
Verifying Controllability of Time-Aware
Business Processes

Emanuele De Angelis1(B), Fabio Fioravanti1, Maria Chiara Meo1,
Alberto Pettorossi2, and Maurizio Proietti3(B)

1 DEC, University ‘G. D’Annunzio’, Pescara, Italy
{emanuele.deangelis,fabio.fioravanti,cmeo}@unich.it

2 DICII, University of Rome Tor Vergata, Rome, Italy
pettorossi@disp.uniroma2.it

3 IASI-CNR, Rome, Italy
maurizio.proietti@iasi.cnr.it

Abstract. We present an operational semantics for time-aware business
processes, that is, processes modeling the execution of business activities,
whose durations are subject to linear constraints over the integers. We
assume that some of the durations are controllable, that is, they can be
determined by the organization that enacts the process, while others are
uncontrollable, that is, they are determined by the external world.

Then, we consider controllability properties, which guarantee the com-
pletion of the enactment of the process, satisfying the given duration
constraints, independently of the values of the uncontrollable durations.
Controllability properties are encoded by quantified reachability formu-
las, where the reachability predicate is recursively defined by a set of Con-
strained Horn Clauses (CHCs). These clauses are automatically derived
from the operational semantics of the process.

Finally, we present two algorithms for solving the so called weak and
strong controllability problems. Our algorithms reduce these problems to
the verification of a set of quantified integer constraints, which are sim-
pler than the original quantified reachability formulas, and can effectively
be handled by state-of-the-art CHC solvers.

1 Introduction

A business process model is a procedural, semi-formal specification of the order
of execution of the activities in a business process (or BP, for short) and of the
way these activities must coordinate to achieve a goal [18,35]. Many notations
for BP modeling, and in particular the popular BPMN [26], allow the modeler
to express time constraints, such as deadlines and activity durations. However,
time related aspects are neglected when the semantics of a BP model is given
through the standard Petri Net formalization [18], which focuses on the control

This work has been partially funded by INdAM-GNCS (Italy). E. De Angelis,
F. Fioravanti, and A. Pettorossi are research associates at IASI-CNR, Rome, Italy.

c© Springer International Publishing AG 2017
S. Costantini et al. (Eds.): RuleML+RR 2017, LNCS 10364, pp. 103–118, 2017.
DOI: 10.1007/978-3-319-61252-2 8

104 E. De Angelis et al.

flow only. Thus, formal reasoning about time related properties, which may be
very important in many analysis tasks, is not possible in that context.

In order to overcome this difficulty, various approaches to BP modeling with
time constraints have been proposed in the literature (see [5] for a recent sur-
vey). Some of these approaches define the semantics of time-aware BP models
by means of formalisms such as time Petri nets [24], timed automata [33], and
process algebras [36]. Properties of these models can then be verified by using
very effective reasoning tools available for those formalisms [3,17,23].

In this paper we address the problem of verifying the controllability of time-
aware business processes. This notion has been introduced in the context of
scheduling and planning problems over Temporal Networks [32], but it has not
received much attention in the more complex case of time-aware BP models.
We assume that some of the durations are controllable, that is, they can be
determined by the organization that enacts the process, while others are uncon-
trollable, that is, they are determined by the external world. Properties like
strong controllability and weak controllability guarantee, in different senses, that
the process can be completed, satisfying the given duration constraints, for all
possible values of the uncontrollable durations. Controllability properties are
particularly relevant in scenarios (e.g., healthcare applications [9]) where the
completion of a process within a certain deadline must be guaranteed even if the
durations of some activities cannot be fully determined in advance.

We propose a method for solving controllability problems by extending a
logic-based approach that has been recently proposed for modeling and verify-
ing time-aware business processes [11]. This approach represents both the BP
structure and the BP behavior in terms of Constrained Horn Clauses (CHCs) [4],
also known as Constraint Logic Programs [19], over Linear Integer Arithmetics.
(Here we will use the ‘Constrained Horn Clauses’ term, which is more common in
the area of verification.) In our setting, controllability properties can be defined
by quantified reachability formulas.

An advantage of the logic-based approach over other approaches is that it
allows a seamless integration of the various reasoning tasks needed to analyze
business processes from different perspectives. For instance, logic-based tech-
niques can easily perform ontology-related reasoning about the business domain
where processes are enacted [29,34] and reasoning on the manipulation of data
objects of an infinite type, such as databases or integers [2,10,28]. Moreover, for
the various logic-based reasoning tasks, we can make use of very effective tools
such as CHC solvers [15] and Constraint Logic Programming systems.

For reasons of simplicity, in this paper we consider business process mod-
els where the only time-related elements are constraints over task durations.
However, other notions can be modeled by following a similar approach.

The main contributions of this paper are the following. (1) We define an
operational semantics of time-aware BP models, which modifies the semantics
presented in [11] by formalizing the synchronization of activities at parallel merge
gateways and we prove some properties of this new semantics (see Sect. 3). Our
semantics is defined under the assumption that the process is safe, that is, during

Verifying Controllability of Time-Aware Business Processes 105

its enactment there are no multiple, concurrent executions of the same task [1].
(2) We provide formal definitions of strong and weak controllability properties
as quantified reachability formulas (see Sect. 4). (3) We present a transformation
technique for automatically deriving the CHC representation of the reachabil-
ity relation starting from the CHC encoding of the semantics of time-aware
processes, and of the process and property under consideration (see Sect. 4).
(4) Finally, we propose two algorithms that solve strong and weak controllabil-
ity problems for time-aware BPs. These algorithms avoid the direct verification
of quantified reachability formulas, which often cannot be handled by state-of-
the-art CHC solvers, and they verify, instead, a set of simpler Linear Integer
Arithmetic formulas, whose satisfiability can effectively be worked out by the Z3
constraint solver [15] (see Sect. 5). Detailed proofs of the results presented here
can be found in a technical report [12].

2 Preliminaries

In this section we recall some basic notions about the constrained Horn clauses
(CHCs) and the Business Process Model and Notation (BPMN).

Let RelOp be the set {=, �=,≤,≥, <,>} of predicate symbols denoting the
familiar relational operators over the integers. If p1 and p2 are linear polynomials
with integer variables and integer coefficients, then p1R p2, with R∈RelOp, is an
atomic constraint. A constraint c is either true or false or an atomic constraint or
a conjunction or a disjunction of constraints. Thus, constraints are formulas of
Linear Integer Arithmetics (LIA). An atom is a formula of the form p(t1, . . . , tm),
where p is a predicate symbol not in RelOp and t1, . . . , tm are terms constructed
as usual from variables, constants, and function symbols. A constrained Horn
clause (or simply, a clause, or a CHC) is an implication of the form A ← c,G
(comma denotes conjunction), where the conclusion (or head) A is either an
atom or false, the premise (or body) is the conjunction of a constraint c and a
(possibly empty) conjunction G of atoms. The empty conjunction is identified
with true. A constrained fact is a clause of the form A ← c, and a fact is a clause
whose premise is true. We will write A ← true also as A ←. A clause is ground
if no variable occurs in it. A clause A ← c,G is said to be function-free if no
function symbol occurs in (A,G), while arithmetic function symbols may occur
in c. For clauses we will use a Prolog-like syntax (in particular, ‘ ’ stands for an
anonymous variable).

A set S of CHCs is said to be satisfiable if S ∪LIA has a model, or equivalently,
S∪LIA �|= false. Given two constraints c and d, we write c � d ifLIA |= ∀(c → d),
where ∀(F) denotes the universal closure of formula F . The projection of a con-
straint c onto a set X of variables is a new constraint c′, with variables in X, which
is equivalent, in the domain of rational numbers, to ∃Y.c, where Y is the set of
variables occurring in c and not in X. Clearly, c � c′.

A BPMN model of a business process consists of a diagram drawn by using
graphical notations representing: (i) flow objects and (ii) sequence flows (also
called flows, for short).

106 E. De Angelis et al.

A flow object is: either (i.1) a task, depicted as a rounded rectangle, or (i.2) an
event, depicted as a circle, or (i.3) a gateway, depicted as a diamond. A sequence
flow is depicted as an arrow connecting a source flow object to a target flow
object (see Fig. 1).

Tasks are atomic units of work performed during the enactment (or execu-
tion) of the business process. An events is either a start event or an end event,
which denote the beginning and the completion, respectively, of the activities of
the process. Gateways denote the branching or the merging of activities. In this
paper we consider the following four kinds of gateways: (a) the parallel branch,
that simultaneously activates all the outgoing flows, if its single incoming flow is
activated (see g1 in Fig. 1), (b) the exclusive branch, that (non-deterministically)
activates exactly one out of its outgoing flows, if its single incoming flow is acti-
vated (see g3 in Fig. 1), (c) the parallel merge, that activates the single outgoing
flow, if all the incoming flows are simultaneously activated (see g4 in Fig. 1), and
(d) the exclusive merge, that activates the single outgoing flow, if any one of the
incoming flows is activated (see g2 in Fig. 1). The diamonds representing par-
allel gateways and exclusive gateways are labeled by ‘+++’ and ‘×××’, respectively.
Branch and merge gateways are also called split and join gateways, respectively.

A sequence flow denotes that the execution of the process can pass from the
source object to the target object. If there is a sequence flow from a1 to a2,
then a1 is a predecessor of a2, and symmetrically, a2 is a successor of a1. A path
is a sequence of flow objects such that every pair of consecutive objects in the
sequence is connected by a sequence flow.

We will consider models of business processes that are well-formed, in the
sense that they satisfy the following properties: (1) every business process con-
tains a single start event and a single end event, (2) the start event has exactly
one successor and no predecessors, and the end event has exactly one prede-
cessor and no successors, (3) every flow object occurs on a path from the start
event to the end event, (4) (parallel or exclusive) branch gateways have exactly
one predecessor and at least one successor, while (parallel or exclusive) merge
gateways have at least one predecessor and exactly one successor, (5) tasks have
exactly one predecessor and one successor, and (6) no cycles through gateways
only are allowed. Note that we do not require BP models to be block-structured.

Fig. 1. A business process Proc.

Verifying Controllability of Time-Aware Business Processes 107

In Fig. 1 we show the BPMN model of a business process, called Proc. After
the start event, the parallel branch g1 simultaneously activates the two flow
objects g2 and b. The exclusive merge g2 activates the sequential execution of
the task a1 which in turn activates the execution of the task a2 which is followed
by the exclusive branch g3. After g3, the execution can either return to g2 or
proceed to g4. If g3 and b both complete their executions simultaneously, then
the parallel merge g4 is executed, the end event occurs, and the process Proc
terminates.

3 Specification and Semantics of Business Processes

In this section we introduce the notion of a Business Process Specification (BPS),
which formally represents a business process by means of CHCs. Then we define
the operational semantics of a BPS.

Business Process Specification via CHCs. A BPS contains: (i) a set of
ground facts that specify the flow objects and the sequence flows between them,
and (ii) a set of clauses that specify the duration of each flow object and the
controllability (or uncontrollability) of that duration.

For the flow objects we will use of the following predicates: task(X),
event(X), gateway(X), par-branch(X), par-merge(X), exc-branch(X),
exc-merge(X) with the expected meaning. For the sequence flows we will use
the predicate seq(X,Y) meaning that there is a sequence flow from X to Y . For
every task X we specify its duration by the constrained fact duration(X,D) ←
dmin≤D≤dmax, where dmin and dmax are positive integer constants representing
the minimal and the maximal duration of X, respectively. Events and gateways,
being instantaneous, have duration 0. For every task X and its duration, we also
specify that they are controllable, or uncontrollable, by the fact controllable(X) ←,
or uncontrollable(X) ←, respectively.

In Fig. 2 we show the BPS of process Proc of Fig. 1. For reasons of space,
in that specification we did not list all the facts for the tasks, events, gateways,
and sequence flows of the diagram of Proc.

Fig. 2. The CHCs of the Business Process Specification of process Proc of Fig. 1.

Operational Semantics. We define the operational semantics of a business
process under the assumption that the process is safe, that is, during its enact-
ment there are no multiple, concurrent executions of the same flow object [1].

108 E. De Angelis et al.

By using this assumption, we represent the state of a process enactment as a
set of properties, called fluents holding at a time instant. We borrow the notion
of fluent from action languages such as the Situation Calculus [25], the Event
Calculus [20], or the Fluent Calculus [30], but we will present our semantics
by following the structural operational approach often adopted in the field of
programming languages.

Formally, a state s∈States is a pair 〈F, t〉, where F is a set of fluents and t
is a time instant, that is, a non-negative integer. A fluent is a term of the
form: (i) begins(x), which represents the beginning of the enactment of the flow
object x, (ii) completes(x), which represents the completion of the enactment
of x, (iii) enables(x, y), which represents that the flow object x has completed its
enactment and it enables the enactment of its successor y, and (iv) enacting(x, r),
which represents that the enactment of x requires r units of time to complete
(for this reason r is called the residual time of x). We have that begins(x) is
equivalent to enacting(x, r), where r is the duration of x, and completes(x) is
equivalent to enacting(x, 0). (This redundant representation allows us to write
simpler rules for the operational semantics below.)

The operational semantics is defined by a rewriting relation −→ which is a
subset of States×States. This relation is specified by rules S1–S7 below, where we
use the following predicates, besides the ones introduced in Sect. 3 for defining
the BPS: (i) not-par-branch(x), which holds if x is not a parallel branch, and
(ii) not-par-merge(x), which holds if x is not a parallel merge.

(S1)
begins(x)∈F duration(x, d)

〈F, t〉 −→ 〈(F \ {begins(x)}) ∪ {enacting(x, d)}, t〉

(S2)
completes(x)∈F par-branch(x)

〈F, t〉 −→ 〈(F \ {completes(x)}) ∪ {enables(x, s) | seq(x, s)}, t〉

(S3)
completes(x)∈F not-par-branch(x) seq(x, s)

〈F, t〉 −→ 〈(F \ {completes(x)}) ∪ {enables(x, s)}, t〉

(S4)
∀p seq(p, x) → enables(p, x) ∈ F par-merge(x)

〈F, t〉 −→ 〈(F \ {enables(p, x) | enables(p, x) ∈ F}) ∪ {begins(x)}, t〉

(S5)
enables(p, x)∈F not-par-merge(x)

〈F, t〉 −→ 〈(F \ {enables(p, x)}) ∪ {begins(x)}, t〉

(S6)
enacting(x, 0)∈F

〈F, t〉 −→ 〈(F \ {enacting(x, 0)}) ∪ {completes(x)}, t〉

(S7)
no-other-premises(F) ∃x∃r enacting(x, r)∈F m>0

〈F, t〉 −→ 〈F�m \ Enbls, t+m〉

Verifying Controllability of Time-Aware Business Processes 109

where: (i) no-other-premises(F) holds iff none of the premises of rules S1–S6

holds, (ii) m = min{r | enacting(x, r) ∈ F}, (iii) F�m is the set F of fluents
where every enacting(x, r) is replaced by enacting(x, r−m), and (iv) Enbls =
{enables(p, s) | enables(p, s) ∈ F}.
We assume that, for every flow object x, there exists a unique value d of its
duration, satisfying the given constraint, which is used for every application of
rule S1. Note that S7 is the only rule that formalizes the passing of time, as it
infers rewritings of the form 〈F, t〉−→〈F ′, t+m〉, with m>0. In contrast, rules
S1–S6 infer state rewritings of the form 〈F, t〉 −→ 〈F ′, t〉, where time does not
pass. Here is the explanation of rules S1–S7.

(S1) If the execution of a flow object x begins at time t, then, at the same time t,
x is enacting and its residual time is its duration d;

(S2) If the execution of the parallel branch x completes at time t, then x enables
all its successors at time t;

(S3) If the execution of x completes at time t and x is not a parallel branch,
then x enables precisely one of its successors at time t (in particular, this
case occurs when x is a task);

(S4) If all the predecessors of x enable the parallel merge x at time t, then the
execution of x begins at time t;

(S5) If at least one predecessor p of x enables x at time t and x is not a parallel
merge, then the execution of x begins at time t (in particular, this case occurs
when x is a task);

(S6) If a flow object x is enacting at time t with residual time 0, then the
execution of x completes at the same time t;

(S7) Suppose that: (i) none of rules S1–S6 can be applied for computing a state
rewriting 〈F, t〉 −→ 〈F ′, t′〉, (ii) at time t at least one task is enacting with
positive residual time (note that flow objects different from tasks cannot have
positive residual time), and (iii) m is the least value among the residual times
of all the tasks enacting at time t. Then, (i) every task x that is enacting at
time t with residual time r, is enacting at time t+m with residual time r−m
and (ii) all enables(p, s) fluents are removed.

Due to rules S4 and S5, if a fluent of the form enables(p, s) is removed by applying
rule S7, then s necessarily refers to a parallel merge that is not enabled at time t
by some of its predecessors. Thus, a parallel merge is executed if and only if it
gets simultaneously enabled by all its predecessors. For lack of space we omit
to model the asynchronous version of the parallel merge [11], which does not
require the simultaneity condition. Note also that, if desired, tasks can be added
for modeling delays in an explicit way.

We say that state 〈F ′, t′〉 is reachable from state 〈F, t〉, if 〈F, t〉 −→∗ 〈F ′, t′〉,
where −→∗ denotes the reflexive, transitive closure of the rewriting relation −→.

The initial state is the state 〈{begins(start)}, 0〉. The final state is the state
of the form 〈{completes(end)}, t〉, for some time instant t.

110 E. De Angelis et al.

Properties of the Operational Semantics. Now we first introduce the
notions of: (i) a derivation, which is a sequence of states, and (ii) a selection func-
tion, which is a rule providing the order in which fluents are rewritten according
to the relation −→. In Theorem 1 below we will prove that the relation −→ is
independent of that order.

Definition 1 (Derivation). A derivation from a state s0 in a BPS is a (possibly
infinite) sequence of states s0, s1, s2, . . . such that for all i≥0, si−→si+1.

Let Statessat be the subset of States where no-other-premises(F) holds.

Definition 2 (Selection function). Let δ be a finite derivation whose last
state is 〈F, t〉, with F �= ∅. A selection function R is a function that takes the
derivation δ and returns : either (i) a subset of F whose elements satisfy the
conditions in the premise of exactly one rule among S1–S6, or (ii) the union of
the set of the ‘enacting’ fluents in F and the set of the ‘enables’ fluents in F , if
〈F, t〉∈Statessat and at least one ‘enacting’ fluent belongs to F .

The selection function is well-defined, because each fluent can be rewritten
by at the most one rule and the rules S1–S6 are not overlapping, that is, the sets
of fluents which can fire two distinct rules in S1–S6 (or two different instances
of the same rule) are disjoint.

Definition 3 (Derivation via R). Given a selection function R, we say that
a derivation δ is via R iff for each proper prefix δ′ of δ ending with a state s,
if s −→ s′ and (δ′ s′) is a prefix of δ, then R(δ′) are the fluents of s that are
rewritten when deriving s′.

Theorem 1. For every derivation δ from a state s0, and selection function R,
there exists a derivation δ′ from s0 via R such that if 〈F,t〉 is a state in δ and f
is a fluent in F, then there exists a state 〈F ′,t〉 in δ′ such that f is a fluent in F ′.

4 Encoding Controllability Properties into CHCs

In this section we show how weak and strong controllability properties are for-
malized by defining a CHC interpreter, that is, a set of CHCs that encodes the
operational semantics of business processes. Then, the interpreter is specialized
with respect to the business process and property to be verified.

A CHC Interpreter for Time-Aware Business Processes. A state of the
operational semantics is encoded by a term of the form s(F, T), where F is a set
of fluents and T is the time instant at which the fluents in F hold. The rewriting
relation −→ between states and its reflexive, transitive closure −→∗ are encoded by
the predicates tr and reach, respectively. The clauses defining these predicates are
shown in Table 1. In the body of the clauses, the atoms that encode the premises of
the rules of the operational semantics have been underlined.

Verifying Controllability of Time-Aware Business Processes 111

The predicate select(L,F) encodes a selection function (see Definition 2).
We assume that select(L,F) holds iff L is a subset of the set F of fluents such
that: (i) there exists a clause in {C1, . . . , C6} that updates F by replacing
the subset L of F by a new set of fluents, and (ii) among all such subsets of
F , L is the one that contains the first fluent, in textual order (in this sense
select(L,F) is deterministic). The predicate task-duration(X,D,U,C) holds iff
duration(X,D) holds and D belongs to either the list U of durations of the
uncontrollable tasks or the list C of durations of the controllable tasks. The
predicate update(F,R,A, FU) holds iff FU is the set obtained from the set F
by removing all the elements of R and adding all the elements of A. The pred-
icate no-other-premises(F) holds iff the premise of every rule in {C1, . . . , C6}
is unsatisfiable. The predicate mintime(Enacts,M) holds iff Enacts is a set of
fluents of the form enacting(X,R) and M is the minimum value of R for the
elements of Enacts. The predicate decrease-residual-times(Enacts,M,EnactsU)
holds iff EnactsU is the set of fluents obtained by replacing every element of
Enacts, of the form enacting(X,R), with the fluent enacting(X,RU), where
RU = R−M . The predicates member(El,Set) and set-union(A,B,AB) are self-
explanatory. The predicate findall(X,G,L) holds iff X is a term whose variables
occur in the conjunction G of atoms, and L is the set of instances of X such
that ∃Y.G holds, where Y is the tuple of variables occurring in G different from
those in X.

We denote by Sem the set consisting of clauses C1, . . . , C7, R1, R2, together
with the clauses encoding the business process specification.

Theorem 2 (Correctness of Encoding). Let init be the term that encodes the
initial state 〈{begins(start)}, 0〉, and fin(t) be the term that encodes the final state
〈{completes(end)}, t〉. Then, 〈{begins(start)}, 0〉 −→∗ 〈{completes(end)}, t〉 iff
there exist tuples of integers x and y such that Sem ∪LIA |= reach(init,fin(t),x,y).

A reachability property is defined by a clause of the form:
RP. reachProp(U,C) ← c(T, U, C), reach(init, fin(T), U, C)
where: (i) U and C denote tuples of uncontrollable and controllable durations,
respectively, and (ii) c(T, U, C) is a constraint.

We say that the duration D of task X is admissible iff duration(X,D) holds.
The strong controllability problem for a BPS consists in checking whether or not
there exist durations C such that, for all admissible durations U , the property
reachProp(U,C) holds. The weak controllability problem for a BPS consists in
checking whether or not, for all admissible durations U , there exist durations C
such that reachProp(U,C) holds. Note that, if reachProp(U,C) holds, then all
durations used to reach the final state are admissible, and hence in the definition
of controllability there is no need to require that the existentially quantified
durations C are admissible. We denote by I the set Sem ∪ {RP}.

Definition 4 (Strong and weak controllability). Given a BPS B,

– B is strongly controllable iff I ∪ LIA |= ∃C ∀U. adm(U) → reachProp(U,C)

112 E. De Angelis et al.

Table 1. The CHC interpreter for time-aware business processes.

– B is weakly controllable iff I ∪ LIA |= ∀U.adm(U) → ∃C reachProp(U,C)
where adm(U) holds iff U is a tuple of admissible durations.

If a business process is weakly controllable, in order to determine the dura-
tions of the controllable tasks, we need to know in advance the actual durations of
all the uncontrollable tasks. This might not be realistic in practice, as uncontrol-
lable tasks may occur after controllable ones. Strong controllability implies weak
controllability and guarantees that suitable durations of the controllable tasks
can be computed, before the enactment of the process, by using the constraints
on the uncontrollable durations, which are provided by the process specification.

Specializing the CHC Interpreter. The clauses in I make use of complex
terms, and in particular lists of variable length, to represent states (see clauses
C1–C7). However, I can be specialized to the particular BPS under consideration
and transformed into an equivalent set Isp of function-free CHCs, on which
CHC solvers are much more effective. The specialization transformation is a
variant of the ones for the so called Removal of the Interpreter proposed in the
area of verification of imperative programs [14], and makes use of the following
transformation rules: unfolding, definition introduction, and folding [16].

Verifying Controllability of Time-Aware Business Processes 113

The specialization transformation (see [12] for details) starts off by unfold-
ing clause RP, thereby performing a symbolic exploration of the space of the
reachable states. The unfolding rule is defined as follows.
Unfolding Rule. Let C be a clause of the form H ← c, L,A,R, where A is an
atom. Let {Ki ← ci, Bi | i = 1, . . . , m} be the set of the (renamed apart) clauses
in I such that, for i = 1, . . . ,m, A is unifiable with Ki via the most general
unifier ϑi and (c, ci) ϑi is satisfiable. Then, from C we derive the following set of
clauses: { (H ← c, ci, L,Bi, R)ϑi | i = 1, . . . ,m }.

After unfolding, by applying the definition rule, for every reach atom occur-
ring in the body of a clause, a new predicate is introduced by a clause of the
form:

newr(Rs, T,Tf, U, C) ← f(Rs), reach(s(fl(Rs), T),fin(Tf), U, C)
where f(Rs) is a constraint obtained by projecting the constraint occurring in
the body of the clause where the reach atom occurs, onto the tuple Rs of variables
representing the residual times, and fl(Rs) denotes the set of fluents that hold
at time T . Then, by applying the folding rule, reach atoms with complex argu-
ments representing states (i.e., reach(s(fl(Rs), T),fin(Tf), U, C)), are replaced by
function-free calls to the newly introduced predicates (i.e., newr(Rs, T,Tf, U, C)).
The unfolding-definition-folding transformations are repeated until we derive a
set Isp of function-free CHCs. Since the unfolding, definition introduction, and
folding rules preserve satisfiability [16], we have the following result.

Theorem 3 (Correctness of Specialization). Every set I of CHCs encoding
a reachability property of a BPS can be transformed into a set Isp of CHCs such
that: (i) Isp is a set of function-free CHCs, and (ii) for all (tuples of) integer
values x and y, I ∪ LIA |= reachProp(x, y) iff Isp ∪ LIA |= reachProp(x, y).

Example 1. Let I be the set of clauses defining the reachability property for the
process Proc of Fig. 1, and let clause RP be:

reachProp(A1,A2,B) ← reach(init,fin(T), A1, (A2,B))

where A1 denotes the duration of the uncontrollable task a1 and (A2, B) denotes
the durations of the controllable tasks a2 and b. By applying the specialization
transformation to I, we derive the following function-free clauses:
reachProp(A1,A2,B) ← A=A1, B=B1, A1≥2, A1≤4, B≥5, B≤6,

new2(A,B1, F,G,A1, A2, B)
new2(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1,

new2(J, I,H,D,A1, A2, B)
new2(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J =0, A≥1, I≥0, A−I≥1,

new2(I,J,H,D,A1,A2,B)
new2(A,B1,C,D,A1,A2,B) ← H=A2, A=0, H≥1, H≤2, new5(H,B1,C,D,A1,A2,B)
new5(A,B1,C,C,A1,A2,B) ← A=0, B1=0
new5(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1,

new5(J,I,H,D,A1,A2,B)
new5(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J =0, A≥1, I≥0, A−I≥1,

new5(I,J,H,D,A1,A2,B)

new5(A,B1,C,D,A1,A2,B) ← H=A1, A=0, H≥2, H≤4, new2(H,B1,C,D,A1,A2,B)

114 E. De Angelis et al.

5 Solving Controllability Problems

State-of-the-art CHC solvers are often not effective in solving controllability
problems defined by a direct encoding of the formulas in Definition 4, where
nested universal and existential quantifiers occur. The main problem is that
performing quantifier elimination on formulas defined by, possibly recursive,
Constrained Horn Clauses is very expensive, and often unsuccessful. Thus, we
propose an alternative method that is based on verifying a series of simpler
properties, where quantification is restricted to LIA constraints.

We assume the existence of a solver that is sound and complete for Horn
clauses with LIA constraints. The solver interface is a procedure solve(P,Q)
such that, for any set P of CHCs and for any query Q, which is a conjunction of
atoms and LIA constraints, returns an answer A, that is, a satisfiable constraint
A such that P |= ∀(A → Q), if such an answer exists, and false otherwise.

The method we propose solves controllability problems by looking for a sat-
isfiable constraint a(U,C), where U and C are tuples of variables denoting the
durations of the uncontrollable and controllable tasks, respectively, such that
I ∪ LIA |= ∀U ∀C. a(U,C) → reachProp(U,C) and either
(†) LIA |= ∃C ∀U. adm(U) → a(U,C) (for strong controllability), or
(‡) LIA |= ∀U. adm(U) → ∃C. a(U,C) (for weak controllability).

In particular, we introduce the Strong and Weak Controllability algorithms
(SC and WC for short, respectively) that, given a set of function-free CHCs
defining reachProp(U,C) (that is, a set of clauses generated by the specialization
transformation of Sect. 4), produce a solution for the controllability problem by
constructing a(U,C) as a disjunction of the answer constraints provided by the
solver until either condition (†) holds (respectively, condition (‡) holds) or there
are no more answers (see Fig. 3). In order to avoid repeated answers, at each
iteration of the do-while loop, the solver is invoked on a query containing the
negation of the (disjunction of the) answers obtained so far.1

Since the durations of the tasks belong to finite integer intervals, the set of
answers that can be returned by the solve procedure is finite. Hence the SC and
WC algorithms always terminate. The following theorem states that SC and
WC are sound and complete methods for solving strong and weak controllability
problems, respectively.

Theorem 4 (Soundness and Completeness of SC and WC). Let I be a
set of CHCs defining a reachability property for a BPS B. Then,
(i) SC returns a satisfiable constraint if and only if B is strongly controllable
(ii) WC returns a satisfiable constraint if and only if B is weakly controllable.

We now illustrate how the WC algorithm works by applying it to the clauses
obtained by specialization in Example 1. During the first iteration of the do-
while loop the CHC solver is invoked by executing solve(I, reachProp(A1, A2, B)∧
∀A2, B.¬false), which returns the answer constraint a1(A1, A2, B): A1 ≥ B −2,

1 In WC we introduce a small optimization by using a query that avoids obtaining
multiple answers with the same values of U .

Verifying Controllability of Time-Aware Business Processes 115

Fig. 3. The SC and WC algorithms for verifying strong and weak controllability.

A1≤4, A2=B−A1, B≥5, B≤6. In our example, the constraint adm(A1) is A1≥
2, A1 ≤ 4. Now we have that LIA �|= ∀A1. adm(A1) → ∃A2, B. a1(A1, A2, B),
and hence the algorithm executes the second iteration of the do-while loop.
Next, the CHC solver is invoked by executing solve(I, reachProp(A1, A2, B) ∧
∀A2, B.¬a1(A1, A2, B)),which returns the answer constrainta2(A1, A2, B):A1=
2, A2 = 1, B = 6. Now the condition of the do-while loop is false, because LIA |=
∀A1. adm(A1) → ∃A2, B. (a1(A1, A2, B) ∨ a2(A1, A2, B)). Thus, the WC algo-
rithm terminates and we can conclude that the considered weak controllability
property holds.

We have used the VeriMAP transformation and verification system for
CHCs [13] to implement the specialization transformation of Sect. 4, and SIC-
Stus Prolog and the Z3 solver to implement the SC and WC algorithms. We
have applied our method to verify the weak controllability of the process Proc.
The timings are as follows2: the execution of the specialization transformation
requires 0.04 s and the execution of the WC algorithm requires 0.03 s.

We have also solved controllability problems for other small-sized processes,
not shown here for reasons of space, whose reachability relation, like the one
for process Proc, contains cycles that may generate an unbounded proof search,
and hence may cause nontermination if not handled in an appropriate way. In
particular, in all the examples we have considered, we noticed that Z3 is not able
to provide a proof within a time limit of one hour for a direct encoding of the
controllability properties as they are formulated in Definition 4.

6 Related Work and Conclusions

Controllability problems arise in all contexts where the duration of some tasks in
a business process cannot be determined in advance by the process designer. We

2 The experiments have been performed on an Intel Core Duo E7300 2.66 Ghz proces-
sor with 4GB of memory under GNU/Linux OS.

116 E. De Angelis et al.

have presented a method for checking strong and weak controllability properties
of business processes. The method is based upon well-established techniques and
tools in the field of computational logic.

Modeling and reasoning about time in the field of business process manage-
ment has been largely investigated in the recent years [5]. The notion of control-
lability, extensively studied in the context of scheduling and planning problems
over temporal networks [6–8,27,31,32], has been considered as a useful concept
for supporting decisions in business process management and design [9,21,22].

Algorithms for checking strong and weak controllability properties were first
introduced for Simple Temporal Networks with Uncertainty [32]. Later, sound
and complete algorithms were developed for both strong [27] and weak [31] con-
trollability of Disjunctive Temporal Problems with Uncertainty (DTPU). More
recently, a general and effective method for checking strong [7] and weak [8]
controllability of DTPU’s via SMT has been developed.

The task of verifying controllability of BP models we have addressed in this
paper is similar to the task of checking controllability of temporal workflows
addressed by Combi and Posenato [9]. These authors present a workflow con-
ceptual framework that allows the designer to use temporal constructs to express
duration, delays, relative, absolute, and periodic constraints. The durations of
tasks are uncontrollable, while the delays between tasks are controllable. The
controllability problem, which arises from relative constraints that limit the
duration of two non-consecutive tasks, consists in checking whether or not the
delays between tasks enforce the relative constraints for all possible durations of
tasks. The special purpose algorithms for checking controllability presented in [9]
enumerate all possible choices, and therefore are computationally expensive.

Our approach to controllability of BP models exhibits several differences with
respect to the one considered by Combi and Posenato in [9]. In our approach
the designer has the possibility of explicitly specifying controllable and uncon-
trollable durations. We also consider workflows with minimal restrictions on the
control flow, and unlike the framework in [9], we admit loops. We automatically
generate the clauses to be verified from the formal semantics of the BP model,
thus making our framework easily extensible to other classes of processes and
properties. Finally, we propose concrete algorithms for checking both strong and
weak controllability, based on off-the-shelf CHC specializers and solvers.

As future work we plan to perform an extensive experimental evaluation of
our method and to apply our approach to extensions of time-aware BP models,
whose properties also depend on the manipulation of data objects.

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J.
Circ. Syst. Comput. 8(1), 21–66 (1998)

2. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.:
Verification of relational data-centric dynamic systems with external services. In:
Proceedings of the (PODS 2013), pp. 163–174. ACM (2013)

Verifying Controllability of Time-Aware Business Processes 117

3. Berthomieu, B., Vernadat, F.: Time Petri nets analysis with TINA. In: Proceedings
of QEST 2006, pp. 123–124. IEEE Computer Society (2006)

4. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). doi:10.1007/978-3-319-23534-9 2

5. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: The temporal perspec-
tive in business process modeling: a survey and research challenges. Serv. Oriented
Comput. Appl. 9(1), 75–85 (2015)

6. Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., Roveri, M.: Dynamic con-
trollability via timed game automata. Acta Informatica 53(6), 681–722 (2016)

7. Cimatti, A., Micheli, A., Roveri, M.: Solving strong controllability of temporal
problems with uncertainty using SMT. Constraints 20(1), 1–29 (2015)

8. Cimatti, A., Micheli, A., Roveri, M.: An SMT-based approach to weak controlla-
bility for disjunctive temporal problems with uncertainty. Artif. Intell. 224, 1–27
(2015)

9. Combi, C., Posenato, R.: Controllability in temporal conceptual workflow
schemata. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM
2009. LNCS, vol. 5701, pp. 64–79. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03848-8 6

10. Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies
and arithmetic. ACM Trans. Database Syst. 37(3), 1–36 (2012)

11. De Angelis, E., Fioravanti, F., Meo, M.C., Pettorossi, A., Proietti, M.: Verification
of time-aware business processes using Constrained Horn Clauses. In: Preliminary
Proceedings of LOPSTR 2016, CoRR. http://arxiv.org/abs/1608.02807 (2016)

12. De Angelis, E., Fioravanti, F., Meo, M.C., Pettorossi, A., Proietti, M.: Verifying
controllability of time-aware business processes. Technical report IASI-CNR 16-08
(2016)

13. Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: VeriMAP: a tool for ver-
ifying programs through transformations. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 568–74. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 47

14. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Semantics-based gen-
eration of verification conditions by program specialization. In: Proceedings of the
PPDP 2015, pp. 91–102. ACM (2015)

15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

16. Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theor. Comput. Sci.
166, 101–146 (1996)

17. Formal Systems (Europe) Ltd. Failures-Divergences Refinement, FDR2 User Man-
ual (1998). http://www.fsel.com

18. ter Hofstede, A.M., van der Aalst, W.M.P., Adams, M., Russell, N. (eds.): Mod-
ern Business Process Automation: YAWL and its Support Environment. Springer,
Heidelberg (2010)

19. Jaffar, J., Maher, M.: Constraint logic programming: a survey. J. Logic Program.
19(20), 503–81 (1994)

20. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Gener. Comput.
4(1), 67–95 (1986)

http://dx.doi.org/10.1007/978-3-319-23534-9_2
http://dx.doi.org/10.1007/978-3-642-03848-8_6
http://dx.doi.org/10.1007/978-3-642-03848-8_6
http://arxiv.org/abs/1608.02807
http://dx.doi.org/10.1007/978-3-642-54862-8_47
http://dx.doi.org/10.1007/978-3-642-54862-8_47
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://www.fsel.com

118 E. De Angelis et al.

21. Kumar, A., Sabbella, S.R., Barton, R.R.: Managing controlled violation of tempo-
ral process constraints. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.)
BPM 2015. LNCS, vol. 9253, pp. 280–96. Springer, Cham (2015). doi:10.1007/
978-3-319-23063-4 20

22. Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controlling time-awareness in
modularized processes. In: Schmidt, R., Guédria, W., Bider, I., Guerreiro, S. (eds.)
BPMDS/EMMSAD -2016. LNBIP, vol. 248, pp. 157–72. Springer, Cham (2016).
doi:10.1007/978-3-319-39429-9 11

23. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997)

24. Makni, M., Tata, S., Yeddes, M., Ben Hadj-Alouane, N.: Satisfaction and coherence
of deadline constraints in inter-organizational workflows. In: Meersman, R., Dillon,
T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 523–39. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-16934-2 39

25. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp.
463–502. Edinburgh University Press (1969)

26. OMG. Business Process Model and Notation. http://www.omg.org/spec/BPMN/
27. Peintner, B., Venable, K.B., Yorke-Smith, N.: Strong controllability of disjunctive

temporal problems with uncertainty. In: Bessière, C. (ed.) CP 2007. LNCS, vol.
4741, pp. 856–63. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7 64

28. Proietti, M., Smith, F.: Reasoning on data-aware business processes with constraint
logic. In: Proceedings of the SIMPDA 2014. CEUR, vol. 1293, pp. 60–75 (2014)

29. Smith, F., Proietti, M.: Rule-based behavioral reasoning on semantic business
processes. In: Proceedings of the ICAART 2013, vol. II, pp. 130–143. SciTePress
(2013)

30. Thielscher, M.: From Situation Calculus to Fluent Calculus: State update axioms
as a solution to the inferential frame problem. Artif. Intell. 111(1-2), 277–299
(1999)

31. Venable, K.B., Volpato, M., Peintner, B., Yorke-Smith, N.: Weak and dynamic
controllability of temporal problems with disjunctions and uncertainty. In: Pro-
ceedings of the COPLAS 2010, pp. 50–59 (2010)

32. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from
consistency to controllabilities. J. Exp. Theor. Artif. Intell. 11(1), 23-45 (1999)

33. Watahiki, K., Ishikawa, F., Hiraishi, K.: Formal verification of business processes
with temporal and resource constraints. In: Proceedings of the SMC 2011, pp.
1173–1180. IEEE (2011)

34. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of
semantic business process models. Distrib. Parallel Databases 27, 271–343 (2010)

35. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007)

36. Wong, P.Y.H., Gibbons, J.: A relative timed semantics for BPMN. Electron. Notes
Theor. Comput. Sci. 229(2), 59–75 (2009)

http://dx.doi.org/10.1007/978-3-319-23063-4_20
http://dx.doi.org/10.1007/978-3-319-23063-4_20
http://dx.doi.org/10.1007/978-3-319-39429-9_11
http://dx.doi.org/10.1007/978-3-642-16934-2_39
http://www.omg.org/spec/BPMN/
http://dx.doi.org/10.1007/978-3-540-74970-7_64

	Verifying Controllability of Time-Aware Business Processes
	1 Introduction
	2 Preliminaries
	3 Specification and Semantics of Business Processes
	4 Encoding Controllability Properties into CHCs
	5 Solving Controllability Problems
	6 Related Work and Conclusions
	References

