree of adaptive capacity, giving them resilience in the face of perturbation. Indeed,
designing an artificial CAS requires formal attention to these specific features. Complexity
is a phenomenon that is multivariable and multi-dimensional in a space-time continuum.

From the structural perspective, a multi-agent system is analogous to an SoS.
The connectedness of each of these systems is well researched in the works of
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Barabasi (2003) and Newman (2001). Mittal (2013a) summarized the structural
scale-free characteristics of CAS, as enumerated in Table 6.1.

If the problem was to just address the scale-free nature with homogeneous
agents/systems, there are ample tools that can model a scale-free structure.
However, any real-world CAS is a heterogeneous system with multiple charac-
teristics. Modeling such a heterogeneous system requires modeling agent charac-
teristics dependent on the source of behavior for that agent, which may be domain
dependent. The complexity increases when the model has multi-level specifications,
i.e., a containment hierarchy exists. The problem further grows exponentially if the
agent/system, even though available as a modular component, is modeled in a
dissimilar paradigm, such as discrete, continuous or hybrid. Undoubtedly, in such a
situation, the presence of emergent behavior is but natural.

The primary question is:

Do we know enough about the system to recognize the emergent behavior and ensure that it
is the right one, to begin with?

Table 6.1 Scale-free characteristics of complex adaptive systems, summarized from Mittal
(2013a)

ID Feature Description

1 Incremental growth Incremental linking to other agents/systems in a persistent
environment (an environment that has a spaciotemporal
nature and preserves history)

2 Self-organization Agents/systems may organize themselves into clusters,
groups for a common objective

3 Critical state-transition At appropriate time during the network growth, the system
displays fundamentally different behavior that may be
termed emergent behavior

4 Emergence of hubs and
clusters

Networks starts displaying small-world effects and a
network hierarchy composed of hubs and clusters emerges

5 Power-law behavior Some agent/systems become network enablers and
facilitate “long” weak-ties that sustain large-scale
topologies

6 Nonlinear interactions System self-organized through these hubs result in
emergent interactions that brings new affordances and/or
constraints

7 Preferential attachment Agents/systems exhibit affinity for other agent/systems
that changes the inherent structure itself

8 Vulnerability to attacks if
targeted to hubs

Any attack on the hubs results in cascaded effects and push
the entire system toward self-organized criticality when it
reaches a critical state

9 Threshold levels Each agent/system has a threshold model that controls its
preferential attachment

10 Concurrency and
multi-tasking

Each agent/system is modular and has defined interfaces
and capabilities that are operational in a concurrent manner
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Mittal and Zeigler (2017) stated that multi-paradigm modeling is the preferred
means to bring in domain knowledge from multiple disciplines to develop a CAS
model. Some of the disciplines they enumerated are: Cognitive Psychology,
Network Science, Human Factors, Communication Systems, Ontology, Complexity
Science, Supply-Chain, and Power Systems. Each of the disciplines contributes
toward defining the behavior of an agent/system and provides constraints to control
the structure of the resulting CAS. Further, an agent may have a variable degree of
autonomy and in contrast, a system may be a passive system with limited
autonomy.

6.3 Adaptive Aspect in CAS Modeling

From the behavioral perspective, CAS are systems that display two primary
behaviors: adaptive behavior and emergent behavior. Let us look at the modeling of
these two behavioral aspects.

Adaptive behavior manifests at the agent–environment boundary when the agent
situates itself in an environment. This agent–environment interaction results in
changing the agent’s original behavior as it continues to adapt to the environmental
conditions. An adaptive system is a system that changes in the face of perturbations
to maintain invariant state by altering its properties or modifying its environment.
The ability to adapt depends on the observer who chooses the scale and granularity
of description. An adaptive system is necessarily complex, but the opposite is not
necessarily true.

Evolution is a result of an adaptive system. In fact, John Henry Holland (1992)
was one of the biggest contributors that led to the inception of the field from the
perspective of adaptation. He introduced the concept of genetic evolution in
describing adaptive systems. He was interested in the question of how computers
could be programmed so that problem solving capabilities are built by specifying
what to be done, instead of how to do it (Brownlee 2007). Holland conceptualized
an adaptive plan, which was the continuous modification of structures by means of
genetic operators. The specialization of this adaptive plan, called the genetic plan,
represented at the end, laid the foundation of the field of genetic algorithms and,
more generally, evolutionary computation.

The design of an adaptive system that manifests emergent behavior becomes a
complex and challenging task (Branke and Schmeck 2008). It is impossible to
know how design choices made at a component level affect the overall system
behavior. Thus, these choices must be evaluated by means of computationally
extensive models and the corresponding simulations. As stated before, adaptability
is based on evolution. Thus, the adaptive behavior of these models can be tackled
using evolutionary computation. Figure 6.1 depicts an illustrative example of how
the CAS behavior can be modeled through evolutionary computation.

Evolutionary Algorithms (EAs) make them excellent candidates for dealing with
M&S of CASs (Alba and Cotta 2002; Branke 2001; Deb 2001; Arnaldo et al. 2013).
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First, EAs act as a black box in an optimization heuristic (the partial search algo-
rithm). There are no restrictions on the fitness function. Thus, these algorithms can
be used in complex simulation environments. Second, the fitness evaluation can
often be simplified by means of the reduction of the computational complexity. This
fact allows us a simplification of the initial complex environment. Third, EAs behave
well with uncertainty in evaluation, can manage adaptation to changing or adaptive
environments, as well as in real-time scenarios. In this regard, EAs are considered
adaptive and interactive. This last feature makes them useful in the study or design of
desired emergent behavior. Fourth, there exist a group of EAs called multiobjective
evolutionary algorithms (MOEAs).

These methods are designed to deal with multiple objectives or fitness functions.
This is a realistic method to quantify emergent behavior that looks for different
alternatives, depending on the chosen objective in each situation. Using relations
like Pareto dominance or Nash ascendancy, these algorithms can offer a good
spectrum of different solutions to the problem under consideration (Deb et al.
2005). Finally, from a performance perspective, EAs are easily parallelizable, even
on heterogeneous hardware platforms or in cloud environments. Being based on the
evolution of a population, the repetitive evaluation of each individual in the pop-
ulation can be distributed using a master–worker or an islands-based distribution.
Coevolution and multi-agent systems can also be used in the distribution of EAs, as
Fig. 6.1 shows.

There are many examples in the literature of modeling complex adaptive systems
and inducing desired emergent behavior. To name but a few, Chellapilla and Fogel
(2001) used a genetic algorithm to evolve neural networks able to play the game of
checkers. The major achievement of this work is based on the competitive strategy,
which is evolved given only the spatial positions of pieces on the board and the
piece differential, a decision approach that would normally require human input and
expertise. Andre and Teller (1999) successfully applied evolutionary methods to

Fig. 6.1 Evolutionary algorithms in CAS modeling
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develop a program to control a team of robot soccer players. The evolutionary
algorithm operated with a set of basic control functions such as turning, running,
and kicking. The fitness function was global, evaluating a general good play. There
was no score of specific tasks like tracing the ball, kicking in the correct direction,
goal scoring, etc. The robot team, named Darwin United, entered in the interna-
tional RoboCup annual tournament and competed with other teams of autonomous
robots (RoboCup 2017). Darwin United outranked half of the human written,
highly specialized programmed teams, performing quite well.

6.4 Emergent Behavior Aspect in CAS Modeling

Emergence has been a native of the land of “complex systems” and there are four
schools of thought that study emergence, as summarized by Wolf and Holvoet
(2005):

• Complex adaptive systems theory: Concept of macro-level patterns arising from
interacting agents.

• Nonlinear Dynamical Systems theory and Chaos theory: Concept of attractors
that guide the system behavior.

• The synergistic school: Concept of order parameter that influences which
macro-level phenomena a system exhibits.

• Far-from-equilibrium thermodynamics: Concept of dissipative structures and
dynamical systems arising from far-from-equilibrium conditions.

New fields of application of emergence are System of Systems (SoS) (Maier
1998; Mittal and Rainey 2015) and complex sociotechnical systems (Mittal 2014).
Modeling and simulation support to SoS engineering (Rainey and Tolk 2015)
discusses four types of emergence, extended from the works of Maier (1998, 2015):

• Simple emergence: The emergent property or behavior is predictable by sim-
plified models of system’s components.

• Weak emergence: The emergent property is readily and consistently reproduced
in simulation of the system but not in reduced complexity nonsimulation models
of the system, i.e., simulation is necessary to reproduce it.

• Strong emergence: The emergent property is consistent with the known prop-
erties, but even in simulation is inconsistently reproduced without any justifi-
cation of its manifestation.

• Spooky emergence: The emergent property is inconsistent with the known
properties of the system and is impossible to reproduce in a simulation of a
model of equal complexity as the real system.

Weak emergent properties can be formally specified using mathematical prin-
ciples and reproduced in a simulation environment (Mittal 2013a; Szabo and Teo
2015). They are known a priori. In contrast, Strong emergent properties are
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discovered, after the fact. Strong emergent behavior is bounded by the knowledge
of the existing properties of the system. Consequently, new knowledge is always
generated when strong emergent properties are known for the first time (Mittal
2013a). When they are known during a simulation study by stochastic methods
(Mittal and Rainey 2015) and are validated as a new property that is consistent with
the known properties by the system’s subject matter experts (SMEs), they are then
incorporated as “new behavior” that is not “emergent” anymore. Once known they
can be now formalized as weak emergent behavior. This results in a cyclical process
of knowledge discovery and knowledge augmentation in the existing model (Mittal
2014), and can now be consistently reproduced in a simulation.

Stochastic studies and uncertainty quantification lie in the simulation domain.
These computational methods used in conjunction with the existing theories help
validate the existing theories or suggest modifications to them. These also help
define the boundaries of the theory, in turn, giving us specific knowledge about the
constraints and limitations of that theory which must be implemented for under-
standing the emergent behavior. Figure 6.2 shows the Emergence Complexity Cone
linking emergent behavior taxonomy in increasing complexity on the y-axis, and
division of the cone into stochastic and deterministic search-spaces on the x-axis.
The deterministic domain is supported by established theories, like cybernetics,
Systems theory, control theory, and network theory. The stochastic domain is
supported by estimation theory. Cone volume depicts the variety1 (Ashby 1956).
Cone perimeter depicts constraints, and the knowledge boundary as a cylinder that

Fig. 6.2 Emergence complexity cone (Mittal and Rainey 2015)

1Variety refers to the total number of states in the system.
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addresses the variety and constraints. The knowledge cylinder around simple and
weak emergence in the deterministic domain signifies ample knowledge available to
develop abstractions. A diverging cone reflects the increasing complexity as con-
straints are loosened in the stochastic domain leading to an increase in variety and
lack of theoretical constructs to understand the overall complex behavior.

Further, computationally, the emergent behavior can be understood using
today’s latest technology of feature engineering, deep learning, and data analytics
using big data and machine learning (Tolk 2015). This would facilitate the iden-
tification of various holistic behaviors and their classification that would aid
designing various algorithms for detecting the eventual emergent behavior that may
be useful in SoS context. This aspect is largely bottom-up. Once various observers
are computationally made available, they can be integrated in the agent behavior
repertoire so that the emergent behavior, that is now detectable and perceivable at
the agent–environment boundary through various newly developed sensors (both
software and hardware), can be used and acted-upon by the agent. This process
refines the agent behavior with respect to the environment it is in, thereby situating
it in the environment, and hence manifesting adaptable behavior. This activity now
becomes top-down as there is a conscious design process (done by a human) that is
employed for such behavior refinement and incorporating of new emergent
behavior as a causal behavior impacting the existing behavior of the agent. The
process thus becomes increasingly cyclical, wherein simulation studies are con-
stantly discovering new consistent emergent behaviors that are then continuously
added to the agent/system behavior repertoire.

We shall now see how data is an integral part of the simulation-based CAS
engineering process.

6.5 Data-Driven Analytics for CAS Model Evolution

Complex systems are dynamic in nature and usually present failures in real time
that their controller must be able to manage. Given an IoT system, for example, we
may observe how sensors are continuously failing, but the complex system must be
able to adapt itself to the new situation. In these new kinds of problems, a global
and adaptive modeling and optimization strategy can be especially useful. These
systems are highly complex and cannot be easily tackled using classic modeling,
simulation, and optimization techniques. They demand a heterogeneous and
multi-level approach. For this purpose, the M&S work starts with a precise
knowledge of the problem, developing techniques, and methodologies that begin
with data acquisition in real environments, and observing the practical constraints
of the given scenario.

Figure 6.3 shows an overview of the data-driven methodology. With an initial
raw dataset, a MBSE process starts. To this end, the minimal set of features used to
build the model is initially selected. This model is then simulated for verification
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and optimization. Finally, the model is validated and tested and the actual system is
implemented (Zeigler et al. 2000).

Using the above methodology for CAS engineering is a challenge. One of the
major problems in the methodology detailed above is the constant necessity of
human experts to take certain decisions in the modeling part, mainly because of the
unpredictability of the emergent behavior in CAS. To tackle this issue, and as stated
in Sect. 6.3, the model is usually complemented with an evolutionary computation
module to emulate this emergent behavior. Some algorithms frequently used are
particle swarm optimization (PSO) (Zhang et al. 2017) or ant colony optimization
(ACO) (Wang et al. 2016) that emulate emergent features to solve complex opti-
mization problems. Evolutionary computation can reproduce complex adaptive
models.

However, this is not enough. Although the aforementioned models faithfully
reproduce complex, dynamic and “alive” systems, the limitation is always found in
the heuristic used by the corresponding meta-heuristic. So, the question is:

Is there always the need for human experts in the process of modeling complex opti-
mization heuristics?

The answer is no; we may find several approaches to turn these heuristics into
hyper-heuristics (Zheng et al. 2015). These methods try to adapt various low-level
heuristics into a higher level hyper-heuristic. This task is usually performed using
machine-learning techniques. This technique is very useful because it is imple-
mented under the assumption that once the model is integrated into the final system;
it may also evolve. This evolution highly depends on the input data, as well as on
the number of features. The set of features can also change during the whole model

Fig. 6.3 Data-driven M&S in CAS
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life cycle. Regardless of the machine-learning approach used (e.g., Feature engi-
neering techniques, Deep Learning, pattern-matching, etc.), these techniques usu-
ally work in one of the following directions: generating new heuristics from basic
sub-structures, automatically managing the search operators in the main evolu-
tionary algorithm, or tuning the control parameters of the algorithm itself.

Figure 6.4 shows a specific view of the aforementioned CAS modeling part and
the computational support as a part of model evolution process.

As the first step, it is required to have a representative data set of the system for
which the model will be defined. Next, using machine-learning algorithms (like
Deep Learning) and in combination with the hyper-heuristic approach, the set of
features or input variables that are representative for the model are obtained, as well
as the model itself, which is a function of these features. Feature engineering is a
particularly useful technique to select an optimal set of features that best describe a
complex model. Those features consist of measurable properties or explanatory
variables of a phenomenon (Arroba et al. 2014).

Second, the first version of the model is simulated. The system’s behavior is
studied, simultaneously verifying and validating the reliability of the system both in
virtual and in real-time environments. Often, the provided model or even the
modeled system requires an optimization cycle. Minimization of risks, cost, as well
as maximization of performance are some examples. A varied set of optimization
techniques can be applied for this purpose: MILP (mixed integer linear program-
ming), simulated annealing, genetic algorithms, particle swarm optimization,
genetic programming, multiobjective optimization, etc. The model obtained is more
robust and contextualized with real-data incorporated through the machine learning
and hyper-heuristic phases. Finally, as Fig. 6.3 depicts, the system is implemented.
This implementation is performed systematically. In hardware–software co-design

Fig. 6.4 Specific view of the CAS modeling part
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methodology that has M&S as an integral part of systems engineering life cycle,
hardware components are first virtualized as software models and then iteratively
replaced by hardware-in-the-loop simulation. In a hardware–software co-simulation
environment (Mittal et al. 2015; Risco-Martin et al. 2016), the target system is
verified and validated using all the previous procedures and the general structure
shown in Fig. 6.3.

6.6 Co-simulation Environment for CAS

Designing and evaluating a CAS is a three-step process (Clymer 2009). First, a
mathematical model is required to define and represent a CAS environment with
precision. It describes the set of agent interactions that happen between the CAS
agents during the system’s operation. Second, a modeling language that implements
a set of equations for modeling dynamical behavior of the agent and the environ-
ment. The modeling language, as a design workbench, should have both textual and
graphical elements that enhance the visualization and specification of CAS structure
and behavior. Finally, an evaluation tool that ensures that the application of
Systems Theory, expressed using the aforementioned graphical modeling language
still holds. As we have discussed earlier, a CAS model is a multi-domain model.
Consequently, constructs from multi-paradigm modeling should be adhered to.

A multi-paradigm modeling (Vangeluwe and Lara 2003) aligns different para-
digms with their corresponding modeling formalisms and implementation types
toward a composite model capable of exchanging information across various
abstraction levels.

Table 6.2 (Mittal and Zeigler 2017) enumerates some of the tools that are cur-
rently used in a particular domain. Some tools are language dependent (e.g., C ++,
Java, LISP, and DSL) and/or some are platform dependent (e.g., Windows, Linux,

Table 6.2 Domains and their tools (not a complete list) (Mittal and Zeigler 2017)

ID Domain Modeling tool/Architecture

1 Cognitive
psychology

ACT-R (2017), jACT-R (2017), SOAR (2017

2 Network science Gephi (2017), NetworkX (2017), IGraph (2017), Statnet (2017),
Pajek (2017)

3 Human factors JACK (2017), Kinemation (2017)

4 Communication
systems

OpNet (2017), OmNet (2017), NS3+ (2017),
MATLAB/Simulink (2017)

5 Ontology Protege (2017), TwoUse (2017), NeOn (2017), FlexViz (2017)

6 Complexity
science

NetLogo (2017), RePast/Symphony (2017), DEVS (Zeigler et al.
2000), R (2017)

7 Supply-chain MS Excel, Arena, SAS

8 Power systems GridLab-D (2017)
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and Mac). Some are discrete event; some are continuous and closed-form. These
tools have their own software architecture, subscribe to a scientific theory and
sometimes the software is proprietary. Figure 6.5 shows A, B, C, D, E, and F as
sample architectures. It also shows a layered M&S architecture addressing the
pragmatic, semantic, and syntactic levels of interoperability. For more details, see
Mittal et al. (2008).

Developing a modeling workbench for a multi-paradigm modeling environment
is a nontrivial exercise and two solutions exist. Given a set of modeling formalisms
that a CAS model needs, the first option requires the use of a formalization
transformation graph (Vangheluwe 2000) that transforms a relatively simpler for-
malism to be transformed into a more rigorous formalism. Such was an approach
used by AtoM3 (Vangheluwe and Lara 2003). However, one then must understand
each of the other formalisms and their semantics to ensure that there are no leaky
abstractions and the mapping is correct. The other approach is to transform these
modeling formalisms to hybrid super-modeling formalism that can model both
discrete and continuous systems at the fundamental level, for example,
DEV&DESS (Cellier 1977; Praehofer 1991; Zeigler et al. 2000; Mittal and Martin
2013). This would ensure that the appropriate abstractions from each of the for-
malisms are integrated at the state-event and time-event levels and are simulated in
a mathematically verifiable way, as implemented in the DEVS formalism (Zeigler
et al. 2000).

Bringing various simulators together is more than a typical software engineering
integration exercise. The relationship between the modeling formalism and the
underlying simulator is sacrosanct and unless it is rigorously implemented, will
probably yield emergent behaviors. The source of such emergent behavior then is
not the lack of knowledge to model, but failure to implement the simulator, which
now has become a multi-simulator. Without the DEVS super-formalism as a
foundation (Mittal and Zeigler 2017) that specifies an abstract simulation protocol
between the model and the simulator (Zeigler et al. 2000), it would resemble
engineering a multi-threaded software program with no verifiable inter-thread
communication protocols to guarantee timeliness and accurate concurrent execution

Fig. 6.5 M&S with verification and validation and T&E (Mittal 2014)

6 Simulation-Based Complex Adaptive Systems 141



in an SoS setting. The task of integrating various simulators to perform together as a
composite simulation is termed as co-simulation. This involves weaving the time
series behavior and data exchanges accurately, failure of which, will yield inac-
curate simulation results. Every such hybrid system would require a dedicated effort
to build a co-simulation environment. Earlier work on DEVS-Bus (Kim and Kim
1998), the netcentric SOA simulation infrastructure (Mittal and Martin 2013), and
recent work in building cyber-physical simulation environments (Lee et al. 2015),
agent-based power-hardware-in-the-loop with simulation infrastructure at National
Renewable Energy Lab, Dept. of Energy, USA (Mittal et al. 2015; Pratt et al. 2017)
along with a multi-agent toolkit MECYSCO (Camus et al. 2017) provide a solid
foundation to execute a hybrid discrete event complex continuous model in a
parallel distributed co-simulation environment using a super-formalism such as
DEVS formalism, producing accurate results. Earlier efforts at Oak Ridge National
Lab (Nutaro et al. 2008) and usage of agent-based co-simulation (Kilkki et al.
2014), both for Smart Grid M&S, provide further evidence. The integrated model
can be used for combined simulation of electrical, communication, and control
dynamics.

When the simulator code is open-source or available, the architecture of the tools
could be understood and interventions can be made to weave the external tool’s
input. However, many times these simulation tools are proprietary architectures
with no access to the code-base. In these cases, there is truly no means to verify the
model’s execution at the simulator level. At this point, the emergent behavior,
which now is a function of computational engineering in the simulation environ-
ment, cannot be overcome. In other words, even though model representation is
valid, it cannot be verified computationally. Without a robust multi-simulation or
co-simulation environment, advances in CAS will hit a ceiling and any progress on
modeling will not achieve desired and reproducible results.

6.7 Verification and Validation of CAS Models

Validation is the process of ensuring that a model is a reasonable representation of a
real-world system. To validate, input and output trajectories between the source
system (whether real or conceptual) and the model under validation must be gen-
erated. Validity, whether replicative, predictive, or structural requires that these
trajectories be equal (Zeigler et al. 2000). Verification is the attempt to establish that
the simulation relation holds between a simulator and a model, i.e., the simulator
faithfully implements the model’s dynamic behavior. There are two general
approaches to verification: formal proof of correctness and extensive testing
(Zeigler et al. 2000). This is in congruence with the ideas of Robert Sargent (2011)
that links data validity as a central concept linking the conceptual model, the
computerized model and the problem entity (a.k.a real-world “system”). Per
Sargent, the relationship between the real-world system and its conceptual model is
called conceptual model validation, while the relationship between the system and
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the computerized model is called operational validation (that is support by a
computational execution of the model). This is the modeling relation per Zeigler’s
definition. The relationship between the conceptual model and the computerized
model is identified as computerized model verification. Rightly so, per Zeigler, this
is the simulation relation that ensures a model is implemented correctly in a sim-
ulation environment and the entity (simulator) that ensures that a strict relation (i.e.,
simulation relation) exists between the conceptual model and the computerized
model. Bair and Tolk (2013) summarized various definitions toward a unified
theory of validation. While model validation is user-faced, verification is
implementation-specific (Mittal and Zeigler 2017). The path to verification of
simulation models is not straightforward and a huge gap exists. Formal methods for
model verification is an active area of research (Gore and Diallo 2013; Tolk et al.
2013).

In Sect. 6.6, we mentioned how the proposed CAS-based M&S methodologies
are emerging in current real-world applications. However, these M&S techniques
remain difficult to verify and validate (V&V). Performing V&V is an exhaustive
exercise for any simulation model. Due to inherent complexity in CAS simulation
that comprise of a heterogeneous agent-based model wherein the behavior of each
agent is adaptive, V&V is a challenge of its own. The potential complexity to this
issue does not stop here. CAS models usually contain many variables, so there
exists a prominent risk of over-fitting in the process of feature selection.
Additionally, because CAS simulation is stochastic, a single run is insufficient to
verify or to validate the quality of model parameters. Numerous runs are required to
build confidence in the simulation results. Last but not the least, are the conse-
quences of emergent behaviors: emergent properties of CAS V&V cannot be easily
expressed. Thus, current standardized and formalized V&V methodologies will
need to be modified and adapted to incorporate an evolutionary V&V framework
for integrated CAS testing and evaluation (T&E).

For CAS models, the validation aspect answers the question about how useful a
model is in a scenario. The verification aspect falls-back to the co-simulation of
various tools and paradigms that need to be brought in for an accurate simulation of
a model. The entire simulation experiment, the model and the simulation infras-
tructure must be automated through a model-based repository and transparent
simulation framework.

Per Mittal (2014), validation is the only aspect that can be ensured in CAS M&S.
Verification must be ascertained using statistical and stochastic methods. Rouff
et al. (2012) proposed the following verification methodology:

• A stability analysis capability that identifies instabilities given in a system model
and partitions the system model into stable and unstable component models.

• A state space reduction capability that prunes the state space of an unstable
component model without loss of critical fidelity.

• High-performance computing simulations to explore component behavior over a
wide range of an unstable component’s reduced state space and produce a
statistical verification for the component.
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• A compositional verification capability that aggregates individual component
verification.

• Operational monitors to detect and act to correct undesired unstable behavior of
the system during operation.

However, we may also formulate the hypothesis that, inside a complex
stochastic system, the V&V techniques should be stochastic as well. This would
allow us the exploration of new combinations of model parameters as good can-
didates to reduce the divergence between the simulation and the real-world data.
This process can be formulated through a deep learning approach at the metamodel
layer over the CAS simulation. Indeed, this is an opportunity that we must avail in
our next article.

6.8 Conclusions and Future Work

Complex adaptive systems manifest emergent behavior in a dynamic environment.
While there are many options available for CAS modeling, without a
simulation-based approach, models cannot be verified and experimented in an
exhaustive and stochastic manner. Paradigms like MBSE, MDE, MBE which
support traditional systems engineering need to be augmented with
simulation-based methodologies to ensure they support complex systems engi-
neering that integrate discrete and continuous systems for complex hybrid systems.
This then needs to be augmented with evolutionary computation techniques to
incorporate adaptive and emergent behaviors in a computational environment for
large-scale experimentation, testing, and evaluation.

CAS model complexity at the structural level must be studied using Network
Science to ascertain the impact a connected environment has on agents/system
situated in that environment. This is essential as the structure of the environment
yields the overall behavior of CAS. Any change in the structure of the overall
system resulting from behavior of an individual agent/system is a critical event that
results in changing the behavior of agents/systems in that agent’s neighborhood or
far across the network through weak-ties. Indeed, a new world that is replete with
cyber-physical systems and Internet of Things is a complex world.

The adaptive nature of CAS needs to be modeled using evolutionary compu-
tation techniques such as genetic algorithms, where in, global fitness functions
reuse basic behavior building blocks to yield a behavior that is more in tune with
the environment, thereby, situating the agent/system in the environment. This can
only be achieved in a computational environment using simulation-based
methodologies.

Emergent behavior is an essential element in any CAS study. While desired
emergent behavior can be modeled in a top-down manner, computational envi-
ronment becomes a necessity when bottom-up behavior needs to be studied and
evaluated. Various agent-based modeling tools are available that can be used to
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develop an abstract model of CAS. The formalization of emergent behavior must be
supported with fundamental scientific theories such as cybernetics, systems theory,
network science, control theory, and estimation theory such that the observed
emergent behavior in a computational environment is consistent with the known
theories as well as with the system’s domain of application. Any inconsistent
emergent behavior should then be rejected based on such evidence providing a
learning opportunity to perform model correction or simulator correction. Both
model correction and simulator correction are nontrivial endeavors when the model
is a multi-paradigm model and the simulator is a co-simulator that incorporates
multi-simulation. A multi-paradigm model should conform to a super-formalism
such as DEVS formalism that can model various discrete event and complex
continuous hybrid formalisms and adhere to systems theory thereby, yielding
guaranteed emergent behavior. Having ensured that, the focus next is on the
model-simulator relationship. The co-simulation environment must preserve this
relationship to eliminate emergent behaviors arising out of simulator engineering.

Data-driven methodology is another essential element in any CAS study. The
support given by a correct M&S must be augmented with a data strategy as it helps
validation and verification of the model as well as of the simulator itself. The
empirical data guides the model formulation. Various heuristics, meta heuristics,
and hyper-heuristics are then designed as algorithms, which are then computa-
tionally implemented in an agent-based simulation environment. The simulation
experiments yield simulation data that is then compared with raw data for evalu-
ating model’s validity. Any deviation between these two datasets is then treated as
an opportunity to improve the model, as well as of heuristics. By the definition of
emergent behavior, these macro-behaviors are sometimes irreducible at the
micro-level. Consequently, the integration of data-driven methodology is essential
to fine-tune both the model and heuristics as it is unknown where to make the
correction at the agent level. These heuristics represent macro-level algorithms that
act on a group of agents/systems. Once this cyclical process is implemented and is
supported by a robust co-simulation environment, meaningful CAS engineering can
be attempted.

CAS engineering is a complex endeavor requiring professionals from multiple
disciplines. The subject matter expertise of the agent, the systems, and the opera-
tional environment should be translated into valid models in a verifiable simulation
environment. This requires a partnership between domain experts, modeling
experts, and simulation infrastructure experts. CAS engineering will not become
possible unless the undesired emergent behaviors are completely removed from a
computational environment or are known a priori so that they can be knowledge-
ably eliminated. A computational simulation-based environment provides experi-
mentation opportunities to validate a CAS model, such that it becomes predictable
and eventually useful. Only when a model becomes valid and predictable,
real-world systems engineering can begin.
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Review Questions

1. What is the difference between complicated and complex systems?
2. What theoretical background do you need to understand both complex and

adaptive systems?
3. What is the difference between a complex adaptive system and system of

systems?
4. When does a system of systems becomes a complex adaptive system?
5. How can you incorporate emergent behavior in engineering complex adaptive

systems?
6. Why is a simulation environment engineering a critical component in engi-

neering complex adaptive systems?
7. Which is the role of evolutionary computation in the design of complex adaptive

systems?
8. Is there always the need for human experts in the process of modeling complex

optimization heuristics?
9. What is the difference between model verification and model validation? Can we

ensure verification and validation in CAS models?
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Chapter 7
Simulation-Based Software Engineering

Oryal Tanir

Abstract Software Engineering is the application of methodical principles to the
planning, design, development, testing, implementation, and maintenance of
software-based systems. Each phase of the Software Design Life Cycle (SDLC)
addresses a different set of problems, commencing from an abstract need with the
eventual goal of producing a stable working solution. To accomplish this, many
different tools and techniques may be employed, from project management plan-
ning estimators to automated code testers. However, a specific tool-simulation—has
found its way into almost every phase of the SDLC. As a general-purpose tech-
nique, it can be invaluable for assessing complex multifaceted solution spaces early
on during the planning and design phases in a cost-effective and timely manner
without the need for physically deploying possible design alternatives. A major and
often overlooked element in the design of a new complex solution is the impact on
the business and information technology processes. Simulation can help assess
these impacts along with any process redesign that may be required. This chapter
addressed these and other applications of simulation in Software Engineering.

Keywords Domain driven design � Software engineering � Synthesis �
Governance models � Holistic view � Process simulation

7.1 Introduction

Software engineering, in comparison to other engineering disciplines, is relatively
young. However, the field has matured rapidly as the demands and complexities in
the market have grown. Simulation, in contrast, has a longer history; however, its
use in software engineering was initially limited to ad hoc models. Over time, the
synergy between the two disciplines has improved significantly to the point where
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simulation is applicable in a systematic fashion and can benefit the software
engineering processes in many ways.

This section will present a brief overview of software engineering and the rational
for applying simulation within the disciple. A holistic view of software engineering
and application of simulation will describe the key uses of simulation. A model-
driven design approach will present another major context for simulation in software
engineering. The conclusions will summarize the major concepts and provide insight
into some of the future directions of simulation and software engineering.

7.2 Software Engineering

Software engineering is a broad discipline, which spans and borrows practices from
multiple areas such as Computer Science, Engineering, Management and
Behavioral Sciences. Many definitions help qualify what software engineering is,
however for the purposes of this chapter we will use the definition:

“Software engineering is that part of systems engineering that deals with the
systematic development, evaluation, and maintenance of software” (Endres and
Rombach 2003).

Intuitively we are dealing with a complex function, which (1) takes as its input
processes, technology and resources, and (2) either optimizes or outputs a “good-
enough” product that is (3) based upon market constraints (time, cost, quality).
Hence, there are many layers and concerns related to software engineering—and
much research has helped evolve the practice.

Some of the major concepts that are presented in this chapter and are dominant
within a software engineering activity are briefly defined below.

7.2.1 The Software Design Life cycle

A key concern for any company is the choice of the software design life cycle
(SDLC) model they will utilize. The SDLC describes how the software is planned,
designed, implemented, and maintained. Numerous SDLCs exists such as waterfall,
iterative design, spiral, agile and others. Based on the particular SDLC that is under
consideration, the use of simulation will vary as it adheres to specific parts of
processes that are part of the SDLC.

7.2.2 Governance Frameworks

Many software engineering activities rely upon established frameworks to ensure
proper governance and oversight of activities. For example, ITIL provides a set of
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practices for Information Technology Service Management (ITSM)—which is
broadly applicable for any software engineering organization. Other frameworks
exist for particular industry domains.

7.2.3 Roles

Software engineering is not a purely technology-oriented discipline (see the holistic
section later). It involves many different roles to product the final product and this
aspect needs careful consideration.

7.2.4 Project Management

Project management practices work in parallel to software engineering ones during
the course of a project in alignment to the SDLC. Hence some of the concerns for
software design are attributable to project management ones.

7.3 Rationalization of Simulation and Software
Engineering

Given, the numerous and different type of challenges that can be encountered in
software engineering, it is not surprising that a tool such as simulation can be
leveraged to address many of these problems. However, organizations may often
find themselves in the position of justifying the use of simulation (which can be a
costly affair if the right skills and resources are not available) within a project. This
section reviews some of the fundamental decision points to adopt simulation within
the software engineering domain. Many of these arguments will be seen later in the
chapter as addressed through the application of simulation.

7.3.1 The Cost of Software Defects

One argument frequently seen in industry against the use of simulation within a
software project is cost. There can be a prevailing view that the use of simulation
will significantly add to the cost of a project and possibly hamper the delivery time.
Hence, in this scenario a project manager who would like to avoid cost overruns
and complete the project in a timely manner views simulation as a roadblock. In the
context of large software projects, this argument is flawed. Many studies have
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shown the cost effectiveness of tools such as simulation, which can uncover design
flaws early on in a project. In particular, Barry Boehm conducted extensive studies
on multi-industry software projects to understand when they failed (Boehm 1981).
Many other studies confirmed the fundamental finding of the research, which has
since been termed as “Boehm’s law”:

“Errors are most frequent during the requirements and design activities and are the more
expensive the later they are removed.”

Although intuitive, the consequences of this statement are illustrated in Fig. 7.1.
The figure’s basis is data gathered from typical software development projects and
depicts Boehm’s law in action.

The graph, constructed from empirical data, shows that the cost of fixing errors
later in the software cycle (i.e., in the maintenance phase) as compared to early on
(i.e., in specification) is several magnitudes costlier. The magnitude of the cost can
vary dependent upon the type of software, available skill-sets, organizational
maturity and many other factors. Different studies have shown that the cost impact
can vary from a linear to exponential one (Hait 2003; Boehm and Papaccio 1988).
In addition, another problem arises when defects are uncovered later in the project
phase: the may not have enough left in its budget to fix the unforeseen defects
(Saultz 1997).

The important idea here is that it is prudent and cost-effective to resolve design
issues as early on as possible. Software code test tools help address issues related to
coding, but tools such as simulation, which utilize concepts that are more abstract,
can address design level issues early on.

The arguments presented above are not always sufficient to justify the use of
simulation for a given project. There are cases where simpler and more
cost-effective approaches are economically or practically more feasible. For
example, in some cases, mathematical models or heuristics (both of which can be
leveraged through commonly used tools such as spreadsheets), may be applicable.
Mathematical models usually require some basic assumptions or constraints to be in
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place before they are applicable to the problem. Such models can be applied to
solve issues around contained, less complex and small software systems in a
timelier manner than simulation. There is however, another reason one may not use
simulation: the organization may not be able to obtain the necessary specialized
resources to create, simulate, and analyze the results. There may be many reasons
for this. For example, the organization may not have the funds or budget to support
the work or the skill-set may not be available in the regional market. These are all
factors that can influence the use of simulation in a software engineering project.

7.3.2 Business Impacts

A frequently overlooked aspect in the engineering of software is the impact on the
business or end user. Software is designed against a set of requirements, however
most of the time the impact on the existing processes is under emphasized or
overlooked which incurs additional costs to the project due to the underestimation
of the cost of change. Areas particularly vulnerable are

• processes (undocumented modification or replacement of existing processes),
• operations (miscalculation of the type of resources needed to manage the new

software),
• training (miscalculation of effort needed to use software),
• and supply chain management (inadequate understanding of the full end-end

integration of the software with the business).

7.3.3 Project Planning

In many cases, projects are not undertaken in isolation. The project may be part of a
program composed of many other projects and understanding the dependencies
between projects and the technologies that are impacted can become an exasper-
ating problem. In addition, the timely scheduling of resources for different phases of
projects is crucial for a successful and cost-effective endeavor. Simulation can be
utilized in this case to evaluate different scenarios and roadmaps.

7.3.4 Time to Market

The application of simulation can also help understand the impact of time to market
of the software product. In many industries, a certain window of opportunity for a
software release exists, after which expected returns from the market begin to
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diminish. Simulation can provide indispensable insight to identify these opportu-
nities and the various scenarios, which are both favorable and unfavorable to a
software release.

7.4 Holistic View

At its core, software engineering is the business of creating a software product. This
is not a simple or straightforward task for a typical project. It involves collaboration
and cooperation between many different stakeholders. To accomplish the task,
frameworks have been introduced to ensure the best practices and required func-
tions are engaged at the right times. For example, ITIL provides a set of practices
for ITSM, and TOGAF a framework for architecture practices (TOGAF 2005).

However, software engineering concerns are beyond just the technology of the
final product. There are distinctive issues related to the business, technology,
people, and governance as shown in Fig. 7.2, which play a role in a successful
software practice. In each case, the application of simulation can help to ensure a
successful design. This section will examine the role simulation plays within these
broad categories.

7.4.1 Business Concerns

Business concerns encompass financial- and process-related issues. Within the
scope of finance there are business case (expected value of the software) and
budgetary (total cost of the software) issues. In contrast, process engineering has
broader implications for simulation.

Governance

Business

People

Technology

Fig. 7.2 Software
engineering concerns

156 O. Tanir



7.4.1.1 Financial Models

Within software engineering, financial models justify the direction of the design and
viability of the project. Hence, they are typically applicable in the early planning
stages of a software’s life cycle. A frequently used tool is a Monte Carlo based risk
simulator. Users can gain insight on the impact of design decisions and leverage the
quantitative analysis for decision-making to reduce the overall risk.

For example, Monte Carlo simulation can generate statistical outcomes for
specific design choices for a project and identify the respective cost implications.
Then, the decision makers can make more educated project choices with an
understanding of the risk that they will incur.

Another application is the use of such simulators to justify the business case for a
software project. In this example, possible outcomes are the expected returns on the
investment (revenue, customer satisfaction measures, and market share) to support
the decision of undertaking the design commitment.

The applicability of financial simulations is mostly early in the design life cycle
where access to precise data may be problematic; hence, their usefulness is
dependent upon the accuracy of the available information for the models. If the
margin of error of the input is high, the effectiveness of the simulated results will be
questionable. However, if the model is maintainable and augmentable with new
information, it can also be more useful in latter stages of a project to answer similar
financial concerns.

7.4.1.2 Process Simulation

Process modeling and the subsequent activity of process simulation is a mature and
common practice in software engineering with a substantial history of research and
successful applications (Zhang et al. 2011; Bai et al. 2011). This is due to the fact
that a complex software engineering endeavor will typically affect a multitude of
business process(es). For example, new software may require a different level of
interaction than its predecessor, or if a manual process will undergo some form
of automation, the executable sequence of tasks may require modification (to adapt
to the automated workflow). It is often difficult to make good design decisions
around the process that accompanies a software product. It is also difficult to
persuade the stakeholders of the benefits of a process change. These are areas where
technicians successfully leverage simulation.

Process simulation is a generic enough practice that any general-purpose sim-
ulation language can be utilized. However, there is standard notation available too.
For example, the Business Process Modeling Notation (BPMN) provides a standard
representation for processes (White 2008). Many tools that support modeling using
BPMN also have some form of simulation support. The advantage of using a
standard enables the models to be more widely consumable and understandable by
the business stakeholders. Hence, it can be an effective communication tool when
persuading them of the benefits of a process design. They are intuitive and require
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knowledge of BPMN—which is not difficult to acquire in the business analysis
market. However, BPMN tools use simulation in a limited fashion—mostly sup-
porting visualization of flow in a process—that limits the potential benefits that are
usually available in simulators that are more sophisticated. The typical strengths of
general-purpose simulation environments such as powerful animation (visualiza-
tion), statistical analysis and support of experimentation, and a rich set of random
distribution support is rarely available in a BPMN tool. The drawback of such
simulation environments however, is the need for specialized resources and training
to use the environments, which may be beyond the means of restricted budgets.
This tradeoff needs careful consideration when deciding upon the appropriate
toolset to use.

7.4.2 Technology Concerns

Technological concerns relate to how simulation supports users develop the tech-
nical product during a design and implementation phase of a project. The tools
common to this phase have similar characteristics to the target implementation.
Similar to the business concerns, standards do prevail in many cases.

For example, UML (Unified Modeling Language) is widely adopted to model
many software systems—especially in the object-oriented space (Fowler and Scott
2001). UML borrows many concepts prevalent in other areas of computer science
and is amicable to the use of simulation. An example of this is behavioral simu-
lation; where the interactions of various software elements can undergo simulation
before physical code creation or test. In such cases, simulation identifies important
design constraints such as

• The dependencies between different software components based upon their
interactions. Discrete-event simulation can execute the flow between software
objects to determine bottlenecks based upon the message flowing between each.

• Detection of redundancies is possible but often difficult. Simulation models the
flow and specialized test tools detect patterns, which may indicate duplicate
behavior in the design.

• Reachability analysis of behavioral constructs such as methods by simulation or
simulation-based petri-nets. In such cases all-possible execution paths of the
code is simulated which permits detection of code that is not reachable (dead
code) or other problematic code behavior such as infinite loops.

To enable these types of analyses, simulators work in close conjunction with the
design tools. For example, if the design utilizes UML as a model notation, tools
which support this, may incorporate (among others) state-chart simulators. Using a
state based simulator, all possible interactions between states can be exhaustively
generated and virtually tested to ensure that the overall software behavior is
compliant to its specifications.
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When software is to be part of an embedded system, it is cost-effective to
simulate its functionality and physical characteristics (such as performance and
latency) before the fabrication process. Simulation is a technique that is an integral
part of the toolsets used in this process as well [such as VHDL or Verilog simu-
lators] (Navabi 2007).

Another standard that is usable at this stage is the Business Process
Executionable Language BPEL. BPEL foundation is XML and web services and is
a process oriented executable language, primarily used in web based integration and
design. It fits well in organizations that have adopted a Service-Oriented
Architecture (SOA) approach to software design and integration. Major software
vendors support BPEL and consequently their tools have BPEL simulators to aid in
the design of web services. A major benefit of simulation at this stage is the ability
to simulate orchestration or choreography

• Orchestration of web services implies the use of a central web service, which
systematically requests services from other web services and then generates
some sort of output or result.

• Choreography of web services does not require a central control. In contrast,
each service accepts and sends messages to a limited set of services—their
combined interaction or “choreography” results in the desired overall behavior.

Constructing and integrating web services in the above manner becomes a dif-
ficult task as the number of webs services increase and the dependencies between
each and existing services becomes difficult to manage. The BPEL process models
define these interactions—since their interactions can readily be described in terms
of processes. Once the BPEL model creation is complete, essentially describing the
overall behavior, the simulation activities will:

• Validate the flow of information between web services, which the BPEL pro-
cesses depict. This validation ensures that the logical flow within each service
contributes the correct sequence of activities that will generate the overall
process behavior.

• Create an impact analysis of all existing and proposed web services. Rather that
detecting interaction problems between services in the field, simulation of their
BPEL counterparts permits design engineers to detect potential design issues in
the lab. The simulation activities can uncover

– performance impacts (some service may be a bottleneck) due to too many
dependencies or poorly designed logical flow in the service,

– logical flaws (a process is not flowing as expected),
– reliability concerns (the failure of certain services may be critical to many

other system processes),
– and inefficient services (too many calls and time spent on a service may

indicate it needs to be decomposed to simpler ones).
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7.4.3 People Concerns

People concerns are part of the project management role; however, they affect the
success of a software engineering project significantly. In particular, planning and
estimating the capacity to perform work at different stages in the software life cycle
can be difficult. The main tool used by managers is still spreadsheets and Gantt
charts; however, simulation has made headway in capacity planning and estimation.

General-purpose simulation tools are dominant in this practice space. Some
vendors do provide a combination of project management and simulation capa-
bilities; however, the simulation features are mostly cosmetic or primitive. The
functionality can improve in the future as the market for such features increase.

Current general-purpose simulation techniques use a combination of process
simulation and resource optimization scenarios. Main use cases for this are

• Decision-making for multiple project and resource trade-offs: There can be cases
where different planned projects compete for the same resources at different time
lines. Optimization or near-optimization of timelines and resources across
multiple projects is a difficult task which simulation is well suited to perform.
The constraint is that simulations in this area require specialized skill-sets,
which may be too costly or difficult to acquire.

• Capacity planning within a project: Simulation can produce capacity scenarios
from common constrains such as hourly wages, scheduling rules, resource
availability, skill-set modifiers, and task times (based on heuristics or statistical
data).

• Automation versus manual work: In many cases there may be concerns with the
trade-offs between automation of certain tasks or managing them manually.
Sometimes referred to “people versus technology” scenarios, simulation can
provide insight on cost and time implications.

7.4.4 Governance

Governance, as it relates to simulation use in software engineering, is often an
oversight. Some simulation activities may be dispensable and used only for a
particular decision point in the overall software design and never again. However,
in more mature software teams many of the knowledge acquired through simulation
is retained or reused. BPEL-driven simulation is one example where a rich
knowledgebase of models develops over time. The data and accuracy of the sim-
ulations become better with the addition of new models. Governance of the models
becomes a necessary part of the software design life cycle. Some common concerns
to address are
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• Which role is accountable for the model? In cases where the simulation is ad
hoc, then it may be the simulationist or their manager. However, for environ-
ments that reuse simulation objects, then a role is required to ensure model
compliance with the organization’s rules and principles. This is usually part of
an Enterprise Architecture role, but can also be the accountability of a tech-
nology or service manager.

• Which role approves the model? A governance process is required to ensure that
the principles related to the design and output of the model are valid. This is
typically different from the accountable resource above.

• Terms of engagement of simulation or the conditions when simulation is used and
its expected outcomes. It is very important that the expectations of a simulation
exercise are the same for all the stakeholders. If no clear definition and boundaries
are set for the simulation activity, it can grow or not meet expectations.

The above are typical of software engineering governance issues and it makes
sense to utilize similar governance practices for the simulation practice within the
software engineering framework. Some important artifacts that need to be defined
are

• Model design principles: These are basic principles to abide by when con-
structing models. They will represent the adopted notation and basic guidelines
as well as design patterns when constructing a simulation.

• Data principles: These are basic rules to ensure that data that is used in simu-
lation models is vetted properly and it is handled and interpreted correctly by the
modeler. Rules for selecting the correct random distribution which fits a given
data set is an example of this.

• Simulation execution principles: The rules determining how long to run simu-
lations and iterations of experiments are common concerns.

• Requirements for a simulation exercise: There can also be guidelines for
establishing is a certain project is suitable to undergo a simulation exercise.
Concerns such as the quality of the data, complexity of the system under con-
sideration and correct level of expectations are typically addressed.

• Roles and responsibility charts: The expected resources and responsibilities for
the simulation project needs to be defined and allocated.

• Decision-making principles or process: The decision-making principles or “rules
of engagement” solidify when key decisions resulting from simulation outcomes
are made.

• Escalation procedures: A mechanism needs to be in place to resolve issues
quickly (i.e., lack of data, resources, time).

As part of the governance, the validity of the simulation studies also needs close
examination and understanding. Studies in various industrial fields have shown that
the validity of simulation results within a software engineering activity can be
quantified and its risks mitigated (França and Travassos 2015). Hence the body of
research in this area can help support practitioners successfully compete their
simulation ventures.
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7.5 Domain-Driven Software Design

Domain-driven software design is a model-based approach in software engineering
and simulation is an intricate component at different stages of the methodology. The
typical previously mentioned software engineering concerns are applicable here as
well. However, the model-driven approach lends itself to model reuse (which
permits the creation of a more permanent simulation expertise) and subsequently
the application of simulation in this case is methodological and systematic.

There are variations of the approach, but the high-level elements (not all of which
need to be used—depending upon the methodology) are illustrated in Fig. 7.3.

The major components are

• Domain model: The starting point is the capture of abstract ideas in a domain
model. Such models provide a domain specific language or notation suitable to
represent the structure and behavior of the design concepts that are of impor-
tance (Erdogmus and Tanir 2002). The model must be familiar and versatile
enough so that the user captures and validates ideas quickly before undertaking
any detailed design decisions. Representations at this level are the high-level
specifications for the conceptual system. Successful environments will have
strong visual user interfaces to improve productivity and reduce the learning
curve. When using simulation, the selection of the appropriate domain model is
important. As a requirement, the model needs to support the simulation lan-
guage or formalism it will be utilizing.

• Model Checker: A domain model often relies on a model checker. Such
functionality is composed of established formal verification techniques to ensure
a sound basis for the model that is developed. A formal verification ensures that
the downstream steps to follow will be less prone to errors due to inconsistent
representation of model elements.

Domain model

Model checker

Design experimenta on Synthesis
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Concept Product

Fig. 7.3 Domain-driven software design components
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While model checkers use formal verification techniques, some may employ
simulation when formal techniques are not feasible. This can occur in cases where
the domain model uses a nonformal language and cannot be validated using such
techniques (Tanir et al. 1996). This is often the case when the language supports
very abstract concepts to allow a versatile user experience. In such instances, model
objects may not bind to a specific behavior or structure early in the design, but
missing details populate and complete the missing pieces as the design progresses.

Simulation can bridge the conceptual gap by using semi-formal notations to
provide statistics-founded analysis. For example, high-level, colored, or statistical
petri-net based formalisms (Haas 2002) are often applicable using a combination of
traceability analysis and token simulations to validate the structure or behavior of
the model (Tanir and Erdogmus 1999).

• Design Experimentation: Experimentation can imply many types of activities.
However, it encapsulates those that permit

– Design space exploration: Tools to support analysis of alternative designs.
– What if analysis: Such tools will let users change parameters and structure

and compare outputs or outcomes.
– Scenario decision-making tools: Statistical support and directed scenario

analysis leverage mathematical techniques to validate scenario outcomes to
guide decisions to optimal or near-optimal design choices (Miranda 2002).

Many of the tools employed at this stage will utilize simulation as the principle
method of execution of models and comparison of multiple designs. The tools are
either specialized or general-purpose and depend upon the design space that is
under consideration.

• Synthesis: The eventual objective of the modeling approach is to produce
executable code from high-level specifications. Synthesis tools accomplish this
task. The high-level model that has been verified and validated through model
checkers and simulation can now be “synthesized” into code. Synthesizers are
technology specific and require a design represented in a formal specification
language particular to a domain. For example, Java code synthesizers may
require a UML (Universal Modeling Language) based model, whereas an
embedded application will use a synthesizable VHDL (Very high-speed inte-
grated circuit Hardware Description Language) model.

The synthesis stage requires a set of different technologies to accomplish the
tasks. While most of these are beyond the scope of this chapter, simulation based
tools are often part of the synthesis package (Tanir 1997). Synthesis implies a
transition from a semi-formal notation that is prevalent during design experimen-
tation to a structured standard one for the target code. The latter is generally not
based on a formal representation, but more on a standard notation. Hence, simu-
lation validates the resulting “synthesized” target model.
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There are also new simulation concerns at this stage. For example, simulating
latency, cycle times, and probability of failures are part of the validation practices.
The notation in the simulators in this case are close to the target formalism (i.e.,
VHDL or UML) and therefor part of a synthesis software offering. BPEL, which
was introduced earlier, can also be part of the simulation and synthesis activities
that are related to the design of web services.

• Software Package: The Software package is the resulting product. At the
minimal it is executable software code, but it will typically also contain sup-
porting software by products such as

– Automated test cases that validate the functionality of the code against the
initial (domain language) specifications or business requirements.

– Service level agreements that may be part of the requirements of the
software.

– Self-test code can be included for systems that will be synthesiz-able to
silicon. This will permit the testing of fabricated compo-nents in a
non-intrusive manner.

– Software documentation that describes the functionality of the code and any
changed components (if a history exists).

As can be seen, the use of simulation within software engineering is quite open and
applicable across a broad range of activities and domains.

7.6 Conclusion

Simulation use in software engineering has progressed from ad hoc throwaway
models to reusable ones. This trend will further improve in the future as more
vendors adopt or improve their simulation offerings. General-purpose simulators
will still prevail in many software engineering activities since specialized simulators
do not meet all the needs across a software design life cycle. Many of the concepts
developed in the artificial intelligence domain is now technically and financially
feasible to be applied in certain circumstances to utilize simulation and design
project in new and novel ways (Elzas et al. 1989). For example, models could
potentially adapt to proposed design changes based on design patterns and best
practices to aid the experimentation process.

As with any software tool, standardization of the use of simulation tools and the
way in which they are integrated into the software engineering processes is
important for the success of any software project.
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Review Questions

1. What are some strong arguments that can be made to bolster a business case for
adopting simulation within a software engineering project?

2. Under what circumstances would simulation not be a feasible choice within the
context of software engineering?

3. Define and elaborate upon the basic elements of a holistic view of software
engineering.

4. Which area of software engineering has simulation played the most prevalent
role and considered a mature practice?

5. What are key deliverables that should be part of a governance process for
simulation?
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Chapter 8
Simulation-Based Architectural Design

Rhys Goldstein and Azam Khan

Abstract In recent decades, architects have turned to computer simulation with the
hope of designing more functional, sustainable, and compelling buildings. In such
efforts, it is important to regard buildings not merely as static structures, but rather
as complex dynamic systems driven by highly stochastic elements including the
weather and human behavior. In this chapter, we describe how simulation has
impacted architectural design research and practice. A multitude of simulation tools
have been developed to model specific aspects of a building such as thermody-
namics, daylight, plug loads, crowd behavior, and structural integrity under internal
and external loads. Yet numerous challenges remain. For example, although many
factors influencing buildings are interdependent, they are often analyzed in isolation
due to the development cost associated with integrating solvers. A systems
approach combining visual programming with state-of-the-art modeling and sim-
ulation techniques may help architects and building scientists combine their
expertise to produce integrated complex systems models supporting emerging
paradigms such as generative design.
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8.1 Introduction

In Chap. 1, Ören et al. provide a number of reasons why simulation is used in
general, and many of these reasons apply to the design and optimization of func-
tional, cost-efficient, safe, healthy, sustainable, and visually compelling buildings.
Simulation is often used when the real system does not exist, which is necessarily
the case when a new building is designed. Simulation is also used when the real
system is too slow; thermal performance and daylighting require at least year to
properly observe, which is inconveniently long when designing a retrofit for an
existing building. Simulation is used when physical experiments are dangerous,
unacceptable, or costly, all of which dictate that we should not wait for a building to
collapse before simulating its structural integrity under internal and external loads.
Finally, simulation is used when the variables of a system cannot be controlled.
Two significant, highly stochastic variables influencing the performance of a
building are the people who occupy it and the weather. Neither human behavior nor
the weather can reasonably be controlled for experimentation purposes, yet a wide
range of behavioral patterns and environmental conditions can be tested in a virtual
setting.

The physical complexity of a building is evident by simply looking at a building
information model (BIM) such the one shown in Fig. 8.1. These models, which
now enjoy widespread use in the architecture, engineering, and construction

Fig. 8.1 A building information model (BIM) representing the 210 King Street East heritage
building in Toronto, Canada
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(AEC) industry, combine core building elements such as walls, slabs, windows, and
doors with more detailed elements such as furniture, lighting fixtures, and heating,
air-conditioning, and ventilation (HVAC) components. By incorporating properties
such as materials and room types, BIMs have the potential to supply much of the
static information required for highly detailed building simulations. However,
buildings should be regarded not as static structures containing physical objects, but
rather as dynamic systems involving numerous interacting forces and active entities
such as the outdoor climate, electrical/mechanical equipment, and human occu-
pants. The many processes that unfold throughout a building’s lifetime give it an
additional level of complexity that is only partially accounted for by the simulation
tools currently available to architects.

In this chapter, we review some of the most prevalent simulation tools used in
building design and engineering practice (Sect. 8.2), highlight a sample of recent
and ongoing research efforts in the field (Sect. 8.3), and discuss the potential role
that state-of-the-art modeling and simulation (M&S) techniques might play in
helping various stakeholders collaborate in the development of next-generation
simulation-based design tools (Sect. 8.4). A systems approach for developing
building simulation software—based on research from the M&S community—
would support the integration of both existing and future models of building
thermodynamics, lighting, and occupant behavior. It would also ease the explo-
ration of emerging design paradigms such as those involving the automatic gen-
eration of design options, referred to as generative design.

Buildings have a tremendous impact on the natural environment, accounting for
41% of all energy consumption and 72% of electricity use in the United States
(Livingston et al. 2014). Moreover, they have a less quantifiable but equally sig-
nificant effect on human experience, as in today’s society people spend much of
their time in and around buildings. Decision support for building design is therefore
one of the most potentially beneficial of all uses of simulation.

8.2 Current Simulation Tools for Architecture

A wide variety of building simulation tools exist for assessing various aspects of
buildings. Focusing first on energy-related software, there are 147 tools currently
listed in the Building Energy Software Tools Directory (BEST-D). Many of these
tools, however, are based on a few core simulators, such as Radiance (Ward 1994)
for lighting and EnergyPlus (Crawley et al. 2001), DOE-2 (Curtis et al. 1984), or
ESP-r (Aasem et al. 1994) for whole building energy simulation.

To perform an analysis using a detailed BIM and one of the whole building
energy simulation tools, the BIM must first be converted into an energy analytical
model. In this highly simplified type of model, buildings are represented as net-
works of polyhedral spaces, each assumed to have a uniform temperature (Clarke
2001). Large rooms such as corridors or atria can be converted into several adjacent
spaces separated by arbitrary boundaries, allowing temperature to vary in steps
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within the indoor area. Surface elements of various materials and thicknesses resist
the flow of heat among spaces separated by walls, slabs, and other physical barriers.
The mathematics underlying this basic method was largely developed prior to the
1990s when the limited availability of computing power necessitated such
approximations. Despite substantial increases in computing resources and decades
of subsequent building simulation research, the early approximations remain in use
to this day. Fortunately, the task of converting detailed architectural models into
simulation-ready energy models is becoming increasingly automated. Figure 8.2
shows the spaces and surface elements of an energy model created automatically
from a BIM.

Conveniences such as automated BIM-to-energy-model transformation encour-
age architects to incorporate technical analyses traditionally performed by engineers
in later stages of the building design process. Because many of the decisions that
affect the energy efficiency of a building are made by architects at the early design
stage, the increased use of energy simulation by designers is seen as a promising
strategy toward realizing more sustainable built environments. As emphasized by
Bazjanac et al. (2011), challenges such as missing data exist in providing designers
with accurate whole building energy results. Indeed, Berkeley et al. (2014) find that
even professional energy modelers produce dramatically divergent estimates given
the same building and the same modeling tool, highlighting a general need for
future developments in building energy simulation software.

Fig. 8.2 An energy analytical model of the 210 King Street East building created automatically
within the BIM-authoring tool Autodesk Revit 2016
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Aside from energy-related analyses, simulation has a number of applications in
building design and engineering. These include traditional uses such as structural
analysis, as seen in Fig. 8.3, and more recent applications such as the multi-agent
simulation of crowds for predicting issues related to pedestrian flow or building
evacuation. Figure 8.4 shows a snapshot of a multi-agent simulation performed

Fig. 8.3 Structural analysis results produced by the Revit BIM-authoring tool

Fig. 8.4 Multi-agent crowd flow simulation performed by the MassMotion design tool (Image
courtesy of Erin Morrow, Oasys/Arup)
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using the commercial tool MassMotion (Morrow 2010; Morrow et al. 2014),
intended for the design of transportation hubs, healthcare facilities, arenas, and
other built environments where crowd behavior demands careful attention.

8.3 Architectural and Building Science Research

The large and growing body of research into simulation-based building design can
be regarded as occurring within two mostly distinct communities: one primarily
involving architects, the other engineers.

Architectural researchers who investigate simulation and other computational
methods present their work at designer-oriented venues such as the ACADIA
conferences (ACADIA: Association for Computer-Aided Design in Architecture),
CAAD Futures (CAAD: Computer-Aided Architectural Design), eCAADe
(Education and research in CAAD in Europe), CAADRIA (CAAD Research in
Asia), Smartgeometry, and Rob|Arch (Robots in Architecture). In addition to
structural and environmental performance, much attention is paid to qualitative
measures such as building aesthetics and the manner in which humans perceive,
experience, and respond to the built environment. In addition, researchers in this
area are becoming increasingly interested in how emerging fabrication techniques,
such as the use of robots, can aid the realization of historically intractable designs.

On the engineering side, research into simulation-based building design is
generally referred to as building science. One of the primary goals of this research
community is to optimize building performance, essentially maximizing the com-
fort of a building’s occupants while minimizing both operational costs and the
building’s negative impact on the natural environment. Much of the work is pre-
sented at the regional and international conferences of the International Building
Performance Simulation Association (IBPSA). An international IBPSA conference
occurs every two years (recently 2013, 2015, etc.), and the regional conferences
around the world are typically hosted on the alternate years. A comprehensive
overview of the state of the art in this area can be found in Building Performance
Simulation for Design and Operation, edited by Hensen and Lamberts (2012). The
books’ chapters provide a nearly complete list of the domains in which members of
the community specialize, including weather, occupant behavior, heat transfer,
ventilation, occupant comfort, acoustics, daylight, moisture, HVAC systems,
micro-cogeneration, building operations, and government policy pertaining to
buildings and energy.

Although most research efforts relevant to simulation-based building design tend
to fall into one of the two broad but relatively distinct disciplines, it is well
understood that the overarching goal of improving the built environment and
making it sustainable is shared among architects and engineers, and requires col-
laboration among all stakeholders. Hence there are many who present their work at
both the designer-oriented and engineer-oriented conferences (i.e., ACADIA and
IBPSA), facilitating the exchange of ideas between communities. Since 2010 there
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has even been a venue—the Symposium on Simulation for Architecture and Urban
Design (SimAUD)—largely dedicated to promoting discussion between designers
and building scientists, with simulation tools and techniques serving as a common
focus.

In the remainder of this section, we highlight a small sample of recent academic
research presenting new ideas and recently developed tools that advance the use of
simulation in building design. All of these works feature elements familiar to the
general M&S community, including modeling languages, modern computing
technology, and co-simulation.

8.3.1 Example of Occupant Behavior Research

Schaumann et al. (2015) propose a graphical modeling language for creating nar-
ratives that drive the behavior of simulated occupants in not-yet build environ-
ments. The focus is on hospital design, for which architects need to understand the
complex reoccurring patterns of behavior exhibited by interacting doctors, nurses,
patients, and visitors. An example of a narrative is the checking of a patient by a
doctor–nurse team. By visualizing a multi-agent simulation of this routine, as
shown in Fig. 8.5, a designer may gain insights into whether a particular design
option promotes the efficient performance of this activity, or hinders it with an
inefficient layout or with probable interruptions by hospital visitors.

Multi-agent approaches such as that of Schaumann et al. (2015) represent a
radical departure from the current standard practice in whole building energy

Fig. 8.5 Visualization of occupant behavior in a hospital environment. From Schaumann et al.
(2015); reprinted with permission from the authors
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modeling, where occupant behavior is modeled using fixed profiles. These profiles
typically give aggregated hourly information about the degree to which a space,
electrical appliance, or building system is used. The most prominent examples of
these profiles are those found in ASHRAE (2004) and subsequent versions of
Standard 90.1. Although fixed profile models enjoy widespread use, higher fidelity
behavioral models would accommodate new quantitative analyses—such the
evaluation of automatic lighting systems based on motion detectors—as well as
qualitative investigations that would likely appeal to architects. As mentioned in
Sect. 8.2, multi-agent simulation tools are available for pedestrian flow and evac-
uation, but less so for other normal day-to-day activities of people in buildings.

8.3.2 Example of Daylight Simulation Research

Jones and Reinhart (2015) introduce a new tool called Accelerad, which combines
GPU technology with other optimization techniques to perform daylight simulation
up to 24 times faster than Radiance with similar areas. Results for two indoor
environments are shown in Fig. 8.6. This research takes advantage of two broad
opportunities in the discipline. First, it exploits computing technology that has
emerged after much of the core research on conventional energy simulation tools
was conducted; that is, technology such as the GPU, developed during the 1990s or
later. Second, it aims to satisfy the needs of architects, as opposed to engineers, in
this case by delivering the speed necessary to gain rapid feedback and explore a
greater number of design options.

Fig. 8.6 Daylight simulations performed by the Accelerad using GPU technology. From Jones
and Reinhart (2014); reprinted with permission from the authors
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8.3.3 Example of Co-simulation Research

Wetter (2011) introduces the Building Controls Virtual Test Bed (BCVTB), a
co-simulation environment linking an assortment of building simulation tools. The
environment is built on the multi-paradigm modeling software Ptolemy II (Brooks
et al. 2007), uses the Functional Mock-up Interface (FMI) as the standard to support
co-simulation (Nouidui et al. 2013), and currently links the tools listed in Table 8.1.

Although the factors influencing buildings are often analyzed in isolation, the
impressive number of tools integrated by BCVTB supports the notion that buildings
are complex systems involving a variety of interacting processes. No single sim-
ulator fully accounts for thermodynamics, light propagation, weather, human
behavior, and mechanical systems, and hence co-simulation is perhaps the only way
to realize a truly comprehensive building performance model without rewriting a
large portion of existing code. Using co-simulation, existing tools share information
once per time step, or several time per time step, depending on the strategy adopted
by the moderating software. The IBPSA community features several projects in
which two tools are integrated via co-simulation, examples being ESP-r & Radiance
(Janak 1997) and ESP-r & TRNSYS (Beausoleil-Morrison et al. 2011).
The BCVTB is unique in the number of tools it connects, as well as the fact it is
intended to support the incorporation of additional tools.

At present, co-simulation appears to be the most popular approach for inte-
grating building simulation algorithms that are not currently implemented in any
single tool. In the future, other integration approaches may be beneficial. Goldstein
et al. (2013) demonstrate the use of a formalism-based model-independent simu-
lator such as DesignDEVS (Goldstein et al. 2016) as a technological alternative to
co-simulation. In addition, adaptive time steps and quantized state solvers are
mentioned as mathematical alternatives to the numerical integration strategies
which currently dominate building performance simulation research. As explored in
the next section, these ideas from the M&S community have the potential to

Table 8.1 External tools linked to or used by the Building Controls Virtual Test Bed (BCVTB)
co-simulation environment

External tool Purpose

Dymola (Modelica) HVAC system modeling and building controls modeling

Simulink Building controls modeling

MATLAB Building controls modeling and data analysis

EnergyPlus Whole building energy simulation

ESP-r Whole building energy simulation

Radiance Lighting simulation

TRNSYS System simulation

BACnet stack Data exchange with building automation systems

A/D converter stack Data exchange with analog/digital converter

Functional Mock-up Units (FMU) Co-simulation and model exchange
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promote collaboration in the development of next-generation building simulation
methods, possibly leading to more architect-friendly tools that take advantage of
modern computing technology and better accommodate future design paradigms.

8.4 A Systems Approach for Simulation-based
Architecture

An opportunity exists to dramatically improve collaboration among architectural
researchers and building scientists. This can be done by applying state-of-the-art
techniques from the M&S community, which investigates aspects of computer
simulation that span disciplines. Our long-term vision is that comprehensive
model-dependent simulators such as EnergyPlus and ESP-r could eventually be
replaced by a repository of considerably more focused models with a common
interface. These new models, contributed by members of the building simulation
community, would be integrated in various combinations, and the most successful
configurations could be packaged for the benefit of practitioners. A platform of this
nature would promote the ongoing improvement of building simulation methods,
and allow a much larger group of researchers to participate in the development
process. Here we outline a collaborative systems modeling approach particularly
well-suited to the discipline of architectural design. Other ideas from the M&S
community also merit exploration in this application area.

The underlying principle we follow is to build upon architects’ familiarity with
certain programming techniques, namely conventional procedural programming
and dataflow visual programming. Procedural programming, involving assignment
instructions and control flow structures such as “if” statements, is currently taught
to students in a wide range of fields including building science and architecture.
Although a typical designer has less programming experience than a typical
computer scientist or systems engineer, we can rely to some extent on widespread
knowledge of basic programming concepts. Dataflow programming, by contrast, is
a style of programming that has become especially popular in the architectural
research community as a technique supporting parametric design (Woodbury
2010). As shown in Fig. 8.7, parametric design tools such as Grasshopper

Fig. 8.7 An example of dataflow programming in dynamo
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(Mode Lab 2015) and Dynamo (Autodesk 2017) allow building geometry to be
defined programmatically and modified interactively in visual programming envi-
ronments integrated with design tools. As observed by Doore et al. (2015) in
another discipline (multimedia), the popularity of paradigms such as dataflow
programming creates a favorable environment for introducing other M&S concepts.

The systems modeling approach we describe combines dataflow programming
with the Discrete Event System Specification (DEVS), the latter of which is a
modeling formalism generally applied using procedural code inside composable
modules exhibiting a common interface (Zeigler et al. 2000). The overall approach
is illustrated by a set of visual interfaces designed by Maleki et al. (2015), some of
which are shown in Fig. 8.8. The dataflow elements, appearing at the left and right
sides of the interface, are responsible for the initialization of a simulation as well as
the aggregation of its results into performance metrics and other statistics.
The DEVS elements, placed in the central column of the interface, handle the
simulation itself, which captures the evolution of a real-world system over time. As
is common among modeling paradigms from the M&S community, scalability is
achieved in part via the use of hierarchies. The overall interface represents a system
node, and the four central nodes within are also system nodes that potentially
encapsulate their own dataflow and DEVS elements.

Fig. 8.8 Visual interface mockups combining dataflow and DEVS elements
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A key difference between dataflow programming and DEVS is that the latter
allows cycles in the node graph. For example, if one of the inner system nodes in
Fig. 8.8 represents a building’s occupants, and another represents the building’s
indoor temperature distribution, the two-way relationship between human behavior
and building thermodynamics can be established using links from each node to the
other. The use of DEVS for this type of scenario was demonstrated by Goldstein
et al. (2014) using DesignDEVS. New visualization techniques shown in Fig. 8.9
were researched by Breslav et al. (2014) to visualize the results. The speedlines in
the figure animate the movements of a hotel’s guests and employees, while glowing
effects draw attention to the opening of windows by occupants seeking to improve
their comfort level. The state of the windows affects the diffusion of heat through
the building, shown as a color gradient on the floor. The indoor temperature then
affects the likelihood of additional windows being opened.

The use of DEVS allowed the various simulation algorithms of the Fig. 8.9
model to be rapidly integrated, albeit by modelers with considerable experience
with M&S techniques. Visual programming interfaces such as those in Fig. 8.8 may
help introduce architectural researchers and building scientists to these scalable
practices. Although the approach presented here could be used to model any
real-world system, the popularity of dataflow programming among architects
enhances its prospects in the realm of building design.

A systems approach offers a new way for researchers to collaborate in pursuit of
next-generation simulation-based building design tools. It also represents a strategy
for accommodating new design paradigms, in particular the emerging paradigm of

Fig. 8.9 Systems approach proof-of-concept modeled using DesignDEVS and visualized with
Autodesk Maya
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generative design. Cloud computing and other technological developments have
enabled computers to recommend plausible building geometries and systems con-
figurations, primarily by generating and evaluating a myriad possibilities and
automatically discarding poor performing options. Along with the closely related
topic of multiobjective optimization (Keough and Benjamin 2010), generative
design is receiving an increasing amount of attention among architectural
researchers. Recently, the technique has been applied to the design of an office
layout in order to satisfy several performance criteria including access to daylight,
limited potential for distraction, and visual access to the building’s surroundings.
Figure 8.10 shows three generated layouts selected from a large sample of options.

The generative design project of Fig. 8.10 serves as an informative example for
a number of reasons. First, it features geometric analyses that lend themselves well
to dataflow programming, and will eventually need to be complemented with
simulation. A systems approach combining dataflow with DEVS supports both the
implemented analyses and the future simulation algorithms. Second, the results of
the analyses are aggregated into a small number of performance metrics, which help
inform the next iteration of generated layouts. The dataflow elements at the bottom
right of Fig. 8.8 could provide a standard and scalable mechanism for deriving
these performance metrics from geometric analyses and simulation results. Third,
the project focuses on the experience of occupants in the built environment, a chief

Fig. 8.10 Example of generative design for an actual office environment within the MaRS
Discovery District in Toronto, Canada
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concern among architects that is not adequately addressed by current whole
building energy modeling tools. Evidently, there is a need to provide architects with
software that helps them satisfy objectives related to both human experience and
sustainability.

8.5 Conclusion

When one considers the many processes and interactions that take place in and
around buildings, as well as the extraordinary impact buildings have on the envi-
ronment and on how people live their lives, the case for simulation in building design
is obvious. Simulation is now heavily used by both architects and engineers in the
AEC industry, for a variety of purposes including energy use prediction, structural
analysis, and crowd planning. It is also actively researched, with occupant behavior
and daylight simulation representing just two of the many current areas of interest.
Yet the need for co-simulation developments such as the BCVTB—which is nev-
ertheless an important, pioneering project—speaks to a legacy of large simulation
codebases that were groundbreaking in their day but now limit the number of
researchers who can effectively collaborate in the development of next-generation
building design tools. Complex systems M&S ideas, particularly those that build
upon dataflow programming and other techniques familiar to designers, may help
architectural researchers and building scientists collaborate toward their common
goal of creating more functional, sustainable, and compelling built environments.

Review Questions

1. Buildings account for approximately what percent of electricity use in the
United States?

2. What is the difference between a building information model (Fig. 8.1) and an
energy analytical model (Fig. 8.2)?

3. Which of these organizations/conferences—ACADIA, ASHRAE, CAAD
Futures, IBPSA, Rob|Arch, SimAUD, Smartgeometry—focus primarily on
(a) architecture, (b) engineering, (c) both disciplines?

4. What form of visual programming has recently become popular in the archi-
tectural design community?

5. The annual cost of heating and cooling a building is an example of a perfor-
mance metric that could be used as part of a simulation-based architectural
design workflow. What other performance metrics could be computed using
simulation and applied to improve the design of a building?
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Chapter 9
Simulation-Based Science

Toward Cognitive Generative Architectures
for Simulation-Driven Discovery

Levent Yilmaz

Abstract The use of computational simulation in science is now pervasive.
However, while model development environments have advanced to a degree that
allows scientists to build sophisticated models, there are still impediments that limit
their utility within the broader context of the scientific method. Despite availability
of effective tools that assist scientists in routine aspects of scientific workflow
management and analytics, other steps, including explanation, evidential reasoning,
and decision-making, continue to limit the process of causal reasoning in knowl-
edge discovery and evaluation. This chapter examines the types, functions, and
purposes of models in relation to the scientific method, identifies the issues and
challenges pertaining to information abstraction and cognitive support for com-
putational discovery, and delineates a model-driven cognitive systems approach for
simulation-based science.

Keywords Model-driven science � Cognitive computing � Model-driven engi-
neering � Intelligent agents � Learning � Autonomous models � Self-awareness �
Cognitive models � Mediation � Experiment management � Explanatory coher-
ence � Domain-specific languages � Computational discovery � Cognitive coher-
ence � Parallel constraint satisfaction � Model-based reasoning � Simulation-based
science � Dynamic data-driven application � Generative modeling � Cognitive
systems

9.1 Introduction

The process of causal reasoning in scientific knowledge discovery and evaluation
involves various steps, including identification of gaps in the current state of
knowledge, generating inquiries for investigation based on current priorities and the
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state of knowledge, designing, and executing plans for new data and evidence
gathering, analyzing and interpreting results, and revising hypotheses (Bunge 1998;
Darden 2002; Gelfert 2016). To support these steps transparent cognitive models
are needed to assist computational discovery while serving as effective communi-
cation tools that explain observations and make recommendations for model
building (Honavar et al. 2016). Moreover, cognitive models should also be psy-
chologically plausible, so that they not only account for, but when necessary, steer
the cognitive activities of the scientist.

To examine the role of models, in general, and cognitive computing, in partic-
ular, we examine the nature and characteristics of scientific behavior. Following the
characterization of the processes of scientific discovery, we outline the types,
functions, and purposes of models in relation to computational discovery. To
advance the state of the art, we put forward a framework for Model-Driven
Discovery (MDD), which is based on the premises of the Dynamic Data-Driven
Application Systems (DDDAS) paradigm (Darema 2004). By viewing MDD from
the perspective of DDDAS, model discovery and experimentation are considered as
adaptive autonomous processes that evolve as learning takes place. A dual search
process over the model and experiment technical spaces aims to improve the
accuracy of models in explaining and understanding of scientific phenomena. In the
context of the DDDAS perspective, models can be viewed as mediators (Morrison
and Morgan 1999) between the theory and data, while orchestrating multiple views
and different interpretations of the target system.

In the rest of the chapter, we first overview the elements of scientific behavior,
including the types of scientific knowledge and activities. As part of the background
section, we examine the state of the art in the use of computational models and
simulations, as well as the types, functions, and purposes of models in scientific
discovery. In Sect. 9.3, we highlight emerging issues and opportunities in accel-
erating scientific discovery. To address the highlighted issues, we propose, in
Sect. 9.4, a conceptual framework that views models as adaptive learning agents
that leverage cognitive computing techniques to guide scientists in hypothesis
generation and experiment design. Building on the theory of Model-Driven
Engineering (MDE), Sect. 9.5 delineates the use of advanced principles of MDE for
constructing scientific models. Section 9.6 introduces a cognitive modeling strategy
that builds on the proposed conceptual foundations. Section 9.7 concludes with a
summary of the contributions of the article.

9.2 Background

The main goals of science include providing explanations, making predictions,
developing instrumental applications of scientific findings, and exploration to
improve our ability to understand the world around us (Gelfert 2016). Model-based
explanation, prediction, and understanding have been influential as a strategy for
providing guidance to scientific activities and the production of scientific knowledge.
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9.2.1 Scientific Knowledge and Activities

The creation of scientific taxonomies, laws, and theories, as well as their revision
based on new information is at the core of the scientific method (Klahr and Simon
1999). These scientific knowledge structures are generated and manipulated by
scientific activities.

9.2.1.1 Scientific Knowledge Structures

There are various forms of knowledge involved in scientific process. These include
taxonomies, hypotheses, scientific laws, experiments, and theories (Bunge 1998).

• Taxonomies classify and organize knowledge in terms of concepts, attributes,
and relationships to facilitate systematic understanding of a problem domain
(Bunge 1998). Taxonomies include specialization and generalization relation-
ships among concepts to account for commonalities. As the scientific discipline
advances, the ontology of the domain becomes increasingly specialized and
reflect the level of accuracy and specificity gained by the scientific method. On
the other hand, as experience is gained, discovered entities with common
attributes are generalized to produce abstract and high-level knowledge that can
facilitate drawing broader inferences and general applicability.

• Hypotheses refer to ideas related to experience, expectation, or observations in
the form of assumptions, which are used as building blocks in the construction
of scientific explanations and testable, falsifiable models. As evidence builds,
hypotheses are upgraded into laws and theories (Langley 2000).

• Laws specify precise numerical or qualitative relations and patterns among
observed variables, events, and objects.

• Theories use the terminology of the problem domain, which is defined by its
conceptual taxonomy, to make statements about the structure and processes of a
phenomena by connecting and relating laws/patterns and hypotheses into a
unified theoretical account.

• Experiments involve experimental design and manipulation of the knowledge
structures and the context to test hypotheses by examining their consequences
under specified conditions.

Figure 9.1 presents a conceptual model of scientific knowledge structures in
relation to models. Theories are based on hypotheses that are upgraded into laws
when they become effective in explaining the evidence observed in the target
phenomena. Models are abstractions that view a system from the perspective of a
theory, aiming to account for expected or observed regularities. Therefore, the
model mediates between the data and the theory to determine a coherent repre-
sentation of hypotheses that fit together to account for both the theory and the data.
Of the various elements that make up the model, some features are derived from the
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theory, while others originate from data and other pragmatic considerations specific
to the purpose of the study.

The mediation process suggests that model construction is a complex integration
activity. However, the mediation process brings together not only theoretical
constructs and expected behavior, but also analogies, metaphors, modeling con-
cepts and techniques, theoretical notions, etc. Therefore, the process of modeling
involves (1) molding the ingredients of the model, including hypotheses, toward a
unified and coherent knowledge representation and (2) calibration of the parameter
and experiment spaces for the purpose of integrating all ingredients. As such, the
assessment of models in scientific knowledge generation can be construed from the
perspective of how well they can be flexibly integrated and adapted to bring
coherence to constituent and align with the empirical context.

9.2.1.2 Scientific Activities

Knowledge generation activities involve distinct categories of cognitive processes
shown in Fig. 9.2 and can be classified under inductive, deductive, and abductive,

Fig. 9.1 Scientific knowledge structures

Fig. 9.2 Cognitive activities
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deliberative, and analogical activities (Bunge 1998; Langley 2000). Inductive
activities include the formation and learning of concepts and taxonomies, inductive
law discovery, and inductive theory generation. Learning of taxonomies is an
automated abstraction, clustering, and concept generation process that can take
advantage of machine learning and data analytics techniques. Inductive law gen-
eration or revision involves generalization of data into meta-models that cover the
observations in terms of precise invariants, functions, or relations.

Inductive theory generation integrates the laws and connects them into a unified
account. Data-driven scientific paradigm (Hey et al. 2009) often focuses on
inductive data-driven techniques for law and theory generation; whereas simulation
enables theory-driven deductive and abductive processes.

The deductive aspect stems from models being interpreted by simulation engines
to deduce through computational processes the consequences of the assumptions
embodied in the models. Scientists often derive predictions from models, or deduce
laws in the form of patterns and regularities from the theoretical principles specified
in models. Deliberative activities include prescriptive decision-making such as
selection of theoretical principles as well as experiment design strategies to reduce
the uncertainty among competing hypotheses. Analogy is also a fundamental
activity, for it involves comparing and relating representations on the basis of
structure and behavior for the purpose of understanding and explanation.

As shown in Fig. 9.3, cognitive activities support various scientific activities
such as explanation, prediction, and exploratory understanding. Prediction takes a
meta-model or a model to produce an estimate. Then the explanation process
connects a theory to a law in terms of a model and its underlying mechanistic
hypotheses, which generate the invariant defined by the law. The model represents
the explanatory framework by which the theory is connected to the laws and the
evidence observed. If explanation fails, the anomaly triggers revision of the theory
or the law. Explanation also relies on abductive cognitive activities that allow the
scientist to posit new unobserved hypothetical assumptions rather than deduction of
emergent behavior solely via simulation of given premises.

Fig. 9.3 Scientific activities
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9.2.2 Types, Functions, and Exploratory Purposes
of Models

The Stanford Encyclopedia of Philosophy provides an extensive list of model-types
in the context of philosophy of science: computational models, scale models,
heuristic models, meta-models, theoretical models, scale models, probing models,
phenomenological models, didactic models, formal models, iconic models, analog
models, and instrumental models. From the perspective of simulation-driven sci-
ence, we focus on the functional characterization of computational models in terms
of how they carry scientific knowledge. We categorize models with respect to
degrees of representational detail and support for experimentation. Based on the
degree of representation, models can range from purely data-driven models to
theory-driven models. On the other hand, depending on the support that models
lend to experimentation, they can be categorized as informational or pragmatic
(Gelfert 2016).

Figure 9.4 classifies models into four broad categories using the degree of rep-
resentation and experimentation dimensions. Data-driven models (Hey et al. 2009)
can be classified as phenomenological and instantial models. Phenomenological
models are mathematical expressions that attempt to explain the relations among
observed variables under controlled experiments (Kleijnen 2008). A phenomeno-
logical model can be consistent with a fundamental theory, but it is not derived from
theory. For instance, regression models are phenomenological models. Instantial
models represent functions or relations that may be associated with general purpose
domain-independent theoretical constructs, but they are derived neither from the
theory about the phenomena nor experiments. Instantial models can be calibrated
with data to make predictions or postdictions about observations, but they are
theory-free constructs.

Theory-driven models which are intended to explain or understand a phe-
nomenon within the context of an experimental framework are known as

Fig. 9.4 Functional
categorization of models
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mechanistic models (Darden 2002) or causal microscopic models. Such models are
comprised of proper representational abstractions that facilitate effective and effi-
cient exploration to answer specific research questions in a pragmatic manner, and
there are well-defined mechanism discovery protocols associated with such
theory-driven modeling perspective. Representation-based informational models
are connected to the target phenomena in terms of constructs that are directly related
to target’s entities and processes. In informational models, the representational
aspects are made more central compared to the pragmatic features that relate to the
purpose of the model.

Models can be used for different purposes, including explanation, prediction, and
exploratory understanding (Gelfert 2016). Exploratory models can support both
specific and divergent sense of exploration (Davis 2000, 2015). If exploration
focuses its attention on a salient research problem, the process converges upon a
specific question or detail. This view contrasts with the divergent sense of explo-
ration, which is not directed toward specific object or question. Instead, the inquiry
seeks novelty or surprising findings on its own sake. Divergent exploration can lead
to a narrower view and switch to a mode of specific exploration as more insight is
gained. Exploratory mode of modeling includes the following activities:

• examine the behavior of a model across a wide range of experimental
conditions,

• determine which parameters are prominent and have impact on the targeted
attributes,

• discern invariants and state them in the form of hypotheses,
• explore representations by which these rules can be formally defined.

As exploratory tools, models can serve different purposes, including the provi-
sion of a baseline starting point for future inquiry, proof-of-concept demonstration,
and potential explanations (e.g., hypotheses) for a specific phenomenon.
Exploratory modeling is neither limited to application of fundamental theory nor
constrained by observational data, but typically involves a constructive modeling
effort. These models are not intended to generate testable empirically adequate
predictions. Instead, the objective is to generate insight into the phenomena. For
instance, Lotka–Volterra equation models facilitate understanding the dynamics of
discrete populations, whose size is measured as integers using continuous differ-
ential equations. The model demonstrates, as a proof-of-concept, that periodic
oscillations in the size of prey–predator populations may emerge purely internally.
The model brings new avenues for mathematically modeling the dynamics of
populations.

An important value of scientific models comes from their explanatory roles,
especially when models are defined in terms of mechanisms that represent why and
how the observed behavior emerges. Explaining a phenomenon often involves
construction of a mechanistic model (Darden 2002) that is subsumed by a theory
and its fundamental axioms and hypotheses. On the other hand, in the absence of a
theory, exploratory models help scientists devise potential explanations. The model
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helps envisage mechanisms that, if true, would give rise to behavior that constitute
the explanandum.

With their support to explanation, prediction, and exploratory understanding
activities of scientific knowledge generation, models support science as mediators,
contributors, and epistemic tools (Gelfert 2016). In the case of mediation, a model
aims to fit together theoretical and evidential constructs so as to converge to an
explanation of observations, or make predictions under various circumstances. The
molding of the ingredients of the model to fit theory and data suggests the auton-
omous characteristic of a model. In the absence of a fully defined theory, scientists
construct models in an attempt to learn more about hypothetical features, the
realization of which allow studying their theoretical consequences. Alternatively, a
model can be constructed in a specific manner, which facilitates application of
idealized and abstract laws. Models can also serve as the objects of inquiry in an
exploratory mode, especially when there is lack of access to potential target systems
or phenomena.

Models are also contributors of knowledge, for they do not merely integrate or
mediate existing theoretical and empirical elements. New elements and constructs
are formulated to not only conceptualize theoretical mechanisms, but also integrate
them in ways that are consistent with the phenomena. Through the construction and
manipulation of hypothetical features, models contribute as epistemic tools that
facilitate generation via exploration of and justification via experimentation with
knowledge. However, to facilitate acquisition of scientific knowledge, models
should not only be connected with a valid and objective relation to the phenomena
of interest, but also afford cognitive access to the information it contains. This dual
relation of models to the scientists and the target phenomena suggest two distinct
aspects, which relate to transparency and veridicality. The transparency aspect of a
model refers to the phenomenology of the interaction afforded by the model’s
representation, whereas veridicality focuses on the degree to which the model’s
information space is connected to the target system.

9.3 Issues and Challenges

The use of computing as a formal framework for accelerating various aspects of
scientific inquiry has become a considerable interest (Honavar et al. 2016).
Specifically, the role of computational thinking in the acquisition, organization,
verification, analysis, reasoning, integration, and communication of scientific arti-
facts such as data, models, theories, hypotheses, and experiments is well recog-
nized. As an exploratory instrument, simulation models have been particularly
effective in the context of mechanism-centered perspective of scientific discovery.
As computation increasingly becomes the language of science, we recognize
emerging issues and challenges to keep pace with the information-centric aspects of
knowledge discovery.
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9.3.1 Information Processing Abstractions

The use of algorithmic information processes in developing models of scientific
phenomena is becoming increasingly common. Computer simulations have become
instruments of epistemic inquiry in a wide range of domains spanning from natural
sciences to social and artificial sciences. Further developments in the use compu-
tational modeling of information processes underlying scientific phenomena calls
for advancements, including, but not limited to the following challenges:

• Conceptualization of information abstractions in a given scientific domain
requires methods and tools that streamline the derivation and formalization of
such abstractions. Algorithmic and conceptual abstractions of natural entities,
relations, and processes of interest in specific scientific domains need to be
derived from their extant literature.

• Scientists may not have expertise in general purpose programming environ-
ments. Therefore, high-level domain-specific modeling languages are necessary
to make models in specific domains expressible in terms of the terminology of
the domain (Teran-Somohano et al. 2015; Yilmaz et al. 2016).

• Simulation models and the outputs of computational discovery systems that
leverage such models need to be communicated to domain scientists.
Information processing abstractions such as state and activity models, Bayesian
nets, and probabilistic decision models used in the specification of models may
differ from the formalisms used by domain scientists. Model management and
automated transformation technologies can play a role in bridging the gap
between the engineering space of simulations and the technical space of the
scientific domain.

• Discovery systems need to account for domain knowledge and constraints
associated in a domain. Formal methods and analysis techniques need to be
leveraged to assure that models are not only syntactically well-formed, but also
adhere to semantic constraints that limit the mechanistic hypotheses that can be
posited by the scientist while using the modeling system.

• Discovery systems need to produce or use models that go beyond description to
provide explanations of evidence in terms of mechanisms. Yet, the use of data
analytics often aims to reveal descriptive regularities. However, scientific
activities are primarily concerned with model-driven explorations, explanations,
and predictions that account for or embody accounts of mechanisms that
incorporate theoretical variables, objects, and processes. Deeper mechanistic
understanding of scientific phenomena requires generation, revision, and testing
of such mechanisms. Model development environments that facilitate variation
and revision of mechanistic hypotheses are needed to adapt models as learning
takes place.

• Experimentation is a critical aspect of the process of scientific inquiry. Yet,
simulation environments often lack support for designing and managing
experiment models along with the models of the target system. Syntactic and
semantic support is needed for explicit specification of experiment models
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(Teran-Somohano et al. 2015) as well as the execution and management of
models.

• Scientific phenomena often include multiple aspects and levels that require
provision of multiple distinct formalisms (Yilmaz et al. 2007) appropriate for
each aspect. The use of hybrid models (Mosterman 1999) and formalisms along
with mechanisms that facilitate seamless interoperation and couplings across
formalisms will increasingly become important.

The challenges outlined above are concerned with advances in the theory and
methodology of modeling and simulation to better respond to characteristics and
nature of scientific activities and knowledge structures. The use of such advanced
modeling and simulation environments is necessary, but not sufficient to support
specific cognitive activities associated with scientific reasoning. In the next section,
we expound on the role of cognitive computing and delineate ways to incorporate
them into simulation-driven scientific discovery systems.

9.3.2 Cognitive Issues in Scientific Discovery

Cognitive computing is concerned with the development of computational models
and techniques that study the human mind and simulate human thought processes,
including learning, decision-making, planning, problem solving, reasoning, and
explanation. The uses of cognitive models can augment and amplify scientists’
capabilities to formulate questions, generate hypotheses, formulate questions, plan
and devise experiments, and analyze results to facilitate learning from experience to
revise both the hypotheses and experiments so as to improve the discovery process.

Figure 9.5 highlights four major modes of cognitive assistance that can con-
tribute to a model-driven discovery cycle. Assistance in the form of automation of
the design and execution of experiments as well as model generation and revision

Fig. 9.5 Modes of cognitive
assistance
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enables scientists to focus more on the goals and objectives of the study rather than
routine aspects of platform management. Among the issues and challenges that can
be addressed by the use of cognitive computing methods and techniques include the
following.

• Problem formulation requires development of domain models based on the
common core concepts and terminology of a problem domain. Publications
disseminated in the extant literature can be analyzed using natural language
understanding methods to automate derivation of conceptual models and tax-
onomies, which provide the basis for information processing abstractions.

• The need for mechanistic explanation of scientific phenomena requires con-
structing models that embody causal mechanisms that produce, sustain, or
prevent targeted behaviors. Automated support in the exploratory search for
mechanistic hypotheses can leverage heuristic search techniques, as well as
abductive, probabilistic (Pearl 2014), and analogical reasoning methods to
postulate model revisions.

• Testing the consequences of hypothesized mechanistic models requires deciding
which variables to measure, as well as designing and prioritizing experiments to
improve information gain by reducing uncertainty across hypotheses while
adhering to principles of reliable and valid experimentation. Cognitive assis-
tance can also help determine the marginal utility of experiments and provide
support for comparing alternative experiments and devising scientific
workflows.

• Execution and orchestration of simulation experiments, possibly on distributed
platforms, and collecting data to evaluate hypotheses requires transparent access
and instrumentation into software models to trace variables that are of interest to
selected experiments. Experiments should be coupled to model representation to
support the observation process while also improving controllability of the
simulation.

• The data collected through simulation experiments need to be abstracted into
evidence, patterns, and observed regularities for the purpose of evaluating
hypotheses. Inductive learning and generalization methods, followed by
deductive formal methods (e.g., model checking with temporal logic) can be
used to determine whether or not the hypothesized mechanistic assumptions
exhibit the desired behavior.

• The discovery system needs to provide support for learning from experimen-
tation so as to discriminate across competing hypotheses. For instance, statistical
machine learning techniques can lend support to generating causal probabilistic
networks among hypotheses and evidences to provide a quantitative explanatory
framework for their assessment. Cognitive theories and models of explanatory
coherence can be leveraged to discern acceptable hypotheses while rejecting
those that cannot serve as plausible explanations.

• The output of existing learning techniques is difficult to communicate to dis-
ciplinary scientists. Advances in cognitive systems are necessary to produce
explainable models and present results via an explanation interface, which is
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guided by cognitive and psychological theories of effective explanations.
Alternative machine learning models can be developed to learn structured,
interpretable, causal models. Moreover, model induction techniques can be used
to infer meta-models that provide approximate explainable models of causal
dependencies among the scientific knowledge structures.

• Following the analysis of the results, if necessary, mechanistic hypotheses need
to be revised, and these revisions, including new behavioral mechanisms need to
be transferred into the model space to start a new cycle of experimentation. This
requires revision of experiment models to bring focus and generate new plans.
Alternative experiment plans, guided by the current goals, can be explored until
when new goals emerge as a result of the revision of hypotheses and the
emergence of new evidence.

9.4 Models as Autonomous and Adaptive Cognitive
Agents

The use of models as exploratory instruments that evolve into a plausible
explanatory or predictive model suggests that it is reasonable to view models as
Dynamic Data-Driven Application Systems (DDDAS) (Darema 2004). In this view,
as a mediator between theory and data, model development includes seeking
coherence among mechanistic hypotheses that govern a model’s behavior.

9.4.1 Modeling as a Dynamic Data and Theory-Driven
Process

Figure 9.6 illustrates the mediation role of models between theory and data.
Theoretical principles are leveraged to construct mechanistic hypotheses in the form

Fig. 9.6 Models as
mediators between theory
and data
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of behavioral rules that embody the specification of model elements. The con-
struction of the model is followed by the experimentation process through simu-
lation. Targeted instrumentation of the model results in observed simulation data
that forms the basis for learning about the efficacy of the hypothesized mechanistic
and phenomenological assumptions.

The dynamic mutually recursive feedback control loop between the model and
data refers to adaptive learning of a model and its role in steering both the
instrumentation and the experimentation process. The data gathered through ex-
perimentation is analyzed to make decisions about model representation. Model
revisions can in the long term result in theory revision. As a consequence, the
theoretical principles that may originally be induced from limited field data become
increasingly accurate in its explanatory power based on growing set of new data,
including those generated by simulation.

The strategy presented above is akin to the DDDAS paradigm (Darema 2004),
which promotes incorporation of online real-time data into simulation applications
to improve the accuracy of analysis and predictions. As a methodology, DDDAS
aims to enhance application models by selectively imparting new observed data or
deduced knowledge into the model so as to make it congruent with the evolving
context. Moreover, refined models can then be used to control and guide the
measurement process. The ability to guide the measurement and instrumentation
processes is critical when the measurement space is large. By focusing the mea-
surement process over a focused subset of data, the methodology reduces both the
cost and the time to collect data, while also improving quality and relevance.

Enabling the DDDAS perspective in model and experiment management
requires advancements in variability management in model representation under
uncertainty, system interfaces to instrument the simulation for data gathering and
analysis, and incorporates both the data and results of data-driven inferences and
decisions back to the model’s technical space. The provision of run-time models
and run-time dynamic model updating (Yilmaz and Ören 2004; Blair et al. 2009)
are critical features for closing the loop.

9.4.2 A Generic Architecture for Models as Cognitive
Agents

As an active entity, models with cognitive capabilities provide features that overlay
the simulation model and augment it to support computational discovery. In this
view, a model is construed as a family of models that evolve as learning takes place
while being sensitive to the goals of a particular study. As such, models need to be
designed with variability management (Bosch et al. 2015) in mind to support
seamless customization and to address a variety of experiment objectives, especially
when the target system has multiple facets.
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Figure 9.7 illustrates the building blocks of an active model that is coupled to an
experimentation environment to maintain a mutually beneficial and adaptive
feedback between theory and data. Theoretical constructs are characterized by the
Variability Management Layer (VML) and the models that encapsulate the
mechanistic hypotheses, principles, and constructs underlying the theory. A family
of models is defined in terms of features (Kang et al. 2002; Oliveira et al. 2013) that
can be configured to synthesize alternative models. Features define mandatory or
optional standard building blocks of a family of models along with their interre-
lationships. Variability management via feature models is a common strategy in the
product-line engineering practice to automate the construction and derivation of
products. A variability management language should enable the specification of a
variability model and its relation to model representation in the host simulation
modeling language. The selection of variants in the form of features triggers specific
actions that customize a model by adding, removing, or updating functional units.
Such an approach views a model in terms of domain-specific objects and config-
uration scripts that derive model instances that adhere to domain constraints.

An input plug-in transforms raw experiment data into a format that can be
analyzed using the Evaluator/Critic component. The evaluator component can be as
simple as a filter that further abstracts the data. However, to provide cognitive
assistance, a sophisticated model can provide support in terms of formal methods
such as Probabilistic Model Checking (Kwiatkowska et al. 2002) to determine the
extent to which expected behavior is supported by the simulation data.
Alternatively, the evaluator can perform hypothesis testing to discern the degree of
support that model mechanisms provide to hypotheses under consideration. Those
mechanisms that lend significant support to the evidence are retained, while others
are revised or declined from further consideration.

The learning model uses the results of the evaluator to update the confidence
levels of competing hypotheses. For example, a Bayesian Net model can revise

Fig. 9.7 Generic reference architecture
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conditional posterior probability estimates using the Bayes’ rule in terms of priory
probabilities and the observed evidence. Alternatively, cognitive models such as
explanatory coherence (Thagard 1989), which is briefly discussed in Sect. 6, can be
used to acquire, modify, reinforce, or synthesize hypotheses to steer the
model-driven discovery process. This incremental and iterative strategy is coordi-
nated by a mediation process that governs the interaction between the technical
spaces of models and experiments.

9.4.3 The Mediation Process

Based on Klahr’s (2002) framework on scientific discovery, the mediation process
involves three main components that control the entire process from the initial
formulation of hypotheses, through their experimental evaluation, to the decision
that there is sufficient evidence to accept a hypothesis. As shown in Fig. 9.8, the
three components are Search Hypothesis Space, Test Hypothesis (Search
Experiment Space), and Evaluate Evidence. The output from the Search Hypothesis
Space is a fully nspecified hypothesis, which provides input to the Test Hypothesis
phase that involves simulated experiments, resulting evidence for or against the
hypothesis. Evaluate Evidence decides whether cumulative evidence warrants
acceptance, rejection, or further consideration of the current hypothesis.

Search Hypothesis (Model) Space: This process has two components. The first
component generates the structure and broad scope of the hypothesis. The second
component refines the structure, making it instantiable.

Fig. 9.8 Searching the mechanism/hypothesis space
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Generating a mechanism template can be addressed by either invoking or
inducing a template. Invoking a template is based on searching existing specifi-
cations so as to construct a frame. Prior knowledge or Domain-Specific Language
(DSL)-based specification can play a role here. In cognitive science, several
mechanisms have been proposed to account for the way by which initial mechanism
templates can be identified. One can start with the initial set of mechanistic
hypotheses to construct the initial search space. Alternative approaches can be used
to iteratively and incrementally build the hypothesis space. Among these techniques
include analogical mapping, heuristic search, priming, and conceptual combina-
tions. Abductive reasoning is also a common strategy for creating new plausible
hypotheses. When it is not possible to evoke a mechanism, a new mechanism frame
can be induced from a series of outcomes. The first process involves generating an
outcome through experimentation. The second process uses the data as input to
generalize over the outcomes to induce a frame.

The second major component of the Search Hypothesis Space goal is the
Schema (Template) Instantiation process. Its purpose is to take a partially instan-
tiated mechanism and assign specific values to generate a fully specified hypothesis.
Instantiating a mechanism template involves either using prior knowledge or using
specific experimental outcome. If there exist outcomes extracted from previous
experiments, they can be adapted and reused in the new context. Alternatively, the
Generate Outcome goal can be used to produce empirical results solely for the
purpose of determining mechanism’s parameter values, facilitating the refinement
of a partially defined hypothesis. Early in the course of experimentation, prior
knowledge is used to assign values, whereas using experimental outcomes is more
likely to be used in the later phases of the iterative discovery process. If all the
identified values are tried and declined, then the mechanism template needs to be
dropped, and the process returns to the Generate Mechanism goal.

The Generate Observation/Outcome goal appears multiple times in the goal
hierarchy of the Search Hypothesis Space. The first appearance is when simulated
outcomes are generated in order to induce a mechanism template, and the second
occurrence is when the hypothesized mechanisms are instantiated with specific
values that facilitate derivation of the complete specification for the mechanisms.
Each time the Generate Outcome goal is activated so is the Search Experiment
Space goal. The experiments are designed by the Search E-Space goal. The
experiment space search should be able to focus on those aspects of the situation
that the experiment is intended to elucidate and explain. Discriminating among
competing hypotheses is one of the critical functions of the Focus sub-goal. Once a
focal aspect has been identified, the Select Strategy sub-goal chooses specific
independent and control factors according to the search priority and preferences
implied by the Focus goal. This is similar to the Means-Ends Reasoning and
heuristic search/optimization strategies that are often used to sweep a state space to
achieve a particular objective. The Choose & Set sub-goal assigns specific values to
independent and control variables so as to facilitate the application of the Conduct
Experiment and Observe sub-goals.
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Search Experiment Space (Test Hypothesis): This goal aims to generate an
experiment that is appropriate for the current set of hypotheses being examined, to
make a prediction by running the simulation experiment, and matching the outcome
to expected behavior/evidence. The Search Experiment Space component produces
an experiment. Conducting the experiment involves execution of the simulation
experiment and may require distributing the replications across multiple machines
to improve the performance. The Analyze (Compare) goal aims to provide a
description of the discrepancy between the evidence/expected behavior and the
actual outcome. The comparison can involve statistical methods such as ANOVA
analysis as well as formal methods that leverage Model Checking. The outcomes
from simulation replications can generate outcomes that can be generalized as a
(Hidden) Markov Model to that can formally verified against the finite state veri-
fication patterns. When completed, the Test Hypothesis goal generates a represen-
tation of evidence for or against the current hypotheses. This outcome is then used
by the Evaluate Evidence component.

Evaluate Evidence: This component aims to determine whether or not the
cumulative evidence gleaned from the results of experiments warrant the accep-
tance or rejection of competing hypotheses. Various criteria can be used to evaluate
evidence and hypotheses. These include plausibility, functionality, parsimony, etc.
In the absence of hypotheses, experiments can be generated by moving around the
experiment space. During the Evaluate Evidence phase, three general outcomes are
possible. The current set of coherent hypotheses can be accepted, it can be rejected,
or it can be considered further. In the first case, the discovery process stops. If the
hypothesis is rejected, then the system returns to the Search Hypothesis Space,
which can trigger two possible activities. If the entire mechanism template (frame)
is rejected, then the system must attempt to generate a new mechanism. If the Evoke
Mechanism goal cannot be satisfied or is unable to find an alternative mechanism,
then the system will recourse to the Induce Mechanism Template sub-goal, which
requires running simulation experiments to generate outcomes that can be gener-
alized via induction to synthesize mechanistic hypotheses. Having induced a new
mechanism frame, or having returned from Evaluate Evidence with a frame needing
revised instances with new values, the system resumes with Template Instantiation.
If prior knowledge is not applicable or available, here, too, the system may require
running experiments to generate outcomes and to make value assignments.

9.5 A Computational Strategy to Support
Simulation-Driven Discovery

Model-Driven Engineering (MDE) (Völter et al. 2013) has emerged as a practical
and unified methodology to manage complex simulation systems development by
bringing model-centric thinking to the fore. The use of platform independent
domain models along with explicit transformation models facilitates deployment of
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simulations across a variety of platforms. While the utility of MDE principles in
simulation development is now widely recognized, its benefits for experimentation
have not yet received sufficient attention.

In (Yilmaz 2016), a conceptual framework is presented to integrate MDE, agent
models, and product-line engineering to manage the overall lifecycle of a simula-
tion experiment. Building on this framework, the major elements of the proposed
strategy are shown in the component architecture presented in Fig. 9.9. In the
component architecture, the experiment and simulation model spaces are tightly
coupled to orchestrate the co-evolution of simulation and experiment spaces as
learning takes place. Next, we overview these components to elucidate their
potential contributions to the process of computational discovery.

9.5.1 DSLs for Experiment and Hypothesis Modeling

For generating experiment specifications from research questions and hypotheses,
the DOE methodology in simulation experiment design (Kleijnen 2008) provides a
structured basis for automation. The DOE ontology defines the vocabulary and
grammar, i.e., the abstract syntax for building the experiment domain model.

Fig. 9.9 A component architecture for experiment and model technical spaces
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To support the instantiation of the experiment specifications conforming to the
DOE meta-model, a suitable Domain-Specific Language (DSL) (Teran-Somohano
et al. 2015; Yilmaz et al. 2016) is needed. The experiment model defined by the
DSL (Visser 2007) needs to be configured with the aspects specified in an exper-
iment feature model. An experiment design can have various mandatory, alterna-
tive, and optional features, which are the salient attributes that facilitate modeling
variants of experiments to support different objectives (Sanchez 2005). For
instance, the type of the experiment design (e.g., factorial, fractional factorial), the
optimization strategy (e.g., evolutionary strategy vs. simulated annealing), and the
analysis method (e.g., ANOVA vs. MANOVA) are potential features that collec-
tively define plausible configurations of an experiment.

9.5.2 Agent-Assisted Experiment Specification Generation

An experiment design agent evaluates questions of interest to generate an experi-
ment design that is not only effective in discriminating rival hypotheses, but also
efficient in covering the parameter space of the system. A trade-off analysis between
the number of design points and the number of replicates per design point are
carried out in relation to the type of experiment being conducted. Consider, for
instance, two options: one with many replicates per design point, and another with
more design points with fewer replicates. The first option enables explicit estima-
tion of response variances that can vary across scenarios. If the primary objective is
to find a robust system design, then some replication at every design point is
essential. If the goal is to understand the system behavior, this requires under-
standing the variance, again mandating replication. However, if the goal is that of
comparing systems and a constant variance can be assumed, then this constant can
be estimated using classic ordinary least squares regression. Replication is then of
less concern, and the second option (exploring more design points/scenarios) can be
a better way to spend limited computer resources.

9.5.3 Agent-Monitored Experiment Orchestration
and Update

Experiment orchestration involves experiment design adaptation capabilities so that
factors that are not significant in explaining the differences in the dependent vari-
ables are reclassified as control variables, and, if necessary, design schema can
adapt as experimentation moves from variable screening to factor analysis. The
aggregation of results for effective analysis and communication is a critical
step. Regression trees and Bayesian networks are effective ways of communicating
which factors are most influential on the performance measures.
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Model updating based on the analyses performed by an Experiment
Orchestration Agent is the next step. We consider two types of updates: (1) ex-
periment model (space) update and (2) simulation model (mechanistic hypothesis
space) update. Adaptation of an experiment occurs at multiple levels. Based on
sequential experiment results, specific factors are identified as significant, while
others are classified as control variables. The reduction in the number of pertinent
factors triggers a more detailed analysis of the levels of relevant factors. Such
changes in the direction of exploration of the parameter space do not require an
update in the experiment schema. However, higher order experiment schema
(meta-model) and search strategy adaptation may be necessary when the observed
response surface complexity and the change in the number of factors trigger, for
example, an update from a Central Composite Design to a Latin Hypercube design.
Schema adaptation can be followed by a complete schema revision, requiring a new
experiment model consistent with the evolving focus of the experiment.

9.6 Cognitive Computing as an Aid to Computational
Discovery

To support experimentation within the experiment and hypothesis spaces, there is a
need to conjecture plausible explanations for the targeted behavior and discern a
coherent set of mechanisms that collectively work together to generate it. To this
end, we put forward the use of explanatory coherence theory (Thagard 1989) as an
illustrative example shown in Fig. 9.10. The proposed implementation technique
uses a self-organizing coherence maximization approach based on the Interactive
Activation Competition model (McClelland and Rumelhart 1989) to discern the
combination of mechanisms that fit together to exhibit the desired behavior.

To incorporate the theory of explanatory coherence into this framework, one can
define a DSL with features that represent the hypotheses and evidences, along with

Fig. 9.10 Hypothetical
coherence network
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initial facilitation and inhibition relations among them. These relations are subject
to change based on the results of experiments. The empirical evidence or expected
behavior can be presented in terms of finite state verification patterns, which are
compiled into Linear Temporal Logic. Using a probabilistic model checker such as
PRISM (Kwiatkowska et al. 2002), scientists can examine if the evidence is sup-
ported by the mechanisms of the model.

The theory of Cognitive Coherence builds on the notion of establishing relations
among propositions. Coherence between two propositions is achieved if any of the
following is true: (1) P is part of the explanation of Q. (2) Q is part of the expla-
nation of P. (3) P and Q are together part of the explanation of some R. (4) P and Q
are analogous in the explanations they, respectively, give of some R and S. For
illustrative purposes, in Fig. 9.11, we present a hypothetical coherence network that
is comprised of evidence and hypothesis nodes. In this example, hypotheses H1 and
H2 together explain the evidence E1. The evidence can be represented by a
predicate or expected pattern, whereas hypotheses are the behavioral mechanisms
that when enacted generate model behavior consistent with the evidence. That is,
H1 and H2 explain the evidence E1. An edge with a solid thin line indicates
facilitation or explanation relation among two nodes, whereas a thick line denotes
an inhibition relation. For instance, H8 contributes to H4 and H2, whereas it inhibits
E4. With the coherence relations at hand, synthesizing a model that is capable of
and effective in explaining/generating a set of targeted behaviors can be viewed in
terms of the coherence problem.

The Coherence Problem: The coherence problem is defined as follows: We
define a finite set of elements ei and two disjoint sets, C+ of positive constraints,
and C− of negative constraints, where a constraint is specified as a pair (ei, ej) and
weight wij. The set of elements are partitioned into two sets, A (accepted) and
R (rejected), and w(A, R) is defined as the sum of the weights of the satisfied
constraints. A satisfied constraint is defined as follows: (1) if (ei, ej) is in C+, then ei
is in A if and only if ej is in A. (2) if (ei, ej) is in C−, then ei is in A if and only if ej is
in R. The underlying dynamics of coherence maximization is akin to simultaneous
firing of neurons. Each unit receives input from every other unit that it is connected.
The inputs are then moderated by the weights of the link from which the input
arrives. The activation value of a unit is updated as a function of the weighted sum
of the inputs it receives. The process continues until the activation values of all the
units settle by no longer changing over a pre-specified limit. More formally, if we
define the activation level of each node j as aj, where aj ranges from −1 (rejected)
and 1 (accepted), the update function for each unit is as follows:

ajðtþ 1Þ ¼ ajðtÞð1� hÞþ netjðM � ajðtÞÞ; if netj [ 0
ajðtÞð1� hÞþ netjðajðtÞ � mÞ; otherwise

�

The variable theta is a decay parameter that decrements the activation level of
each unit at every cycle. In the absence of input from other units, the activation
level of the unit gradually decays. In the equation, m is the minimum activation and
M is the maximum activation; netj is the net input to a unit, defined by the following
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equation:
Pn

i¼1 wijai tð Þ. These computations are carried out for every unit until the
network reaches equilibrium. Nodes with positive activation levels at the equilib-
rium state are discerned as maximally coherent propositions. For experimentation
purposes, the design of the network can be calibrated and fine-tuned to alter the
weights of individual links representing the significance of the constraints.
Furthermore, initial activation levels of the propositions and initial levels of evi-
dential support can be set to provide priority or higher weight to specific evidences
and hypotheses.

9.7 Conclusions

In this chapter, we examined the role of computational models and simulations to
steer the process of scientific discovery. Following the characterization of the nature
of scientific knowledge and activities, the issues and challenges in information
processing and cognitive activities involved in scientific problem solving are
delineated. These challenges resulted in the formulation of a reference architecture
that views models as autonomous adaptive agents with learning capabilities. The
premise of the strategy is based on the observed need for mediating between the
theory and data so as to facilitate their coherent integration. By aligning the
mechanistic hypotheses or assumptions of a model with the empirical evidence or
expected regularity, the mediation process aims to facilitate the process of com-
putational discovery by facilitating a search process across the technical spaces of
models and experiments. Such mediation requires flexibility in generating and
evolving multiple models. The generative process continues until it converges to
one or more competing and complementary models that can explain the systemic
properties of the phenomena of interest.

To support this generative process, we suggest leveraging the Model-Driven
Engineering strategy and by explicitly separating the model and experimentation
technical spaces. The technical space of models adapts based on the feedback
received from the results of the experiments conducted within the technical space of
experiment. The modification of model mechanisms is guided by a dual search
process, where the search in the modeling space results in alternative hypothetical
problem representations. These representations are translated into simulation code
via model transformations, resulting in concrete and executable simulation models.
The search in the experiment space generates experiment designs, which are
orchestrated by intelligent agents to determine the explanatory power of the
mechanistic hypotheses implemented in the simulation model. We also put forward
the use of cognitive models in guiding the search process to provide an explanatory
framework underlying the decisions made by the discovery system. Both the
Model-Driven Engineering and the cognitive computing facets of the proposed
reference architecture outlines a research roadmap for addressing the issues and
challenges in accelerating scientific discovery.
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Review Questions

1. What is the role of cognitive computing in accelerating simulation-based sci-
entific discovery within the life cycle of a modeling and simulation study?

2. Given that models are idealized representations of a scientific phenomenon, how
can scientists determine which aspects of models make trustworthy predictions
or can reliably be used in explanations? This problem is confounded especially
when scientists are confronted with uncertainty, ambiguity, and lack of accepted
theories that can guide the strategies for model building.

3. How can model development and experimentation be coupled together to take
advantage of vast amounts of data generated to improve model accuracy?

4. Which trends in computing and information sciences can be exploited to
improve the activities in simulation-based scientific discovery?

5. How can we bridge the gap between the domain terminology of the scientists
and the technical representations of simulation models in specific platforms so
as to exploit domain models in the simulation code?
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Chapter 10
Systems Design, Modeling, and Simulation
in Medicine

Hannes Prescher, Allan J. Hamilton and Jerzy W. Rozenblit

Abstract Health care is changing at a very rapid pace. So does its attendant
complexity and ever increasing reliance on high technology support. Technical
medicine, where sophisticated, technology-based methods are used in education of
healthcare professionals and in treatment of patients, is becoming a recognized
discipline. Such methods require a new generation of engineers, scientists, systems
designers, and physicians to integrate medical and technical domains. With this in
mind, this chapter provides an overview of modeling and simulation technologies
as applied to healthcare. A historical perspective is given followed by the discussion
of how simulation helps in gaining professional competency and how it improves
healthcare outcomes. Systems for support of medical training and clinical practice
are discussed from both engineering and clinical perspectives. Challenges and
opportunities for further development of complex simulation-based medical trainers
are presented as well.

Keywords Future developments in medical simulation � History of
simulation-based medical education � Simulation for clinical training � Simulation
for healthcare � Simulation to evaluate healthcare outcomes � Simulation to
improve healthcare outcomes � Simulation-based medical education

10.1 Introduction

Modeling and Simulation (M&S) is a mature scientific and engineering discipline,
where rigorous, theory-based foundations (Zeigler 1976) gained considerable
footing. The field spans a broad spectrum of contexts, e.g., mathematics, natural
systems in physics (computational physics), astrophysics, chemistry and biology,
economics, psychology, social science, engineering, and now, healthcare. In the last
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decade or so, we have witnessed burgeoning interest in and demand for
simulation-based education and training in healthcare fields (Rozenblit and
Sametinger 2015). The motivation and rationale are clear: through the use of
simulation in medical training, a safer patient experience will result by preventing
medical errors and by improving outcomes. The benefits of such an approach are
manifold: (a) healthcare providers can practice procedures, techniques and
responses to various scenarios without any risk to patients. Such exercises are
infinitely repeatable, (b) training and education can occur in true-to-life environ-
ments, with facilities and technology identical to those used in various medical
settings, (c) all learners—expert physicians to high school students—can benefit
from simulated experiences, and (d) training can support the development of a wide
variety of skills without the risk to patients and sacrifice of animals.

In this chapter, we give an overview of the history and current uses of simulation
in healthcare. We also address the methodological challenges for development of
techniques, validation, and design of features that can leverage from the rigorous
science of modeling.

10.2 History of Simulation-Based Medical Education
(SBME) and Its Current Use in Undergraduate
Medical Education (UME)

The use of simulation in medical education traces its roots to the origins of modern
medicine. In the 17th century, mannequins, referred to at the time as phantoms,
were used to teach obstetrical skills. Cadavers have long been used along with clay
and wax models to teach human anatomy (Owen 2012). Several developments in
the middle of the 20th century, both technological and ideological, transformed
medical simulation into its current form (Bradley 2006).

10.2.1 Simulation Environments

The first was the technological improvement of part-task trainers. In 1960, Asmund
Laerdal launched “Resusci-Anne,” a part-task trainer for teaching cardiopulmonary
resuscitation (CPR) to emergency medical technicians (Cooper and Taqueti 2004).
The trainer revolutionized resuscitation training through widespread availability of
a low-cost, effective training model (Lind 2007; Grenvik and Schaefer 2004).
Other, more technologically advanced part-task trainers followed (Issenberg 2005).
The most notable of these was the Harvey mannequin, a cardiopulmonary patient
simulator launched in 1968 at the University of Miami that was designed to mimic
the basic cardiac functions of the human body (Gordon 1974; Gordon et al. 1980).
Using a series of cams and levers to create heart movement and a 4-track tape
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recording for sound, the trainer allowed students to practice cardiac auscultation
skills. In so doing, it became the first trainer to provide a standardized method of
testing bedside cardiovascular examination skills (Cooper and Taqueti 2004).

The second development was the introduction in the late 1960s of Sim One, the
first computer-driven high-fidelity patient simulator capable of reproducing physi-
ological functions of the entire patient (Abrahamson et al. 1969, 2004). The
mannequin was controlled by a hybrid digital and analog computer and was
designed for anesthesiologists to practice endotracheal intubation. However, Sim
One failed to achieve acceptance as a training model, due in part to its divergence
from the widely accepted apprenticeship model of medical education at the time
(Bradley 2006). Advances in the 1980s of mathematical models of human physi-
ology along with marked acceleration in computing power led to the development
of the high-fidelity patient simulators widely used today (Owen 2012).

Building on the concept of screen-based simulators capable of running on a
desktop computer, a new human patient simulator, the Comprehensive Anesthesia
Simulation Environment (CASE), was designed at Stanford University and com-
bined commercially available waveform generators on a desktop computer with a
commercially available mannequin (Cooper and Taqueti 2004; Gaba and DeAnda
1988). This mannequin, whose vital signs could be adjusted to create different
clinical events, was placed in a real operating room and was used with the express
intent to improve patient safety under anesthesia through team-based training (Gaba
et al. 2001). A training curriculum was designed based on the aviation model of
crew resource management and thus emerged a program of performance assessment
of both technical and behavioral skills in medical education (Grenvik and Schaefer
2004).

The third and most significant development was the movement in the late 20th
century of medical education reform (Bradley 2006). For over a century, the
undergraduate medical curriculum rested primarily on intense didactic learning
coupled with an apprenticeship model of clinical observation. This led to infor-
mation overload at the expense of learning clinical and team-based skills and
produced medical students that were ill equipped to face the demands of an
increasingly complex healthcare system (General Medical Council 1993;
Cartwright et al. 2005; Feher et al. 1991). At the same time, a landmark Institute of
Medicine report To Err is Human exposed institutional deficiencies in patient safety
and created an ethical imperative to promote the training of complex technical and
behavioral skills in a setting that does not compromise patient care (Kohn et al.
2002; Ziv et al. 2003, 2005). These forces combined to promote the widespread
adoption of SBME.

The last decade has seen advances in simulation technologies that continue to
improve the fidelity of simulation environments (Bradley 2006; Cooper and Taqueti
2004). Today, the scope of medical simulation modalities available ranges from
low-tech models used to practice simple physical maneuvers or procedures to
realistic computer-driven patient simulators that simulate the anatomy and physi-
ology of real patients and provide learners with an immersive environment in
which to practice complex, high-risk clinical situations in a team-based setting.
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Screen-based computer simulators have been developed to train and assess clinical
decision-making (Schwid et al. 2001; Bonnetain et al. 2010). Complex task trainers
including virtual reality simulators provide fully immersive, high-fidelity visual,
audio, and touch cues along with actual tools integrated with computers to replicate
a clinical setting (Cook et al. 2010). These complex simulators allow students to
develop technical skills in ultrasound, bronchoscopy, laparoscopic surgery,
arthroscopy, and cardiology (Khanduja et al. 2016; Konge et al. 2011; Beyer-Berjot
et al. 2016). Despite the recent advances in simulation technologies, the most
common simulation modality used in UME continues to be the standardized patient
—actors trained to role-play patients for training history taking, physical exami-
nation and communication skills (Keifenheim et al. 2015).

Standardized patients have played an integral part in the most established sim-
ulation exercise in UME, namely the Objective Structured Clinical Examination
(OSCE) (Newble 2004). First described in 1979, the OSCE was designed to assess
the clinical competency of medical students by using clinical scenarios with patient
actors to test communication and professionalism, history taking, physical exami-
nation, and clinical reasoning skills (Harden and Gleeson 1979). These simulated
patient encounters have become a required part of the United States Medical
Licensing Examination (USMLE) and a strong emphasis is therefore placed on
practicing these encounters. While standardized patients are useful in learning basic
clinical skills, they do not challenge the learners to train in the types of interdis-
ciplinary teams required to provide efficient care coordination (Patricio et al. 2013).
They also do not allow learners to perform invasive procedures and often fail to
provide accurate diagnostic cues.

Other simulationmodalities have gained appeal as their utility has become clear. In
a survey conducted by the Association of American Medical Colleges (AAMC) in
2011 on the use of medical simulation in medical education, 95% of respondents
reported using full-scalemannequins, while 93% reported using partial task trainers to
train students in clinical skills, clinical medicine and physical diagnosis (Passiment
et al. 2011). Using the six core competencies set by the Accreditation Council
for Graduate Medical Education (ACGME) of medical knowledge, patient care,
interpersonal communication skills, professionalism, practice-based learning, and
system-based practice—competencies that undergraduate medical students are
expected to satisfy—86% of respondents reported using some form of simulation to
train students in these competencies. However, only 46% of this training was done in
multidisciplinary, interprofessional teams (Cook et al. 2010). Likewise, there was
large inconsistency in the types of partial task trainers used with most medical schools
only providing basic trainers for suturing, IV access, and airway management.

10.2.2 University Education

Undergraduate SBME is supported by a strong theoretical foundation. Proponents
of SBME emphasize the ability for repetitive practice of procedural skills in a safe,
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controlled environment, and the ability to personalize the training to the needs of
individual learners and capture clinical variation to standardize medical training
(Moorthy et al. 2005). It provides the opportunity to give immediate feedback to
learners, and creates an environment for competency-based mastery-learning based
on defined outcomes (Deutsch et al. 2016). A systematic review and meta-analysis
of 609 studies was conducted to assess the effectiveness of technology-enhanced
simulation for health professions education (Cook et al. 2012). It revealed that, in
comparison with no intervention, technology-enhanced simulation is associated
with large effects for outcomes of knowledge, skills, and behaviors and moderate
effects for patient-related outcomes. When compared to other instructional methods
(i.e., lectures, small group discussions), technology-enhanced simulation was
associated with small to moderate positive effects on learning outcomes.

The authors noted significant inconsistencies in effect size between studies but
were able to isolate several components of simulation interventions that were
consistently associated with significantly higher outcomes. Higher feedback and
learning time, group work and lower cognitive load all contributed to higher effect
size in simulation versus the comparison intervention (Cook et al. 2013a).
Similarly, interventions using a mastery-learning model that requires learners to
achieve a benchmark of skills before proceeding to higher level exercises were
associated with significantly better outcomes, as were those with curricular inte-
gration (Cook et al. 2011; McGaghie et al. 2011a, b).

These studies suggest that the merits of simulation may vary for different edu-
cational objectives. Designing undergraduate medical curricula to align educational
objectives with instructional modalities, therefore, will be critical to maximize the
effectiveness of the intervention and justify the financial investment. The literature
does provide empirical evidence for the importance of creating an integrated,
longitudinal simulation program that is aligned with physiology, pathology and
pharmacology topics learned in the didactic setting (Gorman et al. 2015; Gordon
et al. 2006; Rosen et al. 2009). Using this model, SBME provides an opportunity
for active, team-based collaborative learning that promotes transfer of basic clinical
knowledge to treat real clinical problems. Simulated patient encounters, whether in
a virtual reality environment with avatars or using a computerized high-fidelity
mannequin should challenge learners to apply their knowledge in a simulated
clinical setting with the type of emotional engagement and stress encountered in the
real clinical setting (Hunt et al. 2007).

As medical schools reshape their curricula to incorporate simulation training, it
will be important to continue to study the impact of elements of instructional design
(i.e., learning time, repetition, feedback) versus the effect of modality (i.e., simu-
lation tools) on learning outcomes to maximize the efficiency of resource utiliza-
tion. Figure 10.1 depicts the key stakeholders in healthcare simulation and
summarizes its benefits.
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10.3 Use of Simulation for Clinical Training
and Acquisition of Procedural Competency

The traditional model for procedural training in medicine was established by
William S. Halsted in 1890 when he transformed graduate medical education by
creating the first surgical residency program at John Hopkins University (Kotsis and
Chung 2013). Based on the principle of graduated responsibility, Halsted used the
adage “see one, do one, teach one” as a pedagogical framework for acquiring
procedural competency. This system of learning remained unchanged for over a
century. Reductions in resident duty hours instituted by the Accreditation Council
for Graduate Medical Education (ACGME) in 2003 along with a national move-
ment to improve patient safety finally led to a paradigm shift (Rodriguez-Paz et al.
2009). At the same time, simulation-based medical education (SBME) emerged as
an alternative training model that enabled learners to safely acquire procedural
competency without causing harm to patients. A new pedagogical framework was
proposed that integrates both the cognitive and psychomotor phases of learning
with deliberate practice and emphasizes formative and summative assessment with
defined benchmarks for skill acquisition (Sawyer et al. 2015).

Using simulation for procedural training has gained acceptance in many graduate
medical education programs. The ACGME requires simulation-based training
opportunities for trainees in anesthesiology, general surgery and internal medicine
and accepts it as a method of training, assessment and evaluation in emergency
medicine, ophthalmology, otolaryngology, radiology, and urology (Deutsch et al.
2016). The American Board of Surgery requires successful completion of

Fig. 10.1 Healthcare simulation stakeholders and benefits
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competency-based skills training in simulation to achieve eligibility for board
certification and the American Board of Anesthesiology and the American Board of
Internal Medicine permit the use of simulation for maintenance of certification in
required procedural skills (Deutsch et al. 2016).

As acceptance of simulation-based training has grown within an increasingly
complex healthcare system, a new generation of engineers, scientists, systems
designers and physicians has been challenged to develop new technologically
complex training models to replicate partial and complete organ systems for
practicing procedural skills. Using a variety of synthetic materials (i.e., plastics,
silicones etc.), biomaterials and fluids, bioengineers and clinical researchers have
developed a vast collection of life-like, anatomically accurate procedural trainers.
Medical trainees now routinely use artificial arms to practice peripheral IV and
arterial line placement. Models have been designed to practice, amongst other
procedures, endotracheal intubation, cricothyrotomy, lumbar puncture, thoracente-
sis, thoracostomy as well as central line and urethral catheter placement (Nestel
et al. 2011).

Surgery is perhaps the medical specialty most reliant on psychomotor and
visuospatial skills and routinely performs procedures that pose significant risks of
patient morbidity. This makes it uniquely suited for simulation training and it has
been the specialty, along with Anesthesiology, that has been historically most
invested in it. Surgical trainees have long used silicone pads to practice basic
suturing and knot-tying techniques and various-sized silicone tubing to practice open
and microsurgical anastomosis of blood vessels (Badash et al. 2016). In an effort to
standardize basic surgical skills training, the Society of American Gastrointestinal
and Endoscopic Surgeons (SAGES) in 2004 launched Fundamentals of
Laparoscopic Surgery (FLS), a formal simulation-based education program for
teaching the basic skills of laparoscopic surgery (Zendejas et al. 2016). Using a
series of manual tasks within a simple box trainer to simulate the surgical working
space, learners were able to train in the critical skills of depth perception, spatial
orientation, and manual dexterity that form the foundation for safely performing
laparoscopic surgery (Scott 2006). The educational program is based on the prin-
ciples of mastery-learning; trainees are required to complete the series of tasks within
validated time and performance benchmarks to prove procedural competency
(Schout et al. 2010).

Further technological advances in surgical simulation have seen the emergence
of computer-driven computational models of whole organ systems to create virtual
reality trainers (Aggarwal et al. 2007). These simulators allow users to interact with
a virtual image using a physical interface that is identical to the actual instrument
used in the clinical procedure (Deutsch et al. 2016). For instance, in a virtual
cholecystectomy, the user holds instruments shaped like a retractor, clip-applier and
scissor to manipulate, ligate and cut the appropriate virtual anatomy (Schijven et al.
2005). The simulators provide haptic feedback to learners to give the tactile sen-
sation of actually performing the procedure. They are also sensitive to the forces
applied to virtual anatomic structures by the user and can simulate surgical com-
plications such as bleeding. Similar simulators exist for practicing bronchoscopy,
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arthroscopy, cardiac catheterization and other complex procedures (Gallagher and
Cates 2004).

The unique nature of virtual reality trainers lies in their ability to actively engage
the learners’ senses and provide the most immersive learning experience available
(Alaker et al. 2016). Adult learning theory in medicine dictates that multisensory
engagement in a learning activity is essential for effective learning and retention of
skills (Kneebone 2005; Rutherford-Hemming 2012). The degree of immersion in
current virtual reality procedural trainers operates on a spectrum from simple
interactive gaming platforms (e.g., mobile and desktop applications) to compre-
hensive 3D surgical environments. Despite proven effectiveness in facilitating basic
surgical skill acquisition, virtual reality technology in medicine remains in its
infancy (Larsen et al. 2012). Recent advances in CAD and 3D printing technologies
promise to expand our ability to create patient-specific 3D models in a virtual
simulation environment to aid surgeons in evaluating and simulating pre-operative
treatment options.

As medical education evolves towards a personalized, competency-based
training system, the role of assessment will continue to grow (Michelson and
Manning 2008). In order to define procedural competency and prove mastery of a
skill in a simulated environment, training programs have developed and validated
procedure-specific assessment tools. These tools include global rating scales and
checklists (Ilgen et al. 2015; Riojas et al. 2011). Other assessment tools, including
FLS in surgery training, use objective variables such as task completion time, the
quality of a finished product (e.g., accuracy of stitch placement in a suturing task) or
procedural errors as measures of proficiency (Feldman et al. 2004). Newer
computer-based trainers are able to provide a performance score based on the users’
economy of instrument movement and overall efficiency in completing a task
(Chang et al. 2016). However, a recent systematic review of validity evidence of
commonly used assessment tools reports that the methodological and reporting
quality of validity testing is inconsistent and often inadequate (Cook et al. 2013b).
If the role of simulation is to continue to grow and influence decisions regarding
trainee preparedness, remediation and credentialing, assessment tools will need to
be subjected to rigorous validation testing to support the interpretation of scores.

A great body of evidence has emerged over the last decade in simulation
research in support of the effectiveness of various simulated learning platforms
(Cook et al. 2013a). Studies have shown that deliberate practice in a simulation
environment can improve procedural skills compared to traditional methods of
training. However, a major challenge in simulation training and a persistent point of
contention among clinicians is providing evidence that skills acquired on a simu-
lated model transfer to the clinical setting. For instance, does achieving proficiency
in surgical skills in a box trainer translate to acceptable skill levels in the operating
room? Studies across specialties using a diverse set of simulation platforms to learn
a large variety of procedures have provided evidence that practicing a procedure
using a mastery-learning model leads to superior performance of that procedure in a
clinical setting (Huang et al. 2016; Brydges et al. 2015; McGaghie et al. 2010).
Furthermore, it has been shown that repeated practice of procedural skills facilitates
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the retention of skills over time (Shewokis et al. 2016; Opoku-Anane et al. 2015;
Sant’Ana et al. 2016).

Restrictions in resident duty hours were implemented by the ACGME to
improve resident fatigue and burnout and increase patient safety. However, in the
process it has also inadvertently decreased the learning opportunities of residents
especially in clinical procedures. Increased clinical demands of faculty in a
profit-driven healthcare system have also limited the time available for formal
instruction and mentorship during patient care. In this setting, SBME offers a viable
alternative training model that is congruent with efforts to improve patient safety by
providing the opportunity for deliberate practice on procedural simulators without
compromising resident duty hours.

10.4 Use of Simulation to Evaluate and Improve
Healthcare Outcomes

Healthcare organizations are complex ecosystems composed of integrated networks
of human teams supported by technological systems. These organizations are
challenged by political, social and economic forces to improve the value of
healthcare delivery by providing safer, higher quality care at lower costs (McGinnis
et al. 2013). Complicating this effort are inefficiencies in the individual, team and
systemic processes that contribute to the delivery of care. Research has consistently
shown that failures in healthcare processes are multi-factorial in nature and occur
because of unpredictable combinations of component failures (Kohn et al. 2002;
Marshall et al. 2016). Simulation can be used as (a) dynamic prototyping platforms
to better understand how individual, team and system processes interact,
(b) methodology to assess collective performance to optimize healthcare outcomes
(Deutsch et al. 2016; Isern and Moreno 2016); and (c) a tool to evaluate human
performance factors and the impact of new methods or technologies.

Improving individual performance in healthcare organizations has been the main
focus of simulation-based medical education (SBME) to date. Careful review of
patient safety and quality control management databases revealed that iatrogenic
human error in clinical procedures is a common source of patient morbidity and
mortality (Kohn et al. 2002; Hripcsak et al. 2003). SBME programs were developed
to improve individual performance in common procedural skills. Outcome studies
were subsequently designed to assess the impact of the simulation intervention
through pre/post analysis of procedural complications, patient survival to discharge
and duration of hospitalization (Zendejas et al. 2013; Griswold-Theodorson et al.
2015; McGaghie et al. 2011a, b).

According to the Center for Disease Control (CDC), in 2009 an estimated
18,000 central line-associated bloodstream infections (CLABSIs) occurred among
patients hospitalized in intensive care units (ICU) in the United States, each car-
rying an attributable mortality risk of 12–25% in addition to millions in excess
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healthcare costs (Centers for Disease Control and Prevention 2011; Klevens et al.
2007). In an effort to reduce the complication rates, a team at Northwestern
University developed a simulation-based mastery-learning program for central
venous catheter (CVC) placement (Barsuk et al. 2009a). Following the imple-
mentation of its simulation-based training program, the team reported an 85%
reduction in CLABSIs (Barsuk et al. 2009b). Residents trained in the program
experienced fewer complications including fewer needle passes, arterial punctures,
catheter adjustments and higher success rates in CVC insertions in the medical ICU
compared with traditionally trained residents (Barsuk et al. 2009c). The study was
replicated at a second institution, where a 74% reduction in CLABSI rates was
reported (Barsuk et al. 2014). The researchers further demonstrated that the
improved patient outcomes resulted in significant medical care cost savings with a
7–1 return on investment (Cohen et al. 2010). In a separate study, training of critical
care nurses in sterile technique using a simulation-based training program resulted
in a reduction in the rate of CLABSIs of 85% in an ICU setting (Gerolemou et al.
2014).

Similar outcomes studies have been conducted in surgical simulation training
(Seymour 2008). Training on a virtual reality (VR) simulator has been shown to
significantly improve the performance of surgical residents in actual cholecystec-
tomies in the operating room (Ahlberg et al. 2007; Beyer et al. 2011). In addition,
residents trained on a VR colonoscopy simulator similarly performed significantly
better on real patients and experienced fewer procedural complications than the
control group (Park et al. 2007; Sedlack and Kolars 2004; Cohen et al. 2006).
Training Ophthalmology residents in a structured surgical curriculum in cataract
surgery resulted in a significant reduction in the sentinel complication rate, as
defined by posterior lens capsule tear, and vitreous loss during actual surgery, from
7.17 to 3.77% (Rogers et al. 2009). Experiential simulation training in thoracentesis
resulted in a decrease from 8.6 to 1.1% in the rate of pneumothorax (Duncan et al.
2009).

Strategic SBME interventions have also been designed to improve the perfor-
mance of healthcare teams in response to evidence that poor communication among
team members is a common source of avoidable medical errors. Studies in
obstetrics and gynecology have demonstrated that implementation of a
hospital-wide multidisciplinary simulation-based teamwork training can signifi-
cantly decrease the adverse outcomes index (Phipps et al. 2012; Riley et al. 2011).
In addition, targeted teamwork training in births complicated by shoulder dystocia
decreased birth complication rates of brachial plexus injury and neonatal hypoxic
ischemic encephalopathy and increased the APGAR scores of neonates at 5 min
after birth (Draycott et al. 2008).

Simulation-based teamwork training in the actual clinical setting has also been
shown to improve early trauma care and increase patient survival in cardiopul-
monary resuscitation codes (Morey et al. 2002; Steinemann et al. 2011; Capella
et al. 2010). Human factors experts argue that conducting simulations in the actual
unit where patient care is delivered probes for overt and latent problems in the way
the clinical environment influences human performance (Deutsch et al. 2016).
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This can therefore be a particularly useful method to identify system factors that can
impact patient outcomes. However, full-scale simulations in actual clinical spaces
can be challenging on several levels and can be disruptive to patient.

Simulation methodology can also be applied at the system level to improve unit
efficiency. Dynamic simulation modeling (DSM) is an alternative simulation plat-
form that can be used to create computer-based representations of real healthcare
processes to explore their interaction in a modeled clinical setting. The individual
healthcare processes are variables that can be adjusted to see how particular changes
affect the system outcomes predicted by the model (Deutsch et al. 2016; Isern and
Moreno 2016; Pennathur et al. 2010). A common DSM method used in modeling
healthcare systems is discrete event simulation (DES), which models the operation
of a system as a discrete sequence of events in time. It is of particular value in
studying resource management in a clinical setting to achieve a desired outcome,
for instance to reduce the wait time for patients in the emergency room (Day et al.
2012). In this scenario, a DES model was constructed using as adjustable
time-sensitive variables, triage and registration time, availability of ED beds, rooms,
labs and radiology services, nurses and physicians. The model predicted that wait
time was most dependent on the availability of ED beds, nurses, physicians and labs
and radiology resources. Researchers subsequently adjusted these variables to
identify the time-limiting resource and determined that increasing physician and
mid-lever provider coverage at triage significantly reduced ED length of stay.
Shorter length of stay has been directly associated with reduction in in-hospital
complications and improved patient outcomes (Rotter et al. 2012).

Similar computational models have been used by healthcare managers and
administrators to estimate bed capacity in an intensive care unit (ICU) setting (Zhu
et al. 2012; Ferraro et al. 2015), predict staffing needs based on patient mix, patient
acuity and resource costs (DeRienzo et al. 2016; Hoot et al. 2008) and optimize
patient care in the cardiac ICU (Day et al. 2015). Optimizing the use of available
resources allows for the delivery of more efficient, higher quality care at a lower
cost.

Model parameters can be captured from a rapidly growing dataset of clinical
information that includes electronic health records (EHRs), clinical research data
and quality improvement data (Isern and Moreno 2016). Advances in computing
have led in the past decade to the emergence of so-called “big data” as a tool for
understanding health system dynamics and informing decisions about patient care
delivery. Such data analysis has been defined in the bioinformatics literature as
“information assets characterized by such a high volume, velocity, and variety as to
require specific technological and analytical methods for its transformation into
value” (De Mauro et al. 2015). DSM can function as the analytical method to
evaluate and analyze large database to aid in the interpretation of its clinical sig-
nificance and test hypotheses about the impact on patient outcomes of potential
healthcare interventions (Huang et al. 2015).
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A team of health economists, software engineers, data miners, business analysts,
and clinicians demonstrated this system design process by integrating health
informatics, activity-based costing and dynamic simulation modeling to create
Network Tools for Intervention Modeling with Intelligent Simulation (NETIMIS)
(Johnson et al. 2016). This tool functions as a DES model that captures the flow of
individual entities (patients) through discrete events in a simulated process. The
utility of the tool was demonstrated through a simulation of potential care pathways
of patients presenting to the ED with sepsis. Potential care pathways included
admission to critical care, admission to the ward, and discharge home, among
others. The model was designed to assess the potential cost savings and reduction in
adverse patient outcomes with implementation of a hypothetical point-of care
testing device for early detection of severe sepsis. The sensitivity of the device in
detecting early symptoms of sepsis determined initiation of respective care path-
ways. Patient data in the model was derived from EHRs and provided an accurate
clinical model of symptoms exhibited by patients with sepsis. The tool was
pre-populated with reference sets of activity-based costs so that simulated actions
by healthcare providers within the model reflect current health economic cost
models. The NETIMIS model demonstrates the ability of computer simulations to
assess interventions within modeled clinical environments to evaluate and predict
healthcare outcomes.

On a population-based level, DSM has been used synergistically with infor-
matics to analyze chronic diseases such as diabetes, HIV/AIDS, cancer and heart
disease to identify patient factors that predict their progression (Gallagher and Cates
2004; Gaba 2004). Data derived from such models have then been applied to
inform decisions for patient-specific treatments (Cooper et al. 2002). For instance,
physicians have used simulation models to compare various treatment options in
adjuvant breast cancer therapy based on predicted outcomes and cost (Isern and
Moreno 2016). Computational modeling has also found applications in predictive
analytics; researchers were able to use a patient-specific DSM of epileptogenic
cortexes in patients suffering from intractable, medically refractory epilepsy to
determine which patients are likely to benefit from surgery (Sinha et al. 2016).

Patients interact with individual healthcare providers and healthcare teams in a
rapidly changing and increasingly complex care delivery system. New knowledge,
available treatments, equipment, technology, and business models constantly
redefine the standard of care and challenge the optimization of care delivery.
Creating an integrated, dynamic simulation architecture can help healthcare
stakeholders analyze the intrinsic complexity and diversity of healthcare delivery
systems and develop solutions for improving the performance of individual, team-
based and system processes to ultimately optimize healthcare outcomes. The
summary of outcomes categorized with respect to individual, team training, and
systems optimization is shown in Fig. 10.2.
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10.5 Design, Modeling Challenges and Opportunities

From a methodological perspective, simulation models in medicine can be classified
as simulation scenarios and simulation systems (Rozenblit and Sametinger 2015).
A scenario is a set of steps and actions that replicate a specific medical procedure
which may be as simple as phlebotomy (making a puncture in a vain with a needle)
or as complex as multiple-organ failure emergency treatment. As described above, in
such cases, various actions taken by the trainees are carried out in a simulated setting,
by either using actors as patients or computer-based systems and devices that
emulate human anatomy and physiology. In the systems category, we employ
models which are part of the training scenarios, and ones that are embedded in
various medical devices and equipment used in actual clinical practice.

Simulation-based training cycle can be abstractly represented as shown in
Fig. 10.3. Trainees are students, fellows, residents, EMS personnel, etc., who use
various medical implements to carry out a training exercise/procedure. As discussed
in Sects. 2–4, they can practice on low-end trainers or highly complex simulators.
The low-end trainers do not incorporate in them the process and steps to be fol-
lowed in order to perform a certain procedure—in this case, the step are typically
quite simple. They are described by the supervisor or simply given through a
description of the task to be completed. The high-end trainers “drive and guide” the
users through a series of procedural steps. Such simulators provide feedback on
how well users perform. This is done through the set of metrics. The training cycle
continues until a satisfactory performance level has been achieved.

Either group, that is simulation-based training process models, and simulation
systems, presents different challenges for validation, assurance of robustness, and
security but also a set of exciting opportunities for leveraging from high technology
in simulation-based training.

Fig. 10.2 Summary of healthcare outcomes
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Such training requires not only the requisite physical equipment that is used in
medical procedures, but also correct/valid models that are the foundation for emu-
lating the symptoms and responses to “virtual treatment”. For instance, in a scenario of
anaphylactic shock—a life-threatening allergic response—the model should present
typical symptoms such as swelling, a weak and rapid pulse, lowered blood pressure,
skin reactions, etc. The treatment by injection of epinephrine and its outcome should
be reflected by the reversal of such symptoms. This is key to proper understanding of
the case and learning how to appropriately treat it (Rozenblit and Sametinger 2015).

Therefore, proper validation and verification (i.e., assurance that the simulator
faithfully executes the underlying models) of the trainers must be carried out prior
to their deployment. In addition, as trainers become more and more sophisticated
and incorporate discrete, continuous, and hybrid dynamic models, mechatronic (i.e.,
electronic and mechanical) devices, immersive, virtual reality environments, and
very complex control software, integration of all such subsystems are non-trivial. In
essence, despite the growth of new technologies for hardware and software design,
networked computation, sensing, and control, the following challenges remain:

• How to tackle the complexity of the systems, which requires long design cycles,
verification, and certification (if such is needed).

• How to develop unifying formalisms for specification and exploration of design
options of such complex systems before that are physically built and deployed.

• How to ensure flexibility in modification and re-configuration of training
systems.

• How to ensure robustness and security of medical simulation systems and
devices.

Fig. 10.3 A conceptual, simulation-based training cycle
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In regard to the last concern, embedding models, or more specifically their
realizations in the form of computational processes encoded as software and
hardware, in actual medical devices presents an extraordinary set of safety, security,
and reliability challenges. Such models effectively “run” complex implantable
devices and are a key component in medical imaging or robotic surgeries. Consider,
for example, computer assisted surgery (CAS). CAS enhances the capabilities of
surgeons performing surgery (for instance, using the DaVinci surgical robot
(Gettman et al. 2004) but it requires models of ultimate reliability and robustness.
Indeed, it is easy to imagine the dire consequences of improper translation of the
surgeon’s hand’s movements into a maneuver of the DaVinci’s robotic arm’s
end-effector. This highlights the urgent need for research into assuring absolute
robustness of such life-critical computing systems.

Additionally, given the recent exponential rise in cybersecurity threats and
attack, security measures should be implemented to guarantee confidentiality,
integrity, and availability of simulation systems. In medical simulators, confidential
information includes the performance of residents during training. The integrity of
information becomes critical when medical reasoning is based on this information.
In simulation, modified parameters may lead to discrepancies between the simu-
lated and the real world, thus, yielding to medical errors and declined outcomes in
real patient scenarios later on (Sametinger and Rozenblit 2016).

In training scenarios with simulators there is no direct impact on real patients.
However, maliciously modified simulators can have various negative conse-
quences. For example, surgery residents may automate surgical skills based on
parameters that do not exist in the real world, resulting in a negative training effect
and increasing the potential for error and negative outcomes. Besides training,
simulation can be used in surgery for pre-surgical planning, and for guiding or
performing surgical interventions. Therefore, it is critical that the integrity and
security of such models are ensured as any compromise may result in negative
outcomes.

Opportunities for further research in simulation modeling for healthcare

The challenges listed above have already spurred research in realms such as space
and aeronautics, industrial plants, or autonomous vehicles. Further application of
the theory-based methods and techniques from the following (related) fields, to
medical simulation is envisioned.

1. Design and modeling for high-autonomy systems: the intent here is to provide
trainees as much assistance as possible throughout the training process so that
sophisticated trainers can take on the role of a “master” in the classic
“master/apprentice” model. To design such systems, modelers must integrate
sensing and control features that monitor and adapt to users’ performance in
order to provide the “right” kind of guidance, that it assistance that is func-
tionally correct and measured in a manner that leads to better outcomes. Design
of such highly autonomous systems will clearly have features offered by arti-
ficial intelligence and machine learning.
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2. Artificial Intelligence: due to the advances in computational techniques and
underlying HW/SW technologies, AI is currently experiencing strong resur-
gence. Speech recognition, reasoning, natural language processing, planning,
fuzzy logic, and heuristics all offer an exiting potential for building high-end
medical simulators.

Machine Learning (ML): as pointed out in Sect. 1.3, big data, predictive ana-
lytics is already being used extensively for modeling in healthcare. In the proce-
dural, training context, ML is envisioned as a tool to provide a user-tailored training
experience, where adaptation to individual trainees will take place based on their
initial skill level and degree of progress they make throughout the learning process.

10.6 Future Developments in Medical Simulation

In 2004, David M. Gaba, one of the pioneers of simulation in healthcare at Stanford
University, provided a future vision of simulation in which he proposes “full inte-
gration of its applications into the routine structures and practices of healthcare” (Gaba
2004). To date, medical education continues to operate largely under an apprentice-
ship model of training, originally developed by Halstead in the 1920s (Evans and
Schenarts 2016). Over the last decade, simulation has gained wide acceptance in
graduate medical education (GME) programs as a way to train and certify physicians
in particularly in procedural skills. However, the full integration of simulation into
clinical education, training, and outcomes assessment has yet to occur.

One of the challenges of embracing simulation as a robust educational
methodology is that its benefits only emerge after long-term implementation.
Improvements in patient safety and reductions in healthcare spending, long held as
the hallmark benefits of simulation training, are difficult to measure, especially
when one attempts to translate those benefits into hard financial data. Without an
irrefutable clinical or financial evidence base, most healthcare organizations remain
reluctant to make large and significant institutional investment in simulation. This is
all the more difficult as new technologies in medical simulation, like immersive
virtual reality and holographic displays, for example, can be very expensive pur-
chases until they gain a wider commercial market. Moreover, academic Medicine,
like many institutional cultures can often be resistant to change. Many physicians
continue to argue that training in a simulation environment cannot achieve the
degree of immersion provided by actual patient care. However, several market
forces are likely to force a change in the medical education model and lead to
further expansion of simulation use in the future.

Reducing the cost of healthcare is likely to be the primary driving force for the
wider expansion of simulation use. Medical errors and poor patient outcomes
continue to be a primary cost burden for healthcare organizations in the form of
wasted resources and increased length of hospital stays. Administrators and poli-
cymakers look to simulation to provide a systematic training to educate, train and
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assess personnel, teams and systems to provide safe clinical care. In order to
improve patient safety, risk managers, insurers, and government and
non-government regulatory and accrediting bodies are likely to demand a robust
simulation architecture be in place (Evans and Schenarts 2016). Furthermore,
reductions in work hours have led to unbalanced clinical exposure and experiences
among training healthcare trainees. Simulation provides a systematic and reliable
way for healthcare organizations to standardize clinical training and to train pro-
viders to specific benchmarks of competency.

As changes are made to training curricula to expand use of simulation, new
informatics technology support systems must be established. Learner management
systems (LMS) are playing an increasing role in tracking the progress of learners
towards competency-based training goals. Tracking a learner’s performance both in
the simulation lab as well as the clinical setting allows for more efficient integration
and smarter training. It provides educators with critical information of how best to
tailor a learner’s training curriculum to address specific deficiencies in clinical
performance. Linking simulation training to known clinical weaknesses with high
potential for error maximizes the clinical impact of the training. Using clinical
performance data will inform training and allow healthcare providers to continu-
ously refine their skills through simulation tools that will be a natural extension of
the real clinical environment.

New technological support systems will facilitate the process of integration. In
order to make training more realistic, use of hybrid simulators that combine stan-
dardized patients (SP) with virtual reality adjuncts are likely to grow. For example,
an SP may wear an ultrasoundable skin model to enhance the diagnostic learning
experience. Similarly, a simulated trauma patient may wear a synthetic chest tube
model to allow learners to perform invasive procedures when clinically indicated.
These VR adjuncts are flexible and adjustable allowing educators to modify the
learning experience and simulate the full breadth of actual clinical encounters.

Virtual reality training environments, as a technological domain, are likely to
have greater applications in simulation training (Badash et al. 2015). The degree of
immersion (i.e., the sense of realism experienced by learners involved in a training
task or setting) in the virtual clinical environment will steadily grow. At some time
in the future, learners will be able to log into an interactive virtual environment that
is a replica of the actual clinical environment. As avatars, they will interact with
virtual patients and other providers as they would in the real world. Improvements
in haptics technologies will eventually allow them to perform physical exams and
procedural interventions on virtual patients.

Surgical simulators have made the greatest advances in this area. Using medical
imaging and computer-aided design technologies, researchers have developed
patient-specific VR simulators to allow surgeons to plan and practice complex
procedures in a virtual environment (Vakharia et al. 2016; Makiyama et al. 2012).
Moreover, 3D rapid prototyping has allowed researchers to produce accurate ren-
ditions of patient-specific anatomic variations (Endo et al. 2014). In neurosurgery,
3D printed models of patient-specific aneurysms have allowed surgeons to plan the
trajectory of approach and to test different aneurysm clips for size and shape

10 Systems Design, Modeling, and Simulation in Medicine 225



(Kimura et al. 2009; Ryan et al. 2016). As these technologies continue to grow and
the interface between the virtual and the real world continues to dissolve, surgeons
will be able to harness the benefits to become more efficient and skillful in the
operating room. Improving the realism of these virtual training environments will
also revolutionize licensing examinations for board certification. Instead of verbally
describing the steps of a surgical procedure during oral board proceedings, surgeons
will be adjudged by their actual performance on virtual trainers. The ability of VR
trainers to provide a standardized assessment makes this particularly effective. This
type of assessment method will approach the systematic use of simulation in the
aviation industry, where flight simulators have been used extensively for the pur-
pose of certification.

In an effort to improve efficiency and reduce costs in healthcare delivery,
healthcare organizations are likely to expand the use of computational modeling. To
make the best use of available resources, complex simulation models will be
applied to every healthcare process. Hospital inventory, staffing, scheduling, and
delivery of services will be determined by models that seek to optimize patient care
and satisfaction while limiting costs. Furthermore, every proposed change to the
system will undergo extensive testing in a simulated environment prior to imple-
mentation. Advances in computational speed and growth of available databases will
allow system engineers to construct more accurate and complete models of
healthcare organizations. This will allow researchers to better isolate the impact of
individual components on the operation or behavior of the system and implement
changes accordingly to increase overall efficiency.

Finally, the field of health economics will make greater use of computational
models to improve the delivery of individualized healthcare in clinical practice.
Simulations of disease progression based on patient’s individual disease states
compared to a large cohort of similar patients will be used routinely to drive clinical
decisions regarding care (Zafari et al. 2016). Simulation models will be used to
evaluate the potential value of new products or services, as for instance telemon-
itoring for heart failure patients (Kolominsky-Rabas et al. 2016) or team-based care
for hypertension (Dehmer et al. 2016). Prospective health outcomes will be mod-
eled against the economic impact to create a smarter, more efficient way to deliver
high-quality healthcare.

The use of simulation as a means of training healthcare providers and improving
the efficiency of healthcare organizations has a big potential to grow. Progress over
the last two decades has shown the great potential of simulation but more sys-
tematic, long-term implementation must be achieved to realize its true benefits—
that is to create a sustainable healthcare system that produces safer, higher quality
care at lower costs.

Review Questions

1. Who are the key stakeholders in medical, simulation-based training?
2. How does simulation improve professional competency?
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3. How does simulation improve healthcare outcomes?
4. What are the categories of models and simulators used in healthcare training?
5. What are the technical challenges and impediments that modelers face in

designing complex healthcare simulators.
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Chapter 11
Flipping Coins and Coding Turtles

The Evolution of M&S in the Social Sciences

David C. Earnest and Erika Frydenlund

Abstract Nearly four decades ago, Thomas Schelling used coins and a checker-
board to simulate how simple social rules could produce stark neighborhood seg-
regation. That early social science model marked the beginning of a movement to
incorporate simulation into social science that continues to gain momentum today.
Using political science and international studies as a frame of reference, this chapter
explores the incomplete permeation of simulation into the statistical and qualitative
research toolkits of those pursuing social inquiry. We begin by chronicling the
development of several key advancements in modeling social systems, including
formal modeling such as game theory, the adoption of statistical and computer-
based modeling, and the advancement of computational social sciences using
evolutionary computation and other dynamic modeling paradigms. Then, we dis-
cuss how and why simulation remains at the periphery of social science research
methodologies. We compare a classic Prisoner’s Dilemma model to one designed
using an agent-based simulation approach to illustrate the population ecology of
emergent strategies. The chapter concludes with a discussion on the ways simu-
lation of social systems would have to evolve to have more impact on the field of
social sciences.

Keywords Computational social science � Social simulation � History �
Emergence � Empiricism � Behavioralism � Game theory � Computer-based
simulation � System dynamics � Complex systems theory � Complexity �
Sugarscape � Prisoner’s dilemma � Social structures � Agent memory � Social
science � Validation � Verification � Participatory methods � Model docking

D.C. Earnest
Department of Political Science & Geography, Old Dominion University, Norfolk, USA

E. Frydenlund (&)
Virginia Modeling, Analysis and Simulation Center, Old Dominion University,
1030 University Boulevard, Suffolk, VA 23435, USA
e-mail: efrydenl@odu.edu

© Springer International Publishing AG 2017
S. Mittal et al. (eds.), Guide to Simulation-Based Disciplines,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-3-319-61264-5_11

237



11.1 Introduction

In his 1979 book Micromotives and Macrobehavior, social scientist Thomas
Schelling introduces a rudimentary but important model of residential segregation.
Using a checkerboard whose squares he randomly filled with pennies and dimes,
Schelling (1978) moved each coin according to a simple rule: a penny or quarter
would move to an available adjacent square if it was “unhappy”—that is, if the coin
was a minority among the coins on the neighboring eight squares. Of course, as
each coin moved to a new square, it may change the calculus of its neighbor’s
happiness, illustrating the interdependent choices of all the coins on the board.
Nearly forty years old now, Schelling’s pennies and dimes represent an early
example of the synergy between game theory and agent-based modeling, albeit in a
manual rather than computational form. By varying the threshold of a coin’s
unhappiness (for example, a coin is unhappy if fewer than 25% of adjacent squares
are filled with like coins), Schelling’s model produced an astonishing result. Even
in a “society” of coins that would tolerate being in the minority in their own
neighborhood, stark patterns of segregation emerged after a few rounds of move-
ment of the coins. Now considered a classic, Shelling’s segregation model illus-
trated an important point of social theory: individual rational choices (seeking like
neighbors) may produce a collective outcome that no one intends (segregation).
More generally, the model illustrates the perils of the ecological inference problem:
attributing motives to individuals based on observation of macro-social dynamics.
Beyond these important points of social theory, however, Schelling’s simple model
also can help us think about how quantitative and simulation methodologies have
contributed to the social sciences.

In this chapter, we examine the role of modeling and simulation methodologies
in the social sciences. Starting with a brief history of the social sciences, we trace
the origins of contemporary methods to the emergence of the study of societies as a
scientific endeavor in the nineteenth century to the twentieth century innovations in
social statistics, game theory, and computational methods. This history documents
the considerable contributions of formal, empirical and mathematical modeling to
social theory in a variety of disciplines. To illustrate the emerging convergence of
various simulation methodologies including game theory, agent-based modeling
(ABM) and evolutionary computation, we provide a simulation of a classic social
choice problem: the prisoner’s dilemma. Our model illustrates how simulation may
elaborate traditional games of social choice by extending the game to multiple
players; by examining the roles of iteration and learning; and by experimentally
varying the social structure in which players interact. Although merely illustrative,
we argue the ABM demonstrates how modern computational methods help social
scientists produce models of social phenomena that are richer, more generalizable,
and more tractable than previous formal and statistical methods of social analysis.
We conclude the chapter with some informed speculation about the future of
modeling and simulation in the social sciences.
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11.2 History of Quantitative Methods in the Social
Sciences

Since their emergence as scientific fields in the 19th century, the social sciences
have adopted various methods of quantitative analysis varying from systematic
empirical inquiry in the nineteenth century to today’s computational social simu-
lation. As in other scientific fields, the social sciences often have benefitted from
simultaneous innovations in complementary methodological fields, first statistics
and then more recently low-cost computation. In this section, we provide a brief
overview of this history by focusing on three broad paradigms of quantitative social
scientific research: empiricism and behavioralism; mathematics and game theory;
and computer-based simulation.

11.2.1 Empiricism and Behavioralism

The social sciences first emerged in the 19th century when founders of the field of
sociology, principally French scholar Émile Durkheim, proposed that observers of
social life should bring to their subjects the methods of science (Durkheim and
Lukes 1982). Durkheim advocated for an inductive approach to building social
theory based on systematic observation and inquiry. The founders of social science
argued that regularities exist in social life that researchers can discover, observe and
measure. As in the natural and physical sciences, early social scientists espoused a
rigor of methodology that would permit not only the verification or falsification of
social theories but also the replication of results. Their emphasis on non-normative
social sciences—theorization, observation and inference free from the value judg-
ments of scholars—represented an important disjuncture from social theory’s ori-
gins in the humanities. Although social philosophy and history remain important
(normative) fields of inquiry in modern social scientific disciplines, the predomi-
nance of positivist epistemologies in sociology, anthropology, political science,
economics and psychology attests to the enduring influence of the scientific method
on social research.

The earliest quantitative methods in the social sciences were large-sample sur-
veys, the data from which scholars would create and/or validate social theories.
Durkheim’s Suicide (1897) is an early example of this inductive, data-driven
approach. Using data on suicides from different police districts, Durkheim
hypothesized that stronger social “control” (norms and values) among Catholic
communities explained their lower suicide rates when compared to Protestant
communities. Although Durkheim’s study subsequently faced considerable criti-
cism, it typifies early quantitative methods in social science: it used systematically
collected data to argue that properties of societies (social control) rather than
individual or psychological factors can explain observed differences in societies. In
this respect, early survey research proposed a social structural ontology that one can
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observe and measure; that exists external to the individual; and that is fundamen-
tally different than the simple aggregation of individual preferences or choices.

In the mid-twentieth century, however, some social scientists began to question
the structural theories of social research. Originating in political science, behav-
ioralism accepted the positivist methods of social research including verifiability,
systematic measurement, replicability and non-normative theory. However,
behavioralists proposed that social inquiry should re-focus on individuals rather
than social practices and institutions. By examining how people process informa-
tion, make decisions, and communicate with each other, behavioralism distin-
guished itself from the structural emphases that characterized the social sciences in
the first half of the twentieth century. In addition to the discipline of political
science, psychology also adopted behavioral methods. More generally, the
behavioral sciences differ from the social sciences in their greater emphasis on
observation of, measurement of, and theorization based on individuals rather than
the properties of social groups. Although behavioralism and social structuralism
differed in ontologies, theories, and hypotheses, both benefitted from innovations
that marked the emergence of statistics as a discipline distinct from mathematics. In
particular, sociologist Paul Lazarsfeld, who founded Columbia University’s Bureau
of Applied Social Research, pioneered the statistical analysis of survey data and
latent class analysis (Clogg 1992). In general, during the mid-twentieth century
social scientists increasingly combined the systematized empirical methods of early
social research with the inferential methods of statistics (Blalock 1974).

11.2.2 Game Theory

Just as behavioralism was a reaction to the structuralism of early social research, so
was game theory a reaction to the inductive empiricism of most social sciences.
Game theory is a set of formal (mathematical) methods for understanding bar-
gaining, conflict, and cooperation among rational actors who have interdependent
“payoffs” or rewards for their choices. Rather than constructing social theory
through induction based on empirical observation of regularities in social actors,
game theory proposes to deduce social behaviors from formal representations of
actor choices, incentives, and rewards. Game theorists propose that social choices
involve uncertain outcomes (“gambles”); interdependent rewards (payoffs); and
variable amounts of uncertainty about these choices. By representing gambles,
payoffs, and information in mathematical equations, game theory proposes that
social scientists can deduce likely choices of individuals and, by extension, the
prospects for social cooperation or conflict.

Most historians of the social sciences date the origins of modern game theory to
discussions in the 1940s between mathematicians Oskar Morgenstern and John von
Neumann, both of whom worked at Princeton University’s Institute for Advanced
Studies. O’Rand (1992) argues that the historical context helps understand both the
motivation for a deductive social science, and its evolution from an obscure branch
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to a widely practiced methodology in the social sciences. During and following
World War II, federally sponsored research in the United States emphasized
problems of war and peace as well as industrialization and scientific management
(which found expression as operations research). In addition, tumult in Europe led
to the migration of a considerable number of scientists to the United States,
including Morgenstern (an Austrian who was visiting Princeton when Nazi
Germany invaded Austria) and von Neumann (a Hungarian who left a position in
Germany for Princeton in 1930). In 1944, von Neumann and Morgenstern pub-
lished The Theory of Games and Economic Behavior which introduced the concept
of expected utility, or the subjective valuation that a rational actor attributes to a
choice characterized by uncertainty (Von Neumann and Morgenstern 1944). Von
Neumann–Morgenstern utility theory remains the foundation of contemporary
game theory. Although scientists at the Institute for Advanced Study engaged in
productive exchange and collaboration, O’Rand argues that the relatively insular
community (and another at the University of Michigan) shared ideas and innova-
tions through informal and social communications more than through scholarly
publishing (O’Rand 1992). For this reason, adoption of game theory in the social
sciences proceeded relatively slowly, only finding a broader audience in the late
1950s.

Among the challenges of early game theory was how to model players’
knowledge about a game’s structure of payoffs and its history of play. Although
early models of games assumed that players would make simultaneous choices, the
innovation of sequential play games required modelers to explicate whether players
know the history of prior plays (what they call “perfect” information) or the
strategies and payoffs available to other players (“complete” information) (Gibbons
1992). Another Hungarian-born mathematician, John Harsanyi, made substantial
contributions to the study of games of incomplete information (Harsanyi 1967).
Together with von Neumann and Morgenstern, Harsanyi’s contributions form the
foundation of modern game theory. Their deductive methods allow researchers to
model “static” games of simultaneous play; dynamic games of sequential play; with
perfect, imperfect, complete and incomplete information.

Whereas in the 1950s game theory remained the province of mathematically
inclined social scientists, two more recent works contributed to the broad adoption
of the methodology in all social scientific disciplines. The first was Thomas
Schelling’s The Strategy of Conflict (1960), which relaxed the assumption of von
Neumann–Morgenstern utility theory to hypothesize that irrational actors and
credible threats to cheat could alter equilibrium solutions to games. In this respect,
Schelling brought to game theorists important discussions about player motives
including fear, honor, and myopic perception. The other important contribution
arises from a series of studies conducted by political scientist Robert Axelrod on the
prisoner’s dilemma, one of the canonical static games of complete information in
which players face strong incentives to eschew cooperation (“defect” in the argot of
game theory). Axelrod’s (1980) research, including a tournament in which he
invited fellow scientists to propose optimal strategies for the prisoner’s dilemma,
culminated in the publication of The Evolution of Cooperation (1984), which
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illustrated that repeated plays of the prisoner’s dilemma allows players to learn
cooperative strategies that improve their long-term payoffs. This finding has
informed not only a vast subsequent literature on how social institutions produce
cooperation but has also informed policy-making in diverse fields.

O’Rand notes that while at the Institute for Advanced Study, Morgenstern was
“a pariah among the traditional economists on the faculty at Princeton” (O’Rand
1992: 184–85). In the half decade since its wide adoption in the social sciences,
several game theorists have received the Nobel Prize in Economics including
Harsanyi, John Nash and Reinhard Selten (in 1994); Robert Lucas (in 1995); and
Schelling (in 2005). The recognition of these scholars attests to the widespread
influence of game theory in the social sciences today. Along with statistics, it
remains a foundational methodology in most graduate curricula in the social
sciences.

11.3 Computer-Based Simulation

In the 1990s, computer-based simulation for social science research questions
began to grow in popularity as a research method. The 1990s ended with the
establishment of the Journal of Artificial Societies and Social Simulation (JASSS)
in 1998. This move paved the way for broader acceptance of M&S in the social
sciences by serving as a platform for interdisciplinary research. Two of the main
modeling paradigms, system dynamics and agent-based modeling, are discussed
below with primary emphasis on ABM.

11.3.1 System Dynamics

Economists paved the way for system dynamics modeling in the social sciences
since the 1970s, with computational models giving way to system dynamics
(SD) models of global socio-political and economic interactions (Chadwick 2000).
The International Futures model, begun in the 1980s, links data on countries
grouped by region and evaluates factors such as economies, demographics, and
food and energy systems for policy analysis (Hughes 1999). In that era of
advancing computer-based modeling technologies, anthropological research uti-
lizing system dynamics approaches also appeared (Picardi 1976), but with less
influence than the economic models. Early on, some even proposed that SD models
could serve as learning tools for articulating processes informed by qualitative data
in the social sciences (Wolstenholme and Coyle 1983) and the study of history
(Bianchi 1989). The purposes of these models, as of the late 1990s, was largely to
plan or conceptualize complex processes rather than to predict or test hypotheses
(Chadwick 2000).
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Starting in the early 2000s, more social phenomena become the subject of SD
models. van Dijkum et al. (2002) introduced a system dynamics model to look at
individual learning and fatigue based on survey data for health psychology
research. They contend that since social scientists are familiar with evaluating
phenomena using cause and effects models, and system dynamics models provide a
natural way to translate these traditional research approaches into mathematical
models that can accommodate both quantitative and qualitative data. Continuing
with the movement toward modeling socio-economic phenomena, more contem-
porary models include SD approaches to understanding diffusion of democracy
(Sandberg 2011), land use among agrarian societies (Rasmussen et al. 2012),
housing markets (Ouml et al. 2014), and refugee migration (Vernon-Bido et al.
2017). System dynamics, while still not widely used by many social scientists, is a
fruitful area for modeling complex processes.

11.3.2 Agent-Based Modeling

Agent-based modeling (ABM), however, is particularly well-suited to the field of
social sciences and has experience wider acceptance than system dynamics para-
digms. The accessibility of object-oriented programming languages and
user-friendly environments has created a community of researchers—students and
faculty alike—who embrace ABM as a method for exploring the physical and social
sciences (Lerner et al. 2010). From Schelling’s (1978) model of housing segrega-
tion based originally on a physical checkboard model and later in a computer
algorithm, the vast variety of agent-based models is reflected in modern repositories
like OpenABM (https://www.openabm.org) and the NetLogo Models Library and
Modeling Commons (http://modelingcommonns.org).

Axelrod (1986) led the forefront of the social science ABM movement when he
simulated the emergence of behavioral norms and firmly grounding ABM in the
fields of sociology and political science. In the 1990s, Epstein and Axtell (1996)
developed the Sugarscape model where simple behavior rules about agents con-
suming resources resulted in emergence of behaviors representing those that evolve
in society. There were even models constructed to inform policy and practice in
real-world settings in the early years of social science ABM (Doran 2001). Social
scientists began steadily to contribute to the growing field of ABM as they were
drawn to the ability to construct heterogeneous, autonomous agents in boundedly
rational space, rather than reconstruct social realities based on traditional mathe-
matical or statistical models (Gilbert and Troitzsch 2005; Epstein 2006; Gilbert
2008; Macy and Willer 2002).

Throughout the decades that followed this initial work, social scientists con-
structed agent-based models to explore and test theories on identity and norm
creation (Lustick 2000; Rousseau and van der Veen 2005), ethnic violence and
conflict (Bhavnani and Backer 2000; Miodownik and Cartrite 2010; Yamamoto
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2015), and political processes (Lustick 2011; Epstein 2013; Bhavnani 2003; Castro
1999), among countless other social phenomena. Agar (1997a) went on to propose
that ABM presents an opportunity to move beyond the dichotomy of deductive
versus inductive approaches. That argument continues on in the development of
ABM for educational purposes as a way to more rigorously analyze physical and
social phenomena (Jacobson and Wilensky 2006; Wilensky and Resnick 1999).

11.4 Complex Systems Theory

Various modeling paradigms have begun to infiltrate the traditional statistical and
qualitative methods of social sciences, but Complex Systems Theory unified many
of these pursuits across disciplines. Weaver (1948) proposed that mathematical and
statistical advances, while important, were not yet powerful enough to capture the
complexity of many physical and social systems. He proposed a move toward
exploring what cannot be quantified by traditional scientific methods, thus opening
the door for complex systems thinking. In a modeling context, Wolfram (1985)
used cellular automata models to demonstrate regularities that underlie complexity.
He began using computer simulations and experiments to test the boundaries of
complexity, try to understand where simple rules result in complex outcomes, and
witness the edges of chaos. Scholars adapted these ideas to other fields, including
international relations where the concepts are applied to the complex adaptive
systems of political processes (Cederman 1997; Bousquet and Geyer 2011; Earnest
2015).

Relative to computational social sciences, complex systems have certain char-
acteristics in common: simple components/agents, nonlinear interactions, emergent
behavior (often through learning and evolution), and no centralized control entity
(Mitchell 2009). These attributes align well with the defining features of
agent-based models, specifically heterogeneity, repeated and localized interactions
of autonomous agents, and bounded rationality where agents have limited global
knowledge about the system in which they exist (Epstein 2006). These fundamental
attributes of ABM lend themselves to generating complex social phenomena from
the bottom up by endowing agents with attributes and algorithms for
decision-making and learning, and then observing the macroscopic-level phe-
nomena that arise from repeated interactions. Epstein (2006) summarizes, “The
agent-based approach invites the interpretation of society as a distributed compu-
tational device, and in turn the interpretation of social dynamics as a type of
computation”. ABM, then, opened up a new avenue for social science research that
has yet to fully reach the mainstream.

Two distinctive schools of agent-based modeling emerged in the 1990s, which
one might call the North American and European traditions. Reflecting the
approach of Epstein and Axtell’s (1996) seminal “Sugarscape” model, the North
American school views agent-based models as abstract and general representations
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of a complex system. There is no real-world referent for the Sugarscape, for
example. Much as game theorists rely on deductive methods to model interaction,
agent-based modelers in this tradition deduce agent rules and interactions from
extant theory. Only after model construction and experimentation would the
modeler seek to compare simulation results with empirical data. One advantage of
the North American school is that modelers can investigate social phenomena for
which empirical data is costly, scarce, difficult to obtain for ethical reasons, or from
historically rare events. For example, researchers have used ABMs to study
dynamics of secessionist movements (Lustick et al. 2004) or insurgencies (Bennett
2008). The North American school of ABM reflects the earliest abstract agent-
based modeling developed at the Santa Fe Institute; Epstein and Axtell’s initial
collaboration and then Axtell’s work at George Mason University; and a cluster of
researchers at the University of Michigan including Agar’s work on The Evolution
of Cooperation (1997b), John Holland’s pioneering work on genetic algorithms,
and political scientist Scott Page.

By contrast, a European tradition emerged around this same time primarily in
Paris and Manchester, UK. In contrast to the North American tradition, the
European school embraced “evidence-driven” modeling. As the name suggests, the
European school views empirical measurement and data-gathering as antecedent to
model construction. Rather than an ABM serving as an abstract generalization of a
social phenomenon, modelers in the European tradition view ABMs as represen-
tations of real-world social systems and problems. Modelers in this tradition often
engage with stakeholders or subjects to understand their perceptions, decision-
making, and strategies when confronted with a social choice. The companion
modeling approach developed by Barreteau et al. (2003a) exemplifies this
engagement with human subjects: the approach not only consults with stakeholders
but involves them in an iterative process of model construction, feedback, and
validation. Variously referred to as evidence-driven modeling or participatory
modeling, this approach’s emphasis on fidelity to real-world social systems pro-
vides modelers with ABMs that enjoy strong micro- and macro-level validity (i.e.,
at the level of both agents and emergent phenomena). Typical of this school’s
approach are studies that have used evidence-driven ABMs to study the manage-
ment of common pool resources (e.g., Le Page and Bommel 2005). Whereas the
North American tradition sacrifices some level of validity for generality, the
European school prefers validity to generalization. Examples of the European
school include the work of Bousquet (2005), Geller and Scott Moss (2008), and
Barreteau (2003b, 2007).

Although the European and North American schools of modeling originated
with distinctive approaches, today modelers productively borrow from both tradi-
tions such that the distinction is blurred. Neither tradition is a substitute for the
other; they are complementary methods, the choice of which depends upon the
modeler’s need for validity, generalization, and empirical data.
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11.5 Prisoner’s Dilemma Example

Among the most studied problems of collective action, the prisoner’s dilemma
offers a useful metaphor for understanding challenges to social cooperation when
utility-maximizing actors cannot enforce agreements and are concerned about the
distribution of gains (Table 11.1). Prisoner’s Dilemma is a game theoretic model
involving two players attempting to cooperate to receive a lighter sentence. The
premise is that two people are arrested for a crime, but the scant evidence requires a
confession. Each player cannot know what the other will do. The sentencing works
as follows:

• If both players choose to stay silent, they will both receive a reduced sentence,
say one year each.

• If both players implicate the other, they will each receive two years in jail.
• If one prisoner implicates the other, but the other remains silent, the accuser gets

off scott free while the other gets three years.

Cooperation would yield the best collective result, when both stay silent (for an
aggregate payoff of two years). However, since the players cannot communicate
about their choices, they are motivated to implicate each other and thus each receive
two years sentencing (for an aggregate payoff of four years; see Table 11.1 for
payoff matrix).

In its original two-player, single-play form—what game theorists call a static
game—its very parsimony limits its application to a broad range of real-world
cooperation problems. The two-player game tells us little about how large groups
may cooperate, whether multinational firms seeking to set technical standards or
civil society groups seeking to mobilize supporters in support of a common cause.

Early studies of the prisoner’s dilemma, particularly Schelling’s (1980) seminal
The Strategy of Conflict, noted the imperative of extending the game to a multi-
player and iterated form. The challenge of multiplayer games is that, once extended
beyond the simple two-player structure, the modeler must make theoretically
informed assumptions about the structure of social relations among the many
players. In this context, social “structure” refers to the organization of relations
among actors, including direct or face-to-face interactions (a spatial assumption) or
indirect interactions such as among firms competing in a market (a network
assumption). Such assumptions must include how actors communicate preferences
among each other, and whether they play simultaneously with all other players or a
series of sequential two-player games. One scholar calls this the problem of

Table 11.1 The two-player
Prisoner’s Dilemma with
cardinal payoffs

Prisoner’s Dilemma

Player 1 Player 2

Cooperate Defect

Cooperate 2, 2 0, 3

Defect 3, 0 1, 1
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“context preservation”, which requires some mechanism to preserve the social
neighborhood or temporal context of the players (Power 2009). Studies in multi-
player prisoner’s dilemma have found that outcomes of the game are highly sen-
sitive to different assumptions about the spatial or networked structure of iterated
player interactions (Skyrms and Pemantle 2009; Matsushima and Ikegami 1998).

Contemporary modelers have adopted two strategies for representing social
structure in the multiplayer prisoner’s dilemma. One is to use cellular automata to
govern the structure of interaction among players: an actor would play the game
only with its Moore neighbors (those represented spatially as above, below, left and
right of the player’s cell) (Nowak and May 1992; Akimov and Soutchanski 1994).
The other is to use explicit representations of the physical space of game play—for
example, using geographic information science (GIS) data about real-world loca-
tions of social interaction (Power 2009)—or adopting social network structures,
either theoretical or empirical, to examine how network properties affect the pro-
spects of cooperation (Earnest 2015). One advantage of the networked represen-
tation of game context is that the modeler may allow social structure to evolve
endogenously in a multiplayer game. For example, players may learn to play
repeatedly with “trusted” players while ignoring others, effectively rewiring the
social network to find the most cooperative partners.

Because differences in social networks may profoundly affect the prospects for
cooperation in the multiplayer prisoner’s dilemma, we build an agent-based model
that allows us to vary experimentally the network structure in which players interact.
Although the formalism of social network analysis and its mathematical cousin graph
theory may be daunting, the simple intuition these methods capture is that rarely do
actors know everyone else in a social system, a so-called “all-to-all” network. It is
much more likely for an individual to have a few close relations, who in turn have a
circle of social relations that only partially overlaps with the first individual. Studies
of multiplayer prisoner’s dilemma may use commonly studied network structures
such as a fully connected (all-to-all), small world, or scale-free network. Prior studies
have found that network structure affects the prospects for cooperation. One study
found that cooperation emerges if the average number of a player’s neighbors (the
player’s degree) exceeds the ratio of the benefits to costs of action (Ohtsuki et al.
2006). Another finds that scale-free networks greatly enhance the prospects for
cooperation in a variety of multiplayer games (Santos and Pacheco 2005).

Independent of a game’s social structures, the number of players likely will
affect the prospects for cooperation in prisoner’s dilemma. Interesting, extant theory
provides contradictory expectations concerning the effect of the number of players
on cooperation. Classic collective action theory suggests that as the number of
actors grows, problems of “free riding” (consuming the benefits of cooperation
without contributing to collective efforts) overwhelm the incentives for cooperation
(Olson 2009). However, some studies have found that in larger groups, players may
be more likely to play Pareto-improving strategies because they are less concerned
about the consequences of inequitable payoffs (Snidal 1991; Pahre 1994; Kahler
1992). Similarly, an empirical study has found that larger groups of human subjects
tend to produce a more equitable and altruistic distribution of the gains from
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cooperation. Larger groups may make it easier for the group to detect and sanction
free riders (Liebrand 1984).

Prior research suggests, then, that in multiplayer prisoner’s dilemma, the pro-
spects of cooperation depend on both the number of players of the game, and the
social structure in which they interact. To test these expectations, our simulation
experimentally varies both the number of game players and the social network in
which they play the prisoner’s dilemma game.

11.5.1 The Simulation

We constructed an agent-based model of the multiplayer prisoner’s dilemma. It
allows the researcher to choose the number of players, from the classic two-person
game to 20 players. To explore the effect of social structure on cooperation, the
model arrays players in a circle from which it constructs social networks. It
incorporates four well-known social network structures: the fully connected,
“all-to-all” network; a small world network (Watts and Strogatz 1998); a scale-free
network (Barabási and Albert 1999); and a nearest neighbor network (i.e., the
player interacts only with players to the left and right in the circle). Because prior
research has found that repeated plays of the game (iteration) produce cooperative
strategies (Axelrod 2006), the simulation endows each agent with a memory of
previous plays of the game, which the model varies experimentally from one to five
previous plays.

The game proceeds as follows: a randomly chosen agent randomly picks one
partner from its social network with whom to play the PD game. Each pair plays a
choice and receives a cardinal payoff, as represented in Table 11.1. Because agents
randomly choose a network neighbor, the likelihood of a given agent repeatedly
playing the game with the same counterparty varies inversely with the number of
players. After all players have played this pairwise game once, the process repeats
for a limited number of iterations that the modeler determines. Table 11.2 presents
the pseudocode for the model. Strictly speaking, the simulation adopts an approach
that has a series of simultaneous and parallel two-player games; a true multiplayer
game would be one in which all agents play against each other simultaneously.

To model how players learn and adapted in iterated games, we implement a
genetic algorithm developed by Axelrod (1987), as described by Mitchell (2009). In
brief, the model encodes agent strategies as a random bit string of length 2 m2, with
m = memory of past plays. At initiation agents receive a set of strategies and play
each strategy once (a “generation” of the algorithm). For each strategy, an agent
plays the choice (1 = cooperate, 0 = defect) at a bit position that corresponds to the
pattern of previous rounds of play. After all agents have played a round, the
algorithm implements a fitness-proportionate selection routine; a crossover proce-
dure that exchanges among selected strategies one of every four bits on average;
and a mutation strategy that flips each bit with p = 0.001. Our experiment has the
agents play 50 strategies per generation, for 100 generations.
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11.5.2 Expectations and Findings

Prior experiments with two-player prisoner’s dilemma give us two expectations for
the simulation. First, iteration of the game is more likely to produce cooperation.
Because iteration implies players remember past plays of the game, in our imple-
mentation we expect that agents with longer memories should produce more
cooperation than those with shorter memories. Second, prior studies have found that
a strategy known as “tit-for-tat” is an optimal solution for the prisoner’s dilemma.
This strategy is a simple one: players will reciprocate the choice of their partner in
the previous round. In our implementation, the ABM measures outcomes of the
game as a bit string of length 2 m, with odd-numbered positions recording the
agent’s choice, and the even-numbered positions recording the choice of the agent’s
randomly chosen network partner. Given this implementation, the emergence of
tit-for-tat will appear as alternating ones and zeroes in the outcome bitstring, e.g.,
“10101010” for a game in which agents remember the previous four rounds of play.
Because there are well-known variants of tit-for-tat (e.g., tit-for-two-tats,

Table 11.2 Pseudocode for the Multiplayer Prisoner’s Dilemma

Initialization Create N negotiator agents and distribute them in a circle
Endow them with a memory of length M
Seed initial memory set with random bit string of length M
Endow with a network of other negotiators
Network types: fully connected, nearest neighbor, small world, scale-free

Execution Loop for 20 rounds of play:
Each negotiator agent:
Randomly select one neighbor to play
Checks memory of game play
Convert memory bit string m from binary to decimal format = history h
Play choice x from position h in the strategy
Record partner’s choice y
Receive payoff for outcome x, y for the game
Add partner’s choice y to the end of memory bit string
End Loop

Genetic
algorithm

Initialization:
Endow negotiator agents with a set of 40 strategies
One strategy = bit string of length 2 m2 with p(i = 1) = 0.5
40 strategies = 1 generation
Loop for 40 generations:
Record the mean Hamming distance of negotiators’ strategies
Record the percentage of cooperation plays in all negotiators’ strategies
Record the mean total payoffs of negotiators
At the end of each generation:
Select 20 strategies, using either pairwise or fitness-proportionate rule
With p = 0.25, crossover two selected strategies at a randomly selected bit
With p = 0.001, flip each bit of a selected strategy
Add 20 strategies of length 2 m2 with p(i = 1) = 0.5
Execute the game play
End Loop
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two-tits-for-tat) we expect to find a variety of strategies with broad patterns of
reciprocation of cooperation and defection.

Our experiment varied three model parameters. To test the hypothesized effect of
player numbers on cooperation, we experimentally vary the number of players from
two (which is the classic game) to 4, 6, 8, 10, and 20. Because we expect iteration to
improve prospects for cooperation, we experimentally vary the length of players’
memory from one previous round of play to 2, 3, 4 and 5 previous rounds. Finally, to
examine the effect of social structure on the prospects for cooperation, we have agents
play the PD game in four different social structures: fully connected; small world;
scale-free; and nearest neighbor networks. The experiment thus produces 120 runs,
though within each run the genetic algorithm has players learning over the course of
100 generations. We measure player strategies and outcomes only at the end of each
of the 120 runs. Because we measure each player in each run, the experiment gives us
100,000 observations of players’ strategies at the end of each run.

Table 11.3 reports the most frequent outcomes of the game for each value of the
memory parameter. The reported results are consistent with two theoretical
expectations. First, as players’ memories grow longer, the frequency of the pure
defection outcome (all zeroes indicate both players are choosing defect as their
strategy) declines. As expected, at m = 1 pure defection is the most frequent out-
come of the simulation, accounting for more than half of games played in the final
generation. At m = 4, pure defection occurs in only about three percent of the
games in the final generation. Pure defection is not even among the top ten most
frequent outcomes when m = 5. These results suggest that when playing iterated
games with a greater number of plays, the genetic algorithm allows players to
“learn” or evolve strategies that produce more cooperation and avoid the trap of
pure defection. Second, the results reported in Table 11.2 illustrate the emergence
of pure tit-for-tat strategies as agents play longer iterated games. When m = 2,
tit-for-tat (“1010” and “0101”) occurs as the sixth- and seventh most frequent
outcomes. Tit-for-tat is the second- and third most frequent outcomes when m = 4,
and the first- and third most frequent outcomes when m = 5. Although tit-for-tat
may represent a smaller percentage of the outcomes as m grows, this is because the
universe of possible outcomes grows by 2 m2. Given the very large number of
possible outcomes, the relative preference of tit-for-tat as a very frequent outcome
suggests that agents evolve cooperative strategies over the course of the simulation.

To examine whether the number of players and network structure affects the
likelihood of cooperation, we regressed several model parameters on the average
player score in the final round of each generation. Although players’ scores might
theoretically be higher if they play a constant defect strategy against “suckers” that
play regular cooperative strategies, the genetic algorithm suggests this is unlikely as
players learn not to play the sucker strategy. Because Table 11.3 found increasingly
frequent tit-for-tat cooperative strategies, we can reasonably assume that higher
player scores in the final generation associate with cooperative strategies. The
results reported in Table 11.4 are consistent with theoretical expectations. As
expected, as the number of players increases, agents tend to earn higher scores.
Players’ memory has a strong and positive effect, again suggesting that iteration
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leads to cooperative strategies and higher scores. To assess the effect of social
network structure, we treat the fully connected (“all-to-all”) network as the ideal
baseline: all agents play against every other agent with a uniform probability. The
results in Table 11.3 indicate that different network structures have a significant
effect on players’ cooperation, in this case a negative effect when compared to the
baseline of a fully connected social network. The nearest neighbor network is the
least advantageous, with players scoring an average of seven and a half points lower
in game ceteris paribus. By contrast, players in scale-free networks score signifi-
cantly higher than players in the small world or nearest neighbor network structures
(t = 32.14, p < 0.001).

Table 11.3 Most frequent outcomes of the game, by memory m parameter. Tit-for-tat outcomes
highlighted by outcome and strategy (Outcome) and percentage in the population (Pct.)

Memory = 1 Memory = 2 Memory = 3 Memory = 4 Memory = 5

Outcome Pct. Outcome Pct. Outcome Pct. Outcome Pct. Outcome Pct.

00 56.91 0000 19.86 000000 4.13 00000000 2.92 1010101010 0.41

10 18.32 0010 8.93 001000 2.81 01010101 1.15 1100000111 0.40

01 18.26 1000 8.68 000010 2.46 10101010 1.04 0101010101 0.36

11 6.51 0100 7.91 010101 2.44 00001001 0.56 1100001011 0.36

0001 7.51 000100 2.43 10110000 0.53 0001111010 0.19

0101 6.90 101010 2.30 10111100 0.52 1111010111 0.18

1010 6.57 100010 2.23 00010100 0.51 0010000100 0.17

1001 4.98 101000 2.19 00100000 0.50 0011000100 0.17

0110 4.45 100000 2.12 10000001 0.50 0010110000 0.17

1100 4.06 000001 2.10 10001010 0.50 1000010011l 0.17

Table 11.4 Regression results, with robust standard errors

N = 100000
F(6, 99993) 12353.58

Prob > F 0
R-squared 0.4257

Adj R-squared 0.4257
Root MSE 7.3319

Coef. Robust std.
err.

t P > t 95%
conf.

Interval

No. of players 0.253 0.004 56.60 <.001 0.244 0.262

Memory (m) 3.861 0.017 227.80 <.001 3.828 3.894

Small World dummy −3.857 0.067 −57.43 <.001 −3.989 −3.725

Scale-free dummy −3.382 0.070 −48.63 <.001 −3.518 −3.246

Nearest Neighbor
dummy

−7.507 0.065 115.12 <.001 −7.635 −7.379

Generation of the
GA

−0.017 0.001 −21.59 <.001 −0.019 −0.016

Constant 82.192 0.116 707.97 <.001 81.965 82.420
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The consistency of these results with theoretical expectations illustrates how
researchers may use simulation methodologies to build upon formal models and
prior empirical scholarship. Because formal models of social choice problems do
not permit easy extrapolation to the multiplayers games more typical in the social
realm, computer-based methodologies allow researchers to expand these formal
models and to test their sensitivity to assumptions about the social structure of
players. Our use of a genetic algorithm and network theory illustrates how multiple
formal and computational methods may inform analyses of social problems. This
integration of formal and computational methods is, in our view, an emerging
paradigm that promises the theoretical breakthroughs that characterized the emer-
gence of empirical large-sample studies in the late nineteenth century and then
game theory in the mid-twentieth century.

11.6 Model Validation and Verification Challenges

Despite the power that modeling and simulation brings to the study of social
sciences, major challenges remain before it will likely receive widespread accep-
tance as a research method. Social science, and political science in particular, relies
upon humanist approaches that foreground agency of actors at the local, regional, or
international levels. This is not entirely at odds with the modeling and simulation
approaches presented here, but for many, it is philosophically complex to reduce
social interactions and behaviors to simple algorithms. The critical realist
theory-based, post-positivist views that dominate much of the social sciences see
theory as revisable and the scientific method, while worthy of pursuit, as a flawed
process. Much of modeling and simulation as a discipline, as well as complexity
theory, seeks positivist truths and theories about the generalizable underlying causal
mechanisms that shape our world. Agar (2004) offers this thought, “[Complex
Adaptive System] offers an ironic combination of the poststructural and the sci-
entific, a framework that accepts the heresy of researcher influence but then deals
with it in a systematic fashion”. When simulating physical systems, modeling and
simulation can achieve a relatively complete picture of the system in question. For
social systems, however, models are often drastically simplified and can only
capture a fraction of the potential causal mechanisms driving human behavior and
interactions. Though other quantitative and qualitative methods may suffer from
weaknesses, the inability of M&S to capture the full range of a social context is
often seen as a flaw in the methodology.

M&S also requires a large amount of empirical data to calibrate and validate
models. The data-intensive requirements of most models are problematic for social
sciences, depending on the type of research question (Borero and Squazzoni 2005;
Janssen and Ostrom 2006). In most social sciences, sample sizes are small com-
pared to datasets available for physical sciences. Many social data are also con-
textualized and temporally limited, for example, an ethnographic study over ten
years of an isolated ethnic group. The data required to construct models and

252 D.C. Earnest and E. Frydenlund



simulations of social systems thus are often not available. Given ABM’s relative
integration with social science, some scholars have advanced methods for tying
these models to qualitative data. Malerba et al. (2001), for instance, propose an
evolutionary economic model derived from historical analysis. Ethnographic data
(Agar 2005), including through proposed Grounded Theory approaches (Neumann
2015; Dilaver 2015) have found their way into the evolution of ABM for social
sciences, though not without critiques about the roles of this type of data or results
(Agar 2003, 2005; Yang and Gilbert 2008). Even participatory methods common to
qualitative studies have emerged as ‘companion modeling’ practices, where subject
matter experts play a role in developing, executing, and verifying the simulation
(Gurung et al. 2006; Polhill et al. 2010).

Due to the data challenges facing social science modelers, validation of these
simulations also proves problematic (Ormerod and Rosewell 2009).
Anthropologists have looked toward comparing models of similar phenomena to
validate high-fidelity models (Kuznar 2006). This often is performed as a kind of
‘model docking’ where models of similar phenomena are tested to determine if they
can produce similar results (Axtell et al. 1996). While not validating against
real-world data, this comparison method provides some means for checking that the
model is accurately reflecting the real-world phenomena as the researchers inten-
ded. To achieve a level of verification, Miller (1998) proposes using algorithms
such as genetic algorithms or simulated annealing to search the parameter space of
models in an attempt to “break” them or find combinations of parameters that
produce unexpected results. This can serve as a method of verifying that the model
is performing without overt errors (debugging), but also provide insight into par-
ticular combinations of parameters that produce emergence of macro-level effects
that were unintended at the outset of the model.

These challenges are at the forefront of innovation in computational social
science research. The primary goal, as with any method, is to design a study and
utilize the computational tool in order to answer the research question or objectives
at hand. Rather than focusing on models as predictive tools, Epstein (2008) pro-
poses that we consider the multitude of reasons for developing models of social
phenomena. Among those of particular interest to social scientists are to explain
phenomena, provide a framework for systematically thinking about problems and
dynamics, testing accepted theories, and grounding policy development and dis-
cussion (Epstein 2008).

11.7 Conclusions

Traditional quantitative and qualitative methods dominate the social sciences, with
statistics and ethnography at the forefront. While scientists understand that these
methods have limitations in terms of over-generalization by the former and
ungeneralizable small sample sizes by the latter, it is difficult to break away from
familiar analytical tools. As this chapter demonstrates, great strides have been made
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to develop methods to ground models in qualitative and limited quantitative data-
sets, as well as validate models in restricted data environments. Modeling and
simulation, particularly ABM, holds great promise for becoming a fundamental tool
in many social scientists’ research toolkit as it evolves to incorporate multiple types
of data and theories and programming environments become increasingly
user-friendly. The advancement of the state of the art will require flexibility in the
discipline of M&S as well as the social sciences. For M&S, modeling paradigms
and stringent expectations for traditional forms of calibration, validation, and ver-
ification must bend to meet the non-predictive purposes of many social science
models. Social scientists must also adjust their approach to research, thinking
outside the bounds of traditional statistical or qualitative methods to explore how
M&S can further our understanding of social phenomena.

Review Questions

1. What are some of the differences between social sciences and the natural and
physical sciences? What are the implications of these differences for modeling
and simulation in the social sciences?

2. Who were the important innovators in empirical social scientific methods?
Game theory? Agent-based modeling?

3. What is behavioralism? How does it differ from earlier paradigms of empirical
social research?

4. What is the prisoner’s dilemma? What does it tell us about the relationship
between individual choices and collective action?

5. What are the differences in assumptions and methods of the North American and
European schools of agent-based modeling for the social sciences?

6. Methodological paradigms in the social sciences often depend upon technical
innovations in scientific research. What are some examples of these technical
innovations and their contributions to modeling in the social sciences?

7. What lessons might the social sciences learn from modeling and simulation in
other disciplines? Conversely, what lessons might disciplines such as engi-
neering learn from social scientists?
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Chapter 12
Simulation-Based Enterprise Management

Model Driven from Business Process
to Simulation

Gregory Zacharewicz, Amir Pirayesh-Neghab, Marco Seregni,
Yves Ducq and Guy Doumeingts

Abstract Industrial enterprises are gradually integrating Modeling & Simulation
(M&S) approaches to support their management processes and to keep themselves
competitive in the market by handling and connecting more efficiently their key
information. On the one hand, several modeling solutions exist, with different views
or abstraction levels, which are not always compatible; on the other hand, the usage
of simulation for enterprise management should be aligned with the nature of
decision-making. This hinders the choice of an adapted M&S solution. To facilitate
the resolution of this issue, this chapter mainly proposes to apply Model Driven
Service Engineering Architecture (MDSEA), which guides the usage of M&S for
enterprise management at business/technical levels or with static/dynamic points of
view. In its first part, the chapter focuses on different state-of-the-art elements (e.g.,
Enterprise Modeling, Discrete Event Simulation, etc.) which support the develop-
ment of a simulation-aided decision making cycle for enterprise management.
Simulation models involved in this cycle can be gradually created from transfor-
mation of high-level or static models. An example of such transformation is
described in the second part of this chapter. The objective is to move from BPMN
2.0 (Business Process Model and Notation) to DEVS (Discrete EVent
Specification) which is a simulation-ready language. The second part ends by
presenting a use-case and the implemented open-source software, called Service
Lifecycle Management Tool Box (SLMToolBox). The chapter is concluded by
discussing the propositions and the perspectives, particularly simulation of decision
models for enterprise management.
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decomposition � Decision aid � DEVS � BPMN � EA* � SLMTool box � Model
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12.1 Introduction

To remain competitive, a company must differentiate itself from other competitors
based on higher value propositions (products or services) or performant business
processes. Since improving the product’s performance can reach some limits, one
open solution is to improve the enterprise system, redefine its processes, and share
more information (considered as additional services) with customers and suppliers;
the so-called servitization. Indeed, this is the role of enterprise management “to
design, control and improve the business processes in order to adapt to the
changing business environment to cope with innovations, mutations of customers’
expectations and increasing competition” (Burlton 2001; Sienou et al. 2007).
Therefore, management requires a proper understanding of the enterprise in order to
rapidly and precisely evaluate its performance.

Facing the above needs, enterprise system complexity, particularly in the man-
ufacturing context, has been mentioned as a real challenge since a long time
(Wiendahl and Scholtissek 1994). ElMaraghy et al. have reviewed this subject, its
factors and sources in the design process, products, manufacturing, and business
(ElMaraghy et al. 2012). The complexity can be due to the following:

– the variety of the components’ nature; human, social, technical, economic,
organizational, etc.

– the numerous interactions of these components; internally, between enterprise
resources and externally with the environment, customers, suppliers, and
competitors.

– automation and new data exchange technologies (ElMaraghy et al. 2012) and
developments in the global market.

– the excessive data and information.

Complexity is usually followed by the introduction of uncertainty and risk to the
enterprise systems through creation of several internal and external factors (e.g.,
demand, market share, supply rate …) which affect the performances and the final
output of the system.

In such an environment, Enterprise Modeling techniques can be applied as pre-
liminary support for management by simplifying the representation of the processes.
Nevertheless, models provide solely a static abstraction of enterprise system. To go
further, simulation can be necessary for providing assessments of the system per-
formance regarding dynamicity and behavior, for both existing system and the one to
be developed (Pirayesh-Neghab et al. 2011; Bruzzone et al. 2000). Therefore, joint
modeling and simulation (M&S) is a necessity for enterprise management.
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Considering the plethora of existing M&S solutions, one current approach
consists of proposing platforms or toolboxes gathering a set of ad hoc solutions.
This might help identifying solutions for a specific and clearly defined problem.
Nevertheless, modeling expert is faced with issues such as lack of conceptual or
technical interoperability when it is required to transpose models and simulations
when moving from solution to another one. Also the model contents and simulation
results are still difficult to exploit with another level of abstraction. It is mainly due
to lack of methodological connection between M&S solutions. For example,
(Zacharewicz et al. 2016) has stated that it remains difficult to pave the way from
conceptual models to executable models (simulation).

The problem of selecting the adapted M&S is even more radical considering the
different levels of decision-making (i.e., strategic, tactical, and operational) in en-
terprise management (Doumeingts et al. 1998). Thus, in order to support enterprise
management, it is important to study the way to model and decompose decisions, to
connect the decisions to adapted simulations, and to aggregate the simulation results
according to the decision level. Another difficulty for selecting the adapted M&S
simulation is the complexity of decision-making process due to multiplicity of
information, which information (e.g., performance indicator) should be taken into
account for simulation; which simulation result can support the decision-making;
and finally, how the results can be aggregated according to the decision-making
level.

Therefore, the usage of M&S solutions should be, on the one hand, followed by
a structural architecture and a methodology covering different points of view (e.g.,
business or technical, static, or dynamic) and, on the other hand, capable of con-
sidering and relating to the different layers of enterprise management and
decision-making (e.g., from machine control to factory management in a manu-
facturing system). In order to select the appropriate M&S solution, a model-driven
architecture can be adopted. These architectures are mainly proposed in the frame
of Model Driven Engineering. For instance, Model Driven Service Engineering
Architecture (MDSEA) (MSEE Book 2014), supporting the resource management
to improve the enterprise performance, is discussed in this chapter. In this archi-
tecture, simulation is considered as an aid for the decision cycle. Several types of
simulation can be executed such as product, information workflow, or process
simulation. In MDSEA, the informational process simulation is started from higher
level process models which gradually integrate technical aspects to become
“simulation-ready”.

After this introductory section, an overview of research literature is addressed
while briefly presenting enterprise modeling, simulation, and model-driven con-
cepts and methods. Then a global architecture situating simulation as decision aid is
presented. Within this architecture, an example of process simulation focused on
model transformation from BPMN 2.0 to DEVS is also introduced including the
illustration on the use-case. Finally, the perspectives of this work are proposed,
particularly for the transformation of decision processes to simulation models.
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12.2 Model-Driven Enterprise Management

This section presents the concept of Model Driven Enterprise Management which is
founded on the methods of MDE and Enterprise Modeling.

12.2.1 MDE

MDE (Schmidt 2006) is a system engineering approach that uses the capabilities of
conceptual representations of a system independently of computer technologies.
MDE adopts models and languages in order to describe both the problem posed
(need) and its solution. Then it goes smoothly to concrete solution.

As a structured method in the frame of MDE, MDA (Model Driven
Architecture) can be mentioned. This method, defined and adopted by the OMG
(Object Management Group) in 2001, then updated in 2003 (MDA 2003), is
designed to promote the use of models and their transformations to consider and
implement different systems. It is a four-level architecture guiding the passage from
generic to specific models of a software product.

Based on MDA and in the frame of Task Group 2 (TG2) of INTEROP-NoE, the
approach “Model Driven Interoperability” (MDI) considers interoperability prob-
lems from enterprise models level instead of only at the technical or coding levels
(Bourey et al. 2007). The main goal of MDI, based on modeling, is to allow a
complete follow, through model transformation, from expressing interoperability
requirements (determination of barriers) to coding of a solution. This approach
provides a greater flexibility, thanks to the automation of these transformations.

12.2.2 MDSEA

MDSEA is an engineering architecture which has been recently proposed in the
servitization context based on MDI (Ducq et al. 2014). This architecture was
developed in the frame of MSEE project (MSEE book 2014).

The main goal of MDSEA is to model enterprise system and support the
development of its major components in three domains: Information Technology
(IT), Human/Organization, and Physical Means (i.e., machine or any physical tool)
(see Fig. 12.1). One of the originalities of the approach lays on these passages:

– from BSM (Business Service Model) level, as the high-level abstraction adapted
to the business point of view, till TIM (Technology Independent Model) level,
as the technical point of view regardless of the technology choice.

– from TIM level to TSM (Technology Specific Model) level, as the detailed
technical level resulting in the final development of components.
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The above passages can be supported by Model Transformation which is based
on a sequence of Top-Down and Bottom-Up iterations; the more we progress
toward the development of the solution, the more complementary and detailed
information is necessary.

MDSEA starts from an integrated and high-level modeling at BSM level (Top
BSM) which consists of several integrated enterprise models elaborated based on
GRAI (Graph with Results and Activities Interrelated) methodology and its for-
malisms. From BSM models, it is then necessary to extract the elements which will
allow describing each of the three domains in order to create three main categories
of resources (bottom BSM) (see “domain extraction” in Fig. 12.1). It is worth
mentioning that even though these domains are focused on specific type of
resource, they are not completely independent and might be overlapping. For each
domain, the model at TIM level is created by a transformation of the BSM bottom
using Model Transformation.

For instance, models can be elaborated with Extended Actigram Star (EA*),
which can be mentioned as a high-level business process modeling languages used
at top BSM level. Concepts related to IT domain, which are necessary for the
development of IT resources, are first extracted from EA* models. Then, they are
transformed to corresponding concepts of BPMN model, at TIM level (see (a) in
Fig. 12.1).

Fig. 12.1 Model Driven Service Engineering Architecture (MDSEA)
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12.2.3 Enterprise Modeling

Enterprise Modeling (EM) allows the representation of enterprise with concepts
which aim at describing the strategy, the processes, the functionalities, the orga-
nization, the decisional structure, the evolution in time, the relationships with the
environment (e.g., with customers and suppliers), etc. EM, through elaboration of
enterprise models, supports the understanding of an enterprise system with the
objective of analyzing and improving its performance. These methods can be
applied not only on industrial enterprises, but also in services and public admin-
istrations such as hospitals and teaching institutes.

In order to design the enterprise model, ad hoc conceptualization or abstraction
methods could be applied. Reference or standard methods could also support this
task by providing a common view among different industrial branches, clarifying
the current trends, key dimensions, and layers of the system.

According to a survey on the tools for system modeling, by extension enterprise
modeling (Kettinger et al. 1997), there are lots of modeling languages and tools
available which are capable of different aspects of a system. Kettinger et al. listed
over 100 tools.

In manufacturing context, in order to be able to improve the competitiveness in
the 70s, United States Department of Defense (DoD) proposed to use Enterprise
Modeling Techniques (EMT) for describing a manufacturing system according to
its various aspects (i.e., activities, processes, information, and simulation) (Savage
1996); the pioneer was ICAM project from which IDEF (Integration DEFinition:
IDEF0 … IDEFx) modeling method was born (Doumeingts and Ducq 2001). Since
this time, several concepts, methods, and tools have been developed such as
CIMOSA (Computer Integrated Manufacturing Open System Architecture), GRAI
model, GIM (GRAI Integrated Modeling), EIM (Enterprise Integration Modeling),
ARIS (Architecture of Integrated Information Systems), etc. (Doumeingts and Ducq
2001; Chen et al. 2008).

Another approach for representation of enterprise structure is Enterprise
Architecture which is more ICT-oriented. Such architectures can be developed to
provide an abstract view of the ICT structure. A system architecture is defined as “a
conceptual model of a system together with models derived from it that represent
(1) different viewpoints defined as views on top of the conceptual model, (2) facets
or concerns of the system in dependence on the scope and abstraction level of
various stakeholders, (3) restrictions for the deployment of the system and
description of the quality warranties of the system, and (4) embedding into other
systems” (Jaakkola and Thalheim 2011). A survey of the viewpoints from the most
popular enterprise architectures (e.g., Zachman, Sagace Matrix, DoDaf 1.5, Pera,
MDA, AFIS, and Pahl & Beitz) has been performed in Benkamouna et al. (2014).

In GRAI method (Doumeingts 1984; Chen and Doumeingts 1996), a system or
particularly an enterprise system is decomposed, into three subsystems according to
the System Theory (Le Moigne 1977), Management Decision (Simon 1969), and
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Theory of Hierarchical Multilevel Systems (Mesarovic et al. 1970). A brief
description of these subsystems is given below and shown in Fig. 12.2:

– The controlled subsystem (physical subsystem) transforms the inputs (materials
and information) into outputs (new information, products or services) to be
mainly delivered to the customers.

– The control subsystem (decisional subsystem) manages the physical subsystem
based on the objectives of the global system (e.g., enterprise system) and the
feedback information in order to delivers actions or adjustments.

– The information subsystem includes information from the physical subsystem
and from the customers, suppliers, and other stakeholders (external environment).

12.2.3.1 Decisional Modeling

Regarding the representation of decisional subsystem, hierarchical decomposition
and aggregation of information is a real necessity and challenge, particularly in
manufacturing as complex enterprise system (see Fig. 12.3). This decomposition
describes the different decision-making level (i.e., strategic, tactical, and opera-
tional). Furthermore, the decomposition highlights the required information to be
provided by decision aids (e.g., simulation).

For a decision-maker at operational level of enterprise system, the scope and
time span of decision-making is small (e.g., daily scheduling of a machine) and
usually detailed information (e.g., machine capacity or machining time) are required
which correspond to the reality. However, a decision-maker in charge of tactical or
strategic levels is in charge of decisions (e.g., annual production planning) which
covers numerous information with larger scope and time span (e.g., annual material
requirements).

Another reason for a proper decisional modeling is cognitive limitation; the
quantity of information that a decision-maker is able to process in a unit of time
should be limited (Doumeingts et al. 1998).

Fig. 12.2 GRAI model for integrated BSM model (top BSM) of MDSEA
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In GRAI model, the decisional modeling is performed using the GRAI Grid
which takes into account the enterprise layers according the decision complexity.
Such layers are based on the concept of horizon, the timespan of interest for the
decision, and period, the timespan for (re)-evaluating a decision to find deviations
from the expected pattern. “The GRAI Grid does not aim at the detailed modeling of
information processes [for decision making], but puts into a prominent position the
identification of those points where decisions are made in order to manage a
system” (Doumeingts et al. 1998). The characteristic of the GRAI Grid is based on
Decision Management (Simon 1969) and Theory of Hierarchical Multilevel
Systems (Mesarovic et al. 1970). It should be mentioned that the GRAI Grid is
coupled with GRAI Nets which provide a more detailed perspective about activities
forming the decision-making process and the relationships among them.

Considering the dichotomy of decisional/physical subsystems in an enterprise
(see Fig. 12.3), each decisional level is in charge of controlling a specific part of the
physical subsystem. Therefore, the decomposition/aggregation of decisional mod-
eling should be aligned with the physical subsystem modeling (e.g., process
models). Indeed, the model of the physical subsystem is different at each level of
decision using aggregated information where criteria of aggregation must be
properly determined.

Fig. 12.3 Decomposition/aggregation of decisional subsystem
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12.2.3.2 Business Process Modeling

As an example of methods for representing the physical and information subsys-
tems (see GARI Model in Sect. 12.2.3), Business Process Modeling (BPM) can be
mentioned (Cardoso et al. 2012). BPM results in a representation of an organiza-
tion’s business processes to be analyzed and improved (Weske 2007).

The world of business processes has changed dramatically over the past few
years. Processes can be coordinated from behind, within and over organizations’
natural boundaries. A business process now spans multiple participants and coor-
dination can be complex. Business process models can help business actors to
handle the problems of heterogeneity, complexity, and flexibility in layered oper-
ational Enterprise Architectures and across the enterprise knowledge spaces of
network life cycles. Business process is a structured, measured set of activities
designed to produce a specific output (product or service) for a particular customer
or market (MSEE D15.2 2012). A process is thus a specific ordering of work
activities across time and space, with a beginning and an end, and clearly defined
inputs and outputs: a structure for action.

One of the most commonly used approaches for BPM is Object-Oriented (O-O).
This approach is based on a set of object classes which substitute the behavior of
real process components (Anglani et al. 2002). Through O-O modeling the real
process components are categorized into three different types of flows: materials,
information, and decisions (Chen and Lu 1997). Chen and Lu presented an O-O
oriented methodology using the Petri nets, the ERD (Entity Relationship Diagram),
and the IDEF0 (Integrated DEFinition language for functional modeling) (Chen and
Lu 1997).

Another commonly used languages is called BPMN (Business Process Model
Notation) which is a standard notation for BPM. BPMN is supported by the Object
Management Group (OMG 2003). Its objective is to provide a framework to
describe a process in a way that is common to all users, irrespectively of the tool
used. The tool is of course supposed to support the standard that is currently BPMN
2.0.

In MDSEA architecture (see Fig. 12.1), BPMN 2.0 is applied at TIM level for
the IT domain. However, Business Process modeling is ideally started from a higher
abstraction level (at BSM top level) using Extended Actigram Star (EA*). The main
objective is to provide a common and simple modeling notation to the business user
through an accessible syntax (MSEE D15.2 2012). Rather than EA*, other lan-
guages such as Archimate Business Level modeling can be also applied for this
purpose. However, considering the focus of MDSEA on the management, devel-
opment, and interoperability of different categories of resources, we believe that
EA* might be a better choice since on the one hand, it distinguished the category of
the resources and on the other hand, it clarifies the contents of flows (e.g., infor-
mation, physical, sequential) in the process model.

In comparison to BPMN, EA* might reduce more the gap between the ideation,
from user point of view, and the design of business process. EA* models can be
transformed to BPMN model (MSEE D15.2 2012). In this research work, we
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directly apply BPMN models which are enriched after obtaining their skeleton from
EA* models. The drawback of BPMs is due to the fact that it provides only a
suitable static view which is missing the temporal dimension to express output
performance such as an expected cost or a desired duration. In detail, the impact of
correct or incorrect behavior of complex models over time is not clearly visible
using static view. This issue can be solved by running a business process simulation
for analyzing and understanding the business process model according to its
dynamic.

BPMN is frequently associated to Business Process Execution Language
(BPEL) (Thatte et al. 2003), that is a programming language for running business
processes. Nevertheless, BPEL is intended to execution rather than simulation and
it is not associated to clear execution semantics. The notions of states, dynamics
remains open to the interpretation of the modelers potentially subjective so difficult
to reuse and compare. Formal modeling theories can overcome this limitation by
extending the credibility of the simulation models. It provides a sound ground for
comparing the results and opening interoperability with different simulation
platforms.

12.2.4 Simulation for Enterprise Management

Simulation solutions are designed according to different enterprise needs such as
tracking performance indicators or providing information about the real behavior of
products, services or processes, in a didactical and pedagogical way to support
decision-making.

Manufacturers, for instance, can shorten time needed to develop new
products/services and to (re)-engineer business process-related activities. At the
same time, simulation techniques are expected support them in gaining new cus-
tomers, lowering costs, improve business processes, increase customer satisfaction,
and getting access to know-how. Thus, simulation techniques are now orienting
toward customized applications in the form of Software-as-a-Service (SaaS), based
on visual modeling tools to interactively create a model of the reality of interest for
the specific user.

Simulation, and by extension M&S, as a service can be expected as a
pre-validation on a perspective scenario of enterprise management. It is run on
models of future enterprise management, and this is done by anticipation using
probable and credible set of data. The simulation requires significant amount of data
and resources to run the process and to consider the behavior of the process
activities. Cloud-based approaches and High-Performance Computing (HPC) give
more and more support to enhance these simulations. Nevertheless, the collabo-
ration between HPC cloud infrastructure providers and Engineering Manufacturing
users is often difficult (confidentiality, interoperability issues) and requires long
times and huge efforts. So the remaining question is how to mobilize companies and
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particularly SMEs and midcaps to benefit from simulation digitization and HPC
facilities to improve their competitiveness?

Several European projects (e.g., CloudSME, Fortissimo2, etc.) have been
devoted to cope with the aforementioned challenge. For example, the project
CloudSME (www.cloudsme.eu) supports SMEs to utilize. SMEs require the
development of models involving their activities. Therefore, CloudSME proposes
models that are simulated numerically by using either continuous or discrete event
simulation techniques. The modeling and simulation processes take advantage of
visual modeling tools to interactively create a model of the reality of interest.
Fortissimo and Fortissimo2 (www.fortissimo-project.eu/) are collaborative projects
that enable European SMEs to be more competitive globally through the use of
simulation services running on HPC cloud infrastructures. The Fortissimo project
(through its Marketplace) provides a number of approaches required by SMEs to
find solutions to their challenges, which are mainly on-demand access to advanced
simulation and modeling resources, and access to state-of-the-art HPC facilities,
leading to a reduced computation time.

SMEs involved with the solutions provided by the two presented projects have
benefited of a reduction of the design costs, thanks to the use of a set of simulation
software ported to HPC system available through the cloud. Especially it appeared
that for the use of a federation of heterogeneous simulations a workflow or process
model was required to cope with the different solutions and services. Nevertheless,
the modeling of this workflow and its transformation to simulation model is not
simple and even explicit enough to be given directly to the usage of SME. Discrete
event simulation can be a solution to model formally, and then orchestrate such a
workflow of M&S in the aim to drive anticipation of enterprise management
scenarios.

12.2.4.1 Discrete Event Simulation

Discrete Event Simulation (DES), which is a frequently used method in process
M&S, significantly facilitates the enterprise management process definition and
validation (Pirayesh et al. 2011). Semini et al. (2006) performed a literature survey
on use of discrete event simulation in real-world manufacturing & logistics
decision-making in 2006. According to this survey there are several reasons why a
simulation study can support manufacturing and logistics decision-making:

– provides better understanding of the real system and its behavior.
– reveals previously hidden relationships.
– performs a systematic analysis of the situation.
– facilitates communication and provide a basis for discussions.
– allows the decision-maker to test the influence of different alternative scenarios

without having to make changes in the real system.
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Another review on simulation in manufacturing and business was presented by
Jahangirian et al. in 2010. In this survey simulation is recognized as the second
most widely used technique in the field of operation management and it has been
applied in areas such as manufacturing, services, defense, healthcare, and public
services. In real-world applications there are factors to be considered in selecting a
proper simulation technique. Jahangirian et al. suggest that in case of dealing with
different layers of decision-making within a system, a better understanding will be
needed of the relationship between the different layers of organizations and of the
way to connect simulation tools that relate to each layer in order to deal with the
system as a whole (Jahangirian et al. 2010).

Simulation has been a widely used tool for manufacturing system design and
analysis. It has proven to be an extremely useful analysis tool, and many hundreds
of articles, papers, books, and conferences have focused directly on the topic. Smith
presented a classification of a subset of these publications and the researches and
applications that underlie these publications (Smith 2003).

As an example, in the nuclear industry, Monte Carlo simulation is proper for the
study of system availability/reliability and component importance. Monte Carlo
simulation involves no complex mathematical analysis and is preferred to deter-
ministic methods which are difficult to solve specially in case of large and complex
systems (Wu 2008).

Zeigler has proposed since 1976 the Discrete EVent Specification (DEVS)
(Zeigler et al. 2000) as an integrated formalism which enhances the model
designing efficiency with unambiguous specification formalism and provides a
methodology for execution process by means of an executable semantics. We have
chosen DEVS as the simulation language for the reasons enounced previous in
order to remove ambiguity and unify the M&S concepts.

12.2.4.2 Simulation Tools

There are numerous software products in the simulation field. Semini et al. iden-
tified the papers using DES software tool in a literature survey. For instance they
reported in the use of several relevant application papers from the last decade of
Winter Simulation Conference proceedings. Arena and Automod/Autosched were
used most frequently, followed by Quest, ProModel, Sigma, and Extend (Semini
et al. 2006). Also simulation tools are developed in the academic and/or open
source context (NetLogo, MS4ME, VLE, etc.).

DEVS supporting tools deserve a particular attention since this language has
been selected for targeting simulation within this chapter. The DEVS group stan-
dardization maintains on its website the updated list of most used DEVS tools
known by the DEVS community (Wainer 2013). In Hamri and Zacharewicz (2012),
the authors have given a brief description and comparison of popular tools.

ADEVS was the first DEVS tool developed. DEVSJAVA is a Java framework in
which the kernel simulator is ADEVS. CD++ Builder is a DEVS modeling and
simulation environment that integrates interesting features and facilities for the user.
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Other DEVS tools are dedicated to specific areas. VLE is a C++ M&S framework
that integrates heterogeneous models from different scientific fields. This integra-
tion is based on the agent paradigm. In addition, JDEVS is the Java implementation
of a DEVS formal framework. It supports multi-modeling paradigms based on
DEVS. It ensures the interoperability among the reused components.
Also SIMSTUDIO can be considered, and it is focused on a simplified DEVS editor
for DEVS non-Expert. The authors also investigate LSIS_DME that is focused on a
graphical interface and code source generation in order to complete the model by
complex Java functions.

At the end each DEVS editor is covering interesting aspects that complete basic
DEVS facilities or propose different model views. Nevertheless, we found it dif-
ficult to import by the tool non DEVS models other than hard coded matching, i.e.,
the customization is limited. We suggest that the feeding by other model can be
facilitated if following a Model-Driven approach, e.g., MDA. One core concept of
MDA is the Meta Model that is required for model matching, an example of which
has been proposed by Garredu et al. (2012).

12.2.5 Model Transformation

Considering the diversity of actors in product engineering, several heterogeneous
standards or modeling languages, with different purposes, are applied. Therefore,
treatments on models should be considered in order to achieve interoperability in
model exchanges (Pirayesh et al. 2015). For this purpose, Model Transformation,
defined as the process of converting a [Product or Process] Data model to another
model of the latter (Miller and Mukerji 2003), can be mentioned. It is indeed
considered as a common interoperability solution in MDE and is classified as a
federative approach. A taxonomic classification of the various existing approaches
for Model Transformation is proposed in Czarnecki and Helsen (2003). The authors
also classify existing approaches of transformation as follows: direct-manipulation,
relational, graph-transformation-based, structure-driven, and hybrid approaches.

Figure 12.4 shows the Model Transformation architecture, in the frame of Meta
Object Facility (MOF) of OMG. In this architecture,

– A source model is transformed into a target model. These models, in M1 level,
are in accordance (conformsTo) with their own meta-models of the M2 level,
and meta-models are consistent with a single meta-meta-model (M3 level).

– Transformation is based on rules (mapping or projection). Indeed, the trans-
formation is based on semantic and syntactic relations between models, which
are developed by domain experts of these models.

– The transformation also requires a transformation language that implements the
transformation rules. This language is itself conforming to level M3
(meta-meta-model) in the transformation architecture.
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As it is mentioned above, one of the key elements of Model Transformation is
Data Abstraction. In abstraction, concepts and conceptual relationships are created
as conceptual models (Lezoche et al. 2011). After abstraction and formalization, the
mapping can be started as an operation that defines the transformation rules
between a pair of representations [meta-models] (Shvaiko 2005). Alignment is the
main part of mapping and the basic task of a mapping operator. A more complex
mapping process is described in Bouquet et al. (2005).

Once the mapping is defined, a language is required for realizing the transfor-
mation. As an example of such language, ATLAS Transformation Language (ATL
2013) and MISTRAL (Kurtev and van den Berg 2005) are widely used in the
context of MDE. ATL is a model transformation language specified as both a
meta-model and a textual concrete syntax. It complies with MOF and provides a
way to generate the target model from the source model for developers in MDE.
ATL provides developers with a mean to specify the way to produce a number of
target models from a set of source models.

Currently, there are several toolkits (e.g., Topcased), used as integrated plugins
in the Eclipse platform, which support this language. These toolkits also allow the
implementation of the transformation of XML documents as well as MOF or Ecore
meta-models (Lu 2012).

In MDSEA architecture, according to the distinction of static and dynamic
process modeling (Cardoso et al. 2012), the focus will be on a complementary step
at TIM level. This step concerns transformation of static business process models
(e.g., BPMN 2.0 model (OMG 2011), at TIM level, to a simulation model) able to
analyze the behavior of the system (see Fig. 12.4). Based on the feedbacks provided
by the simulation, the high-level process models (EA* model) can be modified.
This cycle will continue till obtaining the most performant configuration of the
system and its processes.

Fig. 12.4 Model transformation architecture and its key elements
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12.2.6 Simulation as Decision Aid for Enterprise
Management

Considering the structure of enterprise system described in Sect. 12.2.3, its deci-
sional subsystem receives information about the physical subsystem at various
levels of management. Such information can be collected from the real operational
processes, from the process models with different abstraction levels (the so-called
digital twins), or from the simulation of the models. In such case, a simulation-aided
decision cycle is formed (see Fig. 12.5). Here, we emphasize on the importance of a
hierarchical structure, covering, and connecting different enterprise levels, for the
use of simulation tool in a decision aid approach. In enterprise systems, it is not
always possible to simulate the processes at the operational level due to the amount
of information and the run time.

In the proposed approach, the first step (see (1) in Fig. 12.5) of the
decision-making cycle is started by the decomposition of the decisions and the
information [e.g., simulation needs and Performance Indicators (PIs)] supporting
those decisions. This step can be performed using decisional modeling methods
such as GRAI Grid (see Sect. 12.2.3). Then, the simulation solution should be
selected according to the required information (see (2) in Fig. 12.5). For instance, in
a manufacturing system, the decision at strategic level can be about the choice of
suppliers. Therefore, in case of lacking historical data, the simulation solution is
intended to provide an overall estimation of the consumed materials in a period of
time.

Fig. 12.5 Simulation-based decision aid for enterprise management in MDSEA
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After the simulation, it is usually required to aggregate the results according to
the same criteria of decomposition or enterprise layers (see (3) in Fig. 12.5). In the
above example, the information about raw material consumption should be clas-
sified and aggregated based on annual consumption, category of product, overall
cost of quality, etc.

The simulation models enabling the “simulation-aided decision making cycle”
can be the result of transforming physical subsystem models (e.g., process models).
The modeling work can be guided by Enterprise Modeling techniques.

As explained previously in Sect. 12.2.2, such modeling is often started at a
high-level abstraction adapted to business point of view (BSM level of MDSEA).
For instance, according to the decisions and objectives at strategic level of GRAI
Grid a, process modeling can be performed using EA* language. Then, models can
be transformed with two main purposes;

– enrichment of technical capacities: this is considered as a vertical transforma-
tion, from one level to another, in MDSEA architecture. EA* to BPMN is an
example of transformation from BSM level to TIM level.

– provision of dynamic capacities: this is considered as a horizontal transforma-
tion, at the same level, in MDSEA. As an example of the latter, BPMN 2.0 to
DEVS transformation can be mentioned which occurs at TIM level (from
TIM-static to TIM-dynamic). This example is discussed in the following section
of this chapter.

12.3 From Business Process to Simulation

Developing a high-level process model (business process model) before the
development of the simulation model helps the recognition of the operation and also
it is a time and cost saving act (Nethe and Stahlmann 1999). At design (or build
time), it exists many process modeling languages. Yet, there are several reasons to
choose BPMN among different formalisms. First, it is standardized by OMG and
widespread in the industrial domain. Then, it can be generated from higher level
languages such as EA*. Finally, it is associated to a set of execution languages.
Moreover, it is important to adopt a federative formalism that can group the con-
cepts of simulation and DES to be shared between different authors where the
difference is the notations. For this purpose, DEVS language is selected which
embraces a very large scope of domain.

This part presents the main principles of model transformation from Business
Process to Simulation, based on the example of BPMN model to DEVS model,
including the transformation architecture, DEVS meta-model, the mapping of
concepts, and the implementation using a transformation language.
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12.3.1 Background

In the context of BPMN to DEVS transformation, authors in Cetinkaya et al. (2012)
and (Mittal and Risco Martin 2012) presented a Model Driven Development
(MDD) framework for modeling and simulation (MDD4MS). In the frame of this
framework they defined a model-to-model transformation from BPMN as a con-
ceptual modeling language to DEVS as a simulation model specification. BPMN
and DEVS meta-models were presented. In addition, a set of transformation rules
were defined in order to transform BPMN models into DEVS models. According to
these rules, some BPMN concepts (Pool, Lane, SubProcess) were mapped to DEVS
coupled component, while Task, Event (Start, End, and Intermediate), and Gateway
were mapped to DEVS atomic component.

Comparing the BPMN meta-model defined with the latest version of BPMN 2.0
meta-model (OMG 2011) we can conclude that several concepts are missing and
thus were not transformed into their corresponding DEVS concept. Authors did not
mention the different types of BPMN Tasks (User Task, Manual Task, Service
Task…) and BPMN Intermediate Events (Message, Signal…) that can be mapped
differently when transformed into DEVS concepts. The difference would be in the
number of states forming each DEVS Atomic Model. Based on these remarks, the
work presented in this chapter takes into consideration these points in an attempt to
benefit from previous work and propose new mapping and transformation rules.

12.3.2 Transformation Concepts

The meta-model approach (OMG 2003) is one of the most used transformation
techniques (Fig. 12.3). It has been adapted by Bazoun et al. (2013) to the context of
model transformation from BPMN 2.0 model to DEVS model. Three different
levels are identified: model, meta-model, and meta-meta-model. The BPMN model
is the source model to be transformed, while the DEVS model is the target model
resulting from the ATL transformation. BPMN and DEVS models conform to the
BPMN 2.0 and DEVS meta-models, respectively. In addition both meta-models
conform to a meta-meta-model named Ecore (McNeill 2010) meta-model (devel-
oped using an Ecore-based modeling framework). A mapping is implemented by
ATL between the concepts of BPMN 2.0 and DEVS.

12.3.3 Meta-Models

Source and target meta-models should be well identified to proceed with the
transformation (see Fig. 12.3). BPMN 2.0 meta-model specified in OMG (2011) is
the source meta-model. There is no endorsed meta-model for the target DEVS
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meta-model, but several researches were held for the purpose of building a DEVS
meta-model. A synthesis work is proposed in Garredu et al. (2012). The transfor-
mation from BPMN to DEVS models has required gathering previous works for
setting a DEVS meta-model, as a result the authors proposed a simplified DEVS
meta-model. It is used as a target meta-model which conforms to the DEVS
specification (Zeigler et al. 2000). Figure 12.6 presents the DEVS meta-model
defined in Eclipse Ecore format that has been proposed in Bazoun et al. (2013).

In DEVS, there are two types of models: atomic and coupled models. Each
model has a list of input and output ports. An atomic model has four main methods:
internal transition, external transition, output, and time advance. A coupled model is
a composition of DEVS models (atomic or coupled) and DEVS coupling. In
addition, there are three types of coupling between ports: (1) external input coupling
(connections between the input ports of the coupled model and its internal com-
ponents), (2) external output coupling (connections between the internal compo-
nents and the output ports of the coupled model), and (3) internal coupling
(connections between the internal components).

12.3.4 Mapping of Concepts

The role of mapping in model transformation is to define links between concepts
and relations from both meta-models (BPMN and DEVS). In Mittal and Risco
Martin (2012), a first mapping was proposed by the authors. Nevertheless, this early
mapping did not distinguish all the various types of tasks and events existing in
BPMN 2.0 which differ with respect to the potential situations a task might treat.

Fig. 12.6 Simplified DEVS meta-model
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To complete this approach, different types of task have been proposed (Receive
task, Send Task, User Task, Service Task, and Manual Task); all of these tasks are
mapped to “DEVS Atomic Model” concept but with different local behaviors. This
is also applied to intermediate events (Receiving and Sending Messages).
(Zacharewicz et al. 2008) has defined different task models. A basic task is an
activity where a work is performed by a resource. For a more accurate matching
between BPMN model and DEVS model it has been proposed in Bazoun et al.
(2014) and then (D’Ambrogio and Zacharewicz 2016) to distinguish the “Reception
Task” from the “Basic Task”.

Also we clearly distinguish between tokens and messages. The structure of
tokens and messages is a multi-value event as described in G-DEVS (Zacharewicz
et al. 2008) that is implemented by one object with several variables. Each variable
is representing one data. The notion of Event is used to represent something that
“happens” during the execution of the process. It represents a step in the process
and its meaning differs from DEVS event. These events affect the flow of the
process. There are three types of events, based on when they affect the flow: Start
Event, Intermediate Event, and End Event. In this paper we will present an example
of an Intermediate Event; Intermediate Reception Event. Some information of the
token will be updated by the workflow according to actions defined in the task,
current values of the token, and message received. At the end, the token reflects the
path taken, the duration, etc. All the data are tracked in order to compute some
performance indicators. This chapter will not detail each concept, but only the most
relevant are described in the following.

Table 12.1 presents a non-detailed mapping between BPMN and DEVS. It
shows new concepts (*) added regarding the previous approaches in the literature
introduced in Sect. 12.2.1.

This conceptual mapping has been implemented into transformation rules using
ATL transformation language. Each atomic component is generated from the
BPMN model than the generated components are assembled in the coupled model.

12.3.5 Tooling and Implementation

12.3.5.1 Transformation Language

An ATL M2 M (eclipse) component has been developed in the Eclipse modeling
Project (EMP). The ATL Integrated Environment (IDE) provides a number of
standard development tools (syntax highlighting, debugger, etc.) that aims to ease
development of ATL transformations. The ATL project includes also a library of
ATL transformations. ATL M2 M is also used for compliance reason with
SLMToolBox (presented in the next section) both developed under Eclipse. The
more exhaustive transformation rules and specifications have been introduced in a
technical paper (Bazoun et al. 2014) presenting the mapping details.
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12.3.5.2 SLMToolBox

SLMToolBox (Boye et al. 2014) is a software tool developed in the frame of MSEE
project. The SLMToolBox will be used by enterprises willing to develop a new
service or improve an existing one, within a single enterprise or a virtual manu-
facturing enterprise. The tool will be used at the stage of “requirement” and “de-
sign” of the service engineering process. The SLMToolBox is regarded to be an
integration of several scientific concepts related to services into one tool. These
concepts can be summarized by MDSEA methodology, services’ modeling, engi-
neering, simulation, monitoring, and control.

The simulation feature is based on model transformation from BPMN to DEVS
models. Source BPMN model is extracted from the BPMN graphical editor (inte-
grated in SLMToolBox), a transformation engine is implemented based on ATL,
and the output of this engine is DEVS model. A new developed version of
(Zacharewicz et al. 2008) will be integrated in the SLMToolBox for graphical
visualization and simulation of DEVS models.

12.3.6 Use-Case

One use-case model from the MSEE European project has been reused to serve in
this research as a case study. The process consists in the creation of a cloth patron
adapted and fitted to each client by tailoring, thanks to customer data.

Table 12.1 BPMN elements to DEVS components

BPMN DEVS

Pool DEVS Coupled Model

Lane DEVS Coupled Model

Sub process DEVS Coupled Model

Flow
Message Flow*
Sequence Flow*

DEVS Atomic Model

Task
Basic Task
Send Task*
Receive Task*

DEVS Atomic Model

Event
Start* {Message, Timer, Conditional}
Intermediate* {Message, Signal, Conditional}
End* {Message, Timer, Conditional}

DEVS Atomic Model

Gateway
Exclusive Gateway
Inclusive Gateway*
Parallel Gateway

DEVS Atomic Model
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In MSEE project, the modeling is starting from BSM level with an Extended
Actigram model. Then the next step is going down to the BPMN model at TIM
level. At this level before the creation of service from the model it could be valuable
to simulate its behavior in order to correct potential errors of conception that can be
detected through dynamical aspects not seen by reading a static model. The next
part of the section will focus on the transformation to the simulation model.

One extract from the BPMN model is detailed in top of Fig. 12.6. Two pools
representing client and manufacturer are described in the use-case. In particular, the
sequence and the messages exchanged with the client are considered. The dis-
tinctive contribution of this research work permits first to differentiate the type of
BPMN event. For instance the model shows an intermediate “Message Event”. In
addition, the task 1 is emitting a message to another blind pool (with basic a
reception and triggering behavior). We consider this possibility as expressing
representatively BPMN 2.0 collaboration model.

At DEVS level, the LSIS_DME editor (Zacharewicz et al. 2008) was tentatively
selected to perform tests on the DEVS models obtained from BPMN matching
before moving to final development stage, to the DEVS engine of the
SLMTooLBox. One interest for the tool comes from the fact that it enables the
creation, storage library, modification, and composition of XML-based models that
can be feed in our case by the ATL transformation from ATL BPMN models. Also,
the editor allows editing visually a model with geometric shapes representing the
different elements of a DEVS atomic or coupled DEVS model.

Mapping realized the DEVS Coupled Model based on the library developed
from BPMN components (Table 12.1) and integrated in the LSIS_DME DEVS
models library of BPMN diagram. The DEVS coupled model presented is the
transformation results of the selected extract from BPMN model of use-case (see
Fig. 12.7). Each atomic DEVS component is selected from the library and
instantiated according to data values coming from the BPMN description. Then the
models are coupled to represent the BPMN chain of tasks and it take into account
resources represented by lanes. In this example we differentiate between a fully
described lane and another non-detailed lane (blind lane).

Then Fig. 12.7 has been run to present an extract of the simulation results
provided by the tool. In this simulation it was confirmed that the token variables
declared in the initial state of each “start event” atomic model can be followed in
term of evolution of their attributes values accordingly to activities actions of the
process and regarding time. The new values depend on the operation of the task and
message received. The main idea resulting from the first simulations performed is
the proof of feasibility in terms of definition and monitoring of quality indicators,
the capacity to measure the impact of input factors and parameters. The goal is to
provide simulation feedbacks to parameters tuning to reach as close as possible the
services desired results.

At the moment, results are not handled to be displayed graphically nor inter-
preted by BPMN. The simulation has been set up to follow performance indicators
on tokens that circulate through the different components of the process. Tokens
gather information on service development and its delivery; they can be considered
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as the memory of service development. For instance, the time to complete the
service delivery can be traced during the simulation. The number of resources
called to achieve the service delivery process and the cost of material and human
resources can be computed using the simulation. Another point is to analyze failure
in the service delivery. Some service building can lead to bottlenecks. Several
scenarios can be proposed and run to evaluate the best one before the next
implantation step: the architecture implementation.

Nonetheless, these results are of paramount importance for decision modeling,
since they provide a broader set of information (e.g., historical events, PIs and
What-If scenarios) to a decision-maker.

12.4 Discussion and Perspective

Within this work, the correlation between simulation and decision-making as one of
the main applications of simulation for enterprise management was discussed.
Several fundamental elements, required for developing simulation-based
decision-making cycle, were also presented such as GRAI decisional model.

Fig. 12.7 Equivalent DEVS model example in LSIS DME
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GRAI easiness to position a decision at a specific level as well as its capability to
provide a global view of the decisional perspective represent the major advantages
of such an approach (Carrie and Macintosh 1997). Thanks to these characteristics, it
has been applied for a large scope of different purposes (Noran 2012), such as
service monitoring (Taisch et al. 2014) or analysis of business model of enterprise
network (Álvares-Ribeiro et al. 2004), performance evaluation (Ducq and Vallespir
2005), and information and manufacturing system alignment (Goepp-Thiebaud and
Kiefer 2008).

Some critics have been raised on this method, particularly due to the lack of
dynamic modeling of information systems which does not allow modeler to show
the effects of delays in decision (Carrie and Macintosh 1997). Álvares-Ribeiro et al.
(2004) integrated GRAI Grid together with Zachman framework, particularly with
its “Business Model” dimension. However, this conceptual integration appears
limited in coping with the static nature of GRAI modeling. A more promising
approach is to interconnect GRAI Grid and GRAI Nets models with simulation
models. Some authors have worked toward this direction, attempting to intercon-
nect GRAI Grid with simulation model, such as (Al-Ahmari and Ridgway 1999).
Only DGRAI, an evolution of GRAI for decision systems design and monitoring,
combined simulation also with GRAI Nets (Poler et al. 2002).

Inspired from this work, this chapter proposes a “simulation-aided decision
making cycle” as an approach for coupling decisional modeling with simulation in
the frame of MDSEA architecture. Within this cycle, two model transformations are
to be clearly defined (see Fig. 12.8): (1) from GRAI Grid/Nets to BPMN 2.0 and
(2) from BPMN 2.0 to DEVS model.

Regarding the first transformation (from GRAI Grid/Nets to BPMN 2.0), few
examples of translation GRAI Grid formalism into business process modeling
languages can be found in the literature. A mapping of GRAI languages for
semantic translation into ULM Activity and Class diagram has been proposed
(Seguer et al. 2010). There are not works aiming at translating this decisional
formalism into nor BPMN neither other modeling formalism and this transforma-
tion has been addressed only conceptually in this work. A concept mapping and
transformation rules are required to implement the “simulation-aided decision
making cycle” and thus support decision-making under different perspectives. For

Fig. 12.8 Transformation path from decision process modeling to simulation
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instance, during the running of the decisional system, simulation will help also in
identifying critical activities and bottlenecks on which targeting interventions (e.g.,
additional supporting resources, changes in the triggers of a decisions, etc.).

GRAI Nets formalism can be also further extended with new concepts coming
from decision-making theories. For instance, concepts such as decisional roles can
be included based on Organizational Buying Behavior (OBB), a widespread theory
used for complex decision involving groups or individuals. In practical terms, this
might be done introducing a new modeling component representing a human
resource, specified by an attribute “role”, which can assume values like “users”,
“proposer”, “influencer”, “decider”, and “gatekeeper”. Rules and constraints in the
association with the other modeling elements of GRAI Net would be then defined
according to the value of this attribute

For the second model transformation (from BPMN 2.0 to DEVS) concepts,
meta-models and a concrete implementation have been proposed and implemented.
It remains to visualize the DEVS models resulting from the transformation to be
later displayed in a DEVS Graphical editor completely integrated in the
SLMToolBox. The DEVS meta-model will be completed independently from any
simulator’s architecture to take into account multi-value state variables. In addition,
new features such as export format will be developed. Storage will be improved.
Authors claim that the durability of this work relies on the adoption of the open
platform. In addition, BPMN models (subject of simulation) will be animated for
better understanding of the process. Thanks to the visualization of DEVS models,
users will be capable of tuning more precisely performance indicators’ values (time,
costs, and combined indicators) needed for simulation. The simulation results offer
sufficient information needed for business process analysis, but the problem fre-
quently faced is the lack of temporal data from enterprises because of the domain no
long experience.

12.5 Conclusion

This chapter highlighted the interest of M&S for Enterprise Management. It is
intended to guide enterprise managers in the choice of appropriated M&S solutions.
The chapter has also stated that models and simulations have to be closely linked;
vertically, from business to technical level, and horizontally, from static to dynamic
views. In these links interoperability should be ensured to preserve the information
when changing or coupling different paradigms or tools. For this purpose, the
interest of using architectures, such as MDSEA, based on model-driven approaches
was presented. Then the chapter has focused on decisional and business process
modeling and simulation in the frame of this architecture. The benefits of simulation
for enterprise management and recent trends were also discussed with a focus on
simulation-aided decision making cycle. As an example of creating simulation
models in this cycle from transformation of static models, the chapter presents a
transformation of BPMN models into DEVS models. It described the
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transformation architecture, mappings, and an implementation in an open-source
tool (SLMToolBox). The development of the presented work is being followed
with a special focus on the usage of the M&S results as decision aid. Eventually, the
simulation of decision models is under discussion as an open perspective.

Review Questions

1. What do MDSEA, M&S, EA*, DES, BPMN, and DEVS stand for?
2. How MDSEA architecture can support resource management and development?
3. Name five advantages of simulation for enterprise management.
4. Why modeling and simulation are bundled?
5. What is simulation-aided decision-making cycle? In this cycle, what is the

benefit of hierarchical decomposition of decision and aggregation of simulation
results?

6. Why BPMN 2.0 models should be transformed to DEVS models before sim-
ulation? How this transformation is performed?

7. What can be the perspective of simulation as decision aid for enterprise
management?
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Part V
Learning, Education and Training



Chapter 13
Simulation-Based Learning and Education

Tuncer Ören, Charles Turnitsa, Saurabh Mittal and Saikou Y. Diallo

What is honored in a country is cultivated there.
Plato, Republic, Book VIII

Abstract Simulation is vital to many disciplines as has been shown throughout the
book. Future specialists in every domain must include modeling and simulation
(M&S) as integral part of their learning, education, and teaching the discipline
itself. This fact has been accepted by various institutions, universities, and research
centers as they incorporate M&S support to various scientific disciplines. This
chapter enumerates venues that offer simulation-based education and training across
broad disciplinary areas like Engineering, Natural Sciences, Social Sciences and
Management, and Information Science. It emphasizes that simulation is an
invaluable tool for experiential learning and teaching by performing—in silico
(namely, computerized)—experiments and gaining experience.

Keywords Cognitive learning � Deep learning � Future of simulation-based
education � Instructional design � Pedagogy � Simulation-based education �
Simulation-based engineering education � Simulation-based information science
education � Simulation-based learning � Simulation-based natural science education
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13.1 Introduction

One of the three aims of Chap. 1 (titled: “The Evolution of Simulation and its
Contribution to Many Disciplines”) of this book is stated as: “To point out the fact
that the phenomenal developments in many aspects of simulation (Ören 2005,
2011, Ören and Yilmaz 2012), made it an important and even a vital infrastructure
for many disciplines. Indeed, time is ripe for enriching many disciplines by the
transition from “model-based” paradigm to “simulation-based paradigm” to make
them even more powerful. Like many other disciplines in engineering as well as in
natural and social sciences, learning, education, and training are already tremen-
dously benefiting from simulation-based approaches (Sowers et al. 1983). This
transition may even be quickened and widening in scope by putting more emphasis
on simulation education of not only simulationists alone but also for other future
specialists in many other disciplines, including “modeling and simulation in all
subjects of education, particularly teacher education” (Kazimi et al. 2013).

As outlined in Table 13.1, learning/teaching/education have many connotations.
Learning is acquisition of new knowledge, skill, or attitude; it can be done through
study, including (real life or simulated) experimentation or experience, or being
taught. It is an essential ingredient of education and training and can be done in
classroom, online, on-the-job, or just-in-time.

Computerized simulation (or computational simulation, or computer simulation,
or in silico simulation, and mostly referred to, in short, as simulation) is performing
goal-directed experimentation or gaining experience under controlled conditions by
using dynamic models; where a dynamic model denotes a model for which
behavior and/or structure is variable on a time base. So far as non-computerized
simulation is concerned, as clarified in Chap. 1 of this book (Ören et al. 2017),
“Simulation, in the sense of pretending (to make believe, to claim, represent, or
assert falsely), has been used since a long time in relation with both experimentation
and experience. Experimentation done by pure thinking is called thought experi-
ment (also, conceptual experiment or Gedankenexperiment). Thought experiments
have been used mostly in ethics, philosophy, and physics. Some examples are
prisoner’s dilemma and trolley problem (Brown et al. 2014). Physical aids, such as
scale models, were also used for simulation done for experimentation purposes.
Another possibility has been simulation of the real system under controlled
experimental conditions, such as wheel and tire simulators.” Simulation which is a
vital infrastructure for many disciplines can also be very useful in learning and
teaching. And has several advantages for experiential learning. In the following
sections, many of these concepts are revisited within the realm of simulation-based
learning. Since, the issue is learning, pedagogical principles would be beneficial to
enhance several types of simulation-based education.

In this chapter, several aspects of simulation-based learning and education are
clarified: In Sect. 13.2, basic concepts of learning and simulation as well as
simulation-based education, in general, are highlighted. Sections 13.3, 13.4, 13.5,
and 13.6 are devoted to simulation-based education for engineering, natural science,
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social science and management, and information science, respectively. Section 13.7
is reserved to discuss future of simulation-based education.

Two subjects are not covered in this chapter: simulation-based training for
military as well as simulation-based training for health sciences, since two chapters
(Chaps. 10 and 14) are dedicated, for these two subjects.

13.2 Simulation-Based Learning and Education

Due to richness of the field of learning and associated concepts (see Table 13.1), in
this section of the chapter we point out some of the possibilities for simulation-
based learning and simulation-based education. Table 13.2 lists associations/

Table 13.1 Outline of connotations of learning/teaching/education

Aspect Different words/phrases associated with the aspect

What is learned Information, knowledge, skill, attitude, choices, relationships

Learning Adaptive learning, autodidacticism, blended learning, cognitive learning,
collaborative learning, constructivist learning, digital learning, distance
learning, e-learning, experience-based learning, experiential learning,
experiment-based learning, formal learning, game-based learning, hybrid
learning, in-class learning, informal learning, just-in-time learning,
learning by doing, learning from experience, learning from experiments,
learning from augmented-reality game, learning from mixed-reality game,
learning to learn, lifelong education, lifelong learning, machine learning,
online learning, on-the-job learning, open learning, personalized learning,
role playing-based learning, scenario-based learning, self-learning,
simulation-based just-in-time learning, simulation-based learning,
simulation-based machine learning, solitary learning, student-centered
learning, teacher-centered learning, technology-based learning
To be informed, to be informed by an event, to be informed by an
experience

Education Pedagogy, simulation pedagogy, curriculum, lecture, literacy, illiteracy
Adult education, constructivist education, constructivist education
philosophy, inter-professional education, mixed-reality education, private
education, professional education, self-education, simulation-based
education, simulation for developing critical thinking, teacher education,
vocational education

Educational goals Affective educational goals, knowledge-based educational goals,
skill-based educational goals

Teaching Instructor, mentor, tutor; instructing, mentoring, tutoring; tutorial
Student-centered teaching; self-teaching
Instruction, differentiated instruction, mixed instruction,
technology-mediated instruction, web-enhanced instruction

Training Military training, technology-based training, training for health care,
teachers training, virtual training, vocational training, Web-based training

Workforce
development

Simulation-based workforce development (for a discipline/trade)
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networking related with simulation-based learning, education, and training.
A website maintained on simulation in learning, education, and training may also
provide relevant information (Ören 2017a).

Even in pre-computer era, some forms of simulation have been successfully used
for education and training. For example, role playing (as a type of simulation) is
used for training. Similarly thought experiments provide bases for decision-making.
“Tell me and I’ll forget; show me and I may remember; involve me and I’ll
understand” says a Chinese proverb. Both real life experiments and experiences
provide occasions for this type of learning by involving learners. Even though real
life experiments and experiences are valuable, sometimes they may be risky, costly
(including opportunity costs), not feasible, and may take a long time, in addition
being haphazard. Computerized experiments and experiences provide possibilities
for realistic experiments and experiences under controlled conditions.

To cover anatomy of simulation-based learning, we concentrate on five W and
one H aspects of learning—namely on Who, Why, What, When, Where, and
How—as outlined in Table 13.3.

13.3 Simulation-Based Engineering Education

Simulation in engineering begins with mathematical models that use physics-based
methods, empirical collections, or a combination of two for balanced fidelity and
complexity (Çakmakcı et al. 2017). These mathematical models can be defined at

Table 13.2 Associations/networking related with simulation-based learning, education and
training

Acronym Expanded form

ABSEL Association for Business Simulation and Experiential Learning

CoLoS Conceptual Learning of Science

EBEA The Economics and Business Education Association

ETSA European Training and Simulation Association CIC (ETSA)

IMSF International Marine Simulator Forum

ITSA International Training and Simulation Alliance

KTSA Korea Training Systems Association

NICE National Initiative for Cybersecurity Education

NASAGA North American Simulation and Gaming Association

NM&SC National Modeling and Simulation Coalition

NTSA National Training Systems Association (USA)

SAGSET The Society for the Advancement of Games and Simulations in
Education and Training

SEE The Simulation Exploration Experience

Simulation
Australasia

Simulation Australasia
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multiple abstraction levels to aid the learning of a relevant scientific concept.
A model at a high level of abstraction is termed as lumped model. In engineering
education, for specialized streams like electrical engineering, where we have

Table 13.3 Elaborations on 5W1H aspects of (simulation-based) learning/teaching

5W1H Aspects Elaborations

Who learns • Beginner, advanced beginner, competent, proficient,
expert, master (Denning and Flores 2016)

• Student, apprentice, professional, one who needs
knowledge (information)

• Computer (software agent, robot)

Why learn (Goals and objectives)
(Bixler and Wilson)

Types of objectives or domains of learning (Wilson):
• Cognitive objectives (to increase an individual’s
knowledge) (Bloom et al. 1956; Anderson 2013) (being
informed) (education)

• Affective objectives (to change an individual’s attitude,
choices, and relationships) (Krathwohl and Bloom 1999)
(education)

• Psychomotor objectives (to build physical skill) (Harrow
1972) (training) (fine motor skills, gross motor skills;
operational skills)

What to learn/teach • Informing: Learning/teaching knowledge/information
– Existing knowledge
– Discovered (previously unknown yet existing)
knowledge

– Generated knowledge
• Education: Learning/teaching attitude, choices, and
relationships

• Training: Learning/teaching skills
– Motor skills, decision-making skills, operational skills

When to learn • Just-in-time learning, lifelong learning
• Moods that support learning: ambition, confidence,
perplexity/bafflement, resolution, serenity/acceptance,
trust, wonder (Denning and Flores 2016)

• Moods that block learning: apathy, arrogance, boredom,
confusion, distrust/skepticism, fear/anxiety, frustration,
impatience, insecurity, overwhelm, resignation (Denning
and Flores 2016)

Where to learn • Classroom learning
• Distance learning
• Online learning
• In situ learning

How to learn • Learner learns herself from available sources (books,
Web)

• Machine learning system learns itself (non-supervised
learning)

• Teacher (instructor, tutor, mentor) teaches (informs)
• Experiential learning
by experiments [in vivo, in vitro, in silico (computerized)]
by experience (role playing)
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Maxwell equations, the theory is well established. Consequently, abstraction levels
can be designed in an incremental manner and learning can be supported by both
real and virtual systems.

Experimentation with a real system (albeit of reduced complexity in a lab set-
ting) warrants a physical laboratory while a virtual system warrants a simulation
laboratory (e.g., simulation software in a desktop setting). In this age of higher costs
of university education and more accessible online education, having a
simulation-based engineering education curriculum is a preferred option. Bringing
both the real and virtual together for a simulation experiment is a nontrivial engi-
neering challenge and requires expertise in hardware–software codesign and dis-
tributed simulation platform engineering (Mittal and Zeigler 2017). The primary
motivation of bringing these elements together is to deliver an experience to the
trainee and tutor him through scenario-based learning (Errington 2009, 2011). In
the defense domain, a Live, Virtual, and Constructive (LVC) environment is used,
where live assets are integrated with virtual assets with varying levels of abstrac-
tion. The virtual assets can be of identical fidelity as the real-world assets, where
they are called emulators, or of reduced fidelity, where they are called simulators.
An emulator adheres to the rules of the asset/system it is emulating and it behaves
exactly like the real-world asset, but in a different environment. A simulator, on the
other hand, behaves in a similar way as of a real-world asset and is implemented in
a completely different way. These simulators may vary in degree of complexity and
abstraction, and require model engineering. A reduced complexity simulator at a
much higher level of abstraction is often called a constructive entity. Conducting an
LVC event is a nontrivial exercise as there is human element present in a reasonably
complex experiment. LVC environments are usually used in defense domain to
bring realism to combat training in an operational context in distribute mission
operations (DMO) setting (Mittal et al. 2015).

In the engineering domain, hardware-in-the-loop (HIL) environment is mostly
used that corresponds to LVC in the defense domain. HIL environment usually
incorporates live and virtual systems (e.g., simulators, software, and hardware) and
may not consider human-in-the-loop or man-in-the-loop in the same amount of
usage as in LVC training. All the established fields of engineering, (as described in
Sect. 13.2 of this book) can use HIL to develop Test and Evaluation (T&E)
strategies. Consequently, the path to training, education, test, and evaluation is
available and customizable. However, in cross-disciplinary engineering, the path is
not straightforward.

There are many emerging streams, such as cyber-physical system (CPS) engi-
neering, netcentric complex adaptive systems (CAS) engineering, system of system
(SoS) engineering for which there is not enough theory present to deliver a
closed-loop solution. These disciplines are currently replete with emergent behavior
as the final form of the theory is still developing. Many times, the emergent
behavior is the very behavior that is desired out of such a complex system. Efficient
methodologies are needed to understand the emergent behavior, harness it and
thereby, make them predictable so that the training and engineering processes can
be developed (Mittal 2013; Mittal and Rainey 2015). Until the theory is developed
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and validated, simulation-based experimentation becomes the preferred means to
bring in the existing theories in relevant contexts for engineering a solution (Mittal
and Martin 2017). These solutions require continuous training and feedback from
existing solutions that improve the solution itself in an iterative manner.

In the era of complex system engineering, simulation-based methodologies
provide a virtual environment to experiment and experience the complex phe-
nomena and a means to investigate the usefulness of a particular solution and the
solution’s impact to the overall environment. The Internet of Things (IoT) phe-
nomenon, indeed, has no existing theoretical model as the phenomenon is fairly
new. How can learning and tutoring be ever attempted in engineering the new world
of these super-connected ecosystems that involve human, physical systems/devices,
cyber environment, and shared infrastructures such as electricity, transportation,
and many others? The design of a virtual workbench is the first step to develop
training, experimentation and experience in helping build the next generation of
complex systems engineers.

13.4 Simulation-Based Natural Science Education

The use of modeling and simulation in education, particularly in the various dis-
ciplines under the heading of the physical sciences, comes within the slightly
broader category of computational science. The US Department of Energy’s
Graduate Fellowship on Computational Science (in a survey of computational
science and engineering education programs published by the Krell Institute)
defines the term, as applied to education, as “an interdisciplinary field that applies
the techniques of computer science and mathematics to solving physical, biological,
and engineering problems” (Krell Institute 2016). In many cases, the phrase
“computational science” is used intermittently with the phrase “modeling and
simulation,” especially in the context of education and research (Denning 2000). As
computers become more ubiquitous in our society, it is natural that they will be
given a greater use within our education systems, and within education for the
physical sciences this means the use of computers to represent and solve problems.
Within the scientific method this means constructing models (for different pur-
poses), and using simulators to reinforce learning about the natural phenomena that
such models represent.

It is significant to note the importance of advanced computing in scientific
discovery and the place of simulation in the scientific discovery process. Advanced
Scientific Computing Research (ASCR) is a program of the US Department of
Energy (DOE).

The mission of the Advanced Scientific Computing Research (ASCR) program is to dis-
cover, develop, and deploy computational and networking capabilities to analyze, model,
simulate (emphasis added), and predict complex phenomena important to the Department
of Energy (DOE). A particular challenge of this program is fulfilling the science potential of
emerging computing systems and other novel computing architectures, which will require
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numerous significant modifications to today’s tools and techniques to deliver on the pro-
mise of exascale science (DOE ASCR).

Another organization related with advanced computing is SciDAC (Scientific
Discovery through Advanced Computing). “There are currently four SciDAC
Institutes with 24 participating institutions …. The mission of these SciDAC
Institutes is to provide intellectual resources in applied mathematics and computer
science, expertise in algorithms and methods, and scientific software tools to
advance scientific discovery through modeling and simulation emphasis added).”
(DOE SciDAC).

However, it is also important to distinguish the following point: Classifying
concepts, including disciplines, having a common aspect (in this case “computation
(al),”) under this common aspect may be misleading and may lead to misinter-
pretations and confusions. An example follows: “Computational immunology
(or systems immunology) involves the development and application of bioinfor-
matics methods, mathematical models, and statistical techniques for the study of
immune system biology.” (Yale immunobiology). Hence, considering “computa-
tional immunology” under the concept of “computation” would be wrong.
“Computational” is an aspect of “immunology.” Like mathematics which is an
essential—albeit distinct—element of computation, simulation is an essential, yet
distinct, element of computation.

Sixty years ago, when the first “satellite” was launched in 1957, it was called an
“artificial satellite.” With the advancements of the field, now the term “artificial” is
not used. With the maturity of many fields, similarly, the term “computation(al)”
may be dropped and the contribution of simulation may be explicit by the attribute
“simulation-based.”

In the process of education with the natural sciences it is typical that a student
will undergo a variety of different learning activities. This is in accord with many
different approaches to education, and can be represented by a variety of different
interpretations of Bloom’s Taxonomy of Learning Domains (Anderson 2013). It is
important for students to learn about the physical phenomena of the science they are
studying (chemistry, biology, geology, etc.) by studying their characteristics, con-
stituent parameters, and the general and specific terms and definitions associated
with each. But it is also important for the student to gain understanding and
appreciation for how these phenomena work. This is particularly true within the
context of the higher levels of Bloom’s Taxonomy, where students must know
enough about a phenomenon so that they can evaluate when it is occurring (and
how); to be able to analyze a representation or claim about such a process; or to be
able to create reports or explanations of such a process. To accomplish this, students
must not only learn about the physical science, but must be able to apply the
scientific method to studying it.

In both learning about a physical science, and in applying the scientific method
to studying it (observations, the formation of hypotheses, and testing through
experimentation), it is crucial that students can both understand, and create scien-
tific models. This has widely become recognized as the third leg to scientific
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exploration, alongside empiricism (or observation of phenomena), and rationalism
(the construction of theories from basic principles). A model can take two forms,
that of a model of the phenomena, or a model of data about a phenomenon (Frigg
and Hartmann 2017). In both cases, this can lead to a simulation, the first of which
will help students to visualize what happens when the phenomena takes place, and
the second will help the student understand the data that affect the process, and can
lead to simulated data when results from observation are not available.

The value to education of such simulation is on several levels. First, it allows
students to observe and understand a natural phenomenon when observation of the
actual event is difficult or inaccessible. Some examples include biological processes
that occur rarely, or at a difficult to observe scale—things happening at the
molecular level, or at the neural level, for instance might be difficult to “observe”
but a suitable computer simulation can assist the student in understanding what is
being represented by a theory or model, and this leads to greater understanding of
the phenomena itself. An example of such a simulator is the molecular workbench,
the name for a collection of highly interactive molecular simulators designed to
assist students with understanding difficult, but important principles about molec-
ular dynamics, especially in biological systems (Tinker and Xie 2008). Secondly, it
allows students to observe a phenomenon that is predicted by a model, but may not
have occurred yet. Such an event could include a stellar process (such as the
progression of stars through various sequences, leading to a possible nova or
supernova), effects of perturbing an existing system that might be in equilibrium, or
possible effects of activity on the environment.

An example of an education model that fits some of the above criteria is the
Mitigation Simulator, available online from the Koshland Science Museum
(National Academy of Sciences 2017). This is a simulator, where the student may
choose several different criteria for adopting a Mitigation Strategy to avoiding bad
effects of greenhouse gas emissions. The student can then explore different solu-
tions to problems, and see how they fit within their selected strategy. In so doing,
the simulator teaches the student about not only the reality of conflicting constraints
on possible solutions, but also the proposed efficacy of different possible approa-
ches to limiting or mitigating the greenhouse gases. In this way, the student gains
not only insight into the effects of the gases on the environment, but also gains an
appreciation for how it affects the natural world, the economic world, and the
political world. Similar information could be taught using only textbook definitions
and explanations (declarative cognition), but the impact of having to balance the
different strategies with the selected constraint introduces the student to having to
balance their choices within the model (procedural cognition).

In general, in education, but in particular in the physical sciences, the use of
computational science techniques (in particular modeling and simulation) will
facilitate students gaining insight into the subject matter being addressed (in this
case, scientific principles and processes); students will benefit from a deeper
understanding of the subject through seeing visual representations and dynamic
representations of the subject matter; and students will likely become more engaged
in the course (Lean et al. 2006). Such approaches have become so apparently
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valuable, and a part of the pedagogy, that the term for their employ is now coming
to be accepted as model-based learning. Such learning includes both learning by
modeling, but also requires learning to model. This, however, can be embedded into
the education process by the educator, much as learning laboratory methods are
germane to physical science education, learning about virtual modeling and virtual
tools will gain a similar footing in model-based learning (Blumschein et al. 2009).
The benefits of studying science, in silica, using virtual tools, present an enormous
benefit to educational environments where resources are scarce, but in all venues,
have all the benefits listed earlier.

13.5 Simulation-Based Social Science and Management
Education

According to the bureau of labor statistics in the United States, Research and
Development in the Social Sciences and Humanities represents 59,930 employees
of which 8% are in the computer and mathematical occupations (Bureau of Labor
Statistics 2017). Of these current employees, it is unclear how many have formal or
informal training in the field of modeling and simulation. In the meantime, the
National Center for Education Sciences reports that 531,200 bachelor’s degrees
were conferred in the fields of business, Social sciences, and history in 2013–2014
which together represents nearly 30% of all bachelor’s degrees in institutions
participating in Title IV federal financial aid program. There is a tremendous
opportunity to educate the future workforce in Modeling and Simulation

In contrast, the same institution reports that the Computer, Modeling, Virtual
Environment, and Simulation which is the broad category that encompasses
Modeling and Simulation only graduated 291 students at all levels (certificate, two
year, four year, and graduate) for the same time span. Table 13.4 shows a list of US
academic institutions that award degrees in the simulation field either as a first or
second major or certification. This is encouraging news because it shows an
acceptance of the role of modeling and simulation in the generation and
enhancement of student’s abilities and marketability in the workplace.

Table 13.5 displays US research centers where students can interact and learn
from the state of the art in basic and applied simulation methods within several
university research centers. These centers are multidisciplinary and embody the
ideal of simulation education.

However, the numbers clearly show that an approach that consists of training
simulation engineers to think and investigate like social scientists and humanists is
not a viable option by itself. Instead, an alternative would be to train social sci-
entists to incorporate principles of modeling and simulation in their curriculum.
Table 13.6 shows a sampling of social sciences, humanities, and multidisciplinary
programs where principles of modeling are incorporated and taught.

In addition to the comprehensive inclusion of modeling and simulation in these
programs, it is worth noting that other disciplines such as experimental archeology or
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Table 13.5 US research centers offering opportunities in M&S education

Domain University R&D centers

Economics Yale University Cowles Foundation for Research in
Economics

Engineering Carnegie Mellon
University

Center for Sensed Critical Infrastructure
Research

Engineering Massachusetts Institute
of Technology

Massachusetts Institute of Technology,
Engineering Systems Division

Modeling and
Simulation

Old Dominion
University

Virginia Modeling, Analysis and Simulation
Center

Modeling and
Simulation

University of Alabama
in Huntsville

Center for Modeling, Simulation, and
Analysis

Modeling and
Simulation

University of Central
Florida

Institute for Simulation and Training

Transportation Georgia Institute of
Technology

University Transportation Center

Transportation Massachusetts Institute
of Technology

Intelligent Transportation Systems

Transportation Northwestern University Northwestern University Transportation
Center

Waste
Management

Cornell University Cornell Waste Management Institute

Table 13.4 A sampling of US institutions offering a computer modeling, virtual environment,
and simulation program

State City Institution name

Alabama Huntsville University of Alabama in Huntsville

California Los Angeles University of Southern California

Colorado Colorado Springs University of Colorado, Colorado Springs

Idaho Moscow University of Idaho

Indiana Hammond Purdue University-Calumet Campus

Iowa Davenport Eastern Iowa Community College District

Kansas El Dorado Butler Community College

Michigan Southfield Lawrence Technological University

Minnesota Saint cloud Saint Cloud State University

New Hampshire Nashua Daniel Webster College

New York Rochester Rochester Institute of Technology

Pennsylvania Moon Robert Morris University

Philadelphia University of Pennsylvania

Virginia Virginia Beach ECPI University

Washington Redmond DigiPen Institute of Technology

Seattle Academy of Interactive Entertainment

Wisconsin Madison Herzing University-Madison

Rhinelander Nicolet Area Technical College
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Table 13.6 A sample of programs teaching modeling and simulation (National Center for
Education Statistics 2017)

Discipline Description

Cognitive science A program that focuses on the study of the mind and the nature
of intelligence from the interdisciplinary perspectives of
computer science, philosophy, mathematics, psychology,
neuroscience, and other disciplines. Includes instruction in
mathematics and logic, cognitive process modeling, dynamic
systems, learning theories, brain and cognition, neural
networking, programming, and applications to topics such as
language acquisition, computer systems, and perception and
behavior

Consumer economics A program that focuses on the application of micro- and
macroeconomic theory to consumer behavior and individual
and family consumption of goods and services. Includes
instruction in modeling, economic forecasting, indexing, price
theory, and analysis of individual commodities and services
and/or groups of related commodities and services

Demography and
population studies

A program that focuses on the systematic study of population
models and population phenomena, and related problems of
social structure and behavior. Includes instruction in population
growth, spatial distribution, mortality and fertility factors,
migration, dynamic population modeling, population estimation
and projection, mathematical and statistical analysis of
population data, population policy studies, and applications to
problems in economics and government planning

Econometrics and
quantitative economics

A program that focuses on the systematic study of mathematical
and statistical analysis of economic phenomena and problems.
Includes instruction in economic statistics, optimization theory,
cost/benefit analysis, price theory, economic modeling, and
economic forecasting and evaluation. Examples: (Cost
Analysis), (Economic Forecasting)

Engineering/Industrial
management

A program that focuses on the application of engineering
principles to the planning and operational management of
industrial and manufacturing operations, and prepares
individuals to plan and manage such operations. Includes
instruction in accounting, engineering economy, financial
management, industrial and human resources management,
industrial psychology, management information systems,
mathematical modeling and optimization, quality control,
operations research, safety and health issues, and environmental
program management

Management science A general program that focuses on the application of statistical
modeling, data warehousing, data mining, programming,
forecasting, and operations research techniques to the analysis
of problems of business organization and performance. Includes
instruction in optimization theory and mathematical techniques,
data mining, data warehousing, stochastic and dynamic
modeling, operations analysis, and the design and testing of
prototype systems and evaluation models. Examples: Business
Intelligence, Competitive Intelligence

(continued)
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simulated dig (Brown and Fehige 2014) and simulation-based cosmology employ
simulation techniques to enhance, promote, or create new skills and experiences. The
future of simulation lies in its ability to connect with the large number of students in
the humanities and social sciences. Already, there is a formal process taking place
and informally we can say that it is accelerating. The future is bright indeed.

13.6 Simulation-Based Information Science Education

The academic topic of information science includes several closely associated
disciplines including computer science, information systems, software engineering,
computer engineering, and others. It also includes several topics related to infor-
mation system management and the library sciences. For the education discussion,
here, we will stick to the first group of topics—those related to information systems
and computer science.

In studying information systems, students can be expected to learn (very
broadly) (1) the skills of building (and using/maintaining) systems, (2) the use of
such systems in a larger environment, and (3) the formal science and theory that are
the bases for such systems. Different programs, of course, concentrate on different
aspects. A computer science program might feature much more formal science and
theory than an information systems program. In all three of these cases, however,
the education process can profit greatly from the use of modeling and simulation.

Instructing students in the skills of understanding how systems work divides
easily, in this discipline, into hardware-based systems and software-based systems.
Students can be taught (establishing and reinforcing declarative knowledge) how the
various components work, and can then be expected to build and use such systems

Table 13.6 (continued)

Discipline Description

Public policy analysis,
general

A program that focuses on the systematic analysis of public
policy issues and decision processes. Includes instruction in the
role of economic and political factors in public decision-making
and policy formulation, microeconomic analysis of policy
issues, resource allocation and decision modeling, cost/benefit
analysis, statistical methods, and applications to specific public
policy topics. An example: Public Policy Analysis

Sculpture A program that prepares individuals creatively and technically
to express emotions, ideas, or inner visions by creating
three-dimensional art works. Includes instruction in the analysis
of form in space; round and relief concepts; sculptural
composition; modern and experimental methods; different
media such as clay, plaster, wood, stone, and metal; techniques
such as carving, molding, welding, casting, and modeling; and
personal style development
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(establishing procedural knowledge). In the case of hardware systems, using such
tools as logic simulators, and even modeling and simulation software such as
Simulink can help understand how things like circuitry and memory systems work,
as well as the basics for digital system design (Yousuf et al. 2014). In the case of
software systems, it is more typical to build the software itself, but even here
modeling and simulation can assist the education process by providing tools such as
simulated data streams, to serve as input for testing software. In learning about how
systems such as database management systems work, it is typical to work with a
simulated data base, usually on a smaller, more abstract scale, than a large actual
database. In addition, there are simulators available for learning about languages
such as SQL—a very valuable example are those language simulators available from
theW3 Schools (an online resource for augmenting the education about software and
markup tools valuable for making distributed systems) (W3 Schools). An overview
of simulators and articles on the same can be found in (Alnoukari et al. 2013), which
covers programming, architectures, digital design, and some of the subjects of the
next category of instruction—especially computer networks.

The art of instructing students about how information systems work in a larger
environment can focus on several different aspects. How do such systems work
with each other (such as networks and distributed systems), how do such systems
work with human users (such as cyber security and human systems interaction), and
finally how do such systems affect their environment (such as courses of study on
the impact of computers on society)? These are all questions (as a sampling) that
might be answered by a course of study that can use (successfully) modeling and
simulation to improve the education. In education about networks, there are many
network simulators that simulate many different aspects about a network, for the
student to again gain some procedural knowledge, along with the theoretical and
declarative knowledge they gain from classroom study. One example in this area is
the successful program Network Simulation 3 (or NS3) (ns-3). Several scholarly
studies about the usefulness of using network simulation in classroom education
exists, including a very good introduction to the topic found in Riley (2012), which
introduces NS3 along with a competing simulator that has different features. There
are simulators that involve serious gaming for a more interactive and immersive
experience. These are used to teach principles of cyber security and cyber defense
skills. One such example is the simulation game CyberCIEGE (Irvine et al. 2005).
Some of the topics and skills that can be taught with such a simulator are briefly
enumerated (Cone et al. 2006):

• Introduction to Information Assurance
• Information value
• Access control mechanisms
• Social engineering
• Password management
• Malicious software and basic safe computing
• Safeguarding data
• Physical security mechanisms.
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Finally, the third grouping of education that we are looking at in this section
includes the use of modeling and simulation in the instruction of formal science,
and theory, especially in computer science. For this purpose, we have tools such as
R and Matlab to investigate a number of subjects related to the computability of
numbers, computation theory, and symbolic logic. Many of the same principles
found in the section on teaching the physical sciences may apply here. An inter-
esting addition, especially in the area of formal sciences (based on theory proposal,
and refutation), is the case of the Scientific Community Game (SCG). The SCG
uses the structure of a game (in the sense from game theory) to allow
participants/players to serve in a game of proposing and opposing a scientific
discovery, with the game rules being based on Popper’s method of refutation
(Abdelmeged and Lieberherr 2013). The game is developed by a group of
researchers from Northeastern University. This “game” involves a model of sci-
entific communities and how they approach problem-solving in the formal sciences.
The approach could be a useful teaching tool for instruction (Abdelmeged et al.
2016).

13.7 Simulation-Based Educational/Training Activities
in Other Fields and Countries Other Than USA

In Sect. 13.2, on Simulation-based Learning and Education, Table 13.2 lists
associations and networking related with simulation-based learning, education, and
training independent of geography. In Sects. 13.3 through 13.6, simulation-based
engineering education, natural science education, social science and management
education, and information science education are covered. Two related and
important topics are not covered in this chapter, since they are covered in depth in
two other chapters in this book. These topics are: the contribution of simulation to
health care as well as health education and training, in Chap. 10 by Hannes
Prescher, Allan H. Hamilton, and Jerzy Rozenblit and the role of simulation in
military training, in Chap. 14 by Agostino Bruzzone and Marina Massei. In these
chapters, most of the examples given are USA educational institutions. However,
simulation as well as simulation-based education is practiced in many other regions
and countries. In Chap. 5—Simulation-Based Cyber-Physical Systems and Internet
of Things—Bo Hu Li, Lin Zhang, Tan Li, Ting Yu Lin, and Jin Cui also cover
simulation education in China.

Table 13.7 displays a list of national simulation associations other than USA and
China. Table 13.8 displays simulation associations by region/language.

In addition to the simulation associations listed in Tables 13.7 and 13.8, there
are many research centers and military groups active in simulation (Ören 2017b).
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13.8 Future of Simulation-Based Education

Some of our views expressed in this chapter are necessarily based on trends, since
they are so evident. However, based on the dictum “The best way to invent future is
to invent it,” we prefer to express our normative views on how disciplines can

Table 13.7 A list of national simulation associations in countries other than China and USA

Country Society/Association

Australia OzSAGA—Australian Simulation and Games Association

SIAA—Simulation Industry Association of Australia

Bulgaria Bulsim—Bulgarian Modeling and Simulation Association

Croatia CROSSIM—Croatian Society for Simulation Modelling

France CNRS-GdR MACS—Groupe de Recherche “Modelisation, Analyse et
Conduite des Systemes dynamiques” de CNRS

VerSim—Vers une théorie de la Simulation

Hungary HSS—Hungarian Simulation Society

India C-MMACS—Indian Society for Mathematical Modeling and Computer
Simulation

INDSAGA—Indian Simulation and Gaming Association

Italy ISCS—Italian Society for Computer Simulation

Liophant Simulation

MIMOS (Italian Movement for Modeling and Simulation)

Japan JASAG—Japan Association of Simulation and Gaming

JSST—Japan Society for Simulation Technology

Korea KSS—The Korea Society for Simulation

Latvia LSS—Latvian Simulation Society

Netherlands SAGANET—Simulation and Gaming Association Derneği (Medical
Simulation Association)

Norway NFA—Norsk Forening for Automatisering

Poland PSCS—Polish Society for Computer Simulation

Romania ROMSIM—Romanian Society for Modelling and Simulation

Singapore SSAGSg—Society of Simulation and Gaming of Singapore

Slovenia SLOSIM—Slovenian Society for Modelling and Simulation

Spain AES—Spanish Simulation Society (Asociación Española de Simulación)

CEA SMSG Spanish Modelling and Simulation Group

Sweden MoSis—The Society for Modelling and Simulation in Sweden

Taiwan TaiwanSG Taiwan Simulation and Gaming Association

Thailand ThaiSim—The Thai Simulation and Gaming Association

Turkey BinSimDer—Bina Performansı Modelleme ve Simülasyon Derneği
MSD—Medikal Simülasyon Derneği

UK NAMS—National Association of Medical Simulators

UKSIM—United Kingdom Simulation Society
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benefit by being simulation-based and to realize this as soon as possible, to have
simulation-based learning, teaching, training, and education to be widely adopted
by them. Adoption of model-based approach by many disciplines is the right
choice, since simulation itself is model-based (Ören and Zeigler 1979; Ören 1984).

As the opening quotation from Plato states “What is honored in a country is
cultivated there,” simulation-based activities can flourish especially in cultures
(countries, institutions) that value rational decisions. In a rational World, simulation
is an invaluable tool for experiential learning and teaching by performing—in silico
(namely, computerized)—experiments and gaining experience. Especially in many
cases, when in vivo (on real systems) or in vitro (in laboratory) experiential
knowledge generation is not feasible, economical, or otherwise desirable, com-
puterized experiments and experience (i.e., simulation) becomes very convenient
and sometimes even superior to in vivo and in vitro experiential knowledge gen-
eration. Education for simulation-based disciplines may prepare future

Table 13.8 Simulation Associations by Region/Language

Region Society/Association

Americas CSSSA—Computational Social Science Society of the Americas

Asia AFSG—Asian Federation for Serious Games

ASIASIM—Federation of Asian Simulation Societies

Asia-Pacific APSSA—Asia-Pacific Social Simulation Association

Australia /New Zeeland MSSANZ—Modelling and Simulation Society of Australia and
New Zealand Inc.

Czech and Slovak
Republics

CSSS—Czech and Slovak Simulation Society

Dutch Benelux DBSS—Dutch Benelux Simulation Society

Europe ARGESIM (Arbeitsgemeinschaft Simulation News) Working
Group Simulation News

ESSA—The European Social Simulation Association

EUROSIM—Federation of European Simulation Societies

EUROSIS—The European Multidisciplineray Society for
Modelling and Simulation Technology

SESAM—Society in Europe Simulation Applied to Medicine

French FRANCOSIM—Societe de Simulation Francophone

German ASIM—German Simulation Society

Mediterranean and
Latin America

IMCS—International Mediterranean and Latin American Council
of Simulation

Pacific Asia PAAA—Pacific Asian Association for Agent-based Approach in
Social Systems Research

Scandinavia SIMS—Scandinavian Simulation Society: DKSIM
(Denmark), FinSim (Finland), NFA Norway), MoSis (Sweden)

Swiss, Austrian, and
German

SAGSAGA—Swiss Austrian German Simulation And Gaming
Association
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professionals to get full benefits of using simulation and can have an opportunity to
enrich their disciplines.

In personal development, a good recommendation is to “Work smarter, not
harder!” The proverbial sharpening the axe, as also stated by Abraham Lincoln is:
“If I had six hours to chop down a tree, I’d spend the first four hours sharpening the
axe.” We argue that, for many disciplines, adopting the simulation-based paradigm
and in preparing future professionals in these disciplines, promoting simulation-
based learning, education, and training would be very beneficial. Simulation is
already included in the curriculum of many disciplines. It is hoped that all con-
ferences on education will also include some presentations/panels on the benefits of
simulation in education.

To solve problems, one needs knowledge, knowledge processing knowledge,
and intelligence; however, some solutions might be detrimental (to the society, even
to humanity) if implemented without ethical considerations. For sustainable civi-
lizations, an indispensable ingredient is ethics which necessitates respect to the
rights of others. There are codes of ethical behavior for several professions
including for simulationists (SimEthics; Ören 2000, 2002a, b). The ideal is, in
professional courses (of engineering, natural and social sciences, as well as in
information science), to teach relevant aspects of ethical behavior. However, in
simulation-based education of several disciplines, the inclusion of SimEthics would
also be highly desirable.

Review Questions

1. If you are involved in the education/training/learning of any topic, are you
familiar with the benefits of simulation in this field? For example, are you
familiar with several sources (such as associations, conferences, publications,
software) of information about the use of simulation in education (as given, for
examples at http://www.site.uottawa.ca/*oren/sim4Ed.pdf)?

2. How simulation is essential in the development of decision-making skills? Give
several examples.

3. How simulation is essential in the development of motor skills? Give several
examples.

4. How simulation is essential in the development of operational skills? Give
several examples.

5. What are the benefits of teaching simulation concepts/techniques/software in
education of future engineers?

6. What are the benefits of teaching simulation concepts/techniques/software in
education of future scientists?

7. What are the benefits of teaching simulation concepts/techniques/software in
education of future social scientists?

8. Why simulation is used in several aspects of health care? What would happen if
simulation is not used in health-care education?
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9. Why simulation is used in several aspects of military training? What would
happen if simulation is not used in military training?

10. Why simulation is used in several aspects of management? What would happen
if simulation is not used in management education?

11. How simulation can be beneficial in distance education?
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Chapter 14
Simulation-Based Military Training

Agostino G. Bruzzone and Marina Massei

Abstract Simulation is strongly related to the Military Sector, indeed Computer
Simulation has been effectively applied to Defense and Aerospace since the end of
the World War II and John McLeod, founder of the Society for Computer
Simulation International (SCS), applied it to Rocket Science and Aeronautics in
early ’50, quite a while before the advent of digital computers (McLeod in
Simulation: the dynamic modeling of ideas and systems with computers.
McGraw-Hill, New York, 1968). Today, after half a century, military users still
represent the major stream for M&S developments. Indeed, there is a good reason
why Modeling and Simulation (M&S) is so popular in Defense: this context pro-
vides usually very challenging problems with many variables and interactions,
stochastic factors and heavily nonlinear systems; in addition, it is an area where
competition (not necessarily commercial) pushes the innovative solutions to the
edge, so all these aspects promote simulation as leading science to achieve suc-
cessful results. This chapter is focused on New Challenges and Opportunities in this
domain.
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defense � Hybrid warfare � Hybrid naval training � CIMIC � PSYOPS � Strategic
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14.1 Introduction

Simulation as Leading Science is a very consolidated concept, as it is evident in Sun
Tzu’s masterpiece:

Now the general who wins a battle makes many calculations in his temple where the battle
is fought. The general who loses a battle makes but few calculations beforehand. Thus,
many calculations lead to victory, and few calculations to defeat: how much more no
calculation at all! It is by attention to this point that I can foresee who is likely to win or
lose.

Obviously, nowadays, calculation evolved in Simulation and Computer Simulation
is crucial to win battles of today and tomorrow. Therefore, Modeling and
Simulation (M&S) for Defense have many areas of applications including, among
others: Training & Education, Capability Development, Mission Rehearsal, Support
to Operations, and procurement through Simulation-Based Acquisition. Among all
these sectors, the Education and Training (E&T) is probably the most popular and
common subject for applying M&S to Defense. This is true, even though
Procurement could lead to even a greater impact in terms of Budget and Savings or
that Capability Development could address very strategic issues (Page and Smith
1998). From this point of view, even the simulation taxonomy used in military
sectors based on Live, Virtual, and Constructive (LVC) simulations is a good
example of this “E&T oriented perspective.” In fact, the three types used to classify
the military simulation are specifically addressing training (DoD 1998):

• Live: Classical Live Simulation where real people operate real systems within a
computer simulation as evolution of traditional conventional training exercises.

• Virtual: Classical Virtual Simulators where real people operate simulated sys-
tems such as sailing a virtual ship, flying a virtual plane, or driving a virtual
tank.

• Constructive: Classical Computer War-gaming systems where players direct
computer units.

These different types could be recombined in different ways, resulting in sim-
ulators that are, for instance, Live and Virtual, Virtual and Constructive, or even
LVC. Commercially, it is quite common to present each single simulator as LVC
(based on assumption that everything could be “adapted”). Therefore, it is strongly
recommended to look “inside” the simulators to really understand their real nature
and capabilities.

In general, the Simulation Scientists are in charge to design and define the
models capable of achieving the objectives expected by final Users and Decisions
Makers. They have to adopt proper levels of fidelity considering the overall
problem, including different issues affecting data, computational efficiency,
usability, maintainability, etc. (Loftin 1994; Fishwick 1995; Sokolowski and Banks
2011; Tolk 2012b)

Based on this approach, the Military Training uses simulation to support dif-
ferent kinds of E&T. The domain of learning covers different typologies such as
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psychomotor learning (Simpson 1972), cognitive learning (Anderson and
Krathwohlr 2001), affective learning (Krathwohl et al. 1964; Goleman 1995;
Philipps 2009), and social learning (Sottilare et al. 2011; Soller 2001):

• Psychomotor Learning is devoted to train the trainee to act and react properly
based on physical interaction and Man–Machine Interface (MMIT) with a
system. The main focus is the relationship between cognitive functions and
physical ones in order to enhance physical skills such as proprioception, coor-
dination, movement, manipulation, dexterity, grace, strength, and speed. The
classical example in M&S of this typology is proposed by Flight Simulators or
Tank Simulators wherein the trainee learn to become part of the weapon system
and to operate it properly.

• Cognitive Learning is devoted to prepare the trainee in applying proper pro-
cedures and instructions at cognitive level. This is supposed to be effective
based on the hypothesis that cognitive abilities are maintained and improved by
exercising the brain, in analogy to the way physical fitness is improved by
exercising the body. A classical example is to use a constructive simulation to
solve a tactical problem.

• Affective Learning refers to a learning process related to students’ interests,
attitudes, and motivations. In simple terms, the affective learning is related to the
emotional area and refers to learner beliefs, values, interests, and behaviors. So,
this is concerned with trainee feelings during learning process, as well as with
how learning experiences are internalized so they can guide the learner’s atti-
tudes, opinions, and behavior in the future. In this sense, Serious Games is a
promising option for military applications (Michael and Chen 2005).

• Social Learning is a learning process within the social context. It is supported by
observation and training and reinforced by the impact of social roles and net-
works in the individual learning. The social learning is strongly affected by
fundamental skills required to military Commanders and it benefits strongly
from collective training and interoperable simulation allowing to be immersed
into a large exercise where these conditions are present as it happens during a
Computer Assisted Exercise (CAX) or Simulation Multi Coalition Simulations
(Bruzzone et al. 2015d).

Learning processes lead the E&T in military sector based on different modes
such as the following ones (Cayirci and Marincic 2009a; Sottilare 2009; Tolk et al.
2012a; Stevens and Eifert 2014):

• Individual Training: This is devoted to prepare the single trainee to react and act
within a scenario in a stand-alone mode. Therefore, in this case also, it is
possible to have Computer Generated Forces (CGF) controlled by computer
Artificial Intelligence (AI) devoted to reproduce opponents or friends, but
training is focused on the single individual trainee.

• Collective Training: This is devoted to prepare a team of warfighters with same
or different roles, to act and react within a scenario together emphasizing the
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importance of self-coordinating and of creating harmony and synchronization in
order to build up the whole team.

• Tactical Training: This is devoted to prepare Officers in dealing with tactical
scenarios, usually operating on constructive simulators with high resolution.

• Theater Level Simulation: This is devoted to prepare the Headquarters in
dealing with Operational and Theater Level Scenarios, usually operating on
constructive simulators with high aggregation level (e.g., minimum units cor-
responding to brigades or battalions).

• Strategic Training: This is devoted to E&T of Commanders on the Strategic
Decision-Making Processes.

These types of training could be combined in different ways, resulting in very
different systems: from an individual Portable Anti Aircraft Simulator to an Air
Defense War Room Training Equipment for Collective Training using Distributed
Interactive Simulation (DIS), from a Virtual Bridge Simulator to a Joint Naval
Training based on LVC using High Level Architecture (HLA) simulation enabling
interoperability among real assets (e.g., c2 systems, vessels, and aircrafts) and
simulation models (e.g., foe, friendly and neutral CGFs, hostile missiles, and
generic traffic).

A very common case of Military Training is represented by CAX that involves a
large number of people including trainees, operators, instructors, etc. (Cayirci
2009b). CAX is very important to train a Command to operate in scenarios by
organizing exercises that are realistic. Currently, the main focus in these cases is on
procedural aspects. Therefore, often multiple elements are combined together
resulting in very complex mission environments that requires long time to be
prepared and efforts to be conducted. In these cases, the After Action Review
(AAR) is a critical issue and simulation has a big potential to improve the E&T
processes by introducing smart reports and review of the actions. There are
opportunities for advancement in this area by improving the impact on the training
audience by new technologies. In fact, it is important to outline that M&S is a
revolutionary approach in Military Exercises for over 25 years drastically reducing
the cost of training by extending the use of Simulation: thanks to the introduction of
distributed and interoperable simulation (Thorpe et al. 1987; Pimental and Blau
1994; Miller and Thorpe 1995). Traditional military exercises represent examples of
“manual simulation” (e.g., driven just by human judges and observers) as they
happen with the Role Play Game (RPG). Vice versa, the innovative aspect is the
concept to introduce Computer Simulation (even if we just refer to it as to
Simulation) and to use models implemented in software applications dealing with
calculation of system capabilities, actions, and reactions (Nam 1980; Graetz 1981;
Malley 1984). The original concept was introduced in the beginning of last century
by H.G. Wells by defining the rules and probabilities regulating war games while
playing with friends using the toy soldiers of his sons (Wells 1911, 1913). The
modern algorithms allow introduction of much more detailed and sophisticated
computations, covering, for instance, friction and logistics needs of a unit or of a
weapon system (Lanchester 1995; Gozel 2000).
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By this approach, the Computer Simulation allows creation of very large exer-
cises with just a limited number of real units and assets, reducing operational costs,
preparation costs, improving safety by operating on the virtual context (Orlansky
et al. 1994; Rolands et al. 1998). These aspects have further been reinforced by
developing simulation standards able to support distributed simulation (e.g., DIS at
beginning of ’90) and interoperability (e.g., HLA since 1996), allowing the
development of new training simulation solutions (Hamilton et al. 1996;
Strassburger et al. 1998; Zeigler et al. 1999; Huan et al. 2003; Mittal et al. 2008). In
this framework, HLA evolved along the years becoming the edge technology for
simulation interoperability in use for training and has been constantly updated
through the decades. Even after 20 years from its inception, HLA still represents
the reference standard: thanks to its open architecture approach, despite the ongoing
research for developing new approaches (Fullford 1996; McGlynn 1996;
Ratzenberger 1996; Möller and Dahlin 2006; Gustavsson et al. 2009; Martínez-
Salio et al. 2012).

In the last two decades, the simulation standards, with special attention to the
critical aspects of interoperability issues, improved capability to combine real
equipment with different kind of simulators. Distributing them over the web
resulted in a drastic improvement in realism and reduction of costs (Gibson et al.
2003; Liu et al. 2016).

Therefore, it is important to outline that the complexity of the scenarios and
models keep this kind of interoperable distributed simulation in the area of chal-
lenging simulation developments, even today. This is not just due to the techno-
logical challenges of distributed interoperability. There is a strong need to educate
new generations of scientists, engineers, developers, and technicians. In this sense,
there are very important active initiatives at international levels such as Simulation
Exploration Experience (SEE), formerly known as SMACKDOWN, promoted by
NASA in joint cooperation with Academia and Industries to bring together the HLA
standard and various other technological advances (Elfrey et al. 2011; Bruzzone
et al. 2016f).

Probably, the most crucial aspect is related to the complexity of the models and
the conceptual interoperability that introduce critical integration problems, if the
conceptual models have been developed improperly (Lorenz 1993; Amico et al.
2000; Tolk and Muguira 2003). In several cases, this is motivated directly by the
original complexity of the real systems. As an example, a main battle tank
(MBT) needs gasoline to properly operate (logistics support), to properly receive its
orders (command and communications) and to have different kind of ammunitions
and consumables (cannon, guns, and grenade launchers); it should consider its
operational status (e.g., its integrity); it has to take care of boundary conditions with
respect to its equipment and situation (e.g., specific terrain type versus track con-
ditions, sensor performance versus weather conditions), opponent countermeasures,
fog of war, etc. In addition, to these elements, each good MBT Commander will
outline the importance of crew and human factors for the success of the mission. All
these considerations provide a good example of the dimension of the problem, the
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number of variables and the scope of different kind of elements to model even for a
basic case. Indeed, just considering the abovementioned issues, corresponding to
the tactical elements characterizing a tank battalion, it is evident that to prepare a
theater level scenario on an already consolidated simulation system, it could take
many weeks using dozen of experts. In a similar way, many CAX operators could
be required to execute the simulator during an exercise with a real Command.

In fact, the workload to prepare and execute exercises is still an open issue for
simulation and new technologies are expected to provide improvements in future.
There is a clear need to reduce time, personnel, and efforts for preparing and
managing exercises as well as to create models that are able to cover new areas. For
instance, the use of Intelligent Agents could allow automating the control of several
units, being able to assigning them high level tasks and letting them to autono-
mously proceed in carrying out low level orders (Bruzzone and Massei 2007a).

In a similar way, the use of Serious Games (SG) allows improved training
effectiveness and the achievement of training objectives by adopting strategies
enhancing trainee engagement (Abt 2002; Iuppa and Borst 2006). It could be useful
to consider an example to better understand the importance of engagement: an
officer required to participate in a CAX, sometimes considers it quite boring and
experiences limited engagement during it and along the AAR. Vice versa, a young
generation gamer may spend many hours in playing for its own gratification, often
sacrificing his free time to it. This makes it clear that the engagement mechanism
has the potential to maximize the effectiveness of training and to create additional
training opportunities (Raybourn 2009; Raybourn et al. 2010; Bruzzone et al.
2009b).

Along the last decade, the NATO M&S COE in cooperation with Allied
Command for Transformation, organized the NATO CAX Forum to support CAX
Community. This event resulted in evaluation of the most important frameworks
and proposed advances in this specific area, often combined with other scientific
events such as the International Workshop on Applied Modeling and Simulation
(WAMS) in order to address the technical evolution in the sector (Bruzzone et al.
2012a).

Even thinking of other major Simulation Events, such as Exhibitions that are
going around the world, it is common to witness the maximum attendance where
the E&T are specifically addressed, as happens for the Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC) and the International
Training Equipment Conference (ITEC). In these events, several thousand visitors
are registered each year, even though many other scientific events consider these
aspects (e.g., I3M International Multidisciplinary Modelling and Simulation
Multi-conference, Summer Computer Simulation Conference, International
Defense and Homeland Security Simulation Workshop, SpringSim, WinterSim,
etc.). Indeed, there is obviously a clear motivation for consolidation of this mindset
about military training based on simulation and it probably is laid well by
Confucius’s:
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Tell me and I forget. Teach me and I may remember. Involve me and I will understand
(Lau 1979).

Military needs to be trained to properly fight (“train as you fight”) as well as to
operate modern weapon systems. For sure, war is not a framework where training
on the job could be adopted effectively, considering the very high death rate of
untrained people in the battlefield. Due to this reason, it is evident that M&S
represents the most effective way to prepare the warfighters and that simulated
scenarios are much more realistic than traditional exercises. Indeed, in modern
Warfare, simulation is often able to reproduce the real operations with high fidelity.

The importance of Military Training is becoming more and more crucial along
recent years for several reasons that are hereafter summarized:

• Costs are probably the major driver in extending the use of computer simulation
for Military Training considering the flight costs for a modern plane (e.g.,
68,000$/h for a F-22 almost three times more than a F-16), but even for a Drone
(4700$/h for a Reaper Drone) without mentioning the prohibitive costs of a ship
(easily several hundred thousand per day for a vessel and over 1 million/day for
a conventional carrier) or of an army division deployed on exercise (Lundquist
2009; Thompson 2013).

• Training Effectiveness is strongly improved by introducing distributed inter-
operable simulation: fighter pilots could train in joint operations against oppo-
nent wings, soldiers could fight against tanks and artillery in scenario
overpassing the boundary of training areas, ships could carry out missions as
part of a task force within intensive scenarios. These kinds of operations are
often not possible in reality due to limitations imposed by available space,
available resources, and safety regulations. The paradox is that, sometimes, the
simulation is more “operationally realistic” than the traditional exercise.

• New War paradigms are emerging that require training people at all levels on
how to deal with these new contexts. For instance, warfighters had to focus
mostly on urban operations and interactions with civilian (e.g., CIMIC). These
are new operations not in the traditional core of military training (Zaalberg
2006).

• Equipment and Weapon Systems are becoming more and more sophisticated
and require specific training and knowledge for being properly operated. This is
easily confirmed by examples such as the use of a man-portable air defense
system or the capability to fly a micro drone within an urban environment.

• The Warfare has become very “invasive,” also due to the evolution in weapon
lethality (IED) and different gears (e.g., protective plates, communications,
CBRN). Untrained people are vulnerable and could generate high rate of
casualties and mutilations among rookies, almost unacceptable in most evolved
Countries.

It is evident that the continuous increase of weapon systems, as well as their
maintenance, is opposing to a continuous reduction in military expenditures that
could be sustainable just by adopting highly efficient training at low costs, to leave
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resources available for real operations that unfortunately, are also incumbent in
modern times.

That is to say, the roman adage “si vis pacem, para bellum” (“If you want peace,
prepare for war”) is the big driver for having extensive simulation for military
training.

Therefore, the military sector is currently subjected to a general change, or
transformation, by breakthroughs in innovative concepts. The evolution of au-
tonomous systems and new domains (e.g., cyberspace) represent a revolution that
will require Training Simulation to maintain a key role for preparing the new
generation to deal with these new contexts and new models. Synthetic environ-
ments will have to be developed in order to address these issues. From this point of
view, it should be noted that the concept originally used as motto by the STRICOM
(now named PEO-STRI): “all but war is simulation” is still valid. This sentence
means that simulation could be extended to cover all new areas, even if, obviously,
on the real war there are specific elements that are not possible to properly
reproduce in computer simulation such as massive and individual human factors,
spirit of survival, extreme details, etc. (Bruzzone et al. 2007b).

Simulation always requires approximations in order to be effective, reliable, and
usable in accordance with its specific objectives. This fundamental aspect is
acceptable in defense and does not limit the validity to use M&S for Education and
Training.

In reference to this aspect, the short example of a strategic bomber simulator
developed several decades ago for training the crew should provide a good illus-
tration. In this case, the focus was on Electronic Warfare (EW). Therefore, the
penetration among the enemy territory was short and intensive, considering that at
that time the scenario was focused on nuclear war and the use of first generation of
cruise missiles (*2000 km range). To guarantee commitment of the training
audience, the full crew was simulating the whole mission: from departure from
homeland, carrying out air refueling spending several hours before to enter into
enemy territory, making them aware that a mistake will cost a lot of time to restart it
(Thorin et al. 1982). In the following examples, the use of Simulation for Military
Training is presented in relation to many specific areas, to present the potential and
effectiveness of M&S in this context and current advances. All the material pre-
sented is in public domain. Therefore, even these simple examples confirm the
strategic advantage provided by M&S.

14.2 Saturation Attack Against a Task Force: Joint Naval
Training, VV&A, and Simuland

One of the most common scenarios in naval simulation is a ship, or task force,
facing a saturation attack. A sufficient high number of threats (e.g., planes, missiles)
could saturate the defenses of a group of warships resulting in breaking through and
damaging/destroying the vessels (Bradford 1992; Townsend 1999; Boinepalli and
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Brown 2010). Originally, this kind of analysis was carried out by static models, or
simple computation considering the maximum number of targets that the different
fire direction could track along with the characteristics of the weapon systems. This
computation is approximate considering the dynamics of the case, especially, when
the scenario moves from a classical single vessel to a naval task force and additional
details are considered. For instance, cooperative engagement could improve defense
capabilities if the action is coordinated among defenders. Similar techniques are
also supposed to evolve in new generation missile and autonomous systems threats
(Yang et al. 2013). Today a scenario like this one strongly relies on joint cooper-
ation among vessels and other assets that are able to provide all-weather tactical
warning services against such threats. ICT models, in this case, are very critical,
considering the complexity, speed, and precision required to deal with this kind of
scenario.

The necessity to use simulation to reproduce this context is quite evident. At the
same time, such simulation represents a very valuable asset to train crew and
console operators to face such challenges. It is also evident that the opportunity to
adopt distributed and interoperable simulation enables training multi-ship cooper-
ative engagement. This approach enables the possibility to have people operating
from air defense console simulators interconnected within real ship operations
rooms. This example outlines the advantage to move from a single stand-alone
simulator of a tactical console to train multiple operators on an air defense scenario
in order to be able to play much more realistic cases.

To better understand this case, consider the following example: a small task
force composed of six surface vessels (i.e., a medium size aircraft carrier, two
destroyers, two frigates, and an auxiliary ship), plus a diesel submarine and several
autonomous systems including Autonomous Underwater Vehicles (AUV),
Unmanned Surface Vehicles (USV), and Unmanned Aerial Vehicles (UAV), pro-
ceed within a dangerous area with coverage provided by aerial traditional and/or
innovative solutions (e.g., E-2C for Airborne Early Warning and Control or AEW
drones). This task force has to face an enemy joint attack combining cyberspace and
naval joint layers. The physical threat is composed of a swarm of new generation
supersonic anti-ship missiles fired by a SSGN (Nuclear Guided Missile Submarine)
sailing 200 nautical miles away. The new generation missile is supposed to have
supersonic speed, sea skimmer profile, high maneuvering capability as well as an
intelligent control system enabling them to communicate during the attack in order
to share targets and redefine priorities. The simulation of this scenario has to cover
very different cases: from an intense saturation attack (24–32 missiles), corre-
sponding to cold war cases, to a hybrid warfare context where the attacker pretend
to have fired (few, or even, a single missile) just due to an error. These cases are
combined with synchronous and asynchronous cyber attacks capable of effecting
and even compromising the Airborne Early Warning (AEW) systems, Command
and Control (C2), SATCOM & Communications, and Command Chain (Bruzzone
2016e). In case the AEW fails, the reaction time for the task force could be reduced
to 10–15 s, breaking down the antimissile defense capabilities of the group, so the
ship defense, adopting cooperative engagement, turns to be very stressful in terms
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of data communication and fire direction. Therefore, in this situation also, the
supposed offensive cooperative engagement system of the missiles will have to deal
with very challenging conditions. To be able to provide additional capability to the
attackers (in the system) with respect to traditional target tracking, they have to
coordinate multiple missiles flying, as an attack pack, at 1000 m/s, 5–10 m from
sea surface within an intensive EW environment. These conditions provide limited
time to get the whole picture and to renegotiate targets among the missiles based on
the evolution of the scenario, i.e., to reassign the aircraft carrier as primary target for
two missiles as soon as the preassigned ones miss it or are shut down.

These elements are very challenging in reference to mere physical considerations
such as admissible accelerations and dynamics, but become even more complex and
uncertain in reference to variables such as the effectiveness of missiles to acquire
targets or to resist to EW. Finally, the missile intelligent control, as well as their
capabilities to communicate and cooperate, are approximate and their performance
is subjected to Subject Matter Expert (SME) estimations characterized by large
confidence bands. It is evident that this scenario deals with many complex factors,
including a lot of data that should be just estimated. Let us consider the traditional
ones: the characteristics of this new generation missile are unknown or just esti-
mated by intelligence reports and expert analysis. The defensive heterogeneous
network among AEW, UxV, vessels of the task force, the ICT networks on board of
the ships plus the whole sensor/communication network in charge of data collec-
tion, elaboration, and decision-making (from ships to ground HQs of the different
Services and Authorities) is even more complex and represent other elements that
need to be simulated as they are sources of potential vulnerabilities.

This case is presented in reference to the need of properly validating simulation
models. In fact, in reference to missile and antimissile simulation, traditionally it is
stated that the hardest part of a simulation project lays in the validation. Sometimes,
it requires including real Hardware- and Software-in-the-loop to acquire useful
information for this purpose (Jackson et al. 1997). In some cases, it could be even
necessary to conduct a real test by firing real missiles to collect data for validating
the model, corresponding to a cost in USD millions. All these impressive efforts
should be evaluated in terms of fidelity and sustainability, without forgetting that
firing a missile within a test could not be a perfect representative of a real scenario
especially considering factors such as reliability and performance of all the systems
involved and potential real boundary conditions. Despite these challenging con-
siderations, the presented case is even more complex considering that it is not
possible to adopt HIL (Hardware in the Loop)/SIL (Software in the Loop) due to the
fact that most of the innovative systems to be simulated are Secret and/or belong to
a Potential Opponent Nation. We cannot ask them to fire the missiles while we
measure all data, at least, until they are not at war. So, let us consider how
Simulation could be used to address this problem and what are the fundamental
principles and the crucial elements to be considered. As anticipated, among the
most critical parts of simulation development processes, Verification Validation and
Accreditation (VV&A) emerges as a key element and strongly reinforced within
Military Training.
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VV&A relies on strong cooperation among experts of very different domains
and requires that simulationists acquire deep knowledge of their context and
capability to interact with other fields (Szczerbicka et al. 2000; Sarjoughian and
Zeigler 2001a). Indeed, in this area, it is very critical to avoid the “negative
training” (Amico et al. 2000). The “negative training” corresponds to the case when
the training equipment provides an improper representation that allows the trainee
to succeed in his mission by applying solutions, behaviors, actions that do not work
in reality and vice versa, where proper reactions in reality could lead to failure in the
Simulation (Page and Smith 1998). So, in the hereafter presented, saturation attack
case, improperly setting the characteristics of the threats could lead to completely
incorrect training procedures and experimental results. In addition, the negative
training could be combined also with other kinds of défaillances (e.g., failing in
simulation objectives, inadequate synthetic environment, synchronization errors,
approximations) that need to apply proper VV&A methodologies to be prevented
(Balci 2004). VV&A is based on consolidated methodologies and procedures and is
a fundamental part of M&S development (Balci et al. 1996; DoD 5000.61;
Youngblood et al. 2010). From this point of view, it is crucial to consider that
VV&A should be adopted across the life cycle of the simulation development in
order to achieve:

• Validation: process to assess the degree to which the adopted Models,
Simulators, and related Data provide a proper and accurate representation of the
Real World with respect to the specific intended uses of the Simulation.

• Verification: the process to assess if the Models, Simulators, and Databases are
consistent with the conceptual descriptions and specifications.

• Accreditation: the process that guarantee the acceptance of the Models,
Simulators, and related Data by the User for his own needs, as well; when
applicable, the formal certification that the simulation is acceptable for the
specific intended use.

These concepts are strongly related to the necessity of creating proper conceptual
models (Validation), implementing that correctly (Verification) as well as to
guarantee that final users trust the Simulator and use it (Accreditation). Conceptual
model definition as well data collection is very critical (Amico et al. 2000;
Zacharewicz et al. 2008). It is very important to stress that, in general, and based on
very valuable experience, the major cause for simulation failure is exactly on these
issues and more specifically, in losing the trust on the models of the decision
makers and users (Williams 1996). It is evident that, people, in order to use sim-
ulation, need confidence that could be achieved just by properly involving them in
the simulation development process since the beginning: from objective definition
till the check of the experimentation results. This aspect strongly relies on the
capacity of Simulation Experts to interact and to apply VV&A techniques to share
information that creates this mutual model trustworthiness without getting lost in
too much technical details (Amico et al. 2000).
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It is even important to mention the concept of Simuland, introduced by John
Mcleod almost half a Century ago, but still very actual. To validate and verify a
model or simulator, it is required to consider the Real System as a reference and
even when this system does not exist yet (e.g., a training simulator for air defense
against a potential new missile), the experts have to assume hypotheses or to use
numerical models to face this issue.

However, the point is that it is impossible to know what the real situation is. Vice
versa, the situation is much more common when the Subject Matter Experts
(SME) do not have an exact knowledge of the real system, but just partial infor-
mation. So this approximated knowledge of the reality is defined as Simuland and
Simuland is adopted to conduct the VV&A and to develop the simulation. This
means that during dynamic experimentation, and along the final phases of
Simulation developments, it becomes even more important to conduct tests to verify
that the Simuland was correctly estimated with respect to the Real System at least in
reference to the specific simulation objectives. Figure 14.1 illustrates the relation-
ship between various elements.

The earlier presented case fits exactly in this context: a simulation dealing with
defense against an opponent weapon system that is not very well known. In this
case, it is required to adopt and test different assumptions based on hypotheses and
intelligence reports as well as to evaluate alternative new systems, still in devel-
opment phases, as countermeasures.

Fig. 14.1 VV&A processes along Simulation Life Cycle
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The use of autonomous systems in the defense architecture represents an inno-
vative aspect and proper modeling of these components should be done. In this case
study, the simulator, Joint Environment for Serious Games, Simulation and
Interoperability (JESSI), was used as virtual environment with the aim to simulate
and understand Joint Naval Scenario over the Extended Maritime Framework
(EMF) including sea surface, underwater, air, land and coast, space, and cyberspace
(Bruzzone 2016e). The concept of EMF has been developed in specific reference to
advances of M&S in Maritime Domain in Academia and International
Organizations (Bruzzone et al. 2004, 2013b; Milano 2014). In this scenario, not
only the systems and behaviors, but also the environmental conditions are very
challenging to model. There are multiple elements that are spread over the map and
affected by complex dynamics such as sea conditions, wind, waves, fog, rain,
salinity and thermal layers, etc.

Due to the complexity of the system and its extensions, scalability is a very
crucial element. The concept of “fog of war” introduce by Von Clauswitz “Vom
Kriege” (1832) in English language “On war” represents a challenge in the esti-
mating and modeling of opponent tactics and equipment, but also is necessary to
create a simulator that is able to address multiple levels of resolution moving from
operational procedures, policies and tactics down to capabilities of new kind of UxV
(Unmanned various domain Vehicle) and the associated Hardware and Software in
the loop issues (Bruzzone et al. 2013e). Special attention should be given to the
integration of Autonomous Systems with traditional assets. For instance, just con-
sidering the problem to model the communications among the entities; JESSI sim-
ulates them through a dynamic network where nodes and links are interconnecting
real and virtual assets considering their conditions and status. Each of the nodes and
links composing the networks is defined in terms of type (e.g., Radio frequency,
SATCOM, Acoustic Modem, optic fiber, etc.). A basic model incorporating band-
width, capability, standard background traffic model, reliability, availability, confi-
dentiality, integrity, mutual interference is built. All data exchanges are simulated as
packets, routed over different heterogeneous networks based on the evolving situ-
ation. JESSI allows visualizing both of them on the real layer and in the cyberspace
as proposed in Fig. 14.2. The status of a node or a link could be visualized for SME
in order to provide an augmented reality feature, which improves their understanding
of the complex situation of communications. By observing the dynamic movements
of the flying cubes representing the data packet, it is possible to immediately
understand the evolving situation of the heterogeneous network that is affected by
changes of high order of magnitude in communication speed (e.g., from Link-16
down to 150 bauds of underwater communications in some conditions) and break-
downs. In addition, the communication model considering the network performance
is not only based on the dynamic configuration of the network (e.g., AUV on surface
using Radio Frequency versus acoustic modem when submerged), but also incor-
porates the general traffic on their nodes and link. For instance, standard traffic
models could be used to reproduce the stochastic bandwidth saturation due to
additional communication packages transferred during operations and not covered
by current simulation. This is an example where simplified metamodels for
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communication could be effective for creating realistic test cases while more
sophisticated ones could be federated in JESSI Federation to guarantee a high
fidelity simulation for detailed large communication architectures (Mak et al. 2010;
Bruzzone et al. 2015a).

JESSI adopts the innovative paradigm of Modeling, interoperable Simulation,
and Serious Games (MS2G) that combines M&S fidelity, simulation interoper-
ability, and intuitive and engaging characteristics of SG and was introduced by
Simulation Team & Sim4Future (Bruzzone et al. 2014b). Indeed, in MS2G para-
digm, M&S and SG are combined by integrating different models and to create
virtual worlds easily deployable with multiple distributed solutions through HLA
(Bruzzone et al. 2014c). JESSI was originally designed to simulate complex sce-
narios in defense and homeland security and over multiple domains where it is
necessary to provide SMEs with an intuitive immersive environment to investigate
the context. This approach enables application of reverse engineering based on
M&S to influence the system modeling, working side by side with experts. In order
to check consistency among different hypotheses about system performance and
alternative behaviors, the simulation dynamically calculates the Measure of Merits
(MoM), including overall mission effectiveness. The outcome is dependent of the
different variables and dynamic behaviors present in the scenario.

In our case, the goal is to conduct virtual experimentations to evaluate consis-
tency of different hypotheses on friend and foe systems as well as on Concepts of
Operations (CONOPS), strategies, policies, and technological alternatives. By this
approach, it becomes possible to improve understanding of this Mission
Environment and to create a flexible training equipment for Crew and
Commanders.

Fig. 14.2 JESSI presenting scenario evolution over different domains
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To succeed, it is important to consider the capability of the simulator to create an
interoperable synthetic environment integrating hybrid stochastic simulators
through HLA. JESSI evolved from Simulation Team Virtual Marine (ST_VM),
previously developed for marine operations (Bruzzone et al. 2011a). The use of
HLA is motivated by the need to keep an open the approach by adopting the
up-to-date standard in interoperable simulation and to guarantee flexibility (Kuhl
et al. 1999; Joshi and Castellote 2006). Interoperability guarantees the capability to
include many different models to simulate complex heterogeneous networks and
entities with their interactions and operations. The hybrid simulation combines
discrete event stochastic simulator with continuous simulators (Banks et al. 1996;
Zacharewicz et al. 2008; Bruzzone 2016e). To reproduce the complexity of au-
tonomous systems and to automate the actor behaviors, JESSI adopts intelligent
agents to create a distributed control of the autonomous systems (Feddema et al.
2002; Ören and Yilmaz 2009; Bruzzone 2013e). The Intelligent Agents (IA) used in
this case are based on Intelligent Agent Computer Generated Forces (IA-CGF)
originally developed to reproduce social networks, human factors, and autonomous
system behaviors (Bruzzone et al. 2011b; Bruzzone 2013a). One interesting aspect
of this scenario is the necessity to simulate the collaborative operations involving
different types of AUV, USV, and UAV with surface and underwater vessels as
well as with Sensor Networks. In general, it is useful, as in JESSSI, to guarantee the
use multiple RTIs (Run Time Infrastructures) including Pitch, Mäk, and Portico for
a wide spectrum of integration possibilities. In the above presented case, the fed-
eration was tested with several federates and by adapting different kinds of
Federation Object Model (FOM) such as SIMCJOH FOM, MCWS-MSTPA FOM,
RPR (Real-time Platform-level Reference for integrating DIS legacy systems)
FOM and STANAG 4684 (Virtual Ship) proposal (Bruzzone et al. 2015a). In the
new generation of marine interoperable simulation, it is important to provide the
opportunity for introducing new assets within the scenario as well as models
characterized by different levels of fidelity based on the simulation objectives and
data availability. This allows a flexible approach for experimentation and investi-
gating over a wide spectrum of problems related to the operational use of auton-
omous systems and to find new ways to use them in different scenarios. It was
possible to guarantee the engagement of SMEs by providing an intuitive and
comprehensive representation of the EMF as an immersive virtual world. This
approach allowed introduction of an innovative concept of man-in-the-loop
(Magrassi 2013). This means that SMEs immersed in the virtual environment are
able to capture the maritime picture and scenario awareness: thanks to 3D repre-
sentation of assets and their capabilities. Sensor and weapon ranges dynamically
denoted as spheres, highlight communication assets, and networks status relating
directly to the evolution of the MoM. Moreover, the SME could test different
hypotheses by interactively assigning high level tasks to the IAs that are controlling
the traditional assets and the autonomous systems. This concept allows conducting
the experimentation autonomously, avoiding the need to remotely control these
assets, or to involve other people in operational details or through predefined
assignments, scripts, or waypoints (Cooke et al. 2006). This approach leads toward
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the possibility of repeating multiple simulations and to develop new collaborative
orders and behaviors through combined task assignment to UxV and traditional
assets (Bruzzone et al. 2013c; Ferrandez et al. 2013; Kalra et al. 2007; Vail et al.
2003). For instance, it results in assigning a Small-Waterplane-Area Twin Hull
(SWATH USV) a recovery, recharging, and fast data transfer task to cover an area
for AUV deployment. In this framework, the IAs are in charge of creating a
dynamic heterogeneous network that is able to self-reorganize to cover underwater
communication. Indeed such capability is crucial, being very well known that in
future scenarios the collaborative tasks over multiple domains will be very
important to guarantee new capabilities (Fig. 14.2) (Richards et al. 2002; Ross et al.
2006; Tanner et al. 2007).

This is a good example where these simulation capabilities lead to improve the
capacity of the training to address a complex scenario and be tuned and validated.
This kind of simulation further improves E&T and represents an open distributed
simulation framework that is able to provide a clear understanding of the events and
mission environment. In fact, the users are able to figure out the scenario evolution
in an intuitive way and it becomes easy to analyze the different Courses of Actions
(COAs) during the Joint Naval Training through the interoperable stochastic
simulation.

In this way, it is possible to evaluate the scenario dynamics as well as the
consequences, in terms of MoM, of the different alternative decisions and related
risks. The virtual experience accumulated via an MS2G constitutes a very valuable
support for E&T. Therefore, it is possible to test hypotheses about the bandwidth of
the communications among the supersonic missiles and check if they are consistent
with the need to share and renegotiate targets during the attack incorporating its
maneuvering capabilities and the air defenses of the task force.

14.3 Intelligence-Driven Simulation Addressing Human
Behavior Modeling

The case presented in this section deals with Agent-Driven simulation. These types
of simulators are becoming very popular for their capability to reproduce scenarios
with many active elements and to study complex systems and where emergent
behaviors evolve from the interactions among the actors. In general, it is possible to
develop agents with special characteristics to create complex systems (Hewitt 1977;
Wooldridge and Jennings 1995). IAs able to act within a simulation are able to
drive the evolution of the events by simulating different actors. This requires
developing special challenging capabilities for these agents such as autonomy,
adaptability, situatedness, sociability, composability, etc. (Sarjoughian et al. 2001b;
Ören 2001; Massei et al. 2014a; Bruzzone et al. 2017).

In constructive simulation for war-gaming, this represents a big potential,
especially in dealing with Human Behaviors. Due to these reasons, in the presented
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case, to reproduce operations dealing with civilian by agent-driven simulation, the
scenarios evolved along Yugoslav Wars and consequent operations (e.g., Kosovo)
suggest the necessity to address these aspects for supporting training, education,
and potentially operational planning in mission environments where the population
outcome is one of the most critical elements (Nation 2003; Bocca et al. 2006).
These scenarios could be extended to the cases of urban disorders in reference to
domestic and overseas contexts (Bruzzone and Massei 2007a). In general, in recent
decades, the population was in the middle of most conflicts, and coalition forces as
well as the different opponents were perceived as friends or foes by civilians based
on their behavior and not on their flag. It is very interesting to outline that there is a
fundamental difference between civilians and military units in these scenarios. For
instance, in these cases and within a constructive simulation, a battalion (a division
or a wing) has to execute clear orders, normally consistent with Rules of
Engagement (RoE), logistics chain, and command chain. Vice versa, a group of
civilians react based on their perceptions without task assignments and, hence,
represents a challenge for simulation in CAX (Cayirci and Marincic 2009a).
Someone could object that in CAX there are units of civilians used traditionally as
Internally Displaced Persons (IDPs) or Refugees. Therefore, these entities are
normally controlled manually by the White/Grey Cell and Civilian Advisors based
on predefined Scripts and they evolve usually in a predetermined way usually with
no fail risk for the trainees. In addition, these elements are normally proposed in
terms of small groups or simplified behaviors in order to make it possible to manage
them manually within a CAX and all the responsibility for the effective training is
relying on the SME. Now SMEs are fundamentally actors, therefore, it is crucial to
provide them with models, tools, and simulators to support their work and turning it
into a quantitative context based on a scientific approach (Bruzzone et al. 2009a). In
the presented case, the adopted simulation need to be an interoperable hybrid
stochastic simulation that should be federated with other simulators to cover
specific aspects of a scenario dealing with Human Behavior (Bruzzone et al.
2008b). The main goal was to model complex elements such as Riots and Civil
Disorders in towns and their impact on a Theater Level Wargame in order to train
the Commander and his staff during a CAX to consider the dynamics of these
elements with respect to the whole scenario.

In this sense, Polyfunctional Intelligent Operational Virtual Reality Agents
(PIOVRA) agents were used to drive the human behavior simulation (Bruzzone and
Massei 2007a). The use of agents requires application of different AI techniques to
provide autonomy, awareness, and assessment capabilities. The PIOVRA agents
demonstrated their capability to reduce human personnel interoperating with the
simulation system, increasing the objectivity of actions and reactions of different
entities present in the battlefield (i.e., friend, foe, or neutral). Another important
aspect was the capability of the IA to describe basic reasons behind a particular
operational behavior (allowing verification in an indirect manner, the doctrine,
tactics, and ROE) by generating realistic Military Reports to Higher Commanders
Bruzzone et al. (2008b).
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This is critical to develop and integrate Human Behavior Models (HBM) to
reproduce population as well as their impact on military and paramilitary units and
on other actors during the riots (Seck et al. 2004; Bruzzone et al. 2008a).
The PIOVRA agents were conceptually designed by using G-DEVS/HLA approach
and all the models were HLA native. The PIOVRA Simulation passed integration
test successfully with both with DMSO RTI and IEEE1516 RTIs and was exper-
imented with JTLS as well as with other federates (e.g., IA-CGF Entity and Units)
using RTI NG Pro V4.0 based on HLA Interface Specification v1.3 (Giambiasi
et al. 2001; Seck et al. 2005; Bruzzone and Massei 2007a). To succeed in simu-
lating this complex scenario, agents were embedded with AI algorithms that were
based on hybrid hierarchical models and to use fuzzy logic to evaluate their per-
ception of the reality and related reactions (Chi et al. 1991; Zadeh and Kacprzyk
1992; Piera et al.1998; Bruzzone et al. 2008b; Latorre-Biel et al. 2014). PIOVRA
was based on the first generation of IA-CGF and was able to confirm their capa-
bilities in terms of autonomous reporting, decision-making, and reproduction of
human factors. In this case, the modeling of complex human behaviors required
creating specific models for stress, fear, fatigue, aggressiveness (Seck et al. 2005).
Stress is a crucial component in urban warfare and civil disorders for both popu-
lation and units. It corresponds to an emotional intense reaction related to external
stimulation, providing adaptive, physical, and psychological reactions. If the efforts
from the subject are failing, due to the fact that stress level overpass reaction
capabilities, the individuals are subjected to vulnerabilities in relation to psycho-
logical, somatic, and combined disorders. PIOVRA agents do not deal with
pathological situation that already corresponds to have units and people almost
disabled, but focus on how this condition affects decisions and behavior.
In PIOVRA, stress is regulated by algorithms derived by a simplified Lazarus and
Folkman model (Folkman et al. 1986; Folkman 2013).

Copying Resources represent processes devoted to manage a situation com-
bining both emotional and rational aspects. These reactions are dependent on the
parameters of the PIOVRA Agents characterizing the status of units and people
defined as Action Object. The value of action object parameters, dynamically
evolve during the simulation and drive the different alternative behaviors against the
same stressing events. In PIOVRA, each Action Object reacts to events based on
these models considering the dynamic evolution of stress level. The stress is
incremented based on an algorithm that consider its temporal evolution by intro-
ducing a hysteresis phenomena and is influenced by the relative perception of
stressful events for a specific Action Object. Stress level of an Action Object
usually has to be compared with Action Object Stress Tolerance Capability
(FTC) in order to compute its effect on the different possible actions. Figure 14.3
proposes an example of PIOVRA Stress Model. The Action Objects, corresponding
to the entities that interact with the Comportment Objects on the terrain, and deal
with the different groups and organizations (e.g., ethnic groups, police, etc.) and
influence other Action Objects belonging to the same party.
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14.4 Crime as an Intriguing Element in Simulation During
Normalization Missions

In many modern scenarios where simulation is used to support war-gaming, the
traditional force-to-force game is not common. The new warfare paradigm evolved
in recent year included asymmetric and hybrid warfare. Therefore, in addition to
these conditions, often, there are situations where an intriguing and critical com-
ponent is provided by actors that are strongly influential, quite relevant, and must be
taken into consideration for mission success. The Criminal Organizations and
Warlords represent a very good example of these entities.

Hereafter, we now present the case of Riots, Agitators, and Terrorists by
Simulation (RATS) applied to an urban environment, during the normalization of a
region, where different warlords are active and could be driven by intelligent CGF
(Bruzzone et al. 2008a, 2014a). In this case, a crucial element is represented by
identifying the necessary parameters to measure the capability of the agents for
reproducing the behavior of the warlords and criminal organizations. For each of
these agents, a “starting state” and a desired “final state” was defined to drive the
capability of higher level agents, representing one of the warlords that assigns
orders to its agent-driven units that achieve their goals: to react to blue force action

Fig. 14.3 Stress Model if IA-CGF
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as well as to carry out routing operations (Massei and Tremori 2014b). RATS
controls the movements of these (background) entities present on the area of
operation of blue forces and defines the ROE of different parties with respect to
each other (e.g., avoid contact, hide, engage, force escalation criteria). In general,
models of ROE should address several aspects including criteria to drive the
reactions (Shinseki 2001) such as Hostility Criteria, Scale of Force, Alert
Conditions, Approval to Use Weapons, Eyes on Target, Terrain Restraints,
Manpower Restrictions, Restrictions on Point Targets, etc. In this case, the ROEs
are activated on the perception of the opponent. The attitudes between them are
computed by employing Fuzzy Allocation Matrices (FAMs) and fuzzy relationships
as proposed in Fig. 14.4 (Bruzzone et al. 2008a, 2014a).

14.5 Disaster Relief and Military Training

The above mentioned cases represent challenging examples that are crucial in
preparing Commanders for current missions. Another very critical case is repre-
sented by Disaster Relief and Humanitarian Crisis (Kovács and Spens 2007). In
reference to this context, we present the case of an important capability demon-
stration carried out for the first time in ITEC, London, just two months after the big

Fig. 14.4 HBM based on Fuzzy Rules
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Earthquake in Haiti Magnitude 7.0 Mw with over 100,000 deaths (Kolbe et al.
2010). The US Joint Force Command, in collaboration with several institutions and
companies, was able to present the potential for federation training in HLA mul-
tilevel different systems for this purpose (Grom et al. 2010; Bruzzone et al. 2011e;
Massei et al. 2014a). Specifically, the following systems were involved in this
simulation (Fig. 14.5):

• DI-GUI: Representing People and Crowd by Virtual Humans in Port Au Prince
• IA-CGF NCF EQ: Simulating the Population Behavior and the effects of the

Earthquake on them and Food Distribution Operations
• IA-CGF NCF: Riot Using IA to drive the looters
• JTLS: Simulating Logistics Support provided to the Area of the Disaster
• JCATS: Simulating Tactical Operation in Port Au Prince for guaranteeing

security in the area
• PLEXIS: Flight Simulator allowing to fly over the Port Au Prince area
• VBS/2: Allowing to Control in First Person a Dismounted Soldier in the

destroyed area.

This example confirms the importance of combining interoperable simulation
and IA to support development planning. The use of simulation represents a strong
benefit to improve planning of infrastructures and plants devoted to disaster relief.
In these scenarios, it is very useful to federate HBM including their social networks

Fig. 14.5 Demonstrating the Joint Haiti Earthquake Simulation
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to understand the impact on the population of the relief operations (Massei et al.
2014a). The additional seismic storms provide a challenge to the planner, requiring
proper planning of its operations, and to adapt to the dynamic evolution of the
crisis. These types of simulations are available today for their use in combined
exercises between Armed Forces and Civil Agencies for addressing Crisis
Management as forecasted many years ago (McLeod and McLeod 1984). Indeed,
these considerations outline the opportunity to develop joint training opportunities
for people devoted to guarantee interoperability among civil organization and
military units in this sector.

14.6 DIES-IRAE: IDP & Refugees as a Challenge
for Military Planners

In addition to crisis generated by disasters, another emerging issue for Military
Commanders and Planner is to face problems related to IDP, Refugees and in
general, with Humanitarian Crisis and their impact on the migration phenomena
(Abi-Saab 1978; Levine et al. 1985; Samers 2004; Ratha et al. 2016). In this case,
we present a modeling approach to represent the complex reality of these problems.
The demographics and generic statistics are used as input data, while human
behavior models are in charge to represent the phenomena as well as the

Fig. 14.6 UAV interoperating with IDP Dynamics
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interactions among the different key factors and players (for example,
ACLED; DESA, IOM, UNHCR). The development of conceptual models,
addressing the migration flows due to wars, is crucial to properly plan future
operations that affect huge amount of refugees and IDP (Fig. 14.6) (Bonabeau
2002; Anderson et al. 2007; Bruzzone and Sokolowski 2012b; Sokolowski and
Banks 2014; Bozzoli et al. 2015).

Disasters, Incidents, and Emergencies Simulation Interoperable Relief Advanced
Evaluator (DIES-IRAE) is an example of multilayer approach that is able to
combine different M&S techniques including stochastic discrete event constructive
simulation, virtual simulation, and agent-driven simulation (Bruzzone et al. 2016b).
The simulation was developed in strong relationship with NATO M&S COE and
validated over different scenarios in Africa. The system combines a Virtual and a
Constructive simulator integrated in HLA.

14.7 CIMIC and PSYOPS: Operational Planning Versus
Human Behavior Modeling

We already mentioned that while it is very common to use simulation for running
wargames, in the last 20 years overseas operations of most coalitions (e.g., UN,
NATO) required developing new skills. For instance, in stabilization or normal-
ization scenarios, the Civil Military Cooperation (CIMIC) and the Psychological
Operations (PSYOPS) are very fundamental activities. These activities are further
stressed in new emerging scenarios (Pingitore 2004; Ankersen 2007; Fishstein and
Wilder 2012). This requires developing training programs and consideration of the
impact of these operations on the population. This context is very challenging as it
has to address both the HBM and the information model of targets, interest groups,
etc. The case presented here deals with CIMIC and Planning Research. In Complex
Operational Realistic Network (CAPRICORN) simulation developed within
European Defense Agency (EDA), the development of this innovative simulation
system was led by Simulation Team in cooperation with DIME/DIPTEM, LSIS,
MAST, and ITESOFT and with support of EDA and European National MoD (i.e.,
Italian and French Ministry of Defense). CAPRICORN allowed further development
of IAs for reproducing population beliefs evolution by creating a multilayer struc-
ture. CAPRICORN simulator operates within an HLA Federation extended to other
simulators and supports E&T for operational planners in CIMIC and PSYOPS.
These elements were integrated within the whole planning system for adopting a
comprehensive approach over the whole scenario (Fig. 14.7) (Bruzzone 2013a).

The model allows definition of configuration groups that generate the whole
population, the social networks, and their deployment on the terrain (e.g., houses,
work places, etc.). The people-object is characterized in terms of Age, Gender,
Ethnics, Tribe, Social Status, Education, Religion, Political Party, Life Cycle, etc.
In addition, each people-object has human behavior modifiers and connections to
multiple interest groups (e.g., a Leader, a Village, a Church, a Business Sector)
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(Fig. 14.8). In this way, CAPRICORN allows evolution dynamically as the inter-
relationships evolve at individual and group levels based on the effect of the
CIMIC, PSYOPS, and other operations.

Fig. 14.7 CIMIC & PSYOPS Simulation

Fig. 14.8 CAPRICORN Population Group Definition
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14.8 Education on Information-Sharing and Training
for Intelligence

Another important area for E&T is the communications sector from HUMINT to
STRATCOM. In this area, the traditional education programs could heavily benefit
by utilizing M&S. In particular, SG are very promising in this sector and the
proposed case of Sibilla is a good example of the potential of these solutions and
their capability for different purposes (Bruzzone et al. 2009d). Sibilla simulator
originated through a joint cooperation between NASA and academic institutions to
transform a RPG board game to support team building, learning group dynamics,
and information management into an SG (Nylen et al. 1967; Elfrey 1982). In this
web game, the participants have to face a crisis dealing with multiple potential
terrorist attacks. There is no time for players to learn about one another, to go slow
and consolidate relationships, or consider interpersonal relations such as the stan-
dard perspectives of inclusion, control, and affection. The terrorist organizations are
controlled by intelligent agents that take care of reproducing the processes of
planning, preparing, and executing attacks. Along these phases, there are spills of
information that are distributed among the players often in incomplete ways to
provide parts of the information about the incoming events. The players could
decide to go through data mining of this information or to share it with others. This
is an example where data fusion has to be applied to information instead than to
sensor data (Longo 2012). Based on the different E&T scenarios, SG is used for
training users in remote classroom operating on PCs, or even smart phones, and
provides capability to create a progressive evolution of the trainees in terms of
understanding the problem and learning additional skills over more challenging
scenarios. Indeed, the web technologies allow distributing the game and emphasize
E&T effectiveness through remotely controlled training sessions.

14.9 Commander Strategic Decision-Making:
Engagement into Serious Games

Preparing a Commander for a new task is a challenge, especially because his
capabilities and skills are usually already pretty consolidated and based on long
experience acquired directly on the field. So, it is hard to develop any Strategic
Decision-Making course for a Commander considering his background, experience,
attitude as well as the skills that made him a Commander (Elfrey 1982). This does
not mean that Military Training should ignore the fundamental aspect to introduce
Commanders in Strategic Decision-Making.

In fact, today the scenarios change and evolve so quickly that the experience
acquired by Commanders need to be adapted and extended over new areas (e.g.,
different geopolitical regions or new domains). This is a great opportunity for
innovative Simulation and SGs. It is important to outline that there is a special
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interest with respect to the impact of strategic decision involving human factors
within overseas scenarios (Main 2009). Within these contexts, the human factors
are often the main aspects to be addressed, as happened in recent scenarios such as
Libya, Afghanistan, Syria (Johnson and Mason 2008; Kreps 2010; Bellamy and
Williams 2011; Dewachi et al. 2014).

The presented case relates to a new concept derived from SG and MS2G:
Simulation of Multi Coalition Joint Operations involving Human Modeling
(SIMCJOH) is an MS2G, devoted to immersive experience and focusing on
engaging the Commander and his staff into a time sensitive and stressing situation
related to strategic issues (Bruzzone et al. 2015d) as proposed in Figs. 14.9 and
14.10.

SIMCJOH has been developed as an HLA Federation combining different
systems such as SIMCJOH Virtual Interoperable Simulator (VIS) and SIMCJOH
Virtual Interoperable Commander (VIC), Scenario Generator and Animator (SGA),
GESI, Network Communication Simulator (NCS), etc. SIMCJOH project was
conducted in cooperation between Simulation Team, DIME, Genoa University,
CAE, Cal-Tek, MAST, MSC-LES University of Calabria, Leonardo, and it was
cosponsored by Italian MoD. SIMCJOH has been adopted by NATO M&S Center
of Excellence that supported the VV&A of the simulator and the experimentation
working side by side with different Military Organizations (Di Bella 2015).
Analyses were also conducted for education and training in relation to its inte-
gration with Generalized Intelligent Framework for Tutoring (GIFT) that represents
an innovative intelligent tutoring system of US Army Research Lab (Sottilaire
2012b).

Fig. 14.9 SIMCJOH VIC: Virtual Negotiation
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14.10 Terrorism as an Emergent Topic: From Training
to Crowdsourcing

Defense against terrorism is traditionally an issue for many Agencies and Services,
while Military Users have a limited role in this context. The evolution of the global
situation is changing this aspect. For instance, it is over 10 years that NATO
activated programs specifically devoted to Defense Against Terrorism (e.g., NATO
PoW DAT). The idea to create simulation models for anti-terrorism (and even in
asymmetric conflicts) has been investigated for many years and has been very
popular since September 11 event (Smith 2002; Abrahams 2005; Ören and Longo
2008). The case study presented in this section is related to the NATO PoW DAT
initiative developed by NATO HQs, in cooperation with STO CMRE and focused
on developing an SG that is able to support training, but also to address
Crowdsourcing (Bruzzone et al. 2015c). Crowdsourcing is an interesting concept
that allows multiple people to contribute to finding a solution to complex problems
(Brabham 2008; Massei et al. 2014a). For instance, DARPA conducted experiments
on an SG to collect and analyze most promising tactics for Anti Submarine Warfare
(ASW) using new generation USV by involving web users (Dillow 2011). By
engaging people through SG and by involving a large number of human players, it
became possible to explore wide experimental ranges and to learn about best
strategies or solutions in defense and business (Bruzzone et al. 2013d; Boinodiris
and Fingar 2014).

Fig. 14.10 SIMCJOH VIS Constructive Simulation
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This approach could be further reinforced by Modeling and Simulation as a
Service (MSaaS) concept that allows transforming simulation as a cloud service
easily accessible by a wide number of people (Siegfried et al. 2014). In this case,
the point was not to identify winning solutions, but to learn about assessments
achieved in Defense against terrorism within NATO Projects, so different users
were enabled to play the scenarios within Distributed Virtual experience and ex-
perimentation (DVx2) framework (Fig. 14.11).

14.11 Asymmetric Warfare: Marine Domain
as Opportunity to Teach Agile Command
and Control (C2) Concept

The Agile C2 is an innovative concept for modern scenarios dealing with the
necessity to adapt the Net Centric Command and Control Maturity Models (NEC
C2 M2) to the dynamic evolution of the mission environment (Alberts et al. 2014).
This problem is decomposed into many cases, including complex piracy scenarios
already addressed by several models (Chee et al. 2007; Xiao et al. 2009; Venek
2010; Bruzzone et al. 2011c). The case presented here, uses simulation to analyze a
complex maritime scenario to evaluate alternative strategies related to different
NEC C2 M2 and to understand the Agility Concept (Alberts and Hayes 2003;
Bruzzone et al. 2011d). Netcentric C2 has been developed over the years to eval-
uate different performance and critical issues (Daly and Tolk 2003).

Fig. 14.11 DVx2 Virtual Representations of Terrorist Attacks, Countermeasures
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Piracy Asymmetric Naval Operation Patterns modeling for Education and
Analysis (PANOPEA) is a stochastic discrete event constructive simulator devoted
to reproduce different warfare types (e.g., traditional, asymmetric, etc.) focusing on
marine interdiction with respect to C2 Agility. The case used for simulation of C2
Agility was applied to Aden Gulf scenario related to piracy. This scenario was
devoted to supporting different experimentation, educational, and training purposes.
It is interesting to note that the results of PANOPEA scenario contributed to the
development of the conceptual analysis on C2 Agility jointly with research carried
out on other valuable simulation environments covering other areas. For instance, a
multiplayer experimentation based on Experimental Laboratory for the
Investigation of Collaboration, Information-Sharing, and Trust (ELICIT) by US
DoD Command and Control Research Program (CCRP) was developed as an
outcome.

Another experimentation was carried out with respect to a failing state, with
years of civil war as well as a conflict with a neighbor country, by IMAGE sim-
ulation tool developed by Defense Research Development Center (DRDC) (Lizotte
et al. 2013, 2014; Bernier 2012). The Experimentation was conducted on Wargame
Infrastructure and Simulation Environment (WISE) involving a land battle group

Fig. 14.12 C2 Basic Architecture
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simulation at system level, including C2 models of other domains (Pearce et al.
2003). The combination of these results and the related analyses allowed extending
the validity of C2 Agility concept and resulted in the best scientific achievement for
C2 in 2014 for NATO Science & Technology Organization, confirming the
strategic value of the stochastic agent-driven simulation (Alberts et al. 2014)
(Fig. 14.12).

14.12 Moving Warfare from Asymmetric to Hybrid:
From IED to STRATCOM and Cyber Attacks

Few years ago, the main issue in overseas scenarios was Improvised Explosive
Devices (IED). In recent years, we have become used to see cyber and media
attacks ongoing almost every day and often getting big impact in the international
arena (Theohary 2011; Cameron and Putin 2013; Roth 2016). The evolution of
Internet and media channels, as well as globalization emphasizes the impact of
specific concurrent actions carried over different layers (e.g., political, social,
financial, cyber, critical infrastructures, etc.). Due to these reasons, major players
are intensely studying these new phenomena that are often aggregated under the
name of Hybrid Warfare, even if this term is still controversial (Baker 2015).
Strategic Communications (STRATCOM) as well as cyber attacks are among the
most important new streams to conduct operations (Keeton and McCann 2005;
Dimitriu 2012; Holmqvist 2013).

The basic concept is quite mature and has been used in historical cases (Lamb
and Stipanovich 2016). The new technologies and media channels are generating
totally new opportunities in this sector (Gerasimov 2013, 2016). The Hybrid
Warfare often focuses on destabilizing Command Chains and complicating the
decision-making. These actions are especially effective against organizations that
are slow in their decision process due to their democratic or multinational nature.
Human behavior models and the message diffusion are key elements that need to be
considered. Specific models should be developed for this purpose (Faucher 2011).
In this context, the subjects of war activities are often intentionally ambiguous in
order to avoid a direct military confrontation. The modern concept of Hybrid
Warfare is complex and requires specific models and studies. Asymmetric,
Information, and Cyber Warfare evolve in critical domains considering that the
Hybrid Warfare involves the whole Diplomatic/Political, Information, Military,
Economic, Financial, Intelligence, legal (DIMEFIL) spectrum. In this case, the war
is conducted in all battlegrounds, such as international community, home front
population, and conflict zone population. Model of engagements to be adopted are
the quite different. Considering the nature of this kind of warfare, it is necessary to
conduct an analysis over a spectrum of alternative multiple layers (McCuen 2008;
Weitz 2009; Gerasimov 2013, 2016; Bachmann and Gunneriusson 2014; Davis
2015). The actors of hybrid warfare belong to different types including both state
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and non-state players. Hybrid warfare is a concrete and actual phenomenon, so the
development of simulation tools in this area should be addressing it to support
education and training, experimentation and capability development. The use of IAs
has been adapted to create a Simulation framework for this purpose (Massei and
Tremori 2014b; Di Bella 2015). Threat network simulation for REactive
eXperience (T-REX) was recently developed as an interoperable MS2G-based on a
stochastic discrete event simulation that is able to act in stand-alone mode or
federated with other HLA simulators (Fig. 14.13) (Bruzzone et al. 2016a; Bruzzone
2016d).

T-REX could be executed in real time or fast time. In the second case, it allows
conducting multiple runs to investigate alternative COAs and solutions for vul-
nerability reduction in Hybrid Warfare. T-REX was used to support NATO MSG
on Hybrid Warfare Modeling and Simulation with special attention to finalizing the
M&S Requirements for this kind of warfare (Cayirci et al. 2016). The proposed
simulator has already been demonstrated over a scenario related to a desertic area
facing the sea where five other towns are present (see Fig. 14.13). The simulation
includes multiple layers including population (e.g., individuals and/or families) as
well as interest groups (e.g., industrial sectors, religious groups, social classes).
These elements are structured within social networks and regulated by mutual
relationships expressed by fuzzy variables in terms of attitude and intensity. T-REX
includes also other layers interoperating with the socials, in particular the cyber
layer and the Entity & Units (E&U) reproducing military units and assets, as the
drone attacks the critical infrastructure (Fig. 14.14) influencing the scenario evo-
lution and population behaviors.

Fig. 14.13 T-REX Hybrid Warfare Simulation
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14.13 Live Simulation: New Challenges and Opportunities

The Live simulation allows putting real equipment at work, interconnected by
computers, changing the traditional exercise in something new, where casualties
and damages are computed by computer algorithms that consider the dynamics of
boundary and environmental conditions in detail. The major original problem that
focused on creating a laser device to estimate targeting on dismounted soldiers
evolved, morphed into computing more sophisticated aspects. For instance, the
damages from an air drop weapon over troops or the fight between live main battle
tanks and helicopters or fighters attacking a naval task force. In the last decade,
special force operations and urban warfare pushed the Live simulation to address
these issues by creating Military Operations on Urban Terrain (MOUT) able to
represent buildings and to cover indoor live training. In this sense, new positioning
devices and technologies evolved and several projects were developed by major
Manufactures and MoD creating new solutions (e.g., GladiatorTM, I-MILESTM,
SIAT, etc.). It is interesting to note that new Live Simulation is moving up from
original single or small weapons systems up to new contexts. It becomes more and
more crucial to create environments addressing joint fire control, multiple systems,
communication and fire, special operations, etc.

It is important to state that several new areas are under development for live
simulation. For instance, one of the most successful within the last two decades is
related to Live Training in Medical Simulation, where it is possible to operate real
equipment on “simulated patients.” In this context, the first solutions were available
since beginning of ’90 in major research centers such as National Center for
Simulation, Institute for Simulation and Training, NHRC (Freeman et al. 1997;

Fig. 14.14 Examples of E&U Layer integrated in T-Rex
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Petty et al. 1999). These systems have further evolved and in the third millennium,
became very sophisticated and renewed by innovative solutions such as Da Vinci
(Sun et al. 2007). Another very interesting sector, currently promising new
developments, is the Cyber warfare that represents a challenge for Live Simulation
today. It requires enabling a specialist to be trained in these scenarios by interacting
with real equipment and systems such as a Supervisory Control and Data
Acquisition (SCADA) component or a Distributed Control System
(DCS) component of a critical Infrastructure without affecting doing real damages
(Damodaran and Couretas 2015). The case for the development initiative of an
Innovative Framework for vessels that are able to face multiple aspects, even if
mostly focused on Combat Management System (CMS) and tactical training:
TRaining sImulation on BOaRd and distributed and for Decision-making
(TRIBORDO), represents a case study moving up the capabilities of vessels by
adopting innovative training solution for the crew. In this case, the focus is on the
operations room with the aim to create more realistic scenarios, more easily created
and executed and available to be used by trainee more times (Bruzzone 2013f). In
fact, the interoperability among compatible real consoles and virtual models enables
creating new simulation opportunities and new federations (Tozzi and Zini 2011).

This concept is based on the integration of Combat Operational Center
(COC) and CMS on Board of vessels with different models driven by allowable
agents. This approach not only allows creating task forces composed by a mix of

Fig. 14.15 Live Virtual and Constructive Simulation
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real and virtual assets, but also allow substituting real console operators with
simulated ones to populate a vessel COC by a mix of real operators and virtual ones
(Bruzzone et al. 2013b) (Fig. 14.15).

It becomes possible to federate different components dealing with Live simu-
lation such as real equipment (Console in Operations Room) with Virtual simula-
tion such as Simulation Model Agent Driven (friendly or foe Vessel), Constructive
simulation and IA-CGF (tactical simulation). In this way, a complex scenario could
be created without requiring commitment and preparation of a large number of real
operators. So, just a few persons will be able to prepare and conduct an exercise on
their real consoles interacting with the other people of the COC and of the other
ships. This will act as a force-multiplier for training opportunities, allowing con-
ducting exercises with reduced personnel with the ship in the port. In addition,
TRIBORDO allows developing new E&T programs addressing procedural and
conceptual preparation of the crew and represents a clear example of how evolution
of interoperable simulation is transforming the training processes using Live
simulation.

14.14 Autonomous Systems and Cyber Warfare:
New Areas for Training

Future of Defense is focused on two new and related issues: Autonomous Systems
and Cyber Space. There is necessity to train people in dealing with these contexts
and it is intuitive to understand that the related high level of complexity of these
missions requires simulation (Biagini et al. 2016).

The presented case study refers to a public domain simulator experimented by
NATO STO CMRE for Marine Cyber Warfare Simulation (MCWS) (Fig. 14.16).
The simulator addresses heterogeneous networks with special attention to the
Anti-Access/Area Denial (A2/AD) and includes multiple traditional assets, AUVs,
and cyber space, playing a crucial role (Bruzzone et al. 2013e). The system has
been integrated into MCWS-MSTPA Federation in HLA as well as with hardware
(HIL) and software (SIL) of real autonomous systems. This Case study moves the
problem from traditional game theory to simulation, to be able evaluate the impact
of operations and technological details dealing with different tactics with respect to
the success rate of the whole scenario (Kuhn 1997; Zeigler et al. 2000).

The model was used to investigate the potential for creating mixed scenarios
including legacy systems, traditional assets (ships) and autonomous vehicles
operating over the Extended Maritime Framework. In this context, communications
are running over Heterogeneous Networks and are strongly dependent on Cyber
Defense, so the simulator has a simple scenario, is modular and scalable. It involves
a surface vessel patrolling an area by using autonomous systems in order to
guarantee area denial to a potentially hostile submarine. The context includes
several sensors, weapon systems, AUV, buoys, helicopters, etc. In addition, the
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mission environment could move from A2/AD up to operational military
confrontation.

It is evident that the “devil is in the details.” For instance, the different band-
widths and reliabilities of the heterogeneous networks affect the effectiveness of the
procedures and require investigating new approaches and policies to deal with the
autonomous network. In this case, it included a new multistatic sonar solution based
on AUV and buoys that could be integrated in the whole architecture (Bruzzone
et al. 2013c).

14.15 Summary

This chapter presented examples as scientific evidence of the potential of M&S
applied to Military Training. The presented problem cases are all in public domain,
therefore are results of real projects applied to real cases. They make evident the
complexity of this context as well as the capabilities of modern M&S.

The success in this area, as seen in the presented cases, is strongly related to the
capability to engage experts on the operational field with simulation scientists. This
aspect is crucial to develop the proper conceptual models and architectures, to
implement them in a way able to support the users and to successfully complete the
VV&A processes.

The proposed experiences have been deliberately focused on new emerging
scenarios and innovative models and paradigms. This has been done not only to

Fig. 14.16 MCWS Simulator
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provide the reader with an up-to-date understanding of this context, but also to
demonstrate that simulation evolves continuously, despite the fact that the funda-
mental concepts are still the same after half a century (e.g., importance of VV&A,
conceptual modeling fundamentals, etc.). In some way, this could be summarized as
the need to adapt the traditional principia and foundations of M&S with the
innovative emerging methodologies and the new enabling technologies. By
adopting this approach in developing M&S projects, it is possible to successfully
address very challenging mission environments and complex problems.

Review Questions

1. Describe the advantage of introducing Human Behavior Modeling in Simulation
models.

2. Could you identify specific application of Live Simulation respect Constructive
and Virtual?

3. 2.1 LVC as commercial tool and the real LVC concept behind LVC simulation:
describe the difference.

4. What are the advantages of Interoperability for Military Training?
5. What are the advantages for simulation for Cyber Defense?
6. What are the critical elements to model for simulating Hybrid Warfare?
7. What is the major criticality for VV&A in Military Simulation?
8. Describe the concept of Simuland.
9. HLA: Describe the motivation for adopting it.
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Epilogue

The exploration of the phrase “simulation-based” in this book provides evidence
that simulation-based thinking is prevalent in many disciplines including complex
systems, engineering, medicine, natural sciences, physical sciences, social sciences,
education, and training. This book provides a compendium of the state-of-the-art
practices in these disciplines now supported with simulation technologies.
Dedicated professionals spanning leadership, management, and engineering rec-
ognize Modeling and Simulation (M&S) as a profession and as an integral structure
to their day-to-day operations.

The simulation community includes many technical societies to serve their
members in many disciplines. For example, there are over 100 technical M&S
societies1 in four groups: international, national, and regional associations as well as
networking of professional organizations. One of the professional associations, the
Society for Modeling & Simulation International (SCS), has been in existence for
over sixty years. SCS organizes Spring Simulation Multi-conferences, Summer
Simulation Multi-conferences, Power Plant Simulation conferences, and the more
recent, Asia Simulation Multi-conferences. We are fortunate to have members of
this society include Tuncer Ören, Bernard P. Zeigler, Roy Crosbie, and Ralph
Huntsinger, who collectively have been a part of SCS for over 150 years. As of the
publication of this book, the Winter Simulation Conference2 is celebrating its 50th
anniversary. While these conferences are typically based in the USA, there are
many more that have been active in Europe and Asia.

Simulation is a big business, with new technologies such as serious gaming,
augmented reality and virtual worlds now becoming regular household entities.
Furthermore, simulation used for entertainment purposes (e.g., simulation games) is
also a big business. Without simulation at their core, such experiences would never
have become possible.

Many professionals who use simulation techniques in their practice may not
consider themselves simulationists, since they primarily identify as engineers,

1http://www.site.uottawa.ca/*oren/links-MS-AG.htm.
2http://www.wintersim.org.
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scientists, social scientists, or medical or defense professionals. However, the
technology they are applying is simulation.

Simulation establishes a model in a computational environment and allows us to
experiment with the model to solidify our understanding in a dynamic environment.
“Computation” in computational modeling and simulation is an aspect of modeling
and simulation and does not (cannot) imply that modeling and simulation is a
subfield of computation or software engineering. Pretending otherwise, would be
like claiming that “computational astronomy” and “computational archeology”
respectively are, subfields of computation or software engineering. However,
simulation extends the power of computation by allowing experimentation and
experience. Furthermore, simulation models can act as generators of new data under
the associated scenarios.

The advancements in simulation of cultures, human personality, and behavior as
well as incorporation of social-system and ethics in simulation studies may support
simulation-based rational decision-making education and training as a part of the
education and training of future statesmen. This may even include education of
citizens including the recognition of cognitive biases leveraged by some politicians
to distort reality for their personal advantages.

Modeling and simulation practitioners are truly happy to see simulation now in
every aspect of modern life. Today, we cannot (should not) embark any complex
system study (design, analysis, or control) without considering “simulation-based”
techniques. Simulation-based approaches in any discipline—like the proverbial
sharpening the axe—is a rational way to enhance our job performance in an
effective way. This book is a guide to explore the advantages of simulation-based
approaches in many disciplines. By emphasizing the role of simulation in education
in many disciplines, future professionals may be better equipped for their profes-
sions. Involving—even non-computational—simulation in K to 12 education,
future generations may be better prepared with enhanced thinking abilities.

Saurabh Mittal,3 Herndon, Virginia, USA
Umut Durak, Braunschweig, Germany
Tuncer Ören, Ottawa, Ontario, Canada

March 2017

3The authors affiliation with The MITRE Corporation is provided for identification purposes only,
and is not intended to convey or imply MITRE’s concurrence with, or support for, the positions,
opinions or viewpoints expressed by the author. Approved for public release: Case: 17-1658.
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